MINERAL DEPOSITS
MINERAL DEPOSITS

BY

WALDEMAR LINDGREN

PROFESSOR OF ECONOMIC GEOLOGY, MASSACHUSETTS INSTITUTE
OF TECHNOLOGY; GEOLOGIST, UNITED STATES
GEORLOGICAL SURVEY

McGRAW-HILL BOOK COMPANY, INC.
239 WEST 39TH STREET, NEW YORK
6 BOUVERIE STREET, LONDON, E. C.
1913
PREFACE

Mineral deposits are usually classified and described by the metals or the substances which they contain; for instance, deposits of copper are described together, with little or no effort to separate them into genetic groups. Where a genetic treatment has been attempted it appears to me to have failed in not giving due weight to the physical conditions attending the genesis. Furthermore, it is the custom to divide the mineral deposits into two groups—the metallic and the nonmetallic—a line of division which can hardly be defended except on the ground of long-established habit.

This book is the outcome of a desire to place the knowledge of mineral deposits on the broader and more comprehensive basis of a consistent genetic classification and thus bring it into a more worthy position as an important branch of geology. Opinions may differ as to whether our present knowledge is sufficient for such an undertaking. Believing that the time has come for a first attempt, I present this volume, in the hope that its shortcomings may be judged leniently.

The impetus to the work came during the preparation of a series of lectures a few years ago, and a course along the general lines followed in this volume has since then been presented annually at the Massachusetts Institute of Technology.

The general plan has been to select a few suitable examples to illustrate each genetic group of deposits. These examples have been chosen regardless of their geographic location, and it was of course necessary to give up any attempt to describe deposits in detail or to present all known examples of any particular type. As the larger part of my experience has been within the United States of America, a considerable number of examples were gathered from this country. This experience I owe to the United States Geological Survey, in which I have had the honor to serve for many years. My indebtedness to my friends and associates in that organization is greater than can be expressed in words.

Boston, August, 1913.
CONTENTS

PREFACE .. V

CHAPTER I

INTRODUCTION ... 1

CHAPTER II

THE DEPOSITION OF MINERALS 21

Solution and precipitation—General features—Precipitation by change of pressure—Precipitation by change of temperature—Precipitation by evaporation of the solvent—Precipitation by reaction between solutions—Precipitation by reactions between aqueous solutions and solids—Precipitation by reactions between gases or between gases and solutions—Colloids—Crystalline minerals.

CHAPTER III

THE FLOW OF UNDERGROUND WATER 28

CHAPTER IV

THE COMPOSITION OF UNDERGROUND WATERS 41

Introduction—Calcium carbonate waters in igneous rocks—Calcium carbonate waters in sedimentary rocks—Chloride waters in sedimentary rocks—Infiltration from present oceans—Solution of saline deposits—Chloride waters in igneous rocks—Sulphate waters in sedimentary rocks—Acid sulphate waters in igneous rocks—Mine waters—Sodium carbonate waters in sedimentary rocks—Sodium carbonate waters in igneous rocks—Sodium sulphide waters—Summary—Interpretation of water analyses.

CHAPTER V

THE CHEMICAL WORK OF UNDERGROUND WATER 65

Metamorphism and mineral deposits—Stability of rocks and vii
CONTENTS

zones of metamorphism—Definitions—General definition of the zones—Zone of weathering—Zone of cementation—The deeper zones—Relation of mineral deposits to the metamorphic zones—Deposits related to igneous activity—Derivation of minerals—Concentration—Underground temperatures.

CHAPTER VI

THE ORIGIN OF UNDERGROUND WATER AND ITS DISSOLVED SUBSTANCES 82
Origin of the water—Salts from sedimentary rocks—Salts from igneous rocks—Origin of the dissolved gases—Rarer elements contained in waters—Origin of spring waters.

CHAPTER VII

THE SPRING DEPOSITS AT THE SURFACE 94
Deposits of limonite and calcium carbonate—Deposits of silica—Deposits of other gangue minerals.

CHAPTER VIII

RELATIONS OF MINERAL DEPOSITS TO MINERAL SPRINGS 103

CHAPTER IX

FOLDING AND FAULTING ... 109
Folds—Faults—General terms—General classification of faults—Faults of parallel displacement—Faults in stratified rocks—Slip—Shift—Throw—Offset—Faults classified according to the direction of the movement—Classes of strike faults—Extension of the words normal and reverse to diagonal and dip faults—Special classes of faults—Rotatory faults—Mineralization of faults—Complexity of faulting.

CHAPTER X

OPENINGS IN ROCKS .. 131
Origin of openings—By the original mode of formation of the rocks—By solution—By fractures of various modes of origin.

CHAPTER XI

FORM, STRUCTURE, AND TEXTURE OF MINERAL DEPOSITS 140
CONTENTS

CHAPTER XII

Ore-shoots - Form of primary ore-shoots - Shoots of successive mineralizations - Vadose ore-shoots - Causes of ore-shoots - Decrease of pressure and temperature - Character of wall rock - Impermeable barriers - Intersections.

CHAPTER XIII

The Classification of Mineral Deposits - Classification by form and substance - Genetic classifications - Outline of proposed classification - Detrital and sedimentary deposits - Concentration of substances contained in the rocks - Residual weathering - Deep circulating waters - Regional metamorphism - Zeolitization - Introduced ores not connected with igneous rocks - Igneous emanations - Products of magmatic differentiation - Metamorphism and enrichment of deposits.

CHAPTER XIV

CHAPTER XV

Deposits Produced by Chemical Processes of Concentration in Bodies of Surface Water by Reactions Between Solutions. Limestone - Definition and origin - Chalk - Lithographic stone - Hydraulic limestone - Lime - Smelter flux - Dolomite - Importance of carbonate rocks as related to ore deposits - Cherts and diatomaceous earth - Sedimentary sulphide deposits - Sedimentary iron ores - Limonite in swamps and lakes (bog iron ores) - Occurrence - Composition - Origin - Examples - The siderites of marine and brackish-water strata - Occurrence - Examples - The Jurassic siderites of England - The oolitic marine limonites and hematites - The oolitic limonites - Occurrence - Examples - Origin - The marine oolitic silicate ores - The marine oolitic hematite ores - Occurrence - The Clinton ores - Review of the sedimentary iron ores - Sedimentary manganese ores - Bog manganese ore -
Manganese in lacustrine and marine beds—Sedimentary phosphate beds—Composition of the phosphates—Production—Origin of the phosphate rocks—Occurrences of phosphate rocks.

CHAPTER XVI

Deposits Formed by Evaporation of Bodies of Surface Waters 265

CHAPTER XVII

Mineral Deposits Resulting from Processes of Rock Decay and Weathering 296

CHAPTER XVIII

Deposits Formed by Concentration of Substances, Contained in the Surrounding Rocks, by Means of Circulating Waters 332

CONTENTS

ores—Résumé—Ores of copper, lead, vanadium, and uranium in sandstone and shale—General features—Origin—Copper and lead deposits in sandstone—European occurrences—American occurrences—South America—Africa—Genesis of sedimentary copper ores—Vanadium ores in sandstones—Occurrence—Genesis—The copper-bearing shales of Mansfeld—Copper sulphide veins in basic lavas—General features—The Nikolai greenstone—Copper sulphide veins in intrusive basic rocks—Other veins deposited by waters of the upper circulation.

CHAPTER XIX

DEPOSITS RESULTING FROM REGIONAL METAMORPHISM 388

CHAPTER XX

DEPOSITS OF NATIVE COPPER WITH ZEOLITES IN BASIC LAVAS 392

CHAPTER XXI

LEAD AND ZINC DEPOSITS IN SEDIMENTARY ROCKS; ORIGIN INDEPENDENT OF IGNEOUS ACTIVITY 412

Characteristic features—Origin—Morsanet—Silesia—Alpine Trias—Other European localities—The lead-zinc ores of the Mississippi Valley.

CHAPTER XXII

METALLIFEROUS DEPOSITS FORMED NEAR THE SURFACE BY ASCENDING THERMAL WATERS AND IN GENETIC CONNECTION WITH IGNEOUS ROCKS 432

Character and origin—General features—Successive phases of mineralization—Zeolitic replacement—Primary ore shoots, oxidation, and sulphide enrichment—Types of deposits—Older representatives of this class—Genesis—Proof of depth below surface—Proof of temperature—Relation to other veins—Metasomatic processes—Extent of alteration—Volcanic emanations—Types of alteration—Metasomatic processes at Thames and Waahi—Metasomatic processes at Tonopah—The development of kaolin—Metasomatic processes at Silverton, Colorado—Summary—Quicksilver deposits—The ores and their general occurrence—Distribution—Geological features—Mineralogy of quicksilver ores—Structure—Oxidation—Genesis—Relation to other ore deposits—Stibnite deposits—Gold quartz veins in andesite—Transylvania—Hauraki Peninsula, New Zealand—Gold-quartz veins in rhyolite—
CONTENTS

CHAPTER XXIII

Metalliferous Deposits Formed at Intermediate Depths by Ascending Thermal Waters and in Genetic Connection with Intrusive Rocks

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
</tr>
</tbody>
</table>

CHAPTER XXIV

Veins and Replacement Deposits Formed at High Temperature and Pressure and in Genetic Connection with Intrusive Rocks

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>611</td>
</tr>
</tbody>
</table>

General features—High-temperature minerals—Metasomatic processes—Temperature and pressure—Classes of deposits—Mode of fissuring and filling—The cassiterite veins—Mineral association—
CONTENTS

CHAPTER XXV

DEPOSITS FORMED BY PROCESSES OF IGNEOUS METAMORPHISM . 660

CHAPTER XXVI

MINERAL DEPOSITS OF THE PEGMATITE DIKES . 716

Introduction—Mineralizers and the nature of their action—Temperature of consolidation—Occurrence and general character—Types of pegmatites—Acidic pegmatites—Basic pegmatites—Economic features of pegmatite dikes—Feldspar and quartz—Mica—Oxide ores—Wolframite—Columbite and tantalite—Yttrium and thorium minerals—Monazite and zircon—Apatite—
CONTENTS

Lithium minerals—Cryolite—Precious stones—Native metals, sulphides, and arsenides.

CHAPTER XXVII

MINERAL DEPOSITS FORMED BY CONCENTRATION IN MOLTEN MAGMAS. 735

CHAPTER XXVIII

METAMORPHOSED DEPOSITS ... 773

Processes involved—Deformed pyritic deposits—Regionally metamorphosed iron ores—General features—Swedish “dry ores”—Norwegian ores—United States—The zinc ores of Åmmeberg, Sweden.

CHAPTER XXIX

OXIDATION OF METALLIC ORES .. 780

CONTENTS

CHAPTER XXX

THE CALCULATION OF ROCK ANALYSIS .. 845
 Molecular ratio method—Calculation of specific gravity—
 Constituent minerals—Calculation on basis of one constant—
 Graphic method—Calculation on basis of no change in volume—
 Diagram.

INDEX ... 853
MINERAL DEPOSITS

CHAPTER I

INTRODUCTION

ECONOMIC GEOLOGY

The application of geology to the practical problems of the industries and the arts constitutes economic geology. This branch of the science includes as its most important division the study of deposits of useful minerals, but it also teaches the occurrence of underground waters, explains the derivation and constitution of soils in relation to agriculture, and applies geologic principles to the planning of important engineering works.

Only a part of the whole field of economic geology will be covered in these chapters. They will be confined to a description, by classes and type examples, of the occurrence, structure, and origin of the principal deposits of metallic and non-metallic minerals. The subjects of coals, mineral oils, and structural materials could not be included without unduly increasing the bulk of the volume. Little space has been given to statistics, while the problems of correlation and origin have been treated rather fully. A general part describing principles of universal application precedes the detailed characterization of the various classes.

A complete treatment of the subject should include discussions of distribution, occurrence, structure, origin, production, and valuation of deposits, as well as statements of the uses of the materials mined, processes of mining and reduction, and criteria for judging the value of the products. Such a complete presentation will not be found in this volume, for it is believed that by examining the subject from a scientific rather than from a utilitarian viewpoint, the student will obtain a clearer insight into the geologic relationship of the various deposits.

Throughout its broad domain economic geology stands on the fundamental sciences of chemistry and physics. It is related on one side to theoretical geology, paleontology, mineralogy, and petrography; on the other side to mining, metallurgy, and many other technologic arts. A student who tries to approach
CONTENTS

PREFACE ... V

CHAPTER I

INTRODUCTION 1

CHAPTER II

THE DEPOSITION OF MINERALS 21
Solution and precipitation—General features—Precipitation by change of pressure—Precipitation by change of temperature—Precipitation by evaporation of the solvent—Precipitation by reaction between solutions—Precipitation by reactions between aqueous solutions and solids—Precipitation by reactions between gases or between gases and solutions—Colloids—Crystalline minerals.

CHAPTER III

THE FLOW OF UNDERGROUND WATER 28

CHAPTER IV

THE COMPOSITION OF UNDERGROUND WATERS 41
Introduction—Calcium carbonate waters in igneous rocks—Calcium carbonate waters in sedimentary rocks—Chloride waters in sedimentary rocks—Infiltration from present oceans—Solution of saline deposits—Chloride waters in igneous rocks—Sulphate waters in sedimentary rocks—Acid sulphate waters in igneous rocks—Mine waters—Sodium carbonate waters in sedimentary rocks—Sodium carbonate waters in igneous rocks—Sodium sulphide waters—Summary—Interpretation of water analyses.

CHAPTER V

THE CHEMICAL WORK OF UNDERGROUND WATER 65
Metamorphism and mineral deposits—Stability of rocks and
zones of metamorphism—Definitions—General definition of the zones—Zone of weathering—Zone of cementation—The deeper zones—Relation of mineral deposits to the metamorphic zones—Deposits related to igneous activity—Derivation of minerals—Concentration—Underground temperatures.

CHAPTER VI

THE ORIGIN OF UNDERGROUND WATER AND ITS DISSOLVED SUBSTANCES 82
Origin of the water—Salts from sedimentary rocks—Salts from igneous rocks—Origin of the dissolved gases—Rarer elements contained in waters—Origin of spring waters.

CHAPTER VII

THE SPRING DEPOSITS AT THE SURFACE 94
Deposits of limonite and calcium carbonate—Deposits of silica—Deposits of other gangue minerals.

CHAPTER VIII

RELATIONS OF MINERAL DEPOSITS TO MINERAL SPRINGS 103

CHAPTER IX

FOLDING AND FAULTING 109
Folds—Faults—General terms—General classification of faults—Faults of parallel displacement—Faults in stratified rocks—Slip—Shift—Throw—Offset—Faults classified according to the direction of the movement—Classes of strike faults—Extension of the words normal and reverse to diagonal and dip faults—Special classes of faults—Rotatory faults—Mineralization of faults—Complexity of faulting.

CHAPTER X

OPENINGS IN ROCKS 131
Origin of openings—By the original mode of formation of the rocks—By solution—By fractures of various modes of origin.

CHAPTER XI

FORM, STRUCTURE, AND TEXTURE OF MINERAL DEPOSITS 140
CONTENTS

CHAPTER XII

Ore-shoots

Form of primary ore-shoots—Shoots of successive mineralizations—Vadose ore-shoots—Causes of ore-shoots—Decrease of pressure and temperature—Character of wall rock—Impermeable barriers—Intersections.

CHAPTER XIII

The Classification of Mineral Deposits

Classification by form and substance—Genetic classifications—Outline of proposed classification—Detrital and sedimentary deposits—Concentration of substances contained in the rocks—Residual weathering—Deep circulating waters—Regional metamorphism—Zeolitization—Introduced ores not connected with igneous rocks—Igneous emanations—Products of magmatic differentiation—Metamorphism and enrichment of deposits.

CHAPTER XIV

Deposits Formed by Mechanical Processes of Transportation and Concentration; Detrital Deposits

CHAPTER XV

Deposits Produced by Chemical Processes of Concentration in Bodies of Surface Water by Reactions Between Solutions.

CONTENTS

Manganese in lacustrine and marine beds—Sedimentary phosphate beds—Composition of the phosphates—Production—Origin of the phosphate rocks—Occurrences of phosphate rocks.

CHAPTER XVI

Deposits Formed by Evaporation of Bodies of Surface Waters . 265

CHAPTER XVII

Mineral Deposits Resulting from Processes of Rock Decay and Weathering . 296

CHAPTER XVIII

Deposits Formed by Concentration of Substances, Contained in the Surrounding Rocks, by Means of Circulating Waters 332

CONTENTS

ores—Résumé—Ores of copper, lead, vanadium, and uranium in sandstone and shale—General features—Origin—Copper and lead deposits in sandstone—European occurrences—American occurrences—South America—Africa—Genesis of sedimentary copper ores—Vanadium ores in sandstones—Occurrence—Genesis—The copper-bearing shales of Mansfeld—Copper sulphide veins in basic lavas—General features—The Nikolai greenstone—Copper sulphide veins in intrusive basic rocks—Other veins deposited by waters of the upper circulation.

CHAPTER XIX

DEPOSITS RESULTING FROM REGIONAL METAMORPHISM .. 388

CHAPTER XX

DEPOSITS OF NATIVE COPPER WITH ZEOLITES IN BASIC LAVAS 392

CHAPTER XXI

LEAD AND ZINC DEPOSITS IN SEDIMENTARY ROCKS; ORIGIN INDEPENDENT OF IGNEOUS ACTIVITY .. 412
Characteristic features—Origin—Morsanet—Silesia—Alpine Trias—Other European localities—The lead-zinc ores of the Mississippi Valley.

CHAPTER XXII

METALLIFEROUS DEPOSITS FORMED NEAR THE SURFACE BY ASCENDING THERMAL WATERS AND IN GENETIC CONNECTION WITH IGNEOUS ROCKS 432
Character and origin—General features—Successive phases of mineralization—Zeolitic replacement—Primary ore shoots, oxidation, and sulphide enrichment—Types of deposits—Older representatives of this class—Genesis—Proof of depth below surface—Proof of temperature—Relation to other veins—Metasomatic processes—Extent of alteration—Volcanic emanations—Types of alteration—Metasomatic processes at Thames and Waihi—Metasomatic processes at Tonopah—The development of kaolin—Metasomatic processes at Silverton, Colorado—Summary—Quicksilver deposits—The ores and their general occurrence—Distribution—Geological features—Mineralogy of quicksilver ores—Structure—Oxidation—Genesis—Relation to other ore deposits—Stibnite deposits—Gold quartz veins in andesite—Transylvania—Hauraki Peninsula, New Zealand—Gold-quartz veins in rhyolite—
CONTENTS

CHAPTER XXIII

Metalliferous Deposits Formed at Intermediate Depths by Ascending Thermal Waters and in Genetic Connection with Intrusive Rocks 513

CHAPTER XXIV

Veins and Replacement Deposits Formed at High Temperature and Pressure and in Genetic Connection with Intrusive Rocks 611

General features—High-temperature minerals—Metasomatic processes—Temperature and pressure—Classes of deposits—Mode of fissuring and filling—The cassiterite veins—Mineral association—
CONTENTS

CHAPTER XXV

Deposits Formed by Processes of Igneous Metamorphism . . . 660

CHAPTER XXVI

Mineral Deposits of the Pegmatite Dikes 716

Introduction—Mineralizers and the nature of their action—Temperature of consolidation—Occurrence and general character—Types of pegmatites—Acidic pegmatites—Basic pegmatites—Economic features of pegmatite dikes—Feldspar and quartz—Mica—Oxide ores—Wolframite—Columbite and tantalite—Yttrium and thorium minerals—Monazite and zircon—Apatite—
CONTENTS

Lithium minerals—Cryolite—Precious stones—Native metals, sulphides, and arsenides.

CHAPTER XXVII

MINERAL DEPOSITS FORMED BY CONCENTRATION IN MOLTEN MAGMAS. 735

CHAPTER XXVIII

METAMORPHOSED DEPOSITS 773
Processes involved—Deformed pyritic deposits—Regionally metamorphosed iron ores—General features—Swedish "dry ores"—Norwegian ores—United States—The zinc ores of Åmmeberg, Sweden.

CHAPTER XXIX

OXIDATION OF METALLIC ORES. 780
CONTENTS

CHAPTER XXX

THE CALCULATION OF ROCK ANALYSIS ... 845
Molecular ratio method—Calculation of specific gravity—
Constituent minerals—Calculation on basis of one constant—
Graphic method—Calculation on basis of no change in volume—
Diagram.

INDEX ... 853
MINERAL DEPOSITS

CHAPTER I

INTRODUCTION

ECONOMIC GEOLOGY

The application of geology to the practical problems of the industries and the arts constitutes economic geology. This branch of the science includes as its most important division the study of deposits of useful minerals, but it also teaches the occurrence of underground waters, explains the derivation and constitution of soils in relation to agriculture, and applies geologic principles to the planning of important engineering works.

Only a part of the whole field of economic geology will be covered in these chapters. They will be confined to a description, by classes and type examples, of the occurrence, structure, and origin of the principal deposits of metallic and non-metallic minerals. The subjects of coals, mineral oils, and structural materials could not be included without unduly increasing the bulk of the volume. Little space has been given to statistics, while the problems of correlation and origin have been treated rather fully. A general part describing principles of universal application precedes the detailed characterization of the various classes.

A complete treatment of the subject should include discussions of distribution, occurrence, structure, origin, production, and valuation of deposits, as well as statements of the uses of the materials mined, processes of mining and reduction, and criteria for judging the value of the products. Such a complete presentation will not be found in this volume, for it is believed that by examining the subject from a scientific rather than from a utilitarian viewpoint, the student will obtain a clearer insight into the geologic relationship of the various deposits.

Throughout its broad domain economic geology stands on the fundamental sciences of chemistry and physics. It is related on one side to theoretical geology, paleontology, mineralogy, and petrography; on the other side to mining, metallurgy, and many other technologic arts. A student who tries to approach
the subject without the necessary knowledge of the allied sciences and arts is building on poor foundations. Even with this aid the study offers peculiar difficulties. The alteration of rocks close to many mineral deposits is intense and, as a result, the student who is familiar with only the fresh, unaltered specimens finds himself in the midst of puzzling and strange types that he is unable to classify with certainty. Altered andesites may assume the aspect of quartzites; a question may arise as to whether a silicified rock was once a limestone or a porphyry; diabases may at some places be converted into white fine-grained calcite-sericitic-quartz rocks and at other places appear as aggregates consisting mainly of epidote and chlorite. These examples suffice to show that rock alteration is a subject of prime importance for the mining geologist.

MINERAL DEPOSITS

Definitions.—The outer shell of the globe is commonly called the earth's crust. Of this shell only the most superficial part is accessible. The radius of the earth is about 4,000 miles. The deepest shaft attains only about 5,000 feet, the deepest bore-hole 6,000 feet. This crust consists of manifold aggregates of minerals formed at different times and in various ways. Each individualized mass of mineral aggregates—such as a stratum, a lava flow, an intrusive mass of igneous rock, a dike, a vein, or a lenticular mass—is called a "formation," a "member," or in general a "geologic body." Geologic bodies which consist mainly of a single useful mineral—for instance, beds of pure gypsum or coal—or which contain, throughout or in places, valuable minerals that can be profitably extracted—for instance, veins containing disseminated gold—are called "mineral deposits." Geologic bodies that are not worked for any particular mineral or minerals, but for the aggregate of minerals—the rock itself—are usually designated as deposits of the particular rock. Thus a mass of roofing slate is not spoken of as a mineral deposit, but as a slate deposit. Economic geology treats of the occurrence, composition, structure, and origin of those geologic bodies which can be technically utilized; it shows where they may be searched for and how their value may be ascertained.¹

Technical Utility.—The limitation of technical utility must of course not be taken too literally, especially where questions of

¹ Stelzner and Bergeat, Die Erzlagerstätten, vol. 1, p. 1.
INTRODUCTION

origin are concerned, for here, as in many other phases of the subject, applied geology merges into theoretic geology. Moreover, it is no uncommon occurrence that the useless of yesterday becomes the useful of to-day. Examples are easily cited. A few years ago the cupriferous monzonite of Bingham, Utah, which yields an average of 30 cents in gold and 7 cents in silver to the ton and 1.7 per cent. of copper, would probably not have been classed as an ore, but with modern methods of treatment it is an important ore of copper. The zinc minerals of the western States, valueless and even causing loss in the marketing of ores 15 years ago, can now be profitably sold. The tungsten ores of Colorado, thrown over the dump 15 years ago, have attained a value of $200 a ton. Low-grade gold ores—for instance, those of Mercure, Utah—considered as hopelessly refractory 20 years ago, became rich assets with the introduction of the cyanide process. Many iron ores rich in phosphorus were neglected until the Thomas process provided means for their profitable reduction. Monazite containing thorium acquired importance with the invention of the incandescent mantle for gas burners. New processes of reduction, the rising price of some commodity, inventions calling for rare and unused metals—any of these may suddenly cause a geologic body that has previously been valueless to become of great importance. Titanic iron ores form vast deposits which are now useless because of metallurgical difficulties but which some day will, no doubt, be utilized. This principle also works the other way. Decreasing prices may make a particular deposit unprofitable; that is what happened to many silver mines during the great decline in the price of silver which began in 1880. Better substances may be discovered for a given use; cobalt oxide, for example, was formerly used extensively as a pigment, but now its employment is slight, owing to the discovery of several substitutes.

Ore and Gangue.—These considerations bring us to the terms ore and gangue. "Ore" is a word which has been used in several meanings. An "ore mineral" is a mineral which may be used for the extraction of one or more metals. An "ore," as the term is used here, is that part of a geologic body from which the metal or metals that it contains may be extracted profitably. Thus galena and malachite are ore minerals. An ore is practically always a mixture of minerals. Local usage has adopted several terms as substitutes for "ore." In the
lead-zinc district of Missouri crude ore is called "dirt," while concentrates are called "ore." In Michigan the ore is called "rock" and the concentrates are termed "mineral." Gold-bearing gravels are not usually referred to as ore. The use of the term "ore" is not quite consistent. Ordinarily it implies a metal, but the expression "sulphur ore," meaning pyrite, is sometimes seen, and occasionally such terms as "sapphire ore" are found. The useless minerals occurring in the ore are termed "gangue." Thus, a gold ore may consist of quartz, calcite, siderite, native gold, auriferous pyrite, and galena. Here the first three are called "gangue minerals." The terms are not inflexible; for example, siderite may under some circumstances be utilized as an iron ore. Moreover, as stated above, what to-day is useless gangue may prove valuable ore to-morrow. It is therefore safe to make the definition of an ore rather wider than the present technical limits.

It is hardly necessary to call attention to the differences in prices of metals which cause wide disparity in the amounts of different metals necessary to constitute ores. An iron ore must ordinarily contain at least 30 per cent. of iron—usually much more. A volcanic rock containing 15 per cent. of iron is far from being an iron ore, but quartz containing 0.05 per cent. of gold is a rich gold ore, worth $330 a metric ton; in fact, as little as 0.0001 per cent. of gold, equivalent to 1 gram to the metric ton, or a value of 66 cents a ton, if occurring in an ore with other useful substances, is ordinarily paid for by smelting works.

DISTRIBUTION OF THE ELEMENTS

To obtain data regarding the relative distribution of the elements, several calculations have been undertaken on the basis of a great number of reliable rock analyses. Especially notable are the papers of Clarke, Vogt, and Washington. Clarke used 1,000 analyses of American rocks; Washington

1,800 from various parts of the world. We are here chiefly concerned with the solid crust of the earth, although in passing it is deserving of notice that enormous quantities of salts are dissolved in the sea water, among them sodium chloride, sulphates of calcium, magnesium, and potassium, and carbonates of calcium and magnesium. The volume of salts in the sea water, according to Clarke, would be enough to cover the entire area of the United States (exclusive of Alaska) to a depth of 1.6 miles, or the whole globe with a stratum of sodium chloride 112 ft. deep. According to the same authority, the crust of the earth 10 miles thick, with an assumed average specific gravity of 2.5, contains about 93 per cent. of solid matter and 7 per cent. of liquid matter.

Composition of the Earth's Crust.—In calculating the average composition of the accessible portion of the solid crust it is necessary to consider the sedimentary and the igneous rocks. The sedimentary rocks form but a thin veneer compared with the igneous rocks. The average composition of the latter closely approximates that of the crust. Clarke calculates that the crust to a depth of 10 miles is composed of 95 per cent. of igneous rocks, 4 per cent. of shales, 0.75 per cent. of sandstones, and 0.25 per cent. of limestones. Van Hise and others arrive at somewhat different figures. The sediments average poorer in calcium, magnesium, and especially in sodium than the igneous rocks and thus show the effect of leaching. They also contain more potash and carbon dioxide, but on the whole they are similar in composition to the igneous rocks. According to Clarke the average of analyses of igneous rocks made in the laboratories of the United States Geological Survey is as follows:

AVERAGE ANALYSIS OF IGNEOUS ROCKS

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>47.05</td>
</tr>
<tr>
<td>Si</td>
<td>28.26</td>
</tr>
<tr>
<td>Al</td>
<td>7.98</td>
</tr>
<tr>
<td>Fe</td>
<td>4.47</td>
</tr>
<tr>
<td>Mg</td>
<td>2.34</td>
</tr>
<tr>
<td>Ca</td>
<td>3.43</td>
</tr>
<tr>
<td>Na</td>
<td>2.54</td>
</tr>
<tr>
<td>K</td>
<td>2.50</td>
</tr>
<tr>
<td>H</td>
<td>0.16</td>
</tr>
<tr>
<td>Ti</td>
<td>0.45</td>
</tr>
<tr>
<td>Zr</td>
<td>0.025</td>
</tr>
<tr>
<td>C</td>
<td>0.13</td>
</tr>
<tr>
<td>P</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Total 100.000
MINERAL DEPOSITS

The eight elements first named above make up 98.57 per cent. of the igneous rocks.

It is believed that if due weight were attached to masses, the true average rock of the uppermost crust would be somewhat more siliceous and contain less lime, magnesium, and iron than is indicated by Clarke's final figures. Granites and granitic gneisses occupy enormous areas, but they are fairly uniform in composition and are more rarely analyzed than the complex basic rocks.

Among the six principal metals shown in the average composition the only ones of economic importance are iron and aluminum. The lighter elements predominate, the atomic weight of each falling below 56 (Fe 55.9). In the average composition, the rarer metals titanium, zirconium, barium, strontium, manganese, nickel, chromium, and vanadium are represented, but except titanium, which amounts to 0.45 per cent., all these metals average below 0.1 per cent. Platinum, gold, silver, copper, lead, zinc, antimony, arsenic, tin, quicksilver, molybdenum, tungsten, and others are present in amounts less than 0.01 per cent. Vogt has tried to approximate the amount of these elements which are not represented in the average composition and arrives tentatively at such results as these: The quantities of zinc, tin, and lead are expressed by a figure in the third or fourth decimal place, that of copper in the fourth or fifth, that of silver in the sixth or seventh, and that of gold in the seventh or eighth decimal place. According to Vogt mercury is more abundant than silver, but this is probably not true. Arsenic, antimony, molybdenum, and tungsten stand between gold and copper; bismuth, selenium, and tellurium between gold and silver. These data tend to demonstrate the scarcity of the useful metals, except iron and aluminum, and indicate that ore deposits are exceptions rather than the rule. Conclusions regarding the quantity of rarer metals differing somewhat from those of Vogt are found on page 14.

Vogt and Washington have also formulated some rules concerning the relationship of certain metals with certain rocks. It is obvious, however, that a distinction should be made as to whether the metal is an integral part of the rock or whether simply deposits of the metal occur in the rock. Thus, for instance, lead deposits are characteristic of many limestones, but it may be doubted whether lead is a primary constituent of limestone;
INTRODUCTION

it is present because the rock had the power of precipitating the metal from its solution.

In highly siliceous rocks, especially in granites and in the pegmatite dikes accompanying them, we find minerals containing fluorine, boron, lithium, zirconium, tin, tungsten, tantalum, molybdenum, thorium, and beryllium. Highly sodic magmas are also accompanied by a great number of rare metals.

On the other hand, basic rocks in which the darker constituents predominate contain copper, chromium, nickel, and cobalt, and some of them, chiefly peridotites, contain platinum and diamonds. Gold and silver are known to exist in minute quantities in many rocks, most commonly perhaps in those of acidic types, like the granites and rhyolite.

These rarer metals are not everywhere present in similar rocks. Platinum, for instance, is contained in the peridotites of the Ural Mountains, but the peridotites of the Sierra Nevada are poor in that metal and the similar rocks in the Coast Ranges of California contain little platinum, as do the serpentines of Asia Minor and of Italy. Similar conditions characterize the occurrence of rarer metals in granitic rocks.

TRACES OF METALS IN ROCKS

General Statement.—In order to formulate a theory or a hypothesis of the origin of mineral deposits it is most desirable to ascertain to what extent the different rocks contain the rarer metals.

J. G. Forchhammer and L. Dieulafait began examinations for this purpose about 1860 and found traces of silver, copper, lead, bismuth, nickel, cobalt, zinc, arsenic, antimony, and tin in many rocks. Somewhat later F. von Sandberger followed up this line of investigation and ascertained that the dark silicates of many rocks contained lead, copper, tin, antimony, arsenic, nickel, cobalt, bismuth, and silver. Some doubt has been expressed as to a few of these results and it is believed that in some of Sandberger's specimens the metals were derived from adjacent veins or from the reagents or the vessels used in the analyses. However, in spite of analytical difficulties, the presence of many of these metals in various igneous and metamorphic rocks is clearly proved. Many ordinary analyses show the presence of chromium, cobalt, and nickel in basic rocks like peridotites, serpentines, and pyroxenites. Some of these rocks con-
tain as much as 0.76 per cent. of Cr₂O₃ and up to 0.3 per cent. of (Ni,Co)O. Traces of nickel and cobalt are often found in diabases, gabbros, and basalts; occasionally in diorites. A little vanadium is common in all rocks—usually only 0.01 to 0.05 per cent. of V₂O₅.

In the following paragraphs some of the most reliable data regarding traces of rarer metals are compiled. More extensive references will be found in Clarke’s “Data of geochemistry.”

Copper.—A. C. Lane¹ states that the Keweenawan “traps” average 0.02 per cent. of copper. F. F. Grout² found 0.029 and 0.02 per cent. in fresh specimens of the same series from Minnesota. J. Volney Lewis³ says that some of the New Jersey diabases or “traps” contain chalcopryte and that copper is also present in the pyroxene of these rocks. The average, according to numerous analyses, is 0.025 per cent. of CuO. R. C. Wells found 0.03 per cent. of copper in a perfectly fresh basaltic lava from The Dalles, Oregon.

Analyses made for W. H. Weed in the laboratory of the United States Geological Survey show that Butte granite or quartz monzonite from a quarry near Walkerville, Montana, contains 0.006 per cent. of copper. The quartz and feldspar, forming 91 per cent. of the rock, contain little or no copper; the mica and hornblende, which constitute 7 per cent. of the rock, yield 0.047 per cent. of copper; there is thus nearly eight times as much copper in the ferromagnesian minerals as in the rock. The altered rock surrounding the veins carries more copper than the fresh rock.

E. T. Allen examined 18 samples of fresh gabbros and diorites from the Encampment district, Wyoming, and found copper in all, the largest quantity noted being 0.02 per cent. of CuO.⁴

A. B. Lyons reports that all of the Hawaiian lavas contain copper. The amounts range from 0.07 to 0.48 per cent. of CuO, averaging 0.18 per cent. This seems higher than usual. H. S. Jenssen found 0.034 per cent. of copper in an andesite from Fiji. E. Comanducci reported 0.0854 per cent. of CuO and 0.0038 per cent. of CoO in volcanic ash from Vesuvius. Foerstner

² Econ. Geology, vol. 5, 1910, p. 471.
ascertained that the pantellerite lava from Pantelleria contained 0.25 per cent. of copper.

J. B. Harrison\(^1\) examined 36 igneous and metamorphic rocks from British Guiana and found that 6 contained no copper and 12 contained copper in traces only; those carrying most copper were diabases and porphyrites; a feldspathic tuff yielded 0.13 per cent. The average for the series was 0.025 per cent. of copper. In some of these rocks the copper may have been contained in secondary disseminated sulphides.

In a fresh granodiorite from Steamboat Springs, Nevada, W. H. Melville detected copper, lead, arsenic, and antimony. J. D. Robertson found from 0.0024 to 0.0104 per cent. of copper in granite, porphyry, and diabase from the Archean of St. Francis Mountain, in Missouri. The average was 0.006 per cent. Lead and zinc were also recognized. The adjacent Silurian and Carboniferous limestones also contained these metals, but in smaller quantities.

Native copper in minute scales is rather common in shales and serpentines, and copper sulphides, contemporaneous with the metamorphism, occur in many amphibolites. Copper has been repeatedly detected in sea water and is contained in the red and blue mud dredged from the deep seas.

From this evidence the conclusion may be drawn that probably all igneous rocks contain appreciable amounts of copper and that acidic rocks contain less than basic rocks. The copper is largely associated with the ferromagnesian silicates, and in the lavas at least it appears to be present as a silicate.

Lead and Zinc.—In analyzing the quartzose porphyries of Leadville, Colorado, supposed to be free from sulphides, W. F. Hillebrand found that of 18 carefully selected samples 15 contained lead, the richest carrying 0.0064 per cent. of PbO; the average was 0.002 per cent. The possibility that these rocks had been affected by circulating lead solutions is not altogether excluded. The same analyst found 0.008 and 0.0043 per cent. of ZnO in similar rocks.

J. D. Robertson determined an average of 0.004 per cent. of lead and 0.009 per cent. of zinc in the Archean rocks from Missouri mentioned above. J. B. Weems\(^2\) determined lead and zinc in the

\(^1\) Report on the petrography of the Cuyuni and Mazaruni districts, Georgetown, Demerara, 1905.

limestones and dolomites of the Dubuque region, Iowa. The average of 9 samples gave 0.00326 per cent. of lead and 0.00029 per cent. of zinc. J. B. Harrison looked for lead in 23 samples of rocks from British Guiana and was able to determine the metal in five; the maximum obtained was 0.02 per cent. L. Dieulafait detected zinc in hundreds of samples of Jurassic limestone from central France.

On the other hand, W. F. Hillebrand\(^1\) was unable to detect lead or zinc in samples of limestone from Mexico, near important lead deposits. Henry W. Nichols\(^2\) found no lead, copper, or zinc in calcareous concretionary deposits of the Challenger Banks, near Bermuda. Zinc is reported by Dieulafait in sea water and in ashes of sea weeds. Lead apparently does not exist in the water of the ocean.

Gold and Silver.—A large number of experiments have been undertaken to decide the question whether fresh igneous or sedimentary rocks contain gold and silver. In mining districts where the solution of this problem has been frequently attempted it is difficult to obtain perfectly satisfactory samples, free from contamination by circulating waters. Furthermore, contamination is possible from fluxes, from the dust of assay rooms, from mortars, or from bucking boards. The mere statement that the assay indicates gold and silver in a rock is not sufficient. It must be corroborated by a statement of the methods used and accompanied by the evidence of microscopic examination as to the freshness of the rock.

It is satisfactorily proved that many fresh, massive igneous rocks contain gold. The best evidence thus far brought forward is probably that afforded by the granite from the Altar district, Sonora, Mexico, described by G. P. Merrill.\(^3\) The gold occurs embedded in fresh quartz and feldspar. W. Möricke\(^4\) found gold in a pitchstone from Chile and believed the metal to be primary. Gold was found by W. F. Ferrier in a fresh syenite from Kamloops, British Columbia. According to R. W. Brock\(^5\) probably primary gold was found in a porphyry dike on North Fork of Salmon River, West Kootenai, British Columbia. Of 12

\(^1\) Oral information.

\(^2\) *Econ. Geology*, vol. 2, 1907, p. 309.

\(^4\) *Min. pet. Mitt.*, vol. 12, 1891, p. 195.

\(^5\) *Eng. and Min. Jour.*, vol. 77, March 31, 1904.
dikes of porphyry at different points in West Kootenai, six contained gold, most of them being wholly unaltered. Brock also states that a sample of alkali syenite porphyry in the Valkyr Mountains, east of Lower Arrow Lake, British Columbia, contained gold that was visible to the naked eye.

Many of the statements of this sort in the literature must be critically scanned, for it is not uncommon to find gold deposited by mineralizing solutions in massive rocks, especially in schists, under circumstances closely simulating original deposition. Statements regarding primary gold in the chloritic schists of the Sierra Nevada refer to occurrences of this class.

It is frequently said that gold occurs in pegmatite, but few of the assertions have the requisite backing of complete evidence. The probability is strong, however, that gold is present in such dikes. One of the most definite descriptions of this mode of occurrence is furnished by J. Catharinet. 1 Sperrylite, an arsenide of platinum, is stated by Catharinet to occur with the gold. Another case is reported by C. De Kalb 2 from Mohave, California. References in the literature to primary gold in rocks from the Ural Mountains and from Australia do not appear to be sufficiently substantiated.

Having procured samples of various rocks, most of them far from mining districts, Luther Wagoner, 3 of San Francisco, assayed them with the results as given in the accompanying table. His method consisted in cyanide treatment of 40 or 50 grams of material followed by blowpipe cupellation. All particulars of the operations are detailed.

Wagoner found that the purest obtainable reagents, such as soda, borax, and cyanide of potassium, contain gold and silver. A sample of Merck’s “C. P.” carbonate of soda contained 3 grams of silver to the ton. A sample of cyanide of potassium yielded 147 milligrams of gold and 26.05 milligrams of silver to the metric ton. Wagoner’s results merit attention, but it would be desirable to have them checked. His figures for silver seem high. It will be noted that gold values obtained by him are as low as 5 milligrams, or 1/13 of a grain, to the ton. J. R. Don, using the fire assay, was able to detect amounts as low as 6.4 milligrams per metric ton.

MINERAL DEPOSITS

GOLD AND SILVER CONTENTS OF VARIOUS ROCKS
[Milligrams per metric ton]

<table>
<thead>
<tr>
<th>Rock and locality</th>
<th>Gold</th>
<th>Silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite, Lake Tenaya, California</td>
<td>104</td>
<td>7,660</td>
</tr>
<tr>
<td>Granite, Lake Tenaya, California</td>
<td>137</td>
<td>1,220</td>
</tr>
<tr>
<td>Granite, head of American River, California</td>
<td>115</td>
<td>940</td>
</tr>
<tr>
<td>Syenite, Candelaria, Nevada</td>
<td>720</td>
<td>15,430</td>
</tr>
<tr>
<td>Granite, Candelaria, Nevada</td>
<td>1,130</td>
<td>5,590</td>
</tr>
<tr>
<td>Sandstone, Colusa County, California</td>
<td>39</td>
<td>540</td>
</tr>
<tr>
<td>Sandstone, Angel Island, California</td>
<td>24</td>
<td>450</td>
</tr>
<tr>
<td>Sandstone, Russian Hill, San Francisco, California</td>
<td>21</td>
<td>320</td>
</tr>
<tr>
<td>Basalt, Petaluma, California</td>
<td>26</td>
<td>547</td>
</tr>
<tr>
<td>Diabase, Mariposa County, California</td>
<td>76</td>
<td>7,440</td>
</tr>
<tr>
<td>Marble, Tuolumne, California</td>
<td>5</td>
<td>212</td>
</tr>
<tr>
<td>Marble, Carrara, Italy</td>
<td>8.63</td>
<td>201</td>
</tr>
</tbody>
</table>

Sea water is known to contain small quantities of gold and silver. To illustrate the difficulty and uncertainty attending the measurement of minute traces of metals the following results, reached by several chemists, are given:

GOLD AND SILVER IN SEA WATER
[Milligrams per metric ton]

<table>
<thead>
<tr>
<th>Chemist</th>
<th>Gold</th>
<th>Silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Münster (Norway)</td>
<td>5–6</td>
<td>19–20</td>
</tr>
<tr>
<td>Liversidge (Australia)</td>
<td>33–65</td>
<td>65–130</td>
</tr>
<tr>
<td>Don (New Zealand)</td>
<td>4.5</td>
<td>None.</td>
</tr>
<tr>
<td>Wagoner (San Francisco)</td>
<td>12–16</td>
<td>1500–1900</td>
</tr>
<tr>
<td>Malaguti and Durocher</td>
<td>None.</td>
<td>9</td>
</tr>
</tbody>
</table>

Wagoner found 457 milligrams of gold and 54.4 grams of silver to the metric ton of salt evaporated from sea water, and later reported both metals in appreciable quantities in deep-sea dredgings.¹

J. B. Harrison² found gold and silver in almost all the rocks he examined but does not give detailed description of his assay

² Report on the petrography of the Cuyuni and Mazaruni districts, Georgetown, Demerara, British Guiana, 1905.
methods. In gneisses he found from a trace to 17 grains\(^1\) of gold and as much as 77 grains of silver per long ton. The amphibolites contained 4 to 8 grains of gold to the ton, but it is possible that some of this came from veinlets of quartz. In four porphyries Harrison found about 2 grains of gold to the ton. Of 14 granitic rocks all but one contained gold, from a trace up to 10 grains to the ton. Silver was present in several, the maximum being 54 grains to the ton. The diabase examined contained only small amounts of gold, up to 4 grains to the ton. It is doubtful whether all these results indicate primary gold.

G. F. Becker found traces of gold and silver in apparently fresh rocks near the Comstock lode, in Nevada. The extensive mineralization in that district makes it difficult to obtain entirely fresh material.

J. R. Don\(^2\) assayed a large number of rocks both close to and at a distance from ore deposits, to ascertain their content of gold and silver. His work indicated in general that gold and silver are contained only in rocks that have been impregnated with pyrite in the vicinity of ore deposits. These results, however, do not agree with those of other analysts and are especially contradicted by Wagoner's experiments. Don's conclusions, broadly speaking, are probably true, but his methods largely excluded detection of the possible occurrence of gold in the silicates of the rocks.

A few evidently authentic occurrences of primary gold in crystalline schists are known. Spurr\(^3\) describes an auriferous quartz diorite gneiss from the Ayrshire mine, Lomagundi, Mashonaland, Africa. The gneiss forms a dike 20 feet in width, of which 15 feet is mined; the average gold content is said to be about $15 a ton. The gold is intergrown with orthoclase, plagioclase, quartz, epidote, and hornblende; it is especially associated with the bands of hornblende and is, according to Spurr, unquestionably of primary origin—that is, it crystallized during the metamorphism with the other constituents of the gneiss. This does not, however, absolutely prove that it was a constituent of the igneous rock from which the gneiss was derived.

1 One grain equals 64.8 milligrams.
Lacroix\(^1\) reports gold in extremely abundant and minute crystals in a biotite gneiss from Madagascar; also in a magnetite-bearing quartzite from the same island. F. C. Lincoln has recently given a comprehensive review of the data regarding gold in rocks.\(^2\)

Neither primary native silver nor visible silver compounds are reported to occur in igneous or metamorphic rocks. W. F. Hillebrand found silver in a number of porphyries from Leadville, Colorado, that were collected and assayed with the greatest care; the average amount was 0.0265 ounce to the ton (884 milligrams to the metric ton). Traces of gold were rarely found.

J. W. Mallet\(^3\) found silver in two samples of volcanic ash from the Andes, to the amount of about 10 grams to the metric ton.

From the results above given it appears that Vogt's conclusions as to the relative abundance of the rarer metals (p. 6) should be modified. Copper is the most common of the metals under consideration and probably almost as generally distributed as nickel. It may average 0.01 or 0.005 per cent. in the earth's crust. Zinc probably comes next, closely followed by lead, the average amounts being perhaps 0.004 and 0.002 per cent. respectively. Silver may constitute 0.00001 per cent. of the crust and gold 0.0000005 per cent. Igneous rocks appear to contain on an average much larger quantities of gold and silver than sedimentary rocks.

TENOR OF ORES

While it is not possible to give exact data as to the minimum values which ores of the different metals should have for profitable extraction, some approximate statements may be useful.\(^4\) Local conditions, price of metals, the nature of the ores, and the association of the metals must of course be considered.

Iron.—Iron ores from the Lake Superior region usually contain 50 to 60 per cent. of iron; but iron ores which contain less than this may be utilized, especially where other conditions

\(^2\) *Econ. Geology*, vol. 6, 1911, pp. 247–302.

\(^3\) *Chem. News*, vol. 55, 1887, p. 17.

are favorable. The Clinton ores of Alabama contain as little as 30 per cent. of metallic iron; some types of easily concentrated magnetites may contain as low as 25 per cent. and still yield a profit.

Copper.—Copper ores of the Lake Superior region may be treated with profit, under favorable circumstances, with as little as 1 per cent. of metallic copper, though they ordinarily average somewhat higher. Sulphide copper ore of the usual type can rarely be utilized if it contains below 2 per cent. of copper unless gold and silver are present also, and in many districts the ores must average considerably higher than this. The ores treated at Ely, Nevada, contain about 2 per cent. copper, besides gold and silver to the value of 40 cents a ton.

Lead.—In northern Idaho lead ores which contain 5 to 6 per cent. of lead and 3 ounces in silver to the ton are profitably mined. Non-argentiferous ores which assay from 5 to 7 per cent. of lead are utilized in southeastern Missouri.

Zinc.—Zinc ores vary considerably according to locality. At Joplin, Missouri, much of the crude material hoisted yields less than 3 per cent. of zinc sulphide and a little lead. This is concentrated to about 60 per cent. of zinc. In localities more remote from markets, as in Colorado, Utah, and Idaho, only high-grade zinc ores can be profitably treated or shipped.

Silver.—Pure silver ores are now rarely mined in the western States. If in quartzose gangue they should contain not less than 20 ounces to the ton. The ores usually contain silver in association with lead, copper, or gold or with all three. In complex ores smelters rarely pay for less than 2 ounces of silver and 0.01 ounce of gold to the ton. Gold and silver are separated from the lead or copper bullion by zinc desilverization or electrolytic refining and the cost of that process, of course, imposes the necessity of a certain minimum tenor of gold and silver for profitable extraction, but at many plants gold and silver, although present in less than these small quantities, are obtained as by-products through the necessity of eliminating some objectionable constituent, like arsenic, from the bullion.

Gold.—Gold has been profitably extracted from ores yielding less than one dollar to the ton, but the ordinary gold quartz ores—for instance, those of California—yield about $5 to the ton; those of Nevada, Colorado, and some other States usually contain more. On a large scale gold ores containing from $2.50
MINERAL DEPOSITS

to $3 a ton, or even less, may be worked, as at the Treadwell mines, in Alaska. In gold gravels worked by the hydraulic process as little as 4 or 5 cents to the cubic yard may be profitable. By dredging, gravels containing 8 to 15 cents a cubic yard may be utilized in California; in Alaska they should contain from 50 cents to $1 a cubic yard. In the last few years the costs of gold dredging have been brought down to about 4 cents a cubic yard.

Tin, etc.—Tin ores range from 1.5 to 3 per cent. in tin, but in tin-bearing gravels a much smaller tenor is sufficient to yield a profit. Ores of quicksilver contain at least 0.3 per cent. of that metal; aluminum ores at least 30 per cent. of aluminum. Nickel should be present to the amount of 2 per cent. or more to constitute a workable nickel ore. Manganese ore should contain 50 per cent. of that metal, but less is required if iron is also present. Chromium ore must contain about 50 per cent. of chromium.

PRICE OF METALS

The values of the generally used metals in 1909 and 1912 compare as follows:

<table>
<thead>
<tr>
<th>COMPARATIVE VALUES OF METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
</tr>
<tr>
<td>Gold</td>
</tr>
<tr>
<td>Silver</td>
</tr>
<tr>
<td>Quicksilver</td>
</tr>
<tr>
<td>Nickel</td>
</tr>
<tr>
<td>Tin</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Antimony</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Lead</td>
</tr>
<tr>
<td>Pig iron</td>
</tr>
</tbody>
</table>

The prices which the various metals bring express the result of their abundance, of the demand for them, and of the cost of reduction of their ores. Aluminum, the most common metal, brings a high price because it can be produced from only a few of the minerals containing it.
INTRODUCTION

Many interesting data on the total quantities of metals produced in the world and on the largest amounts mined in any one deposit are given by J. H. L. Vogt.¹

WEIGHTS AND MEASURES

Before leaving this part of the subject a few words on weights and measures may be added.¹ The contents of base-metal ores, such as iron, lead, zinc, and copper, are measured by percentage. For lead and copper the figures given often do not mean the exact content by wet analysis, but by the dry assay, which is 1 1/2 per cent. or more lower than the exact content. In some cases the lead is determined by wet assay of the button from a crucible assay, which places the percentage obtained still further below the actual content. The smelter pays for the metals by the "unit," which means 1 per cent., or 20 pounds to the ton, or else by a "basis price" for a given percentage, say 55 per cent. for bessemer iron ores or 65 per cent. for Joplin zinc concentrates. Tungsten ore is sold per unit of tungsten trioxide for ore carrying 60 per cent. or more of this compound. Deductions and allowances based on the presence or absence of certain elements and certain other rules complicate the smelter schedules.²

Precious metals in ores are measured in England and its colonies by troy fine ounces and pennyweights, per long or short ton. In the United States decimal fractions are substituted for pennyweights; gold is often reported in dollars and cents, $1 corresponding closely to 1 pennyweight. Silver is measured in fine ounces, the pennyweights always being omitted. The short ton is always used. Practically all other nations measure these metals in grams per metric ton, a far more sensible way. For comparison the following data, computed and arranged by W. J. Sharwood,³ are given:

Conversion Tables.—The gram is taken as 15.4320 grains. The value of a troy ounce of fine gold is assumed as being exactly $20.67, instead of $20.6718346 +,⁴ resulting in an error of less

² For a discussion of smelter rates from a miner's and a smelter's standpoint see Eng. and Min. Jour., vol. 85, 1908, pp. 422–423; 992–996; 1110.
⁴ The United States Mint Bureau and the United States Geological Survey use tables compiled on the basis of $20.671834625323.
than 1 in 10,000. Values in English coin are based on the assumption that an ounce of fine gold is worth 4.25 pounds sterling, or 85 shillings, or 1,020 pence; this is too high by about 1 part in 2,000, the true value being 1,019.45 pence. It is useless to attempt a closer approximation in practical work, for the simple reason that gold bullion assays are rarely reported closer than the nearest half millieme, or to within 1 part in 2,000. At the values adopted one dollar is equivalent to 4.11224 shillings, and one pound sterling to $4.86353.

VOLUME AND WEIGHT OF FINE GOLD AND SILVER

<table>
<thead>
<tr>
<th></th>
<th>One cubic centimeter</th>
<th>One cubic inch</th>
<th>One cubic foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine silver:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight: grams</td>
<td>10.57</td>
<td>173.21</td>
<td>299307.00</td>
</tr>
<tr>
<td>Weight: troy ounces</td>
<td>0.339825</td>
<td>5.5687</td>
<td>9622.72</td>
</tr>
<tr>
<td>Fine gold:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight: grams</td>
<td>19.3</td>
<td>316.269</td>
<td>546,513</td>
</tr>
<tr>
<td>Weight: troy ounces</td>
<td>0.6205</td>
<td>10.1680</td>
<td>17,570.39</td>
</tr>
<tr>
<td>Value: United States dollars</td>
<td>$12.82³⁷</td>
<td>$210.17</td>
<td>$363,180</td>
</tr>
<tr>
<td>Value: pounds sterling</td>
<td>£2.647</td>
<td>£43.214</td>
<td>£74,674</td>
</tr>
</tbody>
</table>
ASSAY VALUATIONS

<table>
<thead>
<tr>
<th>Values</th>
<th>One part in</th>
<th>Per cent.</th>
<th>Per metric ton</th>
<th>Per long ton of 2,240 pounds</th>
<th>Per short ton of 2,000 pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>United States dollars (gold)</td>
<td>Grams</td>
<td>Troy ounces</td>
</tr>
<tr>
<td>One per cent</td>
<td>100</td>
<td>1</td>
<td>321.50 6,645.40⁴</td>
<td>10,000</td>
<td>326.666</td>
</tr>
<tr>
<td>One gram per metric ton = one part per million.</td>
<td>1,000,000</td>
<td>0.0001</td>
<td>0.03215 0.66⁴⁴</td>
<td>1</td>
<td>0.03268</td>
</tr>
<tr>
<td>One Troy ounce per short ton.</td>
<td>29,166.66</td>
<td>0.00342857</td>
<td>1.1023 22.78⁴⁴</td>
<td>34.2857</td>
<td>1.120</td>
</tr>
<tr>
<td>One Troy ounce per long ton.</td>
<td>32,666.66</td>
<td>0.00306124</td>
<td>0.9842 20.34⁴⁴</td>
<td>30.612</td>
<td>1</td>
</tr>
<tr>
<td>One Troy ounce per metric ton.</td>
<td>32,150</td>
<td>0.0031104</td>
<td>1 20.67</td>
<td>31.104</td>
<td>1.016</td>
</tr>
<tr>
<td>One dollar gold per short ton.</td>
<td>602,875</td>
<td>0.00016587</td>
<td>0.0533285</td>
<td>1.1023</td>
<td>1.6587</td>
</tr>
</tbody>
</table>

INTRODUCTION
CONVERSION TABLES—WEIGHTS

<table>
<thead>
<tr>
<th></th>
<th>Grains</th>
<th>Pennyweights</th>
<th>Troy ounces</th>
<th>Avoirdupois ounces</th>
<th>Avoirdupois pounds</th>
<th>Grams</th>
<th>Fine gold value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>One grain</td>
<td>1</td>
<td>0.041666</td>
<td>0.002083</td>
<td>0.00228571</td>
<td>0.000142857</td>
<td>0.0648</td>
<td>4.306 cts.</td>
</tr>
<tr>
<td>One pennyweight</td>
<td>24</td>
<td>1</td>
<td>0.0500</td>
<td>0.0848871</td>
<td>0.00342857</td>
<td>1.5552</td>
<td>$1.0335</td>
</tr>
<tr>
<td>One troy ounce</td>
<td>480</td>
<td>20</td>
<td>1</td>
<td>1.0971428</td>
<td>0.0885714</td>
<td>31.104</td>
<td>$20.67</td>
</tr>
<tr>
<td>One troy pound</td>
<td>5,760</td>
<td>240</td>
<td>12</td>
<td>13.185714</td>
<td>0.822857</td>
<td>373.248</td>
<td>$248.04</td>
</tr>
<tr>
<td>One avoirdupois ounce</td>
<td>437.50</td>
<td>18.22917</td>
<td>0.911458</td>
<td>0.06250</td>
<td>28.35</td>
<td>$15.84</td>
<td>77.474 shillings</td>
</tr>
<tr>
<td>One avoirdupois pound</td>
<td>7,000</td>
<td>291.668</td>
<td>14.5833</td>
<td>1</td>
<td>453.60</td>
<td>$301.4375</td>
<td>£61.97</td>
</tr>
<tr>
<td>One milligram</td>
<td>0.015432</td>
<td>0.000643</td>
<td>0.00003215</td>
<td>0.0000035274</td>
<td>0.0000022046</td>
<td>0.0010</td>
<td>0.06645 ct.</td>
</tr>
<tr>
<td>One gram</td>
<td>15.432</td>
<td>0.643</td>
<td>0.03215</td>
<td>0.035274</td>
<td>0.0022046</td>
<td>1</td>
<td>66.45 cts.</td>
</tr>
<tr>
<td>One kilogram</td>
<td>15,432</td>
<td>643</td>
<td>32.15</td>
<td>35.274</td>
<td>2.2046</td>
<td>1,000</td>
<td>$664.54</td>
</tr>
</tbody>
</table>

The price of silver in the United States is stated in cents per troy ounce 1,000 fine; in England in pence per troy ounce of sterling silver 925 fine: 1 cent per fine ounce = 0.457 pence per ounce 925 fine; 1 penny per ounce 925 fine = 2.19 cents per fine ounce. With silver at 50 cents per ounce, 3 grams per ton equals about 5 cents United States currency.

Precious stones are measured by the carat. One carat (diamond weight) is equal to 3.2 grains troy, or 206 milligrams.

\(^1\) The United States Mint Bureau uses $664.60.
CHAPTER II

THE DEPOSITION OF MINERALS

SOLUTION AND PRECIPITATION

General Features.—The forces important in the origin of mineral deposits are chemical energy, attraction, heat, and light.\(^1\) Chemical energy works by solution and precipitation. Attraction is active in gravity and in all the various stresses directly or indirectly due to gravity, or as molecular attraction, for instance, between mineral particles and water. Heat is necessary for chemical reactions and increasing heat increases their rapidity: it may be derived from the sun, from the interior of the earth, from mechanical action, or from chemical action. Light promotes reactions at the surface. The part played by electric forces in the development of mineral deposits is imperfectly known. It has recently been shown that the oxidation of sulphides is strongly influenced by the difference in potential between minerals in contact.

Solution may cause the formation of mineral deposits by the removal of certain constituents of a rock; under the influence of gravity the residual mass will settle as in the concentration of phosphate deposits from phosphatic limestones.

Solution and disintegration may set a mineral free, like gold, and water under the influence of gravity will concentrate the metal into placers. Precipitation may cause salt crystals to separate in super-saturated sea water and under the influence of gravity the crystals sink to the bottom in regular layers. Similar processes may go on in a molten magma.

In the great majority of cases the minerals in a deposit are formed by precipitation from solutions, though it is not to be overlooked that chemical reactions and the formation of new minerals may take place by the interaction of solids under the influence of heat and pressure. Precipitation in solutions is thus a process of the highest importance.

Super-saturation and consequently precipitation may result in various ways, of which the following are the more important:¹ (1) By change of pressure, (2) by change of temperature, (3) by evaporation, (4) by reactions between liquids or liquid solutions, (5) by reactions between gases or gaseous solutions, (6) by reactions between liquid solutions and gases, and (7) by reactions between solutions or gases and solids.

Precipitation by Change of Pressure.—The effect of change of pressure, according to Le Chatelier’s law, is as follows: When the pressure in a system in equilibrium is increased that reaction takes place which is accompanied by a diminution in volume; and when the pressure is diminished a reaction ensues which is accompanied by an increase in volume. "The direction in which change of concentration will occur with change of pressure can be predicted, if it is known whether solution is accompanied by increase or diminution of the total volume. If diminution of the total volume of the system occurs on solution, as is the usual case, increase of pressure will increase the solubility; in the reverse case increase of pressure will diminish the solubility."²

In general, a decrease of pressure, which results when solutions ascend in the earth’s crust, will be favorable to precipitation. The influence of pressure is, however, in most cases slight. For instance, the solubility of sodium chloride (in grams of salt in 1 gram of solution) at the pressure of one atmosphere is expressed by 0.264 and at 500 atmospheres by 0.270; for alum by 0.115 at one atmosphere and 0.142 at 400. To this rule there are, however, some exceptions, especially in the case of ammonium and magnesium chlorides. Indirectly, the pressure may be of great moment by holding in solution a gas which promotes the solubility. Thus carbon dioxide held in water by pressure greatly increases the solubility of calcium carbonate owing to the formation of the bicarbonate.

Precipitation by Change of Temperature.—Changes in temperature are far more effective in producing precipitation than changes in pressure. Van’t Hoff’s law of movable equilibrium states: When the temperature of a system in equilibrium is raised that reaction takes place which is accompanied by absorption of heat; and, conversely, when the temperature is lowered that reaction occurs which is accompanied by an evolution of

THE DEPOSITION OF MINERALS

heat. In the great majority of cases increase of temperature promotes the solubility of salts, at least up to the temperatures of 100° C. or 150° C., beyond which a lessening of the solubility may often be noted. For certain substances, however, the solubility decreases rapidly with increasing temperature. The solubility is usually represented graphically by means of a curve, with the temperature and concentration as abscissae and ordinates. Where the salt alters its molecular constitution—for instance, by dehydration—a break will be shown in the curve. For example, the solubility of ferric chloride increases from 81.9 grams of anhydrous salt in 100 grams of water at 10° C. up to 535.7 grams at 100°. The solubility curve of this compound has at least three breaks corresponding to salts with differing numbers of molecules of water.

The relation of temperature and solubility are of the greatest importance in mineral deposition. In general, decreasing temperature—say by the cooling of ascending waters—promotes precipitation, but the exceptions to this rule are rather numerous.

Precipitation by Evaporation of the Solvent.—The salts contained in a solution are naturally precipitated when evaporation at the surface so reduces the amount of the solvent that supersaturation ensues. As familiar results of this process may be mentioned the deposits of gypsum and salt in various formations. In some cases carbon dioxide or other gases may be the solvent, and the precipitation of calcium carbonate follows, for instance, in springs at their point of issue when the carbon dioxide which holds the salt in solution as a bicarbonate is evaporated.

Precipitation by Reaction between Solutions.—Mingling of different solutions is one of the most common occurrences in nature. Precipitation of chemical compounds results when any combination of the various ions in the solution can form to a sufficient extent to be insoluble in the liquid present. Solutions in nature are usually complex and the various reactions are more or less interfered with. In general, according to Nernst’s law, the solubility of a given salt is reduced by the presence of a dilute solution of another salt with a common ion but is increased by the presence of another salt with no common ion. For instance, the solubility of lead chloride is decreased by the presence of the chloride of calcium or magnesium. The presence

1 Alexander Findlay, The phase rule, p. 58.
of alkaline carbonates decreases the solubility of FeCO₃; the solubility of NaCl is decreased by CaCl₂; while the solubility of CaSO₄ (gypsum) is increased in a NaCl solution. If calcite is treated with a saturated solution of FeCO₃, ZnCO₃, or MgCO₃, a part of the calcite will be dissolved while a corresponding part of the other carbonates is precipitated; the solubility of CaCO₃ in water is increased by Na₂SO₄ or NaCl but decreased by MgCO₃.

In mixed solutions precipitation is often delayed, as shown, for instance, by the slow precipitation of barite (BaSO₄) due to the presence of sodium and magnesium chlorides in certain mine waters consisting of salt brines. Nernst’s law offers an explanation of these anomalies.

Slow precipitation in dilute solutions generally results in large crystals being formed, while rapid precipitation results in colloids or fine powders.

Precipitation by Reactions between Aqueous Solutions and Solids.—In nature, solutions act constantly upon solid minerals and the most complex interchanges and replacements result. Entire mineral deposits are often developed by such reactions between solids and solutions, which may take place in open fissures or more effectively through the penetration of the rock itself by the altering solutions. Van Hise says:

The solids present exert an important influence in precipitation independently of the passage of elements of the solids into the solutions. This statement is applicable both to compounds present in solutions before precipitation begins and to compounds formed by the precipitation itself. Once any precipitate begins to form, particles of that precipitate are present and influence further precipitation, precisely as do other solids which are present before the precipitation began. The proof of the influence of the solids present is furnished by the well-known tendency to the enlargement of mineral particles already existing in preference to the formation of new individuals. If quartz be present and the solution contains ions of silica it will be apt to abstract the silica from the solutions the moment super-saturation occurs.¹

Adsorption is an important factor in the processes of replacement or metasomatism. The contact film of the solution on the solids contains more than an average amount of material in solution and these films are likely to become super-saturated in advance of the remainder of the solution, so that chemical

reactions will be facilitated. The reaction may be a simple precipitation by interchange of constituents, as when calcite or limestone is acted upon by zinc sulphate with the formation of zinc carbonate and calcium sulphate; the former may faithfully replace the limestone, preserving its structure in the least detail, while the latter is carried away in solution. Or a solution of lead and sulphide ions may replace the calcite in a granular limestone, in which case the reaction is less clearly expressed by a chemical formula and the replacement consists of a practically simultaneous solution of CaCO₃ and a corresponding deposition of PbS. Obscure as this reaction is, it is of the highest importance in the genesis of mineral deposits. Waters containing potassium and carbon dioxide may act upon an anorthite feldspar; sericite or hydrous aluminum-potassium silicate replaces the feldspar, while silica and calcium carbonate are carried in solution.

Precipitation by Reactions between Gases or between Gases and Solutions.—Gases may produce precipitation in solution. Hydrogen sulphide in some mine waters precipitates cuprous sulphide from cupric sulphate. Less important is the action between gases: Native sulphur may be precipitated in volcanic regions by a mixture of hydrogen sulphide and sulphur dioxide.

Colloids.—The mineral substances may be precipitated as crystals or as colloids. In deposits formed below the surface and at temperatures somewhat higher than those there prevailing, the minerals developed by free deposition or by metasomatic processes generally take the form of crystals or crystalline grains. In deposits formed at or near the surface the precipitation of colloids is an important feature, which only recently has begun to attract the attention it merits. A colloid mixture differs from ordinary solutions in that the dissolved substance separates in an amorphous or gelatinous state, still retaining some of the solvent.¹ In one class of these mixtures, called colloidal solutions, a gelatinous mass is obtained by cooling or evaporation; this is termed a "gel." Silica in aqueous solution is the most important of these gels occurring in nature. Gelatinized colloids are permeable to salts, the rate of diffusion being almost the same as in water, but they diffuse themselves through other colloids or through porous walls with the utmost difficulty. They are not

coagulated by salts. There is another class of colloidal mixtures, called "colloidal suspensions," which is more abundantly represented in nature, and it is believed that in these the particles are of much larger size than in the colloidal solutions. These colloidal suspensions are not viscous and do not gelatinize but coagulate readily. They result from reactions between two chemical compounds in the absence of electrolytes. For instance, when a solution of hydrogen sulphide is added to one of arsenious oxide, both slightly ionized substances, no coagulated precipitate occurs, but a turbid yellow liquid results; if an electrolyte like hydrochloric acid is added a large amorphous precipitate is formed at once.\(^1\) Colloidal suspensions of gold, silver, and other metals can be prepared from their hydroxides and sulphides. A fact of much importance is that the presence of a gelatinizing colloid added in fairly small quantities prevents the coagulation of colloidal suspensions by salt. Thus, when aqueous solutions of silver nitrate and sodium chloride are mixed, if a little gelatine solution has been previously added to one of the solutions, the silver chloride remains indefinitely in a state of colloidal suspension.

The importance of these facts as related to the reaction of natural solutions is obvious. Many waters are rich in colloidal silica and its influence may prevent a precipitation which otherwise would take place. Another effect is the retention of silica solution within the walls of fissures, while other liquid and gaseous constituents pass freely through them. In nature, silica hardening as opal, the ferric hydroxides, manganese dioxide, red sulphide of antimony (metastibnite), and a number of other oxides and sulphides are apparently precipitated near the surface as colloids.

At high temperatures the colloids change to denser crystalline forms, and even at ordinary temperatures this transformation may take place, as in the case of calcium carbonate and lead sulphide; it is also probable that much of the ferric hydroxide which separates as a colloid at the surface is later changed to crypto-crystalline limonite.

Crystalline Minerals.—Crystalline minerals develop best by slow precipitation in liquid solutions contained in open spaces. In aqueous solutions, as well as in magmas, free crystals may form; crusts of minerals develop where these crystals adhere to

\(^1\) A. A. Noyes, *loc. cit.*
the walls of the fissure, and this is a common feature in mineral veins. The first impulse to crystallization may be given by adsorption and super-saturation along the walls. Once started the larger crystals become further enlarged because smaller crystals dissolve more rapidly than the large ones and the liquid remains super-saturated with reference to the larger growths.¹

When crystallization is progressing from a great number of points in the solution, a granular structure is developed by the mutual interference of the crystals. Panidiomorphic, hypidiomorphic, allotriomorphic, and eutectic textures, according to the definition of these terms in petrography, may each result from crystallization in aqueous solutions or in magmas.

Crystalline minerals may also form in other minerals by a process of simultaneous solution and precipitation. This is called replacement or metasomatism. It is necessary, of course, that solutions should gain access to the older crystals by means of fissures or cracks before the process can begin.

¹ W. Ostwald, The scientific foundations of analytical chemistry, 1900, p. 22.
CHAPTER III

THE FLOW OF UNDERGROUND WATER

General Statement.—The atmospheric waters generally permeate the uppermost part of the earth’s crust and perform important geologic work which frequently results in the concentration of useful minerals. The laws governing their motion have been investigated in some detail during the last 20 years, particularly in the United States. Van Hise has laid much emphasis on this subject and has summarized his own work as well as that of King, Hoskins, and Slichter.¹

Views differing in some respects from those of Van Hise, principally in regard to the total amount of water and its depth of penetration into the crust, have been made public by Kemp, Finch, and Fuller.²

A small class of ascending waters, closely connected with volcanism, differs more or less radically from the waters of the

 J. F. Kemp, Igneous rocks and circulating waters, etc., Ibid., vol. 33, pp. 707–711.
ordinary circulation. Their dissolved substances are in many respects peculiar and the water itself appears to ascend from greater depths than the usual springs. Many hold that these waters are of magmatic origin and are supplied by cooling igneous rocks. However important these may be in the formation of certain kinds of ore deposits, they are insignificant in quantity compared to the great circulation of atmospheric water.

Porosity.—All rocks are porous and are capable of absorbing water. By porosity is understood the percentage of pore space referred to the total volume of the rock. The ratio of absorption is the ratio between the weight of the water absorbed and the weight of the rock tested. When the pores are completely filled the rock is said to be saturated, but a saturated rock after being drained always retains a certain amount of water which adheres to the walls of the pores. The pore space varies from a fraction of 1 per cent. to 50 per cent. In fresh granites and similar compact rocks the porosity is from 0.2 to 0.5, in limestones from 0.53 to 13.36, in sandstones from 5 to 28 per cent.

Under the assumption that a sandstone consists of spherical grains packed in the most compact arrangement possible, the space between the spheres would amount to 25.95 per cent. Other things being equal the porosity increases with the size of the grains.

In loose sand and gravel the porosity is highest, ranging from 32 to 40. The absorbed water may be called “free water” in contrast to that existing in chemical combination in the minerals of the rock. All of the free water is not “available,” for instance in wells, because some rocks, like clays, have the peculiarity of holding in their pores great quantities of water which is released only at an extremely slow rate.

Superficial Detritus.—Under the influence of gravity, which is the main effective cause of flow, the atmospheric water sinks into the soil and into the loose strata which form so much of the uppermost part of the crust. It descends until a depth is reached where the material is saturated; the surface forming the upper limit of the saturated zone is called the water level, ground-water level, water table, or hydrostatic level. The saturated zone extends to the underlying rock—the “bed rock.” The upper part of the bed rock is usually also saturated, but it contains much less water than the looser detritus. The water in this underground reservoir slowly moves down from the
higher ground toward the valleys; and underneath the valleys its perceptible movement continues down stream until ultimately, with lack of grade, for instance where a river valley opens toward the sea, the movement will become slow and almost imperceptible. That such a movement actually takes place has been proved by the use of fluorescein and other indicators in wells and bore holes.

The Deeper Circulation.—The rocks underlying the superficial detritus are not only more or less porous but also in most cases broken by fissures, seams, and joints. Some of the water will penetrate them under the influence of gravity and will saturate them under favorable conditions, although the quantity of water per unit volume will be much less than in the uppermost soils, sands, and gravels. In the uplands of crystalline rocks, away from the detritus of the valleys, there is also a zone of percolation and a zone of saturation, the upper limit of which is determined by the depth at which the wells reach permanent water. The same will happen in sedimentary rocks, although here the differing porosity of the strata will strongly influence their capacity as water carriers. The water table is a curved surface which follows approximately the topographic relief but is less accentuated. At the stream level it stands at the surface; on a ridge rising 300 feet above it, for instance, it may be found at a depth of 100 feet. In arid regions the surface of the water table
flattens and may become an almost horizontal plane, even where rough topographic forms prevail.

J. W. Finch, in the paper cited, distinguishes the space above the water level as the gathering zone, in which water is accumulated and conducted to the saturated zone. (Fig. 1.) In some arid regions there is no zone of saturation and the water simply percolates feebly downward until the quantity is diminished to zero.

The second zone, or zone of discharge, "embraces that part of the belt of saturation which has a means of horizontal escape. The means of discharge establishes a continuous condition of gravitative flow." The movement of the water is usually more rapid in the upper part of this zone than in the lower part, where, in spite of greater pressure, the obstructions and the increasing compactness of the rock retard the flow. The air or gas filling the pore space must also be driven out before the water can enter, and the evaporation of water in the underground atmosphere may, under some conditions, also become an important factor in reducing the supply of water. Still another portion of the water enters into chemical combination by hydration.

The static zone is the third and deepest of the divisions proposed by Finch. It extends below the level of the lowest point of discharge and the water in it is stagnant or moves with infinitesimal velocity. It depends upon the zone of discharge for its water, as it is simply the bottom part, with gradually diminishing quantity of water, of a belt of saturation of which the zone of discharge is the upper and flowing part. The lower limit of the third zone, where the quantity of water becomes exceedingly small, is not entirely a matter of speculation, for many definite data are supplied by mining operations and in many places it is not more than 1,500 feet below the surface. Large quantities of water may be stored in the third zone, as, for instance, in the deep artesian basins where impermeable beds prevent escape. In arid regions both the second and third zones may be absent.

Van Hise has divided the outer part of the crust of the earth into three zones depending upon the character of its deformation when subjected to stresses: An upper zone of fracture, a lower zone of rock flowage, and a middle zone of combined fracture and flowage. On the basis of calculations he believes that the

depth of the first zone is not more than 10,000 meters, even in
strong rocks. Within this zone deformation occurs mainly by
rupture, faulting, jointing, differential movement between the
layers, fissility, and brecciation. These limits have lately been
greatly extended by F. D. Adams, who has shown that under
the conditions which exist within the earth's crust granite will
sustain a much heavier load than that which will crush it at the
surface of the earth. Adams's experiments indicate that cavities
may exist in granite to a depth of at least 11 miles, or 17,600
meters.

In the lower zone of flowage deformation is effected by granu-
lation or recrystallization, no openings being produced, or at least
none except those of microscopic size.

Between the two zones intervenes a zone of combined fracture
and flowage, because of the variable strength of different kinds of
rocks and the varying rapidity and conditions of deformation.
This belt may be as much as 5,000 meters in thickness.

On the basis of size, openings in rocks may be divided into (1)
openings which are larger than those of capillary size, or super-
capillary openings; (2) capillary openings; and (3) sub-capillary
openings. For water, openings larger than capillary openings
may be considered as circular tubes which exceed 0.508 mm. in
diameter, or sheet openings, such as those furnished by
faults, joints, etc., whose width exceeds 0.254 mm. Capillary
tubes or sheet spaces are those smaller than the dimensions in-
dicated but larger than the openings in which the molecular
attraction of the solid material extends across the space, and to
such openings the laws of capillary flow apply. In sub-capillary
openings the attraction of the molecules extends from wall
to wall, and this class includes tubes smaller than 0.0002 mm.
in diameter and sheet openings smaller than 0.0001 mm. in
width.

The flowage of water through super-capillary openings nearly
follows the ordinary laws of hydrostatics, but is subject to a
particular retardation on account of friction. The super-capillary
openings include the greater number of faults, joints, partings,
and the openings in coarser sediments. In capillary openings
the movement is very slow indeed, so that many rocks in which
they occur, as shales and clays, are spoken of as impermeable. In

sub-capillary openings the water is held firmly as a film glued to the walls by adhesion; there is no free water and the flow is practically nil.

Influence of Fractures.—The simple conditions outlined above are seriously disturbed where extensive fracturing has taken place and paths have been laid out on which the water may move under approximately normal hydrostatic conditions. There may be a comparatively slow descent of the water along devious joints and fractures and a rapid rise under hydrostatic head where the descending water reaches the open paths of important faults and fissures. Friction during the descent undoubtedly seriously diminishes the theoretical head, but the evidence is perfectly clear that in regions of dynamic disturbance, such as the Alps and the Rocky Mountains, strong ascending springs may result from these conditions.

At the point of issue such springs may be warm and their temperature, in regions where no recent igneous action has taken place, may be a good indication of the depth attained by the water. Such springs seldom have a temperature higher than 65° C., and the composition of their salts corresponds to the character of the beds traversed. On the supposition, believed to be well founded, that only a moderate loss in heat takes place during the ascent, a water of the temperature named would be derived from a depth of about 5,500 feet. Large regions of the earth, such as the Scandinavian peninsula, contain no warm springs, and the eastern part of the American Continent yields very few of them. Fuller says:

The results of drilling in sedimentary and crystalline rocks, as well as the studies of deep mines, show that in all probability water does not commonly exist in the rocks under great pressure, although such
may be exerted in an occasional crevice. It is not believed that hydrostatic waters exist, except possibly in rare instances, at depths of over 10,000 feet, and that in reality the estimate of a depth of 6,520 meters, or 20,000 feet, as the limit of the zone of open cavities is closely approximate to the truth. If waters were freely circulating at great depths, within the zone of fracture, hot springs would certainly be more common along the numerous faults of the Piedmont, Appalachian, and similar regions.¹

Van Hise suggests that the decreased density and viscosity of water at higher temperatures may lessen the head necessary for ascending springs, but it may be doubted whether these factors would ever offset the great friction encountered during the downward passage. Faulting and mountain-building processes develop heat and this disturbance of the conditions of temperature may result in convection currents and an increased circulation of the water stored in the rocks.

Influence of Volcanism.—When magmas are intruded into the zone of fracture the conditions become more complicated. It is thought by some that atmospheric waters are able to descend into the deep regions and become absorbed by the magmas, but this view appears improbable. Before its irruption into the zone of fracture the magma is assuredly far beyond the reach of any waters percolating from the surface. Daubrée's well-known experiment in which water traversed a sandstone slab from the cold to the heated side has been cited, but it seems doubtful indeed whether this result is applicable to the condition existing at great depths. The presence of a heated body in the zone of fracture would undoubtedly quicken the circulation of water by inducing strong convection currents and expelling the stored water from its reservoir. Whether this action is sufficient to account for the remarkable number and volume of hot springs rising in volcanic regions may well be doubted, and it is thought that the magma itself gives up most of its constitutional water, partly when moving up to higher levels, partly when crystallizing to solid rocks.

Conclusions.—In conclusion it is believed that water in quantities sufficient to supply an ascending circulation can only exceptionally attain a depth of 10,000 feet and that, except in regions of great dynamic movements, the active circulation is confined to the uppermost few thousand feet. More commonly the depth of active circulation is measured by the level of surface discharge

and the water below that level is practically stagnant; the lower limit of the body of stagnant water then forms an irregular surface descending to greater depths along the fractures and rising higher in the intervening blocks of solid ground.

Connate Water.—In mining operations absolutely dry rock is seldom found. Even when the drifts and workings are dry, the rocks when first broken are usually slightly damp, though this moisture rapidly evaporates. While in most cases this is atmospheric water, it is not necessarily so. In all sedimentary rocks which have not undergone great alteration a small amount of the water in which they were deposited must remain. Igneous rocks also, it is believed, retain a certain minimal quantity of the water which entered into the composition of the magma, and some of the changes which take place in such igneous rocks after their consolidation appear to depend on this residual or connate liquid.

Examples of Movement of Water.—The Cretaceous Dakota sandstone presents an excellent example of a porous stratum in which a large amount of water can be stored. Throughout the Great Plains this is a veritable reservoir of water, which can be tapped by artesian wells as far as 300 miles from its outcrops and at depths of a few hundred to 3,000 feet (Fig. 3). But this stratum at present
simply contains a stagnant body of water, and, as in most other
artesian basins, the quantity is not inexhaustible. This very case
proves how impervious the adjacent sedimentary beds are, for
neither upward nor downward is an avenue of escape afforded in
spite of the strong pressure. Should profound fissuring take
place in the Great Plains a natural avenue of escape would, of
course, be opened and a deep circulation established. Kemp and
Fuller have both brought out the fact that the deep sedimentary
beds are often remarkably dry. The well 4,262 feet deep at
Wheeling, West Virginia, was in absolutely dry rocks for the lower
1,500 feet. Wells sunk at Northampton, Massachusetts, and at
New Haven, Connecticut, to depths of 4,000 feet have failed to
obtain water. A number of other instances are mentioned, and
in many cases the dry part consists of sandstones or other porous
rocks. According to Fuller, water supplies in wells in crystalline
rocks are usually found within 200 or 300 feet of the surface and
it is ordinarily useless to go below a depth of 500 feet. The occur-
rence of porous strata which are capable of holding immense
quantities of water but in which none whatever is actually found
is, according to Fuller, a common experience of drillers in this
country, even where the upper strata contain a well-defined
water table.

The occurrence in many countries of deep beds of anhydrite
(anhydrous calcium sulphate) also shows the absence of a
general percolation by water through these strata.

Investigations of joints in the crystalline rocks of Connecticut
have shown, according to Fuller, that the water occurs largely in
the vertical joints, which have an average spacing of 3 to 7
feet at the surface. In depth these joints diminish rapidly or
close up and it is therefore not advisable to go below 250 feet in
search of water. It is estimated by E. E. Ellis that the water
present in the upper 2,000 feet of the crystalline rocks is
only 16 per cent. of their capacity, or 0.000007 of the rock
volume.

The evidence from many mining regions is of considerable
importance. In the Sierra Nevada of California deep canyons
are separated by broad-backed ridges capped with Tertiary
gravels and andesitic tuffs. The abundant precipitation per-
colates into the porous tuffs and gathers in the gravel basins,
from the lower parts of which large quantities of cold springs
issue. This upper zone of gathering and discharge may be 1,500
feet deep and may lie the same distance above the bottom of the canyons. In spite of the depth of the percolating zone, the waters are potable, pure, and cold. A part of the water sinks into the underlying bedrock of slate or granite, but the quantity is far less than in the more porous Tertiary strata and it finds its lowest level of discharge along the beds of the rivers. For the Sierra as a whole the Great Valley of California forms the ultimate level of discharge. In the whole western part of the range there are no thermal springs and very few strong ascending springs, in spite of the prevalent fissility and jointing in the rocks. Hot springs are encountered only along the eastern slope of the range, a region which in the late Tertiary and Quaternary was the scene of great dislocations and volcanic activity. In the gold-quartz veins contained in the old rocks of the western slope much water is found in fissures to a depth of about 800 or 1,000 feet. Below this little water is met and many stopes and drifts are entirely dry, and this applies both to mines high up on the slopes, as at Nevada City and Grass Valley, and to the Mother Lode mines of the foot-hill region.

Cripple Creek, Colorado, is another interesting example. Here we have a granitic plateau at an elevation of 9,000 feet above the sea; this plateau contains a volcanic plug about 2 miles in diameter which is largely filled with porous breccias and tuffs. The water fills the volcanic rocks as in a sponge inserted in a cup and the mining operations to a depth of 1,500 feet have tapped heavy flows. But even in this waterlogged mass there are solid intrusive bodies, for instance at the Vindicator mine, at a depth of 1,000 feet, which are so dry that water must be sent down for drilling. The data thus far available have led Ransome to the conclusion that even at Cripple Creek the water is slowly diminishing in quantity at increasing depth. The big drainage tunnel now under way, which will tap the veins at a depth of 800 feet below the present lowest tunnels, will afford more information on this subject. The granite which surrounds this water-soaked plug contains very little water and at most places is practically dry, in spite of the great hydrostatic pressure. The ultimate level of possible discharge would be in the valley of the Arkansas, 2,500 feet lower and many miles distant, but it may be gravely doubted whether any water from the Cripple Creek mines ever finds its way through the granite
mass to this level.1 Van Hise, after stating (Metamorphism, p. 1065) that during a certain time the Portland mine, at Cripple Creek, yielded water to the amount of between 300 and 900 gallons per minute, asks whether better evidence could be required for proving the existence of an extremely active circulation. The answer to this is that the water was simply stagnant, stored water filling an underground reservoir.

In the copper mines of Butte, Montana, where the granitic rocks are greatly faulted by movements of late date, much water was encountered, extending in places down to 2,400 feet, or the bottom of the mines. No ascending springs are found at the surface, nor any hot springs, although a high range adjoins the mines on the east and conditions seem to be favorable for deep circulation. The water is probably almost stagnant, and Weed mentions the existence of large bodies of dry rock.2 One such body on the 1,600-foot level, 1,200 feet in width, is absolutely dry.

Leadville, Colorado, is another place where the faulting is extensive and of comparatively recent date. At 1,500 feet, the greatest depth attained, there is still much water, mainly along the faults.

At Rossland, British Columbia, according to Bernard McDonald,3 the mine waters increase greatly during the spring months. The water level is at 40 feet and the quantity increases to a depth of 200 to 350 feet. Below 350 feet a decrease begins, slowly at first but soon more rapid, until at 900 feet there is only a slight seepage and below 1,000 feet the mine is dry.2 Weed states that in the copper mine at Ely, Vermont, an incline shaft was carried down for a length of 3,600 feet, attaining a vertical depth of 1,700 feet. There is no water here below a vertical depth of 600 feet. At Pribram, Bohemia, the workings are dry and dusty at a depth of 3,000 feet. In Cornwall, tin and copper mines have been worked for a long distance underneath the sea, and sometimes close to the sea bottom, without irruptions of salt water.

One of the most convincing examples is that furnished by the deep copper mines of Michigan and fully set forth by A. C. Lane.4

2 M. L. Fuller, \textit{op. cit.}, p. 65.

3 T. A. Rickard, \textit{Min. and Sci. Press}, June 27, 1908.

He shows that the surface waters are of the normal, potable type and that they descend in diminishing quantities only to a depth of about 1,000 or 1,500 feet below the surface. Below this depth moisture is scant, but where it appears it consists of drippings of strong calcium chloride brine which cannot in any way be explained as being derived from the surface water. Many levels are absolutely dry and water must be sent down for drilling. This case is particularly convincing, for we have here many features in favor of a strong circulation: Moist climate, inclined position of beds, and great permeability.

No certain figure can be assigned to the depth of the ground water; it may be shallow or the water may descend on strong fractures for several thousand feet. At any rate the quantity is limited, and the water is largely stagnant and is much more likely to decrease than to increase at depths below 1,000 feet.

Depth of Water Level.—In moist climates the water level is usually found within 50 feet of the surface, but in regions with less rainfall there is great diversity in the location of this upper limit of the zone of saturation. In the more arid regions the water is often met 300 or 400 feet below the surface. In the valley of Hachita, New Mexico, no water is found in the sands and gravels until a depth of 500 feet is reached; at the Abe Lincoln gold-quartz mine, New Mexico, a little water began to come in 1,300 feet below the surface. In the rich deposits of Tintic, Utah, the water level in limestone lies 1,700 to 2,000 feet below the surface, but in mines in andesite and porphyry in the same district water may be found at much less depth.

When water is being drained or pumped from a mine the water level is artificially depressed, in the form of a flat funnel. The pump in this case does not merely drain the bottom level, but receives water from higher levels farther away from the shaft. It is important to note this, for the water thus obtained from the bottom of a wet mine may not have the same composition as that originally belonging to this level.

Total Amount of Free Water in Earth's Crust.—Several estimates have been made of the total amount of uncombined water contained in the upper crust. The older estimates by Delesse, Dana, and Slichter were very high. Chamberlin and Salisbury believed that the water in the earth would be equivalent to a

layer 800 feet deep over its entire surface. Van Hise1 reduced the estimate materially and concluded that it would be equivalent to a sheet of water 226 feet (69 meters) thick over the continental areas.

Fuller2 estimates, after a careful study of the problem, that the total water would be equivalent to a uniform sheet 96 feet thick over the entire surface of the earth. This estimate is probably more nearly correct than any of the others.

2 \textit{Op. cit.}, p. 72.
CHAPTER IV

THE COMPOSITION OF UNDERGROUND WATERS

INTRODUCTION

Water is continually evaporated from sea and land. From the gathered clouds it is precipitated as pure rain water, which, by the aid of absorbed oxygen and carbon dioxide, continually attacks disintegrating rocks and carries suspended particles and dissolved salts to the sea. As this cycle goes on some water sinks down through the crust to enrich the stored subterranean water—the ground water; of this much is returned by springs, but a smaller part enters hydrated compounds and is permanently withdrawn. There is a compensating factor, however, for constant additions to the water supply of the surface are made by volcanism. Many if not all magmas contain water, and this is given off as steam during surface eruptions or ascends as springs from deep-seated intrusions. Hydrous rocks sinking into hotter zones may give off some of their water. No one may question the actuality of such additions, but opinions differ as to their relative importance.

Most mineral deposits have been formed by aqueous solutions and consequently in-tracing the processes that formed them we must ascertain the composition of the waters of rivers, lakes, seas, and springs. The first and from our standpoint the most important division consists of the underground waters, encountered in wells and springs. These solutions may be weak or strong; they may be cold, tepid, or hot; but in considering them from a chemical standpoint it will be best to attempt no distinction between thermal or cold, mineral or non-mineral waters. It is common knowledge that the substances dissolved in water depend upon the character of the formation it traverses; each formation yields its characteristic salts to the percolating waters. This inconspicuous process of decomposition of rocks and solution of salts is one of scarcely realized geologic importance. F. W. Clarke\(^1\) states that the Mississippi annually carries to the

sea about 108 metric tons of salts from each square mile of territory drained; the Colorado abstracts about 51 tons from the same unit area.

CALCIUM CARBONATE WATERS IN IGNEOUS ROCKS

Igneous rocks, particularly those of deep-seated origin, and crystalline schists contain only small amounts of soluble salts. The surface waters penetrating them are charged with more or less carbon dioxide, which, at ordinary temperatures, gradually decomposes the silicates, particularly the pyroxene, amphibole, biotite, and the calcium feldspars; the alkali feldspars are more slowly attacked. As a result the springs in such terranes will have a low salinity, rarely above 1,000 parts per million, and will contain principally calcium carbonate, with more or less of the corresponding magnesium salt; a smaller amount of sodium carbonate and much less of potassium carbonate are present. There will be little of the chlorine and sulphuric acid radicles. The silica is relatively high. Such calcium carbonate waters are characteristic not only of superficial springs, but also of the deeper circulation in crystalline terranes; in the latter case the waters may be warm, though usually they are cold. The spring-fed rivers in such terranes have a similar composition. To some degree the waters will reflect the composition of the rocks.

In Washington and California, where magnesian rocks like basalt and serpentine abound, the underground waters are much richer in magnesia than usual, and this substance may even equal the calcium. Waters of this calcium carbonate type are common and, when encountered as an ascending spring or elsewhere, justify the presumption of surface origin.¹ It often happens that hot springs which are not characterized by an abundance of calcium carbonate are accompanied by numerous other springs

¹ Some years ago, in a report on the gold-quartz veins of Nevada City and Grass Valley, Cal. (17th Ann. Rept., U. S. Geol. Survey, Pt. II, p. 121, 1896), I presented an analysis of an ascending spring found in the Federal Loan mine which carried some arsenic and hydrogen sulphide. At that time I held the opinion that this water might possibly have had some connection with the genesis of the vein, but it is now apparent that it is simply water of the general surface circulation which happened to find its way up on the vein and which dissolved certain constituents from it. The analysis is quoted on page 43.
of somewhat lower temperature. A comparison of analyses will usually show that in proportion to the lowering of the temperature the quantity of calcium carbonate increases; this indicates a cooling admixture of surface waters bearing calcium.

COMPOSITION OF SALTS AND TOTAL SALINITY OF SURFACE WATERS IN CRYSSTALLINE ROCKS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>31.91</td>
<td>47.14</td>
<td>57.80</td>
<td>38.46</td>
</tr>
<tr>
<td>SO₄</td>
<td>9.07</td>
<td>6.67</td>
<td>3.10</td>
<td>15.35</td>
</tr>
<tr>
<td>Cl</td>
<td>4.03</td>
<td>4.18</td>
<td>1.80</td>
<td>2.81</td>
</tr>
<tr>
<td>S</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Ca</td>
<td>14.53</td>
<td>22.67</td>
<td>13.90</td>
<td>13.24</td>
</tr>
<tr>
<td>Mg</td>
<td>2.93</td>
<td>6.17</td>
<td>2.30</td>
<td>4.33</td>
</tr>
<tr>
<td>Mn</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Na</td>
<td>10.80</td>
<td>5.32</td>
<td>5.50</td>
<td>12.86</td>
</tr>
<tr>
<td>K</td>
<td>2.72</td>
<td>0.40</td>
<td>0.40</td>
<td>3.76</td>
</tr>
<tr>
<td>(Al,Fe)₂O₃</td>
<td>0.51</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>23.50</td>
<td>7.85</td>
<td>13.40</td>
<td>9.19</td>
</tr>
</tbody>
</table>

100.00 100.00 100.00 100.00

Salinity, parts per million

37 280 245 282

NOTES RELATING TO ABOVE ANALYSES

B. Aztec Spring, 4 miles east of Santa Fe, New Mexico. In schist and granite. Cold. Analysis by F. W. Clarke, Geochemistry, p. 60.

Waters of the kind described above are generally poor in the rarer metals. A little arsenic is found in some cases and
traces of barium, strontium, lithium, boron and phosphorus are sometimes recorded. Where they traverse mineral deposits, metals contained in the deposits will of course be dissolved, as in the water from the Federal Loan mine, Nevada City, California. The springs may, under favorable conditions, form crusts of calcium carbonate and hydroxide of iron, but as a rule their powers of solution and deposition are weak. Where the rocks contain much pyrite, as often is the case in mining districts, the sulphates, especially calcium sulphate, rapidly increase in the waters.

CALCIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

Waters of the type described above are not confined to igneous rocks. They are often found in circulation in glacial drift and also in sedimentary rocks—sandstones, limestones, and dolomites—wherever the character of sedimentation has prevented the accumulation of soluble salts, as in deep-water deposits of oceans and lakes. Such waters sometimes contain hydrogen sulphide and carbon dioxide. The derivation of the latter is not always easily explained. In some cases the gas may emanate from a deep-seated magma, but more commonly it is formed by decomposition of carbonates. An example of such water is furnished by the cold Cresson Spring in Pennsylvania, which issues from a shale member between sandstones in a 3,000-foot series of Coal Measures, containing practically no limestone. This water is pure, its salinity being only 442 parts per million, and of this 272 may be calculated as calcium carbonate, 76 as sulphates of sodium, magnesium, and calcium, and 11 as sodium chloride. According to a careful analysis by Genth this water contains traces of nickel, cobalt, iron, manganese, copper, strontium, barium, and fluorine, 0.17 part per million of the last-named element being present. Several analyses of similar well-known waters are quoted on page 45.
COMPOSITION OF UNDERGROUND WATERS

COMPOSITION OF SALTS AND TOTAL SALINITY OF CALCIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>23.35</td>
<td>23.54</td>
<td>16.56</td>
</tr>
<tr>
<td>Mg</td>
<td>5.82</td>
<td>2.56</td>
<td>7.64</td>
</tr>
<tr>
<td>Na</td>
<td>1.81</td>
<td>2.38</td>
<td>10.36</td>
</tr>
<tr>
<td>K</td>
<td>2.04</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.58</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.01</td>
<td>22.85</td>
<td>4.50</td>
</tr>
<tr>
<td>BO₃</td>
<td></td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity, parts per million</td>
<td>563</td>
<td>199</td>
<td>222</td>
</tr>
</tbody>
</table>

¹ HCO₃⁻

Notes Relating to Above Analyses

These waters frequently form ascending springs. Bartlett Springs, Lake County, California, the water of which is extensively used in that State, probably belong to this class. The water contains 782 parts of salts per million, of which 493 may
be calculated as calcium carbonate. It is rich in free carbon
dioxide and is low in chlorine, sulphuric acid radicle, sodium,
and potassium, but contains some iron, probably as carbonate,
a little barium, phosphorus, and about 63 parts of silica per
million.¹

Carbonate waters are undoubtedly active in solution and
deposition in the upper part of the crust, and especially in
the formation of concentrations from weathering rocks. They
may deposit calcareous sinters and effect concentrations of iron
and manganese. Some lead and zinc deposits in limestone may
also be genetically connected with them; their power of solution
and concentration of rarer metals appears to be weak, unless
they contain carbon dioxide and hydrogen sulphide. Such
waters in Kansas, Missouri, and Kentucky have been found to
contain zinc and probably also lead and copper.

The dissolved salts are undoubtedly obtained directly from
the rocks traversed.

CHLORIDE WATERS IN SEDIMENTARY ROCKS

Infiltration from Present Oceans.—Wells and springs along the
sea coasts usually contain a higher percentage of sodium chloride
than farther inland; this may be caused either by infiltration of
sea water into sediments or porous igneous rocks, or by winds
carrying finely divided salt from the spray of the waves.

Solution of Saline Deposits.—Many past geologic periods in-
cluded epochs of desiccation and desert climate when salt was
precipitated from evaporating waters of closed basins. Surface
waters encountering such sedimentary deposits easily dissolve
the sodium chloride, and wells and springs rich in this salt are
characteristic of many regions. Besides sodium these waters
contain calcium and magnesium, and they are often rich in
calcium chloride. They are poor in silica and potassium and
rarely contain much calcium which can be combined with
carbon dioxide. The presence of bromine is almost charac-
teristic; traces of iodine and boron are often found. Barium
and strontium are almost always present, the former sometimes
in considerable amount. Free carbon dioxide and hydrogen
sulphide are sometimes found, the latter especially where there

¹ Winslow Anderson, Mineral springs, etc., of California, San Francisco,
1892, p. 94.
is an abundance of calcium sulphate. Waters of this general type are characteristic of certain Paleozoic beds in the eastern United States, as, for instance, the Silurian of New York and Michigan and certain parts of the Carboniferous in Michigan. In the western States the "Red Beds," generally of Permian or Triassic age, are sometimes rich in salt and gypsum, and this combination appears in the waters of these terranes.

There are many similar springs and wells in Pennsylvania, and in fact all through the interior Paleozoic basin, from Arkansas to Canada. The Saratoga Springs of New York, issuing from Silurian limestones, probably belong to this class. Their temperature is about 50° F.; the total solids amount to about 11,000 parts per million, of which the larger part is sodium chloride. Barium is conspicuously present, in some analyses to a maximum of about 34 parts per million, likewise bromine at about 120 parts per million. Small amounts of silica, iron, and lithium, and traces of boron, iodine, and fluorine are recorded. The origin of the CO₂ so abundant at Saratoga Springs is uncertain. J. F. Kemp believes it to be of magmatic derivation. Examples of such waters are given in the table of analyses on page 49.

Certain of these waters are abnormally rich in calcium chloride, that most easily soluble salt which remains as the last liquid residue in evaporating brines. Several instances of such waters have been interpreted as residual or connate brines, remaining in early isolated Paleozoic basins.¹

In the lower peninsula of Michigan brines are obtained from deep wells in the Carboniferous and Silurian. One of the springs in this region contains 12,000 parts per million in total solids, with 6,000 calculated as NaCl, 1,600 as MgCl₂, and 4,100 as CaCl₂. The researches of A. C. Lane have shown that the scanty waters in the deep levels of the copper mines near Houghton have a similar composition, except that here calcium chloride prevails. These waters, which are found in amygdaloid lava flows and associated sedimentary rocks of the Upper Algonkian (Keweenawan), are probably to be regarded as residual oceanic waters, which, in their long contact with the rocks, have undergone considerable changes. An analysis is given below (p. 49). This water contains no barium.

In the western States many similar waters occur in the Red Beds, but, as stated they are usually also rich in calcium sulphate. As an example may be cited the tepid Quelites Spring in New Mexico, which ascends through Red Beds and contains about 2.6 per cent. of solids; one-half is calculated as sodium chloride and the larger part of the remainder as calcium sulphate. Bromine, boron, and barium are present. On the Pacific coast such waters are not common. Byron Hot Springs, California, may be cited as an example. The temperature of a representative spring is 76°C. The water contains about 13,000 parts of salts per million, of which over 10,000 parts are sodium chloride. A large portion of the remainder consists of calcium chloride. Small quantities of bromine, iodine, and barium are present.

The Triassic strata of the French Alps and the Pyrenees are rich in similar waters, many of which are warm. The mineral combination is a characteristic mingling of chlorides and sulphates, and undoubtedly all of the constituents are derived from the sedimentary rocks mentioned.

The Spring of Mey in Haute Savoie, with a temperature of 39.8°C, may be taken as a typical example. It contains both carbon dioxide and hydrogen sulphide and yields a total of 5,000 parts per million of dissolved salts, of which 1,753 parts are calculated as sodium chloride, 1,773 as sodium sulphate, and 957 as calcium sulphate. Some bromine and traces of iodine, phosphorus, and arsenic are present.

A celebrated group of these chloride springs are found in Germany on both sides of the Rhine. Among them are the waters of Soden, Homburg, Wiesbaden, Kreutznach, Kissingen, and Nauheim. Most of them issue from or ascend through salt-bearing beds of Devonian, Permian, or Triassic age, and their composition is similar. The springs of Kreutznach are especially rich in calcium chloride. Some of the springs cited are hot, others cold; some are rich in carbon dioxide. In regard to Kreutznach and Wiesbaden there is room for doubt, for the former springs stand in intimate relation to eruptive rocks, while the latter issue from a gneiss and are by some authors con-

1 F. A. Jones, New Mexico mines and minerals, p. 309.
2 Winslow Anderson, Mineral springs and health resorts of California, 1892, p. 106.
COMPOSITION OF UNDERGROUND WATERS

considered of juvenile origin. The majority of them, at any rate, have certainly derived their salts from sedimentary beds.

The chloride waters, described above, are capable of dissolving and depositing many metallic substances and have strong dehydrating power. Their relation to mineral deposits will be mentioned later.

COMPOSITION OF SALTS AND TOTAL SALINITY OF CHLORIDE WATERS
(Cited from Clarke's Geochemistry, pp. 171-175)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td></td>
<td>55.83</td>
<td>58.79</td>
<td>42.00</td>
<td>62.31</td>
<td>63.55</td>
<td>56.58</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td>0.04</td>
<td>trace</td>
<td>1.13</td>
<td>0.53</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>0.03</td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>SO₄</td>
<td></td>
<td>3.12</td>
<td>0.94</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.78</td>
</tr>
<tr>
<td>CO₃</td>
<td></td>
<td>2.63</td>
<td>0.61</td>
<td>18.59</td>
<td>0.27</td>
<td>0.01</td>
<td>3.13</td>
</tr>
<tr>
<td>B₄O₇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td>33.09</td>
<td>30.38</td>
<td>27.62</td>
<td>18.35</td>
<td>5.63</td>
<td>32.60</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>0.27</td>
<td>3.76</td>
<td>0.78</td>
<td>1.55</td>
<td></td>
<td>1.16</td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.04</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td>3.72</td>
<td>4.90</td>
<td>6.03</td>
<td>13.86</td>
<td>30.78</td>
<td>4.05</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td>1.13</td>
<td>0.40</td>
<td>3.41</td>
<td>2.53</td>
<td>0.01</td>
<td>0.61</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>0.06</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>0.08</td>
<td>0.20</td>
<td>0.14</td>
<td>0.02</td>
<td>0.01</td>
<td>0.76</td>
</tr>
</tbody>
</table>

100.00 100.00 100.00 100.00 100.00 100.00

Salinity, parts per million.

10,589 23,309 12,022 309,175 212,300 8,241

Notes Relating to Above Analyses

mass to this level.¹ Van Hise, after stating (Metamorphism, p. 1065) that during a certain time the Portland mine, at Cripple Creek, yielded water to the amount of between 300 and 900 gallons per minute, asks whether better evidence could be required for proving the existence of an extremely active circulation. The answer to this is that the water was simply stagnant, stored water filling an underground reservoir.

In the copper mines of Butte, Montana, where the granitic rocks are greatly faulted by movements of late date, much water was encountered, extending in places down to 2,400 feet, or the bottom of the mines. No ascending springs are found at the surface, nor any hot springs, although a high range adjoins the mines on the east and conditions seem to be favorable for deep circulation. The water is probably almost stagnant, and Weed mentions the existence of large bodies of dry rock.² One such body on the 1,600-foot level, 1,200 feet in width, is absolutely dry.

Leadville, Colorado, is another place where the faulting is extensive and of comparatively recent date. At 1,500 feet, the greatest depth attained, there is still much water, mainly along the faults.

At Rossland, British Columbia, according to Bernard McDonald,³ the mine waters increase greatly during the spring months. The water level is at 40 feet and the quantity increases to a depth of 200 to 350 feet. Below 350 feet a decrease begins, slowly at first but soon more rapid, until at 900 feet there is only a slight seepage and below 1,000 feet the mine is dry.² Weed states that in the copper mine at Ely, Vermont, an incline shaft was carried down for a length of 3,600 feet, attaining a vertical depth of 1,700 feet. There is no water here below a vertical depth of 600 feet. At Příbram, Bohemia, the workings are dry and dusty at a depth of 3,000 feet. In Cornwall, tin and copper mines have been worked for a long distance underneath the sea, and sometimes close to the sea bottom, without irruptions of salt water.

One of the most convincing examples is that furnished by the deep copper mines of Michigan and fully set forth by A. C. Lane.⁴

² Finch, J. W., op. cit., p. 204.
³ M. L. Fuller, op. cit., p. 65.
⁴ T. A. Rickard, Min. and Sci. Press, June 27, 1908.
He shows that the surface waters are of the normal, potable type and that they descend in diminishing quantities only to a depth of about 1,000 or 1,500 feet below the surface. Below this depth moisture is scant, but where it appears it consists of drippings of strong calcium chloride brine which cannot in any way be explained as being derived from the surface water. Many levels are absolutely dry and water must be sent down for drilling. This case is particularly convincing, for we have here many features in favor of a strong circulation: Moist climate, inclined position of beds, and great permeability.

No certain figure can be assigned to the depth of the ground water; it may be shallow or the water may descend on strong fractures for several thousand feet. At any rate the quantity is limited, and the water is largely stagnant and is much more likely to decrease than to increase at depths below 1,000 feet.

Depth of Water Level.—In moist climates the water level is usually found within 50 feet of the surface, but in regions with less rainfall there is great diversity in the location of this upper limit of the zone of saturation. In the more arid regions the water is often met 300 or 400 feet below the surface. In the valley of Hachita, New Mexico, no water is found in the sands and gravels until a depth of 500 feet is reached; at the Abe Lincoln gold-quartz mine, New Mexico, a little water began to come in 1,300 feet below the surface. In the rich deposits of Tintic, Utah, the water level in limestone lies 1,700 to 2,000 feet below the surface, but in mines in andesite and porphyry in the same district water may be found at much less depth.

When water is being drained or pumped from a mine the water level is artificially depressed, in the form of a flat funnel. The pump in this case does not merely drain the bottom level, but receives water from higher levels farther away from the shaft. It is important to note this, for the water thus obtained from the bottom of a wet mine may not have the same composition as that originally belonging to this level.

Total Amount of Free Water in Earth's Crust.—Several estimates have been made of the total amount of uncombined water contained in the upper crust. The older estimates by Delesse, Dana, and Slichter were very high. Chamberlin and Salisbury¹ believed that the water in the earth would be equivalent to a

layer 800 feet deep over its entire surface. Van Hise1 reduced the estimate materially and concluded that it would be equivalent to a sheet of water 226 feet (69 meters) thick over the continental areas.

Fuller2 estimates, after a careful study of the problem, that the total water would be equivalent to a uniform sheet 96 feet thick over the entire surface of the earth. This estimate is probably more nearly correct than any of the others.

2 \textit{Op. cit.}, p. 72.
CHAPTER IV

THE COMPOSITION OF UNDERGROUND WATERS

INTRODUCTION

Water is continually evaporated from sea and land. From the gathered clouds it is precipitated as pure rain water, which, by the aid of absorbed oxygen and carbon dioxide, continually attacks disintegrating rocks and carries suspended particles and dissolved salts to the sea. As this cycle goes on some water sinks down through the crust to enrich the stored subterranean water—the ground water; of this much is returned by springs, but a smaller part enters hydrated compounds and is permanently withdrawn. There is a compensating factor, however, for constant additions to the water supply of the surface are made by volcanism. Many if not all magmas contain water, and this is given off as steam during surface eruptions or ascends as springs from deep-seated intrusions. Hydrous rocks sinking into hotter zones may give off some of their water. No one may question the actuality of such additions, but opinions differ as to their relative importance.

Most mineral deposits have been formed by aqueous solutions and consequently in tracing the processes that formed them we must ascertain the composition of the waters of rivers, lakes, seas, and springs. The first and from our standpoint the most important division consists of the underground waters, encountered in wells and springs. These solutions may be weak or strong; they may be cold, tepid, or hot; but in considering them from a chemical standpoint it will be best to attempt no distinction between thermal or cold, mineral or non-mineral waters. It is common knowledge that the substances dissolved in water depend upon the character of the formation it traverses; each formation yields its characteristic salts to the percolating waters. This inconspicuous process of decomposition of rocks and solution of salts is one of scarcely realized geologic importance. F. W. Clarke\(^1\) states that the Mississippi annually carries to the

sea about 108 metric tons of salts from each square mile of territory drained; the Colorado abstracts about 51 tons from the same unit area.

CALCIUM CARBONATE WATERS IN IGNEOUS ROCKS

Igneous rocks, particularly those of deep-seated origin, and crystalline schists contain only small amounts of soluble salts. The surface waters penetrating them are charged with more or less carbon dioxide, which, at ordinary temperatures, gradually decomposes the silicates, particularly the pyroxene, amphibole, biotite, and the calcium feldspars; the alkali feldspars are more slowly attacked. As a result the springs in such terranes will have a low salinity, rarely above 1,000 parts per million, and will contain principally calcium carbonate, with more or less of the corresponding magnesium salt; a smaller amount of sodium carbonate and much less of potassium carbonate are present. There will be little of the chlorine and sulphuric acid radicles. The silica is relatively high. Such calcium carbonate waters are characteristic not only of superficial springs, but also of the deeper circulation in crystalline terranes; in the latter case the waters may be warm, though usually they are cold. The spring-fed rivers in such terranes have a similar composition. To some degree the waters will reflect the composition of the rocks.

In Washington and California, where magnesian rocks like basalt and serpentine abound, the underground waters are much richer in magnesia than usual, and this substance may even equal the calcium. Waters of this calcium carbonate type are common and, when encountered as an ascending spring or elsewhere, justify the presumption of surface origin.\(^1\) It often happens that hot springs which are not characterized by an abundance of calcium carbonate are accompanied by numerous other springs

\(^1\) Some years ago, in a report on the gold-quartz veins of Nevada City and Grass Valley, Cal. (17th Ann. Rept., U. S. Geol. Survey, Pt. II, p. 121, 1896), I presented an analysis of an ascending spring found in the Federal Loan mine which carried some arsenic and hydrogen sulphide. At that time I held the opinion that this water might possibly have had some connection with the genesis of the vein, but it is now apparent that it is simply water of the general surface circulation which happened to find its way up on the vein and which dissolved certain constituents from it. The analysis is quoted on page 43.
COMPOSITION OF UNDERGROUND WATERS

of somewhat lower temperature. A comparison of analyses will usually show that in proportion to the lowering of the temperature the quantity of calcium carbonate increases; this indicates a cooling admixture of surface waters bearing calcium.

COMPOSITION OF SALTS AND TOTAL SALINITY OF SURFACE WATERS IN CRYSTALLINE ROCKS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>31.91</td>
<td>47.14</td>
<td>57.80</td>
<td>38.46</td>
</tr>
<tr>
<td>SO₄</td>
<td>9.07</td>
<td>6.67</td>
<td>3.10</td>
<td>15.35</td>
</tr>
<tr>
<td>Cl</td>
<td>4.03</td>
<td>4.18</td>
<td>1.30</td>
<td>2.81</td>
</tr>
<tr>
<td>S</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>14.53</td>
<td>22.67</td>
<td>13.90</td>
<td>13.24</td>
</tr>
<tr>
<td>Mg</td>
<td>2.93</td>
<td>6.17</td>
<td>2.30</td>
<td>4.33</td>
</tr>
<tr>
<td>Mn</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>10.80</td>
<td>5.32</td>
<td>5.50</td>
<td>12.86</td>
</tr>
<tr>
<td>K</td>
<td>2.72</td>
<td></td>
<td>0.40</td>
<td>3.76</td>
</tr>
<tr>
<td>(Al,Fe)₂O₃</td>
<td>0.51</td>
<td></td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>23.50</td>
<td>7.85</td>
<td>13.40</td>
<td>9.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
</table>

Salinity, parts per million: 37 280 245 282

NOTES RELATING TO ABOVE ANALYSES

B. Aztec Spring, 4 miles east of Santa Fe, New Mexico. In schist and granite. Cold. Analysis by F. W. Clarke, Geochemistry, p. 60.

Waters of the kind described above are generally poor in the rarer metals. A little arsenic is found in some cases and
traces of barium, strontium, lithium, boron and phosphorus are sometimes recorded. Where they traverse mineral deposits, metals contained in the deposits will of course be dissolved, as in the water from the Federal Loan mine, Nevada City, California. The springs may, under favorable conditions, form crusts of calcium carbonate and hydroxide of iron, but as a rule their powers of solution and deposition are weak. Where the rocks contain much pyrite, as often is the case in mining districts, the sulphates, especially calcium sulphate, rapidly increase in the waters.

CALCIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

Waters of the type described above are not confined to igneous rocks. They are often found in circulation in glacial drift and also in sedimentary rocks—sandstones, limestones, and dolomites—wherever the character of sedimentation has prevented the accumulation of soluble salts, as in deep-water deposits of oceans and lakes. Such waters sometimes contain hydrogen sulphide and carbon dioxide. The derivation of the latter is not always easily explained. In some cases the gas may emanate from a deep-seated magma, but more commonly it is formed by decomposition of carbonates. An example of such water is furnished by the cold Cresson Spring in Pennsylvania, which issues from a shale member between sandstones in a 3,000-foot series of Coal Measures, containing practically no limestone. This water is pure, its salinity being only 442 parts per million, and of this 272 may be calculated as calcium carbonate, 76 as sulphates of sodium, magnesium, and calcium, and 11 as sodium chloride. According to a careful analysis by Genth this water contains traces of nickel, cobalt, iron, manganese, copper, strontium, barium, and fluorine, 0.17 part per million of the last-named element being present. Several analyses of similar well-known waters are quoted on page 45.
COMPOSITION OF UNDERGROUND WATERS

COMPOSITION OF SALTS AND TOTAL SALINITY OF CALCIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₃</td>
<td>40.02</td>
<td>41.47</td>
<td>148.64</td>
</tr>
<tr>
<td>SO₄</td>
<td>21.73</td>
<td>3.93</td>
<td>6.30</td>
</tr>
<tr>
<td>Cl</td>
<td>0.64</td>
<td>1.27</td>
<td>5.40</td>
</tr>
<tr>
<td>PO₄</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>23.35</td>
<td>23.54</td>
<td>16.56</td>
</tr>
<tr>
<td>Mg</td>
<td>5.82</td>
<td>2.56</td>
<td>7.64</td>
</tr>
<tr>
<td>Na</td>
<td>1.81</td>
<td>2.38</td>
<td>10.36</td>
</tr>
<tr>
<td>K</td>
<td>2.04</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.58</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>SiO₂</td>
<td>4.01</td>
<td>22.85</td>
<td>4.50</td>
</tr>
<tr>
<td>BO₃</td>
<td></td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Salinity, parts per million

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹HCO₃</td>
<td>563</td>
<td>199</td>
<td>222</td>
</tr>
</tbody>
</table>

¹HCO₃.

NOTES RELATING TO ABOVE ANALYSES

These waters frequently form ascending springs. Bartlett Springs, Lake County, California, the water of which is extensively used in that State, probably belong to this class. The water contains 782 parts of salts per million, of which 493 may
be calculated as calcium carbonate. It is rich in free carbon
dioxide and is low in chlorine, sulphuric acid radicle, sodium,
and potassium, but contains some iron, probably as carbonate,
a little barium, phosphorus, and about 63 parts of silica per
million.¹

Carbonate waters are undoubtedly active in solution and
deposition in the upper part of the crust, and especially in
the formation of concentrations from weathering rocks. They
may deposit calcareous sinters and effect concentrations of iron
and manganese. Some lead and zinc deposits in limestone may
also be genetically connected with them; their power of solution
and concentration of rarer metals appears to be weak, unless
they contain carbon dioxide and hydrogen sulphide. Such
waters in Kansas, Missouri, and Kentucky have been found to
contain zinc and probably also lead and copper.

The dissolved salts are undoubtedly obtained directly from
the rocks traversed.

CHLORIDE WATERS IN SEDIMENTARY ROCKS

Infiltration from Present Oceans.—Wells and springs along the
sea coasts usually contain a higher percentage of sodium chloride
than farther inland; this may be caused either by infiltration of
sea water into sediments or porous igneous rocks, or by winds
carrying finely divided salt from the spray of the waves.

Solution of Saline Deposits.—Many past geologic periods in-
cluded epochs of desiccation and desert climate when salt was
precipitated from evaporating waters of closed basins. Surface
waters encountering such sedimentary deposits easily dissolve
the sodium chloride, and wells and springs rich in this salt are
characteristic of many regions. Besides sodium these waters
contain calcium and magnesium, and they are often rich in
calcium chloride. They are poor in silica and potassium and
rarely contain much calcium which can be combined with
carbon dioxide. The presence of bromine is almost charac-
teristic; traces of iodine and boron are often found. Barium
and strontium are almost always present, the former sometimes
in considerable amount. Free carbon dioxide and hydrogen
sulphide are sometimes found, the latter especially where there

¹ Winslow Anderson, Mineral springs, etc., of California, San Francisco,
1892, p. 94.
is an abundance of calcium sulphate. Waters of this general type are characteristic of certain Paleozoic beds in the eastern United States, as, for instance, the Silurian of New York and Michigan and certain parts of the Carboniferous in Michigan. In the western States the "Red Beds," generally of Permian or Triassic age, are sometimes rich in salt and gypsum, and this combination appears in the waters of these terranes.

There are many similar springs and wells in Pennsylvania, and in fact all through the interior Paleozoic basin, from Arkansas to Canada. The Saratoga Springs of New York, issuing from Silurian limestones, probably belong to this class. Their temperature is about 50° F.; the total solids amount to about 11,000 parts per million, of which the larger part is sodium chloride. Barium is conspicuously present, in some analyses to a maximum of about 34 parts per million, likewise bromine at about 120 parts per million. Small amounts of silica, iron, and lithium, and traces of boron, iodine, and fluorine are recorded. The origin of the CO₂ so abundant at Saratoga Springs is uncertain. J. F. Kemp believes it to be of magmatic derivation. Examples of such waters are given in the table of analyses on page 49.

Certain of these waters are abnormally rich in calcium chloride, that most easily soluble salt which remains as the last liquid residue in evaporating brines. Several instances of such waters have been interpreted as residual or connate brines, remaining in early isolated Paleozoic basins.¹

In the lower peninsula of Michigan brines are obtained from deep wells in the Carboniferous and Silurian. One of the springs in this region contains 12,000 parts per million in total solids, with 6,000 calculated as NaCl, 1,600 as MgCl₂, and 4,100 as CaCl₂. The researches of A. C. Lane have shown that the scanty waters in the deep levels of the copper mines near Houghton have a similar composition, except that here calcium chloride prevails. These waters, which are found in amygdaloid lava flows and associated sedimentary rocks of the Upper Algonkian (Keweenawan), are probably to be regarded as residual oceanic waters, which, in their long contact with the rocks, have undergone considerable changes. An analysis is given below (p. 49). This water contains no barium.

In the western States many similar waters occur in the Red Beds, but, as stated they are usually also rich in calcium sulphate. As an example may be cited the tepid Quelites Spring in New Mexico,\(^1\) which ascends through Red Beds and contains about 2.6 per cent. of solids; one-half is calculated as sodium chloride and the larger part of the remainder as calcium sulphate. Bromine, boron, and barium are present. On the Pacific coast such waters are not common. Byron Hot Springs, California, may be cited as an example. The temperature of a representative spring is 76° C. The water contains about 13,000 parts of salts per million, of which over 10,000 parts are sodium chloride. A large portion of the remainder consists of calcium chloride. Small quantities of bromine, iodine, and barium are present.\(^2\)

The Triassic strata of the French Alps and the Pyrenees are rich in similar waters, many of which are warm. The mineral combination is a characteristic mingling of chlorides and sulphates, and undoubtedly all of the constituents are derived from the sedimentary rocks mentioned.

The Spring of Mey in Haute Savoie, with a temperature of 39.8° C., may be taken as a typical example. It contains both carbon dioxide and hydrogen sulphide and yields a total of 5,000 parts per million of dissolved salts, of which 1,753 parts are calculated as sodium chloride, 1,773 as sodium sulphate, and 957 as calcium sulphate. Some bromine and traces of iodine, phosphorus, and arsenic are present.\(^3\)

A celebrated group of these chloride springs are found in Germany on both sides of the Rhine. Among them are the waters of Soden, Homburg, Wiesbaden, Kreutznach, Kissingen, and Nauheim. Most of them issue from or ascend through salt-bearing beds of Devonian, Permian, or Triassic age, and their composition is similar. The springs of Kreutznach are especially rich in calcium chloride. Some of the springs cited are hot, others cold; some are rich in carbon dioxide. In regard to Kreutznach and Wiesbaden there is room for doubt, for the former springs stand in intimate relation to eruptive rocks, while the latter issue from a gneiss and are by some authors con-

\(^1\) F. A. Jones, New Mexico mines and minerals, p. 309.

\(^2\) Winslow Anderson, Mineral springs and health resorts of California, 1892, p. 106.

considered of juvenile origin. The majority of them, at any rate, have certainly derived their salts from sedimentary beds.

The chloride waters, described above, are capable of dissolving and depositing many metallic substances and have strong dehydrating power. Their relation to mineral deposits will be mentioned later.

COMPOSITION OF SALTS AND TOTAL SALINITY OF CHLORIDE WATERS

(Cited from Clarke's Geochemistry, pp. 171–175)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>55.83</td>
<td>58.79</td>
<td>42.00</td>
<td>62.31</td>
<td>63.55</td>
<td>56.58</td>
</tr>
<tr>
<td>Br</td>
<td>0.04</td>
<td>trace</td>
<td>1.13</td>
<td>0.53</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>I</td>
<td>0.03</td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>SO₄</td>
<td>3.12</td>
<td>0.94</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.78</td>
</tr>
<tr>
<td>CO₃</td>
<td>2.63</td>
<td>0.61</td>
<td>18.59</td>
<td>0.27</td>
<td>0.01</td>
<td>3.13</td>
</tr>
<tr>
<td>B₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Na</td>
<td>33.09</td>
<td>30.38</td>
<td>27.62</td>
<td>18.35</td>
<td>5.63</td>
<td>32.60</td>
</tr>
<tr>
<td>K</td>
<td>0.27</td>
<td>3.76</td>
<td>0.78</td>
<td>1.55</td>
<td></td>
<td>1.16</td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.04</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>3.72</td>
<td>4.90</td>
<td>6.03</td>
<td>13.86</td>
<td>30.78</td>
<td>4.05</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Mg</td>
<td>1.13</td>
<td>0.40</td>
<td>3.41</td>
<td>2.53</td>
<td>0.01</td>
<td>0.61</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.06</td>
<td></td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.08</td>
<td>0.20</td>
<td>0.14</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.76</td>
</tr>
</tbody>
</table>

Salinity, parts per million.

| | 10,589 | 23,309 | 12,022 | 309,175 | 212,300 | 8,241 |

NOTES RELATING TO ABOVE ANALYSES

E. Water from the deep levels of the Quincy mine, Hancock, Michigan. Analysis by George Steiger.

F. The Kochbrunnen, Wiesbaden, Germany. Analysis by C. R. Fresenius. This water also contains traces of I, P, and As.

CHLORIDE WATERS IN IGNEOUS ROCKS

Waters rich in chlorine are sometimes found as ascending springs in igneous rocks, but almost always close to regions of comparatively recent volcanic activity. Their composition is somewhat different from the brines resulting from the dissolving of salts from sedimentary beds. Bromine is seldom present except in mere traces, while boron appears in considerable amounts. Such tepid salt waters arise, for instance, in the volcanic region around Clifton, Arizona. The Paleozoic rocks of this region are not known to contain either salt or gypsum. Another case is the Glenwood Hot Springs in western Colorado; the springs at this place issue from limestone, but the structural relations show that the basal granite underlies this limestone at slight depths. The temperature is 49.5° C.; the water contains a large amount of sodium chloride and relatively small amounts of carbonates and sulphates. Hydrogen sulphide and free carbon dioxide are present. Still another case is Steamboat Springs, Nevada, which issue from granodiorite near the eastern base of the Sierra Nevada in a region of Tertiary volcanism.

Many of these springs are rich in carbon dioxide and hydrogen sulphide; they often contain many of the rarer elements, as shown in the analyses quoted below, and they usually appear in regions rich in ore deposits. Doubt as to the derivation of the salt may exist in many cases, as, for instance, in the springs of Kreutznach, Germany, which issue from a porphyry said by Laspeyres to contain 0.001 per cent. sodium chloride.¹ Delkeskamp,² on the other hand, holds that the salt is derived from sedimentary deposits. Another notable instance of chloride springs of this class is mentioned by Daubrée³ from the provinces of Antioquia and Cauca in Colombia, where they issue in great

³ *Les eaux souterraines*, etc., II, 2, p. 106.
abundance from granite, crystalline schist, and late volcanic rocks. Great difficulties arise in attempting to trace the origin of the sodium chloride in springs of this class to surrounding rocks, even admitting that granite and other crystalline rocks may contain traces of this salt. Sinters of calcium carbonate and silica are often deposited at the orifices of these springs.

COMPOSITION OF SALTS AND TOTAL SALINITY OF SODIUM CHLORIDE AND SILICA WATERS

(After Clarke's Geochemistry, pp. 175 and 185)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>35.00</td>
<td>36.61</td>
<td>31.64</td>
<td>13.52</td>
<td>37.52</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>4.58</td>
<td>1.84</td>
<td>1.30</td>
<td>9.01</td>
<td>4.96</td>
</tr>
<tr>
<td>S</td>
<td>0.22</td>
<td></td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₃</td>
<td>5.08</td>
<td>0.15</td>
<td>8.78</td>
<td>10.16</td>
<td></td>
</tr>
<tr>
<td>PO₄</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₂O₇</td>
<td>8.88</td>
<td>2.24</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3.79</td>
<td>4.45</td>
<td>1.93</td>
<td>1.88</td>
<td>0.36</td>
</tr>
<tr>
<td>Li</td>
<td>0.27</td>
<td>0.22</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td>0.02</td>
<td>trace</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.25</td>
<td>0.39</td>
<td>0.11</td>
<td></td>
<td>2.59</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.08</td>
<td>0.04</td>
<td>0.08</td>
<td>0.19</td>
</tr>
<tr>
<td>Fe</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.01</td>
<td>0.76</td>
<td>0.12</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>SiO₂</td>
<td>11.41</td>
<td>31.72</td>
<td>27.58</td>
<td>45.04</td>
<td>29.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity, parts per million</td>
<td>2,850</td>
<td>1,830</td>
<td>1,388</td>
<td>1,131</td>
<td>2,735</td>
</tr>
</tbody>
</table>

C. Old Faithful Geyser. Same locality and analysts. Temperature 84°-88° C. H₂S, 0.2 part per million.

E. Water of the pink terrace, Roturoa geyser. Analysis by W. Skey.

Closely related to this group are the predominant springs in the great geyser regions of Yellowstone National Park, New Zealand, and Iceland. They are essentially sodium chloride waters with large amounts of silica, believed to exist in part as sodium silicate, a large quantity of free carbon dioxide, and a little hydrogen sulphide. Large amounts of boron, usually calculated as sodium borate, are often present, and also frequently arsenic. Bromine is rarely recorded in quantities approaching those in the brines from sedimentary formations. The waters are always hot and usually ascend through volcanic rocks, mostly rhyolite; from these the silica is supposed to be derived, but no such explanation seems sufficient to account for the predominating salt, sodium chloride, or for the boron. In the Yellowstone Park a number of the springs issuing near limestone bear evidence of their passage through this rock in increased quantities of calcium and magnesium. Others are rich in sulphate of sodium and other sulphates, but these springs give an acid reaction and the sulphates are in all probability due to the oxidation of hydrogen sulphide and the replacement of silica in sodium silicate by sulphuric acid.

SULPHATE WATERS IN SEDIMENTARY ROCKS

The waters which traverse sedimentary rocks are often rich in salts, particularly in sulphates. The gypsum waters have been mentioned and are connected with the sodium chloride waters in a manner corresponding to the association of gypsum and rock salt. By interaction of calcium sulphate and magnesium carbonate, the sulphate of magnesium may be formed, or it may be derived from the decomposition of a pyritic dolomite.

Sodium sulphate waters are almost characteristic of certain formations in the western Cretaceous, for instance; these formations consist mainly of sandstones and carbonaceous shales, the latter often pyritiferous and the whole series mainly a product of near-shore deposition. The oxidation of the pyrite furnishes solutions containing free sulphuric acid, and by reaction between this and various other substances sulphates of calcium, magne-
COMPOSITION OF UNDERGROUND WATERS

sium, and sodium will be formed. In land deposits contained in many series of sedimentary rocks sodium carbonate and sodium sulphate are formed by several well-established reactions, and percolating waters will easily abstract these salts. The interaction of calcium sulphate and sodium carbonate results in sodium sulphate and precipitation of calcium carbonate. Sodium sulphate in the presence of free carbon dioxide will dissolve calcium carbonate, forming sodium bicarbonate and a precipitate of gypsum.¹

Reactions in soils between sodium chloride and calcium sulphate result, according to Cameron, in calcium chloride and sodium sulphate, and similar reactions take place between sodium chloride and calcium carbonate. Sodium sulphate waters are, as stated, common in the western Cretaceous, especially in the shale formations. The lowest member of this series, the Dakota sandstone, is particularly noted as a water-carrying formation. The water, which is under artesian pressure, penetrates this formation for several hundred miles underground from its outcrop and in places contains so much sodium sulphate as to be unfit for irrigation purposes. There is no evidence that this water has formed mineral deposits in the sandstone.

A well 1,400 feet deep, in Dakota sandstone at Pueblo, Colorado, contains, according to Darton,² 1,337 parts per million of total solids, of which about one-half is calculated as sodium sulphate and one-fourth as calcium sulphate. Very little silica and chlorine, but a little iron and carbon dioxide are present. This analysis appears to be typical. In many waters in sedimentary formations chlorides and earthy carbonates appear mixed with sulphates. Waters from artesian wells at Roswell, New Mexico, about 400 feet deep, derived from Permian limestones,³ have a temperature of 64°–70° F. and contain from 600 to 1,200 parts per million of solid salts, of which 300 to 576 are calcium and magnesium sulphates and the remainder carbonates and chloride of sodium. In regions of dislocations such waters may be hot and then the ordinarily low percentage of silica may increase con-

¹ F. W. Clarke, Geochemistry, p. 229, 1911.
 Cameron and Bell, Bull. 33, Bureau of Soils, 1906.
 F. K. Cameron, Bull. 17, Bureau of Soils.
MINERAL DEPOSITS

siderably. The Arrowhead Spring of San Bernardino Valley in southern California, issuing from Tertiary sediments, has a temperature of 184° F. and contains 1,086 parts per million of solids, of which 735 are calculated as sodium sulphate, 69 as potassium sulphate, 23 as calcium sulphate, 3 as magnesium sulphate, 141 as sodium chloride, and 23 as calcium carbonate; 85 are present as silica. In well waters of the same valley the solids range from 191 to 260 parts per million and the relation is CaCO₃ > MgCO₃ = NaSO₄ > NaCl > > NaCl. Silica amounts to 24 to 32 parts per million.

PERCENTAGE COMPOSITION AND SALINITY OF SULPHATE WATERS DERIVED FROM SEDIMENTARY FORMATIONS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄ (free)</td>
<td></td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>Cl</td>
<td>0.48</td>
<td>11.10</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>SO₄</td>
<td>66.28</td>
<td>59.68</td>
<td>76.57</td>
<td>68.21</td>
</tr>
<tr>
<td>CO₃</td>
<td>0.60</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>30.46</td>
<td>13.89</td>
<td>1.19</td>
<td>0.22</td>
</tr>
<tr>
<td>K</td>
<td>1.08</td>
<td>0.49</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Ca</td>
<td>0.67</td>
<td>2.91</td>
<td>5.82</td>
<td>0.38</td>
</tr>
<tr>
<td>Mg</td>
<td>0.41</td>
<td>10.19</td>
<td>3.39</td>
<td>1.11</td>
</tr>
<tr>
<td>Fe''</td>
<td></td>
<td></td>
<td>4.28</td>
<td>1.19</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td>7.36</td>
<td>11.08</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.02</td>
<td>0.07</td>
<td>1.39</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>99.10</td>
</tr>
<tr>
<td>Salinity, parts per million</td>
<td>74,733</td>
<td>15,682</td>
<td>3,303</td>
<td>464</td>
</tr>
</tbody>
</table>

B. King’s Mineral Spring near Dallas, Indiana. Twenty-sixth Annual Report, Indiana Dept. Geol., 1901, p. 32. Traces of Al, Fe, Ba, Sr, Li, Mn, Ni, Zn, Br, PO, and B₄O₇. Geological horizon Paleozoic shale.

D. Rockbridge Alum Springs, Virginia. Analysis by M. B. Hardin. Cited in Clarke’s Geochemistry, p. 187. From pyritic shale. Contains also 0.69 Mn, 0.01 Li, 0.05 Co, 0.07 Ni, 0.08 Zn, and traces of Cu, HNO₃, and PO₄.

Waters percolating through oxidizing pyritic shales sometimes contain large amounts of the sulphates of aluminum and ferrous iron; evidently this happens only when comparatively large amounts of sulphuric acid, which is capable of attacking aluminous silicates, are set free.

Such waters are not uncommon in the eastern and central States and usually contain small amounts of rarer metals; traces of nickel, zinc, and arsenic are common. The sulphate waters, especially those rich in iron and aluminum, are of great importance in the genesis of deposits in the oxidizing zone, and the latter often form, at their orifices, large quantities of ochreous deposits. Many waters of this kind are known from Virginia, issuing from pyritic shales, and Peale\(^1\) quotes some interesting and reliable analyses. A water from Alleghany Springs in Montgomery County, analyzed by Genth, contained 3,129 parts per million of solids, of which the principal constituents were calculated as 1,955 parts CaSO\(_4\), 255 parts MgSO\(_4\), and 61 parts CaCO\(_3\). Small quantities of strontium, barium, fluorine, and silica and traces of zinc, lead, copper, and cobalt are noted. Some free carbon dioxide and a trace of hydrogen sulphide are present.

The Jordan Alum Springs in Rockbridge County, Virginia, of which several analyses by J. W. Mallet are recorded, contain from 306 to 935 parts per million of solid salts, of which the larger amount consists of aluminum sulphate, 35 to 85 parts of ferric sulphate, and from 8 to 17 parts of manganese sulphate. Small quantities of copper, zinc, cadmium, nickel, and cobalt are determined, also a trace of fluorine. One of the waters contained 102 parts of copper and 9 parts of zinc. In the Rockbridge Alum Springs, in the same State, small quantities of copper, nickel, cobalt, zinc, and a trace of lead were determined.

Free sulphuric acid is present in the Bedford Alum Spring to the amount of 70 parts per million, according to M. B. Hardin. The total solids are 1,207 parts, practically all sulphates, and about one-third consists of ferric sulphate. Small quantities, about 0.8 part per million of each, of nickel, cobalt, copper, and zinc were determined. Springs of similar composition are found in Pennsylvania and other eastern States. All these acid springs are poor in silica and contain very little chlorine.

ACID SULPHATE WATERS IN IGNEOUS ROCKS

Sulphate springs in connection with igneous rocks and volcanism appear mainly as products of the oxidation of ascending waters of alkaline reaction, containing free hydrogen sulphide, but there is evidence that in regions of volcanic activity such oxidation takes place on a large scale and that these acid waters are of high importance in effecting rock alteration, particularly by attacking aluminum silicate and developing alunite. By similar reactions free hydrochloric acid may be generated, for instance by the decomposition of chlorides by free sulphuric acid.

As a consequence it is common to find such waters near the orifices of hot springs, as well as at volcanoes. The development of free acid of course displaces the equilibrium and the oxidized water may differ greatly from its parent liquid; thus it happens that a single ascending hot spring may yield a whole series of derivatives of varying temperature and composition by mingling with other waters and by oxidation.

A number of analyses of such waters are quoted in Clarke's Geochemistry. Some of them, especially from pools or lakes near volcanoes, are remarkably rich in hydrochloric acid. The peculiar water from the Yellowstone National Park known as the Devil's Inkpot contains, besides free acids, a large amount of sulphate of ammonia. The water from Roturoa, New Zealand, the analysis of which is quoted below, is a more characteristic product of the oxidation of normal thermal waters.

The geysers of Sonoma County, California, of which there is a good series of analyses by Dr. Winslow Anderson, form a most remarkable illustration of the oxidation of hot waters. There are at this place a great number of springs of varying temperature and composition, all of them heavily charged with hydrogen sulphide. The primary water at a temperature of 110°F. appears to contain chiefly carbonate of magnesium with some of calcium. The total solids amount to about 568 parts per million, most of which consist of the above-mentioned carbonates; there are 92 parts of silica per million. This water is probably of mixed origin; the carbonates are clearly derived from the serpentinoid rocks of the vicinity, but the hydrogen sulphide is most likely of

COMPOSITION OF UNDERGROUND WATERS

magmatic origin. Free sulphuric acid is generated by oxidation and gives rise to a long series of peculiar sulphate waters, most of them rich in dissolved solids and of high temperature. An analysis of one of these shows 3,262 parts per million of total salts and acids, among which the sulphates of magnesium, sodium, and aluminum prevail. There are 544 parts per million of free sulphuric acid and 20 parts of free hydrochloric acid.

Finally, acid water may result directly from the oxidation of deposits of pyrite or of sulphur. A water of the latter type is described by W. T. Lee from Beaver County, Utah.

PERCENTAGE COMPOSITION OF SALTS AND TOTAL SALINITY OF ACID WATERS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl free</td>
<td>0.18</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>H_2SO_4 free</td>
<td>1.29</td>
<td>59.11</td>
<td>46.39</td>
</tr>
<tr>
<td>H_2BO_4</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>SO_4</td>
<td>67.66</td>
<td>20.21</td>
<td>32.63</td>
</tr>
<tr>
<td>Na</td>
<td>0.73</td>
<td>8.35</td>
<td>1.48</td>
</tr>
<tr>
<td>K</td>
<td>0.24</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH_4</td>
<td>22.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.18</td>
<td>0.47</td>
<td>1.63</td>
</tr>
<tr>
<td>Mg</td>
<td>0.36</td>
<td>0.22</td>
<td>2.50</td>
</tr>
<tr>
<td>Fe'</td>
<td>trace</td>
<td></td>
<td>5.76</td>
</tr>
<tr>
<td>Fe''</td>
<td></td>
<td>0.33</td>
<td>8.25</td>
</tr>
<tr>
<td>Al</td>
<td>0.10</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>2.67</td>
<td>5.39</td>
<td>1.28</td>
</tr>
</tbody>
</table>

| | 100.00 | 100.00 | 100.00 |
| Salts and acids, parts per million... | 3,365 | 1,862 | 9,716 |

1 Includes some alumina.

be calculated as calcium carbonate. It is rich in free carbon
dioxide and is low in chlorine, sulphuric acid radicle, sodium,
and potassium, but contains some iron, probably as carbonate,
a little barium, phosphorus, and about 63 parts of silica per
million.¹

Carbonate waters are undoubtedly active in solution and
deposition in the upper part of the crust, and especially in
the formation of concentrations from weathering rocks. They
may deposit calcareous sinters and effect concentrations of iron
and manganese. Some lead and zinc deposits in limestone may
also be genetically connected with them; their power of solution
and concentration of rarer metals appears to be weak, unless
they contain carbon dioxide and hydrogen sulphide. Such
waters in Kansas, Missouri, and Kentucky have been found to
contain zinc and probably also lead and copper.

The dissolved salts are undoubtedly obtained directly from
the rocks traversed.

CHLORIDE WATERS IN SEDIMENTARY ROCKS

Infiltration from Present Oceans.—Wells and springs along the
sea coasts usually contain a higher percentage of sodium chloride
than farther inland; this may be caused either by infiltration of
sea water into sediments or porous igneous rocks, or by winds
carrying finely divided salt from the spray of the waves.

Solution of Saline Deposits.—Many past geologic periods in-
cluded epochs of desiccation and desert climate when salt was
precipitated from evaporating waters of closed basins. Surface
waters encountering such sedimentary deposits easily dissolve
the sodium chloride, and wells and springs rich in this salt are
characteristic of many regions. Besides sodium these waters
contain calcium and magnesium, and they are often rich in
calcium chloride. They are poor in silica and potassium and
rarely contain much calcium which can be combined with
carbon dioxide. The presence of bromine is almost charac-
teristic; traces of iodine and boron are often found. Barium
and strontium are almost always present, the former sometimes
in considerable amount. Free carbon dioxide and hydrogen
sulphide are sometimes found, the latter especially where there

¹ Winslow Anderson, Mineral springs, etc., of California, San Francisco,
1892, p. 94.
is an abundance of calcium sulphate. Waters of this general type are characteristic of certain Paleozoic beds in the eastern United States, as, for instance, the Silurian of New York and Michigan and certain parts of the Carboniferous in Michigan. In the western States the "Red Beds," generally of Permian or Triassic age, are sometimes rich in salt and gypsum, and this combination appears in the waters of these terranes.

There are many similar springs and wells in Pennsylvania, and in fact all through the interior Paleozoic basin, from Arkansas to Canada. The Saratoga Springs of New York, issuing from Silurian limestones, probably belong to this class. Their temperature is about 50°F.; the total solids amount to about 11,000 parts per million, of which the larger part is sodium chloride. Barium is conspicuously present, in some analyses to a maximum of about 34 parts per million, likewise bromine at about 120 parts per million. Small amounts of silica, iron, and lithium, and traces of boron, iodine, and fluorine are recorded. The origin of the CO₂ so abundant at Saratoga Springs is uncertain. J. F. Kemp believes it to be of magmatic derivation. Examples of such waters are given in the table of analyses on page 49.

Certain of these waters are abnormally rich in calcium chloride, that most easily soluble salt which remains as the last liquid residue in evaporating brines. Several instances of such waters have been interpreted as residual or connate brines, remaining in early isolated Paleozoic basins.¹

In the lower peninsula of Michigan brines are obtained from deep wells in the Carboniferous and Silurian. One of the springs in this region contains 12,000 parts per million in total solids, with 6,000 calculated as NaCl, 1,600 as MgCl₂, and 4,100 as CaCl₂. The researches of A. C. Lane have shown that the scanty waters in the deep levels of the copper mines near Houghton have a similar composition, except that here calcium chloride prevails. These waters, which are found in amygdaloid lava flows and associated sedimentary rocks of the Upper Algonkian (Keweenawan), are probably to be regarded as residual oceanic waters, which, in their long contact with the rocks, have undergone considerable changes. An analysis is given below (p. 49). This water contains no barium.

In the western States many similar waters occur in the Red Beds, but, as stated they are usually also rich in calcium sulphate. As an example may be cited the tepid Quelites Spring in New Mexico, which ascends through Red Beds and contains about 2.6 per cent. of solids; one-half is calculated as sodium chloride and the larger part of the remainder as calcium sulphate. Bromine, boron, and barium are present. On the Pacific coast such waters are not common. Byron Hot Springs, California, may be cited as an example. The temperature of a representative spring is 76° C. The water contains about 13,000 parts of salts per million, of which over 10,000 parts are sodium chloride. A large portion of the remainder consists of calcium chloride. Small quantities of bromine, iodine, and barium are present.

The Triassic strata of the French Alps and the Pyrenees are rich in similar waters, many of which are warm. The mineral combination is a characteristic mingling of chlorides and sulphates, and undoubtedly all of the constituents are derived from the sedimentary rocks mentioned. The Spring of Mey in Haute Savoie, with a temperature of 39.8° C., may be taken as a typical example. It contains both carbon dioxide and hydrogen sulphide and yields a total of 5,000 parts per million of dissolved salts, of which 1,753 parts are calculated as sodium chloride, 1,773 as sodium sulphate, and 957 as calcium sulphate. Some bromine and traces of iodine, phosphorus, and arsenic are present.

A celebrated group of these chloride springs are found in Germany on both sides of the Rhine. Among them are the waters of Soden, Homburg, Wiesbaden, Kreutznach, Kissingen, and Nauheim. Most of them issue from or ascend through salt-bearing beds of Devonian, Permian, or Triassic age, and their composition is similar. The springs of Kreutznach are especially rich in calcium chloride. Some of the springs cited are hot, others cold; some are rich in carbon dioxide. In regard to Kreutznach and Wiesbaden there is room for doubt, for the former springs stand in intimate relation to eruptive rocks, while the latter issue from a gneiss and are by some authors con-

1 F. A. Jones, New Mexico mines and minerals, p. 309.
2 Winslow Anderson, Mineral springs and health resorts of California, 1892, p. 106.
Considered of juvenile origin. The majority of them, at any rate, have certainly derived their salts from sedimentary beds.

The chloride waters, described above, are capable of dissolving and depositing many metallic substances and have strong dehydrating power. Their relation to mineral deposits will be mentioned later.

COMPOSITION OF SALTS AND TOTAL SALINITY OF CHLORIDE WATERS

(Cited from Clarke's Geochemistry, pp. 171-175)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>55.83</td>
<td>58.79</td>
<td>42.00</td>
<td>62.31</td>
<td>63.55</td>
<td>56.58</td>
</tr>
<tr>
<td>Br</td>
<td>0.04</td>
<td>trace</td>
<td>1.13</td>
<td>0.53</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>I</td>
<td>0.03</td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>SO₄</td>
<td>3.12</td>
<td>0.94</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.78</td>
</tr>
<tr>
<td>CO₃</td>
<td>2.63</td>
<td>0.61</td>
<td>18.59</td>
<td>0.27</td>
<td>0.01</td>
<td>3.13</td>
</tr>
<tr>
<td>B₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>33.09</td>
<td>30.38</td>
<td>27.62</td>
<td>18.35</td>
<td>5.63</td>
<td>32.60</td>
</tr>
<tr>
<td>K</td>
<td>0.27</td>
<td>3.76</td>
<td>0.78</td>
<td>1.55</td>
<td></td>
<td>1.16</td>
</tr>
<tr>
<td>Li</td>
<td>0.08</td>
<td></td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>3.72</td>
<td>4.90</td>
<td>6.03</td>
<td>13.86</td>
<td>30.78</td>
<td>4.05</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Mg</td>
<td>1.13</td>
<td>0.40</td>
<td>3.41</td>
<td>2.53</td>
<td>0.01</td>
<td>0.61</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.06</td>
<td></td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.08</td>
<td>0.20</td>
<td>0.14</td>
<td>0.02</td>
<td>0.01</td>
<td>0.76</td>
</tr>
</tbody>
</table>

| | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
|Salinity, parts per million. | 10,589 | 23,309 | 12,022 | 309,175 | 212,300 | 8,241 |

Notes relating to above analyses

E. Water from the deep levels of the Quincy mine, Hancock, Michigan. Analysis by George Steiger.

F. The Kochbrunnen, Wiesbaden, Germany. Analysis by C. R. Frese- nius. This water also contains traces of I, P, and As.

CHLORIDE WATERS IN IGNEOUS ROCKS

Waters rich in chlorine are sometimes found as ascending springs in igneous rocks, but almost always close to regions of comparatively recent volcanic activity. Their composition is somewhat different from the brines resulting from the dissolving of salts from sedimentary beds. Bromine is seldom present except in mere traces, while boron appears in considerable amounts. Such tepid salt waters arise, for instance, in the volcanic region around Clifton, Arizona. The Paleozoic rocks of this region are not known to contain either salt or gypsum. Another case is the Glenwood Hot Springs in western Colorado; the springs at this place issue from limestone, but the structural relations show that the basal granite underlies this limestone at slight depths. The temperature is 49.5°C.; the water contains a large amount of sodium chloride and relatively small amounts of carbonates and sulphates. Hydrogen sulphide and free carbon dioxide are present. Still another case is Steamboat Springs, Nevada, which issue from granodiorite near the eastern base of the Sierra Nevada in a region of Tertiary volcanism.

Many of these springs are rich in carbon dioxide and hydrogen sulphide; they often contain many of the rarer elements, as shown in the analyses quoted below, and they usually appear in regions rich in ore deposits. Doubt as to the derivation of the salt may exist in many cases, as, for instance, in the springs of Kreutznach, Germany, which issue from a porphyry said by Laspeyres to contain 0.001 per cent. sodium chloride.¹ Delkes- kamp,² on the other hand, holds that the salt is derived from sedimentary deposits. Another notable instance of chloride springs of this class is mentioned by Daubrée³ from the provinces of Antioquia and Cauca in Colombia, where they issue in great

³ *Les eaux souterraines,* etc., II, 2, p. 106.
abundance from granite, crystalline schist, and late volcanic rocks. Great difficulties arise in attempting to trace the origin of the sodium chloride in springs of this class to surrounding rocks, even admitting that granite and other crystalline rocks may contain traces of this salt. Sinters of calcium carbonate and silica are often deposited at the orifices of these springs.

COMPOSITION OF SALTS AND TOTAL SALINITY OF SODIUM CHLORIDE AND SILICA WATERS

(After Clarke’s Geochemistry, pp. 175 and 185)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>35.00</td>
<td>36.61</td>
<td>31.64</td>
<td>13.52</td>
<td>37.52</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>4.58</td>
<td>1.84</td>
<td>1.30</td>
<td>9.01</td>
<td>4.96</td>
</tr>
<tr>
<td>S</td>
<td>0.22</td>
<td></td>
<td></td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>CO₃</td>
<td>5.08</td>
<td>0.15</td>
<td>8.78</td>
<td>10.16</td>
<td></td>
</tr>
<tr>
<td>PO₄</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₂O₃</td>
<td>8.88</td>
<td>2.24</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3.79</td>
<td>4.45</td>
<td>1.93</td>
<td>1.88</td>
<td>0.36</td>
</tr>
<tr>
<td>Li</td>
<td>0.27</td>
<td>0.22</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td></td>
<td></td>
<td>0.02</td>
<td>trace</td>
<td>0.28</td>
</tr>
<tr>
<td>Ca</td>
<td>0.25</td>
<td>0.39</td>
<td>0.11</td>
<td></td>
<td>2.59</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.08</td>
<td>0.04</td>
<td>0.08</td>
<td>0.19</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.01</td>
<td>0.76</td>
<td>0.12</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>SiO₂</td>
<td>11.41</td>
<td>31.72</td>
<td>27.58</td>
<td>45.04</td>
<td>29.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity, parts per million</td>
<td>2,850</td>
<td>1,830</td>
<td>1,388</td>
<td>1,131</td>
<td>2,735</td>
</tr>
</tbody>
</table>

C. Old Faithful Geyser. Same locality and analysts. Temperature 84°-88° C. H₂S, 0.2 part per million.
E. Water of the pink terrace, Roturoa geyser. Analysis by W. Skey.

Closely related to this group are the predominant springs in the great geyser regions of Yellowstone National Park, New Zealand, and Iceland. They are essentially sodium chloride waters with large amounts of silica, believed to exist in part as sodium silicate, a large quantity of free carbon dioxide, and a little hydrogen sulphide. Large amounts of boron, usually calculated as sodium borate, are often present, and also frequently arsenic. Bromine is rarely recorded in quantities approaching those in the brines from sedimentary formations. The waters are always hot and usually ascend through volcanic rocks, mostly rhyolite; from these the silica is supposed to be derived, but no such explanation seems sufficient to account for the dominating salt, sodium chloride, or for the boron. In the Yellowstone Park a number of the springs issuing near limestone bear evidence of their passage through this rock in increased quantities of calcium and magnesium. Others are rich in sulphate of sodium and other sulphates, but these springs give an acid reaction and the sulphates are in all probability due to the oxidation of hydrogen sulphide and the replacement of silica in sodium silicate by sulphuric acid.

SULPHATE WATERS IN SEDIMENTARY ROCKS

The waters which traverse sedimentary rocks are often rich in salts, particularly in sulphates. The gypsum waters have been mentioned and are connected with the sodium chloride waters in a manner corresponding to the association of gypsum and rock salt. By interaction of calcium sulphate and magnesium carbonate, the sulphate of magnesium may be formed, or it may be derived from the decomposition of a pyritic dolomite.

Sodium sulphate waters are almost characteristic of certain formations in the western Cretaceous, for instance; these formations consist mainly of sandstones and carbonaceous shales, the latter often pyritiferous and the whole series mainly a product of near-shore deposition. The oxidation of the pyrite furnishes solutions containing free sulphuric acid, and by reaction between this and various other substances sulphates of calcium, magne-
sium, and sodium will be formed. In land deposits contained in
many series of sedimentary rocks sodium carbonate and sodium
sulphate are formed by several well-established reactions, and
percolating waters will easily abstract these salts. The inter-
action of calcium sulphate and sodium carbonate results in
sodium sulphate and precipitation of calcium carbonate. So-
dium sulphate in the presence of free carbon dioxide will dissolve
calcium carbonate, forming sodium bicarbonate and a precipitate
of gypsum.¹

Reactions in soils between sodium chloride and calcium
sulphate result, according to Cameron, in calcium chloride and
sodium sulphate, and similar reactions take place between sodium
chloride and calcium carbonate. Sodium sulphate waters are,
as stated, common in the western Cretaceous, especially in the
shale formations. The lowest member of this series, the
Dakota sandstone, is particularly noted as a water-carrying for-
mation. The water, which is under artesian pressure, penetrates
this formation for several hundred miles underground from its
outcrop and in places contains so much sodium sulphate as
to be unfit for irrigation purposes. There is no evidence that this
water has formed mineral deposits in the sandstone.

A well 1,400 feet deep, in Dakota sandstone at Pueblo, Colorado,
contains, according to Darton,² 1,337 parts per million of total
solids, of which about one-half is calculated as sodium sulphate
and one-fourth as calcium sulphate. Very little silica and
chlorine, but a little iron and carbon dioxide are present. This
analysis appears to be typical. In many waters in sedimentary
formations chlorides and earthy carbonates appear mixed with
sulphates. Waters from artesian wells at Roswell, New Mexico,
about 400 feet deep, derived from Permian limestones,³ have a
temperature of 64°–70° F. and contain from 600 to 1,200 parts
per million of solid salts, of which 300 to 576 are calcium and
magnesium sulphates and the remainder carbonates and chloride
of sodium. In regions of dislocations such waters may be hot
and then the ordinarily low percentage of silica may increase con-

¹ F. W. Clarke, Geochemistry, p. 229, 1911.
³ Cameron and Bell, Bull. 33, Bureau of Soils, 1906.
⁴ F. K. Cameron, Bull. 17, Bureau of Soils.
⁶ C. A. Fisher, Report on the Roswell artesian area, Water-Supply and
siderably. The Arrowhead Spring\(^1\) of San Bernardino Valley in southern California, issuing from Tertiary sediments, has a temperature of 184° F. and contains 1,086 parts per million of solids, of which 735 are calculated as sodium sulphate, 69 as potassium sulphate, 23 as calcium sulphate, 3 as magnesium sulphate, 141 as sodium chloride, and 23 as calcium carbonate; 85 are present as silica. In well waters of the same valley the solids range from 191 to 260 parts per million and the relation is \(\text{CaCO}_3 > \text{MgCO}_3 = \text{NaSO}_4 > \text{NaCO}_3 > \text{NaCl}\). Silica amounts to 24 to 32 parts per million.

PERCENTAGE COMPOSITION AND SALINITY OF SULPHATE WATERS DERIVED FROM SEDIMENTARY FORMATIONS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{SO}_4) (free)</td>
<td></td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>Cl</td>
<td>0.48</td>
<td>11.10</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>(\text{SO}_4)</td>
<td>66.28</td>
<td>59.68</td>
<td>76.57</td>
<td>68.21</td>
</tr>
<tr>
<td>(\text{CO}_3)</td>
<td>0.60</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>30.46</td>
<td>13.89</td>
<td>1.19</td>
<td>0.22</td>
</tr>
<tr>
<td>K</td>
<td>1.08</td>
<td>0.49</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Ca</td>
<td>0.67</td>
<td>2.91</td>
<td>5.82</td>
<td>0.38</td>
</tr>
<tr>
<td>Mg</td>
<td>0.41</td>
<td>10.19</td>
<td>3.39</td>
<td>1.11</td>
</tr>
<tr>
<td>Fe(^{2+})</td>
<td></td>
<td></td>
<td>4.28</td>
<td>1.19</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td>7.36</td>
<td>11.08</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>0.02</td>
<td>0.07</td>
<td>1.39</td>
<td>7.11</td>
</tr>
<tr>
<td>Salinity, parts per million</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>99.10</td>
</tr>
<tr>
<td>Total</td>
<td>74,733</td>
<td>15,682</td>
<td>3,303</td>
<td>464</td>
</tr>
</tbody>
</table>

D. Rockbridge Alum Springs, Virginia. Analysis by M. B. Hardin. Cited in Clarke's Geochemistry, p. 187. From pyritic shale. Contains also 0.69 Mn, 0.01 Li, 0.05 Co, 0.07 Ni, 0.08 Zn, and traces of Cu, HNO\(_3\), and PO\(_4\).
Waters percolating through oxidizing pyritic shales sometimes contain large amounts of the sulphates of aluminum and ferrous iron; evidently this happens only when comparatively large amounts of sulphuric acid, which is capable of attacking aluminous silicates, are set free.

Such waters are not uncommon in the eastern and central States and usually contain small amounts of rarer metals; traces of nickel, zinc, and arsenic are common. The sulphate waters, especially those rich in iron and aluminum, are of great importance in the genesis of deposits in the oxidizing zone, and the latter often form, at their orifices, large quantities of ochreous deposits. Many waters of this kind are known from Virginia, issuing from pyritic shales, and Peale\(^1\) quotes some interesting and reliable analyses. A water from Alleghany Springs in Montgomery County, analyzed by Genth, contained 3,129 parts per million of solids, of which the principal constituents were calculated as 1,955 parts CaSO\(_4\), 255 parts MgSO\(_4\), and 61 parts CaCO\(_3\). Small quantities of strontium, barium, fluorine, and silica and traces of zinc, lead, copper, and cobalt are noted. Some free carbon dioxide and a trace of hydrogen sulphide are present.

The Jordan Alum Springs in Rockbridge County, Virginia, of which several analyses by J. W. Mallet are recorded, contain from 306 to 935 parts per million of solid salts, of which the larger amount consists of aluminum sulphate, 35 to 85 parts of ferric sulphate, and from 8 to 17 parts of manganese sulphate. Small quantities of copper, zinc, cadmium, nickel, and cobalt are determined, also a trace of fluorine. One of the waters contained 102 parts of copper and 9 parts of zinc. In the Rockbridge Alum Springs, in the same State, small quantities of copper, nickel, cobalt, zinc, and a trace of lead were determined.

Free sulphuric acid is present in the Bedford Alum Spring to the amount of 70 parts per million, according to M. B. Hardin. The total solids are 1,207 parts, practically all sulphates, and about one-third consists of ferric sulphate. Small quantities, about 0.8 part per million of each, of nickel, cobalt, copper, and zinc were determined. Springs of similar composition are found in Pennsylvania and other eastern States. All these acid springs are poor in silica and contain very little chlorine.

ACID SULPHATE WATERS IN IGNEOUS ROCKS

Sulphate springs in connection with igneous rocks and volcanism appear mainly as products of the oxidation of ascending waters of alkaline reaction, containing free hydrogen sulphide, but there is evidence that in regions of volcanic activity such oxidation takes place on a large scale and that these acid waters are of high importance in effecting rock alteration, particularly by attacking aluminum silicate and developing alunite. By similar reactions free hydrochloric acid may be generated, for instance by the decomposition of chlorides by free sulphuric acid.

As a consequence it is common to find such waters near the orifices of hot springs, as well as at volcanoes. The development of free acid of course displaces the equilibrium and the oxidized water may differ greatly from its parent liquid; thus it happens that a single ascending hot spring may yield a whole series of derivatives of varying temperature and composition by mingling with other waters and by oxidation.

A number of analyses of such waters are quoted in Clarke's Geochemistry. Some of them, especially from pools or lakes near volcanoes, are remarkably rich in hydrochloric acid. The peculiar water from the Yellowstone National Park known as the Devil's Inkpot contains, besides free acids, a large amount of sulphate of ammonia. The water from Roturoa, New Zealand, the analysis of which is quoted below, is a more characteristic product of the oxidation of normal thermal waters.

The geysers of Sonoma County, California, of which there is a good series of analyses by Dr. Winslow Anderson, form a most remarkable illustration of the oxidation of hot waters. There are at this place a great number of springs of varying temperature and composition, all of them heavily charged with hydrogen sulphide. The primary water at a temperature of 110° F. appears to contain chiefly carbonate of magnesium with some of calcium. The total solids amount to about 568 parts per million, most of which consist of the above-mentioned carbonates; there are 92 parts of silica per million. This water is probably of mixed origin; the carbonates are clearly derived from the serpentinite rocks of the vicinity, but the hydrogen sulphide is most likely of

Magmatic origin. Free sulphuric acid is generated by oxidation and gives rise to a long series of peculiar sulphate waters, most of them rich in dissolved solids and of high temperature. An analysis of one of these shows 3,262 parts per million of total salts and acids, among which the sulphates of magnesium, sodium, and aluminum prevail. There are 544 parts per million of free sulphuric acid and 20 parts of free hydrochloric acid.

Finally, acid water may result directly from the oxidation of deposits of pyrite or of sulphur. A water of the latter type is described by W. T. Lee from Beaver County, Utah.

Percentage Composition of Salts and Total Salinity of Acid Waters

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl free</td>
<td>0.18</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄ free</td>
<td>1.29</td>
<td>59.11</td>
<td>46.39</td>
</tr>
<tr>
<td>H₂BO₃</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>67.66</td>
<td>20.21</td>
<td>32.63</td>
</tr>
<tr>
<td>Na</td>
<td>0.73</td>
<td>8.35</td>
<td>1.48</td>
</tr>
<tr>
<td>K</td>
<td>0.24</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td>22.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.18</td>
<td>0.47</td>
<td>1.63</td>
</tr>
<tr>
<td>Mg</td>
<td>0.36</td>
<td>0.22</td>
<td>2.50</td>
</tr>
<tr>
<td>Fe''</td>
<td>trace</td>
<td></td>
<td>5.76</td>
</tr>
<tr>
<td>Fe'''</td>
<td></td>
<td>0.33</td>
<td>8.25</td>
</tr>
<tr>
<td>Al</td>
<td>0.10</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.67</td>
<td>5.39</td>
<td>1.28</td>
</tr>
</tbody>
</table>

| Salts and acids, parts per million | 3,365 | 1,862 | 9,716 |

1 Includes some alumina.

MINE WATERS

Mine waters consist as a rule of the normal surface waters of the rock containing the ore deposit, modified by the salts resulting from the decomposition of the minerals of the deposit. In deposits free from sulphides, such as the copper and iron mines of Lake Superior, there is little difference between the mine waters of the upper levels and the normal surface waters of low salinity; both are comparatively high in silica and calcium carbonate. Where much pyrite or marcasite is present, as in coal mines and in most metal mines, the surface waters will contain sulphates of ferrous iron and aluminum and frequently also of the rarer metals. When these waters mingle with normal surface waters rich in calcium carbonate the iron and alumina may be precipitated as hydroxides and calcium sulphate remains in solution. Calcium sulphate waters often spread over a considerable area surrounding pyritic deposits.

The mine waters will be discussed in the chapter on oxidation and secondary sulphides.

SODIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

Waters containing sodium carbonate in large amounts are not common in sedimentary rocks, but here and there wells or springs of this character are encountered; they are usually cold and often contain some free carbon dioxide and hydrogen sulphide. The alkaline carbonate is probably, as suggested above, derived from a reaction between sodium sulphate and calcium carbonate or between sodium chloride and calcium carbonate. Waters of this kind occur at a few places in the eastern and central States. Adams and Leroy have described such waters from the wells in Silurian limestone on the Island of Montreal.¹ They contain from 500 to 700 parts per million of solids, chiefly sodium carbonate with the remainder calculated as calcium chloride and sodium sulphate. Following T. Sterry Hunt, Adams suggests that the carbonates have been derived from the alkalies contained

in shaly beds. A good instance is furnished by some Missouri waters in Carboniferous limestone, one of which is quoted under E in the following table. Similar waters are those of the wells at La Junta, Denver, and Greeley, Colorado. The artesian wells at Denver, about 1,200 feet deep, are in the Arapahoe Eocene, while the Greeley well, of the same depth, is sunk in Laramie sandstone. The maximum of total solids is about 1,530, divided between sodium carbonate and sodium chloride. Some free CO$_2$ is present. Many artesian waters in New South Wales are rich in sodium carbonate. Sedimentary beds containing volcanic tuffs often yield sodium carbonate waters.

SODIUM CARBONATE WATERS IN IGNEOUS ROCKS

Waters containing much carbon dioxide are capable of decomposing the alkaline minerals in igneous and metamorphic rocks, with the formation of alkaline carbonates. The change is clearly shown in the process of sericitization along the walls of fissure veins deposited in the deeper zones; the sodium goes into solution as carbonate while simultaneously there takes place a progressive concentration of potassium in the sericite, so that the water would ultimately become rich in sodium carbonate. These waters form an extremely well-defined and widely spread type; they are generally hot and always found in strongly ascending springs. Cold descending waters of the superficial circulation, even though containing carbon dioxide, are apparently incapable of decomposing alkaline silicates in a sufficiently rapid manner; they are always calcium carbonate waters, usually comparatively rich in silica. On the other hand, sodium carbonate waters rarely contain a notable amount of calcium and are poor in silica, but usually well provided with dissolved carbon dioxide and hydrogen sulphide; they are absolutely characteristic of many regions of expiring volcanic activity and, as far as known, occur only in such regions. They contain many rarer substances, such as boron, fluorine, arsenic, and other metals.

An excellent instance of a province of such waters is furnished by the volcanic district of central France. An analysis of the celebrated Vichy Springs is given in the table on page 60. Sodium preponderates as bicarbonate, but smaller

quantities of sodium chloride and sulphate are also present. The whole region of the Central Plateau is rich in carbon dioxide, occurring both in springs and as exhalations (for instance, at the Pontgibaud lead-silver mines). The magmatic source of the gas is rarely questioned, whatever opinion may be held about the origin of the water.

In the volcanic regions of Taunus and Vogelsgebirge on the Rhine in Germany are the springs of Ems and Fachingen. The springs of Ems issue with a temperature of 46° C. and contain about 2,870 parts per million of solids, of which about one-half may be calculated as sodium carbonate and a large part of the remainder as sodium chloride.

PERCENTAGE COMPOSITION OF SALTS AND TOTAL SALINITY OF SODIUM CARBONATE WATERS
Cited from Clarke's Geochemistry, pp. 181 and 186

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>6.17</td>
<td>8.85</td>
<td>11.52</td>
<td>13.57</td>
<td>6.63</td>
<td>4.01</td>
</tr>
<tr>
<td>F</td>
<td>0.19</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SO₄</td>
<td>3.75</td>
<td>5.77</td>
<td>31.19</td>
<td>0.32</td>
<td>6.21</td>
<td>4.26</td>
</tr>
<tr>
<td>S</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CO₃</td>
<td>45.57</td>
<td>41.91</td>
<td>19.15</td>
<td>22.38</td>
<td>44.76</td>
<td>47.45</td>
</tr>
<tr>
<td>PO₄</td>
<td>1.52</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>AsO₄</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Na</td>
<td>35.27</td>
<td>38.08</td>
<td>32.49</td>
<td>33.97</td>
<td>41.07</td>
<td>40.09</td>
</tr>
<tr>
<td>K</td>
<td>2.88</td>
<td>1.20</td>
<td>1.35</td>
<td>0.48</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>NH₄</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Li</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Ca</td>
<td>2.29</td>
<td>0.87</td>
<td>2.23</td>
<td>0.41</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Sr</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>1.11</td>
<td>0.41</td>
<td>0.65</td>
<td>0.11</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1.32</td>
<td>2.30</td>
<td>1.34</td>
<td>0.73</td>
<td>0.85</td>
<td>3.05</td>
</tr>
</tbody>
</table>

100.00 100.00 100.00 100.00 100.00 100.00

Salinity, parts per million

5,249 2,614 5,431 5,096 2,069 1,668
COMPOSITION OF UNDERGROUND WATERS

NOTES RELATING TO ABOVE ANALYSES

C. The Sprudel, Carlsbad, Bohemia. Analysis by F. Ragzsky. Contains 0.76 gram free and half-combined CO₂ per kilogram. Traces of Br, I, Li, B, Rb, and Cs. Temperature 72° C. In granite.

D. Hot water from the Hermann shaft, Sulphur Bank, California. Analysis by W. H. Melville. A little H₂S and a considerable amount of CO₂ present. Temperature 80° C. In basalt and sandstone.

E. McClelland well, Cass County, Missouri, 45 feet deep, in Carboniferous limestone. Analysis by P. Schweitzer. Contains H₂S.

At the foot of the Erzgebirge, in the Tertiary volcanic region of northern Bohemia, issue a series of hot springs, extending from Teplitz to Carlsbad and Eger. Most of these belong to the class of sodium carbonate waters with free carbon dioxide. They contain an abundance of salts, and in the Teplitz and Bilin springs sodium carbonate predominates. In the Carlsbad (C in table of analyses) and Marienbad springs the sulphuric acid radicle is prominent and must largely exist in sodium sulphate. The Carlsbad springs contain fluorine and barium with traces of many rarer metals which are mentioned on page 90.

In the Cordilleran Ranges in North America and South America sodium carbonate waters are abundant and always closely connected with areas of Tertiary volcanic activity.

In New Mexico the Ojo Caliente (B in table of analyses), Faywood, and Las Vegas springs may be mentioned; in Colorado the Idaho Springs, Middle Park Springs, Poncha Springs, and the water in the Geyser mine at Silver Cliff; in Idaho the Boise Hot Springs. In California sodium carbonate waters are especially abundant and characteristic; they follow the Coast Range from San Diego to Mendocino County and appear to stand in some causal connection with the late Tertiary or Quaternary eruptions of basalt. Some of the waters are clearly admixed with magnesium from the serpentinoid rocks which they have traversed, but in general the type is perfectly distinct. The following data are taken from the U. S. Geological Survey Bulletin No. 32, by A. C. Peale.
<table>
<thead>
<tr>
<th>Source of water</th>
<th>Salinity, parts per million</th>
<th>Composition and quantity of principal salts</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan Capistrano</td>
<td>290</td>
<td>$\text{Na}_2\text{CO}_3 > \text{NaCl} > \text{SiO}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Santa Barbara Hot Springs</td>
<td>470</td>
<td>$\text{Na}_2\text{CO}_3 > \text{NaCl} > \text{SiO}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Paso Robles Hot Springs</td>
<td>1,581</td>
<td>$\text{Na}_2\text{CO}_3 > \text{NaCl} > \text{Na}_2\text{SO}_4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>New Almaden Vichy (T.17° C.)</td>
<td>7,361</td>
<td>$\text{Na}_2\text{CO}_3 > \text{CaSO}_4 > \text{CaCO}_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>544</td>
</tr>
<tr>
<td>Napa Soda (T. 17° C.)</td>
<td>1,156</td>
<td>$\text{Na}_2\text{CO}_3 > \text{MgCO}_3 > \text{NaCl}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Pacific Congress (T. 10° C.)</td>
<td>5,678</td>
<td>$\text{Na}_2\text{CO}_3 > \text{NaCl} > \text{CaCO}_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,923</td>
</tr>
<tr>
<td></td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>Ukiah Vichy (T. 34° C.)</td>
<td>4,624</td>
<td>$\text{Na}_2\text{CO}_3 > \text{NaCl} > \text{MgCO}_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>459</td>
</tr>
<tr>
<td></td>
<td></td>
<td>374</td>
</tr>
</tbody>
</table>

An interesting type of these waters is represented by the hot spring of Sulphur Bank (D in table of analyses), which contains boron and is depositing cinnabar. On the whole these waters are rich in unusual constituents and have great solvent powers.

SODIUM SULPHIDE WATERS

It is believed that in some of the springs already referred to—for example, Steamboat Springs, Nevada—sodium sulphide or other sulphur salts of sodium are present. In the Pyrenees of France and Spain is found a group of springs in which sodium sulphide is constantly present. These springs have a high temperature and a low salinity, containing from 250 to 350 parts per million of salts; they usually issue in crystalline schists or on the contact of the schists with Paleozoic strata. A characteristic spring mentioned among others by Jacquot and Willm\(^1\) contains total CO\(_2\) 52, S (in sulphides) 31, Na 97, CO\(_3\) 26, Cl 55, and SiO\(_2\) 93 parts per million. Some organic matter is present and strong traces of boron, arsenic, copper, etc., are mentioned. There appears to be considerable difficulty in the explanation of this combination on the hypothesis of leaching from the sur-

\(^1\) Les eaux minérales de la France, Paris, 1894.
rounding country rock. Where contaminated by surface water or where locally issuing through Triassic strata they become calcic. By oxidation they acquire hyposulphites.

SUMMARY

In sedimentary formations, beyond the influences of igneous activity, the waters are of many differing types. Some contain mainly calcium carbonate; others are of the chloride type, with sodium or calcium as the prevalent base; still others, a very abundant class, are rich in calcium or sodium sulphates; a rarer type is that of the sodium carbonate waters. Naturally many waters show a mingling of these types. Most of these waters are cold; many are tepid; few of them are hot. Whether warm or cold, both hydrogen sulphide and carbon dioxide may be present.

In older igneous rocks where the effects of volcanism have subsided the types vary less widely. The ordinary surface waters are always—unless some disturbing influence interferes—of the calcium carbonate type, often with sodium chloride, ferrous and magnesium carbonate, and considerable silica, but low salinity. These waters sometimes, but not often, appear as tepid ascending springs. If the rocks contain iron disulphide the waters may locally contain free sulphuric acid and the sulphates of calcium, aluminum and iron.

The remaining classes of water in igneous rocks are ascending and confined to regions of recent or Tertiary volcanic activity. They are tepid to hot, though cold waters are also known. They easily fall into two classes: (1) the sodium chloride waters, of which the siliceous “geyser waters” form a sub-class; (2) the sodium carbonate waters, which are generally rich in free carbon dioxide. Transitions between the two classes are plentiful, and the latter class may in rarer cases also contain notable amounts of sodium sulphate; of this class the Carlsbad Springs form a prominent example.

INTERPRETATION OF WATER ANALYSES

Analyses of waters are usually stated in parts per million of radicles and metals. From this form a calculation will be necessary to ascertain whether the water is alkaline, neutral, or acid.
C. Old Faithful Geyser. Same locality and analysts. Temperature 84°-88° C. \(\text{H}_2\text{S} \), 0.2 part per million.

E. Water of the pink terrace, Roturoa geyser. Analysis by W. Skey.

Closely related to this group are the predominant springs in the great geyser regions of Yellowstone National Park, New Zealand, and Iceland. They are essentially sodium chloride waters with large amounts of silica, believed to exist in part as sodium silicate, a large quantity of free carbon dioxide, and a little hydrogen sulphide. Large amounts of boron, usually calculated as sodium borate, are often present, and also frequently arsenic. Bromine is rarely recorded in quantities approaching those in the brines from sedimentary formations. The waters are always hot and usually ascend through volcanic rocks, mostly rhyolite; from these the silica is supposed to be derived, but no such explanation seems sufficient to account for the predominating salt, sodium chloride, or for the boron. In the Yellowstone Park a number of the springs issuing near limestone bear evidence of their passage through this rock in increased quantities of calcium and magnesium. Others are rich in sulphate of sodium and other sulphates, but these springs give an acid reaction and the sulphates are in all probability due to the oxidation of hydrogen sulphide and the replacement of silica in sodium silicate by sulphuric acid.

SULPHATE WATERS IN SEDIMENTARY ROCKS

The waters which traverse sedimentary rocks are often rich in salts, particularly in sulphates. The gypsum waters have been mentioned and are connected with the sodium chloride waters in a manner corresponding to the association of gypsum and rock salt. By interaction of calcium sulphate and magnesium carbonate, the sulphate of magnesium may be formed, or it may be derived from the decomposition of a pyritic dolomite.

Sodium sulphate waters are almost characteristic of certain formations in the western Cretaceous, for instance; these formations consist mainly of sandstones and carbonaceous shales, the latter often pyritiferous and the whole series mainly a product of near-shore deposition. The oxidation of the pyrite furnishes solutions containing free sulphuric acid, and by reaction between this and various other substances sulphates of calcium, magne-
sium, and sodium will be formed. In land deposits contained in many series of sedimentary rocks sodium carbonate and sodium sulphate are formed by several well-established reactions, and percolating waters will easily abstract these salts. The interaction of calcium sulphate and sodium carbonate results in sodium sulphate and precipitation of calcium carbonate. Sodium sulphate in the presence of free carbon dioxide will dissolve calcium carbonate, forming sodium bicarbonate and a precipitate of gypsum.¹

Reactions in soils between sodium chloride and calcium sulphate result, according to Cameron, in calcium chloride and sodium sulphate, and similar reactions take place between sodium chloride and calcium carbonate. Sodium sulphate waters are, as stated, common in the western Cretaceous, especially in the shale formations. The lowest member of this series, the Dakota sandstone, is particularly noted as a water-carrying formation. The water, which is under artesian pressure, penetrates this formation for several hundred miles underground from its outcrop and in places contains so much sodium sulphate as to be unfit for irrigation purposes. There is no evidence that this water has formed mineral deposits in the sandstone.

A well 1,400 feet deep, in Dakota sandstone at Pueblo, Colorado, contains, according to Darton,² 1,337 parts per million of total solids, of which about one-half is calculated as sodium sulphate and one-fourth as calcium sulphate. Very little silica and chlorine, but a little iron and carbon dioxide are present. This analysis appears to be typical. In many waters in sedimentary formations chlorides and earthy carbonates appear mixed with sulphates. Waters from artesian wells at Roswell, New Mexico, about 400 feet deep, derived from Permian limestones,³ have a temperature of 64°–70° F. and contain from 600 to 1,200 parts per million of solid salts, of which 300 to 576 are calcium and magnesium sulphates and the remainder carbonates and chloride of sodium. In regions of dislocations such waters may be hot and then the ordinarily low percentage of silica may increase con-

¹ F. W. Clarke, Geochemistry, p. 229, 1911.
³ Cameron and Bell, *Bull.* 33, Bureau of Soils, 1906.
⁴ F. K. Cameron, *Bull.* 17, Bureau of Soils.
MINERAL DEPOSITS

ciderably. The Arrowhead Spring¹ of San Bernardino Valley in southern California, issuing from Tertiary sediments, has a temperature of 184°F and contains 1,086 parts per million of solids, of which 735 are calculated as sodium sulphate, 69 as potassium sulphate, 23 as calcium sulphate, 3 as magnesium sulphate, 141 as sodium chloride, and 23 as calcium carbonate; 85 are present as silica. In well waters of the same valley the solids range from 191 to 260 parts per million and the relation is CaCO₃ > MgCO₃ = NaSO₄ > NaCO₃ > NaCl. Silica amounts to 24 to 32 parts per million.

PERCENTAGE COMPOSITION AND SALINITY OF SULPHATE WATERS DERIVED FROM SEDIMENTARY FORMATIONS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄ (free)</td>
<td></td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>Cl</td>
<td>0.48</td>
<td>11.10</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>SO₄</td>
<td>66.28</td>
<td>59.68</td>
<td>76.57</td>
<td>68.21</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.60</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>30.46</td>
<td>13.89</td>
<td>1.19</td>
<td>0.22</td>
</tr>
<tr>
<td>K</td>
<td>1.08</td>
<td>0.49</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Ca</td>
<td>0.67</td>
<td>2.91</td>
<td>5.82</td>
<td>0.38</td>
</tr>
<tr>
<td>Mg</td>
<td>0.41</td>
<td>10.19</td>
<td>3.39</td>
<td>1.11</td>
</tr>
<tr>
<td>Fe⁺⁺</td>
<td></td>
<td></td>
<td>4.28</td>
<td>1.19</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td>7.36</td>
<td>11.08</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.02</td>
<td>0.07</td>
<td>1.39</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>99.10</td>
</tr>
</tbody>
</table>

Salinity, parts per million: 74,733, 15,682, 3,303, 464

D. Rockbridge Alum Springs, Virginia. Analysis by M. B. Hardin. Cited in Clarke's Geochemistry, p. 187. From pyritic shale. Contains also 0.69 Mn, 0.01 Li, 0.05 Co, 0.07 Ni, 0.08 Zn, and traces of Cu, HNO₃, and PO₄.

Waters percolating through oxidizing pyritic shales sometimes contain large amounts of the sulphates of aluminum and ferrous iron; evidently this happens only when comparatively large amounts of sulphuric acid, which is capable of attacking aluminous silicates, are set free.

Such waters are not uncommon in the eastern and central States and usually contain small amounts of rarer metals; traces of nickel, zinc, and arsenic are common. The sulphate waters, especially those rich in iron and aluminum, are of great importance in the genesis of deposits in the oxidizing zone, and the latter often form, at their orifices, large quantities of ocherous deposits. Many waters of this kind are known from Virginia, issuing from pyritic shales, and Peale\(^1\) quotes some interesting and reliable analyses. A water from Alleghany Springs in Montgomery County, analyzed by Genth, contained 3,129 parts per million of solids, of which the principal constituents were calculated as 1,955 parts CaSO\(_4\), 255 parts MgSO\(_4\), and 61 parts CaCO\(_3\). Small quantities of strontium, barium, fluorine, and silica and traces of zinc, lead, copper, and cobalt are noted. Some free carbon dioxide and a trace of hydrogen sulphide are present.

The Jordan Alum Springs in Rockbridge County, Virginia, of which several analyses by J. W. Mallet are recorded, contain from 306 to 935 parts per million of solid salts, of which the larger amount consists of aluminum sulphate, 35 to 85 parts of ferric sulphate, and from 8 to 17 parts of manganese sulphate. Small quantities of copper, zinc, cadmium, nickel, and cobalt are determined, also a trace of fluorine. One of the waters contained 102 parts of copper and 9 parts of zinc. In the Rockbridge Alum Springs, in the same State, small quantities of copper, nickel, cobalt, zinc, and a trace of lead were determined.

Free sulphuric acid is present in the Bedford Alum Spring to the amount of 70 parts per million, according to M. B. Hardin. The total solids are 1,207 parts, practically all sulphates, and about one-third consists of ferric sulphate. Small quantities, about 0.8 part per million of each, of nickel, cobalt, copper, and zinc were determined. Springs of similar composition are found in Pennsylvania and other eastern States. All these acid springs are poor in silica and contain very little chlorine.

ACID SULPHATE WATERS IN IGNEOUS ROCKS

Sulphate springs in connection with igneous rocks and volcanism appear mainly as products of the oxidation of ascending waters of alkaline reaction, containing free hydrogen sulphide, but there is evidence that in regions of volcanic activity such oxidation takes place on a large scale and that these acid waters are of high importance in effecting rock alteration, particularly by attacking aluminum silicate and developing alunite. By similar reactions free hydrochloric acid may be generated, for instance by the decomposition of chlorides by free sulphuric acid.

As a consequence it is common to find such waters near the orifices of hot springs, as well as at volcanoes. The development of free acid of course displaces the equilibrium and the oxidized water may differ greatly from its parent liquid; thus it happens that a single ascending hot spring may yield a whole series of derivatives of varying temperature and composition by mingling with other waters and by oxidation.

A number of analyses of such waters are quoted in Clarke's Geochemistry. Some of them, especially from pools or lakes near volcanoes, are remarkably rich in hydrochloric acid. The peculiar water from the Yellowstone National Park known as the Devil's Inkpot contains, besides free acids, a large amount of sulphate of ammonia. The water from Roturoa, New Zealand, the analysis of which is quoted below, is a more characteristic product of the oxidation of normal thermal waters.

The geysers of Sonoma County, California, of which there is a good series of analyses by Dr. Winslow Anderson,¹ form a most remarkable illustration of the oxidation of hot waters. There are at this place a great number of springs of varying temperature and composition, all of them heavily charged with hydrogen sulphide. The primary water at a temperature of 110° F. appears to contain chiefly carbonate of magnesium with some of calcium. The total solids amount to about 568 parts per million, most of which consist of the above-mentioned carbonates; there are 92 parts of silica per million. This water is probably of mixed origin; the carbonates are clearly derived from the serpentinoid rocks of the vicinity, but the hydrogen sulphide is most likely of

m magmatic origin. Free sulphuric acid is generated by oxidation and gives rise to a long series of peculiar sulphate waters, most of them rich in dissolved solids and of high temperature. An analysis of one of these shows 3,262 parts per million of total salts and acids, among which the sulphates of magnesium, sodium, and aluminum prevail. There are 544 parts per million of free sulphuric acid and 20 parts per million of free hydrochloric acid.

Finally, acid water may result directly from the oxidation of deposits of pyrite or of sulphur. A water of the latter type is described by W. T. Lee from Beaver County, Utah.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl free</td>
<td>0.18</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄ free</td>
<td>1.29</td>
<td>59.11</td>
<td>46.39</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>67.66</td>
<td>20.21</td>
<td>32.63</td>
</tr>
<tr>
<td>Na</td>
<td>0.73</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.24</td>
<td>0.32</td>
<td>1.48</td>
</tr>
<tr>
<td>Li</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄</td>
<td>22.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.18</td>
<td>0.47</td>
<td>1.63</td>
</tr>
<tr>
<td>Mg</td>
<td>0.36</td>
<td>0.22</td>
<td>2.50</td>
</tr>
<tr>
<td>Fe''</td>
<td>trace</td>
<td></td>
<td>5.76</td>
</tr>
<tr>
<td>Fe''''</td>
<td></td>
<td>0.33</td>
<td>8.25</td>
</tr>
<tr>
<td>Al</td>
<td>0.10</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>2.67</td>
<td>5.39</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Salts and acids, parts per million</td>
<td>3,365</td>
<td>1,862</td>
<td>9,716</td>
</tr>
</tbody>
</table>

¹ Includes some alumina.

C. Water at Sulphur mine of Cove Creek, Beaver Valley, Utah. Analysis by W. M. Barr, Water-Supply and Irrigation Paper, No. 217, U. S. Geol. Survey, 1908, p. 20. Contains also much free H₂S.

MINE WATERS

Mine waters consist as a rule of the normal surface waters of the rock containing the ore deposit, modified by the salts resulting from the decomposition of the minerals of the deposit. In deposits free from sulphides, such as the copper and iron mines of Lake Superior, there is little difference between the mine waters of the upper levels and the normal surface waters of low salinity; both are comparatively high in silica and calcium carbonate. Where much pyrite or marcasite is present, as in coal mines and in most metal mines, the surface waters will contain sulphates of ferrous iron and aluminum and frequently also of the rarer metals. When these waters mingle with normal surface waters rich in calcium carbonate the iron and alumina may be precipitated as hydroxides and calcium sulphate remains in solution. Calcium sulphate waters often spread over a considerable area surrounding pyritic deposits.

The mine waters will be discussed in the chapter on oxidation and secondary sulphides.

SODIUM CARBONATE WATERS IN SEDIMENTARY ROCKS

Waters containing sodium carbonate in large amounts are not common in sedimentary rocks, but here and there wells or springs of this character are encountered; they are usually cold and often contain some free carbon dioxide and hydrogen sulphide. The alkaline carbonate is probably, as suggested above, derived from a reaction between sodium sulphate and calcium carbonate or between sodium chloride and calcium carbonate. Waters of this kind occur at a few places in the eastern and central States. Adams and Leroy have described such waters from the wells in Silurian limestone on the Island of Montreal.¹ They contain from 500 to 700 parts per million of solids, chiefly sodium carbonate with the remainder calculated as calcium chloride and sodium sulphate. Following T. Sterry Hunt, Adams suggests that the carbonates have been derived from the alkalies contained

in shaly beds. A good instance is furnished by some Missouri waters in Carboniferous limestone, one of which is quoted under E in the following table. Similar waters are those of the wells at La Junta, Denver, and Greeley, Colorado. The artesian wells at Denver, about 1,200 feet deep, are in the Arapahoe Eocene, while the Greeley well, of the same depth, is sunk in Laramie sandstone. The maximum of total solids is about 1,530, divided between sodium carbonate and sodium chloride. Some free CO₂ is present. Many artesian waters in New South Wales are rich in sodium carbonate. Sedimentary beds containing volcanic tuffs often yield sodium carbonate waters.

SODIUM CARBONATE WATERS IN IGNEOUS ROCKS

Waters containing much carbon dioxide are capable of decomposing the alkaline minerals in igneous and metamorphic rocks, with the formation of alkaline carbonates. The change is clearly shown in the process of sericitization along the walls of fissure veins deposited in the deeper zones; the sodium goes into solution as carbonate while simultaneously there takes place a progressive concentration of potassium in the sericite, so that the water would ultimately become rich in sodium carbonate. These waters form an extremely well-defined and widely spread type; they are generally hot and always found in strongly ascending springs. Cold descending waters of the superficial circulation, even though containing carbon dioxide, are apparently incapable of decomposing alkaline silicates in a sufficiently rapid manner; they are always calcium carbonate waters, usually comparatively rich in silica. On the other hand, sodium carbonate waters rarely contain a notable amount of calcium and are poor in silica, but usually well provided with dissolved carbon dioxide and hydrogen sulphide; they are absolutely characteristic of many regions of expiring volcanic activity and, as far as known, occur only in such regions. They contain many rarer substances, such as boron, fluorine, arsenic, and other metals.

An excellent instance of a province of such waters is furnished by the volcanic district of central France.¹ An analysis of the celebrated Vichy Springs is given in the table on page 60. Sodium preponderates as bicarbonate, but smaller

quantities of sodium chloride and sulphate are also present. The whole region of the Central Plateau is rich in carbon dioxide, occurring both in springs and as exhalations (for instance, at the Pontgibaud lead-silver mines). The magmatic source of the gas is rarely questioned. Whatever opinion may be held about the origin of the water.

In the volcanic regions of Taunus and Vogelsgebirge on the Rhine in Germany are the springs of Ems and Fachingen. The springs of Ems issue with a temperature of 46° C, and contain about 2,870 parts per million of solids, of which about one-half may be calculated as sodium carbonate and a large part of the remainder as sodium chloride.

Percentage Composition of Salts and Total Salinity of Sodium Carbonate Waters

Cited from Clarke's Geochemistry, pp. 181 and 186

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>6.17</td>
<td>8.85</td>
<td>11.52</td>
<td>13.57</td>
<td>6.63</td>
<td>4.01</td>
</tr>
<tr>
<td>F</td>
<td>0.19</td>
<td>0.03</td>
<td>0.32</td>
<td>0.19</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SO(_4)</td>
<td>3.75</td>
<td>5.77</td>
<td>31.19</td>
<td>0.32</td>
<td>6.21</td>
<td>4.26</td>
</tr>
<tr>
<td>S</td>
<td>0.16</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>CO(_3)</td>
<td>45.57</td>
<td>41.91</td>
<td>19.15</td>
<td>22.38</td>
<td>44.76</td>
<td>47.45</td>
</tr>
<tr>
<td>PO(_4)</td>
<td>1.52</td>
<td>0.01</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>AsO(_4)</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B(_2)O(_3)</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td>27.98</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>35.27</td>
<td>38.08</td>
<td>32.49</td>
<td>33.97</td>
<td>41.07</td>
<td>40.09</td>
</tr>
<tr>
<td>K</td>
<td>2.88</td>
<td>1.20</td>
<td>1.35</td>
<td>0.48</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>NH(_4)</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>2.29</td>
<td>0.87</td>
<td>2.23</td>
<td>0.41</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Sr</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.11</td>
<td>0.41</td>
<td>0.65</td>
<td>0.11</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Fe(_2)O(_3)</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>1.32</td>
<td>2.30</td>
<td>1.34</td>
<td>0.73</td>
<td>0.85</td>
<td>3.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity, parts per million</td>
<td>5,249</td>
<td>2,614</td>
<td>5,431</td>
<td>5,096</td>
<td>2,069</td>
<td>1,668</td>
</tr>
</tbody>
</table>
COMPOSITION OF UNDERGROUND WATERS 61

Notes Relating to Above Analyses

C. The Sprudel, Carlsbad, Bohemia. Analysis by F. Ragzsky. Contains 0.76 gram free and half-combined CO₂ per kilogram. Traces of Br, I, Li, B, Rb, and Cs. Temperature 72° C. In granite.

D. Hot water from the Hermann shaft, Sulphur Bank, California. Analysis by W. H. Melville. A little H₂S and a considerable amount of CO₂ present. Temperature 80° C. In basalt and sandstone.

E. McClelland well, Cass County, Missouri, 45 feet deep, in Carboniferous limestone. Analysis by P. Schweitzer. Contains H₂S.

At the foot of the Erzgebirge, in the Tertiary volcanic region of northern Bohemia, issue a series of hot springs, extending from Teplitz to Carlsbad and Eger. Most of these belong to the class of sodium carbonate waters with free carbon dioxide. They contain an abundance of salts, and in the Teplitz and Bilin springs sodium carbonate predominates. In the Carlsbad (C in table of analyses) and Marienbad springs the sulphuric acid radicle is prominent and must largely exist in sodium sulphate. The Carlsbad springs contain fluorine and barium with traces of many rarer metals which are mentioned on page 90.

In the Cordilleran Ranges in North America and South America sodium carbonate waters are abundant and always closely connected with areas of Tertiary volcanic activity.

In New Mexico the Ojo Caliente (B in table of analyses), Faywood, and Las Vegas springs may be mentioned; in Colorado the Idaho Springs, Middle Park Springs, Poncha Springs, and the water in the Geyser mine at Silver Cliffs; in Idaho the Boise Hot Springs. In California sodium carbonate waters are especially abundant and characteristic; they follow the Coast Range from San Diego to Mendocino County and appear to stand in some causal connection with the late Tertiary or Quaternary eruptions of basalt. Some of the waters are clearly admixed with magnesium from the serpentinoid rocks which they have traversed, but in general the type is perfectly distinct. The following data are taken from the U. S. Geological Survey Bulletin No. 32, by A. C. Peale.
<table>
<thead>
<tr>
<th>Source of water</th>
<th>Salinity, parts per million</th>
<th>Composition and quantity of principal salts</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan Capistrano</td>
<td>290</td>
<td>HNaCO₃ > NaCl > SiO₂ 111 105 70</td>
</tr>
<tr>
<td>Santa Barbara Hot Springs</td>
<td>470</td>
<td>HNaCO₃ > NaCl > SiO₂ 290 80 40</td>
</tr>
<tr>
<td>Paso Robles Hot Springs</td>
<td>1,581</td>
<td>HNaCO₃ > NaCl > Na₂SO₄ 850 469 136</td>
</tr>
<tr>
<td>New Almaden Vichy (T. 17° C.)</td>
<td>7,361</td>
<td>HNaCO₃ > CaSO₄ > CaCO₃ 3,400 680 544</td>
</tr>
<tr>
<td>Napa Soda (T. 17° C.)</td>
<td>1,156</td>
<td>HNaCO₃ > MgCO₃ > NaCl 561 187 85</td>
</tr>
<tr>
<td>Pacific Congress (T. 10° C.)</td>
<td>5,678</td>
<td>HNaCO₃ > NaCl > CaCO₃ 2,091 1,923 289</td>
</tr>
<tr>
<td>Ukiah Vichy (T. 34° C.)</td>
<td>4,624</td>
<td>HNaCO₃ > NaCl > MgCO₃ 3,369 450 374</td>
</tr>
</tbody>
</table>

An interesting type of these waters is represented by the hot spring of Sulphur Bank (D in table of analyses), which contains boron and is depositing cinnabar. On the whole these waters are rich in unusual constituents and have great solvent powers.

SODIUM SULPHIDE WATERS

It is believed that in some of the springs already referred to—for example, Steamboat Springs, Nevada—sodium sulphide or other sulphur salts of sodium are present. In the Pyrenees of France and Spain is found a group of springs in which sodium sulphide is constantly present. These springs have a high temperature and a low salinity, containing from 250 to 350 parts per million of salts; they usually issue in crystalline schists or on the contact of the schists with Paleozoic strata. A characteristic spring mentioned among others by Jacquot and Wilm⁴ contains total CO₂ 52, S (in sulphides) 31, Na 97, CO₃ 26, Cl 55, and SiO₂ 93 parts per million. Some organic matter is present and strong traces of boron, arsenic, copper, etc., are mentioned. There appears to be considerable difficulty in the explanation of this combination on the hypothesis of leaching from the sur-

rounding country rock. Where contaminated by surface water or where locally issuing through Triassic strata they become calcic. By oxidation they acquire hyposulphites.

SUMMARY

In sedimentary formations, beyond the influences of igneous activity, the waters are of many differing types. Some contain mainly calcium carbonate; others are of the chloride type, with sodium or calcium as the prevalent base; still others, a very abundant class, are rich in calcium or sodium sulphates; a rarer type is that of the sodium carbonate waters. Naturally many waters show a mingling of these types. Most of these waters are cold; many are tepid; few of them are hot. Whether warm or cold, both hydrogen sulphide and carbon dioxide may be present.

In older igneous rocks where the effects of volcanism have subsided the types vary less widely. The ordinary surface waters are always—unless some disturbing influence interferes—of the calcium carbonate type, often with sodium chloride, ferrous and magnesium carbonate, and considerable silica, but low salinity. These waters sometimes, but not often, appear as tepid ascending springs. If the rocks contain iron disulphide the waters may locally contain free sulphuric acid and the sulphates of calcium, aluminum and iron.

The remaining classes of water in igneous rocks are ascending and confined to regions of recent or Tertiary volcanic activity. They are tepid to hot, though cold waters are also known. They easily fall into two classes: (1) the sodium chloride waters, of which the siliceous "geyser waters" form a sub-class; (2) the sodium carbonate waters, which are generally rich in free carbon dioxide. Transitions between the two classes are plentiful, and the latter class may in rarer cases also contain notable amounts of sodium sulphate; of this class the Carlsbad Springs form a prominent example.

INTERPRETATION OF WATER ANALYSES

Analyses of waters are usually stated in parts per million of radicles and metals. From this form a calculation will be necessary to ascertain whether the water is alkaline, neutral, or acid.
For the present purposes it is not necessary to go into the details of such calculations. The reader is referred to important papers by H. Stabler and Chase Palmer.¹

Dr. Palmer's results make it possible to ascertain within certain limits the derivation of the waters. It is shown, for instance, that river waters derived from crystalline rocks are materially different from waters draining areas of limestone or other sedimentary beds. Dr. Palmer's conclusion is that natural waters may be definitely characterized if the dissolved salts are recognized not as a load, but as a chemical system of balanced constituents.

The constants used in converting grains per gallon to parts per million and vice versa are as follows:

1 grain per U. S. gallon = 17.138 parts per million
1 grain per Imperial gallon = 14.285 parts per million
1 part per million = 0.0588 grain per U. S. gallon
1 part per million = 0.07 grain per Imperial gallon
CHAPTER V

THE CHEMICAL WORK OF UNDERGROUND WATER

METAMORPHISM AND MINERAL DEPOSITS

Stability of Rocks and Zones of Metamorphism.—The underground water plays a very important part in rock alteration and the majority of mineral deposits are formed by the aid of it. The reactions which it brings about extend over a wide range as to substances, temperature, pressure, concentration, and time. In the investigation of these reactions G. Bischof laid the foundations years ago, and many honored names are on the list of those who have followed him in the development of chemical geology.

In the uppermost part of the earth's crust the water circulates easily; in depth it is more sparingly present, mainly as rock moisture. At the lower temperatures its presence seems to be needed for the transformation of one mineral to another. The results of rock alteration differ widely under different physical conditions.

One of the most fruitful conceptions developed in late years is that of zones in the earth's crust, gradually merging into one another and each characterized by certain groups of minerals that are stable only under the conditions prevailing in that particular zone. The first complete scheme of this kind was elaborated by Van Hise and applied to rocks and ore deposits; later Becke and Grubenmann developed a somewhat differing theory with special application to the crystalline schists.

1 G. Bischof, Lehrbuch der chemischen und physikalischen Geologie, 1863–1866.
In consequence of the reversible nature of chemical processes under changing conditions of pressure and temperature, each mineral possesses its "critical level," which it cannot leave without undergoing decomposition. Under metamorphic influences the mineral aggregates, or the rocks, follow the laws of Van't Hoff, so that to each given combination of pressure and temperature a given mineral composition corresponds. Certain minerals, few in number, are less sensitive than others to such changes and recur under the most different conditions. They are designated "persistent minerals" and are in general of simple composition and do not contain the hydroxyl molecule; among them are quartz, magnetite, pyrite, chalcopyrite, fluorite, calcite, and native gold. Orthoclase, all plagioclases, biotite, augite, olivine, the spinels, cordierite, and garnets develop and are fully stable only at high temperatures. Minerals rich in water, like chlorite, serpentine, and talc, are characteristic of lower temperatures. Other minerals, like muscovite, zoisite, epidote, hornblende, and albite, develop by preference under strong pressure.

The varied composition of the crust, the unequal distribution of the underground water, the changing pressure, and the great differences in temperatures even at the same horizon make it difficult to establish strict rules and well-defined zones. One merges into another. Besides, stability is a relative term. Some rocks, like granite, are really stable only under conditions near their freezing-point—that is, shortly after their complete consolidation. Under the influence of percolating deep waters the minerals of the granite are unstable, as they are in the zone of weathering. But the changes take place so slowly that at many places they can scarcely be perceived. Other rocks, like calcareous shales, are stable near the surface, but easily subject to recrystallization under pressure and rising temperature. The results of the reactions differ widely according to the composition of the waters. The minerals that develop in a rock charged with a slight amount of moisture are not the same as those that appear when the rock is penetrated by rapidly moving solutions, charged with salts and gases of foreign origin.

Definitions.—The term *metamorphism*, meaning strictly a change in form, was proposed by Lyell in 1832 and has lately been employed in a wide sense, so as to cover any change in the composition and structure of a rock, through whatever
agency and with or without gain or loss of substance. In this wide sense the term would include weathering and ordinary alteration of rocks at no great depth. This usage was adopted by Van Hise but is not generally accepted, and the tendency seems to be to reserve the term for cases where the transformation from one rock to another is strongly marked, as in gneiss from granite or mica schist from clay shale. Though the mechanical effects of pressure may be conspicuous, metamorphism is always characterized by chemical changes in the component minerals; the composition of the rock itself may remain constant.

Metasomatism, meaning a change of body, first used by C. Naumann to designate some kinds of pseudomorphism, is now applied to the process by which a mineral, through chemical reactions, is replaced by another of partly or wholly different chemical composition. The minerals of any altered or metamorphic rock are in part or whole the result of metasomatic action. Rocks are termed metasomatic if their composition has been materially changed by metasomatism of the component minerals; but extensive metasomatism can take place by action of a solvent on the minerals in a rock without notable change in the composition of the rock itself. The metasomatic processes were first studied in pseudomorphs and petrifications, for these phenomena furnished the most direct evidence of the replacement of one mineral by another.

Metasomatism is a process of exceedingly great importance. The presence of its phenomena shows conclusively that the rock minerals have been subjected to conditions under which they were unstable. It is met everywhere and at all depths in igneous and sedimentary rocks. The development of chlorite in augite, sercite or kaolin or calcite in feldspars, or galena in limestone is due to replacement. The typical metasomatic processes, traced with the highest magnifying power, show no space between the parent mineral and the metasome, as the newly developed mineral may be designated. The fibers and blades of sercrite project into quartz without the slightest break in the contact. Rhombohedrons of siderite develop in quartzite, their crystal faces cutting across the grains without any interstices. Perfect prisms of tourmaline develop in feldspar grains, and sharp cubes of pyrite in primary feldspar or quartz.

Replacement is effected by solutions of various kinds, usually aqueous, but in some cases gaseous, which penetrate the rock
through fissures and pores. Water is the usual agent; it may carry foreign material in solution and introduce it into the rock, or it may be nearly stagnant rock moisture which dissolves various constituents of the rock. In both cases concentration and supersaturation take place in the surface films of solution and a complicated series of chemical reactions follow, by which the unstable minerals in the rock are dissolved, and new stable minerals immediately, without recognizable interval, occupy their space. When replacement occurs in free crystals, changes of volume usually take place, but when the reactions proceed in the solid rock the replacing mineral occupies exactly the space formerly filled by the primary mineral. As the weight of the replacing volume usually differs from that of the replaced mass, the complete change cannot be expressed in simple chemical formulas, which are based on transformation by equal weight. When the solutions move rapidly through the rock the nice equilibrium necessary for replacement by equal volumes may be disturbed and result in local excess of solution over precipitation; this is expressed in drusy or cellular texture. This sometimes happens in the replacement of rocks in mineral deposits, but in most cases there is no contraction or expansion of rock volume. When the replacing material is fine-grained and fibrous, an increased porosity may result from the minute ducts and pores necessary for the movement of the solutions.¹

Replacement is a term practically equivalent to metasomatism. The term alteration is usually confined to cases of partial replacement.

Substitution is a term formerly used in the same sense as replacement. The chemist, however, employs this term as "the replacing of one or more elements or radicles in a compound by other elements and compounds," and, in view of this definite usage, the term would better be discarded as a synonym for metasomatism.

Dissemination refers to grains or crystals of a mineral distributed in a rock, and is without genetic significance.

Impregnation is a genetic term and means that the mineral introduced is later than the rock; it may have developed by metasomatic processes or by filling of pore spaces or other cavities.

Cementation is used to indicate the filling of interstices in porous or shattered rocks.

Weathering includes the changes of rocks near the surface due to the decomposing and oxidizing action of percolating waters above the permanent water level; its tendency is to destroy the rock as a unit and its final results are a few minerals like quartz, kaolin, and limonite, which are stable under surface conditions.

General Definition of the Zones.—That part of the earth's crust which is within our observation is called the lithosphere. It may be observed directly by borings or mining operations or indirectly when deformation and denudation bring up to the surface rocks which we know were once deeply buried. The lower limit of the lithosphere can, of course, not be accurately fixed; F.W. Clarke has suggested that it may be defined as extending 10 miles or 16 kilometers below the surface. Below the lithosphere lies the centrosphere, concerning which we have little definite information.

Van Hise divides the lithosphere into an upper zone of katamorphism, coinciding with the zone of fracture (p. 31) and believed to have a maximum depth of 10,000 meters. This is again divided into an upper shallow zone of weathering and a thick zone of cementation, in which the fractures and pore spaces are healed by deposits of underground waters. Below this, and extending to indefinite depth, is the zone of anamorphism, coinciding with the zone of rock flowage, in which only subcapillary openings exist and deformation is effected by granulation or recrystallization. These conceptions are useful, but the limits of the zones are indefinite. Under certain circumstances recrystallization may take place close to the surface, and some rocks near the surface may be deformed by flow. On the other hand, F. D. Adams has recently shown that openings may exist at much greater depths than 10,000 meters.

Zone of Weathering.—The best defined zone is that of weathering, the depth of which is determined by the level of the groundwater, or by the depth to which free oxygen can penetrate in large quantities. In the zone of weathering the water percolates downward more freely than in the underlying zone, there is a tendency to the destruction of the rocks as units, and active transportation and concentration are characteristics.

Chemical work progresses by means of water solutions and gases, also extensively through the medium of organic life; mechanical disintegration is also important. The chemical reac-

tions are oxidation, carbonatization, desilication, and hydration, the two first named mainly through decomposition of silicates by water containing carbon dioxide. As a consequence of these reactions the volume should increase, but so much is carried away by solution that a great reduction of volume ensues.

Disintegration works hand in hand with decomposition and in advance of it; calcium, magnesium, sodium, and potassium are leached; the final products are a small number of minerals, largely hydrated compounds with low specific gravity and, for the most part, comparatively simple molecules. Almost all rock-forming minerals are unstable, as are the sulphides. These processes give rise to many mineral deposits of oxidized ores, which will be described in a later chapter.

The great extent of weathering and the intensity of the changes are justly emphasized, especially in regions of soluble rocks like limestone. It is well to bear in mind that this is not because of rapid attack by waters, but because of long-continued action by extremely dilute solutions. This is shown by the relative purity of the surface waters, which contain calcium and magnesium carbonates with lesser amounts of alkaline salts. The soluble products mainly escape into the rivers through the zone of discharge, which lies below the zone of weathering, and finally into the oceans.

Zone of Cementation.—The rocks immediately below the zone of weathering are often saturated with water which diminishes in quantity with increasing depth. The small pressure permits fracturing and brecciation, and the openings created by these processes, as well as those resulting from porosity, are filled with minerals deposited by circulating solutions. To a small extent these minerals result from material abstracted from the zone of weathering, but that zone is shallow in comparison with the zone of cementation, and the salts available from the weathering are, to a large extent, carried away by the surface drainage. The larger part of the minerals deposited have been derived from the rocks themselves; to a considerable extent they are derived from deep-seated sources, as, for instance, in the cementation by quartz veins and veinlets near igneous intrusions. Hydration and carbonatization are the principal processes. Minerals like chlorite, serpentine, talc, sericite, epidote, and calcite develop, largely by metasomatic processes. Replacement and filling work together.
CHEMICAL WORK OF UNDERGROUND WATER 71

Where stress is present it is mainly in one direction and shearing and schistosity may develop; in metamorphic schists some of the minerals formed are muscovite, chlorite, talc, hornblende, zoisite, epidote, and albite; also quartz, pyrite, and calcite, probably magnetite and specularite. The clay slates with muscovite and albite, the chloritic schists, and the talc schists belong to this zone.

The Deeper Zones.—In the deeper belts, included by Van Hise under the name of the anamorphic zone, the pressure and temperature are high; the latter in general above 200° C. Very little water is present. Minerals are formed mainly by replacement. In the upper part of the zone temperature and pressure work in the direction of diminished molecular volume. The pressure is largely stress—that is, acting in one direction—but hydrostatic pressure (transmitted in all directions) is becoming of importance. The important reactions are dehydration, the development of silicates, and deoxidation. Heavy silicates, like wollastonite, garnet, tremolite, and diopside, form in siliceous limestones or in pure limestones where the silica is supplied by plutonic intrusions. The minerals produced are numerous, stable, heavy, and complex. The rocks formed are compact and strong. However, the temperature is not sufficiently high to break up the molecules in which hydroxyl is firmly contained.

The recrystallization takes place according to the law of Riecke,1 so that the solution prevails at places of maximum pressure, and deposition at those of minimum pressure. The recrystallized products may assume lamellar structure extending perpendicularly to the pressure; this results in a "schistosity by crystallization." Among the minerals of this zone are muscovite, microcline, albite, microperthite, oligoclase, biotite, zoisite, epidote, hornblende, staurolite, garnet, cyanite, titanite, magnetite, and ilmenite. Most of the micaceous and hornblendic gneisses containing garnet, staurolite, etc., belong to this zone; also the mica schists, amphibolites, and glaucophane rocks.

Where there is no stress in this zone, many igneous rocks, like granite, basalt, and rhyolite, are stable.

In the deeper part of the anamorphic zone the temperature is high and the tendency is toward an increase of volume. The

hydrostatic pressure is enormous and stress almost non-existent, but high temperature is the dominant feature. There are no minerals containing the hydroxyl molecule except biotite, and the characteristics are, therefore, the prevalence of anhydrous minerals of great molecular volume. Characteristic minerals in the crystalline schists of this zone are orthoclase, all plagioclases, biotite, augite, olivine, garnet, cordierite, sillimanite, magnetite, and ilmenite. Many of the minerals of this zone also appear in the massive igneous rocks and in the contact-metamorphic rocks. The rocks are mostly gneisses, gradually approaching granites; also granulites, eclogites, and augite gneisses. Most of the igneous rocks are stable in this zone.

The orthoclase or microcline in the crystalline schists of the deepest zone changes to microperthite in the middle depths and to sericite in the upper zone. Plagioclases of the deep zone are transformed into albite and anorthite and finally to albite and zoisite or sericite. The augites change to hornblende and finally to chlorite. Olivine of the deep zone is transformed to hornblende or (with feldspar) to garnet and becomes serpentine in the upper zone.

Carbon dioxide and water doubtless escape from the anamorphic zone upward wherever calcareous rocks containing free water or hydrated compounds become submerged in it.

Exceptional supplies of heat contributed by igneous intrusions may carry the reactions of the anamorphic zones close to the surface.

Relation of Mineral Deposits to the Metamorphic Zones.— Though certain kinds of mineral deposits have originated at the surface or in the zone of weathering, the largest number have undoubtedly been formed in the zone of fracture, where circulation of solutions is comparatively easy. It is safe to assert that the great majority of ore deposits have been formed within 15,000 feet of the surface.

Ore deposits do not, as a rule, form in the zone of flowage or anamorphism where the passage of solutions is prevented. An exception to this is where hot emanations from intrusive bodies penetrate and impregnate certain rocks like limestone without the necessity of ducts and cavities.

Ore deposits may form also in the hottest zone where the solutions consist of magmas in which the free rearrangement of molecules is possible.
CHEMICAL WORK OF UNDERGROUND WATER 73

During the ordinary metamorphic processes under static or dynamic conditions extensive changes in mineral composition and structure may be effected with minimal changes in the chemical composition of the rocks, so that it is possible to trace the origin of highly metamorphosed rocks by the aid of analyses. Metamorphism can be, and usually is, effected with the aid of minute quantities of rock moisture and during the process there is little opportunity for extensive concentration of rarer constituents. Mineral deposits due to simple hydration or chemical rearrangement within the mass may result. Examples: soapstone by hydration of magnesian minerals; magnesite from carbonatization of serpentinite; sulphur from reduction of gypsum by organic compounds; garnets developed in crystalline schists; concentration of hematite from lean primary ores; and many similar instances.

A comparison of the mineral records of ore deposits, formed at various levels in the earth's crust, with the results obtained by a study of general metamorphism soon brings out the fact that the same laws do not apply to both cases, although there are points of similarity. Attention was called to this important feature in a paper on the metasomatic processes in fissure veins, and increasing knowledge emphasizes the distinction.¹ Neither the rules of Van Hise nor the three zones of Grubenmann will fit closely the case of the ore deposits. The reason for this is not difficult to find. In metamorphism one deals with small quantities of solutions, free from large amounts of carbon dioxide and hydrogen sulphide. The majority of ore deposits, on the other hand, were formed by large quantities of waters rich in these gases and heavily charged with alkaline salts. A large number of silicates and other minerals, fairly stable under the influence of ordinary deep ground water, are incapable of existence in many vein-forming solutions. Biotite, amphibole, soda-lime feldspars, often also chlorite, serpentinite, and magnetite are included among these.

Deposits Related to Igneous Activity.—Several important groups of ore deposits must therefore be considered apart from the ordinary processes of metamorphism. This especially applies to those deposits of the rarer metals which stand in closest

genetic connection with the eruption of igneous rocks. It will be found that classified according to gangue minerals, they form three groups: (1) Those characterized by gangue minerals such as garnet, biotite, hornblende, pyroxene, specularite, magnetite, tourmaline, topaz, apatite, and scapolite, all associated with quartz; (2) those in which quartz, calcite, dolomite, siderite, barite, sericite, chloride, and albite occur; (3) those in which quartz, chalcedony, opal, calcite, dolomite, barite, fluorite, sericite, chloride, and adularia form the more abundant gangue minerals. Zeolites occur only exceptionally in these groups, and kaolin is considered almost wholly a product of descending waters.

The first group may be called the high-temperature deposits, though the highest temperatures during their genesis probably did not exceed 500° C. Ordinarily, but not necessarily, they were formed at great depths and are sometimes designated as deep-seated deposits.

The second group is formed under intermediate conditions of temperature and in general also of depth.

The third group is formed at moderate temperatures, probably rarely exceeding 150° C., within a few thousand feet of the surface; many of them were developed close to the surface.

These groups are described in more detail in a later chapter.

On the whole it is evident that the great majority of ore deposits have been formed relatively near the surface and well within the zone of fracture, probably well within the upper 15,000 feet of the crust, and most of them within 10,000 feet of the surface; this applies even to contact-metamorphic deposits, many of which have developed along intrusive masses injected high into the zone of fracture. Some instances are known of such deposits having been formed within 3,000 feet of the surface. Only one class, that of the magmatic segregations, may have its origin at abyssal depths; but it is thought that more commonly the differentiation of these ores was effected after the intrusion of the magmas into the zone of fracture.

Derivation of Minerals.—Regarding the derivation of the valuable substances of mineral deposits we have to distinguish several groups:

1. Those which require little or no concentration, but merely involve chemical readjustment, as the formation of sulphur from sulphate.
2. Those which are formed by precipitation from solutions, the origin of which is beyond doubt, as, for instance, the salt beds derived from evaporation of sea water.

3. Those which are concentrated by mechanical means from well-known sources, like the gold placers.

4. Those which are derived by the solution and removal of waste material, like residual manganese or phosphate deposits.

5. Those which are derived from concentration in magmatic solutions by processes of differentiation; for example, certain titaniferous magnetites.

6. Those deposits, mainly of rarer metals, which require great concentration and concerning the origin of which more or less uncertainty still prevails.

Concentration.—Regarding the last group, it should first be stated that almost all rocks and inferentially all magmas contain small quantities of these rarer metals. There are two ways in which concentration of the rarer elements is possible. The first is by solution, by means of descending surface waters, of the small traces contained in the rocks and by corresponding deposition during the subsequent ascent of the waters. This solution of minor constituent is a slow and imperfect process, but that it actually occurs is shown by examination of natural waters and their deposits. The smaller the metal traces the slower and less complete is this process of solution. J. F. Kemp has studied this problem in some detail and concludes that the amount which can be extracted by water percolating through the cracks of a rock is only one-sixth to one one-hundredth of the total amount of the particular metal contained. The leaching of compact masses of rocks by underground water is, therefore, at best an exceedingly imperfect process, and one on which it does not seem safe to rely for the concentration of the richer ores of the rarer metals like gold and silver. Veins and other deposits, conceded to have been laid down by purely meteoric waters, contain in fact little or no gold, silver, molybdenum, tungsten, and other rare metals.

Moreover, the descending waters are cool and dilute, and thus their chemical action is slow. To obtain effective concentration of such metals the first few thousand feet of percolated rock should probably be left out of consideration.

The second way of concentration is by disturbing the equilibrium of a molten magmatic solution. Such disturbances would take place by the irruption of magmas into higher levels of the crust or by cooling of the magma, or, in other words, by changes in pressure and temperature. From the study of volcanic phenomena it is known that under such circumstances certain substances are expelled from the magma, and that among these are water, halogens, alkaline salts, and a number of the rarer metals. From the study of plutonic phenomena we infer that a still more thorough expulsion of these substances was effected during the intrusions of deep-seated magmas. Gold, silver, lead, zinc, copper, molybdenum, tungsten, tin, and many other rarer metals certainly have a place in the list of magmatic emanations. Associated with these elements are the ions of sulphur, carbon, chlorine, fluorine, boron, and other elements. This concentration is effected automatically and with ease, and these elements, dissolved in water, ascend, propelled by the expansive force of the gases. The gaseous solutions will seek the fractures and fissures on their upward paths. Their high temperature facilitates the solution of other elements in the surrounding rocks. In upper and cooler levels the gases condense to liquid solution; precipitation begins by reduction of pressure and temperature or by reaction with the adjoining rock minerals. Finally, meteoric waters mingle with the magmatic and this again causes deposition and ultimately the still warm waters issue as ascending springs at the surface.

Both methods are used in the work of deposition by waters in the crust. The first is applicable to the more common gangue minerals and to the more abundant ore minerals. The second, it is thought, must be assigned as the main cause of the rich deposits of gold, silver, and other rare metals. The former class of minerals is found in all parts of the world; the latter is confined to districts where igneous forces have been active.

This conclusion is supported by an impressive array of observations of the various mineral deposits related to igneous rocks. The weight of the cumulative evidence is exceedingly strong, but is perhaps not fully appreciated, except by those who have made the study of these deposits their specialty.
UNDERGROUND TEMPERATURES

The increment in temperature in the upper part of the earth's crust is generally assumed to average 1° C. for 30 meters or nearly 100 feet. Beginning with a surface temperature of 11° C. at a depth of 100 feet, corresponding to the mean annual temperature of a place in the temperate zone, we would have at a depth of 1,000 feet, 20° C.; at 9,000 feet, 100° C.; at 20,000 feet, 210° C.; and at 35,000 feet, 360° C., which is near the critical temperature of water (364° C.). As a matter of fact but little is known about the increment at great depths. Actual measurements within the accessible zone or to depths of about 6,000 feet show considerable divergences from the average figure given above. In some cases the increase in temperature is not quite uniform.

The best summary of the results obtained in widely separated parts of the world has been given by Koenigsberger, who has also given important data regarding the influences which increase or diminish the geothermal gradient.

The results best available for general statements of the normal increment have, as a rule, been obtained from deep boreholes in regions of slight relief, far from large bodies of water, and in little-altered rocks, with no Tertiary or post-Tertiary intrusions, and containing no large deposits of coal or oil. Observations in deep mines are probably somewhat vitiated by the cooling effect of ventilation; in new drifts and stopes, ventilation should not greatly affect the results obtained from bore-holes in the rocks.

The following data are abstracted from the tables of Koenigsberger:

1 J. D. Everett, Evidence before the Royal Commission on coal supplies, London, 1904. Also in Reports of the British Association, 1882–1904.
2 J. Koenigsberger and M. Mühlberg, Ueber Messungen der geothermischen Tiefenstufe, Neues Jahrbuch, Beil. Bd. 31, pp. 107–157. (Contains also list of literature and technique of measuring temperatures.)
Geothermal Gradients in Unaltered Rocks (Not Recent Eruptives) and Regions of Flat Relief: Bore-holes

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martinicourt, France</td>
<td>31.0</td>
<td>101</td>
<td>1,200</td>
<td>3,937</td>
<td>Dunker</td>
</tr>
<tr>
<td>Sperenberg, Berlin</td>
<td>32.5</td>
<td>107</td>
<td>1,268</td>
<td>4,160</td>
<td></td>
</tr>
<tr>
<td>Sennewitz, Halle</td>
<td>36.6</td>
<td>120</td>
<td>1,048</td>
<td>3,438</td>
<td>Dunker</td>
</tr>
<tr>
<td>Schladebach, Merseburg</td>
<td>35.7</td>
<td>117</td>
<td>1,236</td>
<td>4,055</td>
<td></td>
</tr>
<tr>
<td>Parsuschowitz, Silesia</td>
<td>30.7</td>
<td>101</td>
<td>1,050</td>
<td>3,445</td>
<td></td>
</tr>
<tr>
<td>Czuchow, Silesia</td>
<td>29.6</td>
<td>97</td>
<td>2,229</td>
<td>7,346</td>
<td>Michael and Quitasew.</td>
</tr>
<tr>
<td>Bay City, Michigan</td>
<td>36.8</td>
<td>121</td>
<td>1,360</td>
<td>4,462</td>
<td>Hallock</td>
</tr>
<tr>
<td>Marietta, West Virginia</td>
<td>37.9</td>
<td>124</td>
<td>1,380</td>
<td>4,462</td>
<td></td>
</tr>
<tr>
<td>Homewood, Pennsylvania</td>
<td>36.7</td>
<td>120</td>
<td>1,300</td>
<td>4,295</td>
<td>Cummins</td>
</tr>
<tr>
<td>Wheeling, West Virginia</td>
<td>40.7</td>
<td>133</td>
<td>1,360</td>
<td>4,462</td>
<td></td>
</tr>
</tbody>
</table>

1 At Parsuschowitz, Czuchow, and Martinicourt some coal beds are present.

The influence of cool bodies of water in lowering the earth temperature is shown in the following data:

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Jackson, N. S. W., Australia</td>
<td>44.0</td>
<td>144</td>
<td>833</td>
<td>2,733</td>
<td>David</td>
</tr>
<tr>
<td>Tokio, Japan</td>
<td>39.8</td>
<td>130</td>
<td>361</td>
<td>1,184</td>
<td>Tanakadate</td>
</tr>
<tr>
<td>Pas de Calais, France</td>
<td>56.6</td>
<td>185</td>
<td>1,400</td>
<td>4,593</td>
<td>Le Prince-Rinquet.</td>
</tr>
<tr>
<td>Copper mines of Lake Superior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Ossora, 8 km. from the lake</td>
<td>42</td>
<td>138</td>
<td>303</td>
<td>994</td>
<td></td>
</tr>
<tr>
<td>b. Atlantic, 3 to 5 km. from the lake</td>
<td>52-55</td>
<td>171-180</td>
<td>276</td>
<td>905</td>
<td>Wheeler and Supan.</td>
</tr>
<tr>
<td>c. 1.5 km. from the lake</td>
<td>67</td>
<td>220</td>
<td>508</td>
<td>1,667</td>
<td></td>
</tr>
<tr>
<td>d. Close to the lake</td>
<td>123</td>
<td>404</td>
<td>1,396</td>
<td>4,580</td>
<td></td>
</tr>
</tbody>
</table>

Underneath high ridges and mountains the increase is slow:

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mont Cenis (summit)</td>
<td>50</td>
<td>164</td>
<td></td>
<td></td>
<td>Giordano.</td>
</tr>
<tr>
<td>Gotthard (summit)</td>
<td>44</td>
<td>144</td>
<td></td>
<td></td>
<td>Stapff.</td>
</tr>
<tr>
<td>Simplon (summit)</td>
<td>43.5</td>
<td>143</td>
<td></td>
<td></td>
<td>Schardt.</td>
</tr>
</tbody>
</table>
CHEMICAL WORK OF UNDERGROUND WATER 79

In or near recent eruptive rocks the increase is often rapid. This rapid increase is even noticeable in Tertiary eruptions. The following data are from borings:

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulz (Wurtemberg)</td>
<td>24.1</td>
<td>79</td>
<td>710</td>
<td>2,329</td>
<td>Braun and Waits.</td>
</tr>
<tr>
<td>Macholles, France</td>
<td>14.2</td>
<td>46</td>
<td>1,005</td>
<td>3,329</td>
<td>Michel-Lévy.</td>
</tr>
<tr>
<td>Buda-Pest</td>
<td>15.0</td>
<td>49</td>
<td>903</td>
<td>2,963</td>
<td>Szabó.</td>
</tr>
</tbody>
</table>

In the vicinity of heat-producing waters, or where chemical processes of decomposition are active, the increase is especially rapid.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idris, Austria</td>
<td>10</td>
<td>33</td>
<td>329</td>
<td>1,079</td>
<td>Scheinpfug and</td>
</tr>
</tbody>
</table>
<pre><code> | | | 457 | 1,499 | Holler. |
</code></pre>
<p>| Comstock, Nevada | 17.1 | 56 | 672 | 2,205 | G. F. Becker. |</p>

In coal mines and in borings in coal-bearing strata the increase is more rapid than the normal, owing to chemical processes in the coal beds.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charmoy, Creusot (bore-hole)</td>
<td>26</td>
<td>85</td>
<td>1,188</td>
<td>3,832</td>
<td>Michel-Lévy.</td>
</tr>
<tr>
<td>Paruschowits, Silesia (bore-hole):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above coal</td>
<td>26</td>
<td>85</td>
<td>1,122</td>
<td>3,681</td>
<td>Hendrick.</td>
</tr>
<tr>
<td>Below coal</td>
<td>35</td>
<td>115</td>
<td>1,959</td>
<td>6,427</td>
<td>Hendrick.</td>
</tr>
<tr>
<td>Gelsenkirchen, Germany (cooled by ventilation)</td>
<td>23.5</td>
<td>77</td>
<td>705</td>
<td>2,313</td>
<td></td>
</tr>
<tr>
<td>Rosebridge, England</td>
<td>29.5</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similar relations appear to exist in regions producing petroleum.
In mines of various kinds the increase may be more rapid or more slow than normal. The cooling by ventilation reduces the temperature to some extent.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Maria, California</td>
<td>23.0</td>
<td>76</td>
<td>1097</td>
<td>3,599</td>
<td>Arnold and Anderson</td>
</tr>
<tr>
<td>Berekei, Caucasus</td>
<td>23.0</td>
<td>76</td>
<td>1000</td>
<td>3,281</td>
<td>Kellickij</td>
</tr>
<tr>
<td>Apsheron, Russia</td>
<td>28.4</td>
<td>93</td>
<td>300–700</td>
<td>984–2,297</td>
<td>Solubjatnikow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locality</th>
<th>Gradient in meters</th>
<th>Gradient in feet</th>
<th>Depth in meters</th>
<th>Depth in feet</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freiberg, Saxony</td>
<td>31.0</td>
<td>102</td>
<td>457</td>
<td>ca. 1,500</td>
<td>D’Aubuisson</td>
</tr>
<tr>
<td>Dolgoath, Cornwall</td>
<td>33.0</td>
<td>108</td>
<td>610</td>
<td>ca. 2,000</td>
<td>Haldane and Thomas</td>
</tr>
<tr>
<td>Bendigo, Victoria (New Chum Railway)</td>
<td>42.7</td>
<td>140</td>
<td>1,110</td>
<td>3,645</td>
<td>Jenkins</td>
</tr>
<tr>
<td>Ballarat, Victoria</td>
<td>44.2</td>
<td>145</td>
<td>634</td>
<td>2,080</td>
<td>Jenkins</td>
</tr>
<tr>
<td>Witwatersrand, S. A</td>
<td>115</td>
<td>377</td>
<td>1,200</td>
<td>3,900</td>
<td>Marriott</td>
</tr>
</tbody>
</table>

Although in some mines the increase is about normal, in other mines it is remarkably slow. At Bendigo,\(^1\) where gold-bearing quartz veins occur in Ordovician sandstone, the rock temperature at the greatest depth attained, 4,600 feet, is only 112° F. (44.5° C.). At this depth the water is salty and has a temperature of 114° F. At St. John del Rey,\(^2\) a gold mine in the schists of southern Brazil, at 4,000 feet below the adit tunnel, the temperature is only 95° F., or 35° C. On the Witwatersrand, in the Transvaal,\(^3\) a temperature of 65° F. prevails at 500 feet; the increase down to 3,900 feet is regular at the rate of 1° C. per 360 feet; at the lowest depth the temperature is only 84.4° F., or about 29° C. According to Marriott the natural ventilation reduces the temperature near the workings 5° to 6° C.

\(^3\) H. F. Marriott, An investigation of earth temperatures, etc., *Trans., Inst. Min. and Met.*., 1906.

See also *The Mining Journal* (London), April, 1906, p. 479.
No reason is known for the slow increase of temperature in the Transvaal and in Victoria. Koenigsberger has suggested that the decided increase in the earth temperature near oil pools and beds of coal (except anthracites) may be utilized for the prognostication of the occurrence of these substances near a given bore-hole.

In temperature measurements a maximum instrument constructed on the same principle as a clinical thermometer is most practical; an instrument about 25 centimeters long is recommended. An ordinary high-class chemical thermometer reading to 0.2° C. may also be used. For the measurement of temperature in mine workings H. C. Jenkins suggests some rules summarized below:

1. Temperatures should be taken in new workings which are rapidly pushed. Otherwise cooling may affect the result.

2. When possible the rock should be free from easily oxidized sulphides. Considerable heat is developed when pyrite oxidizes, as is well illustrated in many mines.

3. Holes should be bored 6 feet and, if possible, horizontal.

4. Wet ground should be avoided, as the readings will generally be too low.

5. One or two days should be allowed to permit the heat of drilling to dissipate.

6. The thermometer should be inserted, supported upon cork mounts in an outer closed glass tube, and the bore-hole closed.

Note 1.—In measuring rock temperatures in some Alpine tunnels a hole 1.5 meters deep was bored in the side of the tunnel about a meter above the floor and slightly inclined upward. An ordinary thermometer was used, its length approximating 25 centimeters. It was cemented in a glass tube and inclosed in a double metal cylinder with cork rings. The mercury bulb was inclosed in a mixture of wax and turpentine. The metal cylinder with the thermometer was pushed in by means of a metal wire. The hole was then closed by a long plug of wood wrapped with woolen cloth, and stoppered by a wooden plug covered with gypsum plaster. The readings were taken 24 hours after the insertion. The errors or differences from the actual rock temperature are ±0.5° C.

Note 2.—A. C. Lane doubts Koenigsberger’s conclusion that the vicinity of Lake Superior affects the temperatures, and believes rather that climatic changes may be responsible for the present slow increase. Lane gives the average gradient at the Calumet & Hecla as 189 feet for 1° C.

The Keweenaw series of Michigan, Lansing, 1911, p. 763.
CHAPTER VI

THE ORIGIN OF UNDERGROUND WATER AND ITS DISSOLVED SUBSTANCES

Origin of the Water.—There is no physical or chemical criterion by which the origin of a given water can be determined. A pure water might possibly rise from interior sources and acquire saline constituents during the ascent. A water of superficial derivation might be conceived to have become charged with magmatic products. If it is possible to distinguish between waters derived from the surface and those brought up from the interior of the earth, the evidence must be circumstantial and depend on geologic and physiographic testimony, such as geologic structure, igneous history, rainfall, and drainage basins. There are four possibilities of derivation:

1. The water is derived from the rain that falls on the surface, or from the water courses, or from the lakes, or from the present oceans and has simply descended into the earth in the cavities, fissures, or capillary openings, perhaps to ascend at suitable places under hydrostatic conditions. The water of the uppermost circulation in the zones of gathering and discharge is called vadose (vadus, shallow), a term introduced by F. Posepny.

2. The water existed in the solution constituting an igneous magma; crystallization of the magma or its irruption into higher levels of the upper crust liberated the water as one of the most volatile constituents, thus permitting its ascent to cooler levels.

3. The water was mechanically included in the sediments of ancient oceans and has for geologic periods been a constituent of these strata. The term “connate” has been proposed for such water, by A. C. Lane.

4. Water originally of surface origin and contained in the pores of the rock, or in chemical combination, has by subsidence of the crust been carried to deeper and warmer levels and ascends from these by a sort of distillation.

82
ORIGIN OF UNDERGROUND WATER

Salts from Sedimentary Rocks.—There is little difficulty in the large sedimentary areas, where volcanism is absent. The great majority of underground waters are here simply of atmospheric origin, and, in spite of great diversity, the saline constituents, as well as the gases, are readily traced to the sediments traversed. It is evidently possible for atmospheric waters to attain sufficient depth to acquire a high temperature, though this rarely approaches 100° C. The Hot Springs of Virginia, the Arkansas Hot Springs, the Arrowhead Springs of southern California, and the Utah Springs in the Salt Lake Basin clearly derive their saline constituents from the surrounding sedimentary rocks.

Examples of this class from the French Alpine region are plentiful. In all these waters the principal constituents are those of the surrounding sediments—calcium-magnesium carbonates from the limestones and dolomites, brines from the saline formations, calcium sulphate from gypsiferous Triassic formations, sodium sulphate from the Cretaceous shales, hydrogen sulphide from the reduction of sulphates by organic matter often present in these waters, carbon dioxide from reactions between carbonate of calcium and other salts. There is a strong probability that in a small group, exemplified in the deep calcium chloride waters of the Paleozoic or the Keweenawan formations, the solutions represent old sea water included in the strata, in other words are “connate” waters.

Salts from Igneous Rocks.—The various types of waters from sedimentary areas are closely paralleled by those from igneous rocks, but in spite of this the explanation of the latter is far more difficult. The waters of the upper circulation in igneous rocks are characterized by their consistent content of calcium carbonate, to which large amounts of magnesium and ferrous carbonates are sometimes added. The attack of carbon dioxide on alkaline silicates gives a small amount of alkaline carbonates and the oxidation of pyrite affords a small amount of sulphates. Soluble silica is added from all silicates, suffering partial decomposition. Occasionally these waters are tepid or hot, but probably only where they have exceptional opportunities for deep descent in regions of strong dislocations or contact with hot eruptive rocks. In the latter case special supplies of carbon dioxide may have been available.

The hot springs in igneous rocks cluster in regions of recent igneous activity. One type is rich in sodium carbonate, and, as
explained above, there is little difficulty in accounting for it; the long-continued action of the hot water saturated with carbon dioxide on the feldspars of the surrounding rock undoubtedly yields this salt in large quantities, and the scarcity of calcium and magnesium carbonates is explained by their precipitation with increasing percentage of alkaline carbonates. The solubility of a given salt is decreased by adding another with an ion in common.

Considerable quantities of sodium chloride are, however, always associated with the sodium carbonate and sometimes indeed predominate; to find an adequate explanation of this is more difficult. Igneous rocks average, according to Clarke’s calculation, only 0.07 per cent. of chlorine, and while there are some exceptional rocks containing sodalite, the sodium chloride waters are by no means particularly associated with this mineral. Considering that the water could extract only a small part of this chlorine, it is not easy to estimate the amount of rock which must be percolated to obtain a sustained flow of chloride waters of the concentration often found in hot springs. The same reasoning applies to the alkaline sulphates which are abundant in some waters. It might be imagined that surface waters moving downward could have become charged with sodium chloride or sulphate while traversing saline sedimentary rocks, but such an explanation seems somewhat forced in the case of springs which issue from granite in a region where no such sedimentary beds are known to occur. Boron is a common constituent of many of these springs, for instance, the Steamboat Springs, Nevada, and Ojo Caliente, New Mexico, both of which issue from granitic rocks. It is still more difficult to find a reasonable explanation for the presence of this substance on any hypothesis of leaching. Tourmaline and datolite are of course present in some rocks, but the springs carrying boron exhibit no marked relation to areas where such boron minerals occur. It is true that boron occurs in saline sedimentary beds and that traces of it are often found in waters traversing them, but the quantities do not compare with those determined in many waters of volcanic associations. Similar statements can be applied to fluorine, though it is less abundant than boron.

The geyser springs of Iceland, the Yellowstone Park, and New Zealand are rich in silica, and as most of them ascend through easily decomposed rhyolitic rocks, that substance may well be
derived from leaching of the country rock. And yet when we note how veins rich in quartz are at places directly connected with pegmatite dikes, and how strong the evidence is against their deposition by leaching from surrounding rocks, we may well wonder whether this silica in the thermal waters is necessarily derived by solution of rock comparatively near the surface. And again, when we observe that chlorides form part of magmas, as indicated by the presence of sodalite, and remember that sodium chloride occurs as small crystals in the fluid inclusions of quartz phenocrysts, and finally note the abundance of chlorides at volcanic eruptions, would it not then be easier to account for this salt in the springs of volcanic regions by an easily effected concentration of volatile substances while the magma was still fluid, than by a laborious search for traces of chlorides in the congealed igneous rocks?

Origin of the Dissolved Gases.—Reduction of sulphates by organic matter accounts satisfactorily for the hydrogen sulphide abundant in many sulphate and chloride waters in sedimentary rocks. Carbon dioxide is abundant in many such waters, but the reactions by which this gas is produced are less well known. The rain water contains, of course, a little carbon dioxide and far more is taken up during the percolation of the humus of the soil. This is soon absorbed in the formation of bicarbonates, but from the decomposition of these compounds gas may be set free.

In igneous rocks there is no reason why similar processes should not apply on a small scale, but many of the ascending waters contain such enormous amounts of carbon dioxide that its explanation by chemical reactions within the water itself appears utterly insufficient. From the earliest times of geological science this difficulty has been recognized and the literature on the derivation of the carbon dioxide is extensive. It has lately been summarized by R. Delkeskamp. In addition to the carbon dioxide absorbed by the water from the atmosphere and the soil humus, a possible source of superficial origin may be found in decomposing organic deposits such as peat and lignite, though the coals are more likely to give off hydrocarbons than carbon dioxide. Still another way in which the latter gas may be formed is by the reaction between acid waters, such as are often found in mines, and limestone.

A more deep-seated source lies in the replacement near intrusive contacts of limestone or dolomite by calcic or magnesic silicates. This process has taken place, on a larger or smaller scale, at the contacts of all intrusives in calcareous rocks, and there is no good reason to doubt that it is going on, in some localities, at present. The quantity of carbon dioxide available from this reaction is large and it is likely, indeed, that many thermal springs in regions of intrusives have been fed from such sources. But, on the other hand, coal beds and limestones cannot be supposed to exist underneath every volcanic region, and in large areas of granitic rocks the hypothesis becomes decidedly improbable.

It is known that many igneous rocks, particularly granites, contain liquid carbon dioxide as minute fluid inclusions, though it may be doubted whether they are as abundant as is assumed by some writers. On the assumption that the quartz contains a maximum of 5 per cent. by volume of these inclusions Laspeyres has calculated the content of CO₂ in a cubic kilometer of granite as sufficient to furnish the springs of Nauheim, Germany, with carbon dioxide for 273,000 years. Such calculations carry little conviction to those who realize the difficulty involved in the absorption of any but a minimal quantity of this gas from the quartz grains by percolating waters; and besides, exhalations of carbon dioxide are not characteristic of areas of granite, but appear in regions of volcanic rocks without reference to the character of the basement rock traversed.

The interesting experiments of A. Gautier and others on the gases included or occluded (absorbed) in the minerals of a rock and set free on heating have been summarized by several writers, including F. W. Clarke¹ and F. L. Ransome.² A great number of exact analyses of these gases were made recently by R. T. Chamberlin,³ who found in general that the various pulverized rocks yielded a total amount of gases (at 0° C. and 760 mm. pressure) equal to from a fraction up to as much as 30 times the unit volume of rock; the gases determined were H₂S, CO₂, CO, CH₄, H₂, and N₂, among which CO₂ and H₂ always predominated. The carbon dioxide is believed to be derived from the de-

¹ Geochemistry, pp. 224–232.
composition of small quantities of secondary carbonates, while in part it may also be included or occluded. The hydrogen and other carbon compounds are probably due to reactions of water vapor and carbon dioxide with some of the substances contained in the rock, notably ferrous compounds. All of these results are highly important and suggestive, and various hypotheses have been advanced showing how, by a sort of distillation, carbon dioxide and other gases might be given off and absorbed by ascending waters. There is indeed a possibility that

![Diagram](image)

Fig. 4.—Carbon dioxide and sodium carbonate springs of central France. Black dots are springs. Shaded area shows extent of basaltic eruptions.

some of the carbon dioxide in deep waters may have been derived in this way. But it is, perhaps, scarcely recognized that there is a great difference between heating a small quantity of pulverized rock in the air and obtaining the same amount of gases from a solid mass at great depth. It seems probable that pressure would prevent the escape of these gases, and if the mass of rock were heated to the melting-point it would undoubtedly acquire a capacity for absorption of far greater amounts of gases than those expelled by heating the powder to redness.
The presence of liquid carbon dioxide in cavities in minerals of igneous rocks is proof of its occurrence in the molten magma consolidated in depth. Every eruption brings new evidence of exhalations from magmas congealing near the surface; and almost every volcanic district of recently closed igneous activity testifies to the persistence of this gas in escaping from the cooling lavas below. The Cripple Creek district, where gold-tellurium veins cut through the core of an old volcano, presents an excellent illustration of this condition. Imperceptible at the surface, exhalations of carbon dioxide become more marked in depth and their temperature, higher than that of the surrounding rocks, indicates that they came from below. In the extinct volcanoes of the Auvergne in France and of the Eifel on the Rhine, waters highly charged with carbon dioxide and exhalations of the same gas are extremely abundant. It seems difficult to escape the conclusion that the enormous quantities of this gas contained in the ascending waters of volcanic regions are of igneous origin—a volatile constituent of the magma released when the magma was brought up to higher levels of less pressure in the earth's crust.

These considerations apply equally well to the hydrogen sulphide with which some of these springs are so abundantly supplied. The decomposition of sulphates by organic matter or other reducing agents may be appealed to in places, but in igneous rocks, like granite, it does not appear to be quantitatively sufficient, and as we know that this gas plays a prominent part in volcanic eruptions we may well feel justified in believing that the waters ascending in regions of such eruptions may absorb this gas or alkaline sulphides and carry them to the surface.

In a series of researches¹ on volcanic gases and on the gases given off by heating various igneous rocks, A. Brun has arrived at remarkable results which differ from those of earlier investigators. Brun believes that the magmas are anhydrous, a view which is difficult to accept, though some classes of lavas like basalt, when emitted at the surface, undoubtedly are poor in water. The clouds of vapor attending volcanic eruptions are, according to Brun, mainly volatilized chlorides mixed with dust generated by the volcanic explosion. According to many

analyses, however, fumarolic gases contain mainly carbon
dioxide with nitrogen, water gas, and minor quantities of other
gases. Brun asserts that recently congealed volcanic rocks, particularly the glasses, yield upon heating much chlorine, hydrochloric acid, and lesser quantities of carbon dioxide, sulphur dioxide, nitrogen, and oxygen. While some of Brun's results need confirmation it is undeniable that chloride vapors form a most important part of the volcanic exhalations and that waters in volcanic districts, whatever their origin, are likely to dissolve these chlorides and absorb gases of volcanic origin.

Rarer Elements Contained in Waters.—In the vadose waters in crystalline rocks the salinity is low and rarer metals are generally absent. There are usually some iron and manganese, and possibly refined methods might discover other heavy metals in extremely small amounts. Where these waters appear in mines they naturally take up certain amounts of the metals of the deposits. Careful examination of vadose calcium carbonate waters in sedimentary rocks has disclosed traces of nickel, cobalt, copper, strontium, and barium, sometimes also fluorine, boron, and iodine. Arsenic is commonly present and where the waters precipitate limonite from dissolved ferrous carbonate, the ocher almost always contains traces of that metal. Where sulphates of iron and aluminum are among the saline constituents of waters in sedimentary rocks, determinable amounts of copper, zinc, cadmium, nickel, and cobalt may be found, with traces of lead, barium, strontium, fluorine, and boron. The quantity of cobalt usually exceeds that of nickel. Such waters issue at many places from beds of pyritic shale and owe their strong solvent power to the sulphuric acid generated by oxidation of pyrite.

Chloride waters from sedimentary rocks are always comparatively rich in bromine and barium, with traces at least of iodine and traces of boron, fluorine, and sometimes arsenic. From Wildbad, in Württemberg, a strong sodium chloride water, with traces of tin besides the substances mentioned, has been reported. From the calcium chloride springs of Cannstatt, the same authorities mention nitric acid, boron, iodine, fluorine, barium, arsenic, and manganese; in the ochery deposits also copper, lead, and antimony or tin. From the cold sodium chloride water of Homburg, nickel, copper, arsenic, antimony, boron,
and fluorine are reported; in the hot waters of Wiesbaden, copper, tin, arsenic, and boron. In almost all of the various waters mentioned above, traces of phosphoric acid are found.

In hot ascending sodium chloride springs which issue in volcanic regions rarer elements have often been determined; such waters are often rich in boron. Steamboat Springs, Nevada, contain notable amounts of arsenic and antimony with traces of iron and quicksilver. The springs of the Yellowstone Park carry boron and arsenic, but are poor in other rarer constituents.

The ascending sodium carbonate springs in volcanic districts also frequently contain boron and fluorine in notable amounts. Arsenic and copper have been found in the springs of Ems, and the same metals with lead also at Vichy. The Carlsbad Sprudel contains, according to Göttli, \(^1\) traces of bromine, iodine, fluorine, selenium, phosphorus, boron, barium, strontium, lithium, titanium; tin, arsenic, antimony, copper, chromium, zinc, cobalt, nickel, and gold.

The statements summarized above show clearly that traces of metals are by no means confined to springs of supposedly deep-seated, "magmatic" or "juvenile" origin, but that they occur in many different kinds of water. The presence of silver has apparently not been recorded, and that of gold only from the Carlsbad Springs. Quicksilver and large quantities of antimony seem to occur only in sodium chloride or sodium carbonate waters of the deep-seated type, of which also higher amounts of boron and fluorine are characteristic. Arsenic is probably the most common of the rarer metals and has been found in all kinds of water. Copper, zinc, nickel, and cobalt are not uncommon, both in waters of sedimentary and in those of igneous origin. Lead is of rare occurrence. In minute quantities it is contained, together with zinc, in some calcium carbonate waters issuing from Paleozoic rocks of the Mississippi basin. Iron is characteristic of the vadose water and occurs only in minute quantities in the hot ascending sodium springs.

Origin of Spring Waters.—The examination of the salts in the spring waters leads to the conclusion that most of them have been dissolved from the rocks traversed. In the great majority of cases the water is unquestionably of atmospheric origin and has reappeared at the surface after more or

\(^1\) Stelzner and Bergeat, Die Erzlagerstätten, 2, p 1220.
less extensive wandering through the cavities of the rocks. There are strong reasons to suspect that in two classes of springs—the ascending sodium carbonate and sodium chloride waters appearing in volcanic regions—certain of the constituents have not been derived from the rocks adjacent to the water courses, but that they are absorbed emanations from cooling magmas. The water itself, in springs of the classes mentioned, is believed by many to be of magmatic origin. The fluid inclusions so abundant in many igneous rocks which have consolidated under pressure show plainly enough that water was present in the deep-seated magmas. Evidence of the same kind is offered by the micas, amphiboles, and other minerals containing the hydroxyl molecule.

If it is admitted that the magmas do contain water which is given off under diminishing pressure it follows logically that some of this at least must reach the surface to mingle with the waters of vadose origin. Élie de Beaumont was the first to give full expression to this view. He believed that there were two classes of hot springs: The first (the more common) is intimately related to volcanism and derives its waters and dissolved solids from this source; the second and more exceptional derives its waters from simple infiltration. This view was accepted by de Lapparent, but Daubrée, supported by his celebrated experiment by which water was found to penetrate to the heated side of a porous slab of sandstone, arrived at the contrary conclusion, that both volcanism and thermal springs result from the infiltration of water from the surface; similar views were held by Fouqué and have more recently been adopted by de Launay. The latter investigator finds no difficulty in accounting for all of the ordinary dissolved salts by leaching of the rocks, but admits that carbon dioxide, boric acid, hydrogen sulphide, arsenic, and some metals may, in the "volcanic" springs, represent "fumaroles" or emanations from magmas. The views of Daubrée found general acceptance in other countries; in the United States they were accepted by Le Conte, Van Hise, and others. All waters appearing at the surface were considered of atmospheric origin and their salts were dissolved from the rocks percolated. About the year 1900 the

2 L. de Launay, Recherche, captage et aménagement des sources thermo-minérales, Paris, 1892.
importance of magmatic exhalations for the formation of mineral deposits began to be reasserted by various mining geologists—among them Vogt in Norway, and Kemp, Spurr, Weed, and Lindgren in the United States. In 1902 Suess, the eminent Austrian geologist, announced his belief that many of the springs in volcanic regions were of "juvenile" origin—that is, that they now reach the surface for the first time and yield a permanent addition of water and salts, carried up from magmas cooling at great depth. As an excellent example of this the Carlsbad Springs were cited.

The question now arises whether it be possible to establish criteria by which the juvenile waters may be distinguished from those of vadose origin. Delkeskamp in Germany has attempted the solution of this problem in a series of suggestive papers. He rightly considers temperature of little value as a criterion and points out that many assuredly vadose springs are hot, while some, strongly suspected to be of juvenile origin, are cold. The constant admixture with vadose waters forms another difficulty, but accounts well for the many derivatives of varying characteristics which accompany every spring of deep-seated origin. Seasonal variations of temperature, salinity, and quantity of water are of course excellent proofs of vadose origin. While Delkeskamp admits that the juvenile springs may change slowly and decrease gradually in salinity and temperature, a practical constancy of the three factors just mentioned is said to be the best proof of a juvenile origin. A number of instances are quoted of springs which show decided indication of such origin; among them are the Carlsbad, Ems, and Wiesbaden springs, while those of Kreutznach are characterized as now vadose but formerly probably juvenile.

It is a doubtful question whether these criteria can be accepted. In the first place the necessary data are difficult to obtain, as they must extend over a long period of years. In the second place

2 R. Delkeskamp, Juvenile und vadose Quellen, Balneologische Zeitung, 16, No. 5, Feb. 20, 1905, p. 15.
See also reference in Econ. Geology, vol. 1, pp. 602–612.
there are examples of springs, the salts of which are unquestionably of vadose origin, while the temperature and quantity of water has long remained constant. The Hot Springs of Arkansas are of this kind. The total quantity of dissolved salts is no criterion, for many springs of low temperature are rich in salts, while others, near the boiling-point, may be most remarkably pure. It is fair to say that no criteria have been found by which the juvenile character of the water, the salts, or the gases can be definitely affirmed. Exact calculations of drainage basins, precipitation, run-off, evaporation, and absorption might possibly, in individual cases, lead to a satisfactory solution; it has been suggested that the Carlsbad Springs yield more water than can be accounted for by the factors stated above. But at best the results can hardly be more than suggestive.

The best general evidence of the existence of juvenile waters is furnished, not by observation of the present springs, but by the study of old intrusive regions. Here the granites merge into pegmatite dikes, the latter change into pegmatite quartz, and this into veins carrying quartz and metallic ores, such as cassiterite and wolframite. Here we have evidence difficult to controvert that dikes consolidated from magmas gradually turn into deposits the structure and minerals of which testify to purely aqueous deposition; this admitted, it is difficult to see what would prevent such waters from reaching the surface.
CHAPTER VII

THE SPRING DEPOSITS AT THE SURFACE

Any disturbance in the equilibrium in solutions, by changes in temperature and pressure, by mixing with other solutions, by adding of soluble substances, or by contact with insoluble material which reacts with the dissolved salts, may produce a precipitation of solid matter. From a comparison between the products of the laboratory and those of nature we have arrived at the conclusion that such processes of precipitation are continually in progress in the solutions moving within the earth's crust, and that the large majority of mineral deposits have resulted from such reactions. Only at the surface, however, is it possible to study the actual progress of these chemical changes, and great interest, therefore, attaches to the deposits formed by the natural waters where they issue as springs from the underground path. The precipitates in rivers, lakes, and seas will be described in later chapters.

On the whole, the composition of the material deposited by springs is simple; three main divisions are recognized; namely, deposits of limonite, calcium carbonate, and silica, although mixtures of two or all of these substances are frequently observed. The deposits are known respectively as oathers, tufas or travertines, and sinters. The precipitation is in part due to cooling or escape of carbon dioxide, but in most hot springs algae which thrive in the tepid water aid in the process by secreting calcium carbonate or gelatinous silica.¹

Deposits of Limonite and Calcium Carbonate.—The dilute vadose waters of the calcium carbonate class do not often make large deposits, except where they contain much ferrous bicarbonate. In this case the surplus carbon dioxide escapes and the carbonate is usually decomposed in the air, precipitating limonite as a colloidal slime, often mixed with more or less of calcium carbonate. Limonite, mixed with ferric sulphate, is also precipitated where sulphate waters rich in iron come to the surface. Ocherous deposits from many kinds of waters contain manga-

¹ W. H. Weed, 9th Annual Report U. S. Geol. Surv., 1889, pp. 613–676. 94
nese and arsenic; nickel and cobalt are often mentioned. Sodium carbonate springs also sometimes deposit limonite. A number of analyses of such ochers are quoted by Clarke.

Deposits of calcium carbonate, admixed with a small amount of magnesium carbonate, are made by warm and cold springs of several classes. In many of these the calcium carbonate is the least soluble constituent which remains after the others have been carried away. Thus, the sodium chloride springs of Glenwood, Colorado, yield a considerable deposit, and the sodium carbonate springs of Ojo Caliente, New Mexico, which are very poor in calcium, deposited at their former point of issue a porous tufa containing over 90 per cent. of calcium carbonate. This carbonate is no doubt deposited in crystalline form, though it is usually fine grained. Such deposits are not always calcite, for the presence of aragonite has been proved in many spring deposits, for instance those of Hammam Meskoutine, in Algeria, and of Carlsbad, in Bohemia.

Deposits of Silica.—At hot springs containing much silica, this substance is abundantly precipitated because of evaporation, through mixture with other waters, or, according to W. H. Weed, by the action of certain hot-water algae. The material is deposited as a colloid jelly which subsequently hardens to opaline or chalcedonic silica. Such sinters are formed by the hot springs of the Yellowstone Park and may contain up to 95 per cent. of silica. Sodium is often present as chloride or carbonate. The Steamboat Springs of Nevada deposit a sinter of pure silica or mixtures of calcium carbonate and silica, the latter being present as chalcedony, or small crystals of quartz. (See Fig. 5.) This sinter contains weighable quantities of sulphides of mercury, lead, copper, arsenic, and antimony; the presence of gold and silver was also determined, and traces of manganese, zinc, cobalt, and nickel were found. Antimony sulphide, Sb$_2$S$_3$, is deposited as the amorphous “metastibnite” in quantities large enough to color the sinter red in places. In a shaft sunk into the gravel immediately adjoining the granite hill from which the springs issue, Lindgren discovered delicate crystals of stibnite covering the

pebbles and associated with thin crusts of black opal and grains of pyrite or marcasite.

The sinter of the Yellowstone Park often contains arsenic, especially in the form of scorodite (FeAsO₄·2H₂O), and near one of the springs which was impregnated with pyrite Weed¹ noted rhyolite that contained traces of gold and silver. On the whole, however, the Yellowstone spring deposits are poor in the rarer metals. The same author, associated with

![Diagram](image)

Fig. 5.— Section of chaledonic spring deposits from Steamboat Springs, Nevada. White areas microcrystalline quartz. Magnified 29 diameters. Crossed nicols.

Pirsson,² reports the occurrence of orpiment and realgar with native sulphur in a siliceous sinter from the Norris geyser basin. De Launay mentions a deposit containing orpiment at St. Nectaire, Puy-de-Dôme, France.

A calcareous sinter deposited by an ascending sodium carbonate spring in the Geyser mine, Silver Cliff, Colorado, on the 2000-foot level, yielded traces of lead, copper, zinc, nickel, and

cobalt. At Hammam Meskoutine, in Algeria, a similar spring, according to Daubrée, deposits tufas and pisolitic sinters in which, in the concretions, shells of calcium carbonate alternate with shells of pyrite; strontianite is deposited by the same spring.

Quicksilver, gold, and silver have been recognized in the spring deposits of the geyser districts in New Zealand. From the Whakarewarewa hot springs at Roturoa (sodium chloride-silica type) sinters have lately¹ been analyzed which yielded nearly 5 ounces of silver and about $1 in gold per ton.

Fig. 6.—Section of chaledonic spring deposits, from De Lamar, Idaho, showing vegetable remains. Magnified 35 diameters. Ordinary light.

At De Lamar, Idaho, Lindgren found in rhyolite spring deposits of flinty chaledony, which included casts of vegetable remains and yielded traces of gold and silver.² (See Fig. 6.)

S. Meunier³ reported 0.5 per cent. of cassiterite in siliceous sinter deposited by a hot spring at Selangor, in the Federated Malay States, but this statement has lately been challenged.⁴

³ Compt. Rend., vol. 110, p. 1083, 1890.
⁴ J. B. Scrivenor, Origin of tin-deposits, Perak, Chamber of Mines, p. 5.
It has been shown that springs, hot or cold, may deposit limonite in abundance, with arsenic, manganese, and traces of other metals; and it is likewise proved that the carbonate and silica sinters of hot springs, particularly those of the NaCl or Na₂CO₃ type, contain small quantities of the rarer metals, including gold, silver, copper, lead, zinc, antimony, arsenic, tin, and quicksilver. In no case, as far as known, is the tenor in metals high enough to make a deposit commercial ore. From this standpoint the evidence that such waters have formed workable ore deposits is strong but hardly conclusive; the remarkable poverty in metals of the deposits of the springs in the Yellowstone National Park, for instance, will to many seem an argument against the hydro-thermal theory of the genesis of ore deposits.

Deposits of Other Gangue Minerals.—Calcite, quartz, chalcedony, and opal are common products of deposition at the surface, but besides these the mineral deposits often contain such minerals as barite, ankerite and siderite, fluorite, and more rarely strontianite, celestite, and zeolites. It will be necessary to examine the competency of the various waters to form these gangue minerals.

Fluorine is present in traces in many waters, both vadose and deep, but appears in larger quantities in waters of the sodium carbonate type. Few authenticated instances of actual deposition of fluorite by springs are recorded; the substance rarely occurs in crystallized form and the chemists have probably often neglected to test the sinters for fluorine. The Carlsbad Springs deposit a pisolithic or oölitic sinter. According to Berzelius¹ and later chemists this contains a notable quantity of calcium fluoride. A limonitic variety of the spring deposit yielded 0.272 per cent. arsenic.² The analyses on page 99 also demonstrate that various phosphates may be precipitated as well as the carbonates of iron and strontium.

¹ Pogg. Ann., 74, 1823, p. 149.
² Blum and Leddin, Am. Chem. Pharm., vol. 73, 1850, p. 217.
COMPOSITION OF DEPOSITS OF CARLSBAD SPRINGS

Berzelius, Analyst.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrous carbonate</td>
<td>12.13</td>
<td></td>
</tr>
<tr>
<td>Ferric oxide</td>
<td>19.35</td>
<td>0.43</td>
</tr>
<tr>
<td>Manganese oxide</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>53.20</td>
<td>96.47</td>
</tr>
<tr>
<td>Strontium carbonate</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Basic ferric phosphate</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>Aluminum phosphate</td>
<td>0.60</td>
<td>0.10</td>
</tr>
<tr>
<td>Calcium phosphate</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Calcium fluoride</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>Silica</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>9.00</td>
<td>1.59</td>
</tr>
</tbody>
</table>

At Plombières, in the French Vosges, springs with a temperature of 70° C. issue from granite. They have a low salinity (360 parts per million) and contain mainly sodium sulphate and silica, believed to be present in part as sodium silicate, also traces of arsenic and fluorine. The derivation of these salts is doubtful and the springs are apparently not directly related to volcanic rocks. They issue from well-defined fissure veins containing quartz and fluorite, and Daubrée\(^1\) found that they had deposited calcite, aragonite, and fluorite. The Roman bricks and cement contained zeolites, chiefly apophyllite (containing fluorine) and chabazite, with opal and chaledony. Chabazite is also reported by Daubrée as deposited from springs at Luxeuil and at Bourbonne-les-Bains, which have a temperature of 46° and 68° C. respectively.

In some of the mines of Cripple Creek gypsum is found under conditions strongly suggesting deposition by ascending springs subsequent to the formation of the gold veins. Crystals of gypsum occur commonly near springs charged with calcium sulphate. Weed\(^2\) has described how the Hunter Hot Springs, near Livingston, Montana, deposit this mineral in fractures in Tertiary sandstone; stilbite, a zeolite, is forming with the gypsum.

1. Les eaux souterraines, 3, p. 31.
The springs have a temperature of 64° C. and are weak mineral waters. According to a somewhat doubtful analysis they are rich in silica and alumina, but poor in calcium sulphate, so that Weed believes that at present they deposit more stilbite than gypsum. The presence of stilbite has also been noted by Weed in the vein-like deposits, containing gold and silver, believed to be made by the present Hot Springs at Boulder, Montana; the stilbite occurs in the predominating quartz, chaledony and calcite. Lindgren noted the presence of a little adularia in the material.

According to Lindgren a spring deposit in New Mexico contains about 89.60 per cent. of calcium carbonate and 0.9 per cent. of calcium fluoride. There are no springs now at this place, but it is probable that the sodium carbonate waters of Ojo Caliente, a short distance lower down in the valley, formerly issued here. As shown by an analysis on page 60, the water contains a notable amount of fluorine. A vein of white crystalline fluorite is opened by a shaft close by the calcareous tufa and is believed to have been formed by the same waters. Both tufa and vein contain traces of gold and silver, and a few crystals of barite were observed in the vein material.

Veins and replacements of fluorite in quartz porphyry and Cretaceous sandstone near the sodium carbonate springs of Teplitz, Bohemia, have been described by J. E. Hilsch and the evidence is considered good that the fluorite was deposited by these thermal waters.

Barite is deposited far more abundantly than fluorite. As shown above, many carbonate and even sulphate waters contain a little barium. It has been proved that alkaline bicarbonates with an excess of carbon dioxide can hold barium in solution, notwithstanding the presence of sulphates; sodium chloride and other salts also seem to retard the formation of barium sulphate. Haidinger observed that barite was deposited by the hot waters at Carlsbad, and Becke noted the same at Teplitz. At Idaho

2 The hot springs at Ojo Caliente and their deposits, Econ. Geology, vol. 5, 1910, pp. 22-27.
Springs, in Colorado, a hot sodium carbonate water issues from granitic rocks, and barite crystals are found in abundance in a cellular and decomposed dike rock at the mouth of the spring. Spurr1 shows that the barium is contained in this dike rock and believes that the barite resulted from the reaction of the water on the rock.

Barium is, however, far more commonly contained in sodium chloride waters, particularly in the brines of sedimentary strata. Many writers record the deposition of barite from such waters, and it is probable that wherever this mineral appears in large quantities in mineral deposits waters of this type have been active.

An excellent example is reported from a mine near Clausthal, Germany,2 where a spring of strong brine, which undoubtedly derived its salts from sedimentary strata, was encountered at a depth of 1,200 feet; this brine contained in grams per liter 67.555 sodium chloride, 10.509 calcium chloride, 4.360 magnesium chloride, 0.359 potassium chloride, 0.314 barium chloride, and 0.854 strontium chloride. When it was mingled with the ordinary mine waters, which carried sulphates, abundant precipitation of barium and strontium sulphate took place in the pumps and elsewhere, so that within a few years the capacity of the pipes became much reduced by this deposit. This compact material contained 92.44 per cent. barium sulphate and 4.32 per cent. strontium sulphate. The reaction is believed to be retarded by the presence of sodium and magnesium chlorides.

According to P. Krusch,3 barite is precipitated in the pumps at some Westphalian coal mines by a similar reaction between strong salt brine from the Triassic sandstones and potable water with sulphates, each ascending on separate faults and each deriving its contents of salts from sedimentary strata. Veins of barite with small amounts of galena, pyrite, etc., appear in the Carboniferous and in the Devonian. At a lower horizon quartz veins contain galena and zinc blende, both kinds of deposits having been made, according to Krusch, by these saline waters. Simi-

3 Monatsberichte Deutsch. geol. Gesell., 1904, p. 36; Ref. in Zeitschr. prakt. geologie, 12, 1904, p. 252.
lar deposits of barite in the pipes of the pumping apparatus have been described from English coal mines.¹

An account by Headden² describes an interesting group of springs on the North Fork of the Gunnison River, Delta County, Colorado. They are cold, but contain free carbon dioxide and a little hydrogen sulphide and are essentially sodium chloride waters. At least one spring contains barium and all of them yield a little strontium. The Drinking Spring has a total salinity of about 1,656 parts per million. Small quantities of calcium, potassium, magnesium, barium (0.0132 gram per liter), strontium (0.0066 gram per liter), lithium, manganese, ammonia, iron, aluminum, also a trace of zinc, are present in the order stated; also sulphuric acid radicle (0.6254 gram per liter), silica, boron, and bromine, the latter three in very small amounts. The spring deposits a calcium carbonate sinter, which was found to contain 5.42 per cent. barite, but no gypsum or sulphur.

Ferrous carbonate, or siderite, is sometimes observed, as in the Carlsbad "Sprudelstein" and in deposits of limonite formed in bogs and peat. Deposits of magnesium minerals are rare. H. Leitmeier³ describes a deposit of hydrous carbonate of magnesia from the springs of Lohitsch in Styria; many springs, especially those whose waters have traversed sedimentary beds, contain organic matter and are probably competent to deposit hydrocarbons.

The more common gangue minerals in certain classes of veins are thus deposited by spring waters, particularly by the warm sodium chloride and sodium carbonate springs. There are, of course, a great number of gangue minerals like tourmaline, garnet, feldspars, and similar silicates which cannot be expected to develop in water under the conditions of temperature and pressure prevailing at the surface.

CHAPTER VIII

RELATIONS OF MINERAL DEPOSITS TO MINERAL SPRINGS

The deposition of many valuable minerals can be directly observed in nature: limonite, for instance, from the evaporation of water containing iron, or from precipitation in bogs and lakes; sulphur by the decomposition of hydrogen sulphide dissolved in water; residual deposits of limonite, nickel silicates, and pyrolusite by the decomposition of rocks by vadose waters; common salt and borax by the evaporation of lake waters. A large class of deposits, such as the deep-seated veins containing metals and ores developing near intrusive contacts, we can never hope to observe in nature in the process of formation.

Ascending mineral springs are not uncommonly observed in mineral deposits, particularly in those which follow fissures, but caution must be used in attributing a genetic role to these springs. If we find such a spring in a contact-metamorphic deposit or in a vein of deep-seated origin, as a cassiterite vein, it would be unlikely indeed that this spring had anything to do with the formation of the deposit, for it could scarcely be assumed that the circulation of underground waters could be maintained in the same path during the many vicissitudes of deep erosion, involving the laying bare of rocks once many thousand feet below the surface. The formation of ore deposits usually occupies comparatively short epochs, and the agencies to which they owe their origin are evanescent phenomena.

In a rather large class of veins, however, of which we know that they were formed near the surface and in recent geological times, we may look with more confidence for a maintenance of the originating solutions, but even here it is well to investigate carefully; the spring may simply be a vadose water of the upper circulation which selected the fissure as a convenient path.

The case of Plombières has already been mentioned (p. 99) and there seems to be little reason to doubt that the quartz-fluorite veins at this place have been deposited by the same hot waters which still issue from the fissures. The Triassic sand-
stone, covering the granite in that vicinity, is in part replaced by silica and also contains fluorite and barite. Daubrée1 cites the frequent occurrence, in the Triassic beds of the Central Plateau and the Vosges, of veins and extensive silicification similar to that at Plombières. Barite, fluorite, and sometimes galena accompany the quartz.

According to Jacquot and Willm,2 the sodium chloride springs of Bourbon-l'Archambault, at the north end of the Central Plateau region, issue from a fracture in Triassic strata, which contains quartz with galena, barite, and fluorite. Dikes of micaceous porphyry (minette?) follow the fissures. The waters have a temperature of 53\degree C. and the total solids aggregate 3,186 parts per million, of which 1,770 are sodium chloride. Bromine, iodine, fluorine, arsenic, and copper are present, and the saline constituents are attributed to the Triassic and Permian strata. The spring deposits contain earthy carbonates and 0.07 per cent. copper oxide. The springs of Contrexéville, which issue from the Triassic and carry traces of fluorine and arsenic, have a temperature of 11\degree C., and the salts, among which calcium sulphate and calcium carbonate prevail, also bear marks of derivation from the sediments.

The springs of Lamalou, near Montpellier, southern France, have a temperature of 34\degree–47\degree C. and 1,500 parts per million of total solids; the alkaline carbonates prevail, but they also contain calcium and magnesium carbonates, suggesting an admixture at least of vadose waters. Traces of barium, arsenic, copper, lead, nickel, and cobalt were determined.3 These springs are believed to be genetically connected with the eruption of a neighboring basalt area and stand in close relationship to veins containing pyrite, arsenopyrite, and chalcopyrite in a gangue of quartz and barite, the exploitation of which had to be stopped on account of the fear of tapping large volumes of water. Barite is believed to be deposited by the present waters.

The sodium carbonate springs at Ems,4 according to Delkeskamp, issue from a fissure which forms the extension of a quartz vein and contains chalcopyrite. Basalt occurs in the same vicinity.

1 Les eaux souterraines aux époques anciennes, p. 151.
2 Les eaux minérales de la France, p. 107, Paris, 1894.
3 L. de Launay, Recherche, etc., des sources thermominérales, 1892.
4 Verhandl. Gesell. deutscher Nat. u. Aerzte, 1903, 2, first part.
RELATIONS TO MINERAL SPRINGS

Sandberger and Delkeskamp state that the hot sodium chloride springs of Wiesbaden are closely connected with a quartz vein containing tetrahedrite; veins of barite and calcite are common, as are impregnations of barite; the latter are attributed to earlier (Tertiary) spring waters.

Close connection with ore-bearing veins is also, according to Delkeskamp, indicated by the sodium chloride springs of Kreutznach, which issue close to a number of veins containing calcite, barite, and fluorite with ores of copper and quicksilver. Here, also, Tertiary strata higher than the springs are impregnated with barite, suggesting a considerable age and a formerly higher point of issue of the springs. The saline constituents of the water are believed to be derived from sedimentary rocks.

The evidence presented by Delkeskamp does not suffice to establish direct connection of the springs with the ore deposition, but the widespread occurrence of barite, in close association with strong sodium chloride springs, is assuredly suggestive.

Mineral springs with a maximum temperature of 26° C. have been opened at several places in the mines of Freiberg, Saxony, and are described in some detail by Stelzner and Bergeat, but there is little reason to believe that they are genetically connected with the deposits. The same authors describe weak sodium carbonate springs, which were encountered in the veins of Joachimsthal, in Bohemia; their highest temperature was 28° C. This is only about 10 miles from Carlsbad and at a lower level. Posepny has suggested that the waters may be derived from the same general source which supplies the springs at Carlsbad. Finally, should be mentioned the hot waters which broke into the copper mine of Bocheggiano at Massa Maritima, Tuscany, at a depth of over 1,000 feet, and which had a temperature of 40° C. They contained from 769 to 2,053 parts per million of total solids, mainly sulphates of calcium and magnesium, with a notable amount of boric acid. The waters, except for the boron, are of the type of ordinary mine waters and may well be of vadose origin with an admixture of boron from volcanic exhalations.

Warm springs have been encountered in the mines of Cornwall; and one of them in a tin vein near Redruth is said to have contained much lithium, which is not surprising considering the general distribution of lithium-bearing muscovite in that

1 Die Eralagerstätten, 2, p. 1227.
region. It seems difficult to believe that these springs are the remains of the waters which deposited the veins, for the veins were formed at a great depth and under high pressure and temperature at a remote geological time.

In the Cordilleran region of the United States examples of mineral springs in mineral veins are not so common as might be expected from the coexistence of a late mineralization and present abundance of thermal waters. One reason for this lack lies probably in the great physiographic changes which in most parts of this region have taken place in relatively late times and which would tend to lower or divert the discharges of the springs. At Silver Cliff S. F. Emmons\(^1\) found issuing from the 2,000-foot level of the Geyser mine a strong spring of sodium carbonate water with free carbon dioxide, yielding small quantities of copper, lead, and zinc; the temperature was 26.5° C. The shaft was sunk to a depth of 1,850 feet in rhyolite tuff; at this depth, at the contact between the tuff and pre-Cambrian gneiss, a vein was found containing galena, zinc blende, tetrahedrite, argentite, etc., in a gangue of calcite, barite, and quartz. The water deposited a calcium carbonate sinter with traces of lead, zinc, copper, nickel, and cobalt. In this instance it is possible that the ascending water may have had a genetic connection with the deposit.

At the Comstock lode\(^2\) hot waters were encountered at an early date and have made exploitation difficult. It can scarcely be doubted that these waters stand in causal relation to the vein and it is certain that they now dissolve and precipitate gold and silver, as well as pyrite. The heat of the lode has been attributed to oxidation of pyrite or to kaolinization of the feldspars of the country rock, but Becker has shown that it is clearly due to the ascending waters. Reid\(^3\) has proved that evaporated residue from water collected on the 2,250-foot level of the C. and C. shaft contained 2.92 milligrams of silver and 0.298 milligrams of gold per ton. This water, which has a temperature of 46° to 81° C., contains 956 parts per million of solids, mostly sulphates of calcium and

sodium but including 133 parts of silica. This water is assuredly not one of the pure types of ascending waters; its composition is in the main the same as that of the ordinary mine waters and it may be a mixture of vadose mine waters with a very hot ascending water.

The widely cited occurrence at Sulphur Bank, in Lake County, California, is considered to furnish good proof of deposition of cinnabar by hot sodium chloride waters, also heavily charged with boron (analysis on page 60). The springs issue through Quaternary basalt in which cinnabar was deposited with opal as crusts along crevices, sometimes as delicate crystals loosely attached to the walls, or as impregnations of the porous basalt; the pyrite or marcasite was mostly disseminated in the rock, but occurred also as crusts alternating with cinnabar and opal. Melville found traces of gold and copper in the marcasite. At the surface no cinnabar was observed, but sulphur, derived from the oxidation of H_2S, was present. A few feet below the surface the cinnabar appeared and continued down to about 300 feet, into the sandstones on which the basalt rested. No quicksilver was found in the water, but no one who has studied the occurrence has doubted that cinnabar, pyrite, and opal have been precipitated from the water which still ascends in these channels. The gases dissolved in the water consist mostly of carbon dioxide, with hydrogen sulphide, hydrocarbon, nitrogen, and some ammonia. The evidence gains in importance when it is realized that the mineral combination and general mode of occurrence cited are characteristic of the quicksilver deposits of the Coast Ranges.

There is, then, some convincing testimony that deposits of cinnabar and stibnite may be formed close to the surface by hot springs of the kind related to volcanic phenomena. Regarding other classes of ore deposits the testimony is not so conclusive, though fairly strong; more is needed, but enough is at hand to establish the strong probability that the fissure veins which contain notable amounts of gold and silver have been formed by ascending waters of the kind indicated.

On the other hand, it is certain that warm and even cold waters of the ordinary circulation in non-volcanic regions are likewise capable of depositing the ordinary gangue minerals and probably also moderate quantities of metallic sulphides. The sodium chloride waters, which derive their salt from the sedimentary beds, appear to be especially effective in the deposition of minerals.
CHAPTER IX

FOLDING AND FAULTING

FOLDS

Sedimentary beds and ore deposits contained in them are often bent, corrugated, and folded in more or less complex manner. Extensive folding is usually effected by horizontal or "tangential" thrust, but minor bends and monoclines (Fig. 7) may originate by thrust in any direction. In extreme cases any fold or bend may pass over into a break or fault. In folding on a large scale it is necessary that the sedimentary

complex have beds of sufficient strength (competent beds) to transmit the thrust and support the structures; if the complex is plastic it will be deformed by flowage and no regular folds will result.

Folds are synclinal (Figs. 8 and 9), trough-like; or anticlinal (Fig. 10), shaped like a saddle. A plane which bisects the average angle between the limbs is called the axial plane of the fold. By complex movements the axial plane may become a curved surface. If this axial plane is vertical the limbs dip at like angles; if the axial plane is inclined the limbs have unequal dips. In close folding the limbs dip steeply (Fig. 11). When the axial plane of folds inclines strongly in one direction we speak of overturned folds, and these by further

1 E. de Margerie and A. Heim, Les dislocations de l'écorce terrestre, Zürich, 1888, pp. 49-63.

109
Fig. 8.—Open syncline showing Carboniferous phosphate beds unconformably covered by Eocene beds. Beaver Creek, Utah. After E. Blackwelder, U. S. Geol. Survey.

Fig. 9.—Eroded syncline, Georgetown Canyon, Idaho, showing phosphate bed. After H. S. Gale, U. S. Geol. Survey.

Fig. 10.—Eroded anticline, Montpelier, Idaho, showing bending of copper-bearing beds of Triassic age. After H. S. Gale, U. S. Geol. Survey.
Fig. 11.—Close folding with overthrusts and thickening of strata by duplication. After M. Koch.
compression may easily pass over into overthrust faults (Fig. 12), causing a part of the folded series to slide over the other. In overthrust faults the movement may amount to many miles.

Synclines and anticlines extend naturally about perpendicularly to the direction of compressive stress. Their direction is indicated by a line passing through all the highest or lowest points of a given stratum. These crest lines or trough lines have usually a distinct dip; the angle of this line with the horizontal is called the pitch of the fold. Minor plications on the limbs often indicate the pitch of the fold. Thrusts in two directions result in cross-folding with, the development of bending in forms known as canoes, domes, and basins.

When beds are lifted in dome shape so that they dip away from a central point they form a quaquaaversal.

Fig. 12.—Diagram showing development of an overthrust fault from a fold. After C. R. Van Hise, U. S. Geol. Survey.

In sharp folding of a sedimentary complex, the strata become thicker by compression at the points of greatest bending (Fig. 13). The harder strata of sandstone or limestone will yield to tension by breaking or tearing; the softer, shaly strata do not break, but yield to deformation. Strata of differing hardness may slide over one another at such points, and openings may be produced which, for instance, may later be filled with quartz. In slates and crystalline schists which have been deformed at great depths by flowage the harder or "competent" layers, like quartz veins, may be corrugated in an extraordinarily complicated manner. Some quartz veins of Nova Scotia, called "barrel quartz," are believed to owe their form to such conditions (Fig. 14).
Fig. 13.—Overturned anticline of crystalline limestone, Lenox, Mass., showing thickening and breaking of strata at points of bending. *After T. Nelson Dale, U. S. Geol. Survey.*

Fig. 14.—Gneiss with corrugated veinlets of quartz. *After C. R. Van Hise, U. S. Geol. Survey.*
FAULTS

Sedimentary beds and deposits, as well as deposits of later origin which persistently follow a certain horizon in a sedimentary series, are sometimes abruptly cut off by structural planes.

Fig. 15.—Faulting of Mendota vein, Silver Plume, Colorado. a, granite; b, quartz; c, galena and zinc blende. After J. E. Spurr, U. S. Geol. Survey.

1 E. de Margerie and A. Heim, Bailey Willis, C. R. Van Hise, loc. cit.
J. E. Spurr, Geology applied to mining, New York, 1904, pp. 149–163.
C. F. Tolman, Jr., Graphic solution of fault problems, Min. and Sci. Press, June 17, 1911, et seq.
C. F. Tolman, Jr., Graphic solution of fault problems, San Francisco and London, 1911.
When such an occurrence is found it is safe to conclude that the interruption is due to a fault—that is, to a fissure along which movement has taken place—and that the continuation of the bed exists somewhere beyond this break (Fig. 15).

Fig. 16.—Sketch showing replacement of shale by pyrite. Natural size. The small fissures are older than the pyrite and are crossed by its banded structures.

In the case of epigenetic deposits not closely following the original lines of structure in the rocks, such a conclusion is often, but not always, justified. The interruption of the ore-body may be due to an actual post-mineral dislocation, or it may be

Fig. 17.—Sketch of a vein in the Homer mine, Idaho Springs, Colorado, showing deflection of the vein upon meeting a dike. After J. E. Spurr, U. S. Geol. Survey.

cauased by a cessation of mineralization on account of structures existing before the mineralization began. The replacement of limestone by galena or shale by pyrite (Fig. 16) may stop sud-
denly at a clay-coated seam, which offered a barrier to the solutions. A vein-filled fissure may terminate abruptly or split up within a few feet upon encountering softer and more plastic rocks, such as clay shales, thick gouge seams, or soft tuffs. A vein traversing formations of varying hardness often suffers abrupt deflection at rock contacts. It may also be deflected by encountering older dikes or fissures, either barren or filled with vein material (Fig. 17).

The distinction between faults and deviations is most important. The appearance of detached fragments of the ore—usually termed "drag"—on the faulting plane (Fig. 18), the direction

![Sketch of faulted quartz vein in andesite, showing "drag." After J. E. Spurr, U. S. Geol. Survey.](image)

of the striations, and the interrelations of dip and strike of faulting, fissure, and ore-body are all valuable data which must be interpreted in each case.

There are many geometrical rules for the finding of a faulted ore-body, but they are of little value unless the character of the interruption is known. Each case must be considered and judged by itself.

Too often faulting is considered in only two dimensions—that is, as either normal or reverse movement in a vertical plane.
The fact is that most faulting movements have lateral as well as vertical components; every mining engineer knows the frequent occurrence of inclined or horizontal striation on fault planes.

Several proposals have been made looking to a uniform nomenclature of the various elements involved in faulting movements; the best of these are advocated by J. E. Spurr, C. F. Tolman, Jr., and H. F. Reid. Lately a committee of the Geological Society of America has been instructed to examine this question in more detail, and their conclusions, in large part based on the work of Reid, will probably be adopted by American geologists. An abstract of their report \(^1\) will be found in the following pages.

Measurements of fault movement are made in the fault plane itself, in a plane normal to the trace of the faulted body on the fault plane, in any normal plane, and in a horizontal plane.

General Terms

A fault is a fracture in the rock of the earth's crust, accompanied by a displacement of one side with respect to the other in a direction parallel with the fracture. The fracture is usually not an open crack, and an open crack would not be a fault unless one of the sides had moved parallel with the crack relatively to the other.

As we pass from one part of a fault to another, we find that certain characteristics vary. Definitions descriptive of characteristics must therefore be considered as referring to the parts of the fault to which they are applied and not necessarily to the fault as a whole.

A closed fault is one in which the two walls of a fault are in contact.

An open fault is one in which the two walls of a fault are separated. The same fault may be closed in one part and open in another.

The fault space is the space between the walls of an open fault.

A fault surface is the surface along which dislocation has taken place; this may be called a fault plane if it is without notable curvature.

A fault line is the intersection of a fault surface with the earth's surface or with any artificial surface of reference, such as a level of a mine.

\(^1\) Reid, Davis, Lawson, and Ransome, *op. cit*.
When a fault is made up of a number of slips on closely spaced surfaces, the section of the earth's crust containing these minor faults is called the shear zone. This name would also apply to the brecciated zone which characterizes some faults. The fault breccia, or fault rock, is the breccia which is frequently found in the shear zone, more especially in the case of thrust faults.

Gouge is a fine-grained, impervious clay, which sometimes occurs between the walls of a fault.

A horse is a mass of rock broken from one wall and caught between the walls of the fault.

The fault strike is the direction of the intersection of the fault surface, or the shear zone, with a horizontal plane.

The fault dip is the inclination of the fault surface, or shear zone, measured from a horizontal plane.

The hade is the inclination of the fault surface, or shear zone, measured from the vertical; it is the complement of the dip.

The hanging wall is the upper wall of the fault.

The foot wall is the lower wall of the fault.

General Classification of Faults.

Faults of parallel displacement are those in which all straight lines on opposite sides of the fault and outside of the dislocated zone, which were parallel before the displacement, are parallel afterward.

Rotatory faults are those in which some straight lines on opposite sides of the fault and outside of the dislocated zone, parallel before the displacements, are no longer parallel afterward—that is, where one side has suffered a rotation relative to the other.

Determinations of throw are almost always relative, and hence we can rarely tell which side of the fault has moved; therefore the terms "upthrow" and "downthrow," which are used according to the side from which the fault is viewed, are objectionable, as they suggest that a particular side of the fault has actually been moved. They are in very general use and should be retained, but it should be definitely understood that they refer merely to a relative and not to an absolute displacement.

Faults of Parallel Displacement.—No faults of any magnitude consist of simple parallel displacements over their whole length. Faults die out at their limits, and the displacement is not uniform along their courses, so that there is necessarily some slight
rotation, varying in amount in the different parts of the fault's course. Probably the greatest number of faults, certainly of large faults, are of this character. The variations in rotation and displacement are permitted by slight plastic deformation. If, however, we confine our attention to a small length of the fault, we may describe the displacement there as if the rock were rigid; and if the rotation is very small, we may describe it as if a parallel displacement had occurred. It sometimes happens that the strikes on the opposite sides of a fault are different; the strata are then said to "strike at each other." This suggests a rotation, but it may be due to local variation of strike or to an unconformity.

The word "displacement" should receive no technical meaning, but is reserved for general use; it may be applied to a relative movement of the two sides of the fault, measured in any direction, when that direction is specified; for instance, the displacement of a stratum along a drift in a mine would be the distance between the two sections of the stratum measured along the drift. The word "dislocation" will also be most useful in a general sense.

There are two methods of defining the displacement due to a fault; we may define the apparent relative displacement of a bed by naming the distance between its two disrupted branches measured in any chosen direction, such as the vertical distance between the branches, measured in a shaft, or the perpendicular distance between the lines of intersection of the two branches with the fault plane; or we may define the actual relative displacement and its components in important directions. The apparent displacements are those usually measured; the actual displacement must be worked out for a complete understanding of the fault.

Only four important technical words are used to denote the various displacements caused by faulting, qualifying words being added to indicate the component of the displacement referred to. These words are:

Slip, which indicates the relative displacement of formerly adjacent points on opposite sides of the fault, measured in the fault surface. The qualifying words relate to the strike and dip of the fault surface.

Shift, which indicates the relative displacement of regions on opposite sides of the fault and outside of the dislocated zone. The
qualifying words relate to the strike and dip of the fault surface, except in the expression "vertical shift," which is self-explanatory.

Throw, which indicates a displacement not related to the strike or dip of the fault plane.

Offset, which indicates the horizontal distance between the outcrops of a dislocated bed.

By keeping in mind the general meaning of these four words, all confusion in the uses of the proposed nomenclature can be avoided.

There is no generally accepted word in present use to denote the slip. Willis and Tolman use "displacement"; Spurr uses "throw." We have reserved "displacement" for general use, and the word "throw" is here used in quite a different sense. The word "shift" also suggests the meaning attached to it; there is no distinctive word now in use to describe the shift.

In mines, where the fault surface itself is visible, the slip will generally be determined; it is of paramount importance in mining. In field surveys, where the fault is studied by the dislocation of the outcrop of strata, or dikes, often at a considerable distance from the fault, the shift is determined. In the larger problems of geology the shift is of greater importance than the slip. The distinction between the slip and the shift is important; it has not heretofore been recognized in the nomenclature of faults. The perpendicular throw is of the greatest importance. It is frequently the only displacement determined, and in strike faults all the displacements in a vertical plane at right angles to the fault strike—that is, all the displacements which have heretofore received the most attention—can be expressed in terms of perpendicular throw. The offset is often the most important surface measurement made.

Faults in Stratified Rocks.—Among stratified rocks the character of the displacement of the strata due to a fault is so much influenced by the relation of the strike of the fault to the strike of the strata that special subclasses are generally recognized.

A strike fault is one whose strike is parallel to the strike of the strata.

A dip fault is one whose strike is approximately at right angles to the strike of the strata.

An oblique fault is one whose strike is oblique to the strike of the strata.
These terms are, of course, not directly applicable in regions of unstratified rocks; but they might be used in such regions with respect to the strike of a system of parallel dikes if this were distinctly stated in the description of the faults.

Similarly with regard to the general structure of the region:

A longitudinal fault is one whose strike is parallel with the general structure.

A transverse fault is one whose strike is transverse to the general structure.¹

Slip.—The word "slip" indicates the displacement as measured on the fault surface; the qualifying words refer to the strike and dip of the fault.

The slip or net slip is the maximum relative displacement of the walls of the fault, measured on the fault surface, along the line of the movement; it is given by ab in Figs. 19 and 20.²

![Fig. 19.—The slip.](image)

![Fig. 20.—The shift.](image)

The strike-slip is the component of the slip parallel with the fault strike or the projection of the net slip on a horizontal line in the fault surface; ac in Figs. 19 and 20.³

The dip-slip is the component of the slip parallel with the fault dip, or the projection of the slip on a line in the fault surface perpendicular to the fault strike; bc in Figs. 19 and 20.⁴

Shift.—It frequently happens that a fault has not a single surface of shear, but consists of a series of small slips on closely spaced surfaces, and in some faults the strata in the neighborhood of the fault surface are bent, so that the relative displacements of the rock masses on opposite sides of the fault may be quite different

¹ See the word "flaw" further on.
² Spurr and Tolman call this the "total displacement."
³ Tolman calls this the "horizontal displacement."
⁴ Tolman calls it the "normal displacement."
from the slip and not even parallel with it. The word "shift" is used to denote the relative displacements of the rock masses situated outside of the zone of dislocation; the qualifying words relate to the strike and dip of the fault, with one exception, in which the meaning is clear.

The *shift*, or *net shift*, is the maximum relative displacement of points on opposite sides of the fault and far enough from it to be outside of the dislocated zone; *de* in Figs. 20 and 21, where *d* is the position of a selected point before and *e* after the faulting.

The *strike-shift* is the component of the shift parallel with the fault strike; *df* in Figs. 20 and 21.

The *dip-shift* is the component of the shift parallel with the fault dip; *fe* in Figs. 20 and 21. (The triangle *def* is parallel with the fault surface in Fig. 20. 1)

The bending of the strata near the fault may be so great that the direction of the shift is no longer even nearly parallel with the fault surface; it is better then to use the three following terms for the components of the shift:

The *strike-shift* is the horizontal component of the shift parallel with the fault strike, as already defined.

The *normal shift* is the horizontal component of the shift at right angles to the fault strike. It equals the horizontal shortening or lengthening of the earth's surface at right angles to the fault strike, due to the fault.

The *vertical shift* is the vertical component of the shift. These terms may evidently be used equally well when the shift is parallel with the fault plane.

1 The dip-shift and strike-shift are not accurately shown in Fig. 20, because the net shift, *de*, is not parallel with the fault plane, and the lines *de*, *df*, and *fe* would not lie in one plane. But the definitions are clear and the figure illustrates them fairly well.
FOLDING AND FAULTING

Throw.—The word “throw” will apply to components of the displacements having no immediate bearing on the strike or dip of the fault plane.

The throw is the vertical component of the slip; \(eg \) in Figs. 20 and 22, \(de \) in Figs. 23 and 24. The word is almost universally used in this sense, but A. Geikie uses it to designate the vertical distance between the two parts of a dislocated bed, projected if necessary—a very different thing. Geikie’s “throw” would be represented by \(df \) in Figs. 23 and 24. Spurr uses “throw” to designate the distance between the two parts of a dislocated bed measured on the fault plane.

![Fig. 23.—Section of a normal fault.](image1) ![Fig. 24.—Section of a reverse fault.](image2)

The heave\(^1\) is the horizontal component of the slip, measured at right angles to the strike of the fault; \(bg \) in Figs. 20 and 22, \(eg \) in Figs. 23 and 24. The word “heave” has been used in many senses; J. Geikie, Willis, Scott, and Fairchild use it as defined above; A. Geikie and Spurr use it to designate what we have called the “offset” of a bed (see below); Jukes-Brown apparently used it for the strike-slip (De Margerie and Heim, page 72); so did Ransome; and Scott also uses it in this sense when he refers to “heave faults.”

The perpendicular throw of a bed, dike, vein, or of any recognizable surface, is the distance between the two parts of the disrupted bed, etc., measured perpendicularly to the bedding plane or to the plane of the surface in question. It is measured, therefore, in a vertical plane at right angles to the strike of the disrupted surface.\(^2\) The importance of the perpendicular throw of the strata is so great that it is convenient to have special terms for it; these are given on the next page.

\(^1\) Sometimes called the “horizontal throw.”

\(^2\) Spurr calls it the “perpendicular separation.” Tolman’s “perpendicular throw” would under certain conditions correspond in meaning with our expression.
The stratigraphic throw is the distance between the two parts of a disrupted stratum measured at right angles to the plane of the stratum; \(ab \) in Figs. 23 and 24. The stratigraphic throw is in general the simplest throw to determine; it can be found from the distance between the outcrops of the two parts of the same stratum, the dip of the stratum, and the slope of the ground.

The dip throw is the component of the slip measured parallel with the dip of the strata; \(cb \) in Figs. 23 and 24.

The throws have been defined as components of the slip. Where we are dealing with a simple fault in plane strata, the shifts will be the same as the slips, and the term throws will apply to both equally well; it is only in plane strata that the perpendicular throw is important. Where there is a dislocated zone about the fault, the term perpendicular throw would necessarily apply to the shift; but we cannot detach the word throw from its accepted meaning and apply it generally to the shift.

Offset.—The offset of a stratum is the distance between the two parts of the disrupted stratum measured at right angles to the strike of the stratum and on a horizontal plane.\(^1\)

![Diagram](image)

Figs. 25 and 26.—Plan of an oblique slip.

If Figs. 25 and 26 represent the ground plans of oblique faults on a level surface, \(ab \), and not \(ac \), would be the offset of the stratum; \(ac \) would be the horizontal displacement of the stratum parallel with the fault strike.

Some confusion of nomenclature results from the non-observance of the fact that the distance between the dislocated parts of a stratum measured in a certain direction is not the same as the component of the slip in the same direction; for instance, let

\(^1\) A. Geikie and Spurr use the term "heave" for this offset.
Fig. 27 represent a reverse strike dip-slip fault in section. A. Geikie calls \(ad \) the throw and \(ef \) the heave, whereas the most general usage seems to be to call \(ac \) the throw and \(bc \) the heave, as adopted above. The distance \(ad \) has not been defined, but it is readily described as the vertical displacement of the stratum, without limiting the word "displacement" to a technical meaning; \(ef \) is the offset. Let Figs. 28 and 29 lie in the fault plane and let the point \(a \) move by faulting to \(c \), then \(ac \) will be the net slip, \(ad \) the strike-slip, \(cd \) the dip-slip, and \(ab \) the displacement of the stratum parallel with the fault strike; \(ab \) is not necessarily at right angles to the strike of the strata.

Faults Classified According to the Direction of the Movement.—Faults may be classified, according to the direction of the movement on the fault plane, into three groups, as follows:

1 This means a reverse fault whose strike corresponds with the strike of the strata and in which the displacement has been in the direction of the fault dip.
Dip-slip faults, where the net slip is practically in the line of the fault dip.

Strike-slip faults, where the net slip is practically in the direction of the fault strike. J. Geikie calls such faults "transcurrent faults," or "transverse thrusts." Jukes-Brown calls them "heaves." Scott calls them "horizontal faults," or "heave faults." A vertical fault is one with a dip of 90 degrees (see below); and, by analogy, a horizontal fault should be one with a zero dip and the term should not be applied to strike-slip faults.

Oblique-slip faults, where the net slip lies between these directions.

Classes of Strike Faults.—Most geological text-books and books on field methods have confined themselves almost exclusively to the discussion of dip-slip faults, and have given little attention to the other two classes.

Strike faults have usually been treated as if they were also dip-slip faults and classified into

Normal faults, where the hanging wall has been depressed relatively to the foot wall.

Reverse faults, where the hanging wall has been raised relatively to the foot wall.

Vertical faults, where the dip is 90 degrees.

The relative displacement has usually been determined by means of a dislocated bed. Although exception may well be taken to these terms, their retention is recommended, because they are in general use and are well understood. The word "reverse" is preferable to "reversed" (which has been almost universally used), as the latter implies the reversal of an action.

The horizontal distance between two points on opposite sides of a fault, measured on a line at right angles to the fault strike, is always shortened by a reverse strike fault, lengthened by a normal strike fault, and unchanged in length by a vertical fault. It can be shown that normal faults may be formed without the existence of tension and indeed under some pressure, but the definitions we are giving are geometric and not dynamic.

Extension of the Words Normal and Reverse to Diagonal and Dip Faults.—The expressions "normal" and "reverse" may be used in connection with oblique and dip faults, even when these are strike-slip or oblique-slip faults, provided they are applied to designate the apparent relative displacement of the two parts of a dislocated stratum, or other recognized surface, in a vertical
plane at right angles to the fault strike. It does not follow, in
the case of oblique-slip faults, that a horizontal line at right
angles to the fault strike would be lengthened by a normal or
shortened by a reverse fault. This has been pointed out by
Ransome\(^1\) and can be illustrated by Figs. 30 and 31. In Fig. 30
a reverse fault, as determined by the displacement of the stratum,
has caused an extension at right angles to the fault strike. It
is evident that if the hanging wall had moved, as in Fig. 31, with

![Fig. 30.—A reverse fault due to an oblique slip.](image)

![Fig. 31.—A normal fault due to an oblique slip.](image)

the stratum dipping as there represented, we should have had
a normal fault and a contraction at right angles to the fault
strike. The relations of the two parts of the disrupted stratum
in Fig. 30 are exactly the same as if we had had a simple reverse
dip-slip fault, and in Fig. 31 as if we had had a simple normal
dip-slip fault; and if there are no disrupted dikes or other means
of determining the amount of the strike-slip, the movements
described could not be distinguished from simple dip-slip faults.\(^3\)
It very frequently happens that nothing more than the apparent
displacement of the strata can be determined, and we recommend
that the terms "normal" and "reverse" faults as defined be
used purely for purposes of description and not for the purpose
of indicating extension or contraction, tension or compression,
vertical or horizontal forces.

Special Classes of Faults.—There are two kinds of faults which
have played such important roles in altering the structure of
some regions that they have received special names.

2. The methods of determining the complete displacement at a fault are
given in Reid’s *Geometry of Faults*, *Bulletin* of the Geological Society of
America, vol. 20, pp. 171–196, and in Tolman’s *Graphic solution of fault
problems, loc. cit.*
Overthrusts.—These are reverse faults with low dip or large hade. In some cases the dip-slip has been enormous, amounting to tens of kilometers. Scott calls them "thrusts" and separates them entirely from faults of high dip; but the word "thrust" has been used for ordinary reverse faults of high dip. The word "overthrust" has been generally used for this kind of fault and is very descriptive. It should be adopted.

Flaws.—Suess has described with care certain faults in which the strike is transverse to the strike of the rocks, the dip high and varying from one side to the other in the course of the fault, and the relative movement practically horizontal and parallel with the strike of the fault. He has used the word "Blatt" (plural, "Blätter") to designate them. Miss Sollas has used the word "flaw" in the English translation of Suess. The gold-quartz veins of the Tauern in Austria, investigated by Posepny, follow such dislocations.

Rotatory Faults.—When a rotation of one side of the fault occurs, the amount of the rotation and the direction of the axis should be given. Rotatory faults have been but little studied, and it is not considered advisable to suggest a special nomenclature at present.

Mineralization of Faults.—Any fault may become a fissure vein by filling and replacement along its course. However, it is rather unusual to find large structural faults, normal or over-
Fig. 33.—Horizontal plan showing faulted vein, Tonopah, Nevada. After J. E. Spurr, U. S. Geol. Survey.
thrusts, which have been extensively mineralized. Shear zones, sheeted zones, and "flaws" (Blätter) often result in veins or lodes.

Complexity of Faulting.—During mining operations excellent and detailed instances of the complexity of faulting are often found. Normal and reverse faults may occur in close proximity. A fault consists more frequently of a series of closely spaced breaks than of a single fracture. Displacement occurs usually along each of these breaks, the result being a distortion of the deposit within the faulted zone.

Fig. 32 shows a case of complicated normal faulting from the Berlin vein, Nevada.\(^1\) Besides the faults indicated there are a great number of other dislocations with horizontal displacement. The deposit is a filled quartz vein, 2 to 3 feet wide, carrying 2 per cent. of sulphides with silver and gold.

The great complications ensuing where faulting takes place along two intersecting fault systems have been described by Spurr\(^2\) in his report on the Tonopah district, Nevada. The result of such structures is likely to be a zigzag distribution of the fragments of the faulted vein with an average movement determined by the two components. Repeated small dislocations practically result in a deflection of the vein (Fig. 33).

CHAPTER X

OPENINGS IN ROCKS

Chemical processes and alteration in general may go on in a rock without cavities other than pore space and capillary or sub-capillary openings. Such processes are, however, metamorphic rather than metasomatic; they simply effect a mineralogical rearrangement without much chemical change; the composition of the rock remains constant. The formation of epigenetic mineral deposits usually implies a considerable addition of foreign material by solutions and these solutions must be guided to the place of deposition by open spaces, such as fissures, joints, or cracks. As a matter of fact the great majority of mineral deposits were formed where the path of the solution was prescribed by openings in the rocks other than those of ordinary pore space.

It has already been pointed out that open spaces can exist only in the uppermost part of the crust, in the zone of fracture, whose depth Van Hise estimates as about 33,000 feet, or 10,000 meters, though it probably is greater than this estimate. Below a certain depth the pressure is so great that the ultimate strength of the rocks is exceeded and cavities, except those of sub-capillary size, are immediately closed by rock pressure. From various considerations it is probable that few of our mineral deposits have been formed at a depth much greater than 15,000 feet.

ORIGIN OF OPENINGS

Rock cavities may originate in various ways:

1. **By the Original Mode of Formation of the Rocks.**—Many volcanic flows contain abundant gas pores, or blow holes produced by the expansive force of gases escaping from the magma. Zeolites and calcite, sometimes with native copper, often accumulate in these pores, and such rocks are usually termed "amygdaloids" and the filled cavities "amygdules" (Fig. 34). Some sandstones and conglomerates contain much pore space in which solutions may deposit ores or other substances.
2. **By Solution.**—Solution cavities are found mainly in easily soluble rocks, such as limestone, dolomite, gypsum, and salt. Posepny justly maintains that the solvent power of water suffices to produce long galleries or passages in rock salt and mentions several examples.\(^1\) Joints in limestone are often irregularly enlarged by solution and when subsequently filled with ores such cavities are known as *gash veins* or *pipe veins*. Caves in limestone are likewise made by atmospheric water of the vadose circulation, containing dissolved carbon dioxide. Such caves are generally formed above the ground-water level in the zone of oxidation, though cases are known which suggest that the process can go on also below this level. Caves occur in all limestone regions and are sometimes of enormous extent; the Mammoth Cave of Kentucky has passages more than 40 miles in length and has been formed by the removal of millions of cubic yards of rock.

The extent of caves is generally determined by faults and dislocations, and rock openings on a smaller scale are usually determined by the prevailing joint systems. The breaking in of caves near the surface produces the "sink-holes" so characteristic of certain limestone plateaus. Both caves and sink-holes have a certain importance in the origin of the class of zinc-lead deposits common to many limestone areas, and caves of dissolution in the oxidized part of ore deposits in limestone are sometimes the receptacles for a great variety of secondary minerals. The floors of caves are usually covered with red "cave earth," a residual deposit of silica, kaolin, limonite, etc., derived from the less soluble constituents of the limestone. Deposits of bat guano and nitrates are sometimes found in caves. Small solution cavities are often found in more resistant rocks that have been exposed to hot solutions of great solvent power.

3. By Fractures of Various Modes of Origin. (a) Contraction Joints Produced by Tensile Stress in Igneous Rocks.—When magmas congeal to igneous rocks tensile stresses which result in fissures and joints are developed. This is best exemplified in effusive rocks, which often show regular columnar structure and which are always full of irregular joints and cracks. No doubt these open spaces may guide metal-bearing solutions. In the literature many authors attribute fissure veins in effusive rocks to contraction, but usually without sufficient reason. The tensile stresses cannot produce long fissures with regular strike and dip.

According to the views of many geologists, smaller irregular veins in dikes or other intrusive rock masses fill contraction fissures. This explanation has been advanced for the horizontal tin-bearing joints in the Zinnwald granite, Saxony, and for other similar "stockworks"; also for the so-called "ladder veins," which are short transverse fissures in dikes, usually extending only from wall to wall. Well-known examples of this kind in Telemarken, Norway,¹ have been described by Vogt; in Victoria, Australia,² by Whitelaw; and at Beresowsk, in the Ural Mountains,³ by Rose, Helmhacker, Karpinsky, Posepny, and

¹ Zur Klassification der Erzvorkommen, Zeitschr. f. prakt. Geologie, 1895, p. 149.
² Mem., Geol. Surv., Victoria, vol. 3, 1905, p. 11.
Purinton. In places, however, the transverse fissures may extend over the contact into the wall rock or correspond to the general joint systems of the vicinity, a fact which throws some doubt on the correctness of the explanation given (Fig. 35).

(b) \textit{Contraction Joints by Shrinking of Limestone when Changed to Dolomite}.—Dolomite is not uncommonly formed near certain metal deposits and it is possible that this process when carried on by rapidly moving solutions and in comparatively free space may result in openings suitable as receptacles for ore minerals.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{morning_star_dike.png}
\caption{Section of Morning Star dyke, Woods Point, Victoria, showing ladder veins. \textit{After O. A. L. Whielaw.}}
\end{figure}

(c) \textit{Expansion Joints Produced by Increase of Rock Volume}.—Peridotite upon change to serpentine is believed to increase its volume greatly and such serpentine often breaks into smooth fragments. Extreme irregularity is a characteristic of all expansion joints and they are of little importance in ore deposition.

(d) \textit{Fissures Produced by Torsional Stress}.—The celebrated experiment by Daubrée1 carried out by twisting a thick glass plate has shown that torsional stress may result in several systems of

1 \textit{Études synthétiques de géologie expérimentale}, Paris, 1879, p. 316.
long and radiating fissures. This experiment has frequently been cited by geologists to explain divergent vein systems, but G. F. Becker has pointed out that such fissures do not follow approximate planes, like fissure veins, but are decidedly curved and warped. Becker\(^1\) regards torsional stress as a system of tensions.

(c) Openings Produced by Folding of Sedimentary Rocks.—The bedding planes of sediments are primary structures which often

Fig. 36.—Section through a saddle reef, Bendigo, Victoria. A, Sandstone; B, shaly sandstone; C, quartz ore. *After T. A. Rickard.*

serve as ducts for metal-bearing solutions. Better passageways for such solutions are provided when a series of sediments of unequal resistance is folded. A sandstone, for instance, will accommodate itself to bending with difficulty and will easily break at anticlines or synclines, whereas softer shales will bend without breaking; the same process may cause a slipping between the various members. Such tensional stresses may then easily produce open cavities. The quartz-filled so-called “saddle reefs” of the

gold mines of Bendigo and other places in Victoria are believed to have been formed in this manner by tensile stresses, but they are also accompanied by irregular masses or "makes" of quartz which fill spaces of discission across the beds (Fig. 36).

(f) Openings Produced by Shearing Stress under the Influence of Gravity.—In many disturbed regions the rocks are broken by normal faults along which the various blocks have settled down under the influence of gravity. Such normal faulting is especially characteristic of regions which do not bear evidence of strong compressive stress. Step-faulting is common and friction breccias and crushed zones frequently follow the faults; the open spaces, more or less continuous, offer good paths for the circulation of water if above the "level of discharge"; the fault planes are often long and regular. But in spite of all this, mineral deposits, except those of purely vadose origin, are not common along such faults. At Clifton, Arizona, for instance, faults are abundant, but the copper deposits do not ordinarily appear in them. There are exceptions, however. At Creede, Colorado, a gold-silver vein occupies an important fault fissure, and similar cases are known from the silver-lead veins of the Harz Mountains in Germany.

In volcanic regions, such as Silverton and Cripple Creek (Fig. 37), in Colorado, systems of nearly vertical fissure veins contain rich deposits. They have obviously little connection with the main structural features of the country, the dislocations are usually small, and the veins were formed shortly after the close of volcanic activity. F. L. Ransome¹ believes that these fissure systems were generated by stresses resulting from slight vertical movements or settling, following an enormous transfer of volcanic material from an intratelluric to a superficial position. The surrounding rock masses acted merely as a buttress, against which the thrust was directed.

(g) Openings Produced by Compressive Stress.—In contrast to recently congealed lavas, the rocks which have formerly been far below the surface of the earth but which have been exposed by erosion are usually traversed by more or less regular joint systems, persistent over large areas. While some of these joint systems may be caused by the inherent texture of the rock, they are in most cases the effect of compressive stress. Closely spaced joint systems form transitions into slaty cleavage, and recrystallization

of minerals takes place by preference along these planes. In extreme cases fissility or cleavage in very thin laminae develops. Joints and cleavage present narrow paths for mineralizing solutions and ore deposits are often determined by their direction.

Fig. 37.—Plan of the principal veins of the Cripple Creek district, Colorado, showing a roughly radial distribution. After Lindgren and Ransome, U. S. Geol. Survey.

There are all transitions from joints to fissures along which perceptible movement has occurred. In many districts the fissures which have received the ores are identical in strike and dip with the joint systems of the country rock. A common
condition is that two sets of veins and joints occur which have the same strike, but dip in opposite directions (Fig. 38). Such vein systems are termed conjugated fractures. The explanation of such joints, fissures, and occasionally accompanying schistose structure is furnished by certain experiments by Daubrée\(^1\) and by the mathematical deductions of G. F. Becker.\(^2\) These show that direct horizontal pressure results in jointing and fissuring by shearing stress. The accompanying dislocations will largely be reverse faults in which the hanging wall has relatively moved upward. In Daubrée's experiment on a mass of beeswax and resin two conjugated systems of joints and fissures were formed, making an angle of about 45° with the line of pressure; similar results have been obtained by testing

![Fig. 38.—Vertical section of a conjugated system of fractures.](image)

cubes of building stones. If the stress is not exerted horizontally the dip of the veins will be correspondingly affected. At Grass Valley and Nevada City, California, there are two conjugated systems of fissures with a north-south and an east-west direction; they are believed to have resulted from stresses successively applied in an east-west and a north-south direction. Many other districts show similar relations.

In the locality just mentioned the majority of the dislocations are small, but tangential stresses sometimes produce great dislocations. The Mother Lode of California, a vein system nearly 100 miles in length, is believed to represent a reverse fault or system of faults with considerable throw.

When rocks are recrystallized in the deeper zones of the earth's crust they may become so plastic that deformation by rupture cannot take place. The growth of crystals then probably takes place predominantly in a plane perpendicular to the stress and a close schistose structure like that in many gneisses may de-

\(^1\) Études synthétiques de géologie expérimentale, Paris, 1879, p. 316.
velop which offers scarcely any interstitial space available for the circulation of solutions.

If the fissures were perfect planes it would be difficult to conceive of open spaces along them; but as they are not, movement along them tends to produce a series of openings, alternating with numerous touching points. As a matter of fact the mode of mineral deposition shows that open spaces existed and that they sometimes were large, in exceptional cases even 20 feet or more in width. In mine workings in hard rock old stopes frequently remain open for an indefinite length of time, and it is probable that such large open spaces may exist down to a depth of at least several thousand feet. Moreover, it is to be remembered that at the time of deposition the fissures were filled by water under a pressure at least equal to that of the hydrostatic column. The depositing solutions emanating from magmas under conditions of far stronger pressure may even have made way for themselves in the manner of an igneous dike or pegmatite vein, actually forcing the rocks apart. Some of the phenomena of deep-seated veins are difficult to explain on any other assumption.

Gaping fissures are not, however, necessary for the circulation of solutions. Water may ascend along a number of closely spaced fissures—usually called a sheeted zone—in which very little open space exists. But in this case mineral deposition is usually effected by replacement. The solutions are forced into the adjoining rock and transform its mineral into ore.

In conclusion, it may be well to recall the complex forces and results that enter into the fissuring under pressure of a block of what is commonly called homogeneous material. The geological conditions under which rocks are fractured are vastly more complex, and, as Becker has remarked, "it is entirely safe to presume that every possible mode of deformation and rupture is exemplified," and it may be added, frequently in a single limited field of fracture. The best that can be hoped for in any case is to ascertain the dominant mode in which fracturing has taken place.²

CHAPTER XI

FORM, STRUCTURE, AND TEXTURE OF MINERAL DEPOSITS

THE FORM OF MINERAL DEPOSITS

The form of ore deposits is always important, for the mining methods used for a body of irregular outline must, for instance, be very different from those for a tabular vein. In the great majority of deposits the form is rudely tabular, for they usually follow the planes of dislocations or tabular dikes or the bedding of sedimentary rocks. Great weight was formerly attached to the form, both in empirical classification and in genetic interpretation. At present the tendency is to regard form as largely accidental, and to place more emphasis on the mineral association.

A convenient and fundamental classification divides mineral deposits into syngenetie, or those formed by processes similar to those which have formed the enclosing rock and in general simultaneously with it; and epigenetic, or those introduced into a pre-existing rock.

Syngenetic Deposits.—The syngenetic deposits include the magmatic segregations or accumulations of useful minerals formed by processes of differentiation in magmas, generally at a considerable depth below the surface. Their form may be wholly irregular or roughly spherical, but more often they are rudely tabular or lenticular, and they are usually connected by transitions with the surrounding rocks. They are either wholly enclosed in the igneous mass, or lie along its margins, or, in some cases, form dikes or offshoots from a deep-seated reservoir. The last class of ores may be called epigenetic with reference to the rocks incasing the dikes. The width and thickness of these deposits may range from a few inches to several hundred feet, and, in rare cases, their length may exceed one mile. The masses of nickel-bearing pyrrhotite and chalcopyrite occurring at Sudbury, Ontario, furnish an example of this type.

The syngenetic deposits also include sedimentary beds; they have, as a rule, a tabular or sheet-like form; they are horizontal if not disturbed, but are frequently folded and faulted. Parallel
FORM OF MINERAL DEPOSITS

to their bedding their extent may be counted by miles, as in the case of the Clinton hematite ores of the Appalachian region, or the French and German limonite beds; nevertheless, each bed usually thins out in wedge-shaped form and may be replaced by others at a slightly different horizon. In deposits of metallic ores the thickness is rarely more than 20 feet and this may include intercalated beds of barren material. Coal beds, especially those of lignite, or brown coal, may attain a thickness of 100 feet or more. Beds of rock salt, anhydrite, and gypsum are in some cases several hundred feet thick. In all sedimentary deposits displacements and folding may locally produce an appearance of great thickness. In plastic material like rock salt such deformation is especially effective.

Epigenetic Deposits.—The epigenetic deposits have various forms, but among those which follow fissures the tabular or sheet-like form is most common. Deposits concentrated in the zone of weathering are often extremely irregular and of limited extent, and several of them are usually found in close proximity. Some hematite ores, like those of the Mayari district in Cuba, which are developed by the weathering of serpentine, may form superficial sheets of great extent.

Replacement deposits in limestone are extremely irregular, although their form as a whole is often dependent upon the bedding, the fissuring, or the contact with other rocks. They are seldom large, but in a few cases, like the galena deposits in southeastern Missouri or the zinc blende deposits in the Joplin region of the same State, they may be followed at a general horizon for several miles.

The ore deposits in metamorphic rocks which have undergone strong mechanical deformation and chemical changes usually assume lenticular form, and the occurrence of successively overlapping lenses is particularly characteristic. In these deposits a steep dip is a common feature, but the main trend of the ore-body in the plane of its strike is usually not in the direction of the dip.

The strike of a tabular or lenticular deposit is the direction of a horizontal line in the plane of the deposit, measured with reference to a meridian.

The dip is measured by the angle between a horizontal plane and the plane of the deposit. Complementary to the dip is the hade or underlie, which is measured by the angle between the vertical and the plane of the deposit.
thrusts, which have been extensively mineralized. Shear zones, sheeted zones, and "flaws" (Blätter) often result in veins or lodes.

Complexity of Faulting.—During mining operations excellent and detailed instances of the complexity of faulting are often found. Normal and reverse faults may occur in close proximity. A fault consists more frequently of a series of closely spaced breaks than of a single fracture. Displacement occurs usually along each of these breaks, the result being a distortion of the deposit within the faulted zone.

Fig. 32 shows a case of complicated normal faulting from the Berlin vein, Nevada.1 Besides the faults indicated there are a great number of other dislocations with horizontal displacement. The deposit is a filled quartz vein, 2 to 3 feet wide, carrying 2 per cent. of sulphides with silver and gold.

The great complications ensuing where faulting takes place along two intersecting fault systems have been described by Spurr2 in his report on the Tonopah district, Nevada. The result of such structures is likely to be a zigzag distribution of the fragments of the faulted vein with an average movement determined by the two components. Repeated small dislocations practically result in a deflection of the vein (Fig. 33).

CHAPTER X

OPENINGS IN ROCKS

Chemical processes and alteration in general may go on in a rock without cavities other than pore space and capillary or sub-capillary openings. Such processes are, however, metamorphic rather than metasomatic; they simply effect a mineralogical rearrangement without much chemical change; the composition of the rock remains constant. The formation of epigenetic mineral deposits usually implies a considerable addition of foreign material by solutions and these solutions must be guided to the place of deposition by open spaces, such as fissures, joints, or cracks. As a matter of fact the great majority of mineral deposits were formed where the path of the solution was prescribed by openings in the rocks other than those of ordinary pore space.

It has already been pointed out that open spaces can exist only in the uppermost part of the crust, in the zone of fracture, whose depth Van Hise estimates as about 33,000 feet, or 10,000 meters, though it probably is greater than this estimate. Below a certain depth the pressure is so great that the ultimate strength of the rocks is exceeded and cavities, except those of sub-capillary size, are immediately closed by rock pressure. From various considerations it is probable that few of our mineral deposits have been formed at a depth much greater than 15,000 feet.

ORIGIN OF OPENINGS

Rock cavities may originate in various ways:

1. **By the Original Mode of Formation of the Rocks.**—Many volcanic flows contain abundant gas pores, or blow holes produced by the expansive force of gases escaping from the magma. Zeolites and calcite, sometimes with native copper, often accumulate in these pores, and such rocks are usually termed "amygdaloids" and the filled cavities "amygdules" (Fig. 34). Some sandstones and conglomerates contain much pore space in which solutions may deposit ores or other substances.

131
2. **By Solution.**—Solution cavities are found mainly in easily soluble rocks, such as limestone, dolomite, gypsum, and salt. Posepny justly maintains that the solvent power of water suffices to produce long galleries or passages in rock salt and mentions several examples.\(^1\) Joints in limestone are often irregularly enlarged by solution and when subsequently filled with ores such cavities are known as *gash veins* or *pipe veins*. Caves in limestone are likewise made by atmospheric water of the vadose circulation, containing dissolved carbon dioxide. Such caves are generally formed above the ground-water level in the zone of oxidation, though cases are known which suggest that the process can go on also below this level. Caves occur in all limestone regions and are sometimes of enormous extent; the Mammoth Cave of Kentucky has passages more than 40 miles in length and has been formed by the removal of millions of cubic yards of rock.

The extent of caves is generally determined by faults and dislocations, and rock openings on a smaller scale are usually determined by the prevailing joint systems. The breaking in of caves near the surface produces the "sink-holes" so characteristic of certain limestone plateaus. Both caves and sink-holes have a certain importance in the origin of the class of zinc-lead deposits common to many limestone areas, and caves of dissolution in the oxidized part of ore deposits in limestone are sometimes the receptacles for a great variety of secondary minerals. The floors of caves are usually covered with red "cave earth," a residual deposit of silica, kaolin, limonite, etc., derived from the less soluble constituents of the limestone. Deposits of bat guano and nitrates are sometimes found in caves. Small solution cavities are often found in more resistant rocks that have been exposed to hot solutions of great solvent power.

3. By Fractures of Various Modes of Origin. (a) Contraction Joints Produced by Tensile Stress in Igneous Rocks.—When magmas congeal to igneous rocks tensile stresses which result in fissures and joints are developed. This is best exemplified in effusive rocks, which often show regular columnar structure and which are always full of irregular joints and cracks. No doubt these open spaces may guide metal-bearing solutions. In the literature many authors attribute fissure veins in effusive rocks to contraction, but usually without sufficient reason. The tensile stresses cannot produce long fissures with regular strike and dip.

According to the views of many geologists, smaller irregular veins in dikes or other intrusive rock masses fill contraction fissures. This explanation has been advanced for the horizontal tin-bearing joints in the Zinnwald granite, Saxony, and for other similar "stockworks"; also for the so-called "ladder veins," which are short transverse fissures in dikes, usually extending only from wall to wall. Well-known examples of this kind in Telemarken, Norway,¹ have been described by Vogt; in Victoria, Australia,² by Whitelaw; and at Beresowsk, in the Ural Mountains,³ by Rose, Helmhacker, Karpinsky, Posepny, and

¹ Zur Klassifikation der Erzvorkommen, Zeitschr. f. prakt. Geologie, 1895, p. 149.
² Mem., Geol. Surv., Victoria, vol. 3, 1905, p. 11.
Purinton. In places, however, the transverse fissures may extend over the contact into the wall rock or correspond to the general joint systems of the vicinity, a fact which throws some doubt on the correctness of the explanation given (Fig. 35).

(b) Contraction Joints by Shrinking of Limestone when Changed to Dolomite.—Dolomite is not uncommonly formed near certain metal deposits and it is possible that this process when carried on by rapidly moving solutions and in comparatively free space may result in openings suitable as receptacles for ore minerals.

(c) Expansion Joints Produced by Increase of Rock Volume.—Peridotite upon change to serpentine is believed to increase its volume greatly and such serpentine often breaks into smooth fragments. Extreme irregularity is a characteristic of all expansion joints and they are of little importance in ore deposition.

(d) Fissures Produced by Torsional Stress.—The celebrated experiment by Daubrée\(^1\) carried out by twisting a thick glass plate has shown that torsional stress may result in several systems of

\(^1\) Études synthétiques de géologie expérimentale, Paris, 1879, p. 316.
long and radiating fissures. This experiment has frequently been cited by geologists to explain divergent vein systems, but G. F. Becker has pointed out that such fissures do not follow approximate planes, like fissure veins, but are decidedly curved and warped. Becker\(^1\) regards torsional stress as a system of tensions.

\((e)\) *Openings Produced by Folding of Sedimentary Rocks.*—The bedding planes of sediments are primary structures which often

Fig. 36.—Section through a saddle reef, Bendigo, Victoria. \(A\), Sandstone; \(B\), shaly sandstone; \(C\), quartz ore. *After T. A. Rickard.*

serve as ducts for metal-bearing solutions. Better passageways for such solutions are provided when a series of sediments of unequal resistance is folded. A sandstone, for instance, will accommodate itself to bending with difficulty and will easily break at anticlines or synclines, whereas softer shales will bend without breaking; the same process may cause a slipping between the various members. Such tensional stresses may then easily produce open cavities. The quartz-filled so-called "saddle reefs" of the

gold mines of Bendigo and other places in Victoria are believed to have been formed in this manner by tensile stresses, but they are also accompanied by irregular masses or "makes" of quartz which fill spaces of discussion across the beds (Fig. 36).

(f) Openings Produced by Shearing Stress under the Influence of Gravity.—In many disturbed regions the rocks are broken by normal faults along which the various blocks have settled down under the influence of gravity. Such normal faulting is especially characteristic of regions which do not bear evidence of strong compressive stress. Step-faulting is common and friction breccias and crushed zones frequently follow the faults; the open spaces, more or less continuous, offer good paths for the circulation of water if above the "level of discharge"; the fault planes are often long and regular. But in spite of all this, mineral deposits, except those of purely vadose origin, are not common along such faults. At Clifton, Arizona, for instance, faults are abundant, but the copper deposits do not ordinarily appear in them. There are exceptions, however. At Creede, Colorado, a gold-silver vein occupies an important fault fissure, and similar cases are known from the silver-lead veins of the Harz Mountains in Germany.

In volcanic regions, such as Silverton and Cripple Creek (Fig. 37), in Colorado, systems of nearly vertical fissure veins contain rich deposits. They have obviously little connection with the main structural features of the country, the dislocations are usually small, and the veins were formed shortly after the close of volcanic activity. F. L. Ransome\(^1\) believes that these fissure systems were generated by stresses resulting from slight vertical movements or settling, following an enormous transfer of volcanic material from an intratelluric to a superficial position. The surrounding rock masses acted merely as a buttress, against which the thrust was directed.

(g) Openings Produced by Compressive Stress.—In contrast to recently congealed lavas, the rocks which have formerly been far below the surface of the earth but which have been exposed by erosion are usually traversed by more or less regular joint systems, persistent over large areas. While some of these joint systems may be caused by the inherent texture of the rock, they are in most cases the effect of compressive stress. Closely spaced joint systems form transitions into slaty cleavage, and recrystallization

of minerals takes place by preference along these planes. In extreme cases fissility or cleavage in very thin laminae develops. Joints and cleavage present narrow paths for mineralizing solutions and ore deposits are often determined by their direction.

![Plan of the principal veins of the Cripple Creek district, Colorado, showing a roughly radial distribution. After Lindgren and Ransome, U. S. Geol. Survey.](image)

There are all transitions from joints to fissures along which perceptible movement has occurred. In many districts the fissures which have received the ores are identical in strike and dip with the joint systems of the country rock. A common
condition is that two sets of veins and joints occur which have the same strike, but dip in opposite directions (Fig. 38). Such vein systems are termed conjugated fractures. The explanation of such joints, fissures, and occasionally accompanying schistose structure is furnished by certain experiments by Daubrée\(^1\) and by the mathematical deductions of G. F. Becker.\(^2\) These show that direct horizontal pressure results in jointing and fissuring by shearing stress. The accompanying dislocations will largely be reverse faults in which the hanging wall has relatively moved upward. In Daubrée's experiment on a mass of beeswax and resin two conjugated systems of joints and fissures were formed, making an angle of about 45° with the line of pressure; similar results have been obtained by testing cubes of building stones. If the stress is not exerted horizontally the dip of the veins will be correspondingly affected. At Grass Valley and Nevada City, California, there are two conjugated systems of fissures with a north-south and an east-west direction; they are believed to have resulted from stresses successively applied in an east-west and a north-south direction. Many other districts show similar relations.

In the locality just mentioned the majority of the dislocations are small, but tangential stresses sometimes produce great dislocations. The Mother Lode of California, a vein system nearly 100 miles in length, is believed to represent a reverse fault or system of faults with considerable throw.

When rocks are recrystallized in the deeper zones of the earth's crust they may become so plastic that deformation by rupture cannot take place. The growth of crystals then probably takes place predominantly in a plane perpendicular to the stress and a close schistose structure like that in many gneisses may de-

\(^1\) Études synthétiques de géologie expérimentale, Paris, 1879, p. 316.
velop which offers scarcely any interstitial space available for the circulation of solutions.

If the fissures were perfect planes it would be difficult to conceive of open spaces along them; but as they are not, movement along them tends to produce a series of openings, alternating with numerous touching points. As a matter of fact the mode of mineral deposition shows that open spaces existed and that they sometimes were large, in exceptional cases even 20 feet or more in width. In mine workings in hard rock old stopes frequently remain open for an indefinite length of time, and it is probable that such large open spaces may exist down to a depth of at least several thousand feet. Moreover, it is to be remembered that at the time of deposition the fissures were filled by water under a pressure at least equal to that of the hydrostatic column. The depositing solutions emanating from magmas under conditions of far stronger pressure may even have made way for themselves in the manner of an igneous dike or pegmatite vein, actually forcing the rocks apart. Some of the phenomena of deep-seated veins are difficult to explain on any other assumption.

Gaping fissures are not, however, necessary for the circulation of solutions. Water may ascend along a number of closely spaced fissures—usually called a sheeted zone—in which very little open space exists. But in this case mineral deposition is usually effected by replacement. The solutions are forced into the adjoining rock and transform its mineral into ore.

In conclusion, it may be well to recall the complex forces and results that enter into the fissuring under pressure of a block of what is commonly called homogeneous material. The geological conditions under which rocks are fractured are vastly more complex, and, as Becker has remarked, "it is entirely safe to presume that every possible mode of deformation and rupture is exemplified," and it may be added, frequently in a single limited field of fracture. The best that can be hoped for in any case is to ascertain the dominant mode in which fracturing has taken place.

CHAPTER XI

FORM, STRUCTURE, AND TEXTURE OF MINERAL DEPOSITS

THE FORM OF MINERAL DEPOSITS

The form of ore deposits is always important, for the mining methods used for a body of irregular outline must, for instance, be very different from those for a tabular vein. In the great majority of deposits the form is rudely tabular, for they usually follow the planes of dislocations or tabular dikes or the bedding of sedimentary rocks. Great weight was formerly attached to the form, both in empirical classification and in genetic interpretation. At present the tendency is to regard form as largely accidental, and to place more emphasis on the mineral association.

A convenient and fundamental classification divides mineral deposits into syngenetic, or those formed by processes similar to those which have formed the enclosing rock and in general simultaneously with it; and epigenetic, or those introduced into a pre-existing rock.

Syngenetic Deposits.—The syngenetic deposits include the magmatic segregations or accumulations of useful minerals formed by processes of differentiation in magmas, generally at a considerable depth below the surface. Their form may be wholly irregular or roughly spherical, but more often they are rudely tabular or lenticular, and they are usually connected by transitions with the surrounding rocks. They are either wholly enclosed in the igneous mass, or lie along its margins, or, in some cases, form dikes or offshoots from a deep-seated reservoir. The last class of ores may be called epigenetic with reference to the rocks incasing the dikes. The width and thickness of these deposits may range from a few inches to several hundred feet, and, in rare cases, their length may exceed one mile. The masses of nickel-bearing pyrrhotite and chalcopyrite occurring at Sudbury, Ontario, furnish an example of this type.

The syngenetic deposits also include sedimentary beds; they have, as a rule, a tabular or sheet-like form; they are horizontal if not disturbed, but are frequently folded and faulted. Parallel
to their bedding their extent may be counted by miles, as in the case of the Clinton hematite ores of the Appalachian region, or the French and German limonite beds; nevertheless, each bed usually thins out in wedge-shaped form and may be replaced by others at a slightly different horizon. In deposits of metallic ores the thickness is rarely more than 20 feet and this may include intercalated beds of barren material. Coal beds, especially those of lignite, or brown coal, may attain a thickness of 100 feet or more. Beds of rock salt, anhydrite, and gypsum are in some cases several hundred feet thick. In all sedimentary deposits displacements and folding may locally produce an appearance of great thickness. In plastic material like rock salt such deformation is especially effective.

Epigenetic Deposits.—The epigenetic deposits have various forms, but among those which follow fissures the tabular or sheet-like form is most common. Deposits concentrated in the zone of weathering are often extremely irregular and of limited extent, and several of them are usually found in close proximity. Some hematite ores, like those of the Mayari district in Cuba, which are developed by the weathering of serpentine, may form superficial sheets of great extent.

Replacement deposits in limestone are extremely irregular, although their form as a whole is often dependent upon the bedding, the fissuring, or the contact with other rocks. They are seldom large, but in a few cases, like the galena deposits in southeastern Missouri or the zinc blende deposits in the Joplin region of the same State, they may be followed at a general horizon for several miles.

The ore deposits in metamorphic rocks which have undergone strong mechanical deformation and chemical changes usually assume lenticular form, and the occurrence of successively overlapping lenses is particularly characteristic. In these deposits a steep dip is a common feature, but the main trend of the ore-body in the plane of its strike is usually not in the direction of the dip.

The strike of a tabular or lenticular deposit is the direction of a horizontal line in the plane of the deposit, measured with reference to a meridian.

The dip is measured by the angle between a horizontal plane and the plane of the deposit. Complementary to the dip is the hade or underlie, which is measured by the angle between the vertical and the plane of the deposit.
The plunge1 of an ore-body is the vertical angle between a horizontal plane and the line of maximum elongation of the body. In lenticular ore-bodies in metamorphic rocks which have undergone strong mechanical deformation, the plunge is an important factor, and often it is determined by the direction of the cleavage or schistosity (Fig. 39). In fissure veins the pitch of the ore shoot is usually defined as the angle between its axis and the strike of the vein, and it is measured on the plane of the vein.2

Fig. 39.—Stereogram illustrating strike, dip, pitch and plunge of an ore-body.

Spatial Relations of Veins.—Veins are tabular or sheet-like masses of minerals occupying or following a fracture or a set of fractures in the enclosing rock; they have been formed later than the country rock and the fractures, either by filling of the open spaces or by partial or complete replacement of the adjoining rock, or most commonly by both of these processes combined.

Such alteration or replacement does not ordinarily extend far from the fissure. In regions where the vein-forming solutions have acted with unusual intensity a partial alteration may extend from the deposit over considerable areas.

No distinction can be drawn between the filled veins and replacement veins. If open spaces are available the metalliferous

1Called “pitch” or “rake” by many authors.

solutions which formed the veins in most cases found it easier to deposit their load in these spaces than to replace the country rock. Quartz is more likely to be deposited in the open paths, and likewise most of the heavy metals, unless the country rock is one particularly adapted for replacement, such as limestone. Gases like carbon dioxide and hydrogen sulphide penetrate the wall rocks with ease.

Many veins correspond closely to the old definition of a "true fissure vein," in which the ore occupies the once open spaces along the fracture, with some alteration spreading into the wall rocks. Of such character are the majority of the gold-quartz veins of California and many other occurrences. When the fissures are very small they are referred to as veinlets or seams, and all transitions to a slight mineralization of joint planes are found. The walls may be smooth and separated from the vein material by a clay gouge or the filling may closely adhere to the country rock. In the latter case the vein is said to be frozen to the walls.

Instead of a single break we may have a fracture consisting of a number of approximately parallel fissures, irregularly connected and spaced over a considerable width, which may attain 100 feet.
or even several hundred feet. These large fracture zones, when filled with ore and partially replaced country rock, are called composite veins or lodes (Fig. 40). The Comstock lode in Nevada illustrates this occurrence; its width in places amounts to several hundred feet.

A number of parallel veins connected by diagonal veins are called linked veins (Fig. 41).

Fig. 41.—General sketch of the lode system of the Upper Harz, Germany, showing a linked-vein system extending about 10 miles east and west. After R. Beck.

When the fractures are closely spaced and parallel we speak of a sheeted zone or a shear zone (Fig. 42). Many of the Cripple Creek veins form good illustrations of this mode of occurrence. The width of a sheeted and mineralized zone is rarely over 50 feet and ordinarily much less.
A mass of rock irregularly fractured in various directions by short fissures along which mineralization has spread is called a *stockwork*. Gold-quartz deposits sometimes assume this form; each seam in the several joint systems intersecting the rock may contain a thin but often strongly auriferous sheet of quartz; the mass may be mined as a whole, furnishing low-grade ore. In deeply weathered regions the upper parts of such deposits may be sufficiently disintegrated to be washed by the hydraulic method. In California such mines are called "seam diggings."

![Fig. 42.—Section of the Howard vein, Cripple Creek, Colorado, showing a sheeted zone. Ore follows the close sheeting in the center. Scale, 1 inch equals 13 feet. After Lindgren and Ransome, U. S. Geol. Survey.](image)

A shattered zone cemented by a network of small non-persistent veins is called a *stringer lead* or *stringer lode*.

Sometimes ore deposits are wholly irregular brecciated masses, the ores filling the interstices between the fragments. Again, the breccia may be localized at the intersection of two fractures and a *pipe-like* deposit will be formed, the ore cementing the fragments. Or again, ore deposition may have proceeded in a volcanic vent filled with fragments of rocks due to explosive action. Of such character was the celebrated Bassick deposit in Custer County, Colorado.

Brecciation, shattering, and mineralization often follow lines of weakness along dikes; in such cases, illustrated by the Douglas
Island mines in southern Alaska, where a dike of diorite intrudes metamorphic clay slates, the mineralized dike is often referred to as a lode.

Ladder veins are deposits filling short transverse fissures sometimes occurring in dikes of intrusive rocks (see Fig. 35).

Lenticular veins (Fig. 43) are confined mainly to metamorphic schists and their form is sometimes caused by deformation of an older deposit; or again the lenticular shape may be due to stresses causing bulging of the schistose layers. It is common to find a number of short lenses of gold-bearing quartz, for instance, scattered along a certain line or zone. Their ends sometimes overlap.
FORM OF MINERAL DEPOSITS

Bead veins follow the bedding planes in sedimentary rocks (Fig. 44).

Gash veins are deposits filling non-persistent openings that are of fair width but soon cease when followed along strike or dip;

Fig. 44.—*Section of Snowstorm bed-vein, Idaho.* After *F. L. Ransome, U. S. Geol. Survey.*

Fig. 45.—*Vertical section of gash veins filled with galena (black), or with pyrite, zinc blende, and galena in order of deposition. Drusy cavities in center. Lead mines of Wisconsin.* After *T. C. Chamberlin.*

they are particularly characteristic of deposits of galena and zinc blende in limestone and are believed to have been opened by tensitional stress, often aided by solution.
Where soft sedimentary beds have been folded and crushed, irregular open spaces are more likely to result than well-defined straight fissures. In such rocks ores may be found in the spaces opened along anticlines and synclines or in irregular fractures breaking across such folds.

Veins in Relation to the Country Rock.—Veins crossing the bedding in stratified rocks are referred to as cross veins; those parallel to the stratification or schistosity are often called bedded veins or bed veins. Differences in the texture and hardness of the rocks traversed influence the form of the vein markedly. In hard dikes crossed by the vein the deposit often splits up into stringers, resuming its typical form beyond this barrier. Fissures formed near the surface are often markedly irregular and brecciated. Following G. F. Becker's proposal, we may call such deposits chambered veins. Large masses of country rock included in the vein material are called *horses.* Frequently the vein follows a fissure along the walls of a dike; the lamprophyric dikes which are the last phases of batholithic intrusions are especially favored places for ore deposition.

Clayey and soft rocks are most resistant to the development of regular fissures; a fracture in hard rock will suddenly die out when encountering such material; many veins pinch immediately upon entering clay shales or masses of clayey gouge. One of the best examples of this is furnished by the veins of Rico, Colorado, which do not extend through the whole sedimentary series in that district, but suddenly cease at a certain stratum of yielding, plastic rocks, termed the blanket, under which almost all the ore-bodies occur. A consequence of this peculiarity of fissuring is that in some regions rich ores are often found just below certain horizons of shale. In southern New Mexico a persistent Devonian shale plays this part of "indicator." The vein solutions were arrested at this horizon and there deposited their load.

When a vein follows the contact between two formations, say between granite and andesite, we speak of it as a *contact vein.* The contact is usually caused by faulting movements in the plane of the fissure, and such veins are in no wise different from ordinary fissure fillings. They should not be confused with contact-metamorphic deposits, which belong to a separate class.
Vein Walls.—In a simple filled fissure vein we have well-defined foot and hanging walls, which often are smooth surfaces and represent a single fissure opened by a small or large movement along its slightly curved plane. In a replacement vein the fissures are comparatively tight and in most cases appear to have been formed under stronger compressive stress that reduced the open spaces to a minimum. The vein-forming solutions were forced into the country rock, and the ores formed by replacement gradually merge into unaltered rock. In such cases we may find a single fissure plane with ore on both sides and not limited by any well-defined walls. The exact limits of commercial ore can be found only by assay and are often spoken of as “assay walls.”

In a composite vein or lode or in a sheeted zone there may be several smooth walls and if no cross-cutting is undertaken there is danger that parallel ore-bodies separated by sheets of country rock may be overlooked.

Outcrops.—The character of the outcrop of a vein, or in fact of any deposit, is determined by the predominant minerals and by the prevailing surface conditions. In regions of long-continued rock decomposition and inactive erosion, as, for instance, in some of the Southern Appalachian States, even the most resistant outcrops may be reduced by weathering and nothing but fragments scattered over a wide area may be visible at the surface.

Under conditions of fairly active erosion veins with predominant quartz stand out prominently and can be easily traced.

On the other hand, veins with carbonate gangue are likely to weather more rapidly than the surrounding rock, and the deposits may be indicated by little depressions or by notches in the ridges. Where the sulphides are abundant, their oxidation is conspicuously reflected in the outcrops. Deposits of mingled quartz and sulphides then form prominent outcrops of limonite and residual quartz; this is the gossan of the Cornish, the ironstone of the Australian, the eiserner Hut of the German, and the colorados of the Spanish terminology. More details in regard to the weathering of ore-deposits are given in Chapter XXIX.

Length and Depth of Veins.—Where veins follow great dislocations their length may be considerable. One of the more recent veins of Freiberg, Saxony, called the Halsbrücker Spat, has been followed for almost 5 miles. Some of the lead-bearing
veins in the Harz Mountains, Germany, are traceable for 12 miles. Exceptionally long single ore-bearing fissures are found in the Silverton quadrangle, San Juan region, Colorado; some of them are 5 miles long. Some of the Mother Lode veins in California can be traced for many miles. The longest single quartz vein known appears to be that of the Pfal, in the Bavarian Forest, which is said to be traceable in a straight line practically without interruption for 140 kilometers through the pre-Cambrian rocks.¹ The quartz is said to be barren of metals.

The great majority of single ore-bearing veins are short and their outcrops can rarely be traced for more than one mile; they do not, as a rule, occupy great dislocations, but rather subordinate fissures. The great dislocations are formed during mountain building by tangential stresses, whereas the ore-bearing veins are, as a rule, formed after epochs of igneous activity. In the Coeur d'Alene district, Idaho, for instance, the rich galena veins show little connection with the principal structural faults of the region and were probably not formed at the same time.

Veins usually appear in clusters. In many districts there are two or more systems, each with its distinct direction. Groups of veins with the same general direction are frequently traceable for long distances; one vein thins out or disappears, giving place to others within the same zone.²

Veins do not necessarily continue to great depths. There are all kinds of fissures, some disappearing within a short distance below the surface, others continuing down to the greatest depths attained, or about 5,000 feet (Morro Velho, Brazil). Deep tunnels have been run to intersect veins of favorable appearance on the surface and have failed to disclose their continuation in depth. There is no definite relationship between depth and length of a fissure, though it is true that fissures showing strong movement and shattering are likely to continue to great depths. The ore-body may be limited in depth, while the barren fissure continues below it as strong as ever.

Bends and curves are common in veins, but as a rule a vein retains its general angle of dip with remarkable persistence.

² The German expression for such a long-continued vein system is "Gangzug."
The dip may be at any angle, but veins dipping from 50° to 80° are most common. The North Star vein at Grass Valley, California, is one of the best instances of a low-dipping vein of great length; with a dip of 20° it has been followed for 5,000 feet. Still flatter veins are called blanket veins and seldom are very persistent or uniform.

THE TEXTURE OF SYNGENETIC DEPOSITS

Introduction.—The ore minerals and gangue which make up an ore deposit present various types of texture and structure. The texture of an ore is dependent upon many factors. Space available for deposition, concentration and composition of the generating solutions, time, temperature, and pressure—all are of importance in determining the primary texture. Many changes take place in a deposit once formed; the secondary textures, so far as they are caused by solution and redeposition, are influenced by the same factors, and, in addition, deformation by pressure plays a most important rôle.

Texture of Deposits of Igneous Origin.—The ores consolidated from magmas have in general the texture of igneous holocrystalline rock. The principal minerals comprise chalcopyrite, pyrite, pyrrhotite, magnetite, chromite, and ilmenite. The texture is ordinarily coarse granular, hypidiomorphic; the chalcopyrite and pyrrhotite are rarely crystallized, but may contain phenocrysts of pyrite and magnetite, both of which are frequently developed with crystalline outlines. The ores may, of course, contain phenocrysts and anhedral of other rock-forming minerals, particularly soda-lime feldspars, olivine, and pyroxene. Eutectic texture results if the magma was a eutectic mixture from which two minerals crystallized simultaneously after the manner of graphic granite. Approximation at least to such texture is shown by some intergrowths of magnetite and apatite.

If the ores have been subjected to dynamic and static metamorphism, granulation and metasomatic development of hornblende, garnet, biotite, and epidote in coarse or fine aggregates follow.

Texture of Pegmatite Dikes.—The pegmatite dikes are believed to have been deposited by magmatic solutions of great fluidity and low temperature (about 600° C.). In many cases the pegma-
tites form transitions between igneous rocks and veins deposited by hot solutions. Their texture is coarsely crystalline, often drusy, and they have a strong tendency to idiomorphic development. Large crystals are the rule, and sometimes they attain enormous dimensions; crystals of spodumene at the Etta mine, South Dakota, are 30 feet or more in length. Quartz crystals several feet long have been observed in these deposits. A rough tendency to crustification is often present, and the walls of the dikes are then lined with crystals of feldspar or mica.

Texture of Sedimentary Deposits.—Ores and minerals of sedimentary deposits are usually fine grained, and in many cases they have been deposited as colloids in which subsequent fine-grained crystallization has developed. Coarsely crystalline, allotriomorphic structure may develop in deposits consisting of calcite, salt, or gypsum.

In many cases the structure is clastic with development of new-formed minerals between the grains. The oölitic texture is characteristic of many deposits of calcite, siderite, limonite, and psilomelane; pyrite rarely assumes this form; the oölites themselves are small, globular concretionary forms with concentric or radial microcrystalline texture. Quartz, if present, nearly always assumes a microcrystalline or cryptocrystalline texture. Subsequent metamorphism is likely to enlarge the crystalline grains and result in coarser-grained ores.

Texture of Residuary and Oxidized Deposits.—In the residuary deposits of the zone of oxidation, the ore-bodies are usually very irregular in structure and texture. In large part they were deposited as colloids, which subsequently in part have developed fine-grained crystalline texture.

Concretionary, mammillary, stalactitic, or pisolitic textures are common, the last being defined as a coarser development of the oölitic form. Coarser crystalline form is assumed by some minerals like calcite, barite, zinc carbonate, zinc silicate, and lead carbonate. Crustification or drusy structure is common in places. Quartz, where developed, is usually fine-grained or cryptocrystalline.

THE TEXTURE OF EPIGENETIC DEPOSITS

Primary Texture of Filled Deposits.—The epigenetic deposits are of manifold form and origin, but the majority of them result
from aqueous solutions either by filling of open cavities or by replacement of surrounding rocks. Precipitation from complex solutions in open spaces takes place in a certain orderly succession, and the deposits therefore readily assume a banded texture; crystallization is facilitated by the open spaces, but the older crystals interrupt the development of the products of later crystallization. Hence a hypidiomorphic to panidiomorphic texture is most common.

Bandling by deposition is called crustification, a term introduced by Posepny. In many classes of veins, whether banded or not, a drusy texture is common.

In deep-seated veins formed at a temperature but slightly lower than that of the pegmatites the texture is usually coarsely crystalline and massive; sometimes even drusy cavities are lacking. Delicate and repeated banding is absent, but a coarsely banded or comb structure recalling that of the pegmatite veins is sometimes encountered. It is usually expressed by quartz crystals developing from the sides or by metallic minerals like tourmaline, wolframite, or cassiterite attached to the walls of the fissure. A close intergrowth of sulphides resembling the eutectic texture of igneous rocks is sometimes observed in veins of this and the subsequently described classes. Chalocite and bornite, on one hand, and galena and zinc blende, on the other, may crystallize in this manner.

In veins formed at intermediate temperatures a coarsely crystalline massive texture is most common; combs and rough banding by deposition are by no means unknown, especially where the deposit contains calcite or barite. In quartz veins the filling appears to have taken place rapidly and completely, so that the resulting ore consists of an irregular massive mixture of quartz and sulphides. That here too the deposition began from the walls is indicated by some occurrences of partially filled veins which form a loose aggregate of prisms. Any thin section of such quartz will usually show long crystals of earlier growth around which the later quartz has been deposited in large individuals (Fig. 46). Lines of inclusions often penetrate from one grain into another. These inclusions consist of aqueous solutions, often with small cubes or grains of transparent salts suspended in the liquid. Inclusions of carbon dioxide have been reported, but are extremely scarce. The optical continuity of the crystals or grains is often disturbed
by a peculiar divergent "flamboyant" structure which appears to be of primary origin, and not caused by internal strains.

The sulphides are coarsely crystalline and sometimes roughly banded, parallel to the walls. Inclusions of country rock may be surrounded by concentric rings of sulphides, and a primary brecciated vein structure may result. Pyrite and arsenopyrite

![Thin section showing normal texture of quartz filling. Black, arsenopyrite; remainder, quartz with fluid inclusions. Magnified 52 diameters.](image)

have a strong tendency to crystal development, while galena, zinc blende, chalcopyrite, and tetrahedrite are much less commonly found with crystal faces.

A banded structure sometimes results from the filling of several closely spaced fissures. In quartz veins in fissile rocks a peculiar book structure may result from numerous parallel sheets of slate, alternating with quartz. It has been thought that
TEXTURE OF MINERAL DEPOSITS

this and other features difficult to explain by the assumption of open cavities are due to the opening of spaces by the force of crystallization. Such views have been expressed by E. Suess, W. O. Crosby, E. J. Dunn, and others. It seems very unlikely that such a force could fail to be expressed in a schistosity by crystallization. It is more likely that the cavities of the high-temperature veins were in part supported by the strong pressure of magmatic emanations.

Stalactites are unknown in deposits formed at high or intermediate temperature.

In veins formed at lower temperatures and comparatively shallow depths crustified and drusy forms and fine granular texture predominate. The quartz filling is usually fine-grained, ranging to cryptocrystalline and microcrystalline near the surface.

The sulphides are found in small crystals or small anhedral; large crystals of pyrite, so common elsewhere, are rarely found in these veins. On the other hand, where calcite, dolomitie carbonates, rhodochrosite, fluorite, or barite are gangue minerals the crystals may be much larger than those found in other deposits. An example is furnished by the magnificent crystals of calcite at Joplin, Missouri, and here galena also appears in unusually large, well-developed individuals.

Symmetrical and delicate crustification is often associated with large drusy cavities. Brecciated structure of primary origin is common.

Secondary Textures and Structures of Filled Deposits.—Crushing and brecciation of the original filling are extremely common; indeed, few veins are entirely free from it. Repeated opening of fissures (Fig. 49) and the deposition of new generations of vein material often take place and the cementing ore may be enriched at the expense of the older generations.

A banded or sheeted structure often results from the development of shear planes in the old filling; examples of this are seen in many gold-quartz veins of California (Figs. 47 and 48). Along these shear planes the quartz is deformed and granulated, and gold may be deposited along them by processes which may be called secondary, though, as a rule, they take place shortly after the vein formation. The shearing stress exerted either before or after the filling may affect the walls of the vein and render them close-jointed or even distinctly schistose.
In some deposits, especially those containing zeolites, calcite, or barite, secondary replacement processes play an extensive part. A vein filled by calcite may be replaced by quartz, which then plainly shows its secondary nature by its hackly or lamellar texture, casts of cleavage, pieces of calcite, or imprints of cleavage lines. Such pseudomorphic textures are sometimes accompanied by a marked enrichment of the metallic content of the deposit.

Textures of Metasomatic Deposits.—The metasomatic processes are so complex in character, depending upon the temperature, nature of replaced rocks, and kind of replacing solutions, that it is scarcely possible to formulate laws for the resulting textures.

In a solid rock, replacement may occur at all temperatures above the freezing temperature of the solutions and below the melting-point of the rock, but it is naturally most effective when the solutions are hot. Replacement may proceed at any pressure. It may be effected by the ordinary surface waters, by sea water, by hot ascending water, and by magmatic ema-
Fig. 48.—Thin section of vein quartz from Nevada City, California, showing crushing and incipient ribbon structure. Magnified 15 diameters.

Fig. 49.—Cross section of Japan vein, Silverton, Colorado, showing structure produced by repeated opening of original fissure. a, Country rock; b, quartz; c, ore. After F. L. Ransome, U. S. Geol. Survey.
nations, whether gaseous, fluid, or above the critical temperature. Replacements of limestone by hematite, by iron carbonate, or by zinc carbonate may proceed at ordinary temperatures, but replacements resulting in large masses of sulphide ores are usually the result of heated waters, whether the replaced rocks are sedimentary or igneous origin. In or near ore deposits, however, where a large supply of sulphur and metals are available for the surface waters, these solutions may deposit secondary sulphide ores. Vein fillings are formed by minerals separating freely in supersaturated solutions. Metasomatism takes place in solid rocks, but the actual deposition is no doubt effected in supersaturated films of solutions. The action proceeds at a great number of points and may result in the simultaneous development of different minerals. In a metasomatic rock there is no such succession of minerals as usually characterizes crystallization from magmas or aqueous solutions.

An individual mineral developing in another may be briefly called a metasome; if the metasome develops strongly with crystal outlines it may be called a metacryst.¹

The power of crystallization of the different minerals varies greatly, for some are found only as anhedrons in metasomatic rocks, while others always assume their crystal form. The following list gives the relative power of crystallization in solid rocks of some minerals, beginning with those of strongly emphasized individuality: Rutile, tourmaline, staurolite, arsenopyrite, pyrite, magnetite, barite, fluorite, epidote, pyroxene, horn blende, siderite, dolomite, albite, mica, galena, zinc blende, calcite, quartz, orthoclase.

The texture of metasomatic rocks seldom shows definite succession, but rather a general interpenetration of the various minerals. Some minerals, by their power of crystallization rather than by their succession, stand out as metacrysts, giving rise to a texture recalling that of igneous rocks.

The original rock texture may be preserved or destroyed; the former is the case in many phases of silicification. The dolomite from the Black Hills is often silicified to an extremely fine-grained quartz aggregate in which the crystal outlines of the

¹This term was first introduced by A. C. Lane, Bull. Geol. Soc. Am., vol. 14, p. 369, 1903.

See also W. Lindgren, The nature of replacement, Econ. Geol., vol. 7, 1912, pp. 521–535.
dolomitic grains are preserved in detail (Fig. 50). A rhyolite may be completely silicified to a similar fine aggregate in which, in favorable light, the replaced phenocrysts are plainly visible. In some cases the original phenocrysts are fully preserved by metasomatic action and form pseudomorphs. A well-known instance is afforded by orthoclase crystals of Cornwall granites, which have been replaced by cassiterite.

Fig. 50.—Thin section of dolomite completely silicified, but retaining texture and crystal form. After J. D. Irving, U. S. Geol. Survey.

More commonly the metasomatic process tends to destroy the original texture, either through complete replacement by large mineral grains or through the formation of spreading aggregates of minute metasomes. Residuary traces of the original texture are visible in a partly replaced rock.

The structure of a rock may be faithfully preserved even when metasomatic action has destroyed its texture. Such preserved structures are, for instance, stratification, joints, breccias, folds, and vesicular structure in lavas.
At Leadville, where the Paleozoic limestone has been replaced by a coarse aggregate of sulphides, the original structure is sometimes remarkably well preserved. S. F. Emmons\(^1\) states that "in the great bodies of the A. Y., Minnie, and adjoining mines every detail of the granular structure, joints, and cleavage of the original limestone could be detected at times in the sulphide ore. In abandoned drifts, where limestone dust had accumulated on the walls, one would have supposed the walls to be all limestone until the breaking of a fresh fragment by the hammer showed the metallic gleam beneath."

Similar statements are made by J. M. Boutwell\(^2\) in regard to the sulphide ore of the Highland Boy mine at Bingham, Utah, which results from the replacement of limestone.

In partial replacement the change to the fresh rock is usually gradual, but where complete replacement has occurred the transition may be remarkably sharp. This is often the case in bodies of galena replacing limestone. In many contact-metamorphic ore-bodies the garnetized rock is sharply delineated from the fresh limestone.

Irving mentions the always sharp contacts between dolomite and its siliceous aggregates of metasomes, in the refractory ores of the Black Hills.

Sometimes the metasomatic action has stopped short at some insignificant clay seam, thus giving the ore-body in part sharply defined outlines recalling the filling of open spaces.

Any rock can be replaced, but complete replacements are most easily effected in limestone. The least easily attacked rocks are those high in alumina. Metasomatic processes necessarily involve the addition and removal of material, hence they must have been caused by solutions in movement, either liquid solutions or solutions above the critical temperature. Where gases act upon rocks at lower temperatures and pressures, as in case of exhalations of hydrogen sulphide or carbon dioxide, sulphides or carbonates may form, but unless water was also present no material can have been carried away.

Irving\(^3\) has pointed out that in some cases replacement begins from a great number of points in the rock where metasomes or metacrysts may develop (Fig. 51) and by continuation of the

Fig. 51.—Incipient silicification of limestone. Aspen, Colo. White areas represent quartz crystals with small inclusions of limestone. Magnified 30 diameters.

Fig. 52.—Silicified limestone ("jasperoid"). Aspen, Colo. Crossed nicols. All quartz. Small inclusions of calcite in some of the grains. Magnified 30 diameters.
Fig. 53.—Replacement veinlet of tourmaline in fresh andesine grain. Keystone mine, Meadow Lake, Nevada County, Cal. t, Tourmaline; f, andesine; e, epidote; s, sericite. Magnified 50 diameters.

Fig. 54.—Siderite with pyrite and galena, replacing quartzite. Helena and Frisco mine, Coeur d’Alene, Idaho. q, Quartz grains; s, sericite; st, siderite; black, galena and pyrite. Magnified 100 diameters.
same process (Fig. 52) the remainder of the rock is finally replaced; the contact is then indefinite. In other cases the complete replacement occurs rapidly, advancing like a wave over

Fig. 55.—Andesine crystal in granodiorite, replaced by sericite and calcite. Pinetree vein, Ophir, Placer County, Cal. q, Quartz; m, muscovite; c, calcite; s, sericite. Magnified 80 diameters.

Fig. 56.—Barite (B), replacing gray, fine-grained limestone (L), Ouray, Colo. *After J. D. Irving, U. S. Geol. Survey.*

the country rock; the contact is then sharp and the process probably takes place at a higher temperature. The replaced rock is usually dense and compact; in places, however, drusy cavities occur in it.
Replacement in Epigenetic High-Temperature Deposits.—Complete recrystallization, development of silicate minerals with little or no water, and coarse texture are typical of deposits formed by replacement at high temperatures. A granite, for
instance, next to tin-bearing veins may be transformed to a coarse "greisen" of large metasomes of muscovite, topaz, or tourmaline, quartz, and cassiterite; or a gabbro to a coarse-grained scapolitic rock. In some deposits biotite and actinolite develop.

Limestones in contact-metamorphic deposits may be converted to coarse aggregates of metacrysts of garnet with metasomes of quartz, calcite, epidote, or pyroxene. On the other hand, somewhat later reactions may effect the recently consolidated intrusive rock and replace it in part by epidote and garnet.

Replacement in Epigenetic Low-Temperature Deposits.—Replacements at lower temperatures as a rule result in finer-grained textures. There are exceptions to this where barite or fluorite replace limestone, for both of these minerals easily develop as perfect metacrysts (Figs. 56 and 58). Alteration in granular and porphyritic igneous rocks usually results in sericitization of the femic and salic minerals, sometimes also of the quartz, with the development of a fine-grained fibrous aggregate; in addition the carbonates of calcium, magnesium, manganese, and iron are often formed; pyrite is introduced in sharp cubes and the available titanium recrystallizes as rutile. Incipient alteration results in the alteration of the femic minerals to chlorite, epidote, or carthy carbonates. The original textures usually show in residual form, but the resulting textures are fibrous with occasional coarse-grained masses of carbonates. When silification takes place, microcrystalline to cryptocrystalline quartz with rapid variations in size of grain replaces the rock, sometimes preserving the original textures with wonderful fidelity. Effusive igneous rocks, particularly rhyolites, also sediments like shale and limestone, are often silicified. Replacement by opal is less common.

Replacement of effusive rocks by alunite, kaolinite, and pyrite in aggregates of varying grain is characteristic of some deposits formed near the surface.
CHAPTER XII

ORE-SHOOTS

Form of Primary Ore-shoots.—Commercial ore or mineral does not ordinarily occupy the whole volume of a deposit. The ore is in most cases surrounded by material of poorer grades, sometimes fading into the country rock, or again sharply separated from it. In replacement deposits the disseminated grains of galena, for instance, or zinc blende, may gradually become so few that the mass can no longer be treated with profit. In veins, only certain parts of the sheet-like body can be extracted, while the remainder of the vein material may consist of gangue minerals only, or of clayey attrition masses or breccias.

Those parts of a deposit in which the valuable minerals are so concentrated that their utilization becomes possible are called ore-shoots. Their occurrence and form are exceedingly variable, and it is often most difficult to ascertain the causes which have guided their development. A full discussion of this subject is scarcely possible here, for it involves the whole question of genesis of mineral deposits.

In deposits of sedimentary origin the ore-shoots have, of course, the general tabular form, but admixture with gangue materials or valueless matter may so dilute the ore that only certain parts of the body can be extracted. Various assortments of detritus and complex conditions of precipitation from

C. W. Purinton, Ore horizons in the San Juan Mountains, Econ. Geology, vol. 2, pp. 131.

waters of seas, lakes, and rivers have influenced the concentra-
tion of the richer ore masses. In addition, alterations by vadose
waters are common; in the case of phosphate deposits and beds
of siderite they have resulted in enrichment.

In deposits of igneous origin the general form of the deposit
is also that of the ore-shoots. In some deposits, such as the
magnetite deposits of northern Sweden and the dike-like de-
posits of ilmenite at Iron Mountain, Wyoming, there is prac-
tically no waste material and the whole igneous body consti-
tutes ore.

More commonly the irregular lenticular or tabular masses of
igneous rocks in which ore minerals have developed by mag-
matic segregation (for instance, gabbro containing chalcopyrite)
have nuclei of richer material gradually fading into more normal
rock.

In the epigenetic deposits the outlines of the ore-shoots are
exceedingly variable. In those deposits which are formed by
replacement this is particularly true, and few rules can be laid
down for their occurrence; the form in general corresponds to
that of the ore-body and is determined by the fissures giving
access to the solutions, by the presence of impermeable rocks,
and by the varying susceptibility to replacement of the original
rocks.

Most attention has been given to the shoots in fissure veins.
Although the ore in the main follows the fissure and therefore
has a tabular or sheet-like form, it rarely occupies the whole
space along this fissure, but is concentrated in bodies of vary-
ing size, shape, and continuity; smaller bodies are known as
bunches, pockets, or kidneys; in gold-quartz veins these may be
exceedingly rich. Narrow ore-shoots, greatly elongated in the
vertical direction, whether occurring in fissure veins or independ-
ently of them (for instance, in volcanic necks), are called chim-
neys, pipes, or necks (Fig. 62).

Ore-shoots may be entirely irregular, but commonly have a more
or less well-defined columnar, steeply pitching shape, best shown in
projection upon the plane of the vein. Fig. 59 shows the termin-
ology proposed\(^1\) for the various dimensions of an ore-shoot in a
vein. The pitch length, or axial length, is the distance between the

two extreme ends of the shoot. The pitch is the angle which the pitch length makes with the strike of the vein, and is measured on the plane of the vein. The stope length is the horizontal length of the ore-shoot on any particular level. The thickness or width is measured perpendicularly to the plane of the vein. The breadth of the ore-shoot is the stope length, multiplied by the sine of the pitch.

Fig. 60 shows the ore-shoots of a gold-quartz vein at Nevada City, California. Flat-dipping shoots are not so common. Fig. 61 shows an excellent example of a flat shoot in the celebrated Eureka-Idaho vein at Grass Valley, California.

In parallel veins the shoots are often, roughly speaking, coextensive. Sometimes the shoots in a series of parallel veins persistently recur where the veins cross a certain stratum or dike, as, for instance, where the gold-quartz veins of Gympie, Queensland, intersect certain carbonaceous strata, or as at Thames, New Zealand, where the veins intersect certain softened and altered andesites. Many shoots follow intersections of veins or of veins with fissures.

Shoots, however large, do not continue indefinitely, but end in depth, usually with gradual deterioration. Small masses or kidneys are likely to be found below the termination of a large
Fig. 60.—Ore-shoots of veins at Nevada City, California.

Fig. 61.—Approximate outline of the Eureka-Idaho ore-shoot, Grass Valley, California, in projection on the plane of the vein.
ore-shoot. Exploration may find another shoot below the first, either on the same fissure or imbricating on a parallel vein. When great depth is attained the grade of the ore usually decreases in the deeper levels, but this rule is not without exceptions. Many shoots are lenticular, that is, they contain a
ORE-SHOOTS

rich nucleus, outward from which the ore gradually decreases in tenor. H.C. Hoover, from an examination of 70 mines, concluded that ore-shoots are generally lenticular and that the probable minimum extension of an ore-shoot below any given level would be a factor of not less than a radius of one-half of its breadth.

At Cripple Creek Lindgren and Ransome found that the shoots which begin distinctly below the surface have a marked elongated form, the ratio between pitch length and breadth varying from $1 \frac{1}{4} : 1$ to $5 : 1$.

Primary ore-shoots rarely continue for more than 2,000 feet along the strike, or for more than 2,000 feet along the pitch length.

In a given district the pitch of the ore-shoot is often predominantly in one direction; thus at Nevada City and Grass Valley the shoots pitch to the right of an observer who looks down the dip of the vein. In another district the opposite may be true. In some places the values vary directly, in others inversely with the swelling of the vein. According to a rule often quoted, the shoots follow the directions of the striations on the vein walls, but this again by no means has universal application.

Shoots of Successive Mineralizations.—While in some veins the whole width consists of uniform ore, it is exceedingly common, especially in thick veins, to find that there are certain streaks which are far richer than the rest. They may follow foot-wall or hanging-wall, or the center of the vein, or may switch from one side to another. Such phenomena indicate re-opening of the vein or brecciation after the first period of vein-filling and enrichment.

Vadose Ore-Shoots.—Descending surface waters decompose and often enrich the surface part of veins or other deposits. Such enriched portions may be called vadose shoots; these are dependent upon the ground-water level and, when projected upon the plane of the vein, follow the surface of the ground and terminate below along an irregular and jagged line. Oxidized ores, as well as sulphides due to enrichment, are found in them, usually at different levels. The vadose shoots are in fact usually characterized by horizontal extension, in contradistinction to the predominance of the vertical direction in the primary shoots. The mineralogical characteristics of the vadose shoots will be discussed in detail in a later chapter. Their tendency is to
spread along the strike of the vein, often also out into the wall rock. Thus pay ore may be found for a long distance along the trend of the vein and its appearance will be that of the oxidizedcroppings of a long primary shoot, when in fact deeper explorations may prove the existence of a few narrow primary ore-bodies underneath the continuous vadose ore. Sometimes, as in Calico, San Bernardino County, California, and numerous other places, vadose silver ores will be found in croppings along a vein which are simply concentrations of a primary vein filling that contains no workable shoots. Especially in the case of copper ores, depth is also an important factor in the formation of vadose shoots, because of the existence of the zone of surface impoverishment, the oxidized belt, and the zone of secondary sulphides, but the tendency to lateral spreading is always emphasized. Wandering copper solutions, for instance, find in adjacent shale beds congenial places for the precipitation of oxide and form entirely new ore-shoots.

Causes of Ore-Shoots.—Ore-shoots are due to the abundant precipitation of valuable minerals from their solutions. The causes are in part chemical and in part mechanical:

1. Decrease of pressure and temperature.
2. Favorable chemical character of wall rock.
3. Favorable physical character of wall rock.
4. Intersections.

Decrease of Pressure and Temperature.—The fundamental reason for the occurrence of ores in veins and allied epigenetic deposits in the upper crust is probably that the metals were in solution in hot waters which were ascending and gradually encountered conditions favorable for precipitation. First among these conditions is decreasing temperature. If this is true the deposits should gradually become poorer or barren in depth. In a general way this is doubtless true, but for many substances the vertical space through which deposition can take place is very large. We know that gold-bearing quartz was deposited in California over a vertical distance of 4,000 feet, while in southeastern Alaska and at Bendigo, Australia, the interval is not less than 5,000 feet. This deposition took place at considerable depth.

W. Lindgren, Ore deposition and deep mining, Econ. Geol., vol. 1, 1905, pp. 34-46.
below the surface, probably several thousand feet below it, and as it is known that gold-bearing quartz may also be deposited within the upper zone, we have thus a total vertical range of at least 9,000 feet. At the lowest levels at the places mentioned the ore is of low grade, but in Alaska at least there is a large quantity available. The richest ore was doubtless deposited close to the surface, where we find the bonanzas of the Tertiary gold and silver veins; but below this bonanza zone the decrease in tenor of the ore is very slow and rich shoots and pockets may be found at great depth below the original surface. For copper ores the vertical range of deposition is likewise great, though unlike gold and silver they seem to be deposited in greatest quantity at lower levels and high temperatures. Lead, on the other hand, appears to be precipitated nearer the surface and at lower temperatures; while zinc in this respect stands between copper and lead.

Many instances are known of copper deposits becoming of lower grade in depth. H. Sjögren (loc. cit.) cites Vigsnaes in Norway and Fahlun and Bersbo in Sweden, respectively 332, 735, and 410 meters deep. In the Bersbo deposits zinc blende appeared in depth.

The relations set forth explain why so little decisive evidence of vertical succession in deposition is available from observations at any one mine.

In the Cornwall veins tin and tungsten prevail in the lower levels in granitic country rock, while copper was deposited in the cooler region of the slates covering the granite batholiths; the lead ores are found some distance away from the intrusive granite. In many lead mines it has been noted that within a distance of 700 to 3,000 feet from the surface the lead minerals give way to pyrite and zinc blende. In quicksilver mines the ore often becomes impoverished within 1,000 feet below the surface.

Character of Wall Rock.—The character of the wall rock has sometimes a decided influence on the ore-shoots, but it is not always easy to decide whether it is due to chemical or mechanical causes. In replacement deposits limestone and lime shale are usually favorable, but in the Coeur d’Alene district of lead-bearing veins a quartzitic schist is the rock best adapted for replacement by siderite and galena. At Freiberg, Saxony, the
gray gneiss is the favorable rock, while the veins split or become unproductive in the red gneiss or in the mica schists.

Carbonaceous rocks are believed to influence deposition favorably by their reducing action; the gold-quartz shoots of Gympie, Queensland, are often quoted, as well as the supposedly carbonaceous "indicator" at Ballarat, Victoria. The well-known fossil wood and the replacement of fossil wood by chalcopyrite in a certain class of copper deposits may be added to these examples, as well as the supposed influence of certain oil shales on the deposition of lead ores in Wisconsin. The importance of precipitation by carbonaceous material has been overestimated, but in many cases the hydrocarbons have certainly favorably influenced the deposition of ores.¹

Rocks containing pyrite or other sulphides often enrich traversing veins. Examples of this are known from Kongsberg, Norway, where the silver veins are productive when crossing certain schists with disseminated sulphides. At Ophir, California, gold-quartz veins are enriched when crossing "iron belts" of pyritic amphibolites.

Where a vein cuts through a thick series of sedimentary rocks it often widens and contains rich ore in the limestones, while poor or barren in shale or sandstone. Similarly, where a thick series of igneous rocks, as in the San Juan region, Colorado, is intersected by veins ore horizons will develop in rocks which by their physical and chemical character are most favorable to continuous fissures or to replacement.

Rhyolites are generally unfavorable because fissures often tend to splitting in such rocks; tuffs likewise because the solutions tend to disperse through great masses of rock.

On the other hand, rocks like andesites and latites are usually favorable. Purington (loc. cit.) has shown that in the San Juan Mountains the andesitic breccias which contain abundant ferromagnesian silicates are most favorable to ore deposition.

Impermeable Barriers.—The conditions outlined above would tend to produce more or less horizontal ore-bodies. Such ore-bodies are most conspicuous where impervious rocks interpose barriers to the solutions. The occurrence of ores in horizontal extension below such barriers is in fact one of the best indications that the solutions have been ascending in the main.

Fig. 63.—Sketch section showing occurrence of ore-shoots in limestone at contact of overlying Devonian shale at the Bremen mine near Silver City, New Mexico. a, Limestone; b, shale; c, ore. After R. A. F. Penrose, Jr.

Fig. 63a.—Diagrammatic section across a lode, and ore-body formed beneath an impervious stratum of black shale, Rico, Colorado. After F. L. Ransome, U. S. Geol. Survey.
Fig. 63 shows the occurrence of oxidized silver ores below the Devonian shale at Chloride Flat (Silver City), New Mexico, and similar occurrences are not uncommon in other mining districts of New Mexico. The blanket veins of Rico, Colorado (Fig. 63a), present another good illustration of this principle, as do also the ores of the American Nettie mine near Ouray, Colorado, and the siliceous gold ores replacing dolomite in the Black Hills. The impermeable stratum is not necessarily shale; it may be a gouge in a fissure, or a sheet of volcanic rock which, for some reason, the fissures failed to penetrate. The same principle of impermeable barriers serves to explain why the vein material is often confined between the clay seams of hanging and foot wall without entering the adjacent country rock by replacement.

Where the solutions have moved downward, as in the concentration of hematite ore from poorer "iron formations," it is often observed that ores occur in impervious basements and troughs caused by shales, clayey fissures, or dikes.

Intersections.—Enrichment and ore-shoots along intersections of two veins or of a vein and a fissure are very common phenomena, well exemplified at Freiberg, Saxony (Fig. 64), and at Cripple Creek, Colorado. Van Hise attributes the shoots at such intersections to the mingling of two solutions and consequent precipitation of some constituents. In part they may be due to the shattering of the rocks at the intersection, and Penrose notes that shoots are more likely to occur where the intersection takes place at acute angles, forming wedge-shaped blocks that are easily shattered at their edges.

Where one fissure is faulted by another, deposition may occur because the circulation becomes impeded at the fault. It is not entirely clear why deposition of rich ores should take place when the solutions are impeded and partial stagnation follows, but the conditions observed bear sufficient testimony to the fact.

Though enrichment at intersections is common it is by no means a universal rule, and indeed sometimes a vein is impoverished at the intersection with a barren fissure.

The occurrence of the large shoots in the gold-quartz veins of California, at Cripple Creek, and in the Coeur d'Alene lead mines cannot be fully explained by intersections or by the influence of the wall rock.

At Butte the later fault veins, which consist of crushed country rock 5 to 20 feet wide, contain shoots in all variations
from pockets to great ore-bodies 1,000 feet long by 2,000 feet in depth, and some of them not yet bottomed; there is no regularity in pitch.

![Diagram of ore-shoots](image)

Fig. 64.—Longitudinal section along the Neu Hoffnung vein, Freiberg, Germany, showing ore-shoots along intersection with several other veins. *After R. Beck.*

The occurrence of large ore-shoots is generally considered as the result of decrease in temperature of ascending solutions in channels of circulation.

12
CHAPTER XIII

THE CLASSIFICATION OF MINERAL DEPOSITS

Classification by Form and Substance.—A genetic classification of deposits of useful minerals is really equivalent to the classification of "geological bodies" as defined in Chapter I and is therefore naturally beset with all the difficulties connected with an imperfect knowledge of geological processes. The early attempts in the way of systematic treatment, however, avoided this troublesome path by the simple expedient of classifying by substance or uses, or by form. These schemes are followed in many text-books, even among those of recent date; undoubtedly they have some advantages, especially for the miner, the industrial chemist, or the metallurgist, who are principally interested in the form of the deposit or in the study of ores of certain metals.

By substance and uses mineral deposits may be classified as follows:

1. Structural materials Stone, glass sand, cement rock, clay, asphaltum.
2. Fuels Coal, petroleum, natural gas, peat.
3. Abrasives Corundum, garnet.
4. Fertilizers Potash salts, phosphates, green-sands.
5. Precious stones Diamond, opal, tourmaline.
6. Various industrial uses Graphite, barytes, borax, asbestos, sulphur.
7. Metallic ores Iron ores, copper ores, gold and silver ores, tin ores, aluminum ores.

However convenient, it is evident that this classification cannot lead to a thorough appreciation of the manifold processes by which mineral deposits are formed in nature.

The first attempts at a classification of the deposits themselves were made by the miners and thus the early and not yet entirely abandoned schemes refer to the form of the geological bodies. But form is closely connected with genesis and even in one of the earliest classifications on this basis, that of Bernhard von Cotta,¹

¹ Die Lehre von den Lagerstätten, Freiberg, 1859.

178
the difficulty of avoiding genetic conceptions is felt in his definition of a vein as a "filled fissure." He divides ore deposits as follows:

I. Regular deposits.
 A. Beds.
 B. Veins.
 a. Ordinary fissure veins (true fissure veins).
 b. Bedded veins.
 c. Contact veins.
 d. Lenticular veins.

II. Irregular deposits.
 C. Stocks. (Irregular masses with distinct limits.)
 a. Recumbent.
 b. Vertical.
 D. Impregnations. (Irregular masses, fading into country rock.)

With variations this plan of classification is followed in many of the older text-books. Not unlike it is a classification by J. A. Phillips in his treatise on ore deposits, revised in 1896 by H. Louis.

Lately James Park has adopted the same plan with some modifications in a useful and practical text-book on mining geology.¹ His classification is as follows:

I. Superficial deposits.
 a. Fragmentary.
 b. Massive.

II. Stratified deposits.
 a. Constituting beds.
 b. Disseminated through a bed.

III. Unstratified deposits.
 a. Deposits of volcanic origin.
 b. Stockwork deposits.
 c. Contact or replacement deposits.
 d. Fahlbands.
 e. Impregnations.
 f. Segregated veins.
 g. Gash veins.
 h. True fissure veins.

Undoubtedly Professor Park recognizes the defects in logical coordination of this system, for he states that the classification is only an empirical arrangement to facilitate the study of ore deposits, and in the latter part of the book a provisional classification by origin is given. However, if it is desired to teach the subject from a scientific standpoint a consistent and logical arrangement is assuredly desirable.

Genetic Classifications.—It is unnecessary to explain in great detail why a genetic classification is the most desirable both theoretically and practically. In exploring and exploiting ore deposits, the miner is almost forced to form an idea of its origin in order to follow up the ore-bodies to best advantage. Von Groddeck and Stelzner were really the first mining geologists who appreciated and applied the genetic principle in classification. Of course, the time was hardly ripe for its introduction until the conceptions of genesis had crystallized into fairly definite form. Stelzner remarks, with good reason, that it is only by standing upon the ground of a genetic theory that the miner finds courage to sink deep shafts or drive long tunnels.

We are still in doubt as to the true mode of origin for many deposits. But, as von Groddeck and Stelzner have pointed out, this applies to any classification and this very uncertainty is a stimulus to further investigations.

The different classifications proposed will not be given here in detail. An excellent account is found in Kemp’s “Ore deposits of the United States and Canada,” Appendix I. Von Groddeck and Stelzner, Posepny, Wadsworth, Monroe, Kemp, Crosby, Hoefer, Spurr, Van Hise, Weed, and several others have more or less successfully attacked the problem of a consistent genetic classification.

Von Groddeck, followed by Stelzner and Beck, makes the primary distinction whether the useful minerals were originally formed in or with the rock in which they now occur or whether they were introduced into pre-existing rocks. The former are called syngenetic, the latter epigenetic deposits.

J. F. Kemp divides the deposits into (I) those of igneous origin, (II) those precipitated from solutions, and (III) those

1 The former says: "I must confess that I have never been able to understand the satisfaction which many people feel when they are informed that a certain deposit, for instance, is a "stock." This information has, on the contrary, always produced in me a feeling of deep dissatisfaction." Quoted in Stelzner and Bergeat, Erzlagerstäten, pt. 1, p. 10.
deposited from suspension, or residues after the decomposition of rocks. Difficulties appear here too, for what are igneous magmas but solutions?

Beck's classification is in part based on that of Stelzner. In the first edition of his hand-book "Die Lehre von den Erzlagernstätten" the syngenetic or epigenetic origin was made the principal basis of classification. In the edition of 1909 this is changed and the deposits are classified as follows, on the basis of the various phases of their genetic history:

1. Magmatic segregations.
2. Contact-metamorphic ore deposits.
3. Fissure veins.
5. Stocks.
7. Sedimentary ore deposits.
8. Detrital deposits.

While this is a decided improvement upon the first classification adopted by Beck, the description of the various deposits shows that many genetically different types are forced into one and the same subdivision.

Weed1 goes further and gives the origin of the ore-forming solutions. His first class includes igneous deposits, segregated in a magma; his second, igneous emanations, including contact deposits, and tin veins; his third, gas-aqueous or pneumatohydato-genetic deposits formed by magmatic waters mingled with ground waters. His fourth and smallest division includes those mineral masses formed by surface waters. This classification has not been generally accepted because it brings up the admittedly difficult separation of meteoric and magmatic water.

The best genetic classification of mineral deposits would seem to be that according to geological processes. Mineral deposits must have been formed by igneous processes, alteration, cementation, deformation, erosion, or sedimentation. Recognizing this, Van Hise2 classifies ores as follows: Those produced (1) by proc-

1 W. H. Weed, In "Ore deposits," a discussion republished from the Eng. and Min. Jour., New York, 1903, pp. 20–23.

esses of sedimentation; (2) by igneous processes; (3) by metamorphic processes, including under this heading practically all veins and allied geological bodies, conceiving them to be deposited by the circulating ground water.

It is probably impossible to produce a classification which will win the approval of all. In the ultimate analysis by far the larger number of mineral deposits have been formed by physico-chemical reactions in solutions, whether these were aqueous, igneous, or gaseous. According to this view the only consistent division that can be made is that between deposits formed by mechanical concentration of pre-existing minerals and those formed by reactions in solutions.

A genetic classification should not be confined to a general indication of the relative time of ore deposition—whether at the same time or later than the country rock. Nor should it confine itself to a statement of the agents of ore deposition—whether aqueous, igneous, or gaseous solutions, or whether sedimentary, igneous, or metamorphic processes. The statement of the place of ore deposition—at the surface or below it; in shallow waters or in deep seas—is important but not sufficient.

The genetic classification should ultimately determine the limits of ore deposition in each class by temperature and pressure. Each deposit should be considered as a problem in physical chemistry, and the solution of this problem, with the necessary geological data, will suffice to fix the mode of formation of the deposit.

We are far from having the complete material for such a classification, but we have at least a few starting points. It is necessary to determine, by experiment or by observation in nature, the limits of existence of each mineral species. Some will be found to be “persistent” under widely differing conditions of temperature and pressure—like fluorite, quartz, or gold. For others a far more limited range will be established. By collecting the data of mineral association, sequence of deposition, and stability range of the component parts of the deposit it will be possible to ascertain the conditions prevailing at the time of ore deposition.

Perhaps it is well not to expect too much from physical chemistry, magnificent as its services have been. The complications, even in simple systems, become great when, besides temperature and pressure, concentration, mass action, and time
must be considered. In multicomponent systems the difficulty increases enormously. At the same time it is believed that the direction indicated is the only safe one to take in classifying the complex phenomena of ore deposition.

Some authors have attempted a classification by mode of deposition—whether by replacement or by filling of open cavities—but all such attempts have been failures, for the two processes are so closely associated that separation is impossible.

OUTLINE OF PROPOSED CLASSIFICATION

Detrital and Sedimentary Deposits.—In the scheme followed in this book there are two major divisions. The first includes deposits formed by mechanical processes of concentration. This includes the detrital deposits such as placers and quartz sand formed at moderate temperature and pressure.

The second division contains the great majority of mineral deposits which have been produced by chemical processes of concentration. Many important processes, such as those productive of iron ores and phosphates, for instance, take place by interactions of solutions in bodies of surface waters. These processes may be of inorganic origin or they may take place through the medium of living bodies, almost always at moderate temperatures. The products are usually mingled with detrital matter. They may be enriched by secondary processes in the unconsolidated strata or by processes of weathering after their exposure to air.

Another class of deposits is formed in bodies of surface waters by their evaporation and consequent precipitation of the salts dissolved in them; these are frequently termed the “saline residues.” Common salt, gypsum, and borates are among the substances found in these deposits.

Concentration of Substances Contained in the Rocks.—Instead of at the surface or in bodies of surface waters the processes of concentration of useful substances may go on in the rocks themselves. We may distinguish two cases: the substances were originally contained in the same geological body in which the deposit is found, or they may have been introduced from the outside.

The apparent objection to this basis of subdivision, namely, the difficulty of deciding the source of the mineral or metal, is met in many cases by the knowledge acquired during late years.
There may be deposits for which the question cannot be decided, but I believe that in the near future we shall in most cases have sufficiently good evidence. No one seriously maintains that the gold in the quartz veins of California, for instance, has been leached from the surrounding country rock, and surely no one denies that the oxidized nickel silicate ores of certain peridotites were originally contained in minute distribution in these rocks.

In the case of substances contained in the geological body itself, the concentration may be effected by (1) rock decay and residual weathering—that is, by oxygenated surface waters; (2) by the ground water of the deeper circulation; (3) by processes of dynamic and regional metamorphism, and (4) by zeolitization of surface lavas.

Residual Weathering.—Rock decay tends to destroy the rocks as units; to break them down, mechanically and chemically, and to re-assort their constituents in new combinations. In the decaying mass certain constituents are concentrated or precipitated; its detritus is swept away and deposited in rivers, lakes, and oceans; its soluble constituents are carried into the larger reservoirs of water and there perhaps precipitated in various forms.

It is true that not quite all the sedimentary deposits are derived from the decaying rocks; the fossil coals are indirectly made from the carbon of the atmosphere; volcanic ashes contribute a share to the sediments; the exhalations of eruptive magmas, as well as ascending waters, contribute some dissolved matter from the lower part of the earth's crust.

Processes of sedimentation and rock decay take place at moderate temperatures and pressures and the new minerals formed are, as a rule, characterized by high hydration. Below 0° C. mineral deposits do not form, except in so far as freezing of water is retarded by rapid motion or dissolved salts. Few of the deposits have been formed at temperatures above 50°, and this only exceptionally during eruption, evaporation in shallow desert lakes, or oxidation of pyritic rocks. The pressure is in general little different from that of the normal atmosphere, but in deposits of deep seas or lakes considerably higher pressures prevailed. This increased pressure, at low temperature, appears to have had little influence on the mineral associations formed.

Deep Circulating Waters.—Under the influence of the ground water of the deeper circulation many ore deposits are formed,
concerning some of which there may be room for differing opinions. Copper may be leached from greenstones and the ores of the metal may be deposited in veins in the same rock. Hematite, like that of the Lake Superior region, may be concentrated from the surrounding low-grade "iron formation." Barite, magnesite, and sulphur are other instances.

Regional Metamorphism.—Again, the agency may be metamorphism under stress or regional metamorphism; in such case the change takes place with very little water and it is not considered probable that a great concentration, say of the metals contained, can be effected. Other materials may form, such as slate from shales, or useful minerals like garnets or graphite may develop in the rock. During static metamorphism, temperature and pressure are likely to be higher than at the surface. Regional metamorphism, of course, takes place under heavy pressure and at temperatures which may reach several hundred degrees Centigrade. It merges in fact into igneous metamorphism.

Zeolitization.—The processes of zeolitization take place shortly after the consolidation of an igneous rock by the aid of residual magmatic water or of surface water. Under certain circumstances a concentration of metals can be effected by this process, of which the copper deposits of Lake Superior offer an excellent instance.

Introduced Ores not Connected with Igneous Rocks.—Much more common is the case where the valuable minerals have been introduced into the rock from without, and to this class belong the majority of the metal deposits. Deposits of this kind occur along fissures or form replacements along fissures or are found in general where opportunity is offered for vigorous circulation of the depositing waters. For a long time it was held by many that the metallic contents of fissure veins were derived from the surrounding rock, but it is now generally admitted that such a view in most cases is erroneous.

Certain metallic ores occur entirely independent of igneous rocks; the mineral associations in these indicate a deposition at moderate pressure and temperature, the latter probably rarely exceeding 100° C. Of this kind are certain lead-zinc deposits in limestone or the copper deposits in sandstone which are so common in various parts of the world. Most geologists agree that such deposits have been formed by surface waters, at moderate depths, and that the metals have been leached from neighboring
strata and, after a comparatively short wandering, deposited in fractured rocks in their present resting places. These deposits are generally poor in gold and silver.

Igneous Emanations.—There is also another and larger class which appears only in or near igneous rock and whose epoch of formation usually can be shown to have followed closely after the eruption. This class has been clearly recognized by almost all geologists. There is also general agreement that these deposits have been laid down by heated, ascending waters, although there is no unanimity as to the source of the water or the source of the metal. To some the water and the dissolved metals are simply igneous emanations from a cooling magma; to others the waters are of atmospheric origin and, heated by their passage through still warm igneous rocks, have dissolved the metals contained in them.

Nearly all metal deposits of the American Cordilleran region belong to this division. It is subdivided into several groups, according to the evidence of mineral association and geological relations. The first group includes ores deposited at slight depth below the surface; the temperature is here relatively low, perhaps from 50° to 150° C., and the pressure will scarcely exceed 100 atmospheres. Examples of this group are found in many propylitic gold and silver veins, the Cripple Creek telluride veins, and the California quicksilver veins.

A second group comprises the deposits formed by hot ascending waters at moderate depths, say from 5,000 feet to 10,000 feet below the surface, at temperatures of perhaps from 150° to 250° C. and correspondingly increased pressure. The present outcrops are exposed by deep erosion and they almost always appear in or close to intrusive bodies. As examples may serve the gold-quartz veins of California and the metasomatic pyritic deposits of Leadville.

A third, deep-seated group includes veins and contact-metamorphic deposits. During the genesis of these the temperature was high, but in most cases below 575° C. The pressure was probably very high. The cassiterite veins, some gold-quartz veins of the Appalachian type, and the tourmaline-copper veins belong in this group, which with great confidence may be ascribed to emanations from magmas. The deposits unquestionably formed by direct igneous emanations are the contact-metamorphic ores appearing in limestone along igneous contacts. They contain oxide ores, such as magnetite and
specularite, together with sulphides of copper, zinc, and iron, and present an association of other minerals characteristic of contact metamorphism.

The emanations from effusive bodies are deposited as sublimates of little economic importance.

Products of Magmatic Differentiation.—The last class is that of the deposits formed by concentration in igneous magmas; of all types these have formed at the highest temperature and pressure. They include oxides or sulphides segregated in the magmas, like the iron ores of Kiruna in northern Sweden, the titanic iron ores of the Adirondacks, or the copper-nickel ores of Sudbury. They also include the pegmatite dikes, which contain many gems and rare metals and which are regarded as segregations from cooling granitic magmas. The pegmatites were formed at comparatively low temperatures—probably from 500° to 800° C.—but during the differentiation of the other deposits mentioned considerably higher temperatures probably prevailed. The pressure must, of course, have been very high.

Metamorphism and Enrichment of Deposits.—In the proposed classification the mineral deposits are supposed to have suffered no change from their original condition. This is of course rarely strictly true, for chemical changes as a rule begin soon after the cessation of the agency which caused the deposition. In sedimentary beds this is particularly the case, for cementation and hardening and various chemical actions begin almost from the time of deposition. It is, however, not the custom to refer to these changes as metamorphism.

Many mineral deposits have undergone great changes from their original conditions. They may have been reached by igneous metamorphism and thus a coal bed transformed into anthracite or a bed of limonite into magnetite. Or they may have been sheared or crushed during regional metamorphism. Or, most common of all cases, they may have been altered by surface waters. Such oxidizing surface waters, as well as similar waters at somewhat greater depth, when they have parted with their free oxygen, produce peculiar modifications and often most important enrichments.
A CLASSIFICATION OF MINERAL DEPOSITS

I. Deposits produced by mechanical processes of concentration. (Temperature and pressure moderate.)

II. Deposits produced by chemical processes of concentration. (Temperature and pressure vary between wide limits.)

A. In bodies of surface waters.

1. By interaction of solutions.
 a. Anorganic reactions.
 b. Organic reactions.

2. By evaporation of solvents.

B. In bodies of rocks.

1. By concentration of substances contained in the geological body itself.
 a. Concentration by rock decay and residual weathering near surface.
 Temperature, 0°–100° ±
 Pressure, moderate.
 b. Concentration by ground water of deeper circulation.
 Temperature, 0°–100° ±
 Pressure, moderate.
 c. Concentration by dynamic and regional metamorphism.
 Temperature up to 400°.
 Pressure, high.
 d. Zeolitization of surface lavas.
 Temperature, 50°–300°.
 Pressure, moderate.

2. Concentration effected by introduction of substances foreign to the rock.
 a. Origin independent of igneous activity.
 By circulating atmospheric waters
 Temperature, to 100°.
 Pressure, moderate.
 b. Origin dependent upon the eruption of igneous rocks.
 a. By hot ascending waters of uncertain origin, but charged with igneous emanations.
 1. Deposition and concentration at slight depth.
 Temperature, 50° ±–150° ±
 Pressure, moderate.
 2. Deposition and concentration at intermediate depths.
 Temperature, 150° ±–300° ±
 Pressure, high.
 3. Deposition and concentration at great depth or at high temperature and pressure.
 Temperature, 300° ±–500° ±
 Pressure very high.
 b. By direct igneous emanations.
 1. From intrusive bodies. Contact metamorphic deposits
 Temperature, probably 300° ±–800°.
 and allied veins; pegmatites.
 Pressure, very high.
 2. From effusive bodies.
 Sublimes, fumaroles.
 Temperature, 400° ± Pressure, atmospheric to moderate.

C. In magmas, by processes of differentiation.
 b. Pegmatites. Temperature, about 575°. Pressure, very high.

1 Presented before the Geological Society of Washington, May 10, 1911.
CHAPTER XIV

DEPOSITS FORMED BY MECHANICAL PROCESSES OF TRANSPORTATION AND CONCENTRATION;
DETRITAL DEPOSITS

INTRODUCTION

Weathering tends to destroy rocks and mineral deposits by disintegration and chemical decomposition. In part, new minerals, like kaolin and limonite, form; in part, the more resistant minerals, like quartz, gold, platinum, magnetite, cassiterite, and garnet, are set free in individual grains. Erosion now steps in and the detritus is swept down the slopes and into the water channels. Mechanical separation in running water or along sea or lake beaches sorts the detritus according to specific gravity and size of grains. The heaviest particles, as those of gold, magnetite, and garnet, tend to collect in the lower part of the assorted detritus; the minute and easily moved scales of clayey substance are carried far but ultimately deposited as sedimentary beds; the colloids are coagulated by the electrolytes in the sea water.

DETRITAL QUARTZ DEPOSITS

The quartz grains are often accumulated as beds of almost pure quartz sands. These are used extensively as ingredients in pottery and glass, also for abrasive purposes in sawing soft rocks, such as marble. Such sands should contain 99 per cent. silica. Somewhat argillaceous quartz sands without carbonates and carrying 80 to 90 per cent. silica are used as molding sands and are mined on a large scale, though occurring in thin beds.\(^1\) When compacted by pressure and by cementation the quartz sands are transformed into siliceous sandstones and quartzites and these are used for millstones, whetstones, and grindstones. Comparatively few localities furnish good material.

E. C. Eckel, Molding sand, its uses, etc., Twenty-first Report, New York State Geol. Surv., 1901, pp. 91–96.
For further technical and statistical information on these subjects the reader is referred to the *Mineral Resources of the United States*, 1908, part 2, pp. 510, 581–598, and the same publication for 1910, pp. 601–608, and pp. 583–588, where a list of literature may also be found.

In case of very fine-grained whetstones a doubt may exist whether the material is of detrital origin or formed by chemical agencies. The so-called novaculite of Arkansas, the best whetstone known, is a good example of this. It occurs in the Silurian beds of Garland and Saline counties in that State, and is used for what are known, according to color and quality, as Washita and Arkansas stones. The latter are snow-white and are the harder. The rock is much jointed and only small pieces are obtainable. Branner considers this material a metamorphosed chert, while Griswold\(^1\) believes it to be a fine-grained sediment.

DETRITAL CLAY DEPOSITS\(^2\)

The fine material resulting from the decay of rocks is carried away, suspended in water, and deposited in river beds, lakes, and seas as sedimentary clay. The nature of clays is a much discussed subject. Perhaps the best definition is given by G. P. Merrill, who says\(^3\) that the clays are widely diverse in origin and in mineral and chemical composition but have the common property of plasticity when wet and that of induration when dried. Clays are finely comminuted aggregates of hydrous and anhydrous aluminous silicates, free silica, and varying quantities of iron hydroxide and calcic and magnesic carbonates. The sedimentary clay is therefore to be regarded rather as a rock than as a mineral and its principal use is for structural purposes. The detailed description of these deposits, therefore, does not fall within the scope of this book.

The larger part of the clays are derived from decomposition and hydration of feldspathic minerals; other silicates, however,

\(^2\) For more details in regard to the important clay industry the reader is referred to H. Ries, *Clays, New York*, 1906. Information as to production, etc., is given in *Mineral Resources of the United States*, published annually by the U.S. Geol. Survey. Further notes regarding residual kaolin deposits may be found on pp. 302–305.

CONTRIBUTE THEIR SHARE. It has been supposed that the mineral kaolinite \((H_4Al_2Si_2O_9)\) is one of the principal constituents of clay. Probably it is present because the formation of kaolinite from feldspars can easily be traced in decomposing rocks at the surface, but in the clays the mineral appears in so fine comminution that it cannot be identified. It is known that colloid hydrous silicates of aluminum exist and there are also a number of more or less indefinite compounds of this kind in nature, such as halloysite, smectite, and plotherite. The sedimentary clays rarely approach kaolinite in composition. Kaolinite should contain 46.5 per cent. \(SiO_2\), 39.5 per cent. \(Al_2O_3\), and 14 per cent. \(H_2O\); but by reason of admixture of quartz and undecomposed silicates, the sedimentary clays usually contain much more silica than the amount indicated. Limonite and carbonates of calcium and magnesium are frequently present.

Clays of all degrees of purity are also formed by decomposition of rocks in place under the influence of waters containing oxygen and carbon dioxide; they are also formed in the upper parts of ore deposits containing sulphides, by the action of sulphuric acid, resulting from the oxidation of the sulphides, on silicates, and especially on sericitized rocks (see p. 447).

FULLER'S EARTH

Fuller's earth is the name given to certain sediments of clay-like material, originally used in England by fullers for cleansing cloth of grease. At present this substance is extensively used for deodorizing and clarifying fats and oils; much of it is employed in the refining of petroleum. Its value thus depends upon its absorbent qualities.

The material occurs in sedimentary beds of Mesozoic, Cenozoic, and Quaternary age, but a similar material is also derived from the weathering of basic igneous rocks. Microscopic examina-

1 Henrich Ries, Clays, occurrence, properties, and uses, 2d ed., 1908, p. 506.

tion gives little evidence of its origin; in color it ranges from gray to dark green; it possesses little or no plasticity. The chemical analysis also has little value in determining its quality. J. T. Porter believes, and probably justly, that the material owes its quality to the absorbent power of colloid hydrous aluminium silicates. It is thought that at least some varieties of fuller's earth result from the weathering of ferromagnesian silicates.

The analyses quoted by Ries show that the silica varies between 47 and 75 per cent., alumina from 10 to 19 per cent., lime from 1 to 4 per cent., magnesia from 2 to 4 per cent., ferric oxide from 2 to 10 per cent., and combined water from 5 to 21 per cent.

In Gadsden County, Florida, and Decatur County, Georgia, it occurs in Oligocene strata and is mined in open pits; in Arkansas it is obtained from weathered basic dikes. The further preparation includes drying, crushing, and bolting. The domestic production amounted to about 33,000 short tons in 1910 and about 17,000 long tons were imported. Florida yields 67 per cent. of the total domestic production. The price of the Florida material is about $8 per ton.

PLACER DEPOSITS

Origin and Distribution.—The heavier and less abundant minerals in the rocks are the most resistant to decomposition and when the weathered rock is eroded and sorted by water they usually become concentrated in the lower parts of the sand and gravel beds. The gold-bearing gravels, which form an important source of supply of this metal, were called placers by the early Spanish miners of this continent, and this name is probably the best that can be adopted for deposits of this class. Instead of gold the valuable mineral may be cassiterite, magnetite, monazite, diamonds, or other precious stones. Other terms have been employed, as “gravel deposits” or “gold-bearing gravels,” or “alluvial deposits”—all equally objectionable, for the material may be sand instead of gravel, and it may be deposited along the ocean beach instead of in watercourses.

1 *Economic Geology*, 1910, p. 236.

2 Derivation uncertain: Placer, pleasure; Plaza, place. Stelzner (Die Erzlagerstätten, p. 1261) says placer is a local Spanish term for sand bank. The Germans use “Seife,” meaning washings. In French the word “alluvions” is often used.
TRANSPORTATION AND CONCENTRATION

The processes of erosion and concentration have been active since earliest geologic time, and so we may have detrital deposits or placers of differing ages. Land deposits are, however, usually thin and easily removed and thus placers of pre-Tertiary age are comparatively rare.

In the formation of placers nature simply employs in her own leisurely way the processes of crushing and concentration which we use in ore dressing. The rocks are broken and comminuted by the expansion due to alternating heat and cold; by the growth of plants; or by the impact of sliding and water-carried rocks; or by the grinding action of ice; or finally by chemical decomposition and hydration. The products are concentrated in water courses or along shores by running water or in ocean currents by motion similar to that on tables and jigs. Spherical particles of different substances fall in water at a rate proportional to their weight divided by the resistance. As the resistance is proportioned to the area exposed, a fragment of quartz the size of a pea will fall much more slowly than a piece of gold of the same size. It will in fact be carried along easily in a current of water in which a piece of gold of the same size will sink instantly. Thus the specific gravities of the valuable minerals play a prominent part in the formation of placers. The specific gravity of the more important substances is as follows: Quartz, 2.64; feldspar, 2.55 to 2.75; ferromagnesian silicates, 2.9 to 3.4; garnet, 3.14 to 4.13; diamond, 3.54; corundum, 4.0; monazite, 5.0; magnetite, 5.0; cassiterite, 6.4 to 7.1; gold, 15.6 to 19.33; platinum, 14.0 to 19.0 (21 to 22 when chemically pure).

The shape of the particles is also of importance. Flaky minerals, like molybdenite, scaly gold, or specularite, are difficult to concentrate in spite of their high specific gravity.

GOLD PLACERS

Introduction.—Gold is the most important placer mineral. Roughly speaking, about $70,000,000 out of a world’s production of somewhat over $400,000,000 are derived from placer deposits; the quantity has been increasing lately, owing to the discoveries in Alaska and the Northwest Territory. Gold placers as a rule are easily discovered and worked; the supplies of old and long-settled countries were generally long ago exhausted.
Bohemia, Italy, Spain, and Hungary, now almost barren of placers, once furnished their share. New deposits are usually discovered on the outskirts of civilization, as in Brazil in the eighteenth century, in Australia and California during the middle of the last century, and in Alaska and Siberia to-day. The production of placer gold in the United States, including Alaska, in 1897 was $7,800,000; in 1910 it was $22,500,000, the increase being due to the recently discovered placers of Alaska and to the development of the dredging fields in California. Practically all this gold comes from Quaternary and Tertiary placers, some dating back as far as the Eocene. A small quantity is obtained from Cretaceous conglomerates in Oregon and northern California. Permian gold-bearing conglomerates occur in Bohemia, according to Posepny.1 Permo-Carboniferous conglomerates containing detrital gold have been described by Wilkinson from New South Wales.2 In most cases the gold content of these older conglomerates is small and they can rarely be profitably worked. Probably the best example of ancient placers is furnished by the Cambrian basal conglomerate of the Black Hills, South Dakota, which unconformably covers the pre-Cambrian schists and gold-bearing quartz veins. It was first described by W. B. Devereux3 and later by J. D. Irving.4 This conglomerate, which is from 2 to 30 feet thick and is overlain by quartzite, carries in places much gold of unquestionably detrital origin, as indicated by the rounded grains, and has been profitably worked in several mines. The gold was derived from the erosion of auriferous lodes in the pre-Cambrian rocks and was deposited in depressions along the old shore line. In part the gold-bearing conglomerate is cemented by pyrite, which probably also contains some gold. The older quartz deposits, of which the great Homestake lode is the most prominent example, are still worked on an extensive scale in this region. Maclaren5 believes that the scarcity of economically important deposits of detrital gold in older formations is due to its solution, in depth, by alkaline solutions. There is little evidence in support of this view.

1 Genesis of ore deposits, p. 163.
2 Idem, p. 162.
5 J. M. Maclaren, Gold, London, 1908, p. 90.
TRANSPORTATION AND CONCENTRATION. 195

Origin of Placer Gold.—In primary deposits gold is mainly contained in veins, lodes, or shear zones and these appear in rocks of many different kinds. It is often stated that gold is distributed as fine particles in schists and massive rocks and that placer gold in certain districts is derived from this source. Most of these statements are not supported by evidence, though it is not denied that gold may in rare instances be distributed in this manner. Even in the Yukon region, concerning which such statements have often been made, the origin of the gold from veins, lodes, and shear zones is beginning to be recognized.¹

The great majority of gold placers have been derived from the weathering and disintegration of auriferous veins, lodes, shear zones, or more irregular replacement deposits. These primary deposits were not necessarily rich and may not be profitable to work. In many regions the rocks contain abundant joints, seams, or small veins in which the gold has been deposited with quartz.

Eluvial Deposits.—Gold placers may be formed by rapid erosion of hard rocks, but such placers are not often rich and highly concentrated. In the great placer regions the concentration has generally been preceded by an epoch of deep secular decay of the surface. It has been supposed by many that this deep rock decay is peculiar to the tropics, but this is not correct. The process has been active in the southern Appalachian States, in California, and even in Alaska, as well as in countries like the Guianas and Madagascar. When the outcrops of gold-bearing veins are decomposed a gradual concentration of the gold follows, either directly over the primary deposits or on the gentle slopes immediately below. The vein when located on a hillside bends over (Fig. 65) and disintegration breaks up the rocks and the quartz, the latter as a rule yielding much more slowly than the rocks; the less resistant minerals weather into limonite, kaolin, and soluble salts. The volume is greatly reduced, with accompanying gold concentration. The auriferous sulphides yield native gold, hydroxide of iron, and soluble salts. Some solution and redeposition of gold doubtless also take place whenever the solutions contain free chlorine. The final result is a loose, ferruginous detritus, easily washed and containing easily recovered gold. This gold usually consists of grains of rough and irregular form and has a fineness but slightly

greater than that of the gold in the primary vein. Stelzner has applied to such residual concentrations, which may be worked like ordinary placers, the term eluvial gold deposits. Their occurrence is illustrated in Fig. 65.

In the gold region of the southern Appalachian States the decomposition of the country rock, which generally is a schist, may reach a depth of 100 feet or more.¹ The decomposed material of the auriferous veins slides downhill, mixing with the weathered rock, and during this process the gold in part sinks deeper into the detritus. This has given rise to a peculiar

![Diagram showing development of eluvial and stream placers.](image)

Fig. 65.—Diagram showing development of eluvial and stream placers.

system of mining by which the whole mass is washed by the hydraulic method and the more resistant quartz boulders crushed in a stamp mill with coarse mesh. This has been practiced at Dahlonega and is often called the Dahlonega system. Similar deposits were worked in California, particularly in Eldorado county, and are here called "seam workings" from the fact that the gold occurs disseminated in quartz seams traversing a certain belt of schists. Such deposits frequently occasion legal contests owing to the uncertainty whether they should be considered as placers or as mineral-bearing veins.

In certain regions of Brazil² the schists and gneisses are covered by auriferous detritus accumulated in place. Another example

TRANSPORTATION AND CONCENTRATION

is the "Tapanhoancanga" of the same country. This is a bed of residual or lateritic iron ore up to 10 feet thick covering the underlying hematite schist and containing gold throughout. The gold probably occurs in veinlets in the schists and the gold-bearing detrital material has been concentrated from a considerable thickness of schist weathering in place.

Excellent examples of eluvial deposits are reported from Dutch, British, and French Guiana, though ordinary stream placers are the most common deposits in these countries. Over a great part of this gold-bearing territory secular decay of crystalline rocks has resulted in a deep mantle of ferruginous clayey earth—laterite—and in places the gold has been concentrated in this material below outcrops of gold-bearing veins. Many of the stream beds are also worked for placer gold, the detritus usually resting on the clayey surface of the compact laterite.

It is stated that many rocks in the Guianas contain gold and that the placer gold is derived from such material; particularly are the basic rocks, diabases and amphibolites, said to be auriferous. This conclusion should probably be accepted with some reserve. It seems more probable that the gold contained in the greenstones is of secondary origin and that here, as elsewhere, granitic intrusions have caused the formation of a series of gold-bearing veins in the surrounding rocks.

Processes of Concentration.—In most cases the cycle has been carried further and the material is not only decomposed, but eroded, transported, and redeposited. This can be effected by wind, by streams, or by the surf of the sea.

1 C. G. Dubois, Geologisch-bergmännische Skizzen aus Surinam, Freiberg i. S., 1901, pp. 112.
C. G. Dubois, Beiträge zur Kenntniss der Surinamischen Laterit, etc., Tsch. Min. u. petr. Mitt., 22, 1903.
E. D. de Levat, Guide pratique etc. de l’or en Guyane française, Paris, 1898.
J. B. Harrison, The geology of the gold fields of British Guiana, London, 1903.
J. B. Harrison, in the Reports of the Instit. of Mines, British Guiana.
Eolian Deposits.— Deposits concentrated by eolian agencies can, of course, be formed only in dry countries where long sub-aerial decay has paved the way for the work of the dust storms; from the decomposed and crumbled outcrops of the lodes the winds blow away the lighter sand, leaving a mass of coarser detritus which contains the gold. Such wind-born placers have been noted by H. C. Hoover¹ and T. A. Rickard² near the cappings of the West Australian gold veins. No examples of this kind are known from the Cordilleran States of America.

Stream Deposits.— Running water is by far the most important agency in the formation of gold placers. First of all, attention must be directed to the high specific gravity of gold, which explains many of the puzzling features of the placers. Placer gold is six or seven times as heavy as the most common accompanying minerals—feldspar and quartz—and it settles to the bottom in flowing water with surprising rapidity. It is almost impossible to lose a particle of gold, of the value of one cent, in a miner’s pan; it sinks immediately to the bottom of the gravel and sand after one or two preliminary shakes in water. Once lodged at the bottom it stays there, in spite of shaking and rotating. This illustrates the fundamental fact that the gold is mainly on the bed-rock. The rapid settling of the gold accounts for the partial failure of some devices for placer mining, particularly the clam-shell and the suction dredges.

The ease with which some concentration, according to the specific gravity, is effected is shown by the well-known fact that in powdered samples of ore, as well as in dumps at the mine, a settling of the heavier ore particles toward the bottom can often be observed.

Suppose we have a gold-bearing quartz vein deeply altered by rock decay; now let the region be raised say 500 feet by one of these slow oscillations which so commonly affect the crust. A river has excavated a valley to the corresponding depth in this elevated plateau, and this valley—under the influence of a pause in the elevating movement—becomes filled with gravels to a width of about 100 feet. Let a tributary gulch with steep grade be cut back into the plateau to the gold deposit (Fig. 66); when the

² T. A. Rickard, The alluvial deposits of Western Australia, Idem, pp. 480–537.
gulch reaches it the eluvial deposit will be carried down by sliding and washing; the clay and limonite are rapidly removed in suspension; the angular gravel of quartz and rock, grinding the fragments of gold between them and on the bed-rock, will be moved downward, the fine grains in suspension, the coarser ones dragging and rolling on the bottom. There is little deposition; the transporting power is great and in flood time the whole gravel mass, of no great depth, will probably be in motion. Heavy gold nuggets may lodge in the lee of little ridges. The gold settles rapidly; most of it, continually hammered and

![Diagram](image)

Fig. 66.—Plan of quartz vein and placers below it, illustrating the development of pay streaks.

finally shaping itself in flat, smooth grains, will be dragged downstream and finally reach the edge of the flood plain in the river. At this place the larger part of the gold stops. It is not washed out with the sand and gravel but stays on the bed-rock near the margin. The finer particles will, of course, be carried out a little distance, but they soon sink into the water-filled gravel after the manner of grains of heavy ores in concentrating jigs. Just as in the gulch the whole mass of detritus is transported, so it is
thought that in larger streams the body of water-soaked gravel and sand works downstream very slowly. During this process the lighter gold contained in the detrital material also works forward and downward, gradually joining the nuggets or coarser pieces, which have already reached their final resting ground.

This mode of operation contains the key to the genesis of the placers. It is not to be expected that the coarse and ordinary fine gold will be carried out into the middle of wide flood-plains. As the flood-plain widens it will cover the accessions of gold along its margin, and the final result will be a streak of rich gold-bearing gravel, resting on the bed-rock and extending downstream deep underneath the surface. When this is traced upstream the primary deposit, the vein, will be found. The actual occurrences of course show infinite variation. Let us assume that, as happens in the Creswick district in Victoria, Australia, a broad stream with moderate grade crosses a deeply decomposed belt of soft slate containing an abundance of small veins or stringers of quartz with native gold, and that in addition a fair balance between transportation and deposition persists for a long time. The result will be a gravel deposit, only a few feet deep, but with an abundance of gold concentrated on the bed-rock over the whole width of the stream. Each freshet is sufficient to churn up and move forward the whole mass of gravel, continually adding to the concentrated gold on the clayey bed-rock.

Again, we may assume extremely active erosion, as is the case in the Sierra Nevada of California. Canyons several thousand feet in depth have been cut in an uplifted plateau, veritable trenches or sluice boxes, the grade of which is from 60 to 150 feet per mile. Stretches of wild gorges with polished bottoms alternate with stretches of less grade where shallow gravel accumulates. These canyons receive for long distances an abundant supply of gold of all sizes from older hill gravels or from decaying quartz veins. The result will be that but little gold will lodge in the gorges, while extremely rich shallow gravel bars will accumulate in the convex stream curves (Fig. 67). Gradient, volume, and load usually vary in the same stream so that deposition may be going on in one part of its valley and erosion in another. Continued corrosion of the stream-bed results in deepening the canyon and leaving the bars as elevated benches. The miners of 1849 first found these bars and
TRANSPORTATION AND CONCENTRATION

worked them. In searching for the source of the gold they soon found a trail of metal leading up the gulches to great masses of older gravels on the hills, 2,000 to 3,000 feet above. These gravels were washed by the hydraulic method; immense masses of tailings with a little gold were carried down to the rivers, totally overloading them. After a while the hydraulic mining ceased. Gradually the streams resumed their work. The whole gravel mass moved slowly downstream and a gradual reconcentration on the bed-rock took place. The tailings deposited became enriched and will ultimately be reworked.

![Diagram of the American River showing placer deposits on the inner side of bends.](image)

Fig. 67.—*Low gravel bars, American River, California, showing placer deposits on inner side of bends. After R. L. Dunn.*

The torrential floods of the canyons scarcely permitted the lodging of fine gold. This was swept out through the narrow portals into the Sacramento Valley, where the grade of the streams suddenly diminishes. The most minute particles may have been carried as far as San Francisco Bay, but the bulk of the fine gold lodged in the flood-plains within a few miles of the mouth of the canyons. Easily caught upon the clayey "false bed-rock" of a volcanic tuff, this gold, the average particles of which are about 0.3 millimeter in diameter, formed meandering pay streaks at the base of a sandy gravel bed from 10 to 60 feet in depth. The annual value of the fine gold now won by the dredges operating on the Feather, the Yuba, and the American rivers amounts to many millions of dollars.
By an odd paradox, gold is at the same time the easiest and the most difficult mineral to recover. It is divisible to a high degree and owing to its insolubility the finest particles are preserved. A piece of gold worth one cent is without trouble divisible into 2,000 parts, and one of these minute particles can readily be recognized in a pan. In extreme subdivision the gold acquires a scaly, flat form, being known as flour gold or flake gold, is carried away very readily by water, and does not sink easily in sand or gravel. In part the flour gold is suspended by air films, and it can be carried away in rivers of moderate grade for hundreds of miles. The gold occurring in the sand bars of Snake River, Idaho, is a good example of this.\(^1\) It will settle in thin pay streaks at bars and other favorable places, but the next freshet will probably destroy the sand bars and sweep the gold away. This accounts also for the distribution of fine gold in great masses of gravel beds—for example, in the wash 600 feet thick deposited by glacial streams at Tacoma and other places on Puget Sound. Almost every pan of this gravel will show a “color,” but the material contains only a fraction of a cent per cubic yard. The fine colors along the Columbia River in northeastern Washington range in value from less than 0.0005 to 0.02 cent, the average being about 0.002 cent.\(^2\)

The much-discussed concentration of gold on the bed-rock seems, then, to be due partly to the natural jig-like movement in moderately deep gravels,\(^3\) during long-continued conditions of fair balance between loading and erosive power; partly to slow forward and downward motion of heavier gravel masses,\(^4\) of which exact measurement as yet is lacking, and last and largely to the fact that heavier gold will not be carried out into the gravel flats of rivers of gentle grade—the only ones that have extensive flood-plains—but is immediately deposited on the marginal bed-rock of the gradually deepening and widening gravel plains.

The best conditions for the concentration of gold are found in moderately hilly countries where deep secular decay of rocks has been followed by slight uplifts. Subsequent slight elevations would easily produce re-sorting and enrichment of the gravels.

\(^3\) F. Posepny, *Genesis of ore deposits,* p. 154.
TRANSPORTATION AND CONCENTRATION

In regions of gold placers the richest material is usually produced by repeated reworking of gold-bearing gravels by nature. Each reworking increases the richness of the gravels, eliminates easily decomposed pebbles, and finally results in a gravel of the hardest, most resistant rock—quartzite or quartz. Quartz is the common gangue mineral in gold regions; hence the prevalence of "white gravels" or "white channels," almost exclusively composed of white quartz pebbles.

CLASSIFICATION OF FLUVIAL AND MARINE PLACERS

According to their occurrence the placers may be conveniently divided as follows:

<table>
<thead>
<tr>
<th>PLACERS CLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present topographic cycle</td>
</tr>
<tr>
<td>2. River and bar gravels.</td>
</tr>
<tr>
<td>4. Beaches.</td>
</tr>
</tbody>
</table>

Examples of present gulch, creek, and river gravels are not difficult to find; they occur in all gold-bearing regions where erosion is active and where precipitation is abundant enough to cause the sorting and carrying forward of the gravels in the stream beds. In the upper parts of the stream courses the gravel will be coarse and semiangular; in the lower parts the sands increase and the pebbles are smoother. Where the rivers emerge from their narrow valleys and spread with gentle grade over flood-plains, more extensive sand and gravel beds will accumulate, generally, however, with less gold than in the more confined part of the course. Some of the fine gold may reach the sea and is concentrated by the surf and the oblique shore currents into thin pay streaks on the sandy beach.

Marine Placers.—Beach placers occur along many shores and are often produced by concentration from a sea bluff or elevated gravel plain. The beach at Nome, Alaska (Fig. 68), is a narrow strip about 200 feet wide, from which over $2,000,000 in fine gold has been washed; the flaky gold averaged 70 or 80 colors to the cent. Two older elevated beach lines are found farther inland. The beach gold of the Oregon and California coasts is much finer, the colors ranging from 100 to 600 to the cent.

Buried Placers.—Subsidence or overloading may cause the placers to be deeply covered by barren detritus. Many of the streams of Alaska, particularly in their lower reaches, are thus covered; the process of concentration is stopped, the present

TRANSPORTATION AND CONCENTRATION 205

watercourses having insufficient grade to effect the transportation of detritus. Fig. 69 shows the dredging operations on the Solomon River, Alaska. The depth of the gravel in the river bottom is about 20 feet. Fig. 70 shows a diagrammatic section of the Oroville dredging ground, Butte County, California. The depth of the gravel is about 30 feet. At Fairbanks, Alaska, according to Prindle, the placers occur in tributaries of moderate length, which flow in open valleys; some of the deposits are as much as 300 feet deep. The pay gravels, in part subangular, lie on the bed-rock and are from a few inches to 12 feet in thickness; these are covered by 10 to 60 feet of angular wash, evidently accumulated rapidly without opportunity for concentration, and above this rests a thick deposit of muck over which the sluggish

![Diagram](image)

Fig. 70.—Diagrammatic section across Feather River below Oroville, California. a, Bed-rock; b, Ione formation; c, tuffs of Oroville.

streams pursue their way. The richest gravel worked in 1905, containing from $5 to $10 per cubic yard, occupies pay streaks on the bed-rock 150 to 200 feet wide, considerably less than the average width of the valley bottom. All the gravel on the bed-rock is, however, more or less auriferous. The gold is moderately coarse. Near the head of the stream deposition closely follows cutting and there the deeply buried, more or less permanently frozen pay streaks of the lower valleys merge into the deposits of the present stream activity.

On a large scale similar conditions prevailed in Victoria, Australia. Here there existed in Pliocene time an extensive river system with shallow, well washed, and locally extremely rich gravels which were formed during a prolonged time of nice balance between erosion and deposition. The region then

2 W. Lindgren, Mining Magazine, 2, 1905, p. 33.
became depressed and covered by thick beds of sand and clay. Above this were poured out basalt flows, in places several hundred feet thick (Figs. 71 and 72). The broad valleys remain on the whole as before, but the present streams are weak and have little power of transportation and concentration. The discoveries of gold were made near the sources of the old rivers, where their gravels are near the surface; they were followed upward into the gullies of the slate hills, and downward below the level of the basalt flows. Such were the conditions, for instance, at Ballarat. South of Ballarat certain of the Pliocene stream gravels merge into coastal gravel plains, soon becoming marine in character. Such coastal gravel beds are opened in the Pitsfield mines, where the pay streaks of fine gold, resting on an almost level bed-rock, are worked beneath several hundred feet of sands and gravels.

The Sierra Nevada of California, on the other hand, offers an excellent instance of the result of elevation on gravel deposits. In the early Tertiary the surface of this range was comparatively gentle, and during long periods of rock decay and well-balanced conditions gold from the quartz veins had become strongly

TRANSPORTATION AND CONCENTRATION 207

concentrated on the bed-rock of the streams. The deeper gravels were then covered by a considerable thickness of more rapidly accumulated and poorer, but well-washed material, and this in turn by heavy masses of rhyolitic tuffs and andesite breccias so that the old channels were sealed in places by as much as 1,500 feet of superincumbent barren material. The range was elevated by mountain-building disturbances; new rivers were laid out and rapidly eroded cañons to a depth of 2,000 or 3,000 feet. Eventually the old gravels were exposed and now rest as more or less connected remnants on the summits of the ridges between the modern cañons; the heavy gravel masses are worked by the hydraulic method, or the pay streak on the bed-rock is extracted by tunneling operations in the "drift mines" (Figs. 73, 74, 75).

Fig. 73.—Schematic representation of the four principal epochs of Tertiary gravels in the Sierra Nevada. a, Deep gravels (Eocene); b, bench gravels (Miocene); c, rhyolitic tuffs and inter-rhyolitic channel; d, andesitic tuffs and intervolcanic channel.

The gold from the destroyed portions of the old channels, together with more set free from the quartz veins during the erosion, accumulated in the modern cañons. Along their slopes benches remain in places, indicating transient accumulations of gravel during the process of cañon cutting.

Somewhat similar conditions exist in some parts of Alaska. Near Nome on the ridges surrounding Anvil Creek are "high gravels" 600 to 700 feet above the present rivers. These gravels, some of which are rich, are the remnants of an old, now almost wholly eroded system of drainage.

In the Klondike also high gravels occur a few hundred feet above the present creeks, the most conspicuous instance being the "White channel," described by McConnell 1 (Fig. 76).

level of the ocean. In Santa Cruz County, California, a similar elevated beach was mined for some time. Gold-bearing beach sand occurs all along the Pacific coast from San Diego to Alaska, and in many other parts of the world.

Size and Mineral Association of Placer Gold. Gold occurs in placers in all sizes, from masses weighing 200 pounds to the most minute flakes. Large nuggets are recorded from California; still larger specimens, weighing as much as 2,184 ounces, were obtained in Victoria, Australia. It is often stated that heavier masses occur in placers than in quartz veins. This is decidedly erroneous. A mass of native gold found in the Monumental mine of Sierra County, California, weighed 1,146 troy ounces, and a quartz vein at Hill End, New South Wales, yielded a specimen which contained about 3,000 ounces. Every one who has had much experience in gold mining has noted the occurrence of thick sheets and masses of gold in deposits of certain kinds—for instance, in the pockety quartz veins of Alleghany, California. Almost all the so-called placer nuggets of unusual size have been obtained from superficial deposits at or just below the cropings of rich veins. This applies to the Ballarat nuggets, weighing from 80 to 160 pounds, which occurred in small steep gulches underneath the basalt flows, but immediately below the extremely rich outcrops of the quartz veins. It also applies to the nuggets of Carson Hill, California, the Poseidon nugget of Victoria (found in 1906 and weighing 953 troy ounces), and other occurrences. Some very rich placer deposits—for instance, those of the Klondike, Yukon Territory, and the Berry mines in Victoria, Australia—contain no specially large pieces of gold. The heaviest nugget found in the Klondike is said to have weighed 85 ounces.
TRANSPORTATION AND CONCENTRATION

The angularity of the gold is proportional to the distance traveled; the final product is usually a flat, rounded grain from a fraction up to 1 millimeter in diameter. Occasionally crystallized gold is found in placers, but this is unusual and indicates close proximity of the primary deposit.

There is probably no authenticated case of crystallized gold occurring in the gravels of larger water courses where there has been long transportation, and this is assuredly a strong argument against the assumption that such crystals are formed by secondary processes in the gravels.

Fragments of quartz often adhere to the gold or form part of the rounded nugget. While the quartz pebbles so abundantly found in gold-bearing gravels do not ordinarily contain visible gold, there are many instances of such occurrences—for example, at Elk City and Idaho City, Idaho, and at Dutch Flat and Nevada City, California. Some placer gold, more

![Diagram](image)

Fig. 75.—Longitudinal section of “Blue gravel channel,” at Breece & Wheeler mine, Forest Hill divide, Placer County, California. *After R. E. Browne.*

frequently the scaly variety, is covered by a thin film of silica, manganese dioxide, or limonite, and does not amalgamate easily.

The most abundant minerals associated with the gold in placers are magnetite and ilmenite (“black sand”), garnet, zircon (“white sand”), and monazite (“yellow sand”), as well as many others of the heavy minerals occurring in the rocks which contain the primary gold deposits. Cassiterite is common in placers, and some deep gold placers in Victoria contain enough to make it a valuable by-product. Gray platinum and silvery foils of iridosmine are present in small quantities in many California placers adjacent to areas of serpentine. None of the minerals mentioned
are ordinarily derived from the gold-bearing veins, but from the surrounding rocks.

Pyrite or marcasite may form in the gravels; sometimes this pyrite contains a little gold, but contamination of the assay samples by the placer gold itself is always a possibility. Again the pyrite may be elastic and derived from the surrounding rocks, for pyrite does not seem to oxidize readily in running water; or, as near Nevada City, in the Harmony channel, the gravel may contain undecomposed pyrite, rich in gold, and derived directly from the primary veins over which the watercourse flowed.

Other occasional associates of gold, probably derived from its primary deposits, are silver in nuggets (Alaska), native bismuth (Queensland and Alaska), native amalgam, palladium-gold, native copper, and cinnabar. The presence of native lead has

![Diagram](image_url)

Fig. 76.—Sections across Bonanza Valley, Yukon Territory, showing several types of gravel deposits. After R. G. McConnell, Geol. Survey, Canada.
TRANSPORTATION AND CONCENTRATION

usually been explained by accidental admixture of hunter's shot, but J. Park asserts that there is an instance of its undoubted presence in gravel, the lead containing a skeleton of native gold.

Fineness and Relation to Vein Gold.—The fineness of placer gold (or parts of gold per thousand) varies from about 500 up to 999. Silver is always alloyed with the gold, but other metals are rarely prominent; copper is occasionally present. While vein gold may have a fineness of 997 to 999, this is exceptional; far more commonly its fineness ranges from 500, which corresponds to electrum, to about 800 or 850. This is assumed to be determined on specimens of native gold, for it is obviously not fair to take the usually lower figure of the retorted bars, which become admixed with impurities during amalgamation. The placer gold in any district will usually be of higher grade than the vein gold, and its fineness increases with the distance transported and with the decreasing size of the grains. Thus, while in California the vein gold averages 850 fine, the transported placer gold in the Tertiary channels averages 930 to 950. It has been shown that this increase in fineness is due to the solution of the silver in the alloy in the outer layer of the grains by the action of surface waters. McConnell has proved that in the nuggets from the Klondike the outside actually has a greater fineness than the inside. The loss of silver in the outer part was from 5 to 7 per cent. This interesting result well illustrates the relative insolubility of gold.²

Gold in Relation to Bed-Rock.—While the bulk of the gold usually rests on the bed-rock or within a foot or two of it, this is not an invariable rule. In some gravels the coarser gold is occasionally scattered through the lower 4 to 20 feet. But it is never, except in minute quantities, distributed equally through a great thickness of gravels. An excellent instance is McConnell's section of the White channel deposit in the Klondike.

¹ J. Park, Mining geology, London, 1907, p. 18.
(See Fig. 76.) The washed gravel is here 150 feet thick. The gold content of the gravel is as follows:

- **0-6 feet above bed-rock**, $4.13 per cubic yard.
- **6-12 feet above bed-rock**, $0.18 per cubic yard.
- **12-18 feet above bed-rock**, $0.047 per cubic yard.
- **18-24 feet above bed-rock**, $0.04 per cubic yard.
- **24-30 feet above bed-rock**, $0.034 per cubic yard.
- **30-36 feet above bed-rock**, $0.032 per cubic yard.
- **36-42 feet above bed-rock**, $0.032 per cubic yard.
- **42-48 feet above bed-rock**, $0.045 per cubic yard.
- **48-54 feet above bed-rock**, $0.025 per cubic yard.

From 54 feet above bed-rock the quantity of gold contained per cubic yard gradually and steadily diminished to $0.006 at the top. There is only fine gold in the upper gravels. A local enrichment has taken place on false bed-rock, a clayey stratum above the real bed-rock; here the gold is much coarser than directly above or below, but finer than on the bed-rock. Occasionally rich gravel may be found a few feet above bed-rock while it is less rich immediately on it.

Coarse and moderately coarse gold moves very slowly. McConnell found, for instance, that the White channel, where intersected by gulches, has left almost the whole amount of its gold in these immediately below the place where the trenching has occurred. In some cases the horizontal movement scarcely equaled the vertical.

Smooth, hard bed-rock is poorly adapted to retain the gold; when it is somewhat clayey and decomposed much better results are obtained. Schists and slates make good bed-rock when decomposed, especially when they strike parallel to the channel. Serpentine forms a smooth and unsatisfactory bed-rock.

Gold works down into bed-rock in a most surprising way. In hard rock it settles into the most minute crevices. In soft rock it burrows to a depth of 1 to 5 feet, so that it is always necessary to mine this amount of the bed-rock. In limestone, irregular solution cavities contain the detrital gold, and these sometimes descend to a depth of 50 feet or more. Compact clay is good bed-rock, also clayey sandstone and clayey volcanic tuffs, the occurrence of the latter being exemplified in the Oroville dredging grounds, in California.

In glacial till and moraines there has been little opportunity for concentration, and unless the primary vein deposits were
TRANSPORTATION AND CONCENTRATION

unusually rich, these gravels are of little value; the gold contained in them may, of course, be concentrated by glacial streams working over the morainal detritus.

Grade of Auriferous Watercourses.—All kinds of grade occur in watercourses containing gold-bearing gravels. In steep creeks the grade may be many hundred feet per mile, but the placers in these are usually poor. California rivers, in the Sierra Nevada, have grades of 50 to 100 feet or more per mile. Many of these have been extremely rich where gravel bars have had an opportunity to accumulate. The White channel, in the Klondike, has a grade of about 30 feet per mile. Many of the present Alaskan streams have a grade of 100 to 150 feet per mile. In the principal Tertiary channels of Victoria, Australia, low grades down to 20 feet prevailed.

In depressed or elevated channels of past epochs, as in California, Victoria, and the Klondike, changes of original grade must be considered. This is best established in the California channels, which now have grades of 100 to 150 feet, whereas the original streams had much less, the increase being due to the westward tilting of the Sierra Nevada. The best results of gold concentration are probably obtained in rivers of moderate grades, perhaps 30 feet per mile, under nicely balanced conditions of corrosion and deposition. Whenever overloading and active deposition take place concentration of coarse gold ceases. On the other hand, where erosion is rapid conditions for rich placers are less favorable, unless, as in the present streams of the Sierra Nevada, the gold supply is unusually abundant.

The Pay Streak or "Run of Gold."—Except in smaller creeks the distribution of the gold in a gravel bed is far from regular. There is usually gold on the bed-rock over the whole area of the stream bed, but the richer part makes a narrower streak which follows a devious course, distinctly affected by the character of the bed-rock, sometimes splitting and re-forming, following first one side, then crossing diagonally to the other side. It is not necessarily in the deepest depression or gutter. Fig. 77 shows this devious course of the pay streak in comparatively shallow gravels at Maryboro, Victoria. It is clearly independent of the course of the present small stream. In broader gravel plains, of which the Homebush and Pitsfield Tertiary placers of

1 J. B. Tyrrell, The law of the pay streak in placer deposits, Instit. of Mining and Met., London, May 16, 1912.
Victoria are examples, the "run of gold" follows a distinct and well-defined course on an almost level country rock. All this shows clearly enough the impossibility of the view that the gold was first uniformly distributed through the gravels and then gradually settled to the bottom under the influence of gravity. These pay streaks assuredly indicate epochs of well-balanced and long-maintained conditions during which the gravels could accumulate to only moderate depths and were at all times water-soaked and in a condition of slow movement. With more abundant loading of detrital material the gold-transporting power of the stream diminishes at a very rapid rate.

Solution and Precipitation of Gold.—Many of the earlier observers, such as Genth, Lieber, Selwyn, Laur, Egleston, C. Newbery, and Daintree, concluded from observations in various parts of the world that placer gold, and particularly the large nuggets,
has been deposited by circulating solutions. At present the mechanical derivation of the gold seems established beyond all doubt, although under exceptional circumstances some solution and redeposition may have taken place. Even now, however, some writers, like J. M. Maclaren, are inclined to place much emphasis on this secondary deposition. It is probable, nevertheless, that this process is absolutely insignificant from an economic point of view. Nuggets, when cut and polished, almost always show a granular structure perfectly in accordance with vein gold. Liversidge, in a long series of experiments, found only two specimens (both from New Guinea) which showed a concentric structure indicative of concretionary deposition. Very rare instances are quoted of quartz pebbles with dendritic films of gold or of nuggets with minute gold crystals on their surface. Mr. J. Edman showed me a small crystal of magnetite coated with a thin film of gold. This came from the Tertiary deposits at Providence Hill, Plumas County, California, and Mr. Edman stated that he had never seen similar occurrences in the modern gravels. It seems to be well established that pyrite reduced by organic material in the gravels may contain some gold and also that the metal is occasionally found at the roots of trees or in the grass roots.

The gold crystallized in minute octahedrons in the clay of Kanowna is, as Maitland pointed out, immediately above or adjacent to the decomposed croppings of the veins and the occurrence can scarcely be called a placer. The gold which works down into the soft bed-rock of the placers is in all cases, where I have observed it, of clearly detrital origin.

It is stated that the ashes of trees in the gold-bearing region of the Guianas contain an appreciable quantity of gold. Originally asserted by Lungwitz, this has been denied by Dubois and Kollbeck and then reasserted by Harrison on the basis of careful investigations. His statement must be accepted,
although it certainly taxes the imagination to believe that gold-bearing solutions can exist in a soil together with organic matter. From widely separate parts of the world gold has been reported in the ash of coal, but in this case it may be detrital and contained in admixed sand and clay.

Egleston showed that gold is soluble in a number of reagents, most of them not present in surface waters. Among them are nitrate of ammonia in the presence of chloride of ammonia. Such substances might conceivably be present near the surface. According to the most recent investigations\(^1\) gold is soluble in superficial waters only when free chlorine becomes liberated by the interaction of sulphuric acid, sodium chloride, and manganese dioxide, a combination that must sometimes occur in ore deposits subject to oxidation; in the presence of oxidizing pyrite some gold may therefore be taken into solution, but it would probably not remain long in this state before encountering reducing substances. While gold is slightly soluble in sodium carbonate, sodium sulphide, and other similar compounds, these would not ordinarily be encountered in the waters of the zone of oxidation.

Relation to Primary Deposits.—That placer gold is directly derived by mechanical processes from vein deposits or analogous occurrences is absolutely certain, and examples of convincing character are present everywhere. This does not imply that the primary deposit can be worked at a profit. In most cases the gold is traceable up to the deposit. On this principle the pocket hunter proceeds, panning the detritus and working up hill until the source of the scattered detrital gold has been found. The area in which the detritus occurs has the shape of a triangle, the apex of which is the pocket.

It is a common experience that rivers or creeks crossing a vein or a mineral belt are enriched immediately below it, the pay streak often stopping abruptly when their deposit is crossed, and the coarseness of the gold increasing upstream to the place where the outcrops are crossed. As examples may serve the great accumulations of placer gold in the Neocene gravels of Eldorado County, California, where the Mother Lode crosses them, and the rich channels in upper Nevada County, just below the belt of quartz veins at Washington and Graniteville. There are fine examples in Victoria, where the gravels are rich only where

they cross or follow systems of veins or "reef lines." The White channel of the Forest Hill divide, California, follows a belt of quartz stringers in clay slate. The Idaho Basin\(^1\) presents an excellent instance of large gravel bodies the gold content of which is traceable up to certain auriferous vein systems.

Economic Notes.—The world's annual production of placer gold is about $70,000,000. To this the Alaska and Yukon districts contribute $20,000,000, California $9,000,000, Victoria $2,000,000, and Siberia $18,000,000. While placers are found in almost all gold- and silver-producing regions, Brazil, the Ural Mountains, Siberia, California, Alaska, and Victoria have had by far the greatest total production.

Gold-bearing gravel is often measured by the ton, but more commonly by the cubic yard. Still another measure is by surface area, sometimes by the square foot, in Australia commonly by the square fathom; this is especially applicable to deep mining when only the richest bottom layer is mined; at least 2 feet of gravel and 1 foot of soft bedrock are extracted, making one square fathom equivalent to a minimum of 4 cubic yards.

In river bars gravels are worked by wing dams and pits kept dry by simple pumping devices. On a large scale they may be ground sluiced or washed by the hydraulic method, with the aid of elevators when the natural fall is insufficient.

The elevated gravels of earlier periods are worked in California by tunnels and drifting operations on the bedrock. The minimum cost of working under the most favorable conditions is 50 cents per cubic yard, but is commonly $1 to $2 per cubic yard; most of the gravels actually worked contain at least $1.50, and often much more. The whole gravel body may be washed by the hydraulic method, when the expense may be reduced to 2 to 5 cents per cubic yard; of course the cost of preliminary work like ditches, etc., is often great. Some creek gravels in the Seward Peninsula contain from $2 to $6 per cubic yard; the width of the deposit may be about 50 feet, the depth 3 to 6 feet.

The depressed gravels of earlier periods are worked by drifting from shafts, as in Victoria, where, however, the preliminary pumping to permit access is an extremely heavy expense, often indeed prohibitory. Some of these Australian channels have been extremely rich, the workable portions ranging from $2 to

$15 per cubic yard. Some of the channels are in places several hundred feet in width.

Of late, gravels have been extensively worked in California, Alaska, the Klondike, and elsewhere by the dredging process. In California, where this method has reached its highest development, $5,700,000 was obtained from 72 dredges in 1910 from the flood-plains of the rivers at the foot of the Sierra Nevada, and the cost has been reduced from about 10 cents to 3 or 4 cents per cubic yard handled. In Alaska the cost is of course much higher and gravels containing less than 50 cents per cubic yard are rarely worked. The dredge will probably prove to be the most efficient placer-mining machine of the future, replacing the hydraulic method, which offers difficulties in the disposition of the tailings.

Certain gravels in the dry regions of Arizona and northern Mexico are concentrated more or less effectively by pneumatic concentration in so-called dry washers, but the output of these placers is insignificant.¹

THE GOLD-BEARING CONGLOMERATES OF SOUTH AFRICA

See also discussion in *Economic Geol.*, 1909, by G. F. Becker and G. A. Denny.

See also description by R. Beck, Erzlagerstätten, 2, pp. 183–200.

The literature is voluminous; only the more essential papers are quoted above.

TRANSPORTATION AND CONCENTRATION

The development of the gold-bearing conglomerates of the Witwatersrand, in the Transvaal, is one of the most wonderful chapters in the history of mining. From an inconspicuous beginning in 1887, the production of these unique deposits has steadily increased until now the yearly ore production amounts to over 20,000,000 tons, with an annual yield of $160,000,000. The total production to the end of 1911 exceeds $1,500,000,000, or more than the total production of California since 1848. The average content of the ore has decreased, probably mostly on account of reduction in mining and metallurgical costs, from $12 to $6 or $7 per ton, and, according to Hatch, it is probable that in the future ore of $5 grade will be utilized. The increase in production has not yet ceased, but it is thought probable that the flood tide of output will soon be reached. A depth of over 5,000 feet has now been reached, and, owing to a favorable geothermic gradient (p. 80), it will be possible to go considerably deeper. The ore is reduced by a combination of amalgamation and the cyanide process; stamp mills and tube mills are the grinding machinery most commonly employed.

Regarding the genesis of these deposits, the final word has not been said; their correct place in the genetic classification is as yet uncertain.

South Africa is in the main a plateau of thick sedimentary beds extremely poor in fossils and in part of sub-aerial origin.

The oldest rocks known are the Swaziland crystalline schists and the granites intruded in them. On their eroded surface rest the upper and lower Witwatersrand system of slates, quartzites, and conglomerates, aggregating 19,000 feet in thickness, and on top of these in turn a thick series of volcanic flows, called the Venterdorp system (Fig. 78).

The age of the Witwatersrand system is not definitely known; it is probably Cambrian or pre-Cambrian. Next higher in the succession of rocks is the Potchefstrom system, including the Black Reef (oldest), Dolomite, and Pretoria series. This again is covered by the Devonian Waterberg system (Table Mountain sandstone of the Cape) and the most recent Karroo system, which is coal-bearing and considered to be of Permo-Carboniferous age. Each system is separated by an unconformity from the next.
The Witwatersrand system is folded in a syncline extending about 120 miles east to west and 45 miles north to south. At Johannesburg, at the north side of the syncline, the dip is to the south, steep near the surface, but flattening in depth to about 30°. Faulting is common and there are a number of intrusive diabase dikes, thought to belong to the overlying Ventersdorp volcanic system.

Auriferous conglomerates occur at several horizons in the Witwatersrand system and also in the Black Reef series. The productive beds are, however, in the upper part of the Witwatersrand, including a thickness of about 7,000 feet of quartzites and conglomerates, among which the following are distinguished, beginning from the top: Kimberley series, Bird Reef series, Livingstone Reef series, and Main Reef series. The first two are each about 500 feet thick but the conglomerates contained are, of low grade, rarely exceeding $3 per ton in gold. The Main Reef series, about 90 feet thick, includes several conglomerate beds more or less persistent.

The usual subdivision of the Main Reef series includes from top to bottom (Fig. 80):

- South Reef (3 feet).
- Bastard Reef (scattered pebbles) and quartzite (20 to 40 feet).
- Main Reef Leader (2 feet).
- Quartzite (2 to 20 feet).
- Main Reef (4 feet).

Of these the Main Reef Leader is the most productive; the pebbles in
the conglomerate are small, averaging 2 inches in diameter, and consist of well-rolled fragments of glassy quartz with fewer pebbles of more angular quartzite, banded chert, and slate. The

![Diagram of conglomerate](image)

Fig. 79.—Gold-bearing conglomerate, Johannesburg, South Africa. Pebbles of quartz, crushed in places. Cement of sericite, quartz, and a little chlorite. Black areas are concretions of pyrite, replacing groundmass and quartz. B, prisms of cyanite. *Drawn by J. D. MacKenzie.*

![Diagram of section](image)

Fig. 80.—Section showing faulting of main reef. *After F. H. Hatch.*

pebbles lie in a matrix of sandy material, which has become hardened by infiltration of silica. Pyrite occurs in abundance in the
cement, averaging about 3 per cent. of the rock and being present both in crystalline form and as rounded pebbles. It is held by some, however, that these are not real pebbles, but replacements after quartz or iron ores, and that the pyrite is developed in two generations, both subsequent to the sedimentation. Chloritoid, sericite, calcite, and graphite are other authigenetic minerals. Pyrrhotite, chalcopyrite, blende, galena, stibnite, and a gold telluride are mentioned as exceptional occurrences. The gold is not contained in the pebbles, but only in the cement, and forms minute angular crystalline aggregates or crystals, never rounded particles. It is usually closely connected with pyrite, either enclosed by it or covering the surface of pyrite aggregates.

In spite of a long-continued discussion there is no unanimity among geologists as to the genesis of these remarkable deposits. It is evidently necessary, for a satisfactory discussion of the question, to go beyond the limits of the Johannesburg occurrences and consider the geological relations of the Transvaal and South Africa as a whole.

The first suggestion that the conglomerate may be simply an alluvial or littoral placer is refuted by the character of the gold and its close association with the pyrite. Detrital pyrite may, of course, occur in gravels, but there should always be some magnetite and ilmenite present. Their absence is a strong argument against the theory of direct placer deposition. It is clear that if this is a placer deposit there has been extensive recrystallization and some migration. Equally untenable is the hypothesis of F. W. Voit that the gold has been brought to the surface by hot springs which discharged into the ocean.

The advocates of the placer theory, among whom are G. F. Becker, J. W. Gregory, and G. A. Denny, are compelled to admit a recrystallization of the gold and probably also a transformation of magnetite and ilmenite into pyrite.

Many geologists and engineers, impressed with the difficulties confronting the placer theory, hold that the deposits are epigenetic—that the gold and pyrite have been introduced by a post-sedimentary infiltration, perhaps after the intrusion of the diabase dikes. Such views are held by H. Louis, J. H. Hammond, R. Beck, F. A. Hatch, and G. S. Corstorphine.

Against the infiltration theory stand (1) the absence of channels followed by the solutions; (2) the regular distribution

of the gold in the conglomerate; (3) the practical confinement of
the gold to conglomerates, though the quartzitic sandstones are
at least equally permeable; (4) the fact that some reefs with
angular pebbles are barren (Bastard Reef). The following con-
siderations also militate against the infiltration theory: The
graves are, according to Becker and Gregory, characteristic of
shore shingle with flat, bun-shaped pebbles. The conglomerates
accumulated in a sea which washed the Swaziland schists with
their gold-bearing lenticular veins and sheared zones, and the
shore gravels would almost certainly contain some gold. The
crystalline character of the gold is accounted for by the ad-
herents of the placer theory on the assumption of recrystalliza-
tion and pressing of the thin gold flakes between recrystallizing
grains. The sulphur for the pyrite would be supplied by the
ordinary surface waters in a sedimentary formation more or less
rich in sulphates and organic matter.

Finally, similar gold-bearing conglomerates of considerable
geological antiquity occur at various places in the South African
sedimentary rocks, and the conglomerates successfully exploited
in West Africa also contain minute particles of crystalline gold,
but here associated with magnetite, ilmenite, and chloritoid. These are regarded by Beck as of syngentic origin, with subse-
quint recrystallization of the gold.

PLATINUM PLACERS

It is known that platinum occurs as a primary constituent of
peridotites, and specimens showing its intergrowth with olivine
and chromite have been described. Almost the entire world’s
production is obtained from placers and 95 per cent. of it is
extracted from the placers on the eastern slope of the Ural
Mountains, where it occurs in the gravels of the stream courses,
associated with iridomine, iridium, chromite, and often also
gold. The crude platinum forms small rounded grains, very
rarely nuggets up to 20 pounds in weight, and its fineness (per
thousand) ranges from 750 to 850, the remainder being iron,
copper, and various metals of the platinum group.

2 J. F. Kemp, Geological relations and distribution of platinum and

D. T. Day and W. Lindgren, in successive issues of Mineral Resources,
U. S. Geol. Survey.
Platinum-bearing gravels occur also in Colombia, South America, and some production from them is reported. In the United States the metal occurs in small quantities together with gold in almost all the gold-bearing districts in northern and central California and in southwestern Oregon, where serpentinite or peridotite is found. A few hundred ounces are annually recovered, chiefly from the black sands of the dredges. Platinum also occurs in the beach sands of southern Oregon, together with more or less gold; a small quantity of this is usually also recovered. Still another platinum-bearing district which formerly yielded some production is on the Tulameen River, in British Columbia.

The supply of platinum-bearing gravels is apparently limited; on the other hand, there is a great demand for the metal for chemical apparatus, jewelry, and other purposes, and the price has shown a decided tendency to rise; at the close of 1911 it had reached $45 per fine ounce, or $1.61 per gram. A few years ago the value of the metal about equaled that of gold, or $20 per ounce.

CASSITERITE PLACERS

The original home of cassiterite (or oxide of tin) is either in the granites, in pegmatite dikes, or in quartz veins. From any of these sources it may be set free by weathering and disintegration, and, on account of its high specific gravity, it easily becomes concentrated in gravel deposits of different types. Among the accompanying minerals tourmaline, topaz, and wolframite are the most common. Grains of metallic tin are reported to occur with cassiterite in Nigeria and Australia. Eluvial deposits immediately below the cropplings are numerous and are worked on a large scale at Mount Bischoff, in Tasmania. A small deposit of this kind resting in a shallow gully immediately below a pegmatite dike was mined near Gaffney, South Carolina, in 1905. The earliest production of stream tin came from gravels below the tin-bearing lodes of the Erzgebirge, in Saxony, and of Cornwall, both

1 Sydney Fawns, Tin deposits of the world, London, 1907.
Mineral Resources of the United States for 1895.
TRANSPORTATION AND CONCENTRATION

sources now practically exhausted. Considerably more than one-half of the world's production of about 123,000 short tons of tin is still obtained from placers, mainly in the Malay Peninsula and the islands of Banca and Billiton, near Sumatra. New South Wales and Victoria furnish minor amounts and in the latter state some cassiterite is saved in working Pliocene auriferous stream channels. In this case the tin ore appears to be sparsely disseminated in granite and is liberated after its disintegration. At the Briseis mine, in Tasmania, the deposit worked consists of 14 to 45 feet of river gravel, covered by 20 to 40 feet of decomposed basalt and containing from 2 to 4 pounds per cubic yard.

In the United States small amounts of stream tin are recovered in Alaska near the extreme western point of the American continent, in the Black Hills of South Dakota, and in North and South Carolina.

As tin is worth from 25 to 40 cents per pound and the easily reduced cassiterite contains 78.6 per cent. of the metal, it is clear that a small quantity, say 2 pounds per cubic yard of gravel, might suffice for profitable working.

MONAZITE PLACERS

Monazite, an anhydrous phosphate of cerium, lanthanum, and other cerium metals, usually contains also from 3 to 8 per cent. of thoria, making it valuable for the production of nitrate of thorium, which is utilized in the manufacture of incandescent gas mantles.

The mineral has a specific gravity of 5.203, a resinous luster, and a yellow to brown color; when occurring in placers it is found together with gold, zircon, magnetite, ilmenite, garnet, etc., after concentration in sluices. From its associated minerals it is cleaned in electromagnetic separators, the final product being about 90 per cent. pure. The source of the monazite is in the granites, gneisses, and pegmatites, where it occurs as a primary mineral. As its value (changing with the percentage of thoria) is about 8 cents per pound, monazite gravels may in places form workable deposits, especially where, as often happens, gold is present. The larger part of the monazite mined is derived from placer.

D. B. Sterrett, Mineral Resources of the United States for 1906, U. S. Geol. Surv., pp. 1195–1209. See also same author and publication for 1910.
deposits in Brazil, but it is also obtained in North and South Carolina and has lately been found in Idaho, where a large intrusive batholith of granite or quartz monzonite evidently carries the mineral sparsely distributed throughout. The principal occurrence in Idaho is at the old placer district of the Idaho Basin. In 1910 about 100,000 pounds of monazite was mined in the United States, chiefly from placer deposits in the Carolinas. The total value is stated as $12,000.

OTHER PLACERS

Magnetite, or "black sand," has been frequently mentioned above as a product of concentration in gravels and sands and is usually derived from the disintegration of igneous rocks. Along the beaches and the bars of some rivers it may accumulate in considerable masses—for instance, on the lower St. Lawrence River, Canada, and along the Columbia River, Oregon—but it is exceptional that such deposits have been utilized. More or less ilmenite is usually mixed with the magnetite.

![Diagram of Iron Mountain, Missouri](image)

Fig. 81.—Section of Iron Mountain, Missouri, showing mining of detrital ore underneath limestone and sandstone, and of hematite ore in the porphyry. *After G. W. Crane.*

There are several examples of eluvial deposits of iron ore (magnetite, hematite, or limonite), formed below cropplings of iron deposits, and also of such detrital masses in the débris slopes of older formations. At Iron Mountain, Missouri, Paleozoic rocks rest upon a deposit of boulders of iron ore and porphyry, which in turn lie upon pre-Cambrian porphyry. The porphyry itself also contains deposits of hematite (Fig. 81).

1 The magnetite sands of Japan appear to have been rather extensively utilized; also those occurring along the coast of New Zealand.
Similar eluvial masses of copper and lead ores are found in places. We may recall the great débris mass of chalcocite below thecroppings of the Bonanza mine1 in the Copper River region, Alaska, and galena beds on the slopes below the Elkhorn mine, Wood River, Idaho.2

Some placers yield precious stones. Diamonds are believed to occur as a primary mineral of some peridotites, possibly also in other rocks. Diamond placers have been worked in Brazil, India, and South Africa. In the last-named region fine stones are found in the gravel of the Vaal River, and small diamonds have lately been washed from the beach sands of Lüderitz Bay, German West Africa. In a few places sapphires, more rarely rubies (both aluminum oxide), are recovered from gravels. Along the Missouri River near Helena, Montana,3 a bar was worked for several years for the sapphires it contained. They were plentiful, but a large proportion were of yellowish or pale blue color.

CHAPTER XV

DEPOSITS PRODUCED BY CHEMICAL PROCESSES OF CONCENTRATION IN BODIES OF SURFACE WATER BY REACTIONS BETWEEN SOLUTIONS

LIMESTONE

Definition and Origin.—The prevailing use of limestones is for structural purposes, but inasmuch as they are employed for other industrial and chemical purposes they may consistently be considered in this volume. The limestones are almost entirely sedimentary rocks, composed of carbonate of calcium, usually calcite, but in recent deposits also aragonite; they contain minor amounts of magnesium and iron, also varying amounts of alumina and silica, and by the increase of these constituents transitions to shale or sandstone result. Phosphate of calcium and organic matter also enter into the composition of most limestones. The rocks are always crystalline, for there is no such mineral in nature as amorphous carbonate of calcium, but the grain varies between the widest limits.

When water containing bicarbonate of calcium evaporates or is discharged into the ocean or large bodies of fresh water the calcium carbonate is precipitated. This is exemplified by the deposits along the shore lines of the Great Salt Lake in Utah. Such limestones often form "oölitic" beds of small, rounded concretionary grains.

In most cases the limestone is formed by the shells or secretions of sea animals, such as mollusks or corals, which accumulate on the bottom of the sea at moderate depths. In ordinary limestones these shells are often visible, but increasing metamorphism and recrystallization tend to obliterate the organic remains. Many organisms, such as sponges, secrete silica from the sea water and thus cherty deposits may be admixed with the limestones.

228
CHEMICAL PROCESSES IN SURFACE WATERS

Calcite and aragonite are often deposited in large masses by hot springs containing bicarbonate of calcium, and such deposits may closely simulate limestones; in fact, they have sometimes been mistaken for such rocks. Certain beautiful banded and translucent varieties are called onyx and are used for ornamental stones.

Among the many varieties of limestone the following may be mentioned:

Chalk.—This is a white, fine-grained, loosely coherent limestone of comminuted shells of mollusks and also of Foraminifera. Its occurrence in the Cretaceous along the English coast is well known. Extensive beds are reported from Texas, New Mexico, Arkansas, and Kansas. Chalk is used as fertilizer, for whiting, for marking, for polishing powder, and for many other purposes. “Paris white” is a pigment made by grinding “cliffstone,” a hard variety of chalk. Much of this is imported.

Lithographic Stone.—The variety of limestone used for engraving and the reproduction of colored plates is a fine-grained rock with imperfect conchoidal fracture, gray or yellowish in color, and uniform in texture. It must be porous, to absorb the grease in the printer’s ink, and soft enough to work readily under the engraver’s tool. Lithographic stone of good quality is difficult to find. The product from the Solenhofen quarries in Bavaria is a Jurassic limestone of unusual excellence. The material is variable in composition and its value is ascertained only by trial.¹

Lithographic stone is reported to occur in several States of the Union, but none of it appears to be as good as Solenhofen rock. The plates used are 22 or 28 by 40 inches, and 3 inches thick. The better grades are expensive, selling at about 22 cents per pound. The best grade quarried in the United States is said to come from Brandenburg, Kentucky.² The demand is limited.

Hydraulic Limestone.—Certain argillaceous limestones or dolomitic limestones are used for the manufacture of natural cement. Such rock, crushed and burned, hardens or “sets” when mixed with water. “Portland” cements are mixtures of limestone and argillaceous rocks, subjected to a similar process of grinding and burning.

Lime.—Pure limestones are changed by burning and consequent decarbonation to quicklime; this “slakes” to a calcium hydroxide when mixed with water and is used, with the addition

of sand, as mortar in brick constructions. The "slaking" is retarded by the presence of magnesia and argillaceous impurities.¹

Smelter Flux.—Pure limestones are often used as fluxing material in the smelting of iron, copper, and lead ores. The presence of much silica and alumina is objectionable. Magnesian limestones are not suitable for copper and lead smelting, but are sometimes used in iron furnaces.

DOLOMITE

Pure dolomite contains 54.35 per cent. CaCO₃ and 45.65 per cent. MgCO₃. Beds of dolomite and dolomitic limestone are common in sedimentary deposits. They may often be distinguished by a fine-grained sugary texture, due to a development of uniform rhombohedral crystals. Dolomite is somewhat harder than limestone and is insoluble in dilute hydrochloric acid. Magnesium carbonate is much less soluble in water than calcium carbonate, as shown by the fact that stalactites in magnesian limestone caves are almost wholly CaCO₃. Some travertines from mineral springs are rich in MgCO₃ and may contain up to 29 per cent. of this compound. Dolomite is doubtless deposited by direct precipitation in sea water, but much of the dolomite is generally believed to have been formed by alteration of the limestone of coral reefs by sea water.

Deep borings in coral reefs have shown that the limestone, somewhat magnesian at the surface, passes into dolomite in depth. Certain algae deposit much MgCO₃ with CaCO₃; some shells also contain magnesium carbonate but seldom more than 7 per cent.

Instances are known of the deposition of thin beds of pure magnesite in bodies of water.

IMPORTANCE OF CARBONATE ROCKS AS RELATED TO ORE DEPOSITS

Within the zone of oxidation the carbonate rocks are often dissolved, residual clays being then developed. Accessory constituents such as barium (and strontium), probably present in most limestones but rarely determined, or zinc and lead in the form

of sulphides, may then become concentrated and acquire economic importance.

Limestone is easily silicified by waters containing silica; the silica usually appears as irregular masses of fine-grained quartz or chert. It is quite as easily dolomitized by dilute waters containing some magnesia, and this is often observed near ore deposits formed at slight or moderate depth. Limestone and dolomite, under the influence of heated waters, are subject to replacement by quartz, dolomite, barite, and fluorite or by metallic ores such as pyrite, blende, and galena. At high temperature and pressure pure limestones recrystallize to marble. Silicates, such as garnet, diopside, or wollastonite, form in argillaceous or siliceous limestone from the impurities contained or from the introduction of solutions rich in silica and iron. Lastly, the limestones are easily soluble and caves develop along fractures, forming receptacles for the deposition of ores.

CHERTS AND DIATOMACEOUS EARTH

The silica accumulated by detrital processes as sandstone and quartzite has already been mentioned. Silica may, however, also be extracted from water and deposited as a sediment by means of organisms, such as radiolarians, diatoms, and sponges. In part this silica forms cherty masses included in limestone; part is deposited as distinct beds. Diatomaceous earth\(^1\) is a deposit formed in lakes and swamps, as well as in the sea, and, when pure, consists of the delicate tests of diatoms, a class of algae (see Arnold and Anderson, Bull. 315, U. S. Geol. Survey, p. 438). Such deposits accumulate abundantly where siliceous volcanic tuffs were deposited in lakes, as occurred at many places in the Cordilleran region during the Tertiary period. Thick beds are found in the Miocene of Santa Barbara County, California. The diatomaceous earth is frequently more or less admixed with rhyolitic glass and other detritus; the tests consist of hydrated opaline silica. The earth forms light-colored beds of extremely fine texture and it finds extensive use as a polishing powder, a steam-pipe packing, and an absorbent for various liquids.

SEDIMENTARY SULPHIDE DEPOSITS

As the sedimentary rocks largely consist of the detritus of the continents, it is self-evident that they may contain the metals

of the rocks and ore deposits of the land areas. Iron is, of course, abundant, also in a lesser degree manganese; concretions of hydrous oxides of manganese are found in the deep sea deposits and analysis shows that these contain notable amounts of nickel, cobalt, copper, zinc, lead, and molybdenum. Many limestones have been shown to contain minute amounts of zinc, lead, and copper. River sands and gravels and even littoral ocean sands may, locally, contain some detrital pyrite, but it is extremely unlikely that a sufficient quantity of these sulphides would escape oxidation to form important deposits.

It is admitted, on the other hand, that pyrite, and infrequently other sulphides, may be precipitated by chemical reactions in sediments. A deposit of pyrite on pebbles at the seashore has been reported; pyrite or marcasite is formed in places in bogs and streams or in oceanic sediments where hydrogen sulphide developed by decaying organic matter reacts on the sulphates of iron. If these sediments are brought to the surface by orogenic movements and slightly metamorphosed, the sulphide, originally in fine dissemination, may recrystallize in more prominent form. As a matter of fact, the deep sea muds thus far analyzed contain little or no pyrite. In the special case of the Black Sea, often quoted of late from N. Androussof’s description,¹ microorganisms assist in liberating hydro-

gen sulphide, part of which, by reaction with iron from the sediments, develops pyrite.

Although pyritic clays are abundant in the unmetamorphosed sedimentary formations, there is little evidence of extensive sedimentary beds of pyrite.

The deposit at Meggen, in Westphalia, is often referred to as tending to prove the existence of sedimentary beds of pyrite. Oolitic pyrite with barite and a little lead, copper, and zinc occurs here in Devonian beds and is worked on a fairly extensive scale (Fig. 82). No fully adequate description of this occurrence is available and the opinions do not agree; in Stelzner and Bergeat’s hand-book it is considered as sedimentary, while Beck lists it among those of epigenetic origin.

Barite when appearing in sandstone is probably deposited by hot springs; it is difficult to conceive its origin from sea water.

Still less conclusive evidence exists as to the sedimentary deposition on a large scale of sulphides other than pyrite or marcasite. The copper, lead, and silver deposits in shale and sandstone are probably all epigenetic, but these as well as the “Kupferschiefer” of Mansfeld, in which the sulphides may be of syngenetic origin, will be described elsewhere (pp. 369, 379).

SEDIMENTARY IRON ORES

It is conceded that iron ores, such as magnetite, can be deposited by mechanical concentration as placers along rivers or the seashore (p. 226), or again we may easily conceive hematite or limonite derived from deep decay of rocks along the littoral, or from the oxidation of pyrite deposits, as at Rio Tinto, Spain, swept out into the sea and deposited close to the shore. Iron ores are also formed by chemical reactions in bodies of water, and these yield a notable proportion of the iron production of the world. In the latter cases the iron has been supplied from the land areas in form of solutions. In many instances both dissolved iron salts and detrital minerals of iron contribute to the genesis of the deposits.

The surface waters extract iron from ferromagnesian silicates as well as from oxides or other minerals; this extraction proceeds

most energetically in regions covered by a deep mantle of decayed rock. Both iron and manganese are contained in springs and streams. An example of such spring water, rising underneath a deposit of bog iron ore in Holland, is quoted by Clarke:

ANALYSIS OF SPRING WATER AT EDERVEEN, NETHERLANDS

(Analyst, G. Moll van Charante)

(Parts per million)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>107.6</td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Mg</td>
<td>5.6</td>
<td>Cl</td>
</tr>
<tr>
<td>Fe</td>
<td>19.6</td>
<td>H₃PO₄</td>
</tr>
<tr>
<td>Mn</td>
<td>11.4</td>
<td>SO₄</td>
</tr>
<tr>
<td>K</td>
<td>0.9</td>
<td>CO₂</td>
</tr>
<tr>
<td>Na</td>
<td>10.0</td>
<td>SiO₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A larger part of the iron dissolved by the surface water is precipitated after a short journey, but some of it is carried down by the streams to lakes and seas, in which it then may be deposited on an extensive scale.

LIMONITES IN SWAMPS AND LAKES (BOG IRON ORES)

Occurrence.—The bog iron ores are found in swamps, lakes, or even in sluggish water courses, and they are especially abundant in the recently glaciated regions of northern Europe, Asia, and North America. They consist of dark-brown, rough and cellular masses or loose particles, sometimes oölitic in structure and then designated as "shot ore," and form a layer of varying thickness at the bottom of the swamp or lake. Plants and roots may be replaced by limonite. Such ores are usually mined by means of primitive dredges or scoops.

The ore occurs mainly in shallow waters along the shore, to a depth of about 12 feet. After removal a new layer is formed within a few years; according to A. Geikie² several inches of limonite accumulated in 26 years in a Swedish deposit. The

rate would naturally be subject to great variations according to local conditions.

The bog iron ores are now of slight importance to the mining industry, but the easily traceable processes of their formation give us a most welcome key to the origin of other and more obscure deposits.

Composition.—These ores are always mixed with sand and clay and rarely contain as much as 50 per cent. of iron. The principal mineral contained is limonite, but carbonate of iron is commonly present, also phosphate as vivianite; soluble silica is sometimes recorded. In some low-grade ores from the Netherlands, the analyses of which are quoted by Clarke,¹ there is much more ferrous carbonate than limonite. Varying quantities of manganese are present in ores from Sweden, Finland, and Holland. The Swedish ore contains traces of vanadium, molybdenum, copper, lead, zinc, arsenic, nickel, and cobalt. All bog iron ores contain phosphorus, but there is rarely much sulphur.

According to Svanberg, cited by Zirkel,² the average of 30 analyses of Swedish bog iron ores gave:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>62.57</td>
</tr>
<tr>
<td>MnO₂</td>
<td>5.58</td>
</tr>
<tr>
<td>SiO₂</td>
<td>12.64</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.58</td>
</tr>
<tr>
<td>CaO</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>P₂O₅</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>SO₃</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Ignition</td>
</tr>
<tr>
<td></td>
<td>13.53</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>100.01</td>
</tr>
</tbody>
</table>

Origin.³—The agents by which iron is carried into solution are (1) carbon dioxide from the air and decomposing organisms; (2) sulphuric acid from the weathering of pyrite, and (3) organic acids derived from decomposing vegetable matter. In the absence of air ferric oxide is reduced to the ferrous state and forms soluble double salts with ammonia and humic acid.

¹ F. W. Clarke, Geochemistry, Bull. 491, U. S. Geol. Surv., p. 507.

Precipitation is effected in bicarbonate solutions by the escape of carbon dioxide in the air or through its absorption by plant cells. The ferrous carbonate is easily oxidized to ferric hydroxides. In the presence of much organic matter ferrous carbonate remains in the precipitate.

From ferrous sulphate solution iron is precipitated as limonite by oxidation, or by reaction with calcium carbonate solution, in which case siderite and gypsum will result, the former oxidizing to limonite, or the iron may be precipitated by ammonium humate, always present in swamp waters, or finally by soluble calcium phosphate, in which case vivianite or other iron phosphates result. Less commonly the iron is precipitated as pyrite by reaction with alkaline sulphides or hydrogen sulphide.

From soluble humates iron is also precipitated by organisms, called iron bacteria, which take up these humates, as well as ferrous carbonate, and coat their cell walls with the segregated limonite.

In these, as in so many other surface reactions, the ferric hydroxides are probably precipitated as colloidal complexes of indefinite composition, or "gels," which in time tend to change to crystalline bodies. A number of ferric hydroxides are known, the most important being limonite \((2\text{Fe}_2\text{O}_3.3\text{H}_2\text{O})\), with 85.5 per cent. \(\text{Fe}_2\text{O}_3\); goethite \((\text{Fe}_2\text{O}_3.\text{H}_2\text{O})\), with 89.9 per cent. \(\text{Fe}_2\text{O}_3\); and turgite \((2\text{Fe}_2\text{O}_3.\text{H}_2\text{O})\), with 94.6 per cent. \(\text{Fe}_2\text{O}_3\). Both goethite and turgite are red and may be mistaken for hematite. Limonite and goethite, and probably also the other compounds, soon acquire crystalline properties and then show strong double refraction. There are several complex ferric silicates which under the microscope look somewhat like limonite.

Examples.—Many occurrences of bog iron ores are known in the United States. Kemp\(^1\) mentions beds in North Carolina, 3 feet thick, resting on sand. At Radnor and Dumondville, Three Rivers district, Quebec, the occurrences are extensive. The ores contain 0.3 per cent. phosphorus and less than 0.1 per cent. sulphur. This iron ore is still utilized, being dug in the swamps or dredged in the lakes; 23,000 short tons were mined in 1907, but in 1911 the production had decreased to 931 tons. The production in this district began in 1730.

\(^1\) J. F. Kemp, Ore deposits of the United States and Canada, 3d ed., p. 89.
CHEMICAL PROCESSES IN SURFACE WATER 237

On Staten Island, New York, bog iron ore occurs in depressions in serpentine and contains a notable percentage of chromium. Many occurrences on a small scale are known in the Rocky Mountains. Near Portland, Oregon, at the Prosser mine, limonite ore was found in the surficial hollows of a basalt flow, covered by a later flow of the same rock; it was 6 to 15 feet thick and contained roots and trunks of trees.¹ The earlier basalt was rich in iron and its decomposition furnished the iron to the swamps which covered its surface. In Sweden the bog ores were formerly utilized on a fairly extensive scale.

THE SIDERITES OF MARINE AND BRACKISH-WATER STRATA

Occurrence.—Siderite (FeCO₃) is an iron ore of some importance, both in epigenetic and syngenetic deposits. It occurs in fissure veins and as a replacement of limestone, but is also found at various horizons of the sedimentary series as a product of the sedimentary processes. The sedimentary siderite ores are called clay ironstone, spherosiderite, or black band. A dense or fine-grained concretionary structure is characteristic of the "clay ironstone" occurring in clays or shales and these concretions, more or less admixed with clay and sand and often inclosing vegetable remains, are found abundantly at certain horizons. The variety called "black band" forms continuous beds of dark-colored, compact appearance, in the shales of the coal measures, and often directly underneath or above the coal beds.

These ores contain less than 48 per cent. of iron and must be calcined before smelting. Both sulphur and phosphorus are present, sometimes in considerable quantities.

Marcasite, pyrite, arsenopyrite, millerite, galena, blende, and chalcopyrite are sometimes found along cracks in the concretions of siderite, indicating that the iron solutions carried small amounts of the less common metals, probably as sulphates. After the deposition of the siderite these metals were leached and redeposited as sulphides along available openings. The analysis of siderite ore from Maryland² showed 36.05 per cent. Fe, 13.53

per cent. SiO₂, 6.47 per cent. Al₂O₃, 0.94 per cent. Mn, 0.08 per cent. P, and 0.42 per cent. S.

The economic importance of these ores, formerly great, is now small. Near the surface they are sometimes changed to limonite.

The origin of sedimentary siderites is explained along the same lines as that of the bog iron ores. Solutions of ferrous bicarbonate were supplied to the marshes along the sea coast or to the shallow sea where organic matter was abundant. Precipitation of the normal insoluble carbonate took place through absorption of the solvent CO₂ by vegetation. Free oxygen was absent, for otherwise the carbonate would have been transformed into limonite. Even if the iron had originally been deposited as limonite a reduction and carbonation to siderite may have been effected by the limonite precipitate being covered by mud containing organic matter.

The concretionary ores are not the products of primary precipitation, but are, probably in all cases, segregated into nodular form by the action of percolating solutions around a suitable nucleus.

Examples.—In the United States sedimentary siderites are known in Pennsylvania, Ohio, West Virginia, Maryland, and Kentucky. Their present industrial importance is slight, but they were formerly mined on a more extensive scale. The production in 1910 was only 22,000 long tons, chiefly from Ohio.

In Pennsylvania and adjacent States the upper barren Coal Measures contain abundant nodules of siderite in the shales and sandstones, but no valuable deposits. In the upper productive Coal Measures, or Monongahela River series, black band ore occurs, for instance, just below or above the Pittsburg coal bed. In the lower Coal Measures the siderites are especially abundant; in Ohio 12 horizons of black bands and concretionary ores are distinguished by Orton.¹

Siderite ores also occur in the Tertiary Claiborne formation of Mississippi.

The black bands are common in Germany, but are not mined extensively. They were formerly actively worked in Westphalia and near Saarbrücken, where the ore formed flat lenticular masses as much as 1½ meters thick and sometimes several hundred meters in extent.

¹ Ohio Geol. Surv., vol. 5, 1884, p. 378.
In England the black bands were formerly of the highest importance and 40 years ago furnished four-fifths of the total iron output. They are now mined only in North Staffordshire and in Scotland. In Wales the black bands occur in the lower Coal Measures. Kendall\(^1\) enumerates 75 horizons of siderite ore.

In Scotland (Ayrshire) the black bands occur both in Coal Measures and in Carboniferous limestone. The ores contain 25 to 40 per cent. Fe, and occur as thin strata, 1\(\frac{1}{2}\) feet or less thick; several of them are usually close together.

THE JURASSIC SIDERITES OF ENGLAND

The carbonate ores of the Jurassic "oölite" in England have a much greater importance than formerly,\(^2\) the mine production in 1911 being 11,000,000 metric tons, out of a total output of 15,000,000 tons. While the ores are of low grade they are cheaply mined, largely in open cuts. The largest yield comes from the Cleveland Hills, in the Yorkshire district. The ores form three or four beds, in the shales and sandstones of the Lower Oölite, Upper Lias, and Middle Lias; the thickest bed attains 13 feet with several minor clay streaks.\(^3\) The ore is changed to limonite near the surface, but the primary material is composed largely of oölitic siderite; a little glauconite is present. Its percentage composition is approximately as follows: \(\text{SiO}_2, 10\) to 20; \(\text{FeO}, 40; \text{Fe}_2\text{O}_3, 1.4; \text{CaO}, 1.5; \text{CO}_2, 25; \text{P}_2\text{O}_5, 0.5\) to 2. There is little sulphur and the metallic iron varies between 29 and 35 per cent. A little magnetite is reported in the ore.

THE OÖLITIC MARINE LIMONITES AND HEMATITES

The oölites (name derived from the resemblance to fish-roe) consist of small rounded grains of concretionary origin, each grain often being formed around a small sand-grain or around a small fossil. They are formed in shallow water near the shore, where the action of waves and currents is strong. Oölitic limestones

are common occurrences in some sedimentary series. Oölitic siderite is less common, though known from some places. The oölitic iron ores consist most frequently of limonite; sometimes of hematite or of iron silicates. The concretions are cemented by calcite or siderite or more commonly by an argillaceous substance.

THE OÖLITIC LIMONITES

Occurrence.—The oölitic limonites form well-defined and extensive beds in purely sedimentary series of sandstones, shales, and marls. Though several ore beds are usually present in each district they are not always persistent, but may thin out, other beds appearing at different levels. The ores have no relation to volcanism, though in many cases the decay of volcanic rocks may have supplied the iron. Though not particularly characteristic of any one formation the ores are most abundant in Jurassic strata. The percentage of iron is low and that of phosphorus high; favorable features are the presence of calcium carbonate, which makes the ores self-fluxing, and the great extent of the beds. The great iron industries of Germany and France are largely dependent upon the oölitic limonites.

Examples.—The so-called "minettes," or oölitic limonites of the German and French Lorraine and of Luxembourg, are of the highest importance as present and future sources of European iron. In the French territory there are at least 50 mines with an annual ore production of nearly 9,000,000 metric tons (1908). The proved reserves are estimated at 3,000 million tons. In German territory the production attains similar figures and the estimated reserves are over 2,000 million tons. Dipping gently westward the strata attain a depth of 3,000 feet or more in France. The present mining is done at a depth of 700 feet or less, and in part by tunneling or open cuts (Fig. 83).

The ores lie in the Middle (Dogger) part of the Jurassic system, and occur with shales, sandstones, and marls as distinct beds within a vertical distance of 75 to 150 feet. The strata are not absolutely persistent in the same level, but are local accumulations, thinning out in a lenticular manner. The several beds

known are of different thickness, the maximum being 15 feet. A low percentage of iron, varying from 31 to 40, is characteristic, likewise a high percentage of phosphorus, varying from 1.6 to 1.8, the latter making the ores available for the basic process. From 5 to 12 per cent. CaO and from 7 to 33 per cent. SiO₂ are present. The ores are earthy and soft and are of brown, gray, or yellow tints. Limonite forms the bulk of the ore, but there is always calcite and some siderite, often also a little secondary magnetite, and more rarely grains of pyrite, zinc blende, galena, and chalcopyrite. The small concretions of the size of a pin-head, or a

Fig. 83.—Section through the minette measures at Esch. After W. Branco. 8, Calcareous layer with Harpoceras humphriesianum; 7, calcareous layer with Harpoceras soeverbyi; 6, marl with Harpoceras murchisona; 5, the minette measure group (see legend); 4, sandstone with Trigonia mira; 2 and 3, upper and lower clays with Harpoceras striatum; 1, Lias (miceous marl).

little larger, consist of limonite but, like the Clinton oölites of hematite, have a skeleton of silica, which, according to van Werveke, points to a possible derivation by alteration from glauconite. The cement consists of silica, lime, or clay shale, and grains of glauconite, a ferri-potassic silicate, occur in it.

Less important oölitic ores occur in other parts of Europe, likewise in the Jurassic system.

Cretaceous oölites in which the limonite is probably derived from glauconite or siderite have been described from Texas.¹

Origin.—The origin of these limonites is a disputed question. As already indicated some observers doubt the direct deposition of limonite in the sea water, but hold that the mineral resulted from the oxidation of oölitic siderite or glauconite.

of sand, as mortar in brick constructions. The "slaking" is retarded by the presence of magnesia and argillaceous impurities.\(^1\)

Smelter Flux.—Pure limestones are often used as fluxing material in the smelting of iron, copper, and lead ores. The presence of much silica and alumina is objectionable. Magnesian limestones are not suitable for copper and lead smelting, but are sometimes used in iron furnaces.

DOLOMITE

Pure dolomite contains 54.35 per cent. \(\text{CaCO}_3\) and 45.65 per cent. \(\text{MgCO}_3\). Beds of dolomite and dolomitic limestone are common in sedimentary deposits. They may often be distinguished by a fine-grained sugary texture, due to a development of uniform rhombohedral crystals. Dolomite is somewhat harder than limestone and is insoluble in dilute hydrochloric acid. Magnesium carbonate is much less soluble in water than calcium carbonate, as shown by the fact that stalactites in magnesian limestone caves are almost wholly \(\text{CaCO}_3\). Some travertines from mineral springs are rich in \(\text{MgCO}_3\) and may contain up to 29 per cent. of this compound. Dolomite is doubtless deposited by direct precipitation in sea water, but much of the dolomite is generally believed to have been formed by alteration of the limestone of coral reefs by sea water.

Deep borings in coral reefs have shown that the limestone, somewhat magnesian at the surface, passes into dolomite in depth. Certain algae deposit much \(\text{MgCO}_3\) with \(\text{CaCO}_3\); some shells also contain magnesium carbonate but seldom more than 7 per cent.

Instances are known of the deposition of thin beds of pure magnesite in bodies of water.

IMPORTANCE OF CARBONATE ROCKS AS RELATED TO ORE DEPOSITS

Within the zone of oxidation the carbonate rocks are often dissolved, residual clays being then developed. Accessory constituents such as barium (and strontium), probably present in most limestones but rarely determined, or zinc and lead in the form

CHEMICAL PROCESSES IN SURFACE WATERS

of sulphides, may then become concentrated and acquire economic importance.

Limestone is easily silicified by waters containing silica; the silica usually appears as irregular masses of fine-grained quartz or chert. It is quite as easily dolomitized by dilute waters containing some magnesia, and this is often observed near ore deposits formed at slight or moderate depth. Limestone and dolomite, under the influence of heated waters, are subject to replacement by quartz, dolomite, barite, and fluorite or by metallic ores such as pyrite, blende, and galena. At high temperature and pressure pure limestones recrystallize to marble. Silicates, such as garnet, diopside, or wollastonite, form in argillaceous or siliceous limestone from the impurities contained or from the introduction of solutions rich in silica and iron. Lastly, the limestones are easily soluble and caves develop along fractures, forming receptacles for the deposition of ores.

CHERTS AND DIATOMACEOUS EARTH

The silica accumulated by detrital processes as sandstone and quartzite has already been mentioned. Silica may, however, also be extracted from water and deposited as a sediment by means of organisms, such as radiolarians, diatoms, and sponges. In part this silica forms cherty masses included in limestone; part is deposited as distinct beds. Diatomaceous earth\(^1\) is a deposit formed in lakes and swamps, as well as in the sea, and, when pure, consists of the delicate tests of diatoms, a class of algae (see Arnold and Anderson, Bull. 315, U. S. Geol. Survey, p. 438). Such deposits accumulate abundantly where siliceous volcanic tuffs were deposited in lakes, as occurred at many places in the Cordilleran region during the Tertiary period. Thick beds are found in the Miocene of Santa Barbara County, California. The diatomaceous earth is frequently more or less admixed with rhyolitic glass and other detritus; the tests consist of hydrated opaline silica. The earth forms light-colored beds of extremely fine texture and it finds extensive use as a polishing powder, a steam-pipe packing, and an absorbent for various liquids.

SEDIMENTARY SULPHIDE DEPOSITS

As the sedimentary rocks largely consist of the detritus of the continents, it is self-evident that they may contain the metals

of the rocks and ore deposits of the land areas. Iron is, of course, abundant, also in a lesser degree manganese; concretions of hydrous oxides of manganese are found in the deep sea deposits and analysis shows that these contain notable amounts of nickel, cobalt, copper, zinc, lead, and molybdenum. Many limestones have been shown to contain minute amounts of zinc, lead, and copper. River sands and gravels and even littoral ocean sands may, locally, contain some detrital pyrite, but it is extremely unlikely that a sufficient quantity of these sulphides would escape oxidation to form important deposits.

It is admitted, on the other hand, that pyrite, and infrequently other sulphides, may be precipitated by chemical reactions in sediments. A deposit of pyrite on pebbles at the seashore has been reported; pyrite or marcasite is formed in places in bogs and streams or in oceanic sediments where hydrogen sulphide developed by decaying organic matter reacts on the sulphates of iron. If these sediments are brought to the surface by orogenic movements and slightly metamorphosed, the sulphide, originally in fine dissemination, may recrystallize in more prominent form. As a matter of fact, the deep sea muds thus far analyzed contain little or no pyrite. In the special case of the Black Sea, often quoted of late from N. Androusoff's description,¹ microorganisms assist in liberating hydro-

gen sulphide, part of which, by reaction with iron from the sediments, develops pyrite.

Although pyritic clays are abundant in the unmetamorphosed sedimentary formations, there is little evidence of extensive sedimentary beds of pyrite.

The deposit at Meggen, in Westphalia, is often referred to as tending to prove the existence of sedimentary beds of pyrite. Öölitic pyrite with barite and a little lead, copper, and zinc occurs here in Devonian beds and is worked on a fairly extensive scale (Fig. 82). No fully adequate description of this occurrence is available and the opinions do not agree; in Stelzner and Bergeat’s hand-book\(^1\) it is considered as sedimentary, while Beck\(^2\) lists it among those of epigenetic origin.

Barite when appearing in sandstone is probably deposited by hot springs; it is difficult to conceive its origin from seawater.

Still less conclusive evidence exists as to the sedimentary deposition on a large scale of sulphides other than pyrite or marcasite. The copper, lead, and silver deposits in shale and sandstone are probably all epigenetic, but these as well as the “Kupferschiefer” of Mansfeld, in which the sulphides may be of syngenetic origin, will be described elsewhere (pp. 369, 379).

SEDIMENTARY IRON ORES

It is conceded that iron ores, such as magnetite, can be deposited by mechanical concentration as placers along rivers or the seashore (p. 226), or again we may easily conceive hematite or limonite derived from deep decay of rocks along the littoral, or from the oxidation of pyrite deposits, as at Rio Tinto, Spain, swept out into the sea and deposited close to the shore. Iron ores are also formed by chemical reactions in bodies of water, and these yield a notable proportion of the iron production of the world. In the latter cases the iron has been supplied from the land areas in form of solutions. In many instances both dissolved iron salts and detrital minerals of iron contribute to the genesis of the deposits.

The surface waters extract iron from ferromagnesian silicates as well as from oxides or other minerals; this extraction proceeds

\(^1\) A. W. Stelzner and A. Bergeat, Die Erzaggeräten, 1, pp. 339–342.

Precipitation is effected in bicarbonate solutions by the escape of carbon dioxide in the air or through its absorption by plant cells. The ferrous carbonate is easily oxidized to ferric hydroxides. In the presence of much organic matter ferrous carbonate remains in the precipitate.

From ferrous sulphate solution iron is precipitated as limonite by oxidation, or by reaction with calcium carbonate solution, in which case siderite and gypsum will result, the former oxidizing to limonite, or the iron may be precipitated by ammonium humate, always present in swamp waters, or finally by soluble calcium phosphate, in which case vivianite or other iron phosphates result. Less commonly the iron is precipitated as pyrite by reaction with alkaline sulphides or hydrogen sulphide.

From soluble humates iron is also precipitated by organisms, called iron bacteria, which take up these humates, as well as ferrous carbonate, and coat their cell walls with the segregated limonite.

In these, as in so many other surface reactions, the ferric hydroxides are probably precipitated as colloidal complexes of indefinite composition, or "gels," which in time tend to change to crystalline bodies. A number of ferric hydroxides are known, the most important being limonite \((2\text{Fe}_2\text{O}_3:3\text{H}_2\text{O})\), with 85.5 per cent. \(\text{Fe}_2\text{O}_3\); göthite \((\text{Fe}_2\text{O}_3:2\text{H}_2\text{O})\), with 89.9 per cent. \(\text{Fe}_2\text{O}_3\); and turgite \((2\text{Fe}_2\text{O}_3:\text{H}_2\text{O})\), with 94.6 per cent. \(\text{Fe}_2\text{O}_3\). Both göthite and turgite are red and may be mistaken for hematite. Limonite and göthite, and probably also the other compounds, soon acquire crystalline properties and then show strong double refraction. There are several complex ferric silicates which under the microscope look somewhat like limonite.

Examples.—Many occurrences of bog iron ores are known in the United States. Kemp\(^1\) mentions beds in North Carolina, 3 feet thick, resting on sand. At Radnor and Dummondville, Three Rivers district, Quebec, the occurrences are extensive. The ores contain 0.3 per cent. phosphorus and less than 0.1 per cent. sulphur. This iron ore is still utilized, being dug in the swamps or dredged in the lakes; 23,000 short tons were mined in 1907, but in 1911 the production had decreased to 931 tons. The production in this district began in 1730.

\(^1\) J. F. Kemp, *Ore deposits of the United States and Canada*, 3d ed., p. 89.
On Staten Island, New York, bog iron ore occurs in depressions in serpentine and contains a notable percentage of chromium. Many occurrences on a small scale are known in the Rocky Mountains. Near Portland, Oregon, at the Prosser mine, limonite ore was found in the surficial hollows of a basalt flow, covered by a later flow of the same rock; it was 6 to 15 feet thick and contained roots and trunks of trees.\(^1\) The earlier basalt was rich in iron and its decomposition furnished the iron to the swamps which covered its surface. In Sweden the bog ores were formerly utilized on a fairly extensive scale.

The Siderites of Marine and Brackish-Water Strata

Occurrence.—Siderite (FeCO\(_3\)) is an iron ore of some importance, both in epigenetic and syngenetic deposits. It occurs in fissure veins and as a replacement of limestone, but is also found at various horizons of the sedimentary series as a product of the sedimentary processes. The sedimentary siderite ores are called clay ironstone, spherosiderite, or black band. A dense or fine-grained concretionary structure is characteristic of the "clay ironstone" occurring in clays or shales and these concretions, more or less admixed with clay and sand and often inclosing vegetable remains, are found abundantly at certain horizons. The variety called "black band" forms continuous beds of dark-colored, compact appearance, in the shales of the coal measures, and often directly underneath or above the coal beds.

These ores contain less than 48 per cent. of iron and must be calcined before smelting. Both sulphur and phosphorus are present, sometimes in considerable quantities.

Marcasite, pyrite, arsenopyrite, millerite, galena, blende, and chalcopyrite are sometimes found along cracks in the concretions of siderite, indicating that the iron solutions carried small amounts of the less common metals, probably as sulphates. After the deposition of the siderite these metals were leached and redeposited as sulphides along available openings. The analysis of siderite ore from Maryland\(^2\) showed 36.05 per cent. Fe, 13.53

per cent. SiO₂, 6.47 per cent. Al₂O₃, 0.94 per cent. Mn, 0.08 per cent. P, and 0.42 per cent. S.

The economic importance of these ores, formerly great, is now small. Near the surface they are sometimes changed to limonite.

The origin of sedimentary siderites is explained along the same lines as that of the bog iron ores. Solutions of ferrous bicarbonate were supplied to the marshes along the sea coast or to the shallow sea where organic matter was abundant. Precipitation of the normal insoluble carbonate took place through absorption of the solvent CO₂ by vegetation. Free oxygen was absent, for otherwise the carbonate would have been transformed into limonite. Even if the iron had originally been deposited as limonite a reduction and carbonation to siderite may have been effected by the limonite precipitate being covered by mud containing organic matter.

The concretionary ores are not the products of primary precipitation, but are, probably in all cases, segregated into nodular form by the action of percolating solutions around a suitable nucleus.

Examples.—In the United States sedimentary siderites are known in Pennsylvania, Ohio, West Virginia, Maryland, and Kentucky. Their present industrial importance is slight, but they were formerly mined on a more extensive scale. The production in 1910 was only 22,000 long tons, chiefly from Ohio.

In Pennsylvania and adjacent States the upper barren Coal Measures contain abundant nodules of siderite in the shales and sandstones, but no valuable deposits. In the upper productive Coal Measures, or Monongahela River series, black band ore occurs, for instance, just below or above the Pittsburg coal bed. In the lower Coal Measures the siderites are especially abundant; in Ohio 12 horizons of black bands and concretionary ores are distinguished by Orton.¹

Siderite ores also occur in the Tertiary Claiborne formation of Mississippi.

The black bands are common in Germany, but are not mined extensively. They were formerly actively worked in Westphalia and near Saarbrücken, where the ore formed flat lenticular masses as much as 1½ meters thick and sometimes several hundred meters in extent.

¹ Ohio Geol. Surv., vol. 5, 1884, p. 378.
In England the black bands were formerly of the highest importance and 40 years ago furnished four-fifths of the total iron output. They are now mined only in North Staffordshire and in Scotland. In Wales the black bands occur in the lower Coal Measures. Kendall\(^1\) enumerates 75 horizons of siderite ore.

In Scotland (Ayrshire) the black bands occur both in Coal Measures and in Carboniferous limestone. The ores contain 25 to 40 per cent. Fe, and occur as thin strata, \(1\frac{1}{2}\) feet or less thick; several of them are usually close together.

THE JURASSIC SIDERITES OF ENGLAND

The carbonate ores of the Jurassic "oölite" in England have a much greater importance than formerly,\(^2\) the mine production in 1911 being 11,000,000 metric tons, out of a total output of 15,000,000 tons. While the ores are of low grade they are cheaply mined, largely in open cuts. The largest yield comes from the Cleveland Hills, in the Yorkshire district. The ores form three or four beds, in the shales and sandstones of the Lower Oölite, Upper Lias, and Middle Lias; the thickest bed attains 13 feet with several minor clay streaks.\(^3\) The ore is changed to limonite near the surface, but the primary material is composed largely of oölitic siderite; a little glauconite is present. Its percentage composition is approximately as follows: \(\text{SiO}_2, 10\) to 20; \(\text{FeO}, 40; \text{Fe}_2\text{O}_3, 1.4; \text{CaO}, 1.5; \text{CO}_2, 25; \text{P}_2\text{O}_5, 0.5\) to 2. There is little sulphur and the metallic iron varies between 29 and 35 per cent. A little magnetite is reported in the ore.

THE OÖLITIC MARINE LIMONITES AND HEMATITES

The oölites (name derived from the semblance to fish-roe) consist of small rounded grains of concretionary origin, each grain often being formed around a small sand-grain or around a small fossil. They are formed in shallow water near the shore, where the action of waves and currents is strong. Oölitic limestones

are common occurrences in some sedimentary series. Oölitic siderite is less common, though known from some places. The oölitic iron ores consist most frequently of limonite; sometimes of hematite or of iron silicates. The concretions are cemented by calcite or siderite or more commonly by an argillaceous substance.

THE OÖLITIC LIMONITES

Occurrence.—The oölitic limonites form well-defined and extensive beds in purely sedimentary series of sandstones, shales, and marls. Though several ore beds are usually present in each district they are not always persistent, but may thin out, other beds appearing at different levels. The ores have no relation to volcanism, though in many cases the decay of volcanic rocks may have supplied the iron. Though not particularly characteristic of any one formation the ores are most abundant in Jurassic strata. The percentage of iron is low and that of phosphorus high; favorable features are the presence of calcium carbonate, which makes the ores self-fluxing, and the great extent of the beds. The great iron industries of Germany and France are largely dependent upon the oölitic limonites.

Examples.—The so-called "minettes," 1 or oölitic limonites of the German and French Lorraine and of Luxembourg, are of the highest importance as present and future sources of European iron. In the French territory there are at least 50 mines with an annual ore production of nearly 9,000,000 metric tons (1908). The proved reserves are estimated at 3,000 million tons. In German territory the production attains similar figures and the estimated reserves are over 2,000 million tons. Dipping gently westward the strata attain a depth of 3,000 feet or more in France. The present mining is done at a depth of 700 feet or less, and in part by tunneling or open cuts (Fig. 83).

The ores lie in the Middle (Dogger) part of the Jurassic system, and occur with shales, sandstones, and marls as distinct beds within a vertical distance of 75 to 150 feet. The strata are not absolutely persistent in the same level, but are local accumulations, thinning out in lenticular manner. The several beds

L. van Werveke, Zeitschr. prakt. Geol., 1895, p. 497, and many other papers cited by Stelzner and Bergeat, Erzlagerstätten, 1, p. 212.
CHEMICAL PROCESSES IN SURFACE WATERS 241

known are of different thickness, the maximum being 15 feet. A low percentage of iron, varying from 31 to 40, is characteristic, likewise a high percentage of phosphorus, varying from 1.6 to 1.8, the latter making the ores available for the basic process. From 5 to 12 per cent. CaO and from 7 to 33 per cent. SiO₂ are present. The ores are earthy and soft and are of brown, gray, or yellow tints. Limonite forms the bulk of the ore, but there is always calcite and some siderite, often also a little secondary magnetite, and more rarely grains of pyrite, zinc blende, galena, and chalcopyrite. The small concretions of the size of a pin-head, or a

Fig. 83.—Section through the minette measures at Esch. After W. Branco. 8, Calcareous layer with Harpoceras humphriesianum; 7, calcareous layer with Harpoceras soverbyi; 6, marl with Harpoceras murchisoni; 5, the minette measure group (see legend); 4, sandstone with Trigonia varia; 2 and 3, upper and lower clays with Harpoceras striatum; 1, Lias (micaceous marl).

little larger, consist of limonite but, like the Clinton oölites of hematite, have a skeleton of silica, which, according to van Werveke, points to a possible derivation by alteration from glauconite. The cement consists of silica, lime, or clay shale, and grains of glauconite, a ferri-potassic silicate, occur in it. Less important oölitic ores occur in other parts of Europe, likewise in the Jurassic system.

Cretaceous oölites in which the limonite is probably derived from glauconite or siderite have been described from Texas.¹

Origin.—The origin of these limonites is a disputed question. As already indicated some observers doubt the direct deposition of limonite in the sea water, but hold that the mineral resulted from the oxidation of oölitic siderite or glauconite.

In a recent detailed monograph L. Cayeux1 emphasizes the peculiar fact that the limonitic oölites of France are confined to the older, pre-Cretaceous formations, while in the Cretaceous or later beds the glauconites predominate. He believes that the older oölites are in all cases derived from siderite by replacement and oxidation.

THE MARINE OÖLITIC SILICATE ORES

A number of silicates of iron are distinctly sedimentary products and common in many waterlaid series of rocks; the most important are glauconite (greensand), chamosite, thuringite, and greenalite. Glauconite seems especially abundant in the Cretaceous, chamosite and thuringite in the Silurian, and greenalite in the Algonkian, but none of them are confined to any definite horizon. Their composition is uncertain and variable, the glauconite alone being distinguished by a large percentage of potash.

APPROXIMATE COMPOSITION OF SEDIMENTARY IRON SILICATES

<table>
<thead>
<tr>
<th></th>
<th>Glaucnite</th>
<th>Chamosite</th>
<th>Thuringite</th>
<th>Greenalite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO\textsubscript{2}</td>
<td>53</td>
<td>29</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}</td>
<td>21</td>
<td>6</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>FeO</td>
<td>2</td>
<td>42</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>CaO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K\textsubscript{2}O</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

Glaucnite2 forms in marine deposits on the present sea bottom and also occurs scattered in marine sands of older formations from the Cambrian to the present time, sometimes so abundantly that the rocks are termed greensands. The Cretaceous greensands of New Jersey form a good example of rocks containing abundant glauconite; they are rich in both phosphorus and potassium. The mineral occurs as dark-green granules, often in the interior of shells.

According to Murray and Renard, glauconite is formed just beyond the limits of wave and current action, where the muddy deposits begin. Organic matter is believed to reduce the iron

1 L. Cayeux, *Les minéraux de fer oolithique de France*, Paris, 1909.
L. Cayeux, *Contribution étude microgr. des terr. séd.*, Lille, 1897.
in the mud to sulphide, which later oxidizes to limonite; at the same time colloidal silica is set free and the colloidal limonite absorbs this as well as potash, forming ferric silicate.¹

In part, however, as shown by Cayeux, the glauconite has been formed somewhat later than the original deposition of the beds and without the intervention of organic matter.

Greenalite occurs abundantly, according to Leith² in the Algonkian ferruginous cherts of the Mesabi and other iron districts; it was formerly mistaken for glauconite. It is believed to be a marine deposit.

Neither glauconite nor greenalite rocks form iron ores, but it is probable that the former by alteration may be transformed into limonite, and, according to Van Hise and Leith, the greenalite is the source from which the hematites of the Lake Superior region were derived.

Chamosite and thuringite³ form the principal ore minerals in a number of interesting deposits in Thuringia (Germany) and Bohemia, which formerly were mined extensively and which are still being mined on a small scale in the latter region. These silicates form oolithic grains in slightly metamorphosed clay slates of the Lower Silurian. The beds still retain fossils. In Germany the ores occur as lenticular beds as much as 7 feet thick. In Bohemia the Silurian series consists of slates, graywacke, and diabase tuffs. These contain beds of oolithic hematite, one bed being 16 feet thick, while other beds consist of oolithic chamosite of considerable thickness. The latter show a groundmass of siderite or chamosite, in which are embedded oolithes of dark-gray chamosite. The ores are rich in phosphorus and also carry a little magnetite.

Many believe that the iron is derived from the decomposition of the associated diabase tuffs. Be that as it may, these iron ores are certainly of sedimentary origin.

THE MARINE OÖLITIC HEMATITE ORES

Occurrence.—Oolithic hematite ores of undoubted sedimentary origin are common in many parts of the world, as, for instance, Germany, France, and Bohemia. They are usually associated with Paleozoic rocks, but appear to be lacking in Mesozoic and

¹F. W. Clarke, Geochemistry, Bull. 491, U. S. Geol. Surv., 1911, p. 492. The extensive literature is here summarized.
³A. W. Stelíner and A. Bergeat, Die Erzlagerstätten, 1904, 1, p. 201.
MINERAL DEPOSITS

Tertiary sediments. Siderite and calcite usually accompany them. Rarely, if ever, do they contain magnetite or metallic sulphides. Differing opinions are expressed as to their origin; they have been explained as replacements of limestone or of siderite, or again as primary sediments, the tendency in the United States being in favor of the latter theory of origin.

The Clinton Ores.1—The most important oölitic ores in the United States are those of the Clinton formation in the Appalachian States; they persist with remarkable regularity wherever this formation appears. The Clinton (Silurian) lies between the Trenton limestone and the Devonian shale, and it invariably contains one or several beds of hematite ore alternating with limestone and shale. The succession of sedimentary rocks in the Birmingham district is as follows. In a general way the section applies to the entire southern Appalachian region.

Carboniferous:

Feet
Pennsylvania: Pottsville formation ("Coal Measures")... 2600 to 7000
Unconformity.
Mississippian:
 Parkwood formation ... 0 to 2000
 Pennington shale (30–300 feet)
 Bangor limestone (670 feet) } Floyd shale... 1000 ±
 Fort Payne chert ... 200 to 250
Unconformity.
Devonian:
 Chattanooga shale
 Frog Mountain sandstone }
Unconformity.
Silurian: Clinton (Rockwood) formation 250 to 500
Unconformity.
Ordovician: Chickamauga (Pelham) limestone 200 to 1000
Unconformity.
Cambro-Ordovician: Knox dolomite 3300
Cambrian:
 Conasauga (Cooea) limestone 1000 +
 Rome (Montevallo) shale (great thickness).

CHEMICAL PROCESSES IN SURFACE WATERS

The Clinton ores extend from western New York, through Pennsylvania, Virginia, West Virginia, Kentucky, Tennessee, and northwestern Georgia, into Alabama, where, near Birmingham, they attain their greatest development. They are also found in Wisconsin and Ohio. The ores constitute beds or lenses at various horizons in the Clinton formation. In many localities three or four beds are separated by many feet of sandstone and shale. The ore beds vary in thickness from a few inches to 40 feet, and the thicker beds generally contain interbedded layers of sandstone or shale. Single ore beds extend for many miles along the outcrop. In the Birmingham district four beds are recognized. They occur in the middle part of the formation within a vertical distance of 80 feet; the whole series dips westward at gentle angles. The thickness of the "Big Seam" is variously estimated at 16 to 40 feet, but there is rarely more than 10 or 12 feet of good ore in a single bench. There are generally sharp lines of demarcation between beds of iron ore, shale, and sandstone, but gentle gradations through ferruginous shaly sandstone occur in places (Fig. 84).

An important iron industry is based upon the deposits in Alabama and the annual production of ore has now attained about 3,000,000 long tons, or about 8 per cent. of the total output of iron ore in the United States. Mining has been carried 2,000 feet on the dip of some of the seams, and entirely similar ore has been shown to exist by borings at a vertical depth of 800 feet, 1 mile from the outcrop. Large reserves of ore are available in this district.

Clinton ores were formerly mined in New York State. In these districts the strata are flat, but the seams are not more than 2 feet thick and can hardly be mined at a profit.
MINERAL DEPOSITS

There are several types of Clinton ores; most of them are fairly rich in calcium carbonate.

One common type is a fine-grained pebbly conglomerate or sandstone, each pebble or grain coated with hematite and the rock cemented with that mineral and with calcite. Again the ore is made up largely of fragments of Bryozoa, shells, trilobites, etc., partly coated or replaced by ferric oxide, besides an abundance of oölitic grains, usually with a grain of sand as the center. Still another type consists entirely of oölites of hematite, averaging about 1 or 2 millimeters in diameter. There is little or no siderite in the ore.

At the surface and down to a depth of about 200 feet the calcium carbonate is in part dissolved and the ore correspondingly enriched. Such ore is called “soft”, in contrast to the unaltered or “hard” variety.

ANALYSES OF CLINTON ORES
(E. C. Harder, Mineral Resources, U. S. Geol. Surv., 1908)

<table>
<thead>
<tr>
<th></th>
<th>Hard ore</th>
<th>Soft ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>37.00</td>
<td>50.44</td>
</tr>
<tr>
<td>SiO₂</td>
<td>7.14</td>
<td>12.10</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.81</td>
<td>6.06</td>
</tr>
<tr>
<td>CaO</td>
<td>19.20</td>
<td>4.65</td>
</tr>
<tr>
<td>Mn</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>S</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>P</td>
<td>0.30</td>
<td>0.46</td>
</tr>
</tbody>
</table>

The origin of the Clinton ores is a much-discussed subject, though until lately there has been a lack of detailed petrographic examinations. The principal views demand either a direct sedimentary origin or a derivation by replacement of limestone. The latter explanation is supported by Rutledge,¹ who states that progressive steps in the transformation of limestone to ore may be followed in the field, in thin sections, and in analyses. In view of the constant character of the ore at great depth it is clear that if replacement has occurred at a comparatively late date it has at least not proceeded from the surface.

The theory of direct sedimentation is held by Smyth, who contributed a notable paper to the question of origin. Similar views are advocated by Newlands, Eckel, and Burchard. Smyth thinks that the iron was carried out into shallow marine basins and was there slowly oxidized and precipitated mechanically around

the shells or replaced them. S. W. McCallie1 believes that
the original ore was glauconite or greenalite, citing as evidence
the delicate skeleton of silica remaining when the oölite is dis-
solved in acid.

\textbf{REVIEW OF THE SEDIMENTARY IRON ORES}

The history of the sedimentary iron ores is complex and not
yet fully elucidated; this particularly applies to the oölitic ores.
In the past the ores have been examined mainly with reference to
their stratigraphic and paleontologic position, while the micro-
scopic method has been neglected.

Sea water contains dissolved air to the amount of 14 to
28 cubic centimeters per liter and this gas is present at great
depths as well as at the surface; moreover, the proportion of
oxygen is greater than in normal air. Hence, reactions in
sea water would favor the forming of ferric compounds unless
reducing agents like organic matter were present. In fact, the
red mud that is so abundant in the deep basins of the ocean is
comparatively rich in ferric oxide, and the glauconite is essentially
a ferric compound. The probability of thick beds of siderite
being deposited in the open sea must be considered very remote;
the oxygen in the water would undoubtedly oxidize the ferrous
compound.

Starting from the safe base of actual observation, we may be
certain that limonite and glauconite are actual sedimentary prod-
ucts and that siderite may form in the presence of much organic
matter; the chemical precipitation of hematite in the sea on a
large scale has not been actually observed. In Ussiglio's experi-
ments the small amount of iron in sea water was precipitated
upon evaporation to one-half volume, not as carbonate like
calcium, but as ferric oxide, one liter containing 0.6 milligram
of Fe$_2$O$_3$. This might take place in desiccating basins, but there
is no geologic evidence that the iron is deposited in sufficiently
large quantities to be of economic importance, especially as it
would be admixed with simultaneously precipitated calcium
carbonate. From a cubic kilometer of sea water, according to
the figures given, only about 600 tons of Fe$_2$O$_3$ would result.
Limonite forms as oölitic grains on the bottoms of shallow lakes,
but it has not been noted to form as oölites or otherwise in

1 Bull. 17, Geol. Survey Georgia, 1908.
oceanic waters. Glauconite does form abundantly in shallow and moderately deep seas but is confined mainly to the vicinity of the coasts; while not exactly oölitic, it assumes the shape of rounded grains. Siderite is deposited in bogs in the presence of abundant organic matter, also in brackish-water or marine sediments under the same conditions; but so far as known it is not deposited with oölitic structure, nor are there any pure siderite ores

![Diagram of ore from Silurian beds at La Ferrière-aux-Étangs, France.](image)

Fig. 85.—Ore from Silurian beds at La Ferrière-aux-Étangs, France. Magnified 22 diameters. The oörites are chlorite with a kernel of siderite; the fine-grained cement is chlorite and siderite.

- a, Oölite of chlorite, in center of lighter color; partly converted into hematite on the outside.
- b, Nucleus of corroded pure siderite.
- c, Same of yellow, altered siderite.
- d, Grains of siderite in the cement.
- e, Chloritic oölite, partly crushed and invaded by cement.
- f, Blackish cement of chlorite and siderite. *After L. Cayeux.*

known with this structure, although there are many admixed with chloritic and hematitic material.

The oölitic ores are the most difficult of interpretation. Moderately thick beds of oölitic calcium carbonate are common and there is good reason to believe that it is deposited only in shallow depths agitated by waves and currents. There is a clear
analogy in the pisolitic deposits of the same substance deposited by strongly ascending thermal springs, as for instance at Carlsbad. It is easy to suggest that all oölites of iron ores are due simply to the replacement of calcium by iron, and this in brief is the explanation accepted by many geologists.

Cayeux\(^1\) has demonstrated that the history of the oölitic iron ores is very complicated. He proves beyond doubt that a series of replacements has occurred. Siderite alters to chloritic material, to hematite, limonite, magnetite, and locally even to pyrite. The development of magnetite, accompanied by that of albite and orthoclase, takes place principally in regions where the strata suffered contact metamorphism, but the mineral has also

been observed in the oölites where intrusions are absent. Cayeux believes that these ores represent successive replacements of primary oölites of calcium carbonate. His work has not yet been extended to the Jurassic ores of eastern France, and the geologic reasons for this belief are not fully explained. Excellent micro-photographs of thin sections shown by Cayeux are reproduced in Figs. 85 and 86.

Some observers, among them van Werveke, Smyth, and McCallie, have noted the interesting fact that the oölites of limonite or hematite upon treatment with dilute acid, yield a delicate concentric skeleton of opaline silica, and this, whether in Clinton or minette ores, would seem to suggest a development from a silicate, perhaps glauconite.

In the Clinton ores the cement is mainly calcite, while the oölites are mainly hematite, though many of them contain a nucleus of calcite or are in part calcareous. Chlorite is also noted, though in small amount. Siderite is probably absent. Fossil remains are largely converted to hematite. Cayeux's conclusion is that the ore is a bryozoan and crinoid limestone, in part oölitic, which has been transformed into iron ore.

Now, the field relations suggest plainly that the iron was not introduced into the ore bed by atmospheric waters, along the outcrop or downward through the overlying strata. The argument of Smyth on this point is convincing. Whatever replacement of calcite by hematite or chlorite occurred must have been practically contemporaneous with the deposition. So we arrive at the conception of shallow bays in which coral reefs flourished or the detritus of older fossiliferous limestone was spread. Into these bays were swept, at intervals, masses of finely divided detritus from the deep mantle of decayed rock of adjacent tropical land areas, undoubtedly rich in hematite as such products always are. The water discharged from the land certainly contained ferrous bicarbonate. In this mud agitated by the waves progressed numerous and complicated reactions. Calcite oölites and shells were replaced by siderite, which almost simultaneously oxidized to hematite. In the deeper water glauconite was probably deposited, and it also may soon have been altered to hematite. Somewhat similar conditions are found to-day, for instance, on the south side of Molokai, Hawaiian Islands, where such hematite mud is spread out over a large area of shallow coral reef.
SEDIMENTARY MANGANESE ORES

There is much less manganese than iron in the earth's crust, the average of analyses of igneous rock calculated by Clarke showing but 0.084 per cent. of manganese. Deposits of manganese ore are also much less common than those of iron ore. Nevertheless, many spring waters carry manganese and a minute amount of it is contained in sea water. Sedimentary deposits of manganese are known, probably marine and lacustrine as well as fluvialite.

According to experiments by E. C. Sullivan¹ the manganese in rocks is taken into solution more easily than iron, both by carbonated water and by dilute sulphuric acid. He also finds that from mixed ferrous and manganese sulphates almost all of the iron is precipitated first by carbonate of calcium before any manganese is thrown down. Fresenius, many years ago, also found that from spring water iron is precipitated first as limonite, while the manganese remains in solution much longer. This accounts for the very general separation of the two metals in the oxidized zone.

Manganese is dissolved mainly as a carbonate and a sulphate, possibly also as a phosphate. It is easily precipitated by oxidation, generally as MnO₂ in the form of pyrolusite (63.2 per cent. Mn), or as slightly hydrous psilomelane or wad (an impure mixture of manganese oxides), or more rarely as manganite (Mn₃O₄·H₂O). The precipitate is generally a "gel," which crystallizes in time, but which appears to have a tendency to absorb certain oxides, especially those of barium and potassium. According to F. P. Dunnington² an acid solution of ferrous sulphate dissolves manganese from the carbonate, as sulphate, with the separation of ferric sulphate and limonite; from the compound solution calcium carbonate precipitates the iron, but the manganese is precipitated only upon access of air.

\[\text{MnSO}_4 + \text{CaCO}_3 + \text{O} = \text{CaSO}_4 + \text{MnO}_2 + \text{CO}_2. \]

Bog Manganese Ore.—It has been stated above that many bog iron ores contain manganese; pure bog manganese ores are also known, though the deposits are not abundant. The material is generally earthy and soft, approaching wad in composition. In part the bog manganese consists of a skeleton of hard and

glossy black ore containing cavities filled with a black powder. The deposits are rarely more than a few feet in thickness; a small occurrence near Wickes, Montana, described by Harder,1 lies in the flat bottom of a gulch covered by soil and underlain by ochery bog limonite.

A much larger and thicker deposit occurs at Hillsborough, New Brunswick; it is said to extend over 17 acres with a thickness of 6\textfrac{1}{2} feet. An analysis shows Mn, 45.81; Fe, 9.95; S, 0.03; P, 0.05, and SiO\textsubscript{2}, 5.36 per cent.2

J. H. L. Vogt describes a deposit in Norway, about 1 meter thick, in a little valley above a layer of sand and below a cover of peat. The manganese ore alternates with iron ocher; it contains MnO\textsubscript{2}, 71.20; MnO, 8.08; Fe, 1.90; P\textsubscript{2}O\textsubscript{5}, 0.10, and S, 0.07 per cent. In many of these occurrences the rock from which the metal was leached is a granite or a quartz porphyry.

Manganese in Lacustrine and Marine Beds.—Many sedimentary beds in all parts of the world contain manganese derived from the degradation of old land areas; it occurs as carbonate and stains or concretions of dioxide in tuffs, quartzites, sandstones, clays, shales, and limestones. It is frequently contained in beds of jasper or radiolarian chert. Strongly manganiferous sediments probably recrystallize in the crystalline schists, the manganese assuming the form of rhodonite, rhodochrosite, or manganese garnet (spessartite). The presence of manganese nodules in deep sea deposits is well known; they are considered to be rather a submarine product of segregation from the red pelagic mud than of chemical precipitation from the ocean. Very rarely, however, do these sedimentary rocks contain manganese of economic importance, and it is only by subsequent concentration, especially effective in regions of deep secular decay, that valuable deposits are developed (see pp. 315–321).

The great manganese deposits of the province of Kutais, in Trans-Caucasia,3 are apparently sedimentary, if judged from descriptions, but it is not impossible that here, too, enrichment

E. C. Harder, *op. cit.*, p. 171.

by decomposition has taken place. These deposits, said to be the largest in the world, are beds in Eocene clays, marls, and sandstones, the last resting on Cretaceous limestone, on the top of an extensive plateau. The ore beds, at the base of the Eocene, are 7 to 16 feet thick, and consist of several strata of oölitic pyrolusite with cementing earthy manganese ore. They are said to extend over an area of 22 square miles. The ores average 40 to 50 per cent. Mn and 0.16 per cent. P. Drake gives a complete analysis of an ore as follows: MnO₂, 86.25; Mn₃O₄, 0.47; Fe₂O₃, 0.61; NiO, 0.3 per cent., and a trace of copper. Barium is present as usual in these ores. The production in 1911 was 574,000 metric tons.

SEDIMENTARY PHOSPHATE BEDS

Composition of the Phosphates.—Phosphorus is one of the rarer elements in the earth's crust; in the average composition of igneous rocks, according to F. W. Clarke, it enters to the extent of only 0.11 per cent., and the analyses of sediments show less quantities. Nevertheless, it plays a most important part in the life processes of plants and animals, in the sea and on the land, and in places its compounds accumulate in large masses. Its most common salt is a calcium phosphate; the phosphates of iron, aluminum, lead, and other metals are entirely subordinate.

Apatite, the most common calcium phosphate, also contains CaF₂ or CaCl₂. The formulas may be written Ca₄(PO₄)₃F and Ca₄(PO₄)₃Cl, or 3Ca₄(PO₄)₂.Ca(F,Cl)₂, the first part of the latter formula being the tri-basic calcium phosphate. Fluorine apatite contains 42.3 per cent. P₂O₅; chlorine apatite, 41.0 per cent. The pure tri-basic phosphate, which is used as a standard

Stelzner and Bergeat, Die Erzlagerstätten, 1904, 1, pp. 442–456.

G. P. Merrill, Non-metallic minerals, 1910, pp. 266–303.

Mineral Industry, New York, various authors.
to express the tenor of phosphate rocks, contains 45.8 per cent. P_2O_5. The phosphate in sedimentary rocks approaches more or less closely the tri-basic phosphate, but sometimes is almost identical with a fluorine apatite.

In deposits of guano a considerable number of acid hydrous phosphates have been found, but they have little practical importance. In the same deposits various complex phosphates of iron, magnesium, sodium, and ammonium occur, but these also are unimportant.

Among the iron phosphates, vivianite, $Fe_3(PO_4)_2\cdot8H_2O$, is the best known, and it appears very frequently in bog iron ores. Of the aluminum phosphates, wavellite, $4AlPO_4\cdot2Al(OH)_3\cdot9H_2O$, and turquoise, $AlPO_4\cdotAl(OH)_3\cdotH_2O$, are the best known, the former locally used as a source of phosphorus, the latter a blue semi-precious stone; both are usually products of the uppermost zone of the crust, sometimes even forming in the zone of oxidation. In a similar geological position occur the lead phosphate, pyromorphite, corresponding in formula to chlorine apatite. Other phosphates, like amblygonite, a fluo-phosphate of lithium and aluminum, monazite, and other phosphates of the rare earths, find their home in the pegmatite dikes. This illustrates the variety of occurrence of the phosphates.

The many kinds of deposits in which calcium phosphate is of economic importance are shown by the following list:

1. Disseminated in igneous rocks or in their differentiation products of metallic ores.
2. Apatite veins, closely allied to pegmatitic dikes.
4. Sub-aerial accumulations of animal excrements—bat caves, guano islands.
5. Metasomatic deposits by replacement of limestone by means of phosphate solutions, from Nos. 3 and 4.
6. Residual concretions, by action of atmospheric waters on No. 3.

The principal use of the calcium phosphate is for soil fertilization, and all the classes enumerated above are so utilized. Under No. 1 comes, for instance, the apatite concentrate from the Adirondack magnetite ores; under No. 2 the apatite veins of Canada and Norway; the occurrences of the remaining classes are described below.

1 F. W. Clarke, Geochemistry, Bull. 491, U. S. Geol. Surv., p. 496.
CHEMICAL PROCESSES IN SURFACE WATERS 255

For utilization it is necessary to transform the insoluble tribasic phosphate into soluble form and this is generally effected by a 60 per cent. solution of sulphuric acid; hence the dependence of the phosphate industry on an abundant and cheap supply of sulphuric acid, illustrated, for instance, in the establishment of large sulphuric acid plants at the pyritic copper deposits of Ducktown, Tennessee, for the treatment of the sedimentary phosphates of the Southern States.

There is no unanimity regarding the state of the phosphates in the sedimentary and residual beds. They are usually called amorphous, and F. K. Cameron and J. M. Bell consider them as solid solutions of phosphoric acid in lime, just as they hold the phosphoric acid in the soil to exist as a solid solution in ferric oxide and alumina. Nevertheless, it is true that some of the oölitic concretions of phosphates in sedimentary beds are decidedly double refracting and it is probable that a slow crystallization to apatite or some similar mineral is taking place.

In guano unstable di-calcium phosphates (CaH₂PO₄ and CaH₂PO₄·2H₂O) also appear. The treatment with H₂SO₄ results in a partial decomposition, with the formation of soluble calcium phosphate, also called super-phosphate or mono-calcium phosphate (Ca₃(PO₄)₂·H₂O); and also some di-calcium phosphate, which is much less soluble.

Experiments show that even the tri-calcium phosphate or apatite is soluble, particularly in water containing carbon dioxide; its solubility in solutions of CaCO₃ or in pure water is slight, but the presence of sodium chloride increases the solubility. The marked absorption of phosphoric acid by clays and soils is held as due to the presence of colloid bodies.

An important reaction in the formation of phosphate deposits is the precipitation of tri-calcium phosphate by a solution of alkaline phosphate added to a solution of calcium bicarbonate.

1 The reaction is expressed by the following formula: Ca₃(PO₄)₂ + 2H₂SO₄ = Ca₃(H₂PO₄)₂ + 2CaSO₄

Production. Though notable quantities of phosphates are obtained from apatite deposits and from phosphorus slags of the Thomas basic process of iron smelting, the greater part comes from sedimentary and residuary beds. In the United States, which leads in the output of phosphates, the bulk of the production comes from Florida, Tennessee, and South Carolina, in the order named; by far the most is mined in Florida. The yield of the United States in 1911 was about 3,000,000 long tons. Large quantities are exported. The present price of average Florida phosphate is $4 to $5 per long ton, the highest grades bringing $7 per ton.

Of other countries Algeria and Tunis produce about 1,600,000 metric tons, and France about 400,000 tons. The production of the guano islands of the Pacific is now comparatively unimportant.

Origin of the Phosphate Rocks. As all land animals absorb phosphoric acid and segregate it as calcium phosphate in their bones and excrements, it is not difficult to understand the accumulation of phosphates wherever animal life is particularly abundant and undisturbed. Besides phosphates, such deposits contain much ammonia and nitrogen, except where subjected to leaching by heavy precipitation. Of this kind are the bone beds which are found occasionally in various formations and in caves. Bat guano, a dark-brown resinous substance, has been utilized from some caves in Indiana, Arizona, and Texas; the material from Indiana contains, according to an analysis, quoted by Merrill, only 1.21 per cent. P₂O₅, but much ammonia and organic matter.

The guano of commerce is deposited by sea birds congregating in enormous numbers on desert coasts and oceanic islands, for instance, along the Peruvian and Chilean coast, on Christmas Island in the Indian Ocean, and in the West Indies. Some of these deposits cover whole islands and in places may accumulate to a depth of 100 feet, and it is stated that under favorable circumstances the rate of deposition is rapid. The

2 Sometimes described as “phosphorites” (Stelzer and Bergeat, 1, p. 442). The name phosphate rock seems more appropriate, especially as some authors (Merrill, Non-metallic minerals, 1910, p. 267) use phosphorite in a somewhat different sense.
3 Geology of Indiana, 1878, p. 163.
4 G. P. Merrill, Non-metallic minerals, 1910, p. 298.
guano of dry climates varies greatly in texture and color, but generally is granular, light colored, and porous. It contains on an average 10.90 per cent. nitrogen, 27.60 per cent. phosphates, and 2 to 3 per cent. potash.\(^1\)

The West Indian deposits—for instance, those on Navassa\(^3\) and Sombrero islands—have been leached and are in part hard and compact, in part porous and friable. The phosphate has been concentrated to 70 or 75 per cent. The material contains from 21 to 40 per cent. of phosphoric acid, 1 to 2 per cent. sulphuric acid, 20 to 45 per cent. lime, usually also much ferric oxide and alumina. The underlying limestone or igneous rock may be locally replaced by phosphatic solutions.

The marine phosphate beds also derive their material from animal life. Sea water contains phosphoric acid, though the quantity is extremely small—probably much less than 0.01 per cent. in the evaporated salts—and likewise some fluorine, amounting to a little less than one part per million.\(^3\)

According to Carnot, many shells, particularly those of the older formations, are rich in phosphorus and fluorine. A Cambrian *Oboletus* contained 36.54 per cent. \(P_2O_5\) and 2.78 per cent. Fl; a recent *Lingula* yielded 23.20 per cent. \(P_2O_5\) and 1.52 per cent. Fl.\(^4\) The shells of trilobites, pteropods, lamellibranchs, and gastropods generally contain more or less phosphorus. Corals likewise contain a small amount of phosphorus and fluorine, and the same substances are found in the bones and teeth of fishes. In view of this it is natural that the marine sediments hold more or less of phosphates, and it is a matter of some surprise that fluorite does not more commonly occur in sedimentary rocks.\(^4\) Doubtless it is leached to some degree from the sediments by surface waters.

In some beds the phosphates occur disseminated in small quantities, in part as small concretions, in part remaining in the shell

\(^1\) R. A. F. Penrose, Jr., *Bull. 46*, U. S. Geol. Survey, 1888. \\
fragments. The Cretaceous greensand of New Jersey, for instance, which is used in raw form as a fertilizer, contains about 1 per cent. P_2O_5 and several per cent. potash. In the more valuable deposits the phosphates appear in more concentrated form and characteristically assume the forms of nodules, or concretions (sometimes of large size), or oölitic rocks built up of small oölites in part of concentric and fibrous structure. The nodules have often a shell nucleus and, as a result of enrichment, may contain more phosphate in the peripheral than in the central parts.

While phosphate nodules have been brought up by the dredge from great oceanic depths, the conditions for their formation are probably best at moderate depths, near shores, where the marine life is most abundantly developed or, as pointed out by some authors, where sudden changes of temperature, owing to conflicting currents, kill large numbers of marine organisms.

The phosphate rocks, aside from detrital impurities, contain mainly calcium carbonate and calcium phosphate; shell fragments and glauconitic granules are also frequently present. The poorer kinds may be classified as phosphatic sands, marls, or limestones. The richer varieties are usually oölitic, dark-colored rocks, occasionally with a peculiar whitish efflorescence, and may carry large amounts of organic matter. They are inconspicuous and in places difficult to recognize. The specific gravity, averaging 2.9 in 70 per cent. phosphate rock, is considerably higher than that of limestone and may be used to aid in the identification.

The origin of the oölitic and nodular phosphate rocks, in some of which recognizable organic remains are scarce, has been discussed extensively, but is as yet not fully explained. It is believed that ammonium phosphate may form in the organic matter and that this reacts on shell remains, replacing them with calcium phosphate, which eventually accumulates in larger concretions.¹ These processes are likely to continue for some time at least after the sedimentation, in the yet soft sediments.²

¹ Renard and Cornet, Bull. 21, ser. 3, Acad. Belgique, 1891, p. 126.
⁴ L. Cayeux, for instance, presents a figure, showing a small concretion of phosphate molded against a grain of glauconite; the latter itself being formed after the sedimentation; Contrib. à l'étude micrographique des terrains sédimentaires, Mém. Soc. géol. du Nord, 4, pt. 2, Lille, 1897.
CHEMICAL PROCESSES IN SURFACE WATERS 259

After the beds have been uplifted and exposed to weathering enrichment takes place easily, by the removal of calcium carbonate. This is especially effective in regions of deep rock decay, as in the Southern States. The rock phosphates of Utah and Idaho have remained almost unaltered.

Occurrences of Phosphate Rocks.—Deposits of phosphate rock are found in the marine beds of all ages, at least from the Cambrian, when the segregation of phosphoric acid by the inhabitants of the sea appears to have begun, to the Tertiary, and in the present oceans such deposits certainly continue to form. Almost all countries possess such beds of greater or less extent.

Large deposits, enriched by weathering, are worked in the Cretaceous beds of northern France. In the southwestern part of that country, in the departments of Lot and Lot-et-Garonne, the phosphates occur in irregular fissures with clay in Jurassic limestone.¹ These phosphates contain from 70 to 75 per cent. \(\text{Ca}_3\text{P}_2\text{O}_7 \). De Launay believes that these veins are deposited by thermal waters, but other authors, like Stutzer, hold them to be formed by replacement effected by descending solutions from sedimentary phosphate beds.

On a considerably larger scale phosphate beds are now mined along the frontier of Algeria and Tunis.² The beds occur in the lower Eocene, which covers Cretaceous strata, and consist in part of larger concretions in marl, sometimes carrying the rich phosphate only as a crust; other beds are formed by a soft material, consisting of small and smooth brown or yellowish grains of phosphate cemented by calcite and also containing many fossils and much bituminous matter. The thickness of the richest phosphiastic stratum is said to be 10 to 15 feet. Considerable enrichment has probably taken place.

The deposits found in the United States are mainly in three regions—(1) the Atlantic coast belt of Tertiary rocks in the Carolinas and Florida; (2) the Tennessee area of Silurian and Devonian strata; (3) the Utah-Idaho region of Carboniferous beds.

The phosphates of the Utah-Idaho region¹ were discovered only recently, but are of great extent and prospective value; at

¹ Fuchs and de Launay, Gites mineraux, 1, pp. 367-369.
present, owing to difficulties and cost of transportation, they are mined only on a small scale near Montpelier, Idaho.

They extend 200 miles north of Ogden, Utah, into Idaho and Wyoming, following the ranges which constitute the northern continuation of the Wasatch Range, and have recently been found again still farther north in southern Montana near Dillon. Their position is in the Park City formation of the Upper Carboniferous (Pennsylvanian), which has an average thickness of 600 feet and consists of limestones, cherty in part, phosphate beds, and shales. The phosphate horizon is in the middle of the formation and the beds have an average thickness of 200 feet. (See Figs. 8, 9, and 87.) The rocks are massive brown to gray phosphatic shales and beds of rock phosphate with some limestone. The richest bed mined at Montpelier, carrying 70 per cent. or more of \(\text{Ca}_3\text{P}_2\text{O}_8 \), lies at the base of the phosphate section and is 5 or 6 feet thick. It is a black to dull-gray oolitic rock, with grains of all sizes up to pebble-like bodies one-half inch in diameter.

Large sections of the phosphatic beds, in places a thickness of 75 feet, carry from 30 to 50 per cent. of \(\text{Ca}_3\text{P}_2\text{O}_8 \). The beds are folded and locally have steep dips. The rock is hard and the mining is carried on by underground operations. Very little enrichment is noted.

The phosphates of western Tennessee\(^2\) have been worked since 1894 and at present yield about 400,000 tons per annum. They are of three classes. 1. Brown residual phosphates, resulting from leaching of Ordovician phosphatic limestones; the beds are from 3 to 8 feet thick and carry as much as 80 per cent. of tri-calcium phosphate. 2. The blue or black bedded phosphates, which oc-

cur in beds of Devonian age, show variations from oölitic through compact and conglomeratic to shaly forms. The high-grade rock is seldom more than 20 inches thick. The nodular variety, which is embedded in a green sand, carries about 60 per cent. Ca₃P₂O₈. 3. The white phosphate, which is a post-Tertiary product of replacement or filling of cavities of limestone of Carboniferous age. None of it is now mined.

![Diagram of phosphate beds](image)

Fig. 87.—Section showing beds of phosphate, Montpelier, Idaho. *After Weeks and Ferrier, U. S. Geol. Survey.*

The phosphate beds of North and South Carolina,¹ discovered in 1867, extend along the coast for a distance of 60 miles. They are contained in loose beds of Miocene age, rich in fossils. The land deposits lie at a shallow depth and consist of so-called pebble rock,

a solid mass from which the calcium carbonate has been leached and partly replaced by phosphate; the solution cavities give this material the appearance of a mass of separate pebbles. The rock varies from 1 to 3 feet in thickness and is covered by a green sandy marl. Similar deposits have been dredged in the rivers; they consist essentially of water-rounded fragments of the land rock. The mining is carried on by steam-shovel or dredge operations.

Fig. 88.—Dredging Florida phosphates. Upper bench is sandy overburden. Photograph by F. B. Van Horn.

The deposits of Florida\(^1\) are at present the most productive in the world, and large quantities are exported to almost all the European countries.

They follow the western coast of the State, but lie some distance from it. In the main they appear to be the result of enrichment of Eocene and Miocene phosphatic limestones, both by solution of calcite and by replacement of calcite by phosphate solution, and lie in pockets and separate areas in depressions in the Tertiary rocks. The different classes of material are called "hard rock," "land pebbles," and "river pebbles"; the first two classes as a rule occupy separate areas.

See also successive issues of *Mineral Resources*, U. S. Geological Survey, and *Mining Industry*.
CHEMICAL PROCESSES IN SURFACE WATERS 263

The hard rock phosphate in Eocene strata consists of a boulder deposit in a soft matrix of phosphatic sands or clays. The boulders vary from 2 inches to 10 feet in diameter, are close grained, light gray, and show cavities lined with secondary pure phosphate. They lie embedded in all positions. The deposits themselves form small pockets or irregular areas, some of them several acres in extent. The phosphate content is from 10 to 30 per cent. of the mass.

In Miocene strata the hard rock phosphate is also found in situ as a normal bedded deposit.

The land pebbles, of which more than 1,000,000 tons are mined annually, are embedded in sand and underlain by a stratum of tough clay, known as "bed-rock." Above the deposits is an overburden from 1 to 25 feet thick, consisting of sand and limestone boulders. The phosphate content of deposits of this class varies from 10 to 25 per cent. Mining is carried on by the aid of hydraulic giants, or by steam shovels (Fig. 88), as in placer mining.

The river pebble is similar to the land pebbles, but occurs in the form of bars in the rivers and is derived from the formations through which the rivers flow. This material is dredged, but is now of little commercial importance.

The phosphate rock is washed to remove the clay,¹ and afterward crushed, screened, and hand-picked to a grade of 65 to 80 per cent., the hard rock being the richest final grade of phosphate.

Analyses of phosphates are given on page 264.

glossy black ore containing cavities filled with a black powder. The deposits are rarely more than a few feet in thickness; a small occurrence near Wickes, Montana, described by Harder,\(^1\) lies in the flat bottom of a gulch covered by soil and underlain by ochery bog limonite.

A much larger and thicker deposit occurs at Hillsborough, New Brunswick; it is said to extend over 17 acres with a thickness of 6\(\frac{1}{2}\) feet. An analysis shows Mn, 45.81; Fe, 9.95; S, 0.03; P, 0.05, and SiO\(_2\), 5.36 per cent.\(^2\)

J. H. L. Vogt describes a deposit in Norway, about 1 meter thick, in a little valley above a layer of sand and below a cover of peat. The manganese ore alternates with iron ocher; it contains MnO\(_2\), 71.20; MnO, 8.08; Fe, 1.90; P\(_2\)O\(_5\), 0.10, and S, 0.07 per cent. In many of these occurrences the rock from which the metal was leached is a granite or a quartz porphyry.

Manganese in Lacustrine and Marine Beds.—Many sedimentary beds in all parts of the world contain manganese derived from the degradation of old land areas; it occurs as carbonate and stains or concretions of dioxide in tuffs, quartzites, sandstones, clays, shales, and limestones. It is frequently contained in beds of jasper or radiolarian chert. Strongly manganiferous sediments probably recrystallize in the crystalline schists, the manganese assuming the form of rhodonite, rhodochrosite, or manganese garnet (spessartite). The presence of manganese nodules in deep sea deposits is well known; they are considered to be rather a submarine product of segregation from the red pelagic mud than of chemical precipitation from the ocean. Very rarely, however, do these sedimentary rocks contain manganese of economic importance, and it is only by subsequent concentration, especially effective in regions of deep secular decay, that valuable deposits are developed (see pp. 315–321).

The great manganese deposits of the province of Kutais, in Trans-Caucasia,\(^3\) are apparently sedimentary, if judged from descriptions, but it is not impossible that here, too, enrichment

E. C. Harder, *op. cit.*, p. 171.

by decomposition has taken place. These deposits, said to be the largest in the world, are beds in Eocene clays, marls, and sandstones, the last resting on Cretaceous limestone, on the top of an extensive plateau. The ore beds, at the base of the Eocene, are 7 to 16 feet thick, and consist of several strata of oolitic pyrolusite with cementing earthy manganese ore. They are said to extend over an area of 22 square miles. The ores average 40 to 50 per cent. Mn and 0.16 per cent. P. Drake gives a complete analysis of an ore as follows: MnO₂, 86.25; Mn₃O₄, 0.47; Fe₂O₃, 0.61; NiO, 0.3 percent., and a trace of copper. Barium is present as usual in these ores. The production in 1911 was 574,000 metric tons.

SEDIMENTARY PHOSPHATE BEDS

Composition of the Phosphates.—Phosphorus is one of the rarer elements in the earth's crust; in the average composition of igneous rocks, according to F. W. Clarke, it enters to the extent of only 0.11 per cent., and the analyses of sediments show less quantities. Nevertheless, it plays a most important part in the life processes of plants and animals, in the sea and on the land, and in places its compounds accumulate in large masses. Its most common salt is a calcium phosphate; the phosphates of iron, aluminum, lead, and other metals are entirely subordinate.

Apatite, the most common calcium phosphate, also contains CaF₂ or CaCl₂. The formulas may be written Ca₆(PO₄)₃F and Ca₆(PO₄)₃Cl, or 3Ca₆(PO₄)₂·Ca(F,Cl)₂, the first part of the latter formula being the tri-basic calcium phosphate. Fluorine apatite contains 42.3 per cent. P₂O₅; chlorine apatite, 41.0 per cent. The pure tri-basic phosphate, which is used as a standard

Stelner and Bergeat, Die Erzalagerstätten, 1904, 1, pp. 442–456.

Mineral Industry, New York, various authors.
to express the tenor of phosphate rocks, contains 45.8 per cent. \(\text{P}_2\text{O}_5 \). The phosphate in sedimentary rocks approaches more or less closely the tri-basic phosphate, but sometimes is almost identical with a fluorine apatite.

In deposits of guano a considerable number of acid hydrous phosphates have been found,\(^1\) but they have little practical importance. In the same deposits various complex phosphates of iron, magnesium, sodium, and ammonium occur, but these also are unimportant.

Among the iron phosphates, vivianite, \(\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O} \), is the best known, and it appears very frequently in bog iron ores. Of the aluminum phosphates, wavelite, \(4\text{AlPO}_4 \cdot 2\text{Al(OH)}_3 \cdot 9\text{H}_2\text{O} \), and turquoise, \(\text{AlPO}_4 \cdot \text{Al(OH)}_3 \cdot 9\text{H}_2\text{O} \), are the best known, the former locally used as a source of phosphorus, the latter a blue semi-precious stone; both are usually products of the uppermost zone of the crust, sometimes even forming in the zone of oxidation. In a similar geological position occur the lead phosphate, pyromorphite, corresponding in formula to chlorine apatite. Other phosphates, like amblygonite, a fluo-phosphate of lithium and aluminum, monazite, and other phosphates of the rare earths, find their home in the pegmatite dikes. This illustrates the variety of occurrence of the phosphates.

The many kinds of deposits in which calcium phosphate is of economic importance are shown by the following list:

1. Disseminated in igneous rocks or in their differentiation products of metallic ores.
2. Apatite veins, closely allied to pegmatitic dikes.
4. Sub-aerial accumulations of animal excrements—bat caves, guano islands.
5. Metasomatic deposits by replacement of limestone by means of phosphate solutions, from Nos. 3 and 4.
6. Residual concretions, by action of atmospheric waters on No. 3.

The principal use of the calcium phosphate is for soil fertilization, and all the classes enumerated above are so utilized. Under No. 1 comes, for instance, the apatite concentrate from the Adirondack magnetite ores; under No. 2 the apatite veins of Canada and Norway; the occurrences of the remaining classes are described below.

\(^1\) F. W. Clarke, Geochemistry, Bull. 491, U. S. Geol. Surv., p. 496.
CHEMICAL PROCESSES IN SURFACE WATERS 255

For utilization it is necessary to transform the insoluble tribasic phosphate into soluble form and this is generally effected by a 60 per cent. solution of sulphuric acid; hence the dependence of the phosphate industry on an abundant and cheap supply of sulphuric acid, illustrated, for instance, in the establishment of large sulphuric acid plants at the pyritic copper deposits of Ducktown, Tennessee, for the treatment of the sedimentary phosphates of the Southern States.

There is no unanimity regarding the state of the phosphates in the sedimentary and residual beds. They are usually called amorphous, and F. K. Cameron and J. M. Bell consider them as solid solutions of phosphoric acid in lime, just as they hold the phosphoric acid in the soil to exist as a solid solution in ferric oxide and alumina. Nevertheless, it is true that some of the oolitic concretions of phosphates in sedimentary beds are decidedly double refracting and it is probable that a slow crystallization to apatite or some similar mineral is taking place. In guano unstable di-calcium phosphates (CaH\(_2\)PO\(_4\) and CaH\(_2\)PO\(_4\).2H\(_2\)O) also appear. The treatment with H\(_2\)SO\(_4\) results in a partial decomposition, with the formation of soluble calcium phosphate, also called super-phosphate or mono-calcium phosphate (CaH\(_4\)(PO\(_4\))\(_2\).H\(_2\)O); and also some di-calcium phosphate, which is much less soluble.

Experiments show that even the tri-calcium phosphate or apatite is soluble, particularly in water containing carbon dioxide; its solubility in solutions of CaCO\(_3\) or in pure water is slight, but the presence of sodium chloride increases the solubility. The marked absorption of phosphoric acid by clays and soils is held as due to the presence of colloid bodies.

An important reaction in the formation of phosphate deposits is the precipitation of tri-calcium phosphate by a solution of alkaline phosphate added to a solution of calcium bicarbonate.

1. The reaction is expressed by the following formula: Ca\(_5\)(PO\(_4\))\(_3\) + 2H\(_2\)SO\(_4\) = Ca\(_2\)H\(_2\)(PO\(_4\))\(_3\) + 2CaSO\(_4\) .

Production.1—Though notable quantities of phosphates are obtained from apatite deposits and from phosphorus slags of the Thomas basic process of iron smelting, the greater part comes from sedimentary and residuary beds. In the United States, which leads in the output of phosphates, the bulk of the production comes from Florida, Tennessee, and South Carolina, in the order named; by far the most is mined in Florida. The yield of the United States in 1911 was about 3,000,000 long tons. Large quantities are exported. The present price of average Florida phosphate is $4 to $5 per long ton, the highest grades bringing $7 per ton.

Of other countries Algeria and Tunis produce about 1,600,000 metric tons, and France about 400,000 tons. The production of the guano islands of the Pacific is now comparatively unimportant.

Origin of the Phosphate Rocks.2—As all land animals absorb phosphoric acid and segregate it as calcium phosphate in their bones and excrements, it is not difficult to understand the accumulation of phosphates wherever animal life is particularly abundant and undisturbed. Besides phosphates, such deposits contain much ammonia and nitrogen, except where subjected to leaching by heavy precipitation. Of this kind are the bone beds which are found occasionally in various formations and in caves. Bat guano, a dark-brown resinous substance, has been utilized from some caves in Indiana, Arizona, and Texas; the material from Indiana contains, according to an analysis,3 quoted by Merrill,4 only 1.21 per cent. P₂O₅, but much ammonia and organic matter.

The guano of commerce is deposited by sea birds congregating in enormous numbers on desert coasts and oceanic islands, for instance, along the Peruvian and Chilean coast, on Christmas Island in the Indian Ocean, and in the West Indies. Some of these deposits cover whole islands and in places may accumulate to a depth of 100 feet, and it is stated that under favorable circumstances the rate of deposition is rapid. The

2 Sometimes described as “phosphorites” (Stelzner and Bargeat, 1, p. 442). The name phosphate rock seems more appropriate, especially as some authors (Merrill, Non-metallic minerals, 1910, p. 267) use phosphorite in a somewhat different sense.
3 Geology of Indiana, 1878, p. 163.
4 G. P. Merrill, Non-metallic minerals, 1910, p. 298.
CHEMICAL PROCESSES IN SURFACE WATERS 257

guano of dry climates varies greatly in texture and color, but
generally is granular, light colored, and porous. It contains
on an average 10.90 per cent. nitrogen, 27.60 per cent. phosphates,
and 2 to 3 per cent. potash.¹

The West Indian deposits—for instance, those on Navassa²
and Sombrero islands—have been leached and are in part hard
and compact, in part porous and friable. The phosphate has
been concentrated to 70 or 75 per cent. The material contains
from 21 to 40 per cent. of phosphoric acid, 1 to 2 per cent.
sulphuric acid, 20 to 45 per cent. lime, usually also much ferric
oxide and alumina. The underlying limestone or igneous rock
may be locally replaced by phosphatic solutions.

The marine phosphate beds also derive their material from
animal life. Sea water contains phosphoric acid, though the
quantity is extremely small—probably much less than 0.01 per
cent. in the evaporated salts—and likewise some fluorine, amount-
ing to a little less than one part per million.³

According to Carnot, many shells, particularly those of the
older formations, are rich in phosphorus and fluorine. A Cam-
bian Obolus contained 36.54 per cent. P₂O₅ and 2.78 per cent.
Fl; a recent Lingula yielded 23.20 per cent. P₂O₅ and 1.52 per
cent. Fl.⁴ The shells of trilobites, pteropods, lamellibranchs,
and gastropods generally contain more or less phosphorus.
Corals likewise contain a small amount of phosphorus and fluo-
rine, and the same substances are found in the bones and teeth
of fishes. In view of this it is natural that the marine sediment-
all hold more or less of phosphates, and it is a matter of some
surprise that fluorite does not more commonly occur in sedimentary rocks.⁵ Doubtless it is leached to some degree from the
sediments by surface waters.

In some beds the phosphates occur disseminated in small quan-
tities, in small concretions, in part remaining in the shell

² E. V. D’Invilliers, Phosphate deposits of the Island of Navassa, Bull.,
⁴ Andersson and Sahlbom, Uber den Fluorgehalt schwedischer Phos-
phorite, Bull. 4, Geol. Inst. Upsala, 1900, p. 79. Neues Jahrh., ref., 1903, 1,
pp. 195, 197.
⁵ K. Andrée, Ueber einige Vorkommen von Flusspath in Sedimenten,
fragments. The Cretaceous greensand of New Jersey, for instance, which is used in raw form as a fertilizer, contains about 1 per cent. P_2O_5 and several per cent. potash. In the more valuable deposits the phosphates appear in more concentrated form and characteristically assume the forms of nodules, or concretions (sometimes of large size), or oölitic rocks built up of small oölites in part of concentric and fibrous structure. The nodules have often a shell nucleus and, as a result of enrichment, may contain more phosphate in the peripheral than in the central parts.

While phosphate nodules have been brought up by the dredge from great oceanic depths, the conditions for their formation are probably best at moderate depths, near shores, where the marine life is most abundantly developed or, as pointed out by some authors, where sudden changes of temperature, owing to conflicting currents, kill large numbers of marine organisms.

The phosphate rocks, aside from detrital impurities, contain mainly calcium carbonate and calcium phosphate; shell fragments and glauconitic granules are also frequently present. The poorer kinds may be classified as phosphatic sands, marls, or limestones. The richer varieties are usually oölitic, dark-colored rocks, occasionally with a peculiar whitish efflorescence, and may carry large amounts of organic matter. They are inconspicuous and in places difficult to recognize. The specific gravity, averaging 2.9 in 70 per cent. phosphate rock, is considerably higher than that of limestone and may be used to aid in the identification.

The origin of the oölitic and nodular phosphate rocks, in some of which recognizable organic remains are scarce, has been discussed extensively, but is as yet not fully explained. It is believed that ammonium phosphate may form in the organic matter and that this reacts on shell remains, replacing them with calcium phosphate, which eventually accumulates in larger concretions. These processes are likely to continue for some time at least after the sedimentation, in the yet soft sediments.

1 Renard and Cornet, Bull. 21, ser. 3, Acad. Belgique, 1891, p. 126.
2 L. Cayeux, for instance, presents a figure, showing a small concretion of phosphate molded against a grain of glauconite; the latter itself being formed after the sedimentation; Contrib. à l’étude micrographique des terrains sédimentaires, Mém. Soc. géol. du Nord, 4, pt. 2, Lille, 1897.
After the beds have been uplifted and exposed to weathering enrichment takes place easily, by the removal of calcium carbonate. This is especially effective in regions of deep rock decay, as in the Southern States. The rock phosphates of Utah and Idaho have remained almost unaltered.

Occurrences of Phosphate Rocks.—Deposits of phosphate rock are found in the marine beds of all ages, at least from the Cambrian, when the segregation of phosphoric acid by the inhabitants of the sea appears to have begun, to the Tertiary, and in the present oceans such deposits certainly continue to form. Almost all countries possess such beds of greater or less extent.

Large deposits, enriched by weathering, are worked in the Cretaceous beds of northern France. In the southwestern part of that country, in the departments of Lot and Lot-et-Garonne, the phosphates occur in irregular fissures with clay in Jurassic limestone. These phosphates contain from 70 to 75 per cent. \(Ca_3P_4O_9 \). De Launay believes that these veins are deposited by thermal waters, but other authors, like Stutzer, hold them to be formed by replacement effected by descending solutions from sedimentary phosphate beds.

On a considerably larger scale phosphate beds are now mined along the frontier of Algeria and Tunis. The beds occur in the lower Eocene, which covers Cretaceous strata, and consist in part of larger concretions in marl, sometimes carrying the rich phosphate only as a crust; other beds are formed by a soft material, consisting of small and smooth brown or yellowish grains of phosphate cemented by calcite and also containing many fossils and much bituminous matter. The thickness of the richest phosphatic stratum is said to be 10 to 15 feet. Considerable enrichment has probably taken place.

The deposits found in the United States are mainly in three regions—(1) the Atlantic coast belt of Tertiary rocks in the Carolinas and Florida; (2) the Tennessee area of Silurian and Devonian strata; (3) the Utah-Idaho region of Carboniferous beds.

The phosphates of the Utah-Idaho region were discovered only recently, but are of great extent and prospective value; at

present, owing to difficulties and cost of transportation, they are mined only on a small scale near Montpelier, Idaho.

They extend 200 miles north of Ogden, Utah, into Idaho and Wyoming, following the ranges which constitute the northern continuation of the Wasatch Range, and have recently been found again still farther north in southern Montana near Dillon. Their position is in the Park City formation of the Upper Carboniferous (Pennsylvania), which has an average thickness of 600 feet and consists of limestones, cherty in part, phosphate beds, and shales. The phosphate horizon is in the middle of the formation and the beds have an average thickness of 200 feet. (See Figs. 8, 9, and 87.) The rocks are massive brown to gray phosphatic shales and beds of rock phosphate with some limestone. The richest bed mined at Montpelier, carrying 70 per cent. or more of Ca₅P₃O₁₀, lies at the base of the phosphate section and is 5 or 6 feet thick. It is a black to dull-gray oölitic rock, with grains of all sizes up to pebble-like bodies one-half inch in diameter.

Large sections of the phosphatic beds, in places a thickness of 75 feet, carry from 30 to 50 per cent. of Ca₅P₃O₁₀. The beds are folded and locally have steep dips. The rock is hard and the mining is carried on by underground operations. Very little enrichment is noted.

The phosphates of western Tennessee² have been worked since 1894 and at present yield about 400,000 tons per annum. They are of three classes. 1. Brown residual phosphates, resulting from leaching of Ordovician phosphatic limestones; the beds are from 3 to 8 feet thick and carry as much as 80 per cent. of tri-calcium phosphate. 2. The blue or black bedded phosphates, which oc-

cur in beds of Devonian age, show variations from oölite through compact and conglomeratic to shaly forms. The high-grade rock is seldom more than 20 inches thick. The nodular variety, which is embedded in a green sand, carries about 60 per cent. \(\text{Ca}_3 \text{P}_2 \text{O}_7 \). 3. The white phosphate, which is a post-Tertiary product of replacement or filling of cavities of limestone of Carboniferous age. None of it is now mined.

![Diagram of phosphate beds](image)

Fig. 87.—Section showing beds of phosphate, Montpelier, Idaho.

After Weeks and Ferrier, U. S. Geol. Survey.

The phosphate beds of North and South Carolina,\(^1\) discovered in 1867, extend along the coast for a distance of 60 miles. They are contained in loose beds of Miocene age, rich in fossils. The land deposits lie at a shallow depth and consist of so-called pebble rock,

a solid mass from which the calcium carbonate has been leached and partly replaced by phosphate; the solution cavities give this material the appearance of a mass of separate pebbles. The rock varies from 1 to 3 feet in thickness and is covered by a green sandy marl. Similar deposits have been dredged in the rivers; they consist essentially of water-rounded fragments of the land rock. The mining is carried on by steam-shovel or dredge operations.

Fig. 88.—Dredging Florida phosphates. Upper bench is sandy overburden. *Photograph by F. B. Van Horn.*

The deposits of Florida\(^1\) are at present the most productive in the world, and large quantities are exported to almost all the European countries.

They follow the western coast of the State, but lie some distance from it. In the main they appear to be the result of enrichment of Eocene and Miocene phosphatic limestones, both by solution of calcite and by replacement of calcite by phosphate solution, and lie in pockets and separate areas in depressions in the Tertiary rocks. The different classes of material are called "hard rock," "land pebbles," and "river pebbles"; the first two classes as a rule occupy separate areas.

See also successive issues of *Mineral Resources, U. S. Geological Survey,* and *Mining Industry.*
CHEMICAL PROCESSES IN SURFACE WATERS 263

The hard rock phosphate in Eocene strata consists of a boulder deposit in a soft matrix of phosphatic sands or clays. The boulders vary from 2 inches to 10 feet in diameter, are close grained, light gray, and show cavities lined with secondary pure phosphate. They lie embedded in all positions. The deposits themselves form small pockets or irregular areas, some of them several acres in extent. The phosphate content is from 10 to 30 per cent. of the mass.

In Miocene strata the hard rock phosphate is also found in situ as a normal bedded deposit.

The land pebbles, of which more than 1,000,000 tons are mined annually, are embedded in sand and underlain by a stratum of tough clay, known as "bed-rock." Above the deposits is an overburden from 1 to 25 feet thick, consisting of sand and limestone boulders. The phosphate content of deposits of this class varies from 10 to 25 per cent. Mining is carried on by the aid of hydraulic giants, or by steam shovels (Fig. 88), as in placer mining.

The river pebble is similar to the land pebbles, but occurs in the form of bars in the rivers and is derived from the formations through which the rivers flow. This material is dredged, but is now of little commercial importance.

The phosphate rock is washed to remove the clay,1 and afterward crushed, screened, and hand-picked to a grade of 65 to 80 per cent., the hard rock being the richest final grade of phosphate.

Analyses of phosphates are given on page 264.

MINERAL DEPOSITS

ANALYSES OF PHOSPHATES

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insoluble</td>
<td>1.82</td>
<td>6.69</td>
<td>3.05</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.50</td>
<td>2.14</td>
<td>1.09</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.26</td>
<td>0.61</td>
<td>0.64</td>
</tr>
<tr>
<td>MgO</td>
<td>0.22</td>
<td>0.33</td>
<td>0.57</td>
</tr>
<tr>
<td>CaO</td>
<td>50.97</td>
<td>46.03</td>
<td>48.58</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.00</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.48</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.57</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.72</td>
<td>3.93</td>
<td>4.60</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>36.35</td>
<td>31.50</td>
<td>29.74</td>
</tr>
<tr>
<td>SO₂</td>
<td>2.98</td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>F⁻</td>
<td>0.40</td>
<td>1.86</td>
<td>2.12</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td>7.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99.04</td>
<td>97.35</td>
<td>100.79</td>
</tr>
</tbody>
</table>

II. Florida. Land pebble, G. H. Eldridge.

Analysis calculated on dry material, 3.81 per cent. H₂O. P₂O₅ equivalent to 64.93 per cent. Ca₃P₂O₇; 2.35 per cent. CaF₂; 4.67 per cent. CaSO₄; 10.45 per cent. CaCO₃.
CHAPTER XVI

DEPOSITS FORMED BY EVAPORATION OF BODIES OF SURFACE WATERS

THE SALINE RESIDUES

INTRODUCTION

The deposits thus far described have been in the nature of insoluble residues, or chemical precipitates of relatively insoluble substances in lakes, rivers, and seas. There are, however, other deposits which also may be considered as chemical precipitates in surface waters but which consist of soluble salts formed by the evaporation of waters in closed or partially closed basins. They contain the easily soluble substances leached from the crust, brought down by the rivers to oceans and lakes, and finally concentrated under certain characteristic conditions.

Closed basins are typical of dry climate and of deserts. The slow crustal movements tend to create them everywhere, by folding, subsidence, and uplift, but in the deserts the streams have not the power to cut outlets and to keep the drainage lines established. On the contrary, the movement of the débris from the mountain ranges in broad alluvial fans or aprons increases the tendency toward closed basins. The dry climate accelerates evaporation and the precipitation of the salts; dust storms transport vast masses of fine detritus; blinding salt flats extend between the barren mountain chains. Thus, at present, salt beds are found in the Cordilleran deserts along the western side of the whole American continent, in the Salar, and in the arid, central part of Asia. Similar conditions existed in the past in different parts of the world: The Permian in central Europe, the Triassic in the Rocky Mountain region, and the Silurian in eastern North America—all these ages were at times characterized by arid wastes and deposition of salt and gypsum.

Minor saline deposits may occasionally result from evaporation at the surface of waters from ascending springs. Bodies of soluble salts are rarely formed below the surface. Gypsum may
be precipitated from underground waters, and in existing salt deposits underground waters may effect chemical changes and redeposition.

The subject of saline deposits\(^1\) is large and to treat it fully would necessitate more space than can be given in this brief review.

It is worthy of note that no ore-bodies and practically no traces of metallic ores are found in saline deposits, although the sea water contains traces of a number of metals like gold, silver, copper, zinc, nickel, and cobalt.

Liversidge\(^2\) detected traces of gold in rock salt and in several potassium salts from Germany like sylvine, kainite, and carnallite. Wagoner (p. 12) found small amounts of gold and a trace of silver in salt obtained from sea water. On the other hand, Lungwitz\(^3\) reports analyzing 50 pounds of carnallite without finding a trace of gold.

TYPES OF WATER

From a geological standpoint there are two types of water in the seas and closed basins. The first, which may be called the oceanic type, contains dominant sodium chloride and is characteristic of the sea as well as of partly evaporated lakes in regions where sedimentary rocks prevail; the Great Salt Lake of Utah is an example. When such water is subjected to extreme evaporation, as in the Dead Sea, a "residual" type rich in magnesium chloride results. The second main type is that of generally smaller closed basins in regions of great volcanic activity; this type contains an abundance of sulphate and carbonate of sodium, besides more or less chloride; it indicates the result of the first leaching of loose volcanic ejecta and also shows the influence of the discharge of abundant hot springs containing sodium carbonate and borate. The water of Mono Lake, California, is a good example.

Certain sedimentary series, such as the Cretaceous of the Western States, contain abundant alkaline sulphates. Leach-

1. References on saline deposits in general:
 - George P. Merrill, The non-metallic minerals, 1910.

ing of these beds by atmospheric waters takes place and these products may be carried down into salt flats and small lakes. By chemical reactions (page 58) carbonate of sodium forms from other sodium and calcium salts and the lakes often contain much of this salt besides the sulphates. Such alkali lakes occur in Wyoming, for example. Borates characteristic of volcanic regions are generally lacking in these lakes.

The first, "oceanic" type of waters yields deposits of gypsum, common salt, and finally potassium and magnesium salts. The second, "volcanic" type yields soda, glauber salt, borates, probably also nitrates, as well as more or less sodium chloride.

COMPOSITION OF SALTS IN WATERS OF SEA AND CLOSED BASINS

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>55.292</td>
<td>55.69</td>
<td>23.34</td>
<td>70.25</td>
</tr>
<tr>
<td>Br</td>
<td>0.188</td>
<td>tr.</td>
<td></td>
<td>1.55</td>
</tr>
<tr>
<td>SO<sub>4</sub></td>
<td>7.692</td>
<td>6.52</td>
<td>12.86</td>
<td>0.21</td>
</tr>
<tr>
<td>B<sub>2</sub>O<sub>7</sub></td>
<td>0.207</td>
<td></td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td></td>
<td></td>
<td>23.42</td>
<td>tr.</td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>30.593</td>
<td>32.92</td>
<td>37.93</td>
<td>6.33</td>
</tr>
<tr>
<td>K</td>
<td>1.106</td>
<td>1.70</td>
<td>1.85</td>
<td>1.70</td>
</tr>
<tr>
<td>Ca</td>
<td>1.197</td>
<td>1.05</td>
<td>0.04</td>
<td>5.54</td>
</tr>
<tr>
<td>Mg</td>
<td>3.725</td>
<td>2.10</td>
<td>0.10</td>
<td>14.42</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td></td>
<td>tr.</td>
<td>tr.</td>
<td></td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td></td>
<td></td>
<td>tr.</td>
<td></td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td></td>
<td>0.01</td>
<td>0.14</td>
<td>tr.</td>
</tr>
</tbody>
</table>

I. Oceanic type. Average of 77 analyses, F. W. Clarke, Geochemistry, p. 112. Salinity 3.5 per cent.

II. Oceanic type. Great Salt Lake, F. W. Clarke, Geochemistry, p. 144. Salinity 23 per cent., subject to variations.

III. Volcanic type. Mono Lake, F. W. Clarke, Geochemistry, p. 150; T. M. Chatard, analyst. Salinity 5.1 per cent.

IV. Residual type. The Dead Sea, F. W. Clarke, Geochemistry, p. 156; A. Tereil, analyst. Salinity 20.7 per cent.

The general relation of the salts dissolved in oceanic waters to those in rivers is as follows:

In ocean waters: Cl > SO₄ > CO₃; Na > Mg > Ca

In river water: CO₃ > SO₄ > Cl; Ca > Mg > Na.

Change from river to lake water involves a concentration of chlorides and relative loss of magnesia, silica, and lime.
NORMAL SUCCESSION OF SALTS

When water evaporates until precipitation of the dissolved salts begins, the least soluble salts will generally fall down first, while the most soluble salts will remain in the solution until the last. In some experiments by J. Usiglio\(^1\) in 1849 with evaporation of water from the Mediterranean (containing 3.76 per cent. solid residue) it was found that the carbonates of calcium and magnesium, with a little ferric oxide, were precipitated when the volume of the water was reduced from one-half to one-fifth. Gypsum was precipitated next, when the volume was one-fifth to one-seventh of the original volume, but continued in lessening amounts until only 30 cubic centimeters of the original liter remained. Sodium chloride was precipitated abundantly upon reduction of volume to 100 cubic centimeters, but continued until the volume of the water was only 16 cubic centimeters; even then some of the salt remained in solution. Chloride and sulphate of magnesium fell down within the same limits but in increasing quantities, and the residual “bittern” contained mainly the chlorides of magnesium and potassium, bromide of sodium, sulphate of magnesium, and chloride of sodium. Naturally the quantity of NaCl greatly exceeded that of the other salts.

“Upon concentration the difficultly soluble carbonates of calcium and magnesium will be precipitated first, to be followed by the slightly soluble gypsum. Next in order sodium sulphate and carbonate will form. * * * * Later sodium chloride and magnesium sulphate may crystallize out, leaving at last a bittern containing the very soluble chlorides of calcium and magnesium”\(^2\) as well as potassium.

The whole series of these salts is rarely represented in the saline deposits; the best known and almost only example of such complete evaporation is found in the great Prussian potash and salt deposits. Often, as in the “Red Beds” of the Western States, the process ceased after the gypsum was laid down, and changes of climate or invasion of the sea may have prevented the formation of sodium chloride.

Actually the conditions and the results of precipitation are far more complex than the experiments mentioned would seem to

\(^1\) *Annalen chim. phys.*, 3d ser., vol. 27, 1849, pp. 92–172.

show. The influence of temperature and time may vary the
details of the precipitation greatly, and double or complex salts
are often formed.

A saline solution containing the same salts as sea water but
in different proportions would yield materially unlike results
upon evaporation. In brief, temperature, concentration, and
time are always factors of great importance in the origin of
saline residues.

The study of the stability fields of these salts has received
much impetus by the labors of J. H. van’t Hoff and his numerous
associates,1 undertaken mainly to elucidate the problems of the
potassium deposits of Prussia.

The occurrence of thick beds of anhydrite is explained by the
work of van’t Hoff and Weigert,2 who established that the
mineral forms from gypsum in sodium chloride solutions at 30°
C. In sea water the transformation takes place at 25° C. Cristals
of gypsum, sinking through a salt solution at that tempera-
ture, are converted into anhydrite. This is an example of the
more general rule of dehydration of minerals in contact with
salt solutions, at temperatures considerably below their normal
inversion temperature.

Many minerals are deposited in nature from solutions in a
lower state of hydration than is produced at ordinary tempera-
tures in the laboratory. Thus natron, the ordinary sodium
carbonate (Na₂CO₃·10H₂O) rarely occurs as a natural product,
although it is stable at temperatures below 37° C. The more
common product is trona (Na₂CO₃·NaHCO₃·2H₂O), which is
ordinarily stable only above 37° C.

From pure sodium sulphate solution mirabilite (Na₂SO₄·10H₂O)
is ordinarily deposited, but in the presence of sodium chloride
thenardite (Na₂SO₄) is formed. From a solution of magnesium
sulphate in the presence of magnesium chloride kieserite (MgSO₄·
H₂O) is precipitated instead of the heptahydrate. The presence
of a co-solute, by lowering the osmotic pressure, acts in the same

1 Mainly published in the Sitzungsberichte K. preuss. Akad. d. Wiss.,
from 1897 to the present time.

The results are summarized by van’t Hoff in a book entitled “Zur Bildung
der Oceanischen Sals-Ablagerungen,” Braunschweig, 1905 and 1909, and in
“Physical chemistry in the science of the sciences,” Univ. Chicago Press,
1903.

direction as a rise of temperature.1 This principle is undoubtedly also applicable to minerals in rocks and veins and explains many anomalies of mineral occurrence.

EXPLANATION OF THICK SALT DEPOSITS

The evaporation of a shallow lake or bay and the consequent formation of relatively thin layers of various salts can be easily conceived. However, many of the great deposits of salt and gypsum are more than 1,000 feet in thickness and their genesis offers more difficulty. If the basin were large and deep and the evaporation long continued without interference by change of climate or epeirogenetic movements, a considerable thickness of salts might accumulate. But geological evidence rather indicates the existence of shallow and wide pans in which the evaporation took place. It is possible, indeed, that the deposition kept pace with a slow and continuous subsidence and that the water was replenished as it evaporated. In desert regions, however, the evaporation usually proceeds faster than the scant renewals of the supply and under such conditions we would expect—as we really find in the Tertiary borax deposits in southern California—an alternation of sediments with streaks of salts, rather than thick and pure salt deposits.

To meet these difficulties C. Ochsenius,2 who had long studied the salt deposits of Germany, proposed his so-called bar theory, a theory that is still in the main accepted by German geologists.

Ochsenius believed that salt deposits of the purity and thickness of those in the central German region could not have developed by the flooding of a series of shallow sounds and lakes. He also rejected J. Walther's theory involving a leaching of the small saline content of old sediments and its gradual concentration in the shallow pans and lakes of a desert region.3

As the percentage of salts in the sea water is about 3.5, it is clear that a single epoch of desiccation could not produce a thick body of salt, even if the depth were considerable.

1 J. V. Elsden, *Principles of chemical geology*, 1910, pp. 85–86.

A periodical repetition of évaporation and flooding would necessitate an improbable number of uniform epochs of subsidence and elevation. The bar theory, already suggested by the previously expressed views of Miller, Lyell, and Bischof, premises a bay of the ocean separated from the open sea by a practically level bar which permits only about the same quantity of water to enter as is evaporated from the surface. A dry climate and absence of fresh-water tributaries to the bay are also premised. Under these conditions the sea water entering over the bar continuously carries a new supply to the bay; the surface layers, becoming denser, always sink and the concentration continually increases in the enclosed body of water.

The salt deposits on the bottom are increasing in thickness and the heavy "bittern" solution, with the remaining magnesium salts, correspondingly rises toward the surface.

When these dense solutions reach the surface of the bar, the movement is reversed and the residual "bittern" will flow outward into the ocean. No accumulation of potassium-magnesium salts will occur. Should, however, the bar have increased in height just at this time, the bittern would be retained in the now closed basin and the deposition of the potassium salts would follow.¹

The Gulf of Karaboghaz, on the eastern side of the Caspian Sea, is frequently quoted as an excellent illustration of the bar theory.²

GYPSUM AND ANHYDRITE³

Occurrence.—Gypsum (CaSO₄·2H₂O) forms beds often of considerable thickness and extent, intercalated in sedimentary formations of widely different ages. It is especially abundant in the "Red Beds" in the Western States, ranging in age from

present, owing to difficulties and cost of transportation, they are mined only on a small scale near Montpelier, Idaho.

They extend 200 miles north of Ogden, Utah, into Idaho and Wyoming, following the ranges which constitute the northern continuation of the Wasatch Range, and have recently been found again still farther north in southern Montana near Dillon. Their position is in the Park City formation of the Upper Carboniferous (Pennsylvanian), which has an average thickness of 600 feet and consists of limestones, cherty in part, phosphate beds, and shales. The phosphate horizon is in the middle of the formation and the beds have an average thickness of 200 feet. (See Figs. 8, 9, and 87.) The rocks are massive brown to gray phosphatic shales and beds of rock phosphate with some limestone. The richest bed mined at Montpelier, carrying 70 per cent. or more of Ca₃P₂O₈, lies at the base of the phosphate section and is 5 or 6 feet thick. It is a black to dull-gray oolitic rock, with grains of all sizes up to pebble-like bodies one-half inch in diameter.

Large sections of the phosphatic beds, in places a thickness of 75 feet, carry from 30 to 50 per cent. of Ca₃P₂O₈. The beds are folded and locally have steep dips. The rock is hard and the mining is carried on by underground operations. Very little enrichment is noted.

The phosphates of western Tennessee* have been worked since 1894 and at present yield about 400,000 tons per annum. They are of three classes. 1. Brown residual phosphates, resulting from leaching of Ordovician phosphatic limestones; the beds are from 3 to 8 feet thick and carry as much as 80 per cent. of tri-calcium phosphate. 2. The blue or black bedded phosphates, which oc-

cur in beds of Devonian age, show variations from oölitic through compact and conglomeratic to shaly forms. The high-grade rock is seldom more than 20 inches thick. The nodular variety, which is embedded in a green sand, carries about 60 per cent. \(\text{Ca}_3\text{P}_2\text{O}_7 \). 3. The white phosphate, which is a post-Tertiary product of replacement or filling of cavities of limestone of Carboniferous age. None of it is now mined.

Fig. 87.—Section showing beds of phosphate, Montpelier, Idaho. *After Weeks and Ferrier, U. S. Geol. Survey.*

The phosphate beds of North and South Carolina,\(^1\) discovered in 1867, extend along the coast for a distance of 60 miles. They are contained in loose beds of Miocene age, rich in fossils. The land deposits lie at a shallow depth and consist of so-called pebble rock,

a solid mass from which the calcium carbonate has been leached and partly replaced by phosphate; the solution cavities give this material the appearance of a mass of separate pebbles. The rock varies from 1 to 3 feet in thickness and is covered by a green sandy marl. Similar deposits have been dredged in the rivers; they consist essentially of water-rounded fragments of the land rock. The mining is carried on by steam-shovel or dredge operations.

![Image: Dredging Florida phosphates. Upper bench is sandy overburden. Photograph by F. B. Van Horn.]

The deposits of Florida\(^1\) are at present the most productive in the world, and large quantities are exported to almost all the European countries.

They follow the western coast of the State, but lie some distance from it. In the main they appear to be the result of enrichment of Eocene and Miocene phosphatic limestones, both by solution of calcite and by replacement of calcite by phosphate solution, and lie in pockets and separate areas in depressions in the Tertiary rocks. The different classes of material are called "hard rock," "land pebbles," and "river pebbles"; the first two classes as a rule occupy separate areas.

See also successive issues of *Mineral Resources*, U. S. Geological Survey, and *Mining Industry*.
CHEMICAL PROCESSES IN SURFACE WATERS 263

The hard rock phosphate in Eocene strata consists of a boulder deposit in a soft matrix of phosphatic sands or clays. The boulders vary from 2 inches to 10 feet in diameter, are close grained, light gray, and show cavities lined with secondary pure phosphate. They lie embedded in all positions. The deposits themselves form small pockets or irregular areas, some of them several acres in extent. The phosphate content is from 10 to 30 per cent. of the mass.

In Miocene strata the hard rock phosphate is also found in situ as a normal bedded deposit.

The land pebbles, of which more than 1,000,000 tons are mined annually, are embedded in sand and underlain by a stratum of tough clay, known as "bed-rock." Above the deposits is an overburden from 1 to 25 feet thick, consisting of sand and limestone boulders. The phosphate content of deposits of this class varies from 10 to 25 per cent. Mining is carried on by the aid of hydraulic giants, or by steam shovels (Fig. 88), as in placer mining.

The river pebble is similar to the land pebbles, but occurs in the form of bars in the rivers and is derived from the formations through which the rivers flow. This material is dredged, but is now of little commercial importance.

The phosphate rock is washed to remove the clay,1 and afterward crushed, screened, and hand-picked to a grade of 65 to 80 per cent., the hard rock being the richest final grade of phosphate.

Analyses of phosphates are given on page 264.

ANALYSES OF PHOSPHATES

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insoluble</td>
<td>1.82</td>
<td>6.69</td>
<td>3.05</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.50</td>
<td>2.14</td>
<td>1.09</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.26</td>
<td>0.61</td>
<td>0.64</td>
</tr>
<tr>
<td>MgO</td>
<td>0.22</td>
<td>0.33</td>
<td>0.57</td>
</tr>
<tr>
<td>CaO</td>
<td>50.97</td>
<td>46.03</td>
<td>48.58</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.00</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.48</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.57</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.72</td>
<td>3.93</td>
<td>4.60</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>36.35</td>
<td>31.50</td>
<td>29.74</td>
</tr>
<tr>
<td>SO₃</td>
<td>-2.98</td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>F⁻</td>
<td>0.40</td>
<td>1.86</td>
<td>2.12</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td>7.45</td>
</tr>
<tr>
<td></td>
<td>99.04</td>
<td>97.35</td>
<td>100.79</td>
</tr>
</tbody>
</table>

II. Florida. Land pebble, G. H. Eldridge.

Analysis calculated on dry material, 3.81 per cent. H₂O. P₂O₅ equivalent to 64.93 per cent. Ca₃P₂O₇; 2.35 per cent. CaF₂; 4.67 per cent. CaSO₄; 10.45 per cent. CaCO₃.
CHAPTER XVI

DEPOSITS FORMED BY EVAPORATION OF BODIES OF SURFACE WATERS

THE SALINE RESIDUES

INTRODUCTION

The deposits thus far described have been in the nature of insoluble residues, or chemical precipitates of relatively insoluble substances in lakes, rivers, and seas. There are, however, other deposits which also may be considered as chemical precipitates in surface waters but which consist of soluble salts formed by the evaporation of waters in closed or partially closed basins. They contain the easily soluble substances leached from the crust, brought down by the rivers to oceans and lakes, and finally concentrated under certain characteristic conditions.

Closed basins are typical of dry climate and of deserts. The slow crustal movements tend to create them everywhere, by folding, subsidence, and uplift, but in the deserts the streams have not the power to cut outlets and to keep the drainage lines established. On the contrary, the movement of the débris from the mountain ranges in broad alluvial fans or aprons increases the tendency toward closed basins. The dry climate accelerates evaporation and the precipitation of the salts; dust storms transport vast masses of fine detritus; blinding salt flats extend between the barren mountain chains. Thus, at present, salt beds are found in the Cordilleran deserts along the western side of the whole American continent, in the Saltara, and in the arid, central part of Asia. Similar conditions existed in the past in different parts of the world: The Permian in central Europe, the Triassic in the Rocky Mountain region, and the Silurian in eastern North America—all these ages were at times characterized by arid wastes and deposition of salt and gypsum.

Minor saline deposits may occasionally result from evaporation at the surface of waters from ascending springs. Bodies of soluble salts are rarely formed below the surface. Gypsum may
be precipitated from underground waters, and in existing salt deposits underground waters may effect chemical changes and redeposition.

The subject of saline deposits\(^1\) is large and to treat it fully would necessitate more space than can be given in this brief review.

It is worthy of note that no ore-bodies and practically no traces of metallic ores are found in saline deposits, although the sea water contains traces of a number of metals like gold, silver, copper, zinc, nickel, and cobalt.

Liversidge\(^2\) detected traces of gold in rock salt and in several potassium salts from Germany like sylvine, kainite, and carnallite. Wagoner (p. 12) found small amounts of gold and a trace of silver in salt obtained from sea water. On the other hand, Lungwitz\(^3\) reports analyzing 50 pounds of carnallite without finding a trace of gold.

TYPES OF WATER

From a geological standpoint there are two types of water in the seas and closed basins. The first, which may be called the oceanic type, contains dominant sodium chloride and is characteristic of the sea as well as of partly evaporated lakes in regions where sedimentary rocks prevail; the Great Salt Lake of Utah is an example. When such water is subjected to extreme evaporation, as in the Dead Sea, a “residual” type rich in magnesium chloride results. The second main type is that of generally smaller closed basins in regions of great volcanic activity; this type contains an abundance of sulphate and carbonate of sodium, besides more or less chloride; it indicates the result of the first leaching of loose volcanic ejecta and also shows the influence of the discharge of abundant hot springs containing sodium carbonate and borate. The water of Mono Lake, California, is a good example.

Certain sedimentary series, such as the Cretaceous of the Western States, contain abundant alkaline sulphates. Leach-

\(^1\) References on saline deposits in general:
George P. Merrill, The non-metallic minerals, 1910.

\(^3\) *Eng. and Min. Jour.*, April 6, 1905.
ing of these beds by atmospheric waters takes place and these products may be carried down into salt flats and small lakes. By chemical reactions (page 58) carbonate of sodium forms from other sodium and calcium salts and the lakes often contain much of this salt besides the sulphates. Such alkali lakes occur in Wyoming, for example. Borates characteristic of volcanic regions are generally lacking in these lakes.

The first, "oceanic" type of waters yields deposits of gypsum, common salt, and finally potassium and magnesium salts. The second, "volcanic" type yields soda, glauber salt, borates, probably also nitrates, as well as more or less sodium chloride.

COMPOSITION OF SALTS IN WATERS OF SEA AND CLOSED BASINS

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>55.292</td>
<td>55.69</td>
<td>23.34</td>
<td>70.25</td>
</tr>
<tr>
<td>Br</td>
<td>0.188</td>
<td>tr.</td>
<td></td>
<td>1.55</td>
</tr>
<tr>
<td>SO₄</td>
<td>7.692</td>
<td>6.52</td>
<td>12.86</td>
<td>0.21</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>.</td>
<td>.</td>
<td>0.32</td>
<td>.</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.207</td>
<td></td>
<td>23.42</td>
<td>tr.</td>
</tr>
<tr>
<td>Li</td>
<td>.</td>
<td>0.01</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Na</td>
<td>30.593</td>
<td>32.92</td>
<td>37.93</td>
<td>6.33</td>
</tr>
<tr>
<td>K</td>
<td>1.106</td>
<td>1.70</td>
<td>1.85</td>
<td>1.70</td>
</tr>
<tr>
<td>Ca</td>
<td>1.197</td>
<td>1.05</td>
<td>0.04</td>
<td>5.54</td>
</tr>
<tr>
<td>Mg</td>
<td>3.725</td>
<td>2.10</td>
<td>0.10</td>
<td>14.42</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>.</td>
<td>.</td>
<td>tr.</td>
<td>.</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>.</td>
<td>.</td>
<td>tr.</td>
<td>.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>.</td>
<td>0.01</td>
<td>0.14</td>
<td>tr.</td>
</tr>
</tbody>
</table>

100 100 100 100

I. Oceanic type. Average of 77 analyses, F. W. Clarke, Geochemistry, p. 112. Salinity 3.5 per cent.

II. Oceanic type. Great Salt Lake, F. W. Clarke, Geochemistry, p. 144.

III. Volcanic type. Mono Lake, F. W. Clarke, Geochemistry, p. 150;

T. M. Chatard, analyst. Salinity 5.1 per cent.

IV. Residual type. The Dead Sea, F. W. Clarke, Geochemistry, p. 156;

A. Tereil, analyst. Salinity 20.7 per cent.

The general relation of the salts dissolved in oceanic waters to those in rivers is as follows:

In ocean waters: Cl > SO₄ > CO₃; Na > Mg > Ca
In river water: CO₃ > SO₄ > Cl; Ca > Mg > Na.

Change from river to lake water involves a concentration of chlorides and relative loss of magnesia, silica, and lime.
NORMAL SUCCESSION OF SALTS

When water evaporates until precipitation of the dissolved salts begins, the least soluble salts will generally fall down first, while the most soluble salts will remain in the solution until the last. In some experiments by J. Usiglio\(^1\) in 1849 with evaporation of water from the Mediterranean (containing 3.76 per cent. solid residue) it was found that the carbonates of calcium and magnesium, with a little ferric oxide, were precipitated when the volume of the water was reduced from one-half to one-fifth. Gypsum was precipitated next, when the volume was one-fifth to one-seventh of the original volume, but continued in lessening amounts until only 30 cubic centimeters of the original liter remained. Sodium chloride was precipitated abundantly upon reduction of volume to 100 cubic centimeters, but continued until the volume of the water was only 16 cubic centimeters; even then some of the salt remained in solution. Chloride and sulphate of magnesium fell down within the same limits but in increasing quantities, and the residual "bittern" contained mainly the chlorides of magnesium and potassium, bromide of sodium, sulphate of magnesium, and chloride of sodium. Naturally the quantity of NaCl greatly exceeded that of the other salts.

"Upon concentration the difficultly soluble carbonates of calcium and magnesium will be precipitated first, to be followed by the slightly soluble gypsum. Next in order sodium sulphate and carbonate will form. * * * * Later sodium chloride and magnesium sulphate may crystallize out, leaving at last a bittern containing the very soluble chlorides of calcium and magnesium"\(^2\) as well as potassium.

The whole series of these salts is rarely represented in the saline deposits; the best known and almost only example of such complete evaporation is found in the great Prussian potash and salt deposits. Often, as in the "Red Beds" of the Western States, the process ceased after the gypsum was laid down, and changes of climate or invasion of the sea may have prevented the formation of sodium chloride.

Actually the conditions and the results of precipitation are far more complex than the experiments mentioned would seem to

\(^1\) *Annales chim. phys.*, 3d ser., vol. 27, 1849, pp. 92–172.
show. The influence of temperature and time may vary the
details of the precipitation greatly, and double or complex salts
are often formed.

A saline solution containing the same salts as sea water but
in different proportions would yield materially unlike results
upon evaporation. In brief, temperature, concentration, and
time are always factors of great importance in the origin of
saline residues.

The study of the stability fields of these salts has received
much impetus by the labors of J. H. van’t Hoff and his numerous
associates,¹ undertaken mainly to elucidate the problems of the
potassium deposits of Prussia.

The occurrence of thick beds of anhydrite is explained by the
work of van’t Hoff and Weigert,² who established that the
mineral forms from gypsum in sodium chloride solutions at 30°
C. In sea water the transformation takes place at 25° C. Crystals
of gypsum, sinking through a salt solution at that tempera-
ture, are converted into anhydrite. This is an example of the
more general rule of dehydration of minerals in contact with
salt solutions, at temperatures considerably below their normal
inversion temperature.

Many minerals are deposited in nature from solutions in a
lower state of hydration than is produced at ordinary tempera-
tures in the laboratory. Thus natron, the ordinary sodium
 carbonate (Na₂CO₃.10H₂O) rarely occurs as a natural product,
although it is stable at temperatures below 37° C. The more
common product is trona (Na₂CO₃.NaHCO₃.2H₂O), which is
ordinarily stable only above 37° C.

From pure sodium sulphate solution mirabilite (Na₂SO₄.10H₂O)
is ordinarily deposited, but in the presence of sodium chloride
thenardite (Na₂SO₄) is formed. From a solution of magnesium
sulphate in the presence of magnesium chloride kieserite (MgSO₄.
H₂O) is precipitated instead of the heptahydrate. The presence
of a co-solute, by lowering the osmotic pressure, acts in the same

¹ Mainly published in the _Sitzungsberichte_ K. preuss. Akad. d. Wiss.,
from 1897 to the present time.

² The results are summarized by van’t Hoff in a book entitled “Zur Bildung
der Oceanischen Salz-Ablagerungen,” Braunschweig, 1905 and 1909, and in
“Physical chemistry in the science of the sciences,” Univ. Chicago Press,
1903.

³ _Sitzungber_. Akad., Berlin, 1901, p. 1140.
direction as a rise of temperature. This principle is undoubtedly also applicable to minerals in rocks and veins and explains many anomalies of mineral occurrence.

EXPLANATION OF THICK SALT DEPOSITS

The evaporation of a shallow lake or bay and the consequent formation of relatively thin layers of various salts can be easily conceived. However, many of the great deposits of salt and gypsum are more than 1,000 feet in thickness and their genesis offers more difficulty. If the basin were large and deep and the evaporation long continued without interference by change of climate or epeirogenetic movements, a considerable thickness of salts might accumulate. But geological evidence rather indicates the existence of shallow and wide pans in which the evaporation took place. It is possible, indeed, that the deposition kept pace with a slow and continuous subsidence and that the water was replenished as it evaporated. In desert regions, however, the evaporation usually proceeds faster than the scant renewals of the supply and under such conditions we would expect—as we really find in the Tertiary borax deposits in southern California—an alternation of sediments with streaks of salts, rather than thick and pure salt deposits.

To meet these difficulties C. Ochsenius, who had long studied the salt deposits of Germany, proposed his so-called bar theory, a theory that is still in the main accepted by German geologists.

Ochsenius believed that salt deposits of the purity and thickness of those in the central German region could not have developed by the flooding of a series of shallow sounds and lakes. He also rejected J. Walther's theory involving a leaching of the small saline content of old sediments and its gradual concentration in the shallow pans and lakes of a desert region.

As the percentage of salts in the sea water is about 3.5, it is clear that a single epoch of desiccation could not produce a thick body of salt, even if the depth were considerable.

1 J. V. Elsden, Principles of chemical geology, 1910, pp. 85–86.
3 J. Walther, Lithogenesis der Gegenwart, Jena, 1893, 1894, pp. 776–800.
 J. Walther, Das Gesetz der Wüstenbildung, Berlin, 1900.
A periodical repetition of evaporation and flooding would necessitate an improbable number of uniform epochs of subsidence and elevation. The bar theory, already suggested by the previously expressed views of Miller, Lyell, and Bischof, premises a bay of the ocean separated from the open sea by a practically level bar which permits only about the same quantity of water to enter as is evaporated from the surface. A dry climate and absence of fresh-water tributaries to the bay are also premised. Under these conditions the sea water entering over the bar continuously carries a new supply to the bay; the surface layers, becoming denser, always sink and the concentration continually increases in the enclosed body of water.

The salt deposits on the bottom are increasing in thickness and the heavy "bittern" solution, with the remaining magnesium salts, correspondingly rises toward the surface.

When these dense solutions reach the surface of the bar, the movement is reversed and the residual "bittern" will flow outward into the ocean. No accumulation of potassium-magnesium salts will occur. Should, however, the bar have increased in height just at this time, the bittern would be retained in the now closed basin and the deposition of the potassium salts would follow.¹

The Gulf of Karabogaz, on the eastern side of the Caspian Sea, is frequently quoted as an excellent illustration of the bar theory.²

GYPSUM AND ANHYDRITE

Occurrence.—Gypsum (CaSO₄·2H₂O) forms beds often of considerable thickness and extent, intercalated in sedimentary formations of widely different ages. It is especially abundant in the "Red Beds" in the Western States, ranging in age from

Permian to Jurassic, but it also occurs in rocks of Silurian (Ohio and New York), Mississippian or Lower Carboniferous (Michigan), Tertiary (California), and Pleistocene ages.

Recent surface deposits mixed with clay are abundant in Kansas, Oklahoma, and Texas and are known as "gypsite," but vast deposits of Permian age also occur in these States.

Extensive beds of gypsum sand, forming dunes, occur in New Mexico, in the so-called "white sands" of Otero County. C. L. Herrick regards them as deposits formed in a Tertiary lake.\(^1\) The gypsum beds of the United States are rarely more than 30 or 40 feet thick, though there may be several of them in one section. They are interstratified with limestone or shale; in places they are of great purity and snow-white; but frequently gypsum is also intergrown with shale and limestone. The pure white and compact variety is known as alabaster; the variety crystallized in larger plates is called selenite.

Exceptionally thick but not easily utilized deposits of gypsum overlie the Louisiana salt deposits. A remarkable series of gypsum beds, some of them several hundred feet thick, is found in the pre-Cambrian (?) rocks of the Palen Mountains in southern California.\(^2\)

In many of the occurrences in the United States gypsum is not associated with distinct salt beds; the evaporation of the sea water had evidently not progressed to the required point.

Not all of the gypsum is precipitated from permanent lakes and from seas; efflorescent beds, usually thin, may result from the evaporation of water percolating through gypsiferous beds, or may form thin deposits in occasionally flooded flats or playas. Finally, gypsum is sometimes deposited by comparatively fresh lakes, just outside of the shore line, by evaporation of the water taken up by the soil.\(^3\)

Anhydrite (CaSO\(_4\)) often occurs in thick beds associated with gypsum. Particularly interesting are the great gypsum and anhydrite beds of the Permian in central Germany in the region of the potassium salts, where the anhydrite reaches a thickness of 300 feet.

\(^1\) *Am. Geologist*, vol. 34, 1904, pp. 174–189.
Anhydrite is not abundant in the United States but occurs with gypsum—for instance, overlying the thick salt beds of Louisiana and southern Texas; beds of anhydrite are also in southern California and in Nevada.

Uses.—Gypsum finds extensive use in various industries. Calcined at 350° C, for the purpose of expelling a large part of the water of crystallization and ground, it is a most important structural material called stucco or plaster of Paris. Ground in its natural state, it is employed as a fertilizer, to counteract alkali in soils, to retard the setting of cement, and for numerous other industrial and chemical purposes. It is often used as an adulterant. Gypsum is generally quarried and its production in the United States has increased greatly in the last fifteen years, 2,300,000 short tons having been mined in 1910, principally in Iowa, Kansas, Michigan, New York, and Oklahoma.

Natural anhydrite, on account of its slow transformation into the hydrous sulphate, is of little practical value.

Solubility of Calcium Sulphate.—Owing to several causes, among them the existence of many metastable forms—the hemi-hydrate and the soluble anhydrite—the solubility of the calcium sulphate is a complicated problem which only recently has been worked out, particularly by van't Hoff and Meyerhoffer. According to the summary by Cameron and Bell¹ the solubility of gypsum in water gradually increases to a maximum at about 40°, the solution then containing about 0.21 per cent. Beyond this point it decreases and at 100° it is 0.18 per cent., or about the same as in ice water. Gypsum is stable only to 66° C., when it begins to be transformed into anhydrite, but the slowness of the change permits its solubility to be determined above its point of stability. At 66° C. the solubility of anhydrite is, of course, the same as that of gypsum, but beyond this point it decreases rapidly so that at 100° it is 0.06 per cent. and at 200° only about 0.005 per cent.² As calcium salts have a common ion with gypsum their presence depresses its solubility. On the other hand, the solubility of gypsum may be increased about three times by sodium chloride, owing to a reaction involving the formation of CaCl₂. A saturated solution of sodium

chloride, according to Cameron, can hold 0.54 per cent. of CaSO₄
at 23°, 0.74 per cent. at 52°, and 0.75 per cent. at 82° C.

SODIUM SULPHATE AND SODIUM CARBONATE

Occurrence.—Most of the soda of commerce is an artificial
product from common salt, but both the carbonate and the
sulphate of sodium are often contained in saline desert lakes or
in residues from such lakes. The ordinary white efflorescence on
the playas of the deserts consists of these salts together with
more or less sodium chloride and a little of the chlorides and
sulphates of potassium and magnesium; the soda lakes contain
all these salts.

In the United States the commercial utilization has been
attempted at Owens Lake, in California, at the Ragtown lakes,
in Nevada, and at the Wyoming soda lakes.

T. M. Chatard's¹ work on Owens Lake, where sodium carbonate
forms a little over one-third and sodium sulphate about one-
seventh of the dissolved salts, showed that the order of deposition
upon evaporation is: (1) trona (Na₂CO₃·NaHCO₃·2H₂O); (2)
sodium sulphate; (3) sodium chloride, and (4) the easily soluble
normal sodium carbonate. The deposits at Ragtown are even
richer in carbonate of soda,² but the evaporation by solar heat
did not prove successful as a commercial process. One or two
of the Wyoming lake deposits are rich in soda. At Green River
borings in the Wasatch sandstone (Eocene?) at depths of 125 and
700 feet disclosed well water forming an almost concentrated
solution of sodium carbonate, which is now utilized for the
manufacture of caustic soda; the process is based on reaction
with caustic lime.

The alkali lakes in the arid region of Wyoming³ form deposits
leached from surrounding Mesozoic and Cenozoic sediments.
The thickness of the salt beds amounts to 15 feet at most and
they extend over as much as 100 acres. The salts consist mainly
of mirabilite, epsomite, natron, and halite.

² F. W. Clarke, Data of geochemistry, Bull. No. 491, U. S. Geol. Surv.,
p. 226.
³ A. R. Schultz, Deposits of sodium salts in Wyoming, Bull. No. 430,
Exper. Sta., p. 49, 1901.
In places the sulphate has been utilized for making caustic soda and salt cake (sodium sulphate).

Sodium sulphate is much more soluble in warm than in cold water, but as the similar variation for sodium chloride is small, "a mere change of temperature between summer and winter in salt lakes may cause mirabilite (Na₂SO₄·10H₂O) to separate out or to redissolve." The Great Salt Lake, according to Gilbert, deposits sodium sulphate during winter.

SODIUM NITRATE

Occurrence.—Nitrates, generally in the form of sodium nitrate, are found in small quantities in soils or as efflorescences in caves—here in part as calcium nitrate. Such nitrates are probably due chiefly to the influence of nitrifying organisms, or to the reaction between decaying organic nitrogenous matter and alkaline salts. On the other hand, nitrate of sodium and even nitrate of copper are known as efflorescences on volcanic rocks under circumstances strongly suggesting that the nitrogen may be of igneous origin. This view is, however, not generally accepted. All these occurrences are of little economic value.

The important nitrate deposits are found in desiccated lake beds and the views as to their origin diverge widely. Small amounts of nitrates occur, for instance, in the present and Eocene lake beds of southeastern California, in the vicinity of Death Valley, in the same series of sediments which contain borax beds.

The only place where nitrates are present in abundance is in the Atacama desert in northern Chile. These wonderful deposits practically supply the world with nitrates and the annual production of the salt amounts to about 1,700,000 tons. They are situated in the provinces of Tarapaca and Antofagasta in an

3 For citations of literature see Clarke's Geochemistry, pp. 241–247.
6 G. E. Bailey, *Bull.* No. 24, Cal. State Mining Bureau, 1902, pp. 139–188.
interior dry valley between the Coast Ranges and the Andes. This plain slopes gently westward and the nitrates occur in the lowest part along the base of the Coast Ranges. The surface of the plain is here generally impregnated with more or less saline superficial deposits, in places several feet thick. Most of the deposits consist of common salt or sodium nitrate or of both mixed. The common salt is by far the more abundant. The nitrate deposits are generally on somewhat higher ground than the salt marshes. The thickness of the superficial nitrate deposits varies from 1 to 6 feet, the latter rarely attained. The nitrate usually lies below a few feet of covering of sand or subangular gravel, derived from the slopes of the Coast Ranges. Below the nitrate lies a few feet of a dark, earthy material, and underneath this a great thickness of stratified sand, gravel, and clay. The nitrate itself is more or less mixed with earth, sand, or clay, a material with 25 per cent. NaNO₃ being considered fair grade. Associated with the nitrate are salt, sodium sulphate, gypsum, sodium and calcium borates, and a small but constant quantity of sodium iodate. There is very little bromine. Small quantities of the nitrates of potassium, calcium, and barium, as well as a little calcium iodate and iodo-chromate (lautarite and dietzeite), are found. An analysis given by Loram is as follows:

ANALYSIS OF "CALICHE" FROM CHILE

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium nitrate</td>
<td>29.35</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>42.72</td>
</tr>
<tr>
<td>Calcium sulphate</td>
<td>3.63</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>0.61</td>
</tr>
<tr>
<td>Sodium sulphate</td>
<td>4.72</td>
</tr>
<tr>
<td>Potassium perchlorate</td>
<td>0.18</td>
</tr>
<tr>
<td>Sodium iodate</td>
<td>0.10</td>
</tr>
<tr>
<td>Moisture</td>
<td>1.03</td>
</tr>
<tr>
<td>Insoluble</td>
<td>17.59</td>
</tr>
</tbody>
</table>

Penrose believes that the nitrates came from beds of bird guano accumulated at the time when the Coast Ranges did not exist and that the nitrates were gradually leached and mingled with the salt waters of a closed basin. Guano deposits exist in certain parts of the region.

F. W. Clarke¹ considers the nitrate beds undoubtedly derived from evaporation of saline waters of non-marine origin. He

¹ F. W. Clarke, *op. cit.*, p. 246.
points out the association of ammonia and borates in springs of volcanic regions and of borates and nitrates in deposits of widely separated lakes of such regions. Possibly, according to this author, ammonia from hydro-thermal sources, collecting in lagoons in the presence of organic matter, would yield nitrates, which later would be found in the products of evaporation.

The world’s need of iodine is now chiefly, if not entirely, supplied by the nitrate region of Chile.

BORATES

General Occurrence.—Borates and other boron compounds appear in nature under conditions indicating widely differing modes of origin. As complex and insoluble borosilicates like tourmaline and datolite they are disseminated in igneous and metamorphic rocks or in pegmatite dikes and fissure veins, but are here of no economic importance except that tourmaline occurring in this manner is sometimes utilized as a gem stone. As boric acid and borates of calcium and magnesium they appear in volcanic exhalations, of which the most famous are the "soffioni" of Tuscany, Italy, from which large amounts of boric acid have been recovered. Borates, principally in the form of borax (Na₂B₄O₇·10H₂O) occur in hot springs and in lakes of volcanic regions. Borax was first obtained from such lakes situated in Tibet. Von Schlagintweit² reports its occurrence as a hot-spring deposit in the province of Ladak, Kashmir, British India, on the headwaters of the Indus. According to A. Forbes⁴ a calcium borate is being deposited at the hot springs of Baños del Toro, Chile. The thermal waters of the California Coast Ranges and Nevada (see page 60) often contain boron, sometimes in large quantities. The borates from these springs are some-

⁴ J. H. van't Hoff, Zur Bildung der ozeanischen Salzablagerungen, 1905.
⁵ H. S. Gale, in Mineral Resources, 1911, U. S. Geol. Surv., article "Borax."
times accumulated in little lake basins and there deposited by evaporation as borax crystals. The small deposit of the Borax Lake of Sulphur Bank, Lake County, California, is a good example; about 40 years ago a large quantity of borax was won from this source. The evaporated salts contained 62 per cent. sodium carbonate, 20 per cent. sodium chloride, and 18 per cent. borax.

The borates occur abundantly in the *playas*, or desiccated shallow basins intermittently covered by water, in southern California and Nevada, Argentina, and Chile; the salts are borax, ulexite (CaNaB₄O₇·8H₂O), and colemanite (Ca₂B₄O₁₁·5H₂O).

To a large extent the Quaternary boron-bearing beds in California are derived from extensive deposits of colemanite in Tertiary beds, probably deposited in lakes during epochs of volcanic activity. These beds in southern California now furnish by far the largest quantity of the world's boron salts.

Finally, boron is contained in sea water and appears in small quantities in the form of magnesium borates, principally boracite (Mg₂Cl₂B₁₀O₃₀), in the beds of potassium salts of Germany.

Marine Borate Deposits.—The marine deposits, as just stated, are mainly confined to the beds of potassium salts in the Stassfurt region of central Germany, but borates have also been observed in sodium chloride, anhydrite, or gypsum. The principal occurrence is as boracite in the carnallite region (page 291)—that is, in the deposits of the last mother liquors of evaporating sea water. The boracite usually forms small crystals or concretions, but one occurrence is recorded of a mass weighing about 1,400 pounds. A few hundred tons of borates are annually obtained by crystallization. The boron compounds then evidently remained with the most easily soluble salts and were finally precipitated as a magnesium salt because of the predominance of that metal over calcium in the sea water.

Borax Marshes.—The deserts of San Bernardino and Inyo counties in California, and also those of Nevada and Oregon, are rich in borate deposits (Fig. 89). The desolate plains between the barren ranges contain many shallow basins, which at times, during the brief seasons of rain, are covered with thin sheets of water. The evaporation of this water leaves dazzling expanses of white salt deposit or efflorescence, some of which may become covered by the fine sand carried by the desert storms. These deposits were discovered about 1870 and for many years yielded a large production
Fig. 89.—Sketch map showing distribution of borate deposits in California and Nevada. After H. S. Gale, U. S. Geol. Survey.
of borax at Searles Marsh (60 miles north of Barstow), Death Valley, and other places. Though enormous quantities of these salts remain they are now of little or no importance; the richer and more easily worked colemanite deposits have replaced them. The crusts are rarely more than 1 foot thick, the percentage of borax varying considerably. According to Bailey, the crude salt from Searles Marsh yielded 50 per cent. sand, 12 per cent. sodium chloride, 10 per cent. sodium carbonate, 16 per cent. sodium sulphate, and 12 per cent. borax. Borings showed 20 feet of clay and sand with crystals of calcium borate, underlain by a bed of solid trona 28 feet thick, and below this 350 feet of clays impregnated with hydrogen sulphide. After removal of the crust another is slowly produced by capillary action. On ground that had been worked over, a new crust formed that was thick enough to remove in 3 or 4 years. The area productive of borax amounts to about 1,700 acres, slightly depressed below the general level of the playa, on which in wet seasons stands about 1 foot of water.

Though no ulexite was found at Searles Marsh, it is common in many other playa deposits, both in California and Nevada and in Argentina; it usually forms concretions of silky fiber, known as cotton balls.

Tertiary Lake Beds.—The borates in the marshes and playas have undoubtedly been leached from the older deposits in the Tertiary lake beds, which have been recognized at many points in Inyo, San Bernardino, Kern, Los Angeles, and Ventura counties, California. These beds yield colemanite almost exclusively and it is evident that the borax and ulexite of the marshes are simply products of secondary reactions of the leached colemanite with the sodium salts of the playas.

These colemanite deposits begin near the Pacific coast at Piru, Ventura County, and near Saugus, Los Angeles County, where, according to Keyes, they lie in a series of yellow clays and sandstones probably Miocene in age and several thousand feet in thickness. The mineral is present as nodules in clay, and above the borate beds are strata of gypsum.

Other important beds are in the foot-hills of the Calico Mountains north of the Mojave River; they have a steep dip and have been mined by shafts to a depth of 400 feet. These large masses of low-grade colemanite shales, with 7 to 20 per cent. boric acid, are not mined now, attention being confined to
two solid beds of the mineral 7 to 10 feet thick. Rhyolite tuffs
lie underneath the borate beds.

The richest colemanite beds are, however, in the Furnace
Creek region of the Funeral Range, which overlooks Death Valley,
in Inyo County (Fig. 90). About 4,000 feet of Tertiary non-
fossiliferous sediments are recognized here, which form a broad
belt obliquely crossing the range and dipping 20° to 45° N. E.
The lower and thicker part, according to Keyes, consists of con-
glomerates and sandstones, above which are olive-colored clays
interbedded with basalts. The upper part of the clay series
carries gypsum, colemanite, and thin layers of limestone. The

![Fig. 90.—Lila C. borate mine, Inyo County, California.](image)

borate beds are traceable for 25 miles. Within the colemanite-
bearing beds, which may be as much as 50 feet thick, the bluish
clays are thickly interspersed with milky white layers or nodules
of the white crystalline mineral, mingled with more or less
gypsum, according to Keyes. The solid layers may be 15 feet
thick. Near by the clays are impregnated with fine particles of
colemanite and yield 10 to 25 per cent. boric acid, but these low-
grade deposits are not utilized at present.

Production and Uses.—The borate industry is now concentrated
in southeastern California and it is capable of great expansion if
additional uses can be found for the salts. From 25,000 to 50,000
tons of crude colemanite are mined per annum by underground
methods through inclines. The richest mineral is hand-sorted,
and the poorer grades are milled, roasted, and screened, the last
process effecting the separation of the colemanite from the gangue. The products are shipped direct to New Jersey, where there are large refining works in which the material is manufactured into borax and boric acid. The further treatment involves boiling with soda for the manufacture of borax or with sulphuric acid if boric acid is desired. Under the influence of these new discoveries the price of borax has gradually decreased from 39 cents per pound in 1864 to about 4 cents in 1908.

Borax and boric acid are extensively used in industrial chemistry, in medicine, and in the household.

Origin.—The genesis of the Tertiary borate beds of California is not entirely clear. They differ so radically from the marine deposits of Germany, both in mineralogy and association, that a different origin must be assigned. The presence of so much borate of calcium at one horizon probably indicates a temporary epoch of desiccation in a period of generally greater precipitation than at present. The beds associated with the borate were probably deposited in a shallow and drying lake. When we further consider the abundance of borate playas throughout western Nevada and eastern Oregon, and the probable occurrence of leaner colemanite deposits in the Tertiary lake beds of those regions, the marine hypothesis becomes decidedly untenable. Throughout the deposition of the lake beds intense volcanic activity persisted, undoubtedly accompanied by large volumes of hot spring water charged with boron. In contact with limestone or water containing calcium, the borate of calcium undoubtedly would be formed as it does now at some hot springs and fumaroles.

Van't Hoff\(^1\) has produced pandermite (\(\text{Ca}_4\text{B}_2\text{O}_{38}.15\text{H}_2\text{O}\)) and colemanite from the heptaborate (\(\text{Ca}_2\text{B}_8\text{O}_{11}.7\text{H}_2\text{O}\)) and states that ulexite, pandermite, and probably colemanite can be formed at temperatures from 25° C. upward. Regarding the separation of borates he states that while the first salts precipitated in oceanic waters are calcium salts, different relations exist with the borates; for these the saturation point is not reached until carnallite is precipitated. A number of rare secondary borates are formed from boracite, but only slowly. Boracite occurring in secondary kainite, “hartsalz,” gypsum, or anhydrite is probably an unaltered residue. All this does not assist in explaining

\(^1\) J. H. van't Hoff, Zur Bildung der ozeanischen Salzablagerungen, 2, 1909, pp. 45–75.
how colemanite can form with gypsum in the Californian lake beds in the earlier stages of the process of desiccation. Further investigations into the conditions of deposition of colemanite are highly desirable.

SODIUM CHLORIDE

Occurrence.—Sodium chloride or common salt forms beds in sedimentary rocks and in most cases its derivation by evaporation of saline solutions is clear. Only a small part of the four million tons of salt produced in the United States is mined in solid form. Most of it is obtained from brines derived from solution of salt beds by natural waters or by water forced down into bore-holes to the saline strata; much also is produced by evaporation of sea water or water of saline lakes, such as the Great Salt Lake of Utah.

Salt beds are present in formations of different ages, but are perhaps most common in the Permian and Triassic strata; the oldest saline rocks in the United States are those of the Silurian in New York State. As may be easily understood from the general statements on previous pages, strata of calcium sulphate are ordinarily associated with salt beds and should appear below them; owing to recurrent and shifting epochs of desiccation the order may be reversed and gypsum beds appear above the salt. It is also very common to find crystals or streaks of anhydrite or gypsum with salt, as well as streaks of clay. In thickness salt beds vary enormously—from the thinnest strata to masses 1,500 feet or even more in depth. A bore-hole near Speerenberg, in the German potash region, penetrated 3,900 feet of salt, but here, as in so many other places, the apparent thickness may be deceptive, being due to movements of folding and faulting. Besides, the plasticity of salt is remarkably great, much greater than that of the accompanying clays and anhydrite, and this, as the German geologists have found, leads to most astonishing and confusing stratigraphic relations.

From the calcium sulphate secondary sulphur often results and may form thick beds. Hydrocarbons and carbon dioxide are

Mineral Industry (annual issues).

often contained as inclusions in the salt. The difficulties of accounting for the great thickness of salt beds have already been referred to. It is evident that by evaporation of sea water with 3.5 per cent. salt in a basin 100 meters deep a bed less than 2 meters of salt would accumulate. The theories of Ochsenius and Walther attempt to explain this in different ways, as described on previous page.
pages. The special conditions in Louisiana will be referred to later.

Examples.—Salt beds occur in New York State in the red Salina shales of the Silurian and underlie a considerable area. Much of the salt is recovered from artificial brines. The salt forms pure lenticular masses and layers interbedded with soft shales, limestone, and gypsum, the salt-bearing formation having a variable thickness up to 470 feet (Fig. 91). At Ithaca several beds of salt occur at a depth of 2,244 feet with a total thickness of 248 feet. A magnesian limestone, containing gypsum, lies above. Rock salt is mined at several places, one shaft lately opened at Cuyler ville being 1,100 feet deep and reaching a salt bed 21 feet in thickness. Salt has also been mined near the outercrops of the beds at Livonia. Similar beds are worked in Ohio by bore-holes and brines.

The greatest salt production in the United States is derived from Michigan. The salt occurs as large beds at different

1 A. C. Lane, Mineral Industry, vol. 16, 1907; also vol. 19, 1910.
horizons in the Salina formation and also in the sandstones of the Mississippian or Lower Carboniferous (Fig. 92). The salt is recovered by means of natural and artificial brines; bromine, in which these brines are unusually rich, is recovered as a by-product of the final mother liquor. Deep mining has been undertaken under considerable difficulties near Detroit.

Kansas is likewise among the great producers. Some salt is obtained from salt springs in the Carboniferous and on the "salt plains" leached from Permian beds. From the latter the principal product is derived; it occurs interstratified with shales, the total thickness of the salt beds being at most 500 feet. Some of the beds are said to be over 200 feet thick, but generally they are much less (Fig. 93).

In the western arid States playa deposits of salt are common in the dry basins between the ranges; they are usually thin, though at Danby, in southern California, there are solid beds 22 feet in thickness, according to Bailey.2

The most noted deposit is that of Salton, Imperial County, where the basin lies below the level of the sea. Before the recent flooding by the Colorado River an important production was maintained here. A large area is covered by salt crusts 10 to 20 inches in thickness. Below this lies a thin mud deposit covering another salt crust. Deeper borings encountered 22 feet of black mud containing salt and soda, and this covers 270 feet of hard clay.3

The desert regions of northern Africa and central Asia offer similar occurrences in abundance.

Large deposits of impure salt mixed with clay have been worked for a long time in the Alpine Triassic of Tyrol; they lie between limestone beds. Another important saline region fringes the outside of the Carpathian chain in Roumania, Transylvania, and Galicia and is contained in Miocene sands and clays. The beds are generally greatly disturbed, brecciated, and pressed. The best-known place where mining is carried on is the celebrated mine of Wieliczka, in Galicia, now about 1,000 feet deep, which is much visited by tourists on account of the picturesque and extensive workings with elaborate carvings in solid salt. The salt beds of the Stassfurt region will be described later.

1 M. Z. Kirk, Mineral resources of Kansas, Univ. Geol. Surv., 1898.
2 G. E. Bailey, Bull. No. 24, State Mining Bureau, p. 128.
3 G. E. Bailey, op. cit., p. 126.
The Salt Deposits of Louisiana. — The greatest salt deposits in the United States have been discovered by borings in Louisiana and the adjoining coast belt of Texas; they show many unusual features and some difficulty has been experienced in explaining their genesis. Above the low and swampy coast west of New Orleans rise a number of low mounds or knolls and below these most of the salt has been found. It does not occur in regular beds, but as enormous subterranean domes, surrounded on all sides by thick and often steeply dipping beds of Quaternary and Tertiary clays and sands. At some places a thin-bedded Cre-
the salt in some places, or again the salt may be overlain (as at Spindletop, Texas) by several hundred feet of a porous limestone carrying oil. The dip of the loose strata forming the outside of the dome is steep and bore-holes only a short distance from those disclosing salt may fail to encounter it. Naturally the published sections, based on a few bore-holes, are more or less problematical as to structure.

These enormous salt resources are as yet little utilized. Rock salt was mined in 1911 at Weeks Island, where the shaft is 645 feet deep, and at Avery Island, at a depth of about 500 feet. The shafts are sunk in heavy, wet ground until the impermeable salt is reached. In places there is considerable danger of flooding the mine by driving into the loose strata.

According to R. T. Hill, these wonderful salt domes are deposited by ascending solutions; the uplift of surrounding strata is caused by the hydrostatic pressure of salt solutions and oil rising through fissured rocks. According to L. Hager and A. C. Veatch, the domes are uplifts caused by laccolithic intrusions. According to G. D. Harris, the uplifts are produced by the expanding power of growing salt crystals, the concentrated solutions rising at the intersections of fissures; the salt is derived from underlying Paleozoic or Mesozoic beds. None of these views are fully convincing.

Harris's hypothesis is based on what is practically an unknown quantity—the expansive force of growing crystals; this force has often been appealed to for the explanation of the filling of fissure veins, but with little success. But granted the competency of this lifting force, the salt solutions must have been concentrated to a most unusual degree. As the solubility of salt increases only slightly with increase in temperature (35.69 per cent. at 10° C.; 39.12 per cent. at 100°; 44.90 per cent. at 180°), only the increment could have been precipitated as the temperature of the ascending current was lowered, and hence the quantity of primary salt required by this hypothesis is incredibly large.

Anhydrite is deposited in narrow bands in the rock salt, in a manner closely simulating sedimentation; and it is very doubtful whether any such structure could be produced under the circumstances predicated by Harris's hypothesis. For the thick beds of anhydrite and gypsum above the salt a similar deposition by ascending waters is assumed by Harris, but the solubility of gypsum and anhydrite decreases rapidly with increasing temperature,
hence it taxes one’s credulity to believe that enormous masses of calcium sulphate were deposited by ascending and cooling solutions.

The Louisiana rock salt is said to be exceptionally pure, but the analyses do not fully substantiate this assertion. Much of it contains some calcium sulphate.

One point should not be overlooked in attempting to explain these remarkable deposits—the extraordinary plasticity of rock salt, which yields far more easily to pressure than the surrounding rocks. (See Fig. 95.) A résumé of the occurrence and structure of salt domes has recently been given by F. F. Hahn, who points out that very similar conditions exist in some deposits of northern Germany and Transylvania.

Composition.—Rock salt is usually very pure aside from the occasionally occurring admixture of clay, the tenor in NaCl ranging from 96 to 99 per cent. Calcium sulphate is the principal impurity and is often present to the amount of over 1 per cent. Salt from some desert lakes contains sodium carbonate and sulphate. (For analyses see Clarke’s Geochemistry, Bull. U. S. Geol. Survey, No. 491, p. 219.)

Use.—The wide range of uses of salt for culinary, preservative, and industrial purposes need not be specified. Large amounts are used in the manufacture of other sodium salts, particularly the carbonate.

THE GERMAN POTASSIUM SALTS

If carried to its conclusion the process of evaporation of sea water will result in the deposition of the easily soluble chlorides and sulphates of potassium and magnesium, also chloride of calcium. Evidently this seldom takes place, in part for the reason given on page 271. Almost the only locality thus far discovered where the whole sequence of salts is present is in central Germany, north and south of the Harz Mountains, in formations of Permian age. These deposits are now mined by about fifty

1 Econ. Geology, vol. 7, 1912, pp. 120–135.
2 H. Precht, Die Salz industrie von Staafurt, 1889.
R. Ehrhardt, Die Kalı-Industrie, 1907.
E. Pfeiffer, Handbuch der Kalı-Industrie, 1887.
Beyschlag, Everding, Erdmann, Loewe, and Paxmann, Deutschlands Kalıbergbau, 1907.
companies and yield annually about six million tons of potassium salts, of which 85 per cent. is used as soil fertilizer and the remainder for general industrial purposes. The value of this production is about $30,000,000. The mining is done exclusively by shafts from 1,000 to 2,500 feet deep. Circular shafts lined with concrete or iron tubing are used and the greatest caution is necessary to prevent influx of water during sinking or working. If

![Diagram](https://via.placeholder.com/150)

Fig. 95.—Section of the Stassfurt-Egeln anticline. *After Everding.*

the water once breaks in, the mine will probably have to be abandoned; the old workings are filled with waste or rock salt.

Some of the products are sold for fertilizers without further chemical treatment. Carnallite is the most important of these, and next to it comes kainite; as mined, both are mixed with 30 or 40 per cent. of common salt. Other chemical products from carnallite and other salts are chloride and sulphate of
DEPOSITS FORMED BY EVAPORATION

potassium and potassium-magnesium sulphate. Kieserite is refined to magnesium sulphate.

The larger part of the bromine production of the world is also obtained from the mother liquor resulting from the solution of the Stassfurt salts. The remaining part is derived from the brines of Michigan.

The potassium salts lie as a relatively thin series of strata over a heavy bed of rock salt in the Permian and are in turn covered by Triassic sandstones and limestones, and finally by the Tertiary and Quaternary beds. They form a series of faulted synclines and anticlines, in places approaching closely to the surface, but here generally changed by secondary leaching processes (Fig. 95).

The general section is as follows,\(^1\) counted from the bottom of the Triassic sandstone.

<table>
<thead>
<tr>
<th>No.</th>
<th>Thickness in meters</th>
<th>Character of strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 to 30</td>
<td>Red clay with a little anhydrite and rock salt.</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Rock salt.</td>
</tr>
<tr>
<td>3</td>
<td>1 to 5</td>
<td>Anhydrite with salt.</td>
</tr>
<tr>
<td>4</td>
<td>5 to 15</td>
<td>Red clay with anhydrite and rock salt.</td>
</tr>
<tr>
<td>5</td>
<td>100 to 150</td>
<td>Younger rock salt.</td>
</tr>
<tr>
<td>6</td>
<td>40 to 90</td>
<td>Main anhydrite.</td>
</tr>
<tr>
<td>7</td>
<td>4 to 10</td>
<td>Salt clay.</td>
</tr>
<tr>
<td>8</td>
<td>30 to 40</td>
<td>Carnallite zone. Carnallite (\text{KCl.MgCl}_2+6\text{H}_2\text{O}).</td>
</tr>
<tr>
<td>9</td>
<td>20 to 40</td>
<td>Kieserite zone. Kieserite (\text{MgSO}_4+\text{H}_2\text{O}).</td>
</tr>
<tr>
<td>10</td>
<td>40 to 60</td>
<td>Polyhalite zone. Polyhalite (2\text{CaSO}_4.\text{MgSO}_4.\text{K}_2\text{SO}_4+2\text{H}_2\text{O}).</td>
</tr>
<tr>
<td>11</td>
<td>300 to 500</td>
<td>Older rock salt, with narrow streaks of anhydrite, interpreted as annual deposits.</td>
</tr>
<tr>
<td>12</td>
<td>70 to 100</td>
<td>Older anhydrite.</td>
</tr>
<tr>
<td>13</td>
<td>4 to 10</td>
<td>Limestone (Zechstein Kalk). Marine deposit.</td>
</tr>
<tr>
<td>14</td>
<td>0.5 to 4</td>
<td>Black copper-bearing shale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conglomerate.</td>
</tr>
</tbody>
</table>

Lower Permian and Carboniferous beds

| 8 to 11 | Older series, closed by potassium salts. |
| 1 to 7 | Younger series, without potassium salts. |

\(^1\) H. Everding, Deutschlands Kalibergbau, p. 36.
of borax at Searles Marsh (60 miles north of Barstow), Death Valley, and other places. Though enormous quantities of these salts remain they are now of little or no importance; the richer and more easily worked colemanite deposits have replaced them. The crusts are rarely more than 1 foot thick, the percentage of borax varying considerably. According to Bailey, the crude salt from Searles Marsh yielded 50 per cent. sand, 12 per cent. sodium chloride, 10 per cent. sodium carbonate, 16 per cent. sodium sulphate, and 12 per cent. borax. Borings showed 20 feet of clay and sand with crystals of calcium borate, underlain by a bed of solid trona 28 feet thick, and below this 350 feet of clays impregnated with hydrogen sulphide. After removal of the crust another is slowly produced by capillary action. On ground that had been worked over, a new crust formed that was thick enough to remove in 3 or 4 years. The area productive of borax amounts to about 1,700 acres, slightly depressed below the general level of the playa, on which in wet seasons stands about 1 foot of water.

Though no ulexite was found at Searles Marsh, it is common in many other playas deposits, both in California and Nevada and in Argentina; it usually forms concretions of silky fiber, known as cotton balls.

Tertiary Lake Beds.—The borates in the marshes and playas have undoubtedly been leached from the older deposits in the Tertiary lake beds, which have been recognized at many points in Inyo, San Bernardino, Kern, Los Angeles, and Ventura counties, California. These beds yield colemanite almost exclusively and it is evident that the borax and ulexite of the marshes are simply products of secondary reactions of the leached colemanite with the sodium salts of the playas.

These colemanite deposits begin near the Pacific coast at Piru, Ventura County, and near Saugus, Los Angeles County, where, according to Keyes, they lie in a series of yellow clays and sandstones probably Miocene in age and several thousand feet in thickness. The mineral is present as nodules in clay, and above the borate beds are strata of gypsum.

Other important beds are in the foot-hills of the Calico Mountains north of the Mojave River; they have a steep dip and have been mined by shafts to a depth of 400 feet. These large masses of low-grade colemanite shales, with 7 to 20 per cent. boric acid, are not mined now, attention being confined to
two solid beds of the mineral 7 to 10 feet thick. Rhyolite tuffs lie underneath the borate beds.

The richest colemanite beds are, however, in the Furnace Creek region of the Funeral Range, which overlooks Death Valley, in Inyo County (Fig. 90). About 4,000 feet of Tertiary non-fossiliferous sediments are recognized here, which form a broad belt obliquely crossing the range and dipping 20° to 45° N. E. The lower and thicker part, according to Keyes, consists of conglomerates and sandstones, above which are olive-colored clays interbedded with basalts. The upper part of the clay series carries gypsum, colemanite, and thin layers of limestone. The

![Image](https://example.com/image.png)

Fig. 90.—Lila C. borate mine, Inyo County, California.

borate beds are traceable for 25 miles. Within the colemanite-bearing beds, which may be as much as 50 feet thick, the bluish clays are thickly interspersed with milky white layers or nodules of the white crystalline mineral, mingled with more or less gypsum, according to Keyes. The solid layers may be 15 feet thick. Near by the clays are impregnated with fine particles of colemanite and yield 10 to 25 per cent. boric acid, but these low-grade deposits are not utilized at present.

Production and Uses.—The borate industry is now concentrated in southeastern California and it is capable of great expansion if additional uses can be found for the salts. From 25,000 to 50,000 tons of crude colemanite are mined per annum by underground methods through inclines. The richest mineral is hand-sorted, and the poorer grades are milled, roasted, and screened, the last
process effecting the separation of the colemanite from the gangue. The products are shipped direct to New Jersey, where there are large refining works in which the material is manufactured into borax and boric acid. The further treatment involves boiling with soda for the manufacture of borax or with sulphuric acid if boric acid is desired. Under the influence of these new discoveries the price of borax has gradually decreased from 39 cents per pound in 1864 to about 4 cents in 1908.

Borax and boric acid are extensively used in industrial chemistry, in medicine, and in the household.

Origin.—The genesis of the Tertiary borate beds of California is not entirely clear. They differ so radically from the marine deposits of Germany, both in mineralogy and association, that a different origin must be assigned. The presence of so much borate of calcium at one horizon probably indicates a temporary epoch of desiccation in a period of generally greater precipitation than at present. The beds associated with the borate were probably deposited in a shallow and drying lake. When we further consider the abundance of borate *playas* throughout western Nevada and eastern Oregon, and the probable occurrence of leaner colemanite deposits in the Tertiary lake beds of those regions, the marine hypothesis becomes decidedly untenable. Throughout the deposition of the lake beds intense volcanic activity persisted, undoubtedly accompanied by large volumes of hot spring water charged with boron. In contact with limestone or water containing calcium, the borate of calcium undoubtedly would be formed as it does now at some hot springs and fumaroles.

Van't Hoff has produced pandermite \((\text{Ca}_9\text{B}_2\text{O}_{18} \cdot 15\text{H}_2\text{O})\) and colemanite from the heptaborate \((\text{Ca}_2\text{B}_2\text{O}_{11} \cdot 7\text{H}_2\text{O})\) and states that ulexite, pandermite, and probably colemanite can be formed at temperatures from 25° C. upward. Regarding the separation of borates he states that while the first salts precipitated in oceanic waters are calcium salts, different relations exist with the borates; for these the saturation point is not reached until carnallite is precipitated. A number of rare secondary borates are formed from boracite, but only slowly. Boracite occurring in secondary kainite, "hartsalz," gypsum, or anhydrite is probably an unaltered residue. All this does not assist in explaining

1 J. H. van't Hoff, Zur Bildung der ozeanischen Salzablagerungen, 2, 1909, pp. 45–75.
how colemanite can form with gypsum in the Californian lake beds in the earlier stages of the process of desiccation. Further investigations into the conditions of deposition of colemanite are highly desirable.

SODIUM CHLORIDE

Occurrence. Sodium chloride or common salt forms beds in sedimentary rocks and in most cases its deriviation by evaporation of saline solutions is clear. Only a small part of the four million tons of salt produced in the United States is mined in solid form. Most of it is obtained from brines derived from solution of salt beds by natural waters or by water forced down into bore-holes to the saline strata; much also is produced by evaporation of sea water or water of saline lakes, such as the Great Salt Lake of Utah.

Salt beds are present in formations of different ages, but are perhaps most common in the Permian and Triassic strata; the oldest saline rocks in the United States are those of the Silurian in New York State. As may be easily understood from the general statements on previous pages, strata of calcium sulphate are ordinarily associated with salt beds and should appear below them; owing to recurrent and shifting epochs of desiccation the order may be reversed and gypsum beds appear above the salt. It is also very common to find crystals or streaks of anhydrite or gypsum with salt, as well as streaks of clay. In thickness salt beds vary enormously—from the thinnest strata to masses 1,500 feet or even more in depth. A bore-hole near Speerenberg, in the German potash region, penetrated 3,900 feet of salt, but here, as in so many other places, the apparent thickness may be deceptive, being due to movements of folding and faulting. Besides, the plasticity of salt is remarkably great, much greater than that of the accompanying clays and anhydrite, and this, as the German geologists have found, leads to most astonishing and confusing stratigraphic relations.

From the calcium sulphate secondary sulphur often results and may form thick beds. Hydrocarbons and carbon dioxide are

Mineral Industry (annual issues).
often contained as inclusions in the salt. The difficulties of accounting for the great thickness of salt beds have already been referred to. It is evident that by evaporation of sea water with 3.5 per cent. salt in a basin 100 meters deep a bed less than 2 meters of salt would accumulate. The theories of Ochsenius and Walther attempt to explain this in different ways, as described on previous

Fig. 91.—Sections of salt wells, Tully, New York. After F. J. H. Merrill.
DEPOSITS FORMED BY EVAPORATION

pages. The special conditions in Louisiana will be referred to later.

Examples.—Salt beds occur in New York State in the red Salina shales of the Silurian and underlie a considerable area. Much of the salt is recovered from artificial brines. The salt forms pure lenticular masses and layers interbedded with soft shales, limestone, and gypsum, the salt-bearing formation having a variable thickness up to 470 feet (Fig. 91). At Ithaca several beds of salt occur at a depth of 2,244 feet with a total thickness of 248 feet. A magnesian limestone, containing gypsum, lies above. Rock salt is mined at several places, one shaft lately opened at Cuylerville being 1,100 feet deep and reaching a salt bed 21 feet in thickness. Salt has also been mined near the outcrops of the beds at Livonia. Similar beds are worked in Ohio by bore-holes and brines.

The greatest salt production in the United States is derived from Michigan. The salt occurs as large beds at different

1 A. C. Lane, Mineral Industry, vol. 16, 1907; also vol. 19, 1910.
horizons in the Salina formation and also in the sandstones of the Mississippian or Lower Carboniferous (Fig. 92). The salt is recovered by means of natural and artificial brines; bromine, in which these brines are unusually rich, is recovered as a by-product of the final mother liquor. Deep mining has been undertaken under considerable difficulties near Detroit.

Kansas is likewise among the great producers.¹ Some salt is obtained from salt springs in the Carboniferous and on the “salt plains” leached from Permian beds. From the latter the principal product is derived; it occurs interstratified with shales, the total thickness of the salt beds being at most 500 feet. Some of the beds are said to be over 200 feet thick, but generally they are much less (Fig. 93).

In the western arid States playa deposits of salt are common in the dry basins between the ranges; they are usually thin, though at Danby, in southern California, there are solid beds 22 feet in thickness, according to Bailey.²

The most noted deposit is that of Salton, Imperial County, where the basin lies below the level of the sea. Before the recent flooding by the Colorado River an important production was maintained here. A large area is covered by salt crusts 10 to 20 inches in thickness. Below this lies a thin mud deposit covering another salt crust. Deeper borings encountered 22 feet of black mud containing salt and soda, and this covers 270 feet of hard clay.³

The desert regions of northern Africa and central Asia offer similar occurrences in abundance.

Large deposits of impure salt mixed with clay have been worked for a long time in the Alpine Triassic of Tyrol; they lie between limestone beds. Another important saline region fringes the outside of the Carpathian chain in Roumania, Transylvania, and Galicia and is contained in Miocene sands and clays. The beds are generally greatly disturbed, brecciated, and pressed. The best-known place where mining is carried on is the celebrated mine of Wieliczka, in Galicia, now about 1,000 feet deep, which is much visited by tourists on account of the picturesque and extensive workings with elaborate carvings in solid salt. The salt beds of the Stassfurt region will be described later.

¹ M. Z. Kirk, Mineral resources of Kansas, Univ. Geol. Surv., 1898.
² G. E. Bailey, Bull. No. 24, State Mining Bureau, p. 128.
³ G. E. Bailey, op. cit., p. 128.
The Salt Deposits of Louisiana. — The greatest salt deposits in the United States have been discovered by borings in Louisiana and the adjoining coast belt of Texas; they show many unusual features and some difficulty has been experienced in explaining their genesis. Above the low and swampy coast west of New Orleans rise a number of low mounds or knolls and below these most of the salt has been found. It does not occur in regular beds, but as enormous subterranean domes, surrounded on all sides by thick and often steeply dipping beds of Quaternary and Tertiary clays and sands. At some places a thin-bedded Cre-

![Diagram](image)

Fig. 94.—Approximate cross-section of the Anse-La-Butte salt deposit, Louisiana. *After G. D. Harris.*

taceous limestone appears at the surface. Fig. 94 gives a suggestion of the strange relations encountered. At Petite Anse, according to Harris, the drill shows 2,263 feet of almost pure salt, followed by 70 feet of foreign matter, below which the drill again enters rock salt of unknown thickness. On Côte Carline the drill entered salt at 334 feet and continued in salt without change till the drilling ceased at 2,090 feet.

Oil, gas, and sulphur are often met in the drill-holes. Gypsum and anhydrite, in beds 200, 400, or even 600 feet thick cover

the salt in some places, or again the salt may be overlain (as at Spindletop, Texas) by several hundred feet of a porous limestone carrying oil. The dip of the loose strata forming the outside of the dome is steep and bore-holes only a short distance from those disclosing salt may fail to encounter it. Naturally the published sections, based on a few bore-holes, are more or less problematical as to structure.

These enormous salt resources are as yet little utilized. Rock salt was mined in 1911 at Weeks Island, where the shaft is 645 feet deep, and at Avery Island, at a depth of about 500 feet. The shafts are sunk in heavy, wet ground until the impermeable salt is reached. In places there is considerable danger of flooding the mine by driving into the loose strata.

According to R. T. Hill, these wonderful salt domes are deposited by ascending solutions; the uplift of surrounding strata is caused by the hydrostatic pressure of salt solutions and oil rising through fissured rocks. According to L. Hager and A. C. Veatch, the domes are uplifts caused by laccolithic intrusions. According to G. D. Harris, the uplifts are produced by the expanding power of growing salt crystals, the concentrated solutions rising at the intersections of fissures; the salt is derived from underlying Paleozoic or Mesozoic beds. None of these views are fully convincing.

Harris's hypothesis is based on what is practically an unknown quantity—the expansive force of growing crystals; this force has often been appealed to for the explanation of the filling of fissure veins, but with little success. But granted the competency of this lifting force, the salt solutions must have been concentrated to a most unusual degree. As the solubility of salt increases only slightly with increase in temperature (35.69 per cent. at 10° C.; 39.12 per cent. at 100°; 44.90 per cent. at 180°), only the increment could have been precipitated as the temperature of the ascending current was lowered, and hence the quantity of primary salt required by this hypothesis is incredibly large.

Anhydrite is deposited in narrow bands in the rock salt, in a manner closely simulating sedimentation; and it is very doubtful whether any such structure could be produced under the circumstances predicated by Harris's hypothesis. For the thick beds of anhydrite and gypsum above the salt a similar deposition by ascending waters is assumed by Harris, but the solubility of gypsum and anhydrite decreases rapidly with increasing temperature,
hence it taxes one's credulity to believe that enormous masses of calcium sulphate were deposited by ascending and cooling solutions.

The Louisiana rock salt is said to be exceptionally pure, but the analyses do not fully substantiate this assertion. Much of it contains some calcium sulphate.

One point should not be overlooked in attempting to explain these remarkable deposits—the extraordinary plasticity of rock salt, which yields far more easily to pressure than the surrounding rocks. (See Fig. 95.) A résumé of the occurrence and structure of salt domes has recently been given by F. F. Hahn, who points out that very similar conditions exist in some deposits of northern Germany and Transylvania.

Composition.—Rock salt is usually very pure aside from the occasionally occurring admixture of clay, the tenor in NaCl ranging from 96 to 99 per cent. Calcium sulphate is the principal impurity and is often present to the amount of over 1 per cent. Salt from some desert lakes contains sodium carbonate and sulphate. (For analyses see Clarke's Geochemistry, Bull. U. S. Geol. Survey, No. 491, p. 219.)

Use.—The wide range of uses of salt for culinary, preservative, and industrial purposes need not be specified. Large amounts are used in the manufacture of other sodium salts, particularly the carbonate.

THE GERMAN POTASSIUM SALTS

If carried to its conclusion the process of evaporation of sea water will result in the deposition of the easily soluble chlorides and sulphates of potassium and magnesium, also chloride of calcium. Evidently this seldom takes place, in part for the reason given on page 271. Almost the only locality thus far discovered where the whole sequence of salts is present is in central Germany, north and south of the Harz Mountains, in formations of Permian age. These deposits are now mined by about fifty

1 Econ. Geology, vol. 7, 1912, pp. 120–135.
2 H. Precht, Die Salz industrie von Staassfurt, 1889.
R. Ehrhardt, Die Kali-Industrie, 1907.
E. Pfeiffer, Handbuch der Kali-Industrie, 1887.
Beyenschlag, Everding, Erdmann, Loewe, and Paxmann, Deutschlands Kalibergbau, 1907.
companies and yield annually about six million tons of potassium salts, of which 85 per cent. is used as soil fertilizer and the remainder for general industrial purposes. The value of this production is about $30,000,000. The mining is done exclusively by shafts from 1,000 to 2,500 feet deep. Circular shafts lined with concrete or iron tubing are used and the greatest caution is necessary to prevent influx of water during sinking or working. If

![Diagram showing a section of the Stassfurt-Egeln anticline.]

Fig. 95.—Section of the Stassfurt-Egeln anticline. After Everding.

the water once breaks in, the mine will probably have to be abandoned; the old workings are filled with waste or rock salt.

Some of the products are sold for fertilizers without further chemical treatment. Carnallite is the most important of these, and next to it comes kainite; as mined, both are mixed with 30 or 40 per cent. of common salt. Other chemical products from carnallite and other salts are chloride and sulphate of
potassium and potassium-magnesium sulphate. Kieserite is refined to magnesium sulphate.

The larger part of the bromine production of the world is also obtained from the mother liquor resulting from the solution of the Stassfurt salts. The remaining part is derived from the brines of Michigan.

The potassium salts lie as a relatively thin series of strata over a heavy bed of rock salt in the Permian and are in turn covered by Triassic sandstones and limestones, and finally by the Tertiary and Quaternary beds. They form a series of faulted synclines and anticlines, in places approaching closely to the surface, but here generally changed by secondary leaching processes (Fig. 95).

The general section is as follows,\(^1\) counted from the bottom of the Triassic sandstone.

<table>
<thead>
<tr>
<th>No.</th>
<th>Thickness in meters</th>
<th>Character of strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 to 30.</td>
<td>Red clay with a little anhydrite and rock salt.</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Rock salt.</td>
</tr>
<tr>
<td>3</td>
<td>1 to 5.</td>
<td>Anhydrite with salt.</td>
</tr>
<tr>
<td>4</td>
<td>5 to 15.</td>
<td>Red clay with anhydrite and rock salt.</td>
</tr>
<tr>
<td>5</td>
<td>100 to 150.</td>
<td>Younger rock salt.</td>
</tr>
<tr>
<td>6</td>
<td>40 to 90.</td>
<td>Main anhydrite.</td>
</tr>
<tr>
<td>7</td>
<td>4 to 10.</td>
<td>Salt clay.</td>
</tr>
<tr>
<td>8</td>
<td>30 to 40.</td>
<td>Carnallite zone. Carnallite ((KCl\cdot MgCl_2 + 6H_2O)).</td>
</tr>
<tr>
<td>9</td>
<td>20 to 40.</td>
<td>Kieserite zone. Kieserite ((MgSO_4 + H_2O)).</td>
</tr>
<tr>
<td>10</td>
<td>40 to 60.</td>
<td>Polyhalite zone. Polyhalite ((2CaSO_4\cdot MgSO_4\cdot K_2SO_4 + 2H_2O)).</td>
</tr>
<tr>
<td>11</td>
<td>300 to 500.</td>
<td>Older rock salt, with narrow streaks of anhydrite, interpreted as annual deposits.</td>
</tr>
<tr>
<td>12</td>
<td>70 to 100.</td>
<td>Older anhydrite.</td>
</tr>
<tr>
<td>14</td>
<td>0.5 to 4.</td>
<td>Black copper-bearing shale. Conglomerate.</td>
</tr>
</tbody>
</table>

\(^1\) H. Everding, Deutschlands Kalibergbau, p. 36.

Lower Permian and Carboniferous beds

8 to 11. Older series, closed by potassium salts.

1 to 7. Younger series, without potassium salts.
Rock salt is really present throughout the section, for the carnallite zone, which yields the greatest quantity of crude product, contains only about 55 per cent. of carnallite, including also 25 per cent. rock salt and 16 per cent. kieserite. The kieserite zone yields 65 per cent. rock salt and only 17 per cent. kieserite. Rock salt, kieserite, sylvite (KCl), carnallite (KCl·MgCl₂·6H₂O), and kainite (KCl·MgSO₄·3H₂O) are the main products.

The German geologists have shown that extensive secondary changes have taken place in the salt beds—in part immediately after the deposition, in part much later, following the Triassic sedimentation and progressing even now. These post-Triassic changes have occurred both in thecroppings and at greater depth. The minerals just enumerated may occur in all three generations, but in addition a large number of more or less complicated secondary compounds were formed.

Kainite is a secondary product derived from carnallite by the leaching of MgCl₂. It forms along the crests of the anticlines. Under some circumstances a secondary mixture of potassium chloride, kieserite, and salt would be formed instead of kainite, and this constitutes an important product under the name sylvite or "hartsalz." Secondary deposits of the older type appear in the form of sylvite between the carnallite and the salt clay. In all these transformations the products are very complex.

Van't Hoff¹ and his associates have studied the various combinations of salts in order to ascertain their fields of existence at temperatures ranging from 25° to 85° C. In this way they have arrived at the temperatures of stability of the various salts and consequently ascertained the minimum temperature at which they were formed. Sylvite and carnallite are stable in concentrated NaCl solutions from 0° to 85° C. Many of the rarer salts (langbeinite (2MgSO₄·K₂SO₄), for instance) are stable under these conditions only from 37° C. upward.

Some of the temperatures required may seem high; kieserite with sylvite, for instance, forming above 72° C. There is, indeed, some danger in using the laboratory results to explain the processes of nature, for the important element of time probably plays a considerable part in these reactions.

It has been shown by measurements, however, that the temperature in the middle depths of evaporating salt lakes is

¹ Van’t Hoff, Die ozeanischen Salzablagerungen, 1905 and 1909.
DEPOSITS FORMED BY EVAPORATION

surprisingly high. Interesting results were obtained by A. V. Kalezinsky, who found the temperatures of certain Hungarian salt lakes to be as much as 71° during the summer at a depth of 1.3 meters, while the surface and the bottom layers were much cooler, about 20° C.

OTHER SOURCES OF POTASSIUM SALTS

In all countries where agriculture has been carried on for a long time potassium salts are necessary, together with phosphates and nitrogen compounds, to increase the fertility of the soil. Germany is the only country in which potassium salts in easily available form occur on a large scale and it is therefore natural that careful search has been made in other countries for materials available for the production of such salts.

Smaller quantities of potassium salts have been discovered in Alsace, Tyrol, Galicia, and India, but these deposits are as yet of little importance.

Potassium in Rocks and Minerals.—Granites, pegmatites, some phonolites, and some leucite rocks contain a considerable amount of potassium, varying from 5 to 12 per cent. Unfortunately there is great difficulty in transforming the insoluble potassium silicates contained in the orthoclase, leucite, or glassy base in these rocks into soluble salts. Some pegmatite dikes, composed largely of orthoclase, yield even more than 12 per cent. of potash. If orthoclase or any potassium-bearing rock is ground to fine powder and slaked with water a certain small percentage of potash salt is converted into soluble form, probably as a potassium silicate, and it is said that such finely ground powder has some slight fertilizing power. Processes have been patented by A. S. Cushman and others based on electrolytic treatment of the slided rock or treatment with quicklime and

calcium chloride and subsequent calcining, methods by which soluble potassium salts are said to be set free. None of these processes has thus far been applied on a large scale.

Greensand marls—for instance, the Cretaceous beds in New Jersey—contain from 3 to 6 per cent. of potash besides some phosphoric acid, the former in glauconite, the latter in calcium phosphate. These marls are used in their crude state as fertilizers and the recovery in soluble form of their potassium content has been proposed, but the practical application has not as yet been attempted.

Another source of potassium has been sought in the mineral alunite, which is a hydrous potassium-aluminum sulphate of inconspicuous appearance, white or pink, compact or fine granular, rarely coarse granular. The formula of the mineral is \(K_2O \cdot 3Al_2O_3 \cdot 4SO_3 \cdot 6H_2O \); and it contains from 8 to 11 per cent. of potash. It occurs mainly in volcanic regions, as a product of rock alteration, probably caused by waters containing sulphuric acid, and is much more common than the soluble natural alum which sometimes appears as efflorescences. The alunite is found disseminated in the rocks or in well-defined veins. Notable western occurrences are at Goldfield, Nevada; Marysvale, Utah; and the Rosita Hills, Colorado. Among the foreign deposits which have already been utilized are those at La Tolfa, in Italy; Almeria, in Spain; and Bullah Delah, in New South Wales. The transformation of alunite into soluble potassium sulphate is easily effected by calcination; part of the sulphuric acid and all of the water is volatilized, leaving soluble potassium sulphate and an insoluble residue of alumina. It is probable that the manufacture of potassium sulphate from alunite will soon be attempted in this country.

Potassium in Brines.—Potassium salts are easily soluble and therefore remain with calcium and magnesium chlorides in the last residues or mother liquors, the so-called "bitterns." Many natural brines pumped from bore-holes in salt-bearing beds contain some potassium and under favorable circumstances may be used for the recovery of these salts. Some of the Michigan brines from the Marshall formation of the lower Carboniferous (Fig. 92) contain from 3 to 5 grams per liter of potassium chloride; salt, calcium chloride, and bromine are recovered from these brines, but their potassium content appears to be too small for profitable recovery. In places certain well-defined strata
DEPOSITS FORMED BY EVAPORATION

yield natural brines or residual "bitterns." One such bittern from Fairport Harbor, in Ohio, on Lake Erie, contains, according to W. C. Phalen, in grams per liter, 7.4 KCl, 110.1 NaCl, 134.4 CaCl₂, 43.2 MgCl₂. Such a brine could possibly be utilized for the recovery of potassium. This stratum is almost 400 feet above the topmost salt bed from which artificial brines are pumped in Ohio.

Lakes in dry regions, especially in areas of former volcanic activity, contain appreciable quantities of potassium. The water of Owens Lake, in eastern California, yields almost 3 grams of potassium chloride per liter, but this can probably not be recovered with profit.

Evaporation in the Quaternary lakes of the Lahontan basin in Nevada and California has at many places resulted in deposits of salt of moderate thickness. Changes in drainage among these basins sometimes resulted in the residuary brines, richer in potash, being drawn off into a neighboring depression, and thus it happens, as at Searles Marsh, in San Bernardino County, California, that the salt bed, which here is almost 60 feet in thickness and covers an area of at least 11 square miles, is saturated with a strong brine unusually rich in potassium. In the dissolved salts of Searles Marsh there is almost 7 per cent. of K₂O, and profitable recovery appears to be possible.

Some small lakes in the "sand hill country" of Nebraska and Colorado contain a remarkably high percentage of potassium which it is thought may have become concentrated from the potash resulting from repeated burnings of the grass in the surrounding country.

The earliest source of potassium was, as is well known, ashes of vegetable matter. Seaweed is especially rich in this metal and also contains iodine.
CHAPTER XVII

MINERAL DEPOSITS RESULTING FROM PROCESSES OF
ROCK DECAY AND WEATHERING

GENERAL CONDITIONS

The uplifted sedimentary beds, the lavas of the volcanoes, the granular crystalline rocks uncovered by erosion—all these, when exposed at the surface of the earth, are subject to a series of changes, the sum total of which is called weathering. The agents are water, air, heat, and vegetable and animal life. Water is essential—without it very little decomposition could take place. Oxygen is also essential, and indeed we often speak of weathering as synonymous with oxidation. Carbon dioxide dissolved in water decomposes the minerals and hastens the process of solution. Change of temperature acts mainly by promoting disintegration, most powerfully by the expansion of water when freezing in cracks and crevices, a force sufficient to break and dislodge heavy rock masses. Vegetable life furnishes carbon dioxide and disintegrates the soil by the vital energy in the roots, and bacterial life changes its composition. Animals burrow in the ground, loosening it and effecting chemical changes.

Weathering differs from alteration and metamorphism in that its ultimate result is the destruction of the rock as a unit; its chemical processes are far more radical and intense than those of the depths. Weathering effaces the texture of the rocks and segregates their chemical compounds in ways wholly different from those of the other processes mentioned. Metals closely associated in the primary rocks part company and seek new associates. Segregations of large masses of single minerals are usually a result of the process. The ordinary silicates and the carbonates of iron, magnesium, and calcium are unstable in the belt of weathering. The uppermost thin mantle of the

G. P. Merrill, Rocks, rock-weathering, and soils, 1897.
E. W. Hilgard, Soils, 1906.
products of weathering we call the soil; in it the disintegra-
tion and chemical changes are carried to their limit; it is mixed
with the products of life, and its constituents and reactions are,
of course, of more interest to the agricultural chemist than to
the student of ore deposits.

The depth to which weathering extends differs greatly; in some
desert regions, recently glaciated areas, or areas covered by
fresh lava flows it is practically absent, disintegration being the
only visible effect. In regions of heavy vegetation and rainfall
the weathering may extend to a depth of 100 or even 200 feet;
along fractures in particularly permeable and soluble rocks like
limestone oxidation may be carried to still greater depth; in
mineral deposits its effects are in places felt for several hundred
or in extreme cases as much as 2,000 feet. As a rule, however,
weathering does not extend deeper than 50 feet, and its more
intense effects are usually limited to the zone above the sur-
face of underground water.

Disintegration and decomposition work together, but the
former is likely to extend deeper than the latter. The upper
layers, ordinarily colored red or brown by ferric iron, gradually
change into paler-colored, more or less softened and disintegrated
rock. In some areas, notably over limestone strata, there is a
sharp change to the unaltered rock—so sharp, indeed, that the
red clayey soil has often been taken for a different formation
resting on the calcareous rock.

Erosional transportation attends disintegration, and removal of
material by solution accompanies decomposition, both tending
strongly to reduce the volume of the rock. On the other hand,
hydration and the peculiar quality of absorption which the soils
possess tend to increase the volume. On the whole weathering
lessens the volume. According to G. P. Merrill the granites of
the District of Columbia may lose by weathering 13.5 per cent.
of their volume; T. L. Watson calculates the loss of granites of
Georgia at 7 to 72 per cent. The most marked loss is the shrink-
ing in residual clays derived from limestone; often it is more than
95 per cent. Whitney long ago arrived at the conclusion that
1 meter of residual clay in Wisconsin was derived from a thick-
ness of 35 to 40 meters of limestone or shale.

Except in the easily soluble rocks the decomposition is
never complete, for, as brought out by Cameron and Bell, even
in the fine soils abundant grains of the original minerals remain
the salt in some places, or again the salt may be overlain (as at Spindletop, Texas) by several hundred feet of a porous limestone carrying oil. The dip of the loose strata forming the outside of the dome is steep and bore-holes only a short distance from those disclosing salt may fail to encounter it. Naturally the published sections, based on a few bore-holes, are more or less problematical as to structure.

These enormous salt resources are as yet little utilized. Rock salt was mined in 1911 at Weeks Island, where the shaft is 645 feet deep, and at Avery Island, at a depth of about 500 feet. The shafts are sunk in heavy, wet ground until the impermeable salt is reached. In places there is considerable danger of flooding the mine by driving into the loose strata.

According to R. T. Hill, these wonderful salt domes are deposited by ascending solutions; the uplift of surrounding strata is caused by the hydrostatic pressure of salt solutions and oil rising through fissured rocks. According to L. Hager and A. C. Veatch, the domes are uplifts caused by laccolithic intrusions. According to G. D. Harris, the uplifts are produced by the expanding power of growing salt crystals, the concentrated solutions rising at the intersections of fissures; the salt is derived from underlying Paleozoic or Mesozoic beds. None of these views are fully convincing.

Harris's hypothesis is based on what is practically an unknown quantity—the expansive force of growing crystals; this force has often been appealed to for the explanation of the filling of fissure veins, but with little success. But granted the competency of this lifting force, the salt solutions must have been concentrated to a most unusual degree. As the solubility of salt increases only slightly with increase in temperature (35.69 per cent. at 10° C.; 39.12 per cent. at 100°; 44.90 per cent. at 180°), only the increment could have been precipitated as the temperature of the ascending current was lowered, and hence the quantity of primary salt required by this hypothesis is incredibly large.

Anhydrite is deposited in narrow bands in the rock salt, in a manner closely simulating sedimentation; and it is very doubtful whether any such structure could be produced under the circumstances predicated by Harris's hypothesis. For the thick beds of anhydrite and gypsum above the salt a similar deposition by ascending waters is assumed by Harris, but the solubility of gypsum and anhydrite decreases rapidly with increasing temperature,
hence it taxes one's credulity to believe that enormous masses of calcium sulphate were deposited by ascending and cooling solutions.

The Louisiana rock salt is said to be exceptionally pure, but the analyses do not fully substantiate this assertion. Much of it contains some calcium sulphate.

One point should not be overlooked in attempting to explain these remarkable deposits—the extraordinary plasticity of rock salt, which yields far more easily to pressure than the surrounding rocks. (See Fig. 95.) A résumé of the occurrence and structure of salt domes has recently been given by F. F. Hahn, who points out that very similar conditions exist in some deposits of northern Germany and Transylvania.

Composition.—Rock salt is usually very pure aside from the occasionally occurring admixture of clay, the tenor in NaCl ranging from 96 to 99 per cent. Calcium sulphate is the principal impurity and is often present to the amount of over 1 per cent. Salt from some desert lakes contains sodium carbonate and sulphate. (For analyses see Clarke's Geochemistry, *Bull. U. S. Geol. Survey*, No. 491, p. 219.)

Use.—The wide range of uses of salt for culinary, preservative, and industrial purposes need not be specified. Large amounts are used in the manufacture of other sodium salts, particularly the carbonate.

THE GERMAN POTASSIUM SALTS

If carried to its conclusion the process of evaporation of sea water will result in the deposition of the easily soluble chlorides and sulphates of potassium and magnesium, also chloride of calcium. Evidently this seldom takes place, in part for the reason given on page 271. Almost the only locality thus far discovered where the whole sequence of salts is present is in central Germany, north and south of the Harz Mountains, in formations of Permian age. These deposits are now mined by about fifty

1 *Econ. Geology*, vol. 7, 1912, pp. 120–135.
companies and yield annually about six million tons of potassium salts, of which 85 per cent. is used as soil fertilizer and the remainder for general industrial purposes. The value of this production is about $30,000,000. The mining is done exclusively by shafts from 1,000 to 2,500 feet deep. Circular shafts lined with concrete or iron tubing are used and the greatest caution is necessary to prevent influx of water during sinking or working. If

![Diagram of Stassfurt-Egeln anticline](image)

Fig. 95.—Section of the Stassfurt-Egeln anticline. *After Everdink.*

the water once breaks in, the mine will probably have to be abandoned; the old workings are filled with waste or rock salt.

Some of the products are sold for fertilizers without further chemical treatment. Carnallite is the most important of these, and next to it comes kainite; as mined, both are mixed with 30 or 40 per cent. of common salt. Other chemical products from carnallite and other salts are chloride and sulphate of
DEPOSITS FORMED BY EVAPORATION

potassium and potassium-magnesium sulphate. Kieserite is refined to magnesium sulphate.

The larger part of the bromine production of the world is also obtained from the mother liquor resulting from the solution of the Stassfurt salts. The remaining part is derived from the brines of Michigan.

The potassium salts lie as a relatively thin series of strata over a heavy bed of rock salt in the Permian and are in turn covered by Triassic sandstones and limestones, and finally by the Tertiary and Quaternary beds. They form a series of faulted synclines and anticlines, in places approaching closely to the surface, but here generally changed by secondary leaching processes (Fig. 95).

The general section is as follows, counted from the bottom of the Triassic sandstone.

<table>
<thead>
<tr>
<th>No.</th>
<th>Thickness in meters</th>
<th>Character of strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 to 30</td>
<td>Red clay with a little anhydrite and rock salt.</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Rock salt.</td>
</tr>
<tr>
<td>3</td>
<td>1 to 5</td>
<td>Anhydrite with salt.</td>
</tr>
<tr>
<td>4</td>
<td>5 to 15</td>
<td>Red clay with anhydrite and rock salt.</td>
</tr>
<tr>
<td>5</td>
<td>100 to 150</td>
<td>Younger rock salt.</td>
</tr>
<tr>
<td>6</td>
<td>40 to 90</td>
<td>Main anhydrite.</td>
</tr>
<tr>
<td>7</td>
<td>4 to 10</td>
<td>Salt clay.</td>
</tr>
<tr>
<td>8</td>
<td>30 to 40</td>
<td>Carnallite zone. Carnallite ((\text{KCl}_2\text{MgCl}_2+6\text{H}_2\text{O})).</td>
</tr>
<tr>
<td>9</td>
<td>20 to 40</td>
<td>Kieserite zone. Kieserite ((\text{MgSO}_4+\text{H}_2\text{O})).</td>
</tr>
<tr>
<td>10</td>
<td>40 to 60</td>
<td>Polyhalite zone. Polyhalite ((2\text{CaSO}_4\cdot\text{MgSO}_4\cdot\text{K}_2\text{SO}_4+2\text{H}_2\text{O})).</td>
</tr>
<tr>
<td>11</td>
<td>300 to 500</td>
<td>Older rock salt, with narrow streaks of anhydrite, interpreted as annual deposits.</td>
</tr>
<tr>
<td>12</td>
<td>70 to 100</td>
<td>Older anhydrite.</td>
</tr>
<tr>
<td>13</td>
<td>4 to 10</td>
<td>Limestone (Zechstein Kalk). Marine deposit.</td>
</tr>
<tr>
<td>14</td>
<td>0.5 to 4</td>
<td>Black copper-bearing shale. Conglomerate.</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 to 11</td>
<td>Older series, closed by potassium salts.</td>
</tr>
<tr>
<td>1 to 7</td>
<td>Younger series, without potassium salts.</td>
</tr>
</tbody>
</table>

1 H. Everding, Deutschlands Kalibergbau, p. 36.
Rock salt is really present throughout the section, for the carnallite zone, which yields the greatest quantity of crude product, contains only about 55 per cent. of carnallite, including also 25 per cent. rock salt and 16 per cent. kieserite. The kieserite zone yields 65 per cent. rock salt and only 17 per cent. kieserite. Rock salt, kieserite, sylvite (KCl), carnallite (KCl.MgCl₂₆H₂O), and kainite (KCl.MgSO₄·3H₂O) are the main products.

The German geologists have shown that extensive secondary changes have taken place in the salt beds—in part immediately after the deposition, in part much later, following the Triassic sedimentation and progressing even now. These post-Triassic changes have occurred both in thecroppings and at greater depth. The minerals just enumerated may occur in all three generations, but in addition a large number of more or less complicated secondary compounds were formed.

Kainite is a secondary product derived from carnallite by the leaching of MgCl₂. It forms along the crests of the anticlines. Under some circumstances a secondary mixture of potassium chloride, kieserite, and salt would be formed instead of kainite, and this constitutes an important product under the name sylvite or "hartsalz." Secondary deposits of the older type appear in the form of sylvite between the carnallite and the salt clay. In all these transformations the products are very complex.

Van't Hoff¹ and his associates have studied the various combinations of salts in order to ascertain their fields of existence at temperatures ranging from 25° to 83° C. In this way they have arrived at the temperatures of stability of the various salts and consequently ascertained the minimum temperature at which they were formed. Sylvite and carnallite are stable in concentrated NaCl solutions from 0° to 85° C. Many of the rarer salts (langbeinite \(2MgSO₄·K₂SO₄\), for instance) are stable under these conditions only from 37° C. upward.

Some of the temperatures required may seem high; kieserite with sylvite, for instance, forming above 72° C. There is, indeed, some danger in using the laboratory results to explain the processes of nature, for the important element of time probably plays a considerable part in these reactions.

It has been shown by measurements, however, that the temperature in the middle depths of evaporating salt lakes is

¹ Van’t Hoff, Die ozeanischen Salzablagerungen, 1905 and 1909.
DEPOSITS FORMED BY EVAPORATION

surprisingly high. Interesting results were obtained by A. V. Kaleczinsky,¹ who found the temperatures of certain Hungarian salt lakes to be as much as 71° during the summer at a depth of 1.3 meters, while the surface and the bottom layers were much cooler, about 20° C.

OTHER SOURCES OF POTASSIUM SALTS

In all countries where agriculture has been carried on for a long time potassium salts are necessary, together with phosphates and nitrogen compounds, to increase the fertility of the soil. Germany is the only country in which potassium salts in easily available form occur on a large scale and it is therefore natural that careful search has been made in other countries for materials available for the production of such salts.²

Smaller quantities of potassium salts have been discovered in Alsace, Tyrol, Galicia, and India, but these deposits are as yet of little importance.

Potassium in Rocks and Minerals.—Granites, pegmatites, some phonolites, and some leucite rocks contain a considerable amount of potassium, varying from 5 to 12 per cent. Unfortunately there is great difficulty in transforming the insoluble potassium silicates contained in the orthoclase, leucite, or glassy base in these rocks into soluble salts. Some pegmatite dikes, composed largely of orthoclase, yield even more than 12 per cent. of potash. If orthoclase or any potassium-bearing rock is ground to fine powder and slimed with water a certain small percentage of potash salt is converted into soluble form, probably as a potassium silicate, and it is said that such finely ground powder has some slight fertilizing power. Processes have been patented by A. S. Cushman and others based on electrolytic treatment of the slimed rock or treatment with quicklime and

 W. C. Phalen, Occurrence of potash salts in the bitterns of the eastern United States; *Bull.* No. 530, U. S. Geol. Survey, 1911.
calcium chloride and subsequent calcining, methods by which soluble potassium salts are said to be set free. None of these processes has thus far been applied on a large scale.

Greensand marls—for instance, the Cretaceous beds in New Jersey—contain from 3 to 6 per cent. of potash besides some phosphoric acid, the former in glauconite, the latter in calcium phosphate. These marls are used in their crude state as fertilizers and the recovery in soluble form of their potassium content has been proposed, but the practical application has not as yet been attempted.

Another source of potassium has been sought in the mineral alunite, which is a hydrous potassium-aluminum sulphate of inconspicuous appearance, white or pink, compact or fine granular, rarely coarse granular. The formula of the mineral is $K_2O\cdot3Al_2O_3\cdot4SO_4\cdot6H_2O$; and it contains from 8 to 11 per cent. of potash. It occurs mainly in volcanic regions, as a product of rock alteration, probably caused by waters containing sulphuric acid, and is much more common than the soluble natural alum which sometimes appears as efflorescences. The alunite is found disseminated in the rocks or in well-defined veins. Notable western occurrences are at Goldfield, Nevada; Marysvale, Utah; and the Rosita Hills, Colorado. Among the foreign deposits which have already been utilized are those at La Tolfa, in Italy; Almeria, in Spain; and Bullah Delah, in New South Wales. The transformation of alunite into soluble potassium sulphate is easily effected by calcination; part of the sulphuric acid and all of the water is volatilized, leaving soluble potassium sulphate and an insoluble residue of alumina. It is probable that the manufacture of potassium sulphate from alunite will soon be attempted in this country.

Potassium in Brines.—Potassium salts are easily soluble and therefore remain with calcium and magnesium chlorides in the last residues or mother liquors, the so-called "bitterns." Many natural brines pumped from bore-holes in salt-bearing beds contain some potassium and under favorable circumstances may be used for the recovery of these salts. Some of the Michigan brines from the Marshall formation of the lower Carboniferous (Fig. 92) contain from 3 to 5 grams per liter of potassium chloride; salt, calcium chloride, and bromine are recovered from these brines, but their potassium content appears to be too small for profitable recovery. In places certain well-defined strata
yield natural brines or residual "bitterns." One such bittern from Fairport Harbor, in Ohio, on Lake Erie, contains, according to W. C. Phalen, in grams per liter, 7.4 KCl, 110.1 NaCl, 134.4 CaCl₂, 43.2 MgCl₂. Such a brine could possibly be utilized for the recovery of potassium. This stratum is almost 400 feet above the topmost salt bed from which artificial brines are pumped in Ohio.

Lakes in dry regions, especially in areas of former volcanic activity, contain appreciable quantities of potassium. The water of Owens Lake, in eastern California, yields almost 3 grams of potassium chloride per liter, but this can probably not be recovered with profit.

Evaporation in the Quaternary lakes of the Lahontan basin in Nevada and California has at many places resulted in deposits of salt of moderate thickness. Changes in drainage among these basins sometimes resulted in the residuary brines, richer in potash, being drawn off into a neighboring depression, and thus it happens, as at Searles Marsh, in San Bernardino County, California, that the salt bed, which here is almost 60 feet in thickness and covers an area of at least 11 square miles, is saturated with a strong brine unusually rich in potassium. In the dissolved salts of Searles Marsh there is almost 7 per cent. of K₂O, and profitable recovery appears to be possible.

Some small lakes in the "sand hill country" of Nebraska and Colorado contain a remarkably high percentage of potassium which it is thought may have become concentrated from the potash resulting from repeated burnings of the grass in the surrounding country.

The earliest source of potassium was, as is well known, ashes of vegetable matter. Seaweed is especially rich in this metal and also contains iodine.
CHAPTER XVII

MINERAL DEPOSITS RESULTING FROM PROCESSES OF ROCK DECAY AND WEATHERING

GENERAL CONDITIONS

The uplifted sedimentary beds, the lavas of the volcanoes, the granular crystalline rocks uncovered by erosion—all these, when exposed at the surface of the earth, are subject to a series of changes, the sum total of which is called weathering. The agents are water, air, heat, and vegetable and animal life. Water is essential—without it very little decomposition could take place. Oxygen is also essential, and indeed we often speak of weathering as synonymous with oxidation. Carbon dioxide dissolved in water decomposes the minerals and hastens the process of solution. Change of temperature acts mainly by promoting disintegration, most powerfully by the expansion of water when freezing in cracks and crevices, a force sufficient to break and dislodge heavy rock masses. Vegetable life furnishes carbon dioxide and disintegrates the soil by the vital energy in the roots, and bacterial life changes its composition. Animals burrow in the ground, loosening it and effecting chemical changes.

Weathering differs from alteration and metamorphism in that its ultimate result is the destruction of the rock as a unit; its chemical processes are far more radical and intense than those of the depths. Weathering effaces the texture of the rocks and segregates their chemical compounds in ways wholly different from those of the other processes mentioned. Metals closely associated in the primary rocks part company and seek new associates. Segregations of large masses of single minerals are usually a result of the process. The ordinary silicates and the carbonates of iron, magnesium, and calcium are unstable in the belt of weathering. The uppermost thin mantle of the

G. P. Merrill, Rocks, rock-weathering, and soils, 1897.
E. W. Hilgard, Soils, 1906.
ROCK DECAY AND WEATHERING

products of weathering we call the soil; in it the disintegration and chemical changes are carried to their limit; it is mixed with the products of life, and its constituents and reactions are, of course, of more interest to the agricultural chemist than to the student of ore deposits.

The depth to which weathering extends differs greatly; in some desert regions, recently glaciated areas, or areas covered by fresh lava flows it is practically absent, disintegration being the only visible effect. In regions of heavy vegetation and rainfall the weathering may extend to a depth of 100 or even 200 feet; along fractures in particularly permeable and soluble rocks like limestone oxidation may be carried to still greater depth; in mineral deposits its effects are in places felt for several hundred or in extreme cases as much as 2,000 feet. As a rule, however, weathering does not extend deeper than 50 feet, and its more intense effects are usually limited to the zone above the surface of underground water.

Disintegration and decomposition work together, but the former is likely to extend deeper than the latter. The upper layers, ordinarily colored red or brown by ferric iron, gradually change into paler-colored, more or less softened and disintegrated rock. In some areas, notably over limestone strata, there is a sharp change to the unaltered rock—so sharp, indeed, that the red clayey soil has often been taken for a different formation resting on the calcareous rock.

Erosional transportation attends disintegration, and removal of material by solution accompanies decomposition, both tending strongly to reduce the volume of the rock. On the other hand, hydration and the peculiar quality of absorption which the soils possess tend to increase the volume. On the whole weathering lessens the volume. According to G. P. Merrill the granites of the District of Columbia may lose by weathering 13.5 per cent. of their volume; T. L. Watson calculates the loss of granites of Georgia at 7 to 72 per cent. The most marked loss is the shrinking in residual clays derived from limestone; often it is more than 95 per cent. Whitney long ago arrived at the conclusion that 1 meter of residual clay in Wisconsin was derived from a thickness of 35 to 40 meters of limestone or shale.

Except in the easily soluble rocks the decomposition is never complete, for, as brought out by Cameron and Bell, even in the fine soils abundant grains of the original minerals remain
unaltered. Other conditions being equal, weathering is most complete in tropical and moist countries. In the United States the most intense action of this kind has taken place in the Appalachian region south of the glaciated area, and this region contains the majority of ore deposits caused by weathering.

Air contains approximately by volume 21 per cent. oxygen, slightly less than 79 per cent. nitrogen (with argon), and 0.03 per cent. carbon dioxide. In the air contained in rain water both oxygen and carbon dioxide are greatly concentrated. In the soils carbon dioxide and air are absorbed; soils and clays of various kinds contain from 14 to 40 cubic centimeters of gas per 100 grams, with 14 to 34 per cent. of carbon dioxide and considerably less oxygen than the air—indeed, in some soils oxygen appears to be absent. Decaying vegetation still further increases the percentage of carbon dioxide. As the ground-water level is approached the oxygen decreases rapidly, as shown by the measurements made by B. Lepsius in bore-holes, and below this level there is probably little left.

Naturally the processes of weathering are hastened by the presence of sulphuric acid derived from the decomposition of pyrite or exhaled from solfataric vents. W. Maxwell has shown interestingly how extensive a part this acid plays in the development of soils on the slopes of volcanoes.

The processes characteristic of weathering are oxidation, hydration, and solution. In the surface waters calcium and magnesium carbonates ordinarily prevail, with a considerable amount of alkaline carbonates and relatively much soluble silica, both derived from the decomposition of the silicates. Under special conditions, as in volcanic regions or in sediments rich in salts, the surface waters may be materially different in composition, being predominantly sulphate solutions. The ground waters contain in addition small amounts of iron and manganese, carried mainly as bicarbonates, also phosphoric acid and sodium chloride.

In the weathered zone will remain the residuary, almost insoluble minerals, like quartz, hydrated aluminum silicates more or less closely approaching kaolinite in composition, ferric oxides.

1 Cameron and Bell, op. cit., p. 26.
3 W. Maxwell, Lavas and soils of the Hawaiian Islands, Honolulu, 1898.
ROCK DECAY AND WEATHERING

(as limonite, göthite, or hematite), and manganese dioxide, all mingled to form a red or brown clayey soil.

All these reactions involve the development of colloid bodies like aluminum silicates and hydroxides of iron, which before their transformation into crystalline minerals are characteristic absorbents of many salts. The colloids of manganese, for instance, have a tendency to absorb potassium and barium. The zone of weathering has indeed been called the realm of the colloids.

DECOMPOSITION OF MINERALS

The silicates of the rocks are decomposed by water rather than dissolved, for the resulting solution does not usually contain the elements in the same proportions as the original mineral. Owing to hydrolysis the solution in most cases gives an alkaline reaction.\(^1\)

Cameron and Bell believe that the more rapid decomposition shown to take place in the presence of \(\text{CO}_2\) is in large part due to its combination with the hydrolyzed bases by the formation of bicarbonates rather than to direct solvent action. Orthoclase, for instance, would give \(\text{KAlSi}_3\text{O}_8 + \text{HOH} = \text{KOH} + \text{HAlSi}_3\text{O}_8\), and the carbon dioxide would combine with KOH to form potassium bicarbonate.

The biotite, amphibole, and pyroxene, perhaps previously altered to chlorite below the water-level, break up into soluble carbonates, colloidal limonite, hydrous aluminum silicate, and soluble silica. These ferromagnesian minerals are attacked first, as is shown by the fact that the ordinary surface waters contain more of the carbonates of calcium and magnesium than of other salts. The feldspars are not so easily weathered, but tend to the reaction expressed in the following equation:

\[
2\text{KAlSi}_3\text{O}_8 + 2\text{H}_2\text{O} + \text{CO}_2 = \text{H}_4\text{Al}_2\text{Si}_2\text{O}_8 + 4\text{SiO}_2 + \text{K}_2\text{CO}_3.
\]

The ultimate product is kaolin, or allied colloidal bodies. It is not believed that muscovite or sericite results from weathering, although the colloidal aluminum silicate may absorb potassium and form indefinite amorphous compounds having a composition related to that of the white micas. This process is more common where sulphuric acid is present.

Zeolites are undoubtedly unstable in the zone of weathering. Muscovite or sericite is slowly attacked; Cameron and Bell treated 2 grams of powdered muscovite with a liter of pure water for 14 months in paraffine cylinders and obtained in the solution 10.4 parts K per million; when treating it with carbon dioxide in water they obtained 18.3 parts per million. The same quantity of orthoclase with pure water yielded a solution with 1.7 parts per million of K; when saturated with CO₂ it yielded 2.5 parts per million. Muscovite thus yields its potassium more easily than orthoclase. Albite treated in the same way gave 1.0 and 1.1 parts of sodium per million respectively. Earlier experiments leading to similar results have been undertaken by A. Daubrée, R. Müller, and A. S. Cushman.

Magnetite is soluble with difficulty, but finally yields hematite and limonite. Pyrite easily yields limonite and sulphuric acid. Apatite appears to be rather easily soluble, especially in carbonated water. Cameron and Bell treated powdered chlorine apatite suspended in water at 25° C. for 7 days, passing CO₂ through the liquid. The solution showed 0.0378 gram CaO, 0.0096 gram P₂O₅, and 0.0026 gram hydrochloric acid per liter of solution. In soils and clays the phosphates are decomposed or hydrolyzed, soluble phosphates being formed, but the percolating water contains these only in minimal quantities. It is stated that humus suspended in water can absorb calcium and a considerable amount of phosphoric acid from the calcium phosphates.

The reactions of the iron phosphates are in the main similar to those of the calcium salts. Lachowicz found that organic matter in soil is a distinct solvent for ferric phosphate. Cameron and Bell ascertained that carbon dioxide greatly aided the solution of ferric phosphate, 5 grams of which, shaken for 5 days with 100 c.c. H₂O and later with 100 c.c. of saturated solutions of CO₂ and CaSO₄, yielded respectively 74, 171, and 118 milligrams of phosphoric acid.

6 *Gesteins und Bodenkunde*, 1877, p. 329.
Zircon, pyrope garnet, tourmaline, and similar minerals are almost insoluble.

Quartz also shows great resistance and appears practically insoluble in the zone of weathering, except when exposed to the action of a stronger solution of alkaline carbonates. C. W. Hayes,1 M. L. Fuller,2 and C. H. Smyth3 have observed a marked corrosion of quartz pebbles in conglomerates, but the exact nature of the reaction is uncertain. Cherty and fine-grained quartz is a little more soluble.4 The theory of the origin of the Lake Superior iron ores, supported by Van Hise and Leith, is based on the supposed solubility of such material. It was formerly thought that certain organic acids had the power of dissolving quartz, but this is now considered very questionable.

TOTAL CHEMICAL CHANGES BY WEATHERING

The studies and analytical work of G. P. Merrill have greatly advanced our knowledge of weathering, and many others have contributed valuable data. A compilation of a number of characteristic gradational analyses is given in F. W. Clarke's "Data of geochemistry"5 and allows an estimate of the final effects of weathering. The analyses show consistently an apparent increase in alumina and water and decreases in SiO₂, CaO, MgO, K₂O, and Na₂O; in short the composition tends toward that of a ferruginous kaolin, except that in the weathering of acidic rocks residual quartz prohibits the decrease of silica to the amount characteristic of kaolin. Comparing equal volumes we find little actual change in the quantity of alumina, and for purposes of comparison this oxide is assumed to be constant. By recalculating the analyses on this basis, the percentage lost or gained by each constituent may be ascertained. In the analyses quoted, the loss of silica is the largest, varying from 8 to 32 per cent. by weight of the original rock and from 15 to 52 per cent. of the original quantity of silica. The abstraction of silica as soluble silicates is, then, the dominant factor in the weathering of silicate rocks.

Rock salt is really present throughout the section, for the carnallite zone, which yields the greatest quantity of crude product, contains only about 55 per cent. of carnallite, including also 25 per cent. rock salt and 16 per cent. kieserite. The kieserite zone yields 65 per cent. rock salt and only 17 per cent. kieserite. Rock salt, kieserite, sylvite (KCl), carnallite (KCl.MgCl₂·6H₂O), and kainite (KCl.MgSO₄·3H₂O) are the main products.

The German geologists have shown that extensive secondary changes have taken place in the salt beds—in part immediately after the deposition, in part much later, following the Triassic sedimentation and progressing even now. These post-Triassic changes have occurred both in the croppings and at greater depth. The minerals just enumerated may occur in all three generations, but in addition a large number of more or less complicated secondary compounds were formed.

Kainite is a secondary product derived from carnallite by the leaching of MgCl₂. It forms along the crests of the anticlines. Under some circumstances a secondary mixture of potassium chloride, kieserite, and salt would be formed instead of kainite, and this constitutes an important product under the name sylvite or "hartsalz." Secondary deposits of the older type appear in the form of sylvite between the carnallite and the salt clay. In all these transformations the products are very complex.

Van't Hoff¹ and his associates have studied the various combinations of salts in order to ascertain their fields of existence at temperatures ranging from 25⁰ to 83⁰ C. In this way they have arrived at the temperatures of stability of the various salts and consequently ascertained the minimum temperature at which they were formed. Sylvite and carnallite are stable in concentrated NaCl solutions from 0⁰ to 85⁰ C. Many of the rarer salts (langbeinite, (2MgSO₄·K₂SO₄), for instance) are stable under these conditions only from 37⁰ C. upward.

Some of the temperatures required may seem high; kieserite with sylvite, for instance, forming above 72⁰ C. There is, indeed, some danger in using the laboratory results to explain the processes of nature, for the important element of time probably plays a considerable part in these reactions.

It has been shown by measurements, however, that the temperature in the middle depths of evaporating salt lakes is

¹ Van't Hoff, Die ozeanischen Salzablagerungen, 1905 and 1909.
surprisingly high. Interesting results were obtained by A. V. Kalezinsky, who found the temperatures of certain Hungarian salt lakes to be as much as 71° during the summer at a depth of 1.3 meters, while the surface and the bottom layers were much cooler, about 20° C.

OTHER SOURCES OF POTASSIUM SALTS

In all countries where agriculture has been carried on for a long time potassium salts are necessary, together with phosphates and nitrogen compounds, to increase the fertility of the soil. Germany is the only country in which potassium salts in easily available form occur on a large scale and it is therefore natural that careful search has been made in other countries for materials available for the production of such salts.

Smaller quantities of potassium salts have been discovered in Alsace, Tyrol, Galicia, and India, but these deposits are as yet of little importance.

Potassium in Rocks and Minerals.—Granites, pegmatites, some phonolites, and some leucite rocks contain a considerable amount of potassium, varying from 5 to 12 per cent. Unfortunately there is great difficulty in transforming the insoluble potassium silicates contained in the orthoclase, leucite, or glassy base in these rocks into soluble salts. Some pegmatite dikes, composed largely of orthoclase, yield even more than 12 per cent. of potash. If orthoclase or any potassium-bearing rock is ground to fine powder and slaked with water a certain small percentage of potash salt is converted into soluble form, probably as a potassium silicate, and it is said that such finely ground powder has some slight fertilizing power. Processes have been patented by A. S. Cushman and others based on electrolytic treatment of the slaked rock or treatment with quicklime and

calcium chloride and subsequent calcining, methods by which soluble potassium salts are said to be set free. None of these processes has thus far been applied on a large scale.

Greensand marls—for instance, the Cretaceous beds in New Jersey—contain from 3 to 6 per cent. of potash besides some phosphoric acid, the former in glauconite, the latter in calcium phosphate. These marls are used in their crude state as fertilizers and the recovery in soluble form of their potassium content has been proposed, but the practical application has not as yet been attempted.

Another source of potassium has been sought in the mineral alunite, which is a hydrous potassium-aluminum sulphate of inconspicuous appearance, white or pink, compact or fine granular, rarely coarse granular. The formula of the mineral is $K_2O\cdot3Al_2O_3\cdot4SO_4\cdot6H_2O$; and it contains from 8 to 11 per cent. of potash. It occurs mainly in volcanic regions, as a product of rock alteration, probably caused by waters containing sulphuric acid, and is much more common than the soluble natural alum which sometimes appears as efflorescences. The alunite is found disseminated in the rocks or in well-defined veins. Notable western occurrences are at Goldfield, Nevada; Marysvale, Utah; and the Rosita Hills, Colorado. Among the foreign deposits which have already been utilized are those at La Tolfa, in Italy; Almeria, in Spain; and Bullah Delah, in New South Wales. The transformation of alunite into soluble potassium sulphate is easily effected by calcination; part of the sulphuric acid and all of the water is volatilized, leaving soluble potassium sulphate and an insoluble residue of alumina. It is probable that the manufacture of potassium sulphate from alunite will soon be attempted in this country.

Potassium in Brines.—Potassium salts are easily soluble and therefore remain with calcium and magnesium chlorides in the last residues or mother liquors, the so-called "bitterns." Many natural brines pumped from bore-holes in salt-bearing beds contain some potassium and under favorable circumstances may be used for the recovery of these salts. Some of the Michigan brines from the Marshall formation of the lower Carboniferous (Fig. 92) contain from 3 to 5 grams per liter of potassium chloride; salt, calcium chloride, and bromine are recovered from these brines, but their potassium content appears to be too small for profitable recovery. In places certain well-defined strata
yield natural brines or residual "pittens." One such bittern from Fairport Harbor, in Ohio, on Lake Erie, contains, accord-
ing to W. C. Phalen, in grams per liter, 7.4 KCl, 110.1 NaCl, 134.4 CaCl₂, 43.2 MgCl₂. Such a brine could possibly be utilized for the recovery of potassium. This stratum is almost 400 feet above the topmost salt bed from which artificial brines are pumped in Ohio.

Lakes in dry regions, especially in areas of former volcanic activity, contain appreciable quantities of potassium. The water of Owens Lake, in eastern California, yields almost 3 grams of potassium chloride per liter, but this can probably not be recovered with profit.

Evaporation in the Quaternary lakes of the Lahontan basin in Nevada and California has at many places resulted in deposits of salt of moderate thickness. Changes in drainage among these basins sometimes resulted in the residuary brines, richer in potash, being drawn off into a neighboring depression, and thus it happens, as at Searles Marsh, in San Bernadino County, California, that the salt bed, which here is almost 60 feet in thickness and covers an area of at least 11 square miles, is saturated with a strong brine unusually rich in potassium. In the dissolved salts of Searles Marsh there is almost 7 per cent. of K₂O, and profitable recovery appears to be possible.

Some small lakes in the "sand hill country" of Nebraska and Colorado contain a remarkably high percentage of potassium which it is thought may have become concentrated from the potash resulting from repeated burnings of the grass in the sur-
rounding country.

The earliest source of potassium was, as is well known, ashes of vegetable matter. Seaweed is especially rich in this metal and also contains iodine.
CHAPTER XVII
MINERAL DEPOSITS RESULTING FROM PROCESSES OF ROCK DECAY AND WEATHERING 1

GENERAL CONDITIONS

The uplifted sedimentary beds, the lavas of the volcanoes, the granular crystalline rocks uncovered by erosion—all these, when exposed at the surface of the earth, are subject to a series of changes, the sum total of which is called weathering. The agents are water, air, heat, and vegetable and animal life. Water is essential—without it very little decomposition could take place. Oxygen is also essential, and indeed we often speak of weathering as synonymous with oxidation. Carbon dioxide dissolved in water decomposes the minerals and hastens the process of solution. Change of temperature acts mainly by promoting disintegration, most powerfully by the expansion of water when freezing in cracks and crevices, a force sufficient to break and dislodge heavy rock masses. Vegetable life furnishes carbon dioxide and disintegrates the soil by the vital energy in the roots, and bacterial life changes its composition. Animals burrow in the ground, loosening it and effecting chemical changes.

Weathering differs from alteration and metamorphism in that its ultimate result is the destruction of the rock as a unit; its chemical processes are far more radical and intense than those of the depths. Weathering effaces the texture of the rocks and segregates their chemical compounds in ways wholly different from those of the other processes mentioned. Metals closely associated in the primary rocks part company and seek new associates. Segregations of large masses of single minerals are usually a result of the process. The ordinary silicates and the carbonates of iron, magnesium, and calcium are unstable in the belt of weathering. The uppermost thin mantle of the

G. P. Merrill, Rocks, rock-weathering, and soils, 1897.
E. W. Hilgard, Soils, 1906.
products of weathering we call the soil; in it the disintegration and chemical changes are carried to their limit; it is mixed with the products of life, and its constituents and reactions are, of course, of more interest to the agricultural chemist than to the student of ore deposits.

The depth to which weathering extends differs greatly; in some desert regions, recently glaciated areas, or areas covered by fresh lava flows it is practically absent, disintegration being the only visible effect. In regions of heavy vegetation and rainfall the weathering may extend to a depth of 100 or even 200 feet; along fractures in particularly permeable and soluble rocks like limestone oxidation may be carried to still greater depth; in mineral deposits its effects are in places felt for several hundred or in extreme cases as much as 2,000 feet. As a rule, however, weathering does not extend deeper than 50 feet, and its more intense effects are usually limited to the zone above the surface of underground water.

Disintegration and decomposition work together, but the former is likely to extend deeper than the latter. The upper layers, ordinarily colored red or brown by ferric iron, gradually change into paler-colored, more or less softened and disintegrated rock. In some areas, notably over limestone strata, there is a sharp change to the unaltered rock—so sharp, indeed, that the red clayey soil has often been taken for a different formation resting on the calcareous rock.

Erosional transportation attends disintegration, and removal of material by solution accompanies decomposition, both tending strongly to reduce the volume of the rock. On the other hand, hydration and the peculiar quality of absorption which the soils possess tend to increase the volume. On the whole weathering lessens the volume. According to G. P. Merrill the granites of the District of Columbia may lose by weathering 13.5 per cent. of their volume; T. L. Watson calculates the loss of granites of Georgia at 7 to 72 per cent. The most marked loss is the shrinking in residual clays derived from limestone; often it is more than 95 per cent. Whitney long ago arrived at the conclusion that 1 meter of residual clay in Wisconsin was derived from a thickness of 35 to 40 meters of limestone or shale.

Except in the easily soluble rocks the decomposition is never complete, for, as brought out by Cameron and Bell, even in the fine soils abundant grains of the original minerals remain
unaltered. Other conditions being equal, weathering is most complete in tropical and moist countries. In the United States the most intense action of this kind has taken place in the Appalachian region south of the glaciated area, and this region contains the majority of ore deposits caused by weathering.

Air contains approximately by volume 21 per cent. oxygen, slightly less than 79 per cent. nitrogen (with argon), and 0.03 per cent. carbon dioxide. In the air contained in rain water both oxygen and carbon dioxide are greatly concentrated. In the soils carbon dioxide and air are absorbed; soils and clays of various kinds contain from 14 to 40 cubic centimeters of gas per 100 grams, with 14 to 34 per cent. of carbon dioxide and considerably less oxygen than the air—indeed, in some soils oxygen appears to be absent.\(^1\) Decaying vegetation still further increases the percentage of carbon dioxide. As the ground-water level is approached the oxygen decreases rapidly, as shown by the measurements made by B. Lepsius\(^2\) in bore-holes, and below this level there is probably little left.

Naturally the processes of weathering are hastened by the presence of sulphuric acid derived from the decomposition of pyrite or exhaled from solfataric vents. W. Maxwell\(^3\) has shown interestingly how extensive a part this acid plays in the development of soils on the slopes of volcanoes.

The processes characteristic of weathering are oxidation, hydration, and solution. In the surface waters calcium and magnesium carbonates ordinarily prevail, with a considerable amount of alkaline carbonates and relatively much soluble silica, both derived from the decomposition of the silicates. Under special conditions, as in volcanic regions or in sediments rich in salts, the surface waters may be materially different in composition, being predominantly sulphate solutions. The ground waters contain in addition small amounts of iron and manganese, carried mainly as bicarbonates, also phosphoric acid and sodium chloride.

In the weathered zone will remain the residuary, almost insoluble minerals, like quartz, hydrated aluminum silicates more or less closely approaching kaolinite in composition, ferric oxides

\(^1\) Cameron and Bell, *op. cit.*, p. 26.

\(^3\) W. Maxwell, *Lavas and soils of the Hawaiian Islands*, Honolulu, 1898.
(as limonite, gòthite, or hematite), and manganese dioxide, all mingled to form a red or brown clayey soil.

All these reactions involve the development of colloid bodies like aluminum silicates and hydroxides of iron, which before their transformation into crystalline minerals are characteristic absorbents of many salts. The colloids of manganese, for instance, have a tendency to absorb potassium and barium. The zone of weathering has indeed been called the realm of the colloids.

DECOMPOSITION OF MINERALS

The silicates of the rocks are decomposed by water rather than dissolved, for the resulting solution does not usually contain the elements in the same proportions as the original mineral. Owing to hydrolysis the solution in most cases gives an alkaline reaction.¹

Cameron and Bell believe that the more rapid decomposition shown to take place in the presence of CO₂ is in large part due to its combination with the hydrolyzed bases by the formation of bicarbonates rather than to direct solvent action. Orthoclase, for instance, would give KAlSi₃O₈ + HOH = KOH + HAlSi₃O₈, and the carbon dioxide would combine with KOH to form potassium bicarbonate.

The biotite, amphibole, and pyroxene, perhaps previously altered to chloride below the water-level, break up into soluble carbonates, colloidal limonite, hydrous aluminum silicate, and soluble silica. These ferromagnesian minerals are attacked first, as is shown by the fact that the ordinary surface waters contain more of the carbonates of calcium and magnesium than of other salts. The feldspars are not so easily weathered, but tend to the reaction expressed in the following equation:

\[2\text{KAlSi}_3\text{O}_8 + 2\text{H}_2\text{O} + \text{CO}_2 = \text{H}_4\text{Al}_2\text{Si}_2\text{O}_8 + 4\text{SiO}_2 + \text{K}_2\text{CO}_3. \]

The ultimate product is käolin, or allied colloidal bodies. It is not believed that muscovite or sericite results from weathering, although the colloidal aluminum silicate may absorb potassium and form indefinite amorphous compounds having a composition related to that of the white micas. This process is more common where sulphuric acid is present.

Zeolites are undoubtedly unstable in the zone of weathering. Muscovite or sericite is slowly attacked; Cameron and Bell treated 2 grams of powdered muscovite with a liter of pure water for 14 months in paraffine cylinders and obtained in the solution 10.4 parts K per million; when treating it with carbon dioxide in water they obtained 18.3 parts per million. The same quantity of orthoclase with pure water yielded a solution with 1.7 parts per million of K; when saturated with CO₂ it yielded 2.5 parts per million. Muscovite thus yields its potassium more easily than orthoclase. Albite treated in the same way gave 1.0 and 1.1 parts of sodium per million respectively. Earlier experiments leading to similar results have been undertaken by A. Daubrée, R. Müller, and A. S. Cushman.

Magnetite is soluble with difficulty, but finally yields hematite and limonite. Pyrite easily yields limonite and sulphuric acid. Apatite appears to be rather easily soluble, especially in carbonated water. Cameron and Bell treated powdered chlorine apatite suspended in water at 25°C. for 7 days, passing CO₂ through the liquid. The solution showed 0.0378 gram CaO, 0.0096 gram P₂O₅, and 0.0026 gram hydrochloric acid per liter of solution. In soils and clays the phosphates are decomposed or hydrolyzed, soluble phosphates being formed, but the percolating water contains these only in minimal quantities. It is stated that humus suspended in water can absorb calcium and a considerable amount of phosphoric acid from the calcium phosphates.

The reactions of the iron phosphates are in the main similar to those of the calcium salts. Lachowicz found that organic matter in soil is a distinct solvent for ferric phosphate. Cameron and Bell ascertained that carbon dioxide greatly aided the solution of ferric phosphate, 5 grams of which, shaken for 5 days with 100 c.c. H₂O and later with 100 c.c. of saturated solutions of CO₂ and CaSO₄, yielded respectively 74, 171, and 118 milligrams of phosphoric acid.

2 A. Daubrée, Études synthétiques de géologie expérimentale.
5 Gesteins und Bodenkunde, 1877, p. 329.
Zircon, pyrope garnet, tourmaline, and similar minerals are almost insoluble.

Quartz also shows great resistance and appears practically insoluble in the zone of weathering, except when exposed to the action of a stronger solution of alkaline carbonates. C. W. Hayes, M. L. Fuller, and C. H. Smyth have observed a marked corrosion of quartz pebbles in conglomerates, but the exact nature of the reaction is uncertain. Cherty and fine-grained quartz is a little more soluble. The theory of the origin of the Lake Superior iron ores, supported by Van Hise and Leith, is based on the supposed solubility of such material. It was formerly thought that certain organic acids had the power of dissolving quartz, but this is now considered very questionable.

TOTAL CHEMICAL CHANGES BY WEATHERING

The studies and analytical work of G. P. Merrill have greatly advanced our knowledge of weathering, and many others have contributed valuable data. A compilation of a number of characteristic gradational analyses is given in F. W. Clarke's "Data of geochemistry" and allows an estimate of the final effects of weathering. The analyses show consistently an apparent increase in alumina and water and decreases in SiO₂, CaO, MgO, K₂O, and Na₂O; in short the composition tends toward that of a ferruginous kaolin, except that in the weathering of acidic rocks residual quartz prohibits the decrease of silica to the amount characteristic of kaolin. Comparing equal volumes we find little actual change in the quantity of alumina, and for purposes of comparison this oxide is assumed to be constant. By recalculating the analyses on this basis, the percentage lost or gained by each constituent may be ascertained. In the analyses quoted, the loss of silica is the largest, varying from 8 to 32 per cent, by weight of the original rock and from 15 to 52 per cent. of the original quantity of silica. The abstraction of silica as soluble silicates is, then, the dominant factor in the weathering of silicate rocks.

Compared with the decrease in silica, the losses of bases in silicate rocks are small. Calcium, magnesium, sodium, and potassium are removed, but the loss is ordinarily only partial. The leaching of both potassium and sodium is characteristic and is markedly different from certain processes in the alteration of wall rocks of ore deposits, where sodium is completely removed and potassium enriched.

The analyses quoted show that from one-seventh to one-fifth of the iron oxides are carried away. The water invariably increases.

RESIDUARY CLAY

Occurrence.—The residual clays, as might be expected, are found mainly where decay of rocks has proceeded unchecked for a long time and where the products have not been swept away by strong erosion or by glacial action.

Such clays are found in all parts of the world; in the United States they occur chiefly in the southern Appalachian region. Acidic granular rocks like granite and gneiss—particularly those rich in feldspar and poor in ferromagnesian silicates, like pegmatite dikes—yield the best and purest clays, but even these must often be purified by washing in order to remove residuary quartz and limonite. At varying depths, 100 feet at most, these clays gradually change into unaltered rocks.

Uses and Properties.—The ordinary varieties of residual clays are used for brickmaking, the purer for fire-bricks, the finer grades for pottery; for the last use the deposits of the United States are insufficient, hence large quantities are imported from England. These purer grades of residual clays are usually called kaolin or china clay. Their composition, before and after washing, is indicated by the following analyses.²

¹ The literature of clays is exceedingly voluminous. For information more detailed than can be given here, consult:
 H. Ries, Clays, occurrence, properties, and uses, 1908.
 A full bibliography by H. Rösler is contained in *Neues Jahrb.*, Beil. Bd. 15, 1902, p. 231.

² H. Ries, Economic geology, p. 131.
ROCK DECAY AND WEATHERING

ANALYSES OF CRUDE AND WASHED KAOLIN, WEBSTER COUNTY, SOUTH CAROLINA

<table>
<thead>
<tr>
<th></th>
<th>Crude</th>
<th>Washed</th>
<th>Kaolinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>62.40</td>
<td>45.78</td>
<td>46.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26.51</td>
<td>36.46</td>
<td>39.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.14</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.57</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Alkalies</td>
<td>0.98</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>8.80</td>
<td>13.40</td>
<td>14</td>
</tr>
<tr>
<td>Moisture</td>
<td>0.25</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.66</td>
<td>99.84</td>
<td>100</td>
</tr>
<tr>
<td>Clay substance</td>
<td>66.14</td>
<td>93.24</td>
<td></td>
</tr>
</tbody>
</table>

It is sometimes difficult to determine with the microscope the particles of kaolinite (H₄Al₂Si₂O₇) in an altered rock, on account of their minute flaky size and low double refraction. Nevertheless, it is certain that kaolinite is present in the residual clays, but besides this well-defined mineral there may be other hydrated silicates of alumina separated in colloidal form, as gels, during the weathering. Residual minerals are always present in greater or less quantities. These hydrous silicates are mostly soluble, or at least are decomposed by hot dilute sulphuric acid and sodium hydroxide; the dissolved part is called "clay substance" in rational analysis.

The most important property of clay is plasticity, by means of which it can be kneaded or molded into a desired shape, which it retains when dry. Not all the residual clays are plastic, nor is the pure mineral kaolinite. It is now generally believed that the plasticity of clay depends upon the presence of colloids.¹

The tensile strength of air-dried clays varies from 15 to 400 pounds or more per square inch, according to Ries. The fusibility varies according to the impurities present. In low grades of clay incipient fusion may occur at about 1,000° C., while in refractory clays, which are low in fluxing impurities, it may not

occur until 1,300° or 1,400° C. is reached. The melting-point of kaolin is about 1,830° C.

Origin.—The best residuary clays are derived largely from the decomposition of the feldspars. The decomposition can be effected by pure water by hydrolysis, with the development of gels, or colloidal hydrous aluminum silicates, but is hastened by carbon dioxide and still more by sulphuric acid, as is attested by the great development of pure kaolin in the upper levels of pyritic mineral deposits. The formula usually given involving the action of carbon dioxide is

\[2\text{KAlSi}_3\text{O}_8 + 2\text{H}_2\text{O} + \text{CO}_2 = \text{H}_4\text{Al}_2\text{Si}_2\text{O}_8 + \text{K}_2\text{CO}_3 + 4\text{SiO}_2 \]

According to Cameron and Bell⁴ the hydrolyzing action of water on orthoclase yields hydroxide of potassium and an unstable silicate which easily parts with some of its silica and is converted into kaolinite: \(\text{KAlSi}_3\text{O}_8 + \text{H}_2\text{O} = \text{KOH} + \text{HAlSi}_3\text{O}_8 \). According to Van Hise, the decrease in volume, if the silica were liberated in soluble form, would be 54.44 per cent. In kaolinization anorthite simply loses its calcium oxide and takes up \(\text{CO}_2 \) and \(\text{H}_2\text{O} \). Pure orthoclase loses 43.24 per cent. \(\text{SiO}_2 \) and all of its potassium; albite loses 45.87 per cent. \(\text{SiO}_2 \) and all of its sodium.

The origin of kaolin has been the subject of much discussion. About 10 years ago H. Rösler² published a long and important paper which gave rise to an animated discussion.³ Rösler concludes that kaolin is not formed by weathering, but only by pneumatolytic or allied processes by the action of thermal waters. It is impossible to accept these results and they have been vigorously contested by Stremme and Barnitzke;⁴ the latter showed that the celebrated deposit at Meissen, in Saxony, where a high grade of chinaware is made, is decidedly a product of weathering, gradually changing in depth into unaltered porphyry and syenite.

³ See H. Rösler, Zeitschr. f. prakt. Geol., 1908, p. 251; Stremme, idem, p. 122.
It has been shown by W. Lindgren and others that kaolin does not form in deposits that are due to ascending thermal waters, except possibly very close to the surface, where they may mingle with atmospheric waters. The idea that the mineral may form by pneumatolyis, or the action of water or gases liberated at high temperature from igneous magmas, is assuredly untenable; a strongly hydrous mineral, parting with its water at the comparatively low temperatures of 300° to 400° C., could not possibly originate in the presence of such minerals as topaz and tourmaline. The frequent association of kaolin with cassiterite veins—for instance, in Cornwall—has been held by L. v. Buch, A. Daubrée, J. H. Collins,¹ and H. Rössler to indicate a derivation by the action of hydrofluoric acid on feldspars, but as the kaolin deposits, during the metallogenic epoch, were under the same general conditions of pressure, temperature, and depth as the tin deposits, this view must be abandoned.

Extensive observations in the United States have shown that in mineral deposits kaolin is scarcely ever a primary mineral, but has been derived largely by the action of sulphuric acid on the feldspar minerals of the rocks and on sericite, which is often abundantly developed in ore deposits formed under widely differing physical conditions. In view of this, it seems odd that Rössler expresses astonishment at finding a large amount of muscovite with the kaolin from Cornwall and suggests that the former may be a secondary product. G. Hickling² has recently investigated the china clays of Cornwall and shows that they form essentially a sheet covering the corroded surface of the granite and that they have resulted from the weathering of sericitic granite, the sericite being due to previous alteration by thermal waters.

Kaolin, then, is formed abundantly in the zone of weathering and in smaller amounts for a considerable distance below this zone.

RESIDUAL IRON ORES (LIMONITE AND HEMATITE)

Origin.—During the processes of weathering only a small part of the iron is carried away in solution; the greater part remains in the rock altered to limonite (2Fe₂O₃·3H₂O), to goethite (Fe₂O₃·H₂O), or to indefinite colloidal mixtures of various hydroxides of iron; hematite may also be present. In places basic sulphates or

phosphates may remain, as well as somewhat indefinite and unstable ferric silicates. Nontronite, $\text{H}_\text{3}\text{Fe}_\text{2}\text{Si}_\text{4}\text{O}_{\text{10}}$, the equivalent of kaolin, is said to be present in weathered rocks. In the zone of weathering the iron shows a strong tendency to move outward and segregate in irregular or mammillary masses, separated by clayey material, though much of it, of course, remains intimately mixed with clay. The same is true of manganese, some of which may be associated with the limonite, though when much manganese is present, it also tends to separate by itself.

The "centrifugal" tendency of iron hydroxide is well seen in many oxidized mineral deposits, often also in the weathering of pebbles. A fine instance was observed in the cobbles of andesite in the Tertiary river-bed at Iowa Hill, California. The outside of these cobbles is hard and consists of an impure limonite; the center contains soft yellowish kaolin.

During the concentration the ferric hydroxides were probably transported as colloids, which afterward hardened and became crystalline, as shown by the radial structure of many concretions. The chemical character of these ores has rarely been studied in detail; probably it will be found that barite, oxidized zinc minerals, and compounds containing manganese, nickel, and cobalt are present. Many of the limonites are rather pure and they are of considerable economic importance.

Classification.—One class of residuary brown iron ores is derived from the decomposition of deposits of siderite or pyritic ores, both usually formed by ascending waters, or from the weathering of black bands or glauconite beds. Such limonites in places reach considerable depths, dependent on the penetrating power of oxygenated waters. The decomposed croppings of pyritic ores are not often used as iron ores.

Another class consists of local segregations of limonite or allied hydroxides in the decayed rock and residuary clay near the surface. These masses are particularly common in limestone areas. Little or no siderite is found near the surface, but it may appear in the limestone at greater depth. When oxygen is exhausted the iron is more easily transported as a bicarbonate and the metasomatic replacement of calcite by siderite may then occur. There are, however, few deposits of limonite which change in depth to large irregular replacements of siderite, so that it may be assumed that the rate of solution and downward transportation of the precipitated limonite is slow.
Finally, a third class of residuary iron ores, limonites mixed with hematite, occurs as widespread sheets due to the gradual decay of strongly ferriferous rocks.

Brown Hematites of the Appalachian Region.—In the United States the residuary iron ores are most abundant in the Appalachian region, mainly in Alabama, Georgia, Virginia, and Tennessee. The annual production of such ores is about 2,700,000 long tons, a small part, of course, of the yearly output of iron ores in the United States. These so-called “brown hematites” are mined in many small deposits; their content in iron ranges from 38 to 52 per cent. (limonite 59.89 per cent. Fe); most of them are comparatively rich in phosphorus.

Most of the southern limonites lie in Cambro-Silurian strata and extend along the “Great Valley,” between the pre-Cam-

T. L. Watson, Mineral resources of Virginia, 1908.

brian on the east and the Paleozoic rocks on the west. They are classed as valley ores, mountain ores, and Oriskany ores.

The valley ores appear as irregular deposits of shallow pockets in clay derived from the decomposition and solution of Cambro-Silurian limestone or dolomite. The ores lie as scattered lumps in the clay, not so much on the eroded surface of the limestone, but rather higher up (Fig. 96). Each deposit is soon exhausted, and few extend below a depth of 50 feet. The ores are mixtures of limonite, goethite, and clay; the composition ranges from 40 to 56 per cent. Fe, 5 to 20 per cent. SiO₂, 0.05 to 0.5 per cent. P, and 0.3 to 2.0 per cent. Mn.

The mountain ores, according to Harder, show greater variation in occurrence and appearance. They are found as small discontinuous pockets in residual material above the Lower Cambrian quartzite at or near the contact with the overlying formation, which is generally a limestone. While these ores are mainly superficial, they are sometimes worked to a depth of several hundred feet. The composition ranges from 35 to 50 per cent. Fe, 10 to 30 per cent. SiO₂, 0.1 to 2 per cent. P, and 0.5 to 10 per cent. Mn. These limonites are often glassy and concretionary.

Fig. 97.—Vertical section showing the structure of mountain brown ore occurring as a mammillary mass in clay. Mary Creek mine, Virginia. After E. C. Harder, U. S. Geol. Survey.
The occurrences are classed by Harder as follows:
1. Pocket deposits in clay, in part replacements of limestone, in part manganiferous (Fig. 97).
2. Small replacement deposits in shale, along fractures.
3. Deposits in quartzite or sandstone, not abundant, including
 a. Breccia deposits accompanied by replacement.
 b. Vein deposits along faults.

The sandstones of the Cambro-Silurian are often ferruginous in this region. Some of the varieties rich in hematitic cement change along the strike to beds of siliceous hematite, several feet thick and of possible economic importance.

![Diagram of lithology](image)

Fig. 98.—Vertical section showing the Oriskany brown ore deposit at the Wilton mine, Virginia. After E. C. Harder, U. S. Geol. Survey.

The Oriskany ores are mined in Virginia and form replacements in the upper part of the Lewiston limestone (Silurian), which is overlain by the Monterey sandstone and Romney shale (both Devonian). The deposits occur along the outcrops as pockets of considerable depth and extent (Fig. 98). Individual pockets may be as much as 75 feet wide and several hundred feet in length. The greatest depth reached is 600 feet; at this or lesser depth the ore grades into unaltered limestone. Part of the iron at least is believed to be derived from the Romney shale. The composition ranges as follows: Fe, 37 to 50 per cent.; SiO₂, 10 to 25 per cent.; P, 0.06 to 0.5 per cent.; Mn, 0.5 to 4.0 per cent.
The brown ores are crushed and subjected to a rough concentration in log washers in order to remove the clay.

Iron Ores of Bilbao, Spain. — The great deposits of Bilbao, in northern Spain, have for many years yielded several million tons annually, the ores being exported to England.

According to Adams, both replacement and residuary ores are present. The ores are superficial and limited to areas of Cretaceous limestone, which is 250 feet thick and dips northeast. The white siderite ore, which is found at some depth, is altered near the surface to red hematite with 80 to 90 per cent. Fe₂O₃. The ores are of Bessemer grade. Adams believes that, during the progress of denudation, the calcareous beds became replaced by siderite by the aid of downward-percolating solutions, derived partly from the overlying calcareous shale. Through long-continued rock decay the siderite was altered to hematite and limonite, which now, with much clay, cover the limestone areas like a sheet. One of the largest iron-bearing areas is 2 miles long and 3,300 feet wide; the iron ore in this area had a thickness of about 100 feet.

Residual Ores of Cuba. — Iron ores have been mined for a number of years in the vicinity of Santiago, Cuba, but these ores, which occur in dioritic rocks, consist of hematite with some magnetite and contain a high percentage of sulphur. The three new districts described by Spencer and others are likewise in the eastern part of the island, but are of an entirely different type. They are the Mayari and Moa districts in Oriente province, and the San Felipe in Camaguey (Fig. 99). The ores occur as residual mantles resulting from the weathering of serpentine

2 Stelnzer and Bergeat, Die Erzlagerstätten, vol. 2, p. 1049, with list of literature.

and for the most part lie on plateaus at rather high elevations. Near the surface the material is earthy and dark red, sometimes cemented with shot-like lumps of hematite scattered over the surface; underneath lie yellowish ores changing rather abruptly into decomposed and soft serpentine. In places a layer of cherty material is found immediately above the serpentine. In the Mayari district the average depth of the ore is about 15 feet and it extends over an area of 10 by 4 miles. Hundreds of millions of tons are said to be available, allowing for parts of the area which are below the workable grade. The ore can be removed with steam shovels.

![Map of the Eastern Part of Cuba showing Iron Ore Districts](image)

Fig. 99.—Sketch map of eastern part of Cuba. *After W. L. Cumings and B. L. Miller.*

According to analyses the ore is fairly uniform, the metallic iron varying in percentage from 40 to 50. It is remarkably free from phosphorus and evidently contains hematite, limonite, a little magnetite, and also some free aluminum hydroxide. It is, in brief, a typical iron-rich laterite (see p. 327). There is much water; according to Kemp the Moa ores yield 25 to 30 per cent. hygroscopic and 10 to 12 per cent. combined water; silica is low and alumina high. The concentration of nickel and chromium is also remarkable; the latter metal is removed during the smelting, but the former is favorable to the quality of the iron. Weld gives the following analyses from the Moa district.
According to C. K. Leith the changes from serpentine to ore may be considered (1) in terms of volumes of mineral and rock and (2) in terms of weight.

The gradation in composition of the ore from the surface downward and the changes in composition of the serpentine rock during its alteration to ore are shown in Fig. 100. The diagram is based on determinations made on material taken at uniform intervals. To avoid misinterpretation of the diagram it should be noted that in the rock and ore the several minerals and pore spaces are, of course, intricately mixed, not separate, as in the diagram. In the upper part of the rock underlying the ore pore space develops because of leaching of silica and magnesia from the serpentine, and limonite appears because of oxidation of the iron of the serpentine. Nearer the surface the pore space is lessened, hematite with a little magnetite begins to appear, owing to dehydration and deoxidation of the limonite, and these minerals increase gradually to the top of the deposit, where some of the kaolin also gives way to bauxite, owing to the loss of silica (see Fig. 100).

In considering the alteration of serpentine to ore in terms of weight, it is found that the alumina has remained constant, or almost so. In the lower part of the ore-body iron has been lost as little as alumina; in other words, it maintains its proportion to the alumina. Toward the top of the ore-body iron has decreased relative to the alumina, thus increasing the percentage.
ROCK DECAY AND WEATHERING

weight of alumina in the mass. In the middle portions of the ore-body iron has actually increased in proportion to the alumina, owing probably to redeposition of iron dissolved near the surface. Silica is continually lost throughout the process, both from the breaking down of the serpentine and from the alteration of kaolin to bauxite. Magnesia has been completely carried away and is not found in the ore.

In 100 pounds of typical serpentine there are 1.5 pounds of alumina and 10 pounds of ferrous oxide. When the magnesia and silica are removed in solution and the iron oxidized there

![Diagram showing in terms of volume the variation in mineral composition and pore space in a typical Mayari ore-body from the surface downward into the serpentine. After C. K. Leith.](image)

remain approximately 11.75 pounds of limonite, 3.8 pounds of bauxite and kaolin, and, at the most, 2 pounds of minor constituents. This residual of 17.55 pounds contains 7.8 pounds, or 44.4 per cent., of metallic iron and is an iron ore.

Distribution and Stability of Residual Iron Ore.—The residual iron ores are widely distributed in countries of warm climate, where secular decay has progressed without interruption for a long time. It seems, however, that great concentration has been effected only
from relatively soluble rocks like limestone and serpentine. These residual ores may grade into bog iron ores, though on the whole the two classes are distinct. Many of the laterites of India, Africa, and other tropical countries are rich in ferric oxide and have the same characteristic concretionary pellets and shots on the surface. There are examples of such ores in colder climates—for instance, in the smaller deposits on serpentine on Staten Island, New York,\(^1\) and at Clealum, Washington.\(^2\)

Vegetation plays an important part in the origin of many of these deposits. Underneath the mat of roots and decayed vegetation the soil in tropical countries is often white or yellowish, indicating that the iron is in the ferrous state, probably as carbonate. When, as happened on the high volcanic plateau of Molokai, Hawaiian Islands,\(^3\) the vegetation is destroyed the soil immediately turns red and hard and shows characteristic pellets of ferric oxide. In part at least the rock is thus changed directly to hematite without passing through the intermediate stage of limonite.

According to H. Wölbling,\(^4\) the natural ferric hydroxides have great stability and cannot readily be changed to ferric oxide, probably not by exposure to air and salt solutions. The freshly precipitated hydroxides are, however, easily converted to ferric oxide and these colloids may easily be crystallized.\(^5\) His experiments show that by the precipitation of ferric solutions with calcite or siderite at 100° C., \(\text{Fe}_2\text{O}_3\) is easily formed, containing only 1 or 2 per cent. \(\text{H}_2\text{O}\), while during slow and wet oxidation of ferrosalts, ferric hydrates of iron are obtained. Wölbling also asserts that there are yellow forms of \(\text{Fe}_2\text{O}_3\), as well as red forms of the hydroxides.

It is certain, at any rate, that the ferric oxide, as well as the hydrates, is very stable when once formed and is not easily altered. No one can fail to be impressed by certain similarities of the Cuban residuary ores to those of the Mesabi range (p. 360).

\(^1\) J. Sterry Hunt, Mineral physiology and physiography, p. 268, 1886.
Similar large expanses of rock, weathered under a tropical sun and covered by residuary ferric oxide, undoubtedly yielded the material for the sedimentary hematite deposits.

RESIDUAL MANGANESE ORES

The minerals of the residual manganese ores consist of pyrolusite (MnO₂, 63.2 per cent. Mn), psilomelane (MnO₂, with H₂O, K₂O, and BaO; 49 to 62 per cent. Mn), wad (perhaps MnO₂.nMnO + H₂O, varying percentage of metal), more rarely braunite (3Mn₂O₅·MnSiO₃ (?) ; 69.7 per cent. Mn), and manganite (Mn₂O₅·H₂O, 62.4 per cent. Mn).

The most common ores are pyrolusite and psilomelane, both occurring frequently in botryoidal, reniform, or mammillary concretions. Harder has shown that these two minerals may form alternating layers in the concretions. Earthy or rough, slaggy forms are also common.

Primary Sources.—Nearly all workable manganese deposits are of secondary formation—that is, they are concentrated from manganese minerals more sparsely distributed in rocks. Pyrolusite, psilomelane, and wad are always secondary, formed under the influence of weathering, even where they descend to considerable depths below the water level.

In igneous rocks manganese is always present but only in small amounts. The largest percentages (about 0.36 per cent.) are found in syenite and its porphyries and in basalts.

Sedimentary rocks may contain manganese in the form of oxides. Manganese nodules occur in some deep-sea deposits.

Analyses of limestones often show a small amount of manganese. In many cherts and jaspers of the sedimentary series manganese is characteristically present as rhodonite or rhodochrosite. On previous pages it has been shown that important deposits of manganese may be produced by sedimentation.

T. L. Watson, Mineral resources of Virginia, 1908.
In crystalline schists, especially in those of more basic composition, small quantities of manganese are found.

In some crystalline schists spessartite (manganese garnet), rhodonite, and piedmontite (manganese epidote) appear in considerable quantities.

Finally, rhodoehrosite and rhodonite are rather common in ore deposits of hydrothermal or contact-metamorphic origin, and much manganese is present in some metamorphic specularite and magnetite deposits.

Fig. 101.—Generalized section showing the occurrence of manganese ore at Batesville, Arkansas. a, Boone chert (Mississippian); b, Cason shale with manganese deposits (Ordovician); c, Polk Bayou limestone (Ordovician); d, surface clay with manganese deposits. After E. C. Harder, U. S. Geol. Survey.

Manganese Deposits in the United States.—From the rocks above mentioned manganese may be concentrated by processes of weathering, and its ores are found in concretions embedded in residuary clay or ocher and accompanied more or less closely by limonites. During this process some other metals, notably nickel, cobalt, zinc, and barium, have a tendency to accompany the pyrolusite and psilomelane. In general such deposits are superficial or of slight depth and closely parallel the residual limonites already described.

In California small deposits of secondary manganese ores occur in areas of the radiolarian cherts or jaspers of the Franciscan formation (Jurassic?).
In Arkansas residuary ores have been mined at Batesville,\(^1\) where they occur both in the Cason manganiferous shale, of upper Ordovician age, and in clay derived from this formation (Fig. 101). Penrose believed that the manganese was derived from the pre-Cambrian area in southeast Missouri and deposited in the sedimentary formation, but the later work of Ulrich and others has shown that erosional epochs have intervened within the formation period assumed by Penrose and that the ores are original marine deposits, reconcentrated dur-

![Diagram of manganese ore distribution](image)

Fig. 102.—Sketch showing distribution of manganese ore lumps in clay at the Crimora mine, Virginia. *After E. C. Harder, U. S. Geol. Survey.*

ing two subsequent land stages, first during the late Silurian and Devonian partial emergence, and second during the post-Paleozoic erosion of the Boone chert.\(^2\)

In the Appalachian region small deposits occur in granites and schists of the Piedmont region, but chiefly in the Paleozoic sediments of the Cambro-Silurian belt—that is, in the general area of the residuary iron ores. At the Crimora deposit, in Virginia (Fig. 102), the ore is found as "masses of various sizes scattered through variegated clays in an elliptical basin in a canoe-shaped

\(^1\) R. A. F. Penrose, Jr., *loc. cit.*

syncline of the Cambrian quartzite, into which the manganese penetrates as dendritic forms and crystalline coatings.¹

ANALYSIS OF BEST QUALITY CRIMORA ORE

(T. L. Watson, Mineral resources of Virginia, p. 248)

MnO₂	81.703
MnO	7.281
Fe₂O₃	0.533
CoO	0.354
NiO	0.096
ZnO	0.623
Al₂O₃	0.896
BaO	0.829
CaO	0.880
MgO	0.630
P₂O₅	0.171
(NaK)₂O	0.467
H₂O ²	3.405
SiO₂	2.132
Total	**100.000**
Mn.	**57.297**

The manganese deposits of the Appalachian region occur in a decomposed surface zone of many different rocks (Figs. 103 and 104), but most of the deposits are, according to Harder, associated with the top stratum of an impervious Cambrian quartzite overlain by limestone. Penrose³ holds that they were laid down in local basins during the deposition of the rocks in whose residual clays they are now found. Harder⁴ believes that the metal was in the first place obtained from the crystalline rocks of the Piedmont region and that since the emergence of the sediments repeated concentration by rock decay has been going on.

In central Texas,⁵ in Mason, Llano, and San Saba counties, oxidized manganese ores occur as products of weathering of crystalline schists containing spessartite, piedmontite, and tephroite.

As stated above, many ore deposits contain manganese as carbonate and silicate, and in the oxidized zone the metal is often highly concentrated in the form of psilomelane, etc., mixed with limonite; these ores often contain gold and silver, but rarely much copper, lead, or zinc. Considerable quantities of such ores, used in part as flux for lead smelting and in part, if of high grade, for the manufacture of spiegeleisen, are mined at Lead-

¹ E. C. Harder, op. cit., p. 60.
² Probably by difference.
³ R. A. F. Penrose, Jr., op. cit.
The primary ore contains only 1 per cent. or less of manganese and no recognizable manganese minerals.

The largest part of the manganese obtained in the United States is derived from ores of the Lake Superior region, where manganese occurs as oxides associated with specularite, and from the zinc residues of the great zinc deposit of Franklin Furnace.

brian on the east and the Paleozoic rocks on the west. They are classed as valley ores, mountain ores, and Oriskany ores.

The valley ores appear as irregular deposits of shallow pockets in clay derived from the decomposition and solution of Cambro-Silurian limestone or dolomite. The ores lie as scattered lumps in the clay, not so much on the eroded surface of the limestone, but rather higher up (Fig. 96). Each deposit is soon exhausted, and few extend below a depth of 50 feet. The ores are mixtures of limonite, göthite, and clay; the composition ranges from 40 to 56 per cent. Fe, 5 to 20 per cent. SiO₂, 0.05 to 0.5 per cent. P, and 0.3 to 2.0 per cent. Mn.

The mountain ores, according to Harder, show greater variation in occurrence and appearance. They are found as small discontinuous pockets in residual material above the Lower Cambrian quartzite at or near the contact with the overlying formation, which is generally a limestone. While these ores are mainly superficial, they are sometimes worked to a depth of several hundred feet. The composition ranges from 35 to 50 per cent. Fe, 10 to 30 per cent. SiO₂, 0.1 to 2 per cent. P, and 0.5 to 10 per cent. Mn. These limonites are often glassy and concretionary.

Fig. 97.—Vertical section showing the structure of mountain brown ore occurring as a mammillary mass in clay. Mary Creek mine, Virginia. After E. C. Harder, U. S. Geol. Survey.
The occurrences are classed by Harder as follows:
1. Pocket deposits in clay, in part replacements of limestone, in part manganiferous (Fig. 97).
2. Small replacement deposits in shale, along fractures.
3. Deposits in quartzite or sandstone, not abundant, including
 a. Breccia deposits accompanied by replacement.
 b. Vein deposits along faults.

The sandstones of the Cambro-Silurian are often ferruginous in this region. Some of the varieties rich in hematitic cement change along the strike to beds of siliceous hematite, several feet thick and of possible economic importance.

![Diagram showing the Oriskany brown ore deposit at the Wilton mine, Virginia.](image)

Fig. 98.—Vertical section showing the Oriskany brown ore deposit at the Wilton mine, Virginia. After E. C. Harder, U. S. Geol. Survey.

The Oriskany ores are mined in Virginia and form replacements in the upper part of the Lewiston limestone (Silurian), which is overlain by the Monterey sandstone and Romney shale (both Devonian). The deposits occur along the outcrops as pockets of considerable depth and extent (Fig. 98). Individual pockets may be as much as 75 feet wide and several hundred feet in length. The greatest depth reached is 600 feet; at this or lesser depth the ore grades into unaltered limestone. Part of the iron at least is believed to be derived from the Romney shale. The composition ranges as follows: Fe, 37 to 50 per cent.; SiO₂, 10 to 25 per cent.; P, 0.06 to 0.5 per cent.; Mn, 0.5 to 4.0 per cent.
The brown ores are crushed and subjected to a rough concentration in log washers in order to remove the clay.

Iron Ores of Bilbao, Spain.1—The great deposits of Bilbao, in northern Spain, have for many years yielded several million tons annually, the ores being exported to England.

According to Adams, both replacement and residuary ores are present. The ores are superficial and limited to areas of Cretaceous limestone, which is 250 feet thick and dips northeast. The white siderite ore, which is found at some depth, is altered near the surface to red hematite with 80 to 90 per cent. Fe\textsubscript{2}O\textsubscript{3}. The ores are of Bessemer grade. Adams believes that, during the progress of denudation, the calcareous beds became replaced by siderite by the aid of downward-percolating solutions, derived partly from the overlying calcareous shale. Through long-continued rock decay the siderite was altered to hematite and limonite, which now, with much clay, cover the limestone areas like a sheet. One of the largest iron-bearing areas is 2 miles long and 3,300 feet wide; the iron ore in this area had a thickness of about 100 feet.2

Residual Ores of Cuba.3—Iron ores have been mined for a number of years in the vicinity of Santiago, Cuba, but these ores, which occur in dioritic rocks, consist of hematite with some magnetite and contain a high percentage of sulphur. The three new districts described by Spencer and others are likewise in the eastern part of the island, but are of an entirely different type. They are the Mayari and Moa districts in Oriente province, and the San Felipe in Camaguey (Fig. 99). The ores occur as residual mantles resulting from the weathering of serpentine.

2 John, Zeitschr. prakt. Geol., 1911, pp. 208–212.

3 Steinsner and Bergeast, Die Erzlagerstätten, vol. 2, p. 1049, with list of literature.

and for the most part lie on plateaus at rather high elevations. Near the surface the material is earthy and dark red, sometimes cemented with shot-like lumps of hematite scattered over the surface; underneath lie yellowish ores scattered rather abruptly into decomposed and soft serpentine. In places a layer of cherty material is found immediately above the serpentine. In the Mayari district the average depth of the ore is about 15 feet and it extends over an area of 10 by 4 miles. Hundreds of millions of tons are said to be available, allowing for parts of the area which are below the workable grade. The ore can be removed with steam shovels.

Fig. 99.—Sketch map of eastern part of Cuba. After W. L. Cumings and B. L. Miller.

According to analyses the ore is fairly uniform, the metallic iron varying in percentage from 40 to 50. It is remarkably free from phosphorus and evidently contains hematite, limonite, a little magnetite, and also some free aluminum hydroxide. It is, in brief, a typical iron-rich laterite (see p. 327). There is much water; according to Kemp the Moa ores yield 25 to 30 per cent. hygroscopic and 10 to 12 per cent. combined water; silica is low and alumina high. The concentration of nickel and chromium is also remarkable; the latter metal is removed during the smelting, but the former is favorable to the quality of the iron. Weld gives the following analyses from the Moa district.
Analyses of Serpentine and Ore from the Moa District, Cuba

<table>
<thead>
<tr>
<th></th>
<th>Serpentine</th>
<th>Iron ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$</td>
<td>▃▃▃▃▃▃</td>
<td>66.90</td>
</tr>
<tr>
<td>FeO</td>
<td>8.55</td>
<td>▃▃▃▃▃▃</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>37.29</td>
<td>1.71</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.33</td>
<td>11.60</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>Not determined.</td>
<td>2.65</td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>trace.</td>
<td>0.80</td>
</tr>
<tr>
<td>CaO</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>36.53</td>
<td></td>
</tr>
<tr>
<td>K$_2$O</td>
<td>trace.</td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>H$_2$O</td>
<td>15.27</td>
<td>13.15</td>
</tr>
<tr>
<td></td>
<td>99.72</td>
<td>97.62</td>
</tr>
</tbody>
</table>

According to C. K. Leith the changes from serpentine to ore may be considered (1) in terms of volumes of mineral and rock and (2) in terms of weight.

The gradation in composition of the ore from the surface downward and the changes in composition of the serpentine rock during its alteration to ore are shown in Fig. 100. The diagram is based on determinations made on material taken at uniform intervals. To avoid misinterpretation of the diagram it should be noted that in the rock and ore the several minerals and pore spaces are, of course, intricately mixed, not separate, as in the diagram. In the upper part of the rock underlying the ore pore space develops because of leaching of silica and magnesia from the serpentine, and limonite appears because of oxidation of the iron of the serpentine. Nearer the surface the pore space is lessened, hematite with a little magnetite begins to appear, owing to dehydration and deoxidation of the limonite, and these minerals increase gradually to the top of the deposit, where some of the kaolin also gives way to bauxite, owing to the loss of silica (see Fig. 100).

In considering the alteration of serpentine to ore in terms of weight, it is found that the alumina has remained constant, or almost so. In the lower part of the ore-body iron has been lost as little as alumina; in other words, it maintains its proportion to the alumina. Toward the top of the ore-body iron has decreased relative to the alumina, thus increasing the percentage
ROCK DECAY AND WEATHERING

weight of alumina in the mass. In the middle portions of the ore-body iron has actually increased in proportion to the alumina, owing probably to redeposition of iron dissolved near the surface.

Silica is continually lost throughout the process, both from the breaking down of the serpentine and from the alteration of kaolin to bauxite. Magnesia has been completely carried away and is not found in the ore.

In 100 pounds of typical serpentine there are 1.5 pounds of alumina and 10 pounds of ferrous oxide. When the magnesia and silica are removed in solution and the iron oxidized there

remain approximately 11.75 pounds of limonite, 3.8 pounds of bauxite and kaolin, and, at the most, 2 pounds of minor constituents. This residual of 17.55 pounds contains 7.8 pounds, or 44.4 per cent., of metallic iron and is an iron ore.

Distribution and Stability of Residual Iron Ore.—The residual iron ores are widely distributed in countries of warm climate, where secular decay has progressed without interruption for a long time. It seems, however, that great concentration has been effected only

Fig. 100.—Diagram showing in terms of volume the variation in mineral composition and pore space in a typical Mayari ore-body from the surface downward into the serpentine. *After C. K. Leith.*
from relatively soluble rocks like limestone and serpentine. These residual ores may grade into bog iron ores, though on the whole the two classes are distinct. Many of the laterites of India, Africa, and other tropical countries are rich in ferric oxide and have the same characteristic concretionary pellets and shots on the surface. There are examples of such ores in colder climates—for instance, in the smaller deposits on serpentine on Staten Island, New York,¹ and at Clealum, Washington.²

Vegetation plays an important part in the origin of many of these deposits. Underneath the mat of roots and decayed vegetation the soil in tropical countries is often white or yellowish, indicating that the iron is in the ferrous state, probably as carbonate. When, as happened on the high volcanic plateau of Molokai, Hawaiian Islands,³ the vegetation is destroyed the soil immediately turns red and hard and shows characteristic pellets of ferric oxide. In part at least the rock is thus changed directly to hematite without passing through the intermediate stage of limonite.

According to H. Wöbling,⁴ the natural ferric hydroxides have great stability and cannot readily be changed to ferric oxide, probably not by exposure to air and salt solutions. The freshly precipitated hydroxides are, however, easily converted to ferric oxide and these colloids may easily be crystallized.⁵ His experiments show that by the precipitation of ferric solutions with calcite or siderite at 100° C., Fe₂O₃ is easily formed, containing only 1 or 2 per cent. H₂O, while during slow and wet oxidation of ferrosalts, ferric hydrates of iron are obtained. Wöbling also asserts that there are yellow forms of Fe₂O₃, as well as red forms of the hydroxides.

It is certain, at any rate, that the ferric oxide, as well as the hydrates, is very stable when once formed and is not easily altered.

No one can fail to be impressed by certain similarities of the Cuban residuary ores to those of the Mesabi range (p. 360).

¹ J. Sterry Hunt, Mineral physiology and physiography, p. 268, 1886.
Similar large expanses of rock, weathered under a tropical sun and covered by residuary ferric oxide, undoubtedly yielded the material for the sedimentary hematite deposits.

RESIDUAL MANGANESE ORES

The minerals of the residual manganese ores consist of pyrolusite (MnO₂, 63.2 per cent. Mn), psilomelane (MnO₂, with H₂O, K₂O, and BaO; 49 to 62 per cent. Mn), wad (perhaps MnO₂·nMnO + H₂O, varying percentage of metal), more rarely braunite (3Mn₂O₅·MnSiO₃ (?) ; 69.7 per cent. Mn), and manganite (Mn₂O₃·H₂O, 62.4 per cent. Mn).

The most common ores are pyrolusite and psilomelane, both occurring frequently in botryoidal, reniform, or mammillary concretions. Harder has shown that these two minerals may form alternating layers in the concretions. Earthy or rough, slaggy forms are also common.

Primary Sources.—Nearly all workable manganese deposits are of secondary formation—that is, they are concentrated from manganese minerals more sparsely distributed in rocks. Pyrolusite, psilomelane, and wad are always secondary, formed under the influence of weathering, even where they descend to considerable depths below the water level.

In igneous rocks manganese is always present but only in small amounts. The largest percentages (about 0.36 per cent.) are found in syenite and its porphyries and in basalts.

Sedimentary rocks may contain manganese in the form of oxides. Manganese nodules occur in some deep-sea deposits.

Analyses of limestones often show a small amount of manganese. In many cherts and jaspers of the sedimentary series manganese is characteristically present as rhodonite or rhodochrosite. On previous pages it has been shown that important deposits of manganese may be produced by sedimentation.

T. L. Watson, Mineral resources of Virginia, 1908.
In crystalline schists, especially in those of more basic composition, small quantities of manganese are found.

In some crystalline schists spessartite (manganese garnet), rhodonite, and piedmontite (manganese epidote) appear in considerable quantities.

Finally, rhodochrosite and rhodonite are rather common in ore deposits of hydrothermal or contact-metamorphic origin, and much manganese is present in some metamorphic specularite and magnetite deposits.

Manganese Deposits in the United States.—From the rocks above mentioned manganese may be concentrated by processes of weathering, and its ores are found in concretions embedded in residuary clay or ocher and accompanied more or less closely by limonites. During this process some other metals, notably nickel, cobalt, zinc, and barium, have a tendency to accompany the pyrolusite and psilomelane. In general such deposits are superficial or of slight depth and closely parallel the residual limonites already described.

In California small deposits of secondary manganese ores occur in areas of the radiolarian cherts or jaspers of the Franciscan formation (Jurassic?).
In Arkansas residuary ores have been mined at Batesville,\(^1\) where they occur both in the Cason manganiferous shale, of upper Ordovician age, and in clay derived from this formation (Fig. 101). Penrose believed that the manganese was derived from the pre-Cambrian area in southeast Missouri and deposited in the sedimentary formation, but the later work of Ulrich and others has shown that erosional epochs have intervened within the formation period assumed by Penrose and that the ores are original marine deposits, reconcentrated dur-

Fig. 102.—Sketch showing distribution of manganese ore lumps in clay at the Crimora mine, Virginia. *After E. C. Harder, U. S. Geol. Survey.*

1. R. A. F. Penrose, Jr., *loc. cit.*
syncline of the Cambrian quartzite," into which the manganese penetrates as dendritic forms and crystalline coatings.¹

ANALYSIS OF BEST QUALITY CRIMORA ORE

(T. L. Watson, Mineral resources of Virginia, p. 248]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO₂</td>
<td>81.703</td>
</tr>
<tr>
<td>MnO</td>
<td>7.281</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>0.533</td>
</tr>
<tr>
<td>CoO</td>
<td>0.354</td>
</tr>
<tr>
<td>NiO</td>
<td>0.096</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.623</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.896</td>
</tr>
<tr>
<td>BaO</td>
<td>0.829</td>
</tr>
<tr>
<td>CaO</td>
<td>0.880</td>
</tr>
<tr>
<td>MgO</td>
<td>0.630</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.171</td>
</tr>
<tr>
<td>(NaK)O</td>
<td>0.467</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>3.405</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.132</td>
</tr>
</tbody>
</table>

Total 100.000

Mn 57.297

The manganese deposits of the Appalachian region occur in a decomposed surface zone of many different rocks (Figs. 103 and 104), but most of the deposits are, according to Harder, associated with the top stratum of an impervious Cambrian quartzite overlain by limestone. Penrose² holds that they were laid down in local basins during the deposition of the rocks in whose residual clays they are now found. Harder believes that the metal was in the first place obtained from the crystalline rocks of the Piedmont region and that since the emergence of the sediments repeated concentration by rock decay has been going on.

In central Texas,³ in Mason, Llano, and San Saba counties, oxidized manganese ores occur as products of weathering of crystalline schists containing spessartite, piedmontite, and tephroite.

As stated above, many ore deposits contain manganese as carbonate and silicate, and in the oxidized zone the metal is often highly concentrated in the form of psilomelane, etc., mixed with limonite; these ores often contain gold and silver, but rarely much copper, lead, or zinc. Considerable quantities of such ores, used in part as flux for lead smelting and in part, if of high grade, for the manufacture of spiegeleisen, are mined at Lead-

¹ E. C. Harder, _op. cit._, p. 60.
² Probably by difference.
³ R. A. F. Penrose, Jr., _op. cit._
ville, Colorado. The primary ore contains only 1 per cent. or less of manganese and no recognizable manganese minerals.

The largest part of the manganese obtained in the United States is derived from ores of the Lake Superior region, where

Fig. 103.—Sketch showing occurrence of manganese breccia ore at Reynolds Mountain, Virginia. After E. C. Harder, U. S. Geol. Survey.

Fig. 104.—Sketch showing structure and development of breccia ore. White areas, chert or sandstone; black, manganese ore. One-fifth natural size. After T. L. Watson.

manganese occurs as oxides associated with specularite, and from the zinc residues of the great zinc deposit of Franklin Furnace,

New Jersey, where the manganese is contained in the franklinite
\[(\text{Fe},\text{Zn},\text{Mn})\text{O} \cdot (\text{Fe},\text{Mn})_2\text{O}_3\] associated with zincite \[(\text{Zn},\text{Mn})\text{O}\] in a deposit of deep-seated, probably contact-metamorphic origin.

Brazil.—The high-grade manganese deposits of Minas Geraes, Brazil, have been described by J. C. Branner and O. A. Derby.\(^1\) In the main they appear to be residual ores derived from the weathering of lenses in the crystalline schists containing rhodochrosite, tephroite, and spessartite. The ores are concretions, masses, and vein-like deposits of psilomelane in the soft decomposed rock.

India.—Manganese ores are extensively distributed in India and their occurrence and origin have recently been described in a detailed manner by L. L. Fermor.\(^2\) To a large extent these rich ores are formed by the combined replacement and decomposition of Archean rocks containing manganese silicates. In part the rocks are crystalline schists with spessartite and rhodochrosite, in part probably non-metamorphosed peculiar igneous rocks, one of which, for instance, consists of spessartite (spandite) and orthoclase with 3.70 per cent. apatite. To a smaller extent the ores are contained in jaspery quartzites and also in laterite, which is purely residual.

Many deposits of the first class contain enormous masses of psilomelane, pyrolusite, and braunite; during the process of weathering almost all the silica and alumina have been removed. Fermor finds no evidences that the alteration has been caused by sulphuric acid, but holds that in some manner, not yet fully understood, it has been effected by surface waters.

Many of the deposits extend to depths far below the water level and Fermor believes that the oxidation may be of very ancient date, perhaps Archean. In some ways these concentrations by surface waters recall the Lake Superior iron deposits.

Origin.—The manganese ores here described as products of weathering and rock decay are in the main similar in origin to the corresponding deposits of iron ore. It is explained on page 306 that iron and manganese, although acting in a similar manner, are usually laid down separately in residuary and sedimentary deposits because of the greater solubility of

the manganese carbonate. Where sulphates are present the ferrous salt is decomposed easily by oxygen, while manganese sulphate requires the presence of calcium carbonate or some such mineral.¹ On the whole, manganese is not transported far from its original source and is characterized by a strong tendency to segregation into local concretions and masses. It is believed that in the main the ordinary surface waters effected the concentration and that the metal has been transformed through the intermediate stage of carbonate.

Uses.—Almost 200,000 tons of manganese ores are annually imported into the United States, the domestic production of pure ores being very small and at present almost wholly confined to Virginia. The imports now come mainly from India and Brazil.

For the manufacture of spiegeleisen, an alloy with iron containing less than 20 per cent. Mn, low grades of manganiferous iron ore may be used, but for other purposes the ores should contain at least 40 per cent. Mn, less than 12 per cent. SiO₂, and less than 0.3 per cent. phosphorus.

The higher grades of manganese ores are used extensively for the manufacture of ferro-manganese alloys. These are used for various purposes in the iron-smelting industry, particularly for hardening steel.² The oxidized manganese ores also find an extensive chemical use, for the generation of chlorine and for the manufacture of cells for dry electric batteries.

RESIDUARY BARITE

Barite as residual material and nodular concretions is not uncommon in the residuary soils of Virginia and Georgia and in Washington County, Missouri. In Virginia the Cambro-Silurian limestone, according to T. L. Watson, generally contains a notable percentage of barium, and in many places in Georgia the Weisner sandstone, of the same age, also carries barium sulphate. In Missouri the barite is concentrated in the soil from veins in the Ordovician Gasconade limestone. The barium may have been transported as the carbonate, which is slightly more soluble than the sulphate, and precipitated by water carrying sulphate. Much of the barite produced in the United States is obtained from residuary clays. (See p. 302.)

RESIDUARY ZINC ORE

In the Appalachian region, in western Virginia and eastern Tennessee, the Cambro-Silurian limestones contain in places sulphides of lead and zinc distributed in brecciated and crushed zones. At such localities the deep residuary soil often contains calamine and smithsonite, the hydrated silicate and the carbonate of zinc, with some cerussite. These ores occur next to the limestone at the bottom of the clay (Fig. 105), not scattered through it like limonite and pyrolusite.¹

![Fig. 105.—Section in open cut at the Bertha zinc mines, Virginia, showing relations of the residuary ore to the limestone chimneys and the residuary clay. After T. L. Watson.](image)

RESIDUARY OCHERS²

The residuary ochers are impure deep-red, yellow, or brown pulverulent materials consisting usually of predominant clay colored by limonite and hematite and are generally used for pigments. According to their color the terms Indian red, sienna, and umber, the latter two for the darker yellowish-brown and brown shades, are in use. Not all mineral pigments are natural products, for roasted pyrite, siderite, slates, and shales

T. L. Watson, Mineral resources of Virginia, 1907.

G. P. Merrill, Non-metallic minerals, 1910, pp. 104–111.
ROCK DECAY AND WEATHERING

are also used.1 The southern Clinton iron ores are also employed for these purposes.

The residuary iron ore deposits of the Southern States contain material which may be classed and is used as ocher. Especially interesting are the Cartersville deposits,2 in Georgia. These ochers occur only in the Weisner (Cambro-Silurian) quartzite, in the lower part of the residuary zone immediately above the yet solid rock, and also in shattered zones in the quartzite itself. The quartzite contains about 90 per cent. SiO\textsubscript{2}, 1.5 per cent. FeS\textsubscript{2}, 0.5 per cent. Fe\textsubscript{2}O\textsubscript{3}, and also an unusual percentage of barium sulphate (4.46 per cent. in the analysis given by Watson). The calculated constituents of the ocher are 66 per cent. limonite, 25 per cent. clay, and 9 per cent. quartz; a little hematite is probably also present.

Hayes and Watson are in agreement regarding the origin of the ocher, considering it as resulting from a metasomatic replacement of the cement and the quartz grains of the quartzite by limonite. The process begins by the permeation of the grains by dendritic limonite. This direct formation of the ocher is scarcely probable, but more likely it has progressed by means of an intermediate stage of siderite. The replacement of quartz by iron carbonate is a well-known phenomenon, illustrated, for instance, in the Coeur d’Alene lead deposits of Idaho.

The Georgia production of ocher amounted to 7,400 tons in 1911. The mining is done mainly in open pits, and the material is crushed, washed in a log-washer, and allowed to settle in tanks.

RESIDUARY PHOSPHATES

As described more fully on page 255, many sedimentary beds contain much phosphate of calcium, often in oolitic or concretionary form. When these beds are exposed to surface

1B. L. Miller, The mineral pigments of Pennsylvania, \textit{Rept. No. 4, Topographic and Geologic Survey Commission of Pennsylvania, Harrisburg, 1911.}

T. L. Watson, The ocher deposits of Georgia, \textit{Bull. No. 13, Georgia Geol. Surv., 1906.}
waters an enrichment usually takes place by solution of calcium carbonate, provided the beds are permeable to the circulating waters. Many important phosphate deposits—for instance, those of Florida, South Carolina, and Tennessee—have been thus enriched.

DEPOSITS OF HYDRATED SILICATES OF NICKEL

The original home of nickel, cobalt, and chromium is in the peridotitic and pyroxenic rocks and in the serpentines derived from them, although traces of these metals are also frequently noted in analyses of other basic rocks. The primary condition of the nickel in the rocks is not always known; probably it occurs both as silicate and as sulphide, the latter in microscopic grains, the former as an admixture in iron-magnesium silicates. From the serpentines and peridotites the nickel is sometimes concentrated in commercially important quantities by processes of weathering and the ores thus formed are always the green hydrated silicates of nickel. Chromite, which always occurs in these basic rocks, does not readily yield oxidized minerals in the zone of weathering. Sulphates of chromium have been observed in a quicksilver mine in California, but no silicate analogous to garnierite exists.

Nickel silicate ores are diverse and uncertain in composition. The most important are genthite, $\text{H}_4\text{Ni}_2\text{Mg}_3(\text{SiO}_3)_4\text{H}_2\text{O}$; connarite, $\text{H}_4\text{Ni}_2\text{Si}_2\text{O}_{16}$; and garnierite, $(\text{Mg, Ni})\text{SiO}_4 + n\text{H}_2\text{O}$.

Such deposits are superficial and there can be little doubt that the oxidizing surface waters have been the carrying and concentrating agency. The ores rarely extend far below the water-level and in some cases are contained in the residual clays of the completely weathered rock. These nickel ores are often accompanied by cobalt in the form of asbolite, a rather indefinite mixture of hydrous oxides of manganese and cobalt, but the oxidized nickel ores usually form masses separate from those of the cobalt ores.

These deposits do not ordinarily contain sulphides, and copper is rarely present. The accompanying minerals are quartz, chalcedony, opal, and various obscure hydrous magnesium silicates, sometimes also a little magnesite. Nickel ores of this kind are not uncommon, but only in a few places do they attain commercial importance.
Rock Decay and Weathering

Analyses of Nickel Silicates

(Clarke, Geochemistry, p. 664)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO_2</td>
<td>44.73</td>
<td>38.35</td>
</tr>
<tr>
<td>$\text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3$</td>
<td>1.18</td>
<td>0.55</td>
</tr>
<tr>
<td>NiO</td>
<td>27.57</td>
<td>32.52</td>
</tr>
<tr>
<td>MgO</td>
<td>10.56</td>
<td>10.61</td>
</tr>
<tr>
<td>H_2O at redness</td>
<td>6.99</td>
<td>11.53</td>
</tr>
<tr>
<td>H_2O at +100° C.</td>
<td>8.87</td>
<td>6.44</td>
</tr>
<tr>
<td>Total</td>
<td>99.90</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. Riddles, Oregon, F. W. Clarke, Analyst.
2. New Caledonia, A. Liversidge, Analyst.

The nickel mines of Riddles, in southern Oregon, have been described by several authors. The parent rock is a peridotite (saxinite or harzburgite) containing 0.10 per cent. of NiO. The olivine separated from the rock contained 0.26 per cent. of NiO and all observers agree that the nickel ores are formed from this silicate. In the finest joints of the rock silica and nickel-magnesium silicates are deposited, and between them lies the oxidized rock converted to a limonite with some clay and chromite. Richer bodies of nickel ores have been formed by a further concentration in this oxidized mass.

One of the two most important nickel-bearing districts of the world is in New Caledonia. One-third of this island consists of post-Cretaceous serpentines and peridotite. The lower parts of the serpentines are covered by a deep mantle of decayed rock (variegated clay) containing about 18 per cent. silica, 69 per cent. ferric oxide, 0.45 per cent. alumina, 1.64 per cent. nickel oxide, and 10 per cent. water. Eluvial limonite and asbolite are contained in this red clay, beneath which, possibly in connection with fissures facilitating the water circulation, the nickel

4 G. F. Kay, *Bull.* No. 315, U. S. Geol. Survey, 1907, p. 120.
from relatively soluble rocks like limestone and serpentine. These residual ores may grade into bog iron ores, though on the whole the two classes are distinct. Many of the laterites of India, Africa, and other tropical countries are rich in ferric oxide and have the same characteristic concretionary pellets and shots on the surface. There are examples of such ores in colder climates—for instance, in the smaller deposits on serpentine on Staten Island, New York, and at Clealum, Washington.

Vegetation plays an important part in the origin of many of these deposits. Underneath the mat of roots and decayed vegetation the soil in tropical countries is often white or yellowish, indicating that the iron is in the ferrous state, probably as carbonate. When, as happened on the high volcanic plateau of Molokai, Hawaiian Islands, the vegetation is destroyed the soil immediately turns red and hard and shows characteristic pellets of ferric oxide. In part at least the rock is thus changed directly to hematite without passing through the intermediate stage of limonite.

According to H. Wöbling, the natural ferric hydroxides have great stability and cannot readily be changed to ferric oxide, probably not by exposure to air and salt solutions. The freshly precipitated hydroxides are, however, easily converted to ferric oxide and these colloids may easily be crystallized. His experiments show that by the precipitation of ferric solutions with calcite or siderite at 100° C., Fe₂O₃ is easily formed, containing only 1 or 2 per cent. H₂O, while during slow and wet oxidation of ferrosalts, ferric hydrates of iron are obtained. Wöbling also asserts that there are yellow forms of Fe₂O₃, as well as red forms of the hydroxides.

It is certain, at any rate, that the ferric oxide, as well as the hydrates, is very stable when once formed and is not easily altered.

No one can fail to be impressed by certain similarities of the Cuban residuary ores to those of the Mesabi range (p. 360).

1 J. Sterry Hunt, Mineral physiology and physiography, p. 268, 1886.
Similar large expanses of rock, weathered under a tropical sun and covered by residuary ferric oxide, undoubtedly yielded the material for the sedimentary hematite deposits.

RESIDUAL MANGANESE ORES

The minerals of the residual manganese ores consist of pyrolusite (MnO$_2$, 63.2 per cent. Mn), psilomelane (MnO$_2$, with H$_2$O, K$_2$O, and BaO; 49 to 62 per cent. Mn), wad (perhaps MnO$_2$. nMnO + H$_2$O, varying percentage of metal), more rarely braunite (3Mn$_2$O$_3$.2MnSiO$_3$ (?); 69.7 per cent. Mn), and manganite (Mn$_2$O$_3$. H$_2$O, 62.4 per cent. Mn).

The most common ores are pyrolusite and psilomelane, both occurring frequently in botryoidal, reniform, or mammillary concretions. Harder has shown that these two minerals may form alternating layers in the concretions. Earthy or rough, slaggy forms are also common.

Primary Sources.—Nearly all workable manganese deposits are of secondary formation—that is, they are concentrated from manganese minerals more sparsely distributed in rocks. Pyrolusite, psilomelane, and wad are always secondary, formed under the influence of weathering, even where they descend to considerable depths below the water level.

In igneous rocks manganese is always present but only in small amounts. The largest percentages (about 0.36 per cent.) are found in syenite and its porphyries and in basalts.

Sedimentary rocks may contain manganese in the form of oxides. Manganese nodules occur in some deep-sea deposits.

Analyses of limestones often show a small amount of manganese. In many cherts and jaspers of the sedimentary series manganese is characteristically present as rhodonite or rhodochrosite. On previous pages it has been shown that important deposits of manganese may be produced by sedimentation.

T. L. Watson, Mineral resources of Virginia, 1908.

In crystalline schists, especially in those of more basic composition, small quantities of manganese are found.

In some crystalline schists spessartite (manganese garnet), rhodonite, and piedmontite (manganese epidote) appear in considerable quantities.

Finally, rhodoehrosite and rhodonite are rather common in ore deposits of hydrothermal or contact-metamorphic origin, and much manganese is present in some metamorphic specularite and magnetite deposits.

![Diagram](image)

Fig. 101.—Generalized section showing the occurrence of manganese ore at Batesville, Arkansas. *a*, Boone chert (Mississippian); *b*, Cason shale with manganese deposits (Ordovician); *c*, Polk Bayou limestone (Ordovician); *d*, surface clay with manganese deposits. *After E. C. Harder, U. S. Geol. Survey.*

Manganese Deposits in the United States.—From the rocks above mentioned manganese may be concentrated by processes of weathering, and its ores are found in concretions embedded in residuary clay or ocher and accompanied more or less closely by limonites. During this process some other metals, notably nickel, cobalt, zinc, and barium, have a tendency to accompany the pyrolusite and psilomelane. In general such deposits are superficial or of slight depth and closely parallel the residual limonites already described.

In California small deposits of secondary manganese ores occur in areas of the radiolarian cherts or jaspers of the Franciscan formation (Jurassic?).
In Arkansas residuary ores have been mined at Batesville,¹ where they occur both in the Cason manganiferous shale, of upper Ordovician age, and in clay derived from this formation (Fig. 101). Penrose believed that the manganese was derived from the pre-Cambrian area in southeast Missouri and deposited in the sedimentary formation, but the later work of Ulrich and others has shown that erosional epochs have intervened within the formation period assumed by Penrose and that the ores are original marine deposits, reconcentrated dur-

Fig. 102.—Sketch showing distribution of manganese ore lumps in clay at the Crimora mine, Virginia. After E. C. Harder, U. S. Geol. Survey.

ing two subsequent land stages, first during the late Silurian and Devonian partial emergence, and second during the post-Paleozoic erosion of the Boone chert.²

In the Appalachian region small deposits occur in granites and schists of the Piedmont region, but chiefly in the Paleozoic sediments of the Cambro-Silurian belt—that is, in the general area of the residuary iron ores. At the Crimora deposit, in Virginia (Fig. 102), the ore is found as "masses of various sizes scattered through variegated clays in an elliptical basin in a canoe-shaped

¹ R. A. F. Penrose, Jr., loc. cit.
MINERAL DEPOSITS

syncline of the Cambrian quartzite," into which the manganese penetrates as dendritic forms and crystalline coatings.¹

ANALYSIS OF BEST QUALITY CRIMORA ORE
[T. L. Watson, Mineral resources of Virginia, p. 248]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO₂</td>
<td>81.703</td>
</tr>
<tr>
<td>MnO</td>
<td>7.281</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.533</td>
</tr>
<tr>
<td>CoO</td>
<td>0.354</td>
</tr>
<tr>
<td>NiO</td>
<td>0.096</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.623</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.896</td>
</tr>
<tr>
<td>BaO</td>
<td>0.829</td>
</tr>
<tr>
<td>CaO</td>
<td>0.880</td>
</tr>
<tr>
<td>MgO</td>
<td>0.630</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.171</td>
</tr>
<tr>
<td>(NaK)₂O</td>
<td>0.467</td>
</tr>
<tr>
<td>H₂O</td>
<td>3.405</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.132</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
</tr>
<tr>
<td>Mn</td>
<td>57.297</td>
</tr>
</tbody>
</table>

The manganese deposits of the Appalachian region occur in a decomposed surface zone of many different rocks (Figs. 103 and 104), but most of the deposits are, according to Harder, associated with the top stratum of an impervious Cambrian quartzite overlain by limestone. Penrose² holds that they were laid down in local basins during the deposition of the rocks in whose residual clays they are now found. Harder³ believes that the metal was in the first place obtained from the crystalline rocks of the Piedmont region and that since the emergence of the sediments repeated concentration by rock decay has been going on.

In central Texas,⁴ in Mason, Llano, and San Saba counties, oxidized manganese ores occur as products of weathering of crystalline schists containing spessartite, piedmontite, and tephroite.

As stated above, many ore deposits contain manganese as carbonate and silicate, and in the oxidized zone the metal is often highly concentrated in the form of psilomelane, etc., mixed with limonite; these ores often contain gold and silver, but rarely much copper, lead, or zinc. Considerable quantities of such ores, used in part as flux for lead smelting and in part, if of high grade, for the manufacture of spiegeleisen, are mined at Lead-

¹ E. C. Harder, op. cit., p. 60.
² Probably by difference.
³ R. A. F. Penrose, Jr., op. cit.
ville, Colorado. The primary ore contains only 1 per cent. or less of manganese and no recognizable manganese minerals.

The largest part of the manganese obtained in the United States is derived from ores of the Lake Superior region, where

Fig. 103.—Sketch showing occurrence of manganese breccia ore at Reynolds Mountain, Virginia. After E. C. Harder, U. S. Geol. Survey.

Fig. 104.—Sketch showing structure and development of breccia ore. White areas, chert or sandstone; black, manganese ore. One-fifth natural size. After T. L. Watson.

manganese occurs as oxides associated with specularite, and from the zinc residues of the great zinc deposit of Franklin Furnace,

New Jersey, where the manganese is contained in the franklinite [(Fe, Zn, Mn)O·(Fe, Mn)₂O₃] associated with zinicate [(Zn, Mn)O] in a deposit of deep-seated, probably contact-metamorphic origin.

Brazil.—The high-grade manganese deposits of Minas Geraes, Brazil, have been described by J. C. Branner and O. A. Derby. In the main they appear to be residual ores derived from the weathering of lenses in the crystalline schists containing rhodochrosite, tephroite, and spessartite. The ores are concretions, masses, and vein-like deposits of psilomelane in the soft decomposed rock.

India.—Manganese ores are extensively distributed in India and their occurrence and origin have recently been described in a detailed manner by L. L. Fermor. To a large extent these rich ores are formed by the combined replacement and decomposition of Archean rocks containing manganese silicates. In part the rocks are crystalline schists with spessartite and rhodonite, in part probably non-metamorphosed peculiar igneous rocks, one of which, for instance, consists of spessartite (spandite) and orthoclase with 3.70 per cent. apatite. To a smaller extent the ores are contained in jaspery quartzites and also in laterite, which is purely residual.

Many deposits of the first class contain enormous masses of psilomelane, pyrolusite, and braunite; during the process of weathering almost all the silica and alumina have been removed. Fermor finds no evidences that the alteration has been caused by sulphuric acid, but holds that in some manner, not yet fully understood, it has been effected by surface waters.

Many of the deposits extend to depths far below the water level and Fermor believes that the oxidation may be of very ancient date, perhaps Archean. In some ways these concentrations by surface waters recall the Lake Superior iron deposits.

Origin.—The manganese ores here described as products of weathering and rock decay are in the main similar in origin to the corresponding deposits of iron ore. It is explained on page 306 that iron and manganese, although acting in a similar manner, are usually laid down separately in residuary and sedimentary deposits because of the greater solubility of

the manganese carbonate. Where sulphates are present the ferrous salt is decomposed easily by oxygen, while manganese sulphate requires the presence of calcium carbonate or some such mineral.¹ On the whole manganese is not transported far from its original source and is characterized by a strong tendency to segregation into local concretions and masses. It is believed that in the main the ordinary surface waters effected the concentration and that the metal has been transformed through the intermediate stage of carbonate.

Uses.—Almost 200,000 tons of manganese ores are annually imported into the United States, the domestic production of pure ores being very small and at present almost wholly confined to Virginia. The imports now come mainly from India and Brazil.

For the manufacture of spiegeleisen, an alloy with iron containing less than 20 per cent. Mn, low grades of manganiferous iron ore may be used, but for other purposes the ores should contain at least 40 per cent. Mn, less than 12 per cent. SiO₂, and less than 0.3 per cent. phosphorus.

The higher grades of manganese ores are used extensively for the manufacture of ferro-manganese alloys. These are used for various purposes in the iron-smelting industry, particularly for hardening steel.² The oxidized manganese ores also find an extensive chemical use, for the generation of chlorine and for the manufacture of cells for dry electric batteries.

RESIDUARY BARITE

Barite as residual material and nodular concretions is not uncommon in the residuary soils of Virginia and Georgia and in Washington County, Missouri. In Virginia the Cambro-Silurian limestone, according to T. L. Watson, generally contains a notable percentage of barium, and in many places in Georgia the Weisner sandstone, of the same age, also carries barium sulphate. In Missouri the barite is concentrated in the soil from veins in the Ordovician Gasconade limestone. The barium may have been transported as the carbonate, which is slightly more soluble than the sulphate, and precipitated by water carrying sulphate. Much of the barite produced in the United States is obtained from residuary clays. (See p. 302.)

RESIDUARY ZINC ORE

In the Appalachian region, in western Virginia and eastern Tennessee, the Cambro-Silurian limestones contain in places sulphides of lead and zinc distributed in brecciated and crushed zones. At such localities the deep residuary soil often contains calamine and smithsonite, the hydrated silicate and the carbonate of zinc, with some cerussite. These ores occur next to the limestone at the bottom of the clay (Fig. 105), not scattered through it like limonite and pyrolusite.\footnote{W. H. Case, The Bertha zinc mines at Bertha, Virginia, Trans., Am. Inst. Min. Eng., vol. 22, 1894, pp. 511–536.}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{residuary_zinc_ore_diagram.png}
\caption{Section in open cut at the Bertha zinc mines, Virginia, showing relations of the residuary ore to the limestone chimneys and the residuary clay. \textit{After T. L. Watson}.}
\end{figure}

The residuary ochers are impure deep-red, yellow, or brown pulverulent materials consisting usually of predominant clay colored by limonite and hematite and are generally used for pigments. According to their color the terms Indian red, sienna, and umber, the latter two for the darker yellowish-brown and brown shades, are in use. Not all mineral pigments are natural products, for roasted pyrite, siderite, slates, and shales

\begin{itemize}
\item \textit{T. L. Watson, Lead and zinc deposits of Virginia, Bull. No. 1, Virginia Geol. Surv., 1905.}
\item \textit{T. L. Watson, Mineral resources of Virginia, 1907.}
\item \textit{G. P. Merrill, Non-metallic minerals, 1910, pp. 104–111.}
\end{itemize}
are also used.¹ The southern Clinton iron ores are also employed for these purposes.

The residuary iron ore deposits of the Southern States contain material which may be classed and is used as ocher. Especially interesting are the Cartersville deposits,² in Georgia. These ochers occur only in the Weisner (Cambro-Silurian) quartzite, in the lower part of the residuary zone immediately above the yet solid rock, and also in shattered zones in the quartzite itself. The quartzite contains about 90 per cent. SiO₂, 1.5 per cent. FeS₂, 0.5 per cent. Fe₂O₃, and also an unusual percentage of barium sulphate (4.46 per cent. in the analysis given by Watson). The calculated constituents of the ocher are 66 per cent. limonite, 25 per cent. clay, and 9 per cent. quartz; a little hematite is probably also present.

Hayes and Watson are in agreement regarding the origin of the ocher, considering it as resulting from a metasomatic replacement of the cement and the quartz grains of the quartzite by limonite. The process begins by the permeation of the grains by dendritic limonite. This direct formation of the ocher is scarcely probable, but more likely it has progressed by means of an intermediate stage of siderite. The replacement of quartz by iron carbonate is a well-known phenomenon, illustrated, for instance, in the Coeur d’Alene lead deposits of Idaho.

The Georgia production of ocher amounted to 7,400 tons in 1911. The mining is done mainly in open pits, and the material is crushed, washed in a log-washer, and allowed to settle in tanks.

RESIDUARY PHOSPHATES

As described more fully on page 255, many sedimentary beds contain much phosphate of calcium, often in oolitic or concretionary form. When these beds are exposed to surface

waters an enrichment usually takes place by solution of calcium carbonate, provided the beds are permeable to the circulating waters. Many important phosphate deposits—for instance, those of Florida, South Carolina, and Tennessee—have been thus enriched.

DEPOSITS OF HYDRATED SILICATES OF NICKEL

The original home of nickel, cobalt, and chromium is in the peridotitic and pyroxenic rocks and in the serpentines derived from them, although traces of these metals are also frequently noted in analyses of other basic rocks. The primary condition of the nickel in the rocks is not always known; probably it occurs both as silicate and as sulphide, the latter in microscopic grains, the former as an admixture in iron-magnesium silicates. From the serpentines and peridotites the nickel is sometimes concentrated in commercially important quantities by processes of weathering and the ores thus formed are always the green hydrated silicates of nickel. Chromite, which always occurs in these basic rocks, does not readily yield oxidized minerals in the zone of weathering. Sulphates of chromium have been observed in a quicksilver mine in California, but no silicate analogous to garnierite exists.

Nickel silicate ores are diverse and uncertain in composition. The most important are genthite, $\text{H}_2\text{Ni}_2\text{Mg}_2(\text{SiO}_4)_2\cdot 4\text{H}_2\text{O}$; connarite, $\text{H}_2\text{NiSi}_2\text{O}_{10}$; and garnierite, $(\text{Mg, Ni})\text{SiO}_3 + n\text{H}_2\text{O}$.

Such deposits are superficial and there can be little doubt that the oxidizing surface waters have been the carrying and concentrating agency. The ores rarely extend far below the water-level and in some cases are contained in the residual clays of the completely weathered rock. These nickel ores are often accompanied by cobalt in the form of asbolite, a rather indefinite mixture of hydrous oxides of manganese and cobalt, but the oxidized nickel ores usually form masses separate from those of the cobalt ores.

These deposits do not ordinarily contain sulphides, and copper is rarely present. The accompanying minerals are quartz, chalcedony, opal, and various obscure hydrous magnesium silicates, sometimes also a little magnesite. Nickel ores of this kind are not uncommon, but only in a few places do they attain commercial importance.
ANALYSES OF NICKEL SILICATES
(Clarke, Geochemistry, p. 664)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>44.73</td>
<td>38.35</td>
</tr>
<tr>
<td>Al₂O₃+Fe₂O₃</td>
<td>1.18</td>
<td>0.55</td>
</tr>
<tr>
<td>NiO</td>
<td>27.57</td>
<td>32.52</td>
</tr>
<tr>
<td>MgO</td>
<td>10.56</td>
<td>10.61</td>
</tr>
<tr>
<td>H₂O at redness</td>
<td>6.99</td>
<td>11.53</td>
</tr>
<tr>
<td>H₂O at +100° C.</td>
<td>8.87</td>
<td>6.44</td>
</tr>
<tr>
<td></td>
<td>99.90</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. Riddles, Oregon, F. W. Clarke, Analyst.
2. New Caledonia, A. Liversidge, Analyst.

The nickel mines of Riddles, in southern Oregon, have been described by several authors.† The parent rock is a peridotite (saxonite or harzburgite) containing 0.10 per cent. of NiO. The olivine separated from the rock contained 0.26 per cent. of NiO and all observers agree that the nickel ores are formed from this silicate. In the finest joints of the rock silica and nickel-magnesium silicates are deposited, and between them lies the oxidized rock converted to a limonite with some clay and chromite. Richer bodies of nickel ores have been formed by a further concentration in this oxidized mass.

One of the two most important nickel-bearing districts of the world is in New Caledonia.‡ One-third of this island consists of post-Cretaceous serpentines and peridotites. The lower parts of the serpentine are covered by a deep mantle of decayed rock (variegated clay) containing about 18 per cent. silica, 69 per cent. ferric oxide, 0.45 per cent. alumina, 1.64 per cent. nickel oxide, and 10 per cent. water. Eluvial limonite and asbolite are contained in this red clay, beneath which, possibly in connection with fissures facilitating the water circulation, the nickel

G. F. Kay, Bull. No. 315, U. S. Geol. Survey, 1907, p. 120.
ores occur; in part the ore is also found with chaledony and opal in the decomposed serpentine itself, in "stockworks" of veinlets or in irregular masses, evidently concentrated by a sort of centripetal migration. The export ores (generally mined in open pits) average 42 per cent. silica, 10 nickel oxide, 22 magnesia, 10.5 ferric oxide, 2.5 alumina, 1 lime, and 12 water. Some of the ores are richer in ferric oxide and are of a brown color ("chocolate ore").

The New Caledonia deposits were discovered by the geologist Garnier in 1864, but the first mines were not opened until 10 years later. The discovery of these rich nickel ores made practically all other deposits unprofitable; only the later discovered ores at Sudbury, Ontario, have proved able to compete with them. Since 1907 this competition of the Canadian mines has resulted in a reduced output. In 1906 the maximum output, 144,000 metric tons, was recorded. In 1909 the production was 86,000 short tons of nickel ore and 548 tons of cobalt ores. The nickel ores are smelted in France and England.

BAUXITE

Introduction.—Clay, as more or less impure kaolin, is the most abundant product of rock decay, but although it carries 39.8 per cent. alumina its use as a source of metallic aluminum has not been found possible. Corundum is not abundant enough to be used for this purpose. Cryolite (Na$_3$AlF$_6$), a mineral obtained from pegmatitic masses occurring in Greenland, was formerly an important aluminum ore and is still used, in smaller quantities, in the electrolytic processes for the extraction of aluminum.

In certain places the weathered zone, however, contains the hydroxides of aluminum and these at present form the most important aluminum ores. The following minerals are recognized: Diaspore, Al$_2$O$_3$.H$_2$O, with 85 per cent. Al$_2$O$_3$; gibbsite or hydrargillite, Al$_2$O$_3$.3H$_2$O, with 65.4 per cent. Al$_2$O$_3$; and bauxite, Al$_2$O$_3$.2H$_2$O, with 74 per cent. Al$_2$O$_3$.

T. L. Watson, Bull. No. 11, Geol. Survey Georgia, 1904 (Bibliography).

G. P. Merrill, Non-metallic minerals, 1910, pp. 89–103.
The independence of bauxite as a mineral species is, however, questioned and it is believed rather to be a mixture of diaspore and gibbsite. The Georgia bauxite, according to T. L. Watson, corresponds well to gibbsite. According to F. Laur the French bauxites rather correspond with the formula given above. Bauxite forms compact, earthy, and also very commonly pisolithic masses, the individual concretions often having a diameter of several centimeters. It is gray, cream-colored, yellowish, or brown and is usually admixed with ferric iron and silica. Its occurrence and structure lend probability to the belief that it has originated as a colloid substance.

Little or no hydroxide of aluminum forms in ordinary rock weathering. Cameron and Bell1 state that during an examination of several thousand soils from all parts of the United States, hydroxide of aluminum was observed in only one sample, which came from southern California. The occurrence of bauxite is a rarity in the temperate region. In tropical countries, on the other hand, the deep residual soil (laterite) very often contains aluminum hydroxide. Such products occur in India and were first described by R. D. Oldham and T. H. Holland,2 but some of these so-called laterites have proved to be transported material or sediments. In recent years similar lateritic products from many tropical countries have been described. Besides aluminum hydroxide, the laterites usually contain much iron and clay and have therefore not been used as aluminum ores. The original rock may be granite, diorite, diabase, or any crystalline schist; if it is quartzose the resulting laterite will contain much quartz. Some of the Indian laterites (analyses quoted by F. W. Clarke3) contain from 26 up to 55 per cent. alumina, little silica, 14 to 56 per cent. iron, and 14 to 27 per cent. ferric oxide.

Laterites and bauxites are characterized by a considerable percentage of titanium, sometimes as much as 4 per cent. titanic dioxide, and some vanadium, but in this they merely share the peculiarities of residual and sedimentary clays.

3 A good summary is given by L. L. Fermor, The manganese ore deposits of India, Mem. 37, Geol. Surv. India, pp. 370–380, 1909.
4 F. W. Clarke, Data of geochemistry, 1911, p. 471.
Origin.—The desilication of clay in low latitudes has been discussed extensively. The action of nitric acid, supposedly derived from rain during tropical thunderstorms, has been suggested as the cause. T. H. Holland\(^1\) has mentioned the possibility of bacterial action.

Clay is decomposed by sulphuric acid and by sodium hydroxide or sodium carbonate and at some places aluminum hydroxide may have originated in this way. W. Maxwell,\(^2\) W. P. Blake, and C. W. Hayes\(^3\) have demonstrated this origin for the soils of Hawaiian volcanoes and for a deposit of aluminum sulphates and bauxite on the upper Gila River in New Mexico. Nevertheless it is clear that sulphuric acid does not always produce this effect, for diaspore and hydargillite occur rarely (Rosita Hills, Colorado; Goldfield, Nevada) in the oxidized portions of mineral deposits where the sericitic rocks are acted upon by sulphuric acid solutions. Bauxite also has rarely been observed. In the oxidized zone the sulphuric acid transforms sericite into kaolin, which is frequently accompanied by more or less alunite (K\(_2\)O.3Al\(_2\)O\(_3\).4SO\(_4\) + 3H\(_2\)O).

For the general origin of laterite all these explanations are probably insufficient; and no entirely satisfactory theory has been evolved.

Occurrences.—The bauxite deposits of commercial importance are of several different types. In the United States they are confined to Arkansas and the southern Appalachian States.

In Arkansas\(^4\) the mineral occurs in Pulaski and Saline counties as superficial beds over areas of various sizes up to 20 acres. The deposits are only exceptionally more than 10 feet in depth. They rest on nepheline syenite or on a kaolinized form of that rock; the lower part retains traces of granitic structure, while the upper part is distinctly pisolitic. Tertiary sands and clays in places cover the nepheline syenite and the bauxite. C. W. Hayes, who has described the occurrence, believes that the decomposing syenite was covered by a body of salt or alkaline water, probably cut off from the sea; the action of this water, perhaps supplied by hot springs, gradually produced a local de-

\(^1\) T. H. Holland, *Geol. Mag.*, 1903, p. 59.

composition of the kaolinized syenite. Some of the dissolved alumina was precipitated as a colloid and furnished the material for the pisolithic bauxite.

Other deposits of importance, likewise described by Hayes¹ and also by Watson,² are found at a number of places in Georgia and Alabama. The principal occurrences are scattered between Jacksonville, Alabama, and Cartersville, Georgia, along a belt about 60 miles in length, one of the typical localities being at Rock Run. The bauxite occurs as pockets and irregular masses or curved strata of various colors, with clay and limonite, in the heavy mantle of residual clay overlying the Knox (Cambrian) dolomite. The ore is in part pisolithic and is mined in open cuts, at some places to a depth of 50 feet or more. The bottom of the clay masses is rarely exposed; before it is reached the pockets of bauxite generally terminate in tapering points. Occasionally associated minerals are gibbsite (Al₂O₃·3H₂O) and halloysite, which is similar to kaolin in composition but has more water. In composition the Georgia bauxite on the whole closely approaches gibbsite. The total thickness of the dolomite is 3,000 to 4,000 feet; below it lies the Conasauga shale, a formation rich in alumina and 2,000 to 3,000 feet thick. Extensive faulting is characteristic of the region. Hayes believes that water of atmospheric origin, which still retained some oxygen, percolated through the shale, decomposing the abundant pyrite. The resulting sulphuric acid decomposed the clay, carrying the alumina upward as sulphate. When the water finally ascended on major fissures through the dolomite the calcium carbonate was dissolved and precipitated flocculent aluminum hydroxide, and this was brought to the surface in suspension. The pisolithes were formed by aggregation in moving and ascending water. The equation expressing these reactions would be:

\[\text{Al}_2(\text{SO}_4)_3 + 3\text{CaCO}_3 = \text{Al}_2\text{O}_3 + 3\text{CaSO}_4 + 3\text{CO}_2. \]

A weak point in this explanation is evidently the postulated condition of oxidizing waters active in the shale at great depth. Ordinarily when depths of 2,000 or 3,000 feet are reached the descending waters would be robbed of their oxygen and would be

syncline of the Cambrian quartzite," into which the manganese penetrates as dendritic forms and crystalline coatings.\(^1\)

ANALYSIS OF BEST QUALITY CRIMORA ORE

[T. L. Watson, Mineral resources of Virginia, p. 248]

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>81.703</td>
</tr>
<tr>
<td>MnO</td>
<td>7.281</td>
</tr>
<tr>
<td>FeO</td>
<td>0.533</td>
</tr>
<tr>
<td>CoO</td>
<td>0.354</td>
</tr>
<tr>
<td>NiO</td>
<td>0.096</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.623</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.896</td>
</tr>
<tr>
<td>BaO</td>
<td>0.829</td>
</tr>
<tr>
<td>CaO</td>
<td>0.880</td>
</tr>
<tr>
<td>MgO</td>
<td>0.630</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.171</td>
</tr>
<tr>
<td>(NaK)₂O</td>
<td>0.467</td>
</tr>
<tr>
<td>H₂O</td>
<td>3.405</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2.132</td>
</tr>
</tbody>
</table>

Total 100.000

Mn 57.297

The manganese deposits of the Appalachian region occur in a decomposed surface zone of many different rocks (Figs. 103 and 104), but most of the deposits are, according to Harder, associated with the top stratum of an impervious Cambrian quartzite overlain by limestone. Penrose\(^3\) holds that they were laid down in local basins during the deposition of the rocks in whose residual clays they are now found. Harder\(^4\) believes that the metal was in the first place obtained from the crystalline rocks of the Piedmont region and that since the emergence of the sediments repeated concentration by rock decay has been going on.

In central Texas,\(^5\) in Mason, Llano, and San Saba counties, oxidized manganese ores occur as products of weathering of crystalline schists containing spessartite, piedmontite, and tephroite.

As stated above, many ore deposits contain manganese as carbonate and silicate, and in the oxidized zone the metal is often highly concentrated in the form of psilomelane, etc., mixed with limonite; these ores often contain gold and silver, but rarely much copper, lead, or zinc. Considerable quantities of such ores, used in part as flux for lead smelting and in part, if of high grade, for the manufacture of spiegeleisen, are mined at Lead-...

\(^1\) E. C. Harder, *op. cit.*, p. 60.

\(^2\) Probably by difference.

\(^3\) R. A. F. Penrose, Jr., *op. cit.*

ville, Colorado.1 The primary ore contains only 1 per cent. or less of manganese and no recognizable manganese minerals.

The largest part of the manganese obtained in the United States is derived from ores of the Lake Superior region, where

Fig. 103.—Sketch showing occurrence of manganese breccia ore at Reynolds Mountain, Virginia. \textit{After E. C. Harder, U. S. Geol. Survey.}

Fig. 104.—Sketch showing structure and development of breccia ore. White areas, chert or sandstone; black, manganese ore. One-fifth natural size. \textit{After T. L. Watson.}

manganese occurs as oxides associated with specularite, and from the zinc residues of the great zinc deposit of Franklin Furnace,

RESIDUARY ZINC ORE

In the Appalachian region, in western Virginia and eastern Tennessee, the Cambro-Silurian limestones contain in places sulphides of lead and zinc distributed in brecciated and crushed zones. At such localities the deep residuary soil often contains calamine and smithsonite, the hydrated silicate and the carbonate of zinc, with some cerussite. These ores occur next to the limestone at the bottom of the clay (Fig. 105), not scattered through it like limonite and pyrolusite.¹

![Diagram of section in open cut at the Bertha zinc mines, Virginia, showing relations of the residuary ore to the limestone chimneys and the residuary clay. After T. L. Watson.]

RESIDUARY OCHERS ¹

The residuary ochers are impure deep-red, yellow, or brown pulverulent materials consisting usually of predominant clay colored by limonite and hematite and are generally used for pigments. According to their color the terms Indian red, sienna, and umber, the latter two for the darker yellowish-brown and brown shades, are in use. Not all mineral pigments are natural products, for roasted pyrite, siderite, slates, and shales

T. L. Watson, Mineral resources of Virginia, 1907.
G. P. Merrill, Non-metallic minerals, 1910, pp. 104–111.
ROCK DECAY AND WEATHERING

are also used. The southern Clinton iron ores are also employed for these purposes.

The residuary iron ore deposits of the Southern States contain material which may be classed and is used as ocher. Especially interesting are the Cartersville deposits, in Georgia. These ochers occur only in the Weisner (Cambro-Silurian) quartzite, in the lower part of the residuary zone immediately above the yet solid rock, and also in shattered zones in the quartzite itself. The quartzite contains about 90 per cent. SiO₂, 1.5 per cent. FeS₂, 0.5 per cent. Fe₂O₃, and also an unusual percentage of barium sulphate (4.46 per cent. in the analysis given by Watson). The calculated constituents of the ocher are 66 per cent. limonite, 25 per cent. clay, and 9 per cent. quartz; a little hematite is probably also present.

Hayes and Watson are in agreement regarding the origin of the ocher, considering it as resulting from a metasomatic replacement of the cement and the quartz grains of the quartzite by limonite. The process begins by the permeation of the grains by dendritic limonite. This direct formation of the ocher is scarcely probable, but more likely it has progressed by means of an intermediate stage of siderite. The replacement of quartz by iron carbonate is a well-known phenomenon, illustrated, for instance, in the Coeur d'Alene lead deposits of Idaho.

The Georgia production of ocher amounted to 7,400 tons in 1911. The mining is done mainly in open pits, and the material is crushed, washed in a log-washer, and allowed to settle in tanks.

RESIDUARY PHOSPHATES

As described more fully on page 255, many sedimentary beds contain much phosphate of calcium, often in oolitic or concretionary form. When these beds are exposed to surface

waters an enrichment usually takes place by solution of calcium carbonate, provided the beds are permeable to the circulating waters. Many important phosphate deposits—for instance, those of Florida, South Carolina, and Tennessee—have been thus enriched.

DEPOSITS OF HYDRATED SILICATES OF NICKEL

The original home of nickel, cobalt, and chromium is in the peridotitic and pyroxenic rocks and in the serpentines derived from them, although traces of these metals are also frequently noted in analyses of other basic rocks. The primary condition of the nickel in the rocks is not always known; probably it occurs both as silicate and as sulphide, the latter in microscopic grains, the former as an admixture in iron-magnesium silicates. From the serpentines and peridotites the nickel is sometimes concentrated in commercially important quantities by processes of weathering and the ores thus formed are always the green hydrated silicates of nickel. Chromite, which always occurs in these basic rocks, does not readily yield oxidized minerals in the zone of weathering. Sulphates of chromium have been observed in a quicksilver mine in California, but no silicate analogous to garnierite exists.

Nickel silicate ores are diverse and uncertain in composition. The most important are genthite, \(\text{H}_2\text{Ni}_2\text{Mg}_2(\text{SiO}_4)_3\cdot 4\text{H}_2\text{O} \); connarite, \(\text{H}_2\text{Ni}_2\text{Si}_2\text{O}_{10} \); and garnierite, \((\text{Mg, Ni})\text{SiO}_4 + n\text{H}_2\text{O} \).

Such deposits are superficial and there can be little doubt that the oxidizing surface waters have been the carrying and concentrating agency. The ores rarely extend far below the water-level and in some cases are contained in the residual clays of the completely weathered rock. These nickel ores are often accompanied by cobalt in the form of asbolite, a rather indefinite mixture of hydrous oxides of manganese and cobalt, but the oxidized nickel ores usually form masses separate from those of the cobalt ores.

These deposits do not ordinarily contain sulphides, and copper is rarely present. The accompanying minerals are quartz, chalcedony, opal, and various obscure hydrous magnesium silicates, sometimes also a little magnesite. Nickel ores of this kind are not uncommon, but only in a few places do they attain commercial importance.
ROCK DECAY AND WEATHERING

ANALYSES OF NICKEL SILICATES
(Clarke, Geochemistry, p. 664)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>44.73</td>
<td>38.35</td>
</tr>
<tr>
<td>Al$_2$O$_3$+Fe$_2$O$_3$</td>
<td>1.18</td>
<td>0.55</td>
</tr>
<tr>
<td>NiO</td>
<td>27.57</td>
<td>32.52</td>
</tr>
<tr>
<td>MgO</td>
<td>10.56</td>
<td>10.61</td>
</tr>
<tr>
<td>H$_2$O at redness</td>
<td>6.99</td>
<td>11.53</td>
</tr>
<tr>
<td>H$_2$O at +100° C</td>
<td>8.87</td>
<td>6.44</td>
</tr>
<tr>
<td></td>
<td>99.90</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. Riddles, Oregon, F. W. Clarke, Analyst.
2. New Caledonia, A. Liversidge, Analyst.

The nickel mines of Riddles, in southern Oregon, have been described by several authors. The parent rock is a peridotite (saxonite or harzburgite) containing 0.10 per cent. of NiO. The olivine separated from the rock contained 0.26 per cent. of NiO and all observers agree that the nickel ores are formed from this silicate. In the finest joints of the rock silica and nickel-magnesium silicates are deposited, and between them lies the oxidized rock converted to a limonite with some clay and chromite. Richer bodies of nickel ores have been formed by a further concentration in this oxidized mass.

One of the two most important nickel-bearing districts of the world is in New Caledonia. One-third of this island consists of post-Cretaceous serpentines and peridotites. The lower parts of the serpentine are covered by a deep mantle of decayed rock (variegated clay) containing about 18 per cent. silica, 69 per cent. ferric oxide, 0.45 per cent. alumina, 1.64 per cent. nickel oxide, and 10 per cent. water. Eluvial limonite and asbolite are contained in this red clay, beneath which, possibly in connection with fissures facilitating the water circulation, the nickel

G. F. Kay, *Bull.* No. 315, U. S. Geol. Survey, 1907, p. 120.
ores occur; in part the ore is also found with chalcedony and opal in the decomposed serpentine itself, in "stockworks" of veinlets or in irregular masses, evidently concentrated by a sort of centripetal migration. The export ores (generally mined in open pits) average 42 per cent. silica, 10 nickel oxide, 22 magnesia, 10.5 ferric oxide, 2.5 alumina, 1 lime, and 12 water. Some of the ores are richer in ferric oxide and are of a brown color ("chocolate ore").

The New Caledonia deposits were discovered by the geologist Garnier in 1864, but the first mines were not opened until 10 years later. The discovery of these rich nickel ores made practically all other deposits unprofitable; only the later discovered ores at Sudbury, Ontario, have proved able to compete with them. Since 1907 this competition of the Canadian mines has resulted in a reduced output. In 1906 the maximum output, 144,000 metric tons, was recorded. In 1909 the production was 86,000 short tons of nickel ore and 548 tons of cobalt ores. The nickel ores are smelted in France and England.

BAUXITE

Introduction.—Clay, as more or less impure kaolin, is the most abundant product of rock decay, but although it carries 39.8 per cent. alumina its use as a source of metallic aluminum has not been found possible. Corundum is not abundant enough to be used for this purpose. Cryolite (Na₃AlF₆), a mineral obtained from pegmatitic masses occurring in Greenland, was formerly an important aluminum ore and is still used, in smaller quantities, in the electrolytic processes for the extraction of aluminum.

In certain places the weathered zone, however, contains the hydroxides of aluminum and these at present form the most important aluminum ores. The following minerals are recognized: Diaspore, Al₂O₃·H₂O, with 85 per cent. Al₂O₃; gibbsite or hydargillite, Al₂O₃·3H₂O, with 65.4 per cent. Al₂O₃; and bauxite, Al₂O₃·2H₂O, with 74 per cent. Al₂O₃.

T. L. Watson, Bull. No. 11, Geol. Survey Georgia, 1904 (Bibliography).

G. P. Merrill, Non-metallic minerals, 1910, pp. 89–103.
The independence of bauxite as a mineral species is, however, questioned and it is believed rather to be a mixture of diasporite and gibbsite. The Georgia bauxite, according to T. L. Watson, corresponds well to gibbsite. According to F. Laur the French bauxites rather correspond with the formula given above. Bauxite forms compact, earthy, and also very commonly pisolitic masses, the individual concretions often having a diameter of several centimeters. It is gray, cream-colored, yellowish, or brown and is usually admixed with ferric iron and silica. Its occurrence and structure lend probability to the belief that it has originated as a colloid substance.

Little or no hydroxide of aluminum forms in ordinary rock weathering. Cameron and Bell\(^1\) state that during an examination of several thousand soils from all parts of the United States, hydroxide of aluminum was observed in only one sample, which came from southern California. The occurrence of bauxite is a rarity in the temperate region. In tropical countries, on the other hand, the deep residual soil (laterite) very often contains aluminum hydroxide. Such products occur in India and were first described by R. D. Oldham and T. H. Holland,\(^2\) but some of these so-called laterites have proved to be transported material or sediments. In recent years similar lateritic products from many tropical countries have been described. Besides aluminum hydroxide, the laterites usually contain much iron and clay and have therefore not been used as aluminum ores. The original rock may be granite, diorite, diabase, or any crystalline schist; if it is quartzose the resulting laterite will contain much quartz. Some of the Indian laterites (analyses quoted by F. W. Clarke\(^3\)) contain from 26 up to 55 per cent. alumina, little silica, 14 to 56 per cent. iron, and 14 to 27 per cent. ferric oxide.

Laterites and bauxites are characterized by a considerable percentage of titanium, sometimes as much as 4 per cent. titanic dioxide, and some vanadium, but in this they merely share the peculiarities of residual and sedimentary clays.

\(^3\) A good summary is given by L. L. Fermor, The manganese ore deposits of India, Mem. 37, Geol. Surv. India, pp. 370–380, 1909.

\(^4\) F. W. Clarke, Data of geochemistry, 1911, p. 471.
Mineral Deposits

Origin.—The desilication of clay in low latitudes has been discussed extensively. The action of nitric acid, supposedly derived from rain during tropical thunderstorms, has been suggested as the cause. T. H. Holland has mentioned the possibility of bacterial action.

Clay is decomposed by sulphuric acid and by sodium hydroxide or sodium carbonate and at some places aluminum hydroxide may have originated in this way. W. Maxwell, W. P. Blake, and C. W. Hayes have demonstrated this origin for the soils of Hawaiian volcanoes and for a deposit of aluminum sulphates and bauxite on the upper Gila River in New Mexico. Nevertheless it is clear that sulphuric acid does not always produce this effect, for diaspore and hydrargillite occur rarely (Rosita Hills, Colorado; Goldfield, Nevada) in the oxidized portions of mineral deposits where the sericitic rocks are acted upon by sulphuric acid solutions. Bauxite also has rarely been observed. In the oxidized zone the sulphuric acid transforms sericite into kaolin, which is frequently accompanied by more or less alunite (K₂O·3Al₂O₃·4SO₃·3H₂O).

For the general origin of laterite all these explanations are probably insufficient; and no entirely satisfactory theory has been evolved.

Occurrences.—The bauxite deposits of commercial importance are of several different types. In the United States they are confined to Arkansas and the southern Appalachian States.

In Arkansas the mineral occurs in Pulaski and Saline counties as superficial beds over areas of various sizes up to 20 acres. The deposits are only exceptionally more than 10 feet in depth. They rest on nepheline syenite or on a kaolinized form of that rock; the lower part retains traces of granitic structure, while the upper part is distinctly pisolitic. Tertiary sands and clays in places cover the nepheline syenite and the bauxite. C. W. Hayes, who has described the occurrence, believes that the decomposing syenite was covered by a body of salt or alkaline water, probably cut off from the sea; the action of this water, perhaps supplied by hot springs, gradually produced a local de-

1 T. H. Holland, Geol. Mag., 1903, p. 59.
5 J. C. Branner, Jour. Geol., vol. 5, 1907, pp. 263–289.
composition of the kaolinized syenite. Some of the dissolved alumina was precipitated as a colloid and furnished the material for the pisolithic bauxite.

Other deposits of importance, likewise described by Hayes and also by Watson, are found at a number of places in Georgia and Alabama. The principal occurrences are scattered between Jacksonville, Alabama, and Cartersville, Georgia, along a belt about 60 miles in length, one of the typical localities being at Rock Run. The bauxite occurs as pockets and irregular masses or curved strata of various colors, with clay and limonite, in the heavy mantle of residual clay overlying the Knox (Cambrian) dolomite. The ore is in part pisolithic and is mined in open cuts, at some places to a depth of 50 feet or more. The bottom of the clay masses is rarely exposed; before it is reached the pockets of bauxite generally terminate in tapering points. Occasionally associated minerals are gibbsite (\(\text{Al}_2\text{O}_3\cdot 3\text{H}_2\text{O}\)) and halloysite, which is similar to kaolin in composition but has more water. In composition the Georgia bauxite on the whole closely approaches gibbsite. The total thickness of the dolomite is 3,000 to 4,000 feet; below it lies the Conasauga shale, a formation rich in alumina and 2,000 to 3,000 feet thick. Extensive faulting is characteristic of the region. Hayes believes that water of atmospheric origin, which still retained some oxygen, percolated through the shale, decomposing the abundant pyrite. The resulting sulphuric acid decomposed the clay, carrying the alumina upward as sulphate. When the water finally ascended on major fissures through the dolomite the calcium carbonate was dissolved and precipitated flocculent aluminum hydroxide, and this was brought to the surface in suspension. The pisolithes were formed by aggregation in moving and ascending water. The equation expressing these reactions would be:

\[
\text{Al}_2(\text{SO}_4)_3 + 3\text{CaCO}_3 \rightarrow \text{Al}_2\text{O}_3 + 3\text{CaSO}_4 + 3\text{CO}_2.
\]

A weak point in this explanation is evidently the postulated condition of oxidizing waters active in the shale at great depth. Ordinarily when depths of 2,000 or 3,000 feet are reached the descending waters would be robbed of their oxygen and would be

incompetent to decompose pyrite. However, it is known that the shales of Virginia yield strongly acidic waters carrying alu-
mina. Watson, in his report on these deposits, finds Hayes's theory the most satisfactory thus far advanced.

A suggestive fact is the occurrence of the deposits at or about the 900-foot contour, which coincides with the elevation of a probable Eocene peneplain. The ores were thus accumulated under topographic and climatic conditions different from those which prevail to-day.

Deposits differing considerably from those already described have recently been found in Wilkinson County, Georgia.¹ They occur near the contact of the flat-lying sands and clays of the Tuscaloosa (Lower Cretaceous) and Claiborne (Tertiary) for-
mations. The ore occurs either as beds resting directly upon Cretaceous clay or disseminated as nodules through it. A per-
fecft series of transition to clay exists, as shown by analyses. Bauxite beds 10 feet in thickness have been observed; the mineral is clayey, dense, or pisolithic. There is no evidence of ascending springs, but the bauxite is assumed to be due to the alteration of clay by alkaline solutions.

Some of the extensive French bauxite deposits² are found in Provence associated with Cretaceous beds, in part as pockets resting on the corroded surface of limestone. Pisolithic structure is common here also, the concretions being cemented by calcite or by dense bauxite. The theory of ascending springs carrying aluminum salts, precipitated by limestones, is accepted by French geologists for this occurrence. Volcanic or gneissoid rocks that have been locally altered to bauxitic products have been described by French and German authors.³

In conclusion, it may be said that all these occurrences bear a certain family resemblance. Moving water is apparently not more necessary for the development of pisolithic structure than it is for the pellets and shots of hematite in residual earth. After all it looks as if most of the deposits were simply the result of weathering in place under tropical or semi-tropical conditions but without the aid of specially acidic or alkaline solutions. It seems probable that most of the deposits in the United States

⁴ F. W. Clarke, Geochemistry, 1911, p. 473.
were formed long ago, under climatic conditions different from those now prevailing.

Uses and Production.—The annual production of bauxite in the United States has been increasing rapidly and in 1911 was 155,600 long tons, but a considerable amount is nevertheless imported from France, whose mines also yield an increasing amount, at present about 150,000 long tons. The bauxite ores contain 35 to 57 per cent. Al_2O_3, a greatly varying percentage of Fe_2O_3, and up to 30 per cent. SiO_2. Ores with more than 4 per cent. Fe_2O_3 are not utilized at present. They are mined in open cuts, often necessitating the removal of heavy overburden, washed to remove the clay, and dried. For purposes of aluminum smelting the ores must be of high grade and low in silica. About 23,000 short tons of aluminum are now produced annually in the United States. The uses of the metal and its alloys are steadily increasing.

Large works for the electric smelting of aluminum are located at Niagara Falls. Artificial corundum (alundum) is made from the ore by the electric furnace. Bricks of bauxite for basic non-corrosive lining of furnaces have recently been made. Aluminum salts, especially alum, are also manufactured from bauxite.

Analyses of Bauxite

<table>
<thead>
<tr>
<th></th>
<th>SiO_2</th>
<th>TiO_2</th>
<th>Al_2O_3</th>
<th>Fe_2O_3</th>
<th>H_2O</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baux, France (pisolite)</td>
<td>4.8</td>
<td>3.2</td>
<td>55.4</td>
<td>24.8</td>
<td>10.8</td>
<td>Deville</td>
</tr>
<tr>
<td>Jacksonville, Ala..........</td>
<td>21.08</td>
<td>2.52</td>
<td>48.92</td>
<td>2.14</td>
<td>23.41</td>
<td>Hillebrand</td>
</tr>
<tr>
<td>Floyd County, Ga...........</td>
<td>0.80</td>
<td>3.52</td>
<td>52.21</td>
<td>13.50</td>
<td>27.72</td>
<td>Nichols</td>
</tr>
<tr>
<td>Pulaski County, Ark......</td>
<td>2.00</td>
<td>3.50</td>
<td>62.05</td>
<td>1.66</td>
<td>30.31</td>
<td></td>
</tr>
<tr>
<td>Wilkinson County, Ga......</td>
<td>9.38</td>
<td>2.76</td>
<td>57.58</td>
<td>0.96</td>
<td>29.12</td>
<td>E. Everhart</td>
</tr>
</tbody>
</table>

Great variations are often shown in one locality. For further analyses see G. P. Merrill, Non-metallic minerals, 1910, p. 91. The average of a long series of analyses of commercial ore from Georgia tabulated by T. L. Watson gives: SiO_2, 4.274; TiO_2, 3.791; Al_2O_3, 58.622; Fe_2O_3, 1.507; and H_2O, 31.435; total 99.629. This corresponds to $\text{Al}_2\text{O}_3, 3\text{H}_2\text{O}$.

CHAPTER XVIII

DEPOSITS FORMED BY CONCENTRATION OF SUBSTANCES, CONTAINED IN THE SURROUNDING ROCKS, BY MEANS OF CIRCULATING WATERS

GENERAL STATEMENT

The water which sinks through the soil and effects the weathering of rocks becomes charged with small amounts of carbonates of calcium, sodium, magnesium, potassium, iron, and other metals, and also with soluble silica. By far the larger part of it, after a short journey through the belt of oxidation, returns to the surface as springs and seepage and is carried off in the watercourses to the sea. A smaller part of this water sinks into the ground and either joins the active circulation, descending in smaller fractures and openings to ascend on the larger fissures and other waterways, or becomes a part of the stagnant or almost stagnant and gradually diminishing ground-water of deeper levels. In places the active circulation may descend to depths of 10,000 feet. In comparison with the depth of the ground-water, the depth of oxidation or rock decay is on the whole insignificant, and that part of the dissolved substance which is carried down is also insignificant in comparison with the vast amount of underlying rocks, so that we cannot expect that the material added from the zone of weathering will produce any far-reaching changes in the composition of these rocks.

Nevertheless dissolved salts are carried down from the weathered belt and may cause deposits in open cavities or may form more or less complex replacements. In the openings silica may be deposited as chalcedony, chert, or quartz; calcium carbonate may fill fissures and replace silicates, or ferrous carbonate may be substituted for limestone. Chlorite, kaolin, and sericite may develop in igneous rocks. All these changes are, however, accompanied by renewed solution, and it is a debatable question whether the solution does not more than balance deposition. On the other hand, the water returning to the surface after a journey of varying length, more or less heavily loaded with soluble salts
deposits these by reason of decrease of temperature or by reaction with other surface waters of different composition. Finally, hydration absorbs much water, both from the active circulation and from the more stagnant ground-water, and deposits of valuable minerals may result from this simple process.

In a rough way the deposits resulting from the work of underground waters of meteoric origin may be divided into (1) those formed from abundant material contained in the surrounding rocks, for instance, magnesite, serpentine, sulphur (by reduction of gypsum), and certain kinds of hematite; and (2) those formed by the deposition of rarer substances dissolved by the water from the surrounding rocks or from rocks that lie deeper. In this second division it is possible to indicate with great confidence the derivation of some substances—e.g., barite from certain limestones, and copper from certain basic igneous rocks; but the exact derivation of some other substances may be doubtful.

Waters of atmospheric origin doubtless have the power to dissolve many of the rarer metals contained in rocks, to carry them for considerable distances, and to concentrate them in places suitable for deposition; but unless it is aided by higher temperatures at considerable depths below the surface this power is probably not strong enough to produce important deposits of these rarer metals.

Barite¹

Modes of Occurrence.—Barite, the sulphate of barium (BaSO₄), is contained in deposits of different character. It is not a mineral of igneous origin, nor does it occur in contact-metamorphic or pegmatitic rocks. It is common, however, as crystalline masses in veins, formed by aqueous solutions in almost any kind of rock, sedimentary or igneous, and in these it is often associated with metallic sulphides, particularly galena. Quartz, calcite, and fluorite accompany it. Some of these veins result from precipitation in ascending hot waters, and the development of the mineral at the orifices of such springs has often been noted (see Chapter VII). In many deposits the original source of the barium cannot be determined, but it is believed to be generally dissolved by the water from barium-bearing rocks encountered in its path. In other deposits, including most

of those that are economically valuable, the source of the metal can be traced to definite rocks or formations, particularly to limestones. Although a barium content is shown in few of the analyses ordinarily available, it is probably present in small quantities in all limestones, and, as is well known, all igneous rocks contain a little of it, though rarely more than 0.1 per cent. BaO. Leucite and analcite rocks from the Montana-Wyoming province are particularly rich in the metal. The wyomingite from the Leucite Hills, Wyoming, contains 1.23 per cent. BaO; a monchique from the Little Belt Mountains, Montana, 0.54 per cent.; and a leucite rock from the Bearpaw Mountains, Montana, 0.50 per cent. The metal is probably present in these rocks as a silicate. The granites, rhyolites, andesites, and basalts are poor in barium.

Few detailed analyses of limestones are available. Three limestones from the Ordovician of Pittsylvania and Campbell counties, Virginia (analyses given by T. L. Watson), contained respectively 0.62, 0.65, and 1.62 per cent. BaSO₄. It is probable that the metal is present in the limestones throughout the Southern and Central States.¹ Some sandstones also contain barite, in many cases at least introduced by hot springs after the uplift and exposure of the rock.

It has often been noted that salt brines are able to dissolve much barium; the region about the great salt deposits in Germany, which has been extensively fractured, is rich in veins carrying barite, probably dissolved from the sediments traversed by the ascending brines. Barium may be carried as the easily soluble chloride or as a carbonate, in which form it is slightly more soluble than the sulphate. If waters containing either of these barium compounds mingle with others which contain a soluble sulphate, barium sulphate will be precipitated. The latter, however, is not entirely insoluble, especially in carbonated waters.

Finally, barite is a residual mineral, forming globular concretions in the clay resulting from decay of limestone; a large part of the barite produced in Virginia and Missouri is taken from such occurrences, which are easily and cheaply mined.

Deposits in the United States.—The barite deposits of Virginia have been described by T. L. Watson,² who states that they are

¹ See also C. W. Dickson, *The concentration of barium in limestone*, *School of Mines Quart.*, vol. 23, 1902, pp. 366–370.

probably caused by the leaching of limestones by meteoric waters. Deep rock decay characterizes the whole region. The barite in part fills fractures and in part replaces limestone. It occurs:

1. In crystalline pre-Cambrian limestone as irregular, lenticular lodes or pockets replacing the limestone and associated with calcite and chalcopyrite.

2. In crystalline schists as filling of fractures.

3. In the Shenandoah (Cambro-Ordovician) limestone as filling of fractures or in residual soil.

4. In Triassic shales and limestone as filling of fissures in a crushed zone.

Similar occurrences are known in Georgia, North Carolina, Tennessee, Pennsylvania, and Kentucky.

In the Central States barite not uncommonly accompanies galena and sphalerite, but the most important deposits are found in a separate area in Washington County, in southeastern Missouri, not far from the great lead mines in the Bonneterre

Arthur Winslow, Missouri Geol. Surv., vol. 7, p. 678.
(Cambrian) dolomite (p. 426). The principal deposits are found in the shattered and dolomitized Gasconade limestone (Ordovician) as filling of irregular veins and other open cavities. The order of precipitation is given by Steel as follows: A thin coating of chalcedony was first deposited; this was followed by deposition of a little galena; and this in turn was succeeded by barite, which is the main filling. The series of events was closed by the precipitation of marcasite, dolomitization, and the formation of a second generation of barite, and by a much later coating of ruby-red sphalerite on the older barite.

Steel points out that the region has been a land area for most of the time since the Carboniferous and that repeated changes in water level have taken place. He is inclined to seek the ultimate source of the barite in the pre-Cambrian rocks, while other authors, like Winslow, believe it was extracted from the underlying Cambrian or Ordovician dolomite, which, however, contains only 0.001 to 0.005 per cent. barium. It seems probable that it was derived from some part of the Paleozoic series, some members of which may be richer in barium than those analyzed. Most of the barite mined comes from the residual clay soil.

Uses and Production.—Barite is used extensively as a pigment in the manufacture of mixed paint and to give weight to paper. It is the raw material for other barium salts, such as the nitrate, which is used in pyrotechnics for green fire. For most of the purposes indicated its purity and white color are essential. The crude material is ground in arrastres or other mills and the overflow subjected to hydraulic classification in spitzkasten. The settled, cream-colored mud is finally treated with sulphuric acid to remove the staining ferric hydrate. The annual domestic production is about 50,000 tons, which comes from a great number of small operators in Missouri, Virginia, Kentucky, Georgia, North Carolina, and Tennessee. Nevertheless, from 16,000 to 30,000 tons of barite and barium salts are imported annually into the United States, largely from England and Germany.

CELESTITE AND STRONTIANITE

Celestite (SrSO₄) and strontianite (SrCO₃) are the principal sources of strontium, the salts of which are much less used than the corresponding heavier barium compounds. Like barite these
minerals occur in fissure veins of hydrothermal origin, but are more commonly concentrated by the leaching of limestone by waters of atmospheric origin. Celestite is also concentrated, like barite, during the formation of sulphur from gypsum, and, as noted below under "Sulphur," it occurs in considerable quantities in the sulphur mines of Sicily.

Practically no strontium minerals are mined in the United States, though they are known to be present in dolomites and limestones of Michigan, New York, Kentucky, and Texas, as well as at several places in Canada, in many cases with barite. The principal supply of the world was for many years derived from the strontianite veins in Cretaceous marl and limestone of Westphalia. The mineral is accompanied by calcite and a little pyrite.

Recently celestite has been reported to occur in considerable quantities associated with salt and gypsum in Tertiary lake beds near Silver Lake, in southeastern California, and near Gila Bend, Arizona, in both places probably a product of the evaporation of saline waters.

Strontium nitrate is used in pyrotechnics for the production of red fire. The hydroxide is used in sugar refining.

SULPHUR

Modes of Occurrence.—Native sulphur may be formed by various reactions. The oxidation of pyrite sometimes results in crusts of sulphur coating the cavities once occupied by the dissolved crystals. In the craters of volcanoes where sulphurous gases ascend on crevices sulphur is often found, as the result of a reaction between sulphur dioxide and hydrogen sulphide (\(H_2S + 2SO_2 = H_2SO_4 + 2S\)), or more probably by incomplete oxidation of hydrogen sulphide (\(2H_2S + O_2 = 2H_2O + 2S\)).

7 O. Stutz, Die wichtigsten Lagerstätten der Nicht-Erze, 1911, pp. 185–263.
large deposit of this kind is worked at the Aboeanobori mine, Hokkaido, Japan, and consists of clayey beds in an old crater lake. Considerable quantities are exported from Japan to the United States. It has been proposed to utilize a similar deposit in the crater of Popocatetel, Mexico; other deposits are found in the volcanoes of the Chilean and Argentine Andes.

Much more commonly sulphur is found at active or extinct hot springs in the tufas or other adjoining porous rocks like volcanic tuffs. It evidently results from the incomplete oxidation of H₂S, which many spring waters carry in abundance. Such deposits have been observed at many places in the Western States—for instance, at Cuprite, Esmeralda County, Nevada; at the Rabbit Hole mines in Humboldt County, Nevada;¹ at Sulphur Bank, California; at the Cove Creek mine, Beaver County, Utah;² and at Cody and Thermopolis, in Wyoming.³ The three last-named deposits have been worked. In Wyoming the sulphur in part replaces the limestone underlying the travertine or tufa. All these deposits are superficial, and, though some are fairly productive, they play no great part in the world’s output.

The greater part of the native sulphur is not connected with volcanic processes or hot springs but is obtained from sedimentary beds, in close association with gypsum and limestone; calcite, aragonite, barite, celestite, opal, more rarely quartz, together with gaseous and solid hydrocarbons, are commonly found with the sulphur. This association is constant and characteristic and recurs in almost all the great gypsum beds of the world,

though the sulphur is not always present in quantities of economic importance. As an illustration it is interesting to scan the boring records in Louisiana, contained in the bulletins of the State Survey, and note the frequency with which sulphur accompanies gypsum. The sulphur is in earthy or resinous masses and forms lenticular beds, veinlets, and concretions in marl, limestone, and gypsum; rarely it occurs in thick strata traceable over large areas (Fig. 107).

Origin.—It is difficult to avoid the conclusion that the sulphur is derived from gypsum through the reducing action of organic matter, by way of calcium sulphide and hydrogen sulphide. Regarding the details of the transformation the views are not uniform; it is certain that the reaction can take place at low temperature. G. Bischof, in the middle of the last century, first discussed this matter¹ and assumed the following reactions:

\[
\begin{align*}
\text{CaSO}_4 + 2\text{C} & = \text{CaS} + 2\text{CO}_2, \\
\text{CaS} + \text{CO}_2 + \text{H}_2\text{O} & = \text{CaCO}_3 + \text{H}_2\text{S}, \\
\text{H}_2\text{S} + \text{O} & = \text{H}_2\text{O} + \text{S}.
\end{align*}
\]

The objection to this scheme would be that the sulphur is evidently often formed at depths of several thousand feet, and that the presence of much oxygen at such depths would be improbable; more likely the hydrogen sulphide generated from the gypsum reacts upon calcium carbonate, resulting in secondary gypsum and sulphur.

The deposits of Sicily have been the subject of extended discussion. A. von Lasaulx² has regarded them as formed in fresh-water lakes into which springs containing \(\text{H}_2\text{S} \) were discharged. G. Spezia³ has advanced a similar view, believing, however, that the hot springs deposited the sulphur at the bottom of a sea basin, accounting for the presence of celestite by the same agency.

Baldacci⁴ held that the deposition of sulphur took place in a partially evaporated marine basin, in or near which numerous

² *Neues Jahrbuch*, 1879, pp. 490–517.
mud-volcanoes, like those of the Apsheron peninsula in the Caspian Sea, discharged large volumes of hydrocarbon that effected the reduction of gypsum to calcium sulphide.

A theory of the purely sedimentary origin of the sulphur deposits of Sicily was recently advanced by O. Stutzer. The well-defined stratification of the sulphur beds, with occasional cross-bedding, the occurrence of the sulphur in limestone and its absence in the overlying gypsum, and finally the presence of intercalated clay beds which would prohibit the free circulation of water are cited by Stutzer as proofs of his view. Sedimentary sulphur deposits may form, according to him, in any closed basin in which hydrogen sulphide is developed. The H_2S may be produced by decay of organisms, or by reduction of dissolved calcium sulphate by carbon, or by hydrocarbons. The oxidation of hydrogen sulphide is effected by the oxygen of the air or by the aid of bacteria. In the ordinary process of organic decay many bacteria develop hydrogen sulphide. Other low organic forms, the so-called sulphur bacteria, oxidize H_2S and accumulate sulphur in their cells as minute particles. The oxidation of this sulphur supports the life of the organism, the resulting sulphuric acid being converted into sulphates by carbonates which are absorbed and are necessary for the growth of the bacteria. The sulphur bacteria are found in sulphur springs and in the mud of seas and lakes, in which hydrogen sulphide is developed. Stutzer also refers to the fact that the water of closed basins, such as the Black Sea, contains H_2S in quantities increasing with the depth. Near the surface one liter yields 0.3 cubic centimeter H_2S, while at a depth of 2,000 meters a liter contains 5.55 cubic centimeters of this gas.¹

Interesting as these views are, the sedimentary deposition of sulphur cannot be regarded as proved. The presence of abundant sulphur throughout large masses of gypsum is so common that its origin through the direct reduction of gypsum, by way of hydrogen sulphide and organic matter, can scarcely be doubted. Conditions in the Black Sea would seem to be favorable for the deposition of sulphur and yet no sulphur appears to have been brought up by deep dredgings in that basin.

CONCENTRATIONS FROM SURROUNDING ROCKS 341

Examples.—Sulphur is widely distributed in the Miocene and Pliocene of the Mediterranean countries, everywhere accompanied by gypsum. By far the most important deposits are in Sicily, which for years has supplied the bulk of the world's production.

The sedimentary rocks of Sicily, in part marine, in part land deposits, consist of basal clays covered by diatomaceous and radiolarian shales. Above these beds the sulphur-bearing gypsum formation extends over an area of almost 800 square kilometers. This formation is about 300 feet in thickness; gypsum, limestone, salt, clay, and sandstone are the principal rocks.

![Diagram of sulphur deposit in Louisiana](image)

Fig. 108.—Section of sulphur deposit in Louisiana. a, Clay; b, sand; c, porous limestone; d, sulphur bed with 70–80 per cent. sulphur; e, gypsum and limestone. After Baldacci.

There are three or four beds of sulphur, the substance ramifying through the bluish-gray limestone. Celestite occurs in economically important quantities and with sulphur, gypsum, calcite, and more rarely barite forms beautiful crystals coating the walls of cavities. The crude ores of Sicily contain from 8 to 25 per cent. sulphur.

As noted above, sulphur is common in the Tertiary and Cretaceous beds underlying the Louisiana and Texas coast. In 1865 an unusually large deposit was discovered in Calcasieu

Parish (230 miles west of New Orleans), Louisiana, at a depth of 443 feet underneath clay, sand, and limestone of Tertiary and Cretaceous age. The borings showed a thickness of 100 feet of almost pure sulphur, underlain by a great thickness of sulphur-bearing gypsum (Fig. 108). The difficulties of sinking a shaft through the quicksands for a long time prevented the utilization of this deposit. Recently, however, the difficulties have been obviated by the invention of the Frasch process. Through bore holes superheated water is forced down to the sulphur, which is thereby melted; hot air is then supplied under pressure to aerate the molten mass and facilitate its ascent by water pressure to the surface.

Uses and Production.—Until recently the Sicilian deposits, with an annual output of about 450,000 metric tons, supplied the world's demand. In 1901 the Frasch process revolutionized the trade conditions and the production of the United States rose at once to 200,000 or 300,000 long tons, and the importation from Sicily fell off correspondingly. The interesting trade conditions developing from these changes and the struggles of the Italian government to aid the distressed Sicilian operators are described in the articles in Mineral Resources cited above.

The manifold industrial uses of sulphur need not be specified; the larger part is used for the manufacture of sulphuric acid, for bleaching purposes by the development of sulphur dioxide, for the prevention of mildew on grapevines, and for the manufacture of gunpowder, matches, etc.

THE MAGNESIAN DEPOSITS

The magnesian silicate rocks lend themselves easily to transformation and yield a number of economically valuable products, among them serpentine, magnesite, meerschaum, talc, soapstone, and asbestos. All of these result from the action of water, in most cases doubtless of atmospheric origin, on peridotites, pyroxenites, or gabbros, either near the surface or with the co-operation of stress at greater depths. Talc, soapstone, and asbestos belong, in part, to the latter class.

CONCENTRATIONS FROM SURROUNDING ROCKS 343

SERPENTINE

Serpentine forms by simple hydration from a rock consisting of enstatite and olivine according to the following equation:

\[\text{Mg}_2\text{SiO}_4 + \text{MgSiO}_3 + 2\text{H}_2\text{O} = \text{H}_4\text{Mg}_3\text{Si}_2\text{O}_9. \]

(Olivine) (Enstatite) (Serpentine)

It may also develop from olivine alone, with the removal of some magnesium as carbonate:

\[2\text{Mg}_2\text{SiO}_4 + \text{CO}_2 + 2\text{H}_2\text{O} = \text{H}_4\text{Mg}_3\text{Si}_2\text{O}_9 + \text{MgCO}_3. \]

The latter equation probably represents the usual process of serpentinization a short distance below the surface. Under oxidizing conditions serpentine is unstable, though of course the change takes place very slowly and erosion may work far ahead of decomposition.

Serpentine is, however, also formed on a large scale at greater depths, where quantities of \(\text{CO}_2 \) could not very well be assumed for the reason that such alteration would result in a mixture of serpentine and carbonates, whereas the large serpentine masses rarely contain admixed carbonates. The rapidly trenched canyons of the Sierra Nevada in California show clearly that the serpentines of this range are not superficial, but descend to the depth of several thousand feet. The modus operandi of such extensive hydration is not fully explained. Some have held that it might have been effected by ascending waters, shortly after the intrusions.

Serpentine is generally rich in iron, for the original rocks are not of the purity indicated by the equation given above; the iron is present both as silicate and magnetite, and also in the chromite which forms a characteristic Accessory. Expansion of volume, seems to be characteristic of serpentinization; the reaction expressed by the first equation results in an increase of volume of nearly one-half. Rock that is not too much broken by joints resulting from this expansion finds fairly extensive use as building and ornamental stone. For the latter purpose the oily green translucent varieties formed in crystalline limestone by serpentinization of the contained pyroxene are particularly valued.
MAGNESITE

Origin.—Magnesite, MgCO₃, often appears in serpentine near the surface as a result of decomposition of the serpentine by atmospheric waters containing CO₂; it occurs in fissures or in crushed zones, usually as hard, compact, earthy masses, sometimes concretionary, and, when broken, looking like unglazed porcelain. It is distinctly harder than calcite, and its specific gravity is also greater. It is often admixed with a few per cent. of silica and smaller quantities of iron, alumina, and lime. Its formation is illustrated by the following equation:

\[H₂Mg₃Si₃O₉ + 3CO₂ = 3MgCO₃ + 2H₂O + 2SiO₂. \]

The silica is deposited as opal or chalcedony.

Occurrence.—Magnesite occurs abundantly in the Coast Range of California, but the best deposits, described by Hess, are at Porterville, Tulare County.¹ The largest deposits in the world are those of Styria, in Austria, and those on the eastern coast of Euobea, in Greece. Large deposits are also said to exist in India, near the town of Salem, in Madras.

The Styrian magnesite deposits,² which now practically supply the world, differ entirely from those described above as the general type. They occur as replacements in the Paleozoic limestone or dolomite of the eastern Alps, usually mixed with siderite and in some places associated with veins of chalcopyrite, tetrahedrite, a little cinnabar, and quartz. Genetically they are believed by K. Redlich and J. Rumpf to be related to the great siderite deposits of Styria—for instance, that of Eisenerz; probably these replacements have followed the eruption of acidic igneous rocks.

Uses.—Magnesite gives off its carbon dioxide at a lower temperature (800° C.) than calcite and is therefore preferred for the production of this gas. After calcining, the substance is used for the manufacture of various magnesium salts, in the paper and sugar industries, and for steam packing, paint, and heavy adulterant. The principal use, however, is for refractory bricks for the basic or Thomas process; large amounts of these are used in the United States, the raw material coming mainly from Styria.

The domestic production is wholly from California and is rarely more than a few thousand tons a year; apparently the producers are unable to compete with the Austrian magnesite, of which large amounts are imported; the total imports for 1908 were about 85,000 tons, both calcined and raw.

MEERSCHAUM

Meerschaum or sepiolite (\(\text{H}_4\text{Mg}_2\text{Si}_4\text{O}_{10}\), containing \(\text{SiO}_2\), 60.8 per cent.; \(\text{MgO}\), 27.1 per cent.; \(\text{H}_2\text{O}\), 12.1 per cent.) is a hydrated silicate of magnesia of tough, compact texture, white or cream color, and smooth feel. As is well known, it finds a rather extensive use in the manufacture of pipes and cigar holders. Its analysis usually shows a little iron, alumina, and lime. It is probably derived from serpentine by slow hydration. The principal occurrence is in Asia Minor at Eski-Shehr, where it is found as nodular masses near the surface; at this and several other localities in Crimea and Bosnia serpentine rocks are found in the vicinity, although the material itself is embedded in Quaternary or Tertiary beds. A different occurrence is that recently discovered in New Mexico,\(^2\) on the upper Gila River, where the substance forms veins and balls in a Paleozoic cherty limestone. Here it is probably derived from a dolomitic carbonate.

TALC AND SOAPSTONE\(^3\)

General Occurrence and Origin.—Talc (\(\text{H}_2\text{Mg}_3\text{Si}_4\text{O}_{12}\), or \(3\text{MgO}\cdot4\text{SiO}_2\cdot\text{H}_2\text{O}\); 65.5 per cent. \(\text{SiO}_2\), 31.7 per cent. MgO, 4.8 per cent. \(\text{H}_2\text{O}\)), is a hydrated magnesium silicate, but holds much less water than serpentine. It is a soft, minutely foliated or compact mineral of white, gray, or pale-green color and a greasy feel. The more compact, as well as some impure varieties, are usually called soapstone; they may contain shreds of chlorite and other ferromagnesian minerals, like enstatite or amphibole, and may be considered as belonging in part to the structural materials. Soapstone is easily worked and is of great resistance to acids and high temperatures.

\(^1\) G. P. Merrill, Non-metallic minerals, 1910, pp. 218–221.

Talc and soapstone are products of the hydration of magnesian rocks, either of distinctly igneous origin, like gabbro, pyroxenite, or peridotite, or crystalline schists rich in such minerals as enstatite and tremolite or other pyroxenes and amphiboles. These schists may result from the shearing of igneous or contact-metamorphic rocks, the latter derived from the igneous alteration of limestone and dolomite. Talc deposits derived from schists are frequently associated with crystalline carbonate rocks. In general serpentine forms from olivine and talc from pyroxene and amphibole, but this rule does not always hold.

Talc often contains 1 or 2 per cent. of iron and aluminum, as well as a little calcium; according to the analyses given by Merrill (loc. cit.) the soapstones contain, in addition to silica and magnesia, from 5 to 11 per cent. alumina, 7 to 13 per cent. ferrous oxide, and 1 to 4 per cent. lime; some of them contain so much water (as much as 14 per cent., and in one case 23 per cent.) that a strong admixture of serpentine must be assumed.

The formulas show that talc may be obtained from enstatite or tremolite by the addition of water and carbon dioxide, with separation of magnesium or calcium carbonate, which is probably carried away in solution; or, in case of deficiency of CO₂, the magnesia may combine with silica, possibly set free from other minerals, to form additional talcose material.

The exact conditions and temperature needed for the formation of talc are not known, but it seems certain that dynamic stress, together with a limited supply of water not overrich in CO₂, is favorable to its development; it also undoubtedly forms from magnesian minerals by the aid of a scant supply of surface water under static conditions. It is also known that talc may develop along fissures under the influence of ascending hot waters of unknown origin, whenever magnesian silicate rocks are traversed.

E. Weinschenk,¹ in his description of the talc deposits of the Austrian Alps, holds that the mineral develops by replacement of schist composed of quartz, chlorite, chloritoid, and graphite along its contact with limestone and believes this transformation due to waters following the irruption of large igneous bodies.

Occurrences.—The crystalline schists of all countries yield talc. Some occurrences are known from the Pacific coast, but

the production in the United States "is limited exclusively to the belt of ancient crystalline rocks which forms the axis of the Appalachian Mountain system from Canada to Alabama." (Diller, loc. cit.)

North Carolina is rich in talc, and one belt of Cambrian marble along the Nantahala Valley and Nottely River\(^1\) yields many lenses as much as 200 feet long and 50 feet thick. The mineral is mined in open cuts and by shafts and tunnels.

New York easily outranks all other States in the production of talc. The output comes from a small district about 12 miles southeast of Gouverneur,\(^2\) which has been worked for many years by underground methods. One mine at Talville has attained a depth of 550 feet. The mineral occurs in schistose layers of enstatite and tremolite, gradually merging into the surrounding crystalline limestone. The deposit forms an irregular layer, remarkably persistent and averaging 20 feet in width, within the enstatite-tremolite rock.

Virginia yields most of the soapstone produced in the United States. It is derived from a belt nearly 30 miles long and less than 1 mile wide. According to T. L. Watson's description\(^3\) the soapstone occurs as sheets or dike-like masses, 100 feet or more in thickness, conformably interbedded with quartzitic schists, but is probably derived from an igneous rock.

Production and Uses.—The production of talc and soapstone in the United States is rapidly expanding and was about 130,000 tons in 1909, of which 75,000 tons were utilized in ground or pulverized form.

Talc is used as a filler for paper, including wall paper; also for admixture or adulteration of pigment, as a heat insulator, lubricant, polishing powder for glass, for toilet powders, and as an absorbent for nitroglycerine. The compact talc or soapstone is used for fire-bricks, laboratory tables, gas burners, crayons, etc.

Pyrophyllite.\(^4\)—Pyrophyllite is a hydrous silicate of alumina (Al\(_2\)O\(_3\).4SiO\(_2\).H\(_2\)O), containing 66.7 per cent. SiO\(_2\), 28.3 per cent. Al\(_2\)O\(_3\), and 5.0 per cent. H\(_2\)O. Its physical qualities are closely similar to those of talc, though it does not command so high a

\(^4\) C. H. Smith, Jr., *School of Mines Quarterly*, vol. 17, No. 4, pp. 333–341.
price as the best talc. It is mined in Moore and Chatham counties, North Carolina, where it occurs in thick beds associated with slate.

ASBESTOS

Amphibole Asbestos.—The asbestos of mineralogy is a monoclinic amphibole which develops in seams and slips in normal amphibolitic rocks, especially where the rocks have been subjected to pressure and movement. Chemically it is a calcium-magnesium metasilicate. According to the series of analyses given by Merrill the silica varies from 52 to 58 per cent., the lime from 12 to 16 per cent., the magnesia from 20 to 30 per cent. Other constituents are alumina, varying from 1 to 6 per cent., and ferrous oxide, usually from 1 to 6 per cent., though in some cases considerably higher. Water is always present, the amount generally varying between 2 and 5 per cent. Although contrary to the views of some authorities, the conclusion can hardly be avoided that the water is an essential constituent and that the mineral is really a hydrated form of tremolite or actinolite. The extinction appears, however, to be that characteristic of these amphiboles, or about 18. No experiments appear to have been made as to the temperatures at which the water is driven off. The normal varieties of amphibole also hold a little water, but in far smaller quantities than asbestos.

Anthophyllite, (Mg,Fe)SiO₃, and crocidolite, NaFeSi₂O₆.FeSiO₃, a dark-blue sodium amphibole, also yield asbestiform varieties. Merrill has shown that the fibers are polygonal in outline and run out into needle-like points; down to a diameter of 0.002 or 0.001 millimeter the fibers retain their uniform diameter and polygonal outlines. The color of amphibole asbestos is usually white to greenish white. Only the finer kinds are utilized, but even these are less valued than the serpentine asbestos. They are apt to be less flexible and somewhat brittle.

Most of the small quantity of asbestos mined in the United States is of the tremolite or actinolite variety, and it often

3 G. P. Merrill, Non-metallic minerals, 1910, pp. 183-197.
6 Non-metallic minerals, p. 486.
occurs in limestones which have been partly metamorphosed to amphibolitic rocks. The mineral is classed as slip-fiber or cross-fiber, according to the position of the fibers in the veinlets. The radial or divergent structures are designated as mass-fiber.

There are many occurrences, mainly in pre-Cambrian rocks along the Appalachian Mountain system, from Vermont to Alabama. One of the most important localities worked is at Sall Mountain, Georgia, where, according to Diller, the asbestos occurs in large lenticular masses in gneiss and is believed to be an altered igneous rock. Almost the entire domestic production is derived from Georgia.

Serpentine Asbestos (Chrysotile).—This variety is found as veinlets, rarely over 6 inches thick, in serpentine or peridotite, and has always a cross-fiber—that is, the silky fibers lie perpendicularly to the plane of the veinlet.

Chrysotile asbestos is green or yellowish-green and is easily reduced to a white fluffy state. The fiber is short, but of very uniform diameter and great divisibility and flexibility; the decomposing effect of hydrochloric acid also distinguishes it from amphibole asbestos. In composition it is practically identical with the purer kinds of serpentine. A typical analysis of the Canadian material yielded per cents, as follows: 42 SiO₂, 42 MgO, 14 H₂O, 1 FeO, and 1.7 Al₂O₃. Fig. 109 shows the appearance of the two kinds of asbestos.

Occurrence.—Chrysotile veinlets may be found in almost any serpentine area, but they are rarely so abundant and large as to be of economic importance. The views regarding their origin differ.

Dresser shows that serpen tinization in the Canadian deposits proceeded along irregular cracks in the peridotite, and the chrysotile veinlets are found in the center of the serpentinized bands. These veinlets were interpreted by Pratt and Merrill as fillings of contraction cracks, but other authors are probably correct in considering them the result of a recrystallization of the serpentine, proceeding inward from the cracks.

Transverse fibrous structure in veins is rather common for many minerals, but an adequate theory of the conditions producing this structure has not yet been developed. A. E. Barlow believes that the waters that caused the serpentinization and conversion to asbestos were derived from a granitic intrusion, but it seems more likely that they were of atmospheric origin.
Until about 1895 the small quantity of asbestos used in the United States came from Italy. Since that date the development of the asbestos industry in Canada has been extremely rapid, and the Canadian mines now supply this country. The Canadian deposits\(^1\) center in Asbestos Hill at Thetford, in the eastern town-

![Image](image.png)

Fig. 109.—Chrysotile (a) and amphibole (b) asbestos. *Photograph by J. S. Diller.*

ships of Quebec, and the production from them in 1908 was about 65,000 tons of asbestos. As stated, the mineral occurs as irregular veinlets in serpentine and peridotite. These rocks are in places accompanied by somewhat later gabbro and granite and all of them are intrusive into Ordovician sediments. The mineral is mined in open pits, one of which, for instance, is 700 feet long, 200 feet wide, and 165 feet in greatest depth. A small percentage is obtained by hand cobbing, but the larger part—30

to 60 per cent.—of the crude material quarried is crushed and screened, and the fibers are separated by air currents. The extraction of fiber of the milled rock is from 6 to 10 per cent.

Of late years the Russian chrysotile from the Ural Mountains is becoming important, though the quantity produced as yet is much smaller than at the Canadian occurrences.

In the United States chrysotile fiber of economic importance has been found in the Grand Cañon, Arizona, below the Grand Cañon railroad station; in Vermont, and near Casper, Wyoming. Thus far, the production is small.

Uses.—"The fundamental property of asbestos, upon which its use depends, is its flexible, fibrous structure, but coupled with this are the scarcely less important qualities of incombustibility and slow conduction of heat and electricity when the mass is fiberized and porous." The spinning and weaving of fire-proof cloth form an important part of the asbestos industry carried on in the United States with Canadian raw material. The highest grade of the crude mineral is expensive, costing $275 to $350 per ton; the fines cost $25 to $125 per ton, while the lowest grade—a mixture of serpentine and asbestos—is sold at less than $1 per ton. Amphibole asbestos is much cheaper, costing about $18 per ton.

Asbestos forms part of many mixtures of pastes used in fire-proof constructions; it is also mixed with paint.

THE HEMATITE DEPOSITS OF THE LAKE SUPERIOR REGION

General Character and Distribution.—The iron ores of the Lake Superior region in Michigan, Minnesota, and Wisconsin contain mainly hematite with small amounts of magnetite and, at some places, ferric hydroxides. They occur as lenses, masses, or flat deposits in pre-Cambrian rocks of sedimentary origin, both in the Archean and in the Algonkian system. They are products of concentration effected by waters of meteoric origin and of oxidizing character in original sediments called "iron formations," containing comparatively large quantities of ferrous carbonate and ferrous silicate. Smaller deposits of magnetite produced by contact metamorphism and some titaniferous magnetite of magmatic origin are also found in this region, but these are of minor importance.

The hematites of Lake Superior yield about four-fifths of the annual output of iron ores in the United States. In 1910 the production was 46,000,000 long tons.

We owe most of our information concerning these deposits to the work of C. R. Van Hise, C. K. Leith, and many others recorded in a magnificent series of monographs of the United States Geological Survey. These and other papers are cited below.¹

There are seven principal districts in the United States and three or four in Canada, locally called ranges, as follows (Fig. 110):

1. The Mesabi, Vermilion, and Cuyuna ranges of northern Minnesota.
2. The Penokee-Gogebic, Marquette, and Menominee ranges of northern Michigan and Wisconsin.
3. The Baraboo range of southern Wisconsin.
4. The Michipicoten, Gunflint Lake, and other minor districts in Canada.

Geology.—The following short summary is in part taken from the résumés by Leith and Harder cited above.

The principal rocks of the Lake Superior iron ore region are divided as follows:

Cambrían: Potsdam sandstone.

Algonkian: Keweenawan series (sediments, basic flows, gabbro).

Huronian series:

- Upper Huronian (quartzite, “iron formation,” and slate).
- Middle Huronian (quartzite, “iron formation,” and slate).
- Lower Huronian (quartzite, conglomerate, dolomite, slate, “iron formation,” and intrusives).

Archean: Laurentian series (granite, gneiss, and porphyry).

Keewatin series (greenstone, amphibolite, and “iron formation”).

Of these rocks only the Upper and Middle Huronian and the Keewatin contain deposits of hematite.

The Archean or basement complex consists of gneiss and granite with an extensive series of greenstones (basalt, gabbro, amphibolite), which are largely surface lavas. These lavas are now regarded as the oldest formation exposed; the character of the basement upon which they were outpoured is unknown. Above the Keewatin lavas lie sedimentary rocks of the iron formation. The gneisses and granites are in part certainly intrusive into the Keewatin series.

In the Vermilion and Michipicoten districts the productive formation is in the Keewatin series.

Unconformably overlying the Archean and similarly covered by the Cambrian is the Algonkian, which in its complete development consists of four parts separated by unconformities. The lower three divisions are collectively referred to as the Huronian and the uppermost as the Keweenawan. The principal iron-bearing formations are concentrated in the Huronian, but the development differs materially in the several districts.

In the Marquette district all three divisions of the Huronian are present. The lower Marquette series consists of quartzite, dolomite, and slate 3,000 feet in maximum thickness. The middle Marquette series, 3,000 feet in maximum thickness, includes quartzite, slate, and the important Negaunee iron-
CONCENTRATIONS FROM SURROUNDING ROCKS 355

bearing formation. The upper Marquette series includes quartzite, schist, slates, and fragmental basic volcanic rocks, each member accompanied by iron-bearing formations.

In the Crystal Falls and Menominee districts similar divisions appear.

In the Penokee-Gogebic district the Upper and Lower Huronian series are present, but the middle series appears to be lacking. The lower division consists of quartzite, cherty limestone, and dolomite; the upper part includes quartz slates and the thick Ironwood "iron-bearing formation" and may aggregate about 13,000 feet in thickness.

In the Mesabi district the Lower Huronian consists of conglomerates, graywackes, and slates standing vertically; it is intruded by the granite of the Giants Range, on the south slopes of which the iron deposits extend from east to west for a distance of 100 miles. The Upper Huronian comprises a basal quartzite, the Biwabik "iron-bearing formation," and the overlying Virginia slate. The total thickness is probably over 2,000 feet. The series dips gently at angles of 5° to 20° and is also gently cross folded. Intrusive into these rocks at the east end of the district are Keweenawan granite and basic igneous rocks. Near these intrusives the sedimentary rocks are highly metamorphosed.

Above the Huronian rests the less highly metamorphosed Keweenawan series of sandstones, conglomerates, and igneous basic flows; the thickness is estimated to be over 35,000 feet. It contains no iron deposits.

The west end of Lake Superior consists of an eastward-pitching synclinorium of Keweenawan rocks. The next underlying series, the Upper Huronian, takes less part in this synclinal structure and borders the outer edge of the Keweenawan areas.

We have thus in the Lake Superior country six series, consisting from top to bottom of the Keweenawan, Upper, Middle, and Lower Huronian, Laurentian, and Keewatin, all but the last two separated by unconformities. Above them and separated by a marked unconformity rests the Cambrian Potsdam sandstone.

The "Iron Formations."—The iron ores of the Lake Superior region are believed to be derived by concentration by means of meteoric waters from lean "iron formations" containing about 25 per cent. iron. The ores are products of enrichment of chemically deposited sediments, such as siderite and hydrated
Geology.—The following short summary is in part taken from the résumés by Leith and Harder cited above.

The principal rocks of the Lake Superior iron ore region are divided as follows:

Cambrìan: Potsdam sandstone.

Algonkian: Keweenawan series (sediments, basic flows, gabbro).

Huronian series:

Upper Huronian (quartzite, "iron formation," and slate).

Middle Huronian (quartzite, "iron formation," and slate).

Lower Huronian (quartzite, conglomerate, dolomite, slate, "iron formation," and intrusives).

Archean: Laurentian series (granite, gneiss, and porphyry).

Keewatin series (greenstone, amphibolite, and "iron formation").

Of these rocks only the Upper and Middle Huronian and the Keewatin contain deposits of hematite.

The Archean or basement complex consists of gneiss and granite with an extensive series of greenstones (basalt, gabbro, amphibolite), which are largely surface lavas. These lavas are now regarded as the oldest formation exposed; the character of the basement upon which they were outpoured is unknown. Above the Keewatin lavas lie sedimentary rocks of the iron formation. The gneisses and granites are in part certainly intrusive into the Keewatin series.

In the Vermilion and Michipicoten districts the productive formation is in the Keewatin series.

Unconformably overlying the Archean and similarly covered by the Cambrian is the Algonkian, which in its complete development consists of four parts separated by unconformities. The lower three divisions are collectively referred to as the Huronian and the uppermost as the Keweenawan. The principal iron-bearing formations are concentrated in the Huronian, but the development differs materially in the several districts.

In the Marquette district all three divisions of the Huronian are present. The lower Marquette series consists of quartzite, dolomite, and slate 3,000 feet in maximum thickness. The middle Marquette series, 3,000 feet in maximum thickness, includes quartzite, slate, and the important Negaunee iron-
bearing formation. The upper Marquette series includes quartzite, schist, slates, and fragmental basic volcanic rocks, each member accompanied by iron-bearing formations.

In the Crystal Falls and Menominee districts similar divisions appear.

In the Penokee-Gogebic district the Upper and Lower Huronian series are present, but the middle series appears to be lacking. The lower division consists of quartzite, cherty limestone, and dolomite; the upper part includes quartz slates and the thick Ironwood "iron-bearing formation" and may aggregate about 13,000 feet in thickness.

In the Mesabi district the Lower Huronian consists of conglomerates, graywackes, and slates standing vertically; it is intruded by the granite of the Giants Range, on the south slopes of which the iron deposits extend from east to west for a distance of 100 miles. The Upper Huronian comprises a basal quartzite, the Biwabik "iron-bearing formation," and the overlying Virginia slate. The total thickness is probably over 2,000 feet. The series dips gently at angles of 5° to 20° and is also gently cross folded. Intrusive into these rocks at the east end of the district are Keweenawan granite and basic igneous rocks. Near these intrusives the sedimentary rocks are highly metamorphosed.

Above the Huronian rests the less highly metamorphosed Keweenawan series of sandstones, conglomerates, and igneous basic flows; the thickness is estimated to be over 35,000 feet. It contains no iron deposits.

The west end of Lake Superior consists of an eastward-pitching synclinorium of Keweenawan rocks. The next underlying series, the Upper Huronian, takes less part in this synclinal structure and borders the outer edge of the Keweenawan areas.

We have thus in the Lake Superior country six series, consisting from top to bottom of the Keweenawan, Upper, Middle, and Lower Huronian, Laurentian, and Keewatin, all but the last two separated by unconformities. Above them and separated by a marked unconformity rests the Cambrian Potsdam sandstone.

The "Iron Formations."—The iron ores of the Lake Superior region are believed to be derived by concentration by means of meteoric waters from lean "iron formations" containing about 25 per cent. iron. The ores are products of enrichment of chemically deposited sediments, such as siderite and hydrated
MAGNESITE

Origin.—Magnesite, MgCO₃, often appears in serpentine near the surface as a result of decomposition of the serpentine by atmospheric waters containing CO₂; it occurs in fissures or in crushed zones, usually as hard, compact, earthy masses, sometimes concretionary, and, when broken, looking like unglazed porcelain. It is distinctly harder than calcite, and its specific gravity is also greater. It is often admixed with a few per cent. of silica and smaller quantities of iron, alumina, and lime. Its formation is illustrated by the following equation:

$$\text{H}_2\text{Mg}_3\text{Si}_2\text{O}_9 + 3\text{CO}_2 = 3\text{MgCO}_3 + 2\text{H}_2\text{O} + 2\text{SiO}_2.$$

The silica is deposited as opal or chalcedony.

Occurrence.—Magnesite occurs abundantly in the Coast Range of California, but the best deposits, described by Hess, are at Porterville, Tulare County.¹ The largest deposits in the world are those of Styria, in Austria, and those on the eastern coast of Euboea, in Greece. Large deposits are also said to exist in India, near the town of Salem, in Madras.

The Styrian magnesite deposits,² which now practically supply the world, differ entirely from those described above as the general type. They occur as replacements in the Paleozoic limestone or dolomite of the eastern Alps, usually mixed with siderite and in some places associated with veins of chalcopryite, tetrachlrite, a little cinnabar, and quartz. Genetically they are believed by K. Redlich and J. Rumpf to be related to the great siderite deposits of Styria—for instance, that of Eisenerz; probably these replacements have followed the irruption of acidic igneous rocks.

Uses.—Magnesite gives off its carbon dioxide at a lower temperature (800° C.) than calcite and is therefore preferred for the production of this gas. After calcining, the substance is used for the manufacture of various magnesium salts, in the paper and sugar industries, and for steam packing, paint, and heavy adulterant. The principal use, however, is for refractory bricks for the basic or Thomas process; large amounts of these are used in the United States, the raw material coming mainly from Styria.

The domestic production is wholly from California and is rarely more than a few thousand tons a year; apparently the producers are unable to compete with the Austrian magnesite, of which large amounts are imported; the total imports for 1908 were about 85,000 tons, both calcined and raw.

MEERSCHAUM

Meerschaum or sepiolite (H₄Mg₃Si₄O₁₀, containing SiO₂, 60.8 per cent.; MgO, 27.1 per cent.; H₂O, 12.1 per cent.) is a hydrated silicate of magnesia of tough, compact texture, white or cream color, and smooth feel. As is well known, it finds a rather extensive use in the manufacture of pipes and cigar holders. Its analysis usually shows a little iron, alumina, and lime. It is probably derived from serpentine by slow hydration. The principal occurrence is in Asia Minor at Eski-Shehr, where it is found as nodular masses near the surface; at this and several other localities in Crimea and Bosnia serpentine rocks are found in the vicinity, although the material itself is embedded in Quaternary or Tertiary beds. A different occurrence is that recently discovered in New Mexico, on the upper Gila River, where the substance forms veins and balls in a Paleozoic cherty limestone. Here it is probably derived from a dolomitic carbonate.

TALC AND SOAPSTONE

General Occurrence and Origin.—Talc (H₂Mg₃Si₄O₁₂, or 3MgO-4SiO₂·H₂O; 65.5 per cent. SiO₂, 31.7 per cent. MgO, 4.8 per cent. H₂O), is a hydrated magnesium silicate, but holds much less water than serpentine. It is a soft, minutely foliated or compact mineral of white, gray, or pale-green color and a greasy feel. The more compact, as well as some impure varieties, are usually called soapstone; they may contain shreds of chlorite and other ferromagnesian minerals, like enstatite or amphibole, and may be considered as belonging in part to the structural materials. Soapstone is easily worked and is of great resistance to acids and high temperatures.

1 G. P. Merrill, Non-metallic minerals, 1910, pp. 218–221.

Talc and soapstone are products of the hydration of magnesian rocks, either of distinctly igneous origin, like gabbro, pyroxenite, or peridotite, or crystalline schists rich in such minerals as enstatite and tremolite or other pyroxenes and amphiboles. These schists may result from the shearing of igneous or contact-metamorphic rocks, the latter derived from the igneous alteration of limestone and dolomite. Talc deposits derived from schists are frequently associated with crystalline carbonate rocks. In general serpentine forms from olivine and talc from pyroxene and amphibole, but this rule does not always hold.

Talc often contains 1 or 2 per cent. of iron and aluminum, as well as a little calcium; according to the analyses given by Merrill (loc. cit.) the soapstones contain, in addition to silica and magnesia, from 5 to 11 per cent. alumina, 7 to 13 per cent. ferrous oxide, and 1 to 4 per cent. lime; some of them contain so much water (as much as 14 per cent., and in one case 23 per cent.) that a strong admixture of serpentine must be assumed.

The formulas show that talc may be obtained from enstatite or tremolite by the addition of water and carbon dioxide, with separation of magnesium or calcium carbonate, which is probably carried away in solution; or, in case of deficiency of CO₂, the magnesia may combine with silica, possibly set free from other minerals, to form additional talcose material.

The exact conditions and temperature needed for the formation of talc are not known, but it seems certain that dynamic stress, together with a limited supply of water not overrich in CO₂, is favorable to its development; it also undoubtedly forms from magnesian minerals by the aid of a scant supply of surface water under static conditions. It is also known that talc may develop along fissures under the influence of ascending hot waters of unknown origin, whenever magnesian silicate rocks are traversed.

E. Weinschenk,¹ in his description of the talc deposits of the Austrian Alps, holds that the mineral develops by replacement of schist composed of quartz, chlorite, chloritoid, and graphite along its contact with limestone and believes this transformation due to waters following the irruption of large igneous bodies.

Occurrences.—The crystalline schists of all countries yield talc. Some occurrences are known from the Pacific coast, but

the production in the United States "is limited exclusively to the belt of ancient crystalline rocks which forms the axis of the Appalachian Mountain system from Canada to Alabama." (Diller, loc. cit.)

North Carolina is rich in talc, and one belt of Cambrian marble along the Nantahala Valley and Nottely River yields many lenses as much as 200 feet long and 50 feet thick. The mineral is mined in open cuts and by shafts and tunnels.

New York easily outranks all other States in the production of talc. The output comes from a small district about 12 miles southeast of Gouverneur, which has been worked for many years by underground methods. One mine at Taleville has attained a depth of 550 feet. The mineral occurs in schistose layers of enstatite and tremolite, gradually merging into the surrounding crystalline limestone. The deposit forms an irregular layer, remarkably persistent and averaging 20 feet in width, within the enstatite-tremolite rock.

Virginia yields most of the soapstone produced in the United States. It is derived from a belt nearly 30 miles long and less than 1 mile wide. According to T. L. Watson's description the soapstone occurs as sheets or dike-like masses, 100 feet or more in thickness, conformably interbedded with quartzitic schists, but is probably derived from an igneous rock.

Production and Uses.—The production of talc and soapstone in the United States is rapidly expanding and was about 130,000 tons in 1909, of which 75,000 tons were utilized in ground or pulverized form.

Talc is used as a filler for paper, including wall paper; also for admixture or adulteration of pigment, as a heat insulator, lubricant, polishing powder for glass, for toilet powders, and as an absorbent for nitroglycerine. The compact talc or soapstone is used for fire-bricks, laboratory tables, gas burners, crayons, etc.

Pyrophyllite.—Pyrophyllite is a hydrous silicate of alumina (Al₄O₈·4SiO₂·H₂O), containing 66.7 per cent. SiO₂, 28.3 per cent. Al₂O₃, and 5.0 per cent. H₂O. Its physical qualities are closely similar to those of talc, though it does not command so high a

5 T. L. Watson, Mineral Resources of Virginia, 1907, p. 293.
price as the best talc. It is mined in Moore and Chatham counties, North Carolina, where it occurs in thick beds associated with slate.

ASBESTOS

Amphibole Asbestos.—The asbestos of mineralogy is a monoclinic amphibole which develops in seams and slips in normal amphibolitic rocks, especially where the rocks have been subjected to pressure and movement. Chemically it is a calcium-magnesium metasilicate. According to the series of analyses given by Merrill the silica varies from 52 to 58 per cent., the lime from 12 to 16 per cent., the magnesia from 20 to 30 per cent. Other constituents are alumina, varying from 1 to 6 per cent., and ferrous oxide, usually from 1 to 6 per cent., though in some cases considerably higher. Water is always present, the amount generally varying between 2 and 5 per cent. Although contrary to the views of some authorities, the conclusion can hardly be avoided that the water is an essential constituent and that the mineral is really a hydrated form of tremolite or actinolite. The extinction appears, however, to be that characteristic of these amphiboles, or about 18. No experiments appear to have been made as to the temperatures at which the water is driven off. The normal varieties of amphibole also hold a little water, but in far smaller quantities than asbestos.

Anthophyllite, \((\text{Mg,Fe})\text{SiO}_3\), and crocidolite, \(\text{NaFeSi}_2\text{O}_6\cdot\text{FeSiO}_3\), a dark-blue sodium amphibole, also yield asbestiform varieties.

Merrill has shown that the fibers are polygonal in outline and run out into needle-like points; down to a diameter of 0.002 or 0.001 millimeter the fibers retain their uniform diameter and polygonal outlines. The color of amphibole asbestos is usually white to greenish white. Only the finer kinds are utilized, but even these are less valued than the serpentine asbestos. They are apt to be less flexible and somewhat brittle.

Most of the small quantity of asbestos mined in the United States is of the tremolite or actinolite variety, and it often

3 G. P. Merrill, Non-metallic minerals, 1910, pp. 183–197.
6 Non-metallic minerals, p. 486.
occurs in limestones which have been partly metamorphosed to amphibolitic rocks. The mineral is classed as slip-fiber or cross-fiber, according to the position of the fibers in the veins. The radial or divergent structures are designated as mass-fiber.

There are many occurrences, mainly in pre-Cambrian rocks along the Appalachian Mountain system, from Vermont to Alabama. One of the most important localities worked is at Sall Mountain, Georgia, where, according to Diller, the asbestos occurs in large lenticular masses in gneiss and is believed to be an altered igneous rock. Almost the entire domestic production is derived from Georgia.

Serpentine Asbestos (Chrysotile).—This variety is found as veinlets, rarely over 6 inches thick, in serpentine or peridotite, and has always a cross-fiber—that is, the silky fibers lie perpendicularly to the plane of the veinlet.

Chrysotile asbestos is green or yellowish-green and is easily reduced to a white fluffy state. The fiber is short, but of very uniform diameter and great divisibility and flexibility; the decomposing effect of hydrochloric acid also distinguishes it from amphibole asbestos. In composition it is practically identical with the purer kinds of serpentine. A typical analysis of the Canadian material yielded per cents, as follows: 42 SiO₂, 42 MgO, 14 H₂O, 1 FeO, and 1.7 Al₂O₃. Fig. 109 shows the appearance of the two kinds of asbestos.

Occurrence.—Chrysotile veinlets may be found in almost any serpentine area, but they are rarely so abundant and large as to be of economic importance. The views regarding their origin differ.

Dresser shows that serpentinization in the Canadian deposits proceeded along irregular cracks in the peridotite, and the chrysotile veinlets are found in the center of the serpentinized bands. These veinlets were interpreted by Pratt and Merrill as fillings of contraction cracks, but other authors are probably correct in considering them the result of a recrystallization of the serpentine, proceeding inward from the cracks.

Transverse fibrous structure in veins is rather common for many minerals, but an adequate theory of the conditions producing this structure has not yet been developed. A. E. Barlow believes that the waters that caused the serpentinization and conversion to asbestos were derived from a granitic intrusion, but it seems more likely that they were of atmospheric origin.
Until about 1895 the small quantity of asbestos used in the United States came from Italy. Since that date the development of the asbestos industry in Canada has been extremely rapid, and the Canadian mines now supply this country. The Canadian deposits\(^1\) center in Asbestos Hill at Thetford, in the eastern town-

![Fig. 109.—Chrysotile (a) and amphibole (b) asbestos. Photograph by J. S. Diller.](image)

ships of Quebec, and the production from them in 1908 was about 65,000 tons of asbestos. As stated, the mineral occurs as irregular veinlets in serpentine and peridotite. These rocks are in places accompanied by somewhat later gabbro and granite and all of them are intrusive into Ordovician sediments. The mineral is mined in open pits, one of which, for instance, is 700 feet long, 200 feet wide, and 165 feet in greatest depth. A small percentage is obtained by hand cobbing, but the larger part—30

CONCENTRATIONS FROM SURROUNDING ROCKS 351

to 60 per cent.—of the crude material quarried is crushed and screened, and the fibers are separated by air currents. The extraction of fiber of the milled rock is from 6 to 10 per cent.

Of late years the Russian chrysotile from the Ural Mountains is becoming important, though the quantity produced as yet is much smaller than at the Canadian occurrences.

In the United States chrysotile fiber of economic importance has been found in the Grand Cañon, Arizona, below the Grand Cañon railroad station; in Vermont, and near Casper, Wyoming. Thus far, the production is small.

Uses.—“The fundamental property of asbestos, upon which its use depends, is its flexible, fibrous structure, but coupled with this are the scarcely less important qualities of incombustibility and slow conduction of heat and electricity when the mass is fiberized and porous.” The spinning and weaving of fire-proof cloth form an important part of the asbestos industry carried on in the United States with Canadian raw material. The highest grade of the crude mineral is expensive, costing $275 to $350 per ton; the fines cost $25 to $125 per ton, while the lowest grade—a mixture of serpentine and asbestos—is sold at less than $1 per ton. Amphibole asbestos is much cheaper, costing about $18 per ton. Asbestos forms part of many mixtures of pastes used in fire-proof constructions; it is also mixed with paint.

THE HEMATITE DEPOSITS OF THE LAKE SUPERIOR REGION

General Character and Distribution.—The iron ores of the Lake Superior region in Michigan, Minnesota, and Wisconsin contain mainly hematite with small amounts of magnetite and, at some places, ferric hydroxides. They occur as lenses, masses, or flat deposits in pre-Cambrian rocks of sedimentary origin, both in the Archean and in the Algonkian system. They are products of concentration effected by waters of meteoric origin and of oxidizing character in original sediments called “iron formations,” containing comparatively large quantities of ferrous carbonate and ferrous silicate. Smaller deposits of magnetite produced by contact metamorphism and some titaniferous magnetite of magmatic origin are also found in this region, but these are of minor importance.

The hematites of Lake Superior yield about four-fifths of the annual output of iron ores in the United States. In 1910 the production was 46,000,000 long tons.

We owe most of our information concerning these deposits to the work of C. R. Van Hise, C. K. Leith, and many others recorded in a magnificent series of monographs of the United States Geological Survey. These and other papers are cited below.¹

There are seven principal districts in the United States and three or four in Canada, locally called ranges, as follows (Fig. 110):

1. The Mesabi, Vermilion, and Cuyuna ranges of northern Minnesota.
2. The Penokee-Gogebic, Marquette, and Menominee ranges of northern Michigan and Wisconsin.
3. The Baraboo range of southern Wisconsin.
4. The Michipicoten, Gunflint Lake, and other minor districts in Canada.

Geology.—The following short summary is in part taken from the résumés by Leith and Harder cited above.

The principal rocks of the Lake Superior iron ore region are divided as follows:

Cambrian: Potsdam sandstone.

Algonkian: Keweenawan series (sediments, basic flows, gabbro).

Huronian series:
- Upper Huronian (quartzite, "iron formation," and slate).
- Middle Huronian (quartzite, "iron formation," and slate).
- Lower Huronian (quartzite, conglomerate, dolomite, slate, "iron formation," and intrusives).

Archean: Laurentian series (granite, gneiss, and porphyry).
- Keewatin series (greenstone, amphibolite, and "iron formation").

Of these rocks only the Upper and Middle Huronian and the Keewatin contain deposits of hematite.

The Archean or basement complex consists of gneiss and granite with an extensive series of greenstones (basalt, gabbro, amphibolite), which are largely surface lavas. These lavas are now regarded as the oldest formation exposed; the character of the basement upon which they were outpoured is unknown. Above the Keewatin lavas lie sedimentary rocks of the iron formation. The gneisses and granites are in part certainly intrusive into the Keewatin series.

In the Vermilion and Michipicoten districts the productive formation is in the Keewatin series.

Unconformably overlying the Archean and similarly covered by the Cambrian is the Algonkian, which in its complete development consists of four parts separated by unconformities. The lower three divisions are collectively referred to as the Huronian and the uppermost as the Keweenawan. The principal iron-bearing formations are concentrated in the Huronian, but the development differs materially in the several districts.

In the Marquette district all three divisions of the Huronian are present. The lower Marquette series consists of quartzite, dolomite, and slate 3,000 feet in maximum thickness. The middle Marquette series, 3,000 feet in maximum thickness, includes quartzite, slate, and the important Negaunee iron-
CONCENTRATIONS FROM SURROUNDING ROCKS 355

bearing formation. The upper Marquette series includes quartzite, schist, slates, and fragmental basic volcanic rocks, each member accompanied by iron-bearing formations.

In the Crystal Falls and Menominee districts similar divisions appear.

In the Penokee-Gogebic district the Upper and Lower Huronian series are present, but the middle series appears to be lacking. The lower division consists of quartzite, cherty limestone, and dolomite; the upper part includes quartz slates and the thick Ironwood "iron-bearing formation" and may aggregate about 13,000 feet in thickness.

In the Mesabi district the Lower Huronian consists of conglomerates, graywackes, and slates standing vertically; it is intruded by the granite of the Giants Range, on the south slopes of which the iron deposits extend from east to west for a distance of 100 miles. The Upper Huronian comprises a basal quartzite, the Biwabik "iron-bearing formation," and the overlying Virginia slate. The total thickness is probably over 2,000 feet. The series dips gently at angles of 5° to 20° and is also gently cross folded. Intrusive into these rocks at the east end of the district are Keweenawan granite and basic igneous rocks. Near these intrusives the sedimentary rocks are highly metamorphosed.

Above the Huronian rests the less highly metamorphosed Keweenawan series of sandstones, conglomerates, and igneous basic flows; the thickness is estimated to be over 35,000 feet. It contains no iron deposits.

The west end of Lake Superior consists of an eastward-pitching synclinorium of Keweenawan rocks. The next underlying series, the Upper Huronian, takes less part in this synclinal structure and borders the outer edge of the Keweenawan areas.

We have thus in the Lake Superior country six series, consisting from top to bottom of the Keweenawan, Upper, Middle, and Lower Huronian, Laurentian, and Keewatin, all but the last two separated by unconformities. Above them and separated by a marked unconformity rests the Cambrian Potsdam sandstone.

The "Iron Formations."—The iron ores of the Lake Superior region are believed to be derived by concentration by means of meteoric waters from lean "iron formations" containing about 25 per cent. iron. The ores are products of enrichment of chemically deposited sediments, such as siderite and hydrated...
iron silicates, for the most part interbedded with normal clastic sediments, such as slate and quartzite.

The iron formations range from a few feet up to 1,000 feet in thickness and are sedimentary beds consisting, according to Leith, "mainly of chert, or quartz, and ferric oxide segregated in bands or sheets, or irregularly mingled. Where in bands with the quartz layers colored red and the rock highly crystalline it is called jasper. Where less crystalline and either in bands or irregularly intermingled the rock is known as ferruginous chert. The silica in these rocks varies from 32 to 80 per cent., the ferric oxide from 31 to 66 per cent. Other phases of the iron formation, subordinate in quantity, are (1) ordinary clay slates, showing every possible gradation through ferruginous slates into ferruginous chert; (2) paint rocks, oxidized equivalents of the slates; (3) cherty iron carbonate (siderite) and hydrous ferrous silicate (greenalite); (4) the iron ores themselves. Almost the entire bulk of the iron formations now consists of iron oxide and silica, with carbonates and alumina present in subordinate quantity."

Leith found that certain rocks of the Mesabi district contained, in a matrix of chert and iron carbonate, abundant round granules of a green chloritic or glauconitic substance which he called greenalite; its composition is approximately 30 to 38 per cent. SiO₂, 8 to 34 per cent. Fe₂O₃, 25 to 47 per cent. FeO, and 7 to 9 per cent. H₂O (p. 242). The absence of potassium shows that the mineral is not glauconite. The greenalite rocks contain 50 to 80 per cent. of this mineral, which is soluble in acids. The same mineral occurs in some of the siderite rocks of the more easterly districts.

Regional metamorphism and, to a greater degree, contact metamorphism, caused by Keweenawan intrusions of granites and gabbros, have converted the siderite and the greenalite rocks to magnetite-amphibole schists; this is especially well observed in the Marquette and the Mesabi ranges.

Horizons of Iron-Bearing Formations.—The following statement shows the geologic position of the several iron-bearing formations.

Algonkian system:
Keweenawan series: Titaniferous gabbros of Cook and Lake counties, Minnesota.
CONCENTRATIONS FROM SURROUNDING ROCKS 357

Huronian series:
Upper Huronian (Animikie group):
Biwabik formation of the Mesabi district, Minnesota.
Animikie group of the Animikie district, Ontario.
Ironwood formation of the Penokee-Gogebic district, Michigan and Wisconsin.
Vulcan formation of the Menominee and Calumet districts, Michigan.
Vulcan iron-bearing member of the Crystal Falls, Iron River, and Florence districts, Michigan and Wisconsin.
Gunflint formation of the Gunflint Lake district, Canada, and Vermilion district, Minnesota.
Bijiki schist of the Marquette district, Michigan.
Deerwood iron-bearing member of the Cuyuna district, Minnesota.
Middle Huronian:
Negaunee formation of the Marquette district, Michigan.
Freedom dolomite of the Baraboo district, Wisconsin.
Archean system:
Keewatin series:
Soudan formation of the Vermilion district, Minnesota.
Helen formation of the Michipicoten district, Ontario.

The Iron Ores.—The hematite ores are derived from the ferruginous cherts by a process of concentration, and both laterally and in depth gradually change into such rocks. The ores are admixed with enough magnetite to affect the magnetic needle and render possible magnetic surveys of the fields. The hard blue specular ores of the Marquette range contain more magnetite than the others and are accompanied by contact-metamorphic jaspers and magnetite-amphibole (grünerite) rocks. In other ranges, such as the Mesabi, Penokee, and Baraboo, the ore is soft, bluish, red, or brown in color, and partly hydrated. A micaceous or foliated development of the iron ore is not common. The average analysis of Lake Superior ores in 1909 is as follows:

Per cent.

Moisture (loss on drying at 100° C.)............. 11.28
Analysis of dried ore:
Iron... 58.45
Phosphorus.................................... 0.091
Silica.. 7.67
Alumina....................................... 2.23
Manganese................................. 0.71
Lime.. 0.54
Magnesia..................................... 0.55
Sulphur....................................... 0.06
Loss by ignition............................ 4.12
The tenor in iron of the shipped ore has slowly diminished during recent years; in 1905 it was 59.6 per cent. Fe.

The phosphorus ranges between 0.008 and 1.29, the bulk of the ore being of Bessemer grade—that is, containing less than 0.05 per cent. phosphorus. Small parts of the ore shipped, particularly from the Mesabi range, contain as much as 7 per cent. manganese. The sulphur varied from 0.003 to 1.87 per cent., but it averages low. Accessory, more or less rare minerals in the ore, aside from quartz or chert, are apatite, wavellite, adularia, calcite, dolomite, siderite, pyrite, marcasite, chalcopyrite, tourmaline, ottrelite, chlorite, garnet, mica, rhodochrosite, barite, gypsum, analcite, goethite, and turgite.

The ore reserves of the Mesabi range are estimated to be 2,500,000,000 tons and those of the whole region 2,800,000,000 tons.\(^1\)

The total yield of the Lake Superior ores from 1850 to 1911 has been about 530,000,000 long tons, much the greater proportion having been extracted in the last two decades.

Form of Ore Bodies.—The ore forms irregular, often very large, but as a rule distinctly bedded or banded masses in the "iron formations"; in places it is entirely embedded in them. The shape is commonly determined by impervious basements like clayey dikes, decomposed amphibolitic rocks, or folded sedimentary beds like slate, which have tended to guide the circulation of surface water into certain channels; the ores usually occur in pitching troughs caused by any or all of these factors.

In some ranges like the Gogebic, Marquette, and Iron River the strata are strongly folded and may dip at high angles; some of the ore-bodies have been followed to a depth of 1,500 or 2,000 feet, but Van Hise believes that in most cases a depth of 1,000 or 1,500 feet establishes the lower limit of the zone of enrichment by surface waters. Good ore is mined at present in the Newport mine in the Gogebic district at 2,000 feet. In the Mesabi range the rocks lie horizontal; the alteration and concentration have extended over a wide area and few of the mines are deeper than 200 feet. The shallow deposits of this range are mined on an unusually large scale by steam-shovels and the annual production, 17,000,000 to 20,000,000 long tons, is far greater than that of the other districts. The total production of the Michigan and Minnesota ranges in 1911 was 33,000,000 long tons.

\(^1\) Iron-ore reserves of the world, Stockholm, 1910, p. 753.
Marquette Range.—The mines of the Marquette range are near Negaunee and Republic, south and southwest of Marquette. The principal "iron formation," the Negaunee, is in the Middle Huronian, and the sedimentary rocks are intruded by dikes and stocks of basic igneous rocks. Extensive folding has taken place and the strata are compressed into a great synclinal basin. The ores lie at the base of the Negaunee formation, where the underlying slates have been folded so as to form pitching synclinal basins, or where dikes have guided the concentrating waters.

In part they occur also at the contact of the iron formation with basic intrusions—for instance, in pitching troughs between igneous masses and dikes branching from them. The surfaces of the igneous rocks are much altered, leached, and changed to clayey masses, called "soapstone" and "paint rock." The "de-trital ores" were formed during the erosional interval between the Middle and Upper Huronian epochs of deposition. These also are localized by pitching troughs and, in contrast to the soft ores of the Negaunee, are hard and specular.
Mineral Deposits

Menominee Range.—This iron-bearing district extends from western Michigan into Wisconsin, the principal mines being located at Iron Mountain, Norway, and Crystal Falls. The iron formation is chiefly in the Upper Huronian and is called the Vulcan formation; it is overlain by Upper Huronian slate and underlain by a Lower Huronian dolomite. Intricate folding characterizes the structure of the range, the ores of the different areas occurring in separate local basins. The deposits are large and consist of soft red hematite, considerably hydrated in places, and are generally found in pitching synclinal basins bottomed and capped by slate layers.

Penokee-Gogebic Range.—This range is in northern Michigan and Wisconsin, the principal mines being at Hurley, Ironwood, and Bessemer. The ore appears in the Ironwood formation (Upper Huronian), which is overlain by slate and underlain by quartzite and black slate. The dip is steep and the sediments are in part metamorphosed by Keweenawan gabbro; for the most part the Ironwood formation is ferruginous chert. The ores are concentrated in large irregular bodies in the angles between the footwall quartzite or black slate and the igneous dikes (Fig. 111), these rocks making an impervious trough, toward which the meteoric waters converged. Most of the deposits reach depths of 1,000 feet, and some attain 2,000 feet. Both soft, partly hydrated ore and hard slaty ore occur.

Mesabi Range.—In northern Minnesota the Mesabi range extends from east to west for a distance of 75 to 100 miles on the south slope of a prominent ridge called the Giants Range. The principal mines are situated near the towns of Sparta, Eveleth, Virginia, and Hibbing. The Huronian rocks here lie at gentler inclinations than elsewhere, dipping 8° to 10° S.E., so that the iron formation outcrops in a general northeast-southwest belt.

The Biwabik iron formation of the Upper Huronian contains the deposits and is underlain by the Pokegama quartzite and covered by the thick Virginia slate, a normal chloritic and aluminous sedimentary rock. Except at the eastern end of the range, where contact-metamorphic amphibole-magnetite rocks have developed, the iron formation is composed mainly of ferruginous chert. The iron ores cover large irregular areas along the outcrop of the Biwabik formation, but descend to relatively slight depths, few of the mines being more than 200 feet deep (Fig. 112). The deposits
are most abundant at the synclines of the transverse folds of the formation. They are bedded and along the edges change rather abruptly to the ferruginous chert, from which they are derived by leaching of the silica. This relationship is clearly indicated by the slumping of the strata near the edges of the ore masses. In some places they are bounded by joint planes.

The rain water falling on the truncated edges of the beds circulates toward the south, its movement being controlled by the slight synclinal basins, by the existence of impervious layers of slate, and by the fracturing of the strata.

The secondary concentration of the iron ore has evidently taken place under surface conditions since the remote time of the post-Keweenawan folding, when the deposits first became exposed; it has also taken place below as well as above the water-level, which is about 75 feet underneath the surface.

Analyses show that the present surface water, containing about 20 parts per million of SiO₂, is slowly leaching silica, but removes little if any iron. The deposits do not appear to continue underneath the edge of the capping Virginia slate, probably because of the ponding of the water below that impervious formation. The amphibole-magnetite rocks in the eastern part of the district
are more stable and have not suffered much alteration by oxidation.

During the development of the ore-bodies erosion has continually cut down the iron formation and this truncation has been accompanied by slow downward and lateral migration of the iron. Glacial erosion finally removed much material.

The ore is a soft and porous hematite, brown, red, or blue in color, averaging 55 to 58 per cent. iron. It contains little mag-

![Diagram: Vertical section through the Chandler mine, Vermilion range, Minnesota. After J. M. Clements, U. S. Geol. Survey.](image)

netite, but some turgite and goethite. In the shipped ores the water of hydration amounts to 3 per cent. and the chert to about 4 per cent. Crystals of siderite, quartz, adularia, and pyrite are not uncommon in vugs in the ores.

Sulphur is low and phosphorus varies from 0.03 to 0.07 per cent. There is considerable more phosphorus in the ore than in the ferruginous chert; the greenalite and siderite rocks contain scarcely any phosphorus.

Vermilion Range.—Northeast of Mesabi, near the Canadian boundary, is the Vermilion range, the principal mines being near the towns of Ely and Tower. The country rock is mostly the Keewatin greenstone, but infolded in it in synclinal basins or
CONCENTRATIONS FROM SURROUNDING ROCKS 363

troughs is the Laurentian iron formation, known as the Soudan. The ores are associated with ferruginous jaspers in these troughs and generally have a footwall of greenstone (Fig. 113). The ore is a dense and hard blue or red hematite which contains a little chalcopyrite, an unusual feature in this region.

Origin of Lake Superior Iron Ores.—It has been shown by Van Hise and Leith and their associates that the ferruginous cherts, jaspers, amphibolite-magnetite schists, and iron ores of the iron formations result from the alteration either of the cherty iron carbonate or of the greenalite. The small amounts of

Fig. 114.—Ferruginous chert with greenalite granules, in part replaced by ferric oxide (black). Magnified 40 diameters. *After C. K. Leith.*

iron carbonate or ferrous silicate now found in the formations represent mere remnants left unaltered where protected by other rocks. The steps of the alteration may be observed and, in the end products, the structures and textures of the original rock are often remarkably well retained. It is held that the ores and the ferruginous cherts or jaspers on one hand and the amphibole schists on the other hand represent alterations from the same original type. The source of the ore is not, as a rule, in the present ferruginous cherts, but it was developed from original lean siderite and greenalite rocks. It is held that in the largest
deposits ores and jaspers may have developed side by side, at the same time, from such original minerals. Iron carbonate prevailed in the Marquette, Gogebic, Vermilion, and Crystal Falls districts; greenalite in the Mesabi district (Fig. 114).

The concentration has been effected, according to the Lake Superior geologists, by water coming more or less directly from the surface, especially at places where such waters converge owing to the existence of impervious underlying formations, such as slate or “soapstone,” that form pitching troughs, or owing to brecciation and fracturing of the iron formations.

The alteration of the iron formations, resulting in the concentration of the iron ores or in the development of ferruginous cherts, jaspers, and amphibolite schists, has taken place in different geologic periods under varying conditions. So far as the alteration has proceeded continuously under the influence of surface waters, without interruption by igneous activity or organic movements, soft ores and ferruginous cherts have resulted. So far as these products have been subjected to deep-seated alteration they have become dehydrated into hard red and blue specular ores and brilliant jaspers. So far as the alteration of the original iron formations has taken place within the sphere of influence of great intrusive masses, when waters were heated and oxygen not abundant, or under similar conditions, developed by deep submergence or by orogenic movement, ferrous silicates and magnetite resulted, as shown in the development of the grünerite schists.

The concentration of the ores was far advanced before Cambrian time, as shown by the fragments of ores in Cambrian conglomerates. Most of the deposits were formed between the Keweenawan and the Cambrian deposition. At the close of pre-Cambrian time the ores were largely as we now find them, though some concentration has been going on since. During the Cretaceous period the region of the Mesabi range, at least, was covered by the sea.

Regarding the origin of the iron formations, Van Hise has held that they were derived largely from the more ancient basic volcanic rocks of the Lake Superior region. The iron was leached by underground waters and carried to the sea as carbonate, partly also as sulphate solution, and there deposited as limonite, from which through reduction by organic matter ferrous carbonate was formed.
Somewhat different views have lately been expressed by C. K. Leith, who sums up the origin of the ores as follows: The iron was brought to the surface by igneous rocks and either contributed directly to the ocean by hot magmatic waters or later brought there by surface waters from weathered rocks. The iron-bearing minerals were then deposited as a chemical sediment in a conformable succession of sedimentary rocks and still later, under conditions of weathering, were locally enriched to ore by percolating surface waters. "It begins also to appear that the iron, copper, nickel, and silver ores of the Lake Superior and Lake Huron districts are related in a great metallographic province in which the characteristics and distribution of the different ores are initially controlled by igneous rocks. As first deposited the iron formation consisted essentially of iron carbonate or ferrous silicate (greenalite) with some ferric oxide, all minutely interlayered with chert, forming the ferruginous chert. When these were exposed to weathering the ferrous compounds, the siderite and greenalite, oxidized to hematite and limonite, essentially in situ, although some of it was simultaneously carried and redeposited. The result was ferruginous chert or jasper, averaging less than 30 per cent. of iron. The concentration of the iron to 50 per cent. and over has been accomplished essentially by the leaching of silica bands from the ferruginous chert and jasper. Infiltration of iron has been on a smaller and more variable scale. The leaching of the silica develops pore space and allows the iron layers to slump, thereby enriching the formation sufficiently to constitute an ore." Only a small part of the volume of the iron formations—less than 2 per cent.—has been altered to ore.

Résumé.—The literature of the Lake Superior iron ores is extensive and many different views have been expressed. J. D. Whitney regarded the ores as of igneous origin, and this view has also been advocated by N. H. Winchell. T. B. Brooks and R. Pumpelly at one time considered them as dehydrated bog iron ores, and this view has lately been adopted by S. Weidman in his description of the Baraboo ores of Wisconsin, where the ores appear to grade into dolomites.

The views of Van Hise and Leith and their associates, which appear to be generally accepted, have been given above in some

detail and in part verbatim. The development of their theory of the origin of the iron ores has been gradual; at first the iron formations were considered as purely sedimentary and the re-crystallization to amphibole-magnetite rocks as evidence of regional metamorphism; later the effects of contact metamorphism were recognized, and finally it is held that the iron of the iron formations was in large part yielded by the extensive eruptions accompanying their deposition. Although the ferruginous cherts are still thought to be formed by the oxidation of the siderite and greenalite rocks, which now form a small part of the formations, there seems to be a tendency to regard the iron ores as mainly formed directly by the solution of the silica in the ferruginous cherts. The history of any one group of these deposits is probably even more complicated than would appear from the descriptions. In the Mesabi range, for instance, amphibole and adularia occur in the ore, but the development of both these minerals is probably incompatible with descending and oxidizing waters.

The age of the concentration of the iron deserves emphasis. The ores were formed mainly before the Cambrian, as indicated by fragments of ore in the Cambrian conglomerate. Indeed, they were in part developed in inter-Huronian time, even in early Huronian time. This is set forth in the publications cited, but is not very generally realized. The ores are not the product of the present circulation and oxidation, but of forces acting in ancient periods when conditions were probably widely different from those of to-day. It is stated that the concentration has also proceeded since pre-Cambrian time, but this assertion seems far from being established, even for the surface deposits of the Mesabi range.

Weidman (loc. cit.) has pointed out that the present groundwaters are entirely similar in composition in the Paleozoic rocks and in the iron formations and has shown that they do not now transport or dissolve iron or notable quantities of silica. A. C. Lane has shown (p. 407) that the depth reached by the potable surface waters is limited and that in some parts of the iron districts, as well as in the copper districts of the Keweenawan, they are replaced, at depths of 1,000 to 2,000 feet, by scant and apparently stagnant water rich in calcium and sodium chlorides. The present ground-water in a region of high water-level is clearly un-
able to produce the extensive oxidation shown by the iron ores. Undoubtedly special conditions of circulation existed in pre-Cambrian time which are not paralleled to-day. Oxidizing waters do not penetrate far below the surface in regions of high water-level, and even where they reach a depth of a few hundred feet the product is a limonite. The hematites appear to result from oxidation only in arid and tropical countries.

The only times at which large bodies of rock could be oxidized to hematite by descending waters would seem to be during epochs of great aridity, when the water-level was exceptionally low; possibly just such conditions prevailed in pre-Potsdam time. It may be pointed out that extensive deposits of hematite were formed during this period in the porphyries of Pilot Knob and Iron Mountain in Missouri, in the Hartville district in eastern Wyoming, and finally in certain recently described areas in western Arizona, where the deposits are probably pre-Cambrian.

At Hartville lenses of hematite occur in schist along a limestone footwall and have been followed to a depth of 900 feet. Ball shows that the deposit antedates the Guernsey formation, the lowest Paleozoic terrane present, and believes that the iron was leached by descending solutions from the upper part of the schist and deposited in its lower part by replacement.

Another question of possible importance relates to the percentage of phosphorus in the Lake Superior ores. It is remarkably low for sedimentary deposits in the origin of which organic life played a part. It is still more remarkable that the primary greenalite rocks at Mesabi are almost free from phosphorus.

The Baraboo deposits of Wisconsin are peculiar in that igneous rocks are there entirely absent, and in that the hematite grades into the overlying dolomite; the argument advanced by S. Weidman in favor of a primary deposition of the ore as limonite or hematite is not without strength.

In spite of the great amount of work done the problem of the origin of the Lake Superior hematites still possesses some puzzling features.

ORES OF COPPER, LEAD, VANADIUM, AND URANIUM IN SANDSTONE AND SHALE

General Features.—Ores of copper, lead, vanadium, and uranium are often found disseminated in sandstones and shales far from igneous rocks. The sedimentary strata containing the ores are usually parts of thick series of terrigenous or shallow-water beds, commonly of reddish color. The ores are of low tenor and can be utilized only in exceptional cases. Nevertheless this class of deposits presents many unusually interesting features.

The primary ores are chalcocite, galena, roscoelite (a vanadium mica), various copper and lead vanadates, carnotite (a vanadate of uranium), etc. Bornite, chalcopyrite, and pyrite are less common. The ores frequently contain small amounts of silver, nickel, cobalt, molybdenum, and selenium. Gangue minerals occur sparingly and are usually confined to a little barite, calcite, and gypsum. The outcrops are likely to be brilliantly colored by malachite and azurite. While the deposits are confined to certain formations or members, they do not continuously follow a particular horizon and give no evidence of being sedimentary deposits. They often appear in fractured and brecciated beds or in strata rich in carbonaceous matter and plant remains. More rarely the ores follow distinct fissures in the sedimentary rocks. They do not seem to have any genetic relation with thermal springs. The copper, lead, and vanadium deposits form three groups in this class, but each group is likely to contain more or less of the other metals. There is no reason why the deposits should be confined to any particular geological age, but as a matter of fact almost all of them are in the upper Carboniferous, Permian, Triassic, or Jurassic.

Origin.—In considering the class as a whole it appears that igneous agencies had no part in the genesis. The ores are assuredly epigenetic and their universal appearance in land or shallow-water beds is significant. In all probability these ores have been concentrated by atmospheric waters which leached the small quantities of metals disseminated in the strata. The sediments were rapidly accumulated, under arid conditions, from adjacent land areas and the metals were probably carried down as fine detritus and in solutions from older ore deposits in these continental areas.
The waters which concentrated the ores are believed to have been mainly sodium chloride and calcium sulphate solutions containing sulphates and perhaps chlorides of copper and lead. The mineral association and geological features indicate deposition at low temperature, probably well below 100° C., and at shallow depths but below the zone of direct oxidation. Very likely these ores have been forming continuously since the establishment of active water circulation in the beds; in favorable places below the surface concentration may now be in progress.

COPPER AND LEAD DEPOSITS IN SANDSTONE

European Occurrences.—The European occurrences are confined to the Permian and the Triassic, both, generally speaking, ages of arid climate and saline deposits. The Russian Permian, extending far west from the Urals, consists in its lower division of sandstones, marls (in part marine), and conglomerates. The sandstones are rich in vegetable remains. Copper ores are found over wide areas, but have not been worked extensively of late. The average tenor is said to be 0.9 per cent. metallic copper. The chalcopyrite ores replace plant remains and tree trunks or form the cement of the sandstones. The minerals mentioned from this locality are (besides secondary malachite and azurite) chalcocite; chalcopyrite, tetrahedrite (?), barite, vanadinite, and volkbothite (vanadate of copper and calcium).

Recently much interest has been taken in the copper deposits of the Khirgiz Steppes, between the Urals and the Altai, in the Karkaralinsk and Akmolinsk districts. Very rich copper ores, consisting of malachite, azurite, and bornite, have been found here in sandstones reported to be of Paleozoic age. At Nankat, west of Kokand in Turkestan, deposits of metallic copper have been discovered in sandstones and gypsiferous marls of Tertiary age; fossil wood and chalcocite are also found.

The lower Permian (Rothliegende) of Bohemia, along the south slope of the Riesengebirge, contains similar ores.

1 For an excellent review of European localities, as well as complete index of literature, in part difficulty accessible, see Stelzner and Bergeat, Die Erzlagerstätten, 1904, pp. 388–439.
Over a large part of western Europe the Triassic is copper-bearing, and together with the copper more or less lead is found.

In England, at Alderley Edge and Motttram St. Andrews, south of Manchester, copper ores have been mined. They occur in the cement of Triassic sandstones and conglomerates and consist of copper carbonates, galena, pyromorphite, and vanadinite; also some barite, manganese, and cobalt. The ores are said to contain at most 1.4 per cent. copper. The mineral motttramite, a vanadate of copper and lead, was discovered at this place.

In Germany the Triassic is divided into three parts—the lower Variegated Sandstone ("Buntsandstein"), the middle Shell Limestone (Muschelkalk); and the upper marls and sandstones (Keuper); of these the lower and upper divisions contain lead and copper ores.

In Bavaria the Keuper contains galena and chalcopyrite in certain gypsiferous beds, and these minerals are associated with a little zinc blende and barite.

In Württemberg galena with barite and some oxidized copper ores is generally distributed in the Corbula bed of the lower, gypsiferous Keuper. In the Palatinate, near Freihung, the littoral characteristics of the formation are plainly indicated and there is an abundance of fossil wood; at two horizons the sandstones contain galena and cerussite and were formerly worked.

In the "Buntsandstein" in Prussia and Lorraine, near Saar- lous and other places, a formation known as the Voltzia sandstone is particularly rich in lead and copper ores, which at times have been mined. The bed contains abundant plant remains. The minerals are cerussite, galena, chalcocite (?), and copper carbonates.

The best-known deposits of the European Triassic are those of Commern and Mechernich, not far from Aix-la-Chapelle, in Prussia. Lead ores have been mined here for several hundred years, but it is reported that the mines may soon be closed. The ores are of low grade and are mined in open cuts by removing about 130 feet of overburden. In 1903 the ores averaged 1.5 per cent. lead. The ore minerals are galena and cerussite, with a little chalcopyrite and barite, the latter filling veins and veinlets in the sandstone. Small amounts of silver, nickel, and cobalt are present. The thickness of the ore-bearing sandstone is about 20 meters. The general occurrence of the galena in

1 Phillips and Louis, Ore deposits, 1896, pp. 266–269.
so-called "Knoten" or knotty concretions is very remarkable. They often enclose several sand grains and some of them are bounded by the crystal faces of the galena. The epigenetic character of the ore is beyond doubt.

American Occurrences.—On the North American continent copper ores are widely distributed in the "Red Beds" of the Southwest. These ores are found in Texas, Oklahoma, New Mexico, Arizona, Colorado, Wyoming, Utah, and Idaho and are always conspicuous by the colors of malachite and azurite, but rarely prove of economic importance. More success has attended their exploitation in New Mexico than elsewhere.

The ore occurs in arkose sandstone, conglomerate, or clay shale and is usually associated with plant remains and fossil wood.

These strata were accumulated in shallow seas or as subaerial deposits by a process of rapid degradation of adjacent land areas of the Rocky Mountain region, and they have been referred to the upper Carboniferous, Permian, Triassic, and Jurassic; in places the identification of horizons is difficult on account of lack of fossils, but it seems certain that the beds range from the upper Carboniferous to the Jurassic.

In Texas the copper-bearing beds appear over large areas in Permian sandstones and shales. They lie at several horizons, in strata rich in plant remains; covellite, chalcocite, chalcopyrite, and pyrite are the minerals mentioned. The area is said to extend from 33° to 34° in latitude and from 98° to 100° in longitude.

In Oklahoma occurrences are noted by Tarr in red shales and sandstones of probable Permian age. Fossil wood is often converted to chalcocite, sometimes with a shell of chalcopyrite; unusually high silver values of 31 ounces per ton and traces of gold are reported.

In Colorado these ores have been observed at several places, notably at Red Gulch, Fremont County, where Lindgren observed nodules of chalcocite with barite in black carbonaceous shale; sections (Fig. 115) show that the copper sulphide actually replaces the shale, the laminated of which continues through the ore. Here also chalcocite replaces the coal of vegetable remains. The horizon is probably the uppermost Carboniferous. In northeastern Arizona, according to Gregory,¹ small quantities of oxidized copper ores are frequently seen in the La Plata sandstone. North of the Colorado River they appear in the Carboniferous of the Kaibab Plateau. S. F. Emmons described a deposit of oxidized ores and chalcocite in the Aubrey limestone near Grandview, Arizona. He considers that these ores were leached from the “Red Beds” formerly covering this area and carried down into the limestone by descending waters.

In southwestern Colorado copper, often accompanied by vanadium ores, is widely distributed in the Jurassic La Plata sandstone. W. H. Emmons has described the Cashin mine in this formation near Placerville. The ores are here argentiferous chalcocite, covellite, and bornite, with some calcite. No igneous rocks are present and Emmons believes that the ores were leached from the “Red Beds.” There is an active circulation of water in the formation, and springs with salt, sulphates, and hydrogen.

¹ H. E. Gregory, oral communication.
sulphide abound. A production of about 300,000 ounces of silver and 700,000 pounds of copper is recorded from this mine.

The greatest development of the copper-bearing sandstones is in New Mexico; considerable production from picked ore has been achieved at the Nacimiento deposits, in the northern part of the State, where the "Red Beds," considerably disturbed, rest on pre-Cambrian granitic rocks which contain much older copper deposits. The beds have been referred to the Triassic on the evidence of fossil plants. According to Schrader¹ most of the copper ores occur in the basal beds and are confined within a thickness of 25 feet in a reddish-white sandstone rich in fossil wood, which is largely chalcocitized. A tree trunk 60 feet long with a basal diameter of 2½ feet is mentioned, which was almost wholly converted to copper glance. Besides malachite, azurite, and chrysocolla, there is some barite and, at one place, cerussite. The low-grade ores have not been utilized.

According to the same geologist the copper-bearing beds of the Zuni Mountains, in northeastern New Mexico,² lie at the base of the "Red Beds," resting on pre-Cambrian gneisses which contain older copper veins. The sandstones, shales, and marls for 30 to 60 feet just above the base of the beds contain oxidized ores and chalcocite replacing wood.

Graton describes in detail the ores from the Tecolote district, San Miguel County, which are partly in the "Red Beds" of the upper Carboniferous (Abo formation), and partly at a higher horizon, perhaps in the Dakota sandstone. The calcareous cement of the arkose is replaced by chalcocite, bornite, chalcopyrite, and pyrite, the replacement extending into the feldspar grains.

In the Oscura Range, also in New Mexico, red sandstones, probably Carboniferous "Red Beds," contain chalcocite, bornite, and chalcopyrite, in part as replacement of fossil wood. Turner mentions the occurrence of plant remains, said to have been identified as the Triassic Podozamites crassifolia, the same cycad which is characteristic of the deposits at Abiquiu first studied by Newberry.

Graton believes, contrary to Turner, that the copper ores have been introduced into the strata by waters ascending along a number of dislocations in the sandstone.

² Idem, p. 134.
Finally, H. S. Gale describes copper ores from southern Idaho which occur in the Ankareh maroon shales and sandstones of the Triassic or Carboniferous (equivalent to the Permo-Carboniferous of the Fortieth Parallel Survey). (See Fig. 10.) A thick limestone (including the Meekoceras beds) underlying these shales is believed by some geologists to be Triassic.

There are then at least two main cupriferous formations in the Southwest—(1) the upper Carboniferous “Red Beds,” equivalent to the Permo-Carboniferous, or the Abo formation; (2) the undoubtedly Jurassic La Plata sandstone.

The silver deposits in the supposedly Triassic sandstones of Silver Reef, in southern Utah (Harrisburg district), which created a boom about 1880, are now worked only on a small scale. The ores were silver chloride above the water level and native silver and argentite in depth; copper was also present, and selenium is reported. Plant remains were abundant. On the whole a secondary concentration from a primary argentiferous chalcolite is the most probable explanation of the genesis. It has already been emphasized that the chalcolite universally carries silver, though in the ordinary occurrences the tenor is rarely above 10 ounces per ton.

South America.—The well-known and long-worked copper deposits of Coro-Coro, in Bolivia, are contained in a series of sandstones, believed to be of Permian age. There are several cupriferous beds with disseminated native copper, in places dendritic, and much gypsum, also some native silver, dometyrite, and chalcolite. The copper-bearing beds are much lighter in color than the prevailing deep-red sandstones.

According to Steinmann the strata are of Cretaceous age and the copper was introduced by hot waters derived from an intrusion of diorite. Nevertheless the descriptions suggest strongly that the deposits belong in a different class.

4 J. F. Kemp, Ore deposits of the United States, 1900, p. 334.
5 Older literature: See Stelzner and Bergeat, Die Erzlagerstätten (1), p. 419.
Africa.—Sufficient information is not at hand to decide whether the recently opened Katanga ores of southeastern Belgian Kongo, near Rhodesia, belong to the class of deposits described in this chapter. Large masses of high-grade oxidized copper ores are contained in sandstones, shale, and limestone, probably of Paleozoic age. The ores are of high grade (8 to 12 per cent. copper) and are said to contain a little gold and silver; some manganese, cobalt, and nickel are present. Barite and quartz appear as gangue minerals. A deposit at Ruwe, in the general region described by Ball, contains in a sandstone a curious association of ores yielding gold, platinum, silver, palladium, vanadium, nickel, lead, and copper; the last two metals are vanadates. In some ways this deposit suggests the type under description.

Genesis of Sedimentary Copper Ores,—The epigenetic character of the copper deposits in sandstone is proved beyond reasonable doubt. The replacement of coal, carbonaceous shale, and calcareous or kaolinitic sandstone cement by chalcopyrite is also proved. The gangue minerals are few and quartz is conspicuously absent. Barite in small amounts is rather common. Irregularity in dissemination is typical, though the ores often follow certain horizons rather persistently. The entire independence of the occurrence of igneous rocks is marked. The difference between these deposits and the ordinary type of fissure vein is striking, and they cannot have been formed in the same manner. It is necessary to explain why chalcopyrite is characteristic of these deposits and chalcopyrite of the fissure veins.

The occurrences are mainly on the flanks of older continental areas containing pre-Cambrian copper deposits; the sandstones were rapidly laid down as arkoses, indicating a long epoch of rock decay, the products of which were rapidly swept away during a following arid epoch. Considering the evidence as a whole the sedimentary deposits must have contained finely divided copper ores, in part from solutions derived from the land area, in part as cupriferous detritus. When atmospheric waters charged with salt and gypsum searched these beds they must have taken this

copper into solution and concentrated it at certain horizons when reducing substances like coaly vegetable matter were available. In most cases the solution probably contained the copper as sulphate, though where much salt was present it might well have been transformed into chloride.

It does not follow that all deposits of copper ores in sandstone and shale belong to the class here described, for an impregnation by ascending thermal solutions of foreign origin is a possible cause of some deposits.

In the precipitation the most important chemical reactions were those between the hydrocarbons of plant remains and the calcareous cement or the kaolin in the sandstone on one hand and the cupferous solutions on the other hand. How the metallic copper in these ores was precipitated is not known. The Bolivian occurrences show distinct bleaching of the reddish sandstone around the copper aggregates, from which it may be inferred that the solutions were reducing in character.

VANADIUM ORES IN SANDSTONES

Occurrence.—Many of the copper deposits described above carry some vanadium as vanadinite or volborthite. Lately vanadium with some uranium has been shown to be common in certain sedimentary formations in Colorado and Utah. The deposits in western Colorado are now worked and experimental plants for their reduction are being erected at Newmire, near Placerville.²

Some of the sandstone near Placerville contained 3.50 per cent. \(V_2O_3 \) and 0.05 per cent. \(UO_3 \). Shipments are said to have con-

Concentrations from surrounding rocks 377

tained as much as 11.5 per cent. U₂O₈ and 6.40 per cent. V₂O₅, but on the whole the grade is probably low, averaging about 3 per cent. V₂O₅. The ores are now worked for the vanadium, but uranium salts are obtained as by-products.

The vanadium ores are confined mainly to Jurassic sandstone of the La Plata formation. The best-known localities are near Placerville in the La Sal, Paradox, and Sindbad valleys. The ores follow certain horizons or appear in fissures and brecciated places; they are often associated with plant remains. The occurrences are all within the Great Plateau province of horizontal or gently inclined strata.

Fig. 116.—Vanadium ores in sandstone. White areas, quartz; shaded areas, roscoelite, partly radial. Magnified 25 diameters. After F. L. Hess, U. S. Geol. Survey.

The most prominent mineral in the deposits is the bright-yellow powdery carnotite, to which Fuchs and Cumenge gave the formula 2U₂O₈·V₂O₅·K₂O·3H₂O, but Hillebrand doubts whether the formula is as simple as this. One of his analyses of carnotite from Roc Creek gave:

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
<th></th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO₂</td>
<td>54.89</td>
<td>CuO</td>
<td>0.15</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>18.49</td>
<td>MoO₃</td>
<td>0.18</td>
</tr>
<tr>
<td>CaO</td>
<td>3.34</td>
<td>H₂O</td>
<td>4.54</td>
</tr>
<tr>
<td>BaO</td>
<td>0.90</td>
<td>CO₂</td>
<td>0.56</td>
</tr>
<tr>
<td>K₂O</td>
<td>6.52</td>
<td>Insoluble</td>
<td>7.10</td>
</tr>
<tr>
<td>PbO</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Copper as green stains of malachite, brochantite, and azurite is commonly present in the deposits and many of them contain lead. Hillebrand also found some molybdenum, arsenic, a selenite of copper, and some manganese. Mariposite, a chromium mica, and roscoelite, a vanadium mica, develop in the calcitic or kaolinic cement of some of the sandstones in southwestern Colorado. Roscoelite carries from 20 to 29 per cent. of V_2O_5 and is present in the richest olive-colored beds to the extent of 20 per cent. (Fig. 116). Lately a black mineral of doubtful composition, probably a vanadium oxide, has been found in this region, and it

![Diagram](image)

Fig. 116a.—Sketch of vanadium-bearing sandstone at Primos Chemical Co.’s mine on the east side of Bear Creek, near Newmire, Colo. After F. L. Hess, U. S. Geol. Survey.

is indeed possible that the carnotite is a secondary product of an unknown primary vanadium mineral. The roscoelite is probably a primary mineral, but as it contains no uranium it is not the source of the carnotite. In the Utah deposits Boutwell found vanadates of copper, such as volborthite and calcio-volborthite.

Not similar to those deposits, yet perhaps of a similar origin, are the recently discovered important vanadium deposits at Minasragra, near Quisque, Province of Pasco, Peru, described by D. F. Hewett and W. F. Hillebrand. The vanadium sulphide, patronite, occurs here on a large scale as greenish-black masses associated with a hydrocarbon and a peculiar nickel-bearing

CONCENTRATIONS FROM SURROUNDING ROCKS 379

pyrite. An analysis of the patronite gave 58.79 per cent. sulphur, 19.53 per cent. vanadium, 0.18 per cent. molybdenum, 1.87 per cent. nickel, and 3.47 per cent. carbon. The mineral forms a vein with much bitumen and clay in gently dipping Cretaceous strata. Igneous rocks are present in abundance and may have brought about the peculiar development of a new type of ore.

Genesis.—Traces of vanadium are found, according to Hillebrand, in most igneous rocks, and some varieties of augites carry as much as 2 per cent. of the metal. Smaller quantities occur as oxidation products in many ore deposits, mostly as vanadinite or descloizite. Roscoelite is a primary vein mineral in many rich gold deposits. More abundantly, vanadium occurs in sedimentary rocks such as clays and shales; it is also concentrated in coal; the ashes of many varieties are rich in vanadium. This peculiar relationship has not been fully explained; at any rate the processes of weathering and vegetation appear to be favorable to its concentration; and, to some extent, uranium shares in this behavior. The association of vanadium and copper in the ore-bearing sandstones has already been emphasized, as well as their frequent occurrence with coal or vegetable remains. A coal from the copper deposits in sandstone of Red Gulch, Colorado, contained, according to Hillebrand, 0.18 per cent vanadium.

The vanadium deposits described above are probably products of concentration, by surface waters, of small quantities of the metal distributed through littoral beds or land deposits of sandstone and clays.

THE COPPER-BEARING SHALES OF MANSFELD:

It seems proper to consider at this place the celebrated copperiferous shale (Kupferschiefer) of Mansfeld, in central Germany, for, though not identical with the deposits described in this chapter, it presents most interesting analogies to them.

A flourishing mining industry is still based on the Kupferschiefer, the annual production being approximately 700,000 metric tons of ore containing between 2 and 3 per cent. of copper.

The first stratum deposited in the subsiding basin of the upper Permian in central Germany was a marine conglomerate of slight thickness. "Above it extends like a black shroud the thin bed of cupriferous shale, one of the most remarkable products of the geologic ages. Characterized by its fauna as a shallow-sea deposit, full of plant remains carried in from adjacent coasts, the formation bears the stamp of an organic mud deposit admixed with anorganic precipitation.¹

Above the cupriferous shale, which is less than 1 meter thick, extends a marine limestone (Zechstein), 6 to 10 meters thick,

![Diagram](image)

Fig. 117.—Section of a part of the copper-bearing shale bed at Mansfeld, Germany. *After Schrader.*

and above that lie the great gypsum and salt masses of the uppermost Permian. Folding and faulting have since affected the beds, and the mining now follows the inclined strata to a depth of 500 meters. The cupriferous bed averages 50 centimeters in thickness, but only the lower 20 to 30 centimeters is utilized as ore (Fig. 117).

The ores are sulphides, in minute distribution through the shale, giving it a bronzey appearance. Chalcopyrite predominates, but there are also bornite, pyrite, chalcocite, and rarely galena and tetrahedrite. Small quantities of nickel, cobalt, selenium, vanadium, and molybdenum have been recognized; there is also 0.015 to 0.015 per cent. of silver. Zinc is present, and in the upper part of the bed, not mined, there is more zinc than copper. An average analysis is as follows:²

¹ F. Beyschlag, in *Deutschlands Kalibergbau*, 1907, p. 4.
² Stelzner and Bergeat, *Die Erzlägerstätten*, vol. 1, p. 396.
CONCENTRATIONS FROM SURROUNDING ROCKS 381

AVERAGE ANALYSIS OF CUPRIFEROUS SHALE
Dr. Haase, Analyst

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>33.15</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1.276</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>0.018</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>2.31</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td>9.24</td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>Bitumen</td>
<td></td>
<td>9.06</td>
</tr>
</tbody>
</table>

There is about 3 per cent. K₂O and 1 per cent. Na₂O; lead amounts to 1.50 per cent., manganese to about 0.25 per cent.

There is practically no gangue, except veinlets of gypsum and barite. The bed is cut by faults, along which in places occur barite, anhydrite, calcite, niccolite, pyrite, and chalcopyrite, and near these breaks (called “Rücken”) the metal content is subject to enrichment, impoverishment, or removal upward in adjacent beds. Bergeat declares that these changes take place on secondary fissures and cracks.

There has been much controversy about the Mansfeld deposits. The majority of geologists regard them as sedimentary and syngenetic: von Groddeck, Stelzner, Freiesleben, and von Cotta held this view, and it is shared by Bergeat. Posepny and Beck believe them epigenetic and think that the metals were probably introduced in the shale from the Rücken.

The Kupferschiefer is certainly not an ordinary marine deposit precipitated from the sea water.¹ It was laid down in a shallow sea which was full of decaying vegetable and animal remains and into which were probably discharged cupriferous waters from the surrounding littoral, most likely sulphate solutions derived from the eruptives and the ore deposits of the early Permian epochs. No one can read the description of the great uniformity of distribution without being impressed with the very strong arguments for a syngenetic origin.

The characteristic presence of nickel, cobalt, vanadium, and selenium recalls the epigenetic deposits in sandstone so abundant around the shores of the Permian sea, in Bohemia and Russia, for instance. The Mansfeld basin was simply, then, the final

¹Sea water contains a trace of copper, as shown by Dieulafait (Ann. chim. phys., 5th ser., vol. 18, 1879, p. 359; C. R., 90, p. 1573; 96, p. 70; 101, p. 1297) and others, but the amount present seems utterly insufficient to account for the Mansfeld deposits.
collecting place of the solutions derived from adjacent desert shores.

COPPER SULPHIDE VEINS IN BASIC LAVAS

General Features.—All basic lavas contain copper, but in many cases conditions were evidently unfavorable for the concentration of copper immediately after the eruption, and the rocks retained their copper until later opportunities for ore formation were offered. The existence of vast masses of such basic lavas near the surface, without any indication of copper concentration (e.g., the Columbia River lava or the basalts of the Hawaiian volcanoes), shows plainly that the ordinary surface waters at slight depth are not competent to dissolve and concentrate accessory metals contained in these rocks. A depth of perhaps a few thousand feet seems to be necessary, under the most favorable conditions, for waters of meteoric origin to extract the copper; though it is, of course, possible that such waters, when ascending in suitable channels, may deposit the dissolved copper at higher horizons. In some of the veins here discussed epidote is present, but more frequently it is absent, and the veins then assume the well-known type of chalcopyrite in a quartz-calcite-siderite gangue. Such veins, deposited by ascending surface waters of the deeper circulation, may not be easy to distinguish from those whose development is a phase of intrusive after-effects. Nor can it be denied that in these veins may be concentrated some gold and silver from the igneous rock; in general, however, they will be found much poorer in gold and silver than deposits connected with the intrusive processes.

Whether native copper, bornite, or chalcopyrite will form seems to be dependent upon the quantity of sulphur which the lavas were able to retain at their eruption.

The Nikolai Greenstone.—The copper deposits in the Nikolai greenstones of the Copper River region, described by F. C. Schrader, W. C. Mendenhall, A. C. Spencer, and lately by Moffit and Maddren,1 are of special interest. Flows of Triassic or Carboniferous basalts about 4,000 feet in thickness are covered by 2,000 feet of Triassic limestone, which in turn is overlain by a thick series of Jurassic strata. The latter are cut by monzonite

intrusives, which are accompanied by a different kind of metallization characterized by prominent gold deposits.

The Nikolai greenstones are amygdaloid flows of basalt; the amygdules contain scarcely any zeolites, but are filled with chlorite, chalcedony, and quartz and carry no copper. Copper sulphides are extremely common in the flows, but occur in slips, brecciated zones, and faults. The minerals are chalcopyrite, pyrite, and bornite, with calcite and a little quartz; there is some epidote, not always present.

One of the fissure zones extends up into the Triassic limestone above the greenstone. In the latter a little bornite and chalcocite appears and the zone cuts across an older series of quartz-epidote veins carrying the same two sulphides with a little native copper. In the limestone the fissure zone develops into the remarkable and valuable deposit worked in the Bonanza mine. It is an almost solid body of massive chalcocite with conchoidal fracture, traced for 400 feet and with a greatest width of 25 feet; its depth is apparently limited. There are no gangue minerals and the limestone adjoining the chalcocite is not altered.

No one may doubt that the ores characteristic of the Nikolai greenstones are derived from the rock itself. The copper deposits were probably formed mainly after the Triassic limestone had been laid down, and everything points to the conclusion that waters of atmospheric origin did the work.

No intrusive rocks are present; there is no dynamo-metamorphism nor anything indicating deposition at temperatures much above 100° C.; more probably the temperature was considerably below that figure. The chalcocite of the Bonanza mine alters superficially to covellite and copper carbonates; there is no evidence that it has replaced pyrite and it is in all probability of primary origin. If the waters were of superficial origin they must have descended through limestones and shales in which they would have acquired chlorides, sulphates, carbonates, carbon dioxide, and hydrogen sulphide, and they would therefore be competent to dissolve copper from the greenstones which they traversed.

COPPER SULPHIDE VEINS IN INTRUSIVE BASIC ROCKS

Veins containing pyrite and chalcopyrite, occasionally with other sulphides, in a gangue of quartz, calcite, dolomite, and siderite, more commonly quartz alone, occur abundantly in
intrusive basic rocks, such as diabase or gabbro. Here, however, the distinction between the results effected by water of atmospheric origin and those effected by magmatic solutions becomes increasingly difficult, unless we are able to correlate the formation of the veins with the epoch of intrusion by means of mineralogical or structural criteria.

F. E. Wright has pointed out the fact that the intrusive Keweenawan gabbro of Mount Bohemia contains veins with chalcopyrite, bornite, chalcocite, calcite, and quartz, while in the surface lavas of the same series native copper is the principal ore mineral. This seems an excellent illustration of the retention of volatile sulphur by intrusives, contrasted to its escape from the extrusive flows. The origin of the water which was the vehicle of deposition in these veins may remain an open question.

Along the foot-hills of the Sierra Nevada of California extends a belt of andesitic rocks of Jurassic age collectively called "greenstones." They consist of massive and schistose rocks, including surface flows, tuffs, and intrusions mixed. Within this belt, for instance in Yuba and Nevada counties, short and irregular quartz veins with pyrite and chalcopyrite are common. Probably these veins derived their copper from the greenstones, and undoubtedly they were formed at a time when the rocks now exposed were covered by several thousand feet of overlying and now eroded igneous rocks.

Other deposits, such as those at the Dairy Farm in Placer County and at Campo Seco in Calaveras County, are, according to A. Knopf, replacement deposits along shear zones in the same belt of amphibolites and other greenstones. The minerals are pyrite and chalcopyrite, with a trifle of galena and zinc blende, associated with quartz, calcite, epidote, chalcedony, and sometimes zeolites. The sulphides contain a little silver and a trace of gold. Similar are the so-called "iron belts" of pyrite and chalcopyrite in the Ophir mining district of gold-silver quartz veins in Placer County. They are contained in amphibolite, but do not always extend parallel to the schistosity; the width varies from

CONCENTRATIONS FROM SURROUNDING ROCKS 385

a few feet to 400 feet, the length is in places half a mile. No shear planes are visible along these zones. They enrich the distinctly later gold-quartz veins which cross them. The sulphides are associated with the amphibole, epidote, feldspar, and quartz of the amphibolites and are often intergrown with magnetite or ilmenite. In the paper cited they were interpreted as concentrations of copper from the surrounding rocks, formed by chemical action during the progress of the dynamic metamorphism which produced amphibolites from primary diabasic rocks.

Other and much larger copper deposits are found in the same region, on the north in Shasta County and on the south in Calaveras County, but at both places the evidence points clearly to an origin by solutions derived directly from the magma.

In the Encampment district, Wyoming, A. C. Spencer¹ studied deposits of primary chalcopyrite (enriched by chalcocitization, Chapt. 29) probably of pre-Cambrian age. The metallization is localized in shattered zones in quartzite, or between quartzite and schist, close to intrusive gabbro or diorite which contains copper (p. 8), sometimes visible as chalcopyrite.

Spencer gives several good structural reasons indicating that the depositing waters were ascending and believes that the copper was leached from the cupriferous gabbro. The minerals present do not indicate especially high temperatures. Although the deposits were formed at considerable depth, as shown by the flexing of the schist bands, the quartzite was decidedly in its zone of fracture.

In northern Yuma County in Arizona occur numerous but rarely rich deposits of chalcopyrite, pyrite, and specularite. According to the description by H. Bancroft² they are contained in a probable pre-Cambrian conformable series of limestones, clay slates, and amphibolites, the last chloritized in part. There are few gangue minerals other than a little quartz, chlorite, and epidote; in places small amounts of gold and silver are present. The ores generally appear as replacements of limestone close to the contact with amphibolites and are of irregular form.

In the absence of later intrusions it is difficult to avoid the conclusion that the copper and hematite were leached from the amphibolites during metamorphism. Following Van Hise, Bancroft suggests a concentration by water of dehydration from the rocks. As these rocks, however, have never been in the deeper zone of flowage, passageways for the waters probably always existed, and as the limestones are not recrystallized in marked degree, and finally as the amphibolites are markedly hydrated by chloritization, it is doubtful whether this explanation of the origin of the concentrating water is tenable.

OTHER VEINS DEPOSITED BY WATERS OF THE UPPER CIRCULATION

In the preceding pages it has often been pointed out that the competency of the circulation of certain kinds of atmospheric waters to form many mineral deposits cannot be questioned and that it may be difficult or impossible to determine the origin of certain occurrences.

Nevertheless, the fact stands firm that surface waters of the ordinary type, even in slightly heated ascending currents, do not form mineral deposits even in localities where the conditions are such that they might be expected to do so, as in the Alps, for instance. There are, however, other localities, particularly in the region of the saline Paleozoic and Mesozoic beds of central Germany, where such deposition appears to have taken place. Veins of this origin are likely to contain an abundant gangue of calcite, dolomite, or barite, with some quartz and a scant amount of sulphides.\(^1\)

The sweeping generalizations of F. Hornung and his interpretation of all the mineral veins of the Harz Mountains as being formed by inter-Permian brines cannot be accepted, but it is not improbable that he is correct in believing that many barite and hematite veins have had this origin.\(^2\) In connection with this K. Ochsenius\(^3\) showed that solutions containing 2.59 per cent. NaCl, 3.16 per cent. MgCl\(_2\), and 1.85 per cent. MgSO\(_4\) decomposed chalcopyrite and chalcocite at room temperature. This

\(^3\) *Idem*, p. 567.
action is slow and is noticeable only after several years. Galena was not dissolved.

Similar examples of ore deposition by saline waters also exist in the western part of the United States; one, the Cashin mine of Colorado, is mentioned above (p. 372). The prevailing influence of igneous intrusions on ore deposition is, however, so strong that it is difficult to establish the proofs of the less conspicuous deposition by purely meteoric water.

That the ordinary surface waters are in most cases quite incompetent to effect concentration is plainly shown by the lack of important mineralization in fissures and joints cutting the rocks of mining districts. In the Globe district, Arizona, for instance, the Paleozoic rocks are intersected by a network of dislocations which would offer excellent paths for these waters; and yet the important deposits are in no way connected with these fractures. Similarly "cross courses" often fault the gold-quartz veins of California and yet they are, as a rule, absolutely barren, often open fissures.

The Cordilleran region contains many great ranges of pre-Cambrian rocks capped in places by Paleozoic and Mesozoic strata. Among them may be mentioned the Front Ranges of the Rocky Mountains in Colorado, the Wind River Range in Wyoming, and the Mission Range in Montana. Uplift, folding, and faulting have in each of these ranges intensified the circulation of meteoric waters, but in spite of this the ranges are remarkably poor in mineral deposits, which appear only in the vicinity of later intrusives. These relations show very plainly the slight concentrating power of ordinary cool surface waters and even of the waters of atmospheric origin that have become a part of the deeper circulation.
CHAPTER XIX

DEPOSITS RESULTING FROM REGIONAL METAMORPHISM

Rocks subjected to stress at moderate depths within the zone of fracture may rupture in closely spaced breaks, producing the appearance of a schistose structure. In such rocks no great chemical changes would occur, except perhaps by subsequent deposition along the tight fissures. At greater depth deformation may take place by granulation and recrystallization, accompanied by chemical changes that are effected by the aid of the scant rock moisture. Uralite and chlorite may form from pyroxene, the soda-lime feldspars may recrystallize to zoisite and albite, the quartz crystals may be crushed and elongated, new mica, particularly muscovite, may develop; also crystals of aluminum garnet. The chemical composition of the rock will, however, change but little; although the various transformations involve transportation of substance, this movement is not free, but is limited and hindered in all directions.

Under these circumstances it is improbable that processes of concentration could have much opportunity to assert themselves; the minute quantities of useful metals contained in the original rock could not easily assemble to form larger masses.

In amphibolite schist small grains of chalcopyrite, often intergrown with pyrrhotite and magnetite, appear to be more common than in the primary igneous rock from which the schist was derived. If even the slightest and slowest circulation of water was established during the deformation, some concentration of chalcopyrite could well take place, as it does in fissures traversing similar rocks.

When the deformation takes place at higher temperatures a number of minerals are developed which are similar or identical with those of contact metamorphism. It is often difficult, indeed, to draw the line between regional and igneous metamorphism, especially in intensely metamorphic regions where intrusive masses are abundant. There is reason to believe that at temperatures of, say, several hundred degrees some of the rocks, par-
particularly limestones, become permeable to the gaseous effluvia of water and metallic compounds yielded by intrusive masses, and thus an opportunity is afforded for the introduction of new substances which in places may become concentrated into ore deposits. To such a permeation in the deep zone of anamorphism many of the most enigmatic ore deposits of the crystalline schists may owe their origin. These deposits would then differ in some respects from the ordinary contact-metamorphic ores, which have, as a rule, developed only close to intrusive contacts, in most cases also actually within the zone of fracture.

Dissemination of sulphides is a phenomenon often encountered in almost any area of crystalline schists. In the majority of occurrences pyrite, pyrrhotite, and chalcopyrite are prominent; the sulphides of lead and zinc are far less common. Such disseminations are also particularly connected with amphibolitic or chloritic rocks. As indicated above, these ore minerals may have various modes of origin. In the first place the dissemination may be caused by mineralization along both sides of a fissure, parallel with the schistosity—that is, by the formation of a "bedded vein." Such mineralization is later than metamorphism, and the metamorphic minerals will probably be found to be altered—sericitized, carbonatized, or more rarely silicified.

If, on the other hand, the sulphide minerals were contained in the rock previous to metamorphism, or if they were developed during that process, they will be found intergrown with the metamorphic minerals, such as amphibole, epidote, chlorite, garnet, and albite, and are usually accompanied by some magnetite or ilmenite.

Larger pyritic masses of this kind are, in most cases, probably original products of magmatic concentration; or they may be old fissure veins or replacement veins which have been rendered unrecognizable by deformation; or, finally, they may be of contact-metamorphic origin.

Sparser disseminations, often following certain lines along the strike of the schist, are often called "fahlbands" (the German "fahl" meaning rusty brown and referring to the oxidized outcrops). Such fahlbands, first noted in Kongsberg, Norway, where they enrich the silver veins, may be several miles long and vary in thickness between a fraction of a foot and several hundred

1 C. A. Münster, ref. in Zeitschr. f. prakt. Geol., 1896, p. 93.
feet. The enclosing rocks vary from gneiss to mica schist, diorite, and amphibolite. The ore minerals are pyrite, pyrrhotite, zinc blende, chalcopyrite, molybdenite, and sometimes cobalt minerals. They are often intergrown with amphibole or garnet. The fahlbands are rarely of economic importance, but many of them characteristically enrich intersecting veins, causing native silver as well as cobalt and nickel ores to appear near the intersections (p. 586). This is probably only a special case of the general law that veins are enriched where they cut across belts of pyritic impregnation. Fahlbands rich in cobaltite, with pyrite, chalcopyrite, pyrrhotite, and molybdenite, were worked at Skutterud and Snarum, in the Modum parish, Norway, from 1776 to 1899. For a long time these deposits were among the principal sources of cobalt oxide, which is used to impart a deep blue color to glass and porcelain. According to the older literature quoted by Stelzner and Bergeat, the fahlbands at Skutterud lie between gneiss or quartz schist and amphibolite. Other minerals mentioned are malacolite, antophyllite, and rarely graphite and tourmaline. The ores were poor, containing, even when sorted, less than 1 per cent. cobalt. The parallel belt at Snarum is said to be enclosed in amphibolite and contains more copper.

The fahlbands have been variously interpreted. At a time when the crystalline schists were generally considered as altered sediments, they were held to be sedimentary deposits. Dall and Kjerulf, in 1880, held them to be impregnations related to gabbro intrusions. Vogt considered the gray gneiss of Kongsberg as a pressed granite and held that it had been impregnated with sulphides at the same time as the surrounding schists.

That the dissemination of sulphides in its present form is dependent upon dynamo-chemical metamorphism is clearly shown by the minerals with which the sulphides are now intergrown. Sulphide emanations from intrusive magmas at a considerable distance from their source do not usually crystallize with amphibole, pyroxene, and garnet, but rather with calcite, sericite, and quartz as gangue minerals. Still, the recrystallization under pressure does not necessarily explain the ultimate origin of the minerals and it is probably hopeless to speculate on this subject until the metamorphic series at the location of typical fahlbands

1 Die Erzlagerstätten, 1904, 1, pp. 286–271.
2 Die Geologie des südlichen und mittleren Norwegens, 1880.
has been more carefully examined as to the original character of its rocks.

Somewhat similar fahlbands in amphibolite and gneiss are reported in the older literature from Schladming, in Styria, where they enrich intersecting cobalt-nickel veins, and from Les Challanches, in France, where similar relations exist. Recent descriptions from both places show that the so-called fahlbands are in reality narrow veins accompanied by alteration of the wall rocks.

1 Stelzner and Bergeat, Die Erzlagerstätten, 1, 1904, pp. 268–269.
CHAPTER XX

DEPOSITS OF NATIVE COPPER WITH ZEOLITES IN BASIC LAVAS

GENERAL STATEMENT

Native copper, chalcocite, bornite, much more rarely chalcopyrite, and their products of oxidation are often found in flows of basic lavas, particularly in basalts, associated with minerals of the zeolite group, such as analcite, natrolite, stilbite, chabazite, and laumontite, and the minerals prehnite and datolite; together with these calcite, quartz, chaledony, chlorite, epidote, and adularia may be present, sometimes in predominating quantity. These gangue minerals, together with the copper minerals, fill vacuoles or blowholes in the basic rocks or replace the rock. Pyrite and sulphides of metals other than copper rarely occur.

These deposits have been formed near the surface under conditions which will be discussed in a following paragraph. The mineral association does not indicate a deep-seated origin.

Instances of native copper occurring in this manner are plentiful, though the occurrences are not always of economic importance. Among the numerous localities the following may be mentioned: The Faeroer,¹ north of Scotland; Sterling,² in Scotland; Oberstein a. d. Nahe, Germany; Sao Paulo,³ Brazil; the Kristiania region,⁴ Norway; the Triassic “traps” of New Jersey⁵ and Connecticut; New Guinea;⁶ the Transbaikalian provinces⁷ on the Dochida River; the Bay of Fundy,⁸ Nova Scotia.

² Carl Hintze, Handbuch der Mineralogie, 1898.
³ E. Hussak, *Centralblatt f. Min.*, 1906, p. 333. (No zeolites; copper between the peripheral covering of the amygdules, consisting of an iron silicate and the filling of chaledony.)
⁷ Idem, p. 346; also Zeitschr. f. prakt. Geol., vol. 9, 1901, p. 391. (With opal, chaledony, calcite, epidote, and prehnite.)
DEPOSITS OF NATIVE COPPER

The first six of these occurrences have not been worked as copper deposits. The last four are of some economic importance.

A pre-Cambrian series of basaltic rocks in the Lake Superior region contains the most prominent example of this class of deposits in the world, which will be described in more detail below.

In eastern Oregon,\(^1\) about 20 miles east of Baker City, and along the Snake River cañon, opposite the Seven Devils Mountains in Idaho, are extensive areas covered by a basaltic amygdaloid flow of Jurassic or Triassic age. This rock contains native copper and chalcocite, sparsely disseminated or along obscure fracture zones, in association with epidote, chlorite, calcite, and zeolites. The ores are of low grade and have not yet been worked with profit.

Another occurrence of interest in the White River region in Alaska has recently been described by Adolph Knopf.\(^2\) The basaltic amygdaloids, with tuffs and breccias, are interbedded with sediments of Carboniferous age and have probably been erupted in part under submarine conditions. Placer copper is common in the creeks, and some large masses have been found. The copper minerals are chalcocite, chalcopyrite, and native metal in stringers and seams, with prehnite, laumontite, thomsonite, and calcite; also native copper with zeolites filling blowholes in reddish, highly amygdaloid lava.

These statements will serve to show that the zeolitic copper deposits in basaltic lavas represent a type of world-wide distribution; the same processes of concentration are evidently applicable to all cases.

ORIGIN OF THE ZEOLITIC COPPER ORES

Probable Source of Copper.—Basic igneous rocks such as gabbro, diabase, basalt, some andesites, and basaltic flows designated melaphyres or amygdaloids probably always contain copper, in some cases as much as 0.1 or 0.2 per cent., more commonly about 0.02 per cent. of the metal (p. 403). According to Volney Lewis and F. F. Grout, the copper is present as a silicate, possibly in part as a sulphide, such as bornite or chalcocite.

It is likely that the copper is present mainly as a silicate in effusive rocks, while in intrusive rocks a part of the copper is held as a sulphide. As shown by W. Maxwell in his work on Hawaiian lavas and soils the oxides of sulphur escape in large quantities from basalts during eruption. In the intrusive rocks this sulphur is retained.

The minute quantity of copper in these rocks may become concentrated to valuable deposits in various ways. This can be effected at a certain depth below the surface by circulating waters of atmospheric origin, or by ascending currents of thermal waters of deep-seated origin, or during regional metamorphism in the zone of combined fracture and flow. It is believed that any of these processes may result in copper deposits, few of which, however, will be extensive or valuable.

Many altered basaltic flow rocks often designated amygdaloids or melaphyres contain native copper, bornite, chalcocite, or copper arsenides. The concentration of the copper stands in intimate connection with the development of zeolites, and it will first be necessary to discuss this process.

The Occurrence of Zeolites and the Process of Zeolitization.— The zeolites are mainly aluminum-calcium silicates with 8 to 15 per cent. of water of hydration. Sodium or sometimes potassium may replace part of the calcium, and in some zeolites barium or strontium is present. Magnesium does not usually enter into their composition, but appears in the associated chloritic minerals.

Analcime, a sodium-aluminum silicate containing 8 per cent. H₂O, is also considered to belong to the zeolites. Prehnite, H₂Ca₂Al₂Si₄O₁₂, containing 4.37 per cent. H₂O, and datolite, H₂Ca₂B₂Si₂O₁₀, with 5.63 per cent. H₂O, do not strictly belong to the zeolites, but are commonly associated with them. The most common zeolites are natrolite, desmine, chabazite, apophyllite, thomsonite, and laumontite.

The zeolites are noted for the ease with which metals can be substituted for one another in their composition. F. W. Clarke and George Steiger,¹ for instance, obtained an ammonium analcime by heating the mineral in a sealed tube with ammonium chloride.

The zeolites can be easily produced by synthesis at temperatures of 100° to 500° C. Some of them, like apophyllite, are

soluble in water with or without CO₂ or Na₂CO₃ at 180° to 189° C. at a pressure of 10 to 12 atmospheres, crystallizing again after cooling. Chabazite was recrystallized in a closed tube by Döelter at 150° C., also in fluid CO₂ at 30° C. Datolite and prehnite have not been produced by synthesis.

The different modes of occurrence of zeolites may be classified as follows:¹

1. Filling amygdules and veins in flows of basic lavas. This is the most common occurrence.

2. Filling miarolitic cavities in granite and here probably formed shortly after the consolidation of the rock.

3. In pegmatite dikes as products of the last epoch of crystal-

4. As veins or coatings of joint planes in granite or gneiss or various volcanic rocks; here associated with calcite and sometimes with amethystine quartz, occasionally with albite. In gneiss of Washington, D. C.² In granite quarries of New Eng-

5. In contact-metamorphic rocks, especially altered limestone, and ore deposits in them. Iron mines of the Banat province, Hungary; Goroblagodat, in the Ural Mountains; Rezbanya, Hung-

6. In the so-called Alpine type of veins, common in Switzer-

7. In deposits of magnetite or pyrrhotite, probably in part of contact-metamorphic origin. Tilly Foster mine, New York; Nödebrö, Norway; Utö, Pajsberg, and Grangesberg, Sweden; Bodenmais, Bavaria.

8. In mineral veins associated with sulphides. Very rare and mainly as last products of crystallization. Few localities known, most prominent among them being Andreasberg in the Harz,

¹ References generally from Hintze’s “Mineralogy.”
³ G. P. Merrill, oral communication.
⁵ E. S. Larsen, oral communication.
Germany; Kongsberg, Norway; Guanajuato, Mexico; Arqueros and Rodaito, Chile.

9. In quicksilver deposits. Only locally recorded in New Almaden, California (apophyllite, with bitumen).

10. As products of deposition of hot springs at their orifices. In Roman brickwork at Plombières (apophyllite, scolcite, chabazite); Bourbonne-les-Bains (chabazite); Luxeuil (chabazite); Oran, Algeria (chabazite). At Plombières the springs have a temperature of 70° C.; at Luxeuil, 46°; at Bourbonne-les-Bains, 68°. Hunter Hot Springs, Montana (stilbite); Boulder Hot Springs, Montana (stilbite).

11. In deep-sea deposits. Phillipsite has frequently been found in the mud brought up by the dredges.

Of all these occurrences the most abundant and conspicuous is that in the blowholes of volcanic flows.

Undoubtedly zeolites may form at low temperatures, as shown by the occurrence of one species in the deep-sea mud. It is evidently largely a question of time and concentration, pressure being probably of less importance. The ranges of stability of the various zeolites may differ considerably. C. Doelter believes that the limits for the development of analcide lie between 180° and 440° C.; for natrolite he thinks they are considerably lower, say from 0° up to 180° C. Experimentally the latter mineral has been obtained at a temperature as low as 90° C. It is probable that datolite, prehnite, and adularia do not develop at temperatures much lower than 100° C.

In many occurrences it can be shown that the zeolites formed as the last phase of the consolidation of a magma; their mode of appearance in pegmatite dikes and close to igneous contacts points plainly to this origin.

Furthermore, they seem to require stagnant, quiet conditions, such as prevailed in cooling bodies or in rocks impregnated with warm water, as in the Roman brickwork at Plombières. Their remarkable absence from mineral veins shows that swiftly moving or ascending water is distinctly unfavorable for their development.

1 A. Daubrée, Les eaux souterraines aux époques anciennes, 1887, p. 34.
The accepted authorities are more or less vague in their statements as to the formation of zeolites, especially in amygdaloidal rocks. The most common statement is that these minerals are deposited by percolating waters even in the zone of weathering. Van Hise considers them to be formed in the zone of cementation by descending surface waters, and also by similar waters percolating through lava flows and extracting the material for the zeolitization from the rock itself.¹

Zeolites are manifestly unstable in the zone of weathering and must have been formed at some depth. Of late years the opinion has been gaining ground² that zeolitization, in basic volcanic rocks, is distinctly connected with the cooling processes and in fact should be regarded as an after-effect of volcanism, their deposition taking place in the still hot rocks.

That zeolitization is far from being simply an effect of the leaching by surface waters is shown by the absence of the zeolites from large areas of basic flows, many of them full of vacuoles or blowholes. None have been recorded from the Hawaiian flows, which are apparently well suited for their deposition. Zeolites do not occur in the extensive flows of the Columbia lava in Oregon and Washington.³ There are, therefore, certain conditions—not yet fully elucidated—which are necessary for the deposition of zeolites. It is probable that their development would be greatly furthered if the eruption of the effusive rock took place under water; the sea water would cool the surface of the flow and a slow downward movement would be caused in the porous rock. Besides, these conditions would give rise to a system, cool at one end, hot at the other, in which circulation competent to effect concentration would be initiated.

There are many reasons for believing that zeolitization follows closely upon eruption. One of the most convincing proofs has been given by Knopf,⁴ who describes an occurrence in the

³ Alfred Harker, The natural history of igneous rocks, 1909, p. 308.
⁶ According to F. C. Calkins (oral communication) zeolites were found at one locality in these lavas in the John Day region.
White River region of Alaska where a sheet of amygdaloid rock containing copper is covered by a coarse pyroclastic bed, the breccias of which include fragments of the cupriferous amygdaloid, proving that the filling of the vacuoles took place during the interval between successive extrusions of lava. In places—for instance, where the cupriferous zeolites occur in fissures—there was probably a longer interval, but all the infilling was probably accomplished before the rock had cooled.

C. N. Fenner has recently investigated the zeolites of certain Triassic basalts of New Jersey, which cover land sediments and old playas or shallow desert basins of the same age, and finds that the zeolitization took place mainly where the basalt flows covered the shallow lakes; he concludes that the circulation originated from the waters of these lakes. The general process, he says, was that of a slow cooling of the igneous rock, through which aqueous solutions were percolating. Material for solution was contributed by the basalt and by the previously evolved sublimes. The character of the minerals changed during the cooling. Pyrite and chalcopyrite are among the metallic minerals; native copper is not mentioned, but occurs at other places in these Triassic flows. Three periods of crystallization are distinguished. Beginning with the oldest they are as follows:

1. Boric acid period. (a) Albite, quartz, garnet, amphibole, specularite, sulphides.
 (b) Datolite, prehnite, pectolite, amphibole, specularite, sulphides.

This combination is of special interest, as it shows a peculiar combination of high-temperature minerals like garnet and amphibole with the zeolitic deposits. Extensive replacements were noted, similar to processes described long ago by Pumpeley, from observations in the Lake Superior copper mines. Minerals stable under new conditions replace those formed in older crystallizations. Datolite, prehnite, pectolite, chabazite, stilbite, natrolite, apophyllite, and calcite all replace the older albite. Quartz is replaced by calcite and various zeolites. Datolite is replaced by zeolites.
Knopf\(^1\) has justly stated that “any theory accounting satisfactorily for the zeolites will also account for the copper.” There is surely just as much of a concentrating process involved in obtaining fluorine for apophyllite, boron for datolite, or barium for harmotome as there is in producing an ore with 2 per cent, copper from an amygdaloid containing 0.02 per cent, of the metal.

Following Lane (p. 406), I believe that the water of seas or lakes, mingling with the exhalations from the magma, decomposed the copper silicate contained in the pyroxenes, and that the resulting chlorides of iron and copper were decomposed by silicates or carbonates of calcium, with the formation of native copper, ferric oxide, and calcium chloride.

THE LAKE SUPERIOR COPPER DEPOSITS

In the following list of references on the copper deposits of the Lake Superior region only the more important works of the extensive literature are mentioned.

L. Hubbard, Keweenaw Point, Geol. Surv. of Mich., vol. 6, pt. 2, 1898.

T. A. Rickard, The copper mines of Lake Superior, 1905, p. 164. (Excellent brief description of geology and technology of the copper deposits.)

General Occurrence.—The great deposits of native copper in the Keweenawan volcanic flows and conglomerates of the pre-Cambrian in Michigan form one of the principal items of the copper wealth of the United States. These deposits are mainly concentrated in Houghton County, on the Keweenaw peninsula of northwestern Michigan, on the southern shore of Lake Superior (Fig. 110). The copper belt continues, however, in a northeasterly direction to the point of the peninsula and southward into Ontonagon County and into northern Wisconsin and eastern Minnesota, having a total length of about 300 miles. The cupriferous formation is found also on Isle Royale and at Michipicoten in Ontario, Canada, opposite Keweenaw Point. The present productive belt extends in a northeasterly direction from the Lake mine, 43 miles southwest of Houghton, the center of the industry, to the Cliff mine, 22 miles northeast of that place.

The so-called Keweenawan series, the uppermost part of the Algonkian, unconformably covers the Huronian, which in turn rests discordantly on the Archean greenstones and gneisses.

The Keweenawan series forms a huge synclinorium, bounding and underlying the western part of Lake Superior. The upper part of the series consists of 10,000 or 12,000 feet of red arkose sand-
DEPOSITS OF NATIVE COPPER

stones and shales; the lower part consists of a vast accumulation of basaltic lavas perhaps 25,000 feet in total thickness. On the Keweenaw peninsula the whole series strikes northeast, parallel to the direction of the peninsula, and dips northwest from 30° to 75°. The sandstones follow the northwest coast. The rapidly alternating series of compact diabases or basalts (traps) and amygdaloid beds occupies the central belt. On the southeast the Keweenawan series is cut off by a long fault line parallel to the strike, and the southeast coast of the peninsula is underlain by horizontal non-productive Cambrian sandstones. Embedded in the volcanic flows are a few strata of sandstone, shale, or conglomerate. Quartzose porphyries (felsites) erupted in the same epoch enter conspicuously into the composition of these conglomerates (Fig. 118).

Copper in visible grains is widely distributed through the amygdaloid rocks, but is of economic importance in only a few places. The deposits which now yield the great bulk of the production are beds of amygdaloid rocks of great persistency. Much copper is also mined from a bed of volcanic conglomerate, called the Calumet conglomerate. Veins cutting across the strike of the beds were mined in the early years of the industry, but are now of little or no importance.

The Calumet Conglomerate.—This bed is worked mainly in the Calumet & Hecla and Tamarack mines; in the former mine it is opened for a distance of nearly 2 miles along the strike by 10 incline shafts and one vertical shaft, with an aggregate of about 200 miles of workings. The Red Jacket vertical shaft is 4,900 feet deep and reaches to the fifty-seventh level of the incline. The Tamarack mine, in which the continuation of the shoot in depth has been found, reaches the conglomerate by four vertical shafts from 3,409 to 5,229 feet in depth. The deep shaft is at present the deepest shaft in the world. Only parts of the conglomerate are of profitable grade, the ore-shoot trending north on the bed. In depth it appears leaner and less regular in tenor. Along the surface only parts of the bed contain commercial ore; it is poor both northeast and southwest of the Calumet shoot. The tenor of the ore handled has decreased from 4 per cent. of copper in former years to 1.75 or 2 per cent. at present. The ore itself is undoubtedly becoming leaner, but the apparent decrease is to a considerable extent due to improvements in mining and milling that allow the handling of lower grades of ore.
The conglomerate is 10 to 25 feet thick, dips 36° to 39° northwest, and forms a compact reddish-brown rock easily breaking across the pebbles. The copper occurs mainly as small particles in the cement between the cobbles, which are well rounded and consist of quartz porphyry with some basic igneous rocks. The hanging wall is a dark fine-grained diabase, the footwall a thin layer of sandstone. About one-third of the copper production of Michigan is obtained from this conglomerate.

The Amygdaloids.—The amygdaloid copper-bearing beds, which occur at seven principal horizons, are named the Baltic, Kearsarge, Pewabic, Osceola, Isle Royale, Atlantic, and Winona amygdaloïds and are worked by a dozen large mines. These

![Fig. 119.—Amygdaloid basalt, Houghton, Michigan. Black areas, native copper; larger areas represent fillings of blow holes, with calcite at right margin. Smaller black areas represent replacement of igneous rock by copper. Magnified 15 diameters.](image)

beds are vesicular basalts, usually brownish in color, with earthy fracture and filled with amygdules of calcite, epidote, and zeolites (Fig. 119). The copper occurs in these, but also replaces the rock itself. Some native silver, in places intergrown with copper, occurs in the amygdaloids; scarcely any is found in the conglomerate. The flows are naturally more vesicular in the upper part than in the bottom part. Both width and distribution of cop-
per are irregular. The Osceola bed is worked by the Calumet & Hecla, Tamarack, and Osceola mines; in the Osceola it is developed to a depth of 4,500 feet on the incline. In the Calumet & Hecla mine this amygdaloid is 30 to 35 feet thick, but the mineralization is mainly confined to a strip 8 or 10 feet thick along the hanging wall and also a streak along the footwall. In the Baltic mine the amygdaloid bed is from 15 to 80 feet in stopping width; this deposit has produced much coarse copper and contains veinlets of chalcocite, bornite, and copper arsenides.

The amygdaloid ores yield an average recovery of 0.88 per cent. copper, though in some mines it exceeds 1 per cent. In 1908 these ores yielded 61 per cent. of the total copper production of Michigan. In the same year 241,000 ounces of silver was obtained, in small part as nuggets or "pickings," but mainly from the electrolytic refining process, to which one-fifth of the copper produced was subjected. The largest lump of silver on record from the district weighed 12 pounds and was found in the Mass mine, in the southern part of the district.¹

The Veins.—A third mode of occurrence of the copper ore is as veins following fracture zones, traversing the country rock like a network. The veins were found mainly in the northern part of the peninsula and, during the early years of the industry, yielded much copper. The Phoenix, Cliff, Copper Falls, and Minnesota were some of the best-known deposits. At present only a small quantity of the metal is derived from them. These veins cut across the bedding and stand at a steep angle. Some of them could be followed by the drift for a distance of 2,000 or 3,000 feet. According to Credner, Pumpelly, and Irving many of them were wide, though they averaged only 3 feet.

In part these veins were formed by filling, but they were chiefly the result of metasomatic replacement. Much of the native copper was coarse; some masses of unusual size were found, the most famous being that encountered in the Minnesota vein in 1880. The mass weighed 500 tons, was 46 feet long, 18.6 feet wide, and 8.5 feet thick.¹ At the Cliff mine many masses which weighed from 40 to 100 tons were discovered. From the vein the copper seems to have had a tendency to extend into the various amygdaloid flows. Most of the veins became impoverished at a depth of a few hundred feet.

¹T. A. Rickard, loc. cit.
The amygdaloid beds are cut by many minor cross fractures and slip faults, but according to the accounts these contain little or no copper.

Mineral Association.—In all three modes of occurrence the mineral association is the same. It consists of native copper, quartz, calcite, chlorite, epidote, and prehnite, with a number of zeolites. There is always more or less ferric oxide, sometimes staining the ore deep red or brown. Chalcocite and some rare arsenides of copper are entirely subordinate. The following table, adapted by Lane from Pumpelly, gives the general paragenesis.

PARAGENESIS OF MINERALS IN LAKE SUPERIOR COPPER ORES

<table>
<thead>
<tr>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laumontite</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td>Delessite and chlorite</td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
</tr>
<tr>
<td>Prehnite</td>
<td>red white colorless</td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Datolite</td>
<td></td>
</tr>
<tr>
<td>Analcite</td>
<td></td>
</tr>
<tr>
<td>Orthoclase</td>
<td></td>
</tr>
<tr>
<td>Apophyllite</td>
<td></td>
</tr>
</tbody>
</table>

The stages of alteration and filling in the amygdaloid rock are indicated as follows by Pumpelly: (1) Decomposition of the ferromagnesian silicate and deposition of iron-rich chlorite (delessite). (2) Individualization of the non-alkaline silicates (laumontite, prehnite, and epidote). (3) Deposition of quartz. (4) Introduction of native copper, with replacement of prehnite by delessite. (5) Appearance of the alkaline silicates (analcite, apophyllite, adularia), representing the decomposition of labradorite in the original rock. Many interesting replacements have taken place in the rock itself: Prehnite is pseudomorphic after labradorite and many amygdaloids are largely prehnitized. This prehnite may in turn be replaced by adularia and the latter
DEPOSITS OF NATIVE COPPER

may change into epidote and quartz. Sericite is absent. Needles of actinolite are sometimes seen in the amygdules.

Origin.—The ore deposits are of considerable antiquity and it is probable that the present mine waters have little to do with the origin, though they may have effected slight changes and local concentration. U. S. Grant¹ has shown that the deposits were in existence when the Cambrian strata along the great fault in the southeastern part of the peninsula sank to the level of the Keweenawan series; it is indeed most likely that they were formed before the deposition of this Cambrian sandstone. The continental Quaternary ice sheet doubtless swept away the altered upper part of the beds, so that the native copper now outcrops almost at the surface.

The association of minerals is entirely different from that found in ordinary fissure veins, in which, we have reason to believe, the deposition was effected by ascending thermal solutions. The so-called "Alpine veins" (p. 593) offer some analogies; likewise the veins of Andreasberg and Kongsberg (p. 587). There is also some resemblance to propylitization, but in that process zeolites rarely form.

Evidence has already been adduced that all the fresh diabasic and basaltic rocks of the series contain copper, probably as a silicate, and throughout the vast extent of the Keweenawan the amygdaloids show traces of the metal itself.

Van Hise ² says:

> There is scarcely a locality in the Lake Superior region where the Keweenawan basic lavas occur in which small amounts of copper are not found. Almost every porous amygdaloid shows flakes of it. In many localities it is so abundant that extensive exploration has been undertaken with the hope of finding ore-bodies, as, for instance, in Douglas County, Wisconsin, Isle Royale, and Mamainse. * * * To me, the almost universal association of small quantities of copper with the Keweenawan lavas is the most conclusive evidence that these lavas are the source of the metal.

Pumpelly suggested that the presence of ferric oxide and epidote (in which the iron is in the ferric state) indicated a reduction of copper salts (sulphate and carbonate) by the ferrous minerals abundantly present in the rock.

¹ *Bull. No. 9, Wisconsin Geol. and Nat. Hist. Surv.*, 1903.
Lane1 has recently proposed a modification of this view, based on some valuable experiments undertaken by G. Fernekes. After the submarine effusion of the lavas, sea water penetrated the beds, decomposing the silicates and converting a part of the iron and all of the copper to chlorides. The reduction of the cuprous chloride was effected by calcium salts, with the formation of ferric oxide and calcium chloride. The process may have persisted during the slow cooling until fissures and joints had formed in the beds, and this would explain the deposition on such fractures.

The experiments of Fernekes8 have shown that metallic copper is precipitated, together with ferric oxide, from a mixture of ferrous and cuprous chlorides, in a tube one end of which is heated to 200° to 280° C.1, while the other end is cooled. The precipitation takes place, however, only in the presence of a substance or mineral which neutralizes the hydrochloric acid, hydrolyzed from FeCl\textsubscript{3}. Calcium carbonate, datolite, and prehnite were found to have this neutralizing property. No results were obtained with laumontite and labradorite. The equations are:

\[
\begin{align*}
2\text{FeCl}_3 + 2\text{CuCl}_2 &= \text{Cu}_2\text{Cl}_2 + 2\text{FeCl}_3, \\
2\text{FeCl}_3 + 2\text{CuCl} &= 2\text{Cu} + 2\text{FeCl}_3.
\end{align*}
\]

The presence of silver is explained by the solubility of the chloride of that metal in strong salt solutions. Lane expresses the above equation schematically as follows:

\[
2\text{FeCl}_3 + 2\text{CuCl} + 3\text{CaSiO}_3 = 2\text{Cu} + \text{Fe}_2\text{O}_3 + 3\text{SiO}_2 + 3\text{CaCl}_2.
\]

Owing to the strong dehydrating power of chlorides solutions, ferric oxide will be deposited instead of limonite. At an earlier date H. N. Stokes8 had ascertained that hornblende and siderite precipitate native copper from sulphate solution at 200° C., under conditions similar to those in Fernekes's experiments.

The boron and fluorine in datolite and apophyllite offer no particular difficulty. Both minerals are present in small quantities; the elements mentioned were probably also concentrated

1 A. C. Lane, Salt water in the Lake mines, \textit{Proc., Lake Superior Min. Inst.}, vol. 12, 1906.

2 A. C. Lane, Native copper deposits, \textit{Jour., Canad. Min. Inst.}, vol. 14, 1911, pp. 316–325.

8 \textit{Economic Geology}, vol. 1, 1906, p. 648.
from the amygdaloids, but their derivation from the sea water would not be impossible. Much of the carbon dioxide and chlorine may well have been contributed by the volcanic flow itself. Copper and silver form an alloy at 540° C. As the two metals exist in close contact in the Lake Superior deposits the conclusion is justified that these deposits were formed at a lower temperature.

Whitney, Pumpelly, and Wadsworth, have advocated a theory of deposition by descending surface waters. Pumpelly assumed that the copper sulphide present in the beds was first oxidized to sulphate and carbonate and subsequently, reduced, but, as has been shown, this hypothesis is not necessary. Van Hise and H. L. Smyth believed the deposits to be caused by ascending thermal waters, but the whole character of the mineralization is directly opposed to such a view.

Mine Waters.—The present condition of the underground waters in the copper region is most interesting. Lane has shown that the water in the upper levels is soft and potable and has the normal composition of surface waters. It decreases in quantity as depth is gained and ceases at a depth of 1,000 to 1,500 feet below the surface.

ANALYSIS OF NORMAL SURFACE WATER FROM MICHIGAN COPPER DISTRICT

<table>
<thead>
<tr>
<th></th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>19</td>
</tr>
<tr>
<td>Mg</td>
<td>4</td>
</tr>
<tr>
<td>Na</td>
<td>2.3</td>
</tr>
<tr>
<td>Cl</td>
<td>3.5</td>
</tr>
<tr>
<td>SiO₂</td>
<td>10</td>
</tr>
<tr>
<td>CO₂</td>
<td>40</td>
</tr>
<tr>
<td>SO₄</td>
<td>6</td>
</tr>
<tr>
<td>(Al,Fe)₂O₃</td>
<td>1.5</td>
</tr>
</tbody>
</table>

86.3

As depth is attained in the mines the quantity of chlorine and calcium increases very materially, and at the same time the mine water is less abundant. Finally, at a depth of 3,000 to 5,000 feet, the mine waters are almost entirely absent; they constitute feeble drips here and there and, of course, may collect in small quantities in the sumps. They are extremely strong solutions of calcium chloride with bromine and many other substances in small quantities.

MINERAL DEPOSITS

ANALYSIS OF MINE WATER, QUINCY MINE

From drippings on 55th level north of No. 6 shaft. G. Fernekes, analyst. Depth about 4,000 feet.

(Grains per liter)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>176.027</td>
<td>SiO₂</td>
</tr>
<tr>
<td>Br</td>
<td>2.200</td>
<td>(Fe₃Al)O₅</td>
</tr>
<tr>
<td>Ca</td>
<td>86.478</td>
<td>Mn</td>
</tr>
<tr>
<td>Na</td>
<td>15.188</td>
<td>Cu</td>
</tr>
<tr>
<td>K</td>
<td>0.411</td>
<td>Ni</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.110</td>
<td>Mg</td>
</tr>
</tbody>
</table>

Total solids determined 280.500.
Traces of boron and strontium. No barium, lithium, or carbon dioxide.

A water from a depth of 3,000 feet in the Calumet & Hecla mine gave, according to an analysis by R. Forsyth, 66.94 grams of solids per liter. The composition of the salts by percentage is as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>24.77</td>
<td>SO₄</td>
</tr>
<tr>
<td>Mg</td>
<td>0.06</td>
<td>SiO₂</td>
</tr>
<tr>
<td>Na</td>
<td>12.14</td>
<td>Br</td>
</tr>
<tr>
<td>Cl</td>
<td>61.97</td>
<td>Al</td>
</tr>
</tbody>
</table>

99.57

Other waters from the mine contain an appreciable amount of zinc and some strontium.

In the most concentrated waters 99 per cent. of the salts consist of the chlorides of calcium and sodium, and three-fourths of the remainder is sodium bromide.

Intensely interesting as these results are, it would probably not be correct to assume that waters of exactly this composition have formed the deposits. Lane justly points out that waters of this composition are not unknown in other deep sedimentary series and that they are probably "connate" waters—that is, residual waters from those deposited with the sediments and derived from the Keweenawan pre-Cambrian sea. Similar deep waters exist in other parts of Michigan and other parts of the central Paleozoic basin of the United States (see page 83). The strong percentage of bromine is additional evidence that we have

¹At the Franklin mine the limit between the upper potable waters and the salt waters is about 1,300 feet below the surface, or 200 feet below sea level. In general the chloride waters appear about sea level.
here really to deal with a residual sea water, a remnant of that which long ago was active in forming these deposits.

Rock Alteration.—A. C. Lane has examined some pebbles in the Calumet conglomerate and finds that they were probably originally a rather basic rock of the composition given below under I, and that they were altered by the abstraction of silica and soda, in part also of potash. On the other hand, the ferric and ferrous oxides have been much increased. Alumina probably remained constant.

ANALYSES OF CALUMET CONGLOMERATE

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.83</td>
<td>31.42</td>
<td>36.75</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.30</td>
<td>16.82</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.60</td>
<td>15.58</td>
<td>27.34</td>
</tr>
<tr>
<td>FeO</td>
<td>2.48</td>
<td>12.08</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3.98</td>
<td>3.36</td>
<td>23.24</td>
</tr>
<tr>
<td>CaO</td>
<td>2.98</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>6.54</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>2.49</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>2.76</td>
<td>14.52</td>
<td>11.07</td>
</tr>
</tbody>
</table>

99.96 100.44

II. Pebble, Calumet conglomerate; F. B. Wilson, analyst.

III. Pebble, Calumet conglomerate; F. B. Wilson, analyst.

Except for the leaching of soda this alteration is not in any way related to thermal alterations near fissure veins, but is far more similar to the results of ordinary surface alteration with the formation of chloritic products.

Mining and Smelting Operations.—In the copper mines of Lake Superior mining operations are conducted on a large scale. The total amount of copper ore (locally called "rock") hoisted in Michigan per annum is about 11,000,000 tons. This is crushed coarse with steam stamps, each one having a daily capacity of 500 to 700 tons; wet concentration is used with jigs, tables, etc., the resulting concentrates (locally called "mineral") amounting annually to about 175,000 tons, of an average copper content of 65 per cent.

This concentrate of native copper is smelted and refined by a single operation in reverberatory furnaces, the smelting works being located in the district and at Buffalo. A small part of the copper is electrolytically refined in order to eliminate the small amount of arsenic contained. A demand for copper containing arsenic that has recently arisen has resulted in a decrease of the quantity refined by the electrolytic process. The total yearly copper production of Michigan is now about 223,000,000 pounds. The reserves of amygdaloid copper-bearing rock are of great extent.

THE COPPER DEPOSIT OF MONTE CATINI

The celebrated copper deposit of Monte Catini, on the western coast of Italy, near Livorno (Leghorn) and the ancient Etruscan city of Volterra, has been described by many authors. A. Bergeat has given an excellent review of this literature, in connection with his own observations.\(^1\) Another detailed description is given by L. de Launay.\(^2\) The mines have been worked to a depth of 850 feet.

Irregular laccolithic stocks of diabase, with some gabbro, break through Eocene marly limestones and siliceous shales; near the contacts the igneous rock is in part glassy, so that the intrusions clearly took place near the surface. The ore occurs exclusively in the diabase, particularly in its lower part at or near the contact, but also reaches the surface. In the ore-body the diabase is crushed to reddish clayey masses seamed with zeolites and calcite. The ores contain native copper in crevices and druses, with calcite, prehnite, datolite, analcite, and laumontite; also sulphides, especially chalcocite, bornite, and chalcopyrite, sometimes massive, but partly in large and small rounded concretions surrounded by clayey, crushed rock and consisting of the several sulphides in concentric intergrowth. The tenor and distribution of the ores are very irregular.

The whole aspect of this unique deposit seems to indicate that the copper was concentrated from the diabase shortly after its consolidation and the crushing which followed. It is more dif-

DEPOSITS OF NATIVE COPPER

It is difficult to point to the source of the concentrating waters, but it is probably safe to say that the present ground waters have had nothing to do with the formation of the ore.

There are remarkable similarities between the mineral association at Monte Catini and that of the amygdaloid flows of the Lake Superior region, and the processes of concentration may, in the main, have been identical.

NATIVE COPPER WITH EPIDOTE IN BASIC LAVAS
(CATOCTIN TYPE)

In some copper deposits contained in basic lavas the zeolites are absent and the mineral association is mainly native copper, epidote, quartz, and calcite. Such occurrences, which are of slight economic importance, have been found in the Appalachian region in Virginia and Pennsylvania.¹

The rocks are basaltic flows of pre-Cambrian age, in part amygdaloid, in part schistose. They contain, in irregular fractures and along shear zones, abundant epidote, native copper, calcite, and chlorite; in places chalcopyrite and bornite occur in the gangue or in the rock itself. Weed named this group of ores the “Catoctin type” and suggested that it owed its origin to infiltration from the present surface. This seems improbable; more likely the copper was extracted from the basic flows shortly after their eruption and consolidation. The derivation of the waters is uncertain; at any rate they were not ascending thermal waters rich in carbon dioxide, for under such influences epidote could hardly be expected to form.

CHAPTER XXI

LEAD AND ZINC DEPOSITS IN SEDIMENTARY ROCKS; ORIGIN INDEPENDENT OF IGNEOUS ACTIVITY

Characteristic Features.—The lead and zinc deposits which form the subject of this chapter represent a type of world-wide distribution and, in spite of local variations, of remarkably constant characteristics. They appear to be entirely independent of igneous rocks and occur in limestones, dolomites, cherts (derived from limestone), or calcareous shales. In the United States this type is represented by the ores in the limestone of the Mississippi Valley; the largest deposits are in Missouri.

The mineral composition is simple, and the ore minerals few. Galena and zinc blende are essential constituents, with their train of oxidized minerals near the surface\(^1\) (sulphates, carbonates, and silicates); there is more or less pyrite, almost always marcasite, occasionally a little chalcopyrite. Gold, antimony, arsenic, and molybdenum are conspicuously absent; in some districts the galena contains a little silver, but on the whole the deposits are non-argentiferous. Cadmium is often contained in the zinc blende, which is mainly red, light brown, or yellow and carries little iron. Cadmium sulphide, greenockite, occurs as a secondary mineral. Nickel and cobalt are often present in small quantities. Among the gangue minerals dolomite is the most characteristic; quartz in crystals is not common, but a secondary chert with bitumen is typical of many districts; barite is found, but is not characteristic.

The ores lie in zones of local brecciation or in crevices (gash veins) or joints which have been enlarged by solution. Less commonly they occupy fault fissures; sometimes they are purely metamorphic, the minerals occurring disseminated in limestone or dolomite and closely following certain sedimentary horizons.

\(^1\) The oxidation of lead and zinc sulphides is treated in Chapt. 29. The principal oxidized zinc minerals are smithsonite and calamine, while hydrozincite and willemite are rarer; goslarite, the soluble sulphate, is frequently found as efflorescences but not in quantities sufficient to be regarded as an important ore mineral.
Even in this case they are not spread over irregular areas, but tend to follow certain lines in the plane of stratification (so-called “runs”). In regions of slightly disturbed strata many observers have noted the tendency of the ore to follow pitching troughs. The ores usually lie within a few hundred feet of the surface and are oxidized in the vicinity of the water level. Frequently they are found below impervious shale beds.

Origin.—Simple as the deposits of this type are, the views as to their origin are still divergent. The earliest interpretation of them as marine deposits is generally abandoned; it is recognized that even if the metals are derived from primary ocean sediments the finely divided sulphides must have been concentrated and redeposited. Their epigenetic nature is clear. Some geologists hold the ores to be deposited by ascending waters; others see in them the work of descending surface waters. In either case there seems to be general agreement among American geologists that atmospheric waters have effected the concentration and that igneous agencies have had nothing to do with the deposition. On the other hand, some German investigators hold that the deposits have been formed by thermal waters ascending from great depths. Beyschlag, Krusch, and Vogt in their recently published handbook on mineral deposits uphold this view.

In the first place, the mineral association indicates a shallow deposition at temperatures and pressures not very different from those prevailing at the surface. The deposits contain no substances carried by thermal waters of volcanic origin, and no primary silicate minerals. The marcasite suggests strongly that the metals were carried in sulphate solutions, possibly acid at times. Barite would be easily concentrated from the limestones. Fluorite is rare in these deposits.

Regarding nickel and cobalt, it has already been pointed out that minerals of these metals are not uncommon in sedimentary strata, as is shown, for example, by their occurrence with the marine siderites and limonitic oolites, or by the occasional discovery of millerite in limestone. This granted, it remains to account for the two principal metals, lead and zinc. The sulphates of both are soluble, that of zinc very easily, that of lead with difficulty. Zinc is found abundantly as sulphate in the mine waters. Small amounts of lead, according to the analyses

given by Buckley, are consistently shown in the mine waters of southeastern Missouri in maximal quantities of 1 milligram per liter. Zinc blende and sometimes galena have been observed deposited on nails or wood in old mines.1 Robertson2 has described workings at Galena, Kansas, filled with a white mud of zinc sulphide mingled with acid water. The precipitation of the metals from sulphate solutions thus offers no difficulties, although in the cases cited the conditions are probably not identical with those prevailing during the deposition of the ore.

Traces of lead and zinc, associated with considerably more copper, have been detected by J. B. Weems and also by J. D. Robertson in Ordovician, Silurian, and lower Carboniferous limestones and dolomites of Missouri and Iowa, the quantities ascertained being as much as 0.015 per cent., though generally much less (p. 9).

Hilgen4 found traces of the metals in the Triassic sediments from Schwarzwald.

The data are as yet too scanty to allow reliable generalizations. Of particular interest is the statement of A. C. Veatch and G. D. Harris1 that "crystalline masses, from the size of a marble to that of a man's head, of barite, galena, sphalerite, pyrite, and chalcopyrite" were found at Belle Isle, on the coast of Louisiana, at a depth of 65 feet in a shaft sunk for salt and oil. The containing rock was a stratum of blue clay covered by clay and gravel and underlain by impure black limestone; salt was encountered at 103 feet and larger masses occurred at lower depths. Sulphur occurred in many strata. The depositing solutions here probably contained sodium chloride, sulphates, and hydrogen sulphide. In a drill-hole at the same place particles of galena, pyrite, and chalcopyrite were brought up from depths of 2,520 to 2,606 feet in a bed of salt.5

It is possible that solutions and debris of lead and zinc ores from an ancient continent could have been swept out into the shallow sea and there become precipitated or deposited. But the proof is far from being complete and one would rather look for

3 Stelzner and Bergeat, Die Erzlagerstätten, p. 1055.
4 \textit{Bull.} No. 7, Louisiana Geol. Survey, p. 25.
5 G. D. Harris, \textit{Bull.} U. S. Geol. Survey No. 429, 1910, p. 45.
LEAD AND ZINC DEPOSITS

them in the sands and muds of the shore deposits than in the limestones. It has been suggested, indeed, that the supply of metals in the Mississippi Valley deposits came from the old pre-Cambrian rocks,¹ but the absence of important pre-Cambrian lead and zinc ores lessens the value of this hypothesis. Such minutely divided metallic salts carried out into the Paleozoic sediments could certainly have been dissolved by the ground waters and transported to places favorable for deposition. As to the chemistry of the process we are still in the dark.

Zinc sulphide and many other salts of zinc are rather easily soluble and could readily be transported by underground waters. Galena, on the other hand, is one of the most insoluble sulphides (Chapt. 29). It is said to be slightly soluble in water and also in solutions of sodium sulphide.² Lead sulphate, according to Kohlrausch and Rose,³ is soluble to the extent of 46 milligrams in one liter of pure water. The presence of free acids decreases the solubility. Chlorides are more effective. According to Fresenius lead sulphate is soluble in ferric chloride, and sodium chloride decomposes it slowly. Becquerel found that one liter of saturated solution of sodium chloride dissolves 660 milligrams of PbSO₄ and in this condition it is probably converted to the much more soluble lead chloride by mass action. PbCl₂ is soluble in pure water at the rate of 0.909 per cent. at 15° C., rising to 3.34 per cent. at 100° C.;⁴ a 5 per cent. solution of sodium chloride, having a common ion, retards the solubility about one-fourth.

From all this it appears probable that solutions of sodium chloride are the most effective carriers of lead, as they are of barite (p. 334), and in many cases at least such solutions mixed with sulphates probably were active in the genesis of these deposits. There are ample sources of salt in Paleozoic and Mesozoic formations in regions where these deposits occur. When such solutions encountered hydrogen sulphide or abundant organic matter, precipitation of the lead as sulphide undoubtedly would follow. The water must have contained magnesium, not necessarily as carbonate, but perhaps more

² C. Doelter, Min. pet. Mitt., vol. 11, 1890, p. 319.
⁴ Landolt and Börnstein, Physikalisch-chemische Tabellen, Berlin, 1905.
probably as sulphate. The solutions evidently were not rich in silica, for they deposit quartz rarely and chert only where traversing cherty limestone beds.

Some deposits connected with igneous rocks—for example, those at Aspen, Colorado—approach in a measure the general type here described, but even here there are many striking dissimilarities.

Moresnet.\(^1\)—The Moresnet district in Belgium, Luxembourg, and Prussia, is situated in a region of folded Devonian and Carboniferous limestones and slates cut by several large faults and covered unconformably by Cretaceous beds. In the main the ore follows these dislocations, in part as filled veins, in part as large replacement deposits in limestone at the slate contacts or at the intersection of faults. Dolomitization of the limestone is often mentioned. The ore contains zinc blende, galena, iron sulphides, and calcite, and the galena and zinc blende are often intimately intergrown. Nickel is occasionally present. Masses of calamine appeared near the surface and extended to depths of 160 feet; in some cases, notably at Vieille Montagne, they were of enormous size and reached a depth of 330 feet; the sulphides appeared at depths of 170 to 330 feet, much below the water level.\(^2\) Galena is in general the oldest, pyrite or marcasite the youngest of the minerals; concentric intergrowths of wurtzite, zinc blende, and galena (schalenblende) are not uncommon.

The quantity of ore is said to diminish in depth, and large amounts of water are found. A considerable part of the world’s production of zinc has been obtained from these deposits.

Silesia.\(^3\)—Silesia, a province of Prussia, remains one of the world’s most important zinc-producing regions. The ore occurs in Triassic sandstone and limestone, which lie in flat synclines. (See Fig. 120.) In the lower part of the “Muschelkalk” extensive dolomitization has taken place, mainly along fissures, and the dol-

\(^1\) Ch. Timmerhans, Les gîtes métallifères de la région de Moresnet, Liège, 1905, p. 28.

\(^2\) The oxidation of this deposit may be of pre-Cretaceous age.

\(^3\) See also text-books of Stelzner and Bergeat and R. Beck.

mite is underlain by an impermeable "Sohlenstein" or clay rock. The ground-water circulation, dolomitization, and mineralization are all apparently closely connected. The replacement ore occurs along two horizons—the lower in a bed of dolomite several meters thick, carrying galena, zinc blende, and abundant marcasite, and the upper in a bed of smithsonite (zinc carbonate) of considerable thickness. The smithsonite and calamine are considered products of oxidation. The zinc blende is in part intergrown with wurtzite. The galena contains a little silver (0.02 to 0.03 per cent.); manganese as psilomelane is sometimes present. The ores are said to contain on the average about 17 per cent. zinc and 5 per cent. lead. The marcasite contains a little arsenic and a trace of nickel.

![Diagram](image)

Fig. 120.—Section through the synclines of Tarnowitz and Beuthen, Silesia. P.St., Carboniferous; B, Triassic sandstone; s, Triassic limestone; Do, dolomite; b, galena deposits; z, zinc blende deposits; g, oxidized zinc ores; e, limonite; T, Tertiary beds; Dt, Quaternary beds. After Gärlich.

There has been much discussion concerning the origin of these ores. Beyschlag and Michael\(^1\) have shown that some ore-bearing fissures descend into the Carboniferous and hence believe that ascending waters did the work; others, like Sachs, believe that the ores resulted from descending waters and that organic matter caused the precipitation.

Alpine Trias.—The Alpine Trias in Austria contains a number of deposits of this type. At Bleiberg, in Carinthia, the ores occupy filled flats and gash veins; they consist of light-colored zinc blende and marcasite, with calcite and barite gangue, and a little anhydrite and fluorite, but no quartz. No silver, antimony, copper, or arsenic is present.

At Raibl, made famous by Posepny's investigations,¹ the ores form fillings and replacements along three dislocations. The minerals are sphalerite, occasionally with wurtzite, and galena, with a little marcasite and chalcopyrite, and their deposition was accompanied by extensive dolomitization. Posepny describes stalactites of galena, pyrite, and zinc blende, but such occurrences are exceptional.

Other European Localities.—The great deposits of Santander are contained in Carboniferous limestone and are said to be replacements connected with dislocations. The light-yellow zinc blende from these deposits is famous. Some cinnabar is present.

At Monteponi,² Sardinia, large “stocks” of galena with zinc blende and pyrite are contained in Paleozoic limestones. There is much dolomitization, and a little quartz and barite also occur. Cinnabar is reported and the ores contain silver in part. Igneous rocks are represented only by a diabase.

The genetic relations of both of these deposits are as yet uncertain.

The Lead-Zinc Ores of the Mississippi Valley.—One of the most remarkable metallogenetic provinces characterized by lead and zinc ores extends over the valley of the Mississippi in the generally flat-lying limestones of the Paleozoic, ranging from the Ordovician to the lower Carboniferous (Mississippian) inclusive. These ores are found in Arkansas, Missouri, Oklahoma, Kansas, Illinois, Wisconsin, and Iowa and even reach eastward as far as western Virginia and Tennessee. The ores are mined on a large scale in comparatively few regions, but smaller deposits of galena and zinc blende are of widespread occurrence in the Paleozoic rocks. Igneous rocks are absent. There are, however, a few small deposits in southern Arkansas, Kentucky, and southern Illinois in which gold, silver, antimony, or fluorite is present and which appear to be genetically related to igneous rocks. The main characteristics of the predominating type are sufficiently described in the introduction to this chapter. In details they differ considerably.

² An elaborate series of illustrations of this deposit was recently published by the Department of Agriculture of Austria.
In point of production the deposits in Missouri easily predominate. The zinc-mining industry centers in the southwestern part of that State, about Joplin, and in 1911 yielded 122,515 short tons of spelter, of a value of about $14,000,000, making about 34 per cent. of the production of the United States. The lead mining in the southeastern part of the State produced 147,754 short tons of lead, to which should be added 31,114 tons from the Joplin region, making a total of 178,868 tons, having a value of $16,000,000. This is 40 per cent. of the lead production of the United States. The ore mined is generally referred to as "dirt"; the concentrates are spoken of as "ore." The total quantity of crude ore raised annually in Missouri is now about 12,000,000 tons, consequently it is of low grade. Practically all of it is treated in concentrating works, to yield high-grade material suitable for the reduction plants.

Southwestern Missouri.—The Joplin region includes, outside of Missouri, adjacent

1 C. E. Siebenthal, Mineral Resources, 1911, U. S. Geol. Survey. (Mine production of Central States.)

A. Winslow, vols. 6 and 7, Missouri Geol. Survey, 1895.

parts of Kansas and Oklahoma. The principal camps are at Aurora, Granby, Webb City, Alba, Neck, Joplin, Galena, Badger, Quapaw, and Miami. In the early days, about 1850, lead was the only metal won, but since 1870 zinc ores have been mined and now predominate entirely. From the districts in Missouri, near Joplin, the quantity of lead recovered is about one-fourth as much as zinc. The yield of lead and zinc concentrates from the crude ore averages, according to Siebenthal, about 3.7 per cent. corresponding to 1.9 per cent. zinc. The concentrates, averaging 58 per cent. zinc, are largely shipped to smelters in Kansas and Oklahoma, which have the advantage of natural gas for fuel.

The ore occurs in the flat Boone formation and in rocks of Kinderhook age, both belonging to the lower Carboniferous
(Mississippian). The Boone formation contains much light-colored chert, especially in the Grand Falls chert member, which contains the so-called "sheet ground" deposits. The surface of the Boone contained numerous sink-holes and caves, perhaps also drainage channels, and over this "Karst" topography were deposited the sandstones and shales, in part carbonaceous, of the Coal Measures (Pennsylvanian); there is, then, an unconformity by erosion. Post-Carboniferous erosion has now removed much

![Map of lead workings in "broken ground" at the Oronogo circle, Joplin, Missouri. a, Limestone and chert, lower Carboniferous; b, sandstone and shale, upper Carboniferous; c, lead workings. After Smith and Siebenthal, U. S. Geol. Survey.](image)

of these rocks, but near Joplin the Pennsylvanian shale still remains in many of the old depressions.

The succession of the ore minerals is given by Smith and Siebenthal as follows: Dolomite, chalcopyrite, galena, sphalerite, galena, chalcopyrite, marcasite, pyrite, calcite, barite, and marcasite, the whole series of course being seldom found in one locality. All the minerals are frequently well crystallized. There is general agreement among the investigators that the mineralization began by dolomitization, and Bain sees in it a result of the more rapid diffusion of the magnesia in the ore-forming solutions than of the zinc. The sphalerite occurs as more or less
perfect crystals in the secondary chert which forms the gangue of the ore, the primary chert containing no metasomatic sphalerite (Fig. 124). This secondary chert, largely made up of cryptocrystalline or microcrystalline quartz, perhaps with chalcedony and opal, contains much organic matter and is darker than the

Fig. 124.—Thin section of "black chert" showing matrix of fine-grained quartz with grains of zinc blende and crystals of dolomite. Note quartz crystals developing in dolomite. Magnified 53 diameters. After Smith and Siebenthal, U. S. Geol. Survey.

primary chert which antedated ore deposition. In the "sheet ground" the sphalerite and galena often incrust small solution cavities in cherty limestone.

The zinc concentrates of a composite sample representing 3,800 lots has the composition given below.

ANALYSIS OF CONCENTRATED ZINC BLENDE FROM THE JOPLIN REGION

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>58.260</td>
<td>Calcium carbonate</td>
<td>1.880</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.304</td>
<td>Magnesium carbonate</td>
<td>0.850</td>
</tr>
<tr>
<td>Lead</td>
<td>0.700</td>
<td>Barium sulphate</td>
<td>0.820</td>
</tr>
<tr>
<td>Iron</td>
<td>2.230</td>
<td>Silica</td>
<td>3.950</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.049</td>
<td></td>
<td>99.773</td>
</tr>
<tr>
<td>Sulphur</td>
<td>30.720</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Quoted by C. E. Siebenthal, in Mineral Resources, 1911.
The galena contains only a trace of silver.

The ores are found as irregular deposits in the "broken ground" near the surface and as a flat "blanket deposit" or "sheet ground" in a chert member of the Boone formation at depths of 150 to 300 feet. Below this horizon there are, in the rocks of Kinderhook age, as yet unworked deposits of disseminated ore. The ore occurs mainly as fillings of cavities, the fillings of distinct veins or crevices being subordinate. The ore minerals

with secondary chert fill spaces of brecciation or solution cavities along the stratification, perhaps also spaces of discission in limestone caused by stretching and adjustments.

In the "broken ground," which lies 100 or 150 feet below the surface, the ores occur in clayey chert breccias in old sink holes filled with Pennsylvanian sediments, or along the outside of such sink holes, forming "circles" where the slipping and settling provided open ground (Fig. 125). In these occurrences the galena predominates, partly because of subsequent solution and oxidation of zinc blende, and partly because the deposition of
galena prevailed at these upper levels, below the shale. Large masses of galena are found here, in contrast to the conditions in the sheet ground.

Both at Joplin and at Aurora (Fig. 126), as well as in camps in Oklahoma, the "runs" are a characteristic form of the upper deposits; these sometimes extend for 1 or 2 miles, following the same horizon at depths less than 150 feet—usually much less. At Granby the width of the run is rarely more than 50 to 150 feet. Each run has usually several "openings" (breciated ground filled with ore), each opening being rarely more than 5 or 6 feet thick. These runs appear to be solution cavities controlled by joints in the rocks.

![Diagram](image)

Fig. 126.—Plan showing shafts and workings along run of galena ore, north of Aurora, Missouri. After Arthur Winslow.

While in places the brecciation and mineralization continue down to the blanket deposits of the sheet ground, the latter extends in the main independently of the old pre-Pennsylvanian surface. In this sheet ground, which is from 6 to 15 feet thick, the galena and zinc blende occur in dark chert, filling brecciated old chert, and in elongated, narrow solution cavities due to dissolved streaks of limestone in the prevailing chert. The sheet ground is the most important source of ore.

Arkansas.—In northern Arkansas,¹ a short distance southeast from the Joplin region, the zinc blende, generally without galena, occurs in fissures or crevices, in fault breccias, and in solution breccias, accompanied by secondary chert or dolomite, sometimes

also by crystallized quartz; the ores are found in Ordovician limestone and also in the Boone (Mississippian) formation.

Upper Mississippi Valley.1—The districts of the upper valley lie in Wisconsin, Iowa, and Illinois. The most important districts are in Wisconsin and yield annually about 3,500 short tons of lead and 29,000 tons of zinc, with a total value of about $3,000,000. The ore deposits are found in Ordovician strata of almost horizontal position. The following formations are recognized:

<table>
<thead>
<tr>
<th>Formation</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati or Maquoketa shale</td>
<td>160</td>
</tr>
<tr>
<td>Galena dolomite</td>
<td>240</td>
</tr>
<tr>
<td>Platteville limestone (Trenton)</td>
<td>55</td>
</tr>
<tr>
<td>St. Peter sandstone</td>
<td>100</td>
</tr>
<tr>
<td>Lower magnesian limestone</td>
<td>350</td>
</tr>
</tbody>
</table>

Below the magnesian limestone is 700 feet of the Cambrian Potsdam sandstone. The so-called “oil rock,” a thin bed of bituminous shale, is found at the base of the Galena formation or at the top of the Trenton. The rocks dip gently southwest and are flexed into very shallow troughs.

The ores are confined to the Galena limestone and the upper part of the Platteville limestone; the minerals consist of marcasite, sphalerite, and galena, deposited in the order noted. The gangue is crystallized calcite, rarely barite. Cadmium is absent, but a trace of silver is found. The abundance of marcasite causes metallurgical difficulties and necessitates treatment of the concentrates in electrostatic or magnetic separators, in the latter case preceded by partial roasting. The ores occur as fillings of open spaces, vertical crevices, or “gash veins” connected with “pitches” or “flats,” all probably due to solution along joint planes (Fig. 127). In part there are also flat bodies of disseminated ores. The galena predominates near the surface, probably largely because the zinc blende has been dissolved as

1 J. D. Whitney, Geology of Wisconsin, vol. 1, 1862.
sulphate and transformed to silicate or carbonate in the lower levels (see p. 423). In depth zinc blende with a little galena is the principal ore. Mining operations extend to a depth of at most 200 feet. The distribution of the oil shale, according to Bain, seems to coincide with the extent of the deposits. Cox, however, holds that the metal was derived from the overlying Maquoketa shale and carried down to be concentrated in the Galena limestone.

Fig. 127.—Section showing occurrence of lead and zinc in vertical crevices, flats, and pitches; also of disseminated ores in the rocks. gd, Galena dolomite; tk, Trenton limestone; of, upper flat; uf, lower flat; k, connecting flats, pitches, and verticals. After T. C. Chamberlin.

Virginia.⁴—In western Virginia lead and zinc ores occur in the Cambro-Ordovician (Shenandoah) limestones, mostly where the rocks are faulted or brecciated or where they carry much organic matter. The gangue consists of calcite, dolomite, and rarely barite and fluorite. There is little quartz or pyrite and no definite order of crystallization.

Southeastern Missouri.⁵—In eastern Missouri not far from the Mississippi River and south of St. Louis lead mining has been carried on more or less extensively since the early part of the eighteenth century, but in the last ten years the industry has

⁵ A. Winslow, Missouri Geol. Surv., vols. 6 and 7, 1894.
C. R. Keyes, Missouri Geol. Surv., vol. 9, 1896.
assumed very large proportions. In 1911 the yield of lead from this region was nearly 148,000 short tons, worth more than $13,000,000. The crude ores, which yield on the average 5.5 per cent. of lead concentrates, are treated in local dressing works and a part of the galena is smelted in the district. Practically no zinc is contained in the ore.

The geological position of the deposits is in the Cambrian and therefore lower than those of the other Mississippi Valley ores. On an irregular surface of pre-Cambrian granite and porphyry rests the basal La Motte sandstone, about 200 feet thick (Fig. 128). Above this lies the arenaceous dolomite of the Bonnette formation, with beds of shale and often chloritic, having in all a thickness of 300 to 400 feet. Covering the Bonnette are the Davis, Derby, Doe Run, and Potosi formations, which are mainly dolomites and shales and all of which belong to the Upper Cambrian.

The principal ore horizon is in the lower part of the Bonnette dolomite, though some galena occurs throughout that formation. A second, less important ore horizon is in the Potosi dolomite, where the galena is accompanied by barite. The strata are horizontal or have very gentle dip.
The ore minerals are mainly galena accompanied by calcite, a little pyrite, and sometimes chalcopyrite. In places—for instance, at Mine La Motte and Fredericktown—the ores contain nickel and cobalt, as linnaeite \((\text{Co, Ni})_2\text{S}_4\); some of the ores have been worked for these metals. Buckley quotes a representative analysis of the crude ore of the southeastern district.

ANALYSIS OF DISSEMINATED ORE FROM SOUTHEASTERN MISSOURI

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>5.75</td>
</tr>
<tr>
<td>Cu</td>
<td>0.06</td>
</tr>
<tr>
<td>Zn</td>
<td>0.86</td>
</tr>
<tr>
<td>S</td>
<td>2.12</td>
</tr>
<tr>
<td>SiO₂</td>
<td>5.01</td>
</tr>
<tr>
<td>Fe</td>
<td>4.10</td>
</tr>
<tr>
<td>Mn</td>
<td>0.49</td>
</tr>
<tr>
<td>CaO</td>
<td>25.50</td>
</tr>
<tr>
<td>MgO</td>
<td>14.20</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.89</td>
</tr>
<tr>
<td>CO₂</td>
<td>36.17</td>
</tr>
</tbody>
</table>

Silver 0.12 oz. per ton.

The ores are often called disseminated, for the galena usually occurs as grains or crystals disseminated in the greenish-gray dolomite (Fig. 129); sometimes these crystals are several centimeters in diameter. According to Buckley the ores of the lower part of the Bonnetteerre occur as follows:

1. As horizontal sheets along bedding planes, generally along the upper side of thin shale beds.
2. Disseminated through dolomite.
3. Filling or lining walls of joints.
4. In cavities or vugs.

The galena is persistently associated with dark dolomite and black shale.

The ores are mined from vertical shafts, 100 to 550 feet deep. The ore does not extend in all directions like a coal bed, but the flat shoots or “runs” follow rather persistently one or two directions, undoubtedly controlled by joints and small faults. Some of these runs have been followed for miles and may be several hundred feet wide; some of the mine workings in the Bonnetteerre district are 100 feet high or more.
LEAD AND ZINC DEPOSITS

Genesis of the Mississippi Valley Deposits.—An unusually extensive literature, full of controversy and divergent views, covers the question of the genesis of these ores. A majority of the authors agree that the source of the ores was in the Paleozoic sedimentary beds, also that the deposition was effected by atmospheric waters, and finally that the metals were in solution mainly as sulphates. Summaries of the various views are found in the text-books of Kemp and Ries and in the reports of A. Winslow and E. R. Buckley. At present there are two strongly contrasting opinions regarding the Missouri deposits. The descensionists are represented by Whitney, Chamberlin, Blake, Robertson, Winslow, Buckley, and Buehler and the ascensionists by Jenney, Van Hise, Bain, W. S. T. Smith, and Siebenthal. From the latter we may separate Jenney, who sees in the ore deposits the result of fissuring extending into the underlying pre-Cambrian rocks, through which thermal waters ascended. Buckley and Buehler hold that the source of the lead and zinc was in the Pennsylvanian sediments, which, however, contain no important deposits and only in places small amounts of galena and zinc blende. The finely distributed sulphides were dissolved as sulphates and carried downward in acid solutions which finally mingled with neutral or alkaline solutions from the unoxidized parts of Pennsylvanian sediments. These mingled waters deposited galena and zinc blende in the sink holes and drainage channels of the underlying Mississippian limestone and chert. Unlike Winslow, Buckley and Buehler do not believe that the deposition was effected at the time of deposition of the Pennsylvanian shale, but later, after the erosion of a part of those beds. The obvious difficulty in their theory appears to be that it requires the waters to have descended through an impervious shale cover.

A similar theory is advocated by Buckley for the lead deposits of southeastern Missouri. The pre-Cambrian rocks are held to be the original source of the metals. The water flowing into the Cambrian sea contained lead, which was deposited with the Bonneteere dolomite as small particles. After the subsequent formations were laid down the concentration of lead by surface waters began. Finally the Pennsylvanian shales were laid down over this area and from them the greatest amounts of metals were derived. The solutions were thus in the main descending, though in part they may have ascended in artesian circula-
tion through the La Motte sandstone. Buckley states, indeed, that even at present there are strong indications of artesian conditions in the mines. On the whole the ore deposition is post-Pennsylvanian. Here again the impermeable character of the Pennsylvanian may be advanced as an argument against Buckley's view, as well as the improbability of a strong descending flow through the great thickness of Cambrian, Ordovician, and Mississippian beds. A satisfactory explanation of the southeastern Missouri deposits is as yet lacking.

On the other hand, Van Hise, Bain, Tangier Smith, and Siebenthal, who have studied the Joplin district, believe that the source of the ores is in the various formations below the Pennsylvanian, particularly in the Cambro-Ordovician, and that atmospheric waters penetrating these rocks were carried up against the impervious beds of the Pennsylvanian and here deposited in the pre-Pennsylvanian breccias and sink-holes. Bain assumed the existence of important faulting, which according to late investigations does not exist. Smith and Siebenthal hold that the ores were formed considerably later than the Pennsylvanian, after the Ozark uplift had established an artesian circulation. The surface waters entered the older Paleozoic outcrops to the south and east of the Joplin region. After following these beds they passed upward through the jointed and brecciated Mississippian limestone until they reached the vicinity of the impermeable shales. There is, indeed, in the deep wells of Joplin good evidence of the existence of artesian pressure. Like Buckley, these authors believe that the precipitation was effected by organic matter.

For the deposits of Wisconsin and Illinois Van Hise and Bain assume that the metals were minutely disseminated as sulphides through the Galena dolomite and concentrated, probably in late Tertiary or post-Tertiary time, by the action of surface waters descending in shallow troughs through the fractured and slightly inclined Galena limestone, and that the reduction was effected by the organic matter of the oil rock. In the Galena limestone the solutions were practically confined between two beds of almost impermeable shale.

According to Cox the metals were derived from the overlying Maquoketa shale, in which he finds some evidence of the presence of sulphides, particularly sphalerite. He points out, with good reason, that the shales are better suited as receptacles
for metallic ores than the limestones. The latter are deposited in
deep water, while the shales are shore formations in which the
metallic substances derived from adjacent continents would most
easily be deposited as detritus or precipitated from solutions.

We find here the same conflict of opinion, as in the case of the
Missouri deposits and those of Silesia, between the ascensionists
and the descensionists. The problem is not yet solved, but
looking beyond these controversies, we cannot deny that in
many countries transition types appear which seem to connect
these apparently distinct non-igneous deposits with deposits of
igneous affiliations.

Very recently C. E. Siebenthal has presented an important
contribution to the question of genesis of the Missouri Valley
deposits.¹ He found that deposits from 13 deep wells in Mis-
souri, Oklahoma, and Kansas contained much iron sulphide, as
well as zinc, lead, and copper. The dried deposits contained a
maximum of 0.6 per cent. zinc, 0.2 per cent. lead, and 0.1 per
cent. copper. Zinc was present in 13 samples, lead in 11, and
copper in 9. The waters commonly yielded a trace of zinc.
The greatest amount found was 0.6 part per million. Out of
392 waters from Kentucky analyzed by A. M. Peters 89 con-
tained zinc; of these 89 waters 36 contained also H₂S or Na₂S.
The general type of waters containing zinc consists of salt
waters with H₂S or alkaline waters carrying earthy carbonates.
Siebenthal shows that CO₂ holds the sulphides of iron and zinc
in solution in the presence of H₂S and that ZnS is more soluble
in waters containing CO₂ than in sodium chloride water. Water
containing an excess of bicarbonates and sodium sulphide also
holds ZnS in solution. According to these investigations it
seems probable that the metals were carried as sulphides in the
depositing waters.

¹ Paper read before the Geol. Soc. of Washington, Nov. 27, 1912.
CHAPTER XXII

METALLIFEROUS DEPOSITS FORMED NEAR THE SURFACE BY ASCENDING THERMAL WATERS AND IN GENETIC CONNECTION WITH IGNEOUS ROCKS

CHARACTER AND ORIGIN

General Features.—The deposits at the orifices of hot ascending springs have been described in Chapter VII. It has been shown that they consist of opal, chalcedony, quartz, calcite, aragonite, barite, and fluorite, with a number of other gangue minerals, and that they also contain in places metallic gold and sulphides, such as cinnabar, stibnite, and pyrite, but never the other common ore minerals such as chalcopyrite, galena, zinc blende, and arsenopyrite.

In regions of comparatively recent volcanic activity where the measure of erosion since the eruptions ceased is in hundreds rather than in thousands of feet we find a group of important ore deposits, most commonly in the form of fissure veins. They generally occur in igneous flow rocks and also cut the underlying or adjacent formations. They constitute the source of a large part of the world's production of gold, silver, and quicksilver, and they contain the spectacular bonanzas of the Cordilleran region, of which examples are found at Tuscarora, Virginia City, Goldfield, Cripple Creek, Pachuca, Guanajuato, and many other districts. Following the Tertiary outbursts of effusive rocks, these deposits accompany the "circle of fire" that encompasses the Pacific Ocean. We find them in Japan, in the East Indian Islands, and in New Zealand. They are characteristically developed in that classical mining region of the Old World, in Hungary and Transylvania, where one of the elements—tellurium—which so often accompanies them was first found.

Though most of these ore-deposits are found in the Tertiary flow rocks they are not confined to rocks of this period. There is good reason to believe that veins are developing now in some regions of recent volcanism, and also that similar veins have been formed during pre-Tertiary outbreaks, although erosion
has removed most of the older representatives of this type. These deposits have certain well-marked characteristics which are partly of a mechanical, partly of a chemical origin.

Because the fissuring of the rocks took place near the surface, under slight load, open cavities were abundant, and filling, crustification, and comb structure are conspicuous. The walls are likely to be irregular, and the vein matter is often "frozen" to the walls. Splitting, chambering, and brecciation are features of the veins. While metasomatic processes have been active in the surrounding rocks, the ore is usually confined to the open fissures. Short and irregular veins are more frequent than the regularly developed conjugated fractures resulting from strong compressive stress. Divergent systems of fractures or several parallel systems with little apparent relationship are thought to be due to the gravitative settling of volcanic piles.

The occurrence of the ore in "stockworks," or in pipes, or below impervious beds is often observed. In superimposed lava flows of different kinds, some are usually better adapted to the deposition of ore than others and this difference may result in the development of ore-shoots which are approximately horizontal.

Among the metals contained in these deposits gold and silver are by far the most important. Base metals are present, plentifully enough in places, but the mines are rarely worked for these. Large bodies of galena and zinc blende occur in some places, but it is decidedly rare to find important copper deposits. The "pyritic" deposits are not represented; they are confined to the deeper zones or to those of higher temperatures. Arsenic and antimony, bismuth, tellurium, and selenium are common but are rarely of economic importance; quicksilver is present in some deposits and indeed the typical quicksilver deposits belong to this class. Cobalt and nickel, tungsten, and molybdenum are not unknown, but are entirely subordinate. Their home is in the deeper deposits.

The pure gold deposits are relatively scarce. Those carrying silver only are common in certain regions, like Mexico. The usual metals are gold and silver occurring together in varying proportions.

Among the ore minerals native gold should be mentioned first. It contains silver, as a rule, and is of pale yellow color; a proportion-sometimes occurring-is ounce for ounce when the mineral is of very pale grayish-yellow color (electrum). Deep yellow
gold is not unknown, however. The gold is often present in very fine mechanical distribution, being sometimes so closely intergrown with ore minerals and gangue that no colors can be obtained by panning. When derived by oxidation of tellurides it is of dull brown color and is difficult to recognize even in rich specimens. The whole series of tellurides is present. As the gold generally occurs in minute particles rich placers below thecroppings of these deposits are rather unusual.

Native silver is a product of oxidation. The primary and most abundant silver mineral is argentite; a long series of complex silver sulphantimonides and sulpharsenides are also characteristic; it is often difficult to say which are secondary and which are primary. Among them are proustite, pyrargyrite, miargyrite, stephanite, polybasite, tetrahedrite, and more rarely enargite.

Stibnite is plentiful in deposits of certain types. Among thebase minerals pyrite is always present, but in small quantity and fine distribution; marcasite, a mineral typical of deposition near the surface, is not unusual; often it is secondary. There are also galena, zinc blende, chalcopyrite, and sometimes asbandite; rarely arsenopyrite; never pyrrhotite or magnetite.

Of gangue minerals quartz is the most abundant, and crystals of it are plentiful but rarely large; an amethyst color is oftennoticeable. The quartz aggregates are not glassy or milky but usually fine-grained (hornstone) and often chalcedonic, with rapidly changing grain. Chalcedony and opal are usually later than the quartz; both are abundant in some quicksilver deposits. Calcite, dolomite, barite, and fluorite are locally the dominantgangue minerals, while siderite is rare. Manganese minerals like rhodochrosite and sometimes rhodonite are typical of certain groups. Kaolin accompanies the veins, sometimes in large amounts, but is probably in most cases a product of secondary changes by descending waters. Sericite and chlorite appear in the altered country rock. Zeolites are present in some deposits, but are certainly of exceptional occurrence.

One of the most widespread and characteristic gangue minerals and the most difficult to explain is adularia (or valencianite). 1

DEPOSITS FORMED NEAR THE SURFACE

Discovered by Breithaupt in specimens from the Valenciana mine at Guanajuato, this mineral has since been found in numerous other places, mainly in the Cordilleran region, as part of the filling, and as a metasomatic product in the country rock. Among the places where this feldspar plays an important part may be mentioned Silver City (Idaho), Tuscarora, Tonopah, and Rawhide (Nevada), Gold Road (Arizona), Republic (Washington), and Cripple Creek and Creede (Colorado). It does not occur at Goldfield, Nevada, where solutions of acid reaction

A. F. Rogers, Orthoclase-bearing veins from Rawhide, Nevada, Econ. Geol., vol. 6, 1911, p. 790.
appear to have deposited the ore. The orthoclase mineral is usually a pure potassium feldspar, although varieties with several per cent. of sodium have been found at Waihi, New Zealand, and in the Gold Spring district, Utah.¹ Sometimes the adularia replaces orthoclase, biotite, and other rock minerals (Fig. 130); it is also found in the form of well-developed crystals of prism and dome intergrown with vein quartz (Fig. 131). The cross-sections of the adularia crystals are usually of rhombic shape.

Fig. 131.—Intergrowth of quartz (q) and adularia (a), Fraction vein, Tonopah, Nevada. Magnified 38 diameters. After J. E. Spurr, U. S. Geol. Survey.

The mineral also occurs abundantly in some veins that had originally a calcite gangue, now replaced by an intimate intergrowth of adularia and quartz.

The high-temperature minerals, such as augite, amphibole, olivine, biotite, tourmaline, topaz, garnet, magnetite, ilmenite, and chromite, are conspicuously absent.

Successive Phases of Mineralization.—Veins formed near the surface in volcanic regions are sometimes subject to peculiar changes, which are rarely observed in deposits of more deep-seated origin. An earlier gangue mineral, such as calcite or

¹ B. S. Butler, U. S. Geol. Surv., oral communication.
barite, may be wholly wiped out and replaced by a new gangue of quartz and adularia. This alteration has nothing to do with

Fig. 132.—Lamellar quartz, replacing calcite gangue, De Lamar, Idaho. One-half natural size.

Fig. 133.—Section of lamellar ore, De Lamar Idaho. Natural size.

surface waters; it is plainly caused by a change in the composition of the ascending currents. Indications of this process may be
seen even where it has not been carried to completion. In many veins at Cripple Creek deposition began by the growth of slender crystals of celestite from the walls, and these crystals were subsequently replaced by quartz, in which the pseudomorphs are now embedded. In the Trade Dollar vein at Silver City, Idaho, the filling consists of quartz and adularia, but casts of barite or calcite covered with minute crystals of adularia indicate that here also there was a preliminary carbonate or sulphate stage.

Fig. 134.—Thin section of lamellar quartz and adularia, pseudomorphic after calcite, Jarbidge, Nevada. Magnified 12 diameters. After F. C. Schrader, U. S. Geol. Survey.

In many instances the vein was completely filled by calcite, each grain separated by a slender partition of quartz; at the beginning of the second stage this calcite was dissolved, leaving a skeleton of thin silica walls; secondary quartz and often also adularia were deposited upon these walls, giving them more strength, but the ore remains a delicate aggregate of "hackly" or lamellar quartz, such as is exceedingly characteristic of some mining districts. At De Lamar, Idaho, this ore consists only of quartz (Figs. 132 and 133). In the veins at Gold Road, Arizona, and many other veins in the same district, the original gangue material consisted of calcite and fluorite and the "pseudomorphic" ore consists of quartz and large amounts of adularia. Similar ore may be seen in the Mount Baldy district, southern
Utah, at Jarbridge, Nevada (Fig. 134), and at many other places. This important development of adularia, involving transportation of alumina by siliceous solutions, remains without full explanation. The composition of the ore may be similar to that of a pegmatite dike, but the structure is wholly different.

There is reason to believe that this "pseudomorphism" is accompanied by a change in the metal content of the vein. At least it seems as if the original filling of barite, calcite, and fluorite carried more silver and as if the silicification and feldspathization was accompanied by a concentration of the gold. Similar processes may be traced in some quartz veins of the Republic district, Washington. Here quartz with some adularia replaces a slender acicular or thin tabular mineral, probably calcite, developed parallel to c and r, which seems to have been deposited only along the walls of the vein.

Zeolitic Replacement.—Zeolites are foreign to veins of the deeper zones; in the veins formed near the surface they are occasionally found, but they are rare. At a few places zeolites are reported in the altered country rock (Tonopah, the Comstock, and Waihi). At Guanajuato zeolites are found in the filling of the veins, but here they always belong to the latest phases of vein formation. Apophyllite, laumontite, and stilbite are the species reported. Few of these occurrences in the vein filling have been carefully studied. In the Southern Republic mine at Republic, Washington, laumontite, associated with calcite, occurs on a fairly large scale. At this place the ordinary fine-grained banded quartz filling had evidently been dissolved and the laumontite-calcite aggregate was deposited in its place. The ore in this zeolitic zone or shoot contains mainly silver, whereas elsewhere in the mine gold predominates in the quartz gangue. It seems to be worth while to draw attention to this occurrence with a view to ascertaining whether the development of zeolites is not favorable to silver enrichment. Many facts noted in veins of other classes, like those of Kongsberg and Andresberg, point in this direction.

Primary Ore Shoots, Oxidation, and Sulphide Enrichment.—Rich oxidized ores are often encountered in these deposits at the surface and down to the water-level. Whether the primary ore is greatly enriched in this zone depends really more on the

texture and composition of the ore than on its original tenor. In veins of hard fine-grained quartz oxidation often fails to produce an ore of higher grade. There are many districts in which the oxidized ores are little, if any, richer than those below the oxidized zone. Such conditions exist, for instance, at Cripple Creek and at Tonopah.

The largest and richest masses of ore are often found just below the oxidized zone and in general contain sulphides, sulphantimonides, and sulpharsenides. It will suffice to call attention to the great silver bonanzas of Guanajuato and Pachuca; to the Comstock, where in one month silver-gold ores valued at $6,000,000 were extracted; to Tonopah, Nevada, where in three months ore yielding over $3,000,000 was extracted; to the Caledonian mine at Thames, New Zealand, which in one year from a small ore-shoot produced $6,000,000 in gold; to Cripple Creek, Colorado, where in one year from a small area but a considerable number of mines $18,000,000 in gold was produced; to Goldfield, Nevada, where during a recent year over $10,000,000 in gold was recovered from one property, the ore averaging $38.50 per ton, and where, of the phenomenally rich ore shipped in 1907, one carload of 47 tons yielded $600,000 in gold.

At the same time it is well to emphasize the fact that most of these high yields proved ephemeral. The bonanzas were extracted, poorer ore was found in depth, and the mine was abandoned or continued in feeble existence.

These great bonanzas are due in part to primary deposition—in large degree probably to the later, reconcentrating phases of primary deposition; and in part to sulphide concentration by descending waters charged with precious metals from the upper parts of the veins. It should not be overlooked that ore-shoots of primary origin are common enough. Take, for instance, the Cripple Creek gold ores, in which evidence of enrichment is conspicuously lacking; these primary shoots are usually of a markedly irregular form; many of the smaller ore-bodies are likely to follow intersections of fissures. In depth the rich shoots show a tendency to contract, to feather out, or simply to become impoverished. In many cases zinc blende in a quartz gangue appears in depth. On the other hand sulphide enrichment is conspicuously marked, especially in silver veins. In gold-bearing veins the enrichment in gold is likely to be localized just below the zone of oxidation. The secondary silver minerals are native
silver, argentite, ruby silver, stephanite, and polybasite—that is, the same minerals (except the native silver) as occur in primary ore. As a consequence it is often exceedingly difficult to distinguish primary ore and enriched ore, and when in addition to this we recognize that the later effects of primary mineralization may sometimes closely simulate the products of descending surface waters, the difficulties of correct interpretation will be fully realized. The distinction is made easier when the secondary sulphides form a distinct zone immediately below the oxidized part of the lode.

The conditions for the deposition of gold and silver are apparently much more favorable near the surface than at greater depths; on the other hand, deposition took place rapidly and the gold and silver contents of the solutions were doubtless exhausted before they reached the actual surface.

Types of Deposits.—The merging of the various types makes it difficult to establish a rigid classification.

One type, namely, the zeolitic copper deposits in amygdaloid rocks, has been left out of consideration at this time, for it really represents a mineralization of the lava derived from its own body. To gain a general orientation the deposits here described are classified as follows:

2. *Stibnite Deposits.*—Stibnite, pyrite, and some other sulphides; also quartz.

3. *Base Metal Deposits.*—Chalcopyrite, galena, zinc blende, tetrahedrite, in an abundant gangue of quartz, carbonate, or barite. Usually principal values in gold and silver.

4. *Gold Deposits.*—Native gold, alloyed with silver. Subordinate argentite, ruby silver, etc. Quartz.

5. *Argentite-Gold Deposits.*—Argentite, ruby silver, tetrahedrite, etc.; native gold, quartz, calcite.

6. *Argentite Deposits.*—Argentite, ruby silver, tetrahedrite, etc.; quartz or calcite, barite, and fluorite.

7. *Gold Telluride Deposits.*—Gold tellurides, quartz, or quartz and fluorite.

Older Representatives of this Class.—The types just enumerated almost wholly represent veins or similar deposits in Tertiary lavas of the Cordilleran or Pacific or Hungarian regions, but a close examination will easily discover examples of similar deposits of a greater geological age. Beck\(^1\) described relatively unimportant deposits in the Mesozoic melaphyres and quartz porphyries at Ismbach, in the German Palatinate, that carry chalcopyrite, galena, and tetrahedrite in a gangue of calcite, barite, and rhodochrosite and are probably ancient representatives of this class. The celebrated veins of Freiberg, or at least three types of them, namely, the "noble quartz formation," the "noble carbonate formation" and especially the "barytic lead formation," should be mentioned in this connection. There seems to be good evidence that these are Carboniferous representatives of veins formed near the surface, although the lavas in which they probably reached the surface are now eroded. Their structure and composition point clearly to a shallow deposition, and were the physiographic conditions in the Erzgebirge fully analyzed the results would probably confirm this view. The "barytic lead formation," for instance, carries barite, fluorite, quartz, and dense quartz as gangue minerals with beautiful crustification, while the ore minerals are argentiferous galena, tetrahedrite, bournonite, and chalcopyrite.

Another occurrence that might well be cited comprises the insignificant veins in the Triassic diabase flows at Bergen Hill, New Jersey, which contain pyrite and galena in a gangue quartz and adularia, with secondary zeolites.

Genesis.—In the preceding pages attention has been called to the strong evidence connecting the class of deposits here discussed with igneous action and pointing to ascending hot waters as the agents of deposition. The best proof that the ores were not formed by the ordinary circulation of surface waters is the fact that deposition has not proceeded uniformly, but that the vein-forming epochs were of brief duration and followed closely after each considerable eruption. Evidence of this relation is available from many important districts. At Tonopah the principal mineralization followed the eruption of the earlier andesite and the veins are truncated by the flow of the later andesite and the later rhyolite. At Jarbridge, Nevada, the veins are contained in the early rhyolite, while the later rhyolite is

DEPOSITS FORMED NEAR THE SURFACE 443

barren. At Waihi, New Zealand, the rich veins are sharply truncated by erosion and capped by a rhyolite of later age.

The occurrence of these deposits in lavas really counts for but little; there are vast areas of lava flows absolutely barren of mineral deposits. On the other hand, several of the Hungarian authors have pointed out the fact that the veins are confined mainly to the vicinity of volcanic necks or centers of eruption. Exactly the same conclusions have been reached in the United States. This feature serves to connect the veins formed near the surface with those of greater depths. The deposits in the surface lavas are, then, simply the tops of veins, the roots of which are to be found in the intrusive masses of the depths. No matter whence all the water or part of the water came, the deposition of the substance of the veins—their valuable content—appears to be a phenomenon connected with intrusive activity and not merely dependent upon the heat furnished by the lava flows to circulating surface waters. The metals, as well as the sulphur, carbon dioxide, and fluorine, were in all probability derived from intrusive underlying masses.

Proof of Depth below Surface.—Physiography furnishes the data on the original surface during deposition. We may be able to trace the old surface of the volcanic slope or plateau and ascertain the relation of the outcrops to the uppermost flow, or in dissected volcanic piles it may be possible to reconstruct approximately the old surface of the volcanic cone. Of this latter possibility Cripple Creek is an instance (Fig. 150); the present surface was probably less than 1,500 feet below the original surface of the volcanic cone. Ransome estimates that at Goldfield, Nevada, the surface has been degraded but a few hundred feet below the original contours of the flows. A fine example showing the connection of deposits formed near the surface with those of more deep-seated type is offered by the San Juan region, in Colorado, where erosion has not only intersected the flows but laid bare the intrusive masses forced into them—all within a vertical interval of 6,000 feet.

Proof of Temperature.—The similarity to hot-spring deposits is least marked in deep-seated veins, but becomes striking in the veins here under consideration. The fine-grained chaledonic and banded quartz of spring deposits (Fig. 5, p. 96) is entirely similar to the often delicate and beautifully banded and crustified portions of these veins. Every line of evidence indicates deposi-
tion by waters that held in solution large quantities of substances not easily soluble—that is, by hot waters which at the surface could not have had a temperature of more than 100° C. The minerals present are those which we have reason to believe were developed at a temperature less than 200° C. What the actual temperatures were in each case is of course scarcely possible to ascertain.

Relation to Other Veins.—The question naturally arises as to the character of these veins in depth. Do they actually change to assume the aspect of the veins of the deeper zones? The evidence, scant as it is, indicates that this is probably true. In regions of deeply eroded volcanic flows, like the San Juan country in Colorado, the veins in the lower exposures show an approach to the types of deep-seated origin. During the long ascent there was no doubt a progressive change in the nature of the depositing waters; some of their constituents were deposited and others were acquired from the rocks they traversed.

METASOMATIC PROCESSES

Extent of Alteration.—At considerable depths the ore-forming solutions move in the paths prescribed by fissuring and brecciation; they rarely penetrate great masses of rocks. Near the surface, especially in the great volcanic piles, different conditions prevail. There are here thick beds of tuffs and agglomerates with great porosity, and the stresses may irregularly shatter large volumes of rocks. The solutions and gases—of meteoric or telluric origin—move far more freely and alteration is effected on the largest scale. Here, too, we find most emphasized the peculiar effects of the mingling of ascending and descending solutions.

Any one who has visited an active or recently extinct volcano has undoubtedly observed the areas of discolored reddish, brown, and yellow rocks which indicate alteration. Similar phenomena are seen in partly eroded cones of older volcanoes, which in addition are often seamed by metalliferous deposits.

Volcanic Emanations.¹—The active volcanoes constantly emit volatile matter from lava flows, craters, and fumaroles. Some of the less volatile materials crystallize as sublimates near the gas

¹ For summary on this subject see F. C. Lincoln, Magmatic emanations, *Econ. Geology*, vol. 2, 1907, pp. 258–274.
vent; other parts escape into the atmosphere. There is always more or less water gas, though some of the basaltic volcanoes, like those of Hawaii, apparently contain but little of it. A. Brun\(^1\) believes that the magma itself is anhydrous, and that the apparent clouds of steam seen during eruptions are mainly dust mingled with volatilized chlorides. This is probably not entirely correct, for the whole range of igneous phenomena and ore deposits connected with them give positive evidence of the presence of some water, at least. Among the best proofs are the hydrous minerals, such as the micas, topaz, and analcite, and the presence of water as inclusions in rock-forming minerals.

Chlorides\(^2\) are given off in abundance by the erupted lavas and crystallize near the fumarolic vents; they comprise the salts of sodium, potassium, aluminum, ammonium, iron, copper, lead, and manganese. Sulphates come next in abundance; more rarely are fluorides or oxyfluorides found. Boric anhydride and sulphur are common products of sublimation at many places. In the sulphur selenium and tellurium have been recognized. Arsenic in the form of realgar is reported, and the presence of cobalt, tin, bismuth, and molybdenum has been established, most of the detailed work having been done at the Italian volcanoes. Among the sulphides, pyrite, pyrrhotite, and galena\(^3\) are mentioned. Specularite is a common product of the reactions effected by the volcanic gases. Even silicates, such as leucite, augite, hornblende, and sodalite, may be formed by sublimation.

Among the volcanic gases nitrogen, carbon dioxide, and hydrogen sulphide\(^4\) are the most important and their emission, particularly that of carbon dioxide, may continue long after the igneous activity has subsided and even after the volcanic cone has been eroded. Evidence of this is furnished by the exhalations of carbon dioxide and nitrogen in the mines at Cripple Creek, of nitrogen at Creede, and of carbon dioxide in the Tertiary gold deposits of New Zealand.

\(^1\) Recherches sur l'exhalaison volcanique, Geneva, 1911.
\(^2\) According to Brun congealed lavas, upon heating, give off considerable quantities of chlorides, chlorine, hydrochloric acid, sulphur dioxide, and nitrogen. This statement still awaits confirmation.
\(^3\) F. Zambonini, Mineralogia Vesuviana, Naples, 1910.

\(^4\) Oxygen is usually and marsh gas (\(\text{CH}_4\)) sometimes present.
Types of Alteration.—These gases are admixed with water vapor, which may or may not be of intratelluric origin, and, at the point of issue, oxidation and interaction produce compounds like sulphur dioxide, sulphuric acid, hydrochloric acid, and sulphur. Of these reagents carbon dioxide and sulphuric acid are most effective in rock alteration. The volcanic rocks are converted to kaolin and to nontronite, the iron mineral corresponding to kaolin. Alunite, jarosite, and other sulphates are often mixed with these minerals.

These masses of altered rocks, which are formed on the slopes of volcanoes, scarcely ever carry valuable ores, probably because the metallic load of ascending waters is usually deposited before the cool surface zone is reached.

Other forms of alteration take place within the volcanic cones and may be exposed by subsequent erosion. They are caused by waters that contain no strong acids, but probably mainly carbon dioxide, silica, and hydrogen sulphide, and that are of alkaline rather than acid reaction. Some of these waters move slowly, percolating through great masses of rocks; others move rapidly in prescribed channels and effect extensive changes in the immediately adjoining rock.

One of the most common types of alteration is that resulting in the "propylitic facies"; it affects mainly andesites and basalts, more rarely rhyolites, often spreading over wide areas in mineralized districts. Its mineralogical characteristics consist in the abundant development of chlorite and pyrite, sometimes also epidote; in places it is accompanied by the development of carbonates and a little sericite. The rock assumes a dull green color. The chemical changes consist of a moderate leaching of both potassium and sodium; the silica is usually decreased, as are also calcium and magnesium, except when carbonates of these metals are formed. The composition of the rock changes but little and the additions consist only of sulphur and some water of hydration.

Still another type of alteration, seen mostly in siliceous rocks like rhyolite, but also in other kinds, consists in a general silicification of the groundmass and phenocrysts, with aureoles of quartz developing around quartz phenocrysts. More rarely sericite develops in abundance and the flow rocks are converted over large areas to a mixture of quartz and sericite, with more or less pyritization.
DEPOSITS FORMED NEAR THE SURFACE

Near the veins the alteration is usually most intense, although here, too, simply chloritized rock may often adjoin the fissure filling. In sericitization sodium is almost entirely carried away and potassium is accumulated in a marked degree in sericite and adularia; the latter mineral has a wide distribution, both in the altered country rock and in the fissure filling. Unless carbonates are formed, calcium and, to a less degree, magnesium are carried away; much pyrite is introduced which usually contains at least traces of precious metals. The percentage of silica is reduced. Close to the vein, silicification often assumes the ascendancy and a quartzose mass of silica, adularia, and sericite, with more or less sulphides, develops and may form part of the ore. In rare cases hydargillite and zeolites may appear in the altered rock. Rutile appears to be the only stable titanium mineral. Manganese, titanium, and phosphorus are partly removed from the rock.

Nearer the surface another potassium-aluminum mineral—alunite—appears in considerable quantities. This hydrous sulphate is characteristic of large altered areas in volcanic regions, but, being inconspicuous, is easily overlooked. That it often occurs together with pyrite and sericite is clearly proved, and its development in this phase is probably confined to the zone where the descending waters carrying free sulphuric acid meet the ascending currents of alkaline waters. It appears to belong to a distinctly higher horizon than the sericite and adularia.

In eroded and mineralized volcanic regions there is finally another type of alteration, the effects of which were superimposed upon the earlier changes and tend to confuse the true history. As soon as the mineralized rocks become exposed to the air oxidation begins and sulphuric acid is generated by the action of oxygen on sulphides. This sulphuric acid descends with the surface water and converts the sericitized rocks into kaolin mixed with other oxidation products. Where waters exceptionally rich in sulphuric acid have acted on the rocks almost everything but quartz is carried away and the final result is a loose quartz aggregate. Here, too, alunite may form. Descending still farther these sulphuric acid solutions may lose their oxygen, and, under certain circumstances, secondary sulphides, with alunite and sericite, may again develop.

This brief sketch indicates how complicated the series of reactions may be and how the same minerals may form at different steps of the process.
It is assumed in the above discussion that ascending alkaline waters do not form kaolin. This is undoubtedly true in general, but it is possible that kaolin may be formed in places by such waters close to the surface. The processes of alteration by hot ascending waters seem to result in minerals of only moderate hydration; zeolites, kaolin, and other strongly hydrated minerals are conspicuously absent. The zeolites appear to require quiescent, stagnant conditions, such as do not exist close to strong ascending currents.

The following analyses indicate the course of propylitic alteration of andesite at the Comstock lode, Nevada.

Analyses of Rocks Showing Propylitic Alteration

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>62.16</td>
<td>64.62</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.45</td>
<td>11.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.27</td>
<td>8.39</td>
</tr>
<tr>
<td>FeO</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.20</td>
<td>1.18</td>
</tr>
<tr>
<td>CaO</td>
<td>4.13</td>
<td>8.96</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.07</td>
<td>3.13</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.45</td>
<td>1.95</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.15</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>99.59</td>
<td>100.95</td>
</tr>
</tbody>
</table>

Metasomatic Processes at Thames and Waihi.—Extensive propylitization has been described by several authors from observations in the Hauraki Peninsula, in the northern island of New Zealand,₁ where rich gold-bearing veins appear in volcanic rocks like pyroxene andesite or dacite. The extreme phase close to the veins is a grayish-white rock, but a more widespread type is a chloritized andesite which corresponds to the propylitic facies

as defined on a previous page. In this second type the ferric minerals are chloritized, the pyroxene often passing first through a uralitic stage, while the plagioclase remains comparatively fresh, but contains some calcite and sericite.

Finlayson has presented two extremely valuable series of analyses, which are given below in full. They represent rocks from Thames and Waihi, the two most important fields in the peninsula. The first column in each table gives the composition of the fresh rock, the second that of the propylitic or chloritic facies, and the rest are analyses of the more altered forms in which sericite and adularia are the predominating metasomatic products. The chemical changes during propylitization are not great.

ANALYSES OF FRESH AND ALTERED ROCKS IN THE THAMES DISTRICT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.42</td>
<td>52.69</td>
<td>57.99</td>
<td>55.38</td>
<td>58.98</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.68</td>
<td>0.53</td>
<td>0.51</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.61</td>
<td>18.33</td>
<td>17.59</td>
<td>15.63</td>
<td>11.21</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.34</td>
<td>2.32</td>
<td>1.56</td>
<td>1.88</td>
<td>1.45</td>
</tr>
<tr>
<td>FeO</td>
<td>3.77</td>
<td>2.98</td>
<td>2.37</td>
<td>2.95</td>
<td>2.42</td>
</tr>
<tr>
<td>MnO</td>
<td>0.43</td>
<td>0.25</td>
<td>0.21</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>2.19</td>
<td>3.09</td>
<td>2.01</td>
<td>1.88</td>
<td>1.43</td>
</tr>
<tr>
<td>CaO</td>
<td>5.69</td>
<td>7.87</td>
<td>5.45</td>
<td>6.01</td>
<td>8.11</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.22</td>
<td>2.62</td>
<td>1.98</td>
<td>0.83</td>
<td>0.61</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.94</td>
<td>0.98</td>
<td>1.65</td>
<td>3.28</td>
<td>3.93</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.85</td>
<td>0.73</td>
<td>1.56</td>
<td>2.41</td>
<td>2.54</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.62</td>
<td>3.71</td>
<td>1.89</td>
<td>1.92</td>
<td>1.15</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.05</td>
<td>3.59</td>
<td>3.89</td>
<td>4.58</td>
<td>4.69</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.31</td>
<td>0.42</td>
<td>0.35</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Fe₂S₄</td>
<td>1.42</td>
<td>2.35</td>
<td>3.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.02</td>
<td>100.11</td>
<td>100.43</td>
<td>99.68</td>
<td>99.93</td>
</tr>
</tbody>
</table>

1. Fresh hornblende andesite, Thames.
2. Chloritized hornblende andesite, Halcyon mine.
3. Altered andesite, 14 feet from Ophir vein, Halcyon mine.
4. Altered andesite, 5 feet from Ophir vein, Halcyon mine.
5. Altered andesite, adjoining Ophir vein, Halcyon mine.
Mineral Deposits

Analyses of Fresh and Altered Rocks at the Waihi Mine

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>63.45</td>
<td>58.39</td>
<td>61.78</td>
<td>69.35</td>
<td>76.61</td>
<td>85.65</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.75</td>
<td>0.68</td>
<td>0.69</td>
<td>0.43</td>
<td>0.28</td>
<td>tr.</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.26</td>
<td>16.51</td>
<td>14.89</td>
<td>11.66</td>
<td>8.31</td>
<td>1.35</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.28</td>
<td>2.46</td>
<td>2.08</td>
<td>1.53</td>
<td>1.08</td>
<td>0.43</td>
</tr>
<tr>
<td>FeO</td>
<td>3.01</td>
<td>2.98</td>
<td>2.51</td>
<td>1.66</td>
<td>0.59</td>
<td>0.21</td>
</tr>
<tr>
<td>MnO</td>
<td>0.36</td>
<td>0.32</td>
<td>0.28</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>1.29</td>
<td>1.66</td>
<td>1.08</td>
<td>0.46</td>
<td>0.51</td>
<td>0.31</td>
</tr>
<tr>
<td>CaO</td>
<td>3.44</td>
<td>4.08</td>
<td>3.16</td>
<td>2.09</td>
<td>3.61</td>
<td>2.56</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.21</td>
<td>2.08</td>
<td>2.18</td>
<td>1.06</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.78</td>
<td>2.89</td>
<td>3.68</td>
<td>3.31</td>
<td>1.98</td>
<td>1.41</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.10</td>
<td>2.41</td>
<td>1.89</td>
<td>1.61</td>
<td>0.43</td>
<td>0.24</td>
</tr>
<tr>
<td>H₂O+</td>
<td>2.80</td>
<td>2.87</td>
<td>3.05</td>
<td>2.12</td>
<td>1.08</td>
<td>1.33</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.08</td>
<td>1.56</td>
<td>2.01</td>
<td>2.24</td>
<td>1.87</td>
<td>2.04</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.29</td>
<td>0.31</td>
<td>0.30</td>
<td>0.26</td>
<td>0.11</td>
<td>tr.</td>
</tr>
<tr>
<td>FeS₂</td>
<td></td>
<td></td>
<td>0.65</td>
<td>1.88</td>
<td>3.59</td>
<td>4.69</td>
</tr>
<tr>
<td>Total</td>
<td>99.20</td>
<td>99.20</td>
<td>100.23</td>
<td>99.77</td>
<td>100.45</td>
<td>100.62</td>
</tr>
</tbody>
</table>

1. Fresh hornblende dacite, Waihi.
2. Chloritized hornblende dacite, 45 feet from Empire vein.
3. Altered dacite, 30 feet from Empire vein.
4. Altered dacite, 15 feet from Empire vein.
5. Altered dacite, adjoining Empire vein.
6. Replacement ore, Empire vein.

There is a distinct hydration, due, of course, to the development of chlorite. Where carbonates are formed, magnesia and lime, especially the latter, are somewhat increased. The percentages of alkali metals decrease, but only in moderate degree. If there is a tendency to sericitization the potassium may be somewhat higher in the altered rock. Within the influence of the vein-forming solutions the normal alteration to sericite and adularia asserts itself. The two excellent series of analyses quoted above show a slightly differing trend. At Thames the altered rocks contain 10 or 11 per cent. of carbonates, while at Waihi the carbonates form only one-half of that amount. As in the California gold-quartz veins, this development of carbonates results at Thames in the fixing of calcium, while magnesia shows slight changes. At Waihi there is little change in calcium, while the magnesia has been somewhat reduced. In both
DEPOSITS FORMED NEAR THE SURFACE

places there is strong leaching of sodium and progressive accumulation of potassium, except that at Waihi the potassium finally diminishes in the highly acidic vein material. Iron in ferric and ferrous state is converted to pyrite, but the total iron is not much increased. At Thames, where carbonates are abundant, the silica tends to decrease; at Waihi the opposite is true. In both places there is an apparent decrease in alumina, and also a remarkable and unmistakable leaching of titanium, phosphorus, and manganese, as has also been noted by Spurr at Tonopah.

Mineralogically the alteration near the vein results in sericite, calcite, siderite, pyrite, quartz, and adularia, the last mineral in places forming pseudomorphs after soda-lime feldspars, while it also occurs in small fissures. The adularia (valencianite) from Waihi was analyzed by Finlayson and found to contain 11.25 per cent. K₂O and 4.11 per cent. Na₂O, while the material from Silver City, Idaho, and Tonopah, Nevada, previously examined yielded only a very small quantity of Na₂O.

Stilbite and laumontite have been identified in the altered rocks of Waihi,¹ and analyses 4 (Waihi) and 5 (Thames) suggest the possibility of their presence.

Finlayson does not accept Spurr's view that the vein-forming waters, filtered through rock masses, caused propylitization, but thinks that this alteration is due to solutions or gases rich in CO₂, which permeated the rocks immediately after solidification; the sericite-pyrite-carbonate rock along the veins, according to Finlayson, is caused by ascending solutions of a different class.

Metasomatic Processes at Tonopah.—During the alteration of the earlier andesite near the veins at Tonopah, Nevada, the ferric minerals, biotite and hornblende, have usually been completely destroyed; their outlines are marked by aggregates of sericite, quartz, pyrite, and siderite, the latter two often crystallizing together. The primary andesine-oligoclase has changed to quartz and sericite or to adularia; the latter two are not often associated in the same specimens. The microlithic groundmass is largely altered to fine-grained quartz with fibers of sericite; pyrite and siderite are disseminated. Apatite and zircon are residuary minerals. Kaolin, when present, is believed to result from the alteration of sericite by descending solutions.

At a distance from the larger veins a propylitic type of alteration appears, in which calcite and chlorite, together with pyrite

and siderite, are the important minerals. The feldspars are altered to calcite with a little quartz; epidote is not abundant. There are transitions between the propylitic and the sericitic alteration, and according to Spurr they were produced by the same waters. Near the veins these waters introduced silica, potassium, and metallic sulphides; as they penetrated farther from these channels their metal contents were exhausted, while silica and potassium were still introduced; finally only carbon dioxide and hydrogen sulphide were left in the cooling waters, which, therefore, had little to precipitate and small power of abstracting. The wall rock acted as a screen for the traversing solutions.

As noted above, these views are not entirely accepted by Finlayson.

ANALYSES OF ALTERED TYPES OF EARLIER ANDESITE,
TONOPAH, NEVADA

(George Steiger, Analyst)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>62.16</td>
<td>55.60</td>
<td>72.98</td>
<td>73.50</td>
<td>91.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.72</td>
<td>0.44</td>
<td>0.47</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.45</td>
<td>16.70</td>
<td>14.66</td>
<td>14.13</td>
<td>4.31</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.27</td>
<td>2.23</td>
<td>1.01</td>
<td>1.51</td>
<td>0.77</td>
</tr>
<tr>
<td>FeO</td>
<td>2.71</td>
<td>3.51</td>
<td>0.16</td>
<td>0.26</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>2.20</td>
<td>2.60</td>
<td>0.33</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>CaO</td>
<td>4.13</td>
<td>4.27</td>
<td>0.18</td>
<td>0.12</td>
<td>none</td>
</tr>
<tr>
<td>BaO</td>
<td>0.12</td>
<td></td>
<td></td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.07</td>
<td>4.08</td>
<td>none</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.45</td>
<td>3.17</td>
<td>6.03</td>
<td>5.11</td>
<td>1.68</td>
</tr>
<tr>
<td>H₂O−</td>
<td>1.15</td>
<td>3.06</td>
<td>2.95</td>
<td>2.81</td>
<td>0.98</td>
</tr>
<tr>
<td>H₂O+</td>
<td></td>
<td>0.28</td>
<td>0.16</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99.59</td>
<td>99.98</td>
<td>99.87</td>
<td>99.71</td>
<td>100.08</td>
</tr>
</tbody>
</table>

1 Also 0.17 SO₂ and 0.03 S.
2 Also 0.02 ZrO₂ and 0.06 MnO.
I. Average composition of hornblende-mica andesite, calculated by W. H. Hobbs.
II. Altered andesite, Siebert shaft. Propylitic alteration to quartz, calcite, chlorite, and sericite.
III. Altered andesite, Mizpah mine. No original minerals remaining. Sericitic alteration.

IV. Altered andesite, Mizpah Hill. Typical alteration to adularia with a little sericite.

V. Ore material of Mizpah vein. Dense quartzose rock mixed with kaolin-like material. Silicified andesite.

The most prominent features of the alteration, as shown by analyses, are the almost complete removal, adjacent to the veins, of ferrous iron, calcium, magnesium, and sodium and the partial removal of ferric oxide. Even the resistant apatite and rutile seem to have been dissolved to some degree, as shown by the relations of phosphorus and titanium. On the other hand, there is a decided increase of silica, and the potassium has increased to almost double the quantity in unaltered rock. There is a moderate hydration, but no carbonates appear.

If the propylitization and the more intense alteration close to the vein were really accomplished by the same waters it seems strange that no carbonates should have been fixed in proximity to the veins, while they are so abundant in the propylitic rock. Spurr assumes that the waters were so rich in silica that its deposition took place first and excluded the carbonates. But the same reasoning does not hold for the California gold-quartz veins, which are composed almost exclusively of quartz, while the wall rock is carbonatized. According to Spurr the waters causing the alteration of the earlier andesite were highly charged with silica and potassium, with some carbon dioxide and sulphur, and carried silver and gold and relatively small quantities of other metals. After passage through the rocks they would contain an excess of sodium, much calcium and magnesium, some iron, a little silica and alumina, and only traces of the precious metals.

It is interesting to note that a later mineralization, which affected the later andesite, is materially different; the waters by which it was effected appear to have contained practically no gold and silver. The course of this alteration involves no silicification and practically no change in calcium. The sodium is, as before, almost wholly removed, and likewise a large part of the potassium. Carbonates are present in abundance, with pyrite, and some zeolite is probably present, possibly also some talc or hydargillite.

MINERAL DEPOSITS

ANALYSES OF FRESH AND ALTERED TYPES OF LATER ANDESITE, AT TONOFAH, NEVADA

Analysts: George Steiger (I); W. F. Hillebrand (II and III)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>56.26</td>
<td>51.64</td>
<td>43.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.73</td>
<td>0.73</td>
<td>0.89</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.18</td>
<td>15.58</td>
<td>16.49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.56</td>
<td>0.16</td>
<td>2.86</td>
</tr>
<tr>
<td>FeO</td>
<td>1.17</td>
<td>0.58</td>
<td>6.31</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.78</td>
<td>2.79</td>
<td>6.19</td>
</tr>
<tr>
<td>CaO</td>
<td>5.07</td>
<td>6.25</td>
<td>5.69</td>
</tr>
<tr>
<td>BaO</td>
<td>0.12</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>SrO</td>
<td>0.06</td>
<td>trace</td>
<td>none</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.23</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.43</td>
<td>2.46</td>
<td>0.84</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>2.07</td>
<td>2.56</td>
<td>3.00</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.61</td>
<td>4.43</td>
<td>7.93</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>0.62</td>
<td>4.24</td>
<td>4.19</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.31</td>
<td>0.36</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>none</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>FeS₂</td>
<td>0.03</td>
<td>7.89</td>
<td>2.55</td>
</tr>
</tbody>
</table>

Total: 100.45 100.13 100.57

I. Nearly fresh greenish porphyritic andesite, Halifax shaft. Contains feldspars, augite, magnetite, hematite, some kaolin, probably some secondary quartz.

II. Entirely altered dull-gray andesite, North Star shaft. Contains sericite, calcite, siderite, quartz, and some zoelite needles (?).

III. Entirely altered green andesite, Montana-Tonopah shaft. Contains hydargillite, calcite, siderite, pyrite, chlorite, and kaolin.

Analysis III is particularly interesting, for it shows a rather uncommon type of alteration with concentration of magnesium and strong hydration. The action of descending waters may be suspected to have been superimposed upon the primary alteration. The altered rock consists of a little residuary chlorite and uralite, with secondary talc, sericite, hydargillite, kaolin, calcite, siderite, pyrite, and some calcium silicate, possibly also zeolites. This type of alteration extends from the surface to a depth of 376 feet. As in II, sodium and a large part of the potassium have been removed and some iron and magnesia have been added.
The waters which altered the later andesite were clearly not identical with those which produced the change in the earlier andesite. Spurr assumes that they contained much carbon dioxide, sulphur, magnesium, and calcium. During the rock alteration they acquired alkalies and silica.

The Development of Kaolin.—It has been stated above that kaolin in the altered rocks of mineral deposits results mainly from the leaching by surface waters containing free sulphuric acid, and that this mode of alteration is frequently superimposed upon the products of chloritic and sericitic alteration by ascending waters. The sulphuric acid attacks and removes all calcium, magnesium, sodium, and potassium; and the final result is a mixture of kaolin and quartz. Below the influence of free oxygen sulphides may be deposited with the kaolin; pyrite, more frequently marcasite in arborescent forms, chalcocite, bornite, and rich silver ores like argentite and stephanite may also develop (see discussion of sulphide enrichment, Chapt. 29). In places—for instance, at De Lamar, Idaho—this kaolin may contain much gold in extremely finely divided state, undoubtedly concentrated by secondary reactions.

Metasomatic Processes at Silverton, Colorado.—The process of kaolinization is well described in Ransome’s report on the Silverton district, Colorado. Crystallized kaolinite—a rare occurrence—was found in the National Belle mine, but is here, too, later than the ore.

The normal alteration at Silverton is of propylitic aspect, changing near the veins to sericitic facies. In a series of rocks occurring in the Silver Lake basin the andesite breccia 150 feet from the vein is only slightly altered by the destruction of the dark silicates and by the beginning of replacement of feldspars by sericite (perhaps with some kaolin) and calcite. At 100 feet from the vein the quantity of chlorite and calcite increases. Fifty feet away from the vein the breccia structure is still visible, but the rock is wholly re-crystallized to quartz, chlorite, sericite, calcite, and rutile, with residuary apatite. Two feet from the vein there is less chlorite, and the rock consists mainly of sericite and quartz, with some grains of galena. Close to the wall there is but little chlorite, and considerable pyrite has been introduced. This general process corresponds fairly closely to that at Tonopah.

In the same region, at Red Mountain, the alteration of the rocks is carried to its ultimate conclusion. The mine waters show the presence of free sulphuric acid and alumina and the white kaolinized rock at the surface shows the following composition calculated from the analysis.

COMPOSITION OF ALTERED ROCK AT RED MOUNTAIN, NEAR NATIONAL BELLE MINE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>60.9</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>26.3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>5.6</td>
</tr>
<tr>
<td>Diaspore</td>
<td>3.8</td>
</tr>
<tr>
<td>Sericite</td>
<td>0.6</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.6</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>98.4</td>
</tr>
</tbody>
</table>

A still more advanced silicification is shown by the following analysis:

COMPOSITION OF ROCK AT WHITE CLOUD MINE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>85.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.63</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.23</td>
</tr>
<tr>
<td>FeO</td>
<td>0.25</td>
</tr>
<tr>
<td>MnO</td>
<td>none</td>
</tr>
<tr>
<td>CaO</td>
<td>0.27</td>
</tr>
<tr>
<td>BaO</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>none</td>
</tr>
<tr>
<td>Na₂O</td>
<td>none</td>
</tr>
<tr>
<td>K₂O</td>
<td>none</td>
</tr>
<tr>
<td>H₂O</td>
<td>3.07</td>
</tr>
<tr>
<td>CO₂</td>
<td>none</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.07</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.46</td>
</tr>
<tr>
<td>FeS₂</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>99.92</td>
</tr>
</tbody>
</table>

From the above analysis the mineral composition of the rock may be calculated as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>78.5</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>13.8</td>
</tr>
<tr>
<td>Pyrite</td>
<td>3.4</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.6</td>
</tr>
<tr>
<td>Sulphates</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>97.3</td>
</tr>
</tbody>
</table>

This extreme mode of alteration by sulphuric acid solutions results in the almost total elimination of calcium, magnesium, alkali metals, and carbon dioxide; its operation is similar to that of weathering by oxygenated waters, although in that process, of
course, pyrite cannot form. It differs radically from the sericitization and carbonatization described above.

Summary.—Summing up we may say that sericite and carbonates mark the alteration by ascending metalliferous solutions at intermediate and moderate depths; that nearer the surface adularia appears as an important metasomatic mineral in addition to sericite; and that still nearer the surface or under the influence of descending sulphuric acid solutions we find kaolin, or, where sulphuric acid is present in abundance, alunite.

QUICKSILVER DEPOSITS

The Ores and Their General Occurrence.—The principal quicksilver ore is cinnabar (HgS), which contains 86.2 per cent. mercury. A black modification of this mineral, called metacinnabarite, rarely occurs in large amounts and is probably a secondary sulphide deposited by descending waters. Native quicksilver, silver and gold amalgam, calomel (HgCl), quicksilver oxide (montroydite), and several oxycchlorides are evidently secondary minerals, developing from the sulphide. Primary but rare minerals are the black telluride of quicksilver, coloradoite; the selenide, tiemannite; the sulphoselenide, onofrite; and other still rarer combinations of the selenides of copper, lead, and quicksilver. Mercurial tetrahedrite is not uncommon, and some varieties contain as much as 17 per cent. quicksilver, although the percentage is usually much smaller. In smaller quantities this metal is also sometimes present in other minerals, for instance, in the native silver of Kongsberg, Norway, and in the dyscrasite of the silver-bearing veins of Cobalt, Ontario (p. 590).

The occurrence of quicksilver minerals is by no means confined to any certain kind of deposits or to any given age or epoch of metallization. However, such minerals are not known to occur in deposits of distinctly igneous origin, nor in pegmatite dikes, nor in veins of the deeper zone. High temperature is evidently unfavorable for their development. The most noteworthy occurrence is that of coloradoite in the gold telluride veins of western Australia, which contain, among other minerals, magnetite and tourmaline, indicating deposition at fairly high temperature. In gold-bearing quartz veins of the ordinary type, believed to have been formed at a considerable depth, but at considerably lower temperature and pressure than pegmatite dikes, cinnabar is not an uncommon mineral. It occurs in several
of these veins in California,\(^1\) as well as in the similar veins of central Idaho, and is frequently found in the placers derived from the erosion of these veins, as at Stanley Basin and Warren, Idaho. In northeastern Oregon the gold-quartz veins contain mercurial tetrahedrite, as well as secondary cinnabar formed from that mineral.\(^2\) In the placers below the veins of Susanville, in the same region, pebbles showing masses of cinnabar inclosed in massive white vein quartz have been found. One often finds apparently reliable statements that during the process of amalgamation and refining of the gold from such deposits more quicksilver was recovered than was added for metallurgical purposes. In small quantities cinnabar occurs in the lead and zinc deposits of Monteponi, in Italy, and at Santander, in Spain. Many occurrences of mercurial tetrahedrite in Europe and South America have been described.

In few of these deposits are the mercurial minerals abundant enough to constitute an ore, and in the majority of the deposits formed at a considerable depth the metal is apparently entirely absent. The commercial quicksilver ores are practically confined to a small and well-defined group of deposits, which will be described in the following pages and which are of particular interest because their genesis can be fairly accurately ascertained.

A scant association of ore minerals characterizes these deposits. Besides cinnabar and metacinnabarite, as well as a few minerals derived from the decomposition of the sulphide, they contain almost invariably pyrite or marcasite and frequently stibnite, but rarely any of the sulphides of the base metals so common in ore deposits. Among gangue minerals we have predominatingly opal, chalcedony, and quartz, also calcite and dolomite, more rarely barite, and very seldom fluorite; zeolites are of exceptional occurrence.

As to form and structure the ores occur in irregular and "chambered" veins and brecciated zones, often also as "stock-works" of minute seams, or as disseminations in more or less porous rocks. The irregularity and brecciated character of the deposits suggest their development near the surface, a conclusion that is often justified by other geological evidence.

As to association the deposits occur in rocks of any kind and any age, but almost always in close connection with effusive rocks or in regions of volcanic activity. Hot springs are frequent in many quicksilver districts, and this conspicuous association has led to the view that the metal is a last product of differentiation in many magmas nearing the surface and that the hot springs take it into solution to deposit it near their points of issue. This theory is strongly fortified by the discovery that many springs in volcanic regions are depositing cinnabar at the present time.

Although most of the quicksilver deposits have been formed at a relatively late time and in connection with the eruption of Tertiary and recent lavas, it does not necessarily follow that their development has been confined to late geological time. Undoubtedly older surface eruptions were occasionally accompanied by the formation of quicksilver deposits, but as these were near the surface they were easily eroded. Attention has already been called to this elsewhere, and it has been suggested that the deposits at Almaden, in Spain, and those in the German Palatinate may belong to such more remote volcanic epochs.

Distribution.—Quicksilver deposits are widely distributed, although the main production of the metal comes from a few occurrences. G. F. Becker, who first studied the occurrence of these ores, plotted the deposits on a map of the world and came to the conclusion that their distribution follows the main structural lines of the continents, especially in the Pacific region and in the Alpine-Himalayan chain. While this is apparently true, it is more correct to say that the ores follow the belts of Tertiary and Quaternary eruptions, especially along the important fracture lines of the globe.

The Coast Ranges of California, in which the orogenic movements were largely post-Miocene, contain a belt of quicksilver deposits several hundred miles in length, from which at one time a large proportion was obtained. A second belt, perhaps less well defined and certainly less productive, extends from north to south over a similar length in western Nevada.

1 Beyschlag, Krusch, and Vogt, Die Lagerstätten, etc., 1910, vol. 1, p. 454.
The Mexican area, which in spite of comprising many deposits, yields only a slight production, begins in western Texas in the Terlingua district and may be considered to end in the State of San Luis Potosi, Mexico.

Farther south, in Peru, quicksilver deposits appear again. The Yauli and Huancavelica districts are best known; the latter at one time was an important producer.

In Europe an extensive region in Italy, Austria, and adjacent countries contains quicksilver deposits; this area includes the deposits of Tuscany, Vallalta-Sagron, Idria and vicinity, Avala, in Servia, and less important occurrences in Bosnia. That this region, which may be called the Adriatic area, is a unit with reference to the genesis of the deposits has been convincingly shown by de Launay.

W. H. Rundall, Quicksilver ores at Guadalcazar, Mexico, Eng. and Min. Jour., 1895, pp. 607–608.
A. F. Umlauf, El cinabrio de Huancavelica, Bol. No. 17, Cuerpo de Ingenieros de Minas, Lima, 1904, p. 61.
V. Spirek, Die Zinnobererzvorkommen am Monte Amiata, Zeitschr. f. prakt. Geol., 1897, pp. 369–374; idem, 1902, pp. 297–299.
Geologisch-bergmännische Karten, etc., von Idria. Text by Plaminek. Published by the Agricultural Department, Vienna, 1893. (Literature.)
DEPOSITS FORMED NEAR THE SURFACE

Isolated yet highly productive deposits occur in Almaden, in Spain. In Russia we find in the Donetz basin the also isolated and peculiar ores of Nikitowka.

Some deposits have been found on the western side of the Pacific, mainly in Japan, China, Borneo, Australia, and New Zealand.

Geological Features.—The comparative youth of the deposits is attested by the fact that many of them are found in sedimentary or volcanic rocks of Tertiary or Quaternary age. They are not confined to these rocks, however, and may, in fact, occur in rocks of any composition or age. Sandstones, shales, limestone, serpentine, granite, andesite, rhyolite, or basalt may harbor the ores, and the character of the surrounding rocks seems to have little influence on the value of the deposits.

The California belt contains ores in Jurassic, Cretaceous, and Tertiary sandstones and shale, in serpentine, and in late Tertiary or Quaternary basalt and andesite. In the Nevada belt the ores occur in Triassic strata or more commonly in rhyolite, probably of middle Tertiary age.

In Texas and Mexico the ore-bodies are in Cretaceous strata or in the Tertiary andesite, basalt, and rhyolite which break through them. The Peruvian deposits are in Jurassic beds or in Tertiary volcanic rocks.

In the Adriatic region of Europe the ores occur in rocks of many kinds: In Tuscany, Mesozoic and Tertiary limestones and sandstones with trachyte are the enclosing rocks; at Idria, the disturbed beds of the Alpine Triassic; at Avala, the serpentine and probably Cretaceous limestone cut by trachytic dikes. De Launay has shown that these Adriatic ores coincide in their extension with Tertiary eruptives, and that in all probability, even where these eruptives are locally absent, as at New Idria, the deposits owe their origin to the after-effects of this igneous activity in the form of ascending springs.

In the Donetz basin in southern Russia the cinnabar ores lie in Carboniferous strata and have no apparent connection with igneous rocks.

1 There is no modern and detailed description of this important deposit. The best account is found in Beck's "Die Lehre von den Erzlagerstätten," 1909, vol. 1, pp. 519–522.

Mineralogy of Quicksilver Ores.—Cinnabar exhibits a marked tendency to form well-defined though usually small crystals; these are especially common in porous rocks like sandstone and tuff.

The monotony of the mineral association of the typical quicksilver deposits has often been pointed out and is illustrated by the table on the opposite page.

Aside from pyrite and the likewise common marcasite the ore mineral most generally accompanying cinnabar is stibnite; many stibnite veins, it should be added, also contain some cinnabar. Quartz is usually present, but far more commonly the silica appears as chalcedony or opal. In the California occurrences opal is particularly abundant and here, as at Avala, much of it is a product of the replacement of serpentine. In California the cinnabar is not often found in the opal itself, but rather in the veinlets of quartz or chalcedony traversing it. Calcite is not an uncommon gangue material, and in the Coast Ranges of California many of the deposits are accompanied by calcium-magnesium carbonates derived by replacement from serpentine or allied rocks.

Among the sulphates barite is fairly abundant, and at most places there is also more or less gypsum, which may often be a product of primary deposition, although it would naturally also be generated by the effect of decomposition of pyrite in a calcareous gangue. Fluorite is rare, but is recorded from Guadalcazar and Idria. In many deposits, particularly those of Idria and the California belt, hydrocarbons are characteristic; they are probably derived from the adjacent sedimentary beds, but are believed to have exerted some influence in the precipitation of cinnabar from its solutions. Inflammable gases, mainly hydrocarbons, are reported from several localities in California, notably New Idria.

Zeolites are not unknown in quicksilver deposits; chabazite colored by cinnabar is mentioned from Almaden, in Spain, and apophyllite from New Almaden, in California.

Millerite, or sulphide of nickel, is not uncommon in the California occurrences; this metal is probably derived from adjacent bodies of serpentine or peridotite.

The rare tiemannite and onomfrite were at one time obtained near Marysvale, in southern Utah, and some quicksilver was recovered from such ore. The minerals occurred as fissure
Mineral Association of Quicksilver Deposits

<table>
<thead>
<tr>
<th>Region</th>
<th>Age of enclosing formations</th>
<th>Stibnite</th>
<th>Realgar</th>
<th>Pyrite</th>
<th>Other sulphides</th>
<th>Quartz, chalcedony, and opal</th>
<th>Calcite and dolomite</th>
<th>Barite</th>
<th>Bitumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Mesozoic to Quaternary</td>
<td>present</td>
<td>common</td>
<td>Chalcopyrite (rare)</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>Mesozoic to Tertiary</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>Cretaceous to Tertiary</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gualdácasar, Mexico</td>
<td>Cretaceous to Tertiary</td>
<td>present</td>
<td>common</td>
<td>Arsenopyrite (rare)</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>rare</td>
<td></td>
</tr>
<tr>
<td>Huancavelica, Peru</td>
<td>Mesozoic</td>
<td>present</td>
<td>present</td>
<td>common</td>
<td>common</td>
<td>present</td>
<td>rare</td>
<td>common</td>
<td></td>
</tr>
<tr>
<td>Almadén, Spain</td>
<td>Paleozoic</td>
<td>rare</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idria, Austria</td>
<td>Mesozoic</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuscany, Italy</td>
<td>Tertiary</td>
<td>rare</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>rare</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avala, Servia</td>
<td>Mesozoic</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>present</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikitovka, Russia</td>
<td>Paleozoic</td>
<td>common</td>
<td>common</td>
<td>Galena (rare)</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constantine, Algeria</td>
<td>Tertiary</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borneo</td>
<td>Paleozoic</td>
<td>common</td>
<td>present</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td>common</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and siderite, are the important minerals. The feldspars are altered to calcite with a little quartz; epidote is not abundant. There are transitions between the propylitic and the sericitic alteration, and according to Spurr they were produced by the same waters. Near the veins these waters introduced silica, potassium, and metallic sulphides; as they penetrated farther from these channels their metal contents were exhausted, while silica and potassium were still introduced; finally only carbon dioxide and hydrogen sulphide were left in the cooling waters, which, therefore, had little to precipitate and small power of abstracting. The wall rock acted as a screen for the traversing solutions.

As noted above, these views are not entirely accepted by Finlayson.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>62.16</td>
<td>55.60</td>
<td>72.98</td>
<td>73.50</td>
<td>91.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.72</td>
<td>0.44</td>
<td>0.47</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.45</td>
<td>16.70</td>
<td>14.66</td>
<td>14.13</td>
<td>4.31</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.27</td>
<td>2.23</td>
<td>1.01</td>
<td>1.51</td>
<td>0.77</td>
</tr>
<tr>
<td>FeO</td>
<td>2.71</td>
<td>3.51</td>
<td>0.16</td>
<td>0.26</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>2.20</td>
<td>2.60</td>
<td>0.33</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>CaO</td>
<td>4.13</td>
<td>4.27</td>
<td>0.18</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>BaO</td>
<td>0.12</td>
<td>0.12</td>
<td>0.19</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.07</td>
<td>4.08</td>
<td>none</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.45</td>
<td>3.17</td>
<td>6.03</td>
<td>5.11</td>
<td>1.68</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>1.15</td>
<td>3.06</td>
<td>2.95</td>
<td>2.81</td>
<td>0.98</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.76</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.28</td>
<td>0.16</td>
<td>0.09</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

I. Average composition of hornblende-mica andesite, calculated by W. H. Hobbs.

II. Altered andesite, Siebert shaft. Propylitic alteration to quartz, calcite, chlorite, and sericite.

¹ Also 0.17 SO₂ and 0.03 S.
² Also 0.02 ZrO₂ and 0.06 MnO.
DEPOSITS FORMED NEAR THE SURFACE

III. Altered andesite, Mispah mine. No original minerals remaining. Sericitic alteration.
IV. Altered andesite, Mispah Hill. Typical alteration to adularia with a little sericite.
V. Ore material of Mispah vein. Dense quartzose rock mixed with kaolin-like material. Silicified andesite.

The most prominent features of the alteration, as shown by analyses, are the almost complete removal, adjacent to the veins, of ferrous iron, calcium, magnesium, and sodium and the partial removal of ferric oxide. Even the resistant apatite and rutile seem to have been dissolved to some degree, as shown by the relations of phosphorus and titanium. On the other hand, there is a decided increase of silica, and the potassium has increased to almost double the quantity in unaltered rock. There is a moderate hydration, but no carbonates appear.

If the propylitization and the more intense alteration close to the vein were really accomplished by the same waters it seems strange that no carbonates should have been fixed in proximity to the veins, while they are so abundant in the propylitic rock. Spurr assumes that the waters were so rich in silica that its deposition took place first and excluded the carbonates. But the same reasoning does not hold for the California gold-quartz veins, which are composed almost exclusively of quartz, while the wall rock is carbonatized. According to Spurr the waters causing the alteration of the earlier andesite were highly charged with silica and potassium, with some carbon dioxide and sulphur, and carried silver and gold and relatively small quantities of other metals. After passage through the rocks they would contain an excess of sodium, much calcium and magnesium, some iron, a little silica and alumina, and only traces of the precious metals.

It is interesting to note that a later mineralization, which affected the later andesite, is materially different; the waters by which it was effected appear to have contained practically no gold and silver. The course of this alteration\(^1\) involves no silicification and practically no change in calcium. The sodium is, as before, almost wholly removed, and likewise a large part of the potassium. Carbonates are present in abundance, with pyrite, and some zeolite is probably present, possibly also some talc or hydargillite.

MINERAL DEPOSITS

ANALYSES OF FRESH AND ALTERED TYPES OF LATER ANDESITE, AT TONOPAH, NEVADA

Analysts: George Steiger (I); W. F. Hillebrand (II and III)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>56.26</td>
<td>51.64</td>
<td>43.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.73</td>
<td>0.73</td>
<td>0.89</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.18</td>
<td>15.58</td>
<td>16.49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.56</td>
<td>0.16</td>
<td>2.86</td>
</tr>
<tr>
<td>FeO</td>
<td>1.17</td>
<td>0.58</td>
<td>6.31</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.78</td>
<td>2.79</td>
<td>6.19</td>
</tr>
<tr>
<td>CaO</td>
<td>5.07</td>
<td>6.25</td>
<td>5.69</td>
</tr>
<tr>
<td>BaO</td>
<td>0.12</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>SrO</td>
<td>0.06</td>
<td>trace</td>
<td>none</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.23</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.43</td>
<td>2.46</td>
<td>0.84</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>2.07</td>
<td>2.56</td>
<td>3.00</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.61</td>
<td>4.43</td>
<td>7.93</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.62</td>
<td>4.24</td>
<td>4.19</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.31</td>
<td>0.36</td>
</tr>
<tr>
<td>SO₃</td>
<td>none</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>FeS₂</td>
<td>0.03</td>
<td>7.89</td>
<td>2.55</td>
</tr>
</tbody>
</table>

I. Nearly fresh greenish porphyritic andesite, Halifax shaft. Contains feldspars, augite, magnetite, hematite, some kaolin, probably some secondary quartz.

II. Entirely altered dull-gray andesite, North Star shaft. Contains sericite, calcite, siderite, quartz, and some zeolite needles (?)..

III. Entirely altered green andesite, Montana-Tonopah shaft. Contains hydargillite, calcite, siderite, pyrite, chlorite, and kaolin.

Analysis III is particularly interesting, for it shows a rather uncommon type of alteration with concentration of magnesium and strong hydration. The action of descending waters may be suspected to have been superimposed upon the primary alteration. The altered rock consists of a little residuary chloride and uralite, with secondary talc, sericite, hydargillite, kaolin, calcite, siderite, pyrite, and some calcium silicate, possibly also zeolites. This type of alteration extends from the surface to a depth of 376 feet. As in II, sodium and a large part of the potassium have been removed and some iron and magnesia have been added.
The waters which altered the later andesite were clearly not identical with those which produced the change in the earlier andesite. Spurr assumes that they contained much carbon dioxide, sulphur, magnesium, and calcium. During the rock alteration they acquired alkalies and silica.

The Development of Kaolin.—It has been stated above that kaolin in the altered rocks of mineral deposits results mainly from the leaching by surface waters containing free sulphuric acid, and that this mode of alteration is frequently superimposed upon the products of chloritic and sericitic alteration by ascending waters. The sulphuric acid attacks and removes all calcium, magnesium, sodium, and potassium; and the final result is a mixture of kaolin and quartz. Below the influence of free oxygen sulphides may be deposited with the kaolin; pyrite, more frequently marcasite in arborescent forms, chalcolite, bornite, and rich silver ores like argentite and stephanite may also develop (see discussion of sulphide enrichment, Chapt. 29). In places—for instance, at De Lamar, Idaho—this kaolin may contain much gold in extremely finely divided state, undoubtedly concentrated by secondary reactions.

Metasomatic Processes at Silverton, Colorado.—The process of kaolinization is well described in Ransome's report on the Silverton district, Colorado.\(^1\) Crystallized kaolinitic—a rare occurrence—was found in the National Belle mine, but is here, too, later than the ore.

The normal alteration at Silverton is of propylitic aspect, changing near the veins to sericitic facies. In a series of rocks occurring in the Silver Lake basin the andesite breccia 150 feet from the vein is only slightly altered by the destruction of the dark silicates and by the beginning of replacement of feldspars by sericite (perhaps with some kaolin) and calcite. At 100 feet from the vein the quantity of chlorite and calcite increases. Fifty feet away from the vein the breccia structure is still visible, but the rock is wholly re-crystallized to quartz, chlorite, sericite, calcite, and rutile, with residuary apatite. Two feet from the vein there is less chlorite, and the rock consists mainly of sericite and quartz, with some grains of galena. Close to the wall there is but little chlorite, and considerable pyrite has been introduced. This general process corresponds fairly closely to that at Tonopah.

In the same region, at Red Mountain, the alteration of the rocks is carried to its ultimate conclusion. The mine waters show the presence of free sulphuric acid and alumina and the white kaolinized rock at the surface shows the following composition calculated from the analysis.

COMPOSITION OF ALTERED ROCK AT RED MOUNTAIN, NEAR NATIONAL BELLE MINE

<table>
<thead>
<tr>
<th>Index</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>60.9</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>26.3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>5.6</td>
</tr>
<tr>
<td>Diaspore</td>
<td>3.8</td>
</tr>
<tr>
<td>Sericite</td>
<td>0.6</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.6</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>98.4</td>
</tr>
</tbody>
</table>

A still more advanced silicification is shown by the following analysis:

COMPOSITION OF ROCK AT WHITE CLOUD MINE

<table>
<thead>
<tr>
<th>Index</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>85.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.63</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.23</td>
</tr>
<tr>
<td>FeO</td>
<td>0.25</td>
</tr>
<tr>
<td>MnO</td>
<td>none</td>
</tr>
<tr>
<td>CaO</td>
<td>0.27</td>
</tr>
<tr>
<td>BaO</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>none</td>
</tr>
<tr>
<td>Na₂O</td>
<td>none</td>
</tr>
<tr>
<td>K₂O</td>
<td>none</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.46</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>3.07</td>
</tr>
<tr>
<td>CO₂</td>
<td>none</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.07</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0.46</td>
</tr>
<tr>
<td>FeS₂</td>
<td>3.43</td>
</tr>
<tr>
<td>Total</td>
<td>99.92</td>
</tr>
</tbody>
</table>

From the above analysis the mineral composition of the rock may be calculated as follows:

<table>
<thead>
<tr>
<th>Index</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>78.5</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>13.8</td>
</tr>
<tr>
<td>Pyrite</td>
<td>3.4</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.6</td>
</tr>
<tr>
<td>Sulphates</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td>97.3</td>
</tr>
</tbody>
</table>

This extreme mode of alteration by sulphuric acid solutions results in the almost total elimination of calcium, magnesium, alkali metals, and carbon dioxide; its operation is similar to that of weathering by oxygenated waters, although in that process, of
course, pyrite cannot form. It differs radically from the sericitization and carbonatization described above.

Summary.—Summing up we may say that sericite and carbonates mark the alteration by ascending metalliferous solutions at intermediate and moderate depths; that nearer the surface adularia appears as an important metasomatic mineral in addition to sericite; and that still nearer the surface or under the influence of descending sulphuric acid solutions we find kaolin, or, where sulphuric acid is present in abundance, alunite.

QUICKSILVER DEPOSITS

The Ores and Their General Occurrence.—The principal quicksilver ore is cinnabar (HgS), which contains 86.2 per cent. mercury. A black modification of this mineral, called metacinnabarite, rarely occurs in large amounts and is probably a secondary sulphide deposited by descending waters. Native quicksilver, silver and gold amalgam, calomel (HgCl), quicksilver oxide (montrodydite), and several oxychlorides are evidently secondary minerals, developing from the sulphide. Primary but rare minerals are the black telluride of quicksilver, coloradoite; the selenide, tiemannite; the sulphoselenide, onofrite; and other still rarer combinations of the selenides of copper, lead, and quicksilver. Mercurial tetrahedrite is not uncommon, and some varieties contain as much as 17 per cent. quicksilver, although the percentage is usually much smaller. In smaller quantities this metal is also sometimes present in other minerals, for instance, in the native silver of Kongsberg, Norway, and in the dysscrasite of the silver-bearing veins of Cobalt, Ontario (p. 590).

The occurrence of quicksilver minerals is by no means confined to any certain kind of deposits or to any given age or epoch of metallization. However, such minerals are not known to occur in deposits of distinctly igneous origin, nor in pegmatite dikes, nor in veins of the deeper zone. High temperature is evidently unfavorable for their development. The most noteworthy occurrence is that of coloradoite in the gold telluride veins of western Australia, which contain, among other minerals, magnetite and tourmaline, indicating deposition at fairly high temperature. In gold-bearing quartz veins of the ordinary type, believed to have been formed at a considerable depth, but at considerably lower temperature and pressure than pegmatite dikes, cinnabar is not an uncommon mineral. It occurs in several
of these veins in California,1 as well as in the similar veins of central Idaho, and is frequently found in the placers derived from the erosion of these veins, as at Stanley Basin and Warren, Idaho. In northeastern Oregon the gold-quartz veins contain mercurial tetrahedrite, as well as secondary cinnabar formed from that mineral.2 In the placers below the veins of Susanville, in the same region, pebbles showing masses of cinnabar inclosed in massive white vein quartz have been found. One often finds apparently reliable statements that during the process of amalgamation and refining of the gold from such deposits more quicksilver was recovered than was added for metallurgical purposes. In small quantities cinnabar occurs in the lead and zinc deposits of Monteponi, in Italy, and at Santander, in Spain. Many occurrences of mercurial tetrahedrite in Europe and South America have been described.

In few of these deposits are the mercurial minerals abundant enough to constitute an ore, and in the majority of the deposits formed at a considerable depth the metal is apparently entirely absent. The commercial quicksilver ores are practically confined to a small and well-defined group of deposits, which will be described in the following pages and which are of particular interest because their genesis can be fairly accurately ascertained.

A scant association of ore minerals characterizes these deposits. Besides cinnabar and metacinnabarite, as well as a few minerals derived from the decomposition of the sulphide, they contain almost invariably pyrite or marcasite and frequently stibnite, but rarely any of the sulphides of the base metals so common in ore deposits. Among gangue minerals we have predominatingly opal, chalcedony, and quartz, also calcite and dolomite, more rarely barite, and very seldom fluorite; zeolites are of exceptional occurrence.

As to form and structure the ores occur in irregular and "chambered" veins and brecciated zones, often also as "stock-works" of minute seams, or as disseminations in more or less porous rocks. The irregularity and brecciated character of the deposits suggest their development near the surface, a conclusion that is often justified by other geological evidence.

As to association the deposits occur in rocks of any kind and any age, but almost always in close connection with effusive rocks or in regions of volcanic activity. Hot springs are frequent in many quicksilver districts, and this conspicuous association has led to the view that the metal is a last product of differentiation in many magmas nearing the surface and that the hot springs take it into solution to deposit it near their points of issue. This theory is strongly fortified by the discovery that many springs in volcanic regions are depositing cinnabar at the present time.

Although most of the quicksilver deposits have been formed at a relatively late time and in connection with the eruption of Tertiary and recent lavas, it does not necessarily follow that their development has been confined to late geological time. Undoubtedly older surface eruptions were occasionally accompanied by the formation of quicksilver deposits, but as these were near the surface they were easily eroded. Attention has already been called to this elsewhere, and it has been suggested that the deposits at Almaden, in Spain, and those in the German Palatinate may belong to such more remote volcanic epochs.

Distribution.—Quicksilver deposits are widely distributed, although the main production of the metal comes from a few occurrences. G. F. Becker, who first studied the occurrence of these ores, plotted the deposits on a map of the world and came to the conclusion that their distribution follows the main structural lines of the continents, especially in the Pacific region and in the Alpine-Himalayan chain. While this is apparently true, it is more correct to say that the ores follow the belts of Tertiary and Quaternary eruptions, especially along the important fracture lines of the globe.

The Coast Ranges of California, in which the orogenic movements were largely post-Miocene, contain a belt of quicksilver deposits several hundred miles in length, from which at one time a large proportion was obtained. A second belt, perhaps less well defined and certainly less productive, extends from north to south over a similar length in western Nevada.

1 Beyschlag, Krusch, and Vogt, Die Lagerstätten, etc., 1910, vol. 1, p. 454.
The Mexican area, which in spite of comprising many deposits, yields only a slight production, begins in western Texas in the Terlingua district\(^1\) and may be considered to end in the State of San Luis Potosi, Mexico.\(^2\)

Farther south, in Peru,\(^3\) quicksilver deposits appear again. The Yauli and Huancavelica districts are best known; the latter at one time was an important producer.

In Europe an extensive region in Italy, Austria, and adjacent countries contains quicksilver deposits; this area includes the deposits of Tuscany,\(^4\) Vallahta-Sagron,\(^5\) Idria and vicinity,\(^6\) Avala,\(^7\) in Servia, and less important occurrences in Bosnia. That this region, which may be called the Adriatic area, is a unit with reference to the genesis of the deposits has been convincingly shown by de Launay.\(^8\)

13 Geologisch-bergmännische Karten, etc., von Idria. Text by Plaminke. Published by the Agricultural Department, Vienna, 1893. (Literature.)
DEPOSITS FORMED NEAR THE SURFACE

Isolated yet highly productive deposits occur in Almaden, in Spain.¹ In Russia we find in the Donetz basin the also isolated and peculiar ores of Nikitowka.²

Some deposits have been found on the western side of the Pacific, mainly in Japan, China, Borneo, Australia, and New Zealand.

Geological Features.—The comparative youth of the deposits is attested by the fact that many of them are found in sedimentary or volcanic rocks of Tertiary or Quaternary age. They are not confined to these rocks, however, and may, in fact, occur in rocks of any composition or age. Sandstones, shales, limestone, serpentine, granite, andesite, rhyolite, or basalt may harbor the ores, and the character of the surrounding rocks seems to have little influence on the value of the deposits.

The California belt contains ores in Jurassic, Cretaceous, and Tertiary sandstones and shale, in serpentine, and in late Tertiary or Quaternary basalt and andesite. In the Nevada belt the ores occur in Triassic strata or more commonly in rhyolite, probably of middle Tertiary age.

In Texas and Mexico the ore-bodies are in Cretaceous strata or in the Tertiary andesite, basalt, and rhyolite which break through them. The Peruvian deposits are in Jurassic beds or in Tertiary volcanic rocks.

In the Adriatic region of Europe the ores occur in rocks of many kinds: In Tuscany, Mesozoic and Tertiary limestones and sandstones with trachyte are the enclosing rocks; at Idria, the disturbed beds of the Alpine Triassic; at Avala, the serpentine and probably Cretaceous limestone cut by trachytic dikes. De Launay has shown that these Adriatic ores coincide in their extension with Tertiary eruptives, and that in all probability, even where these eruptives are locally absent, as at New Idria, the deposits owe their origin to the after-effects of this igneous activity in the form of ascending springs.

In the Donetz basin in southern Russia the cinnabar ores lie in Carboniferous strata and have no apparent connection with igneous rocks.

¹ There is no modern and detailed description of this important deposit. The best account is found in Beck's "Die Lehre von den Erzlagerstätten," 1909, vol. 1, pp. 519–522.
Mineralogy of Quicksilver Ores.—Cinnabar exhibits a marked tendency to form well-defined though usually small crystals; these are especially common in porous rocks like sandstone and tuff.

The monotony of the mineral association of the typical quicksilver deposits has often been pointed out and is illustrated by the table on the opposite page.

Aside from pyrite and the likewise common marcasite the ore mineral most generally accompanying cinnabar is stibnite; many stibnite veins, it should be added, also contain some cinnabar. Quartz is usually present, but far more commonly the silica appears as chalcedony or opal. In the California occurrences opal is particularly abundant and here, as at Ava, much of it is a product of the replacement of serpentine. In California the cinnabar is not often found in the opal itself, but rather in the veinlets of quartz or chalcedony traversing it. Calcite is not an uncommon gangue material, and in the Coast Ranges of California many of the deposits are accompanied by calcium-magnesium carbonates derived by replacement from serpentine or allied rocks.

Among the sulphates barite is fairly abundant, and at most places there is also more or less gypsum, which may often be a product of primary deposition, although it would naturally also be generated by the effect of decomposition of pyrite in a calcareous gangue. Fluorite is rare, but is recorded from Guadalcazar and Idria. In many deposits, particularly those of Idria and the California belt, hydrocarbons are characteristic; they are probably derived from the adjacent sedimentary beds, but are believed to have exerted some influence in the precipitation of cinnabar from its solutions. Inflammable gases, mainly hydrocarbons, are reported from several localities in California, notably New Idria.

Zeolites are not unknown in quicksilver deposits; chabazite colored by cinnabar is mentioned from Almaden, in Spain, and apophyllite from New Almaden, in California.

Millerite, or sulphide of nickel, is not uncommon in the California occurrences; this metal is probably derived from adjacent bodies of serpentine or peridotite.

The rare tiemannite and onofrite were at one time obtained near Marysvale, in southern Utah, and some quicksilver was recovered from such ore. The minerals occurred as fissure
<table>
<thead>
<tr>
<th>Region</th>
<th>Age of enclosing formations</th>
<th>Stibnite</th>
<th>Realgar</th>
<th>Pyrite</th>
<th>Other sulphides</th>
<th>Quarts, chalcopyrite, and opal</th>
<th>Calcite and dolomite</th>
<th>Barite</th>
<th>Bitumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Mesozoic to Quaternary</td>
<td>present</td>
<td>common</td>
<td></td>
<td></td>
<td>Chalcopyrite (rare) present, often with gold or silver.</td>
<td>common</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>Nevada</td>
<td>Mesozoic to Tertiary</td>
<td>common</td>
<td></td>
<td>common</td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Texas</td>
<td>Cretaceous to Tertiary</td>
<td></td>
<td>present</td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Guadalcasar, Mexico.</td>
<td>Cretaceous to Tertiary</td>
<td></td>
<td></td>
<td>present</td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>present</td>
</tr>
<tr>
<td>Huancavelica, Peru</td>
<td>Mesozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>rare</td>
<td></td>
</tr>
<tr>
<td>Almaden, Spain</td>
<td>Paleozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Idria, Austria</td>
<td>Mesozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Tuscany, Italy</td>
<td>Tertiary</td>
<td></td>
<td></td>
<td>rare</td>
<td>common</td>
<td></td>
<td>common</td>
<td>common</td>
<td>rare</td>
</tr>
<tr>
<td>Avala, Servia</td>
<td>Mesozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>present</td>
</tr>
<tr>
<td>Nikitowka, Russia</td>
<td>Paleozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>Constantine, Algeria.</td>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>common</td>
</tr>
<tr>
<td>Borneo</td>
<td>Paleozoic</td>
<td></td>
<td>present</td>
<td></td>
<td></td>
<td></td>
<td>common</td>
<td>common</td>
<td>common</td>
</tr>
</tbody>
</table>
filling in limestone, but in a district of volcanism with rhyolitic and andesitic flows. Selenides are also reported from Guadalcazar, in San Luis Potosi, Mexico. It is probable that careful examination would disclose the presence of selenides at many other places.

The mineral livingstonite (HgSb₄S₇) occurred in considerable quantities at Hitzuco, Guerrero, Mexico.

Quicksilver ores should contain at least 0.5 per cent. of the metal. The richest ores are those of Almaden, Spain, which are said to average 8 per cent.

Fig. 135.—Diagrammatic vertical cross section of the Redington cinnabar mine, California, showing brecciated ore chambers near surface, changing in depth to more regular fissures filled with cinnabar. Total depth about 600 feet. m, Metamorphic rock; n, Cretaceous sandstone. After G. F. Becker, U. S. Geol. Survey.

Structure.—In their structural relations the majority of quicksilver deposits clearly indicate their origin near the surface. Sharply defined continuous fissure veins occur only exceptionally; far more common are irregular and “chambered” veins—that is, fissures accompanied by brecciated masses in which the ore minerals have lodged (Fig. 135). Another common mode of occurrence is as disseminations in porous rocks, like sandstone and tuffs, or again as “stockworks,” the ore minerals filling little crevices and fissures in limestone, serpentine, or other rocks.
Cinnabar is often deposited in open cavities or in pores or in the soft mud of altered rocks. It does not replace limestone on the scale of the lead deposits, but that replacement has occasionally occurred seems to be beyond doubt.

A large number of deposits have been found to cease or become impoverished at a depth of a few hundred feet. In contrast to this, the celebrated mines of Almaden, Spain, are said to have

![Diagram](image)

Fig. 136.—Rich ore, Almaden, Spain, showing cinnabar between grains of quartzite and formed by replacement in quartz. c, Cinnabar; s, sericite; p, pyrite; z, zircon. Magnified 70 diameters. After R. Beck.

found richer ore in depth, and the workings have now attained a depth of 1,300 feet.

The deposits at Almaden occur in three beds of steeply dipping Silurian quartzite separated by bituminous slates. In part the cinnabar may occur as filling of the pores of the rock, as G. F. Becker\(^1\) suggests, but Beck\(^2\) has shown convincingly that there has also occurred an actual replacement of the sandstone grains by the ore mineral (Fig. 136). The ore-bodies are as much as 45 feet in thickness, and the average tenor of the ores is unusually high; they are said to contain 8 per cent. quicksilver. Granite

and diabase break through the sedimentary series, but the geological history of the deposit is too imperfectly known to draw safe conclusions as to its age or mode of origin. Almaden is the richest and most productive quicksilver region in the world. The value of its metallic product, according to the handbook of Beyschlag, Krusch, and Vogt (p. 473), during the period 1564 to 1907, is estimated at 212 million dollars.

At Idria, in southern Austria, is located another of the great quicksilver mines of the world. The ores are contained in Triassic beds of shale, marl, and dolomite; they are apparently connected

Fig. 137.—Vertical cross section through workings of Napa Consolidated mine, California. Irregular veins in horizontal Cretaceous sandstone, widening to chambers along bedding planes. After G. F. Becker, U. S. Geol. Survey.

with and in part occur in great overthrusts and faults. The ore-bodies, which apparently do not extend below a depth of 1000 feet, in places follow the stratification and were formerly believed to be of syngenetic origin. The ores are usually designated as “impregnations” in shale or marls, but small veins and stockworks are also found, especially in the dolomite. The age of deposition is certainly post-Cretaceous, probably Tertiary. Schrauf, who has given long study to Idria, believes that the ore occurring in the dolomite is a later migration from the somewhat older deposit in the shales.
The California region offers types of almost all the various structural developments. In the region north of San Francisco, near Clear Lake, serpentine, radiolarian cherts, altered Franciscan sandstone (Jurassic?), and Cretaceous sandstones prevail; the rocks are greatly shattered and late Tertiary to Quaternary andesites and basalts break through them. The occurrences of cinnabar are numerous, and some of them have yielded a large production, but the ore-bodies generally became impoverished at a depth of a few hundred feet. The deposits form fissure veins largely filled with attrition material, and this is impregnated with cinnabar, pyrite, opaline silica, and calcite. Masses of ore

![Diagram](image)

Fig. 138.—Vertical cross section of the Great Eastern mine, California, showing pipe of cinnabar contained in opaline replacement gangue. After C. F. Becker, U. S. Geol. Survey.

often extend into the country rock from these fissures (Fig. 137). Or again, as in the Great Eastern mine, the ore forms tabular masses between serpentine and sandstone, or pipes in opaline or chalcedonic rocks between the same formations (Fig. 138), or finally it may be developed on the contact of basalt and sandstone. The Redington mine (Fig. 135) was operated on a large chambered deposit at the surface which was found to be continued below by more regular and narrow veins. Throughout this region on hot springs are found in and around the ore deposits.
The great mine of New Almaden, in Santa Clara County, south of San Francisco, is opened in shattered greenstone, serpentine, radiolarian chert, and sandstone of the Franciscan series. Considered in detail the ore-bodies are stockworks, but they are arranged along definite fissures and have on the whole a vein-like character. There are two main fissures of varying dip along and from which the ore-bodies extend. The hanging wall is usually an impermeable, slickensided clay. There are no hot springs in the vicinity, and the only eruptive rock is a rhyolite dike parallel to the fissures. The mine has been opened to a depth of 2,100 feet and a continuous ore-body extended down to the 1,600-foot level. During the last few years little work has been done in the lower levels.

![Fig. 139.—Vertical cross section of California Hill, Terlingua, Texas, showing cinnabar veins with large ore-bodies below impervious shale. After H. W. Turner.](image)

At New Idria, at the south end of the Mt. Diablo Range, important deposits have been worked and the larger part of the production of California is now derived from this mine. The rocks are disturbed greenstones and sandstones of the Franciscan series, unconformably covered by tilted Chico (Cretaceous) and Tejon (Eocene) sandstone. The ores appear in three forms—as normal veins, as irregular stockworks, and as impregnations in sandstone. The mine is opened by tunnels, the lowest level being at a vertical depth of 1,060 feet. There are no volcanic rocks in the immediate vicinity.
In the Terlingua district, Texas, near the Mexican boundary, the ores are found in the Upper Cretaceous shales and the Lower Cretaceous limestone. Volcanic rocks are represented by sheets, dikes, and flows of andesite, rhyolite, and basalt. In the lower limestones the ores are mainly in nearly vertical calcite veins, or in lodes of friction breccia (Fig. 139).

Oxidation.—The oxidation of cinnabar is not easily accomplished. It sometimes results in the rare red oxide montroydite (HgO), found in considerable quantities at Terlingua. Further changes convert this easily reduced compound into native quicksilver, which occurs in most quicksilver deposits. Action on this by saline waters results in calomel or the oxychlorides of the metal. From the position of the metal in the table of Schürmann's reactions it follows that in the absence of free oxygen the deposition of secondary cinnabar should be easily effected. In fact, such secondary cinnabar often results from the decomposition of mercurial tetrahedrite, as shown, for instance, in several mines in northeastern Oregon, near Sumpter. It is not impossible that some of the native metal may be a primary deposit. Becker,\(^1\) in some of his experiments on the solubility of cinnabar, obtained precipitates of mixed sulphide and native metal. Regarding metacinnabarite, see page 457.

Genesis.—The uniform character of the quicksilver deposits points to a common genesis for all of them. The earlier belief that the ores were products of sublimation is generally abandoned, for the usual mode of occurrence, with minerals of aqueous origin, such as calcite, opal, chalcedony, and often barite, is decidedly opposed to such a view. Becker has pointed out that, as the character of the enclosing rocks has little influence on the deposits, they are most probably derived from a common, deep-seated source. Their structure indicates deposition near the surface, as does also the physiographic evidence at many places—for instance, where the ore appears in the crevices of Quaternary and little-eroded lava flows.

When it is noted that hot springs and volcanic surface flows are present in almost all regions of importance (except Almaden in Spain, Idria in Austria, and Nikitowka in Russia), and that cinnabar in considerable quantities is associated with undoubted spring deposits, or is actually deposited in hot springs, the argument becomes very strong indeed that such hot springs have

formed the majority of the deposits. For the few deposits that have no such clear connection with volcanic rocks—for instance, those mentioned above—the characteristic mineral association still holds good, and we are forced to the hypothesis that volcanism and hot-spring action are the causes of these also, though the products of the igneous activity may have failed to reach the surface and the hot springs may have subsided.

The evidence relating to cinnabar deposited by hot springs is summarized in the following paragraphs.

At Steamboat Springs, in Nevada, near the California boundary, cinnabar is contained in the hot ascending sodium chloride waters, together with antimony, arsenic, and sulphur, and is actually being deposited in the sinter. Close by, but at a higher level, is a low-grade quicksilver deposit in decomposed granite, and this in all probability was also formed by the same springs when issuing at a higher level. Underneath the sinters of the present springs the gravels contain crystallized stibnite and pyrite.

At Sulphur Bank, in the California quicksilver belt, Le Conte, Christy, Rising, Becker, and Posepuny have studied the deposition of cinnabar and sulphur by ascending hot sodium carbonate and borate waters and have all arrived at the conclusion that such deposition, together with that of pyrite and opal, is actually taking place. The Cretaceous sandstones and associated Franciscan metamorphic rocks are here overlain by flows of both normal and glassy basalt and by cinder cones, pointing to very recent eruption. The hot springs have altered and bleached the basalt. Sulphur is deposited at the surface by the oxidation of H_2S, or by reaction between SO_2 and H_2S. Below the superficial deposit of sulphur cinnabar is found in the basalt, as well as in the underlying shales and sandstones; it occurs mostly in veinlets and joints together with the pyrite and opal above mentioned. (Cfr. p. 107.)

The Rabbit Hole sulphur deposit, in Humboldt County, Nevada, described by G. I. Adams, is evidently a product of hot

3 G. F. Becker, *op. cit.*, Chapter VII.
DEPOSITS FORMED NEAR THE SURFACE 471

springs, and near it are considerable areas of rhyolite. The rocks are silicified, and opal, alunite, gypsum, and some cinnabar are present as associated minerals.

On Buckskin Peak, in northern Humboldt County, there is a rhyolite which has been intensely silicified, apparently by hot-spring action, and which contains small quantities of cinnabar.

At the Adamson and Wright mine, a few miles northwest of Winnemucca, in the same county, a gold-bearing vein is worked in Triassic slates. The filling of this vein is a calcareous sinter, which carries cinnabar and appears to have been deposited near the surface.

In the Hauraki peninsula of New Zealand, near Omapere Lake,1 where basalts overlie Mesozoic shales and sandstones, mercury and cinnabar have been found in the deposits of the hot springs at several places.

E. Cortese2 reports the occurrence of cinnabar in connection with sulphur deposits which result from still active hot springs in Chaguarama Valley, Venezuela. The cinnabar occurs in Tertiary bleached sandstone, together with pyrite. Borax deposits are also said to occur in the same locality.

A careful investigation would doubtless disclose the presence of cinnabar in many other spring deposits. If it is found in more than traces the best way to test such material, as well as ores, is by the miner's pan, in which the bright-red grains of cinnabar show conspicuously.

Quicksilver is apparently contained in hot-spring waters carrying sodium carbonate, sodium chloride, or sodium borate; sometimes all three salts as well as carbon dioxide and some hydrogen sulphide are present. Near the surface these springs may become acid owing to the oxidation of hydrogen sulphide.

Regarding the mode in which mercury is carried in solution, Becker's views,3 based on the laboratory experiments of W. H. Melville, still appear to furnish the best explanation. While the

1 I. M. Bell and E. de C. Clarke, Bull. No. 8, New Zealand Geol. Surv., 1909, p. 87.
5 Eng. and Min. Jour., Nov. 10, 1904.
solubility of mercuric sulphide in alkaline compounds containing sulphur had long been recognized, the evidence was to some degree conflicting.

Becker showed that mercuric sulphide is freely soluble in solutions of sodium sulphide, as well as in a mixture of Na₂S and NaOH, and also in warm sodium sulphhydrate (NaHS). When neutral sodium carbonate is treated with hydrogen sulphide, sodium sulphhydrate and probably also sodium sulphide will form; these dissolve mercurial sulphide, and double salts of the general formula HgSₙNa₂S doubtless form. Incidentally it was found that the same reagents would dissolve metallic gold, pyrite, sphalerite, and cupric sulphide. The solubility of the sulphides of arsenic and antimony under similar conditions is well known.

It is therefore easy to perceive that a spring water containing sodium carbonate and hydrogen sulphide would form a suitable solvent for the compounds mentioned. The precipitation would be easily effected by oxidation of the water and the development of free acids, by dilution, by cooling, or by the presence of organic or ammoniacal compounds. That the latter two agents are active in many cases there is little doubt.

Cinnabar is said to be soluble to a slight extent in distilled water.¹ That it is soluble to some degree in other kinds of solution than those mentioned is indicated by the observation of Becker² at New Idria of cinnabar in a crust of epsomite and other soluble sulphates. This cinnabar must have been in solution of the sulphate mine waters.

Relation to Other Ore Deposits.—Although the cinnabar deposits form a well-defined group, they are not to be separated entirely from other classes of ore deposits. Some of them contain other metallic minerals, and there are many that show a transition to the stibnite and arsenical veins. The Nevada belt especially furnishes many instances of a close relationship to gold and silver bearing veins on one hand and to stibnite veins on the other hand. It is true, however, that no cinnabar deposit has yet been found to change gradually into ores of different character as depth is attained. No deposits have been worked below a depth of 2,000 feet vertically beneath the croppings. There is little doubt that these ores were formed from the most

¹ G. A. Binder, Min. petr. Mitt., vol. 12, 1892, p. 332.
DEPOSITS FORMED NEAR THE SURFACE

volatile parts of the magmas, carried in solution by ascending waters until they came close to the surface. But the irregular distribution of the deposits and their entire absence from large areas of volcanism form problems that are yet unsolved.

STIBNITE DEPOSITS

Stibnite (Sb₂S₃), the principal ore mineral of antimony, is by no means exclusively confined to the deposits formed near the surface, for some important deposits occur in connection with intrusive rocks. Much antimony is recovered during the refining of "hard" or "antimonial" lead, which is derived largely from replacement deposits in limestone. Scarcely any antimony ores proper are mined in the United States, the price of the metal (now about 8 cents per pound) being low and subject to rapid fluctuations. The production comes mainly from mines in China, in France, and in the State of Queretaro, Mexico. Antimony ores occur in smaller quantity in association with lead ores, also in gold-bearing quartz veins, in veins associated with mercury and arsenic, and finally in veins containing few other minerals. The decomposition of stibnite near the surface results in various

Fig. 140.—Stibnite crystals in quartz, National mine, Nevada. Magnified about 30 diameters.
yellowish or white oxides like senarmontite (Sb₂O₃), cervantite (SbO₂), and stibiconite (H₃Sb₂O₈).

Stibnite veins with a gangue of fine-grained and drusy quartz intersect flows of rhyolite and basalt in western Nevada. The antimony sulphide is as a rule beautifully crystallized in acicular and prismatic forms (Fig. 140); it is often accompanied by a little pyrite, zinc blende, etc., sometimes also by tetrahedrite and cinnabar. Such veins carry a little silver and less gold. The intimate relationship of these veins with the gold and silver veins proper is, however, shown by the occurrence in one of them, at National, Nevada, of a shoot of remarkably coarse gold of the electrum variety (Fig. 147).

Stibnite shows a marked tendency to form replacements in limestone and shale. Of such nature are the deposits at Pereta, in Tuscany, where the mineral is associated with realgar and cinnabar and occupies veins, seams, and irregular pockets in Tertiary calcareous and detrital rocks. The country rock is in part silicified, in part altered to gypsum or alunite, and exhalations of hydrogen sulphide testify to the recent age of the deposit.

Beck¹ describes important deposits of stibnite at Kostainik, in Servia, where the mineral occurs in nests and veins in trachyte or in Triassic clay shales, but also as metasomatic bodies replacing the beds along the contact of limestone and shale. The gangue is a drusy fine-grained quartz.

The deposit of Djebel Hamimat,² in Algeria, containing senarmontite, and that of Altar,³ Sonora, from which stibnite is reported as the principal ore mineral, appear both to be replacement deposits in limestone. At the Algerian locality the replacement veins spread out in Cretaceous sediments, while at Altar the ore is said to occur in Carboniferous limestone. Both deposits are probably oxidized replacements of stibnite. In some of these replacement deposits in limestone stibnite occurs abundantly in association with pyrrhotite, arsenopyrite, and zinc blende; such ores belong in the class of deep-seated deposits and appear to be in places of contact-metamorphic origin.

GOLD-QUARTZ VEINS IN ANDESITE

Transylvania.—In northwestern Hungary and in adjoining parts of Transylvania gold-bearing veins of Tertiary age have been developed after eruptions of andesites and dacites. A mining industry, begun centuries ago, still flourishes in this region. The literature is very extensive, and only a few deposits can be mentioned here as examples.

The geological formations in the western part of the gold-mining region of Transylvania consist of Mesozoic melaphyres, Cretaceous shales and sandstones, and Miocene sediments, all penetrated by late Tertiary eruptions of andesites and dacites. The igneous rocks appear as lava flows, tuffs, and volcanic necks. The veins near Brád, at present the most productive district, fill well-defined steeply dipping, in places branching fissures which generally intersect volcanic rocks or Cretaceous sediments. The simple veins are as much as 1 meter in thickness; the lodes attain a thickness of 10 to 20 meters. The deposits have been worked to a depth of about 270 meters. The fissures are tectonic, not contraction joints. They are of Miocene age.

The surrounding rocks, particularly the andesite, have suffered extensive propylitization, the femic minerals being extensively decomposed, while feldspars remain fresh. Pyrite is not common except near the veins. Calcite is abundant. Schumacher does not believe that propylitization is caused by "intensive penetration by gases from the not yet wholly solidified intrusions," an opinion expressed by Stelzner and Begerat. He nevertheless considers the process distinctly earlier than the veins and independent of them. The alteration continues to the greatest depths attained. "Kaolinization" near the veins is a wholly different process according to Schumacher and is superimposed

1 Bela von Inkey, Nagyag und seine Erzlagerstätten, Buda-Pest, 1885.
upon propylitization. Kaolin and sericite are both present in the altered rock, but the possible influence of descending waters on kaolinization is inadequately treated. The alteration of the wall rock in a vein 0.5 meter thick extends only about 10 centimeters from the vein, but many smaller veins have proportionately wider zones of alteration.

An older set of veins is composed of clastic material of shale and igneous rocks ("Glauch veins"). They are interpreted as having been filled by ascending liquid muds. Similar veins in the Silverton district, Colorado, have been described by Ransome.

The gangue of the ore-bearing veins is composed of quartz (rarely chaledony), calcite, rhodochrosite, and barite, a frequently recurring association in veins of this class. The quartz is usually fine-grained, sometimes drusy, cellular, or honeycombed, but not amethystine. Pyrite in small crystals is abundant; the concentrates contain 10 grams of gold and 69 grams of silver per ton, while the pyrite in the country rock contains 7 to 15 grams of gold and 10 to 15 grams of silver per ton; both kinds are therefore poor in gold. Marcasite has been noted in only one mine, where it occurs on quartz, associated with free gold. Zinc blende is associated with pyrite and is
poor in gold but contains more silver than the pyrite. Chalcopyrite and galena where present are poor in gold but contain several hundred grams of silver per ton.

The principal ore mineral is native gold, which occurs commonly in crushed quartz or in little fissures (Fig. 141), or as sheets or wires between the quartz combs of veinlets. Some of it is found in coarse quartz and is apparently older than the quartz or of contemporaneous origin. It occurs also in sheets along the cleavage planes of calcite and in lumps or nodules in clay. In part it is therefore of relatively late origin. The gold contains 28 per cent. silver and the ores average 10 grams of gold per ton. Tellurides and rich silver minerals are rare.

The structure of the veins is irregularly massive, though in places crusted, banded, and drusy. Brecciated structures are common. Small prismatic and rectangular pseudomorphs of quartz are considered as replacements of gypsum but strongly resemble the similar casts of celestite at Cripple Creek, Colorado.

The ore-shoots are irregular; sometimes they are narrow but extend with steep dip for 100 or 200 feet vertically. Shoots often occur at junctions and intersections (Fig. 142). At a junction of two veins with a narrow pyritic seam was found a pocket from which in one day gold weighing 55 kilograms was extracted. Near the surface the veins were poor. The richest zone extended from about 100 meters below the surface down to a depth of 320 meters. The remarkable dependence of the rich ore on narrow seams of pyrite is evident and recalls analogous conditions in the Thames district, New Zealand, and the "indicators" of Victorian quartz mines and many other gold deposits (Fig. 143).
B. von Inkey held that the gold was concentrated by leaching from the country rock. Schumacher believed that it was deposited by ascending hot waters in the vicinity of necks of intrusive rocks. Beyond the intrusive necks the veins persist but contain only gangue minerals. M. Dittrich examined fresh and propylitic andesite, using the cyanide process, but found gold in neither.

While much of the gold is distinctly later than the gangue it is difficult to say whether we have to deal here with the effect of descending waters or with the last phases of vein formation. A similar problem is offered in the rich pockets of veins at Thames, in New Zealand; in neither place is enrichment by descending waters satisfactorily proved.

![Diagram of pockets of native gold (a) in quartz vein (q) along intersections with pyritic seams (k). After F. Schumacher.](image)

Hauraki Peninsula, New Zealand.—The Hauraki region in the northern island of New Zealand is richly mineralized in several districts. Its rocks consist mainly of andesite and dacite flows of Eocene or Miocene age covered by Pliocene rhyolites.

A production of about $30,000,000 is recorded from the Thames district, though but little gold is now obtained there. The veins are contained in broad belts of soft, propylitic andesite (see p. 448) and dip 40° or more. Great masses of low-grade quartz occur, but the gold is derived mainly from rich pockets occurring down to a depth of 400 to 600 feet below the surface. One of these pockets in the Caledonia mine, about 1871, yielded

9 tons of gold in 15 months. The veins have been followed from a height of 1,500 feet above the sea to 640 feet below it, but owing to intervening faults the real vertical extent is only 1,200 feet. The rich shoots occur mainly where the veins are intersected by small stringers or "leaders." Opinions differ widely as to whether this concentration in pockets is due to descending waters or not. In all probability, however, it was one of the latest phases of the primary mineralization. The principal ore mineral is gold alloyed with 30 to 40 per cent. silver, but some pyrite, chalcopyrite, zinc blende, galena, stibnite, and pyrargyrite also occur. Arsenopyrite and native arsenic, the latter secondary, occur at Coromandel. The gangue minerals, besides quartz, are dolomite and, occasionally, rhodonite.

The Karangahake deposits, 40 miles south of the Thames district, are also in propylitized andesites but differ somewhat from the type described and consist in brief of calcite and quartz with more or less sulphides. The best known of these deposits are those at Waihi. The Waihi lodes are conspicuous and were discovered in 1878; in part theappings are covered by rhyolite and the development of the deposit therefore falls between the two eruptions. The ore proved difficult to amalgamate and the mines achieved importance only after the introduction of the cyanide process. To the end of 1911 the total production amounted to about $40,000,000. The country rock is a green propylitic dacite with some pyrite, calcite, and seams of quartz and adularia. This rock often adjoins the veins without further alteration, but transitions to the quartz filling by silicification are said to exist.

The vein system is complex, and sixteen steeply dipping and interconnecting veins are known. Of most importance is the Martha lode (Fig. 144), a wide fissure vein with brecciated walls; the quartz is formed largely by filling, in part by silicification. On the 500-foot level the lode is in some places 80 feet wide; for half of this width it is barren, but the other half is said to average $15 to $20 per ton. The proportion of gold to silver by weight is 1:3 or 1:4 and this average was maintained from the surface down. The water level stood within 200 or 300 feet of the surface. The lode is said to contain ore for a horizontal distance of 1,700 feet. The developments in the deepest levels are said to be less encouraging as to the quantity of ore, but the lode itself maintains its strength.
A little pyrite was found in the first level in the Martha lode; on the second level the sulphide ore on the foot-wall was a few feet wide; on the 500-foot level 20 feet of sulphide ore was exposed on the foot-wall, while the remainder of the vein, at this place 40 feet wide, was thoroughly oxidized, with much black manganese oxide. This sulphide ore is of nearly the same value as the oxidized ore, containing perhaps a little more gold and a little less silver.

The ore consists of quartz and calcite, with 3 per cent. of pyrite, zinc blende, galena, and argentite. The sulphides are often banded and the gold values are mainly in the pyrite; the bullion contains some selenium. Throughout the oxidized zone the calcite is dissolved, leaving a lamellar quartz ore stained by manganese, but this change is produced mainly by descending waters. In other mines of the district there are indications of a pseudomorphic deposition of silica, similar to that of the DeLamar mine, Idaho (p. 482), by a late phase of ascending solutions. In at least some mines in the Karangahake district the ore becomes poor when the zone of the calcite, unchanged by descending waters, is reached.

The depth of the oxidation of the Waihi mine below water level is noteworthy and probably indicates oxidation during a dry, intervolcanic epoch.
GOLD-QUARTZ VEINS IN RHYOLITE

The Tertiary rhyolites in the Cordilleran region often contain gold-bearing veins. These veins are poor in ore minerals other than gold but usually contain some argentite, pyrargyrite, and pyrite. The gold is frequently coarse and accompanied by more or less silver. Among the gangue minerals quartz prevails, but in most cases it is associated with much adularia, probably derived from the surrounding potassic rock. Calcite and fluorite are also common, but barite is rare. The veins are almost characteristically pseudomorphic, with bladed and cellular quartz and adularia, which replace calcite and fluorite. Both veins and sheeted zones occur; in the latter there is little gangue and the gold, as in the Jumbo mine at Hart, California, may be embedded in apparently little-altered rhyolite.

![Vertical section of the vein system at De Lamar, Idaho.](image)

There is no real propylitic alteration of the country rock but often extensive silicification and much finely disseminated pyrite. The silicification is attended by concentration of potassium as adularia or sericite. The decomposed upper zone of the veins contains clay seams that may be extremely rich in gold and secondary silver minerals, as at De Lamar, Idaho, and Rawhide, Nevada.

At the De Lamar mine\(^1\) a series of parallel, gently dipping veins of the kind described abut against a fissure filled with tough clay (the “iron dike”) near which the best ore is found (Fig. 145). Below a vertical depth of about 800 feet the values are low, although the veins persist. Free gold is rarely seen. The pro-

portion of gold to silver by weight is 1:20. The veins are ordinarily 1 to 6 feet thick and distinctly filled, though transitions by silicification were also noted. The filling is wholly quartz, pseudomorphous after calcite, and forms a cellular mass of thin plates covered by minute crystals (Figs. 132 and 133, p. 437). The value of the ore ordinarily ranges from $10 to $20 per ton. The De Lamar mine has yielded gold and silver to the value of about $7,000,000.

F. C. Schrader has described similar deposits in the Black Mountains\(^1\) in Mohave County, Arizona, and the Jarbridge district,\(^2\) Nevada. At both places adularia is extremely abundant and often forms over 50 per cent. of the gangue (Fig. 146). At the Gold Road mine, in the Black Mountain district, the vein is wide and long; the replacement of calcite and fluorite by quartz and adularia is very clearly shown here. The ore averages $10 per ton and the mine has yielded gold to the value of several million dollars. At Jarbridge a great number of veins have been found intersecting an older rhyolite. An interesting feature is the injection of rhyolite into some of the veins, which are distinctly earlier than the late Tertiary rhyolite flows and were

\(^1\) *Bull.* No. 397, U. S. Geol. Surv., 1909.

\(^2\) *Idem*, No. 497, 1912.
thus formed during a short epoch between two eruptions. Entirely similar veins are found at Rawhide, Gold Circle, Round Mountain, and many other places in Nevada.

In the Bullfrog district, Nevada, a thick complex of tilted and faulted Miocene rhyolite flows is cut by gold-bearing veins. These veins show various gradations from sheeted zones, in which parallel banded veinlets of alternating crusts of calcite and quartz are separated by thin slabs of rhyolite, through irregular stringer lodes, to lodes made up largely of angular fragments of rhyolite cemented by quartz and calcite. The

![Image](https://via.placeholder.com/150)

Fig. 147.—Thin section showing coarse gold (black) of contemporaneous development with matrix of quartz of varying grain, National, Nevada. Magnified about 60 diameters.

calcite is in part replaced by cellular quartz, but the process has not been carried to completion.

The extremely rich ore of the National vein, in northwestern Nevada (Fig. 147), has yielded about $3,000,000 from a narrow shoot followed to a depth of 800 feet on the vein. The veins of that district, except for this occurrence, are of the stibnite type.

1 A. F. Rogers, *Econ. Geol.*, vol. 6, 1911, p. 790.
The native gold contains 50 per cent. silver and is more properly called electrum.

ARGENTITE-GOLD-QUARTZ VEINS

Tonopah, Nevada.—The Tonopah district is situated in a group of desert hills in western Nevada about 30 miles north of Goldfield. The district was discovered in 1900 and soon developed into one of the most important of the western silver- and gold-producing localities. In 1911 the production amounted to about $2,300,000 in gold and nearly 11,000,000 ounces of silver. The ore, which is treated by concentration and cyaniding, yielded $20 a ton.

Geologically the district is made up of a thick series of rhyolitic and andesitic rocks, consisting of lower tuffs and flows of rhyolite (in part considered as intrusive by Spurr), covered by an earlier and a later flow of andesite; the latter is overlain by rhyolites and Siebert lake beds (p. 507), above which rest the latest rhyolites and basalts. This volcanic series with accompanying veins is faulted in an extremely complicated manner (Fig. 33, p. 129). The age of the Siebert lake beds is held by Ransome to be Miocene.

The deposits are quartz veins intersecting the earlier andesite and to some extent entering into the underlying rhyolite, and the main developments are therefore at depths not exceeding 1,500 feet. The veins are covered by the later volcanic flows and they thus present another example of mineralization within short intervolcanic epochs. The late rocks show a different mineralization which is of slight economic importance, again illustrating how successive epochs of mineralization follow epochs of effusion.

The veins are of moderate thickness, though some stopes are 30 feet or more in width. The outcrops are not traceable for long distances on the surface. Propylitic alteration, described on page 446, affects the andesite; next to the veins there is

sericitization and silicification. The principal gangue mineral is white quartz of fine but variable grain, with banded structure and "chalcedonic appearance," containing parallel bands of finely divided sulphides. The veins are in part filled, but in part appear to have been formed by replacement of the country rock. The primary ore contains some black particles of finely divided gold alloyed with much silver. Argentite and polybasite are the principal ore minerals, with small amounts of pyrite, chalcopyrite, galena, and zinc blende. Selenium is present, probably as a silver selenide. Among gangue minerals there are, besides quartz, rhodonite, adularia, and various carbonates. The secondary ores developed by oxidation and sulphide enrichment are described in Chapt. 29. Minerals of rarer occurrence are hübnerite (tungstate of manganese), scheelite (tungstate of calcium), and cinnabar. The relations of the metals in exceptionally rich concentrates are as follows:

<table>
<thead>
<tr>
<th>Element</th>
<th>Ag</th>
<th>25.92 per cent.</th>
<th>Sb</th>
<th>0.92 per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Au</td>
<td>0.82 per cent.</td>
<td>Fe</td>
<td>9.81 per cent.</td>
</tr>
<tr>
<td>Pb</td>
<td>6.21 per cent.</td>
<td>MgO</td>
<td>1.49 per cent.</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>5.84 per cent.</td>
<td>CaO</td>
<td>3.70 per cent.</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1.32 per cent.</td>
<td>S</td>
<td>not determined.</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>2.56 per cent.</td>
<td>CO₂</td>
<td>6.34 per cent.</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.19 per cent.</td>
<td>SiO₂</td>
<td>15.18 per cent.</td>
<td></td>
</tr>
</tbody>
</table>

The Comstock Lode.—Among other deposits of this type the Comstock lode¹ deserves first mention. Discovered in 1859, it has yielded, to the end of 1911, a total production of $378,400,000 in silver and gold, of which the gold amounted to $153,000,000. The bonanza period fell in the seventies of the last century and although the production since then has declined greatly, yet during the last few years a systematic unwatering of the deep levels has resulted in a noteworthy rise in output. In 1911 the lode yielded almost $1,000,000 in gold and 618,000 ounces of silver, the ore having an average value of $13.61 per ton. The Comstock lode, situated near the summit of the Virginia Range, east of the Sierra Nevada, is a fault fissure of great throw (Fig. 148), traceable 2½ miles and in places several hundred feet wide, the vein matter of the lode spreading in the hanging wall. Great bonanzas of crushed quartz, in part exceedingly rich in silver minerals, were found at intervals along the lode, especially in

chambers or vertical fissures probably produced by normal faulting of the hanging wall. The greatest vertical depth attained below the outcrop is about 3,000 feet. Mining has been greatly hampered by enormous quantities of hot sulphate water. None of the great bonanzas were found below a depth of 2,000 feet.

The lode intersects igneous rocks of deep-seated type, showing transitions and variously classified as diorite, diabase, and augite andesite.¹ These are covered by andesite flows of distinctly

![Diagram of the Comstock Lode](image)

Fig. 148.—Vertical cross-section through the Comstock lode, showing chambered outerop and bonanza in vertical vein in hanging wall. After G. F. Becker, U. S. Geol. Survey.

Tertiary age, which are also mineralized. Both classes of rocks have suffered propylitic alteration, and analyses of the clay gouge near the veins show that sericitic alteration has set in along the principal channels which the solutions followed. The ores consist of quartz and some calcite, in places banded with pyrite, galena, chalcopyrite, zinc blende, and finely distributed rich silver minerals. The valuable minerals are mainly native gold, argentite, stephanite, and polybasite.

DEPOSITS FORMED NEAR THE SURFACE

There are in places two generations of quartz, as shown in Fig. 149, the older quartz containing principally pyrite. Zeolites are reported in the altered country rock but are apparently not common. According to Reid the descending waters, rich in sulphates, contained notable amounts of gold and silver, and small quantities of these metals were also present in the ascending hot sulphate and carbonate waters. Opinions still differ as to the relative importance of sulphide enrichment in this place.

![Image](image_url)

Fig. 149.—Rich ore, Ophir mine, Comstock lode, showing earlier fractured quartz with fine-grained pyrite and some argentite (a) and later vein with three generations of galena and argentite (b) with some pyrite, chalcopyrite, and quartz (q). Drawn from specimen in collection of Massachusetts Institute of Technology, natural scale.

ARGENTITE VEINS

The argentite veins have numerous representatives in Mexico, as at Pachuca, Real del Monte, Guanajuato, and Zacatecas. In general they intersect andesitic rocks of supposedly Miocene age but also cut adjacent or underlying Mesozoic sediments.

The rich and long worked veins of Pachuca¹ have come into renewed prominence by the successful application of

¹ J. AguiJera and E. Ordóñez, El mineral de Pachuca, Boletín, Inst. geol. de México, Nos. 7, 8, 9, 1879.
the cyanide process to their ores. A complicated vein system intersects andesite flows covering Cretaceous sediments. The andesite is extensively propylitized and this altered rock also adjoins the veins, near which, however, a silicification is often superimposed upon the chloritization. In places the andesite is entirely silicified. The veins are filled fissures, crustified or brecciated, with quartz, sometimes amethystine, as the principal constituent of the gangue; there are also rhodochrosite, rhodonite, adularia, and calcite, the last named being the most recent.

The ore minerals consist of argentite, stephanite, polybasite, pyrite, galena, and zinc blende. The veins have been followed to a depth of 2,000 feet and here contain argentite, pyrite, and zinc blende. The ores average about 18 ounces of silver to the ton. The oxidation is marked by the zones of the “colorados” and the “negros,” the first of which contains limonite with silver haloid salts and the second much manganese. The “negros” are said to contain more gold than the deeper ores, which are very low in this metal.

There are many other old and famous silver-mining districts in Mexico, the veins of which are similar to those of Pachuca. Among them are Guanajuato, Zacatecas, Sombrerete, Fresnillo, Batopilas, and Parral. In many of these districts, however, the veins are contained in Cretaceous or Jurassic slates and sandstones, though, without much doubt, the mineralization is genetically connected with the surrounding igneous rocks.

GOLD TELLURIDE VEINS

Cripple Creek.1—The veins of Cripple Creek, situated in an otherwise barren part of Colorado, have since 1891 annually yielded a large amount of gold, which in 1900 reached a maximum of $18,000,000. In 1911 the production of gold was valued at $10,500,000, but the silver recovered amounted only to $30,000. The total output of the district to the end of 1911 is $225,500,000. Individual mines have produced from $10,000,000 to $30,000,000 each. The district lies on a granitic plateau a few miles southwest of Pikes Peak, at elevations of 9,000 to 11,000 feet. Within

a few square miles are a large number of producing mines; 92 reported in 1911 the production of 726,000 short tons of ore, averaging $14 per ton. In earlier years the average value was $30 to $40 per ton, but during recent years an increasing quantity of low-grade ore from dumps, etc., has been treated, some of it containing only $3 or $4 per ton. Six or eight large mines, among which are the Golden Cycle, the Portland, Stratton's Independence, the Vindicator, the El Paso, and the Elkton, contribute one-half the output, the ore having a value of $18 to $30 per ton. The cyanide process precede by roasting is now almost universally used for the ores of higher grade; most of the ore is reduced in large mills at Colorado Springs, although there are many smaller cyanide plants in the district.¹

The mining operations have always suffered from a large quantity of mine waters and the greatest depth attained is about 1,500 feet. The Roosevelt tunnel, recently completed, is nearly 3 miles long and now drains the mines to an elevation of 8,020 feet—that is, 770 feet below the El Paso drainage tunnel.

The rocks constituting the plateau are pre-Cambrian red granite, with some gneiss and fibrolite schist. Breaking through this basement is a mass of Tertiary volcanic rocks, the area having a diameter of 2 or 3 miles. As shown by the mining operations the contact surface between the granite and the volcanic mass is steep, or even vertical or overhanging and there is little doubt that this “plug” of volcanic ma-

terial represents the core of a Tertiary volcano which formerly rose above the plateau, as tentatively indicated in Fig. 150. The bulk of the remaining core is composed of tuffs and breccias of latite-phonolite and these are cut by dikes and intrusive masses of phonolite and syenite. The latest manifestations of volcanism were basic dikes of monchiquite and vogesite, and the veins were apparently formed soon after these dikes had been intruded. Many of the rocks contain a notable amount of combined water. The deposits are veins which followed a system of roughly radi-

Fig. 151a.—Vein filling, Portland mine, Cripple Creek (purple quartz). f, Fluorite; q, quartz of coarser and finer grain; p, pyrite. Magnified 50 diameters.

Fig. 151b.—Filled space of dissolution in granite, Independence mine, Cripple Creek (granite ore). o, Orthoclase of granite; m, biotite replaced by adularia and pyrite; v, adularia (secondary orthoclase, showing crustification; q, quartz. Magnified 14 diameters.

ating, steep fissures (Fig. 37), believed to have resulted from compressive stress developed in a settling volcanic mass. The physiographic history of the district indicates that the surface at the time of vein formation was only from a few hundred feet to 1,000 feet above the present surface.

In the granite adjoining the contact are also found irregular bodies of ore, formed by replacement. Most of the veins are closely spaced sheeted zones (Fig. 42) a few feet wide, though some attain a width of 20 to 40 feet. The ore deposition has generally taken place by filling along the narrow fissures and only to a smaller extent by replacement of the intervening or adjoin-
ing rock. Low-grade ores are formed by mineralization of narrow seams in the country rock.

There is little or no native gold, except in the oxidized zone (p. 781). The principal ore mineral is calaverite (AuTe₂, with but little silver), of silvery white color and often well crystallized. Associated with this are small quantities of pyrite, zinc blende, tetrahedrite, stibnite, and molybdenite, rarely hübnerite. The gangue consists of quartz and fluorite, with some dolomitic carbonate. The fluorite, quartz, and calaverite are often intergrown, forming a fine-grained rock which has the purple color of the fluorite (Fig. 151a). The vein structure is drusy and the calaverite was among the latest minerals formed. The vein filling consists of about 60 per cent. quartz, 20 per cent. dolomite, 20 per cent. fluorite, 0.1 per cent. gold, and 0.2 per cent. tellurium, with iron, copper, zinc, and molybdenum present in fractions of 1 per cent.

The replacement ore consists of the ordinary red granite, often drusy and partly replaced by adularia, fluorite, and calaverite (Fig. 151b). In the upper levels there are a great number of short veins all of which carry more or less ore. In the aggregate these veins contain an enormous amount of ore, some of which is of exceedingly high grade. The veins are less abundant in the lower levels and some of them are of lower grade. Many rich veins continue, however, to the lowest levels.

As shown in the report cited the ore-shoots are to a marked degree influenced by intersections with other veins or dikes, but many of the largest and richest shoots have no such relation.
The greatest horizontal extension of a shoot is 1,300 feet. Many shoots terminate in depth, while others have continued to the greatest depths attained. The relations at Stratton’s Independence mine are illustrated in Figs. 152 and 153.

The tuffs and breccias are generally altered and contain some fine-grained pyrite, which has little value; the dark silicates alter to carbonates, fluorite, and pyrite and the feldspars to sericite and adularia. Cross and Penrose thought this propylitic alteration earlier than the veins, while Lindgren and Ransome consider it to be caused by the same kinds of solutions that filled the fissures. Similar differences of opinion have been expressed in relation to the propylitization at other places (p. 451). The alteration close to the veins is remarkably slight at Cripple Creek.

There is no evidence that there has ever been an active circulation of surface water in the district. The porous breccias and in
general the whole volcanic plug are filled with stagnant water, while there is little water in the surrounding granite. The general conclusion of Lindgren and Ransome is that the vein-forming epoch was brief and that the remarkable and abundant telluride ores were formed by alkaline solutions emanating from deeper igneous masses, the last effects of these emanations being the exhalations of carbon dioxide and nitrogen, which have not yet subsided. The waters ascended rapidly in the deeper parts of the volcanic plug, but near the surface they spread out in more numerous fissures and precipitation followed by cooling or mixture with descending solutions.

GOLD SELENIDE VEINS

Occurrence of Selenides.—In minute quantities selenium is present in many deposits, particularly in the pyritic copper deposits, and it is recovered on a rather large scale during the electrolytic refining of copper. As distinct minerals the selenides are apparently confined to the metallic veins formed at moderate or shallow depths. Their presence in some rare quicksilver deposits has already been mentioned. In the silver veins of Mexico selenides of silver and lead have been found; and in some silver-gold veins like those at Tonopah or gold-silver veins like those at Waihi they are important constituents. At both Tonopah and Waihi other minerals are present in quantities.

The type of veins described in these paragraphs is remarkably free from ore minerals other than native gold and selenides, and it is rare, only two examples being known, that of Republic, in Washington, and that of Radjang Lebong, in Sumatra. In some respects, however, the Tonopah veins are allied to this type.

In both the places mentioned there is a predominating gangue of very fine-grained quartz, beautifully banded by crustification, but not markedly drusy; it has a "chalcedonic" appearance, although there is really but little chalcedony present, and it resembles strongly, both in hand specimen and in thin section, some kinds of sinter deposited at the orifices of hot springs. The gold is present in very fine distribution and the gold selenide has not yet been positively identified. These veins have probably been deposited close to the surface.

Republic, Washington.—At Republic a series of Miocene andesite and latite flows filling an old valley have been intruded
by a mass of latite porphyry belonging to the same general period of eruption. Over a considerable area the andesite and porphyry have suffered normal propylitization, chlorite, earthy carbonates, and pyrite being the principal minerals formed. A series of parallel fractures dipping from 38° to 80° have been opened in the volcanic rocks and are occupied by sharply defined veins averaging 3 or 4 feet in width. Against these the propylitic rock bor-

Fig. 154.—Typical ore, Republic mine, Republic, Washington. a, Fine-grained quartz, banded; b, streak of black, finely divided sulphides and selenides (?); c, altered latite porphyry. Natural size.

ders, usually with little further alteration. The banded filling (Fig. 154) consists of quartz and calcite and also includes dark masses of jasperoid of uncertain derivation. There is some adularia in the filling and in a few places can be seen the beginning of a replacement of calcite by fine-grained quartz and adularia. In one mine the quartz filling has been replaced by laumontite containing much silver.

Free gold is rarely visible, but the valuable portions of the veins lie along narrow dark bands that are parallel to the crusti-
DISPOSITS FORMED NEAR THE SURFACE

Deposition and are believed to represent finely divided gold selenide. Local crusts are rich in free gold, tetrabedrite, and chalcopyrite and this material contains about 2 per cent. of selenium, which, according to unpublished experiments by Dr. Chase Palmer, of the United States Geological Survey, is probably combined with gold.

The ores of Republic have proved difficult to treat by the cyanide process. Their grade varies greatly, averaging perhaps $20 per ton. The proportion of gold to silver by weight is about 1:3. Oxidation has resulted in small changes but has set some silver free. Since 1897 the district has yielded $5,000,000. The greatest depth attained is 800 feet.

Sumatra.—The Radjang-Lebong field,\(^1\) in southern Sumatra, has yielded much gold in recent years. The annual production is about 50,000 ounces of gold and 300,000 ounces of silver. Andesite is the country rock and the principal vein, which has a width of 17 feet, is divided into five well-defined seams separated by silicified andesite. According to R. Beck the bluish-gray quartz is beautifully banded in thin concentric crusts of “fibrous quartz.”\(^2\) The rich ore, like that of Republic, is indicated by thin dark dendritic crusts similar in appearance to the quick-silver selenide from Lerbach, the silver selenide at Tillingerode (both localities in the Harz Mountains), and the copper selenide of Skrikerum, in Sweden.

The ore, of which only a small part is amenable to amalgamation, contains on an average 41 grams of gold and 318 grams of silver per metric ton. There is a little pyrite and chalcopyrite. The bullion, according to Truscott,\(^3\) contains

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold and silver</td>
<td>91.52</td>
</tr>
<tr>
<td>Selenium</td>
<td>4.35</td>
</tr>
<tr>
<td>Copper</td>
<td>1.82</td>
</tr>
<tr>
<td>Lead</td>
<td>1.65</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.48</td>
</tr>
<tr>
<td>Iron</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Total: 99.96

\(^1\) R. Beck, Die Lehre von den Eralagerstätten, vol. 1, p. 488.
\(^2\) The expression “fibrous quartz” used by Beck suggests a possible replacement of primary calcite by quartz and adularia.
\(^3\) M. Maclaren, Gold, London, 1909, p. 298.

MINERAL DEPOSITS

THE BASE-METAL VEINS

Among the deposits formed relatively near the surface by ascending thermal waters in genetic connection with igneous rocks, ores rich in the baser metals and worked principally for these metals are rather exceptional. Heavy deposits of pyrite and chalcopyrite ore are very seldom found; one instance is furnished by the Nacozari district, in Mexico, where at the Los Pilares mine\(^1\) a large body of low-grade pyrite and chalcopyrite is worked. The ores occur mainly in the interstices of a brecciated rhyolite in a series of fractures arranged in almost circular form. The pyrite is often crystallized; the gangue is quartz; the ore is poor in gold and silver.

The veins and stocks of the San Juan region, Colorado, described in more detail below, are sometimes rich in lead, zinc, and copper, but yield principally gold and silver. Both galena and zinc blende occur, but the copper is derived mainly from tetrahedrite or enargite.

The Schenmiz deposits, in Hungary, consist of a strong vein system intersecting rhyolite and andesite above Triassic slates and Eocene strata. The gangue minerals are fine-grained quartz and amethyst, together with later calcite, ankerite, rhodochrosite, rhodonite, siderite, and barite, with much pyrite, galena, chalcopyrite, and zinc blende. Among the rarer minerals are adularia, fluorite, and diasporite. The proportion of gold to silver by weight is 1 : 23.

The Bull-Domingo and Bassick deposits,\(^2\) at Silver Cliff, Colorado, yielded principally gold and silver. The ore consisted, however, largely of sulphides and tellurides, which in the Bassick mine occurred in what is considered a volcanic neck. The Bassick deposit was mined to a depth of 800 feet and yielded rich ore. The cross-section covered about 25 by 100 feet and the ores encrusted the fragments of volcanic rocks filling the shoot.

When the solutions depositing veins in volcanic rocks leave the flows and enter into the surrounding limestones and other sedimentary rocks, deposition by selective precipitation comes into play and ores rich in sulphides, particularly galena, may be formed. Examples of this are found in several deposits of the

Ouray district, Colorado, described by J. D. Irving, and probably also in the Mapimi and Santa Eulalia lead deposits, in Mexico.

THE SAN JUAN REGION, COLORADO

General Features.—One of the most interesting metallogenetic provinces is that of the rugged San Juan region, in southwest Colorado, including the mining districts of Telluride, Ouray, Silverton, Lake City, Rico, Needle Mountains, La Plata, and Creede (Fig. 155). Space is not available to describe these fully, but some of the more important relations should be pointed out. The districts are known mainly through the labor of the geologists of the Federal Survey.

T. A. Rickard, Across the San Juan Mountains, New York, 1903.

The San Juan Mountains consist chiefly of volcanic rocks, poured out over a basement of Paleozoic and Mesozoic sediments; pre-Cambrian rocks are also exposed in places (Fig. 156). The volcanic flows, occupying over 3,000 square miles, have a total thickness of many thousand feet and were erupted at intervals during the whole Tertiary period. The lowest formation, called the San Juan tuff, consists of about 3,000 feet of andesitic material. Covering this are andesites, latites, and rhyolites, called the Silverton series, 4,000 feet thick; this in turn is overlain by the Potosi series, consisting of rhyolite and latite. The eruptions
were separated by epochs of erosion and were closed by the
effusion of the Hinsdale series of rhyolites, andesites, and basalts.

Deep erosion has laid bare these flows to a depth of several
thousand feet and exposed a number of smaller intrusive stocks
and sheets of dioritic or monzonitic character and granular or
porphyritic texture. The very latest intrusions are represented
by dark dikes of lamprophyric character.

This vast uplifted and eroded dome of volcanic rocks is trav-
ered by numerous systems of strong fissure veins, many of
them continuous for several miles. Their development followed

closely after the latest epoch of volcanic activity and they inter-
sect several of the intrusive masses. While the vein systems
bear the marks of deposition within a moderate distance of the
original surface, there are some features that tend to connect
them with deposits formed at greater depth and in more direct
 genetic connection with igneous intrusions. Many types are
 represented, including normal veins, stocks, replacement deposits
in sedimentary formations, and some small contact-metamorphic
deposits near the contacts of the intrusive masses. Some of the
veins are exposed over vertical distances of several thousand feet.
The Virginus vein, above Ouray, for instance, has been mined
for a vertical distance of 3,300 feet; the Revenue tunnel is 2,400
feet below the outcrops.

The predominating values are in gold and silver, but in some
districts much lead, copper, and zinc are also present, mainly as
galena, tetrahedrite, and zinc blende. The gangue is mainly
quartz, but rhodochrosite, rhodonite, barite, and fluorite are
often present.
Telluride District.—In the Telluride district the present annual production is about $2,500,000 in gold and 1,000,000 ounces of silver, mainly from the strong veins worked by the Liberty Bell, Smuggler-Union, and Tomboy mines. The veins are filled fissures, averaging 3 or 4 feet in width, with crustification banding, drusy structure, sericitization, and silicification of the walls. The larger lodes appear often as a number of parallel plates of filled veins separated by sheets of altered rock. The Smuggler vein, for instance, cuts through the San Juan tuff, the andesite, and the rhyolite, a vertical distance of 2,000 feet (Fig. 157). What aspect the veins assume in the underlying sedimentary formation is as yet unknown.

The gangue minerals are quartz, calcite, siderite, rhodochrosite, adularia, barite, and fluorite, the last being abundant in the Tomboy mine (Fig. 158). Native gold, pyrite, galena, zinc blende, and chalcopyrite are the principal metallic minerals. The ores contain 2 or 3 per cent. sulphides and yield about $6 in gold and a few ounces of silver per ton. The treatment consists of a combination of amalgamation, concentra-
tion, and cyaniding. There are several minor silver veins and replacement deposits in the district.

Silverton District.—The Silverton district is rich in veins, which contain more base metals than those of the Telluride district. The present annual production is about $700,000 in gold, 800,000 ounces of silver, 5,000 tons of lead, and some copper and zinc. The deposits are simple veins or lodes, averaging about 3 feet in thickness. The structure is commonly massive

![Diagram of ore minerals](image)

Fig. 158.—Section showing succession of ore minerals in Mendota workings. Smuggler vein Telluride, Colorado. 1, Country rock; 1', sericitized and impregnated country rock; 2, zinc blende with calcite; 2', zinc blende with galena; 3, white quartz; 4, rhodochrosite; 5, blue quartz with finely disseminated sulphides. *After C. W. Purinton, U. S. Geol. Survey.*

but sometimes banded (Fig. 159) and drusy; on the whole it resembles that of deeper-seated veins. Many of the veins are also rich in sulphides.

The prevailing gangue mineral is quartz and this is of coarser-grained texture than is common in the veins deposited near the surface (Fig. 160). The gangue also includes much calcite, dolomite, rhodochrosite, rhodonite, barite, and fluorite. The ore minerals are pyrite, galena, chalcopyrite, zinc blende, tetra-
Fig. 159.—Cross section of banded vein near London shaft, Silverton, Colorado. a, Country rock; b, quartz and chalcopyrite; c, tetrahedrite; d, d', quartz; e, galena. Vein 6 inches wide. After F. L. Ransome, U. S. Geol. Survey.

Fig. 160.—Thin section of ore from Ridgeway mine, Silverton, Colorado. Large black areas, pyrite; small black areas, argentite, with a little galena and zinc blende; shaded grains, quartz. Magnified 17 diameters. After F. L. Ransome, U. S. Geol. Survey.
DEPOSITS FORMED NEAR THE SURFACE

hedrite, enargite, and native gold, more rarely hüblnerite, molybdene-
nite, and various sulphantimonides and bismuthides. Tetrahedrite
and galena are very abundant. Tellurides are rare. Rock alter-
ation in this district is discussed in some detail on pages 455–457.

Ouray District.—The Camp Bird lode, in Ouray County, prob-
sably represents the continuation of one of the Telluride lodes. For
many years the Camp Bird mine has yielded rich returns, am-
ounting from 1903 to 1910 to $16,500,000, principally in gold,
though some silver, copper, and lead are recovered. The ore
contains about $22 in gold per ton. The lode intersects San
Juan tuff and andesite and is described as a sheeted zone 4 or 5
feet thick made up of alternating fissure filling and altered rock;
filling was, however, the predominating process. The gangue
is quartz, often crusted and banded, with rhodochrosite, calcite,
and fluorite. The metallic minerals are very fine native gold,
with a few per cent. of galena, pyrite, and zinc blende, also some
finely distributed tellurides.

Irving describes a number of replacement deposits in the
Ouray district just outside of the volcanic area. They are con-
tained in quartzite or limestone below impervious beds and yield
sulphides, ores with galena, tetrahedrite, chalcopyrite, jasperoid,
and barite.

Rico District.—The Rico Mountains are a dome-like uplift of
sedimentary rocks ranging from Algonkian to Jurassic in age,
intruded by stocks, sheets, and sills of monzonite, or monzonite
porphyry (Fig. 161). The ores are therefore rather of the deep-
seated type, but nevertheless their genetic connection with the
other deposits of the San Juan region is clear. The deposits
form lodes, bed-veins (blankets), and replacements. The
blankets often lie parallel to the sheets of intruded rocks or below
impervious shales. The abundant ore minerals consist of pyrite,
galena, zinc blende, and tetrahedrite, in a gangue of quartz,
rhodochrosite, calcite, and fluorite. The filling is often beauti-
fully banded (Fig. 162). A very limited vertical range is char-
acteristic of the deposits. The greater part of the production
has come from the blankets, a short distance below which the
veins have become impoverished in the Hermosa (Pennsylvanian)
formation of sandstone, shale, and limestone. Besides the
silver-lead ores the district contains larger bodies of low-grade
pyritic ores. The rich silver minerals were mainly the result of
oxidation and sulphide enrichment of the galena and tetrahedrite.
Fig. 161.—Geological section through part of the Rico dome, Colorado. After Cross and Spencer, U. S. Geol. Survey.

Fig. 162.—Banded ore, Rico, Colorado. After T. A. Rickard.
DEPOSITS FORMED NEAR THE SURFACE 505

La Plata, Durango, and Needle Mountains Quadrangles.—South of Rico the sandstones of the Jurassic and Triassic (Dolores formation) are abundantly intruded by sheets of monzonitic rocks. Late dikes of basic character intersect the monzonite porphyries. Veins cutting both porphyries and sediments contain native gold, tellurides (petzite, sylvanite, and calaverite), argentiferous tetrahedrite, tennantite, stephanite, amalgam, pyrite, marcasite, chalcopyrite, galena, and zinc blende. In the gangue quartz prevails, with some rhodochrosite and barite. The similarity to the telluride veins of Lake City is striking. Entirely similar telluride veins occur in the northeastern part of the Needle Mountains quadrangle south of Silverton.

Lake City District.—The production of this district is now small, but it has yielded a total output of $1,250,000 in gold, 4,000,000 ounces of silver, and 40,000 tons of lead, the value of the lead exceeding that of the silver.

The deposits range from simple veins to more complicated lodes, but filling with banding was the predominating process in their development. The width ranges from a few inches to 20 feet. Many of the fissures are short and were found to pinch out at relatively slight depth. The alteration of the wall rock is slight but is marked by some silicification and sericitization. Pyritization of the surrounding rhyolite or andesite extends to considerable distances. The veins intersect all rocks below the Potosi series and also cut the intrusions of monzonite porphyry. The following types of veins are recognized:

1. Tetrahedrite-rhodochrosite veins. The ores contain mainly galena, pyrite, and tetrahedrite, the last rich in silver, with some pyrite in a gangue of quartz, barite, and rhodochrosite.

2. Quartz-galena-zinc blende veins. The ores of these veins contain dominant galena, pyrite, and zinc blende, with subordinate chalcopyrite, in a quartz gangue.

3. Telluride veins. The few veins of this type contain gold and silver tellurides disseminated through a quartz gangue with subordinate sulphides, tetrahedrite, and barite.

Creede District.—In the Creede district, in the eastern part of the great volcanic area, strong and beautifully banded veins intersect rhyolite. They carry, in a gangue of amethystine quartz, barite, and some fluorite, a considerable amount of galena and zinc blende. The average ore in 1910 contained 0.09 ounce
of gold and 12.29 ounces of silver per short ton, 0.02 per cent. copper, 6.5 per cent. lead, and 1.9 per cent. zinc. Some of the ores are considerably richer in galena. Most of the ore is concentrated, and the total production in 1910 had a value of about $1,000,000.

Summary.—The deposits of the San Juan region consist of gold-bearing quartz veins, gold-telluride veins, and base-metal veins generally carrying galena and tetrahedrite. The descriptions show a merging of the types and certain minerals common to most of them, such as rhodochrosite, rhodonite, and barite. The ores are usually well banded and crustified.

The ores are clearly independent of the character of the country rock, as has been already noted by J. D. Irving. They also intersect the intrusive monzonites, where these are exposed by erosion, and they are apparently derived from a deeper source. The ores were probably deposited in one main epoch following the intrusive activity.

Spurr believes that fissuring and mineralization were caused by and followed the dome-like uplifts and that these were due to deep-seated intrusions, not yet exposed by erosion. The metals in the deposits would then have been derived from the ascending emanations of these deep-seated intrusives. The region shows, as few others do, the relation of the upper and deeper vein zones.

GOLD-ALUNITE DEPOSITS

General Features.—In volcanic regions it is not uncommon to find considerable areas of bleached and altered lavas which contain more or less alunite (K₂O·3Al₂O₃·4SO₃·6H₂O), an earthy or compact, rarely coarsely crystalline mineral of inconspicuous appearance (p. 447). Occasionally diasporite or gibbsite is associated with alunite. In most cases this basic sulphate, which is

insoluble in water, is probably formed by the action of waters containing free sulphuric acid on aluminous rocks. It is also found in places in the oxidized zones of veins containing pyrite. In such altered zones in volcanic rocks alunogen, jarosite, halotrichite, and other sulphates of iron and aluminum are often encountered as products of solution and oxidation. Pyrite sometimes appears as a primary constituent, its iron being probably derived from the ferromagnesian silicates of the rock.

Although the alunite itself is used, in large deposits, for the production of alum and similar salts, it is unusual to find rare metals associated with areas of alunitization. Only one such deposit has been discovered, and that is the remarkable bonanza of Goldfield, described by F. L. Ransome.

Goldfield, Nevada.—The Goldfield district, discovered in 1902, lies in a low range of desert hills in western Nevada. The total production to the end of 1911 was $55,400,000 in gold and 400,000 ounces of silver. In 1911 the district yielded gold and silver valued at $10,300,000.

The geological features consist of a succession of volcanic flows, of which 15 members are recognized, resting on a basement of granite and shale. The age of these lava flows and intercalated lacustrine beds probably ranges from Eocene to the latest Pliocene. On the basement rest several flows of rhyolite; then come heavy masses of andesite or latite. In the andesite is intruded a thick sheet of dacite in which most of the ore-bodies are found. The andesite is overlain by 1,000 feet of lacustrine beds, and still later than these are thin flows of basalt and rhyolite. The dacite sheet, almost 700 feet thick, consists of a rock of intermediate composition with glassy groundmass. Silica amounts to 60 per cent., and the potash about equals the soda. The pre-lacustrine rocks are considered Eocene. The lacustrine conditions ended by deformation and a low dome-like uplift resulted.

The principal producing area is small; most of the deposits are in the dacite, though a few are contained in rhyolite, andesite, or latite. The deposits are probably younger than the lake beds but older than the latest rhyolite and basalt; the age is considered late Miocene or early Pliocene. They were thus formed in intervolcanic time, like so many others of the ore deposits connected with effusive rocks. The deposits are contained in an area of highly altered rock and are irregular silicified and fractured rock masses to which the term "ledges" is applied; though irregular (Fig. 163), the ledges show a more or less marked elongation in one direction and are often vertical. The ledges occur in dacite, in andesite, and in some of the rhyolites; they are then parts of the country rock which have suffered more silicification than the adjoining rock, which is also altered. The altered rock, below the zone of oxidation, is a porous dark-gray material with softer white spots to indicate the feldspar phenocrysts.

The four minerals characteristic of this type of alteration are quartz, kaolinite, alunite, and pyrite. The altered dacite contains approximately 49 per cent. quartz, 24 per cent. kaolinite, 16 per cent. alunite, and 7 per cent. pyrite, and the replacement has been attended by losses of much CaO, MgO, and Na₂O and of some SiO₂, Al₂O₃, and K₂O. Water, sulphuric acid, and sulphur have been added. There is no change in titanium and phosphorus. Under the assumption that no change in volume has taken place the altered rock has lost 5.3 per cent. in weight and now has a porosity of 10 per cent.

The ore-shoots form irregular bodies in the ledges and have no visible limits other than those indicated by the assay, but the ore is usually marked by more distinct brecciation and seaming than the surrounding ledge rock. During the earlier years little of the ore contained less than $30 per ton, but now (1912) ores yielding only $15 per ton are treated, the costs being about $8 per ton. Some shoots are roughly equidimensional masses; others are tabular, though often twisted and warped. In the lower levels (a depth of 1,200 feet has now been attained in the principal mine) the ore-bodies are said to be more vein-like and regular.¹ The rich shoot in the Mohawk ground at a depth of 200 feet now forms an irregular series of chambers about 100 feet high with a stope length of 75 feet; below the 245-foot level this shoot merges with other shoots to form an irregular chain

Fig. 163.—Plan of the 109-foot level and vertical section of the January mine, Goldfield, Nevada. *After F. L. Ransome, U. S. Geol. Survey.*
of workings reaching down to the lowest levels worked. A shoot in the Combination mine (Fig. 164) on the 130-foot level is 500 feet long, up to 40 feet wide, and 100 feet high. Ransome states that there is a gradual though irregular decrease in the tenor of the ore in depth. At a depth of about 1,000 feet the workings are likely to pass into underlying rocks—andesite, or pre-Tertiary basement rocks—and this would probably be attended by

![Diagram of vertical section of the Combination ledge, Goldfield, Nevada.](image)

Fig. 164.—Vertical section of the Combination ledge, Goldfield, Nevada.

changes in the mineralization. While the shots are not large compared to those of many other mines, the ore has been extremely rich. Much of it has averaged $419 per ton, containing 20 ounces of gold and 3 ounces of silver to the ton. One shipment of 14½ tons is said to have brought $45,783.¹

The unoxidized ore contains fine-grained pyrite and marcasite, bismuthinite, goldfieldite (5CuS₃(Sb, Bi, As)₂(SeTe₃)), an arsenical famatinite (Cu₅Sb₅S₄), and native gold, also tellurides,² all in a

dark-gray flinty quartz gangue (Fig. 165). Concentric shells of ore minerals with much finely divided yellowish-brown native gold about greatly altered fragments of rock are rather charac-

teristic of the rich ore. Other sulphides like galena and zinc blende, which elsewhere are common, are rare at Goldfield. The following analysis of rich ore shows well its unusual character.
ANALYSIS OF ORE FROM THE MOHAWK MINE, GOLDFIELD, NEVADA

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
<th></th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>66.30</td>
<td>Bi</td>
<td>0.35</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9.09</td>
<td>Te</td>
<td>2.42</td>
</tr>
<tr>
<td>CaO</td>
<td>none</td>
<td>Sb</td>
<td>trace</td>
</tr>
<tr>
<td>MgO</td>
<td>0.24</td>
<td>Au</td>
<td>2.00¹</td>
</tr>
<tr>
<td>H₂O</td>
<td>7.00</td>
<td>Ag</td>
<td>0.25</td>
</tr>
<tr>
<td>Cu</td>
<td>2.08</td>
<td>S</td>
<td>6.30</td>
</tr>
<tr>
<td>Fe</td>
<td>3.83</td>
<td></td>
<td>99.86</td>
</tr>
<tr>
<td>Zn</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Equal to 541 fine ounces per ton.

While the deposition of pyrite, alunite, and kaolinite proceeded during the whole epoch of ledge formation, the richest ores were deposited somewhat later in brecciated and shattered parts. The water level stands 100 to 150 feet below the surface; above this the ores are oxidized and contain some gypsum but do not differ greatly in tenor from the fresh ores below water level.

These remarkable deposits are believed to have been formed by ascending alkaline waters, containing hydrogen sulphide, which derived their load of rare metals from deep-seated magmas. Through oxidation near the surface sulphuric acid was generated from the hydrogen sulphide and this acid attacked the rocks, causing the alunitic alteration. The sulphuric acid, descending and mingled with surface waters, acted as a precipitant for the gold solution, and this combination of ascending alkaline and descending acid waters has, according to Ransome, probably resulted in the development of this unusual type.

The surface at the time of ore deposition was probably only a few hundred feet above the present surface.
CHAPTER XXIII

METALLIFEROUS DEPOSITS FORMED AT INTERMEDIATE DEPTHS BY ASCENDING THERMAL WATERS AND IN GENETIC CONNECTION WITH INTRUSIVE ROCKS

GENERAL FEATURES

It is exceedingly common to find metalliferous deposits in or near bodies of intrusive rocks. These deep-seated rocks have been exposed by long-continued erosion and in places it is possible to arrive at a good estimate of the thickness of rocks removed, especially where the total thickness of the sedimentary series in which the intrusion occurred is known. That the deposits are not of recent development, but were formed a short time after the intrusion, can in most cases be proved conclusively, and from this it follows that they were developed under a great thickness of covering rocks. Their depth below the actual surface at the time of mineralization may, roughly speaking, be considered as ranging from 4,000 to 12,000 feet. In most of these deposits the absence of high-temperature minerals, such as magnetite, garnet, pyroxene, or tourmaline, shows that a high degree of heat did not prevail at the time of genesis. The depth below the surface indicates that the normal rock temperatures would be from 50° to 125° C., but in all cases the vicinity of recently intruded rocks had forced the temperature curves nearer to the surface; the heated waters which deposited the ores either emanated from the intrusive magma or at least derived their high temperatures from it. It is manifestly impossible to give accurate figures, but reasoning from what is known of the stability of minerals characteristic of this class of deposits we may say with some confidence that the actual temperatures may have ranged from 175° to 300° C. When the high-temperature curves were near the surface, these deposits may have originated at a depth of only a few thousand feet; when the intrusions were deeper seated the depth at which the deposits were formed may have exceeded 12,000 feet.
MINERAL DEPOSITS

The pressure was necessarily strong; as calculated on a hydrostatic basis it ranged from 140 to 400 atmospheres. Communication with the surface was probably established in many places; where it was lacking the water and gases, propelled from the magma, may have been under still higher pressure.

When the temperature exceeded the upper limit stated above, silicate minerals characteristic of greater heat undoubtedly developed and the resulting deposit is of a different type. When the temperature fell below the lower limit stated, the general type of mineralization must have approached that of the deposits found near the surface.

The structure of the deposits is what might be expected from the opening of fissures under pressure at considerable depth. The fissures are fairly regular in strike and dip, having neither the extreme brecciated structure common to deposits formed close to the surface nor the lenticular form and irregular openings of the deep-seated deposits. Smooth walls and slickensides are abundant. As the fissures were opened in the zone of fracture, open spaces are present in many deposits, though the walls usually come together within short intervals. In calcareous rocks, more rarely in igneous rocks or quartzite, replacement deposits were often developed; they are more common here than in the deposits formed close to the surface, though the solutions, on the whole, spread much less widely through the igneous rocks in this group than in the shallow deposits.

The metals contained are principally gold and silver, often with large amounts of copper, lead, and zinc. In the deep-seated deposits molybdenum, bismuth, tungsten, and arsenic are not uncommon associates; we find the same metals here, though they are much less prominent; in addition there is also much antimony, and in places tellurium. The ore minerals are sulphides, arsenides, sulphantimonides, and sulpharsenides. Pyrite, chalcopyrite, arsenopyrite, galena, zinc blende, tetrahedrite, tennantite, and native gold are the most common and on the whole there is not much variety and complexity. Scarcely ever do we find the oxides such as magnetite, specularite, and ilmenite. The metallic minerals develop both in the filling and in the altered country rock, but in the fissure veins proper it is common to find the valuable ores mainly in the filled spaces. The predominating gangue mineral is quartz, but carbonates are also common, such as calcite, dolomite, and ankerite, more rarely
siderite; fluorite and barite are occasionally of importance. Chaledony and opal are rarely found.

Among the minerals of this type of metallization are found no biotite; no pyroxenes or amphiboles; no garnet, tourmaline, or topaz; no zeolites or kaolin.

Very frequently these veins follow lamprophyric dikes, which are usually the last manifestation of igneous activity.

This class yields a large proportion of the gold production of the world, as well as much of its silver, copper, and zinc. Its deposits are by far the most abundant in the Cordilleran region, as well as in other parts of the world where intrusive activity has been followed by deep erosion.

The gold-quartz veins of California and of Victoria (Australia) and many of those of the Cordilleran region, the zinc-lead-silver replacement deposits at Leadville, Park City, and Aspen, the Coeur d'Alene lead veins, and many other types belong to this class.

METASOMATIC PROCESSES

General Character.—The alteration of the country rock is usually very intense next to the ore, but seldom yields coarsely crystalline products like greisen (p. 618). In feldspathic and fennomagnesian rocks the principal product is sericite, the fine-grained foliated form of muscovite; in many deposits carbonates, such as calcite, dolomite, and ankerite, develop in large amounts. The dark minerals are first altered, their iron being usually recombined as pyrite. The feldspars are also rather easily altered; quartz grains are attacked, though less easily than the feldspars, and are partly, at least, converted to a similar aggregate of sericite and carbonates.

The granodiorite adjoining a gold-quartz vein may be altered, for instance, to a rock composed of 16 per cent. quartz, 42 per cent. sericite, 33 per cent. calcium (magnesium, iron) carbonate, and 9 per cent. pyrite. While the orthoclase and the soda-lime feldspars are conspicuously absent as vein-forming minerals, albite is not uncommon, especially in some gold-quartz veins. This mode of alteration is frequently observed in amphibolitic rocks, which contain much sodium and presumably much albite developed during previous dynamo-metamorphism. In many cases the new albite and dolomitic or ankeritic carbonates form together. Pyrite is a common metasomatic mineral and is often
associated with the ferromagnesian minerals, but may also form in quartz and feldspars. Other metallic minerals are not common; the apatite and zircon of the igneous rocks resist alteration; while titanite and ilmenite yield rutile. In many vein types of the interior Cordilleran province the metasomatic carbonates are scarce or absent, as in the copper veins of Butte, Montana, and Clifton, Arizona. Serpentine is sometimes altered to magnesite.

Among sedimentary rocks quartzite and sandstone are little affected, except in veins of the Coeur d'Alene type, where the quartz grains are replaced by siderite. Clay slates always contain metasomatically developed pyrite in cubes; whether they are otherwise altered or not depends upon their composition: if they contain feldspathic sediment, sericitic and carbonatic alteration will ensue; if only kaolinite, sericite, and quartz are present there will be little noticeable alteration, except in some instances where almost complete silicification takes place.

Limestone and other calcareous rocks are almost always subject to silicification by the replacement of the carbonates with fine-grained quartz aggregates; the resulting rocks are usually called "jasperoids" and look more or less like chert (Figs. 51 and 52). Ore minerals develop abundantly by metasomatic action in such rocks.

Along with or preceding this silicification, dolomitization often takes place; the solutions apparently abstract a part of the calcite in the limestone and replace it by the less easily soluble magnesium carbonate. Limestone is sometimes converted to magnesite, siderite, or fluorite.

The alteration is accompanied by strong leaching of sodium and by concentration of potassium. Where there is little carbonatization much calcium and magnesium are also leached. Aluminum in most cases remains about constant.

Alteration of Wall Rocks Adjoining Gold-Quartz Veins.—In veins characterized by quartz filling with free gold and simple sulphides or arsenopyrite, the country rock next to the walls is usually rich in carbonates, sericite, and pyrite, but rarely contains much gold. Extensive alteration zones are not common, and sometimes fresh rock adjoins the vein. The relative quantity of alteration products may differ considerably, even in the same mine.

Clay slate, with more or less carbonaceous matter, is thought by some to have a precipitating and enriching influence on the
vein, but to what extent this is true is doubtful. While this influence can apparently be recognized in some districts like Gympie, in Queensland, it is not clearly shown along the Mother Lode of California. The black clay slates near the veins are often rich in crystallized cubes of pyrite.

Metasomatic rocks containing albite result from the alteration of amphibolites at Angels Camp, Calaveras County, California, where they constitute low-grade ores. The Utica, Lightner, and Melones mines are the best known of those working on these deposits. The metasomatic processes were similar to those that affected the amphibolites of Kalgoorlie. Ransome says of the Angels Camp deposits: ¹

They are in the main complex stringer leads. But the country rock is usually much more altered and may be heavily impregnated with pyrite near the vein. It is often changed to a soft grayish rock consisting chiefly of carbonates of lime and magnesia, with sericite and sometimes a little chlorite. Such altered and pyritized country rock is too poor in gold to pay for working alone, but is often run through the mills for the sake of the rich stringers which intersect it. These veins are usually richer in carbonates than those in the black slate areas and in certain parts of the district are rich in tellurides.

A recent examination of a suite of specimens from Angels Camp and Melones shows that some of the altered rocks consist of sericite with embedded grains of calcium-magnesium-iron carbonates and pyrite. In other places the carbonates prevail over the sericite, while in a third and very common type much of the sodium, abundant in the amphibolite, has been retained as albite in the altered rock. Large grains of carbonates are separated by a granular mass of quartz, albite, pyrite, and sericite.

In the ordinary course of alteration the ferromagnesian minerals are first converted into larger foils of sericite. A chlorite rich in iron is also formed, which during a later stage is converted into sericite. The feldspars are then attacked along cracks and cleavage planes, and a finely felted aggregate of sericite and calcite invades the grains until the replacement is complete. A texture often observed consists of interlacing sericite foils, the triangular or polygonal interstices of which are filled with calcite (Fig. 166).

of gold and 12.29 ounces of silver per short ton, 0.02 per cent. copper, 6.5 per cent. lead, and 1.9 per cent. zinc. Some of the ores are considerably richer in galena. Most of the ore is concentrated, and the total production in 1910 had a value of about $1,000,000.

Summary.—The deposits of the San Juan region consist of gold-bearing quartz veins, gold-telluride veins, and base-metal veins generally carrying galena and tetrahedrite. The descriptions show a merging of the types and certain minerals common to most of them, such as rhodochrosite, rhodonite, and barite. The ores are usually well banded and crustified.

The ores are clearly independent of the character of the country rock, as has been already noted by J. D. Irving. They also intersect the intrusive monzonites, where these are exposed by erosion, and they are apparently derived from a deeper source. The ores were probably deposited in one main epoch following the intrusive activity.

Spurr believes that fissuring and mineralization were caused by and followed the dome-like uplifts and that these were due to deep-seated intrusions, not yet exposed by erosion. The metals in the deposits would then have been derived from the ascending emanations of these deep-seated intrusives. The region shows, as few others do, the relation of the upper and deeper vein zones.

GOLD-ALUNITE DEPOSITS

General Features.—In volcanic regions it is not uncommon to find considerable areas of bleached and altered lavas which contain more or less alunite (K₂O·3Al₂O₃·4SO₃·6H₂O), an earthy or compact, rarely coarsely crystalline mineral of inconspicuous appearance (p. 447). Occasionally diasporre or gibbsite is associated with alunite. In most cases this basic sulphate, which is

L. de Launay, La métalloégnie de l'Italie, 10th Int. Geol. Congress, Mexico, 1907, pp. 125-132.

DEPOSITS FORMED NEAR THE SURFACE 507

insoluble in water, is probably formed by the action of waters containing free sulphuric acid on aluminous rocks. It is also found in places in the oxidized zones of veins containing pyrite.\(^1\) In such altered zones in volcanic rocks alunogen, jarosite, halotrichite, and other sulphates of iron and aluminum are often encountered as products of solution and oxidation.\(^2\) Pyrite sometimes appears as a primary constituent, its iron being probably derived from the ferromagnesian silicates of the rock.

Although the alunite itself is used, in large deposits, for the production of alum and similar salts, it is unusual to find rare metals associated with areas of alunitization. Only one such deposit has been discovered, and that is the remarkable bonanza of Goldfield, described by F. L. Ransome.\(^3\)

Goldfield, Nevada.—The Goldfield district, discovered in 1902, lies in a low range of desert hills in western Nevada. The total production to the end of 1911 was $55,400,000 in gold and 400,000 ounces of silver. In 1911 the district yielded gold and silver valued at $10,300,000.

The geological features consist of a succession of volcanic flows, of which 15 members are recognized, resting on a basement of granite and shale. The age of these lava flows and intercalated lacustrine beds probably ranges from Eocene to the latest Pliocene. On the basement rest several flows of rhyolite; then come heavy masses of andesite or latite. In the andesite is intruded a thick sheet of dacite in which most of the ore-bodies are found. The andesite is overlain by 1,000 feet of lacustrine beds, and still later than these are thin flows of basalt and rhyolite. The dacite sheet, almost 700 feet thick, consists of a rock of intermediate composition with glassy groundmass. Silica amounts to 60 per cent., and the potash about equals the soda. The pre-lacustrine rocks are considered Eocene. The lacustrine conditions ended by deformation and a low dome-like uplift resulted.

\(^3\) *Prof. Paper* No. 66, U. S. Geol. Surv., 1909.

The principal producing area is small; most of the deposits are in the dacite, though a few are contained in rhyolite, andesite, or latite. The deposits are probably younger than the lake beds but older than the latest rhyolite and basalt; the age is considered late Miocene or early Pliocene. They were thus formed in intervolcanic time, like so many others of the ore deposits connected with effusive rocks. The deposits are contained in an area of highly altered rock and are irregular silicified and fractured rock masses to which the term “ledges” is applied; though irregular (Fig. 163), the ledges show a more or less marked elongation in one direction and are often vertical. The ledges occur in dacite, in andesite, and in some of the rhyolites; they are then parts of the country rock which have suffered more silicification than the adjoining rock, which is also altered. The altered rock, below the zone of oxidation, is a porous dark-gray material with softer white spots to indicate the feldspar phenocrysts.

The four minerals characteristic of this type of alteration are quartz, kaolinite, alunite, and pyrite. The altered dacite contains approximately 49 per cent. quartz, 24 per cent. kaolinite, 16 per cent. alunite, and 7 per cent. pyrite, and the replacement has been attended by losses of much CaO, MgO, and Na₂O and of some SiO₂, Al₂O₃, and K₂O. Water, sulphuric acid, and sulphur have been added. There is no change in titanium and phosphorus. Under the assumption that no change in volume has taken place the altered rock has lost 5.3 per cent. in weight and now has a porosity of 10 per cent.

The ore-shoots form irregular bodies in the ledges and have no visible limits other than those indicated by the assay, but the ore is usually marked by more distinct brecciation and seaming than the surrounding ledge rock. During the earlier years little of the ore contained less than $30 per ton, but now (1912) ores yielding only $15 per ton are treated, the costs being about $8 per ton. Some shoots are roughly equidimensional masses; others are tabular, though often twisted and warped. In the lower levels (a depth of 1,200 feet has now been attained in the principal mine) the ore-bodies are said to be more vein-like and regular.¹ The rich shoot in the Mohawk ground at a depth of 200 feet now forms an irregular series of chambers about 100 feet high with a stope length of 75 feet; below the 245-foot level this shoot merges with other shoots to form an irregular chain

DEPOSITS FORMED NEAR THE SURFACE 509

Fig. 163.—Plan of the 109-foot level and vertical section of the January mine, Goldfield, Nevada. After F. L. Ransome, U. S. Geol. Survey.
of workings reaching down to the lowest levels worked. A shoot in the Combination mine (Fig. 164) on the 130-foot level is 500 feet long, up to 40 feet wide, and 100 feet high. Ransome states that there is a gradual though irregular decrease in the tenor of the ore in depth. At a depth of about 1,000 feet the workings are likely to pass into underlying rocks—andesite, or pre-Tertiary basement rocks—and this would probably be attended by changes in the mineralization. While the shoots are not large compared to those of many other mines, the ore has been extremely rich. Much of it has averaged $419 per ton, containing 20 ounces of gold and 3 ounces of silver to the ton. One shipment of 14\frac{1}{4} tons is said to have brought $45,783.1

The unoxidized ore contains fine-grained pyrite and marcasite, bismuthinite, goldfieldite (5CuS.(Sb,Bi,As)\textsubscript{3}(SeTe\textsubscript{4})), an arsenical famatinite (Cu\textsubscript{3}SbS\textsubscript{4}), and native gold, also tellurides,2 all in a

1 F. L. Ransome, \textit{op. cit.}, p. 171.

2 F. L. Ransome, \textit{op. cit.}, pp. 115–116.

dark-gray flinty quartz gangue (Fig. 165). Concentric shells of ore minerals with much finely divided yellowish-brown native gold about greatly altered fragments of rock are rather charac-

Fig. 165.—Photomicrograph of silicified dacite, Goldfield, Nevada, showing quartz of varying grain. p, Pyrite; t, famatinite; q, quartz; h, vug. Magnified 40 diameters. After F. L. Ransome, U. S. Geol. Survey.

teristic of the rich ore. Other sulphides like galena and zinc blende, which elsewhere are common, are rare at Goldfield. The following analysis of rich ore shows well its unusual character.
ANALYSIS OF ORE FROM THE MOHAWK MINE, GOLDFIELD, NEVADA

<table>
<thead>
<tr>
<th></th>
<th>Per cent.</th>
<th></th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>66.30</td>
<td>Bi</td>
<td>0.35</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9.09</td>
<td>Te</td>
<td>2.42</td>
</tr>
<tr>
<td>CaO</td>
<td>none</td>
<td>Sb</td>
<td>trace</td>
</tr>
<tr>
<td>MgO</td>
<td>0.24</td>
<td>Au</td>
<td>2.00¹</td>
</tr>
<tr>
<td>H₂O</td>
<td>7.00</td>
<td>Ag</td>
<td>0.25</td>
</tr>
<tr>
<td>Cu</td>
<td>2.08</td>
<td>S</td>
<td>6.30</td>
</tr>
<tr>
<td>Fe</td>
<td>3.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Equal to 541 fine ounces per ton.

While the deposition of pyrite, alunite, and kaolinite proceeded during the whole epoch of ledge formation, the richest ores were deposited somewhat later in brecciated and shattered parts. The water level stands 100 to 150 feet below the surface; above this the ores are oxidized and contain some gypsum but do not differ greatly in tenor from the fresh ores below water level.

These remarkable deposits are believed to have been formed by ascending alkaline waters, containing hydrogen sulphide, which derived their load of rare metals from deep-seated magmas. Through oxidation near the surface sulphuric acid was generated from the hydrogen sulphide and this acid attacked the rocks, causing the alunitic alteration. The sulphuric acid, descending and mingled with surface waters, acted as a precipitant for the gold solution, and this combination of ascending alkaline and descending acid waters has, according to Ransome, probably resulted in the development of this unusual type.

The surface at the time of ore deposition was probably only a few hundred feet above the present surface.
CHAPTER XXIII

METALLIFEROUS DEPOSITS FORMED AT INTERMEDIATE DEPTHS BY ASCENDING THERMAL WATERS AND IN GENETIC CONNECTION WITH INTRUSIVE ROCKS

GENERAL FEATURES

It is exceedingly common to find metalliferous deposits in or near bodies of intrusive rocks. These deep-seated rocks have been exposed by long-continued erosion and in places it is possible to arrive at a good estimate of the thickness of rocks removed, especially where the total thickness of the sedimentary series in which the intrusion occurred is known. That the deposits are not of recent development, but were formed a short time after the intrusion, can in most cases be proved conclusively, and from this it follows that they were developed under a great thickness of covering rocks. Their depth below the actual surface at the time of mineralization may, roughly speaking, be considered as ranging from 4,000 to 12,000 feet. In most of these deposits the absence of high-temperature minerals, such as magnetite, garnet, pyroxene, or tourmaline, shows that a high degree of heat did not prevail at the time of genesis. The depth below the surface indicates that the normal rock temperatures would be from 50° to 125° C., but in all cases the vicinity of recently intruded rocks had forced the temperature curves nearer to the surface; the heated waters which deposited the ores either emanated from the intrusive magma or at least derived their high temperatures from it. It is manifestly impossible to give accurate figures, but reasoning from what is known of the stability of minerals characteristic of this class of deposits we may say with some confidence that the actual temperatures may have ranged from 175° to 300° C. When the high-temperature curves were near the surface, these deposits may have originated at a depth of only a few thousand feet; when the intrusions were deeper seated the depth at which the deposits were formed may have exceeded 12,000 feet.
The pressure was necessarily strong; as calculated on a hydrostatic basis it ranged from 140 to 400 atmospheres. Communication with the surface was probably established in many places; where it was lacking the water and gases, propelled from the magma, may have been under still higher pressure.

When the temperature exceeded the upper limit stated above, silicate minerals characteristic of greater heat undoubtedly developed and the resulting deposit is of a different type. When the temperature fell below the lower limit stated, the general type of mineralization must have approached that of the deposits found near the surface.

The structure of the deposits is what might be expected from the opening of fissures under pressure at considerable depth. The fissures are fairly regular in strike and dip, having neither the extreme brecciated structure common to deposits formed close to the surface nor the lenticular form and irregular openings of the deep-seated deposits. Smooth walls and slickensides are abundant. As the fissures were opened in the zone of fracture, open spaces are present in many deposits, though the walls usually come together within short intervals. In calcareous rocks, more rarely in igneous rocks or quartzite, replacement deposits were often developed; they are more common here than in the deposits formed close to the surface, though the solutions, on the whole, spread much less widely through the igneous rocks in this group than in the shallow deposits.

The metals contained are principally gold and silver, often with large amounts of copper, lead, and zinc. In the deep-seated deposits molybdenum, bismuth, tungsten, and arsenic are not uncommon associates; we find the same metals here, though they are much less prominent; in addition there is also much antimony, and in places tellurium. The ore minerals are sulphides, arsenides, sulphantimonides, and sulpharsenides. Pyrite, chalcopyrite, arsenopyrite, galena, zinc blende, tetrahedrite, tennantite, and native gold are the most common and on the whole there is not much variety and complexity. Scarceley ever do we find the oxides such as magnetite, specularite, and ilmenite. The metallic minerals develop both in the filling and in the altered country rock, but in the fissure veins proper it is common to find the valuable ores mainly in the filled spaces. The predominating gangue mineral is quartz, but carbonates are also common, such as calcite, dolomite, and ankerite, more rarely
siderite; fluorite and barite are occasionally of importance. Chalcedony and opal are rarely found.

Among the minerals of this type of metallization are found no biotite; no pyroxenes or amphiboles; no garnet, tourmaline, or topaz; no zeolites or kaolin.

Very frequently these veins follow lamprophyric dikes, which are usually the last manifestation of igneous activity.

This class yields a large proportion of the gold production of the world, as well as much of its silver, copper, and zinc. Its deposits are by far the most abundant in the Cordilleran region, as well as in other parts of the world where intrusive activity has been followed by deep erosion.

The gold-quartz veins of California and of Victoria (Australia) and many of those of the Cordilleran region, the zinc-lead-silver replacement deposits at Leadville, Park City, and Aspen, the Coeur d'Alene lead veins, and many other types belong to this class.

METASOMATIC PROCESSES

General Character.—The alteration of the country rock is usually very intense next to the ore, but seldom yields coarsely crystalline products like greisen (p. 618). In feldspathic and ferromagnesian rocks the principal product is sericite, the fine-grained foliated form of muscovite; in many deposits carbonates, such as calcite, dolomite, and ankerite, develop in large amounts. The dark minerals are first altered, their iron being usually recombined as pyrite. The feldspars are also rather easily altered; quartz grains are attacked, though less easily than the feldspars, and are partly, at least, converted to a similar aggregate of sericite and carbonates.

The granodiorite adjoining a gold-quartz vein may be altered, for instance, to a rock composed of 16 per cent. quartz, 42 per cent. sericite, 33 per cent. calcium (magnesium, iron) carbonate, and 9 per cent. pyrite. While the orthoclase and the soda-lime feldspars are conspicuously absent as vein-forming minerals, albite is not uncommon, especially in some gold-quartz veins. This mode of alteration is frequently observed in amphibolitic rocks, which contain much sodium and presumably much albite developed during previous dynamo-metamorphism. In many cases the new albite and dolomitic or ankeritic carbonates form together. Pyrite is a common metasomatic mineral and is often
associated with the ferromagnesian minerals, but may also form in quartz and feldspars. Other metallic minerals are not common; the apatite and zircon of the igneous rocks resist alteration; while titanite and ilmenite yield rutile. In many vein types of the interior Cordilleran province the metasomatic carbonates are scarce or absent, as in the copper veins of Butte, Montana, and Clifton, Arizona. Serpentine is sometimes altered to magnesite.

Among sedimentary rocks quartzite and sandstone are little affected, except in veins of the Coeur d'Alene type, where the quartz grains are replaced by siderite. Clay slates always contain metasomatically developed pyrite in cubes; whether they are otherwise altered or not depends upon their composition: if they contain feldspathic sediment, sericite and carbonatic alteration will ensue; if only kaolin, sericite, and quartz are present there will be little noticeable alteration, except in some instances where almost complete silicification takes place.

Limestone and other calcareous rocks are almost always subject to silicification by the replacement of the carbonates with fine-grained quartz aggregates; the resulting rocks are usually called "jasperoids" and look more or less like chert (Figs. 51 and 52). Ore minerals develop abundantly by metasomatic action in such rocks.

Along with or preceding this silicification, dolomitization often takes place; the solutions apparently abstract a part of the calcite in the limestone and replace it by the less easily soluble magnesium carbonate. Limestone is sometimes converted to magnesite, siderite, or fluorite.

The alteration is accompanied by strong leaching of sodium and by concentration of potassium. Where there is little carbonatization much calcium and magnesium are also leached. Aluminum in most cases remains about constant.

Alteration of Wall Rocks Adjoining Gold-Quartz Veins.—In veins characterized by quartz filling with free gold and simple sulphides or arsenopyrite, the country rock next to the walls is usually rich in carbonates, sericite, and pyrite, but rarely contains much gold. Extensive alteration zones are not common, and sometimes fresh rock adjoins the vein. The relative quantity of alteration products may differ considerably, even in the same mine.

Clay slate, with more or less carbonaceous matter, is thought by some to have a precipitating and enriching influence on the
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 517

vein, but to what extent this is true is doubtful. While this influence can apparently be recognized in some districts like Gympie, in Queensland, it is not clearly shown along the Mother Lode of California. The black clay slates near the veins are often rich in crystallized cubes of pyrite.

Metasomatic rocks containing albite result from the alteration of amphibolites at Angels Camp, Calaveras County, California, where they constitute low-grade ores. The Utica, Lightner, and Melones mines are the best known of those working on these deposits. The metasomatic processes were similar to those that affected the amphibolites of Kalgoorlie. Ransome says of the Angels Camp deposits:1

They are in the main complex stringer leads. But the country rock is usually much more altered and may be heavily impregnated with pyrite near the vein. It is often changed to a soft grayish rock consisting chiefly of carbonates of lime and magnesia, with sericite and sometimes a little chlorite. Such altered and pyritized country rock is too poor in gold to pay for working alone, but is often run through the mills for the sake of the rich stringers which intersect it. These veins are usually richer in carbonates than those in the black slate areas and in certain parts of the district are rich in tellurides.

A recent examination of a suite of specimens from Angels Camp and Melones shows that some of the altered rocks consist of sericite with embedded grains of calcium-magnesium-iron carbonates and pyrite. In other places the carbonates prevail over the sericite, while in a third and very common type much of the sodium, abundant in the amphibolite, has been retained as albite in the altered rock. Large grains of carbonates are separated by a granular mass of quartz, albite, pyrite, and sericite.

In the ordinary course of alteration the ferromagnesian minerals are first converted into larger foils of sericite. A chlorite rich in iron is also formed, which during a later stage is converted into sericite. The feldspars are then attacked along cracks and cleavage planes, and a finely felted aggregate of sericite and calcite invades the grains until the replacement is complete. A texture often observed consists of interlacing sericite foils, the triangular or polygonal interstices of which are filled with calcite (Fig. 166).

The quartz is also attacked, but with more difficulty, and is in no case completely replaced. Magnetite appears to be converted to siderite and titanite to rutile. A part of the ferromagnesian minerals are transformed into pyrite. Sharp cubes of pyrite develop, however, not only in the sericitic aggregate, but also in the fresh feldspars or even in the quartz. Arsenopyrite is almost the only other sulphide which is enabled to form in the altered rock, and it develops in sharp rhombic crystals.

From many analyses the eight given on page 519 are selected.¹

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A₁</th>
<th>B</th>
<th>B₁</th>
<th>C</th>
<th>C₁</th>
<th>D</th>
<th>D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.54</td>
<td>46.13</td>
<td>45.56</td>
<td>37.01</td>
<td>66.65</td>
<td>56.25</td>
<td>51.01</td>
<td>45.74</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.39</td>
<td>0.67</td>
<td>1.11</td>
<td>0.85</td>
<td>0.38</td>
<td>0.25</td>
<td>0.98</td>
<td>0.36</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.52</td>
<td>15.82</td>
<td>14.15</td>
<td>12.99</td>
<td>16.15</td>
<td>17.65</td>
<td>11.89</td>
<td>5.29</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.40</td>
<td>0.89</td>
<td>1.20</td>
<td>0.43</td>
<td>1.52</td>
<td>0.76</td>
<td>1.57</td>
<td>0.13</td>
</tr>
<tr>
<td>FeO</td>
<td>2.49</td>
<td>2.27</td>
<td>9.83</td>
<td>3.57</td>
<td>2.36</td>
<td>2.64</td>
<td>6.08</td>
<td>2.06</td>
</tr>
<tr>
<td>FeS₂</td>
<td>1.61</td>
<td>7.86</td>
<td>7.99</td>
<td>0.02</td>
<td>2.87</td>
<td>1.73</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>CuS</td>
<td>0.10</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.09</td>
<td>0.25</td>
<td>0.24</td>
<td>0.10</td>
<td>none</td>
<td>trace</td>
<td>0.26</td>
</tr>
<tr>
<td>NiO, ZnO</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.88</td>
<td>10.68</td>
<td>2.30</td>
<td>9.78</td>
<td>4.53</td>
<td>4.46</td>
<td>10.36</td>
<td>23.85</td>
</tr>
<tr>
<td>SrO</td>
<td>not det.</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaO</td>
<td>not det.</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>0.07</td>
<td>0.03</td>
<td>none</td>
<td>trace</td>
</tr>
<tr>
<td>MgO</td>
<td>2.52</td>
<td>2.13</td>
<td>6.76</td>
<td>5.49</td>
<td>1.74</td>
<td>1.69</td>
<td>8.87</td>
<td>0.94</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.95</td>
<td>5.30</td>
<td>1.18</td>
<td>4.02</td>
<td>2.65</td>
<td>6.01</td>
<td>0.15</td>
<td>1.29</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.09</td>
<td>0.17</td>
<td>1.57</td>
<td>0.13</td>
<td>3.40</td>
<td>0.30</td>
<td>4.17</td>
<td>0.11</td>
</tr>
<tr>
<td>Li₂O</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.12</td>
<td>0.23</td>
<td>0.13</td>
<td>0.18</td>
<td>0.30</td>
<td>0.24</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.59</td>
<td>2.42</td>
<td>4.84</td>
<td>1.92</td>
<td>0.72</td>
<td>2.36</td>
<td>2.09</td>
<td>1.07</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.18</td>
<td>0.10</td>
<td>0.14</td>
<td>0.06</td>
<td>0.10</td>
<td>0.21</td>
<td>0.17</td>
<td>0.07</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>11.24</td>
<td>3.04</td>
<td>15.04</td>
<td></td>
<td>4.82</td>
<td></td>
<td>18.91</td>
<td></td>
</tr>
</tbody>
</table>

Total 100.61 99.64 100.15 99.69 100.57 100.60 99.35 100.79

¹ Probably present as Fe₃S₄.

A. Fresh granodiorite, Lincoln, Placer County, California. Though not adjoining the vein, it indicates closely the actual composition of the fresh wall rock. W. F. Hillebrand, analyst.

C. Fresh granodiorite, Nevada City, Nevada County. W. F. Hillebrand, analyst.

C₁. Altered granodiorite, Bellefontain mine, Nevada City. George Steiger, analyst.

D. Fresh diabase, Grass Valley. H. N. Stokes, analyst.

From the chemical and microscopical data the following compositions may be calculated:

TABLE II.—CALCULATED MINERALOGICAL COMPOSITION OF THE ALTERED ROCKS OF TABLE I

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>B₁</th>
<th>C₁</th>
<th>D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>16.00</td>
<td>24.00</td>
<td>25.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Sericite (with a little chlorite)</td>
<td>41.76</td>
<td>46.97</td>
<td>61.46</td>
<td>21.20</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>17.53</td>
<td>18.87</td>
<td>7.23</td>
<td>42.15</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>9.67</td>
<td>2.93</td>
<td>2.70</td>
<td>0.71</td>
</tr>
<tr>
<td>FeCO₃</td>
<td>5.76</td>
<td>3.67</td>
<td>0.58</td>
<td>......</td>
</tr>
<tr>
<td>MnCO₃</td>
<td>0.42</td>
<td>0.14</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.85</td>
<td>0.67</td>
<td>0.25</td>
<td>0.36</td>
</tr>
<tr>
<td>Pyrite</td>
<td>7.99</td>
<td>1.61</td>
<td>2.87</td>
<td>0.50</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.13</td>
<td>0.22</td>
<td>0.46</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>100.11</td>
<td>99.08</td>
<td>100.55</td>
<td>100.07</td>
</tr>
</tbody>
</table>

As it seems probable that the alumina has remained fairly constant in the first six analyses in Table I, they may be directly compared for an approximate review of the chemical changes. Analysis D₁ differs from the rest in showing an exceptionally high percentage of introduced lime and carbon dioxide and a corresponding loss of magnesia. Moreover, the alumina is so low that it must be supposed to have been removed.

The characteristic features of the process seem to consist in the decrease of silica, magnesia, and soda and increase of lime, potash, and carbon dioxide—the calcitic altered rock strongly contrasting with the quartz-filled veins. There is some evidence of partial leaching of titanium and phosphorus. Sufficient data are not available for the accurate determination of change of volume during the process, and of the actual losses and gains. It seems probable that, in most cases, the added material has more than balanced the losses. Unquestionably there has been a strong addition of calcium and potassium, and the vein-filling process probably began with deposition by solutions extremely rich in these constituents, as well as in carbon dioxide. The quartz filling sometimes shows imprints, along its walls, of calcite crystals, from which it may be concluded that during the process of filling the nature of the solutions changed to the later phase, in which almost nothing but quartz was deposited.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 521

Interior Types.—In the Blue Mountains of Oregon the wall rocks of the veins are altered to products in all respects similar to those of California. In the gold-quartz veins of Idaho, genetically connected with the late Cretaceous intrusion of a large batholith of quartz monzonite, the carbonatization is far less marked and both calcium and magnesium are leached. The accompanying analyses, Table III, illustrate the chemical changes in two prominent types.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>E₁</th>
<th>F</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.23</td>
<td>66.66</td>
<td>57.78</td>
<td>58.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.66</td>
<td>0.49</td>
<td>1.01</td>
<td>1.08</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.94</td>
<td>14.26</td>
<td>16.28</td>
<td>15.72</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.60</td>
<td>0.67</td>
<td>1.02</td>
<td>0.64</td>
</tr>
<tr>
<td>FeO</td>
<td>1.91</td>
<td>1.33</td>
<td>4.92</td>
<td>3.87</td>
</tr>
<tr>
<td>CoO, NiO</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>MnO</td>
<td>trace</td>
<td>trace</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>CaO</td>
<td>3.85</td>
<td>3.37</td>
<td>6.65</td>
<td>2.15</td>
</tr>
<tr>
<td>SrO</td>
<td></td>
<td>0.07</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>BaO</td>
<td>0.19</td>
<td>none</td>
<td>0.12</td>
<td>trace</td>
</tr>
<tr>
<td>MgO</td>
<td>1.31</td>
<td>0.95</td>
<td>4.60</td>
<td>2.07</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.02</td>
<td>4.19</td>
<td>2.22</td>
<td>4.79</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.57</td>
<td>none</td>
<td>3.25</td>
<td>0.10</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.18</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.88</td>
<td>2.16</td>
<td>0.92</td>
<td>2.71</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
<td>0.17</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.25</td>
<td>3.67</td>
<td>0.15</td>
<td>2.86</td>
</tr>
<tr>
<td>S</td>
<td>none</td>
<td>0.95</td>
<td>0.02</td>
<td>1.25</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>0.84</td>
<td></td>
<td>1.52</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>Total</td>
<td>99.78</td>
<td>100.07</td>
<td>99.82</td>
<td>100.24</td>
</tr>
</tbody>
</table>

E. Fresh granitic rock immediately adjoining the Silver Wreath quartz vein, Willow Creek, Idaho.

E₁. Altered rock adjoining the same vein.

F. Fresh quartz-pyroxene diorite adjoining the Croesus vein, Hailey, Idaho.

F₁. Altered rock adjoining the same vein.
E and E₁ represent the fresh and altered rock from the Willow Creek district, Boise County, where the narrow quartz veins carry scarcely any free gold, but much auriferous galena, pyrite, arsenopyrite, and zinc blende. F and F₁ represent the fresh and altered rock from the Croesus mine, Wood River district, Blaine County, where the narrow streaks of filling consist of quartz, siderite, pyrrhotite, and chalcopyrite, with a little galena, arsenopyrite, and zinc blende. Here again only a fraction of the gold is in the free state. The ore contains very little silver.¹

The specific gravity of E is 2.714. From the mineralogical composition given in the report quoted the specific gravity is calculated to 2.720, which is a close agreement, the difference possibly indicating a very slight porosity.²

TABLE IV.—MINERALOGICAL COMPOSITION OF E₁ AND F₁, IN TABLE III

<table>
<thead>
<tr>
<th></th>
<th>E₁</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>42.00</td>
<td>36.18</td>
</tr>
<tr>
<td>Sericite</td>
<td>46.84</td>
<td>38.18</td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td>11.76</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>4.80</td>
<td>3.11</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>1.96</td>
<td>1.26</td>
</tr>
<tr>
<td>FeCO₃</td>
<td>1.45</td>
<td>2.19</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.49</td>
<td>1.08</td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>Pyrite</td>
<td>1.78</td>
<td>0.58</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Zinc blende</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td></td>
<td>3.58</td>
</tr>
<tr>
<td>Total</td>
<td>99.32</td>
<td>99.93</td>
</tr>
</tbody>
</table>

The measured specific gravity of E₁ is 2.774, indicating that the rock alters to denser minerals. The calculation of the same

²In this calculation the following figures for specific gravity are used: quartz, 2.65; sericite, 2.83; biotite, 3.00; oligoclase, 2.65; orthoclase, 2.56.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 523

specific gravity from Table IV gives 2.796, which shows a decided porosity of the altered rock. Under these circumstances, no evidence of pressure being noted, it may be assumed that not much change in volume has taken place. By multiplying the percentages of E and E₁ by 2.714 and 2.774 respectively and comparing the results, the absolute gains and losses per cubic meter may be obtained (see Table V).

In the same manner the measured specific gravities of F and F₁ are compared with the calculated specific gravities.¹

By multiplying the percentages of F and F₁ by the measured specific gravities, and comparing these data, the absolute gains and losses are again obtained.

TABLE V.—GAINS AND LOSSES, IN KILOGRAMS PER CUBIC METER, OF E AND F, IN TABLE III

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th></th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gain</td>
<td>Loss</td>
<td>Gain</td>
<td>Loss</td>
</tr>
<tr>
<td>SiO₂</td>
<td>79</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>64</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>24</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>FeO</td>
<td>15</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>CoO, NiO</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>11</td>
<td></td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>SrO</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BaO</td>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MgO</td>
<td>9</td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>K₂O</td>
<td>34</td>
<td></td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>97</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>H₂O above 105° C</td>
<td>36</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO₂</td>
<td>93</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>26</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>23</td>
<td></td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Co, Ni</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>291</td>
<td>229</td>
<td>416</td>
<td>333</td>
</tr>
</tbody>
</table>

During the alteration of E to E₁, 291 kilograms were added and 229 lost per cubic meter, the net gain being 62 kilograms. During the alteration of F to F₁, 416 kilograms were added and 333 lost per cubic meter, the net gain being 83 kilograms.

A perusal of the table will show very similar results in the two rocks: a moderate addition of silica and a strong gain of potash; nearly complete loss of soda, barytes, and strontia; partial loss of alumina, magnesia, and lime, F, however, losing much more lime than E. In E₁ the amounts lost of Fe₂O₃ and FeO are almost completely converted into Fe (in FeS₂). In F these losses are less and not sufficient to account for the gain of Fe; consequently iron must have been added. Phosphoric acid is constant, consistently with the fresh state of the apatite.

These figures give some idea of the intensity of the transfer of material, though the balance of material added is comparatively small. The assumption of equal volumes and methods used for the calculation of the porosity may not be quite correct, but the result gives a fair idea of the nature of the chemical changes.

At Tintic, Utah,¹ the alteration adjacent to veins contained in monzonite has been slight, rarely extending more than a few inches from the ore and consisting in sericitization and pyritization. Near the Dragon mine the monzonite has suffered complete alteration over a considerable area. The result of this alteration, which has clearly been effected by the mineralizing solutions, is expressed in the following two analyses. The bleached rock is dull light gray and consists mainly of fine sericite, quartz, and some rutile. So far as can be ascertained without the necessary determinations of specific gravity the altered rock is denser than the original monzonite. It has received a considerable addition of silica; the iron, lime, and soda are almost entirely removed; the magnesia is partly leached, and there has been some addition of potash. The rock contains approximately 54 per cent. sericite and 42 per cent. quartz. There appears to be little if any kaolin present; the small quantity of pyrite doubtless contained in the rock has been oxidized to sulphate.

DEPOSITS FORMED AT INTERMEDIATE DEPTHS 525

ANALYSES OF FRESH AND ALTERED MONZONITE NEAR THE DRAGON
IRON MINE, TINTIC, UTAH

[H. N. Stokes, Analyst]

<table>
<thead>
<tr>
<th></th>
<th>Fresh monzonite</th>
<th>Altered monzonite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>59.76</td>
<td>71.14</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.79</td>
<td>16.24</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.77</td>
<td>0.94</td>
</tr>
<tr>
<td>FeO</td>
<td>3.30</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>trace</td>
</tr>
<tr>
<td>CaO</td>
<td>3.88</td>
<td>0.25</td>
</tr>
<tr>
<td>BaO</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>2.16</td>
<td>1.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.40</td>
<td>4.96</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.01</td>
<td>0.07</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.31</td>
<td>0.49</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>1.11</td>
<td>2.74</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.78</td>
<td>none</td>
</tr>
<tr>
<td>Cl</td>
<td>0.04</td>
<td>trace</td>
</tr>
<tr>
<td>SO₄</td>
<td>none</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Total 99.84 99.51

Similar alteration in the veins of Bingham, Utah, has been described by Boutwell.¹ The Last Chance lode is from 1 to 14 feet wide and contains galena, zinc blende, pyrite, and some calcite. The alteration and bleaching extend about 1 or 2 feet into the country rock, which is a monzonite, consisting of orthoclase, plagioclase, augite, biotite, and hornblende. The alteration begins by chloritization and dissemination of pyrite, but the end product consists largely of sericite and pyrite. The analysis indicates an unusual and almost complete removal of magnesia and extensive leaching of sodium and calcium. There has evidently been an addition of potassium, as there is considerably more than is called for in the ordinary composition of sericite. As usual TiO₂ remains constant, and the altered rock contains practically no carbonates.

MINERAL DEPOSITS

The pressure was necessarily strong; as calculated on a hydrostatic basis it ranged from 140 to 400 atmospheres. Communication with the surface was probably established in many places; where it was lacking the water and gases, propelled from the magma, may have been under still higher pressure.

When the temperature exceeded the upper limit stated above, silicate minerals characteristic of greater heat undoubtedly developed and the resulting deposit is of a different type. When the temperature fell below the lower limit stated, the general type of mineralization must have approached that of the deposits found near the surface.

The structure of the deposits is what might be expected from the opening of fissures under pressure at considerable depth. The fissures are fairly regular in strike and dip, having neither the extreme brecciated structure common to deposits formed close to the surface nor the lenticular form and irregular openings of the deep-seated deposits. Smooth walls and slickensides are abundant. As the fissures were opened in the zone of fracture, open spaces are present in many deposits, though the walls usually come together within short intervals. In calcareous rocks, more rarely in igneous rocks or quartzite, replacement deposits were often developed; they are more common here than in the deposits formed close to the surface, though the solutions, on the whole, spread much less widely through the igneous rocks in this group than in the shallow deposits.

The metals contained are principally gold and silver, often with large amounts of copper, lead, and zinc. In the deep-seated deposits molybdenum, bismuth, tungsten, and arsenic are not uncommon associates; we find the same metals here, though they are much less prominent; in addition there is also much antimony, and in places tellurium. The ore minerals are sulphides, arsenides, sulphantimonides, and sulpharsenides. Pyrite, chalcopyrite, arsenopyrite, galena, zinc blende, tetrahedrite, tennantite, and native gold are the most common and on the whole there is not much variety and complexity. Scarcely ever do we find the oxides such as magnetite, specularite, and ilmenite. The metallic minerals develop both in the filling and in the altered country rock, but in the fissure veins proper it is common to find the valuable ores mainly in the filled spaces. The predominating gangue mineral is quartz, but carbonates are also common, such as calcite, dolomite, and ankerite, more rarely
siderite; fluorite and barite are occasionally of importance. Chalcedony and opal are rarely found.

Among the minerals of this type of metallization are found no biotite; no pyroxenes or amphiboles; no garnet, tourmaline, or topaz; no zeolites or kaolin.

Very frequently these veins follow lamprophyric dikes, which are usually the last manifestation of igneous activity.

This class yields a large proportion of the gold production of the world, as well as much of its silver, copper, and zinc. Its deposits are by far the most abundant in the Cordilleran region, as well as in other parts of the world where intrusive activity has been followed by deep erosion.

The gold-quartz veins of California and of Victoria (Australia) and many of those of the Cordilleran region, the zinc-lead-silver replacement deposits at Leadville, Park City, and Aspen, the Coeur d'Alene lead veins, and many other types belong to this class.

METASOMATIC PROCESSES

General Character.—The alteration of the country rock is usually very intense next to the ore, but seldom yields coarsely crystalline products like greisen (p. 618). In feldspathic and ferraromagnesian rocks the principal product is sericite, the fine-grained foliated form of muscovite; in many deposits carbonates, such as calcite, dolomite, and ankerite, develop in large amounts. The dark minerals are first altered, their iron being usually recombined as pyrite. The feldspars are also rather easily altered; quartz grains are attacked, though less easily than the feldspars, and are partly, at least, converted to a similar aggregate of sericite and carbonates.

The granodiorite adjoining a gold-quartz vein may be altered, for instance, to a rock composed of 16 per cent. quartz, 42 per cent. sericite, 33 per cent. calcium (magnesium, iron) carbonate, and 9 per cent. pyrite. While the orthoclase and the soda-lime feldspars are conspicuously absent as vein-forming minerals, albite is not uncommon, especially in some gold-quartz veins. This mode of alteration is frequently observed in amphibolitic rocks, which contain much sodium and presumably much albite developed during previous dynamo-metamorphism. In many cases the new albite and dolomitic or ankeritic carbonates form together. Pyrite is a common metasomatic mineral and is often
associated with the ferromagnesian minerals, but may also form in quartz and feldspars. Other metallic minerals are not common; the apatite and zircon of the igneous rocks resist alteration; while titanite and ilmenite yield rutile. In many vein types of the interior Cordilleran province the metasomatic carbonates are scarce or absent, as in the copper veins of Butte, Montana, and Clifton, Arizona. Serpentine is sometimes altered to magnesite.

Among sedimentary rocks quartzite and sandstone are little affected, except in veins of the Coeur d'Alene type, where the quartz grains are replaced by siderite. Clay slates always contain metasomatically developed pyrite in cubes; whether they are otherwise altered or not depends upon their composition: if they contain feldspathic sediment, sericitic and carbonatic alteration will ensue; if only kaolin, sericite, and quartz are present there will be little noticeable alteration, except in some instances where almost complete silicification takes place.

Limestone and other calcareous rocks are almost always subject to silicification by the replacement of the carbonates with fine-grained quartz aggregates; the resulting rocks are usually called "jasperoids" and look more or less like chert (Figs. 51 and 52). Ore minerals develop abundantly by metasomatic action in such rocks.

Along with or preceding this silicification, dolomitization often takes place; the solutions apparently abstract a part of the calcite in the limestone and replace it by the less easily soluble magnesium carbonate. Limestone is sometimes converted to magnesite, siderite, or fluorite.

The alteration is accompanied by strong leaching of sodium and by concentration of potassium. Where there is little carbonatization much calcium and magnesium are also leached. Aluminum in most cases remains about constant.

Alteration of Wall Rocks Adjoining Gold-Quartz Veins.—In veins characterized by quartz filling with free gold and simple sulphides or arsenopyrite, the country rock next to the walls is usually rich in carbonates, sericite, and pyrite, but rarely contains much gold. Extensive alteration zones are not common, and sometimes fresh rock adjoins the vein. The relative quantity of alteration products may differ considerably, even in the same mine.

Clay slate, with more or less carbonaceous matter, is thought by some to have a precipitating and enriching influence on the
vein, but to what extent this is true is doubtful. While this influence can apparently be recognized in some districts like Gympie, in Queensland, it is not clearly shown along the Mother Lode of California. The black clay slates near the veins are often rich in crystallized cubes of pyrite.

Metasomatic rocks containing albite result from the alteration of amphibolites at Angels Camp, Calaveras County, California, where they constitute low-grade ores. The Utica, Lightner, and Melones mines are the best known of those working on these deposits. The metasomatic processes were similar to those that affected the amphibolites of Kalgoorlie. Ransome says of the Angels Camp deposits:

They are in the main complex stringer leads. But the country rock is usually much more altered and may be heavily impregnated with pyrite near the vein. It is often changed to a soft grayish rock consisting chiefly of carbonates of lime and magnesia, with sericite and sometimes a little chlorite. Such altered and pyritized country rock is too poor in gold to pay for working alone, but is often run through the mills for the sake of the rich stringers which intersect it. These veins are usually richer in carbonates than those in the black slate areas and in certain parts of the district are rich in tellurides.

A recent examination of a suite of specimens from Angels Camp and Melones shows that some of the altered rocks consist of sericite with embedded grains of calcium-magnesium-iron carbonates and pyrite. In other places the carbonates prevail over the sericite, while in a third and very common type much of the sodium, abundant in the amphibolite, has been retained as albite in the altered rock. Large grains of carbonates are separated by a granular mass of quartz, albite, pyrite, and sericite.

In the ordinary course of alteration the ferromagnesian minerals are first converted into larger foils of sericite. A chlorite rich in iron is also formed, which during a later stage is converted into sericite. The feldspars are then attacked along cracks and cleavage planes, and a finely felted aggregate of sericite and calcite invades the grains until the replacement is complete. A texture often observed consists of interlacing sericite foils, the triangular or polygonal interstices of which are filled with calcite (Fig. 166).

The quartz is also attacked, but with more difficulty, and is in no case completely replaced. Magnetite appears to be converted to siderite and titanite to rutile. A part of the ferromagnesian minerals are transformed into pyrite. Sharp cubes of pyrite develop, however, not only in the sericitic aggregate, but also in

Fig. 166.—Altered granodiorite, Bellefountain mine, Nevada City, California. *m*, Fine aggregate of sericite with some calcite and quartz, replacing orthoclase and andesine; *b*, original biotite altered to sericite; *q*, original quartz; black, pyrite with included sericite. Magnified 15 diameters.

the fresh feldspars or even in the quartz. Arsenopyrite is almost the only other sulphide which is enabled to form in the altered rock, and it develops in sharp rhombic crystals.

From many analyses the eight given on page 519 are selected.1

TABLE I.—ANALYSES OF METASOMATIC ROCKS FROM CALIFORNIA GOLD-QUARTZ VEINS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A₁</th>
<th>B</th>
<th>B₁</th>
<th>C</th>
<th>C₁</th>
<th>D</th>
<th>D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.54</td>
<td>46.13</td>
<td>45.56</td>
<td>37.01</td>
<td>66.65</td>
<td>56.25</td>
<td>51.01</td>
<td>45.74</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.39</td>
<td>0.67</td>
<td>1.11</td>
<td>0.85</td>
<td>0.38</td>
<td>0.25</td>
<td>0.98</td>
<td>0.36</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.52</td>
<td>15.82</td>
<td>14.15</td>
<td>12.99</td>
<td>16.15</td>
<td>17.65</td>
<td>11.89</td>
<td>5.29</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.40</td>
<td>0.89</td>
<td>1.20</td>
<td>0.43</td>
<td>1.52</td>
<td>0.76</td>
<td>1.57</td>
<td>0.13</td>
</tr>
<tr>
<td>FeO</td>
<td>2.49</td>
<td>2.27</td>
<td>9.83</td>
<td>3.57</td>
<td>2.36</td>
<td>2.64</td>
<td>6.08</td>
<td>2.06</td>
</tr>
<tr>
<td>FeS₂</td>
<td>1.61</td>
<td></td>
<td>7.86</td>
<td>7.99</td>
<td>0.02</td>
<td>2.87</td>
<td>1.73</td>
<td>0.49</td>
</tr>
<tr>
<td>Cu₂S</td>
<td></td>
<td>0.10</td>
<td></td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.09</td>
<td>0.25</td>
<td>0.24</td>
<td>0.10</td>
<td>none</td>
<td>trace</td>
<td>0.26</td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.88</td>
<td>10.68</td>
<td>2.30</td>
<td>9.78</td>
<td>4.53</td>
<td>4.46</td>
<td>10.36</td>
<td>23.85</td>
</tr>
<tr>
<td>SrO</td>
<td>not det.</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>BaO</td>
<td>not det.</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>none</td>
<td>trace</td>
</tr>
<tr>
<td>MgO</td>
<td>2.52</td>
<td>2.13</td>
<td>6.76</td>
<td>5.49</td>
<td>1.74</td>
<td>1.69</td>
<td>8.87</td>
<td>0.94</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.95</td>
<td>5.30</td>
<td>1.18</td>
<td>4.02</td>
<td>2.65</td>
<td>6.01</td>
<td>0.15</td>
<td>1.29</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.09</td>
<td>0.17</td>
<td>1.57</td>
<td>0.13</td>
<td>3.40</td>
<td>0.30</td>
<td>4.17</td>
<td>0.11</td>
</tr>
<tr>
<td>Li₂O</td>
<td></td>
<td></td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>0.12</td>
<td>0.23</td>
<td>0.13</td>
<td>0.18</td>
<td>0.30</td>
<td>0.24</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>H₂O +</td>
<td>0.59</td>
<td>2.42</td>
<td>4.84</td>
<td>1.92</td>
<td>0.72</td>
<td>2.36</td>
<td>2.09</td>
<td>1.07</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.18</td>
<td>0.10</td>
<td>0.14</td>
<td>0.06</td>
<td>0.10</td>
<td>0.21</td>
<td>0.17</td>
<td>0.07</td>
</tr>
<tr>
<td>SO₃</td>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>11.24</td>
<td></td>
<td>3.04</td>
<td>15.04</td>
<td></td>
<td>4.82</td>
<td></td>
<td>18.91</td>
</tr>
</tbody>
</table>

Total: 100.61 99.64 100.15 99.69 100.57 100.60 99.35 100.79

1 Probably present as Fe₃S₄.

A. Fresh granodiorite, Lincoln, Placer County, California. Though not adjoining the vein, it indicates closely the actual composition of the fresh rock wall. W. F. Hillebrand, analyst.

C. Fresh granodiorite, Nevada City, Nevada County. W. F. Hillebrand, analyst.

C₁. Altered granodiorite, Bellefountain mine, Nevada City. George Steiger, analyst.

D. Fresh diabase, Grass Valley. H. N. Stokes, analyst.

From the chemical and microscopical data the following compositions may be calculated:

TABLE II.—CALCULATED MINERALOGICAL COMPOSITION OF THE ALTERED ROCKS OF TABLE I

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>B₁</th>
<th>C₁</th>
<th>D₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>16.00</td>
<td>24.00</td>
<td>25.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Sericite (with a little chlorite)</td>
<td>41.76</td>
<td>46.97</td>
<td>61.46</td>
<td>21.20</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>17.53</td>
<td>18.87</td>
<td>7.23</td>
<td>42.15</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>9.67</td>
<td>2.93</td>
<td>2.70</td>
<td>0.71</td>
</tr>
<tr>
<td>FeCO₃</td>
<td>5.76</td>
<td>3.67</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>MnCO₃</td>
<td>0.42</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutile</td>
<td>0.85</td>
<td>0.67</td>
<td>0.25</td>
<td>0.36</td>
</tr>
<tr>
<td>Pyrite</td>
<td>7.99</td>
<td>1.61</td>
<td>2.87</td>
<td>0.50</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.13</td>
<td>0.22</td>
<td>0.46</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>100.11</td>
<td>99.08</td>
<td>100.55</td>
<td>100.07</td>
</tr>
</tbody>
</table>

As it seems probable that the alumina has remained fairly constant in the first six analyses in Table I, they may be directly compared for an approximate review of the chemical changes.

Analysis D₁ differs from the rest in showing an exceptionally high percentage of introduced lime and carbon dioxide and a corresponding loss of magnesia. Moreover, the alumina is so low that it must be supposed to have been removed.

The characteristic features of the process seem to consist in the decrease of silica, magnesia, and soda and increase of lime, potash, and carbon dioxide—the calcitic altered rock strongly contrasting with the quartz-filled veins. There is some evidence of partial leaching of titanium and phosphorus. Sufficient data are not available for the accurate determination of change of volume during the process, and of the actual losses and gains. It seems probable that, in most cases, the added material has more than balanced the losses. Unquestionably there has been a strong addition of calcium and potassium, and the vein-filling process probably began with deposition by solutions extremely rich in these constituents, as well as in carbon dioxide. The quartz filling sometimes shows imprints, along its walls, of calcite crystals, from which it may be concluded that during the process of filling the nature of the solutions changed to the later phase, in which almost nothing but quartz was deposited.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 521

Interior Types.—In the Blue Mountains of Oregon the wall rocks of the veins are altered to products in all respects similar to those of California. In the gold-quartz veins of Idaho, genetically connected with the late Cretaceous intrusion of a large batholith of quartz monzonite, the carbonatization is far less marked and both calcium and magnesium are leached. The accompanying analyses, Table III, illustrate the chemical changes in two prominent types.

TABLE III.—ANALYSES OF FRESH AND ALTERED ROCKS FROM IDAHO GOLD-QUARTZ VEINS
[Analyst, W. F. Hillebrand]

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>E₁</th>
<th>F</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.23</td>
<td>66.66</td>
<td>57.78</td>
<td>58.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.66</td>
<td>0.49</td>
<td>1.01</td>
<td>1.08</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.94</td>
<td>14.26</td>
<td>16.28</td>
<td>15.72</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.60</td>
<td>0.67</td>
<td>1.02</td>
<td>0.64</td>
</tr>
<tr>
<td>FeO</td>
<td>1.91</td>
<td>1.33</td>
<td>4.92</td>
<td>3.87</td>
</tr>
<tr>
<td>CoO, NiO</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>MnO</td>
<td>trace</td>
<td>trace</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>CaO</td>
<td>3.85</td>
<td>3.37</td>
<td>6.65</td>
<td>2.15</td>
</tr>
<tr>
<td>SrO</td>
<td></td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaO</td>
<td>0.19</td>
<td>none</td>
<td>0.12</td>
<td>trace?</td>
</tr>
<tr>
<td>MgO</td>
<td>1.31</td>
<td>0.95</td>
<td>4.60</td>
<td>2.07</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.02</td>
<td>4.19</td>
<td>2.22</td>
<td>4.79</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.57</td>
<td>none</td>
<td>3.25</td>
<td>0.10</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.18</td>
<td>0.36</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.88</td>
<td>2.16</td>
<td>0.92</td>
<td>2.71</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
<td>0.17</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.25</td>
<td>3.67</td>
<td>0.15</td>
<td>2.86</td>
</tr>
<tr>
<td>S</td>
<td>none</td>
<td>0.95</td>
<td>0.02</td>
<td>1.25</td>
</tr>
<tr>
<td>Fe</td>
<td>none</td>
<td>0.84</td>
<td></td>
<td>1.52</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td>1.65</td>
<td></td>
</tr>
</tbody>
</table>

Total 99.78 100.07 99.82 100.24

E. Fresh granitic rock immediately adjoining the Silver Wreath quartz vein, Willow Creek, Idaho.
E₁. Altered rock adjoining the same vein.
F. Fresh quartz-pyroxene diorite adjoining the Croesus vein, Hailey, Idaho.
F₁. Altered rock adjoining the same vein.
E and F₁ represent the fresh and altered rock from the Willow Creek district, Boise County, where the narrow quartz veins carry scarcely any free gold, but much auriferous galena, pyrite, arsenopyrite, and zinc blende. F and F₁ represent the fresh and altered rock from the Croesus mine, Wood River district, Blaine County, where the narrow streaks of filling consist of quartz, siderite, pyrrhotite, and chalcopyrite, with a little galena, arsenopyrite, and zinc blende. Here again only a fraction of the gold is in the free state. The ore contains very little silver.¹

The specific gravity of E is 2.714. From the mineralogical composition given in the report quoted the specific gravity is calculated to 2.720, which is a close agreement, the difference possibly indicating a very slight porosity.²

TABLE IV.—MINERALOGICAL COMPOSITION OF E₁ AND F₁, IN TABLE III

<table>
<thead>
<tr>
<th></th>
<th>E₁</th>
<th>F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>42.00</td>
<td></td>
</tr>
<tr>
<td>Sericite</td>
<td>46.84</td>
<td>38.18</td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td>11.76</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>4.80</td>
<td>3.11</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>1.96</td>
<td>1.26</td>
</tr>
<tr>
<td>FeCO₃</td>
<td>1.45</td>
<td>2.19</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.49</td>
<td>1.08</td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>Pyrite</td>
<td>1.78</td>
<td>0.58</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Zinc blende</td>
<td></td>
<td>trace</td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td></td>
<td>3.58</td>
</tr>
</tbody>
</table>

| | 99.32 | 99.93 |

The measured specific gravity of E₁ is 2.774, indicating that the rock alters to denser minerals. The calculation of the same

² In this calculation the following figures for specific gravity are used: quartz, 2.65; sericite, 2.83; biotite, 3.00; oligoclase, 2.65; orthoclase, 2.56.
specific gravity from Table IV gives 2.796, which shows a decided porosity of the altered rock. Under these circumstances, no evidence of pressure being noted, it may be assumed that not much change in volume has taken place. By multiplying the percentages of \(E \) and \(E_1 \) by 2.714 and 2.774 respectively and comparing the results, the absolute gains and losses per cubic meter may be obtained (see Table V).

In the same manner the measured specific gravities of \(F \) and \(F_1 \) are compared with the calculated specific gravities.\(^1\)

By multiplying the percentages of \(F \) and \(F_1 \) by the measured specific gravities, and comparing these data, the absolute gains and losses are again obtained.

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th></th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gain</td>
<td>Loss</td>
<td>Gain</td>
</tr>
<tr>
<td>(\text{SiO}_2)</td>
<td>79</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3)</td>
<td>64</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>24</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(\text{FeO})</td>
<td>15</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>(\text{CoO, NiO})</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\text{MnO})</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\text{CaO})</td>
<td>11</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>(\text{SrO})</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\text{BaO})</td>
<td>5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>(\text{MgO})</td>
<td>9</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>(\text{K}_2\text{O})</td>
<td>34</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>(\text{Na}_2\text{O})</td>
<td>97</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>(\text{H}_2\text{O above 105}^\circ \text{C})</td>
<td>36</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>(\text{P}_2\text{O}_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>93</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>(\text{S})</td>
<td>26</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>(\text{Fe})</td>
<td>23</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>(\text{Co, Ni})</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\text{Pb})</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>(\text{Cu})</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\text{As})</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>291</td>
<td>229</td>
<td>416</td>
</tr>
</tbody>
</table>

During the alteration of E to E₁ 291 kilograms were added and 229 lost per cubic meter, the net gain being 62 kilograms. During the alteration of F to F₁ 416 kilograms were added and 333 lost per cubic meter, the net gain being 83 kilograms.

A perusal of the table will show very similar results in the two rocks: a moderate addition of silica and a strong gain of potash; nearly complete loss of soda, baryta, and strontia; partial loss of alumina, magnesia, and lime, F₁, however, losing much more lime than E. In E₁ the amounts lost of Fe₂O₃ and FeO are almost completely converted into Fe (in FeS₂). In F these losses are less and not sufficient to account for the gain of Fe; consequently iron must have been added. Phosphoric acid is constant, consistently with the fresh state of the apatite.

These figures give some idea of the intensity of the transfer of material, though the balance of material added is comparatively small. The assumption of equal volumes and methods used for the calculation of the porosity may not be quite correct, but the result gives a fair idea of the nature of the chemical changes.

At Tintic, Utah,¹ the alteration adjacent to veins contained in monzonite has been slight, rarely extending more than a few inches from the ore and consisting in sericitization and pyritization. Near the Dragon mine the monzonite has suffered complete alteration over a considerable area. The result of this alteration, which has clearly been effected by the mineralizing solutions, is expressed in the following two analyses. The bleached rock is dull light gray and consists mainly of fine sericite, quartz, and some rutile. So far as can be ascertained without the necessary determinations of specific gravity the altered rock is denser than the original monzonite. It has received a considerable addition of silica; the iron, lime, and soda are almost entirely removed; the magnesia is partly leached, and there has been some addition of potash. The rock contains approximately 54 per cent. sericite and 42 per cent. quartz. There appears to be little if any kaolin present; the small quantity of pyrite doubtless contained in the rock has been oxidized to sulphate.

Deposits Formed at Intermediate Depths

Analyses of fresh and altered monzonite near the Dragon Iron Mine, Tintic, Utah

[H. N. Stokes, Analyst]

<table>
<thead>
<tr>
<th></th>
<th>Fresh monzonite</th>
<th>Altered monzonite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>59.76</td>
<td>71.14</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.79</td>
<td>16.24</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.77</td>
<td>0.94</td>
</tr>
<tr>
<td>FeO</td>
<td>3.30</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>trace</td>
</tr>
<tr>
<td>CaO</td>
<td>3.88</td>
<td>0.25</td>
</tr>
<tr>
<td>BaO</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>2.16</td>
<td>1.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.40</td>
<td>4.96</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.01</td>
<td>0.07</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.31</td>
<td>0.49</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>1.11</td>
<td>2.74</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.78</td>
<td>none</td>
</tr>
<tr>
<td>Cl</td>
<td>0.04</td>
<td>trace</td>
</tr>
<tr>
<td>SO₄</td>
<td>none</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Total | 99.84 | 99.51

Similar alteration in the veins of Bingham, Utah, has been described by Boutwell. The Last Chance lode is from 1 to 14 feet wide and contains galena, zinc blende, pyrite, and some calcite. The alteration and bleaching extend about 1 or 2 feet into the country rock, which is a monzonite, consisting of orthoclase, plagioclase, augite, biotite, and hornblende. The alteration begins by chloritization and dissemination of pyrite, but the end product consists largely of sercite and pyrite. The analysis indicates an unusual and almost complete removal of magnesia and extensive leaching of sodium and calcium. There has evidently been an addition of potassium, as there is considerably more than is called for in the ordinary composition of sercite. As usual TiO₂ remains constant, and the altered rock contains practically no carbonates.

MINERAL DEPOSITS

ANALYSES SHOWING ALTERATION OF MONZONITE AT BINGHAM, UTAH

[Analyst, E. T. Allen]

\[
\begin{array}{l|c|c}
 & I & II \\
\hline
\text{SiO}_2 & 58.64 & 56.78 \\
\text{TiO}_2 & 0.83 & 0.81 \\
\text{Al}_2\text{O}_3 & 15.35 & 16.90 \\
\text{Fe}_2\text{O}_3 & 3.25 & 6.87 \\
\text{FeO} & 2.54 & 2.34 \\
\text{CaO} & 5.37 & 1.18 \\
\text{BaO} & 0.18 & 0.14 \\
\text{MgO} & 3.84 & 0.03 \\
\text{K}_2\text{O} & 4.23 & 7.02 \\
\text{Na}_2\text{O} & 3.60 & 0.37 \\
\text{H}_2\text{O} & 0.86 & 1.32 \\
\text{H}_2\text{O}+ & 1.50 & 2.23 \\
\text{CO}_2 & \text{none} & 0.26 \\
\text{P}_2\text{O}_5 & 0.02 & 0.04 \\
\text{S} & 0.05 & 5.93 \\
\hline
\text{Total} & 100.26 & 102.22 \\
\text{O equivalent to S} & 0.02 & 2.22 \\
\hline
\end{array}
\]

Traces MnO, Cr\textsubscript{2}O\textsubscript{3}.

I. British Tunnel, Last Chance mine.
II. British Tunnel, Last Chance mine, at wall of lode.

One of the great mineral belts of Colorado extends in a north-easterly direction from Leadville to Boulder by way of Park, Clear Creek, and Gilpin counties (p. 580). It is characterized as a whole by an abundance of heavy sulphide ores, principally pyrite, zinc blende, and galena, with subordinate chalcopyrite and a notable content of gold and silver. The gangue is subordinate and consists of a little quartz and more or less of a sideritic carbonate. The ores appear in replacement deposits and veins. At Leadville, where the ores replace limestone at the contacts with intrusive porphyry, the alteration of the carbonate rock is remarkably slight. There may be locally a little pyrite in the limestone near the ore; at other places the limestone is recrystallized to a coarser aggregate or silicified. The contact between ore and limestone is usually very sharp—indeed, in
spite of the completeness of the replacement, practically unaltered limestone may lie next to the ore.

At Breckenridge, Georgetown, and Central City the deposits are fissure veins, generally filled with massive sulphides, and, in feldspatic rocks, they are adjoined by an altered zone from a few inches to 20 feet or more in width. The alteration products are quartz, sericite, and a sideritic carbonate, with more or less pyrite. In a few of the Georgetown veins Spurr detected adularia, but, on the whole, this mineral is absent.

The siderite is thought to have been derived from biotite and magnetite, and the gangue minerals are believed to have been derived from the adjoining rocks. Kaolin is considered to have resulted from alteration by descending waters during the processes of weathering and sulphide enrichment.

The course of alteration near the veins has been studied in detail by Ransome at the Wellington lode, 350 feet below the surface and below the zone of oxidation. The vein is here 5 feet wide with good walls and contains zinc blende and galena in a little gangue of siderite and barite with more or less included country rock. The alteration spreads 20 feet from the vein. The fresh rock is a dark-gray monzonite porphyry, the groundmass of which consists of labradorite, orthoclase, biotite, and diopside. The altered rock is light gray, with disseminated particles of sulphides. The rock, while retaining a faint trace of its structure, is changed to a mass of carbonate, sericite, and quartz.

By multiplying the figures of the percentage composition by the specific gravities of the rock mass the constituents per 100 cubic centimeters of fresh and altered rock are obtained. These figures compared give the gains and losses for each constituent during the alteration of 100 cubic centimeters of fresh rock, and from these again may be calculated the gains and losses in percentage of the original mass of 276.3 grams of fresh rock. These gains or losses in percentages may be applied directly by addition or subtraction to the figures of the chemical analysis of fresh rock, and this, as shown in column III, will express the nature of the change more clearly. There has been a notable loss of silica, calcium, potassium, and sodium. The additions comprise

carbon dioxide, sulphides, ferrous iron, and magnesium, which
would hardly bear out Spurr's assertion that the siderite in the
vein is derived from the adjoining country rock. As usual
apatite remains unaltered, and the ilmenite is converted to
rutile. Some paragonite has probably developed besides the
sericite, if indeed the rock does not contain albite.

TABLE SHOWING ALTERATION OF DIORITE PORPHYRY AT BRECKENRIDGE, COLORADO

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.35</td>
<td>46.62</td>
<td>49.48</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.07</td>
<td>1.01</td>
<td>1.07</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.29</td>
<td>12.66</td>
<td>13.44</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.15</td>
<td>trace</td>
<td>0.02</td>
</tr>
<tr>
<td>FeO</td>
<td>4.36</td>
<td>11.15</td>
<td>11.78</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.92</td>
<td>0.97</td>
</tr>
<tr>
<td>CaO</td>
<td>5.66</td>
<td>1.55</td>
<td>1.66</td>
</tr>
<tr>
<td>BaO</td>
<td>0.10</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>SrO</td>
<td>0.05</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.41</td>
<td>4.02</td>
<td>4.25</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.39</td>
<td>1.68</td>
<td>1.79</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.50</td>
<td>1.35</td>
<td>1.45</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.15</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.70</td>
<td>3.41</td>
<td>3.60</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.46</td>
<td>11.48</td>
<td>12.11</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.70</td>
<td>0.50</td>
<td>0.53</td>
</tr>
<tr>
<td>FeS₂</td>
<td>0.09</td>
<td>1.99</td>
<td>2.10</td>
</tr>
<tr>
<td>ZnS</td>
<td>none</td>
<td>0.97</td>
<td>1.02</td>
</tr>
<tr>
<td>PbS</td>
<td>none</td>
<td>0.52</td>
<td>0.55</td>
</tr>
<tr>
<td>Total</td>
<td>100.55</td>
<td>100.14</td>
<td>106.15</td>
</tr>
</tbody>
</table>

Specific gravity:
- **Mass**
 - I. 2.763
 - II. 2.930
- **Powder**
 - III. 2.799
 - III. 2.940

I. Diorite porphyry, 25 feet from vein, Wellington mine.
II. Altered porphyry, close to vein, Wellington mine.
III. Composition of same volume of altered rock in percentage of original rock mass.

An approximate calculation shows the altered rock to be composed as follows:
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 529

APPROXIMATE MINERALOGICAL COMPOSITION OF ALTERED DIORITE PORPHYRY AT BRECKENRIDGE, COLORADO

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sericite</td>
<td>30.5</td>
</tr>
<tr>
<td>Quartz</td>
<td>31.6</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>2.8</td>
</tr>
<tr>
<td>Carbonate</td>
<td>29.3</td>
</tr>
<tr>
<td>Rutile</td>
<td>1.0</td>
</tr>
<tr>
<td>Apatite</td>
<td>1.3</td>
</tr>
<tr>
<td>Pyrite</td>
<td>2.0</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>1.0</td>
</tr>
<tr>
<td>Galena</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The carbonate consists of 63.9 per cent. FeCO₃, 29.6 per cent. MgCO₃, 5.2 per cent. MnCO₃, and 1.3 per cent. CaCO₃, all in isomorphous mixture.

The more silicic types of rocks at Breckenridge, like quartz monzonite porphyry, with 68 per cent. silica, are more permeable, and the feldspar phenocrysts are often replaced by sulphides. The analyses given by Ransome¹ suggest that silica and alumina have remained constant, but that sodium and calcium have been almost completely removed and that potassium has possibly increased. These altered rocks contain practically no carbonates, and it is possible that the solutions in the veins in these rocks may have been somewhat different from those active in the Wellington mine. The calculated composition of an altered rock from the Jessie mine is as follows:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>52.0</td>
</tr>
<tr>
<td>Sericite</td>
<td>40.2</td>
</tr>
<tr>
<td>Pyrite</td>
<td>7.1</td>
</tr>
<tr>
<td>Sphalerite and galena</td>
<td>0.2</td>
</tr>
<tr>
<td>Other constituents</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

GOLD-QUARTZ VEINS OF THE CALIFORNIA AND VICTORIA TYPE

Principal Characteristics.—As quartz and gold may be deposited together within a considerable range of temperature, there are several types of gold-quartz deposits. The deposits formed at higher temperatures, distinguished by such gangue minerals as tourmaline, apatite, garnet, biotite, and amphibole, will be described in subsequent pages. Those formed near the surface at temperatures not much above 100° C. have been discussed in previous chapters. Between the two kinds stands the large group of important deposits whose geological relations clearly point to development at considerable depth and whose mineral association points to moderate temperatures—perhaps 200° to 300° C.

The first type is represented by certain, Appalachian and Brazilian gold-quartz veins; the second by veins like those of the

Comstock, Bodie, and Tonopah, usually appearing in Tertiary lavas. Between the two stand the gold-quartz veins of California, eastern Australia, and many localities in the interior Cordilleran region of North America.

The general characteristic of these intermediate deposits is the association of a preponderant gangue of milky, coarsely crystalline quartz, sometimes drusy, though rarely showing comb structure, with free gold and auriferous simple sulphide minerals. Where the country rock is suitable for replacement carbonates and sericite appear with pyrite in the altered rocks.

The veins occur in deeply eroded regions and in or surrounding intrusives of quartz monzonitic or dioritic or gabbroitic kind. The absence of biotite, magnetite, epidote, garnet, and tourmaline is also notable. The only silicates present are albite and chlorite, and these only locally. The destruction of the outcrops by erosion usually results in rich placers, in which large nuggets of gold are often found.

The free gold always contains a little silver, the average fineness being 0.800; the sulphides are likely to carry more silver in proportion than the native gold. Some types of these veins carry a notable amount of silver, but scarcely ever such amounts as are common in the Tertiary veins deposited near the surface in Tertiary lavas.

Gold-Quartz Veins of the Sierra Nevada. — The greatest development of the gold-quartz veins is found in California; they begin

1 H. W. Fairbanks, Geology of the Mother Lode region, Tenth Rept. State Min. Bureau of Cal., pp. 23–90, 1890.

in the southern end of the State in San Diego County and continue with interruptions to the northern end, where, in Trinity and Siskiyou counties, there is a productive area of no small value. The gold belt also continues into southwestern Oregon, but farther north disappears under the Tertiary lavas and Cretaceous and Tertiary sediments.

Fig. 167.—Map of Nevada and northern part of California, showing prominent mining districts.

Most typically the veins are developed in the Sierra Nevada, which, with its gentle western slope and abrupt eastern escarpments, separates the deserts of the Great Basin from the central valleys of California (Fig. 167).

The crest and main mass of this range form parts of an enormous batholith of massive granodiorite and allied rocks, intruded into Mesozoic and Paleozoic metamorphosed sediments. These sedimentary rocks are closely folded and compressed and occupy a belt on the western slope, which gradually widens and, in Plumas County, spreads over a width of 60 miles. The great
batholith itself contains extremely few quartz veins; mineralization is confined to the belt of metamorphic rocks on the western slope and often begins abruptly at the contact; this is shown, for instance, by the river gravel, which becomes auriferous where it enters the metamorphic areas. The highly productive part of the belt does not, usually, adjoin the granitic rocks, but appears lower down in the foothill region.

The metamorphic rocks are really a complex body, for besides the prevailing Paleozoic slates with occasional lenses of limestone and in the lower foothills a narrow belt of late Jurassic Mariposa slate, they contain Paleozoic altered lava flows and a vast quantity of tuffs, diabases, and old andesites erupted by volcanoes of Jurassic age.

Fig. 168.—Map of principal vein systems near Ophir and Auburn, California. A, Small area of amphibolite. Scale 1 inch = 2.7 miles.

Later than these rocks, and probably dating from earliest Cretaceous time, are numerous smaller intrusions of gabbro, diorite, and granodiorite, which are massive and, in a general way, contemporaneous with the main batholith of the range. The basic intrusions appear to be somewhat older than those containing more silica.

In and around these smaller intrusions, as, for instance, at Grass Valley, Nevada City (Fig. 170), Ophir, and West Point, the gold-bearing veins often cluster and may occur in any kind of rocks (Fig. 168); there are also several long lines along which fracturing and subsequent mineralization have taken place. One of these follows the so-called “serpentine belt,” a dike-like
DEPOSITS FORMED AT INTERMEDIATE DEPTHS

 intrusive mass 70 miles long; another extends from the Forest Hill divide, in Placer County, up into Sierra County, passing the town of Washington. The most important line is that followed by the Mother Lode, in the foothills of Mariposa, Tuolumne, Calaveras, Amador, and Eldorado counties, for a distance of 130 miles. The Mother Lode is by no means a single vein, but

![Fig. 169.—Geological section across Mother Lode in Mariposa County, California. Jm, Mariposa slate; sp, serpentine; gb, gabbro; am, amphibolite; md, metadiorite; ma, meta-andesite; V, vein at Peñón Blanco. All formations Jurassic or Cretaceous. Scale 1 mile = 1 inch. After F. L. Ransome, U. S. Geol. Survey.](image)

rather a system of linked veins, placed, however, within a narrow belt about a mile wide, and maintaining a remarkably straight course; it cuts Paleozoic slates and greenstones, but on the whole follows fairly closely a narrow belt of the Jurassic Mariposa slate and in places lies between this slate and the greenstone. There is a notable displacement along the Mother Lode, probably in the nature of a reverse fault (Fig. 169).

![Fig. 170.—Geological section at Nevada City, California. Cc, Carboniferous slate; Jm, Jurassic slate; pt, porphyrite; gb, gabbro; p, amphibolite; s, serpentine; gr, granodiorite. Scale 1 inch = 2,400 feet.](image)

The strike of the veins is predominantly north-northwest, parallel to the range and to the strike of the steeply inclined strata, but the dip usually intersects that of the beds and, in the Mother Lode, is about 60° east. In many districts other directions of strike and dip prevail. The veins are easily traceable by prominent quartz outcrops, and many of them are remarkably straight and continuous in strike and dip. It is not uncommon to find veins continuous along the strike for 1 or 2 miles.
Many of the veins have been successfully worked to a vertical depth of 2,000 feet. In the Kennedy mine, on the Mother Lode belt, a depth of 3,400 feet has been attained, good ore appearing in the lower levels. At the Central Eureka mine, near the Kennedy, rich ore-bodies were found below the 1,000-foot level, though there was very little ore above that horizon. The North Star vein at Grass Valley has been followed along its flat dip for over 5,000 feet and, at that depth, yields a high production.

There are many structural types; the most common is the simple filled vein (Fig. 171), which may carry from a mere film of quartz to a thickness of 10 or 20 feet. Many of the outcrops appear to be much thicker than the figures just given, but these large masses are poor in gold. Again, there are composite veins or lodes in which certain belts of country rock are filled by branching veinlets of quartz or which may contain altered slabs of country rock (Fig. 173). In crushed clay slates the veins are sometimes broken and folded (Fig. 172). Large bodies of rock changed by replacement to gold ores are comparatively rare; such ores are mined in several places at Angels Camp, Calaveras County. Again, gold-bearing quartz seams may follow joints

Fig. 171.—Argonaut vein in slate country rock, Amador County, California, at 650-foot level. Photograph by O. H. Packer.
of certain direction in large masses of rock; many such masses have been worked by the simple process of hydraulic washing of the upper, weathered part. Such deposits are called seam-diggings.

More rarely the veins follow narrow dikes of albite aplite; or they are developed on joint planes across the strike of thicker dikes in the manner of ladder veins (p. 134).

![Bunker Hill vein, Amador County, California, showing folded vein in crushed clay slate.](image)

The association of gold with dikes consisting mainly of albite rock has been described by Turner¹ and Reid.² Turner describes

such dikes on Moccasin Creek, in Tuolumne County, at the Shaw mine, in Eldorado County, and at other places, but the associated ores are generally of low grade and the mineralization is everywhere later than the dike. In the Bachelor lode, on Tuolumne River, the dike rock is partly replaced by quartz and dolomitic material, the magnesia of which was probably derived from an adjacent mass of serpentine.

Reid observed numerous thin dikes in Calaveras slate near Blue Canyon, Placer County, consisting largely of albite, which are cut or followed by seams or veins containing pyrite or arseno-

![Diagram](image.png)

Fig. 173.—Section of Pittsburgh vein, Nevada City, California.

pyrite and native gold. The gangue in these veins consists of quartz and albite, with some manganiferous ankerite.

Along the walls there is always—in feldspathic and ferric rocks adapted to such processes—more or less replacement extending a few inches or a few feet from the vein; bleaching, softening, and dissemination of pyrite indicate such replacement, in which the principal feature is the development of calcium-magnesium-iron carbonates with much sericite (p. 518). Occasionally, in sodic amphibolites, much albite develops, and in the vicinity of Angels Camp, on the Mother Lode, such replacements may contain enough gold to be called ore. In serpentine the alteration to a coarse aggregate of ankerite and bright-green

chromium mica (mariposite) is characteristic; this product of replacement constitutes ore in only a few places, such as the Rawhide mine, southeast of Angels Camp, where it was penetrated by gold-bearing quartz stringers.

The ore-shoots are irregularly distributed; many veins are of pockety character, containing rich bonanzas at certain points, which may be determined by intersections or by the crossing of certain beds of the schist series. Other veins have large and regular shoots generally with a steep pitch, and sometimes with a pitch length of 2,000 or 3,000 feet. In isolated cases, such as the Idaho-Maryland vein at Grass Valley, the pitch of the rich pay-shoot was flat on the plane of the vein (p. 169). In many districts, especially at Grass Valley, the rule is that the shoot pitches to the left of an observer looking down the dip.

Including the placer gold yielded by the outcrops disintegrated during Tertiary and Quaternary time, the production of the California gold-quartz deposits is exceedingly large, being more than $1,200,000,000 in value. The actual mining of the quartz veins has yielded much less, perhaps only $400,000,000. A long list of celebrated mines could be cited, each one having yielded from $5,000,000 to $20,000,000. Among them are the North Star, Empire, and Idaho-Maryland, of Grass Valley, and the Plymouth Consolidated, Kennedy, Keystone, Eureka Consolidated, Gover, and Zeile on the Mother Lode. The present annual production from deposits of this class in California is about $10,000,000.

The principal and almost exclusive gangue mineral is milk-white quartz with coarse massive texture, occasionally drusy. In thin section the quartz shows partly idiomorphic forms (Fig. 46), and some individuals include earlier slender prisms. Comb structure is sometimes seen, but never the delicate banding of the veins formed near the surface. In places sulphides encrust rock fragments enclosed in quartz. A rough banding may result from irregular distribution of the sulphides, from the inclusion of narrow strips of black slate, or from subsequent shearing of the vein (Fig. 47); the last is not uncommon and is indicated in thin section by the crushing of the primary individual crystals (Fig. 48). Fluid inclusions are plentiful, but seem to consist of an aqueous solution. Carbon dioxide has been reported in one or two cases. Calcite, dolomite, and ankerite are formed in subordinate quantities, though they may be
present abundantly in the replaced country rock adjoining the
vein. Barite, fluorite, and tourmaline are practically absent,
as are biotite, garnet, amphibole, epidote, zeolites, rhodonite,
and rhodochrosite. No bituminous material has been reported.
Mariposite, a chromium mica, is common near serpentine in the
altered rock; roscoelite, a vanadium mica, is sometimes associated
with native gold. Rutile is generally confined to the altered
rock. Specularite and magnetite are absent, except in isolated
cases. Scheelite is known to occur at several places.

The native gold is the principal ore mineral and occurs in all
ores and at all depths. Sometimes large masses are found. A
mass of solid gold valued at $40,000 was taken out from the
Bonanza mine, near Sonora, in a pocket which yielded $360,000.
This mine produced more than $2,000,000 in gold, the greater
part of which was pounded out of the quartz in hand mortars.
Still heavier masses of gold were found in the Monumental
mine, Sierra County, and below thecroppings of the Carson Hill
veins on the Mother Lode. In some veins the gold is distributed
in microscopic particles; in others it is visible (Fig. 174) and occurs
in threads and plates. Very rarely, in some pocket mines, gold
of a fineness exceeding 0.900\(^1\) is encountered, but the average
fineness is 0.800, and it is rarely as low as 0.700, the remainder
per mille being principally silver.

Variable but always comparatively small quantities of metallic
minerals accompany the gold, ordinarily making up 2 to 3 per
cent. of the mass. Pyrite is universally present; pyrrhotite
rarely, and then only in veins in granitic rocks. Chalcopyrite,
zinc blende, and galena are most abundant next to pyrite;
arsenopyrite is not quite so common. Tetrahedrite is frequently
found, while stibnite and molybdene are rare. Compounds of
tin, uranium, boron, phosphorus, and fluorine are lacking.
Tellurides like altaite, hessite, calaverite, petzite, and melonite
are frequently associated with native gold.

The sulphides obtained by concentration from the ore are
usually rich, often having a value of $100 to $300 per ton, but
their value is only a small part of the value of the ore. C. G.
Yale\(^2\) gives the following figures for the Mother Lode mines.
In the five Mother Lode counties 1,170,000 tons of ore were
mined in 1910. The gold recovery on the amalgamating plates

\(^{1}\) Gold from the San Giuseppe mine, near Sonora, was 0.990 fine.

averaged $2.44 per ton, while 29,000 tons of concentrates (mainly pyrite) obtained from the ore averaged in value $55 per ton;

![Diagram](image)

Fig. 174.—a, Thin section of gold-bearing quartz, Keltz mine, Tuolumne County, California. Q, quartz; P, pyrite; black, gold, deposited later than pyrite. Magnified 70 diameters. After W. J. Sharwood.

b, Thin section of gold-bearing quartz (Q), Omaha mine, Grass Valley, California, showing gold (black) deposited contemporaneously with pyrite, (P). Magnified 17 diameters.

the total value recovered in gold (with a very small quantity of silver) averaged $3.78 per ton.
The ore in the large mines of the Mother Lode is thus of low grade, averaging perhaps $4. In some districts, like Grass Valley, where narrower veins are mined, the ore assays $10 or $15 per ton.

The gold-quartz veins of the Sierra Nevada were formed shortly after the intrusion of the granodiorite batholith in latest Jurassic or earliest Cretaceous time. They have, with the surrounding rocks, been subjected to an intense erosion, the vertical measure of which amounts to several thousand feet. The exposures by unequal erosion or by mining operations show, in many districts, that the vertical range of gold deposition without notable change in richness of shoots was over 4,000 feet; the relations in some districts lead to the conclusion that the deepest parts now mined were formed 7,000 feet or more below the surface.

The permeation of the metamorphic series by gold-bearing quartz is remarkable, although the greatest richness is concentrated, as stated above, in certain districts or along certain lines.

No hypothesis of lateral secretion can account for the great masses of quartz, nor for the occurrence of the veins in the most diverse rocks. For an explanation of their origin we are compelled to look to the great batholithic intrusion, or rather to the many minor intrusions on the flank of the range. At Grass Valley this conclusion is inevitable; on the Mother Lode it is less positive. The Mother Lode is, however, a profound dislocation, and we may well assume that it extends to a great depth and probably derived its metallic contents from underlying intrusive bodies. It must also be conceded that in many places the evidence points to the gabbros and peridotites (from which the serpentine was derived) and to the numerous albite aplitic dikes which accompanied the basic intrusions as a source of at least part of the gold. A remarkable feature, nevertheless, is the absence, in the veins, of the usual mineralizers like chlorine, fluorine, and boron.

Regarding the nature of the depositing solutions forming gold-quartz veins we have, of course, no direct information. They must have been aqueous, to produce crustification of quartz and calcite. They must further have been competent to cause replacement by pyrite, sericite, and earthy carbonates. Hot waters containing carbon dioxide, alkaline carbonates, and
hydrogen sulphide would fulfil these requirements. They probably carried gold dissolved in alkaline sulphides, a form in which the gold solution is stable to ordinary reducing agents such as carbon and pyrite. These solutions deposited the gold by contact with acids or by exposure to oxidation, probably also by decrease of temperature. W. Skey, T. Egleston, G. F. Becker, and lately V. Lenher¹ have drawn attention to this solvent.

The Gold-Quartz Veins of the Interior Cordilleran Region.²— A great number of intrusive masses of quartz monzonitic or granodioritic type are found in the interior Cordilleran region of the United States. They are, as a rule, of more recent age than the great coast batholith, their epoch of intrusion falling at the end of the Cretaceous or the beginning of the Tertiary. In or around these intrusives gold-quartz veins are often found, clearly related to the California type, but differing from it in some respects. Frequently they follow lamprophyric dikes (Fig. 175). They contain more sulphides, though of the same kinds, and they carry, as a rule, more silver in the sulphides than the veins of the California type; there is less free gold, and, in some instances, only a small proportion of the total gold is amenable to direct amalgamation. The gold contains silver and rarely has a fineness above 0.700. Rich silver minerals often form in the oxidized zones. The precious metals are contained chiefly in the quartz filling, but the altered rock adjoining the veins some-

¹ Econ. Geology, vol. 7, 1912, pp. 745–750.
⁴ C. E. Weaver, The Blewett mining district, Bull. 6, Washington Geol. Survey, 1911.
times carries gold and silver, which means that it is in part replaced by gold- and silver-bearing sulphides. In feldspathic and ferromagnesian rocks sericitic and pyritic alteration (Fig. 176) affects the wall rocks; carbonatization is often observed, but is rarely as intense as in the veins of the Sierra Nevada. Pyrite, arsenopyrite, chalcopyrite, galena, and blende are the common ore minerals, but tetrahedrite is also plentiful and cinnabar is known to occur. Tellurides are sometimes present and are almost always intergrown with native gold. Quartz is the prevailing and usually the only gangue mineral. Quartz with coarse native gold has been observed to replace an earlier calcite gangue (Fig. 177). Tourmaline, magnetite, and pyr-
Deposits formed at intermediate depths

Rhotite are not known. The grade of the ore is from $5 to $15 per ton.

Victoria, Australia.—The principal gold-bearing region of Victoria, though of much smaller extent than the California gold belt, is believed to have produced about the same amount, namely, $1,300,000,000 in gold. Here, too, the placers have yielded by far the greater production. Both gravel deposits and quartz veins still yield a large, but gradually diminishing, output. In 1911 the production of gold from quartz mines was about 370,000 ounces. The ores averaged $7.50 per ton.

This most productive region includes the celebrated districts of Ballarat and Bendigo and is situated in the low ranges of the mountains rising between the basaltic and Tertiary terranes on the south and the Murray Plains on the north (Fig. 178).

Little-altered Ordovician slates and sandstones prevail and form sharply compressed folds. Intruded in them are two batholiths of granitic rock, probably quartz monzonite, the largest being that between Bendigo and Castlemaine; there are also many smaller bodies of the same kind. The intrusions are probably of late Silurian age, and erosion of at least 3,000 feet has planed the region to an undulating surface.

Within the folded Ordovician rocks quartz veins are abundant and generally follow the strike of the strata, being massed along certain productive “reef lines.” Frequently they are conformable between shale and sandstone, but some of them cut across the strike. A common type has one well-defined wall from which flat and irregular bodies of quartz project into the hanging or foot wall. These flat “makes” are particularly characteristic and usually contain the best pay at Ballarat East and other places. The saddle reefs constitute an interesting division, in

J. W. Gregory, The Ballarat East gold field, Mem., Geol. Surv., Victoria, 4, 1907.

W. Baragwanath, The Castlemaine gold field, Mem., Geol. Surv., Victoria, 2, 1903.

O. A. L. Whitelaw, The Wedderburn gold field, Mem., Geol. Surv., Victoria, 10, 1911.

which masses of quartz fill cavities produced at anticlines (Fig. 179) or less commonly at synclines (Fig. 180) by stresses subsequent to the principal folding; they are often connected with irregular "makes" and spurs (Fig. 181) of quartz. These open cavities, subsequently filled by quartz, are the necessary result of stresses applied to folded masses of little-altered sediments, the strata of which vary considerably in hardness.

The best instances of saddle reefs, many of them superimposed upon and following three or four distinct lines of anticlines, are
found at Bendigo (Fig. 36) and Castlemaine. The Bendigo veins have been worked to a depth of 4,600 feet in the Victoria reef, situated on the New Chum reef line, and sinking is still in progress. A body of quartz, containing at best $17 per ton, was mined at a depth of about 4,200 feet, but it is said that on the whole little

![Image](image_url)

Fig. 179.—Saddle reef in slate and sandstone, Bendigo, Victoria. *After E. J. Dunn.*

profitable mining has been done at Bendigo below a depth of 2,500 feet. The granitic rocks rarely contain quartz veins. The vein-fillings is a massive milk-white, sometimes glassy quartz of coarse crystalline texture. It contains native gold, often coarse, and also a little pyrite and arsenopyrite; sometimes also a little galena, zinc blende, molybdenite, and stibnite. No tellurides are reported. There is neither barite nor fluorite. Calcite with some magnesium and iron is common but subordinate, usually
Fig. 180.—Trough reef, in slate and sandstone, Bendigo, Victoria.
After E. J. Dunn.

Fig. 181.—Spur reef in slate and sandstone, Bendigo, Victoria.
After E. J. Dunn.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS

appearing near the walls. Albite and a vermicular chlorite are present in places, the former in vugs, the latter enclosed in massive quartz. There is little evidence of banded structure, except that near the walls of the veins thin lamellae of slate may be interlaminated with quartz.

At Ballarat rich ore-bodies occur at the intersection of flat bodies of quartz with certain thin pyritic and carbonaceous seams of slate, the so-called “indicators.” It has been held that the gold has been precipitated by the carbon in the indicator. A more plausible view is that the indicators are narrow fissures, later than the flat “makes” and enriching them at the intersection. Similar features have been noted at other points in Victoria and seem to point to a process of enrichment, although probably not caused by surface waters. At Ballarat the developments at depths below 1,500 feet have not been encouraging.

Australian geologists have presented strong evidence that the deposition of the quartz was completed before the Devonian rocks were laid down, and this determines the age of the veins within narrow limits. The granitic intrusion and the formation of the quartz veins were closely associated events. The fact that so few lodes occur in the granitic rocks is probably explained by the great resistance of the hard intrusive bosses to compressive stresses, compared with the yielding nature of the soft sedimentary rocks.

J. R. Don (p. 11) has shown that the sediments away from the veins contain no gold, and that the increasing traces of gold found as the veins are approached are dependent upon the amount of pyrite introduced from the veins.

Metasomatic processes play but a small part in these veins. The slates are little altered, except by the introduction of pyrite and occasionally of some carbonates of calcium and magnesium.

New South Wales and Queensland.—A large number of well-known and productive districts are found in New South Wales and Queensland, in which the gold occurs in quartz veins associated with intrusive rocks. Some of these veins carry quantities of sulphides besides free gold; occasionally fluorite and barite are reported. The almost universal conditions are a deeply eroded region with diorite or granodiorite or their basic dikes intruded into Paleozoic sediments which are usually more highly altered than in Victoria; the veins occur either in intrusive or in sedimentary rocks or in both. Placers are usually present.
MINERAL DEPOSITS

At Hill End,¹ north of Bathurst in New South Wales, folded Silurian slates and tuffs are intruded by dikes and sills of quartz porphyry. The lenticular quartz veins lie in slate or at the contact with the intrusive rocks. Coarse gold prevails; one mass extracted in 1872 consisting of solid gold mixed with some quartz weighed 630 pounds and was valued at $60,000. Five and one-half tons of solid gold were recovered at this place from 10 tons of quartz, the value of the gold being $3,300,000. Similar geological conditions exist at Hargraves, but the quartz here occurs as saddle reefs. Here, as at Ballarat, flat “makes” are present and are enriched where they are crossed by “indicators” or narrow bands of dark-greenish slate.

At Hill Grove,² in the New England district, in the northeastern part of New South Wales, near the wolframite deposits mentioned elsewhere (p. 630), slates and quartzites are intruded by quartz-mica diorite and the veins occur in the sedimentary rocks, often near lamprophyric dikes. The veins, which average 6 feet in width, contain, besides quartz and free gold, scheelite, arsenopyrite, and much stibnite. Andrews regards them as due to the last emanations from the same granitic magma, the earlier high-temperature emanations having produced the cassiterite-molybdenite-wolframite deposits.

At Charters Towers,³ in Queensland, the veins intersect granitic rocks ranging from granites to tonalites or quartz-mica diorites. The veins have been highly productive and have been worked to a depth of 3,000 feet along the dip; they contain about 7 per cent. of sulphides (pyrite, galena, zinc blende, pyrrhotite, and arsenopyrite). As usual in granitic rocks, a considerable part of the gold of the ore is contained in the sulphides. The veins are regular but narrow, averaging about 3 feet in thickness. The average value of the ore is probably less than $15 per ton.

Nova Scotia.—The gold-quartz veins of Nova Scotia,⁴ from which during the last fifty years a moderate production has been

⁴ W. E. Cameron, Publ., No. 224, Geol. Surv., Queensland, 1909.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 549

derived, are, in many respects, of special interest. The veins are contained in folded sedimentary rocks—slate and quartzite—probably of Cambrian age, and these are intruded by granitic rocks of Silurian age. The gold belt extends for a distance of 280 miles along the south coast, and its average width is about 30 miles. The numerous quartz veins, many of which can be traced for long distances, often occur in the manner of saddle reefs along the anticlines. The anticlinal axes are in places

Fig. 182.—Folded quartz vein in slate, Mexican mine, Goldenville, Nova Scotia. After T. A. Rickard.

marked by structural elliptical domes in which the strata pitch both ways on the strike, and gold-bearing quartz veins are usually found in such domes. The veins are ordinarily parallel to the stratification, but some of them, while parallel in strike, cut across the dip. Corrugated and crenulated veins are common (Fig. 182) and the term “barrel quartz” is used to describe the material in them; the corrugation is believed to have been caused by deformation subsequent to the deposition. The gangue is always quartz; pyrite, chalcopyrite, galena, zinc
blende, and arsenopyrite are fairly common, but the principal valuable mineral is native gold.

Veins with stibnite occur in the auriferous belt, and scheelite has been recently discovered. Faribault holds that the intrusive granite, in which no gold-quartz veins have been found, is later than the veins. If this is the correct interpretation, the relationship is the reverse of that in all other districts containing similar veins. T. A. Rickard, however, has expressed a contrary opinion and believes that the formation of the gold-bearing veins succeeded the granitic intrusion.

Under the microscope the glassy quartz shows intense deformation and the corrugated veins are probably simply the result of the crumpling of "competent beds" in a plastic medium (Cfr. Fig. 14). There were probably two epochs of folding, one preceding and the other following the deposition of quartz. T. A. Rickard, on the other hand, believes that the crenulations are the product of complex fractures in rocks of uneven texture, that the fissures were originally angular, and that they have become rounded "in the course of mineral impregnation."

GOLD-BEARING REPLACEMENT DEPOSITS IN LIMESTONE

Deposits in which limestone is replaced by jasperoid or fine-grained silica and which carry gold or silver or both are sometimes found in the Cordilleran States where intrusive porphyries invade calcareous sediments. Few examples are known elsewhere. These ores, which are usually very poor in sulphides, are at several places of great economic importance.

In the Mercur district, situated in the Oquirrh Range in Utah, such siliceous silver ores are found at the lower contact of a thin sheet of granite porphyry with Carboniferous limestone. The jasperoid rock, in places 55 feet thick, contains more or less silver throughout but has not been extensively worked. It carries barite and calcite in places and large druses are sometimes covered by crystals of these minerals. The ore contains some

stibnite, also a little copper and very small amounts of arsenic, molybdenum, and tellurium. No pyrite was observed.

In the same district, below an upper sheet of porphyry which like the lower is greatly decomposed by processes of weathering, is found a sheet of jasperoid rock locally 25 feet thick which contains minutely divided, generally invisible gold with some fine-grained pyrite, a little barite, and some realgar and cinnabar. In part the porphyry itself constitutes ore and the ore may extend into the limestone above the porphyry. Spurr suggests that the ores gained access to the sheet through vertical fissures, now filled with calcite. The deposits are evidently later than the porphyry intrusion, and the general situation is very similar to that of the ores of Leadville, which of course are of different composition, and to that of the ores of the Black Hills.

From 1890 to the end of 1910 about 4,500,000 tons of this gold ore averaging about $3.58 per ton in gold have been mined in the Mercur district.¹

W. H. Weed² describes similar deposits in the Mocassin district, in Montana, where rhyolite porphyry and phonolitic dikes intrude Carboniferous limestone. Near these intrusives the limestone is replaced by fluorite (Fig. 58) and by jasperoid; the replaced rock contains gold and has been mined successfully for a number of years. Some of the ore deposits, here too, lie at the lower contacts of intrusive sheets.

The so-called refractory siliceous ores of the Black Hills of South Dakota, described by J. D. Irving,³ constitute the best examples of this type of replacement ores. For many years these ores have yielded annually about $2,000,000 in gold and 100,000 ounces of silver, from about 600,000 short tons. The ores are treated by the cyanide process. The deposits form replacements of dolomite at two horizons in the Cambrian section of the Black Hills, in a region which is intruded on a large scale by dikes, sheets, and laccoliths of rhyolite porphyry, syenite porphyry, and phonolite of probable Eocene age.⁴ The more

¹ V. C. Heikes in Mineral Resources, U. S. Geol. Surv., 1910 and previous years, Production of gold and silver, chapter on Utah.
important lower horizon is 15 to 25 feet above the basement of pre-Cambrian schists.

The ores occur immediately below more or less impervious beds of shale or below sills of intrusive rocks. While the richest ore replaces the dolomite, ores of lower grade may also replace the underlying basal Cambrian quartzite and the overlying shale; the replaced bodies are at most 18 feet thick, averaging 6 feet. These channel-like ore-bodies have a width attaining 300 feet but averaging much less. Their length is considerable, one shoot being followed for three-fourths of a mile; many parallel shoots may be found in one locality, each shoot corresponding to a fissure or series of fissures (vertical) which intersect the basal beds but which do not carry the ore below the quartzite and rarely above the shale (Fig. 183).

![Diagram](image)

Fig. 183.—Cross section of shoot of siliceous ore replacing Cambrian dolomite, Black Hills, South Dakota. Spread of ascending solutions on under side of impervious shale makes shoot wider at top. *After J. D. Irving.*

The ore is a hard, brittle fine-grained siliceous rock, often reproducing the dolomite texture with great fidelity (Fig. 50). The fresh ore is locally bluish and contains finely divided pyrite; much of it contains solution-cavities lined with quartz crystals. Fluorite is always present, frequently also barite. Other associated minerals are stibnite, occasionally wolframite, and probably arsenopyrite and tellurides in fine distribution. Much of the ore is mined at shallow depths and it is largely oxidized. Interesting data as to the form and distribution of the ore-shoots are also given by J. D. Irving in a later paper.¹

¹ Replacement ore-bodies, *Econ. Geol.*, vol. 6, pp. 527–561, 1911.
GOLD-BEARING REPLACEMENT DEPOSITS IN QUARTZITE

It is not uncommon in mineralized districts to find gold ores in quartzite. Usually they take the form of gold-quartz veins, but replacement ores may also occur. Such a deposit is that of the Delamar mine,¹ in central Nevada, which for many years had a large production, aggregating several million dollars in gold, but which is now closed. At this place Paleozoic quartzite

is intruded by two dikes of granite porphyry and one narrow lamprophyric dike. Along the latter a strong fracture has developed. The ore occurred in an irregular chimney on both sides of this fracture and is later than the dikes (Fig. 184). The ore has been formed by recrystallization of the quartzite and does not appear in the dikes. The rock of granular texture is replaced by a fine-grained drusy aggregate, with a little pyrite and a telluride of gold. Only the oxidized ore was worked; the tenor of this gradually decreased until on the tenth level it was only $4 to $5 per ton and below working cost.

GOLD-BEARING REPLACEMENT DEPOSITS IN PORPHYRY

Replacement deposits in aluminous rocks like granite porphyry, gneiss, and amphibolite are not uncommon in connection with gold-bearing veins, as shown, for instance, at Cripple Creek, Colorado, and along the Mother Lode in California (pp. 490 and 536). Larger bodies of rock are more rarely replaced. W. H. Emmons has described an example of this in the Little Rocky Mountains of northeast Montana, a small outlier on the Great Plains. Stocks and sheets of syenite porphyry are intruded in a Paleozoic sedimentary complex. Broad zones in this porphyry are replaced and cemented by quartz, pyrite, secondary orthoclase, and fluorite. The deposits are really wide replacement lodes, some of them traceable for 1,200 feet and varying from a few feet to 100 feet in width. The gold is finely distributed and probably occurs as a telluride, the ores averaging about $6 per ton in gold and 1 ounce of silver. The operations have thus far been confined to the oxidized zone, which descends to a depth of 200 feet.

THE SILVER-LEAD VEINS

General Features.—The silver deposits of intermediate depths include many types between which so many transitions exist that a classification is difficult. Certain forms occurring as fissure veins parallel closely the gold-bearing quartz veins; but many of the silver deposits contrast with those of gold in being associated with carbonate gangue, more frequently ankerite or other magnesium-calcium-iron carbonates than calcite or siderite.

The replacement deposits in limestone very often contain rich silver ores, though rarely much gold. The two ore minerals most common in silver deposits are galena and tetrahedrite; with these zinc blende is usually associated. Galena and zinc blende may so predominate that the base metals yield the principal value of the deposits. Chalcopyrite, pyrite, and arsenopyrite play subordinate parts. Native silver is probably never a primary mineral, although abundantly formed by secondary reactions effected by descending waters, and rich sulphantimonides like

proustite, pyargyrite, and polybasite are also largely, though not wholly, of similar secondary origin.

The following types merely serve as centers around which the descriptions may be grouped.

Quartz-Tetrahedrite-Galena Veins.—Prominent veins carrying milky quartz and sparsely disseminated tetrahedrite, galena, and zinc blende, with subordinate pyrite, are common in the Cordilleran region in or near intrusive bodies of granitic texture. Many such veins are found in the great batholiths of Idaho and Montana; also in New Mexico—for instance, at Organ,¹ where quartz monzonite breaks through Paleozoic limestones. The deposits are on the whole poor and rarely worked at present, although from 1870 to 1890 the enriched surface zone in many places yielded much silver chloride, native silver, and ruby silver. The Granite-Bimetallic vein in Montana is one of the most famous of these deposits (Chapt. 29).

Tetrahedrite-Galena-Siderite Veins (Wood River Type).—The association of siderite gangue with galena and zinc blende and with a smaller quantity of tetrahedrite rich in silver (freibergite) is not uncommon in veins associated with intrusions of quartz monzonite, granodiorite, diorite, or lamprophyric dikes. The latter dikes are the latest igneous rocks, and the ores appear to have been introduced shortly after their intrusion.

The deposits are usually veins in which the ores appear in part as filling, but largely as replacements of the country rock. Siderite is the characteristic gangue mineral, but calcite and intermediate carbonates of calcium, magnesium, and iron are often present; quartz enters into the gangue when the veins intersect the granitic rocks. Among the ore minerals tetrahedrite is the principal carrier of silver and is often intimately intergrown with galena. The galena is mostly coarse grained and also carries silver, while the zinc blende, with 4 or 5 per cent. of iron, is relatively poor in silver, but is sometimes recovered as a by-product in concentration.

Chalcopyrite is less abundant than tetrahedrite; pyrite is not conspicuous; while arsenopyrite and pyrrhotite occasionally appear, particularly in granitic country rock.

The ore-bodies often replace calcareous shales along the vein, but these shales appear to have been little altered, except for

the introduction of metallic minerals and some siderite. In granular, feldspathic rocks, close to the vein, sericite, carbonates, and a chlorite rich in iron develop in large amounts and sulphides are introduced. A complete replacement by sulphides is unusual. Sodium is almost wholly removed, but potassium fixed as sericite and calcium fixed as carbonate remain.

The structure of the ore is generally massive, and large bodies of galena are common; in one stope of the Minnie Moore mine, in the Wood River district, Idaho, 16 feet of solid galena was shown. Smaller veins may show banded structure, but rarely comb structure. Sometimes a thin layer of quartz may be found along the wall, then a narrow comb of calcite, while the mass of the vein consists of massive galena, alternating with bands of zinc blende and containing intergrown tetrahedrite. The tetrahedrite was probably deposited together with the galena.

The width of the veins rarely exceeds a few feet, and part of this is usually crushed country rock. Their outcrops are inconspicuous.

The ore-shoots are markedly irregular and the cost of mining is therefore high. A marked deterioration may often be observed in depth; the large bodies of rich silver ore—aside from those affected by the surface enrichment—are found comparatively near the surface and the lower levels commonly show pinched veins or a predominance of zinc blende or more abundant pyrite and quartz.

The upper, oxidized parts of the veins are usually enriched by secondary silver chloride, native silver, and pyrargyrite.

Wood River, Idaho.—The silver-lead veins near Hailey, Idaho, on the Wood River, north of the Snake River lava plains, were discovered about 1878 and for many years yielded a high production which now has decreased greatly.

The district lies a few miles east of the eastern contact of the great granitic batholith of central Idaho and the prevailing rocks are calcareous shale, quartzite, and limestone of Carboniferous age, compressed in northwestward-striking folds. These sedimentary rocks are intruded by a minor batholith of diorite and quartz monzonite, following the general direction of the strata and from 2 to 3 miles wide. The deposits are fissure veins.

arranged in two parallel linked systems (Fig. 185) along the contacts of the batholith and in places cutting across the contacts into the granitic rock. Some of the veins follow lamprophyric dikes. Their strike generally cuts the stratification at an acute angle and their dip is prevailing 50° southwest. The crop-pings are inconspicuous. Most of the veins are in calcareous shale.

The ore consists of galena, zinc blende, and tetrahedrite, with but little pyrite and chalcopyrite; the gangue is siderite, or intermediate calcium, iron, and magnesium carbonates, with a little quartz. The ore minerals have massive structure, sometimes roughly banded. Second-class ore consists of seams of carbonate gangue with small grains of galena. As there are no smelting works in the district the ores and concentrates must be shipped; the shipments consist of high-grade ore containing 40 to
50 per cent. of lead and 50 ounces of silver per ton; a little gold is usually present.

Most of the veins are narrow, although they may in places widen out into bodies of galena many feet wide. The typical structure of a filled vein is shown in Fig. 186.

The ore-bodies are irregularly scattered along the veins and are for the most part replacements of calcareous shale by galena.

![Diagram of vein structure](image)

Fig. 186.—Section of vein in Wood River district, Idaho.

Some of these replacement bodies lie obliquely across the strike of the vein and may be several hundred feet long and 10 to 30 feet wide. In a few places the developments have been carried far below the adit levels, and, on the whole, the lowest levels have shown fewer and poorer ore-bodies than the upper parts of the veins. There is, however, little indication of sulphide enrichment, and the oxidized zone is shallow.

While some of the veins in the granitic rocks have the same character as those in the shales, others carry gold as the principal metal. These gold-bearing veins occur both in the diorite of the small batholith and in the main batholith of quartz monzonite; they contain quartz, calcite, siderite, pyrrhotite, arsenopyrite, and chalcopyrite and are in part free milling. Without doubt, these gold deposits belong to the same epoch of metallization as
the silver-lead veins, and they show the same type of metasomatic alteration, namely, sericitization and carbonatization.

Slocan, British Columbia.—The veins of the Slocan district are mainly contained in the clay slates of the Slocan series, the age of which is uncertain, but probably pre-Cambrian. The sedimentary rocks are intruded by granite, quartz porphyry, and lamprophyric dikes. The fissure veins have a general northeast direction and high southeast or northwest dips. Where the veins intersect the igneous rocks quartz is the prevailing gangue mineral. In the sedimentary rocks the gangue is mainly siderite or allied carbonates. A specimen gave, for instance, 59 per cent. FeCO₃, 27 per cent. MnCO₃, 12 per cent. MgCO₃, and 2 per cent. CaCO₃. The ore minerals are zinc blende, galena, and tetrahedrite rich in silver. Pyrite and chalcopyrite are fairly common; pyrrhotite is less abundant and is confined mainly to the vicinity of intrusive rocks. Native silver, of secondary origin, is present and sometimes coats the cleavage planes of zinc blende.

In the Slocan district also gold-bearing veins occur together with the silver-lead veins and are apparently of the same age.

Many of the Slocan veins have proved less rich in depth than near the surface and contain more siderite, quartz, and pyrite; this seems to be due to a change in the primary mineralization, and not to enrichment by descending waters.

Galena—Siderite Veins.—The galena-siderite veins form a small but important type, represented in the United States in the Coeur d’Alene district in Idaho. In contrast to the Wood River type these veins contain little tetrahedrite and are poor in silver; on the other hand, they yield about one-third of the lead production of the United States and in the aggregate also much silver. In 1911 the gross content of the concentrates shipped from the district was 127,000 short tons of lead and 7,400,000

1 O. E. Leroy, Summary report for 1909, Geol. Surv. of Canada, 1910, pp. 131–133.

W. R. Ingalls, Report of the Zinc Commission, Ottawa, 1906, p. 238, etc.
W. A. Carlyle, Bull. No. 3, Bureau of Mines, Victoria, B. C.

O. H. Hershey, Genesis of the silver-lead ores in the Wardner district, Idaho, Min. and Sci. Press, June 1, 8 and 15, 1912.
ounces of silver; the estimated yield of zinc was 4,150 tons. Among the principal mines are the Bunker Hill & Sullivan, the Standard-Mammoth, the Morning, and the Hercules. Some of the mines have been worked to a depth of 2,500 feet below the outcrops.

The prevailing country rock is a fine-grained sericitic quartzite, referred to the Burke and Revett formations of the thick and closely folded pre-Cambrian Belt series of northern Idaho. These rocks are traversed by many faults, which, however, are not mineralized; the veins follow subordinate fissures of small throw. Two masses of monzonite of probable Cretaceous age, the larger not more than 3 miles in length, intrude the Belt series and cause some contact metamorphism by the development of biotite, garnet, and pyroxene in the quartzites. The last phases of the intrusion are represented by dikes of diabase and lamprophyre. At least some of them are later than the mineralization and intersect the ore.

It is held probable that the intrusions of monzonite connect and widen below the surface. The ore deposits are composite veins or lodes, often of considerable thickness, formed partly by filling, but largely by replacement of the country rock along nearly vertical shear zones with northwesterly trend. The longest of the veins is the Bunker Hill, which is traceable for 7,000 feet.

The ore-shoots are large, but irregular; some have been followed for 2,000 feet in pitch length. At the Bunker Hill & Sullivan mine the ore-bodies do not follow the main wall, which dips 38° SSW., but lie in the shattered country rock within 250 feet above it (Fig. 187). The width of the ore is in places as much as 40 feet, 9 feet being the average in some of the larger mines.

Galena, with some pyrite and zinc blende, and in places a little argentite rich in silver are the principal ore minerals. Chalcopyrite is present in small amounts; in some mines pyrrhotite takes the place of pyrite. Siderite, with some quartz, is the predominant gangue mineral; barite, calcite, and dolomite are rare.

The ores are in large part formed by replacement along tight shear planes in sericitic quartzite. The siderite develops first, replacing both sericitic cement and quartz grains in the quartzite. Rhombohedrons of siderite may often be seen cutting across the elastic grains. According to Ransome the galena is in part
later than the siderite and replaces that mineral. Replacement of quartzite by galena is shown in Fig. 54. Some ore-bodies consist of almost massive galena, but the ordinary ore is an aggregate of siderite and galena, which must be concentrated. The bulk of the ores range from 3 to 14 per cent. lead and from 2.5 to 6 ounces of silver to the ton. These are concentrated to a product containing about 50 per cent. of lead. The lowest grade which can be worked at present carries 5 per cent. lead and 3 ounces of silver to the ton.

Fig. 187.—Section through Bunker Hill & Sullivan ore zone, Coeur d'Alene district, Idaho, showing ore bodies stope. After F. L. Ransome, U. S. Geol. Survey.

The veins are exposed within a vertical range of 4,000 feet, reckoned from the deepest shafts to the highest outcrops. There are some indications of change of ores in depth; Ransome finds that in the lower levels of many mines pyrite, pyrrhotite, and zinc blende become more abundant.

Ransome traces a genetic connection between the ore deposits and the intrusive monzonite. Contact-metamorphic ores in irregular bodies are found in two mines close to the monzonite, in the contact zone. These ores contain galena, zinc blende, pyrite, pyrrhotite, chalcopyrite, and magnetite, with a gangue
of garnet, biotite, and diopside. In veins near the intrusive mass pyrrhotite and magnetite, as well as garnet and biotite, are found. Siderite occurs only outside of the contact zone. In the Wardner mines, which are several miles from the contact, siderite is most plentiful. The deposits were formed within the epoch of granitic intrusions, as shown by the occasional intersection of ore-bodies by lamprophyric dikes; and since the time of ore formation erosion has probably removed several thousand feet of rock.

The facts briefly set forth are of highest importance and serve to connect the high-temperature deposits with those of intermediate conditions.

O. H. Hershey believes that the metals of the Wardner district, in the western part of the Coeur d’Alene region, were originally disseminated in the Belt sediments and that these disseminations were eventually concentrated into ore-bodies by hot waters ascending on thrust faults.

Lead-Silver Veins with Calcite, Siderite, and Barite.—Veins containing galena and zinc blende with a gangue of calcite, siderite, or barite are abundant in many mining regions and are frequently connected with replacement deposits in limestone. In many places they have a distinct connection with intrusive rocks and were formed shortly after the irruption, but some of them are similar to the Mississippi Valley lead-zinc deposits and may well have been deposited by the ascending waters of the ordinary circulation. Among numerous examples the deposits of Clausthal and Przibram may be briefly mentioned.

Lead-Silver Veins of Clausthal.—The mines of Clausthal, in the Harz Mountains of Germany, which have been in operation since the thirteenth century and still maintain a moderate production, are working on a vein system (Fig. 41) which intersects a folded complex of Devonian and Carboniferous sedimentary beds, the prevailing rocks being clay slate and graywacke. The general strike of the veins is east-west, and the dip is steep. The numerous veins extend over an area 15 miles in length

B. Baumgärtel, Oberharzer Gangbilder, Leipzig, 1907, p. 23.

DEPOSITS FORMED AT INTERMEDIATE DEPTHS

and 5 miles in width; they are in general composite veins or lodes and the important fissures are also faults of considerable throw. Mining operations in this district have attained a depth of 3,000 feet.

The ores contain chiefly galena and zinc blende, with some marcasite, pyrite, chalcopyrite, and tetrahedrite. Arsenical minerals are generally absent. In one group of veins calcite and quartz predominate; in another barite and siderite. The galena contains only 0.05 per cent. silver, though richer ores with as much as 0.3 per cent. silver are found in some mines. Symmetrical banding is exceptional, the normal ore having an irregularly massive structure. The tendency appears to be toward an increase in the percentage of zinc in depth. Within the lodes the clay slates are slightly altered by mechanical and chemical processes. The change in composition is slight and appears to consist largely of an increase in sericite at the expense of an original chloritic mineral in the clay slate.

Opinions differ as to the genetic interpretation of the veins of Clausthal. There are no intrusive rocks in the immediate vicinity aside from a dike of kersantite, which is faulted by the vein fissures, and the mass of "Brocken" granite in the eastern part of the district. A genetic connection of these intrusives with the veins seems probable, but cannot be regarded as proved. According to von Koenen the fissures are of Miocene age and some movement on these fissures seems to be taking place at present. The mineral association would indicate deposition at less depth or at lower temperature than in the veins of the Coeur d'Alene district, for instance.

Lead-Silver Veins of Przibram, Bohemia.—The mines of Przibram, which have been worked for several hundred years and still maintain a small output, are situated 40 miles south-southwest of Prague, in the "Silurian syncline," well known in the early

history of geology. The predominating rocks are Cambrian (?) graywacke and clay slate, a folded and faulted complex intruded by a stock of diorite. Dikes of diabase are exceedingly numerous and are followed by the veins; dikes of diorite and kersantite are also present. The intrusive diorite produces a decided contact metamorphism in Paleozoic sediments.

The veins have a steep dip and have been followed down to a depth of 3,600 feet; about forty of these veins have been worked,

![Diagram](image)

Fig. 188.—Section of the Adalbert vein at Przibram, Bohemia. G, Graywacke; D, diorite; q, quartz; c, calcite; g, galena; b, zinc blende. After J. Zadrazil and J. Schmidt.

and they are contained within a narrow area 4 or 5 miles in length. The width of the veins attains 25 feet, but averages much less. Fig. 188 gives an idea of their structure. The ore minerals consist of galena and zinc blende with some pyrite and chalcopyrite and occasionally many other minerals like arsenopyrite, stibnite, uraninite, cobalt and nickel minerals, wurtzite, and millerite. Rich silver minerals like argentite and pyrargyrite, as well as native silver, were plentiful in the oxidized zone. The galena is the carrier of silver and contains about 0.5 per cent. of this metal. Among gangue minerals calcite, siderite, and quartz
predominate, but barite and ankerite are also known. The structure is in part banded and drusy.

The quartz and zinc blende appear to increase in depth and the ores become "dry." These dry ores contain about 50 per cent. quartz, 17 per cent. siderite, 17 per cent. galena, 0.26 per cent. silver, and also primary boulangerite, tetrahedrite, pyrargyrite, diaphorite, specularite, chlorite, and cassiterite.

The deep workings are practically dry, but there existed formerly a rich zone of oxidation descending, in spite of a high present water level, to depths of 200 to 900 feet.

The genetic connection of the veins with the intrusive diorite and its satellites of diabasic and lamprophyric dikes appears to be clearly indicated; the presence of cassiterite points in the same direction. That the region is a metallogenetic province connected with intrusions is also suggested by the occurrence of gold-bearing quartz veins in the diorite or granite.

Pyritic Galena-Quartz Veins.—In the surroundings of granitic and dioritic intrusions a certain type of lead-bearing veins is especially common, distinguished by pyrite, galena, dark zinc blende, arsenopyrite, and some chalcopyrite, with subordinate arsenopyrite, in a gangue of quartz, with a small amount of calcite or dolomite.

Freiberg, Saxony.—The type just mentioned corresponds closely to the "Kiesige Bleiformation" of Freiberg,¹ there represented by numerous veins of considerable persistency contained in a flat dome of biotite gneiss. K. Dalmer and other geologists have pointed out their probable genetic connection with the intrusive (Carboniferous) granites of the Erzgebirge and their well-established relationship to the tin veins which are situated closer to or within the intrusives. The Freiberg veins of this type are narrow, being seldom 3 feet wide, and have been mined to a depth of 2,100 feet. The pyrite, arsenopyrite, and zinc blende are poor in silver, but the galena contains 0.1 to 0.2 per cent. of this metal.

Stelzner and Schertel ascertained that the zinc blende contains microliths of cassiterite. The vein structure is irregularly massive, without marked banding or crustification.

The ores are of low grade, and, after a period of activity extending over nearly 750 years, the mines are now practically closed.

The silver-lead deposits of Freiberg comprise a complicated system of fissure veins of different types and ages, which have been carefully studied by such men as A. G. Werner (1791), A. von Weissenbach (1836), J. C. Freiesleben (1843), F. C. von Beust (1840), B. von Cotta (1861), and H. Müller (1849–1901).

The veins are classified as follows:

(1) Older Veins.—Noble\(^1\) quartz formation: Fine-grained quartz with argentite, pyrargyrite, native silver, pyrite, and arsenopyrite.

Pyritic lead formation: Quartz, pyrite, galena, zinc blende, arsenopyrite, and chalcopyrite.

Tin formation: Quartz, fluorite, arsenopyrite, cassiterite, and chalcopyrite.

Noble lead formation: Quartz, ankerite, rhodochrosite, galena, zinc blende, pyrite, tetrahedrite, pyrargyrite, proustite, and polybasite.

(2) Younger Veins.—Barytic lead formation: Barite, fluorite, quartz, calcite, galena (poor in silver), chalcopyrite, tetrahedrite, zinc blende. These veins are often of considerable width.

The barite veins are distinctly later than the older group, and their minerals occur in beautifully banded and druzy form. Müller is doubtless right in ascribing a Tertiary age to these veins and a possible connection with the basaltic eruptions of that age along the Bohemian frontier. The barytic lead veins sometimes carry nickel and cobalt minerals and Müller is inclined to correlate them with the cobalt and nickel veins of Annaberg.

The older group appears to be genetically connected with the granitic intrusions of Carboniferous age, or perhaps also with the Permian and Carboniferous porphyries (intrusive and effusive) of the same region. The "noble quartz formation" alone is intersected by dikes of quartz porphyry, while the other veins appear to be later than the porphyry. The granite stocks of the region are intersected by veins similar to those of Freiberg; but no granite occurs in the Freiberg district. It is interesting to note that in parts of the district dikes of kersantite and minette are plentiful and that the veins are later than these dikes.

Between the various members of the older group many transitions exist, and it seems justifiable to regard them as genetically connected with the granitic eruptions of Carboniferous age and

\(^1\) The word "Edel," or noble, refers to the high-grade silver ores.
as formed shortly after the last lamprophyric dikes of that parent magma had been intruded. The mineral association of the "noble quartz formation" and the "noble lead formation," with apparently primary argentite and pyrargyrite continuing to the greatest depth reached, far beyond the zone of oxidation, seems to suggest that these veins have been formed at relatively low temperature. They do not correspond to the types usually associated with intrusive masses.

The ore-shoots of the Freiberg veins are irregular; the richest parts were often at intersections of fissures (Fig. 64). The oxidized ores worked in the early history of the mines were rich in argentite and native silver.

Pyritic Galena-Quartz Veins in the United States.—Near intrusive areas in the central and eastern Cordilleran States are many veins of the Freiberg type, just described, although they ordinarily also carry gold together with silver. Few of them are, however, of the first importance. More common, perhaps, are veins which carry mainly massive galena and zinc blende associated with but little pyrite, or veins in which the pyrite entirely predominates. Examples of this kind are given in the description of the Leadville region (p. 576).

Excellent examples of the type, described by F. C. Schrader, occur in the Cerbat Range,¹ in northwestern Arizona, in the Hualpai mining district. These veins were discovered in 1872. Their upper parts yielded rich silver ores, but of late years the production has declined as the leaner primary sulphides were encountered. The greatest depth attained is about 700 feet. The rocks are pre-Cambrian granite, gneiss, and schist intruded by granite porphyry, probably of Mesozoic age, and by a great number of lamprophyric dikes of minette and vogesite, which in part are followed by the veins.

The deposits are well-defined fissure veins with steep dip, forming conjugated systems with northwesterly strike; they are straight and have well-defined walls, and some of them are traceable for considerable distances. The gangue is quartz, in places shattered and cemented by a later generation of calcite, occasionally also siderite. Among the primary sulphides are pyrite, galena, zinc blende, and chalcopyrite, rarely molybdenite and stibnite. The ore may contain $10 in gold and 15 ounces of

silver per ton, 8 per cent. lead, and 5 to 10 per cent. zinc. It is
in part shipped crude, in part concentrated.

The structure is irregularly massive, in places with rough band-
ing by arrangement of the sulphides. The veins are narrow,
though in some places ore-bodies 20 feet wide have been worked.
The pay-shoots are irregular, but often coincide with inter-
sections of veins. The water level is from 100 to 400 feet below
the surface and above it were rich oxidized lead ores, horn silver,
native silver, argentite, and ruby silver. The decrease of galena
and increase of chalcopyrite noted in the lower levels suggest a
gradual change in the primary filling.

The ore is mainly deposited by filling of cavities; the wall rocks
contain little ore but are sericitized and filled with pyrite close
to the veins.

THE SILVER-LEAD REPLACEMENT DEPOSITS IN LIMESTONE

General Features.—Limestone, dolomites, and calcareous shales
are easily soluble by waters circulating above the water level
along stratification planes, joints, veins, or zones of brecciation;
caves and open passages will result. Below the water level
more slowly circulating solutions often replace limestone by
dolomite or cherty or jasperoid silica. If the solutions carry
metallic sulphides these are easily precipitated, and by a simul-
taneous operation the carbonate goes into solution while a corre-
sponding volume of sulphides takes its place (Fig. 29). Some
of these replacement deposits that have no genetic connection
with igneous rocks have been described above (p. 412).

In districts where metallization is caused by igneous activity
the limestone is often replaced close to the contact by sulphides,
particularly copper sulphides, associated with high-temperature
minerals; these deposits are described in Chapter XXIV. Fre-
quently, however, replacement by sulphides is also found at greater
distances from the igneous rock, but the circulating solutions
which caused the replacement, while probably derived from the
magma, had a lower temperature and therefore no high-tempera-
ture minerals could form. Such deposits, which contain mainly
lead, zinc, and silver, may appear in connection with eruptions of
lavas and may form relatively close to the surface, but they are
more common in the vicinity of intrusive rocks now exposed by
erosion. The process is therefore favored by higher temperature
and pressure.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 569

For the development of replacement deposits, pathways that can be followed by the solutions are necessary. Joints and seams may provide them, but more commonly the fissures which were formed during or after the intrusion and which in some insoluble rocks are the principal receptacles for deposits of metallic ores guide the solutions to the limestone. When the waters have entered a fissure the processes of replacement begin immediately but the products of interchange are not confined to this fracture. On the contrary, they spread in all directions, guided by minor structural planes, and replacement deposits in limestone are therefore characteristically irregular; it often happens that the original fissure may be difficult to discover, though genetically it is the key to the extent and the continuation of the deposit. The mining of such deposits is often difficult and demands thorough knowledge of the geological structure.

There are a great number of such deposits in districts of the Cordilleran region of the Americas. Many of them are small and are soon exhausted, while others are among the great ore deposits of the world. The districts of Aspen and Leadville, Colorado; Eureka, Nevada; Lake Valley, New Mexico; Elkhorn, Montana; Park City and Tintic, Utah; and Sierra Mojada, Mexico, may serve as examples.

Fig. 189.—Irregular replacement deposit in the Garrison mine, Cortez, Nevada. Ore consists of galena, zinc blende, pyrite, stromeyerite, etc., and their oxidation products. After W. H. Emmons, U. S. Geol. Survey.
At some places these silver-lead deposits follow dikes or intrusive sheets, but such deposits were usually formed after the rock had congealed and cooled. At other places they are dependent upon impervious overlying beds like shale. The latter mode of occurrence is exceedingly common (see Fig. 63) and indicates that the solutions were ascending and that deposition followed the ponding or stagnation of the solutions or at least was favored by less rapid circulation. Sections of two smaller replacement deposits are shown in Figs. 189 and 190.

The primary minerals of these replacement deposits are comparatively few and simple. Deep oxidation is, however, common in limestone and descending waters may effect many changes and develop a great number of rare oxidized minerals in the oxidized zone, while complex secondary sulphides may form in the lower parts of the deposit. The gangue minerals are few: Dolomite is often present as a coarser aggregate and at many places the process of replacement was begun by a dolomitization of the limestone. Dense, cherty quartz is exceedingly common, much more so than coarser crystalline quartz. In accordance with the suggestion of Spurr, this siliceous gangue is called jasperoid, though this term is really a misnomer, for the rocks are gray rather than red or brown. Other gangue minerals are calcite, barite, sometimes fluorite, various carbonates allied to ankerite, and more rarely rhodochrosite. The replacement deposits carrying siderite are described on page 555. The common primary
ore minerals are pyrite, galena, zinc blende, chalcopryite, and more rarely arsenopyrite. Tetrahedrite, tennantite, enargite, bornite, bismuthinite, wolframite, molybdenite, and stibnite are of local importance. But when argentite, ruby silver, stephanite, polybasite, and native silver as well as various sulphur antimonides of lead appear the probability is that they are secondary minerals. Chalcocite is in these deposits probably always secondary. Gold is sometimes present as a primary mineral, but the ores carry ordinarily much more silver than gold. Galena is very common and is usually rich in silver. In many so-called lead deposits the lead really predominates only in the oxidized zone, while the primary ore carries far more pyrite and zinc blende than galena. Such are the relations at Leadville, for instance.

The ore which replaces limestone is usually coarse-grained, while, as mentioned above, the replacement of limestone by silica yields rocks with fine grain. Crustified or drusy structures are unusual, though common in the oxidized parts of these deposits. Before the importance of replacement as a geological process was recognized many of these ores were considered as fillings of limestone caves. Crustified deposits on the walls of cavities are subordinate. Some of the deposits consist of massive sulphides, while in others, presumably formed at lower temperature, the gangue may prevail.

Replacement deposits are not confined to calcareous rocks. They occur also in quartzite, shale, and igneous rocks, but they are certainly more common in carbonate rocks than elsewhere. Very hot solutions may replace any rock, but most of the deposits described in this chapter were probably laid down by solutions having a temperature of less than 200° C., and under such circumstances limestone would be replaced while other rocks would be little affected. Siliceous rocks are more easily replaced than aluminous material; it is evidently difficult to carry away large amounts of alumina even at high temperatures, and while in limestone the replacement is often complete, ores in aluminous rocks contain much residual material.

Park City, Utah. 1—The Park City district is near the summit of the Wasatch Range. Since 1877 it has yielded about 108,000,000

ounces of silver and 350,000 tons of lead, lately also much copper and zinc and it still remains one of the most important metal-producing districts of the United States. Its ores are in part shipped as mined, but much is also concentrated, the output of crude ore for 1911 being 237,000 tons. The concentrating ore contains from 6 to 8 per cent. lead, 6 to 8 per cent. zinc, 6 to 10 per cent. iron, and 9 ounces of silver per ton; also some gold and copper. The deepest shafts attain 1,500 and 2,000 feet and the workings of the district probably aggregate 100 miles in length.

A huge anticline of late Carboniferous, Permian, and Triassic sediments, mainly limestone, quartzite, and shale, the total thickness of beds exceeding 8,000 feet, is intruded by laccolithic stocks of diorite porphyry, probably of late Cretaceous age, which have caused contact metamorphism in the adjoining limestone and shales.

The ores occur as lode deposits and closely associated bedded deposits, in two parallel zones extending northeastward. The bedded deposits, mainly in limestone, have been mined to a depth of 900 feet; the lode deposits continue to the greatest depths attained. The lode deposits intersect the sediments and the porphyry as well, have a steep dip, and often lie in quartzite or between limestone and quartzite. The ores are in part deposited by filling of seams in shattered ground, in part by replacement. The stopes are as much as 30 feet in width.

The bedded deposits are massive sulphides replacing limestone strata in two of the calcareous formations and are from a few inches to 10 feet thick, 500 to 800 feet in the direction of the strike and at most 200 feet along the dip. The relation between the two types is shown in Fig. 191. The layers of the bedded ore are made up of ore and gangue minerals in granular texture exactly like that of the original limestone. There is evidence of two epochs of deposition, for some of the bedded ores near the porphyry contacts contain garnet with calcite as gangue, while the lode deposits and the bedded ores associated with them are free from garnet and were formed after the cooling of the porphyry.

The ore minerals are galena, zinc blende, tetrahedrite, and a little chalcopyrite. Tetrahedrite is often intergrown with coarse galena. The gangue is mainly quartz and jasperoid; fluorite, calcite, and rhodonite occur locally. Sericitization is noted where the lodes intersect porphyry. The richest ore was formed in
the bedded deposits; the ore in depth is of leaner grade, but carries more copper and zinc.

The Park City mines are very wet and the water level is high. In view of this it is remarkable that the oxidation is deep and partial oxidation has been noted to a depth of 1,200 feet. The oxidized zone contained apparently but little native silver and cerargyrite.

![Diagram](image_url)

Fig. 191.— Vertical section of rich lead ore occurring in veins and in replacement deposits, Kearns-Keith mine, Park City, Utah. *a,* Tunnel; *b,* diorite porphyry, sheeted and pyritic; *c,* hanging-wall fissure; *d,* lead ore in siliceous gangue; *e,* breccia zone with ore fragments; *f,* marmorized limestone, Thaynes formation; *g,* *h,* banded replacement ore, in part oxidized. *After J. M. Boutwell, U. S. Geol. Survey.*

Tintic, Utah.—The replacement deposits of the Tintic district, situated in a desert range 70 miles south of Salt Lake City, exemplify another type, which has been so modified by oxida-

tion that the original character of the ore is sometimes difficult to interpret. Paleozoic limestones are intruded by a monzonite stock that formed the core of a volcano of early Tertiary age, the surface flows of which are largely eroded. A number of narrow fissures traverse both monzonite and limestone; in the former the deposits are pyritic veins with sericitized walls, while in the limestone the inconspicuous fractures widen locally into large ore-bodies which in part replace the adjacent rock, in part follow stratification planes or fissures or joints. The ore minerals are galena, zinc blende, and enargite (Cu₃AsS₄), the last occurring in large amounts along certain lode lines. The gangue consists of quartz, carbonates, jasperoid, and, in places, barite. The galena is rich in silver, while the enargite lodes contain much gold. Other large replacement bodies consist mainly of quartz and jasperoid and carry gold and silver with a little lead. The typical form the ore-bodies is illustrated in Fig. 192.
The mines of Tintic yield annually $5,000,000 to $8,000,000, their complex smelting ores containing gold, silver, copper, lead, and zinc. The annual ore production is about 300,000 tons.

Aspen, Colorado. — The ore deposits at Aspen, in the central part of Colorado (Fig. 155), for many years yielded a large amount of lead and silver, and the annual output is still of considerable value. During recent years zinc blende has been added to the products of this district. In 1911 the ores averaged 5 ounces of silver per ton and 6 1/4 per cent. lead. The geological column at Aspen includes 200 to 400 feet of Cambrian quartzite; 250 to 400 feet of Silurian dolomite; 60 feet of Devonian quartzite and shale (“Parting quartzite”); 250 feet of lower Carboniferous dolomite and 150 feet of limestone of the same age; 1,000 feet or more of thin-bedded Carboniferous limestones and shales called the Weber formation; and a great thickness of Carboniferous, Triassic, and Cretaceous sandy and calcareous sediments. The entire series is sharply upturned. A sheet of diorite porphyry intrudes the lower Paleozoic formations and a sheet of rhyolite porphyry lies at the base of the Weber formation. Both intrusives are of late Cretaceous or early Tertiary age. Complicated faulting and local doming accompanied the intrusion. During the short epoch of ore deposition sulphides were deposited along the faults and fractures, the most important horizon of mineralization being at the base of the Weber shales, where the depositing waters were dammed by the relatively impervious shale and it may also have acted as a precipitant. In his later paper Spurr differentiates the complicated deposits as (1) barite veins; (2) silver sulphides, sulphantimonides, and sulpharsenides; (3) galena and zinc blende veins. This series is believed to have been deposited under conditions of gradually rising temperature. Faulting continued after the short epoch of ore deposition.

The barite veins are generally barren. After their development rich sulphides such as argentite, polybasite, and tetrahedrite were deposited. A remarkable shoot of polybasite ore yielding many million dollars was mined in the Molly Gibson mine, at a depth of a few hundred feet below the surface. This occurrence of rich silver sulphides certainly suggests enrichment by descending surface waters, but Spurr insists on its primary origin.

1 J. E. Spurr, Monograph No. 31, U. S. Geol. Surv., 1898.

last phase of mineralization consisted in the deposition along zones of fracture and brecciation of lead and zinc ores of milling grade and poor in silver. The ore minerals occur in disseminated form, replacing limestone, either without gangue or with a little jasperoid and dolomite.

The mine water is abundant and the water level stood originally about 300 feet below the surface. Down to 1,000 feet (the greatest depth thus far reached) native silver with some barite has been deposited by descending solutions, probably by the reducing influence of the carbonaceous Weber shales.

Leadville, Colorado.—Since the discovery of the ore deposits of Leadville, Colorado, in 1875 this district has yielded an enormous production of lead and silver, also much gold, copper, and zinc. Previous to that date placers were worked in the district and gold to the value of several million dollars was washed from the gravel of the gulches. For a long time after 1875 the oxidized lead ores, containing much iron and manganese, were worked. At the present time the main product is heavy sulphide ore containing pyrite, zinc blende, galena, and chalcopyrite. Bodies of oxidized zinc minerals such as calamine and smithsonite have recently been discovered.

Out of a total of 462,000 tons mined in 1910, 331,000 tons were sulphide ores, and 83,000 tons iron-manganese ores of the oxidized type containing a little silver. The heavy sulphide ores are in part smelted directly and in part concentrated. The heavy sulphide ore varies considerably but consists mainly of pyrite and zinc blende, with less than 1 per cent. of copper, 1 to 4 per cent. of lead, and 2 to 9 ounces of silver per ton. The silver is mostly in the galena and zinc blende. The crude zinc ore shipped averaged 30 per cent. of that metal. In 1910 the district yielded $1,200,000 in gold, 3,300,000 ounces of silver, 1,800 tons of cop-

2 G. M. Butler, Some recent developments at Leadville, *Econ. Geol.*, vol. 7, 1912, pp. 315–323; vol. 8, 1913, pp. 1–18.
per, 10,000 tons of lead, and 28,000 tons of zinc—a total value of $7,300,000.¹

The geological section consists, according to S. F. Emmons, of Paleozoic rocks resting on granite and gneiss. The following formations are important in the study of the ore deposits.

Weber shales and grits, lower Carboniferous 2,500 feet.
Blue limestone, lower Carboniferous 200 feet.
Parting quartzite, Devonian 40 feet.
White limestone, Silurian 160 feet.
Lower quartzite, Cambrian 150 to 200 feet.

Fig. 193.—Vertical section showing geological structure and occurrence of ore-bodies at Leadville, Colorado. 1, Wash; 2, lake beds; 3, Leadville blue limestone (Carboniferous); 4, parting quartzite (Devonian); 5, white limestone (Silurian); 6, lower quartzite (Cambrian); 7, gray porphyry (early Tertiary); 8, white porphyry (early Tertiary); 9, granite (pre-Cambrian); ore-bodies in black. After S. F. Emmons and J. D. Irving, U. S. Geol. Survey.

These formations are intruded by numerous sheets of porphyry, which in the main lie parallel to the bedding, but in places cut diagonally across it. Some sheets are thin, and others are nearly 1,000 feet in thickness. The “white porphyry” is a siliceous granite porphyry, which Spurr² calls alaskite porphyry. The “gray porphyry” is similar but contains remains of resorbed

² Prof. Paper No. 63, U. S. Geol Surv., p. 70.
last phase of mineralization consisted in the deposition along zones of fracture and brecciation of lead and zinc ores of milling grade and poor in silver. The ore minerals occur in disseminated form, replacing limestone, either without gangue or with a little jasperoid and dolomite.

The mine water is abundant and the water level stood originally about 300 feet below the surface. Down to 1,000 feet (the greatest depth thus far reached) native silver with some barite has been deposited by descending solutions, probably by the reducing influence of the carbonaceous Weber shales.

Leadville, Colorado. — Since the discovery of the ore deposits of Leadville, Colorado, in 1875 this district has yielded an enormous production of lead and silver, also much gold, copper, and zinc. Previous to that date placers were worked in the district and gold to the value of several million dollars was washed from the gravel of the gulches. For a long time after 1875 the oxidized lead ores, containing much iron and manganese, were worked. At the present time the main product is heavy sulphide ore containing pyrite, zinc blende, galena, and chalcopryite. Bodies of oxidized zinc minerals such as calamine and smithsonite have recently been discovered.

Out of a total of 462,000 tons mined in 1910, 331,000 tons were sulphide ores, and 83,000 tons iron-manganese ores of the oxidized type containing a little silver. The heavy sulphide ores are in part smelted directly and in part concentrated. The heavy sulphide ore varies considerably but consists mainly of pyrite and zinc blende, with less than 1 per cent. of copper, 1 to 4 per cent. of lead, and 2 to 9 ounces of silver per ton. The silver is mostly in the galena and zinc blende. The crude zinc ore shipped averaged 30 per cent. of that metal. In 1910 the district yielded $1,200,000 in gold, 3,300,000 ounces of silver, 1,800 tons of cop-

2 G. M. Butler, Some recent developments at Leadville, *Econ. Geol.*, vol. 7, 1912, pp. 315–323; vol. 8, 1913, pp. 1–18.
per, 10,000 tons of lead, and 28,000 tons of zinc—a total value of \$7,300,000.1

The geological section consists, according to S. F. Emmons, of Paleozoic rocks resting on granite and gneiss. The following formations are important in the study of the ore deposits.

- Weber shales and grits, lower Carboniferous 2,500 feet.
- Blue limestone, lower Carboniferous 200 feet.
- Parting quartzite, Devonian 40 feet.
- White limestone, Silurian 160 feet.
- Lower quartzite, Cambrian 150 to 200 feet.

![Geological section diagram](image-url)

Fig. 193.—Vertical section showing geological structure and occurrence of ore-bodies at Leadville, Colorado. 1, Wash; 2, lake beds; 3, Leadville blue limestone (Carboniferous); 4, parting quartzite (Devonian); 5, white limestone (Silurian); 6, lower quartzite (Cambrian); 7, gray porphyry (early Tertiary); 8, white porphyry (early Tertiary); 9, granite (pre-Cambrian); ore-bodies in black. \textit{After S. F. Emmons and J. D. Irving, U. S. Geol. Survey.}

These formations are intruded by numerous sheets of porphyry, which in the main lie parallel to the bedding, but in places cut diagonally across it. Some sheets are thin, and others are nearly 1,000 feet in thickness. The "white porphyry" is a siliceous granite porphyry, which Spurr2 calls alaskite porphyry. The "gray porphyry" is similar but contains remains of resorbed

2 \textit{Prof. Paper} No. 63, U. S. Geol Surv., p. 70.
ferromagnesian minerals and is a little lower in silica. The white porphyry is normally intruded in the blue or Leadville limestone; the gray porphyry forms thinner sheets at various horizons.

The intrusions and the ore deposition were followed by a marked doming of the strata and faulting of great complexity, so that the district now consists of numerous blocks successively dropping off toward the Arkansas Valley (Fig. 193). The ore deposits are found mainly in the blue limestone at or near the contact with the overlying white porphyry (Fig. 194). The upper surface of the ore is often remarkably regular and sharp, being formed by the porphyry contact, while the lower surface is irregular. Although this is the normal development, replacement ores are also found in other positions, along fissures in limestone (Fig. 195), along fault planes or below the gray porphyry or in fissure veins extending below
the sedimentary beds. The fissure veins are confined to the part of the district near the Ibex mine; many of them are rich in native gold.

Some of the ore-bodies are of large size, especially in a horizontal direction. Owing to their mode of occurrence and to the great quantity of mine water a depth of only 1,500 feet has been attained; it was considered useless to go below the basement of the Paleozoic formations.

Blow has shown that the ore-shoots on Iron Hill follow northeastward-trending zones parallel with crosscutting sheets of gray porphyry.

The usual ore is a massive granular mixture of sulphides, among which pyrite and zinc blende prevail. There is a scant gangue of quartz, jasperoid, and barite, and the contact between ore and

![Diagram](example.png)

Fig. 195.—Cross-section of shoot at Oro La Plata mine, Leadville, Colorado, showing irregular ore-bodies along fractures. After J. D. Irving.

limestone is usually surprisingly sharp, though irregular. Among the rarer minerals is molybdenite; the ores contain a little antimony, arsenic, and bismuth, and the presence of traces of tellurium in the pyrite has been shown by Pearce.

The genesis of the Leadville ores has been discussed extensively. Emmons held that they were formed by aqueous solutions coming from above and that they derived their mineral content mainly from the igneous rocks, but he did not deny the possibility that the solutions may originally have come from great depths, nor did he assert that they were necessarily derived from the eruptive rocks in immediate contact with the deposits. He also fully recognized that at the time of ore formation the present
deposits were covered by about 10,000 feet of overlying rocks. Other writers, among them A. A. Blow, have sought to prove that the deposits were formed by ascending solutions.

The deposits of Leadville are unusual in that the sulphide replacement is so complete and that the contacts with the limestone and porphyry are so sharp. They strongly resemble the contact-metamorphic deposits except in the association of gangue minerals, which points clearly to moderate temperatures at which calcium silicates could not form, and this seems to prove that the ore deposition did not take place immediately after the intrusion. The recent discoveries of vein deposits also point to deep-seated sources for the metals, far below the present ore horizon; but how the solution could penetrate along the contacts for so long a distance without visible passageways is as yet a mystery.

The Leadville-Boulder County Belt.—The Leadville deposits form only a single unit in a belt of deposits which extends for 80 miles in a northeasterly direction and comprises a great many districts, including the Kokomo, Alma, Fairplay, Breckenridge, Montezuma, and Argentine and continuing through Clear Creek, Gilpin, and Boulder counties (Fig. 155). The deposits include replacement bodies and veins and are found in rocks of the most diverse kinds. A common feature of the whole belt is a series of intrusives, appearing as sheets in the sedimentary formations and dikes or smaller stocks in the pre-Cambrian granite and schists. The inference that these intrusives are genetically connected with the deposits seems well founded. S. F. Emmons and Whitman Cross first called attention to this belt of intrusives; S. H. Ball and F. L. Ransome have discussed the petrography of the porphyries and Ransome has presented a diagram showing the composition of all analyzed varieties. The most abundant intrusives are alaskite porphyry, granite porphyry, bostonite porphyry, monzonite porphyry, and quartz monzonite porphyry. The dikes commonly extend in a northwesterly direction, but show no great individual continuity. Ball has indicated on a map all the occurrences of porphyry within this belt. Emmons held that the intrusions were probably of Jurassic age, but later evidence discovered by Cross and others has shown that they

3 Op. cit., Pl. XI.
must be later, falling either in the very latest Cretaceous or the earliest Tertiary. The ore deposits are later than the porphyries but were probably formed shortly after their consolidation.

The prevailing type is a sulphide ore with abundant pyrite and zinc blende and lesser amounts of galena and tetrahedrite. Chalcopyrite is subordinate, arsenopyrite rare. Telluride ores occur occasionally in the eastern end of the belt. Silver prevails in the southeastern part and gold is the important metal in Gilpin and Boulder counties. The gangue is made up of quartz, siderite, and other carbonates, but not much rhodochrosite is present. In places there is considerable barite.

The replacement deposits of Leadville, in Carboniferous limestone below porphyry sheets, have already been mentioned. In the Tenmile district replacement deposits and fissure veins appear in the upper Carboniferous formations, with pyrite, zinc blende, and galena in a gangue of quartz, calcite, rhodochrosite, and barite. The Red Cliff district has ores similar to those of Leadville, also replacement deposits carrying gold in Cambrian quartzite. The Breckenridge district contains fissure veins intersecting Cretaceous shale and monzonite sheets, with pyrite, zinc blende, and galena as the principal ore minerals. Remarkable pockets of crystallized gold are thought to be deposited by descending waters. Northeast of Breckenridge is the Montezuma district, in pre-Cambrian rocks with northeasterly trending veins carrying pyrite, chalcopyrite, galena, and zinc blende, in places with ruby silver or similar rich silver minerals, which are apparently of later origin than the rest of the ore. The gangue consists of quartz, siderite, and barite. Farther up, at the Continental Divide, is the Argentine district, with veins in gneiss, which carry similar ore minerals in a gangue of quartz, calcite, and fluorite. These veins contain both silver and gold.

The Clear Creek district lies also in the pre-Cambrian area. The rocks comprise an older division of sedimentary origin, the

1 S. F. Emmons, Geologic Atlas U. S., Folio No. 48, 1898.
4 H. B. Patton, First Rept., Colo. Geol. Surv., 1909, pp. 112-144.
582 MINERAL DEPOSITS

Fig. 196.—Section of Pelican vein, Georgetown, Colorado.

a, Main vein;
b, ore, mainly zinc blende;
c, ore zone of brecciated and silicified alaskite porphyry;
d, fractured and silicified porphyry;
e, sheeted porphyry;

Fig. 197.—Cross-section of Frostberg vein, Georgetown, Colorado, showing deposition of galena and zinc blende. After J. E. Spurr, U. S. Geol. Survey.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 583

Idaho Springs formation, intruded by granite, diorite, and pegmatite. A complex system of dikes of the kinds mentioned above is followed by the veins (Fig. 196), which are principally silver deposits containing galena, zinc blende, pyrite, tetrahedrite, and chalcopyrite, in a more or less scant gangue of earlier quartz and later siderite, ankerite, and calcite (Fig. 197). Silver, gold, copper, lead, and zinc are produced.

In Gilpin County gold-bearing veins prevail; they carry abundant pyrite, with some chalcopyrite and other sulphides, in a scant quartz and carbonate gangue. The ores average about $8 in gold to the ton, with a small amount of silver, but they are complex and of several types.

Details regarding the production of ores in Clear Creek, Gilpin, and Boulder counties are given in successive issues of Mineral Resources of the United States, published annually by the United States Geological Survey.

In all the districts the alteration of the country rock adjacent to the vein is of the sericite and carbonate type (p. 527) investigated in detail by Ransome in the Breckenridge district. The lowest workings in Clear Creek and Gilpin counties are 2,000 feet below the outcrops.

In Boulder County, the present production of which is small, there are some gold-bearing veins similar to those of Gilpin County, and also some veins which have produced rich silver ores, but the most interesting types are the telluride veins, which are rare in the other districts mentioned, and the tungsten veins, which are absent elsewhere.

The Enterprise vein,1 which is typical of the telluride deposits, consists of several narrow seams, forming a sheeted zone along which filling and replacement have occurred. The width of this zone is from 1 to 3 feet and the filling is often beautifully banded with abundant druses. The country rock is pre-Cambrian granite. The minerals are crystallized quartz and dense jasperoids with barite, adularia, and roscoelite (vanadium mica); there is a little pyrite and much molybdenite; the most valuable minerals are the gold and silver tellurides.

Native silver is not, as a rule, a primary mineral in the deposits which contain it, nor is it restricted to any particular class of deposits. As a secondary product due to reactions within the oxidized zone it is common in many kinds of deposits—for instance, in argentiferous galena ores, in tetrahedrite ores, and in the argentite veins in the Tertiary lavas. It is ordinarily found some distance below the surface; cerargyrite (AgCl) is more abundant in the outcrops. The native silver often occurs at depths far below the zone of oxidation, properly speaking. At Aspen, Colorado, it is abundant in fissures and vugs of limestone and shale 900 feet below the surface and is distinctly later than the primary lean galena-zinc blende ores; along the delicate threads of the metal small barite crystals are often suspended.

In certain deposits the native silver is the predominating ore mineral down to considerable depths. Some of these occurrences are described below and may be divided into two groups:

1. The silver-bearing deposits with zeolitic enrichment.
2. The silver-bearing cobalt-nickel deposits.

The Zeolitic Enrichments.—Zeolites are ordinarily foreign to ore deposits connected with igneous rocks. Their occurrence in some contact-metamorphic deposits and in fissure veins is mentioned on page 394. Zeolites are found in the deposits of Kongsberg, Norway; Andreasberg, Germany; the Arqueros and other mines in Chile; and Guanajuato, Mexico, all of which are worked for silver. They are rarely noted in the western part of the United States. Much remains to be learned about their relation to the metallization. In general, it seems certain that the zeolites were deposited later than the other minerals, probably not, however, by descending waters, but rather by remaining stagnant parts of the original vein-forming solutions. A concentration of silver ores often accompanied their development. Calcite, quartz, barite, and fluorite are the principal gangue minerals in the typical localities; the presence of antimony and quicksilver is often mentioned.

The renowned silver mines of Kongsberg, in southern Norway, which have been worked for several hundred years and still remain productive, have been described by Vogt.¹ The deposits are narrow veins in gneiss and mica schist, often breaking up when entering amphibolite. Along certain lines following the

schistosity the rocks contain disseminated sulphides, mainly pyrite and pyrrhotite, and the veins become enriched where crossing these "fahlbands," probably on account of their precipitating influence. The mines have been worked to a depth of 3,000 feet. Quartz, chlorite, and axinite crystallize next to the walls, but the prevailing gangue is calcite with some barite and fluorite, rarely adularia and albite. Zeolites also occur and are among the latest gangue minerals, prehnite, stilbite, harmotome, and laumontite being among those identified. The principal ore mineral is native silver, mostly in wire form; this is believed to be derived from the more scarce argentite by a process of enrichment. Less prominent are ruby silver, stephanite, pyrite, pyrrhotite, arsenopyrite, chalcopyrite, zinc blende, and galena, the latter poor in silver. A certain part of the silver is believed by Vogt to result from primary deposition. The native silver contains quicksilver. Anthracite is also one of the gangue minerals deposited during the early stages.

Vogt supposes the native silver to be derived from argentite and proustite as follows:

\[
\begin{align*}
\text{Ag}_2S + O_2 &= 2\text{Ag} + \text{SO}_2, \\
\text{Ag}_2S + \text{H}_2\text{O} &= 2\text{Ag} + \text{H}_2\text{S} + \text{O}, \\
\text{Ag}_2\text{AsS}_3 + 3\text{H}_2\text{O} &= 3\text{Ag} + \text{As} + 3\text{H}_2\text{S} + 3\text{O}.
\end{align*}
\]

The list of minerals given shows clearly that the veins have had a complicated history, beginning with the deposition of high-temperature minerals like axinite and ending with that of minerals like zeolites, probably formed at about 100° C. This history has evidently not yet been followed in detail; it is stated by Vogt that axinite crystallized together with the zeolites, but this seems a curious association. The presence of free oxygen at great depths might also well be questioned.

The other notable occurrence is at Andreasberg, in the Harz Mountains, best described by A. Bergeat.\(^1\) The veins at Andreasberg are simple filled fissures, at most 0.5 meter thick, chiefly in Silurian clay slates and quartzites. They appear not far from the intrusive mass of the "Brocken" granite. The veins are included between two great divergent dislocations, forming impermeable walls, against which the silver veins split and cease. The mines, which attained a depth of 2,700 feet, are now closed.

\(^1\) Steinsner and Bergeat, Die Erzlagerstätten, vol. 2, pp. 718–720.
In general the veins carry argentiferous galena and tetrahedrite; sometimes they yield large druses full of rich silver ores, calcite, and zeolites. Bergeat distinguishes five phases:

1. In crevices near the veins, in part also in the fissures themselves, are garnet, epidote, axinite, and albite.

2. Earliest bituminous calcite with simple antimonides, arsenides, and sulphides: Niccolite, smaltite, löllingite, breithauptite (NiSb), zinc blende, galena, pyrite, pyrrhotite, chalcopyrite.

3. Tetrahedrite with quartz (replacing calcite) and fluorite, chalcopyrite, galena, zinc blende; native silver and millerite, encrusting tetrahedrite.

4. Sulphantimonides and sulpharsenides: Pyrargyrite, proustite, miargyrite, polybasite, stibnite, argentite (in part from pyrargyrite), fluorite.

5. Native silver, realgar, calcite, apophyllite, analcite, chabazite, heulandite, brewsterite, harmotome, stilbite, natrolite; also fluorite and chalcopyrite.

This clear exposition of paragenesis indicates a long epoch of deposition with gradually diminishing temperature and emphasizes the connection of the native silver with zeolitization.

The zeolitization of the Tertiary gold-silver veins has been less studied and, as stated, is rather uncommon.

Zeolites occur in a number of Chilean silver veins, particularly at Arqueros and Rodaito, in association with native silver, calcite, barite, and silver amalgam. The only occurrence known in the United States is at the South Republic mine, Republic, Washington, where the gold-selenium veins in andesite are filled by closely banded, extremely fine grained quartz (p. 494). At the mine mentioned the vein has in part been dissolved and replaced by a loose aggregate of calcite and laumontite much richer in silver than the original quartz.

The occurrence of native silver in the zeolitic copper and silver deposits of the Lake Superior region is described on page 404. In short, zeolitization, probably effected by warm or tepid waters, seems particularly adapted to the concentration of silver and the deposition of both native silver and rich silver minerals.

The Silver-Bearing Cobalt-Nickel Veins of Saxony.—In different parts of the world occur narrow veins with calcite or barite gangue and arsenides or sulphides of cobalt and nickel; the cobalt and nickel minerals contain silver, and this metal is often separated as seams of native silver enclosed in the older metallic minerals.
Regarding the cause which produced this enrichment, opinions differ, but the most prevalent belief is that the silver was deposited by descending solutions enriched by the decomposition of the cobalt minerals at higher levels.

The cobalt veins of Annaberg,¹ in Saxony, appear in gneiss intruded by dikes of granitic and lamprophyric character; they are younger than the veins in the same region carrying cassiterite and those yielding pyritic ores with galena. The gangue minerals are barite, calcite, fluorite, quartz, and dolomitic carbonates. The principal ore minerals are chloanthite, smaltite, bismuthite, also rich silver minerals such as argentite, pyrargyrite, and native silver; the latter are distinctly later than the primary nickel-cobalt-bismuth ores.

Most of the rich silver ores appear where the veins intersect certain flat crushed zones in the gneiss, which contain carbonaceous material and finely divided sulphides like pyrite and chalcopyrite. The greatest depth attained was 1,400 feet.

The veins of Schneeberg, in Saxony,² are contained in contact-metamorphic clay slates and tend to impoverishment in the underlying granite. The primary gangue consisted of calcite, ankerite, barite, and fluor spar, but these minerals are now largely replaced by hackly and platy fine-grained quartz by a process similar to that to which many late Tertiary gold-silver veins have been subjected. This is thought to be the only locality where such a replacement has been carried on in veins of more deep-seated deposition. The ore minerals are smaltite, chloanthite, niccolite, bismuthite, and native bismuth. Native silver and rich silver minerals are subordinate in the silicified veins, but appear in the primary barytic veins. From this it is perhaps permissible to draw the conclusion that the silicification has been accompanied by solution and removal of silver. The process was evidently not effected by surface waters, but rather by ascending siliceous solutions.

Uranium ores, mainly uraninite or pitch blende, are found at Schneeberg and, more abundantly, in the somewhat similar veins at Joachimsthal, Bohemia. The geological relations at the two

¹ H. Müller, Die Erzgänge des Annaberger Bergrevieres, Geol. Landesanstalt, Leipsig, 1894.
places are similar. At both places the cobalt and nickel minerals are the older and the rich silver minerals the younger. Between them in point of age lie the uranium ores.

The Silver-Bearing Cobalt-Nickel Veins of Ontario, Canada.1—At a number of localities in Ontario silver-bearing veins have been found. Many of them appear to be connected genetically with igneous rocks of Keweenawan age, and the occurrence of native silver in the copper mines working the amygdaloids of Michigan may be recalled.

The veins of Silver Islet and those at points southwest of Port Arthur, on the north shore of Lake Superior, have been known for many years. The Silver Islet vein, at one time a heavy producer, intersects greenstone and contains, in a gangue of calcite, ankerite, and quartz, native silver, argentite, tetrahedrite, galena, zinc blende, pyrite, and some cobalt and nickel minerals. Graphite, it is stated, occurs also in the vein.

In 1903 the silver veins of Cobalt, Ontario, were discovered and they soon became extraordinarily productive. Up to 1911, inclusive, the total production had reached about 126,000,000 ounces, and the output in that year was 30,000,000 ounces. The ore is extremely rich, its tenor often reaching several thousand ounces per ton. Some of the veins contained slabs of native silver of great size. One specimen, now in the Parliament building at Toronto, is 5 feet long and weighs 1,640 pounds; it contains 9,715 troy ounces of silver. The La Rose vein, in a horizontal

DEPOSITS FORMED AT INTERMEDIATE DEPTHS 591

distance of 100 feet and above the 60-foot level, yielded 532 tons, which contained 658,000 ounces of silver. So-called low-grade ores average about 200 ounces per ton, while that which is concentrated before shipping contains about 30 ounces per ton. Owing to the complex character of the ore the smelting charges have been very high. Lately the cyanide process has been adopted in the treatment of these ores with much success.

In the last few years similar cobalt-silver veins, productive in part, have been discovered in other portions of Ontario, particularly at Gowganda and South Lorrain.

The geology of the Cobalt region is summarized by W. G. Miller as follows: The oldest rocks, known as the Keewatin series, are basic volcanic rocks, greenstones, and schists, with more or less cherty or jaspery sediments. On the eroded Keewatin were deposited the conglomerate and graywacke (arkose sandstone) of Huronian age. A thickness of 300 feet of these gently dipping strata is exposed at Cobalt.

After the deposition of the Huronian beds an irruption of diabase took place, assuming the form of sills from 100 to 500 feet thick. The veins were formed after the intrusion of this diabase, which is regarded by some authors as of Keweenawan age; the fractures occupied by the veins are believed by some to have been caused by cooling or shrinking of the diabase, as well as the Keewatin and Huronian. Fig. 198 illustrates the
geological relations and the subsequent erosion of the region to
the present surface. The veins in the Huronian conglomerate
have been the most productive, but ores occur also in the Keewatin and in diabase.

Almost the whole production has been derived from veins in
the lower wall of the sill, the veins once cutting through the upper
or hanging wall having been mostly removed by erosion. Few
of the veins have been followed more than 500 feet horizontally
and very little ore has been taken out below the 200-foot level.

In the narrow veins, which are seldom more than a few inches
in width, the filling is often "frozen to the walls." In some
places the veins form a network of stringers. The silver, cobalt,
and nickel are very irregularly distributed in the veins; the adjoining
country rock often contains carbonates of dolomitic character
and small specks of the various minerals, including native silver.
The gangue is calcite or a calcium-magnesium carbonate; graphite
is reported; quartz occurs sparingly; barite only in the veins
of an outlying district. The ore minerals are abundant and con-
sist of native silver, native bismuth, niccolite (NiAs), smaltite
(CoAs₂), chloanthite (NiAs₂), argentite, millerite, arsenopyrite,
cobaltite (CoAsS), dyscrasite (Ag₃Sb), pyrrargyrite, and tetrach-
drite. Pyrite is rare. Efflorescences of green nickel arsenate
and pink cobalt arsenate usually mark the outcrops.

Carload lots, containing from 100 to 6,000 ounces, average 6
per cent. Co, 3.66 per cent. Ni, and 27 per cent. As.

An analysis by A. R. Ledoux of two carloads shipped to the
smelter is as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>3.34</td>
<td>Bi</td>
</tr>
<tr>
<td>Fe</td>
<td>1.78</td>
<td>Ag</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.27</td>
<td>Sb</td>
</tr>
<tr>
<td>CaO</td>
<td>5.85</td>
<td>As</td>
</tr>
<tr>
<td>MgO</td>
<td>4.63</td>
<td>CO₂</td>
</tr>
<tr>
<td>Cu</td>
<td>0.09</td>
<td>Cl</td>
</tr>
<tr>
<td>Ni</td>
<td>13.87</td>
<td>S</td>
</tr>
<tr>
<td>Co</td>
<td>8.63</td>
<td></td>
</tr>
</tbody>
</table>

Campbell showed by investigation of polished ore sections in
reflected light that the order of succession of the minerals is as
follows: Smaltite (oldest), niccolite, calcite, argentite, silver, and
bismuth. The silver is in the main later than the cobalt-nickel
minerals, for it usually occupies small fissures and cracks in the
older arsenides and also replaces the calcite filling of the veins
(Fig. 199). Some veins rich in nickel and cobalt arsenides, however, contain little or no silver. About sixty productive veins are known. Almost all the writers on this district believe that a genetic relation exists between the diabase sill and the veins, and this indeed seems most probable.

No safe estimate can be given as to the thickness of the overlying strata at the time of ore deposition, but it was probably considerable. A long period of erosion intervened between the Huronian and the deposition of the Niagara limestone (Silurian), which is present in small patches in the region. It is evident that the veins were not deposited at very high temperatures, for the minerals characteristic of such temperatures are absent. It is further clear that for a long time, geologically speaking, the veins now worked have been within a short distance of the surface, and that there has been ample opportunity for the deposition of secondary silver by descending solutions, although some of the best parts of the enriched veins have probably been swept away by glaciation. It would be reasonable to expect that the high-grade silver ore will not continue to a great depth.

QUARTZ-ADULARIA-ZEOLITE VEINS (ALPINE TYPE)

Occurrence and Mineral Association.—The so-called Alpine veins have little or no importance as a source of metalliferous ores, but many of them contain beautifully developed crystals,
represented in all large mineral collections, and are prospected and worked to some extent for such specimens. They occur in the crystalline rocks in Tyrol, Switzerland, and the French Alps. There are several types. One class found in the Zillerthal, in Tyrol, contains pyrite and galena with quartz, adularia, albite, epidote, calcite, prehnite, desmine, and laumontite. Another, in the French Alps, yields axinite, titanite, ilmenite, and many other minerals which indicate deposition at high temperature.

The veins in Switzerland have been studied in detail by J. Königsberger, whose investigations have shed much light on the conditions under which these beautiful minerals have been formed.

The "veins" are approximately horizontal filled crevices in a biotite gneiss; they are really local openings in joints, which can be followed for considerable distances and which lie perpendicular to the schistosity of the rock. These crevices are surrounded by zones of altered rock not more than double the width of the opening; they usually contain open cavities into which the crystals project.

The country rock contains about 74 per cent. SiO₂, 1.10 CaO, 3.55 K₂O, and 3.40 Na₂O. The biotite is altered to chlorite, sometimes also to specularite, and with the chlorite are epidote and quartz; the plagioclase alters to sillimanite, kaolin, and epidote; albite and adularia crystallize in vugs; quartz and orthoclase are not attacked, although next to the vein the orthoclase is often covered by secondary adularia. While Königsberger does not say so, it is probable that the kaolin is secondary, for the veins have for a long time been within reach of oxidizing waters.

It will be observed that the type of alteration is not that of ordinary veins; it seems most closely related to some veins formed near the surface—for instance, the Cripple Creek deposits. Sillimanite has not been shown to form in the wall rocks of metalliferous veins.

The general succession is: (1) Smoky quartz and adularia (oldest); (2) calcite; (3) zeolites. The zeolites are not always noted in descriptions of Alpine veins, because they have often been leached out or softened by oxidizing waters. The long list of other minerals includes fluorite, chlorite (often dusting the faces of quartz and adularia), apatite, albite, stilbite, heulandite,

apophyllite, laumontite, chabazite, specularite, and rarely galena, chalcopyrite, and molybdenite.

Origin.—There are several sub-types, each characteristic of certain varieties of country rock. Königsberger concludes that the minerals were derived chiefly from the rock itself. The minerals were deposited by cooling of hot solutions containing carbon dioxide and oxygen. The crystallization in the crevice took place at temperatures of 290° to 130° C.

Königsberger calls attention to the analogous minerals found in the miarolitic cavities in certain granites;¹ in these occurrences the succession, beginning with the earliest, is (1) adularia, albite, quartz, epidote; (2) fluorite, apatite, calcite, chlorite, epidote; and (3) zeolites.

The presence of free oxygen may well be doubted; little evidence is introduced to support it. It may also be doubted whether the minerals could well have been dissolved from the narrow band of surrounding altered rock. In fact, it is not improbable that these interesting mineral deposits are produced by intrusive after-effects at various temperatures.

Some of the quartz crystals contain large fluid inclusions; an analysis of the liquid gives the following result. The total solids amount to 10 per cent., a rather concentrated solution.

COMPOSITION OF FLUID INCLUSION IN QUARTZ

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>85</td>
</tr>
<tr>
<td>CO₂</td>
<td>5</td>
</tr>
<tr>
<td>Na</td>
<td>2.5</td>
</tr>
<tr>
<td>(K, Li)</td>
<td>1.5</td>
</tr>
<tr>
<td>CO₃</td>
<td>3.5</td>
</tr>
<tr>
<td>Cl</td>
<td>1.5</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.7</td>
</tr>
</tbody>
</table>

99.7

The dissolved salts then consist of alkaline carbonates, chlorides, and sulphates in the order named.

As the smoky quartz is bleached at 300° C, it is assumed that it could not have been formed above this temperature. The bubbles of the inclusions disappear at 225° C. Because the liquid must have filled the cavity at the time of formation and because the pressure did not differ much from that of saturated

¹ A. Schwantke, Drusen Mineralien des Striegauer Granites, Inaug. Dissert., Leipzig, 1890.
water gas, the temperature of formation is about the same as that at which the bubbles disappear.

The red color of the fluorite disappears at 175°C, independent of the surrounding medium and pressure. The zeolites were probably formed at about 130°C. Königsberger's view as to the order of crystallization is expressed in Fig. 200.

![Diagram of crystallization temperatures](image)

Fig. 200.—Order of crystallization in the zeolitic veins of Aar, Switzerland. After J. Königsberger.

THE COPPER VEINS

The copper-bearing veins formed at intermediate temperature and pressure do not have the importance of the corresponding class of lead veins. The majority of great copper deposits are large pyritic replacements or secondary accumulations of chalcopyrite. Many of the copper veins belong to the high-temperature deposits described in Chapter XXIV.

By transition from the pyritic lead veins (p. 565) veins with chalcopyrite in a quartz gangue may be formed, but their principal value usually lies in the gold and silver contained in the sulphides.

A rarer class is that of the pyrite-enargite veins with quartz gangue. The most prominent examples of this type are found in the Butte district, Montana, now the most productive copper camp in the world. The veins are contained in sericitized quartz monzonite and are formed in part by replacement of the intrusive rock. The primary ores are pyrite, enargite (Cu₃AsS₅), and probably chalcocite, with smaller amounts of bornite. On account of the importance of secondary processes in their formation the description of the Butte copper veins is placed in Chapter 29.

Enargite is, on the whole, a rare mineral and rather favors the deposits formed relatively near the surface. At Man- cayan, in Luzon, in the Philippine Islands, enargite is found in a large replacement deposit in "quartz porphyry" and "andesite," formerly worked on a large scale and containing, in a quartz gangue, tetrahedrite, bornite, and enargite (luzonite). Another deposit is that of Bor,\(^1\) in Servia, which is also an irregular quartzose replacement in a rock that is called andesite but is really an intrusive porphyry with holocrystalline groundmass. The principal minerals are pyrite, enargite, quartz, barite, and secondary covellite. Finally should be mentioned the occurrence in the Sierra Famatina,\(^2\) Argentina, where veins carrying quartz, enargite, and famatinites (Cu,SbS\(_3\)) break through clay slate intruded by granitic rocks and "dacite."

Quartz veins containing bornite are not uncommon but are rarely of great economic importance. Veins of this kind occur in the Virginina district,\(^3\) Virginia and North Carolina, where F. B. Laney noted interesting intergrowths of bornite and primary chalcocite. The deposits are, however, lenticular veins and probably were formed at high temperature.

Veins carrying calcite or siderite gangue with chalcopyrite are fairly abundant, but rarely of economic importance. Most of these veins are poor in gold and silver. J. B. Umpleby\(^4\) describes the exceptional Lost Packer vein, in central Idaho, which cuts through mica schist and which, in a gangue of quartz and siderite, contains chalcopyrite and some pyrrhotite and pyrite. The chalcopyrite and the quartz contain, in the ore shoots, about 3 ounces of gold per ton. The vein is intersected by dikes and is probably a high-temperature deposit.

THE PYRITIC REPLACEMENT DEPOSITS

While pyrite is a persistent mineral, crystallizing within a wide range of temperatures, it is easily apparent that the deposits containing large masses of pyrite have not been formed close to the surface, but rather at considerable depths and at temperatures well above 100° C. This is apparent in part from the fact that

\(^2\) A. W. Stelsner, *Beiträge zur Geologie der Argentinisches Republik*, 1885, pt. 1, p. 228.
the known deposits of this type are confined to regions that have been deeply eroded since the deposits were formed and in part also from the mineral association of a great number of pyritic masses.

In many text-books the pyritic deposits are treated as a distinct class, and are assumed to have a similar origin. We know now that they comprise deposits of widely differing origin and history.

In a broad way we may distinguish (1) those associated with silicates such as amphibole, pyroxene, epidote, tourmaline, and garnet, the iron sulphide being in part present as pyrrhotite, and (2) those associated with calcite, barite, and quartz as gangue minerals. The deposits of the first class were undoubtedly formed at considerably higher temperatures than those of the second and, in general, probably also at greater depth.

The first class comprises (1) some deposits of purely magmatic origin like those of Sudbury, Ontario; (2) a second and large division, of contact-metamorphic type, like the deposits of Ducktown, Tennessee; Granby, British Columbia; and the Highland Boy mine at Bingham, Utah; (3) a third division, difficult to interpret but thought by many to represent a phase of igneous injection; this may not be firmly established, but their close connection with igneous rocks can hardly be questioned; among these are the deposits at Vignas, Sulitelma, and Røros in Norway, Fahlun and Bersbo in Sweden, and Bodenmais in Bavaria. In each of these three divisions the deposit may have been subjected to dynamic metamorphism, with the attendant development of amphibole and garnet and of schistose structure. Many of these metamorphosed deposits have had a complicated history and are among the most difficult to interpret and classify.

The second class is also connected with the eruption of igneous rocks, but the high-temperature minerals are absent and the gangue usually contains barite besides calcite and some quartz; the deposits of Rammelsberg in the Harz, Germany, of Mount Lyell, Tasmania, of Rio Tinto, Spain, and of Shasta County, California, may serve as examples. The deposit at Kyshtim, in the Ural Mountains, and that at Tyee, on Vancouver Island, also appear to belong in this class.

Dynamic metamorphism may produce remarkable changes in structure and mineral association. Replacement of various rocks by pyrite has played an important part; sometimes this process
takes place in shattered zones or proceeds from fissures, or again it may be caused by solutions permeating heated limestone masses without fractures at igneous contacts.

Some deposits already described, particularly those of Leadville, show in some ways a strong resemblance to those of the class here considered.

The ores, while consisting mainly of pyrite or pyrrhotite, derive their value from a small percentage of chalcopyrite; there are usually minute quantities of gold and silver, and frequently also zinc blende and a little galena; other sulphides are rare. In all the deposits mentioned, except those at Rammelsberg, their connection with rhyolite porphyries, alaskite porphyry, or keratophyre can be established, and deposition by hydrothermal replacement at moderate depth and temperature seems the most reasonable explanation.

The deposits of the first class are described in Chapters 25 and 26. Some pyritic deposits of the second class will be briefly characterized in the following paragraphs.

Copper Deposits of Shasta County, California

Copper deposits which have been actively mined and smelted since 1895 are found in a number of districts in Shasta County, California; among the more prominent mines are the Iron Mountain, Bully Hill, Mammoth, and Balaklala. The production up to 1911 inclusive approximates 400,000,000 pounds of copper.

The sedimentary rocks consist of Devonian and Carboniferous slates and contain intrusions of a highly siliceous and sodic alaskite porphyry, which is the country rock of almost all the important copper deposits. Somewhat later than the alaskite porphyry, but belonging to the same (early Cretaceous) period of intrusion, is a quartz diorite, probably equivalent to the granodiorite of the Sierra Nevada. No copper deposits occur in the quartz diorite, but it contains workable gold-bearing quartz veins. Deep erosion has taken place since the period of intrusion; Graton estimates the depth of rocks removed as not less than 5,000 or 6,000 feet. The rocks have been subjected to some

shearing and brecciation, but little extensive dynamo-metamorphism, since the intrusion.

The copper deposits were formed during the interval between the two epochs of intrusion. The ore-bodies are large, irregular tabular masses of pyrite with some chalcopyrite (Fig. 201); single ore masses have dimensions of 1,200 feet in length, 300 feet in width, and nearly 300 feet in thickness, and some of them contain many million tons of ore; the Iron Mountain mass before a great part of it was converted to gossan probably contained 20,000,000 tons of ore, exclusive of the large amount which has been removed by erosion. Many of the bodies lie flat and are easily accessible by tunnels.

![Diagram](image)

Fig. 201.—Cross-section of ore-bodies at Balaklala, California.

After W. H. Weed.

The ores contain chiefly pyrite with about 3 per cent. of copper as chalcopyrite, and as much as $2 per ton in gold and silver, about equally divided between the two metals. Zinc blende is present in varying amounts, and the ore contains a little bismuth, arsenic, and selenium. The gangue minerals include quartz, calcite, and barite, probably also anhydrite; the succession is in general pyrite (oldest), zinc blende, chalcopyrite, quartz, and barite.

The alaskite porphyry near the ore-bodies is more or less altered and contains sericite (probably also paragonite), secondary quartz, chlorite, pyrite, carbonates, and epidote. Cogent evidence is cited by Graton that the pyritic ores are replacements of the surrounding porphyry in sheared and brecciated zones. This replacement is believed to be due to hot solutions emanating from the cooling alaskite porphyry. The action of surface waters in the ore deposition is probably negligible, for at that time the
alaskite porphyry was everywhere covered with a blanket of impermeable shales.

The Pyritic Deposit of Mount Lyell, Tasmania

At Mount Lyell, on the west coast of Tasmania, is one of the large copper deposits of the world. According to Gregory the ore-bodies are contained in sericite schists (probably with paragonite), which are dynamo-metamorphic forms of perhaps Paleozoic acidic porphyries. Intrusive in these schists are considerable masses of igneous rocks which are termed "porphyrites," but of which no analyses are available. Probably of later age than the complexes just mentioned are Devonian conglomerates.

The main ore-bodies are lenticular and lie in part in the sericite schist and in part at its contact with the conglomerates which have been brought against the schist by faulting. The largest ore-body is that of the Mount Lyell mine; this is several hundred feet long and 200 feet wide, but appears to be limited in depth by a fault.

The ore consists mainly of pyrite with but little gangue of quartz and barite. Its value is derived from the presence of about 2 to 3 per cent. of copper in the form of chalcopyrite; an average analysis of the ore given by Gregory is as follows:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>.</td>
<td>4.42</td>
<td>.</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>2.04</td>
<td></td>
</tr>
</tbody>
</table>

There is also about $1.44 in gold and 2.5 ounces of silver to the ton.

Enrichment near the surface and in the footwall of the deposit has added much to the wealth of the property. The cropings at one place contained quartz, barite, hematite, and about 15 ounces of silver and $15 in gold per ton. The presence of hematite in the cropings would suggest that at some time, during the weathering of the deposits, the climate was warmer than now. The secondary sulphides consisted of chalcopyrite, bornite, and tennantite, with stromeyerite.

Gregory gives good reasons for considering the deposits as replacements in the schists and suggests a relationship between the "porphyrites" and the pyritic deposits.

The Pyritic Deposits of Rio Tinto, Spain

General Features.—The pyritic ore-bodies of the southern Spanish province of Huelva, more generally known as the deposits of Rio Tinto, are probably the greatest in the world and have been mined since Phoenician and Roman times. The deposits are in the main lenticular; there are at least 50 of these pyritic lenses, whose length varies from 1,200 to 6,500 feet, while the width, in general proportional to the length, reaches a maximum of 250 feet and the depth ranges from 500 to 1,800 feet. The vertical range of deposition, according to Finlayson, probably in no case exceeded 3,300 feet, and few of the deposits attain a depth of 1,000 feet. In the slates the deposits often taper downward to a point, while in the porphyry a flat or rounded lower surface is not uncommonly observed. On the whole they appear to lie conformably between slates and porphyry or in either porphyry or slate.

The production of these deposits has always been large, but appears now to be diminishing; in 1910 it was 74,867,320 pounds of copper, all sources considered. Besides the regular copper ore with more than 2 per cent. Cu, large quantities of pyrite, poor in copper, are shipped for sulphuric acid manufacture. A part of the copper is recovered as a precipitated cement or a sulphate.

F. Klockmann, Ueber das Auftreten, etc., der Südspanischen Kieslagerstätten, Idem, vol. 10, p. 113; also vol. 3, p. 35.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS

Geological Formations.—The rocks consist of (1) a uniform series of folded and compressed clay slates and graywacke, striking east and west and believed to be of Devonian and Carboniferous age; (2) granites and granodiorites intrusive into the Carboniferous rocks, north of the district; (3) several varieties of porphyry, including rhyolite porphyry and keratophyre, some varieties with granophytic structure; in places the porphyry is affected by shearing and schistosity; (4) basic dikes and sills, mainly of diabase, but including also camptonites and diorites. Some authors, including Klockmann, consider the porphries as effusive, but the arguments of Finlayson show quite conclusively that they are intrusive masses, occurring in belts and lenses throughout the field (Fig. 202). The basic rocks cut both granites and porphries.

Displacements of considerable throw occur along many ore-bodies. According to Finlayson, the last event in this series of igneous and dynamic disturbances consisted in the development of the mineral deposits.

The lodes that occur in the slate are in the main conformable with the bedding, but the ore sometimes, according to Finlayson, cuts across it; the lode walls are usually well defined and smooth; the deposits occur, as a rule, along contacts or other lines of weakness and crushing. According to the same author the adjoining rock shows effects of hydrothermal action in marked degree, the porphyry being transformed into an aggregate of chlorite,
sericite, quartz, carbonates, and pyrite. Analyses show extremely well marked carbonatization and sericitization, entirely similar to the alteration occurring in the California type of gold-quartz veins, and undoubtedly of hydrothermal origin. The alteration is illustrated by the following analyses, quoted from Finlayson:

ANALYSES OF FRESH AND ALTERED PORPHYRY FROM THE SAN DIONISIO MINE, RIO TINTO, SPAIN

<table>
<thead>
<tr>
<th></th>
<th>Fresh.</th>
<th>Altered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>76.21</td>
<td>70.68</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.66</td>
<td>11.45</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.98</td>
<td>1.31</td>
</tr>
<tr>
<td>FeO</td>
<td>1.46</td>
<td>0.72</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>CaO</td>
<td>1.15</td>
<td>2.28</td>
</tr>
<tr>
<td>MgO</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.27</td>
<td>4.85</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.64</td>
<td>0.65</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.35</td>
<td>1.41</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.09</td>
<td>5.08</td>
</tr>
<tr>
<td>FeS₂</td>
<td></td>
<td>1.27</td>
</tr>
</tbody>
</table>

100.17 100.15

The Ores.—The ores consist of almost massive pyrite, with but a small amount of quartz and few other gangue minerals, although barite occurs in some localities. Banded or pressed ore is rarely seen. The primary ore carries from 48 to 50 per cent. of sulphur. Chalcopyrite is present in minute scattered grains, or as threads and strings traversing the granular pyrite and filling interstices in the ore. Blende and galena are present in small amounts, and there are traces of bismuth, selenium, and tellurium. Arsenic varies from 0.25 to 1 per cent. The order of succession is pyrite (oldest), chalcopyrite, blende, galena.

Especially interesting are the changes in the ore produced by weathering. The outcrops are gossans of hematite carrying 10 to 15 per cent. of silica and alumina and little or no copper. The average depth of this gossan is 100 feet. The lower limit of the gossan is well defined, and the line of contact between it and the sulphide ore is sometimes marked by a thin earthy material, which, as described by Vogt, is rich in gold and silver. The top portion of the sulphide zone, for a thickness of 3 feet or more, is composed of leached pyrite with traces of copper (Finlayson).
DEPOSITS FORMED AT INTERMEDIATE DEPTHS

Below this commences the zone of enriched sulphides, in which the ore assays from 3 to 12 per cent. of copper. This enrichment is effected by deposits of both chalcopyrite and chalcocite, and its influence may be traced to depths of 300 feet below the surface. In the great San Dionisio lode enrichment was noted at a depth of 1,000 feet, indicating, according to Finlayson, that the secondary changes extend far down into what is usually regarded as primary ore. Wetzig states that in the Cabeza de Pasto mine the ore at the 40-meter level contained 3.5 per cent. of copper, at the 60-meter level 3 per cent., and at the 80-meter level 2 per cent. The tenor of the primary ore ranges from 0.5 to 2 per cent of copper.

Genesis.—The origin of these deposits has been the subject of long discussion among geologists. The earlier geologists believed in a sedimentary origin, and this view is still held by some. Its principal defender is F. Klockmann, who regards the pyrite bodies as concretionary deposits in mud, impregnated by copper from the supposedly effusive lavas. Gonzalo y Tarin, as well as de Launay, held them to be veins or lodes deposited in open cavities by ascending solutions. Later Vogt considered the deposits to be of pneumatolytic nature, formed as an after-effect of the extrusions of porphyry. In the latest contribution by Finlayson the metasomatic character of the deposits, which were formed by the hydrothermal replacement of crushed and sheared zones, appears to be firmly established. He believes, however, that the deposits were formed after the intrusion of the basic dikes and sills, which are considerably later than the porphyry, and thinks that the concentration of the ores was in the first place due to a process of magmatic concentration of sulphides, accompanying the differentiation of the series of intrusive rocks and dependent, with the latter, on the Hercynian tectonic movements.

Expression of opinion without field acquaintance may have little value, but it seems to me that it has not been definitely shown that the deposits are later than the basic intrusions. They are clearly of hydrothermal origin, as shown by the character of alteration, and the replacement origin seems definitely proved. There appears to be good reason for Vogt's view that the hydrothermal processes of deposition followed the intrusion of acidic and, in part, sodic porphyries; the whole giving a strong impression of similarity to the pyritic deposits of Shasta County, California. On the other hand, there is no evidence of pneu-
matolytic deposition. On the contrary, the processes of replacement probably proceeded at moderate temperature and at moderate depth. Magnetite and pyrrhotite are present in only a few deposits, such as those at Cala, and opinions differ as to whether these minerals are due to later dynamometamorphic or contact-metamorphic processes or to original deposition.

- **The Pyritic Deposit of Rammelsberg, Germany¹**

The Rammelsberg deposit (Fig. 203), lies on the northern slope of the Harz Mountains, in Germany, near the town of Goslar. As is well known, it has been worked for copper ores since ancient times, the first records dating back to the tenth century. Its geological structure has been investigated by a number of authors, but its complete and detailed description is as yet a problem of the future. The most diverse explanations have been offered as to its mode of origin. By some, perhaps by a majority, including such well-known geologists as Bergeat and Klockmann, it has been considered as a sedimentary deposit contemporaneous with the surrounding sedimentary rocks. Others, like Vogt, following Freiesleben and Lossen, explain it as a deposit from solutions immediately derived from igneous magmas. Still others, like Beck, are non-committal.

¹ F. Klockmann, Berg- und Hüttenwesen des Oberharzes, 1895, p. 57.
W. Lindgren and J. D. Irving, The origin of the Rammelsberg ore deposit, Econ. Geol., vol. 6, 1911, pp. 303–313.
DEPOSITS FORMED AT INTERMEDIATE DEPTHS 607

Geology and Structural Features.—The deposit is enclosed, apparently conformably, in Devonian rocks, which at Goslar appear as an overturned anticlinal and dip toward the north. It lies in the so-called Goslar slates of the Middle Devonian; these slates are overlain by a thick series of Lower Devonian Spirifer sandstone, which makes up the summit of Rammelsberg Mountain, at the foot of which the mine is located.

The slates have suffered considerable deformation and the ore-body apparently follows their contortions more or less closely. The underground developments extend over a horizontal distance of about 2,000 meters and have attained a vertical depth of 380 meters from the level of the Richtschacht. It will be seen from this that mining has not yet penetrated to great depths, in spite of the fact that the deposit has been worked for nearly 1,000 years. The ore-body is divided horizontally into two parts, referred to as the old and the new beds; they are connected by a narrow and contorted seam, showing, however, beyond doubt that the two are really parts of one deposit.

The thickness of the "ore bed," as it is generally referred to, varies considerably; in places it swells to dimensions of as much as 30 meters, but this is rather due to folding and local enlargement. In most places the thickness is not over 2 or 3 meters and often only 0.5 to 1 meter. The dip is uniformly 45° to the southeast.

It is stated, even in the modern descriptions of the Rammelsberg, that the bedding or schistosity conforms exactly with the outline of the ore and with its banded structure. While true in places, this is certainly not a general characteristic of the deposit, which in part is absolutely unconformable to the stratification of the slate.

The ore banding everywhere follows with great faithfulness the outlines of the sulphide mass, whether these are smooth or irregular. For much of the distance above the third level the edge of the new ore-body and consequently the banding of the ore also are indeed parallel to the lamination of the enclosing rock. On the third level, however, the ore mass flattens out and crosses the lamination at a small angle, and again turns down parallel to it after intersecting the laminae for a very considerable distance. In this portion of the ore-body the banding of the ore follows the edge of the sulphide mass and therefore makes the
same angle with the lamination of the slates as the outline of the ore mass itself.

The Ores.—The principal minerals are zinc blende, chalcopyrite, galena, pyrite, and arsenopyrite, which are abundant approximately in the order enumerated. The gangue is almost entirely barite, but it rarely occurs in large quantities and often is entirely inconspicuous. Masses and veinlets of calcite are present in the surrounding slate, but rarely contain ore. On the whole the limits of the “ore bed” are sharply defined and the ores themselves are entirely or predominantly composed of sulphides. Alteration of the enclosing slates is rarely observed. At most there is a slight impregnation of pyrite. The so-called “Kupferkniest,” which adjoins the ore in certain places, is a siliceous argillite which contains disseminated pyrite and chalcopyrite.

Fig. 204.—Nodules of barite and calcite (A) in banded sulphide ore from Rammelsberg, Germany. After Lindgren and Irving.

It has often been considered as an impregnation, later than the ore itself, but there seems no sufficient basis for such an interpretation.

The texture of the ore varies with the locality, and the composition also varies distinctly so that in one part of the “ore bed” copper will predominate, while in other places there is scarcely any copper, the ore being mostly zinc blende with a little galena.

The intergrowths of these minerals are very fine grained and extremely intimate, a fact which adds to the metallurgical difficulties of treating the ore. By far the most common texture
is that of the so-called Melir-Erze, which are intimately banded, in most cases consisting of dominant zinc blende with narrow and gently curved streaks of chalcopyrite and galena. In places the ore contains rounded nodules, generally of pyrite, around which the fine-grained streaks of zinc blende and chalcopyrite bend in regular curves. Pyrite shows a strong resistance to such deformation. Not uncommonly one finds rounded nodules, consisting of zinc blende and barite in granular form, coarser than that of the ordinary ore. Fig. 204 shows how the streaks of other sulphides surround and envelop these nodules. The pyrite nodules have often been noted, but without satisfactory explanation. Some observers have held them for fossil remains, in which the pyrite has replaced the shell of the organism. A goniatite has actually been found in the slates which form the easterly continuation of the ore-body, and, according to K. Andree,¹ the interior of the shell contained pyrite, quartz, barite, and calcite.

Origin.—The structural relations of the ore-body indicate that the deposit is a bedded vein—that is, a fissure vein lying in part, at least, conformable to the surrounding slates. The distribution and structure of the ore itself are inconsistent with the theory of sedimentary deposition. The structure is unique in ore deposits, but as to its interpretation there can be no reasonable doubt. The sulphides do not occur with their primary texture. The structure is that of a dynamo-metamorphic rock, in which all the constituents, except pyrite, have been drawn out into streaks which are intricately mingled. The appearance shown in the figures could be easily duplicated from any area of fine-grained gneiss resulting by pressure from an original granular rock. The different constituents have acted under pressure as plastic material and are thoroughly mashed and squeezed. The sulphide mass has moved almost like a plastic clay and the present texture is due to this movement. There is but little evidence to justify the assumption of sedimentary deposition.

At first glance it seems strange that the pyrite has acted so differently from the other constituents. The explanation of this behavior is found in some interesting experiments recently undertaken by F. D. Adams,² who shows that plasticity is a func-

¹ *Zeitschr. f. prakt. Geol.*, 1908, p. 166.
tion of hardness, so that the harder minerals are the less plastic. He finds that the limit of easily produced plasticity lies in the vicinity of 5 or 6 in the scale of hardness. He crushed pyrite under a load attaining 43,000 pounds without its showing any trace of plastic deformation. Minerals of lower hardness presented decided evidence of plastic flow. The pyrite nodules in the Rammelsberg ores are simply residual parts of the original granular deposit which have been less deformed than the other sulphides.

The Rammelsberg deposit is then probably of epigenetic origin, but the structure of the ore has been profoundly changed by dynamo-metamorphism. While the surrounding slates are soft they evidently behaved quite differently from the sulphide mass, which seems to have flowed almost like a thick mush between the slate walls.

The association of minerals with barite as the predominating constituent of the gangue tends to show that the deposit is not of the deep-seated type, but was formed at a medium depth below the original surface, probably within a few thousand feet of it.

The deposit may have been formed by ascending solutions derived from the neighboring batholith of granite, which is only 3 kilometers distant from the mine.
CHAPTER XXIV

VEINS AND REPLACEMENT DEPOSITS FORMED AT HIGH TEMPERATURE AND PRESSURE AND IN GENETIC CONNECTION WITH INTRUSIVE ROCKS

GENERAL FEATURES

High-Temperature Minerals.—In the ore deposits described in previous chapters such minerals as the pyroxenes and amphiboles, the garnets, apatite, ilmenite, magnetite, tourmaline, topaz, the brown and green micas, the spinels, and the soda-lime feldspars are almost entirely absent. In the veins and replacement deposits formed at high temperature one or more of these minerals are commonly present, besides many other persistent ore and gangue minerals which are formed under widely varying conditions. In general, simple sulphides and arsenides prevail and are in many deposits associated with oxides, such as magnetite, ilmenite, and cassiterite. The minerals enumerated above are in the main high-temperature minerals, and some of them do not readily crystallize except with the aid of mineralizers (Chapters 26 and 27) for instance, certain compounds of boron, chlorine, or fluorine, which effect crystallization without always entering into the final compound.

In the presence of such mineralizers crystallization may take place at a much lower temperature than in dry fusion. In a magma high pressure is necessary to hold these substances in the fluid melt, which then is really a magmatic solution. The conceptions of solvent and solute are inapplicable, the various constituents of the magma being dissolved in one another. Under diminishing pressure, as during the ascent of magmas to higher levels, water and other mineralizers separate from the magmatic solution and carry with them certain constituents of the magma such as silica, some heavy metals, and alkaline metals. This "magmatic extract" may be in a state of aqueo-igneous fusion; or when the temperature is lowered the crystallization of some constituents may convert it into a fluid. In general, it is a hot mixture of fluid material and dissolved gases; many substances are doubtless above their critical point and would, if isolated, be
in the non-compressible state known as a "perfect gas." This mixture would keep fluid far below the ordinary melting points of the minerals formed. The pegmatites, with their wealth of rare minerals, are considered as the product of consolidation of such aqueo-igneous melts and they also contain many of the minerals of the list given above.

There is strong evidence that a main body of igneous rock contains more or less comparatively volatile matter which is not separated from it until the act of crystallization is in progress. Such material would ascend if suitable avenues of escape were provided and would probably mix with water of surface origin.

This chemical evidence is supported by field evidence of the strongest kind. Practically all these deposits occur in or near bodies of intrusive rocks and have been exposed by deep erosion. They were, therefore, certainly formed at considerable depths below the surface. For some of them, like the contact-metamorphic deposits, cogent proof of the origin of the metals in the adjacent magmas can be given. On the other hand, the high-temperature veins at many places imperceptibly grade into those in which the magmatic origin is far less clear, thus giving in such places an almost complete line of transition from the rocks congealed from the magma, such as the pegmatite dikes, to the metal-bearing veins of the ordinary type.

In a given district these phenomena—the pegmatitic dikes, contact-metamorphic deposits, deep-seated veins, replacement deposits, and veins of the common type—all developed very soon after the intrusive activity and during a rather short and sharply defined epoch of metallization.

Metasomatic Processes.—The minerals enumerated in the beginning of this chapter generally appear in the metasomatically altered country rock and, to a less extent, in the fillings of the open cavities. The metasomatic action is often intense and leads to the development of coarse-grained aggregates. The total changes in non-calcareous rocks are, however, often less pronounced than in the veins produced under less intense conditions. The carbonate rocks are always peculiarly susceptible to metasomatic processes and usually absorb large quantities of material from adjacent intrusives.

Silicates rich in iron, like epidote, andradite (garnet), hedenbergite (pyroxene), cummingtonite (amphibole), and certain varieties of biotite, are frequently found in these deposits.
Temperature and Pressure.—The actual temperature during deposition was probably rarely above 575° C., the inversion point of crystallization of quartz. It has been shown by O. Mügge, F. E. Wright, and E. S. Larsen¹ that the pegmatite dikes solidified at about this temperature. Where the rarer minerals have formed, the temperature, as indicated by the crystallographic behavior of the accompanying quartz, was commonly below that inversion point. The quartz veins and other deposits that by their mineral content show a relationship to the pegmatites are, as a rule, later than these and present many features which suggest that the process of cooling was further advanced. So, in a rough way, the temperature of deposition of this class must have been lower than 575° C., but in all probability higher than 300° C.

In the formation of the contact-metamorphic deposits, which were developed almost immediately after the actual intrusion of the magma, the temperature at the immediate contact may have been considerably above 575° C., attaining in acidic magmas 800° or 900° and in basic magmas 1,200° or 1,400° C.

It has been assumed that the heat necessary for the development of these deposits is derived from adjacent bodies of igneous rocks. The possibility cannot be denied that the same effect may be produced simply by the natural increment in temperature due to increase in depth. If a surface temperature of +25° C. and an increment of 1° C. for every 30 meters² are assumed, a depth of 10,200 meters, or about 33,600 feet, will be required for a temperature of 365° C., the critical temperature of water. Van Hise has shown that down to this depth even the hydrostatic pressure is sufficient to hold the water in the form of a liquid. Such observations as have been made in the Cordilleran region show that contact-metamorphic and other deposits of the type here called deep-seated have been formed much nearer to the surface, some of them at depths of 3,000 or 4,000 feet, the criterion being a rough measurement of the amount of erosion on the basis of known thickness of strata. It may be true for some problematical deposits of the Archean (for instance, the zinc deposit in limestone of Franklin Furnace, in New Jersey) that the rocks have been buried to a depth approximating 10,000 meters and

¹ F. E. Wright and E. S. Larsen, Quartz as a geologic thermometer. Am. J. Sc., vol. 27, pp. 147, 1909.
that, at that depth, they have been exposed to the metasomatic influence of magmatic gases, while they were at a considerable distance from igneous intrusions. Such deposits would be connecting links between igneous and regional metamorphism, and such a condition would explain the occasional occurrence of deposits of the contact-metamorphic type at a distance from known igneous bodies. The copper deposits of Ducktown, Tennessee, may furnish an example of this mode of formation, for here, although the ores are clearly of the contact-metamorphic type, there are no adequate igneous masses in the immediate vicinity which could have produced the metamorphism. The Ducktown district is one of intense regional metamorphism, and it is possible that magmatic gases of distant origin could have searched out the limestone beds and transformed the calcareous rock into ore.

As to the pressures actually existing our knowledge is slight. The hydrostatic pressure calculated by Van Hise would have little applicability, for at a relatively short distance below the surface the paths of underground water are probably effectively closed, and even where they are open the friction would be a factor of no mean importance. The pressure, therefore, at any considerable depth is probably far higher than that calculated from the weight of the water column. At a depth of 3,000 meters the hydrostatic pressure would be 300 atmospheres. Under purely static conditions the greatest pressure at any given point would be that indicated by the weight of the overlying rock column, or, for the depth just mentioned, equal to 810 atmospheres. Arching of resistant rocks might make this figure smaller; on the other hand, if the conditions are those of lateral stress it is possible that the actual pressure might be considerably higher and would then be measured by the strength of the buttress against which the pressure was applied.

If magmas and their differentiated gases invade the crust their pressure would be hydrostatic and could not exceed that of the static pressure of the overlying rock column without rupture of the rock. A contact-metamorphic deposit developing at a depth of 1,000 meters under a covering of limestones could, therefore, have been formed at a pressure of not more than 271 atmospheres.

Classes of Deposits.—The veins and replacement deposits formed at high temperature may be divided as follows:
A. Veins; replacement deposits not adjacent to intrusive contacts:

1. Cassiterite, wolframite, and molybdenite veins.
2. Gold-bearing veins and replacements.
3. Copper-tourmaline deposits.
4. Lead-tourmaline deposits.

B. Contact-metamorphic deposits (Chapter XXV).

In these deposits we note again the remarkable connection of certain metals with certain igneous rocks. The tin, tungsten, and molybdenum veins, for instance, almost always appear in or near intrusions of acidic granites and porphyries.

The veins and replacement deposits carrying gold, copper, and iron are mainly connected with intrusive rocks of monzonitic or granodioritic character. Few of the high-temperature deposits carry lead, zinc, silver or quicksilver.

Mode of Fissuring and Filling.—The question whether open spaces exist in the high-temperature veins has been considerably discussed. Under certain conditions at least it would seem improbable that open spaces could have existed where we now find cassiterite veins or gold-bearing quartz veins, for instance. Some investigators, such as W. O. Crosby, hold that the action of crystallization of minerals has forced the walls apart and thus provided space for the reception of ores. But aside from the problematic intensity of this force, such crystallization could hardly have produced perfect crystals or drusy structure. L. C. Graton,¹ in his description of the gold-quartz veins of the southern Appalachians, has suggested that the vein-forming solutions, representing the final products of emanation of a granitic magma, were injected under heavy pressure into the surrounding rocks along lines of weakness and so, like pegmatite dikes, made a space for themselves by opening their own fissures. The crystallization would be effected not so much by reduction of temperature and pressure, but rather by the disturbance of a nicely adjusted equilibrium of solubility and concentration by accession of substance dissolved from the wall rocks. This reasoning, which has much to commend it, would not be applicable where earlier fissures had established connection with the surface.

THE CASSITERITE VEINS

Mineral Association

The cassiterite veins form a rather sharply defined group, connected by transitions on the one hand with the copper-tourmaline veins and on the other hand with the wolframite and molybdenite veins. They present the constant association of such ore minerals as cassiterite, molybdenite, arsenopyrite, wolframite (also scheelite), bismuth, and bismuthinite, with less abundant pyrite, pyrrhotite, chalcopyrite, galena, and zinc blende. Among the gangue minerals quartz always predominates and is accompanied by lithium mica, fluorite, topaz, tourmaline, axinite, and apatite; more rarely beryl. Specularite, magnetite, and ilmenite are sometimes present. Of the primary carbonates, siderite is the only one which is reported from the cassiterite veins. On the other hand, the pyroxenes and amphiboles, as well as magnesium micas and garnets, are absent. Orthoclase is reported from several localities but does not assume the form of adularia. Chlorite is occasionally present. Kaolin and allied hydrous aluminum silicates are often recorded, but are probably products of secondary alteration near the surface, as are various hydrous arsenates and phosphates.

Cassiterite, the oxide of tin, is the principal ore mineral. The only other mineral containing tin which is of economic importance is stannite \(\text{Cu}_2\text{FeSnS}_4 \), which is seldom found in pegmatites and in the cassiterite veins proper, but is an important ore in certain Bolivian veins.

Small quantities of tin, probably as cassiterite, are sometimes contained in pyrite or zinc blende of other classes of veins—for instance, in those of Freiberg.

Cassiterite is extremely resistant to weathering, as shown, for example, by its occurrence in placers. It is held by some authors that the so-called fibrous tin ore or "wood tin" which is often found in placers is a product of alteration of cassiterite, but the question does not seem to be definitely settled. If secondary, it is probably derived from stannite.

S. Fawns, Tin deposits of the world, London, 1907.

The mineral association shows the presence of fluorine (in topaz and fluorite), boron (in tourmaline), and phosphorus (in apatite, etc.) in the vein-forming solutions, together with tin, lithium, tungsten, molybdenum, etc.

The paragenesis typical of many cassiterite veins is indicated in the following table.

SUCCESSION OF MINERALS IN THE CASSITERITE VEINS OF SAXONY
(After R. Beck)

<table>
<thead>
<tr>
<th></th>
<th>Older</th>
<th>Younger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molybdenite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium mica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolframite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassiterite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenopyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbertite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tin-bearing veins appear in or near granites (though not all granites contain them), or in their acidic porphyries. Only exceptionally, as in Mexico, are they connected with rhyolitic rocks. The tenor of the ores is usually low, in some ores as low as one-half of 1 per cent. of tin.

Some cassiterite veins contain bismuth and tungsten minerals in commercial quantities, and considerable copper is often present. A little silver and a trace of gold are found even in the vein of Cornwall, while in the Bolivian veins silver minerals occur in important amounts.

Metasomatic Processes

General Features.—The tin ores generally appear in distinct fissure veins or composite lodes; in part they fill open cavities and in such ores a banded structure may be emphasized by the

1 Besides the special papers, see F. Zirkel, Lehrbuch der Petrographie, vol. 2, 1894, pp. 118–127.
deposition of lithium mica in coarse foils along the walls. Often, however, the fissures are merely narrow breaks and the ore is chiefly disseminated in the adjoining altered country rock. In ores of this kind also a rude banding may result from the accumulation of tourmaline or cassiterite along certain lines parallel to the fissure.

The metasomatic alteration is strong and characteristic, resulting in coarse-grained rocks which contain muscovite, quartz, and topaz or tourmaline and to which the name greisen is usually applied (Fig. 205). Where tourmaline takes the place of topaz we may speak of tourmaline greisen or luxullianite (Cornwall). Granite, granite porphyry, clay slate, calcareous shale, limestone, and diabase are affected by this mode of alteration where they form the country rock of the veins, but the development differs in the different rocks. Complete silicification of the wall rocks is a phase of subordinate importance.

While the total changes in composition of the original rock may be much less pronounced than in other veins, the metasomatic process is evidently more intense, pointing to a greater degree of heat and especially energetic action of the mineralizers.
In granites and porphyries adjoining the more common or Saxon type of veins the feldspars and the brown mica are replaced by quartz, topaz, and muscovite, in large crystals or foils. Chlorite is sometimes present. Topaz may also replace quartz grains. Sometimes crystals or radial aggregates form. Cassiterite, wolframite, and more rarely sulphides appear as accessories in the greisen, which spreads out from the fissure plane for a few inches or a few feet.

The quartz porphyry dikes of Mount Bischoff, in Tasmania, contain cassiterite, with much topaz and subordinate tourmaline. The groundmass is changed to a topaz-quartz aggregate, while the feldspars are transformed to cassiterite, pyrite, pyrrhotite, arsenopyrite, and fluorite. The quartz phenocrysts remain intact. In the final product quartz and minute crystals of zircon are the only constituents which have withstood the altering processes. Siderite appears in places as a metasomatic product.

Metasomatic Processes in the Deposits of Cornwall.—The Cornwall granites, which consist mainly of quartz, acidic feldspars, muscovite, and biotite, also carry some tourmaline, topaz, and fluorite, which Flett considers of magmatic origin. The greisen along the Cornwall veins consists chiefly of granular quartz and muscovite, often with aggregates of topaz spreading through the partly altered feldspars. Fluorite is occasionally present. The albite is more resistant than orthoclase or perthite. Some of the secondary quartz is filled with liquid inclusions containing small cubical crystals and mobile bubbles. Excellent pseudomorphs of cassiterite after orthoclase have been found at Cornwall; pseudomorphs of tourmaline after feldspar and of topaz and cassiterite after quartz are also described by Flett.

The elvans, or quartz porphyries, are also altered to quartz, tourmaline, topaz, and fluorite. Kaolin where present appears to be due to a later process.

The greisen is essentially a vein formation in Cornwall and is not known to occur in broad masses or in patches either within the granite or along the contact. The occurrence along the contact is typical of the tourmaline rock, which, however, in places also appears along the veins. Tourmalization is frequently superimposed upon the normal contact-metamorphic rocks, of which hornfels is the most common. There is not much evidence to show the relative age of the two processes, but the

greisen was probably developed later than the tourmaline rocks. Both are held to have been formed before the interior of the granite was fully crystallized.

Considerable portions of the granites of Cornwall have been altered by kaolinization, but Flett believes, with good reason, that this process took place at a lower temperature than the development of topaz, tourmaline, and white mica. Kaolinized rocks appear mainly in the central parts of the granite masses, while the tourmaline rock, usually called "schorl," and greisen lie mostly along the peripheral parts. The kaolinized portions often form pipes having rudely circular outlines; the granite is altered to kaolin, muscovite, and quartz, and the product rarely contains cassiterite. The composition differs little from that of the granites. It seems probable that these kaolin deposits are due to the oxidation of distinctly later pyritic impregnations, and that the kaolin is due to the action of the liberated sulphuric acid on the feldspar and sericite. It should also be recalled that topaz is rather easily changed to products allied to kaolin.

Development of Greisen.—In the following table three sets of analyses are given showing the development of greisen in Saxony, in New South Wales, and in Cornwall. On the whole, the processes are identical. If, as seems probable, there has been but little change in the total mass of the alumina, the analyses are roughly comparable in their present form. Silica has also remained fairly constant. The additions consist of iron, lithium, tin, fluorine, and boron, the iron evidently entering in a silicate. Calcium, of which but little is present, is strongly leached in the rocks represented by analyses IV and VI; the evidence as to magnesia is less conclusive. Sodium and potassium have both been abstracted, the former more than the latter, but neither is wholly removed. In this feature the metasomatic alteration of tin veins differs from that along veins formed at lower temperature, in which we often find a strong concentration of potassium and an almost complete removal of sodium. The specific gravities of the rocks are not determined.

The composition of a normal greisen from the Erzgebirge, in Saxony, is, according to Dalmer, as follows: Quartz, 50.28; topaz, 12.14; lithium mica, 36.80; and cassiterite, 0.43 per cent.
Analyses of Granites and Greisens Developed from Them

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.68</td>
<td>70.41</td>
<td>70.17</td>
<td>69.42</td>
<td>76.69</td>
<td>78.47</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.71</td>
<td>0.49</td>
<td>0.41</td>
<td>Trace</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>SnO₂</td>
<td>0.09</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.73</td>
<td>14.86</td>
<td>15.07</td>
<td>15.65</td>
<td>10.89</td>
<td>11.50</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.42</td>
<td>0.88</td>
<td>1.25</td>
<td>0.76</td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>3.00</td>
<td>5.09</td>
<td>1.79</td>
<td>3.30</td>
<td>0.39</td>
<td>1.05</td>
</tr>
<tr>
<td>CuO</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.29</td>
<td>0.12</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.09</td>
<td>0.21</td>
<td>1.13</td>
<td>0.63</td>
<td>1.73</td>
<td>Trace</td>
</tr>
<tr>
<td>MgO</td>
<td>0.35</td>
<td>0.09</td>
<td>1.11</td>
<td>1.02</td>
<td>0.18</td>
<td>0.49</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.64</td>
<td>3.01</td>
<td>5.73</td>
<td>4.06</td>
<td>2.97</td>
<td>1.17</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.54</td>
<td>0.98</td>
<td>2.69</td>
<td>0.27</td>
<td>5.35</td>
<td>1.99</td>
</tr>
<tr>
<td>Li₂O</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O+</td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.54</td>
<td>0.13</td>
<td>0.23</td>
</tr>
<tr>
<td>H₂O−</td>
<td></td>
<td></td>
<td>0.18</td>
<td>0.06</td>
<td>0.37</td>
<td>1.17</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td></td>
<td>0.34</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.10</td>
<td></td>
<td>0.15</td>
<td>3.36</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Less O for F and Cl</td>
<td>100.68</td>
<td>101.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.50</td>
<td>100.44</td>
<td>100.61</td>
<td>100.34</td>
<td>99.46</td>
<td>99.81</td>
</tr>
</tbody>
</table>

As cassiterite 0.43; in mica, chemically combined, 0.06.

*Including lithia.

I. Fresh granite, Altenberg, Saxony. K. Dalmer, Explanations to the section Altenberg-Zinnwald. Geol. map Saxony.

III. Fresh Lamorna granite, Lands End, Cornwall. W. Pollard, analyst.

Alteration of Sedimentary Rocks.—The alteration of sedimentary rocks proceeds somewhat differently. In Cornwall the argillaceous slates are tourmalinized, forming cornubianite (Fig. 206), the biotite and muscovite being replaced by that mineral. Andalusite and cordierite also disappear, but rutile, ilmenite, and magnetite remain. The result is an aggregate of quartz and tourmaline, which well preserves the original structure of the rocks. In places tourmaline-albite rocks are formed.

The calcareous rocks, as well as the greenstones, yield mainly axinite in large brown crystals, also pyroxene, actinolite, epidote, garnet, zinc blende, pyrite, apatite, specularite, titanite, and tourmaline, but no topaz. At Mount Bischoff the probably non-calcareous schists and slates are in part changed to tourmaline fels, containing also cassiterite, pyrite, arsenopyrite, pyrrhotite, fluorite, calcite, siderite, and pyrophyllite.

A narrow vein in contact-metamorphic andalusite schist near Eibenstock, in Saxony, is described by Schroeder\(^1\) as having a filling of cassiterite, tourmaline, and quartz. For a distance of about 18 inches from the vein the rock is impregnated with tourmaline and also some cassiterite, chalcopyrite, uranium mica, and garnet.

\(^1\) Geol. Spec. Karte von Sachsen, Section Eibenstock, 1884, No. 38.
HIGH-TEMPERATURE DEPOSITS

The metasomatic development in the sedimentary rocks is of great interest, for it connects in the closest manner the effects of the ore-bearing solutions with those in contact-metamorphic deposits. Regarding the cassiterite deposits of Alaska and Ptkaranda and their close association with contact-metamorphism, see Chapter XXV.

Origin of Tin-Bearing Veins

The tin-bearing veins occupy a most important position as connecting links between the deposits of igneous and aqueous origin.

The occurrence of cassiterite as a primary constituent of granite is recalled, as well as its occasional appearance in the pegmatitic druses of granite—for instance, those in Elba described by G. vom Rath. We may further recall the appearance of cassiterite in economic quantities in pegmatite dikes (p. 725) and its occasional occurrence in base-metal veins—for instance, in those of Freiberg and in the lower levels of the Przibram veins. The occurrence of tourmaline in cassiterite veins is also important in view of the transitions to the chalcopyrite-tourmaline type.

These facts were realized at an early date by A. Daubrée and E. de Beaumont. To J. H. L. Vogt belongs much credit for his resuscitation of these meritorious ideas and the addition of important investigations. The extensive literature regarding the occurrence of tin deposits has been summarized by F. L. Hess and L. C. Graton.

Daubrée and de Beaumont argued from the close association of cassiterite veins and acidic granites that there must be some genetic connection between them and concluded that the veins were deposited by emanations from these magmas. This conclusion has been adopted and confirmed by almost all geologists who have studied these deposits.

The general occurrence of cassiterite in well-defined veins shows clearly that the granite was consolidated when these fissures were broken, even if it is probable that the whole granitic intrusion had not congealed and that liquid magma still existed below the vein. The veins occur usually either in the center or along the contacts of the granitic masses, but some of them extend into the adjoining sedimentary rocks. Finally, it is clear that the development of these veins cannot be identified with the contact metamorphism, for they are distinctly later and their metaso-

Fig. 207.—Ideal section of granite intrusion showing probable development of tin-bearing veins and the effect of successive erosion levels, a, b, and c; x, metamorphic aureole; y, inner limit of mineralization. After Ferguson and Bateman.

matic effects are superimposed upon the products of contact metamorphism. Granitic magmas apparently do not easily part with their volatile constituents, which are mainly expelled during consolidation.

The general distribution of tin-bearing veins in relation to an intrusive mass of granite gradually eroded is shown in the diagram, Fig. 207.

The constant presence of boron and fluorine compounds, as well as those of phosphorus, in the tin veins is, of course, of the highest importance. During the short but intense epoch of metallization the temperature must have been high, probably above the critical temperature of water, and therefore the deposition took place under pneumatolytic conditions. In the absence of exact data as to the temperature, pressure and constitution of the vein-forming agents, the insistence upon pneumatolysis has, however, little value. Just how much water was present is problematical; certainly there was some, as shown by
the hydroxyl radicle in muscovite and topaz, and by the presence of aqueous inclusions in quartz crystals.

Daubrée's synthesis by sublimation is as follows:

\[\text{SnFl}_4 + 2\text{H}_2\text{O} = \text{SnO}_4 + 4\text{HFl}. \]

This equation has often been alluded to as a probable reaction, and the metasomatic development of topaz has been taken to indicate that free hydrofluoric acid was present in the solution. The existence of free acids in these deep-seated emanations must be regarded as very improbable. We may better frankly state that at present we are in the dark as to the exact formulas of the reaction.

Both in Saxony\(^1\) and in Cornwall lead-silver veins occur at some distance from the center of intrusions and the cassiterite veins, and also transitions between them. This would tend to show that these metals were less easily precipitated and were carried farther away from their sources than were the tin, tungsten, etc.

A similar relation exists in the Cordilleran region between the copper-bearing contact-metamorphic deposits and the lead-silver replacement deposits in limestone.

The Cassiterite Veins of Cornwall, England

Literature.—An extensive literature exists on the subject of the tin lodes of Cornwall, for they have been repeatedly studied by geologists since they were first described in 1839 by H. T. de la Bèche, and in 1843 by W. J. Henwood. Many articles by J. H. Collins and C. Le Neve Foster were published about 30 to 35 years ago. The deposits have been studied recently by the Geological Survey of England, and the results are published in a series of memoirs.\(^2\)

The renowned mining region of Cornwall, known to the ancients for the treasures of tin which it contained, furnishes one of the most remarkable instances of the dependence of ore deposits on the distribution of igneous rocks. The folded Paleozoic slates and sandstones are intruded by four main granitic batholiths of moderate dimensions (Fig. 208), and the tin deposits cluster characteristically in the marginal zones of these granitic intrusions, both in slates and in granites. The slates, or killas, as they are locally called, in part overlie the granite, forming in places the roof of the batholith. The intrusion is post-Carboniferous and pre-Triassic in age, and the veins were formed shortly after the intrusive activity, probably while the rock still remained hot. Before the vein-forming epoch a series of dikes of granite porphyry (elvans) intersected granite and slate. The granite is a typical rock of its kind, containing, in order of crystallization, zircon, apatite, magnetite, biotite, muscovite, oligoclase, albite, perthite, and quartz. Tourmaline, topaz, and fluorite are occasional accessories in the crystallization of the magma.

The tin and copper veins are the older and were followed by a later though much less important series of veins, containing lead, silver, and sometimes also cobalt, nickel and uranium. A little gold is present, both in the lead-silver veins and in the cassiterite veins. Many of the veins are of complex structure and may prop-

Fig. 208.—Geological map of the peninsula of Cornwall, England. *After D. A. MacAlister.*
erly be called lodes. Some of them are traceable for 2 or 3 miles, or even more. The width of infilled fissures and altered rocks averages 3.5 feet, but in places, especially in the slates, reaches 50 feet. The general direction of the veins is northeast. Stock-works of irregular veinlets also occur. Faulting has taken place along many of the fissures. The veins are simple or composite (Fig. 209); reopening of fissures was evidently a common phenomenon. The filling is mainly of quartz, frequently with comb structure and, in the upper parts of the lodes, also with drusy cavities. Next to the walls quartz, cassiterite, and wolframite are often found, while in the interior chalcopyrite, galena, arsenopyrite, and quartz appear. Chlorite, fluorite, scheelite, zinc blende, molybdenite and bismuthinite are also found in these veins. Magnetite and specularite are reported, but are rare.

The alteration spreading into the country rock from the fissures is characteristic and, when effected from a series of closely spaced fissures, may produce a banded appearance (capel); tourmalization is the usual mode of alteration in the granite, resulting in an aggregate of tourmaline and quartz. In calcareous rocks or greenstones the altered zone along the veins contains axinite, pyroxene, garnet, and some tourmaline.

In the slates the lodes often contain much crushed and brecciated material; sometimes cassiterite and tourmaline following bedding planes impregnate the slates for some distance on both sides of the lode. On the whole the copper ores are confined to

Fig. 209.—Diagrammatic section of the main lode at the 300-foot level, Bunny mine, St. Austell, Cornwall. After Ussher, Flett, et al. A, Kaolinized granite; B, stanniferous greisen; C, silicified granite; D, veins of quartz and cassiterite.
deposition of lithium mica in coarse foils along the walls. Often, however, the fissures are merely narrow breaks and the ore is chiefly disseminated in the adjoining altered country rock. In ores of this kind also a rude banding may result from the accumulation of tourmaline or cassiterite along certain lines parallel to the fissure.

The metasomatic alteration is strong and characteristic, resulting in coarse-grained rocks which contain muscovite, quartz, and topaz or tourmaline and to which the name greisen is usually applied (Fig. 205). Where tourmaline takes the place of topaz we may speak of tourmaline greisen or luxullianite (Cornwall). Granite, granite porphyry, clay slate, calcareous shale, limestone, and diabase are affected by this mode of alteration where they form the country rock of the veins, but the development differs in the different rocks. Complete silicification of the wall rocks is a phase of subordinate importance.

While the total changes in composition of the original rock may be much less pronounced than in other veins, the metasomatic process is evidently more intense, pointing to a greater degree of heat and especially energetic action of the mineralizers.
HIGH-TEMPERATURE DEPOSITS 619

In granites and porphyries adjoining the more common or Saxon type of veins the feldspars and the brown mica are replaced by quartz, topaz, and muscovite, in large crystals or foils. Chlorite is sometimes present. Topaz may also replace quartz grains. Sometimes crystals or radial aggregates form. Cassiterite, wolframite, and more rarely sulphides appear as accessories in the greisen, which spreads out from the fissure plane for a few inches or a few feet.

The quartz porphyry dikes of Mount Bischoff, in Tasmania, contain cassiterite, with much topaz and subordinate tourmaline. The groundmass is changed to a topaz-quartz aggregate, while the feldspars are transformed to cassiterite, pyrite, pyrrhotite, arsenopyrite, and fluorite. The quartz phenocrysts remain intact. In the final product quartz and minute crystals of zircon are the only constituents which have withstood the altering processes. Siderite appears in places as a metasomatic product.

Metasomatic Processes in the Deposits of Cornwall.—The Cornwall granites,¹ which consist mainly of quartz, acidic feldspars, muscovite, and biotite, also carry some tourmaline, topaz, and fluorite, which Flett considers of magmatic origin. The greisen along the Cornwall veins consists chiefly of granular quartz and muscovite, often with aggregates of topaz spreading through the partly altered feldspars. Fluorite is occasionally present. The albite is more resistant than orthoclase or perthite. Some of the secondary quartz is filled with liquid inclusions containing small cubical crystals and mobile bubbles. Excellent pseudomorphs of cassiterite after orthoclase have been found at Cornwall; pseudomorphs of tourmaline after feldspar and of topaz and cassiterite after quartz are also described by Flett.

The elvans, or quartz porphyries, are also altered to quartz, tourmaline, topaz, and fluorite. Kaolin where present appears to be due to a later process.

The greisen is essentially a vein formation in Cornwall and is not known to occur in broad masses or in patches either within the granite or along the contact. The occurrence along the contact is typical of the tourmaline rock, which, however, in places also appears along the veins. Tourmalinization is frequently superimposed upon the normal contact-metamorphic rocks, of which hornfels is the most common. There is not much evidence to show the relative age of the two processes, but the

greisen was probably developed later than the tourmaline rocks. Both are held to have been formed before the interior of the granite was fully crystallized.

Considerable portions of the granites of Cornwall have been altered by kaolinization, but Flett believes, with good reason, that this process took place at a lower temperature than the development of topaz, tourmaline, and white mica. Kaolinized rocks appear mainly in the central parts of the granite masses, while the tourmaline rock, usually called "schorl," and greisen lie mostly along the peripheral parts. The kaolinized portions often form pipes having rudely circular outlines; the granite is altered to kaolin, muscovite, and quartz, and the product rarely contains cassiterite. The composition differs little from that of the granites. It seems probable that these kaolin deposits are due to the oxidation of distinctly later pyritic impregnations, and that the kaolin is due to the action of the liberated sulphuric acid on the feldspar and sericite. It should also be recalled that topaz is rather easily changed to products allied to kaolin.

Development of Greisen.—In the following table three sets of analyses are given showing the development of greisen in Saxony, in New South Wales, and in Cornwall. On the whole, the processes are identical. If, as seems probable, there has been but little change in the total mass of the alumina, the analyses are roughly comparable in their present form. Silica has also remained fairly constant. The additions consist of iron, lithium, tin, fluorine, and boron, the iron evidently entering in a silicate. Calcium, of which but little is present, is strongly leached in the rocks represented by analyses IV and VI; the evidence as to magnesia is less conclusive. Sodium and potassium have both been abstracted, the former more than the latter, but neither is wholly removed. In this feature the metasomatic alteration of tin veins differs from that along veins formed at lower temperature, in which we often find a strong concentration of potassium and an almost complete removal of sodium. The specific gravities of the rocks are not determined.

The composition of a normal greisen from the Erzgebirge, in Saxony, is, according to Dalmer, as follows: Quartz, 50.28; topaz, 12.14; lithium mica, 36.80; and cassiterite, 0.43 per cent.
ANALYSES OF GRANITES AND GREISENS DEVELOPED FROM THEM

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.68</td>
<td>70.41</td>
<td>70.17</td>
<td>69.42</td>
<td>76.69</td>
<td>78.47</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.71</td>
<td>0.49</td>
<td>0.41</td>
<td>Trace</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>SnO₂</td>
<td>0.09</td>
<td>0.09</td>
<td>Trace</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.73</td>
<td>14.86</td>
<td>15.07</td>
<td>15.65</td>
<td>10.89</td>
<td>11.50</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.42</td>
<td>0.88</td>
<td>1.25</td>
<td>0.76</td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>3.00</td>
<td>5.09</td>
<td>1.79</td>
<td>3.30</td>
<td>0.39</td>
<td>1.05</td>
</tr>
<tr>
<td>CuO</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.29</td>
<td>0.12</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.09</td>
<td>0.21</td>
<td>1.13</td>
<td>0.63</td>
<td>1.73</td>
<td>Trace</td>
</tr>
<tr>
<td>MgO</td>
<td>0.35</td>
<td>0.09</td>
<td>1.11</td>
<td>4.06</td>
<td>0.18</td>
<td>0.49</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.64</td>
<td>3.01</td>
<td>5.73</td>
<td>2.97</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>b1.54</td>
<td>0.98</td>
<td>2.69</td>
<td>0.27</td>
<td>5.35</td>
<td>1.99</td>
</tr>
<tr>
<td>Li₂O</td>
<td></td>
<td>0.11</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O+</td>
<td>1.17</td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.54</td>
<td>0.13</td>
</tr>
<tr>
<td>H₂O−</td>
<td></td>
<td>0.18</td>
<td>0.06</td>
<td>0.37</td>
<td></td>
<td>1.17</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>0.34</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td>0.06</td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.10</td>
<td>0.15</td>
<td>3.36</td>
<td>Present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B₂O₃</td>
<td></td>
<td></td>
<td>Strong trace</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less O for F and Cl</td>
<td>100.68</td>
<td>101.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.50</td>
<td>100.44</td>
<td>100.61</td>
<td>100.34</td>
<td>99.46</td>
<td>99.81</td>
</tr>
</tbody>
</table>

*As cassiterite 0.43; in mica, chemically combined, 0.06.

*Including lithia.

I. Fresh granite, Altenberg, Saxony. K. Dalmer, Explanations to the section Altenberg-Zinnwald. Geol. map Saxony.

III. Fresh Lamorna granite, Lands End, Cornwall. W. Pollard, analyst.

Alteration of Sedimentary Rocks.—The alteration of sedimentary rocks proceeds somewhat differently. In Cornwall the argillaceous slates are tourmalinized, forming cornubianite (Fig. 206), the biotite and muscovite being replaced by that mineral. Andalusite and cordierite also disappear, but rutile, ilmenite, and magnetite remain. The result is an aggregate of quartz and tourmaline, which well preserves the original structure of the rocks. In places tourmaline-albite rocks are formed.

The calcareous rocks, as well as the greenstones, yield mainly axinite in large brown crystals, also pyroxene, actinolite, epidote, garnet, zinc blende, pyrite, apatite, specularite, titanite, and tourmaline, but no topaz. At Mount Bischoff the probably non-calcareous schists and slates are in part changed to tourmaline fels, containing also cassiterite, pyrite, arsenopyrite, pyrrhotite, fluorite, calcite, siderite, and pyrophylite.

A narrow vein in contact-metamorphic andalusite schist near Eibenstock, in Saxony, is described by Schroeder\(^1\) as having a filling of cassiterite, tourmaline, and quartz. For a distance of about 18 inches from the vein the rock is impregnated with tourmaline and also some cassiterite, chalcopyrite, uranium mica, and garnet.

\(^1\) Geol. Spec. Karte von Sachsen, Section Eibenstock, 1884, No. 38.
HIGH-TEMPERATURE DEPOSITS

The metasomatic development in the sedimentary rocks is of great interest, for it connects in the closest manner the effects of the ore-bearing solutions with those in contact-metamorphic deposits. Regarding the cassiterite deposits of Alaska and Pitkäranda and their close association with contact-metamorphism, see Chapter XXV.

Origin of Tin-Bearing Veins

The tin-bearing veins occupy a most important position as connecting links between the deposits of igneous and aqueous origin.

The occurrence of cassiterite as a primary constituent of granite is recalled, as well as its occasional appearance in the pegmatitic druses of granite—for instance, those in Elba described by G. vom Rath.¹ We may further recall the appearance of cassiterite in economic quantities in pegmatite dikes (p. 725) and its occasional occurrence in base-metal veins—for instance, in those of Freiberg and in the lower levels of the Przibram veins. The occurrence of tourmaline in cassiterite veins is also important in view of the transitions to the chalcopyrite-tourmaline type.

These facts were realized at an early date by A. Daubrée and E. de Beaumont.² To J. H. L. Vogt³ belongs much credit for his resuscitation of these meritorious ideas and the addition of important investigations. The extensive literature regarding the occurrence of tin deposits has been summarized by F. L. Hess and L. C. Graton.⁴

Daubrée and de Beaumont argued from the close association of cassiterite veins and acidic granites that there must be some genetic connection between them and concluded that the veins were deposited by emanations from these magmas. This conclusion has been adopted and confirmed by almost all geologists who have studied these deposits.

The renowned mining region of Cornwall, known to the ancients for the treasures of tin which it contained, furnishes one of the most remarkable instances of the dependence of ore deposits on the distribution of igneous rocks. The folded Paleozoic slates and sandstones are intruded by four main granitic batholiths of moderate dimensions (Fig. 208), and the tin deposits cluster characteristically in the marginal zones of these granitic intrusions, both in slates and in granites. The slates, or killas, as they are locally called, in part overlie the granite, forming in places the roof of the batholith. The intrusion is post-Carboniferous and pre-Triassic in age, and the veins were formed shortly after the intrusive activity, probably while the rock still remained hot. Before the vein-forming epoch a series of dikes of granite porphyry (elvans) intersected granite and slate. The granite is a typical rock of its kind, containing, in order of crystallization, zircon, apatite, magnetite, biotite, muscovite, oligoclase, albite, perthite, and quartz. Tourmaline, topaz, and fluorite are occasional accessories in the crystallization of the magma.

The tin and copper veins are the older and were followed by a later though much less important series of veins, containing lead, silver, and sometimes also cobalt, nickel and uranium. A little gold is present, both in the lead-silver veins and in the cassiterite veins. Many of the veins are of complex structure and may prop-
erly be called lodes. Some of them are traceable for 2 or 3 miles, or even more. The width of infilled fissures and altered rocks averages 3.5 feet, but in places, especially in the slates, reaches 50 feet. The general direction of the veins is northeast. Stock-works of irregular veiñlets also occur. Faulting has taken place along many of the fissures. The veins are simple or composite (Fig. 209); reopening of fissures was evidently a common phe-
nomenon. The filling is mainly of quartz, frequently with comb structure and, in the upper parts of the lodes, also with drusy cavities. Next to the walls quartz, cassiterite, and wolframite are often found, while in the interior chalcopyrite, galena, arsenopyrite, and quartz appear. Chlorite, fluorite, scheelite,

zinc blende, molybdenite and bismuthinite are also found in these veins. Magnetite and specularite are reported, but are rare.

The alteration spreading into the country rock from the fissures is characteristic and, when effected from a series of closely spaced fissures, may produce a banded appearance (capel); tourmalini-
zation is the usual mode of alteration in the granite, resulting in an aggregate of tourmaline and quartz. In calcareous rocks or greenstones the altered zone along the veins contains axinite, pyroxene, garnet, and some tourmaline.

In the slates the lodes often contain much crushed and brecci-
ated material; sometimes cassiterite and tourmaline following bedding planes impregnate the slates for some distance on both sides of the lode. On the whole the copper ores are confined to

Fig. 209.—Diagrammatic section of the main lode at the 300-foot level, Bunn mine, St. Austell, Cornwall. After Ussher, Flett, et al. A, Kaolinitized granite; B, stanniferous greisen; C, silicified granite; D, veins of quartz and cassiterite.
the lodes in the slates. Where the lodes break into the granite the tin ore makes its appearance (Fig. 210).

The main lode of the Dolcoath and Carn Brea contained copper ores down to a depth of 1,000 feet, mainly in the slates. Below this depth the tin ore predominated and is now worked at a depth of 3,000 feet. According to Hill and MacAlister the lode at the bottom of the mine is 42 feet wide and contains 1.008 per cent. of cassiterite. The lodes of Wheal Vor were of enormous value in the killas, but proved worthless in the granite. At the Great Work mine, not far distant, these relations were reversed. The great ore shoots of both mines plunge eastward approximately parallel to the subterranean contact surface of the granite. In general it would seem as if the deposition of tin ore ceased when the solutions entered the cooler region of the slates.

Cassiterite Veins of Saxony

Saxony and the adjacent part of Bohemia contain several tin-producing districts, the ores occurring in or near granites of post-Carboniferous age. The deposits are now of little importance, but have an interesting place in the history of the study of ore deposits.

1 The older literature includes the papers by B. v. Cotta, H. Müller, E. Reyre, and A. W. Stelzner.

At Altenberg the ores occur in a stockwork, about 3,000 feet in diameter, of small veins cutting across the granite and the adjacent, older granite porphyry; the whole mass of rock is altered to a greisen, containing a little cassiterite and arsenopyrite. The characteristic minerals occurring in the veinlets are quartz, bismuth, bismuthinite, pyrite, chalcopyrite, molybdenite, zinc blende, wolframite, fluorite, tetrahedrite, magnetite, and specularite. The ore, according to Dalmer, continued only to a depth of about 700 feet.

![Diagrammatic section of vein at Zinnwald, Saxony.](image)

Fig. 211.—Diagrammatic section of vein at Zinnwald, Saxony. *After R. Beck.* g, Granite; gr, greisen; q, quartz; l, lithium mica; z, cassiterite; w, wolframite; f, fluorite; sch, scheelite.

At Zinnwald the veins are likewise in granite, which with flat contact breaks through quartz porphyry. The numerous fissures are approximately parallel to the contact, and the veins are formed mainly by filling, sometimes with excellent banded structure by the development of mica next to the wall; they contain a considerable amount of wolframite (hübnerite), besides the usual minerals accompanying the cassiterite (Fig. 211).

Tin Deposits in Other Countries

Cassiterite veins have been found in the Transvaal, New South Wales, Queensland, Western Australia, Tasmania, Bolivia, Mexico, and Alaska. In the United States they are rare. A vein in granite has recently been worked near El Paso, Texas, on the
east side of the Franklin Mountains. Some low-grade veins occur in the Temescal Mountains, near Riverside, California. The tin-bearing deposits of the Appalachian region and of the Black Hills of South Dakota are mainly pegmatite dikes, though a few quartz veins with cassiterite occur in the Appalachian region. The occurrences in Alaska are described in chapter 25.

The largest part of the tin production of the world is derived from the Malay Peninsula and from the islands of Banka and Billiton, off the coast of Sumatra, but the output from these localities comes mainly from placers. In the Malay States granite invades post-Triassic limestone and schist, and tin-bearing veins in these rocks have been described by Penrose. On the islands granite is intruded in slate; both rocks contain tin veins which are noteworthy in that they carry magnetite.

Interesting tin deposits have been described as occurring in the Transvaal and New South Wales. They occur in granite and are roughly cylindrical "pipes" consisting of highly altered granite with disseminated cassiterite and tourmaline. Veins and pipes of cassiterite accompanied by sulphides, specularite, tourmaline, and ankerite or siderite occur in the quartzite of the Roviberg district in the Transvaal. The deposits are several miles distant from the intrusive contact.

The principal tin deposits of Tasmania are those of Mount Bischoff, where schists are intruded by dikes of granite porphyry,

both rocks being rich in metasomatic tourmaline and topaz. The whole forms a weathered mass of rock traversed by cassiterite veins—a stockwork, large portions of which averaged 2 to 3 per cent. tin. Magnetite, fluorite, pyrrhotite, zinc blende, wolframite, and siderite are mentioned as accompanying minerals.¹

The Bolivian veins,² which center in the mining districts of Oruro and Tres Cruces, appear in Devonian slates, intruded by dikes of granite porphyry. A. W. Stelzner, who first described them, drew attention to certain unusual features consisting in the association with silver minerals and the occurrence of much pyrite, but W. R. Rumbold and M. Armas have shown that the veins are similar to the normal tin veins and that the country rock is extensively tourmalinized. In some of the veins stannite (FeCu₂SnS₄) is present, as well as ruby silver, stephanite, tetrahedrite, zinc blende, arsenopyrite, bournonite, wolframite and siderite. The rare mineral sundtite (PbAgSb₂S₄) is found at Oruro. Stelzner described from the Chocaya district the rare mineral francolite (Pb₃SnS₄ + Pb₆Sb₂S₉), which contains 1 per cent. silver and 0.1 per cent. germanium; argyrodite (3Ag₂S·GeS₂) was found at Potosí, and canfieldite, an argyrodite containing tin, at La Paz. The tin ores of Bolivia are in part of high grade and yield a production of considerable importance.

The tin-bearing district of Zeehan, Tasmania,³ contains deposits of various kinds which appear to show an unusually complete series of transitions. Silurian sediments are intruded by granite. There is a gradation from cassiterite veins, with tourmaline, in granite, to contact-metamorphic deposits, containing copper, lead, and zinc, in which cassiterite has been found, and from these to normal banded veins containing pyrite, chalcopyrite, galena, and stannite, and finally to galena-siderite veins. In other words, the gradation is one from high-tempera-

ture deposits to those formed in the cooler zone with a corre-
sponding change of minerals deposited.

The tin deposits of Mexico, although not productive, are of
special interest, because they are contained in a rhyolitic surface
flow. The cassiterite is here sometimes developed with peculiar
concretionary or reniform structure and is accompanied by topaz,
quartz, chalcedony, and wolframite, and bismuth ores. The
geological relations are not known in detail, but deserve special
study. It is known that topaz occasionally occurs in lithophysae
of rhyolite, so it is not surprising that some tin may occasionally
be retained in the magma until it reaches the surface. The
principal occurrences are at Cacaria and Potrillos, in Durango.¹

WOLFRAMITE VEINS

Wolframite, including the tungstate of iron (ferberite) and the
tungstate of manganese (hübnerite), has a field of occurrence
similar to that of cassiterite. It appears in igneous rocks, in
pegmatites, in cassiterite veins, and sometimes with quartz and
bismuth minerals in veins which are evidently of the deep-seated
type and allied to the tin veins. Veins of the latter type occur
in the Deer Park district, in Washington,² and at Sauce,³ in
the Sierra de Cordova, in Argentina. Scheelite often accompa-
nies wolframite. But, unlike cassiterite, wolframite also appears
abundantly in veins formed under much more moderate tem-
perature and pressure—for instance, in those of Boulder County,
Colorado (p. 584). Small quantities of wolframite are found in
veins formed near the surface, as in those of Tonopah, Nevada,
and Cripple Creek, Colorado. The principal production in the
United States is derived from Boulder County, Colorado.

MOLYBDENITE VEINS

The occurrences of molybdenite parallel those of wolframite;
it is found in igneous rocks, in pegmatites, in contact-metamor-

phic deposits, and in deep-seated veins. A deposit of the last-named type, described by Crook,1 occurs in the vicinity of Lake Chelan, Washington. It is a quartz vein in biotite granite. Molybdenite appeared as crystals and flakes along the walls. Some production is recorded from this place.

In deposits formed at moderate temperature, as well as in those formed in surface lavas, molybdenite is very common indeed, but only as minute, easily overlooked scales that are not economically important. It is found in the California gold-quartz veins, in the copper veins at Clifton, Arizona, in the Cripple Creek veins, Colorado, and in many other places.2

GOLD-QUARTZ VEINS

Gold-bearing veins of a deep-seated type are found in many regions in the pre-Cambrian and earliest Paleozoic rocks of the American continents. They appear in the gold belt of the Appalachian States, mainly from Maryland to Alabama; at various places in the Western States, particularly in South Dakota and New Mexico; in Ontario and Quebec; and finally in Brazil.

The Veins of the Southern Appalachians3

The placer deposits of the southern Appalachians have, since their discovery, about 1800, yielded gold estimated at $30,000,000. The veins from which the placers were derived proved less productive, though they have been profitably worked

at many places in North Carolina, at the Haile mine in South Carolina, at Dahlonega and the Franklin mine in Georgia, and at the Hogback mine in Alabama. All the deposits are not of the deep-seated type; there are some which more closely approach the normal gold-quartz veins similar to those of California, but even in these deposits certain features indicate deposition at higher temperatures. The veins are contained in crystalline rocks, usually more or less schistose, which, upon closer examination, prove to be granites and quartz monzonites, intrusive into mica schists, clay slates, altered volcanic tuffs, and amphibolites. The age of the veins is probably early Paleozoic, though some of them may date back to the pre-Cambrian.

Structurally the deposits may be classed as fissure veins and replacement deposits in schists. The veins are in general of the so-called lenticular type illustrated in Fig. 43, in which the quartz lenses, which collectively constitute the veins, lie parallel to the foliated structure. In detail the lenses often cut across the schistosity and are sometimes of irregular form. Sharply defined veins cutting across the schistosity also occur. The quartz is massive, usually without banded or drusy structure. The replacement deposits form irregular bodies of silicified and pyritic schist; the deposit worked by the Haile gold mine is the most prominent example of this class. The ores form more or less regular shoots, often also pockets, and are in general of low grade; pyritic ore containing \$2 per ton has been successfully treated at the Haile mine; many shoots, however, average much higher, sometimes \$15 or \$20 per ton. Free gold is generally but by no means always present below the zone of oxidation.

Quartz, often glassy and semi-transparent, is the principal gangue mineral and is frequently accompanied by calcite, dolomite, apatite, chlorite, ilmenite, magnetite, tourmaline, and sometimes zinc spinel (gahnite) and garnet. The ore minerals are free gold, pyrite, arsenopyrite, pyrrhotite, molybdenite, more rarely galena, zinc blende, and chalcopyrite. Enargite, tetradymite, altaite, and nagyagite are recorded, but are decidedly uncommon.

The metamorphic alteration of the wall rock shows considerable variations. The most intense action is shown by some quartz-tourmaline veins; the adjoining amphibolite is altered to garnet, tourmaline, and magnetite.\(^1\) In some of the Dahlonega veins

\(^1\) L. C. Gratton, *op. cit.*, p. 47.
the included amphibolite, as well as the adjacent wall rock, is altered to well-developed crystals of pale-red garnet and a dark-green mica. The garnets contain visible gold; the quartz itself contains pyrite, pyrrhotite, galena, and chalcopyrite. This mode of alteration is much like that noted in the rocks adjacent to the pegmatite dikes of the same region.

In other veins a chestnut-brown biotite is the only mineral resulting from metasomatic alteration; in places both muscovite in comparatively large foils and biotite are present, sometimes with calcite or dolomite, besides more or less pyrite or pyrrhotite. Amphibolite is the most easily attacked of the various kinds of country rock. The alteration of granite is usually slight.

The replacement bodies are generally in the acidic schist derived from volcanic fragmental rocks; these are extensively silicified and contain also both sericite and biotite as products of alteration.

Genetically, these gold-bearing veins appear to be connected with granitic intrusions, representing the final product of the most volatile part of the magma. They are considered by Becker, Graton, and Lindgren to be the deepest parts of veins whose upper parts have been carried away by erosion.

The Quartz Veins of Ontario\(^1\)

The gold-bearing quartz veins of Ontario, Canada, are widely distributed, but have not yet yielded a large production. These veins are clearly related to those of the southern Appalachian States, but, on the other hand, they present some remarkable analogies with those of California. They occur at Lake of the

Woods, Rainy Lake, Wahnapitae, Abitibi, Larder Lake, and in the recently discovered Porcupine district, from which a considerable production is expected. They also extend into Quebec. The veins occur in Huronian sediments and in the igneous (granitic, dioritic, and peridotitic) rocks which intersect them. The deposits are lenticular veins in schist, fairly regular or branching veins in massive rocks, in part also large irregular or dome-shaped masses. The quartz is coarsely crystalline and is accompanied by more or less dolomite, ankerite or siderite, pyrite, pyrrhotite, chalcopyrite, galena, and other simple sulphides. Tellurides, like petzite, are rare. The veins yield mostly free gold, which is often coarse (Fig. 212). Other gangue minerals besides quartz are tourmaline, chlorite, sericite, and a feldspar, probably albite. Next to the veins the country rock is altered to sericite and carbonates, and carbonatization of basic rocks has often resulted in large masses of coarsely crystalline rock consisting of ankerite and bright-green mariposite (chromium mica). This altered rock, which appears to occupy considerable areas, is often cut by quartz veins and is remarkably similar to certain rocks along the Mother Lode in California, which have resulted from the alteration of serpentine.

Similar veins are also found in the Ural Mountains. The so-called ladder-veins at Beresowsk, for instance, contain tourmaline and transversely intersect granitic dikes.
The Pre-Cambrian Gold Veins of the Cordilleran Region

It has already been explained that of the pre-Cambrian veins many, though not all, suggest formation at high temperature. Brief reference suffices to the gold-bearing quartz veins of Hopewell and Bromide, in New Mexico, many of which contain, as metasomatic products, tourmaline, garnet, and other silicates and also the characteristic brown or green mica. Some of the veins occurring in the pre-Cambrian rocks of southern Wyoming also belong to this type; others give evidence of deposition at lower temperatures.

![Diagram](image)

Fig. 213.—Vertical section of upper part of ore-body, Homestake mine, South Dakota. *After S. F. Emmons and J. D. Irving.*

The Black Hills of South Dakota contain many gold-bearing deposits in the pre-Cambrian rocks. They occur, as a rule, in clay slates of sedimentary origin, and, while some of them are true veins with glassy quartz and free gold, others are lenticular bodies of highly altered rock. The best known among the latter is the Homestake lode at Lead. Embedded in the normal clay slate, which contains not far away great masses of intrusive gran-

4 W. J. Sharwood, *Econ. Geol.*, vol. 6, 1911, pp. 729–786.
ite, are huge lenticular bodies of altered rock with quartz, sulphides, and free gold, averaging about $4 per ton. The ratio of silver to gold (by weight) is about 1:5. The numerous ore lenses (Fig. 213) are in places several hundred feet in width and have been followed for a distance of about 1 mile in the same direction as the strike of the clay slates, which dip steeply to the northeast. The slates and ore-bodies are intruded by rhyolite porphyry, which, however, seems to have caused little if any additional mineralization. At the depth attained, which now is 1,700 feet, the ore-bodies are said to maintain their size and value. In a broad way the ore-bodies pitch to the southeast. One thousand

![Diagram of Homestake ores]

Fig. 214.—Thin sections of Homestake ores. Left: Gold and pyrrhotite (later), in arsenopyrite (earlier). Magnified 48 diameters. Right: Gold with quartz, iron-magnesium carbonate, pyrite, and cummingtonite. Magnified 32 diameters. *After W. J. Sharwood.*

stamps crush the ore, and the pulp is amalgamated and afterward leached with cyanide. The production in 1911 had a value of about $5,000,000.

The ores differ from the country rock in containing a dissemination of fine-grained free gold, pyrrhotite, pyrite, arsenopyrite, and a little chalcopyrite; the sulphurets are not rich in gold. The ore-bodies also include many small lenticular masses of coarse-grained glassy or milky quartz, which in places contains
sulphides but rarely free gold. The larger part of the ore is also distinguished by the appearance of much light-brown hornblende, often with radial structure; it is rich in iron and probably belongs to the species cummingtonite (Fig. 214). There is also in places a little dolomitic carbonate, siderite, and garnet. According to J. D. Irving the silicates are older than the gold, but they surely belong to the same general epoch of metallization. The gold often accompanies arsenopyrite. Very recently, L. Paige has suggested that the ore replaces lime shale.

The Gold-Bearing Veins of Brazil

Some of the provinces in the great pre-Cambrian areas of Brazil contain auriferous lodes of great value. In many respects they are similar to those of the Atlantic coast of North America, already described, and may be classed with the deep-seated veins; the mineral association suggests deposition at high temperatures.

The veins occur mainly in the pre-Cambrian clay slates or calcareous slates of Minas Geraes, in southern Brazil, and have been worked successfully to great depths. The mine of St. John del Rey (Fig. 215) has attained 5,000 feet in vertical depth, or 7,000 feet on the incline, and is thus the deepest gold mine in the world. At a depth of 4,900 feet the lenticular ore body is 1,028 feet long and 12½ feet wide. The ore has a value of about $11 per ton. The mineral association consists of native gold, pyrrhotite, pyrite, arsenopyrite, quartz, and siderite; albite, apatite, magnetite, and scheelite are also known to occur. The ore contains 28 per cent. pyrrhotite. Metasomatic replacements often spread laterally into the adjacent schists.

The Passagem lode, described by E. Hussak as a gold-bearing pegmatite dike, appears, according to O. Derby, as a pegmatite dike shattered and impregnated by gold, arsenopyrite, pyrrhotite, and tourmaline, with a little siderite and calcite (Chapt. 26.)

The gold contains some bismuth. The appearance of cummingtonite allies the Passagem vein in an interesting manner to the Homestake deposit. In other parts of the Brazilian gold-bearing area palladium occurs in alloy with gold.

Fig. 215.—Vertical longitudinal section of the St. John del Rey Mining Company’s Morro Velho mine, Brazil.

The Gold-Quartz Deposits of Silver Peak, Nevada

In the Cordilleran region of North America gold-quartz veins of post-Cambrian age belonging to the class of high-temperature veins are not common. Spurr, however, describes such deposits in the Silver Peak district, in western Nevada,\(^1\) which he holds to be closely allied to igneous rocks. Granites with transitions to alaskite and quartz monzonite are here intrusive into Paleozoic limestone. In this important district, the annual production of which is now about $3,000,000, gold-quartz veins of irregular

form and typical alaskite "form two ends of a rock series between which every gradation is represented." The gold is contained mainly in the pure quartz, which also yields sulphides like arsenopyrite. There is little silver present.

The alaskite is a granular aplitic rock containing quartz, orthoclase, microcline, albite, anorthoclase, and oligoclase-albite. The first generation of feldspars was partly altered into muscovite before the second generation of feldspars was deposited. The quartz magma, separated by differentiation, collected in larger masses. Later, repeated mineralization filled the fractures in the magmatic quartz with auriferous pyrite and galena, representing a fresh supply of ascending waters. The hypothesis is advanced that solutions of granitic origin have deposited gold predominantly in the granite or in the rocks silicified by the metamorphic effect of the granite, and that in or near the calcareous rocks more silver and copper were precipitated from the same solutions, the difference being due to the selective influence of wall rock. Garnet and epidote are mentioned as occurring in certain of the veins in calcareous rocks.

The description leaves the reader with a lingering doubt as to the actual transition of vein quartz into alaskite.

The Gold-Quartz Veins of Southeastern Alaska

The gold-bearing veins of southern Alaska are closely allied to those of the Appalachian region and to those of Brazil, although they present some features that would rather connect them with the gold-quartz veins of California, which are believed to be formed under conditions of lower temperature or more moderate depth.

The veins occur mainly in the narrow strip of sharply folded Paleozoic slates and greenstones which form the western margin of the great batholithic mass of granodiorite of late Mesozoic age, 40 to 80 miles wide and continuous for many hundreds of miles parallel to the coast. The conditions are therefore essentially similar to those of the California gold belt, especially as the Paleozoic sediments farther west on Admiralty Island are

adjoined by a belt of slates which are thought to correspond in age to the Mariposa slate of California.

In the long strip of coast country extending 300 miles there are numerous mining districts, among which are Windham Bay, Port Snettisham, Sheep Creek, Gold Creek, Douglas Island, Eagle Creek, and Berners Bay.

The gold occurs in veins and lodes of various kinds, or more rarely, as on Douglas Island, in altered dikes of dioritic character that contain disseminated free gold and sulphides. The individual veins are rarely continuous for more than a few hundred feet, but often combine to form more extended stringer leads or lode systems. As the veins are later than the schistose structure of the rocks their tendency is to follow foliation planes, and in places they strongly resemble the lenticular veins of the Appalachian region, but continuous and cross-cutting veins also occur.

The gangue minerals are mainly milky quartz with some calcite or dolomite; tourmaline is occasionally reported, also magnetite. The ore consists of free gold containing more or less silver and associated with pyrite, pyrrhotite, zinc blende, chalcopyrite, galena, and arsenopyrite.

Few of the gold-quartz veins have yet been followed to great depth. Their width is from 1 to 8 or 10 feet at most, and the metal content of their ore must necessarily be high, for the amount that can be taken out with profit is small. Their ores would probably range from $5 to $20 or more per ton.

The Treadwell ores, which are mined on a large scale, are of low grade, containing about $2 in gold per ton, of which 60 to 75 per cent. is free-milling, the concentrates yielding $30 to $50 per ton. The Treadwell deposits consist of a series of mineralized dikes (Fig. 216) of albite diorite in slates near the east shore of Douglas Island. The workings extend for 7,000 feet along the shore. At the northwestern end is the Treadwell mine, and the lode is continuous southeastward through the Seven Hundred Foot and the Mexican lode for a distance of 3,600 feet. Between the Mexican and the Ready Bullion lode is an unexplored interval of 2,300 feet. The dikes dip about 50° northeast. The dimensions of the dikes are variable, the larger ones having a maximum width of over 200 feet. These ore-bearing dikes have been followed to a depth of 1,800 feet, and there appears to be no diminution of the average tenor of the ore at that depth. The
average annual production of the Treadwell group, including the mines above mentioned, is about $4,000,000.

The ore-bodies are extensively fractured by a system of conjugated joints, along which there are irregular veinlets of quartz and calcite. The ore minerals are chiefly native gold, pyrite, and pyrrhotite, but chalcopyrite, galena, zinc blende, and molybdenite are also found. The important gangue minerals are albite, calcite, and quartz. The original diorite, which probably contained an oligoclase-albite, has been so thoroughly altered that it is difficult to establish its exact character. The metasomatic processes of the Alaska gold-quartz veins, especially the Treadwell dikes, are described below in more detail.
The topographic features of this region permit the generalization that the vertical range of the deposits is over 4,000 feet. They have been followed 1,000 feet below sea level, and typical veins are found in the same regions at elevations of 3,000 feet or more above sea level. They were formed shortly after the great intrusion of granodiorite, and the vertical range now accessible must have been many thousands of feet below the surface of the earth at the time of the ore deposition.

Metasomatic Processes in Veins of Southeastern Alaska

The metasomatic processes of the high-temperature veins have been followed in the deposits of southeastern Alaska in more detail than elsewhere. Many of these occurrences stand, however, near the California gold-quartz veins, which are considered to represent the lower limit of the veins formed at intermediate temperature.

The facts that the Alaska veins contain abundant pyrrhotite and some tourmaline and magnetite and that the altered country rock contains biotite show that in many parts of the region the temperature of deposition was high. Albitation is a common process and appears to be independent of the amount of sodium in the country rock. It takes place not only in albite diorite, where it might be interpreted as a mass reaction, but also in normal diorite, gabbro, and amphibolite.

Adjacent to the crosscutting fissure veins of the Berners Bay district the metasomatic action is, as shown by Knopf, very similar to that in the California gold belt. Dolomite, sericite, albite, and pyrite are the principal new minerals formed in the rock.

The Treadwell mine is working large mineralized dikes of albite diorite in slates and greenstones. According to Spencer the original rock contained albite-oligoclase, microperthite, hornblende, and biotite, the latter two minerals in small amounts. The altered rock contains abundant albite, mostly developed by the replacement of microperthite, also quartz, calcite, muscovite, hornblende, rutile, epidote, magnetite, and pyrite. Albite is also formed as narrow veinlets, although most of the veinlets con-

sist of calcite and quartz. The composition of the altered rock differs considerably from place to place. Spencer holds that sodium has been added to the rock, together with carbon dioxide and sulphur. Calcium in the rock has been fixed by the carbon dioxide and suffered little leaching. The composition of one of the altered rocks is calculated as follows:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.34</td>
</tr>
<tr>
<td>Albite</td>
<td>84.36</td>
</tr>
<tr>
<td>Anorthite</td>
<td>1.11</td>
</tr>
<tr>
<td>Zoisite</td>
<td>0.91</td>
</tr>
<tr>
<td>Muscovite</td>
<td>3.03</td>
</tr>
<tr>
<td>Calcite</td>
<td>3.80</td>
</tr>
<tr>
<td>Magnesite</td>
<td>0.11</td>
</tr>
<tr>
<td>Siderite</td>
<td>0.57</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.13</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.13</td>
</tr>
<tr>
<td>Pyrite</td>
<td>2.10</td>
</tr>
</tbody>
</table>

98.59

Spencer and Knopf have shown that at several places on the mainland near Juneau dioritic rocks near the veins have been altered to products containing brown mica, probably biotite. Spencer describes the alteration in the Gold Creek district, which results in the development of biotite (I and II in the following table). The mineral composition of the altered rock is calculated as follows: Quartz, 45 per cent; biotite, 22; carbonates, 20; titaniferous magnetite, 10.5; and sulphides, 2.5.

Knopf describes an altered and fresh amphibolite found near the Mendenhall Glacier (analyses III, IV, V), and calculates the mineral composition approximately as follows:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Fresh amphibolite</th>
<th>Altered amphibolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoclase</td>
<td>6.7</td>
<td>. . .</td>
</tr>
<tr>
<td>Albite (mol.)</td>
<td>18.3</td>
<td>39.3</td>
</tr>
<tr>
<td>Actinolite</td>
<td>43.7</td>
<td>. . .</td>
</tr>
<tr>
<td>Biotite</td>
<td>7.9</td>
<td>43.1</td>
</tr>
<tr>
<td>Zoisite</td>
<td>4.5</td>
<td>16.4</td>
</tr>
<tr>
<td>Epidote</td>
<td>18.3</td>
<td>. . .</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

100.0 100.0

By difference.
ANALYSES OF FRESH AND ALTERED ROCKS FROM QUARTZ VEINS OF SOUTHEASTERN ALASKA

(George Steiger, Analyst)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.76</td>
<td>44.69</td>
<td>48.30</td>
<td>52.92</td>
<td>+ 5.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.48</td>
<td>2.25</td>
<td>1.01</td>
<td>0.99</td>
<td>- 0.24</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.98</td>
<td>14.97</td>
<td>13.59</td>
<td>20.53</td>
<td>+17.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.99</td>
<td>0.60</td>
<td>3.12</td>
<td>Trace</td>
<td>- 9.64</td>
</tr>
<tr>
<td>FeO</td>
<td>8.72</td>
<td>7.05</td>
<td>10.44</td>
<td>8.38</td>
<td>- 7.80</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
<td>0.28</td>
<td>+ 0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>9.07</td>
<td>3.92</td>
<td>6.29</td>
<td>2.43</td>
<td>-12.33</td>
</tr>
<tr>
<td>CaO</td>
<td>12.71</td>
<td>10.07</td>
<td>11.09</td>
<td>4.76</td>
<td>-20.00</td>
</tr>
<tr>
<td>BaO</td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.65</td>
<td>2.36</td>
<td>2.16</td>
<td>4.67</td>
<td>+ 6.92</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.20</td>
<td>1.76</td>
<td>1.55</td>
<td>2.96</td>
<td>+ 3.83</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.22</td>
<td>0.36</td>
<td>0.00</td>
<td>0.18</td>
<td>+ 0.34</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.06</td>
<td>0.20</td>
<td>2.06</td>
<td>1.58</td>
<td>- 2.25</td>
</tr>
<tr>
<td>ZrO₂</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>None</td>
<td>8.47</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.12</td>
<td>0.26</td>
<td>0.26</td>
<td>0.57</td>
<td>+ 0.86</td>
</tr>
<tr>
<td>S</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeS₂</td>
<td></td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₃S₄</td>
<td></td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less O</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100.16 | 99.78 | 100.12 | 100.25 | -16.80

I. Green diorite, Gold Creek. Contains about 75 per cent. green hornblende; remainder feldspar with some quartz.
II. Brown diorite, Ebner mine, Gold Creek.
V. Gains and losses in grams in the alteration of 100 c.c. of amphibolite to same volume of altered product.

These changes differ greatly from those noted along fissure veins of the more ordinary type. In the first place, they include actual dehydration and distinct additions of aluminum, sodium, and potassium, the alcalies having doubled in quantity. In both localities ferric oxide is almost wholly removed, while there is some decrease in the ferrous oxide. Beyond this the two sets of
analyses are dissimilar, for, while one indicates 20 per cent. of carbonates, the other is entirely without carbon dioxide. As a consequence the first has retained much more calcium and magnesium than the second. As to minerals the rock rich in carbonate contains biotite, titaniferous magnetite, and sulphides; the one without carbonates yields albite, biotite, and zoisite, and Knopf considers that apatite has been formed in it. The biotite is in flakes or tufted aggregates and is intensely pleochroic.

It is characteristic of the deep-seated veins that actinolite is unstable, while biotite, zoisite, and ilmenite were developed under the influence of the vein-forming solutions. It is believed that the solutions were hot and ascending and that they carried both sodium and potassium, besides phosphorus and sulphur.

A similar development of biotite has been noted in the Kolar gold fields in Mysore, India,¹ which are very productive and are worked to a depth of 4,000 feet. The veins, which are probably of pre-Cambrian age are contained in crystalline schists. The gangue is a glassy quartz with native gold and a small amount of pyrite, pyrrhotite, arsenopyrite, etc. Some tourmaline is present. The veins contain pitching pay shoots in which the ore is 5 feet wide, averaging $20 to $30 per ton in the deepest levels.

The Gold-Telluride Veins of Western Australia²

Western Australia is an arid tableland of moderate elevation surmounted by short and low ridges (Fig. 217). Crystalline schists and granites are the principal rocks. The schists extend with general north-south strike and vertical or steep dip across the whole central part of the state and consist largely of amphibolites, massive or foliated, which have been derived by metamorphism from a basic rock—diorite, gabbro, or diabase. There

² A. Gibb Maitland, *Bulls.* 4, 15, and 20, Geol. Survey, W. A.
 C. F. V. Jackson, *Bulls.* 13 and 18, Geol. Survey, W. A.
 E. S. Simpson, *Bull.* 6, Geol. Survey, W. A.
are also highly altered sedimentary rocks such as quartzites and slates; more rarely limestones. At Kalgoorlie, for example, slates are intimately associated with amphibolites.

Granitic rocks, in part gneissoid, also occur extensively in the complex of crystalline schists. Lenticular masses of amphibolite

Fig. 217.—Geological map of Western Australia. Scale 1 inch = 330 miles.

are contained in the granitic rocks and vice versa, so that the sequence of the rocks is not always clearly apparent. Maitland believes that many of the granitic rocks are intrusive into the amphibolites.

The age of the rocks is not definitely known, but is considered pre-Cambrian. Toward the northwest coast the old rocks dis-
HIGH-TEMPERATURE DEPOSITS

appear beneath transgressing horizontal Carboniferous limestones. In the Pilbara district the schists are unconformably overlain by the Nullagine series of sandstones, conglomerates, and limestones, with associated effusives. Maitland assigns this series provisionally to the Cambrian, but it contains no fossils.

The gold deposits are contained chiefly in the amphibolites but also, though less commonly, in the granitic rocks. Maitland says:

All the important auriferous areas occur within or near the schistose rocks, and they occupy a large area extending from the south coast . . . to the northwest coast, over about 14° of latitude. The auriferous belts exceed 20 miles in width in places.

The center of mining activity is at Kalgoorlie, about 350 miles east of Perth. From the mines within the so-called "Golden Mile" at that place, some of which are now 2,800 feet deep, the larger part of the output of Western Australia has been derived, although other mines north and northwest of Kalgoorlie now contribute a considerable share. The most prominent among these outside mines are the Westralia-Mt. Morgan and Sons of Gwalia, in the Mt. Margaret gold field, and the Great Fingall, in the Murchison gold field, 300 miles northwest of Kalgoorlie. The total gold production of Western Australia from 1886 to 1912, inclusive, is about $544,000,000, the annual yield, which is gradually decreasing, being now about $27,000,000. The yield of the Kalgoorlie mines since discovery is about $260,000,000.

The geologists of Western Australia distinguish two principal modes of occurrence of gold-bearing lodes.

1. The normal quartz veins usually occur in the amphibolite or along the contact of granitic rocks and amphibolite. Most of the veins conform in strike and dip with the steeply dipping schists. The veins are usually short or branched and curved, and the quartz has a tendency to form lenticular ore-bodies. The minerals accompanying the native gold are galena, blende, pyrrhotite, chalcopyrite, arsenopyrite, stibnite, bismuthinite, pyrite, scheelite, chlorite, calcite, and sericite. In addition tourmaline is reported from one mine, the Sons of Gwalia.

Most of the deposits of this class have probably been formed by the filling of open cavities; the veins are often bent, corrugated, and deformed. At Mt. Morgan the quartz bodies form solid pipes of lenticular section, the main axes of which dip 45° to the
south. The ore-shoots within these lenses also have a southerly trend.

2. The quartz lenses are at many places surrounded by altered country rock; where this rock prevails, transitions are formed to the second class or replacement deposits, to which the name "lode formations" is given.¹ Karl Schmeisser, in "Die Goldfelder Australasiens," described them as "zusammengesetzte Gänge," or composite veins. Simpson describes them as follows:

A lode formation may be defined as a more or less vertical zone of rock, usually continuous with the surrounding rock and of similar origin, but distinct from it in carrying metallic ores disseminated through it in payable quantities and, as a rule, characterized by strong foliation. The typical lode formations probably owe their origin to a shearing action having crushed and foliated portions of a rock mass in a certain definite direction, producing a more or less well-defined band of rock through which, by virtue of the foliation, mineral-bearing solutions or vapors can have free circulation. In consequence of this, mineral deposits are formed within the rock, usually but not necessarily extending over the whole of the foliated zone, but seldom beyond it, and having no definite boundaries horizontally or vertically other than those determined by the decrease of the assay value of the rock in any one direction.

In the southern portion of the Kalgoorlie belt the rocks consist mainly of amphibolites (altered in various ways, but largely into massive chloritic rock and chlorite schist), together with some smaller bodies of porphyrite, felsite, graphitic slate, and quartzite. The lode formations consist almost entirely of vertical or steeply inclined zones of chlorite schists or foliated greenstone, often passing insensibly into unaltered greenstone on either side, but sometimes showing an irregular boundary. They vary in width from 2 or 3 feet up to 80 feet.

The minerals of the second type of deposits include native gold and tellurides, such as calaverite and coloradoite (telluride of mercury). Pyrite is abundant, but is almost always finely divided, in contrast to the tellurides, which are often massive. Accessory minerals are chalcopyrite, zinc blende, galena, pyragyrite, enargite, löllingite, fluorite, magnetite, rutile, calcite, dolomite, siderite, ankerite, sercite, chlorite, and roscoelite.² To these tourmaline and albite should be added. The ore-bodies, as shown by H. C. Hoover, form lenticular bodies. They have usually a rich core from which the gold content decreases outward,

¹ E. S. Simpson, Bull. No. 6, Geol. Survey West. Aust., p. 22.
and the lenses are of large dimensions. As to structure, there is considerable similarity between the veins of Western Australia and those of the southern Appalachian region in the United States. Mining operations have attained a depth of 2,400 feet, and at this depth some of the mines are still in ore. The chief mines at Kalgoorlie are the Great Boulder, Ivanhoe, Horseshoe, Perseverance, Oroya-Brownhill, Associated, and Lake View Consolidated.

The ore varies from a dark-green, distinctly chloritic foliated schist, as in the Oroya-Brownhill mine, to pale-green sericite schists and to banded or massive dark rocks, flinty in places and ranging from dark green to gray or brown. Small specks of pyrite are distributed through the ores, which contain bright-yellow gold associated with much pale-yellow calaverite and black, lustrous coloradoite with semi-conchoidal fracture. In places the tellurides and gold have developed as seams several centimeters thick, in joint planes crossing the schistosity. The oxidized zone is from a few feet to 200 feet deep. Some geologists believe that secondary tellurides have enriched the lodes just below the oxidized zone.

The metasomatic processes in the gold-bearing deposits of Western Australia\(^1\) show considerable similarity to those of certain parts of the California gold-quartz veins and Alaska. The presence of magnetite and tourmaline in the ores allies them with the high-temperature veins.

In Western Australia, as in Alaska, there have been local differences in the processes of alteration. In the Pilbara gold field\(^2\) the granite next to the vein is altered to a greenish-gray rock, the calcium, magnesium, and sodium having been largely removed and the potassium considerably increased. It contains no carbonates. The course of alteration is entirely similar to that of many deposits found at intermediate depths in the Cordilleran region of the United States.

At Kalgoorlie, on the other hand, albite and carbonates are the principal products. The unaltered rock consists of an amphibolite containing amphibole, chlorite, zoisite, and albite. The altered rocks forming the gold-bearing lode contain chlorite, newly formed albite, calcite, dolomite, siderite, tourmaline, seri-

1 W. Lindgren, Metasomatic processes in the gold deposits of Western Australia, *Econ. Geol.*, vol. 1, pp. 530–544, 1905.

cite, roscoelite, fuchsite (?), magnetite, specularite, and nests and lenses of fine-grained quartz. The carbonate grains inclose irregular masses of tellurides and coarse gold, but the larger masses of calaverite also contain rhombohedrons of carbonates. Crystals of magnetite embedded in tellurides are reported. E. S. Simpson has shown that the ores are really derived from amphibolites by replacement. The replacement is irregular, albite, quartz, or carbonates alternately predominating.

The character of alteration is shown by the following analyses:

<table>
<thead>
<tr>
<th></th>
<th>3231</th>
<th>1936</th>
<th>206</th>
<th>1753</th>
<th>1751</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.86</td>
<td>57.72</td>
<td>51.27</td>
<td>46.94</td>
<td>42.01</td>
</tr>
<tr>
<td>Al₄O₇</td>
<td>14.91</td>
<td>9.68</td>
<td>13.85</td>
<td>12.49</td>
<td>8.42</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>11.13</td>
<td>6.49</td>
<td>1.54</td>
<td>0.33</td>
<td>2.45</td>
</tr>
<tr>
<td>FeO</td>
<td>11.13</td>
<td>9.17</td>
<td>2.63</td>
<td>9.20</td>
<td>15.76</td>
</tr>
<tr>
<td>MgO</td>
<td>7.65</td>
<td>1.63</td>
<td>4.18</td>
<td>3.56</td>
<td>1.67</td>
</tr>
<tr>
<td>CaO</td>
<td>12.19</td>
<td>5.05</td>
<td>6.40</td>
<td>6.43</td>
<td>7.07</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.58</td>
<td>3.92</td>
<td>1.78</td>
<td>1.84</td>
<td>2.62</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.19</td>
<td>0.12</td>
<td>2.37</td>
<td>2.57</td>
<td>1.15</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.04</td>
<td>0.16</td>
<td>0.40</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>1.51</td>
<td>0.13</td>
<td>0.23</td>
<td>0.14</td>
<td>0.81</td>
</tr>
<tr>
<td>TiO₂</td>
<td>None</td>
<td>None</td>
<td>8.02</td>
<td>13.41</td>
<td>15.65</td>
</tr>
<tr>
<td>CO₂</td>
<td>Trace</td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Trace</td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te₂O₅</td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeS₂</td>
<td>0.90</td>
<td>0.09</td>
<td>Trace</td>
<td>0.32</td>
<td>0.41</td>
</tr>
</tbody>
</table>

100.18 98.51 101.30 99.87 99.22

Analysis 3231 is probably fairly representative of many amphibolites of Western Australia. It contains no free quartz and is rich in lime and iron. There is very little potash, and only 2.58 per cent. of soda.

The rock represented by analysis 1936 is somewhat more altered, but the proportion of alkalies is about the same. It contains about 4 per cent. of carbonates and probably about 20 per cent. of free secondary quartz.

The last three analyses may be roughly calculated as shown in the accompanying table:

<table>
<thead>
<tr>
<th>PROBABLE MINERAL COMPOSITION OF ORES FROM KALGOORLIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Quartz</td>
</tr>
<tr>
<td>Chlorite</td>
</tr>
<tr>
<td>Albite</td>
</tr>
<tr>
<td>Sericite</td>
</tr>
<tr>
<td>CaCO₃</td>
</tr>
<tr>
<td>MgCO₃</td>
</tr>
<tr>
<td>FeCO₃</td>
</tr>
<tr>
<td>MnCO₃</td>
</tr>
<tr>
<td>Pyrite</td>
</tr>
<tr>
<td>Magnetite (?)</td>
</tr>
<tr>
<td>TiO₂</td>
</tr>
<tr>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Hygroscopic water</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

At first glance the analyses of the altered rocks do not show very great changes so far as bases and silica are concerned. The principal differences are in the added carbon dioxide of the altered
The topographic features of this region permit the generalization that the vertical range of the deposits is over 4,000 feet. They have been followed 1,000 feet below sea level, and typical veins are found in the same regions at elevations of 3,000 feet or more above sea level. They were formed shortly after the great intrusion of granodiorite, and the vertical range now accessible must have been many thousands of feet below the surface of the earth at the time of the ore deposition.

Metasomatic Processes in Veins of Southeastern Alaska

The metasomatic processes of the high-temperature veins have been followed in the deposits of southeastern Alaska in more detail than elsewhere. Many of these occurrences stand, however, near the California gold-quartz veins, which are considered to represent the lower limit of the veins formed at intermediate temperature.

The facts that the Alaska veins contain abundant pyrrhotite and some tourmaline and magnetite and that the altered country rock contains biotite show that in many parts of the region the temperature of deposition was high. Albization is a common process and appears to be independent of the amount of sodium in the country rock. It takes place not only in albite diorite, where it might be interpreted as a mass reaction, but also in normal diorite, gabbro, and amphibolite.

Adjacent to the crosscutting fissure veins of the Berners Bay district the metasomatic action is, as shown by Knopf, very similar to that in the California gold belt. Dolomite, sericite, albite, and pyrite are the principal new minerals formed in the rock.

The Treadwell mine is working large mineralized dikes of albite diorite in slates and greenstones. According to Spencer\(^1\) the original rock contained albite-oligoclase, microperthite, hornblende, and biotite, the latter two minerals in small amounts. The altered rock contains abundant albite, mostly developed by the replacement of microperthite, also quartz, calcite, muscovite, hornblende, rutile, epidote, magnetite, and pyrite. Albite is also formed as narrow veinlets, although most of the veinlets con-

sist of calcite and quartz. The composition of the altered rock differs considerably from place to place. Spencer holds that sodium has been added to the rock, together with carbon dioxide and sulphur. Calcium in the rock has been fixed by the carbon dioxide and suffered little leaching. The composition of one of the altered rocks is calculated as follows:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.34</td>
</tr>
<tr>
<td>Albite</td>
<td>84.36</td>
</tr>
<tr>
<td>Anorthite</td>
<td>1.11</td>
</tr>
<tr>
<td>Zoisite</td>
<td>0.91</td>
</tr>
<tr>
<td>Muscovite</td>
<td>3.03</td>
</tr>
<tr>
<td>Calcite</td>
<td>3.80</td>
</tr>
<tr>
<td>Magnesite</td>
<td>0.11</td>
</tr>
<tr>
<td>Siderite</td>
<td>0.57</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.13</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.13</td>
</tr>
<tr>
<td>Pyrite</td>
<td>2.10</td>
</tr>
</tbody>
</table>

98.59

Spencer and Knopf have shown that at several places on the mainland near Juneau dioritic rocks near the veins have been altered to products containing brown mica, probably biotite. Spencer describes the alteration in the Gold Creek district, which results in the development of biotite (I and II in the following table). The mineral composition of the altered rock is calculated as follows: Quartz, 45 per cent; biotite, 22; carbonates, 20; titaniferous magnetite, 10.5; and sulphides, 2.5.

Knopf describes an altered and fresh amphibolite found near the Mendenhall Glacier (analyses III, IV, V), and calculates the mineral composition approximately as follows:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Fresh amphibolite</th>
<th>Altered amphibolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoclase (mol.)</td>
<td>6.7</td>
<td>...</td>
</tr>
<tr>
<td>Albite (mol.)</td>
<td>18.3</td>
<td>39.3</td>
</tr>
<tr>
<td>Actinolite</td>
<td>43.7</td>
<td>...</td>
</tr>
<tr>
<td>Biotite¹</td>
<td>7.9</td>
<td>43.1</td>
</tr>
<tr>
<td>Zoisite</td>
<td>4.5</td>
<td>16.4</td>
</tr>
<tr>
<td>Epidote</td>
<td>18.3</td>
<td>...</td>
</tr>
<tr>
<td>Apatite</td>
<td>0.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

100.0

By difference.
Analyses of Fresh and Altered Rocks from Quartz Veins of Southeastern Alaska

(George Steiger, Analyst)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.76</td>
<td>44.69</td>
<td>48.30</td>
<td>52.92</td>
<td>+ 5.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.48</td>
<td>2.25</td>
<td>1.01</td>
<td>0.99</td>
<td>- 0.24</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.98</td>
<td>14.97</td>
<td>13.59</td>
<td>20.53</td>
<td>+ 17.70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.99</td>
<td>0.60</td>
<td>3.12</td>
<td>Trace</td>
<td>- 9.64</td>
</tr>
<tr>
<td>FeO</td>
<td>8.72</td>
<td>7.05</td>
<td>10.44</td>
<td>8.38</td>
<td>- 7.80</td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.14</td>
<td>0.25</td>
<td>0.28</td>
<td>+ 0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>9.07</td>
<td>3.92</td>
<td>6.29</td>
<td>2.43</td>
<td>- 12.33</td>
</tr>
<tr>
<td>CaO</td>
<td>12.71</td>
<td>10.07</td>
<td>11.09</td>
<td>4.76</td>
<td>- 20.00</td>
</tr>
<tr>
<td>BaO</td>
<td>Trace</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.65</td>
<td>2.36</td>
<td>2.16</td>
<td>4.67</td>
<td>+ 6.92</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.20</td>
<td>1.76</td>
<td>1.55</td>
<td>2.96</td>
<td>+ 3.83</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.22</td>
<td>0.38</td>
<td>0.00</td>
<td>0.18</td>
<td>+ 0.34</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>2.06</td>
<td>0.20</td>
<td>2.06</td>
<td>1.58</td>
<td>- 2.25</td>
</tr>
<tr>
<td>ZrO₂</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>None</td>
<td>8.47</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.12</td>
<td>0.26</td>
<td>0.26</td>
<td>0.57</td>
<td>+ 0.86</td>
</tr>
<tr>
<td>S</td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>FeS</td>
<td>0.04</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂S₃</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less O</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.16</td>
<td>99.78</td>
<td>100.12</td>
<td>100.25</td>
<td>-16.80</td>
</tr>
</tbody>
</table>

I. Green diorite, Gold Creek. Contains about 75 per cent. green hornblende; remainder feldspar with some quartz.

II. Brown diorite, Ebner mine, Gold Creek.

V. Gains and losses in grams in the alteration of 100 c.c. of amphibolite to same volume of altered product.

These changes differ greatly from those noted along fissure veins of the more ordinary type. In the first place, they include actual dehydration and distinct additions of aluminum, sodium, and potassium, the alkalis having doubled in quantity. In both localities ferric oxide is almost wholly removed, while there is some decrease in the ferrous oxide. Beyond this the two sets of
analyses are dissimilar, for, while one indicates 20 per cent. of carbonates, the other is entirely without carbon dioxide. As a consequence the first has retained much more calcium and magnesium than the second. As to minerals the rock rich in carbonate contains biotite, titaniferous magnetite, and sulphides; the one without carbonates yields albite, biotite, and zoisite, and Knopf considers that apatite has been formed in it. The biotite is in flakes or tufted aggregates and is intensely pleochroic.

It is characteristic of the deep-seated veins that actinolite is unstable, while biotite, zoisite, and ilmenite were developed under the influence of the vein-forming solutions. It is believed that the solutions were hot and ascending and that they carried both sodium and potassium, besides phosphorus and sulphur.

A similar development of biotite has been noted in the Kolar gold fields in Mysore, India,1 which are very productive and are worked to a depth of 4,000 feet. The veins, which are probably of pre-Cambrian age are contained in crystalline schists. The gangue is a glassy quartz with native gold and a small amount of pyrite, pyrrhotite, arsenopyrite, etc. Some tourmaline is present. The veins contain pitching pay shoots in which the ore is 5 feet wide, averaging $20 to $30 per ton in the deepest levels.

The Gold-Telluride Veins of Western Australia 2

Western Australia is an arid tableland of moderate elevation surmounted by short and low ridges (Fig. 217). Crystalline schists and granites are the principal rocks. The schists extend with general north-south strike and vertical or steep dip across the whole central part of the state and consist largely of amphibolites, massive or foliated, which have been derived by metamorphism from a basic rock—diorite, gabbro, or diabase. There

2 A. Gibb Maitland, Bulls. 4, 15, and 20, Geol. Survey, W. A.
 C. F. V. Jackson, Bulls. 13 and 18, Geol. Survey, W. A.
 E. S. Simpson, Bull. 6, Geol. Survey, W. A.
are also highly altered sedimentary rocks such as quartzites and slates; more rarely limestones. At Kalgoorlie, for example, slates are intimately associated with amphibolites.

Granitic rocks, in part gneissoid, also occur extensively in the complex of crystalline schists. Lenticular masses of amphibolite

Fig. 217.—Geological map of Western Australia. Scale 1 inch = 330 miles.

are contained in the granitic rocks and vice versa, so that the sequence of the rocks is not always clearly apparent. Maitland believes that many of the granitic rocks are intrusive into the amphibolites.

The age of the rocks is not definitely known, but is considered pre-Cambrian. Toward the northwest coast the old rocks dis-
appear beneath transgressing horizontal Carboniferous limestones. In the Pilbara district the schists are unconformably overlain by the Nullagine series of sandstones, conglomerates, and limestones, with associated effusives. Maitland assigns this series provisionally to the Cambrian, but it contains no fossils.

The gold deposits are contained chiefly in the amphibolites but also, though less commonly, in the granitic rocks. Maitland says:

All the important auriferous areas occur within or near the schistose rocks, and they occupy a large area extending from the south coast... to the northwest coast, over about 14° of latitude. The auriferous belts exceed 20 miles in width in places.

The center of mining activity is at Kalgoorlie, about 350 miles east of Perth. From the mines within the so-called “Golden Mile” at that place, some of which are now 2,800 feet deep, the larger part of the output of Western Australia has been derived, although other mines north and northwest of Kalgoorlie now contribute a considerable share. The most prominent among these outside mines are the Westralia-Mt. Morgan and Sons of Gwalia, in the Mt. Margaret gold field, and the Great Fingall, in the Murchison gold field, 300 miles northwest of Kalgoorlie. The total gold production of Western Australia from 1886 to 1912, inclusive, is about $544,000,000, the annual yield, which is gradually decreasing, being now about $27,000,000. The yield of the Kalgoorlie mines since discovery is about $260,000,000.

The geologists of Western Australia distinguish two principal modes of occurrence of gold-bearing lodes.

1. The normal quartz veins usually occur in the amphibolite or along the contact of granitic rocks and amphibolite. Most of the veins conform in strike and dip with the steeply dipping schists. The veins are usually short or branched and curved, and the quartz has a tendency to form lenticular ore-bodies. The minerals accompanying the native gold are galena, blende, pyrrhotite, chalcopyrite, arsenopyrite, stibnite, bismuthinite, pyrite, scheelite, chlorite, calcite, and sericite. In addition tourmaline is reported from one mine, the Sons of Gwalia.

Most of the deposits of this class have probably been formed by the filling of open cavities; the veins are often bent, corrugated, and deformed. At Mt. Morgan the quartz bodies form solid pipes of lenticular section, the main axes of which dip 45° to the
MINERAL DEPOSITS

south. The ore-shoots within these lenses also have a southerly trend.

2. The quartz lenses are at many places surrounded by altered country rock; where this rock prevails, transitions are formed to the second class or replacement deposits, to which the name “lode formations” is given.¹ Karl Schmeisser, in “Die Goldfelder Australasiens,” described them as “zusammengesetzte Gänge,” or composite veins. Simpson describes them as follows:

A lode formation may be defined as a more or less vertical zone of rock, usually continuous with the surrounding rock and of similar origin, but distinct from it in carrying metallic ores disseminated through it in payable quantities and, as a rule, characterized by strong foliation. The typical lode formations probably owe their origin to a shearing action having crushed and foliated portions of a rock mass in a certain definite direction, producing a more or less well-defined band of rock through which, by virtue of the foliation, mineral-bearing solutions or vapors can have free circulation. In consequence of this, mineral deposits are formed within the rock, usually but not necessarily extending over the whole of the foliated zone, but seldom beyond it, and having no definite boundaries horizontally or vertically other than those determined by the decrease of the assay value of the rock in any one direction.

In the southern portion of the Kalgoorlie belt the rocks consist mainly of amphibolites (altered in various ways, but largely into massive chloritic rock and chlorite schist), together with some smaller bodies of porphyrite, felsite, graphitic slate, and quartzite. The lode formations consist almost entirely of vertical or steeply inclined zones of chlorite schists or foliated greenstone, often passing insensibly into unaltered greenstone on either side, but sometimes showing an irregular boundary. They vary in width from 2 or 3 feet up to 80 feet.

The minerals of the second type of deposits include native gold and tellurides, such as calaverite and coloradoite (telluride of mercury). Pyrite is abundant, but is almost always finely divided, in contrast to the tellurides, which are often massive. Accessory minerals are chalcopyrite, zinc blende, galena, pyragyrite, enargite, lollingite, fluorite, magnetite, rutile, calcite, dolomite, siderite, ankerite, sericite, chlorite, and roscoelite.² To these tourmaline and albite should be added. The ore-bodies, as shown by H. C. Hoover, form lenticular bodies. They have usually a rich core from which the gold content decreases outward,

¹ E. S. Simpson, Bull. No. 6, Geol. Survey West. Aust., p. 22.
and the lenses are of large dimensions. As to structure, there is considerable similarity between the veins of Western Australia and those of the southern Appalachian region in the United States. Mining operations have attained a depth of 2,400 feet, and at this depth some of the mines are still in ore. The chief mines at Kalgoorlie are the Great Boulder, Ivanhoe, Horseshoe, Perseverance, Oroya-Brownhill, Associated, and Lake View Consolidated.

The ore varies from a dark-green, distinctly chloritic foliated schist, as in the Oroya-Brownhill mine, to pale-green sericite schists and to banded or massive dark rocks, flinty in places and ranging from dark green to gray or brown. Small specks of pyrite are distributed through the ores, which contain bright-yellow gold associated with much pale-yellow calaverite and black, lustrous coloradoite with semi-conchoidal fracture. In places the tellurides and gold have developed as seams several centimeters thick, in joint planes crossing the schistosity. The oxidized zone is from a few feet to 200 feet deep. Some geologists believe that secondary tellurides have enriched the lodes just below the oxidized zone.

The metasomatic processes in the gold-bearing deposits of Western Australia\(^1\) show considerable similarity to those of certain parts of the California gold-quartz veins and Alaska. The presence of magnetite and tourmaline in the ores allies them with the high-temperature veins.

In Western Australia, as in Alaska, there have been local differences in the processes of alteration. In the Pilbara gold field\(^2\) the granite next to the vein is altered to a greenish-gray rock, the calcium, magnesium, and sodium having been largely removed and the potassium considerably increased. It contains no carbonates. The course of alteration is entirely similar to that of many deposits found at intermediate depths in the Cordilleran region of the United States.

At Kalgoorlie, on the other hand, albite and carbonates are the principal products. The unaltered rock consists of an amphibolite containing amphibole, chlorite, zoisite, and albite. The altered rocks forming the gold-bearing lode contain chlorite, newly formed albite, calcite, dolomite, siderite, tourmaline, seri-

1 W. Lindgren, Metasomatic processes in the gold deposits of Western Australia, *Econ. Geol.*, vol. 1, pp. 530–544, 1905.

cite, roscoelite, fuchsine (?), magnetite, specularite, and nests and lenses of fine-grained quartz. The carbonate grains inclose irregular masses of tellurides and coarse gold, but the larger masses of calaverite also contain rhombohedrons of carbonates. Crystals of magnetite embedded in tellurides are reported. E. S. Simpson has shown that the ores are really derived from amphibolites by replacement. The replacement is irregular, albite, quartz, or carbonates alternately predominating.

The character of alteration is shown by the following analyses:

ANALYSES OF FRESH AND ALTERED AMPHIBOLITES FROM KALGOORLIE

<table>
<thead>
<tr>
<th></th>
<th>3231</th>
<th>1936</th>
<th>206</th>
<th>1753</th>
<th>1751</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.86</td>
<td>57.72</td>
<td>51.27</td>
<td>46.94</td>
<td>42.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.91</td>
<td>9.68</td>
<td>13.85</td>
<td>12.49</td>
<td>8.42</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>6.49</td>
<td>1.54</td>
<td>0.33</td>
<td>2.45</td>
</tr>
<tr>
<td>FeO</td>
<td>11.13</td>
<td>9.17</td>
<td>2.63</td>
<td>9.20</td>
<td>15.76</td>
</tr>
<tr>
<td>MgO</td>
<td>7.65</td>
<td>1.63</td>
<td>4.18</td>
<td>3.56</td>
<td>1.67</td>
</tr>
<tr>
<td>CaO</td>
<td>12.19</td>
<td>5.05</td>
<td>6.40</td>
<td>6.43</td>
<td>7.07</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.58</td>
<td>3.92</td>
<td>1.78</td>
<td>1.84</td>
<td>2.62</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.19</td>
<td>0.12</td>
<td>2.37</td>
<td>2.57</td>
<td>1.15</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>0.04</td>
<td>0.16</td>
<td>0.40</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>H₂O⁺</td>
<td>1.51</td>
<td>1.51</td>
<td>0.22</td>
<td>0.30</td>
<td>0.67</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.22</td>
<td>1.13</td>
<td>0.23</td>
<td>0.14</td>
<td>0.81</td>
</tr>
<tr>
<td>CO₂</td>
<td>None</td>
<td>1.84</td>
<td>8.02</td>
<td>13.41</td>
<td>15.65</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
<td>Trace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeS₂</td>
<td>0.90</td>
<td>0.09</td>
<td>Trace</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100.18 | 98.51 | 101.30 | 99.87 | 99.22

Analysis 3231 is probably fairly representative of many amphibolites of Western Australia. It contains no free quartz and is rich in lime and iron. There is very little potash, and only 2.58 per cent. of soda.

The rock represented by analysis 1936 is somewhat more altered, but the proportion of alkalies is about the same. It contains about 4 per cent. of carbonates and probably about 20 per cent. of free secondary quartz.

The last three analyses may be roughly calculated as shown in the accompanying table:

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>206</th>
<th>1753</th>
<th>1751</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>29.52</td>
<td>25.20</td>
<td>21.44</td>
<td>FeO.4MgO.Al₂O₃.3SiO₂.4H₂O.</td>
</tr>
<tr>
<td>Chlorite</td>
<td>6.86</td>
<td>2.76</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>Albite</td>
<td>15.12</td>
<td>15.70</td>
<td>22.12</td>
<td></td>
</tr>
<tr>
<td>Sericite</td>
<td>19.54</td>
<td>21.52</td>
<td>9.58</td>
<td>K₂O.3Al₂O₃.6SiO₂.2H₂O.</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>11.42</td>
<td>11.50</td>
<td>12.61</td>
<td></td>
</tr>
<tr>
<td>MgCO₃</td>
<td>4.20</td>
<td>5.38</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>FeCO₃</td>
<td>2.32</td>
<td>14.60</td>
<td>23.20</td>
<td></td>
</tr>
<tr>
<td>MnCO₃</td>
<td></td>
<td></td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td>8.41</td>
<td>2.25</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Magnetite (?)</td>
<td>0.47</td>
<td>0.47</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.23</td>
<td>0.14</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.14</td>
<td>0.61</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Hygroscopic water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | 101.30 | 100.13 | 99.19 |

At first glance the analyses of the altered rocks do not show very great changes so far as bases and silica are concerned. The principal differences are in the added carbon dioxide of the altered
rocks, ranging from 8 to nearly 16 per cent., as well as in the reversal of the relations of the alkalies. In the fresh amphibolites of Western Australia there is generally only a fraction of 1 per cent. of potash and 2 to 4 per cent. of soda, whereas in the altered rocks the soda averages only 2.5 per cent. and the potash has been increased to an average of 1.5 per cent.

There is less combined water in the altered rocks than in the fresh, owing to the replacement of chlorite carrying about 13 per cent. of water by sericite carrying only 4 or 5 per cent.

The metasomatic processes consist, then, in the introduction of carbon dioxide and sulphur, with gold, mercury, and tellurium, and the attendant development of carbonates at the expense of the lime, magnesia, and iron contained in the chlorite and amphibole and of pyrite at the expense of the same minerals and the black iron ores. The silica set free by the decomposition of the silicate has been deposited as quartz where it was not needed for the formation of the new silicates, sericite and albite. The sericite does not prevail to the great extent usual in many silicate rocks adjoining gold-bearing veins; this appears to be due to the presence in the original amphibolites of large amounts of albite, which evidently has been subjected to a process of solution and redeposition, just as in the metasomatic granites of Cripple Creek the orthoclase is dissolved and redeposited as pure adularia by the metalliferous solutions. That albite is present in the altered rock is clear, but just how much of it is original and how much newly formed cannot be said with certainty. The chlorite is in part residual, but the microscope shows definitely that some new chlorite also crystallizes in the quartz. Abundant carbonates form during the replacement; calcite and siderite predominate and the presence of large amounts of the latter mineral is noteworthy. The altered rocks seem to have lost some iron, but the lime and magnesia have probably changed little.

The Copper-Gold-Tourmaline Deposits

In several parts of the world the association of chalcopyrite with tourmaline is fairly common. In addition the ores contain more or less gold, also some silver. Other minerals occasionally present are specularite, rutile, pyrite, pyrrhotite, molybdenite, bismuthinite, wolframite, tetrahedrite, quartz, siderite, fluorite, and biotite. An abundance of anhydrite has been shown in one occurrence.
The copper-tourmaline veins of Cornwall, which also carry cassiterite, establish the transition from these deposits to the tin-bearing veins. Other occurrences, like those of Meadow Lake, California, and the Passagem, Brazil, emphasize the transition to the gold-bearing quartz veins.

The deposits are in part fissure veins, in part replacements in brecciated zones. In both modes of occurrence the country rock is subject to intense metasomatic changes, and tourmaline is developed by replacement, often for a considerable distance from the solution ducts. The normal form of alteration in feldspathic rocks is sericitization, sometimes accompanied near the veins by silicification. The feldspars are replaced by sericite, and both feldspar and quartz are penetrated by acicular tourmaline prisms, usually of bluish-gray color. Chalcopyrite, pyrite, and sometimes other sulphides also develop in the altered rock. The final product, unless the tourmalinization is unusually intense, lacks the coarsely crystalline structure of the typical greisen; the mica foils are usually small.

A number of tourmaline-copper deposits in Chile have been described, though the geological features of the occurrences are imperfectly known. They appear to be connected with basic rocks—gabbro, diabase, porphyrite, diorites, etc.¹

Von Groddeck has described the formerly important Tamaya mines, where veins containing copper ores cut diabase and porphyrite. The tourmaline is not only present in the filling of the principal vein, which dips 35° and is from 3 to 6 feet thick, but is also abundantly developed in the calcitic, chloritic, and micaeous altered country rock. Asbestos and tremolite (cummingtonite) are also mentioned.

Similar veins at Las Condes, 90 miles east of Santiago, have been described by A. W. Stelzner. The rocks are granite and altered andesites. The vein filling consists of pyrite, chalcopyrite, quartz, and a loose mass of tourmaline needles and minute crystals of zircon, octahedrite, and specularite. The country rock is bleached and impregnated with pyrite and tourmaline. At Peralillo, 31 kilometers from Santiago, a similar pyrite-

A. W. Stelzner, Zeitschr. f. prakt. Geol., 1897, pp. 41–53.
chalcopyrite vein in diorite carries tourmaline, molybdenite, scheelite, and cupro-scheelite.

In the Cordilleran region of the United States there are a number of similar deposits. The occurrence first described is that of the gold-tourmaline veins at Meadow Lake, in the otherwise barren region of the high Sierra in Nevada County, California. Here granitic and dioritic rocks contain replacement veins reaching 12 feet or more in thickness and carrying pyrite, chalcopyrite, arsenopyrite, and zinc blende in a gangue of quartz and fine-grained tourmaline, with which are usually associated some epidote, biotite, sericite, and chlorite. The ore carries a few dollars' worth of gold to the ton, but is difficult to treat (Fig. 53.)

![Figure 218: Thin section of ore from the Copperopolis mine, eastern Oregon. q. Quartz; t, tourmaline; black, chalcopyrite. Magnified 28 diameters.](image)

At Cowles, on the upper Pecos River, in New Mexico, a copper deposit carrying some gold has been opened in a belt of amphibolite embedded in pre-Cambrian granite. The deposit, the croppings of which are covered unconformably by Paleozoic limestone, contains metasomatically developed pyrite, chalcopyrite, and tourmaline.

In the Blue Mountains of Oregon the Copperopolis deposit consists of a brecciated and silicified diabase with tourmaline and chalcopyrite (Fig. 218).

The most productive deposit of this type occurs at the Cactus mine, in the San Francisco Range, in southern Utah. This deposit is contained in a brecciated zone in post-Paleozoic monzonite; it is in places 200 feet wide and at least 900 feet long. The ores have been followed to a depth of 800 feet. Brown tourmaline, with quartz, pyrite, and chalcopyrite, coats the fragments of brecciated rock, which is sericitized and contains some metasomatically developed tourmaline. Other minerals, formed somewhat later than the tourmaline, are siderite, anhydrite, specularite, and tetrahedrite; these also are associated with chalcopyrite, the development of which continued during the whole epoch of mineralization. The ores are of low grade. In 1908, 177,000 tons of ore were mined which, when concentrated and smelted, yielded copper, 2 per cent.; silver, 0.2 ounce, and gold, 0.01 ounce per ton.

In the gold-copper deposits of Rossland, B. C., which are related to this group, there is only a little tourmaline, but a great development of biotite in the wall rock, adjacent to the veins.

The ores occur in replacement veins (Fig. 219) in monzonite and carry pyrrhotite,chalcopyrite, and arsenopyrite, all containing gold, but not amenable to amalgamation. The veins were formed within the epoch of intrusion, for they are intersected by a system of basic dikes, related to camptonite.

The Lead—Silver—Tourmaline Veins

The combination of galena and tourmaline is rare, galena being generally found in deposits formed at lower temperatures. Recent investigations by A. Knopf for the United States Geological Survey show that many of the veins in the contact zone and in the igneous rock of the Helena batholith of quartz monzonite in Montana belong to this unusual group. The Alta vein is the best known and the richest of these deposits; it is supposed to have yielded over $32,000,000 in lead and silver and it was thus one of the greatest lead-silver deposits of the world. The monzonite contains a little tourmaline, its aplite dikes somewhat more, and the quartz veins are rich in this mineral. In the same district H. V. and A. N. Winchell observed a pyrite-tourmaline vein, the ore of which contains mainly silver with some copper and lead minerals.

The Cobalt—Tourmaline Veins

The association of tourmaline with nickel and cobalt minerals in San Juan, Department Treirina, Chile, has been described by O. Stutzer. In the same paper he gives a general review of the tourmaline veins.

Origin of Tourmaline Veins

That these tourmaline veins belong to the high-temperature series is rather plainly indicated by the association of minerals. Neither tourmaline nor specularite is known to form in mineral deposits, except at higher temperatures than existed in the ordinary fissure veins. The frequent presence of biotite points in the same direction. The geological evidence confirms this conclusion, because, so far as known, the deposits all occur in

1 The tourmalinic silver-lead type of ore deposit, Econ. Geol., vol. 8, 1913, pp. 105–118.
deeply eroded districts of intrusive rocks and usually in the intrusives themselves.

At the same time the temperature was probably lower than that prevailing during the deposition of the cassiterite veins; this is suggested by the development in Cornwall, where the tourmaline appears in the cooler zones of the slates above the granite, and the tendency to sericitic alteration as distinguished from the formation of the typical greisen points in the same direction.

The Copper-Bearing Veins Allied to Contact-Metamorphic Deposits

In regions containing contact-metamorphic copper deposits it is not altogether unusual to find pyritic veins which exert an alteration on adjoining limestone similar to contact metamorphism, indicating that the vein-forming solutions possessed a high temperature.

The veins of cupriferous pyrite at Clifton, Arizona, which intersect porphyry and contact-metamorphic limestone, are probably in part of this kind, for it was observed in many places that where they cut across limestone, tremolite and magnetite had developed adjacent to the vein. The primary deposits contain little copper but are enriched by surface waters.

Several occurrences of this kind are reported from New Mexico, particularly from the Sierra Hachita district.

One of the best instances is that of Massa Marittima, in Tuscany, described by B. Lotti and V. Novarese. The great veins carry chalcopyrite, pyrite, galena, and zinc blende and cut across Eocene limestone and clay shales. The limestone, but not the shale, is replaced near the vein by pyroxene, epidote, quartz, and sulphides. Some bismuth and a little tin are present in the ore. The mineralization is believed to be due to the intrusion of a granite of Tertiary age which on the surface does not come within several miles of the deposit. The whole region, however, gives evidence of strong mineralization.

CHAPTER XXV

DEPOSITS FORMED BY PROCESSES OF IGNEOUS METAMORPHISM

INTRODUCTION

General Features.—In many geological provinces and during all ages molten magmas have invaded older rocks without reaching the surface. The intrusive magma cooled slowly and crystallized either as rocks with coarsely granular texture, such as granite, diorite, syenite, monzonite, gabbro, or diabase, or as the corresponding porphyries with holocrystalline groundmass. By means of uplift and subsequent erosion, these igneous rocks become exposed at the surface. If the rocks bordering the intrusives are crystalline schists or older igneous rocks, they seldom show much alteration along the contacts, but where they are of sedimentary origin, like sandstone, shale, and limestone, considerable metamorphism is effected in them for a varying distance from the contact. In many places deposits of metallic ores or other useful minerals occur at these contacts, particularly where the older rock consists of limestone.

The form of such deposits is irregular and bunchy, but many of them are tabular by reason of following the contact (Fig. 220) or certain strata in the intruded rocks favorable for deposition (Fig. 221). Their mode of occurrence is almost wholly metamorphic—that is, they are formed by replacement of the enclosing rock.

The mineral association is characteristic: Chalcopyrite, pyrite, pyrrhotite, zinc blende, and molybdenite are the most common sulphides; magnetite and specularite the most common oxides. The oxides and sulphides usually crystallize together. The most prominent gangue minerals are various silicates of calcium, magnesium, iron, and aluminum, which have been partially furnished by the carbonate rocks and shales. Among these so-called contact-metamorphic silicates are garnet, epidote, vesuvianite, diopside, tremolite, and wollastonite. Recrystallized, sometimes exceedingly coarse calcite is abundant; quartz is rarely present in large amounts.

660
Some of these deposits contain valuable non-metallic minerals, like graphite or corundum, but ordinarily they are mined for the base metals. In the main the ore and minerals are of simple composition and formulas. The association indicates an origin at high temperature, perhaps from 300° to 600° C. Close to the igneous rock the temperature may have been materially higher.

![Diagram](image)

Fig. 220.—Sketch showing relation of ore zone to granodiorite and limestone, Bullion district, Nevada. *After W. H. Emmons.*

The igneous rock itself may be wholly fresh or it may contain minerals closely allied to those in the deposit itself, such as garnet and epidote, or it may harbor veins and impregnations somewhat later than the altered sedimentary rock at the contact.

History.—In 1865 Bernard von Cotta described the iron deposits of the Banat province of Hungary and expressed the opinion that they were due to the action of intrusive rocks on the adjoining Mesozoic limestone. He also correlated these ores with those of Bogosliowsk, in the Ural Mountains, of Kris-
tiania, in Norway, and of other districts. Von Groddeck,1 however, first recognized them as a definite group to which he gave the name "Kristiania type." He stated that they were produced by contact metamorphism and called them briefly "contact deposits." Some of the examples mentioned by von Groddeck and others are doubtful, and in later text-books the type was rather neglected.

In the last years of the nineteenth century Vogt2 revived the interest in this class by describing the contact-metamorphic deposits of Kristiania in considerable detail from observations by himself and Th. Kjerulf. A little later the deposits at Seven Devils, Idaho3—the first of this type to be noted in the United States—were described, and in a paper on the character and genesis of certain contact deposits4 the type was redefined and a number of examples from the United States were cited. W. P. Blake5 mentioned the frequent occurrence of this type in Arizona.

1 A. von Groddeck, Die Lehre von den Lagerstätten der Erze, Leipzig, 1879, p. 200.
2 J. H. L. Vogt, Zeitschr. f. prakt. Geol., 1894, pp. 177, 464; 1895, p. 154.
3 W. Lindgren, Min. and Sci. Press, vol. 28, 1899, p. 125.
W. H. Weed1 described a number of additional sub-types; W. Lindgren,2 J. F. Kemp,3 S. F. Emmons,4 J. E. Spurr,5 and others described in detail similar deposits in Arizona, New Mexico, and Mexico, and it became evident that this type was far more common than had been suspected. It was found that in many regions intrusive masses were normally accompanied by contact-metamorphic deposits which in some cases were connected by transitions with the swarm of veins that usually surround these igneous bodies as an aureole of metallic treasure. The great importance of this type for the solution of problems related to the genesis of ore deposits became clear to the minds of many investigators. Among recent contributions to the general discussion of these deposits may be mentioned papers by O. Stutzer6 and J. E. Spurr.7

The views expressed in the above-mentioned papers, involving the assignment of the origin of these deposits to the process of contact metamorphism, have not been allowed to pass unchallenged. F. Klockmann8 expressed the opinion that these deposits were simply older accumulations of iron ore, altered at the intrusive contact, and W. O. Crosby9 held that at Washington Camp, Arizona, such bodies were simply the result of the ordinary circulation of meteoric character. As a general explanation neither of these views appears to be tenable.

In Europe many geologists have of late made detailed studies of contact-metamorphic deposits—among them B. Lotti, R. Beck, Loewinson-Lessing, E. Weinschenk, A. Bergeat, and V. M. Goldschmidt.

1 W. H. Weed, Ore deposits near igneous contacts, \textit{Trans.}, Am. Inst. Min. Eng., vol. 33, 1903, pp. 719 \textit{et seq.}
2 W. Lindgren, The copper deposits of the Clifton-Morenci district, \textit{Arizona, Prof. Paper} No. 43, U. S. Geol. Survey, 1905.
4 J. F. Kemp, Ore deposits at the contact of intrusive rocks and limestone, \textit{Econ. Geol.}, vol. 2, 1907, pp. 1–13.
5 S. F. Emmons, Cananea mining district, Mexico, \textit{Econ. Geol.}, vol. 5, 1910, pp. 312–356.
6 J. E. Spurr and G. H. Garrey, Ore deposits of the Velardeña district, Mexico, \textit{Econ. Geol.}, vol. 3, 1908, pp. 688–711.
8 A theory of ore deposition, \textit{Econ. Geol.}, vol. 7, 1912, pp. 485–492.
9 F. Klockmann, \textit{Zeitschr. f. prakt. Geol.}, 1904, pp. 73–85.
CONTACT METAMORPHISM

General Features.—When the subject of contact-metamorphic deposits is approached more closely, a number of puzzling questions present themselves, and it will be necessary to enter a little more deeply into the problem of contact metamorphism. This peculiar action of intrusive igneous bodies upon adjacent sedimentary rocks has been a well-known fact in geology since the days of Durocher (1846), and the processes have been described in much detail. Effusive rocks—that is, lava flows—rarely exert intense metamorphism beyond a baking or hardening of the sediments at the contact or an alteration of included rock fragments. The magmas intruded in sedimentary rocks, on the other hand, are in most cases surrounded by a halo of gradually fading metamorphism which may extend over a width of 1 or 2 miles, although usually much narrower. The immediate contact is ordinarily sharp, with no evidence of melting; only at contacts which were deeply submerged is there evidence of assimilation and extensive injection or feldspathization of the sediments. Slates and shales are ordinarily converted to hard, compact “hornfels”—that is, fine-grained holocrystalline rocks containing biotite, andalusite, staurolite, scapolite, garnet, and feldspar; in extreme cases gneissoid rocks result. This metamorphism gradually diminishes and at some distance the only evidence of change is a knotty texture of the rocks. Sandstones change to quartzite at the contact. Calcereous rocks become highly crystalline marbles and usually develop the contact-metamorphic minerals lime garnet, epidote, diopside, tremolite, vesuvianite, etc. Petrographers generally agree that this mode of metamorphism is due to the heat of the magma aided by a certain amount of rock moisture. According to the older view expressed by Rosenbusch, Zirkel, Brögger, and others, there is little change in composition aside from the expulsion of carbon dioxide from the limestones. The silicates are held to be formed from the impurities contained in the limestone.

It is well known that Rosenbusch1 proposed a way of calculating the original character of a metamorphic rock from its present composition, and in regional metamorphism this is undoubtedly often justified. More recently this thought has

1 Elemente der Gesteinslehre, 2d ed., p. 484.
been followed by J. Barrell in more direct application to contact metamorphism.

G. W. Hawes, however, many years ago pointed out that emanations of boron and silica entered the sediments from the magma, and the introduction of tourmaline, for instance, has often been proved since then; it is in fact admitted even in the older text-books of petrography.

The development of greisen by the action of fluorine vapors on granite is in some of these books regarded as a contact-metamorphic process, but in almost all cases it is really a distinctly later stage. J. S. Flett, for instance, has shown that in Cornwall both tourmaline and topaz, where present on a large scale, have been introduced into rocks already contact-metamorphosed.

Petrographers of the present day, represented, for instance, by Alfred Harker and A. Lacroix, lean strongly toward the view that "it is safe to assume that the water and other volatile constituents actually found in igneous rocks, whether chemically combined or mechanically enclosed, represent only a fraction of what was originally contained in the parent rock magmas. The rest has been lost and in the case of intrusive rocks must have passed into or through the surrounding country rocks. Probably some leakage goes on throughout the process of consolidation, but not with equal freedom at different stages . . . and it is likely that a large part of the volatile constituents is in general retained down to a late stage. Nevertheless, more or less of the water and other gases must pass into the neighboring rocks while these are still heated by the intrusion."

The surrounding rocks of some intrusive bodies are, for instance, permeated for long distances by chlorine solutions, this action resulting in the development of scapolite (Na$_4$Al$_3$Si$_9$O$_{24}$Cl). Just how far the substances liberated from the magma are in the state of perfect gases—that is, above the critical temperature—or in liquid form, is not easy to decide. At the contact the carbonate rocks appear to have been permeable to gases to a remarkable degree.

If we admit that the original magma contained in solution various volatile substances, such as water, carbon dioxide, sulphur, boron, chlorine, and fluorine, it follows that the decrease of pressure caused by its ascent will result in the escape of a large part of these volatile compounds, which will entrain with them various metals also held in solution. The higher the rise of the magma the more complete will be the liberation of these substances. In what form, time, and quantity they will escape depends upon pressure, chemical affinities, and miscibility.

The escape of these substances, as pointed out by Harker, may not have been uniform. A large part was doubtless given off while the magma was still fluid. Another part may have been liberated at the time of consolidation; still another part may have been retained until cooling had advanced considerably. Finally fissures and shattering of the partly consolidated or congealed mass may have permitted gases from the still fluid interior or basal part to reach the outside of the intrusions.

It does not seem possible that atmospheric waters could have gained access to the contacts during intrusion. Both the heat of the magma and the pressure of the volatile compounds striving to free themselves would prevent such access.

Successive Epochs of Metamorphism.—The idea of successive epochs of mineralization during intrusion is one frequently advanced in the literature; an often recurring suggestion is that the general metamorphism took place first and that foreign substances were added later. To some degree this is doubtless true, but if we conceive magma rising to regions of lessened pressure it is difficult to see why the escape of gases should not have begun at or before the moment when it was brought into contact with the surrounding cooler sediments.

In a valuable study of contact metamorphism at Marysville, Montana, J. Barrell\(^1\) states that a metamorphic zone \(\frac{1}{2}\) to 1 mile wide surrounds a batholith appearing at the surface over an area of 2 square miles; the intrusive monzonitic mass extends in depth underneath the sediments, and the metamorphism is thus intensified. Barrell distinguishes between (1) contact metamorphism, which is simply recrystallization to hornfels, crystalline marble, or lime-silicate rocks, and (2) contact metasomatism, in which magmatic emanations add some of their constituents to the

altered sediments. The zone of contact metasomatism is at most 1,000 feet wide. Silica and iron in water solutions are the most important of the additions, but sulphur and other elements are also added.

At a distance from the contact the metamorphic rock of the Marysville district is a banded hornfels of biotite, tremolite, quartz, feldspar, calcite, and zoisite. This rock is held to have been produced by the first wave of metamorphism. Veinlets of epidote, bleaching the biotite along their contacts, cut the hornfels and are due to a later infiltration of material from the granitic magma.

Nearer to the contact the hornfels is infiltrated with much diopside that follows the calcitic bands in the original impure limestone. For this diopside the magma has furnished much of the silica. Close to the contact the development of hornblende from biotite and some accession of apatite and tourmaline were noted, also of pyrite associated with garnet and pyroxene.

In later years the mining geologists have added their quota to the study of contact metamorphism and assert with considerable confidence that in many cases large quantities of iron, silica, sulphur, copper, and other metals have parted company with the magma and that these metallic solutions, injected into the calcareous sediments, have changed whole beds of pure limestone or dolomite to compact andradite or pyroxene-garnet rocks; and that accompanying this metasomatism, pyrite, magnetite, chalcopyrite, zinc blende, and more rarely galena have been introduced from the same source and crystallized simultaneously with or shortly after the gangue minerals. Certain beds, either pure limestone or limestone admixed with silica and alumina, have been selected by the solutions, probably mainly because they have certain physical characteristics rendering them more permeable. In many impure limestones the primary composition is such that it is impossible to consider the effect simply one of recrystallization. Even should the primary silica of sedimentary origin suffice to account for that in the altered rock, there would be no way of accounting for the abundant iron of the garnet and the pyroxene. It is generally held that some aluminum may have been introduced, but probably no calcium or magnesium. In some contact-metamorphic rocks, like the "adinole" or "schaal stein" near basic intrusives, sodium appears to have been added from the magma.
To some extent phenomena of contact metamorphism, as for instance the development of magnetite in limestone, can be produced experimentally in dry melts, but the process is immensely facilitated when "mineralizing agents" like chlorides, sulphides, and fluorides or water are present.

The introduction of the sulphides and metallic oxides into the limestone is too obvious to be disputed; where a magmatic origin is admitted the discussion concerns simply their relative time of formation. As noted above the tendency of some writers is to consider the mineralization as an event subsequent to metamorphism. Leith and Harder express this view for the magnetite deposits of southern Utah; Spurr and Garrey, in a paper on Velardeña, Mexico, go even further and assume that the magma was wholly consolidated before the mineralization began. At many places there is some evidence that the deposition of chalcopyrite was relatively late and followed the development of garnet. At White Horse, Northwest Territory, according to Stutzer, the succession is pyroxene, magnetite, garnet, calcite, sulphides; at Berggiesshübel, Saxony, magnetite, garnet, chalcopyrite; at Schwarzenberg, Saxony, pyroxene, garnet, pyritic ores, zinc blende, arsenopyrite. At the Holgol gold mine, Korea B. Koto found the succession to be ilvaite, diopside, garnet, and sulphides, the sulphides filling interstices between the diopsides. But this evidence is counterbalanced by that from other localities—for instance, from Camp Hedley, British Columbia, by C. Camsell, or from Clifton, Arizona, by W. Lindgren—for in these occurrences the main sulphide development was contemporaneous with the replacement by silicates.

The truth is probably that the sulphide emanations began early, while the intrusive rock was fluid, and continued after the formation of the silicates had been effected. It seems contrary to reason and evidence to assume that no emanations took place until after consolidation. The whole mode of occurrence seems to point to enormous gaseous and hydrostatic pressure, such as would accompany the intrusion itself and permit the permeation of limestone by the solutions as water permeates a sponge. The replacement by ores does not ordinarily begin from fissures or joints, but seems to proceed through the whole mass and results

1 Zeitschr. f. prakt. Geol., 17, 1909, pp. 116-120.
in compact, resistant rocks. The metamorphism often ceases abruptly, the garnet rocks adjoining unaltered limestone.

Concerning the chemical and physical conditions of the mineralizing solutions we know but little; a particularly pertinent question regarding the form in which the silica and the iron oxide were transported remains unanswered despite considerable speculation. We simply know what happened, but cannot explain in detail how it happened. Water gas and sodium chloride must have been present in the solution, for we find cubes of salt in fluid inclusions in the intrusive rock and sometimes in the lime silicates of the contact zone.

Volume Relations.—The replacement of limestone by sulphides, oxides, and silicates liberated a large volume of carbon dioxide, and this at first probably took the form of a perfect gas above the critical temperature and thus occupied little space; possibly a portion may have been resorbed in the magma, but a larger part was doubtless dissipated in the fractures surrounding the intrusive mass and gradually escaped or mingled with the escaping magmatic water and some distance away with the groundwaters, thus adding to the load of ascending thermal springs.

The replacement of limestone by garnet has been a favorite subject for discussion in the last few years. The positive statement by some authors that pure limestones of considerable thickness may be converted to solid masses of garnet has not failed to provoke controversy.

In the Morenci district, Arizona, the clearest evidence is given by the transformation effected along a dike of unaltered quartz monzonite porphyry, 20 to 50 feet wide, which crosses the successive Paleozoic formations of Modoc Hill with no evidence of fractures that could have admitted solutions from the depths after the consolidation. In the lower limestones the contact zones are only a few feet wide, consisting of epidote next to the intrusive rock, followed by garnet, which adjoins the unaltered limestone. The addition of iron and silica to this narrow zone, which shows no evidence whatever of contraction of volume, is so clear that it hardly admits of discussion. Farther up the same

2 O. Stuzaer, loc. cit.
dike cuts across the Gray Cliff member of the Modoc formation, a pure limestone about 80 feet in thickness. This has been changed to massive andradite garnet, with some epidote, for a distance of about 100 feet from the dike. Stains of malachite are present, but this particular rock is poor in copper.

If all of the lime has been used in the garnetization and only CO₂ has escaped, the volume of the rock would have increased about one-half. If, on the other hand, as seems probable, the volume has remained approximately constant, then 460 kilograms CaO and 1,190 kilograms CO₂ per cubic meter have been carried away, while 1,330 kilograms SiO₂ and 1,180 kilograms Fe₂O₃ have been added. These are astonishing figures and give an idea of the vigorous transfer of material which took place during metamorphism. The Modoc limestone contains 94 to 96 per cent. CaCO₃, less than 1 per cent. MgCO₃, 1 per cent. SiO₂, and 1 to 3 per cent. Al₂O₃ and Fe₂O₃. The andradite garnet contains 1.53 per cent. alumina, 31.41 Fe₂O₃, 42.63 SiO₂, and 23.37 CaO. The transfer has been mutual, for at some places the intrusive rock next to the contact has been strongly epidotized by lime derived from the calcareous rock.

C. K. Leith and E. C. Harder¹ have attempted to account for the silicate rock at the contact of the Iron Springs intrusive in southern Utah by assuming that the silica and alumina have remained constant while the volume of the rock has been decreased as much as 60 or 80 per cent. by reason of abstraction of lime. No definite field evidence, however, was found in favor of this view. Neither did J. Barrell succeed in finding, at Marysville, Montana, field evidence for a similar view. While the volume may not always have remained constant, it has rarely been radically changed. The analyses given by Leith and Harder are by no means conclusive, for in the first place their “unaltered limestone” is already considerably metamorphosed and their altered limestones are so extensively changed by kaolinization and other surface processes that no safe conclusion can be drawn.

Of other evidence favoring approximate constancy of volume there is an abundance. In the Organ district, New Mexico, for instance,² two adjacent beds of apparently similar limestones

¹ Bull. No. 338, U. S. Geol. Survey, 1908. See also review by Kemp, Econ. Geol., vol. 4, 1909, p. 782, and answer by Leith, Econ. Geol., vol. 5, 1910, p. 188.
have been metamorphosed, the one to coarsely crystalline marble, the other to andradite garnet. At the same place there is a rapid succession of beds of quartzite and limestone; the latter has been garnetized, but the stratification of the altered rocks is entirely undisturbed. At Tres Hermanas, New Mexico, near the contact with granite porphyry, Spirifers and Fenestellas have been perfectly preserved in the garnetized rock.

Silification.—While the development of silicates is the normal course in contact metamorphism, silification—meaning a transformation into rocks consisting of almost pure silica in the form of fine-grained quartz—is not characteristic. Nevertheless this transformation occurs in places and may affect both intrusive and sedimentary rocks. It involves the transfer of silica without the iron and other metals and is rather typical of replacement at temperatures somewhat lower than those existing during consolidation of the magma, in the immediate vicinity of the contact. In some places, as in the copper-bearing district of Ely, Nevada, silification has occurred on a large scale and it may be difficult to decide whether a given siliceous rock was originally a porphyry or a limestone. At Ely the magma was probably deficient in iron and the somewhat later mineralization by silification and dissemination of cupriferous pyrite was the more prominent alteration. The copper ores, consisting mainly of chalcocite, were formed much later by concentration of the lean cupriferous pyrite by descending surface waters.

Contact Metamorphism at Dolores.—Spurr, Garrey, and Fenner have recently described the contact phenomena at the Dolores mine,1 San Luis Potosi, Mexico, and find there corroboration of the results obtained at Velardeña. Two small bodies of quartz monzonite, 1,000 meters at most in diameter, have intruded a thick series of Mesozoic limestone, and along their margins contact-metamorphic zones have developed, containing copper deposits; in other parts of the area are silver-bearing veins with a gangue of quartz, fluorite, and calcite. The quartz monzonite contains veinlets and secondary disseminations of an aluminous pyroxene and grossularite garnet, and near the contact also vesuvianite. This mineralization, which also appears in the limestone, was followed by the development of wollastonite in the limestone. After the wollastonite had formed, the solution, becoming richer in iron, deposited in smaller amounts an iron

1 *Econ. Geol.*, vol. 7, 1912, pp. 444–492.
dike cuts across the Gray Cliff member of the Modoc formation, a pure limestone about 80 feet in thickness. This has been changed to massive andradite garnet, with some epidote, for a distance of about 100 feet from the dike. Stains of malachite are present, but this particular rock is poor in copper.

If all of the lime has been used in the garnetization and only CO₂ has escaped, the volume of the rock would have increased about one-half. If, on the other hand, as seems probable, the volume has remained approximately constant, then 460 kilograms CaO and 1,190 kilograms CO₂ per cubic meter have been carried away, while 1,330 kilograms SiO₂ and 1,180 kilograms Fe₂O₃ have been added. These are astonishing figures and give an idea of the vigorous transfer of material which took place during metamorphism. The Modoc limestone contains 94 to 96 per cent. CaCO₃, less than 1 per cent. MgCO₃, 1 per cent. SiO₂, and 1 to 3 per cent. Al₂O₃ and Fe₂O₃. The andradite garnet contains 1.53 per cent. alumina, 31.41 Fe₂O₃, 42.63 SiO₂, and 23.37 CaO. The transfer has been mutual, for at some places the intrusive rock next to the contact has been strongly epidotized by lime derived from the calcareous rock.

C. K. Leith and E. C. Harder¹ have attempted to account for the silicate rock at the contact of the Iron Springs intrusive in southern Utah by assuming that the silica and alumina have remained constant while the volume of the rock has been decreased as much as 60 or 80 per cent. by reason of abstraction of lime. No definite field evidence, however, was found in favor of this view. Neither did J. Barrell succeed in finding, at Marysville, Montana, field evidence for a similar view. While the volume may not always have remained constant, it has rarely been radically changed. The analyses given by Leith and Harder are by no means conclusive, for in the first place their “unaltered limestone” is already considerably metamorphosed and their altered limestones are so extensively changed by kaolinization and other surface processes that no safe conclusion can be drawn.

Of other evidence favoring approximate constancy of volume there is an abundance. In the Organ district, New Mexico, for instance,² two adjacent beds of apparently similar limestones

¹ Bull. No. 338, U. S. Geol. Survey, 1908. See also review by Kemp, Econ. Geol., vol. 4, 1909, p. 782, and answer by Leith, Econ. Geol., vol. 5, 1910, p. 188.
have been metamorphosed, the one to coarsely crystalline marble, the other to andradite garnet. At the same place there is a rapid succession of beds of quartzite and limestone; the latter has been garnetized, but the stratification of the altered rocks is entirely undisturbed. At Tres Hermanas, New Mexico, near the contact with granite porphyry, Spirifers and Fenestellas have been perfectly preserved in the garnetized rock.

Silicification.—While the development of silicates is the normal course in contact metamorphism, silicification—meaning a transformation into rocks consisting of almost pure silica in the form of fine-grained quartz—is not characteristic. Nevertheless this transformation occurs in places and may affect both intrusive and sedimentary rocks. It involves the transfer of silica without the iron and other metals and is rather typical of replacement at temperatures somewhat lower than those existing during consolidation of the magma, in the immediate vicinity of the contact. In some places, as in the copper-bearing district of Ely, Nevada, silicification has occurred on a large scale and it may be difficult to decide whether a given siliceous rock was originally a porphyry or a limestone. At Ely the magma was probably deficient in iron and the somewhat later mineralization by silicification and dissemination of cupriferous pyrite was the more prominent alteration. The copper ores, consisting mainly of chalcocite, were formed much later by concentration of the lean cupriferous pyrite by descending surface waters.

Contact Metamorphism at Dolores.—Spurr, Garrey, and Fenner have recently described the contact phenomena at the Dolores mine,1 San Luis Potosí, Mexico, and find there corroboration of the results obtained at Velardeña. Two small bodies of quartz monzonite, 1,000 meters at most in diameter, have intruded a thick series of Mesozoic limestone, and along their margins contact-metamorphic zones have developed, containing copper deposits; in other parts of the area are silver-bearing veins with a gangue of quartz, fluorite, and calcite. The quartz monzonite contains veinlets and secondary disseminations of an aluminous pyroxene and grossularite garnet, and near the contact also vesuvianite. This mineralization, which also appears in the limestone, was followed by the development of wollastonite in the limestone. After the wollastonite had formed, the solution, becoming richer in iron, deposited in smaller amounts an iron

1 *Econ. Geol.*, vol. 7, 1912, pp. 444–492.
tiania, in Norway, and of other districts. Von Groddeck, however, first recognized them as a definite group to which he gave the name "Kristiania type." He stated that they were produced by contact metamorphism and called them briefly "contact deposits." Some of the examples mentioned by von Groddeck and others are doubtful, and in later text-books the type was rather neglected.

In the last years of the nineteenth century Vogt revived the interest in this class by describing the contact-metamorphic deposits of Kristiania in considerable detail from observations by himself and Th. Kjerulf. A little later the deposits at Seven Devils, Idaho—the first of this type to be noted in the United States—were described, and in a paper on the character and genesis of certain contact deposits the type was redefined and a number of examples from the United States were cited. W. P. Blake mentioned the frequent occurrence of this type in Arizona.

W. H. Weed1 described a number of additional sub-types; W. Lindgren,2 J. F. Kemp,3 S. F. Emmons,4 J. E. Spurr,5 and others described in detail similar deposits in Arizona, New Mexico, and Mexico, and it became evident that this type was far more common than had been suspected. It was found that in many regions intrusive masses were normally accompanied by contact-metamorphic deposits which in some cases were connected by transitions with the swarm of veins that usually surround these igneous bodies as an aureole of metallic treasure. The great importance of this type for the solution of problems related to the genesis of ore deposits became clear to the minds of many investigators. Among recent contributions to the general discussion of these deposits may be mentioned papers by O. Stutzer6 and J. E. Spurr.7

The views expressed in the above-mentioned papers, involving the assignment of the origin of these deposits to the process of contact metamorphism, have not been allowed to pass unchallenged. F. Klockmann8 expressed the opinion that these deposits were simply older accumulations of iron ore, altered at the intrusive contact, and W. O. Crosby9 held that at Washington Camp, Arizona, such bodies were simply the result of the ordinary circulation of meteoric character. As a general explanation neither of these views appears to be tenable.

In Europe many geologists have of late made detailed studies of contact-metamorphic deposits—among them B. Lotti, R. Beck, Loewinson-Lessing, E. Weinschenk, A. Bergeat, and V. M. Goldschmidt.

1 W. H. Weed, Ore deposits near igneous contacts, \textit{Trans.}, Am. Inst. Min. Eng., vol. 33, 1903, pp. 719 et seq.

4 J. F. Kemp, Ore deposits at the contact of intrusive rocks and limestone, \textit{Econ. Geol.}, vol. 2, 1907, pp. 1–13.

5 S. F. Emmons, Cananea mining district, Mexico, \textit{Econ. Geol.}, vol. 5, 1910, pp. 312–356.

6 J. E. Spurr and G. H. Garrey, Ore deposits of the Velardeña district, Mexico, \textit{Econ. Geol.}, vol. 3, 1908, pp. 688–711.

8 A theory of ore deposition, \textit{Econ. Geol.}, vol. 7, 1912, pp. 485–492.

9 F. Klockmann, \textit{Zeitschr. f. prakt. Geol.}, 1904, pp. 73–85.

CONTACT METAMORPHISM

General Features.—When the subject of contact-metamorphic deposits is approached more closely, a number of puzzling questions present themselves, and it will be necessary to enter a little more deeply into the problem of contact metamorphism. This peculiar action of intrusive igneous bodies upon adjacent sedimentary rocks has been a well-known fact in geology since the days of Durocher (1846), and the processes have been described in much detail. Effusive rocks—that is, lava flows—rarely exert intense metamorphism beyond a baking or hardening of the sediments at the contact or an alteration of included rock fragments. The magmas intruded in sedimentary rocks, on the other hand, are in most cases surrounded by a halo of gradually fading metamorphism which may extend over a width of 1 or 2 miles, although usually much narrower. The immediate contact is ordinarily sharp, with no evidence of melting; only at contacts which were deeply submerged is there evidence of assimilation and extensive injection or feldspathization of the sediments. Slates and shales are ordinarily converted to hard, compact "hornfels"—that is, fine-grained holocrystalline rocks containing biotite, andalusite, staurolite, scapolite, garnet, and feldspar; in extreme cases gneissoid rocks result. This metamorphism gradually diminishes and at some distance the only evidence of change is a knotty texture of the rocks. Sandstones change to quartzite at the contact. Calcareous rocks become highly crystalline marbles and usually develop the contact-metamorphic minerals lime garnet, epidote, diopside, tremolite, vesuvianite, etc. Petrographers generally agree that this mode of metamorphism is due to the heat of the magma aided by a certain amount of rock moisture. According to the older view expressed by Rosenbusch, Zirkel, Brögger, and others, there is little change in composition aside from the expulsion of carbon dioxide from the limestones. The silicates are held to be formed from the impurities contained in the limestone.

It is well known that Rosenbusch¹ proposed a way of calculating the original character of a metamorphic rock from its present composition, and in regional metamorphism this is undoubtedly often justified. More recently this thought has

¹ Elemente der Gesteinslehre, 2d ed., p. 484.
been followed by J. Barrell1 in more direct application to contact metamorphism.

G. W. Hawes,2 however, many years ago pointed out that emanations of boron and silica entered the sediments from the magma, and the introduction of tourmaline, for instance, has often been proved since then; it is in fact admitted even in the older text-books of petrography.3

The development of greisen by the action of fluorine vapors on granite is in some of these books regarded as a contact-metamorphic process, but in almost all cases it is really a distinctly later stage. J. S. Flett,4 for instance, has shown that in Cornwall both tourmaline and topaz, where present on a large scale, have been introduced into rocks already contact-metamorphosed.

Petrographers of the present day, represented, for instance, by Alfred Harker and A. Lacroix, lean strongly toward the view that “it is safe to assume that the water and other volatile constituents actually found in igneous rocks, whether chemically combined or mechanically enclosed, represent only a fraction of what was originally contained in the parent rock magmas. The rest has been lost and in the case of intrusive rocks must have passed into or through the surrounding country rocks. Probably some leakage goes on throughout the process of consolidation, but not with equal freedom at different stages . . . and it is likely that a large part of the volatile constituents is in general retained down to a late stage. Nevertheless, more or less of the water and other gases must pass into the neighboring rocks while these are still heated by the intrusion.”5

The surrounding rocks of some intrusive bodies are, for instance, permeated for long distances by chlorine solutions, this action resulting in the development of scapolite ($\text{Na}_4\text{Al}_2\text{Si}_6\text{O}_{24}\text{Cl}$). Just how far the substances liberated from the magma are in the state of perfect gases—that is, above the critical temperature—or in liquid form, is not easy to decide. At the contact the carbonate rocks appear to have been permeable to gases to a remarkable degree.

2 G. W. Hawes, \textit{Am. Jour. Sci.}, 3d ser., vol. 21, 1881, p. 21.
5 Alfred Harker, The natural history of igneous rocks, 1909, pp. 302–303.
If we admit that the original magma contained in solution various volatile substances, such as water, carbon dioxide, sulphur, boron, chlorine, and fluorine, it follows that the decrease of pressure caused by its ascent will result in the escape of a large part of these volatile compounds, which will entrain with them various metals also held in solution. The higher the rise of the magma the more complete will be the liberation of these substances. In what form, time, and quantity they will escape depends upon pressure, chemical affinities, and miscibility.

The escape of these substances, as pointed out by Harker, may not have been uniform. A large part was doubtless given off while the magma was still fluid. Another part may have been liberated at the time of consolidation; still another part may have been retained until cooling had advanced considerably. Finally fissures and shattering of the partly consolidated or congealed mass may have permitted gases from the still fluid interior or basal part to reach the outside of the intrusions.

It does not seem possible that atmospheric waters could have gained access to the contacts during intrusion. Both the heat of the magma and the pressure of the volatile compounds striving to free themselves would prevent such access.

Successive Epochs of Metamorphism.—The idea of successive epochs of mineralization during intrusion is one frequently advanced in the literature; an often recurring suggestion is that the general metamorphism took place first and that foreign substances were added later. To some degree this is doubtless true, but if we conceive magma rising to regions of lessened pressure it is difficult to see why the escape of gases should not have begun at or before the moment when it was brought into contact with the surrounding cooler sediments.

In a valuable study of contact metamorphism at Marysville, Montana, J. Barrell\(^1\) states that a metamorphic zone \(\frac{1}{2}\) to 1 mile wide surrounds a batholith appearing at the surface over an area of 2 square miles; the intrusive monzonitic mass extends in depth underneath the sediments, and the metamorphism is thus intensified. Barrell distinguishes between (1) contact metamorphism, which is simply recrystallization to hornfels, crystalline marble, or lime-silicate rocks, and (2) contact metasomatism, in which magmatic emanations add some of their constituents to the

IGNEOUS METAMORPHISM

altered sediments. The zone of contact metasomatism is at most 1,000 feet wide. Silica and iron in water solutions are the most important of the additions, but sulphur and other elements are also added.

At a distance from the contact the metamorphic rock of the Marysville district is a banded hornfels of biotite, tremolite, quartz, feldspar, calcite, and zoisite. This rock is held to have been produced by the first wave of metamorphism. Veinlets of epidote, bleaching the biotite along their contacts, cut the hornfels and are due to a later infiltration of material from the granitic magma.

Nearer to the contact the hornfels is infiltrated with much diopside that follows the calcitic bands in the original impure limestone. For this diopside the magma has furnished much of the silica. Close to the contact the development of hornblende from biotite and some accession of apatite and tourmaline were noted, also of pyrite associated with garnet and pyroxene.

In later years the mining geologists have added their quota to the study of contact metamorphism and assert with considerable confidence that in many cases large quantities of iron, silica, sulphur, copper, and other metals have parted company with the magma and that these metallic solutions, injected into the calcareous sediments, have changed whole beds of pure limestone or dolomite to compact andradite or pyroxene-garnet rocks; and that accompanying this metasomatism, pyrite, magnetite, chalcopyrite, zinc blende, and more rarely galena have been introduced from the same source and crystallized simultaneously with or shortly after the gangue minerals. Certain beds, either pure limestone or limestone admixed with silica and alumina, have been selected by the solutions, probably mainly because they have certain physical characteristics rendering them more permeable. In many impure limestones the primary composition is such that it is impossible to consider the effect simply one of recrystallization. Even should the primary silica of sedimentary origin suffice to account for that in the altered rock, there would be no way of accounting for the abundant iron of the garnet and the pyroxene. It is generally held that some aluminum may have been introduced, but probably no calcium or magnesium. In some contact-metamorphic rocks, like the “adinole” or “schaal stein” near basic intrusives, sodium appears to have been added from the magma.
To some extent phenomena of contact metamorphism, as for instance the development of magnetite in limestone, can be produced experimentally in dry melts, but the process is immensely facilitated when "mineralizing agents" like chlorides, sulphides, and fluorides or water are present.

The introduction of the sulphides and metallic oxides into the limestone is too obvious to be disputed; where a magmatic origin is admitted the discussion concerns simply their relative time of formation. As noted above the tendency of some writers is to consider the mineralization as an event subsequent to metamorphism. Leith and Harder express this view for the magnetite deposits of southern Utah; Spurr and Garrey, in a paper on Velardeña, Mexico, go even further and assume that the magma was wholly consolidated before the mineralization began. At many places there is some evidence that the deposition of chalcopyrite was relatively late and followed the development of garnet. At White Horse, Northwest Territory, according to Stutzer,¹ the succession is pyroxene, magnetite, garnet, calcite, sulphides; at Berggiesshübel, Saxony, magnetite, garnet, chalcopyrite; at Schwarzenberg, Saxony, pyroxene, garnet, pyritic ores, zinc blende, arsenopyrite. At the Holgol gold mine, Korea B. Koto found the succession to be ilvaite, diopside, garnet, and sulphides, the sulphides filling interstices between the diopsides.² But this evidence is counterbalanced by that from other localities—for instance, from Camp Hedley, British Columbia, by C. Camsell,³ or from Clifton, Arizona, by W. Lindgren—for in these occurrences the main sulphide development was contemporaneous with the replacement by silicates.

The truth is probably that the sulphide emanations began early, while the intrusive rock was fluid, and continued after the formation of the silicates had been effected. It seems contrary to reason and evidence to assume that no emanations took place until after consolidation. The whole mode of occurrence seems to point to enormous gaseous and hydrostatic pressure, such as would accompany the intrusion itself and permit the permeation of limestone by the solutions as water permeates a sponge. The replacement by ores does not ordinarily begin from fissures or joints, but seems to proceed through the whole mass and results

¹ *Zeitschr. f. prakt. Geol.*, 17, 1909, pp. 116–120.
in compact, resistant rocks. The metamorphism often ceases abruptly, the garnet rocks adjoining unaltered limestone.

Concerning the chemical and physical conditions of the mineralizing solutions we know but little; a particularly pertinent question regarding the form in which the silica and the iron oxide were transported remains unanswered despite considerable speculation. We simply know what happened, but cannot explain in detail how it happened. Water gas and sodium chloride must have been present in the solution, for we find cubes of salt in fluid inclusions in the intrusive rock\(^1\) and sometimes in the lime silicates\(^2\) of the contact zone.

Volume Relations.—The replacement of limestone by sulphides, oxides, and silicates liberated a large volume of carbon dioxide, and this at first probably took the form of a perfect gas above the critical temperature and thus occupied little space; possibly a portion may have been resorbed in the magma, but a larger part was doubtless dissipated in the fractures surrounding the intrusive mass and gradually escaped or mingled with the escaping magmatic water and some distance away with the groundwaters, thus adding to the load of ascending thermal springs.

The replacement of limestone by garnet has been a favorite subject for discussion in the last few years. The positive statement by some authors\(^3\) that pure limestones of considerable thickness may be converted to solid masses of garnet has not failed to provoke controversy.

In the Morenci district, Arizona, the clearest evidence is given by the transformation effected along a dike of unaltered quartz monzonite porphyry, 20 to 50 feet wide, which crosses the successive Paleozoic formations of Modoc Hill with no evidence of fractures that could have admitted solutions from the depths after the consolidation. In the lower limestones the contact zones are only a few feet wide, consisting of epidote next to the intrusive rock, followed by garnet, which adjoins the unaltered limestone. The addition of iron and silica to this narrow zone, which shows no evidence whatever of contraction of volume, is so clear that it hardly admits of discussion. Farther up the same

\(^2\) O. Stutzer, loc. cit.

dike cuts across the Gray Cliff member of the Modoc formation, a pure limestone about 80 feet in thickness. This has been changed to massive andradite garnet, with some epidote, for a distance of about 100 feet from the dike. Stains of malachite are present, but this particular rock is poor in copper.

If all of the lime has been used in the garnetization and only CO₂ has escaped, the volume of the rock would have increased about one-half. If, on the other hand, as seems probable, the volume has remained approximately constant, then 460 kilograms CaO and 1,190 kilograms CO₂ per cubic meter have been carried away, while 1,330 kilograms SiO₂ and 1,180 kilograms Fe₂O₃ have been added. These are astonishing figures and give an idea of the vigorous transfer of material which took place during metamorphism. The Modoc limestone contains 94 to 96 per cent. CaCO₃, less than 1 per cent. MgCO₃, 1 per cent. SiO₂, and 1 to 3 per cent. Al₂O₃ and Fe₂O₃. The andradite garnet contains 1.53 per cent. alumina, 31.41 Fe₂O₃, 42.63 SiO₂, and 23.37 CaO. The transfer has been mutual, for at some places the intrusive rock next to the contact has been strongly epidotized by lime derived from the calcareous rock.

C. K. Leith and E. C. Harder¹ have attempted to account for the silicate rock at the contact of the Iron Springs intrusive in southern Utah by assuming that the silica and alumina have remained constant while the volume of the rock has been decreased as much as 60 or 80 per cent. by reason of abstraction of lime. No definite field evidence, however, was found in favor of this view. Neither did J. Barrell succeed in finding, at Marysville, Montana, field evidence for a similar view. While the volume may not always have remained constant, it has rarely been radically changed. The analyses given by Leith and Harder are by no means conclusive, for in the first place their "unaltered limestone" is already considerably metamorphosed and their altered limestones are so extensively changed by kaolinization and other surface processes that no safe conclusion can be drawn.

Of other evidence favoring approximate constancy of volume there is an abundance. In the Organ district, New Mexico, for instance,² two adjacent beds of apparently similar limestones

¹ Bull. No. 338, U. S. Geol. Survey, 1908. See also review by Kemp, Econ. Geol., vol. 4, 1909, p. 782, and answer by Leith, Econ. Geol., vol. 5, 1910, p. 188.
have been metamorphosed, the one to coarsely crystalline marble, the other to andradite garnet. At the same place there is a rapid succession of beds of quartzite and limestone; the latter has been garnetized, but the stratification of the altered rocks is entirely undisturbed. At Tres Hermanas, New Mexico, near the contact with granite porphyry, Spirifers and Fenestellas have been perfectly preserved in the garnetized rock.

Silicification.—While the development of silicates is the normal course in contact metamorphism, silicification—meaning a transformation into rocks consisting of almost pure silica in the form of fine-grained quartz—is not characteristic. Nevertheless this transformation occurs in places and may affect both intrusive and sedimentary rocks. It involves the transfer of silica without the iron and other metals and is rather typical of replacement at temperatures somewhat lower than those existing during consolidation of the magma, in the immediate vicinity of the contact. In some places, as in the copper-bearing district of Ely, Nevada, silicification has occurred on a large scale and it may be difficult to decide whether a given siliceous rock was originally a porphyry or a limestone. At Ely the magma was probably deficient in iron and the somewhat later mineralization by silicification and dissemination of cupriferous pyrite was the more prominent alteration. The copper ores, consisting mainly of chalcocite, were formed much later by concentration of the lean cupriferous pyrite by descending surface waters.

Contact Metamorphism at Dolores.—Spurr, Garrey, and Fenner have recently described the contact phenomena at the Dolores mine, ¹ San Luis Potosi, Mexico, and find there corroboration of the results obtained at Velardeña. Two small bodies of quartz monzonite, 1,000 meters at most in diameter, have intruded a thick series of Mesozoic limestone, and along their margins contact-metamorphic zones have developed, containing copper deposits; in other parts of the area are silver-bearing veins with a gangue of quartz, fluorite, and calcite. The quartz monzonite contains veinlets and secondary disseminations of an aluminous pyroxene and grossularite garnet, and near the contact also vesuvianite. This mineralization, which also appears in the limestone, was followed by the development of wollastonite in the limestone. After the wollastonite had formed, the solution, becoming richer in iron, deposited in smaller amounts an iron

¹ *Econ. Geol.*, vol. 7, 1912, pp. 444–492.
pyroxene (hedenbergite) and a calcium-iron garnet (andradite), both replacing the earlier minerals. After this deposition of garnet, but overlapping it, were deposited chalcopyrite, pyrite, actinolite, fluorite, and quartz, and this association occurs also in fissure veins. Zoisite, prehnite, apophyllite, and adularia are present here and there in the later phases. The whole process was effected by solutions rising through the already consolidated monzonite from a deep hypothetical zone of magmatic differentiation.

Contact Metamorphism in the Kristiania District.—A monograph by V. M. Goldschmidt¹ describes in great detail the type locality of the Norwegian contact-metamorphic deposits near Kristiania. At present they are of little economic importance. On a basement of Archean rocks rest Paleozoic sediments; these are broken by laccoliths of gradually more acidic composition, beginning with essesite, which is followed by syenitic rocks. Near the contacts of the essesite the metamorphism is exceedingly strong but takes place without addition of substance.

Along the syenite contacts Goldschmidt observed both an older normal contact metamorphism by recrystallization without addition and a younger pneumatolytic metamorphism by recrystalization under the addition of magmatic gases, resulting in "skarn rocks,"² in which the copper deposits are contained. The characteristic minerals of the hornfels or altered slates were formed before the consolidation of the magma and probably without the aid of other water than that normally contained in the rock. Though the "skarn rocks" and their metallic sulphides are later than the general metamorphism they were formed shortly before the crystallization of the magma, though the immediate contact may have been congealed. Pyroxene occurs in the inner and amphibole in the outer contact zone; according to Becke the transition point between the stability fields of the two minerals is about 550° C. at 200 atmospheres.

The "skarn rocks" are coarsely crystalline and consist of andradite, hedenbergite, wollastonite, scapolite, axinite, adularia, albite, calcite, fluorite, zeolites, specularite, magnetite, bis-muthinite, galena, chalcopyrite, primary chalcocite, primary willemite, zinc blende, pyrrhotite, molybdenite, and bornite.

¹ Die Contactmetamorphose im Kristianiagebiet, Kristiania, 1911.
² An old Swedish mining term signifying the garnet-pyroxene-epidote rocks accompanying many Scandinavian magnetite deposits.
Many of these minerals occur in druses in the syenite. Magnetite forms nearer to the igneous rock than specularite. The scapolite becomes unstable at lower temperatures and is transformed to albite, epidote, microperthite, and zeolites. The metallic ores are somewhat later than the skarn minerals.

Goldschmidt believes that the magmatic gases consisted largely of chlorides and fluorides of iron, much silica, and some aluminum, sodium, and potassium, but no calcium or magnesium. For example: \[2\text{FeF}_3 + 3\text{CaCO}_3 = \text{Fe}_2\text{O}_3 + 3\text{CaF}_2 + 3\text{CO}_2,\] or \[2\text{FeCl}_3 + 3\text{CaCO}_3 = \text{Fe}_2\text{O}_3 + 3\text{CaCl}_2 + 3\text{CO}_2.\] Silicon was combined with the halogens and transferred into quartz by calcium carbonate. Addition of aluminum resulted in albite, scapolite, or epidote.

Depth of Formation.—In many cases it is, of course, difficult to ascertain the depth below the surface at which contact-metamorphic deposits were formed. In the province which contains the most abundant and characteristic examples of this type, however, namely, the Cordilleran region of America, the conditions of sedimentation and intrusion were such that approximately correct measurements are feasible. Brøgger, many years ago, pointed out that granular intrusive rocks by no means always crystallized at abyssal depths and that some intrusions in the Kristiania region had congealed much less than 1,000 feet below the surface.

In the central Cordilleran region sedimentation was almost continuous from the Cambrian to the late Cretaceous; the intrusive rocks now exposed were injected into these sediments during Cretaceous or earlier Tertiary time, well up in the zone of fracture and far above normal "anamorphic" conditions. In 1907 Barrell\(^1\) showed that at Marysville, Montana, the batholith reached within 4,000 feet of the surface, and Leith and Harder gave the load of the laccolith at Iron Springs, Utah, at the same figure. In New Mexico\(^2\) similar conditions existed. At the close of the Cretaceous period practically the whole State was covered by a mantle of sedimentary rocks from 6,000 to 9,000 feet thick. The Cretaceous part of this section, into which most of the numerous intrusive masses reached, was between 3,000 and 5,000 feet thick; much of it consisted of tough but pliable shales not easily broken through by the intrusions. At many places

contact-metamorphic deposits were formed less than 3,000 feet below the surface. C. R. Keyes1 arrived at similar conclusions.

The intrusive "trap" sheets of Triassic age in Connecticut, New Jersey, and Pennsylvania have exerted some contact-metamorphic action and produced small copper deposits; at Cornwall, Pennsylvania,2 important magnetite deposits were formed in calcareous Triassic rocks. The depth below the surface was probably less than 1,000 feet.

For contact-metamorphic deposits in pre-Cambrian areas and in general where periods of dynamic metamorphism have intervened exact data of this kind can rarely be obtained. Some deposits of this class were formed at great depth and under distinctly anamorphic conditions.

Physical Conditions at the Contact.—The temperature at the contact, according to the composition of the magma, may have been as much as 1,500° C., the siliceous rocks consolidating at a temperature of 500° to 1,100° C. When there is no chemical action involved calcium carbonate begins to lose carbon dioxide at 550° C., but the reaction would begin at a much lower temperature under the influence of magmatic gases acting chemically on the calcite. Under anamorphic conditions no opportunity would be afforded for the liberated carbon dioxide to escape through the fissured rocks. Under such circumstances limestone may possibly melt. It is believed that Le Chatelier3 succeeded in melting CaCO\textsubscript{3} at 1,050° C. and a pressure of 1,000 kilograms per square centimeter. According to F. W. Clarke4 there seems to be some doubt as to whether actual fusion took place. Leith and Harder5 assert that glass is actually present in the contact-metamorphic argillaceous limestone at Iron Springs, Utah, but it has not been recorded elsewhere.

Even where the carbon dioxide cannot escape there may be intense action between the igneous rock and the limestone. The two rocks will form a chemical system with great difference of temperature and it may be assumed that there will be intense transfer of material between the two. Possibly lime and carbon dioxide will be absorbed by the magma in exchange for metallic

1 *Econ. Geol.*, vol. 4, 1909, pp. 365–372.
3 *Compt. Rend.*, vol. 115, 1892, pp. 817 and 1009.
4 F. W. Clarke, Geochemistry, p. 478.
5 *Op. cit.*, p. 36.
IGNEOUS METAMORPHISM

constituents exhaled from the igneous rock. At great depths the action will be sustained over a longer period and the results may be somewhat different from those obtained within the cooler and brittle upper zone.

The pre-Cambrian rocks contain many enigmatic ore deposits which bear the general imprint of contact metamorphism, but which present peculiar anomalies compared to those of the zone of fracture. Among these may be mentioned the zinc deposits of Franklin Furnace, New Jersey, the limestone and skarn iron ores of Sweden, and the zinc blende deposit of Åmeßeberg, in the same country.

Some ore deposits of the contact-metamorphic type occur at a distance from any intrusive rock to which their origin could be attributed. Here the intrusive mass may be eroded or hidden underneath the surface, or again, deposition at great depth and high temperature being supposed, the metalliferous solutions may have traveled far from their original home and permeated much larger masses than would have been possible near the surface. Here it would be advisable to speak of igneous metasomatism instead of using the misleading term contact metamorphism.

Influence of Composition of Igneous Rock.—Highly acidic rocks, such as normal granites, are not usually accompanied by ore deposits of the contact-metamorphic type, although they may produce widespread effects of metamorphism and a later mineralization of quartz veins. The rocks accompanying the contact-metamorphic deposits of the Cordilleran type are generally monzonites or quartz monzonites or granodiorites.

Many examples show, however, that more basic rocks also may produce metallization of adjoining limestones—diabase, for instance, at Cornwall, Pennsylvania, and gabbro at the Nickel Plate mine, British Columbia.

Alteration of the Intrusive Rock.—The intrusive rock near the contact suffers various changes as to composition, texture, and structure: basic facies may appear, or finer-grained texture, or a laminated or schistose structure. The history of an intrusion is usually complicated by a successive development of minerals.

J. S. Flett\(^1\) states that in the consolidation of the Cornwall granite apatite, zircon, and magnetite are the earliest minerals;

capricious, and even where garnetization has taken place on a large scale, the limestone may locally remain without other change than recrystallization to coarse-grained marble.

Minerals.—A complete list of minerals occurring in contact-metamorphic deposits cannot be given here. Simple oxides and sulphides predominate, galena being the least abundant. The spinel group is well represented. Among the complex sulphantimonides and sulpharsenides, tetrathedrite is the only representative and this is rare. An undetermined mineral of the bismuth-lead sulphide type has been observed at Organ, New Mexico.

Tellurides are rare, though tetradymite has been found at the Nickel Plate mine, British Columbia, and Weed reports it from Bannock, Montana. As a rule the deposits are poor in gold and silver, and visible native gold is seldom present; there are exceptions to this, however, as will be shown in the discussion of individual types.

Among the carbonates, calcite, dolomite, and siderite may be noted. Fluorite is rare, and often it is distinctly secondary, or of later origin, as is also barite. The silicates form a long list among which the garnets, pyroxenes, amphiboles, and epidote predominate. The epidote contains hydroxyl, as does also the not uncommon ilvaite. Andalusite, granite, cordierite, staurolite, biotite, and muscovite are rarely connected with ore deposits. The feldspars are also relatively rare; so are the last products of crystallization, consisting of zeolites, topaz, and tourmaline. Axinite in brown crystals has been identified in many contact zones. Scheelite occurs in the Apache district, New Mexico, and in the tin region of Seward Peninsula, Alaska.

Texture and Structure.—The contact-metamorphic ores are usually distinguished by a massive and compact, coarsely and irregularly granular texture. Occasionally small druses are found, but only at Washington Camp, Arizona, have abundant large druses with well-formed quartz crystals been observed.

Irregularity of form and composition is characteristic of these deposits. Some of them are tabular, by reason of following dike, sheet, or stock contacts, and their outer limit shows distinctly the selective influence of certain beds. In other deposits, as at Clifton, Arizona (Fig. 222), this influence becomes predominant and the deposits persistently follow certain limestone horizons and along these may extend much farther than the general metamorphism, in some instances as much as 2,000 feet. The ores
may fade gradually into the unaltered country rock, but a frequently recurring feature is that both ores and contact-
metamorphic silicates cease suddenly, being in sharp contact
with the unaltered limestone. Or, again, beyond the ores there
may be a belt of more or less crystalline limestone which may
contain several apparently isolated nuclei of incipient trans-
formation to silicates. Smaller masses of limestone included in
the intrusive rock may be wholly converted to garnet and ore.

Banded structures are exceptional. An interesting feature
consists of the so-called ore-pipes or orbicular structures observed

\[\text{FIG. 222.—Vertical section showing flat ore-bodies at Shannon mine, Clifton,}
\]
\[\text{Arizona. Ore-body in porphyry dike consists of secondary chalcocite.}\]

by Trüstet1 at Pitkäranta, Finland, and by Knopf2 in the tin
district of Seward Peninsula. In the latter district orbules of
fluorite, hornblende, vesuvianite, plagioclase, and magnetite have
been developed in the limestone near a granite contact. Their
structure is symmetrically banded and they are explained as
metasomatic replacements started along joint planes followed by
the magmatic solution, which was injected under heavy pressure.

Piezo-Metamorphism.—Where the intrusion and metamor-
phism took place under dynamic conditions—that is, under
strong pressure from one direction—the results may be expected
to differ from those already described. Such dynamic condi-
tions did not exist in the Cordilleran region during the Cretaceous
and Tertiary intrusions, but would be more likely to occur in

the zone of anamorphism. Probably many enigmatic deposits of the pre-Cambrian have been formed in this manner.

E. Weinschenk has studied this kind of alteration in the Alpine region and names it piezo-metamorphism. According to him many of the gneisses of the central Alps are post-Carboniferous intrusives, pressed during metamorphism. Adjoining limestones have been made crystalline and contain characteristically rounded crystals of quartz, corundum, and micaceous and chloritic minerals.

Distribution.—Even where the intrusive is wholly enclosed in limestone the deposits are not continuous along the contacts, but are massed in certain places, their location being probably dependent upon the structural facilities for the escape of the gases.

Neither do the deposits occur at the contacts of all intrusive masses; their absence along the contacts of the Marysville batholith in Montana, described by Barrell, and of the Wood River batholith, Idaho, described by Lindgren, is a good instance of their peculiarity (see p. 556), although in both these districts there is rather abundant later mineralization along fissures on both sides of the contact.

Our knowledge of the contact-metamorphic deposits is daily increasing. The earlier neglect of these deposits is in part due to the fact that few of them are of great economic importance.

In the northern part of the Cordilleran region the deposits seem to be less abundant, though several representatives may be found in Canada, Alaska, Montana, Idaho, and Canada.

1 E. Weinschenk, Allgemeine Gesteinskunde, 1902.
8 Several districts near Dillon. A. N. Winchell (oral information).
IGNEOUS METAMORPHISM

Nevada, and Utah. There are relatively few of them in Colorado, but they occur in much greater abundance in New Mexico, Arizona, and Mexico.

A recent reconnaissance of the metal deposits in New Mexico permits a good review of the frequency and relationships of these ores. Along a belt extending from the northern boundary down to the southwestern part of the State the Paleozoic and Mesozoic strata are intruded by at least twenty batholiths or laccoliths of early Tertiary quartz monzonite or monzonite, usually of moderate size. The major part of the commercial mineral deposits cluster around these intrusions. Contact-metamorphic deposits were found in fourteen districts and at least twenty-five mines have been worked on a commercial scale. At San Pedro and Jarilla primary chalcopyrite ores are smelted; at Magdalena the deposits yield zinc, copper, and lead; at Hanover, magnetite and chalcopyrite. In the minor deposits the ores may simply form irregular masses at the contact, rarely extending more than 200 feet away from it. Where ores have been formed on a large scale, as at Magdalena and San Pedro, the selective mineralization is strongly marked, causing the metallization to reach far from the contact along certain favored beds.

In southern Arizona the deposits are equally common, although the region has not yet been systematically explored. Among them are the copper deposits of Clifton, Bisbee, Saddle Mountain, Twin Buttes, Washington, Silver Bell, Ajo, Casa Grande, and Vekol. At Clifton and Bisbee the ores have been greatly enriched by oxidation; at Saddle Mountain, Twin Buttes, Washington, and Silver Bell primary chalcopyrite ores are worked.

3 Ely. A. C. Spencer (oral information).
4 Frisco. B. S. Butler (oral information).
5 Clifton. B. S. Butler (oral information).
6 Little Cottonwood. B. S. Butler (oral information).
10 C. F. Tolman, Min. and Sci. Press.
12 C. F. Tolman, Min. and Sci. Press, Nov. 27, 1909.
the zone of anamorphism. Probably many enigmatic deposits of the pre-Cambrian have been formed in this manner.

E. Weinschenk1 has studied this kind of alteration in the Alpine region and names it piezo-metamorphism. According to him many of the gneisses of the central Alps are post-Carboniferous intrusives, pressed during metamorphism. Adjoining limestones have been made crystalline and contain characteristic rounded crystals of quartz, corundum, and micaceous and chloritic minerals.

\textbf{Distribution.}—Even where the intrusive is wholly enclosed in limestone the deposits are not continuous along the contacts, but are massed in certain places, their location being probably dependent upon the structural facilities for the escape of the gases.

Neither do the deposits occur at the contacts of all intrusive masses; their absence along the contacts of the Marysville batholith in Montana, described by Barrell, and of the Wood River batholith, Idaho, described by Lindgren, is a good instance of their peculiarity (see p. 556), although in both these districts there is rather abundant later mineralization along fissures on both sides of the contact.

Our knowledge of the contact-metamorphic deposits is daily increasing. The earlier neglect of these deposits is in part due to the fact that few of them are of great economic importance.

In the northern part of the Cordilleran region the deposits seem to be less abundant, though several representatives may be found in Canada,2 Alaska,3 Montana,4 Idaho,4

\begin{itemize}
\item 1 E. Weinschenk, Allgemeine Gesteinskunde, 1902.
\item 2 White Horse. O. Stutzer, \textit{Zeitschr. f. prakt. Geol.}, vol. 17, 1909, pp. 116–120.
\item 3 Vancouver Island. Chas. H. Clapp, \textit{Mem.} 13, Geol. Survey Canada. Ottawa, 1912.
\item 4 Hedley. C. Camsell, \textit{Mem.} 2, Geol. Survey Canada, 1910.
\item 5 Ketchikan. C. W. Wright, \textit{Econ. Geol.}, vol. 3, 1908, pp. 410–417.
\item 8 Several districts near Dillon. A. N. Winchell (oral information).
\end{itemize}
IGNEOUS METAMORPHISM

Nevada, and Utah. There are relatively few of them in Colorado, but they occur in much greater abundance in New Mexico, Arizona, and Mexico.

A recent reconnaissance of the metal deposits in New Mexico permits a good review of the frequency and relationships of these ores. Along a belt extending from the northern boundary down to the southwestern part of the State the Paleozoic and Mesozoic strata are intruded by at least twenty batholiths or laccoliths of early Tertiary quartz monzonite or monzonite, usually of moderate size. The major part of the commercial mineral deposits cluster around these intrusions. Contact-metamorphic deposits were found in fourteen districts and at least twenty-five mines have been worked on a commercial scale. At San Pedro and Jarilla primary chalcopyrite ores are smelted; at Magdalena the deposits yield zinc, copper, and lead; at Hanover, magnetite and chalcopyrite. In the minor deposits the ores may simply form irregular masses at the contact, rarely extending more than 200 feet away from it. Where ores have been formed on a large scale, as at Magdalena and San Pedro, the selective mineralization is strongly marked, causing the metallization to reach far from the contact along certain favored beds.

In southern Arizona the deposits are equally common, although the region has not yet been systematically explored. Among them are the copper deposits of Clifton, Bisbee, Saddle Mountain, Twin Buttes, Washington, Silver Bell, Ajo, Casa Grande, and Vekol. At Clifton and Bisbee the ores have been greatly enriched by oxidation; at Saddle Mountain, Twin Buttes, Washington, and Silver Bell primary chalcopyrite ores are worked.

 Ely. A. C. Spencer (oral information).
2 Frisco. B. S. Butler (oral information).
 Clifton. B. S. Butler (oral information).
 Little Cottonwood. B. S. Butler (oral information).
6 C. F. Tolman, Min. and Sci. Press.
8 C. F. Tolman, Min. and Sci. Press, Nov. 27, 1909.
MINERAL DEPOSITS

In eastern Mexico cupriferous contact-metamorphic deposits are common where monzonites break through Mesozoic limestones, as first mentioned by Ordóñez and Aguilera. Since then detailed descriptions have been given of the districts of Santa Fe, in Chiapas: Velardeña, in Durango; San José, in Tamaulipas; Concepcion del Oro, in Zacatecas; Dolores, in San Luis Potosí; and Cananea, in Sonora.

PRINCIPAL TYPES OF CONTACT-METAMORPHIC DEPOSITS

The contact-metamorphic deposits may be classified as follows:

1. Magnetite deposits.
2. Chalcopyrite deposits. Principal ore minerals are chalcopyrite, pyrite, pyrrhotite, zinc blende, molybdenite, magnetite, and specularite.
3. Galena and zinc blende deposits.
4. Arsenopyrite-gold deposits. Principal minerals are arsenopyrite and pyrrhotite.
5. Gold deposits.
6. Cassiterite deposits.
7. Graphite deposits.

The chalcopyrite deposits present the most common type; the magnetite deposits are fairly abundant, while the ores containing galena, arsenopyrite, gold, or cassiterite are distinctly rare.

Magnetite Deposits

General Character.—The magnetite deposits of this class are of common occurrence, though rarely very large. Associated with the magnetite is more or less specularite, almost always a little pyrite and chalcopyrite, and the contact silicates andradite, ilvaite, forsterite, and hedenbergite—all four rich in iron (Fig. 223). The magnetite is sometimes crystallized and often

1 Notes sur les gisements d’or de Mexique, Mexico, 1898, p. 233.
2 Bosquejo geológico de México, Boletín Instituto geol. de Méx., Nos. 4, 5, 6, 1897, pp. 68 and 222.
4 Spurr and Garrey, Econ. Geol., vol. 3, 1908, pp. 688–711.
6 A. Bergeat, Bol. Instit. Geol. de Méx., No. 27, 1910.
7 J. E. Spurr et al., Econ. Geol., vol. 7, 1912, pp. 444–491.
8 S. F. Emmons, Econ. Geol., vol. 5, 1910, pp. 312–356.
Fig. 223.—Thin section showing magnetite replacing limestone in contact-metamorphic zone, Philipsburg, Montana. Intermediate zone rich in olivine or forsterite. After F. C. Calkins.

Fig. 224.—Magnetite replacing limestone in contact-metamorphic zone, Cable mine, Philipsburg, Montana. Natural size. After F. C. Calkins.
developed in coarsely granular masses (Fig. 224). The ore-bodies are of irregular form, unless, as often happens, they follow the stratification for some distance.

Foreign Occurrences.—Among the European deposits those of Berggiesshübel, in Saxony; Schmiedeberg, in Silesia; and Gora Magnitnaja and Wyssokaja Gora, in the Ural Mountains, are usually described in the text-books. Regarding the latter two occurrences, the opinions seem to be somewhat divided.

The classical deposits of the Banat province, in southeastern Hungary, first described by von Cotta, deserve special mention, although in later years their ore production has declined. In this region early Tertiary intrusive rocks, designated as diorite, syenite, and their porphyries, break through Jurassic and Cretaceous limestones. Along the contacts the limestones become coarsely crystalline, and the usual metamorphic silicates, together with irregular masses of magnetite and some sulphides, develop in them. A banded structure, sometimes apparent, is caused by alternating layers of garnet and magnetite of contemporaneous origin. Masses of garnet from 70 to several hundred feet thick occur. The best-known mines of this region are at Moraviza, Dognazka, and Oravicza. The present annual production is only about 150,000 short tons. According to Bergeat, there can be no doubt that the ores are of contact-metamorphic origin and have been formed by replacement of limestone under the influence of solutions carrying iron and silica from the intrusive.

Fierro, New Mexico.—Many magnetite deposits of this kind are known in the United States, particularly in the Western States, but most of them are comparatively small. A deposit at Fierro, in southwestern New Mexico, is actively worked at present, the ore being shipped to Pueblo, Colorado. The ore occurs at the contact of quartz monzonite porphyry, probably of early Tertiary age, with Paleozoic limestone; it outcrops in bold masses and is mined in open cuts. The ore-bodies are mainly irregular, lenticular masses of magnetite with a little chalcopyrite; in part they are pure magnetite containing from 60 to 70 per cent. of iron. Those parts which contain a notable quantity of chalcopyrite are left as pillars. Small bunches of

1 A ferromagnesian borate, ludwigite, is recorded from Moraviza.
garnet and epidote are present in the ore, and in places there are horses of more or less metamorphosed limestones; the phosphorus is rarely above 0.07 per cent.; the sulphur averages 0.02 per cent. Similar deposits, richer in copper, have been mined for flux, the ores being used in the copper furnaces at Douglas, Arizona.

Heroult, California.—Another deposit is situated in Shasta County, California. The ore is smelted locally at Heroult, in an electric furnace.

The ore-bodies are found mainly at the contacts of diorite and Triassic limestone, and also to a minor extent at the contacts of the same diorite with Permian shale and with granodiorite. The order of crystallization appears to have been as follows: 1. Magnetite; 2. garnet and hedenbergite; 3. ilvaite and quartz; 4. pyrite and chalcopyrite. The limestone is practically pure, and that material has been transferred from the intrusive seems to be the unavoidable conclusion. The ore is low in phosphorus and sulphur.

Iron Springs, Utah.—The important, yet unworked deposits of Iron Springs, in southern Utah, have been described by C. K. Leith and E. C. Harder. A laccolith of quartz syenite porphyry (andesite according to the nomenclature of the authors) breaks through sediments of Carboniferous, Cretaceous, and Tertiary age (Fig. 225). The magnetite appears in fissure deposits and replacements along the contact with the Carboniferous limestone. Quartz, garnet, diopside, apatite, and hornblende are minor constituents of the ore. According to the authors only a part of the ore is associated with contact metamorphism, for the probable gaseous emanation of iron compounds continued after the consolidation, and the resulting magnetite, sometimes associated with apatite, garnet, etc., filled contraction fissures in the intrusive and replaced the limestone near the contact. But this by no means proves that magnetite was not also generally introduced on a large scale during the early metamorphic action. In fact, most observers of contact metamorphism agree that magnetite is introduced at an early stage, generally before the sulphides. This is shown, for instance, in the occurrences at Morenci, Arizona. A body of magnetite 150 feet

coarse granular (Figs. 226 and 227). The ore minerals consist of chalcopyrite, bornite, pyrite, more rarely pyrrhotite, and zinc blende, often also molybdenite and other sulphides; galena is on the whole rare. The ore contains also more or less magnetite and specularite. The gangue minerals are andradite, grossularite, epidote, diopside, tremolite, ilvaite, and calcite. Minerals containing fluorine, boron, and chlorine are exceptional. The deposits are poor in gold and silver and are frequently enriched in copper by oxidation, but in many occurrences the primary ore is rich enough to be utilized.

Fig. 227.—Thin sections showing contact-metamorphic ores at Holgol, Korea. A, Radiating crystals of ilvaite (black) in granular limestone. Ilvaite incloses crystals of diopside. B, Chalcopyrite (black) in diopside. Magnified 30 diameters. *After B. Koto.*

New Mexico.¹—In the fourteen districts of New Mexico distinguished by contact-metamorphic deposits, the copper ores are by far the most common.

The most important of these deposits, economically, is that of the San Pedro mine, in the laccolithic mountain group of the same name. Beds of upper Carboniferous rocks over 700 feet thick have been metamorphosed by the underlying laccolith of granodiorite porphyry and by dikes extending upward from

IGNEOUS METAMORPHISM

it. The lower 200 feet of shaly limestone is only partly altered, with local development of garnet and tremolite and a little chalcopyrite and pyrrhotite, but along a certain bed of purer limestone garnetization has taken place for half a mile, the thickness of this strongly metamorphosed stratum being about 50 feet. Bunches of chalcopyrite are irregularly distributed in it. Within this zone beds of pure crystalline limestone adjoin wholly garnetized beds. In places the rock consists of a mixture of garnet and coarsely crystalline limestone. On the dip the gently inclined ore beds have been followed for 300 feet. The upper beds of the series consist mainly of somewhat metamorphosed and baked shale and sandstone.

Clifton, Arizona.—In Arizona almost all the contact-metamorphic deposits yield copper as the principal metal. Near Clifton\(^1\) a stock of granite porphyry and quartz monzonite porphyry breaks across pre-Cambrian granite, a Paleozoic series about 1,000 feet thick, and Cretaceous sediments about 400 feet thick. The Paleozoic limestones and shales, as well as the Cretaceous sandstones, are contact metamorphosed. The ore deposits lie mainly near Morenci and Metcalf; at both places the beds are cut by an unusual number of dikes, which have exerted a specially strong contact-metamorphic action on the sediments.

The ore deposits form a complicated series very similar to those observed at Cananea, Mexico, at Ely, Nevada, and at Bingham, Utah. The oldest ores are contact-metamorphosed limestones; these, as well as the adjoining porphyry, are cut by a series of pyritic veins, poor in copper, which in the sericitized porphyry spread out into disseminations of pyrite. Widespread oxidation has altered all the deposits and enriched them; well-defined chalocite zones (p. 809) have formed by replacement of the pyrite by descending cupric sulphate solutions, and the present importance of the district is due wholly to the exploitation of these chalocite ores, which contain from 3 to 4 per cent. of copper.

The primary contact-metamorphic deposits lie in limestone and form irregular bunches or tabular deposits parallel to dikes or following the stratification. Wherever the character is not masked by oxidation these primary ores consist of garnet, epidote, diopside, calcite, chalcopyrite, pyrite, magnetite, and

\(^1\) W. Lindgren, Prof. Paper No. 43, U. S. Geol. Survey, 1905.
zinc blende, occasionally also molybdenite. In the earlier days of the district, from 1875 to 1900, these oxidized ore-bodies were mined; they were easily reduced and comparatively rich in copper, containing mainly malachite, azurite, and limonite. The celebrated Longfellow ore-body formed a funnel-shaped mass in Ordovician limestone, between two porphyry dikes.

Farther west, in the Manganese Blue and Detroit mines (Fig. 228), were several tabular ore-bodies, following the stratification in the Ordovician, Devonian, and Carboniferous limestones; these also owed their richness to several porphyry dikes, a few hundred feet from the main contact. Along the main con-

![Diagram](image)

Fig. 228.—Vertical section through contact-metamorphic limestone at Morenci, Arizona, showing ore-bodies.

tact were many irregular bunches of oxidized contact-metamorphic ores. At Metcalf the Shannon Mountain contained several similar ore-bodies (Fig. 222, p. 679), lying in an isolated mass of Paleozoic limestones extensively cut by porphyry dikes.

Bisbee, Arizona.—At Bisbee, Arizona, pre-Cambrian rocks are overlain by about 5,000 feet of Paleozoic limestones. After their deposition they were deformed by folding and faulting and were cut by intrusions of granitic porphyry, which is intimately connected with the origin of the copper deposits. The principal mass, of which the most prominent point is Sacramento Hill, close to Bisbee, is about 1 mile long and 1½ miles wide.

After a period of erosion a transgression of the Cretaceous sea deposited a thick series of beds on the older series.

The copper deposits lie in the limestones, mainly on the east side of the intrusive mass, and appear as irregular and ill-defined or rudely tabular masses, sometimes following the stratification. They are almost entirely oxidized, even down to depths of 1,400 feet below the surface. The oxidized ore, containing copper carbonates, cuprite, and sometimes also chalcocite, with much limonite, passes gradually on its peripheries into "ledge matter" or limonitic clays, which in turn grade into altered and contact-metamorphosed limestones. The contact metamorphism is unusually inconspicuous, but the limestone surrounding the intrusive mass contains fine-grained tremolite, diopside, garnet, vesuvianite, and quartz, associated with pyrite, bornite, and a little chalcopyrite and sphalerite.

The porphyry dips underneath the limestones and the contact is thus found farther east in the mines than on the surface. The limestones are also cut by a considerable number of dikes. A heavy mantle of pyritic quartzose ore, with some chalcopyrite and chalcocite, surrounds the porphyry, pitching parallel to the contact underneath the limestone of the surface.

In the altered porphyry, close to the contact, there is more or less chalcocite. Near the porphyry the limestone is often marmorized or sometimes greenish from finely divided actinolite. Garnet is found only in the Abrigo limestone, and there only as small masses. In the Oliver shaft, close to the contact, on the 1,200-foot level, the limestone is more intensely metamorphosed than elsewhere and contains bodies of pyrite, mixed with chalcopyrite and bornite.

The annual ore production of the Bisbee (Warren) district is now about 1,000,000 tons of 5 to 6 per cent, ore yielding, in 1911, about 126,000,000 pounds of copper with some gold and silver; the total metallic value was $17,500,000. The principal production is derived from the Copper Queen and Calumet & Arizona mines.

Cananea, Mexico.—The mines at Cananea lie a short distance south of the Arizona-Sonora boundary line, in one of the short ranges that rise out of the gently sloping desert plains. Since 1900 these deposits have yielded large quantities of copper from ores enriched by oxidation and development of secondary chalcocite. The district was described by S. F. Emmons.1

1 S. F. Emmons, Econ. Geol., vol. 4, 1910, pp. 312–356.
zinc blende, occasionally also molybdenite. In the earlier days of the district, from 1875 to 1900, these oxidized ore-bodies were mined; they were easily reduced and comparatively rich in copper, containing mainly malachite, azurite, and limonite. The celebrated Longfellow ore-body formed a funnel-shaped mass in Ordovician limestone, between two porphyry dikes.

Farther west, in the Manganese Blue and Detroit mines (Fig. 228), were several tabular ore-bodies, following the stratification in the Ordovician, Devonian, and Carboniferous limestones; these also owed their richness to several porphyry dikes, a few hundred feet from the main contact. Along the main con-

![Diagram](image.png)

Fig. 228.—Vertical section through contact-metamorphic limestone at Morenci, Arizona, showing ore-bodies.

tact were many irregular bunches of oxidized contact-metamorphic ores. At Metcalf the Shannon Mountain contained several similar ore-bodies (Fig. 222, p. 679), lying in an isolated mass of Paleozoic limestones extensively cut by porphyry dikes.

Bisbee, Arizona.—At Bisbee, Arizona, pre-Cambrian rocks are overlain by about 5,000 feet of Paleozoic limestones. After their deposition they were deformed by folding and faulting and were cut by intrusions of granitic porphyry, which is intimately connected with the origin of the copper deposits. The principal mass, of which the most prominent point is Sacramento Hill, close to Bisbee, is about 1 mile long and 1½ miles wide.

After a period of erosion a transgression of the Cretaceous sea deposited a thick series of beds on the older series.

The copper deposits lie in the limestones, mainly on the east side of the intrusive mass, and appear as irregular and ill-defined or rudely tabular masses, sometimes following the stratification. They are almost entirely oxidized, even down to depths of 1,400 feet below the surface. The oxidized ore, containing copper carbonates, cuprite, and sometimes also chalcocite, with much limonite, passes gradually on its peripheries into "ledge matter" or limonitic clays, which in turn grade into altered and contact-metamorphosed limestones. The contact metamorphism is unusually inconspicuous, but the limestone surrounding the intrusive mass contains fine-grained tremolite, diopside, garnet, vesuvianite, and quartz, associated with pyrite, bornite, and a little chalcopyrite and sphalerite.

The porphyry dips underneath the limestones and the contact is thus found farther east in the mines than on the surface. The limestones are also cut by a considerable number of dikes. A heavy mantle of pyritic quartzose ore, with some chalcopyrite and chalcocite, surrounds the porphyry, pitching parallel to the contact underneath the limestone of the surface.

In the altered porphyry, close to the contact, there is more or less chalcocite. Near the porphyry the limestone is often marmorized or sometimes greenish from finely divided actinolite. Garnet is found only in the Abrigo limestone, and there only as small masses. In the Oliver shaft, close to the contact, on the 1,200-foot level, the limestone is more intensely metamorphosed than elsewhere and contains bodies of pyrite, mixed with chalcopyrite and bornite.

The annual ore production of the Bisbee (Warren) district is now about 1,000,000 tons of 5 to 6 per cent, ore yielding, in 1911, about 126,000,000 pounds of copper with some gold and silver; the total metallic value was $17,500,000. The principal production is derived from the Copper Queen and Calumet & Arizona mines.

Cananea, Mexico.—The mines at Cananea lie a short distance south of the Arizona-Sonora boundary line, in one of the short ranges that rise out of the gently sloping desert plains. Since 1900 these deposits have yielded large quantities of copper from ores enriched by oxidation and development of secondary chalcocite. The district was described by S. F. Emmons.¹

The deposits show some similarity to those of Clifton, Arizona, but the geological history is much more complicated. Three successive irruptions, termed diorite porphyry, granodiorite, and quartz porphyry, have caused contact metamorphism in relatively small areas of Paleozoic limestone. Among the primary minerals are chalcopyrite, bornite, zinc blende, magnetite, and specularite; the limestones are garnetized, marmorized, and silicified.

A second epoch of mineralization by aqueous solutions resulted in veins and disseminations of pyrite, chalcopyrite, and quartz. Both classes have been enriched by oxidizing solutions.

Other Cordilleran Deposits.—Space does not suffice to describe all the contact-metamorphic copper deposits in the Cordilleran region. At Twin Buttes, Arizona, south of Tucson, large bodies of primary ore occur below a garnetized bed containing but little copper. The ore consists of actinolite, magnetite, pyrite, and chalcopyrite. These mineralized beds form part of a Paleozoic limestone series and lie within a few hundred feet of the contact with a granitic rock.

At Silver Bell,1 southwest of Tucson, extensive primary chalcopyrite deposits are worked. The mines are near the summit of one of the numerous desert ranges of that region; the ores are smelted, without concentration, at the Sasco plant. Several small masses of Paleozoic limestone are engulfed in a large mass of granite porphyry and along their contacts metamorphism is irregularly developed—in part by marmorization, in part by garnetization. The ore consists of chalcopyrite and light-brown garnet, said to be andradite, with a little magnetite, zinc blende, galena, and molybdenite. Much ore averaging 7 per cent. copper has been shipped, but that smelted would average about 4 per cent. About 800 tons were mined per day in 1909. A trace of gold and 1 to 2 ounces of silver per ton are present. The oxidation is shallow, wholly fresh rock being encountered at the 200-foot level. The porphyry is locally silicified, but otherwise not greatly altered, except for some disseminated pyrite and chalcopyrite. No extensive chalcocite zone has been found in the porphyry.

Bingham, Utah.—The Bingham district, near Salt Lake, Utah, now most widely known by its extensive mining operations in chalcocitized porphyry, has a complicated geological history.

According to J. M. Boutwell, laccoliths and stocks of monzonite, as well as sills and dikes of diorite porphyry, invade the Paleozoic sedimentary series. The ore-bodies consist in part of contact-metamorphic deposits, in part of later vein systems; both are altered and enriched by descending waters. At the contacts the limestone is extensively marmorized and replaced by pyrite and chalcopyrite (Fig. 229), but the development of garnet and other silicates is unusually scant. Among the best examples of ore-bodies of contact-metamorphic type is that of the Highland Boy.

Fig. 229.—Thin section showing replacement of metamorphosed limestone by quartz (Q), pyrite (P), and chalcopyrite (Ch), Highland Boy mine, Bingham, Utah. Enlarged 35 diameters. After J. M. Boutwell, U. S. Geol. Survey.

Nevada.—Contact-metamorphic deposits of smaller extent in Nevada have been described by W. H. Emmons, F. L. Ransome, and F. C. Schrader.

At the Coppereid deposit, in Humboldt County, Ransome observed chalcopyrite, pyrrhotite, zinc blende, pyrite, garnet, epidote, specularite, axinite, and fluorite, the latter two rather unusual in this type.

Ketchikan, Alaska.—Several contact-metamorphic copper deposits in southeastern Alaska are described by F. E. and C. W.

Wright. Those of Copper Mountain, Prince of Wales Island, present an unusually excellent illustration of deposits occurring at intervals along the contacts of an isolated granite intrusion. On the Kasaan Peninsula are several magnetite-chalcopyrite deposits, also containing pyrrhotite and pyrite, in a gangue of amphibole, epidote, orthoclase, garnet, and calcite. Wright believes that the ores were formed after the consolidation of the last intrusions of syenite. At both places shear zones and vein deposits containing copper accompany the contact deposits.

Zinc and Lead Deposits

Almost all contact-metamorphic sulphide deposits contain some zinc blende, and often also a little galena, but only a few deposits are known in which these metals constitute the principal value of the ore. Where they occur the amphiboles and epidote appear to be more prominent than garnet.

At South Mountain, Idaho, according to F. C. Schrader, argentiferous galena with zinc blende and a little chalcopyrite and magnetite occurs on the contact of limestone and diorite or granite, associated with actinolite, ilvaite, garnet, and quartz.

In New Mexico, at Tres Hermanas, oxidized zinc ores, mainly willemite, with a little galena, are found in a typical contact zone with garnet rock.

In the same State, at the Modoc mine, in the Organ Mountains, a latite, the structure of which indicates an effusive rock, breaks through Paleozoic limestone; at the contact is a zone 15 feet wide in which the limestone has been converted to epidote with residuum calcite and galena. A little zinc blende and pyrite accompany the galena, which is poor in silver.

The best example is furnished by the Magdalena mines, in New Mexico, which in the oxidized zone, 200 to 300 feet deep, were worked for their lead, silver, and zinc. In depth large bodies of zinc blende were found, together with a little galena and chalcopyrite. According to Gordon the Magdalena Range consists of faulted blocks of Paleozoic (Mississippian and Pennsyl-

4 *Idem*, p. 213.
IGNEOUS METAMORPHISM

vanian) limestone, resting on pre-Cambrian crystalline rocks. The limestones are cut by dikes of granite porphyry, which are exposed near the Graphic mine and which are believed to have caused the mineralization. In the limestones, which dip westward, toward a hidden contact with the granite porphyry, mineralization has taken place at five horizons, of which only one, just below the "Silver Pipe" limestone, is of great importance. The ore-bodies are roughly lenticular and may be as much as 40 feet in thickness. They occur at irregular intervals along the bedding planes, the principal bodies lying apparently at the crests of low arches transverse to the strike of the beds. Besides the sulphides mentioned they contain magnetite and specularite, with much epidote, pyroxene, and tremolite, but little if any garnet. The distance along the dip of the strata to the intrusive rock is probably not less than 2,000 feet. While these deposits differ somewhat from the commonly occurring type of copper deposits, there can be little doubt that they are of contact-metamorphic origin.

Gold Deposits

Gold is present in traces in almost all sulphide deposits of the contact-metamorphic type, and a few ounces of silver to the ton is likewise not unusual, but it is rare to find in such deposits ores which are valuable chiefly on account of their precious metals.

At the Santa Fe mine,¹ Chiapas, Mexico, limestone close to an intrusive contact is changed to garnet and wollastonite; this rock contains in disseminated form, or concentrated in ore channels, auriferous and argentiferous bornite. The gold is in part free. The average ore consists of 90 per cent. garnet and 10 per cent. quartz and chalcedony carrying from 3 to 4 per cent. copper, with 6 to 8 ounces in silver and $6 to $20 in gold per ton.

One of the best examples of a gold-bearing contact-metamorphic deposit is that of the Cable mine, Montana, described by W. H. Emmons.² The ores are included in a long, thin block of

limestone, in contact on both sides with quartz monzonite. The principal minerals are calcite, quartz, pyrrhotite, pyrite, magnetite, and chalcopyrite, with actinolite, garnet, and green mica. The gold, in part coarse, is disseminated in calcite, quartz, and sulphides. This deposit has yielded about $3,000,000.

Platinum is rarely found. One occurrence in Sumatra is mentioned by L. Hundeshagen; 1 the metal occurs in wollastonite.

Gold-Arsenopyrite Type.—The best example of this rare type, lately described by C. Camsell, 2 is the deposit worked by the Nickel Plate mine, British Columbia. Gently folded Carboniferous limestones associated with shale, quartzite, and volcanic tuffs are intruded by sheets of gabbro and diorite. Along the contacts of these sheets, and particularly of their apophyses, the impure limestones are converted into contact-metamorphic minerals with arsenopyrite. The commercial ore-bodies, which have yielded several million dollars in gold, are tabular and follow the dipping contacts of the basic rock, which are not exactly parallel with the inclination of the strata. The outside of the ore-body is irregular and gradually fading, reaching somewhat farther away from the contact in some beds than in others. The principal ore-body has been followed 350 feet along the dip and has a width parallel to the contact of 125 feet.

The ore minerals are, named in order of quantity, arsenopyrite, pyrrhotite, chalcopyrite, pyrite, zinc blende, tetradymite (Bi₂Te₃), and molybdenite. The depth of oxidation is slight, but in the upper levels free gold occurred associated with tetradymite, while at the greater depth now attained it seems to be intimately bound up with the arsenopyrite and is not amenable to amalgamation. The pure arsenopyrite may contain as much as 12 ounces of gold per ton. The gold tenor varies from $6 to $14 per ton, but beyond the ore-body minor quantities of gold are widely disseminated in the contact-metamorphic rocks. There is very little silver; traces of platinum (as sperrylite?) and nickel are present. The gangue minerals are andradite, pyroxene, epidote, calcite, and axinite, and the sulphides are closely intergrown with them, pointing to contemporaneous deposition; the chalcopyrite is somewhat later than the arsenopyrite. Quartz is distinctly later than the other gangue minerals.

Orthoclase appears in gabbro dikes replacing pyroxene by a process of endomorphic contact metamorphism. Although the rocks are faulted and fissured by post-intrusive stresses, these fractures contain practically no valuable ores.

The only similar deposit described in the literature is that of Reichenstein, Silesia, the auriferous leucopyrite and arsenopyrite of which have been worked on a small scale, probably since the thirteenth century. According to C. Wienecke and A. Bergeat the ore-producing intrusive is probably a neighboring granite, and the altered rock a dolomitic limestone.

Telluride Type.—Contact-metamorphic deposits carrying telluride ores are rare. W. H. Weed describes such an occurrence at the Dolcoath mine at Elkhorn, Montana, where auriferous tetradyrmite is found in a 15- to 18-foot bed of garnet, diopside, and calcite. Weed also mentions a deposit at Bannock, Montana, where tellurides occur with specularite, garnet, pyrite, and free gold at a contact between diorite and limestone.

The occurrence of altaite in the Cable mine, Montana, is mentioned by W. J. Sharwood.

It seems well established, then, that tellurides may crystallize at high temperatures. They are not known as products of igneous consolidation.

Cassiterite Deposits

Contact-metamorphic deposits with the assemblage of fluorine and boron minerals characteristic of cassiterite veins are rare. The tin-bearing magmas, which are generally normal granites, seem to retain the tin and associated substances until a later stage, after consolidation of the rock.

Cassiterite occurs, in part in connection with fissures, in the contact-metamorphic deposits of Pitkäranta, in Finland; of Schwarzenberg and Berggiesshübel, in Saxony; and of Campiglia Marittima, in Tuscany. Other examples of more typical character have been noted at Dartmoor, in Devonshire, England.

5. *Econ. Geol.*, vol. 6, 1911, pp. 22–36.
and lately by A. Knopf\(^1\) on Lost River, Seward Peninsula, Alaska. At the latter place the granite has produced a narrow but long contact zone of lime-silicate rocks rich in tourmaline, axinite, ludwigite, hulsite and paigeite (both ferromagnesian stannoborates), vesuvianite, fluorite, scapolite, chondrodite, galena, sphalerite, arsenopyrite, pyrrhotite, scheelite, magnetite, pyroxene, and cassiterite. In the banded limestone the argillaceous layers are converted to tourmaline, with tremolite and vesuvianite, while the purer calcareous layers are marmorized. The orbicular structure of the contact minerals of this district has been mentioned in Chapter 24. The deposit is said to be of little economic importance.

At this interesting locality cassiterite also occurs in tourmalinized granitic masses or dikes, in quartz veins cutting granite and developing greisen, in quartz porphyry dikes, and in quartz stringers cutting limestone and slate.

The dikes of quartz porphyry, which pierce the limestone, contain cassiterite, pyrite, arsenopyrite, wolframite, and fluorite, with mica and topaz. The adjoining limestone is reticulated by veins which carry cassiterite, and around these veinlets hornblende, vesuvianite, fluorite, plagioclase, mica, and topaz have formed.

In the so-called Dolcoath lode a narrow dike is transformed into danburite (borosilicate of calcium) and tourmaline, with some arsenopyrite and cassiterite.

In the offshoots from the main granite mass are found fluorite, cassiterite, muscovite, tourmaline, and topaz, the last two having crystallized after the feldspar and quartz.

These interesting observations clearly show the intimate connection and in fact the transition between contact-metamorphic deposits and veins.

Graphite\(^2\)

Properties.—Graphite is a form of carbon crystallizing in the rhombohedral system; it is soft, is steel-gray to black, and

\(^1\) *Bull. No. 358, U. S. Geol. Survey, 1908.*

IGNEOUS METAMORPHISM

has a greasy feel. Even in its purest form it contains a little volatile matter and ash, usually less than 1 per cent. Many varieties are impure, and for some purposes, like paint-making, material with as little as 35 per cent. graphitic carbon is utilized. Analyses quoted by Cirkel show that the commercial grades of graphite, even those considered as of high quality, contain several per cent. of volatile matter and may be high in ash. An analysis of graphite from Ceylon shows 5.20 per cent. volatile matter and 22.15 per cent. ash.

The question whether graphite really exists in some of the varieties of "graphitic slate" yielding "amorphous graphite" is debatable; the minuteness of the particles renders it difficult to determine whether they are crystalline or not. The term "graphitoid" has been proposed for such substances, but is not accepted by all authors. The best test for graphite is said to be its characteristic property of yielding graphitic acid (C₁₁H₂₄O₆) with strong oxidizing reagents such as nitric acid. The amorphous carbons do not respond to this test.

According to H. Moissan graphite begins to oxidize at 650° to 700° C. In texture graphite is flaky or scaly or, when in veins, is often fibrous perpendicular to the walls; these varieties are called "crystalline" in the trade. "Plumbago" and "black lead" are trade names for the mineral.

General Occurrence and Origin.—Graphite appears mainly in rocks which have suffered intense regional or igneous metamorphism. The literature on its occurrence and origin is very extensive and shows plainly that the mineral may have originated in several ways:

1. It may form an integral part of rock magmas and crystallize together with the rock. This possibility is indicated by its presence in meteorites, in the terrestrial iron of Ovifak, Greenland, in nepheline syenite,¹ and in pegmatites.² In some of the occurrences in pegmatite dikes the graphite has, however, clearly

E. Donath, Der Graphit, Leipzig and Vienna, 1904.

E. Weinschenk, Der Graphit, etc., Leipzig, 1904.

been absorbed from the surrounding crystalline limestone. This is the origin of one of the occurrences described by George Otis Smith, as well as of the graphite in a dike near Franklin Furnace, New Jersey, described by A. C. Spencer.¹ These deposits are rarely of economic importance.

2. Graphite forms by the recrystallization of carbonaceous matter in metamorphic sedimentary rocks resulting from sandstone, shale, limestone, or coal. This transformation is well established and can evidently be effected under conditions of intense regional or igneous metamorphism, but it probably requires a relatively high degree of heat, perhaps well above 200⁰ C. The development of graphite in the zone of contact metamorphism is assumed by some authors, like E. Weinschenk, to mean that the carbon has been supplied by emanations from the magma. Weinschenk also applies this theory to its occurrence in many areas of regional metamorphism, but this view is probably not justified.

In studying the contact-metamorphic graphite from Ticonderoga, New York, E. S. Bastin showed by experiments that the contemporaneous quartz crystals had not been exposed to a temperature of 575⁰ C. While a very high temperature is necessary for the manufacture of artificial graphite, the transformation can evidently be effected in nature at a much lower degree of heat.

3. Lastly, graphite occurs in veins, sometimes 2 or 3 feet wide, having the appearance of resulting from the filling of open fissures, and in this form the mineral usually possesses a marked transverse fibrous structure. Such veins are found in igneous rocks, like pegmatites and granites, and also in the surrounding metamorphosed sediments. Fine examples are seen in the graphite regions of New York, Canada, and Ceylon.

The origin of this type is less easy to explain. As the veins are usually found near intrusive contacts where high heat prevailed, it may be conjectured that they were formed by deposition from gaseous carbon compounds, such as carbon monoxide or cyanogen compounds, perhaps with metals; in some of these graphites the ash contains much iron. The prevailing opinion is that the carbon is derived from surrounding sediments and was deposited shortly after the intrusion, but E. Weinschenk²

and others consider it as originating from exhalations of igneous origin. The Ceylon veins, described by the same author, contain, in addition to graphite, quartz, rutile, orthoclase, apatite, pyroxene, and pyrite. Calcite is contemporaneous and intergrown with the graphite. Finally there are, both here and at other places described by Weinschenk, kaolin and the corresponding iron compound, nontronite, and these occurrences are held to support the theory of igneous derivation. This view is assuredly not justified, as the possibility that such highly hydrated compounds can be formed by igneous exhalations is decidedly remote (pp. 304–305). Types 2 and 3 form many valuable graphite deposits.

Occurrences.—Deposits of graphite have been found in a number of States in the Union, but few are of economic importance; many of them are graphite slates or clays which are utilized as pigments or as lubricants.

Most of the domestic supply of "crystalline" graphite is obtained from New York; the mines are located in Essex, Warren, Washington, and Saratoga counties, in the Adirondack region, and the largest mine, that of the American Graphite Company, has been worked for 30 years. The rocks are pre-Cambrian crystalline schists of sedimentary origin. The principal bed worked is a dark silver-gray quartz-graphite schist and is said to average about 6 per cent. graphitic carbon. Elongated quartz grains, muscovite, apatite, and graphite in thin and ragged flakes, averaging about 1 millimeter in length, are the constituents. Two beds are known, one about 8 feet thick, the other from 3 to 20 feet. Excavations have extended for 2,000 feet along the gentle dip of the thicker bed, the greatest depth below the surface being 250 feet. The associated rocks are garnetiferous gneisses.

Three miles northwest of Ticonderoga, in the same region, coarse graphite plates are irregularly distributed throughout the contact zone between pegmatite and pegmatitic granite and the schists and limestones which these rocks intrude. Contact-metamorphic minerals, like scapolite, pyroxene, and vesuvian-
ite, occur in this zone. The graphite also forms veins, 1 to 2 inches wide, which cut across both the schist and granite. The deposits at this locality have been worked for a number of years.

A deposit containing graphite in veins similar to those of Ceylon has recently been found near Dillon, Montana.¹ The veins occur along a contact zone of granites and pegmatites, intrusive in pre-Cambrian schists and calcareous rocks which have been contact-metamorphosed.

At several places in New Mexico² intrusions of basic igneous rocks have altered the coal-beds of the Tertiary or Cretaceous formations. At Madrid the coal was converted to anthracite. Near Raton the intrusions have turned the coal into a coke-like material, but at one place 7 miles southwest of Raton a number of sills produced exceptionally intense metamorphism, converting the coal to graphite. Graphite also occurs in irregular masses in the diabase and has a more or less columnar texture normal to the faces of the igneous rock.

Similar conditions produced the important deposit of amorphous graphite of Santa Maria, in central Sonora, Mexico. According to F. L. Hess³ several coal-beds, attaining a maximum

³ *Mineral Resources*, 1908, part 2, p. 734.
thickness of 24 feet, have been subjected to contact metamorphism and folding by intruding granite and are converted into amorphous graphite. The main vein averages 86 per cent. graphitic carbon and furnishes a good material for the manufacture of lead pencils.

The graphite deposits of Ceylon\(^1\) are now the most productive in the world, yielding about 38,000 short tons a year. The mineral is said to occur as veins, varying in width from 12 to 22 centimeters. The mines are from 100 to 500 feet deep. The rough material often contains up to 50 per cent. impurities and is hand picked and sorted.

![Fig. 231.—Vertical section of graphite vein in limestone, Granville district, Quebec. After A. Osann.](image)

According to Bastin the veins are found in a fine-grained acidic or basic gneiss to which he applies the name granulite. The rock contains quartz, feldspar, garnet, pyroxene, biotite, etc. Some crystalline limestone is also present. The gneisses are intruded by granites and pegmatites.

The Siberian deposits, in the Batagol Mountains near Irkutsk, yield material of great purity, which formerly supplied the lead-pencil industry. L. Jaczewski,\(^2\) describing the Alibert mines in this region, states that the graphite occurs in a nepheline syenite

E. Weinschenk, *loc. cit.*

\(^2\) E. S. Bastin, *Econ. Geol.*, vol. 7, 1912, pp. 419–443 (with literature).
Neues Jahrb., 1901, 2, ref. p. 74. (Original in Russian.)
close to the contact of a schist that also contains graphite, the latter, as well as the inclusions in the igneous rock, being considered of organic origin. This conclusion is vigorously attacked by E. Weinschenk.\(^1\)

The deposits at Passau, in Bavaria, comprise few veins; the graphite occurs in a crushed, schistose rock and Weinschenk regards the deposits as caused by volcanic emanations. The occurrences in Moravia are apparently similar. The graphite deposits of Canada are contained chiefly in Buckingham and Grenville townships, Quebec, near Ottawa. The production in 1911 was about 1,200 long tons. These deposits, which have been described by A. Osann,\(^2\) show particularly clear relations to contact metamorphism. The rocks are largely gneiss, quartzite, and crystalline limestone, cut by granite, pegmatite, and diorite. Graphite is widely distributed in fissure veins or lenticular masses in these intrusions or near their contacts, also as disseminated flakes in limestone or gneiss (Figs. 230 and 231). Associated minerals are apatite and scapolite, often appearing in the wall rocks of the veins, also biotite, titanite, wollastonite, and pyrite. The analogy of these deposits with the apatite veins is striking and the conclusion is justified that they were developed by igneous emanations shortly after the close of the intrusive activity.

Production and Uses.—The production of natural graphite in the United States has varied considerably, owing to the large quantities of low-grade material used for paints and fertilizers. The output of high-grade material from New York State is about 1,000 tons per annum. Much larger is the production of artificial graphite now manufactured in electric furnaces at Niagara Falls at the rate of 3,000 to 4,000 tons per annum, from anthracite coal mixed with a small percentage of ash. In addition about 15,000 to 20,000 tons of graphite are imported from the highly productive mines in Austria and Ceylon. Ceylon lump graphite sells in New York (1911) for 7 to 9 cents a pound.

There is a great demand for graphite from many branches of industry. The inert and heat-resisting nature of the "crystal-

\(^1\) E. Weinschenk, *loc. cit.*

line” graphite makes it particularly valuable for crucibles, the fibrous Ceylon product being most suitable for this purpose.

Graphite is extensively used as a lubricant, with oil, and for this purpose the artificial mineral, which is “deflocculated,” causing it to remain indefinitely in suspension in oil, is especially employed. Other uses are for pencils, foundry facings, polishing powder, paint, electrodes, and, strange to say, as an adulterant for fertilizers; it is claimed that it prevents absorption of moisture and caking.

The low-grade material from New York State is concentrated at the mines by crushing, washing on buddles or other appliances, and settling, but the details of the process have not been made public.

Cirkel’s report on graphite, referred to above, gives detailed data as to technology and chemistry.

Garnet

Some varieties of garnet, especially almandite, are mined and used as abrasive material. In the State of New York there are several deposits of this kind.¹ The garnets occur in highly altered rocks of somewhat uncertain history but are probably the result of contact metamorphism.

DEPOSITS DUE TO IGNEOUS METASOMATISM NOT DISTINCTLY RELATED TO CONTACTS

General Features.—The deposits thus far described lie close to the well-defined contact of an intrusive rock with a sedimentary series. There are deposits, however, in which the mineral association points to the same mode of origin, but which are not clearly related to any given contact. This may result from a sloping or irregular contact of a large batholith, so that a point on the surface that is several miles from the contact horizontally may be only a few thousand feet from it in a vertical direction. General metamorphism, without special development of mineral deposits, appears to have been effected by such conditions at the

northern end of the great batholith of Idaho between the Clear-
water and St. Joe rivers. During a long and deep immersion
into the zone of anamorphism, metallic gases given off by magmas
may have penetrated farther from the intrusion than they have
near the surface. It is also possible that erosion may have cut
away the metallizing dike or mass, so that its relation to the
deposit is no longer apparent.

At any rate such ore-bodies are termed deposits due to igneous
metamorphism, rather than contact-metamorphic deposits.

Ores of copper, zinc, lead, and iron are included in this class.
Many representaves are found among the obscure deposits in
the pre-Cambrian of Scandinavia.

Boundary District.—At Phoenix and Greenwood, in British
Columbia near the international boundary, are a number of ore-
bodies which in the last decade have yielded about 125,000 tons
of copper. The geology of the region is complex. A thick series
of volcanic rocks (porphyrites), both clastic and massive, crystal-
line limestones, and argillites, all of upper Paleozoic age, is
intruded by a granitic batholith of probable Jurassic age and
smaller masses of syenite.

The large ore deposit of the Granby Company lies in a miner-
alized zone which represents a part of the limestone replaced by
epidote, garnet, etc. The ore-bodies are lenses or large masses
one of which is 2,500 feet long and 900 feet wide and has a max-
imum thickness of 125 feet (Fig. 232). The dip becomes flat in
depth and the ore ceases at a vertical depth of 675 feet. The
ore grades into barren rock or is bounded by a gouge-filled fissure;
it is traversed by fissures through which, it is believed, the miner-
alization took place. The ore consists of chalcopyrite, pyrite,
hematite, and magnetite, with andradite, actinolite, and epidote.
Calcite and quartz fill the interstices between the lime-iron
silicates. The ore as smelted contains from 1.2 to 1.6 per cent.
copper with 0.04 ounce of gold and 0.3 ounce of silver per ton.
The original limestone which appears in some remnants near the
ore-body is comparatively pure and contains from 1 to 10 per
cent. of silica and little or no iron. Magnetite, epidote, and
garnet formed contemporaneously; somewhat later but partly
overlapping came the development of chalcopyrite, pyrite, and

¹ F. C. Calkins and E. L. Jones, *Bull.* No. 530, U. S. Geol. Survey, 1913,
pp. 75–86.

hematite. The limestone is in large part converted to jasperoid, the alteration appearing to have taken place before the development of the ore.

No large bodies of igneous rocks appear in or near the deposits, and the nearest small outcrops of granodiorite are 1 to 2 miles away; one of these outcrops has been locally replaced by garnet, epidote, and actinolite. Deep drilling below the deposits failed to disclose intrusive rocks. It is held that the ores were formed by igneous emanations of iron, silica, and copper which traversed the limestone laterally from some unit of the intrusive series that is now eroded.

Ducktown, Tennessee.—The copper ores at Ducktown have been worked since about 1848 and still maintain an output of 10,000 tons of copper a year. In addition, about 700 tons of sulphuric acid is now obtained daily from these ores. The district, which lies in the mountainous area of the southern Appalachians, has been the subject of repeated geologic investigation by C. Heinrich, J. F. Kemp, and W. H. Weed. Lately, W. H. Emmons and F. B. Laney¹ have examined the deposits.

According to Emmons and Laney the deposits are contained in a highly compressed metamorphosed and schistose series of arkose sediments of Cambrian age, consisting of poorly sorted conglomerates, grits, sandstone, and shale. Garnet and staurolite have developed abundantly in the rocks, the staurolite following certain horizons persistently. Thin lenses of limestone

northern end of the great batholith of Idaho between the Clearwater and St. Joe rivers. During a long and deep immersion into the zone of anamorphism, metallic gases given off by magmas may have penetrated farther from the intrusion than they have near the surface. It is also possible that erosion may have cut away the metallizing dike or mass, so that its relation to the deposit is no longer apparent.

At any rate such ore-bodies are termed deposits due to igneous metamorphism, rather than contact-metamorphic deposits.

Ores of copper, zinc, lead, and iron are included in this class. Many representatives are found among the obscure deposits in the pre-Cambrian of Scandinavia.

Boundary District.—At Phoenix and Greenwood, in British Columbia near the international boundary, are a number of ore-bodies which in the last decade have yielded about 125,000 tons of copper. The geology of the region is complex. A thick series of volcanic rocks (porphyrites), both clastic and massive, crystalline limestones, and argillites, all of upper Paleozoic age, is intruded by a granitic batholith of probable Jurassic age and smaller masses of syenite.

The large ore deposit of the Granby Company lies in a mineralized zone which represents a part of the limestone replaced by epidote, garnet, etc. The ore-bodies are lenses or large masses one of which is 2,500 feet long and 900 feet wide and has a maximum thickness of 125 feet (Fig. 232). The dip becomes flat in depth and the ore ceases at a vertical depth of 675 feet. The ore grades into barren rock or is bounded by a gouge-filled fissure; it is traversed by fissures through which, it is believed, the mineralization took place. The ore consists of chalcopyrite, pyrite, hematite, and magnetite, with andradite, actinolite, and epidote. Calcite and quartz fill the interstices between the lime-iron silicates. The ore as smelted contains from 1.2 to 1.6 per cent. copper with 0.04 ounce of gold and 0.3 ounce of silver per ton. The original limestone which appears in some remnants near the ore-body is comparatively pure and contains from 1 to 10 per cent. of silica and little or no iron. Magnetite, epidote, and garnet formed contemporaneously; somewhat later but partly overlapping came the development of chalcopyrite, pyrite, and

IGNEOUS METAMORPHISM

hematite. The limestone is in large part converted to jasperoid, the alteration appearing to have taken place before the development of the ore.

No large bodies of igneous rocks appear in or near the deposits, and the nearest small outcrops of granodiorite are 1 to 2 miles away; one of these outcrops has been locally replaced by garnet, epidote, and actinolite. Deep drilling below the deposits failed to disclose intrusive rocks. It is held that the ores were formed by igneous emanations of iron, silica, and copper which traversed the limestone laterally from some unit of the intrusive series that is now eroded.

![Diagram](attachment:image.png)

Fig. 232.—Vertical section across ore-body, Knob Hill-Ironsides mine, Granby Company, British Columbia. o, Ore; g, gangue; j, jasperoids and tuffs; st, stopes. *After O. E. LeRoy.*

Ducktown, Tennessee.—The copper ores at Ducktown have been worked since about 1848 and still maintain an output of 10,000 tons of copper a year. In addition, about 700 tons of sulphuric acid is now obtained daily from these ores. The district, which lies in the mountainous area of the southern Appalachians, has been the subject of repeated geologic investigation by C. Heinrich, J. F. Kemp, and W. H. Weed. Lately, W. H. Emmons and F. B. Laney† have examined the deposits.

According to Emmons and Laney the deposits are contained in a highly compressed metamorphosed and schistose series of arkose sediments of Cambrian age, consisting of poorly sorted conglomerates, grits, sandstone, and shale. Garnet and staurolite have developed abundantly in the rocks, the staurolite following certain horizons persistently. Thin lenses of limestone

were contained in the series and are exposed in some places in the mines; they are now crystalline and contain layers of biotite and muscovite. Here and there are small ill-defined lenses of a highly metamorphic rock looking like a diorite-pegmatite and consisting of quartz, feldspar, hornblende, and garnet. These peculiar phases are now believed to be the result of strong metamorphism of the arkose sediments. Dikes of gabbro, later than the mineralization, are intruded in the sediments.

![Diagram of Mary mine, Ducktown, Tennessee](image)

Fig. 233.—Cross-section of Mary mine, Ducktown, Tennessee. After W. H. Emmons, U. S. Geol. Survey.

The deposits are elongated, roughly tabular masses, some of them curved, lens-shaped, or folded, striking northeast and mostly dipping southeast (Fig. 233). The ore beds are parallel to the strike of the schists and average 60 feet in width. The primary ore is a coarsely crystalline mass of pyrrhotite, pyrite, chalcopyrite, zinc blende, specularite, magnetite, actinolite, calcite, tremolite, quartz, pyroxene, garnet, zoisite, chlorite, mica, graphite, titanite, and feldspars, all of practically contemporaneous crystallization.

Much of the ore is almost massive pyrrhotite and pyrite. Along the strike and dip the ore may grade into a lime silicate rock of gangue minerals and these in places grade into crystalline limestone. The contact between schist and ore is sharp or
gradational within a few inches. The beds have been worked down to a depth of about 500 feet. A thin but rich chalcocite zone due to enrichment by surface waters was found at a depth of 50 feet, but below this the ores have shown a constant tenor of 1.5 to 2 per cent. copper, a small amount of silver, and a trace of gold. It is held that the ores are formed by the replacement of thin limestone beds; all the abundant gangue minerals are in fact rich in lime. The replacement is believed to have been effected by igneous emanations, as the general association of minerals is typical of normal contact deposits. At the time of ore formation the rocks were at a high temperature and deeply buried in the anamorphic zone, and it is thought probable that the emanations from some intrusion far below the surface which had little effect on the schist caused mineralization in the limestone beds. The mineralization fell within the epoch of dynamo-metamorphism; some deformation of the ore has taken place since its deposition.

Franklin Furnace, New Jersey.\(^1\)—The great zinc-manganese deposits of northern New Jersey are of exceptional complexity and interest. Known since 1650 and actively worked since 1860, they now yield annually about 300,000 short tons of ore containing about 70,000 tons of zinc. The treatment of the crude ore by magnetic concentration yields franklinite, "half and half," and willemite; the first is used for the manufacture of zinc oxide for paints and leaves a manganiferous residue which goes to the blast furnace to make spiegelisen; the second is also used for zinc white; and the third after further concentration yields a product of willemite from which a high-grade spelter (zinc) is made.

The two ore deposits of Mine Hill and Sterling Hill, 3 miles apart, are situated along a belt of pre-Cambrian crystalline limestone adjoined on the west by coarse gneisses of igneous origin. Cambrian limestone covers these rocks to the east and west. Both deposits form canoe-shaped beds in the pre-Cambrian limestone. The Mine Hill ore bed (Fig. 234) is closely adjoined along its west flank by the gneiss, the contact of which is parallel to the ore-body. The ore mass is thus a layer varying from 12 to 100 feet in thickness and, bent upon itself, forms a

See also review by C. K. Leith, *Econ. Geol.*, vol. 4, p. 265.
long trough or one-half of a canoe with sides of unequal height, the keel pitching north at a gentle angle.

The mines are opened by a vertical shaft 965 feet deep and an incline 1,500 feet long. The ore forms transitions into the limestone and at Sterling Hill the limestone between the flanks also contains lean ore. Pegmatite dikes cut ore, limestone, and gneiss. The ore is a coarse aggregate of franklinite, 50 per cent.; willemite, 20 to 30 per cent.; zincte, 2 to 6 per cent.; and calcite, 3 to 11 per cent. Franklinite, (Fe,Mn,Zn)O.(Fe,Mn)₂O₅, contains about 42 per cent. iron, 15 per cent. manganese and 12 per cent. zinc; willemite, Zn₂SiO₄, 58 per cent. zinc; zincte, ZnO, 77 per cent. zinc. The four minerals mentioned are held to constitute the original ore. Besides, there are a great number of rarer minerals such as tephroite (Mn₂SiO₄), zinc pyroxene (schefferite), zinc amphibole, zinc spinel (gahnite), manganese garnet (polyadphite), axinite (borosilicate of Al, Ca, Fe, Mn), apatite and scapolite (containing chlorine), rhodochrosite, fluorite, zinc blende, galena, arsenopyrite, chalcopyrite, and lollingite. Most of these minerals are regarded as products of secondary metamorphism due to the pegmatite dikes. Many veins cut the deposits, some of them containing the normal recrystallized ore minerals, others distinctly later with sulphides associated with calcite, albite, bornite, quartz, dolomite, etc.
In the older literature the deposits were considered of sedimentary origin. The question of genesis was reopened in 1889 by F. L. Nason, who admitted the possibility of igneous origin. Spencer believes that the original deposit was formed by the injection of magmatic emanations from the gneiss intrusions into the limestone. Participation in the general deep metamorphism which affected this region in pre-Cambrian time has further complicated the relations. It is certain that the texture of the ore and the universal rounding or corroding of the ore minerals point distinctly to igneous metasomatic action. The abundance of the spinel minerals is indicative of high temperature.

Metasomatic Magnetite Deposits of Sweden.—Many of the earliest known and longest worked of the Swedish iron deposits form irregular masses or lenses in rocks of upper Archean age. They are either directly associated with crystalline limestone, or they occur near limestone but surrounded by masses of silicates like pyroxene, garnet, and epidote, to which the term "skarn" is usually applied. Though not as large as some of the more recently discovered deposits of certain or probable magmatic origin, the deposits have in the aggregate furnished much ore of exceptional purity and as yet are far from being exhausted. Until about ten years ago these deposits were considered by the Swedish geologists as of sedimentary origin, like bog iron ores, but subsequently metamorphosed. In modified form this

1 The literature is voluminous and only the later and more important contributions are here mentioned.

Hj. Sjögren, The genesis of our iron ores (Swedish), *Geol. För. Förhandl.*, vol. 28, 1906, pp. 314–344. With discussion by Törnebohm, Högbohm, Holquist, Bäckström, etc.

See also a summary of recent literature by A. Bergeat in *Fortschritte der Mineralogie, etc.*, Jena, 1911. Edited by the Deutsch. mineralog. Ges.

Excellent descriptions of individual districts are found in the guide to the excursions of the Internat. Geol. Congress, Stockholm, 1910.
opinion was expressed by de Launay in 1903. At present few observers hold to this view. There is, for instance, a strong similarity between the Swedish ores and those of the Banat province of Hungary, first described by von Cotta, and the latter are generally accepted as of contact-metamorphic origin. Striking and unmistakable also is their similarity to the metasomatic

contact deposits of North America, many of which contain much magnetite and which at some places are worked for iron.

The Swedish deposits are, however, not so simply explained, for while in the districts mentioned the ores unquestionably adjoin igneous intrusions, the granitic rocks of Sweden are generally later than the deposits, which normally are contained in a
peculiar fine-grained rock with gneissoid texture that is widely distributed in the iron region and that has been variously designated "hälleflinta," eurite, leptite, or granulite. These rocks, which form wide zones in the pre-Cambrian of Sweden and are locally associated or interbedded with amphibolites and smaller masses of more distinctly sedimentary quartz-mica slates and also with lenses of crystalline limestone or dolomite, are salic rocks, generally with at least 67 per cent. silica, and consist largely of albite, orthoclase, and quartz. Johansson has shown that they are in part potassic, in part sodic, and that intermediate composition is rare. He therefore interprets them as highly differentiated intrusives. The striped structure is interpreted by him as the result of a mechanical churning of the magma during differentiation. The most prevalent opinion is that these rocks are in part effusive, perhaps originally tuffaceous, and in part intrusive, and that the limestone and mica schist are of sedimentary origin.

The bodies of magnetite are in general associated with masses of crystalline limestone in this granulite formation, and it appears as if the mineralization were caused by the action of the granulite
on the limestone. The ores form stock-like masses with greatest extension in a vertical direction and border directly against granulite, limestone, or "skarn." The bodies have been followed to a depth of about 1,000 feet; some of them cease distinctly at various depths but other stocks still continue below the greatest depth reached. Many of them, but not all, conform with the banding of the granulite (Figs. 235 and 236).

The "limestone ores" are more directly embedded in limestone, but here too skarn minerals may be present. In such an ore-body at Klackberg a narrow zone of dark-brown garnet was noted along the contact of limestone and ore and in the limestone itself was disseminated a dark-brown amphibole. The limestone ores often carry manganese and some of them constitute manganese deposits like that of Långbanshyttan, at which an unusually great number of rare minerals are found. Stretching and schistosity were superimposed upon the deposits in places and sometimes the direction of the stretching indicates the pitch of the ore-body. The magnetite is fine-grained; it contains in places a little specularite. Some deposits contain small quantities of pyrite, pyrrhotite, chalcopyrite, and arsenopyrite.

The composition of one of the Persberg ores is as follows:

<table>
<thead>
<tr>
<th>Chemical Formula</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>71.56</td>
</tr>
<tr>
<td>FeO</td>
<td>5.11</td>
</tr>
<tr>
<td>Fe</td>
<td>55.79</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
</tr>
<tr>
<td>MgO</td>
<td>4.18</td>
</tr>
<tr>
<td>CaO</td>
<td>4.85</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.77</td>
</tr>
<tr>
<td>SiO₂</td>
<td>12.76</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.005</td>
</tr>
<tr>
<td>S</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Secondary changes have resulted in crushing along certain zones (skölar) and a great development of chlorite and other minerals of dynamometamorphic affinities. Among the celebrated deposits of this type should be mentioned those of Persberg, Taberg (in Värmland), Nordmark, Norberg, and Dannemora.

The field relations indicate beyond doubt that the ores and skarn are metasomatic replacements of limestone or dolomite similar to contact-metamorphic deposits. Probably the replacement was effected by very hot solutions containing iron, manganese, silica, etc., derived from intrusive magmas. The conditions attending deposition were, however, different from those of ordinary contact metamorphism and the process most likely took place at great depth, distinctly in the anamorphic zone. The problem of the origin of the accompanying igneous rocks remains without final answer. Later intrusions of granite,
IGNEOUS METAMORPHISM

pegmatite, and diabase appear to have affected the deposits but little.

Magnetite Deposits in the United States.—Deposits of magnetite which are similar to the Swedish ores just described are found in the United States only at two places. The Tilly Foster mine in New York State contained a steep lenticular body of ore embedded in gneiss; the magnetite was associated with calcite, dolomite, chondrodite, enstatite, epidote, chlorite, garnet, and scant sulphides. The ore-body was followed to a depth of about 600 feet.

Another locality is in the Cranberry district, in North Carolina, described by A. Keith, where low-grade ores have been mined and concentrated. The ore here occurs as a series of lenses of magnetite in a gangue of hornblende, pyroxene, and epidote; the lenses dip southwest at angles of 45°, about parallel to the schistosity of the surrounding gneiss. The ore is pure, with little phosphorus. It is not certain whether it represents replaced limestone.

CHAPTER XXVI

MINERAL DEPOSITS OF THE PEGMATITE DIKES

INTRODUCTION

Each large intrusive mass is usually accompanied by a series of later dikes. These "complementary" dikes have, as a rule, a composition similar to that of the prevailing rock, but differ from it in showing an enrichment of certain constituents and a reduction of others. They are generally regarded as products of magmatic differentiation, forming residual parts of the dominant magma after its consolidation has begun. Some of them are basic, like kersantites, minettes, or camptonites; others are acidic, like granite porphyry, aplite, or pegmatite.

Under the name of pegmatite are grouped the coarse granular dike rocks, often with well-developed idiomorphic structure, which accompany intrusive rocks, each group being characterized by pegmatites of special types.

Gabbros are sometimes accompanied by basic pegmatites of feldspar and pyroxene, and diorite by similar dikes of a basic feldspar and hornblende. The anorthosites are followed by pegmatitic dikes containing labradorite, hypersthene, and ilmenite; the nepheline syenites by pegmatites of soda feldspars, nephelite, sodalite, lepidomelane mica, ægirine, arfvedsonite, and minerals containing zirconium and titanium.

Most abundant are the granitic pegmatites, which consist mainly of coarsely crystallized orthoclase and quartz with muscovite; they often contain tourmaline, cassiterite, monazite, orthite, topaz, and a host of other rare minerals.

MINERALIZERS AND THE NATURE OF THEIR ACTION

The process of crystallization brings about an increasing concentration of the volatile constituents of the rock magma, if no other avenue of escape is open to such substances. In sub-aerial eruptions they are given off into the atmosphere. These

1 In part after A. Harker, Natural history of igneous rocks, pp. 282–302.
volatile substances, which of course formed an integral part of
the original magma, consist of water and compounds of boron,
fluorine, chlorine, phosphorus, sulphur, carbon, or arsenic,
doubtless also other rarer elements. They exert a peculiarly
favorable action upon the crystallization of magmas and miner-
als by decreasing their viscosity, lowering their freezing point,
and furthering the development of minerals which otherwise do
not crystallize from dry magmas. Harker says:

The action is doubtless partly physical, partly chemical. The nature
of the chemical effect, where the agent does not enter the crystallized
product, is sometimes designated as a catalytic action, signifying a
peculiar property possessed by certain bodies of inducing chemical
changes in other bodies without themselves entering into the com-
position of the final product. In other instances the "mineralizer"
forms part of the crystallized material.

French investigators from the days of Élie de Beaumont¹ have
justly laid stress on the part played by mineralizers in mag-
matic differentiation and in the formation of mineral deposits.
In the acidic rocks, which are known to contain fluorine and
boron, the action of mineralizers is particularly clear, but they
are doubtless present also in basic rocks, in which chlorine,
phosphorus, and sulphur take the place of fluorine and boron.
Some water is probably always present, although the tendency of
some investigators is to minimize its importance.²

The presence of water in quartz crystals of acidic intrusive
rocks shows plainly enough that the magma contained some
water, as do also the transitions from pegmatite dikes to deep-
seated ore-bearing veins.

The residual magma contains, besides these volatile mineral-
izers, the principal elements of the igneous rock crystallizing as
quartz, feldspar, ferromagnesian minerals, and muscovite, and a
number of rarer elements, such as tin, tungsten, zircon, tanta-
lum, columbium, cerium, beryllium, molybdenum, lead, copper,
lithium, and caesium. These rare elements appear to have been
carried along, in the process of differentiation, by the mineral-
izers, which in many cases have also carried large quantities of
iron differentiated from the main igneous body.

¹ Note sur les émanations volcaniques et métallifères, Bull. Soc. géol.
France (2), vol. 4, 1847, pp. 1249–1333.
² A. Brun, Recherches sur l’exhalaison volcanique, Geneva, 1911.
The mineralizing agents do not confine their action to the later stages of differentiation, but doubtless play a part in the crystallization of the main body of acidic magmas. This is shown by the occurrence of molybdenite, pyrite, bismuthinite, zinc blende, titanite, and zeolites in the druses of granitic rocks; among such are the occurrences of Striegau, described by A. Schwantke,¹ and those in the syenitic rocks in the vicinity of Kristiania, mentioned by Goldschmidt.² The granites of the Island of Elba contain in druses such minerals as albite, tourmaline, beryl, garnet, pyrite, arsenopyrite, cassiterite, and zeolites.³

Many of the silicate minerals, formed by the aid of mineralizers as the last stage of intrusive action, are of remarkably complex chemical nature. To many minerals of this class no formula can confidently be assigned. Other minerals, especially the sulphides, are characteristically of simple formula and composition.

A distinct paragenesis or succession of minerals is noted in many pegmatites. With successively lower temperatures new sets of minerals were formed and many of those stable at a higher degree of heat became subject to alteration as the temperature became lower. Thus in the Norwegian pegmatite dikes Brögger distinguishes four epochs of crystallization ending with the zeolites.

TEMPERATURE OF CONSOLIDATION

The residual magma, then, contains an increased quantity of mineralizers and their accompanying metals and has also a lower temperature than the original magma, in some cases doubtless lower than 500°C. It is injected into the earlier consolidated magmas and also into the encasing rocks; its fluidity and low melting-point are factors of great importance, allowing it to completely soak and penetrate schistose and fissile rocks encountered in its way. The pegmatites are essentially residual magmas, but they may become so admixed with water and dissolved gases that we may speak of them as in aqueo-igneous fusion at a temperature of 300° or 400° C. Even at this point with pressures over 200 atmospheres the critical point of water is exceeded.

¹ Drusenmineralien des Striegauer Granits, Leipzig, 1890.
² V. M. Goldschmidt, Die Contactmetamorphose im Kristiania Gebiet, Kristiania, 1911.
THE PEGMATITE DIKES

OCCURRENCE AND GENERAL CHARACTER

The pegmatites form dikes, sheets, pipes, and irregular masses; where appearing as dikes or sheets no great regularity or extended continuation in depth can be counted upon, and this is important to consider in the exploitation of such bodies. Probably this irregularity is explained by the sudden and explosive action by which they make room for themselves and hold the cavities open until their substance is crystallized. Very different is this action from the slowly applied compressive stresses by which the fissures of most veins are opened.

The pegmatites are essentially coarsely crystalline rocks. Under some circumstances the dimensions of the crystals may be enormous. In the Ural Mountains a quarry was opened in a single orthoclase crystal; in India muscovite plates 3 feet in diameter have been found; at the Etta mine, in the Black Hills of South Dakota, spodumene occurs in crystals resembling tree trunks and as much as 30 feet in length; quartz crystals several feet in length are not uncommon. Often the minerals crystallize together, as feldspar and quartz in graphic granite, but in other pegmatites there is a distinct succession, with muscovite, for instance, at the walls and quartz and feldspar in the center, or with feldspar crystals along the walls and a central filling of quartz. The rarer minerals usually form the later generations and probably crystallized below 575° C., the crystallographic conversion point for quartz. The pegmatites are evidently not eutectics. They crystallized under the same general pressure and temperature as the magma itself. The rarer minerals are accessory, as a rule, for there are enormous masses of pegmatites which contain little but quartz and feldspar.¹

In their present condition there is little evidence of water as a constituent of their magma, but facts already referred to force us to the belief that some water was present as well as some carbon dioxide.

Liquid inclusions in pegmatitic quartz from Branchville, Connecticut,² were found to consist of 98.33 per cent. CO₂, 1.67 per cent. nitrogen, and traces of hydrogen sulphide, ammonia, fluorine, and possibly chlorine.

A marked contact-metamorphic action, sometimes stronger than that of the original magma, characterizes many pegmatites. Here, too, as in the case of normal igneous rocks, it is well to distinguish between the ordinary contact metamorphism without additions of material, and metasomatic contact metamorphism, in which substances contained in the pegmatite penetrate into the surrounding rock and replace some of its minerals. H. B. Patton1 describes, for instance, a pegmatite dike in Colorado which is 10 feet wide and which contains but little tourmaline, but which strongly impregnates the surrounding rock with this mineral for a distance of 2 or 3 feet from the contact. It is, however, worthy of note that no sulphide impregnations analogous to the normal contact-metamorphic deposits have been found at the contacts of pegmatite and limestone. The quartz monzonites of the Western States, along whose contacts most of the deposits mentioned occur, are rarely accompanied by pegmatitic dikes.

The pegmatites often absorb material from their walls, and near them minerals otherwise foreign are likely to appear; andalusite, garnet, and staurolite are among these minerals.

TYPES OF PEGMATITES

Acidic Pegmatites.—The most common type consists of the granitic pegmatites, which always contain orthoclase, albite, and quartz, usually also microcline and muscovite. Among the accessory minerals magnetite, often in crystals, is perhaps most common. Other rarer minerals are tourmaline, topaz, fluorite, cassiterite, apatite, ilmenite, rutile, orthite, monazite, beryl, samarskite, spodumene, amblygonite, and many more. The typical mineralizers are boron and fluorine, together with a little phosphorus and sulphur. Lithium and the metals of the cerium and thorium groups are also characteristic. Among sulphides molybdenite and bismuthinite are the most common, but pyrite, arsenopyrite, pyrrhotite, chalcopryite, bornite, and sphalerite are also found. In the south Norwegian granitic pegmatites lithium and tin are absent.2

2 W. C. Brøgger, Die Mineralien der südnorwegischen Granit-pegmatit Gänge, Videnselskabets Skrifter, Math-naturv. Klasse, Kristiania, 1906, No. 6, pp. 159.
A second group is formed by the syenitic pegmatites, rich in alkalies and especially in sodium. These contain soda orthoclase, ægirine, acmite, arfvedsonite, biotite, nephelite, sodalite, lâvenite, and a number of rare titanium and zirconium minerals, also fluosilicates. There is little or no quartz. The characteristic mineralizers are fluorine and chlorine. Here, as elsewhere, the sulphides belong to a rather late stage of consolidation. Brögger¹ distinguishes in south Norwegian syenite pegmatites four phases of crystallization. In the first phase (of earliest development) he places feldspars, nephelite, sodalite, ægirine, lepidomelane, barkevikite, and magnetite, followed by fluorite, rosenbuschite, lâvenite, and woehlerite (containing fluorine); by sodalite (containing chlorine); by helvinit (containing sulphur); by lollingite (containing arsenic); and by homilite and melanocerite (containing boron). There is no tourmaline, topaz, or quartz.

The second phase consists in the filling of drusy cavities in part by destruction of the older minerals; these druse minerals consist of leucophane and fluorite, representing the fluorine group; of homilite and datolite, representing the boron group; and of the simple sulphides, such as molybdenite, sphalerite, and galena.

The third phase, at a considerably lower temperature but still probably above 100° C., comprises the zeolites, which are followed by a fourth phase of low-temperature carbonates and fluocarbonates.

Interesting pegmatite pipes in the riebeckite granite of Quincy, Massachusetts, have been described by Warren and Palache.² A zone of a coarse granitic aggregate of quartz, feldspar, riebeck-ite, and ægirine graduates into a central mass of almost pure massive quartz, sometimes containing molybdenite, sphalerite, galena, and chalcopyrite and in its miarolitic cavities fluorite, octahedrite, ilmenite, and parisite, the last a fluocarbonate of the cerium metals.

Basic Pegmatites.—The basic pegmatites are less common. Boron and fluorine are not usually present, but phosphorus and chlorine, probably also sulphur, play important parts. With the pegmatites of gabbros and allied rocks should be classed the apatite-scapolite veins of Norway and Canada. Though they are allied to fissure veins in some features, there is little doubt

that they are really pegmatites belonging to a late stage of magmatic consolidation. The characteristic minerals of the Norwegian occurrences are apatite and other phosphates, rutile, ilmenite, pyrrhotite, hornblende, enstatite, malachite, and specularite. The chlorine is present in apatite and scapolite, and the feldspar in the rock adjacent to the vein is converted into seapolite.

The Canadian pegmatites are somewhat different, and it is not absolutely certain with which class of igneous rocks they are connected. They occur in limestone, there is no seapolite, the apatite contains fluorine instead of chlorine, and the principal associated mineral is a pyroxene (malacolite).

To the basic pegmatites belong also the remarkable rutile deposits recently discovered in Virginia, in Amherst and Nelson counties, as well as near Richmond.1 They are probably pegmatitic developments of gabbro magmas, which, in other parts of the world, are also characterized by the concentration of titanium and phosphorus. The age of the Virginia rocks is probably pre-Cambrian.

It is apparently a case where it is difficult to draw the line between ordinary rock differentiation and pegmatization, but the features of the deposits clearly recall the latter process. The districts mentioned contain a predominant rock of quartz monzonite gneiss with an unusually large percentage of titanium and phosphorus. Besides there are dikes of gabbro still richer in titanium. The pegmatitic facies consist essentially of a bluish quartz with plagioclase, orthoclase, and pyroxene, the last converted into hornblende with much rutile and accessory apatite and ilmenite. Under the name nelsonite has been described a new dike rock from this vicinity, which consists in the main of ilmenite and fluorapatite with a little rutile; the rock has an even granular texture and contains as much as 59 per cent. titanium dioxide and 12 per cent. phosphoric pentoxide. Fluorine is present in quantities of 1 per cent. or more and sulphur to the same amount, but there is very little chlorine. The rutile is recovered by concentration of some of these rocks and is used mainly for the manufacture of arc-lamp electrodes.

ECONOMIC FEATURES OF PEGMATITE DIKES

The pegmatites, on one hand, contain many of the common minerals in exceptional size of grain and purity, and, on the other hand, they are a storehouse for a great number of the rarest minerals, many of which are not found elsewhere. These deposits are therefore of considerable economic importance and their valuable products are of manifold kind.

Feldspar and Quartz.—The orthoclase and quartz of granitic pegmatites are mined or quarried at numerous places, particularly in Maine, Connecticut, and Pennsylvania, in Norway, and in many other countries. The total value of the quartz and feldspar obtained from pegmatite dikes in the United States amounts annually to several hundred thousand dollars. The minerals are used for pottery and for many other industrial purposes; the quartz in particular is also utilized as an abrasive, in paints, and for the coating of tarred roofing. A minor quantity of quartz is also cut as a semi-precious stone under the names rock crystal, smoky quartz, rose quartz, and rutilated quartz.1

Mica.—White mica, more commonly known as muscovite, is also an important product of the granitic pegmatites. It occurs as irregularly disseminated bunches of foils, or “books,” in pegmatite dikes, sometimes crystallizing along the walls. The mica-bearing pegmatites are worked in three belts in the North Carolina mountain region, where they break into the pre-Cambrian crystalline schists and gneisses.2 The dikes, which also carry orthoclase, perthite, oligoclase, and quartz, are of varying thickness and persistence, at some places lenticular and

F. Cirkel, Mica, its occurrence, exploitation, and uses, Dept. of Interior, Mines Branch, Canada, 1905.

following the schistosity, at others cutting across the country rock. Accessory minerals are biotite and several rare or gem minerals, among them beryl and its variety aquamarine. Some of the occurrences constitute transitions to quartz veins, which are assumed to have been formed by more distinctly aqueous solutions.

Many other States produce merchantable mica. It is found in numerous places in the Black Hills of South Dakota (Fig. 237); here black tourmaline is a frequent accessory, and many other rare minerals occur. Mica is also mined in the pegmatite dikes of Latah County, Idaho.

Fig. 237.—Generalized cross-section of New York mica mine, South Dakota. After D. B. Sterrett, U. S. Geol. Survey.

Muscovite owes its usefulness to its transparency, elasticity, great resistance to heat and weathering, and applicability as a non-conductor of electricity. Its crystals are sometimes 2 or 3 feet in diameter, but this is exceptional, sheets of 1 foot in diameter being considered large. Smaller sheets a few inches square find ready use and are split into thin lamellae and cut into proper shapes for stove doors and for various electrical insulating purposes. The scrap from the trimming is often ground and compressed into mica board or "micanite" for use in insulating. It is also used for the manufacture of wall papers and roofing materials. The quality of mica is best judged by the transparency of sheets about 2 millimeters thick; it is graded as "wine" or "rum" or smoky and spotted mica, the latter being
undesirable for insulation. The price paid for sheet mica varies greatly according to the size of the sheets. The average price is from 5 to 50 cents per pound, but large sheets are worth several dollars per pound. The value of the total production of the United States in 1909 was $337,000. The home production of mica is not sufficient to supply the demand, so that considerable quantities are imported, mainly from Canada and from India.

The Indian mica, which is mined on a large but primitive scale, is generally muscovite contained in pegmatite dikes cutting gneissoid rocks. The Canadian mica, of which much is also exported, is mainly a phlogopite or brown magnesium mica and is better adapted to electrical uses than the muscovite. It occurs with apatite, in dikes or veins of pyroxene in gneiss or limestone, the principal localities being north of Ottawa. Associated minerals are calcite, scapolite, titanite, various metallic sulphides, among which molybdenite is mentioned, and one or two zeolites. These deposits are undoubtedly analogous to the Norwegian apatite-scapolite veins and are to be considered as pegmatite facies of basic magmas. Many of these dikes have been worked to a depth of several hundred feet. The quantity of trimmed mica obtained from the rock mined is small, often less than 1 per cent. Occasionally plates 5 feet in diameter are found.

Oxide Ores.—Specularite, magnetite, and ilmenite are of common occurrence in pegmatites, but scarcely ever of economic importance. Cassiterite, or oxide of tin, is also very common in many granitic pegmatites. Cassiterite in many places forms an integral constituent of granites, having unquestionably been consolidated with the other magmatic minerals. Its most common occurrence is in quartz veins which were formed at high temperatures, as indicated by the mineral association, but which differ from the pegmatitic dikes and assuredly were formed at somewhat lower temperatures than the dikes. These veins, too, stand in closest areal connection with the acidic intrusive rocks.

Pegmatites containing cassiterite, with phosphates and lithium minerals, have been mined near Gaffney, South Carolina, and about 50 tons of tin have been obtained from the detrital deposits.

The average tenor is low, but the mineral is concentrated along certain lines in the dike not unlike a shoot in a metalliferous vein. Tin-bearing pegmatites occur also in the Black Hills of South Dakota, where attempts to mine them have showed that they carried a very low percentage of the metal. At Tinton, in the northern Black Hills, mining operations have been carried on and some cassiterite recovered. At the Etta or Harney Peak mine, in the southern Black Hills, the percentage of tin appears to be too small for successful recovery, but other minerals, particularly those of lithium, have been mined. (See p. 729.)

In the New England district in New South Wales, as described by E. C. Andrews and L. A. Cotton, there are pipes of greisen with transitions into pegmatite containing cassiterite associated with wolframite, molybdenite, bismuth, arsenopyrite, tourmaline, fluor spar, and beryl. Cassiterite with wolframite has also been found in a pegmatite occurring near Spokane, Washington.

Wolframite.—As noted above, wolframite usually accompanies cassiterite in pegmatites, but only a small amount of the world's supply of tungsten is derived from these sources. Many of the pegmatite dikes of the Black Hills of South Dakota carry wolframite, as do the dikes or veins in the New England district of New South Wales.

Columbite and Tantalite.—These minerals are columbates and tantalates of iron and manganese. Other minerals of similar composition also exist, like samarskite, which is a columbate and tantalate of uranium, iron, cerium, and yttrium. The home of these minerals is in the granitic pegmatites, from which the small quantities needed for incandescent lamps, etc., are derived. Considerable masses of columbite in black tabular crystals have been found in the pegmatites of the Black Hills, especially at the Etta mine. They are also mined from similar sources in Western Australia and in smaller quantities are not uncommon in many regions characterized by pegmatite dikes, such as Connecticut and Virginia.

THE PEGMATITE DIKES 727

Yttrium and Thorium Minerals.—Among these the most important are gadolinite and yttrialite, the former a silicate of iron, beryllium, and yttrium, the latter a silicate of the yttrium and thorium metals. There are also monazite, a phosphate of the cerium and thorium metals; xenotime, an yttrium phosphate; euxenite and polycrase, columbates and titanate of cerium and yttrium, etc. Some of these minerals, like monazite, are used as a source of thorium salts in the manufacture of incandescent mantles; the yttrium minerals, like fergusonite and gadolinite, are used in the manufacture of Nernst lamps. The cerium minerals have a limited use for chemicals, etc., as well as for the manufacture of ferrocerium. The Welsbach incandescent mantles are said to be coated by a substance containing 60 per cent. zirconia, 20 per cent. yttria, and 20 per cent. oxide of lanthanum.

All these minerals find their home in the granitic pegmatites. In Scandinavia there are some celebrated occurrences, like those of Hitterö, in southern Norway, and of Ytterby, Korarfvet, Brodbo, and Finbo, in Sweden. One of the most renowned localities in the United States is Baringer Hill, 100 miles northwest of Austin, Texas; few other localities have yielded as large amounts of rare-earth minerals as this place.\(^1\)

Baringer Hill is a low mound, about 100 feet wide and 250 feet long, preserved from erosion by its relative hardness. The country rock is a coarse, porphyritic granite of pre-Cambrian age, and the dike itself an unsymmetrical body or pipe. At the edge of the dike is pegmatite of the "graphic" variety 1 to 6 feet wide. The central part is made up of large individuals of quartz and feldspar, the latter being microcline and albite. In the center of the dike the quartz appears to be concentrated. Some of the feldspar crystals are several feet long. Vugs are lined with smoky quartz. The rarer minerals, some of which occur in large amounts, are fluorite, ilmenite, gadolinite, allanite, fergusonite, and polycrase—in short, a series of silicates, colum-

bates, titanates, and uranates of cerium, yttrium, and other rare metals. There are also sulphides, particularly chalcopyrite, pyrite, sphalerite, and molybdenite, the last named being the most abundant. The rock contains no tourmaline, beryl, zircon, garnet, or cassiterite. The deposit is worked intermittently for the yttrium which its minerals contain. The metal is used for the manufacture of glowers for the Nernst lamps, in which the incandescent parts consist of a mixture of 25 per cent. yttria and 75 per cent. zirconia. Some of the minerals show a marked radioactivity.

Monazite and Zircon.—Both these minerals form accessories of granitic and monzonitic rocks; they also occur in pegmatites and apparently are formed in some veins developed at comparatively high temperatures. On the other hand, they are absent from veins formed nearer the surface or under conditions of lessened temperature and pressure.

Zircon occurs in considerable amounts in many placer deposits derived from the disintegration of granitic and pegmatitic rocks, in the miner’s pan it is concentrated, with the gold, as a string of minute crystals of brilliant white, almost metallic luster. The best-known deposits are at Zirconia, near Green River, in Henderson County, North Carolina; from the decomposed workings of a pegmatite dike at this locality many tons of zircon have been obtained. Deposits also occur in pegmatites of the Wichita Mountains, near Cash, Oklahoma. The value of the concentrated zircon sand is about 20 cents per pound.

Monazite, a honey-yellow to brown phosphate of cerium and cerium metals, with a varying percentage of thorium and silica, is almost wholly recovered from placers where it occurs with gold. The best-known occurrences are in South and North Carolina and in the Boise Basin of Idaho. The home of the mineral in these districts is in the granitic rocks and in pegmatized schist. The concentrates obtained in the sluices are cleaned in electro-magnetic separators. The value of refined concentrates was about 12 cents per pound in 1909. Large deposits of monazite are worked in Brazil, and the mineral is exported to Europe and the United States. The production in the United States varies considerably and is declining at present. In 1910

2 For commercial purposes the mineral should contain from 3 to 9 per cent. of thorium.
the output of concentrated monazite sand was 99,000 pounds, for which about 12 cents per pound was paid.

Thorium nitrate is extensively used, mainly in the manufacture of incandescent mantles. In 1909 about 128,000 pounds of this chemical, manufactured from monazite, and valued at $236,000, were imported into the United States.

Apatite.—Apatite, associated with hornblende, pyroxene, phlogopite, titanite, and much calcite, occurs in many Canadian basic pegmatites.¹ About 1,000 tons are obtained annually in part as a by-product from the mica mines. The mineral is usually well crystallized and of a greenish color. In small quantities apatite also occurs in the same region associated with pyroxene and scapolite in veins cutting gneissoid rocks.

The Norwegian apatite veins mentioned on p. 722 now yield but a small production. The working of the large marine deposits of Florida has resulted in lower prices, so that few of the deposits in crystalline rocks can be worked at a profit.

Lithium Minerals.²—Among the alkaline metals lithium accompanies potassium in the pegmatites and appears in a series of minerals, the most common of which are lepidolite, or lithium mica (4 per cent. lithia); spodumene, or lithium-aluminum silicate allied to pyroxene (8 per cent. lithia); petalite, lithium-aluminum disilicate (5 per cent lithia); triphylite, a lithium-iron-manganese phosphate (9 per cent. lithia); and amblygonite, a fluophosphate of aluminum and lithium (10 per cent. lithia). Spodumene and particularly amblygonite are the principal raw materials from which lithia salts are manufactured. These minerals have been mined in the Peerless and Etta pegmatite dikes, near Keystone, South Dakota. In 1909 several carloads of this mineral were shipped. Amblygonite also occurs in pegmatites near Pala, San Diego County, California. The demand is small.

At the Etta mine attempts have also been made to mine the pegmatite for tin and columbite. The Etta deposit is a roughly circular mass of coarse pegmatite about 150 by 200 feet in extent. Spodumene crystals as much as 35 feet in length and having a cross section of 3 by 6 feet are found here. The list of

primary minerals found at this remarkable locality is given below.¹ No topaz or axinite is present.

MINERALS FOUND AT THE ETTA MINE

<table>
<thead>
<tr>
<th>Orthoclase</th>
<th>Quartz</th>
<th>Columbite</th>
<th>Monazite</th>
<th>Molybdenite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albite</td>
<td>Zircon</td>
<td>Tantalite</td>
<td>Ambygonite</td>
<td>Arsenopyrite</td>
</tr>
<tr>
<td>Microcline</td>
<td>Rutile</td>
<td>Wolframite</td>
<td>Apate</td>
<td>Lollingite</td>
</tr>
<tr>
<td>Almandite</td>
<td>Spinel</td>
<td>Triplite</td>
<td>Triphylite</td>
<td>Leucopyrite</td>
</tr>
<tr>
<td>Grossularite</td>
<td>Cassiterite</td>
<td></td>
<td></td>
<td>Bismuth</td>
</tr>
<tr>
<td>Andalusite</td>
<td>Corundum</td>
<td></td>
<td></td>
<td>Galena</td>
</tr>
<tr>
<td>Muscovite</td>
<td>Ilmenite</td>
<td></td>
<td></td>
<td>Stannite</td>
</tr>
<tr>
<td>Biotite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petalite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spodumene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourmaline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cryolite.²—Cryolite (3NaF·AlF₃, with 12.8 per cent. aluminum) is a white to brown or even black mineral of which only one large deposit is known. The locality is Ivigtut, in west Greenland, close to the sea, where it occurs as a large mass having surface dimensions of 200 by 600 feet; it has been worked to a depth of 150 feet. The cryolite occurs in a coarse granite and is undoubtedly to be classed as an unusual pegmatite mass. The coarsely crystalline mineral is associated with some crystallized siderite, galena, chalcopyrite, pyrite, fluorite, topaz, and ivigtite. The sulphides are said to contain a little gold.

A pegmatite mass adjoining the cryolite contains the same minerals and also cassiterite in a coarse-grained aggregate of microcline, albite, and quartz. The cryolite is said to be intrusive into the granite and to effect many changes in it. The deposit is thus an unusually large magmatic concentration of fluorides.

Bauxite, the hydroxide of aluminum, is now used for the manufacture of the metal. Before the present methods of smelting

THE PEGMATITE DIKES

aluminum were introduced the easily fusible cryolite was used for this purpose, and even now it is added to the charge to promote the melting. It is also used for enameling iron ware.

Precious Stones. —The pegmatite dikes have always been famous as the source of gem minerals, which are valued for ornaments on account of their color, hardness, and brilliancy. Many of these beautiful crystals appear to belong to one of the later magmatic stages of consolidation and usually occur in druses of the rock. Among the most productive American regions are North Carolina, Maine, and San Diego County, California. The pink tourmaline of Pala and other places in San Diego County are famous and the crude output has an annual value of over $100,000. Accompanying this mineral are hiddenite and kunzite, the gem varieties of spodumene.

Green tourmaline comes from Maine; emerald and aquamarine \((Be_3Al_2(SiO_4)_6 \), both varieties of beryl, are found in pegmatites in Cleveland County, North Carolina, \(^2\) accompanied by quartz, albite, and tourmaline. Little is known regarding the geological occurrence at the emerald mines of Colombia.

Rubies are also found in pegmatite dikes. Most of the supply is derived from Burma, but some good stones have been obtained from gravels near pegmatite dikes in Cowee Valley, North Carolina.

Native Metals, Sulphides, and Arsenides.—The sulphides and allied minerals so abundant in fissure veins play a very subordinate part in the pegmatite dikes; nevertheless their occurrence is of great scientific interest, for the pegmatites form a transition between the magmas and many ore deposits connected with igneous rocks.

Gold in visible form is exceedingly rare; some instances are mentioned in Chapt. 1; additional and exact information is greatly desired. Spurr\(^2\) states that gold occurs in pegmatite dikes or in quartz veins closely connected with them in the Yukon districts in Alaska and at Silver Peak, Nevada, but the quantities reported are, as a rule, small—at most 0.05 ounce per ton—and the assays are made without special precautions. I have no personal

knowledge of any pegmatite nor of any quartz veins directly traceable into pegmatites that contain enough gold for profitable extraction. Spurr, however, describes important gold-bearing quartz veins at Silver Peak, Nevada, which are said to form transitions into alaskite or aplitic quartz-orthoclase rock. He also mentions, on the authority of W. H. Weed, the occurrence at the Winescott mine near Helena, Montana.\(^1\) At this place the ore-body is an elongated pegmatite mass, which consists principally of orthoclase, albite (7), tourmaline, pyrite, and quartz. Biotite, titanite, and magnetite are accessories. In places the gold occurs in beautiful, sharp crystals.

In 1898 E. Hussak\(^2\) described the Passagem lode, in Brazil, and regarded it as a gold-bearing pegmatite dike. Orville A. Derby\(^3\) has lately reviewed the evidence and arrived at the following conclusions, which are quoted because they very likely apply to many similar occurrences:

The Passagem lode presents evidence of three distinct processes of filling: (1) An extensive fissure opened by stress was closed by an invasion of pegmatite running off into clear quartz. At this stage the lode contained only the minerals characteristic of a granitic magma (2) A subsequent stress fractured this pegmatitic quartz, rendering it accessible to a pneumatolytic action which filled its fissures with tourmaline and sericitized the feldspar of the pegmatite. (3) A third stress coming near the end of the second phase of the lode fractured the tourmaline filling and gave access to a pneumatolytic action characterized by sulphur, arsenic, metallic oxides, and metals (gold and silver), which filled the fissures of the lode, invading to some extent its pre-existing portions and probably also some of the adjacent and enclosed country rock.

Arsenopyrite, löllingite, galena, zinc blende, pyrite, and pyrrhotite have been reported from numerous localities in the granitic and syenitic pegmatites; there is not the slightest reason to doubt that they are here primary minerals, even if they belong to one of the later phases of magmatic consolidation. There are, however, no deposits known in which they are abundant enough to be mined.

The most common metallic minerals in pegmatites (aside from cassiterite and wolframite) are molybdenite and bismuth.

Bismuth and bismuthinite are reported from many places, and they are said to be so abundant in certain pipes of pegmatite in the New England district of New South Wales as to have some economic value.

Molybdenite is an accessory mineral in certain granites. It is common in many veins of the deep-seated class, more or less closely connected with pegmatites. It is also of frequent occurrence in contact-metamorphic deposits and in ordinary fissure veins, both in those formed at greater depth and in those deposited near the surface, but appears to be confined to deposits genetically allied to igneous rocks. In the pegmatite and the abyssal veins the individual particles of molybdenite are often large and sometimes well crystallized. In the deposits formed under conditions of less intense heat and pressure molybdenite usually appears as small or microscopic scales.

In Canada, in Quebec and Cape Breton provinces, some pegmatitic dikes contain enough molybdenite to be of economic importance (Fig. 238).¹

Pegmatites containing molybdenite occur in Washington and Hancock counties, Maine.² Some of them may have economic importance. One of the principal deposits occurs at Cooper, 22 miles southwest of Calais; here the molybdenite is especially associated with the more quartzose phases of the pegmatite. Fluorite in places accompanies the molybdenite.

¹ T. L. Walker, Report on the molybdenum ores of Canada, Canada Dept. of Mines, 1911, pp. 64.
Aside from many chemical and industrial uses, the principal value of molybdenum lies in its steel-hardening qualities. Molybdenum steel, containing from 8 to 10 per cent. of the metal, is used for rifle barrels, propeller shafts, and especially for high-speed steel-cutting tools. The mineral is difficult to concentrate, owing to its flaky character, and the small production is derived from pegmatites of Norway, New South Wales, and Queensland.
CHAPTER XXVII

MINERAL DEPOSITS FORMED BY CONCENTRATION IN MOLTEN MAGMAS

CONSTITUTION OF MAGMAS AND THEIR DIFFERENTIATION AND CONSOLIDATION

General Features

Certain kinds of mineral deposits form integral parts of igneous rock masses and permit the inference that they have originated, in their present form, by processes of differentiation and cooling in molten magmas. The minerals are of simple composition and few in number; most prominent among them are magnetite, ilmenite, spinel minerals, cassiterite, pyrrhotite, chalcopryrite, molybdenite, löllingite (FeAs₂), arsenopyrite, corundum, platinum, and diamond. At some places the resulting deposits are large and rich, but as a whole they are of much less importance than those formed by aqueous solutions.

The characteristic feature of a deposit of this class is that it is a part of a body of igneous rock, the crystals of its minerals formed in the magma solution from which the rock crystallized, or in one similar to it. The associated gangue minerals are those which make up igneous rocks. Structures other than those of purely igneous origin should be absent. If there is evidence of metamorphism or metasomatic replacement, with the development of minerals like sericite, carbonates, chlorite, uralite, garnets, or epidote, or bleaching or kaolinization, we must conclude that processes other than those of purely igneous origin have been active. Many igneous deposits have, at a later period, been subjected to influences producing alteration and their original characteristics may then have become veiled.

Some igneous deposits are simply parts of the rock, which contains disseminations of the useful mineral, like diamond in certain peridotites, and have then the form of that rock mass itself—a dike or a volcanic neck, for instance. In other deposits the massive ore forms a dike, as in certain titaniferous magnetites. Or again the ore minerals may have become concentrated in parts of the igneous rock and form rudely tabular or wholly
irregular, usually ill-defined masses in the rock. Unless the deposit is of large cross-section it can rarely be followed to great depth like a fissure vein, for the movements in a viscous magma facilitated the formation of irregular streaky or pasty masses—often termed “schlieren,” after the German usage—rather than bodies persistent for long distances in a given direction.

These deposits represent extreme conditions in mineral formation; the temperature of surface lavas is considered to have been about 1,000° to 1,500° C., but the deep-seated granular rocks in which most of the igneous mineral bodies occur are thought to have crystallized more slowly than lavas and in general at lower temperatures, probably from about 575° to 1,000° C.

CONSTITUTION OF MAGMAS

In order to explain the genesis of the igneous deposits it is necessary to inquire into the nature of igneous magmas. The magmas are not haphazard aggregates of elements and compounds. They are probably solutions of definite silicate compounds in one another (after the manner of a mixture of water and alcohol); certain oxides like silica, alumina, ferric oxide, and water may also be present, at least in a magma approaching the point of crystallization, and these silicates and oxides are freely miscible in any proportion. Diabases, leucite basalts, and similar rocks may be reproduced by dry fusion, but water is present in almost all magmas and is in fact necessary for the crystallization of a great number of rocks. That the magma is a solution is inferred from the lowering of the freezing-point as shown by the order of crystallization, and from the fact that some of the last residues of crystallization have the character of eutectic mixtures. Dissociation takes place to some extent and the magmas are electrolytes. Arrhenius and Königsberger believe that at high temperatures water must be a stronger acid than silica and that the latter exists as hydrates and basic silicates.

Beyschlag, Krusch, and Vogt, Die Lagerstätten, etc., p. 239.

Compare chapters on magmas and differentiation in “Natural history of igneous rocks,” by Alfred Harker; “Igneous rocks,” by J. P. Iddings; and “Geochemistry,” by F. W. Clarke, all of which have been freely consulted in the preparation of this summary.
CONCENTRATION IN MOLTEN MAGMAS 737

At the surface lavas emit water and other volatile substances and it is therefore concluded that before reaching the surface the magmas must be more or less heavily charged with such gases. When the magmas are forced to a higher level in the crust the pressure is diminished and a part of the volatile substances are liberated. Another part is still held, but most of that is doubtless expelled when crystallization takes place. The presence of water greatly affects the physical properties of the magma and especially increases the fluidity. Barus, for instance, obtained mixtures of various glasses with much water and these congealed at low temperatures as "solid solutions." Upon heating in the air, water is expelled and a pumice-like mass results which has a much higher point of fusion. Many pitch stones and obsidians, which contain as much as 8 per cent. of water, act in the same manner.

CRYSTALLIZATION OF MAGMAS

As in an aqueous solution, the successive crystallization of given minerals in these deposits is dependent upon their solubility in the rest of the magma and does not follow their temperature of fusion. When a salt dissolves in water the temperature of solidification is changed. Water freezes at 0° C., but an addition of sodium chloride to it depresses its melting or solidifying point many degrees. Alloys show the same behavior—for example, those with extraordinary low temperature of fusion, sometimes below 100° C. In the same way an igneous rock may become fluid at a temperature far below the average melting point of its constituent minerals, or even lower than the lowest of these.

On the other hand, no mineral can separate if the temperature, for a given pressure, is higher than the point of fusion of this mineral. Below this point crystallization takes place whenever the point of saturation of the solution for this mineral is exceeded. The fusion point of an igneous rock generally falls below the average melting point of its constituent minerals. Some of its components will form isomorphous mixtures, but a part of it will remain in eutectic proportions, which differ according to the composition of the rock.

According to the empirical rule of Rosenbusch the separation of crystals in a silicate magma follows an order of decreasing basicity, so that at every stage the residual magma is more acidic than the aggregate of the crystals already separated out.
This rule is subject to important exceptions, especially in basic magmas, but in the granitic and dioritic rocks the basic and difficultly fusible minerals, such as zircon, magnetite, apatite, ilmenite, and rutile, crystallize first. Then follow biotite, hornblende, and augite, or in general the magnesium and iron silicates, then the soda-lime feldspars, later orthoclase, and finally the residuary quartz, which probably separates at about 800° C. The "mother liquor" of a granite thus becomes successively richer in silica. The "mineralizers," or the volatile substances, like boron, fluorine, and tin, follow the acidic rather than the basic constituents. The residue, in granitic rocks, is a solution rich in alkalies and silica, probably with water, which under certain circumstances may be a eutectic and may be pressed out of the partly consolidated magmas as if from a sponge and crystallize as pegmatites in fissures which the mixture creates for itself.

The order of crystallization of substances in a magma probably depends upon their relative abundance and upon their solubility in the eutectic.

Near the surface the order of crystallization is not entirely like that just outlined; there are usually two generations of crystals and sometimes an older generation, of hornblende, for instance, which may be resorbed and almost obliterated. In rock-forming minerals the volume of the crystallized substances is smaller than that of the corresponding fluid substance; their fusibility and also their solubility diminish with increasing pressure. A sudden release of pressure may then act as an increase of temperature and newly formed crystals may be remelted.

Much time has been given of late to the study of eutectic mixtures in rock magmas, especially by J. H. L. Vogt,1 of Kristiania. In comparatively few magmas, however, does the residual part closely approach well-defined eutectic composition.

Melts of certain proportions of miscible salts will solidify together at a temperature lower than the point of congealing of each constituent. These are called eutectic mixtures, and their minimum temperature, with its definite corresponding proportions, is called the eutectic point. The salts must be miscible; if not, they separate in layers. The salts must not act chemically upon one another, for if they do new compounds are formed.

1 J. H. L. Vogt, Die Silikatschmelzlösungen, Kristiania, 1903 and 1904.
Finally, the salts must not be isomorphous, for then no eutectic point is possible; albite and anorthite, for example, crystallize together in all proportions and the melting points of the mixed crystals form a series with no eutectic depression.

The assumption of free miscibility is probably subject to some exceptions. Vogt, for instance, has brought evidence to show that sulphides are more soluble in basic than in acidic magmas and that the solubility increases at higher temperatures. This is, then, probably a case of limited miscibility, and Harker believes that the same may be true of alumina in the case of the association of corundum with peridotite magmas, and of the spinel minerals (like chromite) and the silicates.

DIFFERENTIATION IN MAGMAS

Differentiation, according to Iddings, means the separation of a homogeneous rock magma into chemically unlike portions. Modern views, based on field work and petrologic studies, include the belief that for each region, in each separate "magma basin," there is one essentially homogeneous magma from which by some process of differentiation the various rock types have been derived. In general it is thought that the primary magma was of intermediate composition and has been separated into basic and acidic forms, like basalts, latites, and rhyolites.

Lagorio\(^1\) in 1887 began the investigations on differentiation in his memoir on the nature of the glass-base or groundmass by calling attention to "Soret's principle," which states that when two parts of a solution are at different temperatures, the dissolved substance will be concentrated in the cooler portion.

This unequal cooling, it was thought, produced the heterogeneity in an originally homogeneous magma. The substances with which the magma was most nearly saturated tended to accumulate at the cooler points, leaving the warmer portions with an excess of the solvent material. There are many objections to this view. G. F. Becker showed that molecular diffusion would in a viscous magma require almost unlimited time. H. Bäckström has pointed out that although the action assumed by Soret's principle might cause changes in the absolute concentration, it would be powerless to alter the relative proportions of the dissolved substances. Absorption and assimilation of

\(^1\) *Min. pet. Mitt.*, vol. 8, p. 421.
the substances contained in the surrounding rocks might alter the composition of the magma, and sometimes this undoubtedly takes place, although most intrusive contacts show little evidence of such assimilation. But such absorption would not, for instance, account for the occurrence of separated portions of titanic iron ore.

"Gravitative adjustment," advocated by J. Morozewicz and R. A. Daly, may play a considerable part in differentiation. According to this theory a great mass of magma, like a high column of salt solution, would separate into a denser substratum and a lighter upper part. The presence of mineralizing agents is also a factor of importance. Certain constituents of the magma are more soluble in them than others and thus a magma rich in silica and alkali, containing many rarer metals, may have accumulated at the upper levels of a magma basin, while the basic portion of the magma remained below. G. F. Becker has indicated the possible importance of fractional crystallization, thus regarding the differentiation as a consequence of the general cooling process. Along the cooler walls the difficultly fusible minerals will separate first, and the process is aided by convection currents. The last portion of the fused mass to solidify will be the portion with lowest temperature of fusion and will therefore approximate a eutectic mixture. Along the walls of a dike basic minerals and iron ores may thus solidify, while the center will have a different composition. In the formation of the titanic iron ores of the Adirondacks the ilmenite probably crystallized first and settled to the bottom.

If the component parts of the magma are not miscible, a liqution will take place and the heavier parts, perhaps the sulphides and the iron ores, will settle to the bottom. This process will be most effective in slowly cooling magmas.

As pointed out by L. V. Pirsson,¹ the phenomena accompanying the eruption or intrusion of a magma are extremely complex, and no fully satisfactory explanation can be given of the process of differentiation. LIquation, influence of mineralizers, assimilation of wall-rocks, and pressure during consolidation are undoubtedly all of importance,² but the most general cause of

CONCENTRATION IN MOLTEN MAGMAS

differentiation is probably fractional crystallization. "The more closely the composition of a magma approaches eutectic ratios the less capable of fractionation it becomes."

PRINCIPAL TYPES OF DEPOSITS

Among the valuable minerals formed during the consolidation of magmas are diamond, platinum, chromite, ilmenite, magnetite, corundum, cassiterite, pyrrhotite, pentlandite, pyrite, chalcopyrite, molybdenite, sperrylite, and apatite. A much more complex series of minerals is contained in the pegmatite dikes, which are described separately. For each kind of rock certain minerals are characteristic and most of the rocks are of the deep-seated type, crystallizing with granular structure.

Diamonds, chromite, platinum, and sometimes corundum are associated with peridotites, corundum also with certain nepheline syenites. Chalcopyrite, pyrite, pentlandite, and pyrrhotite follow the basic rocks, especially gabbros. Apatite and magnetite are connected with alkali-rich syenites; ilmenite and titaniferous magnetites with anorthosites (laboradorite rocks) and gabbros; cassiterite with granite.

Diamonds²

Until 1871, when the South African fields were discovered, diamonds were obtained only from placers. They occurred thus in the Deccan mines in India, where the parent rock is not certainly known; according to some they are derived from pegmatite dikes, according to others from masses of serpentine in the crystalline schists. In Brazil, in the province of Minas Geraes, they occur in ferruginous sands or gravels derived from conglomerates of a micaceous sandstone. Orville A. Derby says that they have no relation to any peridotites or serpentines.

¹ F. W. Clarke, Geochemistry, 1911, p. 298.

Much of the product from the South African mines is sold in the United States, the imports having a value of thirty to forty million dollars a year.

Carbon is soluble in molten magmas and can crystallize from them. Small diamonds have been artificially produced in several ways, well summarized by F. W. Clarke. They have been obtained by dissolving carbon in molten iron, fused olivine, and other lime-magnesia magmas. The discovery of small diamonds in meteorites of iron or peridotitic rock is another fact clearly pointing to a magmatic origin of this mineral.

Other Precious Stones

Other precious stones contained in igneous rocks are sapphire (pp. 758, 760), garnet, and peridot.

Pyrope (magnesium-aluminum garnet) of the beautiful deep-red color which is necessary for gem quality is usually found in basic rocks of igneous origin. The garnets of Bohemia, obtained in washing a Cretaceous conglomerate, are probably derived from a serpentine. The diamond-bearing serpentine of South Africa contains pyrope of gem quality, called Cape ruby. Almandite (iron-aluminum garnet) is not so extensively used. It occurs in crystalline schists and in granite and aplite. In the Navajo Reservation, Arizona, pyrope and peridot (yellowish-green olivine) are obtained from the disintegration of a basaltic rock.

Platinum and Palladium

Nearly all the platinum of the world is derived from placers, mainly in the Ural Mountains in Russia, though smaller quantities come from Colombia, California, and New South Wales. Nevertheless, its occasional occurrence in place is of considerable theoretical interest.

Platinum occurs in nature in two ways, in both resulting from the crystallization of magmas. As a native metal it is associated with chromite in peridotites; as sperrylite (PtAs₂) it is associated with sulphide minerals of magmatic origin in gabbros and diabases. Palladium, which occurs with platinum in these deposits, probably also forms an arsenide.

Native platinum occurs as an alloy with others of the platinum group—osmium, iridium, palladium, ruthenium, and rhodium. Native iridium, iridiosmine, and other alloys are found with it.

An analysis of the crude platinum sand of California by Deville and Debray showed the following composition:

<table>
<thead>
<tr>
<th>Platinum</th>
<th>85.50</th>
<th>Copper</th>
<th>1.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iridium</td>
<td>1.05</td>
<td>Iron</td>
<td>6.75</td>
</tr>
<tr>
<td>Palladium</td>
<td>0.60</td>
<td>Iridiosmine</td>
<td>1.10</td>
</tr>
<tr>
<td>Rhodium</td>
<td>1.00</td>
<td>Sand</td>
<td>2.95</td>
</tr>
<tr>
<td>Gold</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101.15</td>
</tr>
</tbody>
</table>

The platinum in the placers forms small rounded dark-gray pieces associated with occasional bright silvery flat pieces of iridiosmine. In the Urals large pieces of platinum have been found, some even weighing several hundred pounds. Daubrée showed in 1875 that the Russian platinum is intergrown with olivine, pyroxene, and serpentine. Later, Inostranzeff found grains of platinum in an olivine gabbro. Beck, on authority of S. Conradi, reports it in dunite rocks in Solowioff Mountain, in the Ural Mountains, and states that the metal forms zonar crystals of unquestionable magmatic origin lying between grains of chromite. Kemp has found platinum in dunite from the Tulameen River, British Columbia. The serpentines of this region also yield traces of platinum. The platinum of California is found only in placers, but the metal is believed to be derived from the serpentine areas so common in the Sierra Nevada.

In the nickel deposits at Sudbury, Ontario, which are considered of magmatic origin, platinum arsenide, probably accompanied by palladium arsenide, is formed as small silvery-white cubes intergrown with pyrrhotite and chalcopyrite. The same mineral was discovered recently at the Rambler mine,1 in Wyoming, in copper ores, mainly chalcopyrite and covellite, probably

44,000 tons of ore were produced. Until lately the largest supplies were received from Asia Minor, near Antiochia, Smyrna, and Brussa. These deposits are of unusual size. The Dag-hardy mine,¹ near Brussa, yields annually 12,000 to 15,000 metric tons of ore valued at $25 per ton. One of the masses from this mine was 70 meters long, 25 meters wide, and 20 meters deep. Much chromite is also exported from New Caledonia, where the ore occurs in part as residual masses, in part as "vein-like segregations" in serpentine. Smaller masses have been mined near Baltimore, Maryland, in North Carolina, and in California, but the operators of these deposits find it difficult to compete with the imports from foreign countries and produce only insignificant quantities. Chromium is extensively used as a steel-hardening metal and also for the preparation of various salts, among which the bichromate of potassium is most important.

Copper minerals, especially chalcopyrite, are occasionally found with the chromite. The reddish niccolite (NiAs) has been found in serpentines and peridotites at Malaga, Spain.² The mineral is later than the chromite and according to R. Beck³ cements crystals of augite.

Ilmenite or Titanic Iron Ore

General Features.—At many places in the world large masses of ilmenite (FeTiO₃, containing oxygen 31.6, titanium 31.6, iron 36.8), are found associated with more or less magnetite, olivine, pyroxene, and soda-lime feldspars. Petrographic research has long ago shown that ilmenite, with magnetite, is one of the earlier products of consolidation in magmas and is contained in almost all diabases, basalts, and gabbros; it occurs also in other less basic rocks, but the real home of ilmenite is in the rocks poor in silica. The larger masses of ilmenite are simply facies of the rock itself produced by concentration from the same magma. Near such masses the dark constituents first increase;

⁴ Erzlagerstätten, I, p. 89.
finally the feldspar disappears and the ore-body consists of a mixture of ilmenite with ferromagnesian silicates. Ilmenite is often intimately intergrown with magnetite, as shown by E. Hussak and C. H. Warren.\(^1\) Vogt\(^2\) first called attention to this well-defined group of ore deposits and explained its origin.

The ilmenite deposits, though large, have thus far been little utilized on account of difficulties in the metallurgical treatment; but these do not seem to be insuperable, and as it has recently been discovered that titanium confers valuable qualities of hardening on steel it will not be long before the ores will become important in metallurgy. During the last few years experiments in their utilization have been in progress in the United States.

Irregular Bodies.—The titanic iron ores form irregular masses or rather sharply outlined streaks in the central parts of gabbro or norite intrusives. The transitions to the country rock indicate that these masses have been formed by differentiation in the rock after the irruption in its present place. In these differentiated magmas ilmenite and magnetite have, as a rule, crystallized after the silicates. Where pyrite and spinel are present the order of crystallization is ferromagnesian silicates, pyrite, spinel, ilmenite (specularite), and magnetite. Probably little water was present and the temperature of consolidation was high, perhaps near 1,450° C., the fusion point of ilmenite, according to Brun. Vogt has shown that during the differentiation in a gabbro or norite magma a concentration of ferric oxide takes place, as well as of titanium, chromium, and vanadium; the lime, magnesia, and particularly silica diminish greatly, the silica to such an extent that the alumina and magnesia are forced to crystallize as corundum and spinel, both of which occur frequently in these deposits. Little sulphur or phosphorus is present.

Dikes.—Separated by a deeper-seated differentiation, veritable dikes of almost pure ilmenite may be injected into the prevailing rock, which then is usually an anorthosite.

is crystallized, together with other accessories, but the tendency to form silicates is strong and sufficient silica is usually available to take care of all the iron in the form of ferromagnesian silicates. It is a common experience that when minerals like leucite and augite, nepheline and augite, or biotite and microcline are fused in a dry melt exposed to the air some magnetite is formed, together with other products, perhaps because of the oxidation of a part of the ferrous to ferric iron.

Commercially valuable deposits of magnetite as differentiation products of magmas have been found only in connection with syenites, syenite porphyries, and keratophyres, and here the magnetite is usually later than the ferromagnesian silicates and the feldspars. Certain magnetite deposits contained in gneissoid rocks like those near Sterling, New Jersey, are also believed to be caused originally by magmatic differentiation. Apatite frequently accompanies the magnetite, but sulphides are rare. Some basalts contain as much as 8 per cent. FeO and 4 per cent. Fe₂O₃; some gabbros and norites as much as 15 per cent. FeO and 1 or 2 per cent. Fe₂O₃. Magnetite requires 69 per cent. ferric oxide and 31 per cent. ferrous oxide. Any process of differentiation favoring the separation of magnetite thus requires a transfer of part of the iron to a ferric state.

The Iron Ores of Northern Sweden.¹—The great magnetite deposits in the extreme northern part of Sweden, the largest in the world, have attracted much attention of late and have been studied by many geologists. For many years they remained unworked on account of their generally high percentage of phosphorus, which, since the invention of the Thomas process, is no longer objectionable.

P. Geijer, Studies on the geology of the iron ores of Lappland, Geol. Förh., vol. 34, 1912, pp. 727–788.
The deposit at Kiruna forms a north-south ridge that is, as exposed at the surface, about 2.8 kilometers in length and rises 248 meters above Lake Luossajärvi, or 748 meters above the sea. The magnetite forms the highest part of the ridge and is from 32 to 152 meters wide. The total amount of ore proved above the level of the lake is said to be 200,000,000 metric tons, and in all, as far as shown by exploration work, including borings, about 480,000,000 tons. The present annual production from big open-cut workings is about 2,000,000 metric tons; the ore is exported to England, to Germany, and at times to the United States.

The ore-body and surrounding formations dip steeply to the east. In the footwall lies an orthoclase porphyry with fluidal structure and rich in soda (61 per cent. SiO₂ and 6 to 7 per cent. Na₂O), also designated keratophyre or syenite porphyry, the ferromagnesian silicates of which are largely altered to amphibole, chlorite, and epidote. Magnetite is present in two generations, the later of which surrounds the feldspars and enters them along cleavage planes. The contact between the ore-body and footwall porphyry is apparently sharp, but shows in detail a narrow zone of transition due to small, sharply defined veinlets of magnetite in the porphyry. An ultimate product of this zone is a mixture of magnetite with green hornblende; it contains vugs filled with apatite, titanite, and magnetite. The deposit itself is free from vugs. The reddish hanging-wall porphyry is essentially similar in microscopic character, but contains about 71 per cent. silica and has been classified as a quartz keratophyre. It contains fragments of the iron ore and of the footwall porphyry and is consequently later than both of these. Above this hanging-wall porphyry lie quartzites, clay slates, and conglomerates, with water-worn fragments of iron ores and keratophyre. These beds are considered to belong to the upper part of the pre-Cambrian of Sweden.

The ore is compact and fine grained, consisting chiefly of magnetite and apatite in intimate intergrowth, apparently having crystallized together. In places it contains pyroxene. The ore is said to average 68 per cent. iron. The phosphorus is, as a rule, above 2 per cent., and some parts of the ore yield from 3 to 4 per cent. or even more of this substance. The sulphur is not above 0.05 per cent.; manganese not above 0.70 per cent.; a similar amount of magnesia is recorded, about 1.5
per cent. silica, 0.75 per cent. alumina, and up to 6 or 8 per cent. lime. In places a fluidal structure of the magnetite and branching veinlets of apatite are observed in the ore.

Many different explanations have been advanced to account for the genesis of this remarkable deposit. Högbom, in 1898, considered it as a magmatic segregation analogous to the deposit at Taberg, but the form of the mass, the contact zone, and its demonstrated continuation in depth argue against such a hypothesis.

The geologists who first visited the deposit in 1891 believed it to be of sedimentary origin, and de Launay, in 1903, attempted to defend this hypothesis. He thought that the footwall porphyry represented perhaps a submarine flow, at the surface of which gases of chlorides and sulphides of iron developed and were oxidized to ferric oxide. A later eruption covered this deposit, which was afterward metamorphosed to magnetite. Stutzer combats this view effectively and then advances his own hypothesis, which is similar to that proposed by Löfstrand some years ago. It is in brief that the ore-body is a dike, the rock of which is composed of magnetite and apatite, consolidated together from the molten state. The narrow transition zone between ore and footwall porphyry is considered as a product of contact metamorphism. The sequence of events closed with the irruption of the acidic porphyry. Another view, advanced by P. Geijer, is that the ore is a flow rock differentiated in depth and erupted at the surface. It is difficult to accept this hypothesis, and that advanced by Stutzer seems more probable.

The great iron mines of Gellivare, a short distance south of Kiruna, produce about 1,500,000 metric tons of ore per annum. Many investigations of this ore deposit have been undertaken, the most important since 1890 by Hj. Lundbohm, G. Löfstrand, Hj. Sjögren, A. Törnebohm, and L. de Launay, but the views concerning its origin are still far apart; both the sedimentary and the epigenetic hypotheses have adherents.

The ore is principally mined in open workings and contains the same minerals as that of Kiruna—that is, magnetite and apatite—but it has a coarser grain. Locally it contains pyrite, chalcopyrite, fluorite, calcite, and zeolites. The ore is rudely schistose, conforming with the steep dip of the country rock, and forms large lenses, partly imbricating on parallel and curving strike lines.
The rocks are chiefly gneisses. The red gneiss is most common near the deposit and is traversed by many irregular veins of magnetite. It consists of albite with some quartz, chlorite, apatite, and biotite.

The reddish-gray gneiss is similar in composition but contains also soda-lime feldspar, microperthite, augite, and hornblende. Both rocks are rich in soda.

Dikes of acidic rocks, locally called granite but really quartz diorite or quartz keratophyre, cut across the ore-body.

At the contacts of the ore-bodies lie coarsely crystalline masses of hornblende with some irregular masses of fine-grained feldspar which are believed by Stutzer to correspond to the contact zone at Kiruna described by him.

I believe that the deposit at Gellivare has a similar origin to that at Kiruna. De Launay holds to a sedimentary origin, but this view is based principally on the parallelism of ore and gneisses. Epigenetic hypotheses are advanced by Lundbohm, von Post, and Löfstrand, the last two considering the deposit as a magmatic dike. This view is supported by the tectonic relationship; the ore-body is by no means confined to a single horizon in the gneiss. On the whole the analogy with Kiruna is very striking, though at Gellivare the rocks are clearly of intrusive origin. At both places the same genetic relations seem to exist; the earliest rock is rich in soda and of low to medium acidity, then follows an intrusion of magnetite-apatite rock, and lastly a quartzose soda-rich igneous rock was intruded.

Gellivare is, then, simply a dynamo-metamorphosed Kiruna.

The Magnetites of the Ural Mountains.—According to the recent investigations of Loewinson-Lessing and Jakowleff the magnetite deposits of Wyssokaia Gora and Goroblagodat, in the Urals, are products of differentiation in magmas, although at the former locality contact-metamorphic deposits also appear to be present. A summary of the Russian literature has been given by Beck. In both places the igneous rocks are augite syenite; at Goroblagodat the ore forms streaks of “schlieren” in this rock; it has a brecciated structure, the magnetite cementing the augites and feldspar. The deposits show marked differences from the Swedish deposits just described in that they contain very little apatite and that the ores are not injected dikes, but perhaps rather products of differentiation in place.

1 Erzlagerstätten, 3d ed., I, pp. 29-34.
The Magnetites of the Adirondacks. — The eastern part of the Adirondack Mountains, in northern New York, contains a number of deposits of magnetite which have been worked since the early part of the last century and which still possess considerable economic importance. The total output is estimated at 37,000,000 long tons. The annual production during the last 25 years has varied from 300,000 to 700,000 long tons. The more important operations are carried on in the Mineville district, but the deposits are spread over a large area. As some of the ores contain much apatite, magnetic concentration is used. The concentrates contain 60 to 65 per cent. of iron, and a by-product of impure apatite is obtained which is used as a fertilizer. The tailings consist mainly of ferromagnesian minerals. The ores are extracted through shafts, the deepest of which, at Lyon Mountain, is 1,500 feet deep on the incline.

Until recently all the deposits in this region were considered as of sedimentary origin, for they are contained in crystalline gneissoid rocks, some of which are certainly metamorphosed sediments. In recent years, however, Kemp and Newland have shown that the ores stand in most intimate relationship to augite syenites and that they should be correlated with the ores of northern Sweden and the Ural Mountains.

The associated rocks include syenitic, granitic, and dioritic gneisses, garnetiferous schists, amphibolites, and crystalline limestones. The deposits considered of magmatic type occur in a belt of syenitic gneisses, in part also massive syenites and their pegmatites, whose igneous origin is well established. These rocks contain from 1.5 to 6.5 per cent. magnetite.

In the Archean sedimentary rocks, known as the Grenville series, are a number of smaller deposits, many of which contain pyrite as well as magnetite; in the rocks graphite, sillimanite, garnet, and scapolite have been noted. The genesis of these deposits is in doubt; they may be of sedimentary origin and subsequently metamorphosed.

The magnetites associated with undoubtedly igneous rocks appear as long lenses or pod-like bodies, often bent, curved, or

folded, and have clearly participated in the general metamorphism of the country; at first they were probably tabular bodies. The ore lenses range in thickness from a few feet up to 25 feet or more, especially where curved or folded. In part the magnetite ore is pure, but more commonly it is mixed with the minerals that make up the wall-rocks, into which the ores often grade; these minerals are feldspar, quartz, pyroxene, and hornblende.

According to the percentage of phosphorus present the magnetites may be divided into low-phosphorus, Bessemer, and non-Bessemer grades. Apatite is usually present, and the non-Bessemer grade may contain as much as 10 per cent. of this mineral. While much of the ore yields 60 per cent. iron, there are large masses of ore with 50 per cent. iron or less that are suitable for concentration. According to Newland the lowest grade of workable milling ore carries about 35 per cent. iron. An average analysis of 65 carloads from pit 21 of the Mineville group of mines gave, in per cent., iron, 60.03; silica, 4.48; phosphorus, 1.635; sulphur, 0.021; and titanium, 0.12. The result of concentration from the "Old Bed" ore at Mineville in 1903 is shown in the subjoined table in percentages.

<table>
<thead>
<tr>
<th></th>
<th>Crude ore</th>
<th>Concentrates</th>
<th>First-grade apatite</th>
<th>Second-grade apatite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>59.59</td>
<td>67.34</td>
<td>3.55</td>
<td>12.14</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>1.74</td>
<td>0.675</td>
<td>12.71</td>
<td>8.06</td>
</tr>
<tr>
<td>Phosphorus as "bone phosphate."</td>
<td>63.55</td>
<td></td>
<td></td>
<td>40.30</td>
</tr>
</tbody>
</table>

The intimate association and intergrowth of the magnetite with the feldspar, augite, hypersthene, and hornblende of the augite syenite are considered by Kemp to prove its origin by magmatic differentiation. Syenitic pegmatites are also present and the processes of pegmatization are considered to have contributed to the formation of the ore; fluorite and titanite are often found in the ores.

Other Occurrences.—Magnetites forming magmatic segregations in pyroxenite, which present transitions to nepheline syenites, occur in Brazil and have been described by O. A.
Derby and E. Hussak.¹ With the magnetite are associated pyroxene, nepheline, perofskite, apatite, and brazilite, a rare mineral containing tantalum and niobium. A similar association of magnetite and nepheline syenite is reported from Alnö, Sweden.²

Corundum³

General Mode of Occurrence.—Corundum (Al₂O₃) has long been known as a product of regional and contact metamorphism; that it may also result from direct crystallization from a molten magma has been established by late investigations. Alumina is contained in all magmas, usually forming about 14 to 17 per cent. Certain syenites, nepheline syenites, and anorthosites may contain as much as 30 per cent. The peridotites, on the other hand, contain only from a fraction of 1 per cent. up to 10 per cent. of alumina. The corundum of magmatic origin is chiefly associated with those rocks of exceptionally high or low content of alumina, in which at the same time the silica is low.

By some observers the corundum of igneous rocks is regarded as due to recrystallization of included shale fragments. This view has been advanced by L. V. Pirsson in regard to the sapphire-bearing dike of Yogo Gulch, Montana. On the whole the differentiation theory fits the facts better.

Corundum is fusible only at 2,250° C. (Moissan), but it by no means follows that it crystallized from the magma at this temperature; Hautefeuille and Perrey showed, for instance, that

³ The blue transparent corundum is called sapphire; the red transparent variety forms ruby; both varieties are valuable gems. Colorless, yellow, and green varieties also occur. The ordinary bluish or gray corundum is an inconspicuous mineral with good basal cleavage and great hardness, whence its principal use as an abrasive. Mixed with magnetite, mainly in metamorphic rocks, it is termed emery, the name being derived from Cape Emeri, on the island of Naxos.

G. P. Merrill, The non-metallic minerals, 1904, pp. 69–85; 2d ed., 1910, pp. 73–89.
CONCENTRATION IN MOLTEN MAGMAS 759

alumina is soluble in a nepheline or leucite melt and that upon cooling the greater part of it crystallizes as corundum. Very likely it will be found that similar conditions would exist in melted olivine. Morozewicz has shown that when in a silicate melt the alumina is in excess of the ratio \(\text{RO: Al}_2\text{O}_3 :: 1:1 \), corundum, spinel, sillimanite, or cordierite will form.

Corundum in Igneous Magnesian Rocks.—A long belt of magnesian rocks of probable pre-Cambrian age, mainly peridotites, gabbros, and norites, extends along the Appalachian region from Alabama to Massachusetts, and in these rocks corundum has been found in commercial quantities at a number of places.

Among the most interesting occurrences are those in North Carolina and Georgia, where the mineral occurs as vein-like bodies from a few inches up to 15 feet in width at the contact of peridotite with gneisses and schists, in part also in the peridotite itself. Chlorite, enstatite, and spinel are associated with the corundum. Among the principal localities are the Laurel Creek mine, in Rabun County, Georgia; Corundum Hill, Macon County, and Webster, Jackson County, North Carolina. None of the southern localities have been productive in late years owing to exhaustion of the deposits or prohibitive distance from lines of transportation.

Deposits of emery, an impure corundum mixed with magnetite, were worked by open cuts in 1908 near Peekskill, Westchester County, New York. The emery here occurs in the intrusive Cortlandt series of rocks described by G. H. Williams\(^1\) and consisting of peridotites, norites, and diorites. The corundum and magnetite are, according to Williams, simply segregations in the norite, the constituent minerals of which occur even in the present emery. Hercynite—an iron spinel—and garnet accompany the magnetite and the corundum.

Regional metamorphism easily changes many of these magnesian rocks to amphibolites and chloritic schists. During this process the corundum is apparently little affected. At Chester, Massachusetts, according to B. K. Emerson,\(^2\) emery occurs for a long distance along a belt of amphibolite contained in sericite schists. The emery-bearing part of the schist is in places 12 feet wide and has been mined to a depth of 300 feet below the surface.

\(^1\) \textit{Am. Jour. Sci.}, 3d ser., vol. 33, 1887, p. 33.
MINERAL DEPOSITS

Corundum of gem quality is occasionally found in these deposits or in the gravels derived from them, but most of the sapphires obtained in the United States are derived from a different source. At Yogo Gulch, Fergus County, Montana, long dikes belonging to the monchiquite-camptonite series of lamprophyric rocks contain sharply crystallized rhombohedral sapphires of excellent quality. The decomposed rock is allowed to slack and is washed in sluice boxes. The deposits have been described by Weed, Pirsson, and Sterrett.

Sapphires have also been mined on a commercial scale from the alluvial deposits extending for 20 miles along the Missouri River near Helena, Montana. According to G. F. Kunz the gems are derived from dikes of a vesicular mica-augite andesite, but the primary deposits have not been worked. The sapphires are of prismatic habit and mostly pale greenish or greenish yellow.

Corundum in Syenite.—The most important deposits of corundum in Canada were discovered by W. F. Ferrier about 1896. The mineral occurs as an essential constituent of syenites and nepheline syenites and their pegmatites in Haliburton, Peterboro, Hastings, and Renfrew counties, Ontario. The rocks form dikes or intrusive masses in gneisses and contain as much as 12 or 15 per cent. of bluish or gray, often roughly crystallized corundum, many of the crystals being 2 or 3 inches in diameter. An industry of great importance has been built up in this region, with an annual production of corundum valued at $100,000 to $200,000, ranging from 1,000 to 2,000 tons. The rock is quarried, crushed, and concentrated on tables.

Minor deposits of similar character occur in Gallatin County, Montana, in a syenite composed of orthoclase, biotite, and corundum.

Other Occurrences.—Corundum has also been found in anor-thosites—rocks consisting principally of labradorite, or anorthite feldspar. According to T. H. Holland corundum is abundant in India and representatives of the various classes already described are present.

6 A manual of the geology of India, Economic geology, part 1, Corundum, Calcutta, 1898.
CONCENTRATION IN MOLTEN MAGMAS

In a number of occurrences of corundum in "gneiss" we have probably to deal with igneous rocks like syenite made schistose by pressure. Corundum is, however, unquestionably also developed by the contact metamorphism of limestone, probably by transfer of alumina from the magma. The largest known deposits of emery occur on the island of Naxos, in the Greek Archipelago, and on the adjoining mainland of Asia Minor; they are contained in metamorphosed limestone. Corundum may also be developed by the regional metamorphism of clay shale and shaly quartzite. Many minor occurrences of this kind in the Southern States have been described by Pratt.

Production in the United States.—At present little or no corundum is produced in the United States. Imports of corundum and emery from Canada and Turkey in 1910 had a total value of $816,000. In response to a great demand, artificial corundum (alundum) is now manufactured at Niagara Falls by fusing bauxite in an electric furnace.

Uses.—Corundum finds its principal use as an abrasive, wheels and abrading tools of all kinds being manufactured from the crushed material.

Sulphide Ores of Igneous Origin

General Principles.—That sulphide minerals may crystallize from a magma has been ascertained beyond doubt, but the number of minerals which have this origin is limited to a few species, mainly pyrrhotite, pyrite, chalcopyrite, molybdenite, sphalerite, and pentlandite; arsenides like niccolite and sperrylite are also known. This view of the igneous origin of certain ores has been gained comparatively lately, and largely by the labors of Professor Vogt, of Kristiania.

While it is clear that sulphides are not freely miscible with silicate magmas, Vogt has shown that the monosulphides are soluble to some extent in dry melts of basic character—that is, with much iron, calcium, and manganese; under favorable circumstances, particularly at temperatures of about 1,500°C., as much as 6 or 7 per cent. of these sulphides may become dissolved. But it is also to be noted that Vogt found but little solubility for the sulphides of copper, nickel, lead, and silver.

Upon crystallization the sulphides always separate out first, as oldhamite (CaS), alabandite (MnS), trolite (FeS), and zinc blende (ZnS). These experimental results do not exactly correspond with those found in nature, for of the sulphides mentioned zinc blende is the only one encountered in igneous rocks, and the sulphides of slight solubility, like those of copper and nickel, are the most abundant. Vogt suggests that higher temperature, pressure, and the presence of "mineralizers" held by pressure are the causes of this differing behavior.

In the surface lavas which correspond most closely to dry melts sulphides are extremely rare, although grains of chalcopyrite are occasionally found. The sulphides of economic importance are almost wholly confined to the peridotites, norites, and gabbros, all rocks of deep-seated crystallization; the characteristic metallic association is iron, copper, nickel, platinum, and occasionally a little arsenie. The paragenesis of the minerals, beginning with the oldest, is usually pyrite, pyrrhotite, chalcopyrite. Magnetite is commonly present and crystallized earlier than the pyrite.

On the whole the sulphides are the latest products crystallized and appear mainly along the margins of the intrusive masses. This behavior again differs from the experimental results mentioned above. In most deposits the sulphides appear to have been concentrated in the residual part of the magma, or the "mother liquid," which, however, probably contained very little water, compared to the residual pegmatitic magma of the granites, and was most likely an almost dry melt. The descriptions of these deposits contain many figures of specimens in which the sulphides cement earlier crystals of labradorite, augite, or olivine. Occasionally, however, the sulphides crystallized together with the pyroxene, as indicated by their inclusion within it. Rounded embayments of sulphides in the silicates are characteristic (Fig. 239). The pyrite often shows octahedral form, and etched depressions on the faces are sometimes filled with chalcopyrite. Pyrrhotite is the most abundant mineral.

A green spinel, sometimes gahnite (zinc spinel), accompanies the sulphides in places, but the mineral also occurs in certain high-temperature veins.

Types of Deposits.—Some of the magmatic sulphide deposits are simply basic rocks abnormal in containing much pyrrhotite, chalcopyrite, and pentlandite. Other occurrences are clearly
related to contacts and bear evidence of later magmatic injection.
There is still another class in which the magmatic origin is only
dimly perceived on account of the metamorphic changes which
the rocks have undergone. The basic igneous rocks are easily
modified by pressure and more or less schistose amphibolites
are developed, which besides amphibole contain garnet, quartz,
epidote, and chlorite. Any primary sulphide segregations
contained in such rocks will be correspondingly affected and a

![Fig. 239. Thin section of olivine corroded by pyrrhotite and chalcopyrite, East Union, Maine. Magnified 15 diameters. After E. S. Bastin.](image)

new type of deposit of metamorphic appearance will result;
the sulphides themselves apparently undergo little change.
There is little doubt that many pyrrhotite-chalcopyrite deposits
of much disputed origin in amphibolitic schists are simply
modified igneous segregations.

Sulphides in Peridotites and Gabbros.—Many diabases and gab-
bros furnish examples on a small scale of the intergrowth of
ilmenite, pyrrhotite, pyrite, and chalcopyrite.¹ E. S. Bastin²
has described a rock from Knox County, Maine (Fig. 239), which
shows convincingly the magmatic origin of sulphide ores. This
rock, which occupies a small area surrounded by drift, consists

¹ W. Lindgren, Gold-quartz veins of Nevada City and Grass Valley,
of 60 per cent. olivine, 21.53 per cent. pyrrhotite, some andesine-
labradorite feldspar, hornblende, and magnetite, 1.03 per cent.
chalcopyrite, and pyrite, biotite, and spinel. The analysis
shows 0.94 per cent. nickel oxide, and the material is thus
practically a very low grade ore. The constituents are inter-
grown, showing simultaneous crystallization except that the
magnetite, enclosed in olivine, is the earliest mineral separated;
the chalcopyrite is associated irregularly with the pyrrhotite.
There has been some serpentinization but not enough to obscure
the relations. The complete analysis is as follows:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO_2</td>
<td>28.04</td>
<td>MnO</td>
<td>0.24</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>3.51</td>
<td>FeS</td>
<td>21.53</td>
</tr>
<tr>
<td>FeO</td>
<td>14.95</td>
<td>NiS</td>
<td>0.94</td>
</tr>
<tr>
<td>Fe_2O_3</td>
<td>21.97</td>
<td>CoS</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>21.97</td>
<td>CuFeS_2</td>
<td>1.03</td>
</tr>
<tr>
<td>CaO</td>
<td>1.78</td>
<td>H_2O^+</td>
<td>2.54</td>
</tr>
<tr>
<td>TiO_2</td>
<td>0.20</td>
<td>H_2O^-</td>
<td>1.48</td>
</tr>
<tr>
<td>P_2O_5</td>
<td>0.04</td>
<td>CO_2</td>
<td>1.01</td>
</tr>
<tr>
<td>K_2O</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na_2O</td>
<td>0.28</td>
<td></td>
<td>99.65</td>
</tr>
</tbody>
</table>

Various Occurrences.—A. Knopf^1^ described a local concentra-
tion of augite and pyrrhotite and chalcopyrite in an acidic rock in
the Golden Curry mine, at Elkhorn, Montana, which yielded
2,000 tons of ore with 2 per cent. copper and $4 in gold per ton.
At many other occurrences the sulphides are concentrated at the
contacts, and such deposits have led many to question the theory
of magmatic concentration.

In the recently discovered deposit at Mittel-Sohland, in
Saxony, described by Beck,^2^ the sulphides form a rather rich
nickel ore. They occur in an olivine diabase of gabbroic habit,
containing, in order of deposition, magnetite, ilmenite, silicates,
pyrrhotite, and chalcopyrite. The ores lie along the contact
between the diabase and a granite and extend in a belt about 2
meters wide for a distance of 150 meters, gradually merging into
normal diabase; the granite contains disseminated sulphides close
to the contact. Beck believes that the ores were introduced
after the consolidation of the rock.

Vogt has described the numerous Norwegian occurrences in
great detail. The ore-bearing intrusives are norites or allied

rocks, often with biotite and brown hornblende, and are intruded in pre-Cambrian gneiss. In part the gabbros are pressed to amphibolites. The nickeliferous pyrrhotites occur largely along the contacts. They contain little copper and only 1 to 1.5 per cent. nickel. In the amphibolitized deposits considerable migration has taken place. Garnet is formed along the streaks of pyrrhotite. The hornblende is in part transformed to bluish-green amphibole.

A similar occurrence is that of Lancaster Gap, Pennsylvania, described by Kemp, where the nickeliferous pyrrhotite lies along the contacts of a mass of amphibolite, contained in mica schist. Much nickel ore was mined here up to 1893.

At the Alexo nickel deposit, in Ontario, described by A. P. Coleman¹ and lately by W. L. Uglow,² the sulphide ore lies at the contact of a body of serpentinized peridotite, gradually fading out in that rock. Well-developed crystals of olivine are embedded in the ore. Coleman had regarded this deposit of magmatic origin, but Uglow showed corrosion of olivine and enstatite by pyrrhotite, replacement of silicate minerals by finely divided pyrrhotite, and deposition of pyrrhotite along chrysotile seams, and hence believed in an origin by replacing aqueous solutions. Here, as in so many other cases, secondary changes appear to have been confused with primary deposition. When sharp olivine crystals are observed to be embedded in pyrrhotite we are not justified in holding that pyrrhotite was introduced later by aqueous replacement. The pyrrhotite separated out first, but corrosion may well have followed. Magmatic corrosion resulting in embayments and rounded outlines can, I believe, in most cases be distinguished from replacement by aqueous solutions. The later phases of pyrrhotite development described by Uglow are pretty clearly connected with serpentinization and the formation of chrysotile. These are probably both high-temperature processes. The injection of veinlets of pentlandite is probably one of the last phases of the magmatic history.

Many copper deposits in amphibolite are really dynamo-metamorphosed forms of such magmatic deposits as have been described above. The examination of several such small deposits in Colorado led to this conclusion. Deposits at Sedalia

¹ Econ. Geol., vol. 5, 1910, p. 373.
and Turret, in Chaffee County, are basic dikes in a pre-Cambrian sedimentary series contact-metamorphosed by later granitic intrusion and still later altered to amphibolite. Chalcopyrite, zinc blende, magnetite, and probably molybdenite are intergrown with bluish-green amphibole, garnet, spinel, and labradorite. The diabase is probably a differentiated offshoot from a neighboring large mass of coarse diabase. A similar occurrence is that of the Cotopaxi mine, in Fremont County, which has been worked on a dike enclosed in gneiss and now converted into amphibole, biotite, and garnet; it contains zinc spinel, chalcopyrite, and a little galena. Green labradorite is also present.

The Sudbury Mines.—The nickel deposits of Sudbury, Ontario, now the source of more than one-half of the world’s production of nickel, in all probability belong to the class of sulphide segregations in magmas. The early production of nickel came mainly from the low-grade Scandinavian deposits. The discovery of oxidized nickel ores in the island of New Caledonia, in the Pacific Ocean, reduced the price of the metal from several dollars a pound to 35 cents, and only the Canadian deposits have been able to compete with the ores from the island.

The ores at Sudbury\(^1\) were discovered about 1884 and since then have yielded large quantities of nickel and copper, besides some gold, silver, palladium, and platinum. The production in 1910 was 652,000 tons of ore containing 18,600 tons of nickel and about 9,000 tons of copper.

The geology of the region is complicated. On a basement of gneiss rests a wide syncline of Huronian tuff, schist, and slate. Between this basement and the tuff is intruded a thick sheet of rock which shows strong differentiation, grading from a micropegmatitic granite to a norite gabbro; in part the intrusive rocks are altered to amphibolite. The deposits form irregular masses or lenses in the norite near its contact with the underlying schists (Fig. 240). Some of them are as much as 350 feet long, 100

\(^1\) The literature is very extensive; only a few articles are cited here.

feet thick, and 900 feet deep. The ores contain as much as 5 per cent. of nickel, 1.4 per cent. copper, and a little of the rarer metals mentioned above. According to F. D. Adams, A. P. Coleman, and J. F. Kemp the ore minerals, which consist mainly of pyrrhotite and chalcopyrite, are intimately inter-

grown with the original minerals of the rock, such as augite, hypersthene, and labradorite, so that their magmatic origin is hardly to be questioned. At the same time the rock is in places more or less affected by dynamic metamorphism and there has been, as shown by C. W. Dickson, considerable rearrangement and migration, particularly of the chalcopyrite, and in many places secondary amphibole and garnet occur. It has been shown by Dickson that the nickel is contained in the pyrrho-
tite as the mineral pentlandite, \((\text{Fe},\text{Ni})\text{S}\), with 34 per cent. nickel; in small part also as polydymite \((\text{Ni}_8\text{S}_6)\). Pentlandite is similar to pyrrhotite but can be distinguished on polished surfaces by not being attacked by hydrochloric acid, while pyrrhotite is easily etched. Campbell and Knight, who have studied the ores by metallographic methods, find that pentlandite is common in many other nickel ores of this kind, for instance, those of Norway, New Brunswick, Sohland (Saxony), and Lancaster Gap (Pennsylvania). They have established the succession as follows: Magnetite, silicates, pyrite, pyrrhotite, pentlandite, and chalcopyrite, magnetite being the oldest. The pentlandite often surrounds grains of pyrrhotite or appears as veinlets in it; chalcopyrite may fill cracks in the other sulphides or in the silicates. Their inference is therefore that the basic rocks were fractured and that ore-bearing solutions replaced the rock mass by pyrrhotite. Later successive fractures permitted the introduction of the nickel sulphide and chalcopyrite.

In the studies of Dickson, Campbell, and Knight no clear distinction was drawn between original magmatic deposition and secondary changes effected by dynamo-metamorphism. Probably even the magmatic period was divided into several phases, and pentlandite and chalcopyrite belonged most likely to the later of these.

Cape Colony.—A deposit at Insizwa, Cape Colony, is similar to that of Sudbury and has been described by A. L. Dutoit.\(^1\) Pyrrhotite, chalcopyrite, and pentlandite, with a little bornite and niccolite, occur in a thick sheet of gabbro or norite, at its contact with underlying sediments. The ores contain also a little platinum, osmiridium, gold, and silver. The sulphides separated from the magma at the end of the period of consolidation and surround idiomorphic olivine (Fig. 241), pyroxene, and feldspar. The order of succession is chalcopyrite, pentlandite, and pyrrhotite, or exactly the reverse of that at Sudbury.

Injected Pyritic Deposits

General Features.—Some deposits in which the ore consists mainly of solid pyritic minerals present features which can hardly be explained otherwise than by actual injection of

molten sulphides, perhaps to be considered as residual solutions from adjoining infusive bodies. A. Bergeat\(^1\) first summarized these peculiar occurrences, among which, it must be confessed, are some of the most enigmatic of ore deposits. The examinations of the deposit at Bodenmais, in Bavaria, by J. Lehmann and E. Weinschenk appear to have led up to the definite view suggested above, and since then a number of other occurrences have been added to this class, which nevertheless cannot be considered as firmly established.

![Diagram of olivine norite, Insizwa mine, Cape Colony.](image)

Fig. 241.—Thin section of olivine norite, Insizwa mine, Cape Colony. Magnified 18 diameters. Black areas, pyrrhotite; ol, olivine; py, pyroxene; bi, biotite; la, labradorite. *After A. L. Du Toit.*

These ores are usually enclosed in schist or gneiss and that they originated by metasomatic replacement of limestone appears to be out of the question, though it must not be overlooked that the same was thought once of the ores at Ducktown, Tennessee, which now nevertheless have been shown by W. H. Emmons to be replacements of small limestone lenses in a prevailing schist formation.

That fluid sulphides may penetrate silicate rocks in veinlets and corrode the various primary minerals, like augite, has been shown in interesting experiments by O. Stutzzer,\(^2\) and by previous observations by von Cotta on the brickwork of old lead furnaces. In Stutzzer's experiments the sulphide veinlets of pyrrhotite,

\(^1\) A. W. Stelzner and A. Bergeat, Die Erzlagerstätten, vol. 2, pp. 964–987.

zinc blende, and galena penetrated the rocks along minute cracks and along the cleavage planes of the minerals. In gabbros the pyroxene grains were strikingly corroded, in a manner similar to that noted in the ores of Sudbury.

The sulphide melt would probably be under high pressure and would force its way into the adjoining rocks. Deposits of this kind are decidedly rare. The igneous rocks near whose contact injected deposits lie are of many kinds, not always of basic character.

The minerals of the ores include magnetite, pyrrhotite, pyrite, zinc blende, chalcopyrite, and rarely galena. The associated gangue minerals surely indicate high temperature and are present in scant quantity; they are quartz, orthoclase, plagioclase, amphibole, hypersthene, biotite, cordierite, spinel, especially zinc spinel, and garnet. The various minerals are practically contemporaneous. The feldspars have a characteristic greenish color.

Bavaria.—At Bodenmais\(^1\) granite intersects gneisses. The ore deposits lie in cordierite gneiss. The principal ores are pyrrhotite and pyrite, with some zinc blende rich in cadmium and galena rich in silver; the bodies lie in general parallel to the dip of the gneiss, but, according to Weinschenk, the contact between ore and gneiss is sharp, though there are some disseminated sulphides in the surrounding rock. Many of the gangue minerals in the ore are rounded or corroded.

Sweden.—The renowned copper deposit at Falun,\(^2\) in Sweden, forms a huge inverted cone enclosed in gray quartzose and gneissoid rocks and extending to a depth of 1,200 feet. The ore-body is really composed of the same rock, impregnated to greater or less extent with pyrite, pyrrhotite, and chalcopyrite. The gangue minerals accompanying the ore are cordierite, magnetite, andalusite, spinel, and garnet. It is difficult to arrive at a definite conclusion regarding the origin of this deposit; at any rate it was formed at high temperature. According to Vogt the total production of copper from Falun from 1300 to the present time is about 480,000 metric tons.

\(^1\) E. Weinschenk, Zeitschr. f. prakt. Geol., 1900, pp. 65–71.

The copper deposit at Bersbo, in Sweden, is also considered by Bergeat to belong to this class. The ores are quartzose and are embedded in gray fine-grained "granulite" (p. 713), which is now by many considered an igneous and intrusive rock. In thin section the ores show a texture resembling that of contact-metamorphosed schist and contain as gangue minerals quartz, cordierite, spinel, biotite, hornblende, and garnet. On the whole, the succession is magnetite (oldest), pyrite, pyrrhotite, zinc blende, and chalcopyrite.

Norway.—A number of remarkable pyritic deposits are found in Norway; among them are the well-known localities of Rörås, Vigsnäs, and Sulitjelma, all of which have been the subject of extended discussion. They occur in metamorphic schists including clay slate, chloritic schist, amphibolite, and in part certainly in dynamo-metamorphosed gabbro intrusions. The ores consist of pyrite, pyrrhotite, and chalcopyrite, with but little magnetite. Flat ore lenses prevail, in some places strictly parallel to the schistosity, in other places, as at Rörås, distinctly cutting across it. In large part they are massive pyritic bodies, but the neighboring rock is usually impregnated with pyritic ore. One of the flat ore-bodies at Rörås extended along its dip for 1,900 meters and was 100 meters wide, averaging 8 meters in thickness. At Sulitjelma the contact phenomena have been interpreted as injections. The ore brecciates the schist and enters into it on veins and seams.

The mineral association is that of high-temperature deposits—quartz, actinolite, garnet, epidote, and biotite. In part the association recalls that of regional metamorphism and no doubt the ores are in places modified by such action. Th. Kjerulf and J. H. L. Vogt among others consider these deposits as igneous injections, the latter author placing them in genetic association with the gabbro intrusions. Other observers have thought of deposition by heated waters, or even by sedimentation.

Bornite in Igneous Rocks.—Bornite is occasionally recorded as a minor constituent of pegmatite dikes (p. 720) and sometimes

2 Stelzer and Bergeat, op. cit., p. 978.
3 Vogt has asserted a relationship between these ores and those of Rammeisberg, in the Harz, Germany. As shown on pp. 609–610, the latter belong in an entirely different class, with barite gangue, and show an absence of high-temperature minerals.
occurs in the deep vein zone. A small but remarkable bornite deposit in an igneous rock, described by E. Ritter1 and lately by E. S. Bastin and J. M. Hill,2 occurs at the Evergreen mine, Gilpin County, Colorado. Dikes of a monzonitic rock, in part brecciated, contain, intergrown with the primary minerals, bornite and chalcopyrite, also garnet, calcite, and wollastonite. All these minerals are contemporaneous with the ordinary rock minerals. This seems to be a case of digestion of material from calcareous rocks; possibly the sulphides are also of foreign origin, perhaps derived by absorption from an older deposit; an origin by direct differentiation is, however, not unlikely. The ore extracted contained 3 per cent. copper and $5 in gold and silver per ton.

2 Econ. Geol., vol. 6, 1911, pp. 465–472.
CHAPTER XXVIII

METAMORPHOSED DEPOSITS

PROCESSES INVOLVED

Mineral deposits are usually formed during comparatively brief epochs, in which uniform conditions prevail, rendering a given set of minerals stable. In the development of the epigenetic deposits this is not invariably true, for we sometimes find evidence of successive changes in the mineral-bearing solutions; early minerals are dissolved and a new set formed. The replacement of calcite veins by silica offers an instance of this process, as do also the successive generations of minerals in zeolitic copper deposits and in pegmatite dikes.

After the epoch of mineralization has passed the deposit will, as a rule, be subjected to different temperatures and different degrees of pressure, and solutions of various kinds will percolate through it. Consequently, in many deposits the minerals of their ore are now unstable and only the slowness of the changes may prevent them from being wholly altered. “Persistent” minerals remain unaffected except by mechanical deformation, but very few minerals are persistent in all zones.

In general, when by erosion, intrusion, or dynamo-metamorphism a mineral deposit is transferred to a new zone, the characteristic minerals of this zone will develop in it and become superimposed upon the original minerals. Some deposits have a complicated history, having been subjected to several changes, each of which has left its imprint on the ores.

It often happens that a deposit becomes involved in folding or dynamic metamorphism of general or local kind; there will then be mechanical deformation; veins and irregular masses will be squeezed out into lenses which may in places overlap or imbricate. The minerals of dynamic metamorphism, such as garnet, amphibole, and biotite of the deeper zones, or chlorite, epidote, zoisite, muscovite, albite, and talc of the upper zones, will be formed from the old constituents. Hydrates may lose their water and carbonates their carbon dioxide. The quartz-
sulphide veins are least affected, their minerals being comparatively persistent.

Most deposits have been exposed to static metamorphism at moderate temperature, during which chlorite, carbonates, and epidote have developed. Increased temperature may leave some deposits unaltered, while others in the vicinity of igneous masses may be profoundly modified. Examples are known of sedimentary deposits of limonite or siderite which, close to intrusive rocks, change to magnetite and specularite and in which garnets and other silicates develop. Such deposits may simulate those of contact-metamorphic origin, but in the latter the ores did not exist in the sedimentary rocks but were introduced by solutions. Some of the deposits in the pre-Cambrian terranes owe their complex nature to successive changes, and their history may be most difficult to unravel.

DEFORMED PYRITIC DEPOSITS

The copper deposit at Rammelsberg,\(^1\) in the Harz Mountains (p. 606), illustrates well the effects of local dynamo-metamorphism at no great depth. Under strong pressure the softer minerals like galena, chalcopyrite, and zinc blende are easily deformed and pressed out to plastic streaky masses. Pyrite,\(^2\) being harder, is crushed without plastic deformation and subsequently cemented.

W. H. Emmons\(^3\) has examined some copper deposits in New Hampshire, the origin of which antedated the metamorphism of the surrounding rocks. At the Milan mine there are two overlapping lenses of cupferiferous pyrite that are clearly portions of a single ore-body which was separated during the process of regional metamorphism. The surrounding quartz-chlorite schist was in its zone of flow while the pyrite deposit was in its zone of fracture (Fig. 242). The massive pyrite shows little deformation, but near the walls, in the lower-grade ore, quartz and pyrite have been pressed out into schistose form. Thin sections show crushing and re-cementing of the pyrite, which seems massive in the hand specimen. Perfect crystals

\(^1\) *Econ. Geol.*, vol. 6, 1911, pp. 303–313.

METAMORPHOSED DEPOSITS

of pyrite, generally cubes or octahedrons, were formed during strong pressure. The gangue at the Milan mine consists of quartz, muscovite, biotite, and chlorite; probably the three last named minerals are of dynamo-metamorphic origin.

In the interpretation of these deposits it is necessary to search for relics of older gangue minerals, more or less affected and changed by pressure. In many deposits such minerals may have been entirely obliterated.

Fig. 242.—Diagram showing deformation of pyritic vein at Milan, New Hampshire. After W. H. Emmons, U. S. Geol. Survey.

REGIONALLY METAMORPHOSED IRON ORES

General Features.—In regionally metamorphosed sediments or in crystalline schists, the origin of which may be in doubt, bedded deposits of magnetite or specularite, or both, are often encountered. The well-known fact that iron ores such as limonite, siderite, hematite, or iron silicates (chamosite and thuringite) form integral parts of sedimentary series of all ages suggests strongly that the beds of these ores in metamorphosed rocks also had a sedimentary origin. As a rule this is no doubt true, but the metamorphism may have gone so far that the original sedimentary nature of the surrounding rocks may be open to doubt, and many observers maintain an igneous origin for some such deposits. Indirectly, igneous rocks have often brought about the accumulation of bedded iron ores, either
sulphide veins are least affected, their minerals being comparatively persistent.

Most deposits have been exposed to static metamorphism at moderate temperature, during which chlorite, carbonates, and epidote have developed. Increased temperature may leave some deposits unaltered, while others in the vicinity of igneous masses may be profoundly modified. Examples are known of sedimentary deposits of limonite or siderite which, close to intrusive rocks, change to magnetite and specularite and in which garnets and other silicates develop. Such deposits may simulate those of contact-metamorphic origin, but in the latter the ores did not exist in the sedimentary rocks but were introduced by solutions. Some of the deposits in the pre-Cambrian terranes owe their complex nature to successive changes, and their history may be most difficult to unravel.

DEFORMED PYRITIC DEPOSITS

The copper deposit at Rammelsberg,\(^1\) in the Harz Mountains (p. 606), illustrates well the effects of local dynamo-metamorphism at no great depth. Under strong pressure the softer minerals like galena, chalcopryite, and zinc blende are easily deformed and pressed out to plastic streaky masses. Pyrite,\(^2\) being harder, is crushed without plastic deformation and subsequently cemented.

W. H. Emmons\(^3\) has examined some copper deposits in New Hampshire, the origin of which antedated the metamorphism of the surrounding rocks. At the Milan mine there are two overlapping lenses of cupriferous pyrite that are clearly portions of a single ore-body which was separated during the process of regional metamorphism. The surrounding quartz-chlorite schist was in its zone of flow while the pyrite deposit was in its zone of fracture (Fig. 242). The massive pyrite shows little deformation, but near the walls, in the lower-grade ore, quartz and pyrite have been pressed out into schistose form. Thin sections show crushing and re-cementing of the pyrite, which seems massive in the hand specimen. Perfect crystals

\(^1\) *Econ. Geol.*, vol. 6, 1911, pp. 303–313.
of pyrite, generally cubes or octahedrons, were formed during strong pressure. The gangue at the Milan mine consists of quartz, muscovite, biotite, and chlorite; probably the three last named minerals are of dynamo-metamorphic origin.

In the interpretation of these deposits it is necessary to search for relics of older gangue minerals, more or less affected and changed by pressure. In many deposits such minerals may have been entirely obliterated.

Fig. 242.—Diagram showing deformation of pyritic vein at Milan, New Hampshire. After W. H. Emmons, U. S. Geol. Survey.

REGIONALLY METAMORPHOSED IRON ORES

General Features.—In regionally metamorphosed sediments or in crystalline schists, the origin of which may be in doubt, bedded deposits of magnetite or specularite, or both, are often encountered. The well-known fact that iron ores such as limonite, siderite, hematite, or iron silicates (chamosite and thuringite) form integral parts of sedimentary series of all ages suggests strongly that the beds of these ores in metamorphosed rocks also had a sedimentary origin. As a rule this is no doubt true, but the metamorphism may have gone so far that the original sedimentary nature of the surrounding rocks may be open to doubt, and many observers maintain an igneous origin for some such deposits. Indirectly, igneous rocks have often brought about the accumulation of bedded iron ores, either
sulphide veins are least affected, their minerals being comparatively persistent.

Most deposits have been exposed to static metamorphism at moderate temperature, during which chlorite, carbonates, and epidote have developed. Increased temperature may leave some deposits unaltered, while others in the vicinity of igneous masses may be profoundly modified. Examples are known of sedimentary deposits of limonite or siderite which, close to intrusive rocks, change to magnetite and specularite and in which garnets and other silicates develop. Such deposits may simulate those of contact-metamorphic origin, but in the latter the ores did not exist in the sedimentary rocks but were introduced by solutions. Some of the deposits in the pre-Cambrian terranes owe their complex nature to successive changes, and their history may be most difficult to unravel.

DEFORMED PYRITIC DEPOSITS

The copper deposit at Rammelsberg,\(^1\) in the Harz Mountains (p. 606), illustrates well the effects of local dynamo-metamorphism at no great depth. Under strong pressure the softer minerals like galena, chalcopyrite, and zinc blende are easily deformed and pressed out to plastic streaky masses. Pyrite,\(^2\) being harder, is crushed without plastic deformation and subsequently cemented.

W. H. Emmons\(^3\) has examined some copper deposits in New Hampshire, the origin of which antedated the metamorphism of the surrounding rocks. At the Milan mine there are two overlapping lenses of cupriferous pyrite that are clearly portions of a single ore-body which was separated during the process of regional metamorphism. The surrounding quartz-chlorite schist was in its zone of flow while the pyrite deposit was in its zone of fracture (Fig. 242). The massive pyrite shows little deformation, but near the walls, in the lower-grade ore, quartz and pyrite have been pressed out into schistose form. Thin sections show crushing and re-cementing of the pyrite, which seems massive in the hand specimen. Perfect crystals

\(^1\) *Econ. Geol.*, vol. 6, 1911, pp. 303–313.
of pyrite, generally cubes or octahedrons, were formed during strong pressure. The gangue at the Milan mine consists of quartz, muscovite, biotite, and chlorite; probably the three last named minerals are of dynamo-metamorphic origin.

In the interpretation of these deposits it is necessary to search for relics of older gangue minerals, more or less affected and changed by pressure. In many deposits such minerals may have been entirely obliterated.

Fig. 242.—Diagram showing deformation of pyritic vein at Milan, New Hampshire. *After W. H. Emmons, U. S. Geol. Survey.*

REGIONALLY METAMORPHOSED IRON ORES

General Features.—In regionally metamorphosed sediments or in crystalline schists, the origin of which may be in doubt, bedded deposits of magnetite or specularite, or both, are often encountered. The well-known fact that iron ores such as limonite, siderite, hematite, or iron silicates (chamosite and thuringite) form integral parts of sedimentary series of all ages suggests strongly that the beds of these ores in metamorphosed rocks also had a sedimentary origin. As a rule this is no doubt true, but the metamorphism may have gone so far that the original sedimentary nature of the surrounding rocks may be open to doubt, and many observers maintain an igneous origin for some such deposits. Indirectly, igneous rocks have often brought about the accumulation of bedded iron ores, either
by the weathering and denudation of intrusive rocks or lavas rich in iron, or possibly by direct emanations from volcanic rocks.

Bedded metamorphic iron ores are accompanied by silicate minerals, like feldspar, actinolite, and garnet, usually also by quartz, and they have assumed a thoroughly crystalline texture similar to that of other crystalline schists, the constituents being generally interpenetrating, indicating almost simultaneous development. Relic structure showing the sedimentary origin is rarely observed.

Swedish "Dry Ores."—Sweden and Norway are rich in these bedded ores, which often appear in the vicinity of other iron deposits of different kind. Some are found near the great magmatic deposit of Kiruna, interbedded in tuff and shales of late pre-Cambrian age. Others, which are worked more extensively, appear near the metasomatic magnetites of central Sweden (p. 711) and form part of the complicated granulite series (p. 713). They are designated "dry ores" (torr-sten) and are usually siliceous, the accompanying beds averaging 84 per cent. silica. The ores average 50 per cent. iron, contained in micaceous fine-grained specularite with a little magnetite. The accompanying beds in places contain garnet, amphibole, or epidote, each mineral often forming a separate streak. They are markedly banded. Many of the beds are 10 or 15 feet thick, though some considerably exceed 15 feet, and have been followed with regular steep dip to a depth of several hundred feet. These ores contain little phosphorus. An analysis of such ore from Striiberg is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>Mg</th>
<th>CaO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52.20</td>
<td>60.21</td>
<td>0.09</td>
<td>0.31</td>
<td>1.05</td>
<td>0.89</td>
<td>23.61</td>
<td>0.043</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Until recently little doubt has been expressed about the sedimentary origin of these ores. Lately, however, H. Johannson has announced his opinion that the fine-grained granulites are simply a product of extreme magmatic differentiation and that

See also references on p. 711.
the accompanying bedded iron ores are also of magmatic origin. He even believes that the metasomatic limestone and "skarn ores" (p. 711) have this origin. Hj. Sjögren does not share this opinion but holds that the bedded ores and limestone ores are caused by injection or replacement by "granitic extracts" while the differentiated granulites were in the anamorphic zone.

Whatever the true explanation of the granulites may be, it is certain that some rocks of sedimentary origin are associated with them, and it does not seem that the opponents to the sedimentary genesis of the ores have proved their case.

Norwegian Ores.—Northern Norway is rich in deposits of the type here discussed. Banded magnetites, variously interpreted, occur on a large scale in thick beds that are traceable for several miles in South Varanger, near the Russian frontier. The ores are mined on a large scale and concentrated. Some of the larger bodies are 1,000 feet long and 25 feet thick and contain about 35 per cent. iron. One hundred million metric tons are available for open-cut mining. An analysis given by Vogt shows 36.71 per cent. Fe₂O₃, 15.40 per cent. FeO, 43.92 per cent. SiO₂, 0.07 per cent. P₂O₅, and 0.04 per cent. S. There is little alumina, lime, or magnesia. The ores are beautifully banded and according to P. Geijer are associated with fine-grained "leptites" (granulites) rich in quartz with some orthoclase and oligoclase; hornblende, garnet, and diopside accompany the ore (Fig. 243). While Vogt considers the ores to be due to igneous differentiation and Sjögren believes similar ores from the Lofoten Islands to be intrusive into an igneous rock, Geijer gives good reasons why they should be held to be of sedimentary origin and deposited as chemical sediments. It seems that the advocates of intrusive origin for these occurrences have few cogent arguments.

Ores of distinctly sedimentary origin are found at Dunderland and Naeverhaugen, also in northern Norway. They form beds traceable for many miles, with a thickness of 3 to 10 meters, or in places even 50 meters. They are intercalated in a thick

series of mica schist and crystalline marbles believed to be of Paleozoic age. The closely banded ores carry mainly specularite and magnetite, but are of low grade. The concentration, attempted on a large scale and at great expense, has failed because of the scaly character of the specularite. The average content in iron is said to be 40 per cent. Hornblende, garnet, epidote, and feldspar are accessory minerals. There is little sulphur, but phosphorus is present in quantities as great as 0.3 per cent.

![Image of typical Syd Varanger ore](image)

Fig. 243.—Thin section of typical Syd Varanger ore. Black, magnetite; white, quartz; striated, hornblende. Magnified 25 diameters. *After J. H. L. Vogt.*

United States.—The Lake Superior ores do not strictly belong to the type here discussed; they are rather rich concentrations from low-grade sedimentary beds.

Typical quartz-magnetite ores, described by Sidney Paige,¹ occur in the Llano region in Texas, but have not yet been utilized. The pre-Cambrian series of crystalline schists in this region consists of gneiss, mica schist, and quartzite with some limestone lenses. The ores are thinly bedded and occur in granular schists or gneisses. A specimen of lean ore consisted of magnetite 22 per cent., quartz 50 per cent., albite and albite-oligoclase 26 per cent. There is much more soda than potash. The interpretation favors a sedimentary origin of the ore as well as of

the surrounding schist. The iron was probably, according to Paige, deposited as glauconite, and contact metamorphism by later pre-Cambrian granite has effected the removal of potash and introduction of soda. Examples of adinole and other contact-metamorphic rocks are cited to support this view. Low-grade ore representing a bed 17 feet thick contained Fe 35.87 per cent., SiO₂ 34.57 per cent., Mn 1.05 per cent., P 0.07 per cent., S 0.04 per cent., and TiO₂ 0.15 per cent.

The Grenville series of pre-Cambrian metamorphosed sediments in northern New York contain, according to D. H. Newland, similar deposits of magnetite. The ores are mostly enclosed in quartzose gneisses with hornblende and biotite and are believed to be of sedimentary origin.

THE ZINC ORES OF ÅMMEBERG, SWEDEN

One of the most mysterious of ore deposits is that of Åmmeberg, in Sweden, where the zinc ore is disseminated in banded and contorted gray gneissoid “granulite.” Some layers of gabbro, crystalline limestone, and lime-silicate rocks are intercalated in the steeply dipping granulite. Zinc blende, with very little galena, is widely disseminated in the granulite, seemingly taking the place of magnetite, and along certain zones has accumulated as long, lenticular bands, some of which are 30 to 50 feet in width and have been followed to depths of 1,000 feet. The ores are rich in zinc blende but contain few other minerals. A “faibband” of disseminated pyrrhotite and arsenopyrite lies in the granulite of the footwall.

The deposit certainly seems to be of syngenetic origin and the mineral association indicates that it has been subjected to high temperatures.

1 Geology of the Adirondack magnetic iron ores, N. Y. State Mus., Bull. No. 119, 1908, pp. 27, 40–41.
CHAPTER XXIX

OXIDATION OF METALLIC ORES

GENERAL CONDITIONS

The upper part of a mineral deposit, within the zone of weathering, is usually more or less altered by surface waters containing free oxygen. The direct effects of this weathering cease in most deposits at the permanent water level, but in deposits of sulphides the indirect effects, due to the action of sulphates generated by the oxidation of primary sulphides, may persist to a considerable depth below the water level. Generally speaking, the zone above the water level is that of the oxy-salts, haloid salts, and native metals; underneath this in many deposits lies a zone of varying depth in which secondary sulphides appear and strong enrichment has taken place. Finally, beneath these zones of extensive changes and molecular re-arrangements is found the original or "primary" ore.

The oxidation of mineral deposits is naturally a process analogous to rock-weathering. In deposits free from sulphides the changes are relatively simple, consisting of disintegration, oxidation, and hydration. Siderite alters to limonite, carbonates of manganese to pyrolusite; calcite is dissolved; the rock minerals change to kaolin. The final products are likely to be residual quartz, limonite, pyrolusite, and kaolin. Where native copper is present malachite and cuprite are also found if the leaching has not been carried too far.

In deposits which contain sulphides, but no pyrite, the changes are rather slow and inconspicuous. Galena changes slowly to anglesite and cerussite, zinc blende to calamine and smithsonite; galena and enargite often remain unoxidized close to the surface. The presence of pyrite, which is ever ready to give off one atom of sulphur, changes the whole trend of the oxidizing processes and tends to make them much more complicated.

OXIDATION OF METALLIC ORES

DEPTH OF OXIDATION

Oxidation is a relatively slow process. Some of the more conspicuous cases of deep oxidation have required long geological time. The copper deposits at Bisbee, Arizona, for example, where large bodies of oxidized ores are present, were probably attacked by oxidation in Cretaceous time. In glaciated areas, such as Canada and northern Europe, oxidation has made little progress since the ice swept away the older accumulations of weathered products, and sulphide ores are usually found close to the surface. Comparatively little effect has been produced by an exposure of several thousand years.

In non-glaciated regions provided with a liberal rainfall the ground-water level is usually less than 100 feet below the surface and the oxidation is correspondingly shallow. On the other hand, in regions with deficient rainfall the ground water may stand several hundred feet below the surface and the oxygen has had an opportunity to decompose the ores to a similar depth. At the copper mines of Butte, Montana, the depth of oxidation is at most 400 feet; in the silver-gold veins of Tonopah, Nevada, 700 feet; at Tintic, Utah, in limestone, as much as 1,600 or 2,000 feet. At Bisbee, Arizona, also in limestone, oxidized copper ores are found at a depth of 1,400 feet. At the Durango lead mine, Mapimi, Mexico, the ground-water level is said to stand 700 meters below the surface.

In a general way the depth of the water table corresponds to the depth of oxidation, but this is a rule with numerous exceptions and qualifications. In most districts sulphide ores may be found in local masses almost or quite at the surface, and, on the other hand, oxidation may penetrate to a depth of several hundred feet below the water level. In the Cripple Creek district, Colorado, for example, at the Golden Cycle mine oxidized ores were found 200 feet below the water level. It is simply a question of the presence or absence of decided local movement of the oxygen-charged water downward along the fissures. The changes are, of course, greatest along the fissures, where oxidation is usually far in advance of the weathering of the general country rock. Changes in climate or elevation with corresponding changes in the water level must not be overlooked. In Arizona we find at many places—Clifton, Globe, and Ray, for instance—zones of secondary chalcocite which
assuredly were formed below the water level, but which now lie high above the permanent water. At Butte, Montana, on the other hand, there is evidence of a depression of the block containing the deposits which has had the effect of raising the water level high above the position it occupied when the chalcopyrite enrichment took place. The facts observed in some districts can be explained only on the supposition of repeated and relatively rapid changes of water level.

The temperature also plays a part. We may expect a deeper oxidation in warm climates than in cold climates simply because heat accelerates reactions. Finally a high degree of porosity and fissuring of the rocks and ores are extremely favorable to oxidation.¹

In a region of dry climate where mountain ranges are separated by valleys filled with saline deposits, the winds carry the salt to the oxidizing outcrops and the development of chloride of silver, for instance, is facilitated.²

The essential factors entering into the problem of oxidation of ore deposits are, then, ore; metal; country rock; fissuring and porosity; climate, water level, and rainfall; topography; geological age and history of deposit.

OUTCROPS

The outcrops of deposits in glaciated areas are likely to be inconspicuous, except where the principal gangue mineral is unusually hard, like quartz. In non-glaciated regions the outcrop form is determined by the difference in the rate of erosion of the deposit and the country rock.³ A thick and hard quartz vein or a mass of solid silicified rock or garnet rocks in contact-metamorphic deposits will remain as little ridges or series of knobs above the general level of a softer country rock. The quartz veins of California, for instance, are ordinarily easily traceable on the surface. Where the quartz contains much pyrite, a honeycombed or cellular mass of limonite and quartz remains more or less conspicuously above the surrounding

country rock. Such weatheredcroppings the German miner
calls "eisener Hut," the Cornishman a "gossan," the Australian
"ironstone." The Spanish-American gives these oxidized
limonite ores the names "colorados," "pacos," "podridos,"
or "quemados," according to their reddish color, their soft or
rotten character, or their burnt appearance.

Where the minerals of the deposit are softer than the country
rock a depression, or little gap, or saddle may mark its outcrop.
At Butte the outcrops of the rich copper veins, which contain
little gangue, are inconspicuous, while the silver veins can be
easily followed along the surface. Along a single vein there
may be great variation in thecroppings. Barren parts tend
to stand up prominently, while the ore shoots, containing
softer metallic minerals, may easily become effaced at the surface.

![Diagram showing normal course of oxidation in pyritic veins and influence of rapid erosion on exposed secondary sulphide zone.](image)

Fig. 244.—Diagram showing normal course of oxidation in pyritic veins and influence of rapid erosion on exposed secondary sulphide zone. In the
deposit to the right the gossan has been eroded and the upper part of the
secondary sulphide zone leached, causing a thinner but richer secondary
zone.

The typical gossan of pyritic bodies, under uniform conditions
of high water level and slow erosion, probably remains without
much change for long periods. When a gradual lowering of the
water level and a quickening of the erosion expose new parts of
the deposit to the decomposing influence of oxygenated waters
the transfer of material downward becomes moreactive, and,
in a copper deposit, it may happen that the surface portion be-
comes entirely leached of metallic minerals and consists simply
of cellular quartz and of the more resistant parts of the country
rock. Some suchcroppings of pyritic copper ores contain scarcely
a trace of iron or copper (Fig. 244).
MINERAL DEPOSITS

PRINCIPLES OF OXIDATION

The powerful reagents of oxidation are oxygen, carbon dioxide, and sulphuric acid. The last combines with iron to form ferric and ferrous sulphate, the former being an especially active agent of oxidation. Sodium chloride and sulphuric acid yield hydrochloric acid, which easily combines with iron to make ferric chloride. Under the influence of sulphuric acid the waters change from the calcium carbonate type characteristic of the normal surface conditions to the calcium sulphate type. Within the deposits the aluminous silicates are attacked by sulphuric acid and aluminous sulphates may be formed.

Insoluble minerals, like cassiterite, wolframite, and often also gold, remain without change in the outcrops, enrich them upon contraction of volume, or on their disintegration are concentrated into placers. Soluble salts, especially sulphates, are carried away. Newly formed compounds are precipitated, chiefly by reactions between carbonates and sulphates or between sulphates. Below a certain point, usually the water level, the free oxygen rapidly diminishes and sulphides are precipitated by reactions between sulphates and sulphides or by other processes.

Some of the dissolved material is naturally removed by the running water of the vicinity, but the greater part of it sinks in the deposit itself and there becomes re-deposited, thus contributing to the general process of enrichment by the descending waters. Some enriched deposits are simply the product of long-continued descending concentration from a great thickness of rocks now removed by erosion.

In ore deposits free from great amounts of resistant quartz gangue oxidation obliterated structure. Heavy pyritic deposits appear at the surface as cellular masses of quartz and limonite; the sheeted gold-telluride veins of Cripple Creek, Colorado, which do not carry much quartz, appear as brown clayey bands without visible structure. There is thorough re-arrangement of metal association, and often also segregation of new minerals in large masses. Limestone country rock especially favors such changes. Lead and zinc closely associated in galena and zinc blende part company; the oxidized zinc ores wander farther away from the original deposit than does the cerussite. Copper and iron, so intimate in primary ores, separate more or less in
OXIDATION OF METALLIC ORES

the zone of oxidation, the former exhibiting a centripetal, the latter a centrifugal tendency, and arrange themselves concentrically, just as happens in fragments of sulphide ore subjected to "kernel roasting."

Another example of this principle is sometimes observed in the concentration of silver in nodules of fine-grained (steel) galena, surrounded by lead carbonate with only a small silver content. Masses of nearly pure kaolin and alunite often form in this zone.

Some sulphates, like anglesite or basic ferric sulphate, are stable, while others, like goethite (Zn), mallardite (Mn), epsomite (Mg), ferrous sulphate, and aluminium sulphate, are most easily carried away. Gypsum, common as a product of exchange in reactions leading to the formation of insoluble carbonates in limestone, is less soluble, but nevertheless rather easily removed. The native carbonates of zinc and copper are relatively insoluble and may remain for a long time in the gossan. Other minerals characteristic of the oxidized zone are native metals (copper, gold, silver, and mercury), chloride, bromide, and iodide of silver, phosphates, arsenates, antimoniates, molybdates, vanadates, rarely chromates; also hydroxides and oxychlorides; and a few hydrous silicates, like calamine and chrysocolla.

In the zone of sulphide enrichment below the oxidized part of the deposit we meet the copper sulphides—mainly chalcocite and covellite, rarely chalcopyrite and bornite; also galena, argentite, and complex sulphantimonides and sulpharsenides, associated with native silver. Pyrite and zinc blende are seldom found as products of this zone.

P. Krusch proposes to divide the region affected by descending waters into two parts—an upper zone of oxidation and leaching and a lower zone of enrichment or cementation. While this division well fits the conditions of many deposits, especially those of copper, it cannot be extended to cover all deposits. There is too much difference in the results shown, and whether or not enrichment or "cementation" takes place depends as much on structure and permeability as on the chemical affinities of the minerals. Nevertheless it is true that solution prevails near the surface and precipitation and cementation in the lower zone.

1 W. Lindgren, L. C. Graton, and C. H. Gordon, The ore deposits of New Mexico, Prof. Paper No. 88, U. S. Geol. Survey, p. 55; see also Pl. IV, B.

2 Die Eintheilung der Erze, etc., Zeitschr. f. prakt. Geol., 1907, pp. 129-139.
The character of the solutions changes gradually in depth. Oxygen is removed; the free acid decreases; reduction replaces oxidation; gases like H_2S and CO_2 may be generated. The general character of gangue and wall rock is of great importance. If carbonates prevail, the minerals that form may differ from those that are developed in a quartzose gangue. The results show an infinity of variations and complexity.

SOLUBILITY OF SULPHIDES AND THEIR ATTACK BY OXYGEN AND SULPHURIC ACID

General Principles.—The effect on sulphides of oxygenated waters and of sulphuric acid is of great importance in secondary processes in ore deposits, but it is by no means easily determined. The solubility of the sulphides in pure water has been investigated by Weigel\(^1\) by ascertaining the electrical conductivity of the resulting solutions. The sulphides were digested several days in pure water without access of air. Weigel's table is as follows, the results being expressed in gram-molecules per liter.

SOLUBILITY OF SULPHIDES AT 18° C.

<table>
<thead>
<tr>
<th>Crystallized Sulphides</th>
<th>Precipitated Sulphides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese sulphide</td>
<td>71.60×10^{-4}</td>
</tr>
<tr>
<td>Pyrrhotite (artificial)</td>
<td>70.60×10^{-4}</td>
</tr>
<tr>
<td>Pyrite (Freiberg)</td>
<td>70.10×10^{-4}</td>
</tr>
<tr>
<td>Pyrite (artificial)</td>
<td>41.62×10^{-4}</td>
</tr>
<tr>
<td>Wurtzite (artificial)</td>
<td>39.87×10^{-4}</td>
</tr>
<tr>
<td>Millerite (artificial)</td>
<td>9.00×10^{-4}</td>
</tr>
<tr>
<td>Greenockite (artificial)</td>
<td>5.20×10^{-4}</td>
</tr>
<tr>
<td>Zinc blende (Santander)</td>
<td>3.60×10^{-4}</td>
</tr>
<tr>
<td>Zinc blende (artificial)</td>
<td>3.51×10^{-4}</td>
</tr>
<tr>
<td>Chalcocite</td>
<td>2.10×10^{-4}</td>
</tr>
<tr>
<td>Galena (Freiberg)</td>
<td>0.55×10^{-4}</td>
</tr>
<tr>
<td>Galena (artificial)</td>
<td>0.35×10^{-4}</td>
</tr>
<tr>
<td>SnS(_2) (mosaic gold)</td>
<td>0.05×10^{-4}</td>
</tr>
<tr>
<td>Argentite</td>
<td>0.14×10^{-2}</td>
</tr>
</tbody>
</table>

From this table it is apparent that structure and fineness of grain have much to do with the solubility; time is, of course, also an important factor. It is well known that marcasite and certain varieties of pyrite decompose much more rapidly in the air than other varieties, but it is impossible to give the exact

reason for this behavior. In spite of the precautions taken by Weigel it is quite possible that in some cases decomposition took place instead of solution, and this would to some extent vitiate his results.

Experiments with pyrite have not given consistent results. A. N. Winchell\(^1\) exposed powdered pyrite for 10 months to the action of distilled aerated water and obtained a very slow rate of oxidation, the solution containing Fe\(_3\)(SO\(_4\))\(_3\) and H\(_2\)SO\(_4\). His results were in general confirmed by F. F. Grout.\(^2\) H. A. Buehler and V. H. Gottschalk\(^3\) obtained a much more rapid attack and in 3 months the filtrate yielded 2.5 to 3.7 per cent. of the original weight of the iron in the sample. Sphalerite in the same time yielded only 0.2 per cent. of its zinc, galena 0.005 per cent. of its lead, covellite 2.7 per cent. of its copper, and chalcopyrite 1 per cent. of the same metal. On the other hand, enargite showed no solubility. When the various sulphides were mixed with pyrite the action was much more energetic. In the time specified sphalerite with pyrite yielded 4.2 per cent. of its zinc, galena with pyrite 0.7 per cent. of its lead, covellite with pyrite 2.7 per cent. of its copper, covellite with marcasite 27.6 per cent., and enargite with pyrite 10 per cent. of its copper. After an exposure of only 7 weeks, pyrite had oxidized to the amount of 0.1 to 0.28 per cent. of its original weight.

It is clear that the rate of oxidation varies greatly under different conditions and that no table of order of attack can be constructed which holds good under all circumstances. According to S. H. Emmens\(^4\) the order in which sulphides oxidize is as follows, beginning with the one most easily attacked: Marcasite, pyrite, pyrrhotite, chalcopyrite, bornite, millerite, chalcolite, galena, zinc blende. C. R. Van Hise\(^5\) states that the sulphides of iron, copper, zinc, lead, and silver will be oxidized in the order given. W. H. Emmons gives the following general order of oxidation: Sphalerite, chalcoite, pyrrhotite, chalcopyrite, pyrite, galena, and enargite. R. C. Wells attacked sulphides by 0.057 normal solution of H\(_2\)SO\(_4\) and obtained the following order: Pyrrhotite, sphalerite, galena, chalcopyrite, and pyrite.

\(^2\) *Idem*, vol. 3, 1908, p. 532.
\(^3\) *Idem*, vol. 5, 1910, pp. 28–35.
\(^4\) *Eng. and Min. Jour.*, vol. 54, 1892, pp. 582–583.
None of these statements are generally correct. They may be true for one given set of conditions of mass, aggregate, and character of solution. The rate of oxidation varies, of course, in the different sulphur compounds of each metal. In mixed sulphides, under the influence of acid sulphate waters, zinc blende oxidizes before chalcopyrite and chalcopyrite before pyrite. Where chalcocite and pyrite occur mixed some of the pyrite is usually left when the chalcocite is fully oxidized.

Complete data as to the solubility of the natural sulphides in sulphuric acid are difficult to compile. In dilute sulphuric acid (1:6 to 1:10) chalcopyrite, pyrrhotite, zinc blende, and cadmium sulphide are soluble, or at least are attacked. By far the larger number of sulphides are insoluble in such acid, or the reaction requires a long time to become perceptible. According to Stokes pyrite is not attacked by sulphuric acid, except when mixed with chalcopyrite. Galena, argentite, cinnabar, molybdenite, stibnite, bismuthinite, covellite, bornite (?), and chalcocite are generally said to be insoluble in dilute acid, though it is usually stated that boiling concentrated sulphuric acid effects an attack. Covellite, for instance, is insoluble in hot dilute sulphuric acid (1:6), while it is soluble in the hot concentrated acid. In view of this it seems that the rapid increase in solubility, or rather oxidation, shown to take place in a mixture of pyrite and covellite can hardly be due to the free sulphuric acid developed.

Very lately H. C. Cooke¹ has shown that argentite, stibnite, galena, pyrargyrite, and polybasite are perceptibly attacked by tenth-normal sulphuric acid solution.

In a second paper Gottschalk and Buehler² show that while in a mixture of two sulphides there is a large increase in the solution of one, there is also a protective action exerted on the other; and further that there exists a difference of potential between the sulphides, which can be arranged in a series similar to the electrolytic series of metals. Acceleration of reaction is due to electric currents generated by contact of minerals of different potential; the currents flow from the mineral of the higher potential, and the mineral of lower potential will dissolve more rapidly. In mixtures with pyrite the iron transferred is but a small portion of that obtained when iron sulphide is treated alone. The results obtained by these authors were experimen-

¹ Jour. Geol., vol. 21, No. 1, 1913.
² Econ. Geol., vol. 7, 1912, pp. 15–34.
tally confirmed by connecting pyrite with galena by copper wire and recording the current generated when the battery was placed in distilled water. The galena was soon coated with lead sulphate, while the pyrite remained fresh. The following series was obtained, the electromotive force of copper being taken as zero:

ELECTROMOTIVE FORCE OF VARIOUS MINERALS MEASURED AGAINST COPPER WIRE (IN VOLTS)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Electromotive Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcasite+</td>
<td>0.37</td>
</tr>
<tr>
<td>Argentite+</td>
<td>0.27</td>
</tr>
<tr>
<td>Cassiterite+</td>
<td>0.27</td>
</tr>
<tr>
<td>Chalcopyrite+</td>
<td>0.18 to 0.30</td>
</tr>
<tr>
<td>Enargite+</td>
<td>0.18 to 0.23</td>
</tr>
<tr>
<td>Covellite+</td>
<td>0.20</td>
</tr>
<tr>
<td>Molybdenite+</td>
<td>0.20</td>
</tr>
<tr>
<td>Pyrite+</td>
<td>0.18</td>
</tr>
<tr>
<td>Bornite+</td>
<td>0.17</td>
</tr>
<tr>
<td>Galena+</td>
<td>0.15</td>
</tr>
<tr>
<td>Chalcopyrite+</td>
<td>0.14</td>
</tr>
<tr>
<td>Hematite+</td>
<td>0.08 to 0.26</td>
</tr>
<tr>
<td>Cuprite+</td>
<td>0.05</td>
</tr>
<tr>
<td>Domeyrite+</td>
<td>0.01</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0</td>
</tr>
<tr>
<td>Stibnite−</td>
<td>0.17 to 0.6</td>
</tr>
<tr>
<td>Sphalerite−</td>
<td>0.2 to 0.4</td>
</tr>
<tr>
<td>Corundum−</td>
<td>0.25 to 0.6</td>
</tr>
<tr>
<td>Zinc−</td>
<td>0.83</td>
</tr>
</tbody>
</table>

In these experiments, the most advanced yet made, distilled water was used. It is probable that the results will vary with the different salt solutions used and with complicated mixtures of sulphides. The whole subject is very complex and in need of further investigation.

Many years ago somewhat similar experiments had been undertaken by W. Skey\(^1\) in Australia.

Marcasite, Pyrite, and Pyrrhotite.—When exposed to oxygenated water iron disulphide changes to ferrous sulphate and sulphuric acid:

\[
\text{FeS}_2 + 7\text{O} + 4\text{H}_2\text{O} = \text{FeSO}_4 + 4\text{H}_2\text{SO}_4
\]

This reaction involves several intermediate stages during which sulphur dioxide, sulphur, or hydrogen sulphide may form. The well-known smell from old dumps containing pyrite indicates the development of sulphur dioxide, according to the equation \(\text{FeS}_2 + 6\text{O} + 4\text{H}_2\text{O} = \text{FeSO}_4 + 4\text{H}_2\text{SO}_3\), and this sulphurous acid is further oxidized to sulphuric acid. The presence of sulphur is often observed near the surface in the casts of dissolved pyrite crystals.

Ferrous sulphate easily changes to the ferric salt and to the hydroxide:

MINERAL DEPOSITS

$$2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{O} = \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{O}.$$
$$6\text{FeSO}_4 + 3\text{O} + 3\text{H}_2\text{O} = 2\text{Fe}_2(\text{SO}_4)_3 + 2\text{Fe}(\text{OH})_6.$$

Ferric sulphate hydrolyzes to hydroxide and free acid:

$$\text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O} = 2\text{Fe}(\text{OH})_3 + 3\text{H}_2\text{SO}_4.$$

The ferric sulphate is a strong oxidizing agent, which according to Stokes attacks pyrite rapidly at 100° C. and more slowly in the cold:

$$\text{Fe}_2(\text{SO}_4)_3 + \text{FeS}_2 = 3\text{FeSO}_4 + 2\text{S}.$$

The sulphur may be easily oxidized to sulphuric acid. The colloid ferric sulphate changes easily to various basic sulphates, like coquimbite, copiapite, or jarosite, often found in the lower part of the oxidized zone. Limonite is usually the final product.

Ferrous sulphate and calcite yield limonite and soluble gypsum. In deposits in limestone this is a most important reaction.

The ferric sulphate and the sulphuric acid may attack other sulphides present, such as chalcopyrite or zinc blende. In the deeper levels of the oxidizing zone much or all of the sulphate is likely to remain in the ferrous form. The sulphate solutions sink to the ground-water level and may here produce manifold changes by reaction with primary sulphides.

Gottschalk and Buehler in their last experiments on pyrite and marcasite cited above obtained some SO$_2$ by exposure to water in closed bottles—that is, when the supply of oxygen was limited. No free sulphur, sulphites, or thio-sulphates were observed in their experiments.

Pyrrhotite acts in a similar manner, but requires more oxygen. It is easily attacked by dilute sulphuric acid, with the development of hydrogen sulphide.

$$\text{Fe}_2\text{S}_3 + 3\text{I} + \text{H}_2\text{O} = 7\text{FeSO}_4 + \text{H}_2\text{SO}_4.$$

According to Comey1 the solubility of ferrous sulphate is as follows:

- At 10° C. 16.2 grams anhydrous salt per 100 grams H$_2$O.
- At 50° C. 51.9 grams anhydrous salt per 100 grams H$_2$O.
- At 75° C. 64.0 grams anhydrous salt per 100 grams H$_2$O.
- At 90° C. 56.2 grams anhydrous salt per 100 grams H$_2$O.
- At 160° C. Almost 0 (Etard).

1 A. M. Comey, Dictionary of solubilities.
Oxidation of Metallic Ores

Ferric chloride increases rapidly in solubility with increase in temperature. At 100° C. 535.7 grams of anhydrous salt are soluble in 100 grams H₂O.

Chalcopyrite.—Chalcopyrite (CuFeS₂) is readily attacked by oxygen, by dilute sulphuric acid, and by ferric solutions and oxidizes rather easily to cupric and ferrous sulphates.

\[\text{CuFeS}_2 + 8\text{O} = \text{CuSO}_4 + \text{FeSO}_4 \]

Near the surface the ferrous salt resulting from this reaction is readily transformed to limonite. Pseudomorphs of limonite after chalcopyrite are extremely common. Cupric sulphate, a stable salt, is easily soluble, more so than ferrous sulphate, and moves rapidly through deposits and rocks; it may be reduced to cuprous salt, but as the latter is unstable it does not occur, at least not abundantly, in mine waters. Most of the secondary copper minerals are due to reactions in acid solutions of cupric sulphate. The frequently quoted reaction \(\text{CuSO}_4 + 2\text{FeSO}_4 = \text{Cu} + \text{Fe}_2(\text{SO}_4)_3 \) probably rarely takes place. Azurite and malachite form by the action of cupric sulphate on limestone:

\[
\begin{align*}
2\text{CuSO}_4 + 2\text{CaCO}_3 + \text{H}_2\text{O} & = (\text{CuOH})_2\text{CO}_3 \quad \text{(malachite)} \\
& + 2\text{CaSO}_4 + \text{CO}_2 \\
3\text{CuSO}_4 + 3\text{CaCO}_3 + \text{H}_2\text{O} & = (\text{CuOH})_2\text{Cu}(\text{CO}_3)_2 \quad \text{(azurite)} \\
& + 3\text{CaSO}_4 + \text{CO}_2
\end{align*}
\]

A basic sulphate, brochantite\(^1\) \((\text{H}_6\text{Cu}_4\text{SO}_{10}) \), is also common, but develops in igneous rocks rather than in limestone. Further reactions may result in silicates, phosphates, oxychlorides, cuprite, and native copper.

Chalcocite.—Chalcocite (Cu₂S) oxidizes in most cases first to cuprite, but sometimes directly to brochantite or malachite; chrysocolla may be formed from it indirectly. It is said to be unaffected by dilute sulphuric acid, but easily attacked by ferric solutions which will transform it to sulphates, probably also to covellite:\(^2\)

\[\text{Cu}_2\text{S} + \text{FeCl}_3 = \text{FeCl}_2 + \text{CuCl} + \text{CuS} \]

In the metallurgical process used at Rio Tinto, Spain, ferric sulphate reacts in the ore heaps on chalcocite and covellite, transforming them to cupric sulphate. A 10 per cent. solution of

\(^2\) E. T. Allen, oral information.
CuSO₄ had no effect on chalcocite, according to Stokes, but readily decomposes the mineral at 200°, with the deposition of metallic copper. Cuprite may change into malachite, chrysocolla, or native copper; ferrous sulphate would, for instance, reduce cuprite to copper. Chalcocite may also be transformed directly into native copper.

Bornite and Covellite.—Bornite (Cu₆FeS₄) is readily attacked by ferric solutions, as is covellite (CuS), and most of the changes to oxidized salts of these minerals are based on this reaction. Both minerals are said to be insoluble in dilute sulphuric acid. The oxidized products are the same as those of chalcopyrite.

A little-studied product of oxidation of copper minerals consists of the so-called copper-pitch ores, more particularly found in deposits in limestone and resulting from chalcopryite or bornite. They are brown to deep black, earthy to compact minerals, frequently with conchoidal fracture and pitch-like luster, formerly held to be chrysocolla stained by manganese. Chemically they are combinations in varying proportions of the oxides of copper, iron, manganese, and sometimes zinc and lead with silica and water. Under the microscope they are isotropic, when sufficiently translucent to examine in transmitted light; many specimens are rich in copper. Such material is not uncommon at Clifton,¹ Bisbee,² Courtland, and other places in southeastern Arizona. A similar material—without silica, however—was found as a sooty deposit along the walls on a drift of the Halsbrucker Spat vein, at Freiberg, Germany,³ which had been under water for 135 years.

The solubility of cupric sulphate⁴ in grams of anhydrous salt in 100 grams H₂O is as follows:

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Solubility (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>19.3</td>
</tr>
<tr>
<td>50</td>
<td>33.6</td>
</tr>
<tr>
<td>100</td>
<td>73.0</td>
</tr>
<tr>
<td>104</td>
<td>78.0</td>
</tr>
</tbody>
</table>

Zinc.—Zinc blende oxidizes very rapidly to easily soluble sulphate; zinc is, in fact, the most mobile of all the metals of ore deposits. In some places the zinc is entirely leached from the

⁴ A. M. Comey, Dictionary of solubilities.
OXIDATION OF METALLIC ORES

oxidized zone, while abundant copper minerals remain. According to R. C. Wells¹ zinc blende dissolves slowly in cold dilute sulphuric acid, with the development of hydrogen sulphide. Both in zinc blende and in galena oxidation may be hastened by the influence of ferric sulphate:

\[\text{ZnS} + 4\text{Fe}_2(\text{SO}_4)_3 + 4\text{H}_2\text{O} = \text{ZnSO}_4 + 8\text{FeSO}_4 + 4\text{H}_2\text{SO}_4. \]

The solubility of zinc sulphate⁵ as anhydrous salt in 100 grams \(\text{H}_2\text{O} \) is as follows:

- At 15° C.............50.88 grams.
- At 70°89.00 grams.
- At 100°78.50 grams.
- At 170°42.00 grams.

According to Kohlrausch the carbonate of zinc, smithsonite, is soluble in water to the extent of 0.004 gram per 100 grams of water. The sulphate, goslarite, is often found as an efflorescence in mine drifts; where the country rock is limestone secondary zinc minerals develop in large amounts. The reaction \(\text{ZnSO}_4 + \text{CaCO}_3 = \text{ZnCO}_3 + \text{CaSO}_4 \) takes place most easily, and the resulting carbonate often preserves the structure of the limestones in amazing detail. The oxidized zinc ores are inconspicuous and easily overlooked. Besides the carbonate a hydrous silicate, calamine, is often present and, less commonly, the anhydrous silicate willemite. Hydrozincite (ZnCO₃·2Zn(OH)₂) is rare. According to Lodin³ hydrozincite rather than smithsonite is formed when zinc sulphate is allowed to act on limestone or dolomite, so that Stelzner and Bergeat believe that something is lacking in the explanation of deposits of smithsonite.

Lead.—In contrast to zinc lead shows little mobility. By itself, galena oxidizes slowly first to anglesite, which later changes to cerussite. The latter mineral in beautifully crystallized silky needles or in loose masses (sand carbonates) is common in the oxidized portion of all lead mines. According to Stokes, galena is only slowly attacked by ferric solutions. Pyromorphite, mimetite, vanadinite, and crocoite form when phosphorus, arsenic, vanadium, and chromium are present. It is well known that water containing \(\text{CO}_2 \) dissolves apatite, and that calcium phosphate precipitates the more difficultly soluble lead phosphate

² A. M. Comey, Dictionary of solubilities.
from lead sulphate solution. In the Cordilleran region the primary ores often contain a scarcely visible admixture of molybdenite, and in the oxidized zone of such deposits wulfenite in yellow glistening tabular crystals becomes very conspicuous. The most soluble of the lead salts occurring in nature is the chloride; probably the oxychlorides are also soluble; then follow the sulphate and the other salts as indicated below:¹

\[
\begin{align*}
\text{PbCl}_2 & \text{ at } 15^\circ \text{C.} & & 0.909 \text{ gram per } 100 \text{ grams } H_2O. \\
\text{PbCl}_2 & \text{ at } 100^\circ \text{C.} & & 3.340 \text{ grams per } 100 \text{ grams } H_2O. \\
\text{PbSO}_4 & \text{ at } 25^\circ \text{C.} & & 4.40 \times 10^{-4} \text{ grams per } 100 \text{ grams } H_2O. \\
\text{PbCO}_3 & \text{ at } 20^\circ \text{C.} & & 1.10 \times 10^{-4} \text{ grams per } 100 \text{ grams } H_2O. \\
\text{Pb}_2(\text{PO}_4)_3 & \text{ at } 20^\circ \text{C.} & & 1.35 \times 10^{-4} \text{ grams per } 100 \text{ grams } H_2O. \\
\text{PbCrO}_4 & \text{ at } 18^\circ \text{C.} & & 2.0 \times 10^{-4} \text{ grams per } 100 \text{ grams } H_2O. \\
\end{align*}
\]

In other words, 1 liter of water dissolves 4.4 milligrams PbSO₄. One liter of saturated NaCl solution dissolves 660 milligrams PbSO₄, slowly decomposing it to chloride.

Galena is sometimes re-deposited in the oxidized zone and then often appears with very fine-grained structure (steel galena) and rich in silver. Reaction between lead sulphate and pyrite may produce this recrystallization:

\[
7\text{PbSO}_4 + 4\text{FeS}_2 + 4\text{H}_2\text{O} = 7\text{PbS} + 4\text{FeSO}_4 + 4\text{H}_2\text{SO}_4.
\]

Oxidized lead ores are generally poor in silver, but there are many exceptions to this rule. Certain basic lead-copper sulphates, not uncommon in the oxidized zones, have a yellow color and powdery texture.

Molybdenite.—When occurring alone or with pyrite molybdenite oxidizes to yellow hydrous molybdate of iron,² formerly called molybdite and thought to be trioxide of molybdenum. Occasionally molybdenite weathers with the peculiar cobalt-blue tinge of ilsemannite³ (MoO₂·4MoO₃).

Arsenic and Antimony.—Arsenopyrite often weathers with a grayish-green color due to the arsenate of iron, scorodite, or allied minerals. It is vigorously attacked by ferric solutions. Arsenious acid (As₂O₃) sometimes results from the oxidation of realgar (AsS). Oxidation of sulphantimonides and stibnite results in oxides of antimony like cervantite or sevaramontite. Some arsenic and antimony are carried down to the water level

¹ A. M. Comey, Dictionary of solubilities.
OXIDATION OF METALLIC ORES

and at or below it assist in the formation of new and complex sulphantimonides and sulphaarsenides. The direct oxidation of enargite, though difficult of accomplishment, yields a series of copper arsenates. The oxidation of tetrahedrite, on the other hand, rarely results in well-defined oxygen compounds of copper and antimony.

Nickel and Cobalt.—The oxidation of nickel arsenides and cobalt arsenides produces at the surface characteristic green or pink arsenates of the two metals. More complete oxidation of cobalt ores yields black amorphous asbolite, admixed with oxide of manganese and iron. Nickel sulphide, pentlandite, (Fe,Ni)S, found in minute distribution in pyrrhotite, is likely to yield nickel-magnesium silicates; such ores ordinarily occur as disseminations in igneous rocks rich in magnesium. According to Stokes, sulphides of nickel and cobalt are strongly attacked by ferric solutions.

Silver.—Argentite is almost insoluble in water and in dilute sulphuric acid. It is more rapidly decomposed by ferric sulphate or by a mixture of the two solvents. The oxidation of argentite at the surface leads to the formation of cerargyrite (horn silver); it is generally assumed to take place by way of silver sulphate:

\[
Ag_2S + 4O = Ag_2SO_4.
\]

\[
Ag_2SO_4 + 2NaCl = 2AgCl + Na_2SO_4.
\]

The process is often a metasomatic replacement, so that cerargyrite forms pseudomorphic crystals after argentite. In the outcrops of silver deposits cerargyrite predominates, while at lower depths the native metal and the secondary silver sulphides appear. Reducing substances like ferrous sulphate (in acid solutions) may easily deposit the metal from silversulphate; the reaction is reversible:

\[
Ag_2SO_4 + 2FeSO_4 = 2Ag + Fe_2(SO_4)_3.
\]

Organic substances such as bituminous shale may have a similar effect, as do native copper and various sulphides. Hydrogen sulphide precipitates Ag₂S from sulphate solutions.

Although silver sulphate is the most easily soluble salt of silver likely to occur in nature, it is altogether probable that

much silver is present as chloride, in solutions containing sodium chloride. Little is known of the complex reaction by which the secondary sulphantimonides and sulpharsenides of silver are formed.

Bromyrite (AgBr), embolite (AgBrCl), and iodyrite (AgI) occur much more sparingly than cerargyrite (AgCl), but they cannot be said to be exceptionally rare. In western districts bromyrite is fairly abundant, and recently an excellent occurrence of crystallized iodyrite was found in one of the Tonopah mines in Nevada.

The oxidized zones of heavy sulphide ores like galena, pyrite, and zinc blende also contain cerargyrite and nativesilver. Films of cerargyrite may coat the galena, and native silver occurs in microscopic fissures in the same mineral. Native gold is often associated with horn silver, limonite, and basic sulphate of iron.

C. Palmer and E. S. Bastin have shown that many sulphides and arsenides easily precipitate silver from silver sulphate solutions; the change is believed to be caused by oxidation, through the process of hydrolysis. Nickolite and chalcocite were especially effective precipitants, but pyrite, galena, and sphalerite were relatively inactive.

The solubility of the various silver salts in water is as follows:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag₂SO₄</td>
<td>17°C</td>
<td>0.77 gram per 100 grams H₂O</td>
</tr>
<tr>
<td>Ag₂SO₄</td>
<td>100°C</td>
<td>1.46 grams per 100 grams H₂O</td>
</tr>
<tr>
<td>Ag₂CO₃</td>
<td>25°C</td>
<td>1.17×10⁻² grams per 100 grams H₂O</td>
</tr>
<tr>
<td>AgCl</td>
<td>13°C</td>
<td>1.40×10⁻³ grams per 100 grams H₂O</td>
</tr>
<tr>
<td>AgCl</td>
<td>42°C</td>
<td>4.08×10⁻¹ grams per 100 grams H₂O</td>
</tr>
<tr>
<td>AgBr</td>
<td>20°C-25°C</td>
<td>1.5-1.1×10⁻⁴ grams per 100 grams H₂O</td>
</tr>
</tbody>
</table>

According to A. G. Melcher the solubility of the chloride increases rather rapidly above 50°C. He gives at 18°C, 3.0105; at 50°C, 0.0365; and at 100°C, 0.147 milli-equivalents per liter. In strong salt solution the solubility is far higher. The iodide of silver is even more insoluble than the bromide. Kohlrausch gives the solubility of AgI as 0.00003 gram per 100 grams H₂O.

Gold.—Gold shows slight mobility in ore deposits; it is less easily transported than silver, and, compared to copper and zinc,

1 *Econ. Geol.*, vol. 8, 1913, pp. 140-170.
2 A. M. Comey, Dictionary of solubilities.
OXIDATION OF METALLIC ORES

it is almost stationary. The solubility of gold has been discussed briefly in the chapter on placers.

The tellurides form the only definitely known combinations of gold with other elements, and even for these some doubts are entertained, based on variation in composition and on the peculiar crystallographic development, as to whether they actually represent chemical compounds. Calaverite and the less common sylvanite and krennerite are white or yellowish minerals rich in gold, with the general formula \((\text{Au,Ag})\text{Te}_2\); petzite, \((\text{Au,Ag})\text{Te}\), is a black compound. Associated with these are sometimes coloradoite \((\text{HgTe})\), hessite \((\text{Ag}_2\text{Te})\), nagyagite (telluride of gold, lead, etc.), and altaite \((\text{PbTe})\), all of dark color. The tellurides are apparently able to form under widely differing conditions, though they are generally absent from the deposits formed under conditions of very high pressure and temperature. They decompose easily above the water level; the tellurium is in part carried away as soluble compounds, in part fixed as tellurite \((\text{TeO}_3)\) or tellurates of iron like emmonsite and durdenite. The gold remains in minute brownish grains (mustard gold). In most cases there is little evidence of solution and transportation of this gold.

Certain deposits formed by hot waters near the surface contain selenium, either alone or together with tellurium (Republic, Washington; Tonopah, Nevada; Radjang Lebong, Sumatra), and probably they carry a selenide of gold, though its existence has not been definitely proved. Little is known about the oxidation products of selenium.

Much more commonly the gold occurs in native form, as in quartz veins in California, Australia, and Siberia, and here the sulphides, like pyrite and arsenopyrite, are present only to the extent of a few per cent. In such deposits there is little evidence of solution and transportation of the gold. Enrichment often takes place in them, but rather by reduction of volume of the ore than by solution of gold. The sulphides and similar compounds (often called "sulphurets") in these veins are usually rich in finely distributed gold which remains behind upon oxidation. The oxidation of a crystal of pyrite will generally result in a pseudomorph of limonite which contains flakes of native gold, indicating that within the crystal a certain amount of transportation of gold has taken place.
Very common also are the deposits in which the sulphides abound and which contain no visible free gold. The Gilpin County veins, Colorado; Mount Morgan, Queensland; and the Haile deposit, South Carolina, may serve as examples. It is in these deposits that most evidence is found of the solution and transportation of gold.

It has been asserted that gold may be dissolved as a silicate, but this is probably a mistake due to the presence of bluish colloidal gold in solutions of silica. Gold has undoubtedly generally been transported in the form of chloride. Now, while chloride of gold is easily soluble in water, it is also most easily precipitated by reducing reagents, such as organic matter, ferrous sulphate, metals or sulphides, like pyrite. In the older literature ferric chloride and ferric sulphate were frequently given as solvents of gold, and the question had previously been discussed by Pearce, Don, and T. A. Rickard. H. N. Stokes and J. R. Don showed that ferric sulphate is ineffective, and the recent work of W. H. Emmons and A. D. Brokaw has shown that gold is insoluble in ferric chloride also and goes into solution only when nascent chlorine is present. The metal is easily precipitated from chloride solution, most easily and completely by ferrous sulphate.

In deposits containing much pyrite oxidation results in the liberation of sulphuric acid. Sodium chloride is present in some degree in all mine water and is abundant in some. Reaction between sulphuric acid and sodium chloride results in hydrochloric acid, and it should be recalled that Don actually found free HCl in a number of superficial mine waters from New Zealand. If dioxide of manganese is present in the deposit nascent chlorine will be generated according to the formula:

$$\text{MnO}_2 + 4\text{HCl} = 2\text{H}_2\text{O} + \text{MnCl}_2 + 2\text{Cl}.$$

Ferric and cupric salts have similar power, but chlorine develops very slowly, if at all, in the cold. It should be expected, according to Emmons, that auriferous deposits which contain manganese would show the effect of solution and migration of

OXIDATION OF METALLIC ORES

gold more clearly than non-manganiferous ores. According to experiments by A. D. Brokaw, quoted by Emmons, gold is not dissolved in hydrochloric acid, ferric sulphate, or ferric chloride. It is dissolved at 38° C. in concentrated solution containing both ferric sulphate and hydrochloric acid; also at the same temperature in concentrated solution of cupric chloride and hydrochloric acid; the dilute solutions are not effective. Brokaw's experiments verified the solubility of gold by nascent chlorine in presence of manganese as outlined above. It was shown that a small piece of rolled gold weighing about 0.15 gram in a solution of 50 c.c. of one-tenth normal HCl with 1 gram of powdered MnO₂ in 14 days lost 0.01369 gram. Neither the ferric sulphate nor the ferric chloride had noteworthy effect. To approximate natural waters a solution one-tenth normal was made as to ferric sulphate and sulphuric acid and one twenty-fifth normal as to sodium chloride. In a second experiment 1 gram of MnO₂ was added; the time allowed was 14 days:

$$\text{Fe}_3(\text{SO}_4)_2 + \text{H}_2\text{SO}_4 + \text{NaCl} + \text{Au}.$$
No weighable loss.

$$\text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{SO}_4 + \text{NaCl} + \text{Au} + \text{MnO}_2.$$
Loss of gold, 0.00505 gram.

Where much MnO₂ is present, ferrous sulphate is almost immediately transformed to ferric sulphate and the precipitation of the gold is delayed.

The gold dissolved in the presence of MnO₂ and held in solution by the absence of FeSO₄ moves downward until the excess of acid is reduced, and simultaneously the iron and manganese compounds tend to hydrolyze and deposit oxides. At this stage FeSO₄ becomes increasingly prominent and effective as a precipitant. The precipitation of gold is thus dependent upon the oxidation of ferrous sulphate by manganese dioxide. In the presence of MnO₂ gold may even be carried down and deposited below the water level.

The greater enrichment in gold will be found in the lower part of the oxidized zone. Secondary gold is rarely found at greater depths, though it may sometimes be slightly concentrated in the upper part of a chalcocite zone.

¹ Don in 1897 had already stated that, in the absence of free chlorine, gold is insoluble both in FeCl₄ and Fe₃(SO₄)₉.

² W. H. Emmons, loc. cit. (Experiment 20.)
From the above it seems probable that in the oxidized zone no other solvent than chlorine is to be considered for gold. Besides the evidence offered by the tenor of the ores, many examples of actual redeposition of gold are mentioned in the literature, such as films of gold in fissures and on other minerals—for instance, on zinc blende at mines in Lake City, Colorado.¹

Crystals of gold are sometimes deposited on the surface of pyrite; I have seen fine examples of this on a large cubic crystal from Alaska, locality unknown. Associated with the gold were small crystals of galena. Another and similar occurrence, cited by T. A. Rickard, has been seen at the Orphan Boy mine, Boulder County, Colorado,² but at least some of these occurrences are probably due to a primary deposition from alkaline ascending solutions, later than the first deposit of pyrite.

From chloride solution gold is also precipitated by organic matter, by hydrogen sulphide, by carbon, and by sulphides. Palmer and Bastin³ have shown that most sulphides easily precipitate gold; pyrite and galena, which do not precipitate silver, readily bring down the gold.

A peculiar feature in certain gold deposits where extensive kaolinization has taken place near the surface is the occurrence of white kaolin extraordinarily rich in gold so fine that it is scarcely visible when the material is washed in the pan.⁴ This is undoubtedly an effect of oxidation, but the mode of this enrichment is not fully explained; possibly it has something to do with the processes of adsorption, but if so the query arises why either iron or manganese should not likewise have been adsorbed by the kaolin.

Platinum.—In the rare deposits of the Sudbury type, platinum and palladium, the former occurring as the arsenide, sperrylite, remain in the outcrops and are not changed by the processes of oxidation. By reduction of volume of the oxidized copper-nickel ore the tenor in platinum metals becomes considerably higher than in the unaltered sulphide ore.

Cinnabar.—Cinnabar, the red sulphide of mercury, occasionally with its black modification, metacinnabarite, is the principal ore

¹ J. D. Irving, oral communication.
³ *Econ. Geol.*, vol. 8, 1913, pp. 140–170.
mineral in quicksilver deposits. Some metallic mercury is often present, probably derived from the cinnabar by some process of reduction by organic matter. The sulphide of mercury is practically insoluble in water and ordinarily the processes of oxidation in the outcrops of the ore deposits are of little importance. In the exceedingly dry climate of Terlingua, in western Texas, where the deposits occur in limestone, extensive oxidation has taken place and the cinnabar is transformed on a large scale into native metal, calomel, and also into various rarer oxychlorides. The oxide of mercury, montroydite, is also present in these deposits.

Mercuric chloride is soluble at 10° C. at the rate of 6.6 grams in 100 grams of water, but at 100° the solubility increases greatly.

With mercury, as with silver, the chloride forms by preference in the outcrops in dry, wind-swept regions. Mercurial tetrahedrite is foreign to the cinnabar deposits, but is sometimes found in gold-quartz veins—for instance, in those of eastern Oregon. During the oxidation of such mercurial tetrahedrite cinnabar is sometimes formed, probably by the reaction of mercuric sulphate on pyrite.

Cassiterite.—In tin deposits cassiterite is ordinarily the most abundant ore mineral and exhibits great resistance to solution and transportation. Frequently it remains after other constituents have been dissolved, the outcrops appearing enriched in tin. Some of the surface croppings of the Freiberg veins are reported to have contained considerable amounts of cassiterite, probably, according to Stelzner, released from the zinc blende in which it was disseminated as minute crystals. Above the water level the Cornwall veins contained mainly tin, the accompanying copper having been leached. Nevertheless, as Doelter has shown experimentally, cassiterite is perceptibly soluble in water. According to some authorities on Cornwall, cassiterite is occasionally found as a cement in gravels and as impregnations in long-buried deer horns. Lately Scrivenor has shown that the cassiterite is simply carried mechanically into the cavities of the antlers. The occurrence of pebbles of wood tin—a fibrous form of cassiterite—is reported from placers of Saxony, Cornwall, several places

2 Min. pet. Mitt., vol. 11, 1890, p. 325.
3 J. H. Collins, Min. Mag., vol. 4, pp. 1 and 103, 1880; vol. 5, p. 121, 1883.
in the Western States (as Wood’s Creek, Montana), and Bolivia. The Bolivian pebbles Stelzner regarded as derived from stannite (Cu₂FeSnS₄) or from stanniferous pyrite; the cassiterite in the same deposits was not attacked.

SOLUBILITY OF SULPHATES AND CARBONATES

In the following table the sulphates and carbonates are arranged in order of increasing solubility.

SOLUBILITY OF SULPHATES AND CARBONATES AT 18° C. IN GRAMS OF ANHYDROUS SALT PER 100 GRAMS OF H₂O.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Grams</th>
<th>Salt</th>
<th>Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaSO₄</td>
<td>0.00023</td>
<td>PbCO₃</td>
<td>0.0001</td>
</tr>
<tr>
<td>PbSO₄</td>
<td>0.0041</td>
<td>CaCO₃</td>
<td>0.0013</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>0.20</td>
<td>Ag₂CO₃</td>
<td>0.0017</td>
</tr>
<tr>
<td>Ag₂SO₄</td>
<td>0.55</td>
<td>BaCO₃</td>
<td>0.0023</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>11.11</td>
<td>ZnCO₃</td>
<td>0.004</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>16.83</td>
<td>MgCO₃</td>
<td>0.1</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>19.30</td>
<td>FeCO₃</td>
<td></td>
</tr>
<tr>
<td>FeSO₄</td>
<td>23.00</td>
<td>MnCO₃</td>
<td></td>
</tr>
<tr>
<td>Al₂(SO₄)₃</td>
<td>31.30²</td>
<td>CuCO₃</td>
<td></td>
</tr>
<tr>
<td>NiSO₄</td>
<td>34.20²</td>
<td>Na₂CO₃</td>
<td>19.38</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>35.43</td>
<td>K₂CO₃</td>
<td>108.00</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>53.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnSO₄</td>
<td>65.00²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ With 18 mol. H₂O at 0°; 89.1 with 18 mol. H₂O at 100° C.
² At 15°.
³ At 30°.

PRECIPITATION OF ORES BY SILICATES

The reactions of the solutions in an ore deposit are not confined to the sulphides. It has already been shown that calcite or limestone exercises an important influence and, through the investigations of E. C. Sullivan,¹ that the silicates may also precipitate oxygen salts by a chemical reaction. In a general way this was known long ago, and E. Kohler² showed that cupric sulphate lost its copper when filtered through kaolin. This was

¹ The interaction between minerals and water solutions, Bull. No. 312, U. S. Geol. Survey, 1907; also in Econ. Geol., vol. 1, 1905, p. 67.
² Zeitschr. f. prakt. Geol., vol. 11, 1903, p. 49.
OXIDATION OF METALLIC ORES

attributed to adsorption—that is, an accumulation of dissolved substance on the contact between liquid and solid—but Sullivan shows that a chemical change takes place. The natural silicates such as kaolin, albite, orthoclase, amphibole, pyroxene, and mica precipitate the metals from salt solutions, while at the same time the bases of the silicates are dissolved in quantities nearly equivalent to the precipitated metals. The latter precipitates take the form of hydroxides or basic salts, though silicates may also be formed to some extent. Thus by a simple chemical exchange the metal may be removed from a solution and fixed in the solid state and thus concentrated by contact with even the most insoluble of silicates.

Fig. 245.—Azurite crystals replacing kaolin, Clifton, Arizona.

These experiments elucidate the deposition of brochantite and chrysocolla in granitic and porphyritic rocks, as well as the deposition of cuprite and azurite in shale.¹ (See Fig. 245.) A solution of silver sulphate yielded its metal completely to a powdered clay gouge, metallic silver being probably formed. With kaolin and cupric sulphate the reaction is rapid and the copper solution soon becomes colorless. The iron in ferric and ferrous sulphate is easily retained by kaolin as limonite. The iron of ferrous silicates does not take the place of copper in the solution after its precipitation.

The slow decomposition of silicates by dilute sulphuric acid is also a process of great importance, yielding limonite and kaolin, which often tend to accumulate as separate masses. Kaolin is very abundant in the oxidized zone of pyrite deposits. Basic sulphates like jarosite and especially alunite are also common under such conditions. The solution may change gradually during the process; we find, for instance, crystals of calcite deposited in heavy limonite gossan, indicating a change from solutions containing free sulphuric acid to those rich in calcium carbonate.

SULPHIDE ENRICHMENT

General Principles.—The development of secondary sulphides may take place by direct precipitation from solutions by means of hydrogen sulphide or other reducing solutions or gases; or it may result from a metasomatic interchange between a solution and a solid, usually another sulphide. Dilute sulphuric acid generated by the decomposition of pyrite, for instance, attacks a few sulphides, with the evolution of hydrogen sulphide. This gas is produced in abundance by the attack on pyrrhotite and to a less extent, according to R. C. Wells, when zinc blende is exposed to the acid. If copper is present in the solutions, a precipitate of cupric sulphide (CuS) will be formed, besides some cuprous sulphide (Cu₂S). Sulphides are formed mainly where the supply of oxygen from the surface becomes nearly exhausted.

Previous to the year 1900 the presence of secondary sulphides within the oxidized zone had been noted by some observers and had been definitely stated by L. de Launay.¹ In the year referred to S. F. Emmons, C. R. Van Hise, and W. H. Weed in three notable papers² formulated the important law of the accumulation of sulphides as a concentration from the overlying oxidized zone, at or below the water level. It was shown that in copper deposits chalcocite, bornite, covellite, and in part also chalcopyrite were precipitated by pyrite from sulphate solutions and that under similar conditions in silver

¹ Les variations des filons métallifères en profondeur, Revue générale des Sciences, etc., April 30, 1900, No. 8.
² S. F. Emmons, The secondary enrichment of ore deposits.
C. R. Van Hise, Some principles controlling the deposition of ores.
W. H. Weed, Enrichment of gold and silver veins.
OXIDATION OF METALLIC ORES

deposits argentite, stephanite, polybasite, and pyrargyrite or proustite might form; it was also shown that zinc blende and galena were probably precipitated in a similar manner. The chemical reasons for these reactions were found in the so-called Schürmann’s law,¹ by which it was established that in the presence of the sulphides of certain of the metals the salts of other metals would be decomposed and the metals precipitated as sulphides. This was thought to indicate that the metals which were precipitated possessed a greater affinity for sulphur than the other metals.

Schürmann’s series was as follows: Mercury, silver, copper, bismuth, cadmium, lead, zinc, nickel, cobalt, iron, and manganese. The solution of a salt of any of these metals will be decomposed by the sulphide of any succeeding metal and the first metal will be precipitated as a sulphide. Thus from a solution of silver or copper salts the metal would be precipitated by a sulphide of lead, zinc, or iron. If secondary deposition of sulphides by reaction of pyritic ores on descending sulphate waters had taken place in an ore deposit containing silver, copper, lead, and zinc, these sulphides would theoretically be arranged in the following order: Argentite, chalcocite, galena, and zinc blende, the last at the lowest level. It was shown later by R. C. Wells² that the influencing factor was the relative solubility of the sulphides rather than the “affinity for sulphur.” If the list just given is compared with the table of solubility of the sulphides on page 786, a general similarity is obvious, though there is a decided difference in the position of certain elements like arsenic and antimony; there is also a considerable difference in Weigel’s table according to whether the sulphides are freshly precipitated or crystallized. The most striking anomaly is in the position of the zinc sulphide. In the relative position of silver, copper, lead, and iron the data agree.

Secondary Copper Sulphides

From sulphate solutions zinc blende readily precipitates copper as covellite³ (Fig. 246), perhaps also as chalcocite. Covellite is not

B. S. Butler, oral communication.
Fig. 246.—Pyrite (Py) intergrown with zinc blende (Zn), which is altering to covellite (Cu), Kyschtim, Russia. Magnified 45 diameters. After L. C. Gratton and J. Murdoch.

Fig. 247.—Bornite (b) altering along fissures to chalcopyrite (cp), Ajo, Arizona. g, Gangue; cc (sec), secondary chalcocite. Magnified 50 diameters. After L. C. Gratton and J. Murdoch.
very stable and is easily changed to cuprite and other oxidized forms of copper minerals. According to E. T. Allen (oral communication), solutions of ferrous salts dissolve part of the copper from chalcocite, leaving covellite. In a primary ore of pyrite and zinc blende, the latter is first attacked, the reaction being—

$$\text{ZnS} + \text{CuSO}_4 = \text{CuS} + \text{ZnSO}_4$$

Chalcopyrite is replaced by covellite according to the formula—

$$\text{FeCuS}_2 + \text{CuSO}_4 = 2\text{CuS} + \text{FeSO}_4.$$

Fig. 248.—Pyrite altering to chalcocite (dark); black is open field; Clifton, Arizona. Magnified 30 diameters.

Primary bornite is often intergrown with chalcopyrite and is also susceptible to alteration yielding secondary chalcopyrite (Fig. 247), which changes to covellite; this in turn is finally transformed to the more stable chalcocite.¹

Pyrite is by far the most common of the minerals attacked, and its conversion to chalcocite has been abundantly proved and illustrated, particularly at Globe and Clifton (Fig. 248), Arizona, and Bingham, Utah.² In general the replacement proceeds from

Fig. 246.—Pyrite (Py) intergrown with zinc blende (Zn), which is altering to covellite (Cu), Kyschtim, Russia. Magnified 45 diameters. After L. C. Graton and J. Murdoch.

Fig. 247.—Bornite (b) altering along fissures to chalcopyrite (cp), Ajo, Arizona. g, Gangue; cc (sec), secondary chalcocite. Magnified 50 diameters. After L. C. Graton and J. Murdoch.
very stable and is easily changed to cuprite and other oxidized forms of copper minerals. According to E. T. Allen (oral communication), solutions of ferrous salts dissolve part of the copper from chalcocite, leaving covellite. In a primary ore of pyrite and zinc blende, the latter is first attacked, the reaction being—

$$\text{ZnS} + \text{CuSO}_4 = \text{CuS} + \text{ZnSO}_4$$

Chalcopyrite is replaced by covellite according to the formula—

$$\text{FeCuS}_2 + \text{CuSO}_4 = 2\text{CuS} + \text{FeSO}_4.$$
much silver is present as chloride, in solutions containing sodium chloride. Little is known of the complex reaction by which the secondary sulphantimonides and sulpharsenides of silver are formed.

Bromyrite (AgBr), embolite (AgBrCl), and iodyrite (AgI) occur much more sparingly than cerargyrite (AgCl), but they cannot be said to be exceptionally rare. In western districts bromyrite is fairly abundant, and recently an excellent occurrence of crystallized iodyrite was found in one of the Tonopah mines in Nevada.

The oxidized zones of heavy sulphide ores like galena, pyrite, and zinc blende also contain cerargyrite and native silver. Films of cerargyrite may coat the galena, and native silver occurs in microscopic fissures in the same mineral. Native gold is often associated with horn silver, limonite, and basic sulphate of iron.

C. Palmer and E. S. Bastin have shown that many sulphides and arsenides easily precipitate silver from silver sulphate solutions; the change is believed to be caused by oxidation, through the process of hydrolysis. Niccolite and chalocite were especially effective precipitants, but pyrite, galena, and sphalerite were relatively inactive.

The solubility of the various silver salts in water is as follows:

\[
\begin{align*}
\text{Ag}_2\text{SO}_4 & \quad \text{at } 17^\circ \text{C.} \quad 0.77 \text{ gram per 100 grams } \text{H}_2\text{O.} \\
\text{Ag}_2\text{SO}_4 & \quad \text{at } 100^\circ \text{C.} \quad 1.46 \text{ grams per 100 grams } \text{H}_2\text{O.} \\
\text{Ag}_2\text{CO}_3 & \quad \text{at } 25^\circ \text{C.} \quad 1.17 \times 10^{-4} \text{ grams per 100 grams } \text{H}_2\text{O.} \\
\text{AgCl} & \quad \text{at } 13^\circ \text{C.} \quad 1.40 \times 10^{-4} \text{ grams per 100 grams } \text{H}_2\text{O.} \\
\text{AgCl} & \quad \text{at } 42^\circ \text{C.} \quad 4.06 \times 10^{-4} \text{ grams per 100 grams } \text{H}_2\text{O.} \\
\text{AgBr} & \quad \text{at } 20^\circ -25^\circ \text{C.} \quad 1.5-1.1 \times 10^{-4} \text{ grams per 100 grams } \text{H}_2\text{O.}
\end{align*}
\]

According to A. G. Melcher the solubility of the chloride increases rather rapidly above 50°. He gives at 18° C., 3.0105; at 50°, 0.0365; and at 100°, 0.147 milli-equivalents per liter. In strong salt solution the solubility is far higher. The iodide of silver is even more insoluble than the bromide. Kohlrausch gives the solubility of AgI as 0.00003 gram per 100 grams H₂O.

Gold.—Gold shows slight mobility in ore deposits; it is less easily transported than silver, and, compared to copper and zinc,

2. A. M. Comey, Dictionary of solubilities.
it is almost stationary. The solubility of gold has been discussed briefly in the chapter on placers.

The tellurides form the only definitely known combinations of gold with other elements, and even for these some doubts are entertained, based on variation in composition and on the peculiar crystallographic development, as to whether they actually represent chemical compounds. Calaverite and the less common sylvanite and krennerite are white or yellowish minerals rich in gold, with the general formula \(\text{(Au,Ag)}_2\text{Te}_3 \); petzite, \(\text{(Au,Ag)}_3\text{Te}_2 \), is a black compound. Associated with these are sometimes coloradoite \(\text{(HgTe)} \), hessite \(\text{(Ag}_3\text{Te)} \), nagyagite (telluride of gold, lead, etc.), and altaite \(\text{(PbTe)} \), all of dark color. The tellurides are apparently able to form under widely differing conditions, though they are generally absent from the deposits formed under conditions of very high pressure and temperature. They decompose easily above the water level; the tellurium is in part carried away as soluble compounds, in part fixed as tellurite \(\text{(TeO}_4 \text{)} \) or tellurates of iron like emmonsite and durdenite. The gold remains in minute brownish grains (mustard gold). In most cases there is little evidence of solution and transportation of this gold.

Certain deposits formed by hot waters near the surface contain selenium, either alone or together with tellurium (Republic, Washington; Tonopah, Nevada; Radjang Lebong, Sumatra), and probably they carry a selenide of gold, though its existence has not been definitely proved. Little is known about the oxidation products of selenium.

Much more commonly the gold occurs in native form, as in quartz veins in California, Australia, and Siberia, and here the sulphides, like pyrite and arsenopyrite, are present only to the extent of a few per cent. In such deposits there is little evidence of solution and transportation of the gold. Enrichment often takes place in them, but rather by reduction of volume of the ore than by solution of gold. The sulphides and similar compounds (often called "sulphurets") in these veins are usually rich in finely distributed gold which remains behind upon oxidation. The oxidation of a crystal of pyrite will generally result in a pseudomorph of limonite which contains flakes of native gold, indicating that within the crystal a certain amount of transportation of gold has taken place.
Very common also are the deposits in which the sulphides abound and which contain no visible free gold. The Gilpin County veins, Colorado; Mount Morgan, Queensland; and the Haile deposit, South Carolina, may serve as examples. It is in these deposits that most evidence is found of the solution and transportation of gold.

It has been asserted that gold may be dissolved as a silicate, but this is probably a mistake due to the presence of bluish colloidal gold in solutions of silica. Gold has undoubtedly generally been transported in the form of chloride. Now, while chloride of gold is easily soluble in water, it is also most easily precipitated by reducing reagents, such as organic matter, ferrous sulphate, metals or sulphides, like pyrite. In the older literature ferric chloride and ferric sulphate were frequently given as solvents of gold, and the question had previously been discussed by Pearce, Don, and T. A. Rickard. H. N. Stokes and J. R. Don showed that ferric sulphate is ineffective, and the recent work of W. H. Emmons and A. D. Brokaw has shown that gold is insoluble in ferric chloride also and goes into solution only when nascent chlorine is present. The metal is easily precipitated from chloride solution, most easily and completely by ferrous sulphate.

In deposits containing much pyrite oxidation results in the liberation of sulphuric acid. Sodium chloride is present in some degree in all mine water and is abundant in some. Reaction between sulphuric acid and sodium chloride results in hydrochloric acid, and it should be recalled that Don actually found free HCl in a number of superficial mine waters from New Zealand. If dioxide of manganese is present in the deposit nascent chlorine will be generated according to the formula:

$$\text{MnO}_2 + 4\text{HCl} = 2\text{H}_2\text{O} + \text{MnCl}_2 + 2\text{Cl}.$$

Ferric and cupric salts have similar power, but chlorine develops very slowly, if at all, in the cold. It should be expected, according to Emmons, that auriferous deposits which contain manganese would show the effect of solution and migration of

1 *Econ. Geol.*, vol. 1, 1906, p. 650.
4 *Jour. Geol.*, vol. 18, 1910, p. 322.
5 J. R. Don, *loc. cit.*
gold more clearly than non-manganiferous ores. According to experiments by A. D. Brokaw, quoted by Emmons, gold is not dissolved in hydrochloric acid, ferric sulphate, or ferric chloride.\(^1\) It is dissolved at 38° C. in concentrated solution containing both ferric sulphate and hydrochloric acid; also at the same temperature in concentrated solution of cupric chloride and hydrochloric acid; the dilute solutions are not effective. Brokaw's experiments verified the solubility of gold by nascent chlorine in presence of manganese as outlined above. It was shown that a small piece of rolled gold weighing about 0.15 gram in a solution of 50 c.c. of one-tenth normal HCl with 1 gram of powdered MnO\(_2\) in 14 days lost 0.01369 gram. Neither the ferric sulphate nor the ferric chloride had noteworthy effect. To approximate natural waters a solution one-tenth normal was made as to ferric sulphate and sulphuric acid and one twenty-fifth normal as to sodium chloride. In a second experiment 1 gram of MnO\(_2\) was added; the time allowed was 14 days:

\[
\text{Fe}_3(\text{SO}_4)_2 + \text{H}_2\text{SO}_4 + \text{NaCl} + \text{Au}.
\]

No weighable loss.

\[
\text{Fe}_3(\text{SO}_4)_2 + \text{H}_2\text{SO}_4 + \text{NaCl} + \text{Au} + \text{MnO}_2.
\]

Loss of gold, 0.00505 gram.

Where much MnO\(_2\) is present, ferrous sulphate is almost immediately transformed to ferric sulphate and the precipitation of the gold is delayed.\(^2\)

The gold dissolved in the presence of MnO\(_2\) and held in solution by the absence of FeSO\(_4\) moves downward until the excess of acid is reduced, and simultaneously the iron and manganese compounds tend to hydrolyze and deposit oxides. At this stage FeSO\(_4\) becomes increasingly prominent and effective as a precipitant. The precipitation of gold is thus dependent upon the oxidation of ferrous sulphate by manganese dioxide. In the presence of MnO\(_2\) gold may even be carried down and deposited below the water level.

The greater enrichment in gold will be found in the lower part of the oxidized zone. Secondary gold is rarely found at greater depths, though it may sometimes be slightly concentrated in the upper part of a chalcocite zone.

\(^1\) Don in 1897 had already stated that, in the absence of free chlorine, gold is insoluble both in FeCl\(_2\) and Fe\(_3\)(SO\(_4\))\(_2\).

\(^2\) W. H. Emmons, loc. cit. (Experiment 20.)
From the above it seems probable that in the oxidized zone no other solvent than chlorine is to be considered for gold. Besides the evidence offered by the tenor of the ores, many examples of actual redeposition of gold are mentioned in the literature, such as films of gold in fissures and on other minerals—for instance, on zinc blende at mines in Lake City, Colorado.¹

Crystals of gold are sometimes deposited on the surface of pyrite; I have seen fine examples of this on a large cubic crystal from Alaska, locality unknown. Associated with the gold were small crystals of galena. Another and similar occurrence, cited by T. A. Rickard, has been seen at the Orphan Boy mine, Boulder County, Colorado,² but at least some of these occurrences are probably due to a primary deposition from alkaline ascending solutions, later than the first deposit of pyrite.

From chloride solution gold is also precipitated by organic matter, by hydrogen sulphide, by carbon, and by sulphides. Palmer and Bastin³ have shown that most sulphides easily precipitate gold; pyrite and galena, which do not precipitate silver, readily bring down the gold.

A peculiar feature in certain gold deposits where extensive kaolinization has taken place near the surface is the occurrence of white kaolin extraordinarily rich in gold so fine that it is scarcely visible when the material is washed in the pan.⁴ This is undoubtedly an effect of oxidation, but the mode of this enrichment is not fully explained; possibly it has something to do with the processes of adsorption, but if so the query arises why either iron or manganese should not likewise have been adsorbed by the kaolin.

Platinum.—In the rare deposits of the Sudbury type, platinum and palladium, the former occurring as the arsenide, sperrylite, remain in the outcrops and are not changed by the processes of oxidation. By reduction of volume of the oxidized copper-nickel ore the tenor in platinum metals becomes considerably higher than in the unaltered sulphide ore.

Cinnabar.—Cinnabar, the red sulphide of mercury, occasionally with its black modification, metacinabarite, is the principal ore

¹ J. D. Irving, oral communication.
³ Econ. Geol., vol. 8, 1913, pp. 140–170.
mineral in quicksilver deposits. Some metallic mercury is often present, probably derived from the cinnabar by some process of reduction by organic matter. The sulphide of mercury is practically insoluble in water and ordinarily the processes of oxidation in the outcrops of the ore deposits are of little importance. In the exceedingly dry climate of Terlingua, in western Texas, where the deposits occur in limestone, extensive oxidation has taken place and the cinnabar is transformed on a large scale into native metal, calomel, and also into various rarer oxycchlorides. The oxide of mercury, montroydite, is also present in these deposits.

Mercuric chloride is soluble at 10° C. at the rate of 6.6 grams in 100 grams of water, but at 100° the solubility increases greatly.

With mercury, as with silver, the chloride forms by preference in the outcrops in dry, wind-swept regions. Mercurial tetrahedrite is foreign to the cinnabar deposits, but is sometimes found in gold-quartz veins—for instance, in those of eastern Oregon.¹ During the oxidation of such mercurial tetrahedrite cinnabar is sometimes formed, probably by the reaction of mercuric sulphate on pyrite.

Cassiterite.—In tin deposits cassiterite is ordinarily the most abundant ore mineral and exhibits great resistance to solution and transportation. Frequently it remains after other constituents have been dissolved, the outcrops appearing enriched in tin. Some of the surface croppings of the Freiberg veins are reported to have contained considerable amounts of cassiterite, probably, according to Stelzner, released from the zinc blende in which it was disseminated as minute crystals. Above the water level the Cornwall veins contained mainly tin; the accompanying copper having been leached. Nevertheless, as Doelter² has shown experimentally, cassiterite is perceptibly soluble in water. According to some authorities³ on Cornwall, cassiterite is occasionally found as a cement in gravels and as impregnations in long-buried deer horns. Lately Scrivenor has shown that the cassiterite is simply carried mechanically into the cavities of the antlers. The occurrence of pebbles of wood tin—a fibrous form of cassiterite—is reported from placers of Saxony, Cornwall, several places

² Min. pet. Mitt., vol. 11, 1890, p. 325.
³ J. H. Collins, Min. Mag., vol. 4, pp. 1 and 103, 1880; vol. 5, p. 121, 1883.
in the Western States (as Wood’s Creek, Montana), and Bolivia. The Bolivian pebbles Stelzner regarded as derived from stannite (Cu₂FeSnS₃) or from stanniferous pyrite; the cassiterite in the same deposits was not attacked.

SOLUBILITY OF SULPHATES AND CARBONATES

In the following table the sulphates and carbonates are arranged in order of increasing solubility.

SOLUBILITY OF SULPHATES AND CARBONATES AT 18° C. IN GRAMS OF ANHYDROUS SALT PER 100 GRAMS OF H₂O.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Grams</th>
<th>Salt</th>
<th>Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaSO₄</td>
<td>0.00023</td>
<td>PbCO₃</td>
<td>0.0001</td>
</tr>
<tr>
<td>PbSO₄</td>
<td>0.0041</td>
<td>CaCO₃</td>
<td>0.0013</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>0.20</td>
<td>Ag₂CO₃</td>
<td>0.0017</td>
</tr>
<tr>
<td>Ag₂SO₄</td>
<td>0.55</td>
<td>BaCO₃</td>
<td>0.0023</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>11.11</td>
<td>ZnCO₃</td>
<td>0.004</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>16.83</td>
<td>MgCO₃</td>
<td>0.1</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>19.30</td>
<td>FeCO₃</td>
<td></td>
</tr>
<tr>
<td>FeSO₄</td>
<td>23.00</td>
<td>MnCO₃</td>
<td></td>
</tr>
<tr>
<td>Al₄(SO₄)₃</td>
<td>31.30¹</td>
<td>CuCO₂</td>
<td></td>
</tr>
<tr>
<td>NiSO₄</td>
<td>34.20²</td>
<td>Na₂CO₃</td>
<td>19.38</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>35.43</td>
<td>K₂CO₃</td>
<td>108.00</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>53.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnSO₄</td>
<td>65.00³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ With 18 mol. H₂O at 0°; 89.1 with 18 mol. H₂O at 100° C.
² At 15°.
³ At 30°.

PRECIPITATION OF ORES BY SILICATES

The reactions of the solutions in an ore deposit are not confined to the sulphides. It has already been shown that calcite or limestone exercises an important influence and, through the investigations of E. C. Sullivan,¹ that the silicates may also precipitate oxygen salts by a chemical reaction. In a general way this was known long ago, and E. Kohler² showed that cupric sulphate lost its copper when filtered through kaolin. This was

¹ The interaction between minerals and water solutions, *Bull.* No. 312, U. S. Geol. Survey, 1907; also in *Econ. Geol.*, vol. 1, 1905, p. 67.
² *Zeitschr. f. prakt. Geol.*, vol. 11, 1903, p. 49.
attributed to adsorption—that is, an accumulation of dissolved substance on the contact between liquid and solid—but Sullivan shows that a chemical change takes place. The natural silicates such as kaolin, albite, orthoclase, amphibole, pyroxene, and mica precipitate the metals from salt solutions, while at the same time the bases of the silicates are dissolved in quantities nearly equivalent to the precipitated metals. The latter precipitates take the form of hydroxides or basic salts, though silicates may also be formed to some extent. Thus by a simple chemical exchange the metal may be removed from a solution and fixed in the solid state and thus concentrated by contact with even the most insoluble of silicates.

Fig. 245.—Azurite crystals replacing kaolin, Clifton, Arizona.

These experiments elucidate the deposition of brochantite and chrysocolla in granitic and porphyritic rocks, as well as the deposition of cuprite and azurite in shale.¹ (See Fig. 245.) A solution of silver sulphate yielded its metal completely to a powdered clay gouge, metallic silver being probably formed. With kaolin and cupric sulphate the reaction is rapid and the copper solution soon becomes colorless. The iron in ferric and ferrous sulphate is easily retained by kaolin as limonite. The iron of ferrous silicates does not take the place of copper in the solution after its precipitation.

The slow decomposition of silicates by dilute sulphuric acid is also a process of great importance, yielding limonite and kaolin, which often tend to accumulate as separate masses. Kaolin is very abundant in the oxidized zone of pyrite deposits. Basic sulphates like jarosite and especially alunite are also common under such conditions. The solution may change gradually during the process; we find, for instance, crystals of calcite deposited in heavy limonite gossan, indicating a change from solutions containing free sulphuric acid to those rich in calcium carbonate.

SULPHIDE ENRICHMENT

General Principles.—The development of secondary sulphides may take place by direct precipitation from solutions by means of hydrogen sulphide or other reducing solutions or gases; or it may result from a metasomatic interchange between a solution and a solid, usually another sulphide. Dilute sulphuric acid generated by the decomposition of pyrite, for instance, attacks a few sulphides, with the evolution of hydrogen sulphide. This gas is produced in abundance by the attack on pyrrhotite and to a less extent, according to R. C. Wells, when zinc blende is exposed to the acid. If copper is present in the solutions, a precipitate of cupric sulphide (CuS) will be formed, besides some cuprous sulphide (Cu₂S). Sulphides are formed mainly where the supply of oxygen from the surface becomes nearly exhausted.

Previous to the year 1900 the presence of secondary sulphides within the oxidized zone had been noted by some observers and had been definitely stated by L. de Launay.¹ In the year referred to S. F. Emmons, C. R. Van Hise, and W. H. Weed in three notable papers² formulated the important law of the accumulation of sulphides as a concentration from the overlying oxidized zone, at or below the water level. It was shown that in copper deposits chalcocite, bornite, covellite, and in part also chalcopyrite were precipitated by pyrite from sulphate solutions and that under similar conditions in silver

¹ Les variations des filons métallifères en profondeur, *Revue générale des Sciences, etc.*, April 30, 1900, No. 8.

OXIDATION OF METALLIC ORES

deposits argentite, stephanite, polybasite, and pyrargyrite or proustite might form; it was also shown that zinc blende and galena were probably precipitated in a similar manner. The chemical reasons for these reactions were found in the so-called Schürmann's law,¹ by which it was established that in the presence of the sulphides of certain of the metals the salts of other metals would be decomposed and the metals precipitated as sulphides. This was thought to indicate that the metals which were precipitated possessed a greater affinity for sulphur than the other metals.

Schürmann's series was as follows: Mercury, silver, copper, bismuth, cadmium, lead, zinc, nickel, cobalt, iron, and manganese. The solution of a salt of any of these metals will be decomposed by the sulphide of any succeeding metal and the first metal will be precipitated as a sulphide. Thus from a solution of silver or copper salts the metal would be precipitated by a sulphide of lead, zinc, or iron. If secondary deposition of sulphides by reaction of pyritic ores on descending sulphate waters had taken place in an ore deposit containing silver, copper, lead, and zinc, these sulphides would theoretically be arranged in the following order: Argentite, chalcocite, galena, and zinc blende, the last at the lowest level. It was shown later by R. C. Wells² that the influencing factor was the relative solubility of the sulphides rather than the "affinity for sulphur." If the list just given is compared with the table of solubility of the sulphides on page 786, a general similarity is obvious, though there is a decided difference in the position of certain elements like arsenic and antimony; there is also a considerable difference in Weigel's table according to whether the sulphides are freshly precipitated or crystallized. The most striking anomaly is in the position of the zinc sulphide. In the relative position of silver, copper, lead, and iron the data agree.

Secondary Copper Sulphides

From sulphate solutions zinc blende readily precipitates copper as covellite³ (Fig. 246), perhaps also as chalcocite. Covellite is not

B. S. Butler, oral communication.
Fig. 246.—Pyrite (Py) intergrown with zinc blende (Zn), which is altering to covellite (Cu), Kyschtim, Russia. Magnified 45 diameters. After L. C. Gratton and J. Murdoch.

Fig. 247.—Bornite (b) altering along fissures to chalcopyrite (cp), Ajo, Arizona. g, Gangue; cc (sec), secondary chalcocite. Magnified 50 diameters. After L. C. Gratton and J. Murdoch.
very stable and is easily changed to cuprite and other oxidized forms of copper minerals. According to E. T. Allen (oral communication), solutions of ferrous salts dissolve part of the copper from chalcocite, leaving covellite. In a primary ore of pyrite and zinc blende, the latter is first attacked, the reaction being—

\[\text{ZnS} + \text{CuSO}_4 = \text{CuS} + \text{ZnSO}_4 \]

Chalcopyrite is replaced by covellite according to the formula—

\[\text{FeCuS}_2 + \text{CuSO}_4 = 2\text{CuS} + \text{FeSO}_4 \]

Fig. 248.—Pyrite altering to chalcocite (dark); black is open field; Clifton, Arizona. Magnified 30 diameters.

Primary bornite is often intergrown with chalcopyrite and is also susceptible to alteration yielding secondary chalcopyrite (Fig. 247), which changes to covellite; this in turn is finally transformed to the more stable chalcocite.¹

Pyrite is by far the most common of the minerals attacked, and its conversion to chalcocite has been abundantly proved and illustrated, particularly at Globe and Clifton (Fig. 248), Arizona, and Bingham, Utah.² In general the replacement proceeds from

² Prof. Papers No. 12, 43, and 38, U. S. Geol. Survey.
the outside, resulting in a shell of chalcocite which may be either black and sooty or compact with dark-gray metallic luster; the chalcocite often encloses a kernel of residual pyrite. Sometimes the pyrite has entirely disappeared. Veins of pyrite are in places converted to compact chalcocite of metallic luster. Fig. 248 illustrates this process of metasomatic interchange.

H. N. Stokes\(^1\) has experimentally proved that a neutral solution of cupric sulphate will act on pyrite at 100\(^\circ\) and 180\(^\circ\) C. as follows:

\[5\text{FeS}_2 + 14\text{CuSO}_4 + 12\text{H}_2\text{O} = 7\text{Cu}_2\text{S} + 5\text{FeSO}_4 + 9\text{H}_2\text{SO}_4 + 3\text{H}_2\text{SO}_4.\]

The last H\(_2\)SO\(_4\) is formed by the oxidation of the sulphur of FeS\(_2\). The reaction is not as simple as thus expressed, for some CuS is formed, less at 100\(^\circ\) than at 180\(^\circ\). Cuprous sulphate also plays a part as an intermediate product. Stokes considers it likely that the same reaction proceeds, though more slowly, at such temperatures as may be supposed to prevail in the zone of oxidation. H. V. Winchell\(^2\) obtained chalcocite at ordinary temperature from the action of CuSO\(_4\) on pyrite in the presence of much SO\(_2\). Without SO\(_2\) no reaction was obtained. For many reasons, however, the presence of SO\(_2\) in the descending waters seems improbable.\(^3\) It cannot exist together with ferric sulphate, but reduces the latter to the ferrous state.

Cuprous sulphate is easily decomposed and could probably not exist long in mine waters. Cupric and ferrous sulphate mix in all proportions without change, except at high temperatures (200\(^\circ\) C.), when, according to H. N. Stokes,\(^4\) cuprous sulphate and ferric sulphate form; the latter hydrolyzes to ferric hydrate and H\(_2\)SO\(_4\), while cuprous sulphate deposits copper upon cooling. This reaction is not likely to take place at temperatures ordinarily existing in the oxidized zone.

Together with the chalcocite smaller quantities of bornite (Cu\(_3\)FeS\(_4\)) and covellite (CuS) develop in places; more rarely a little chalcopyrite. Secondary chalcopyrite may be deposited as a thin crustification in the secondary sulphide zone of veins in complex ores like those of Georgetown and Idaho Springs, Colo-

\(^1\) Unpublished manuscript. See also Bull. No. 186, U. S. Geol. Survey, 1901; Econ. Geol., vol. 1, 1905, pp. 644–650.

\(^4\) Econ. Geol., vol. 1, 1905, p. 644.
rado. It often appears on tetrahedrite and usually has a characteristic fine grain and grayish-yellow color. The order of succession in which these minerals form may differ under varying conditions. Both bornite and covellite appear to form in the upper part of the secondary sulphide zone. Large masses of covellite were encountered on the 1,100-foot level in one of the mines at Butte, Montana, where it occurred in kaolinized breccia. Graton and Murdoch\(^1\) find that bornite is relatively rare as a secondary mineral.

Where the waters contain much free acid, kaolin forms along with the secondary sulphides, partly at the expense of sericite; other minerals are chaledonic and opaline silica, alunite, and occasionally pyrite and quartz, the last two being probably exceptional, for, as we have seen, the essential feature of the process of chalccocitization is that pyrite is dissolved.

Chalccocite, as has been stated, is the characteristic mineral of enrichment in copper deposits. Its development is dependent upon many factors of climate, water level, associated minerals, and rock texture. It is formed chiefly in permeable rocks like pyritic and sericitized granite porphyry or schists. In compact contact-metamorphosed shales and limestones it does not readily develop, partly because of the ready reaction between calcium carbonate and cupric sulphate to form copper carbonates.

The chalccocite zone may be a thin layer between the gossan and the primary sulphides, or it may occupy a vertical zone of

\(^1\) Loc. cit.
MINERAL DEPOSITS

over 1,000 feet, gradually fading in the lower part. With few exceptions the boundary between the oxidized and the chalcocite zones is sharp (Fig. 249) and the upper part of the chalcocite zone is the richer.

Sulphide Enrichment in Silver Deposits

W. H. Weed, in 1900, described secondary polybasite and pyrargyrite encrusting or replacing barite, quartz, galena, zinc blende, and pyrite which are themselves later than the original filling of galena, zinc blende, and pyrite. Since then secondary argentite (Ag₅S; 87.07 per cent. Ag), pyrargyrite (Ag₅SbS₃); proustite (Ag₅AsS₃); stephanite (Ag₅SbS₃); and polybasite (Ag₅SbS₈) have been noted at many widely separated mining districts (Fig. 250).

Fig. 250.—Secondary silver sulphide (polybasite?) replacing both galena and quartz, Gilpin County, Colorado. Middle line shows former boundary between galena and quartz. After E. S. Bastin.

These minerals would normally begin at the line between the oxidized and the primary sulphide ore and they may extend along cracks and fissures in scattered and irregular development to a maximum depth of a thousand feet below it. Native silver has a still wider range, for it may occur in the oxidized zone and is sometimes deposited with calcite or barite at a depth of a thousand feet below the surface and hundreds of feet below the water level, as at Aspen, Colorado.

The process is not exactly analogous to that of chalcocitization, though doubtless caused by descending solutions. It is not
always accompanied by kaolinization, but rather by the formation of the normal gangue minerals barite, calcite, and quartz; moreover, the new sulphides do not always replace an older sulphide, but may simply be deposited with the gangue, forming veinlets in the deposits. Rarely if ever do we find a regular secondary zone of secondary silver minerals similar to the chalcocite zones. This means in all probability that in these silver deposits the descending waters are less strongly charged with sulphuric acid and sulphates than in the pyritic copper deposits; the character of the water thus more nearly approaches that of the primary ascending solution. In a pyritic deposit having a secondary chalcocite zone there is, as a rule, little concentration of silver and almost none of gold except possibly in the uppermost parts of the secondary zone.

E. S. Bastin concludes from his recent studies of the veins of Gilpin County, Colorado, that in this district the scarcity of pyrite and the abundance of calcite are factors favoring the development of secondary silver sulphides.

Sulphide Enrichment in Zinc and Lead Deposits

Zinc blende is easily oxidized to zinc sulphate when associated with pyrite, and even without this association the process may go on. In limestone the zinc is to a considerable extent fixed as carbonate; where there is no limestone the sulphate is often carried away and zinc is wholly removed from the oxidized zone.

Zinc is not, as a rule, deposited as a secondary sulphide and no authentic case has been recorded where it replaces pyrite, as chalcocite so often does. Zinc blende has been reported as a secondary mineral below the oxidized zone. Weed describes such an occurrence at Neihart, Montana, and Bain mentions occurrences of red blende near Joplin, Missouri, which he regards as secondary—that is, deposited by the present descending waters. White amorphous zinc sulphide has been precipitated by hydrogen sulphide from mine waters rich in zinc sulphate. B. S. Butler\(^1\) has found that wurtzite, the hexagonal modification of zinc sulphide, occurs in the lower levels of the oxidized zone at the Horn Silver mine, Frisco, Utah, and considers it of secondary origin. Here the oxidation of sulphides yielded sulphates and

\(^1\) Oral communication; also *Prof. Paper*, U. S. Geol. Survey, No. 80, 1913
free acid. The difficultly soluble copper sulphide was precipitated as chalcocite on the more easily soluble zinc blende, which, however, could not precipitate wurtzite, this being the more soluble of the two forms of zinc sulphides. After the acid had become neutralized and the free oxygen used up, hydrogen sulphide, developed by the action of H_2SO_4 on zinc blende, would precipitate zinc as wurtzite. Similar, probably secondary wurtzite has been observed by Richard Pearce in the Gagnon silver mine at Butte, Montana.¹

Galena often recrystallizes, with increased tenor of silver, during oxidation, but well-defined zones of secondarily deposited galena have never been observed. Examples are known of galena formed as well-defined crystals on iron spikes from old workings of a lead mine in Missouri. Thin films of galena are sometimes deposited on zinc blende; this has been observed by Irving and Bancroft at Lake City, Colorado; by Boutwell at Bingham, Utah; and by Ransome at Breckenridge, Colorado.

Cinnabar

From the position of mercury in Schürmann's series, secondarily deposited cinnabar should be expected to occur, especially where pyrite is present in the same deposit, as at Terlingua, Texas. No such phenomena have yet been described. According to E. T. Allen and J. L. Crenshaw,² metacinnabarite, the black form of HgS, is obtained by slow precipitation of mercuric salts in acid solutions. This mineral is analogous to marcasite and it is quite possible that the metacinnabarite which appears mainly in the upper levels of quicksilver deposits is a secondary sulphide.

Criteria of Sulphide Enrichment

The question whether or not secondary sulphides have been deposited in an ore-body is most important. If the rich ore mineral is but a part of a shallow enriched layer and poorer ore is to be expected at lower levels, knowledge of this fact is greatly to be desired from the mine-owner's standpoint. With this idea in mind, F. L. Ransome³ has recently summed up the available

³*Econ. Geol.*, vol. 5, 1910, pp. 205-220.
OXIDATION OF METALLIC ORES

criteria of sulphide enrichment. According to him the best
geological evidence is in the progressive uniform impoverishment
of all similar sulphide deposits in a given district, coupled with the
condition that the change in the ore should be dependent upon
late post-mineral topographic development. Covellite is thus
far the only mineral which surely indicates secondary deposition,
but chalcocite is almost always of that origin, and the occurrence
together of chalcocite, bornite, and covellite at a certain horizon is
good evidence. Less positive though presumptive evidence lies
in the occurrence of argentite, ruby silver, stephanite, and poly-
basite below the zone of oxidation. Kaolin, alunite, and hydrous
silica afford evidence pointing in the same direction, but marca-
site, pyrite, quartz, calcite, barite, and fluorite may also appear as
secondary products. L. C. Graton and J. Murdoch\(^1\) find the im-
portant criterion in the microscopic structure of the ore and hold
that chalcocite and even covellite may be of primary origin,
that none of the secondary minerals are invariably secondary, and
that the changes from pyrite to chalcocite often proceed in orderly
progression of iron subtraction and copper addition by way of
chalcopyrite, bornite, and covellite. In copper deposits all the
secondary sulphides develop by replacement.

Within the last two years opinions have shifted somewhat and
it is now admitted that chalcocite may result from primary
mineralization. Thus far, the most convincing statement has
been made by F. B. Laney,\(^2\) who finds primary intergrowths
of bornite and chalcocite in the copper veins of Virgilina, on the
line between Virginia and North Carolina. The intergrowth is
extremely intricate, recalling that of eutectic mixtures (Fig. 251).
The veins are of the high-temperature kind. Still later the great
body of chalcocite in the Bonanza mine, Alaska, has been the
subject of study, not yet completed, by J. D. Irving and by L. C.
Graton, and it seems probable that at this place the chalcocite
is primary. The ore-body is enclosed in limestone. Recently it
has been suggested by Reno Sales and also by W. H. Weed that
the chalcocite of the deeper levels at Butte, Montana, is primary,
and the work of Graton and Murdoch has confirmed this opinion.

\(^1\) Op. cit.

\(^2\) The relation of bornite and chalcocite in the copper ores of the Virgilina
district of Virginia and North Carolina, *Econ. Geol.*, vol. 6, 1911, pp.
399–411.

L. C. Graton had previously suggested the primary nature of this chal-
free acid. The difficultly soluble copper sulphide was precipitated as chalocite on the more easily soluble zinc blende, which, however, could not precipitate wurtzite, this being the more soluble of the two forms of zinc sulphides. After the acid had become neutralized and the free oxygen used up, hydrogen sulphide, developed by the action of H₂SO₄ on zinc blende, would precipitate zinc as wurtzite. Similar, probably secondary wurtzite has been observed by Richard Pearce in the Gagnon silver mine at Butte, Montana.¹

Galena often recrystallizes, with increased tenor of silver, during oxidation, but well-defined zones of secondarily deposited galena have never been observed. Examples are known of galena formed as well-defined crystals on iron spikes from old workings of a lead mine in Missouri. Thin films of galena are sometimes deposited on zinc blende; this has been observed by Irving and Bancroft at Lake City, Colorado; by Boutwell at Bingham, Utah; and by Ransome at Breckenridge, Colorado.

Cinnabar

From the position of mercury in Schürmann’s series, secondarily deposited cinnabar should be expected to occur, especially where pyrite is present in the same deposit, as at Terlingua, Texas. No such phenomena have yet been described. According to E. T. Allen and J. L. Crenshaw,² metacinnabarite, the black form of HgS, is obtained by slow precipitation of mercuric salts in acid solutions. This mineral is analogous to marcasite and it is quite possible that the metacinnabarite which appears mainly in the upper levels of quicksilver deposits is a secondary sulphide.

Criteria of Sulphide Enrichment

The question whether or not secondary sulphides have been deposited in an ore-body is most important. If the rich ore mineral is but a part of a shallow enriched layer and poorer ore is to be expected at lower levels, knowledge of this fact is greatly to be desired from the mine-owner’s standpoint. With this idea in mind, F. L. Ransome³ has recently summed up the available

³ Econ. Geol., vol. 5, 1910, pp. 205–220.
OXIDATION OF METALLIC ORES

criteria of sulphide enrichment. According to him the best geological evidence is in the progressive uniform impoverishment of all similar sulphide deposits in a given district, coupled with the condition that the change in the ore should be dependent upon late post-mineral topographic development. Covellite is thus far the only mineral which surely indicates secondary deposition, but chalcocite is almost always of that origin, and the occurrence together of chalcocite, bornite, and covellite at a certain horizon is good evidence. Less positive though presumptive evidence lies in the occurrence of argentite, ruby silver, stephanite, and polylbasite below the zone of oxidation. Kaolin, alunite, and hydrous silica afford evidence pointing in the same direction, but marcasite, pyrite, quartz, calcite, barite, and fluorite may also appear as secondary products. L. C. Graton and J. Murdoch find the important criterion in the microscopic structure of the ore and hold that chalco-cite and even covellite may be of primary origin, that none of the secondary minerals are invariably secondary, and that the changes from pyrite to chalco-cite often proceed in orderly progression of iron subtraction and copper addition by way of chalcopyrite, bornite, and covellite. In copper deposits all the secondary sulphides develop by replacement.

Within the last two years opinions have shifted somewhat and it is now admitted that chalco-cite may result from primary mineralization. Thus far, the most convincing statement has been made by F. B. Laney, who finds primary intergrowths of bornite and chalco-cite in the copper veins of Virgilina, on the line between Virginia and North Carolina. The intergrowth is extremely intricate, recalling that of eutectic mixtures (Fig. 251). The veins are of the high-temperature kind. Still later the great body of chalco-cite in the Bonanza mine, Alaska, has been the subject of study, not yet completed, by J. D. Irving and by L. C. Graton, and it seems probable that at this place the chalco-cite is primary. The ore-body is enclosed in limestone. Recently it has been suggested by Reno Sales and also by W. H. Weed that the chalco-cite of the deeper levels at Butte, Montana, is primary, and the work of Graton and Murdoch has confirmed this opinion.

2 The relation of bornite and chalco-cite in the copper ores of the Virgilina district of Virginia and North Carolina, Econ. Geol., vol. 6, 1911, pp. 399–411.
3 L. C. Graton had previously suggested the primary nature of this chalco-cite, Mineral Resources, U. S. Geol. Survey, 1907, pt. 1, p. 620.
Likewise it should be recalled that the copper ore in sandstone in various parts of the world also consists of chalcocite which, as far as these deposits are concerned, is primary, though probably deposited by surface waters. On the whole it is remarkable that the deposits produced at all depths by ascending waters and magmatic emanations contain mainly the iron-sulphur compounds, chalcopyrite and bornite, while the deposits formed by distinctly superficial waters generally carry the copper sulphides, chalcocite and covellite.

![Image: Intergrowth of bornite (b) and chalcocite (cc), Wall mine, Virgina, North Carolina. cc (sec), Secondary chalcocite. Magnified 50 diameters. After L. C. Gratton and J. Murdoch.]

Fig. 251.—Intergrowth of bornite (b) and chalcocite (cc), Wall mine, Virgina, North Carolina. cc (sec), Secondary chalcocite. Magnified 50 diameters. After L. C. Gratton and J. Murdoch.

EXAMPLES OF OXIDATION

Copper Deposits

General Features.—The study of the various modes of enrichment in copper deposits is a subject full of difficulties. We find the most diverse development even in a region of uniform general climate. Take, for instance, the Sonora-Arizona province, where the rainfall is small and the climate warm. At Los Pilares, Sonora, near Nacozari, a gossan of barren hematite 100 feet deep is underlain by an ill-defined zone with bornite and chalcocite, changing below the 500-foot level to primary chalcopyrite-pyrite
ore. In other parts of Sonora, according to Finlayson,1 are
gossan and chrysocolla ores extending to a depth of 200 to 400
feet; below this is a shallow zone of secondary sulphides. Again,
at Clifton, Arizona, there are in the contact-metamorphic depos-
its in limestone strong gossans, sometimes rich in copper, under-
neath which no secondary sulphides are found. Pyritic veins
in porphyry at the same place have a barren siliceous outcrop
without gossan and perhaps 150 feet thick, below which lies a
rich chalcocite zone that is a few hundred feet or less changes to
lean primary sulphides. Other veins near by show chrysocolla
from the surface down to a shallow chalcocite zone at 100 feet.
At Miami, Arizona, where enrichment has taken place through
concentration in large masses of pyritized and sericitized rocks,
there is a thick, almost barren zone of oxidation below which, at
depth of 200 to 1,100 feet, lies a blanket of chalcolitized rock
from 50 feet or less to 300 feet in thickness. Almost everywhere
in Arizona the chalcocite zone is far above the water level,
though according to the accepted theory the chalcocite zone
should form at and below the water level. The water-table may
formerly have been higher and coincided with the top of the
chalcocite zone, but this cannot always be proved. It is indeed
possible that chalcocite may form above the water level, pro-
viding the rocks and the water percolating through them con-
tain little or no oxygen.

In the normal course of oxidation a gossan must form and the
three zones should be distinct; if the gossan is not present it has
been eroded and the barren upper zone has then been formed by
leaching of the zone of sulphide enrichment, the copper solution
descending to further enrich the deposit in depth. In regions
of deep erosion it is exceedingly rare to find a strong chalcocite
enrichment in deposits exposed in the lower parts of the canyons.
In glaciated or rapidly eroded regions almost all enrichmentss
may be lacking.

\textbf{Ducktown.}—At Ducktown, Tennessee,2 in a region of heavy
rainfall and moderate topographic relief, pyritic lodes occur
probably as replacements of limestone lenses in a series of

1 A. M. Finlayson, Economics of secondary enrichment, \textit{Min. and Sci.
2 W. H. Emmons and F. B. Laney, Preliminary report on the mineral
151-172.
metamorphosed arkose sandstone of Cambrian age. The barren gossan ores form large masses of limonite, almost pure in places, and extend to a depth of about 100 feet. Below this lies a shallow but sharply defined zone of black earthy chalocite (Fig. 252), long ago mined out. This zone is only 3 to 8 feet in thickness and is in turn underlain by the primary ore of pyrrhotite and chalcopyrite with some silicates like amphibole, zoisite, and garnet. This ore, which is now worked, yields about 1.50 per cent. copper.

![Diagram of mineral deposits](image)

Fig. 252.—Chalocite zone at Ducktown, Tennessee. *After W. H. Emmons, U. S. Geol. Survey.*

Considering the slow denudation of the region it is as first glance rather remarkable that the chalocite zone should be so shallow; one would expect a condition more like that prevailing in the Rio Tinto district of Spain. One explanation is that the ore is unusually compact and hard, but W. H. Emmons, in pointing to the hydrogen sulphide resulting from the attack of pyrrhotite by sulphuric acid and the attendant rapid precipitation of copper as sulphide, has probably given the solution of the problem.

Rio Tinto.—The pyritic deposits of Rio Tinto, southern Spain, are situated in a country of sub-tropical climate, with an annual rainfall of about 25 inches and mature topography, where erosion makes slow headway. The primary deposits are thick lenses of

1 A little secondary chalocite, however, occurs in the primary ore as far as 125 feet below this zone and some secondary chalcopyrite extends to a still greater depth (W. H. Emmons).

2 A. M. Finlayson, *The pyritic deposits of Huelva, Spain, Econ. Geol.*, vol. 5, 1910, Nos. 4 and 5.
pyrite containing less than 1 per cent. of copper. There is a heavy gossan of massive hematite, 45 to 90 feet thick, containing no copper, over 50 per cent. iron, and 10 to 15 per cent. of siliceous and argillaceous matter. The depth of oxidation has everywhere been determined by the ground-water level. The lower limit of the gossan is sharp and the line is often marked by a thin earthy zone with notable quantities of gold and silver, believed to represent an enrichment caused by leaching of the gossan by solutions containing chlorine and ferric sulphate. The top of the sulphide zone for a thickness of a few feet is composed of leached pyrite with a trace of copper, resembling the upper part of the chalcocite zone at Morenci, Arizona. Below this begins the zone of enriched sulphides, containing in the upper part 3 to 12 per cent. copper, gradually becoming poorer downward and passing into lean pyritic ore assaying 1 per cent. or less of copper. The depth at which the unaltered ore is reached ranges from 200 to 1,500 feet below the outcrop. The enriched pyrite contains mainly chalcocite, but also some secondary chalcopyrite. The bulk of the Rio Tinto copper production to-day is derived from enriched ore.

Mount Morgan.—The great gold and copper deposit of Mount Morgan, in Queensland, which since 1886 has yielded about $65,000,000 in gold and now bids fair to become a great copper-producing property, is most interesting and shows the peculiar feature of great gold enrichment with almost entire absence of a zone of secondary copper ores. Unfortunately no late and fully adequate description is available. The region has a tropical climate and moderate rainfall; the topography is of the moderately mature type. The water level is probably deep. The irregular deposit is apparently a replacement in Carboniferous rocks, surrounded on both sides by intrusive granite, thus recalling the deposits worked by the Reforma mine, in Guerrero, Mexico, and the Mount Lyell mine, in Tasmania.

At the outcrop there was an extremely rich zone with free gold in kaolin, limonite, and black manganese. Below this was found a zone of a cellular, almost pumiceous siliceous mass, evidently a quartz skeleton resulting from the removal of pyrite; this was poorer in gold, but the kaolin that was in places associated with it was rich in silver. The sharply defined lower limit of the

oxidized ore was met at 180 to 300 feet below the surface, and
the primary ore consisted at first of pyrite, then of pyrite with
chalcopyrite, carrying 2 to 3 per cent. copper and $1 to $8 in gold
to the ton. It is difficult to account for the lack of a chalcocite
zone, and no such explanation as has been advanced for the
Reforma mine is sufficient. Unquestionably there has been
concentration of gold on a large scale at the surface, probably
caused by the presence of unusual amounts of chlorine. It is
noteworthy that the gold has been precipitated mainly at the
surface and could not be carried down into lower levels.

Reforma.—A description of the Reforma lode in Guerrero,
Mexico, by J. W. Finch¹ gives an example of an important
pyritic vein without sulphide enrichment. The deposit is situ-
ated in a sharply accentuated region of active erosion and heavy
summer rains. It lies at the contact of intrusive granodiorite
or quartz monzonite with metamorphosed beds probably of Cre-
taceous age. The igneous rocks are in part sheared. The ore-
body is composed of solid pyrite with small amounts of chalcopy-
rite, galena, sphalerite, and quartz; it occupies a broad fracture
zone, the ore filling fissures and replacing the adjoining slates,
and appears to be somewhat similar to the Mount Lyell pyritic
deposit of Tasmania. On the sixth level there is an average width
of 100 feet of ore and an exposed length of 2,000 feet. Gold and
silver are present. Along the footwall extends a band about
20 feet wide, which is the richer in copper, gold, and silver.

The top of the oxidized zone is a collapsed iron gossan. Below
this is a mass of loose quartz sand on the hanging wall, while
on the footwall is a body of lead carbonate and oxides of iron
widening downward to the pyrite. This ore contains 25 per cent.
FeO, 25 per cent. SiO₂, 8 to 12 per cent. Pb, 1 to 2 per cent. As₂O₃,
and considerable gold and silver. In the oxidized zone specimens
of filmy silica skeletons can be found, a residuum after the leach-
ing of pyrite which strongly resembles the gossan at Mount
Morgan, Queensland.

The water level stood about the top of the sulphide zone.
There has been very little concentration of copper in the oxidized
zone, but the gold, lead, and silver have remained in the oxide
ores. A sharp demarcation separates the oxides and sulphides.
While a little covellite occurs at the top of the pyrite in some ore-
bodies in the vicinity, none is found in this particular mine.

OXIDATION OF METALLIC ORES

There is no sulphide enrichment, and Finch sees nothing in the richer ore along the footwall to indicate such a feature. In cross section the top of the pyrite is a flat surface across the vein, no irregular penetration of oxidized ore being shown.

The conditions probably indicate rapid oxidation in a warm, alternatingly damp and dry region. The steep stopes quickly carry off the soluble sulphates; there has been no time for the slow accumulation of chalcocite. A feature also contributory to this result is the compact, non-fractured texture of the sulphides.

Butte.—The copper deposits of Butte, Montana, form a system of east-west, steeply dipping veins cutting quartz monzinite as well as dikes of aplite and granite porphyry (Modoc porphyry) intrusive into this granular rock. They are mainly replacements along fissures and carry as primary ore pyrite with zinc blende and some enargite, chalcocite, and chalcopyrite. There is a scant gangue of quartz. Extensive sericitization along the veins is characteristic. These veins are cut by a system of veins trending northwest and characterized by much enargite besides the other minerals mentioned. Finally there are northeastward-trending veins that have caused dislocations of the older veins amounting in places to several hundred feet. The secondary ores are found mainly in the first two classes of fractures and consist of chalcocite with smaller amounts of covellite. The importance of the district is largely due to the secondary ores.

The outcrops are not prominent and the copper is leached from them; in some places they contain chrysocolla. The depth of this oxidized barren zone of crumbly, honeycombed quartz veins ranges from 10 to 400 feet. In the central copper area, where the granite is greatly altered, the upper limit of the sulphides is practically a plane in spite of surface inequalities of nearly 300 feet, evidently depending more upon the alteration of the country rock than on the topography. In the leached zone there is a slight enrichment of silver, the material containing as much as 30 ounces per ton, in contrast to 2.5 ounces per

ton in the sulphide ore. No secondary silver sulphides have been noted. The gold tenor is uniform throughout the copper area, indicating that practically no secondary concentration has taken place. The ores average 30 to 50 cents per ton in gold, with little difference between oxidized ore and that of the sulphide zone. A sharp line of demarcation separates the two zones, the change in many places occurring within 2 or 3 feet vertically. At this level the ores contained much chalcocite and averaged 8 per cent. or more of copper. Solid masses of glance ore, 15 feet or more in thickness, were found. Covellite is less abundant and secondary chalcopyrite is rare. Corroded crystals of chalcocite and others coated by quartz are mentioned by H. V. Winchell. In depth the enriched ore gradually decreases in value, but low-grade ore of about 2.5 per cent. persists to depths of even 2,600 feet from the surface, particularly along planes where the circulation of water was energetic. In general chalcocitization was accompanied by kaolinization.

The ores of Butte are in general disseminated pyritic replacements along fissures in granitic rocks, in which the pyrite grains have subsequently, by descending solutions, been partly altered to chalcocite. Many of the fault veins carry chalcocite ore as drag, but owing to their clayey character the circulation along them has been sluggish and they do not contain large masses of ore.

J. F. Simpson\(^1\) describes enrichment by bornite and chalcocite at 2,000 feet below the surface and found the succession of the minerals to be pyrite, chalcopyrite, enargite, bornite, and chalcocite. It has been asserted lately by R. H. Sales\(^2\) that a part of the chalcocite appearing in the lower levels is of primary origin, and this is by no means impossible. Nevertheless, it is certain that not all the compact chalcocite is primary, for secondary chalcocite can assume either the sooty or the compact form.

The problem of enrichment at Butte is complicated and it has been suggested that after some of the enrichment had taken place there occurred a repeated invasion of ascending waters, perhaps depositing enargite. In explanation of the deep chalcocite zone Emmons and Weed state that the block in which the veins are contained has been faulted down probably several thousand feet and that thus the water level might formerly have stood lower than at the present time. This explanation is not

\(^1\) Econ. Geol., vol. 3, 1900, p. 630.
satisfactory, for it is not probable that the water level in this region has ever been at a considerable depth below the surface, and in the adjacent and higher block on the east the water level still remains high. It is conceded that the present barren zone was created by leaching of the former upper part of the chalcocite zone and that during this process the copper was sharply concentrated in the upper part of the present enriched zone. Therefore the latter, like many other bodies of secondary chalcocite, must be of considerable geological age and long antedate the faulting. When it was accumulated the water level was assuredly much higher than at present.

Encampment.—In the Encampment district, Wyoming, a region of high elevation, rough topography, and severe climate, the ores occur in brecciated quartzite near diorite or gabbro. The zone of oxidation extends only 20 to 70 feet below the surface. The primary chalcopyrite is replaced by chalcocite, and this chalocotization reaches with decreasing intensity to unexpectedly great depths—at least several hundred feet below the surface. This occurrence, in a region free from the great complications of the Butte district, gives assurance that chalocotization may take place in regions of cold climate and high ground-water level.

Ely.—An important deposit of secondary chalcocite is now being worked on a large scale at Ely, Nevada. The deposit is stripped and the ore extracted by steam shovels, at the rate of 10,000 tons per day. Further treatment consists in concentration and smelting in reverberatory furnaces followed by bessemerizing. The report of the Nevada Consolidated Copper Company (1909–1910) summarizes the important facts:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons of ore treated (dry)</td>
<td>2,237,028.0</td>
</tr>
<tr>
<td>Average copper content (per cent.)</td>
<td>2.06</td>
</tr>
<tr>
<td>Percentage of extraction of copper</td>
<td>69.52</td>
</tr>
<tr>
<td>Ratio of concentration</td>
<td>10.6 : 1</td>
</tr>
<tr>
<td>Gold content (ounce per ton of ore)</td>
<td>0.0181</td>
</tr>
<tr>
<td>Silver content (ounce per ton of ore)</td>
<td>0.0879</td>
</tr>
<tr>
<td>Percentage of extraction of gold</td>
<td>49.78</td>
</tr>
<tr>
<td>Percentage of extraction of silver</td>
<td>48.36</td>
</tr>
<tr>
<td>Average gold and silver recovered per ton of ore (cents)</td>
<td>21.14</td>
</tr>
<tr>
<td>Average copper in concentrate (per cent)</td>
<td>15.21</td>
</tr>
</tbody>
</table>

The reserves of the company are estimated at 40,000,000 tons, containing on an average 1.70 per cent. copper.

The geological relations are similar to those of the Arizona deposits. Intrusions of monzonite porphyry in Paleozoic limestone caused contact metamorphism of the limestone, silification of both rocks, and some development of copper deposits, few of which are of economic importance. The intrusions of porphyry were in the form of laccoliths or sheets, and after intrusion they became impregnated with disseminated pyrite with a little chalcopyrite, accompanied by general sericitization of the rock. When the intrusive masses became exposed by erosion to the
Oxidation of oxidizing waters a downward migration of copper sulphate, either from the porphyry itself or from the overlying contact deposits, effected a chalcocitization over wide areas.

The leached zone is from 50 to 200 feet in depth and forms an iron-stained soft mass, in places containing oxidized copper ores; below this lies the chalcocite zone, consisting of white earthy porphyry with disseminated grains and flakes of chalcocite and a little pyrite. This zone has a maximum depth of about 500 feet, the copper minerals gradually diminishing downward to the pyritic primary ore; the upper limit is rather sharply defined. Mining in the pit has progressed 100 feet below the capping. Water is beginning to come in at this depth, though the general water level in the porphyry is said to be 385 feet below the surface. Fig. 253 is taken from the report of the Nevada Consolidated Copper Company for 1909–1910.

Bingham.—Relations similar to those at Ely exist at Bingham, Utah, in a region of much sharper relief and medium aridity. The numerous replacement deposits and veins of this district are mentioned elsewhere. In its central part, on both sides of a steep gulch, is an intrusive mass of monzonite, which has been slightly mineralized and contains disseminated pyrite with a notable amount of chalcopyrite. Below an almost barren leached surface zone, which is about 70 feet in depth, lies the chalcocite blanket, in which the ore averages 1½ per cent. copper, its tenor gradually becoming less in depth. The total thickness of the enriched zone is not fully determined. The developed or partly developed ore is stated to amount to 90,000,000 tons. Open-pit and steam-shovel methods are employed, the ore being removed from benches on the steep hillside at the rate of 10,000 to 20,000 tons a day.

The output of 1912 was over 116,000,000 pounds of copper; the ore contains also 0.018 ounce (37 cents) in gold and 0.25 ounce (12 cents) in silver per ton.

The Southwestern Chalcocite Deposits.—In the arid country of southern Arizona and New Mexico we find an interesting group of secondary sulphide deposits similar to the last two examples given. They are sometimes called chalcocite blankets or disseminated chalcocite deposits, and excellent representatives of them are found at Clifton, Globe, Ray, and Santa Rita, and in the

The reserves of the company are estimated at 40,000,000 tons, containing on an average 1.70 per cent. copper.

The geological relations are similar to those of the Arizona deposits. Intrusions of monzonite porphyry in Paleozoic limestone caused contact metamorphism of the limestone, silicification of both rocks, and some development of copper deposits, few of which are of economic importance. The intrusions of porphyry were in the form of laccoliths or sheets, and after intrusion they became impregnated with disseminated pyrite with a little chalcopyrite, accompanied by general sericitization of the rock. When the intrusive masses became exposed by erosion to the
OXIDATION OF METALLIC ORES

action of oxidizing waters a downward migration of copper sulphate, either from the porphyry itself or from the overlying contact deposits, effected a chalcocitization over wide areas.

The leached zone is from 50 to 200 feet in depth and forms an iron-stained soft mass, in places containing oxidized copper ores; below this lies the chalcocite zone, consisting of white earthy porphyry with disseminated grains and flakes of chalcocite and a little pyrite. This zone has a maximum depth of about 500 feet, the copper minerals gradually diminishing downward to the pyritic primary ore; the upper limit is rather sharply defined. Mining in the pit has progressed 100 feet below the capping. Water is beginning to come in at this depth, though the general water level in the porphyry is said to be 385 feet below the surface. Fig. 253 is taken from the report of the Nevada Consolidated Copper Company for 1909–1910.

Bingham.—Relations similar to those at Ely exist at Bingham, Utah, in a region of much sharper relief and medium aridity. The numerous replacement deposits and veins of this district are mentioned elsewhere. In its central part, on both sides of a steep gulch, is an intrusive mass of monzonite, which has been slightly mineralized and contains disseminated pyrite with a notable amount of chalcopyrite. Below an almost barren leached surface zone, which is about 70 feet in depth, lies the chalcocite blanket, in which the ore averages 1½ per cent. copper, its tenor gradually becoming less in depth. The total thickness of the enriched zone is not fully determined. The developed or partly developed ore is stated to amount to 90,000,000 tons. Open-pit and steam-shovel methods are employed, the ore being removed from benches on the steep hillside at the rate of 10,000 to 20,000 tons a day.

The output of 1912 was over 116,000,000 pounds of copper; the ore contains also 0.018 ounce (37 cents) in gold and 0.25 ounce (12 cents) in silver per ton.

The Southwestern Chalcocite Deposits.—In the arid country of southern Arizona and New Mexico we find an interesting group of secondary sulphide deposits similar to the last two examples given. They are sometimes called chalcocite blankets or disseminated chalcocite deposits, and excellent representatives of them are found at Clifton, Globe, Ray, and Santa Rita, and in the

Burro Mountains. In brief, the concentration has been proceeding in porphyry, granite, or schist containing disseminated pyrite with a little chalcopyrite. Enrichment through replacement of pyrite by chalcopyrite has in places occurred along fissures or fissured zones, or still more commonly in irregular areas of fractured and brecciated rocks. The result is a chalcopyrite ore containing 2 to 4 per cent. copper and also some residual pyrite; this zone is from 100 feet or less up to several hundred feet in thickness. Above it lies a barren oxidized and leached zone reaching to the surface and from 50 to 1,000 feet in thickness; in places this zone contains some oxidized ore. Below the chalcopyrite, the primary pyritic dissemination extends to an unknown depth, the rock containing but a fraction of a per cent. of copper. The upper limit of the chalcopyrite zone is sharply defined; the richest ore is found here, gradually decreasing in tenor as depth increases. The water level usually lies at or below the lower limit of the chalcopyrite zone, and the zone itself, or at any rate the top of it, is for the most part high above the present drainage level.

Evidently the secondary sulphides could not have been formed in their present places under present conditions, for their upper parts are now being actively oxidized. They give evidence of having been accumulated during a long period, probably beginning in the late Tertiary, when the climate was damp and the water level high, before erosion had cut to its present depth. The overlying lean porphyry was leached of its scant copper content, the copper descending as sulphate to become precipitated as chalcopyrite on the primary pyrite in depth. At some places the copper solutions may have been derived partly from once overlying, now eroded contact-metamorphic deposits.

These deposits are then old—marooned, as it were, high above their normal position and in an unstable condition. Probably they were once thicker and poorer than now and covered by a gossan. Erosion has carried away the surface gossan, and the scant rain waters have leached the upper part of the underlying chalcopyrite zone—now the barren zone—and driven the copper downward to replace the remaining pyrite at the level in the zone where the oxygen of the descending water became exhausted. Thus is explained the richness near the top, and it follows as a corollary that chalcopyrite may be deposited above the permanent water level, provided not much oxygen is present.
Clifton.—At Clifton, Arizona, in a region of sharply accentuated topography and extremely low water level, a large body of granite porphyry cuts across pre-Cambrian granite and a moderately thick series of Paleozoic limestone. Contact-metamorphic deposits were developed in the limestone and somewhat later high-temperature fissure veins or broad fissured zones in the sedimentary and igneous rocks close to the contact. In both contact deposits and veins the primary ore is of low grade, consisting mostly of pyrite with a little chalcopyrite and zinc blende.

In the limestone the oxidation descends irregularly, rarely to a greater depth than 400 feet. Thecroppings of these deposits often show much limonite and azurite. In depth the principal ores are malachite and azurite with limonite and soft manganese minerals. There is ordinarily little chalcocite. The veins in sedimentary rocks are narrow and comparatively unimportant. Those in the sericitized porphyry contain large bodies of chalcocite ordinarily carrying from 2 to 5 per cent. of copper; but there were also found large masses of almost pure and compact chalcocite replacing massive pyritic veins.

The surface zone extends from 50 to 200 feet below the cropped. It is generally barren, though in places it contains brochantite or chrysocolla. On Copper Mountain, where the principal mines are located, the outcrops of the veins are almost completely barren and even the iron has been leached from them.

The chalcocite zone (Fig. 254) is from 100 to 200 feet or locally even more in thickness; it contains chalcocite grains with pyrite kernels, disseminated in sericitized and partly kaolinized porphyry. The upper part is the richer; some veins show oxidation by the development of cuprite, native copper, and some covellite near the upper limit of the chalcocite; in others, at this level, the chalcocite is first leached and a shallow zone of rusty pyrite with seams of chalcanthite remains. The copper in the chalcocite zone gradually decreases in depth; at some places the lower limit is sharply defined, the transition between barren pyrite and pay ore taking place within 20 feet. The upper limit appears to be represented by a curve somewhat less convex than the surface contour. The lower limit shows great irregularities.

Below the chalcocite zone is the primary lean pyritic ore, occurring both as thick seams or veins and as impregnations of the country rock surrounding these veins.

Another type of deposit is represented by dikes of porphyry in limestone, in which a chalcocite zone similar to that in the veins has been formed.

Both in contact-metamorphic deposits and in veins the period of chalcocitization began at an early date, before the deposition of the Gila conglomerate, most likely in the early Tertiary. The chalcocite deposits lie under the summits of the ridges and hills. Along the canyons, eroded since the epoch of main chalcocitization, there has been but slight enrichment of primary veins, at most a superficial coating of the pyrite by the cuprous sulphide.

Globe.—The copper deposits at Globe, Arizona, and the geology of the surrounding region have been described by Ransome.¹ The deposits are replacements in limestone and veins in diabase; in the former the oxidation has produced oxidized copper minerals; in the latter a zone of chalcocitization is encountered. Illustrating the changes, Ransome describes a specimen from the Old Dominion mine consisting of chalcocite, altering to malachite; above the malachite are druses of quartz; calcite encrusts the quartz and native copper has been deposited on the calcite.

OXIDATION OF METALLIC ORES

A few miles from Globe, in a region of moderate relief, there is an area of granite (Schultze granite) intrusive into the pre-Cambrian Pinal schist; in the latter near the contact several disseminated chalcocite deposits have lately been discovered.

At the Miami mine¹ the leached zone is about 200 feet deep and contains in places oxidized ores; a sharp line of demarcation separates it from the underlying chalcocite. The deposit forms a flattened mass which in depth gradually increases in extent. On the 270-foot level the chalcocite area occupies 1 acre; on the 370-foot level, 3 acres; on the 470-foot level, 16 acres. The average tenor of the ore is over 3 per cent. of copper near the top of the chalcocite zone, but falls to 2.65 per cent. on the 570-foot level. At greater depth the percentage of copper in the ore changes abruptly from 2 per cent. to 1 per cent. or less. The mine produces a little water on the 450-foot level.

At the neighboring Inspiration mine the leached surface zone is from 50 to 575 feet deep, averaging 367 feet, while the underlying enriched zone averages 155 feet in thickness.² It is stated that 21,000,000 tons of ore containing 2 per cent. copper has been developed over an area of 40 acres. To develop this ore 81 holes were drilled and underground development work aggregating 27,500 feet was done. In the whole ore zone, it is said, 80,000,000 tons of 2 to 2.5 per cent. ore has been developed.

These deposits are thought to have been formed during the last part of the Tertiary period. Their oxidation is now in progress, with enrichment and concentration of the underlying chalcocite.

Ray.—At Ray, Arizona,³ about 25 miles southwest of Globe, a similar but more extensive chalcocite blanket has been discovered and developed by churn drills. The Ray mines are situated in a basin on the upper part of a creek, at an elevation of about 2,200 feet. The deposits are in an area of crushed and altered pre-Cambrian schist, cut by dikes of granite porphyry

³ Editorial, Mines and Methods, April 10, 1910.
⁵ Recent developments have shown that the chalcocite zone at one place lies at a depth of 1,200 feet below the surface.
⁶ W. Lindgren, personal observations.
⁷ C. F. Tolman, Min. and Sci. Press, Nov. 6, 1909.
⁹ W. H. Weed, Mining World, Jan. 14, 1911.
and diabase. The upper leached zone, containing some oxidized copper ore, is from 50 to 150 feet thick. The chalcocite, disclosed by drilling and underground operations, extends over a large area, probably more than 100 acres; its thickness is from 20 to 300 feet and in a considerable part of the area averages 60 feet. The chalcocite zone is richest at the top and gradually becomes poorer in depth. An enormous amount of ore, said to average 2.3 per cent. copper, has been shown to exist, and the exploitation of this great deposit began in 1910. The region had long been known as copper-bearing and futile operations on small masses of oxidized ore along diabase dikes had been undertaken. Until about ten years ago, however, it was not thought that ore of so low a grade could be mined profitably. Water begins to come in at the lower limits of the ore-body, which lies below the level of the creek.

According to Weed the granite porphyry is later than the diabase, and it is probable that both at Miami and at Ray the intrusion of the granite porphyry was the cause of the primary mineralization of lean cupriferous pyrite in the schists. According to the same author there are some exceptions to the rule of sharp definition between the leached zone and the ore, for at the Ray Central mine the change is gradual and for some distance above the 200-foot level the ore consists of one-half chalcocite and one-half cuprite. The passage into primary sulphides is usually effected within 50 feet. In this deepest zone are found disseminated pyrite, a little chalcopyrite and molybdenite, and quartz veinlets. This material contains less than 1 per cent. copper.

Silver Deposits

Las Chispas.—The deposit worked by the Las Chispas mine, Sonora, Mexico,\(^1\) situated in an arid region, is a quartz vein in rhyolite and tuffs. In recent years a large production has been reported; the production for 1909 is stated as 485,000 ounces of silver and 3,500 ounces of gold. The depth attained is 900 feet, water beginning to appear in quantity at the 300-foot level. Down to the 200-foot level the ore contained chiefly horn silver with some native gold. Below that depth appeared pyrite, argentite, and pyrargyrite, with large masses of stephanite and polybasite; there is also a little chalcopyrite. Some of the sul-

phides at the bottom, 600 feet below water level, are considered to be due to secondary deposition. Horizontal barren zones are said to exist in the sulphide ore, suggesting repeated changes of water level. A streak of solid argentiferous hematite is reported at a depth of 900 feet.

Georgetown.—In the Georgetown district, Colorado, argentiferous veins cut pre-Cambrian granites and schists. The climate is rigorous, the relief strong, the water level high. The zone of complete oxidation, in which the ores are rich in silver, extends at most 40 feet below the surface. Below this are friable black sulphides and secondary galena rich in silver and with more gold than occurs at greater depth; the primary sulphides, which contained about 25 ounces of silver per ton, are here enriched and carry more than 200 ounces per ton. Below the zone where the soft secondary sulphides occur and irregularly overlapping the lower portion of this zone are rich ores containing polybasite, tetrahedrite, and ruby silver, better crystallized and more massive than the pulverulent sulphides, but also subsequent in origin to the massive (primary) galena-blende ore. These richer ores diminish in quantity as depth increases, although gradually and irregularly, so that the lower portion of the veins contains relatively less silver and lead. The best ore in most veins has been found in the uppermost 500 feet, although good ore extends locally down to 700 or 800 feet, and in the Colorado Central and to a minor extent in other veins down to 1,000 feet or more.

Tonopah.—At Tonopah, Nevada, a series of rich silver-gold quartz veins (Au:Ag = 9:1 by weight), containing native gold, argentite, polybasite, pyrite, etc., with some rhodonite, adularia, and carbonates, cut across Tertiary andesites. The climate is exceedingly dry, and the veins are situated in a group of hills rising from the desert. The deposits are oxidized down to a depth of about 700 feet; ground water is lacking, but from 1,000 feet downward tepid and hot waters, containing mainly alkaline sulphates, are met. The oxidation is irregular and incomplete;

2 Tetrahedrite is, in part at least, a constituent of the primary ore at Georgetown.—W. L.
J. A. Burgess, Econ. Geol., vol. 6, 1911, pp. 13–21.
the pyrite is changed to limonite, and much chloride of silver, with some bromide and iodide, has formed. In general, cerargyrite is found in the upper part of the oxidized zone; bromyrite in the middle, and iodyrite in the lower part; Burgess believes that Ag₂SO₄ was slowly added from oxidizing argentite to descending alkaline haloid salts. Other minerals of the oxidized zone are kaolin, hyalite, gypsum, limonite, hematite, jarosite, and wulfenite. Burgess also mentions an interesting occurrence of white, secondary apatite; finally hydrous phosphates like turquoise and wavellite. The earthy carbonates are dissolved and the manganese precipitated as MnO₄⁻. On the whole the oxidized ore contains more silver than the primary ore.

Below the oxidized zone the fissures and cracks in the hard quartzose ore contain some secondary argentite, polybasite, pyrargyrite, and also chalcopyrite. Even the oxidized zone contains some veinlets filled with pyrargyrite. There is no well-defined zone of sulphide enrichment; secondary pyrite, blende, and galena are absent. Spurr believes that “the secondary sulphides in the oxidized zone originated from descending surface waters, and probably part but not all of the sulphides in druses in the sulphide ore have a similar origin.” Manganese being present, it would be natural to expect some evidence of transportation of gold, but the facts are against this.

Analyses show that the carbonates were removed from the primary ore and with them most of the lime and magnesia; iron, manganese, copper, lead, and zinc have been largely removed, likewise most of the selenium, arsenic, and antimony. The argentite has largely remained unaltered, while polybasite and the selenides have been decomposed; a little As and Sb remain to form ruby silver. The silver in the oxidized ore is combined as argentite, haloid compounds, and gold alloy.

Broken Hill.—In the desert region of western New South Wales, at Broken Hill,¹ lies one of the world’s greatest deposits of lead and zinc. It is a vein-like mass of high-temperature origin in gneiss and consists of galena, zinc blende, a little pyrite, and chalcopyrite with quartz, garnet, and rhodonite. The deposit has been followed down to a depth of 2,400 feet and at the deepest levels contains large bodies of ore.

The surface gave little indication of the character of the deposit. Down to a depth of 300 feet the outcrops and upper parts of the vein formed a strong gossan 20 to 100 feet wide of siliceous and manganiferous limonite, hematite, and kaolin. Below the gossan were found great masses of cerussite, anglesite, cuprite, and malachite, with abundant cerargyrite, embolite, and iodyrite. There was but little smithsonite.

Where the oxidized ores changed to primary sulphide ores there was a thin deposit of sooty material rich in silver and copper and evidently representing a zone of secondary sulphides; the slight depth of this sulphide zone is remarkable. No fully adequate accounts of the occurrence are available.

A vein of different type in the same district, known as the Australian-Broken Hill Consols,\(^1\) carries primary tetrahedrite, siderite, and calcite. Large masses of stromeyerite (Ag\(_5\)S\(_2\)Cu\(_2\)S) and dyscrasite (Ag\(_5\)Sb), both secondary, were found in the oxidized zone, especially at the intersection with a cross vein.

Granite-Bimetallic Mine.—The Granite Bimetallic mine, in western Montana, described by W. H. Emmons,\(^2\) offers an interesting example of secondary changes in a fissure vein. It is contained in granite country rock and the developments extend to a depth of 2,600 feet. The mine is not worked at present, but its early production amounted to $32,000,000 in gold and silver. The lode is a typical steep fissure with filling from 1 to 20 feet wide, of simple structure and remarkable horizontal and vertical persistence. The primary ore consists of quartz and rhodochrosite with much pyrite, arsenopyrite, galena, and tetrahedrite, some galena and zinc blende, and specks of pyrargyrite. The ore is of comparatively low grade, containing 20 to 30 ounces of silver and about $2 in gold per ton.

The uppermost, oxidized zone, from 50 to 300 feet deep, is a poor iron-stained quartz, with little silver and a trace of gold. The material, which is so poor that many of the claims along the vein were abandoned during its early history, also contains some cerussite, malachite, etc., as well as remnants of unoxidized sulphides. Emmons considers that this leached zone is derived by incomplete oxidation of the lower zone of enriched sulphides.

Below this leached zone lies another called by Emmons the zone of enriched oxidized ore; it is for the most part between the

ton in the sulphide ore. No secondary silver sulphides have been noted. The gold tenor is uniform throughout the copper area, indicating that practically no secondary concentration has taken place. The ores average 30 to 50 cents per ton in gold, with little difference between oxidized ore and that of the sulphide zone. A sharp line of demarcation separates the two zones, the change in many places occurring within 2 or 3 feet vertically. At this level the ores contained much chalcocite and averaged 8 per cent. or more of copper. Solid masses of glance ore, 15 feet or more in thickness, were found. Covellite is less abundant and secondary chalcopyrite is rare. Corroded crystals of chalcocite and others coated by quartz are mentioned by H. V. Winchell. In depth the enriched ore gradually decreases in value, but low-grade ore of about 2.5 per cent. persists to depths of even 2,600 feet from the surface, particularly along planes where the circulation of water was energetic. In general chalcocitization was accompanied by kaolinitization.

The ores of Butte are in general disseminated pyritic replacements along fissures in granitic rocks, in which the pyrite grains have subsequently, by descending solutions, been partly altered to chalcocite. Many of the fault veins carry chalcocite ore as drag, but owing to their clayey character the circulation along them has been sluggish and they do not contain large masses of ore.

J. F. Simpson describes enrichment by bornite and chalcocite at 2,000 feet below the surface and found the succession of the minerals to be pyrite, chalcopyrite, enargite, bornite, and chalcocite. It has been asserted lately by R. H. Sales that a part of the chalcocite appearing in the lower levels is of primary origin, and this is by no means impossible. Nevertheless, it is certain that not all the compact chalcocite is primary, for secondary chalcocite can assume either the sooty or the compact form.

The problem of enrichment at Butte is complicated and it has been suggested that after some of the enrichment had taken place there occurred a repeated invasion of ascending waters, perhaps depositing enargite. In explanation of the deep chalcocite zone Emmons and Weed state that the block in which the veins are contained has been faulted down probably several thousand feet and that thus the water level might formerly have stood lower than at the present time. This explanation is not

1 Econ. Geol., vol. 3, 1900, p. 630.
satisfactory, for it is not probable that the water level in this region has ever been at a considerable depth below the surface, and in the adjacent and higher block on the east the water level still remains high. It is conceded that the present barren zone was created by leaching of the former upper part of the chalcopyrite zone and that during this process the copper was sharply concentrated in the upper part of the present enriched zone. Therefore the latter, like many other bodies of secondary chalcocite, must be of considerable geological age and long antedate the faulting. When it was accumulated the water level was assuredly much higher than at present.

Encampment.—In the Encampment district, Wyoming, a region of high elevation, rough topography, and severe climate, the ores occur in brecciated quartzite near diorite or gabbro. The zone of oxidation extends only 20 to 70 feet below the surface. The primary chalcopyrite is replaced by chalcocite, and this chalcocitization reaches with decreasing intensity to unexpectedly great depths—at least several hundred feet below the surface. This occurrence, in a region free from the great complications of the Butte district, gives assurance that chalcocitization may take place in regions of cold climate and high ground-water level.

Ely.—An important deposit of secondary chalcocite is now being worked on a large scale at Ely, Nevada. The deposit is stripped and the ore extracted by steam shovels, at the rate of 10,000 tons per day. Further treatment consists in concentration and smelting in reverberatory furnaces followed by bessemerizing. The report of the Nevada Consolidated Copper Company (1909–1910) summarizes the important facts:

- Tons of ore treated (dry) 2,237,028.0
- Average copper content (per cent.) 2.06
- Percentage of extraction of copper 69.52
- Ratio of concentration 10.6 : 1
- Gold content (ounce per ton of ore) 0.0181
- Silver content (ounce per ton of ore) 0.0879
- Percentage of extraction of gold 49.78
- Percentage of extraction of silver 48.36
- Average gold and silver recovered per ton of ore (cents) 21.14
- Average copper in concentrate (per cent) 15.21

The reserves of the company are estimated at 40,000,000 tons, containing on an average 1.70 per cent. copper.

The geological relations are similar to those of the Arizona deposits. Intrusions of monzonite porphyry in Paleozoic limestone caused contact metamorphism of the limestone, silicification of both rocks, and some development of copper deposits, few of which are of economic importance. The intrusions of porphyry were in the form of laccoliths or sheets, and after intrusion they became impregnated with disseminated pyrite with a little chalcopyrite, accompanied by general sericitization of the rock. When the intrusive masses became exposed by erosion to the

Fig. 253.—Plan and section of chalococite deposit at Ely, Nevada. From annual report of Nevada Consolidated Copper Co.
OXIDATION OF METALLIC ORES

The action of oxidizing waters a downward migration of copper sulphate, either from the porphyry itself or from the overlying contact deposits, effected a chalcocitization over wide areas.

The leached zone is from 50 to 200 feet in depth and forms an iron-stained soft mass, in places containing oxidized copper ores; below this lies the chalcocite zone, consisting of white earthy porphyry with disseminated grains and flakes of chalcocite and a little pyrite. This zone has a maximum depth of about 500 feet, the copper minerals gradually diminishing downward to the pyritic primary ore; the upper limit is rather sharply defined. Mining in the pit has progressed 100 feet below the capping. Water is beginning to come in at this depth, though the general water level in the porphyry is said to be 385 feet below the surface. Fig. 253 is taken from the report of the Nevada Consolidated Copper Company for 1909–1910.

Bingham.—Relations similar to those at Ely exist at Bingham, Utah, in a region of much sharper relief and medium aridity. The numerous replacement deposits and veins of this district are mentioned elsewhere. In its central part, on both sides of a steep gulch, is an intrusive mass of monzonite, which has been slightly mineralized and contains disseminated pyrite with a notable amount of chalcopyrite. Below an almost barren leached surface zone, which is about 70 feet in depth, lies the chalcocite blanket, in which the ore averages 1.5 per cent. copper, its tenor gradually becoming less in depth. The total thickness of the enriched zone is not fully determined. The developed or partly developed ore is stated to amount to 90,000,000 tons. Open-pit and steam-shovel methods are employed, the ore being removed from benches on the steep hillside at the rate of 10,000 to 20,000 tons a day.

The output of 1912 was over 116,000,000 pounds of copper; the ore contains also 0.018 ounce (37 cents) in gold and 0.25 ounce (12 cents) in silver per ton.

The Southwestern Chalcocite Deposits.—In the arid country of southern Arizona and New Mexico we find an interesting group of secondary sulphide deposits similar to the last two examples given. They are sometimes called chalcocite blankets or disseminated chalcocite deposits, and excellent representatives of them are found at Clifton, Globe, Ray, and Santa Rita, and in the

Burro Mountains. In brief, the concentration has been proceeding in porphyry, granite, or schist containing disseminated pyrite with a little chalcopyrite. Enrichment through replacement of pyrite by chalcocite has in places occurred along fissures or fissured zones, or still more commonly in irregular areas of fractured and brecciated rocks. The result is a chalcocite ore containing 2 to 4 per cent. copper and also some residual pyrite; this zone is from 100 feet or less up to several hundred feet in thickness. Above it lies a barren oxidized and leached zone reaching to the surface and from 50 to 1,000 feet in thickness; in places this zone contains some oxidized ore. Below the chalcocite, the primary pyritic dissemination extends to an unknown depth, the rock containing but a fraction of a per cent. of copper. The upper limit of the chalcocite zone is sharply defined; the richest ore is found here, gradually decreasing in tenor as depth increases. The water level usually lies at or below the lower limit of the chalcocite zone, and the zone itself, or at any rate the top of it, is for the most part high above the present drainage level.

Evidently the secondary sulphides could not have been formed in their present places under present conditions, for their upper parts are now being actively oxidized. They give evidence of having been accumulated during a long period, probably beginning in the late Tertiary, when the climate was damp and the water level high, before erosion had cut to its present depth. The overlying lean porphyry was leached of its scant copper content, the copper descending as sulphate to become precipitated as chalcocite on the primary pyrite in depth. At some places the copper solutions may have been derived partly from once overlying, now eroded contact-metamorphic deposits.

These deposits are then old—marooned, as it were, high above their normal position and in an unstable condition. Probably they were once thicker and poorer than now and covered by a gossan. Erosion has carried away the surface gossan, and the scant rain waters have leached the upper part of the underlying chalcocite zone—now the barren zone—and driven the copper downward to replace the remaining pyrite at the level in the zone where the oxygen of the descending water became exhausted. Thus is explained the richness near the top, and it follows as a corollary that chalcocite may be deposited above the permanent water level, provided not much oxygen is present.
Clifton.—At Clifton, Arizona, in a region of sharply accentuated topography and extremely low water level, a large body of granite porphyry cuts across pre-Cambrian granite and a moderately thick series of Paleozoic limestone. Contact-metamorphic deposits were developed in the limestone and somewhat later high-temperature fissure veins or broad fissured zones in the sedimentary and igneous rocks close to the contact. In both contact deposits and veins the primary ore is of low grade, consisting mostly of pyrite with a little chalcopyrite and zinc blende.

In the limestone the oxidation descends irregularly, rarely to a greater depth than 400 feet. Theappings of these deposits often show much limonite and azurite. In depth the principal ores are malachite and azurite with limonite and soft manganese minerals. There is ordinarily little chalcocite. The veins in sedimentary rocks are narrow and comparatively unimportant. Those in the sericitized porphyry contain large bodies of chalcocite ordinarily carrying from 2 to 5 per cent. of copper; but there were also found large masses of almost pure and compact chalcocite replacing massive pyritic veins.

Burro Mountains. In brief, the concentration has been proceeding in porphyry, granite, or schist containing disseminated pyrite with a little chalcopyrite. Enrichment through replacement of pyrite by chalcocite has in places occurred along fissures or fissured zones, or still more commonly in irregular areas of fractured and brecciated rocks. The result is a chalcocite ore containing 2 to 4 per cent. copper and also some residual pyrite; this zone is from 100 feet or less up to several hundred feet in thickness. Above it lies a barren oxidized and leached zone reaching to the surface and from 50 to 1,000 feet in thickness; in places this zone contains some oxidized ore. Below the chalcocite, the primary pyritic dissemination extends to an unknown depth, the rock containing but a fraction of a per cent. of copper. The upper limit of the chalcocite zone is sharply defined; the richest ore is found here, gradually decreasing in tenor as depth increases. The water level usually lies at or below the lower limit of the chalcocite zone, and the zone itself, or at any rate the top of it, is for the most part high above the present drainage level.

Evidently the secondary sulphides could not have been formed in their present places under present conditions, for their upper parts are now being actively oxidized. They give evidence of having been accumulated during a long period, probably beginning in the late Tertiary, when the climate was damp and the water level high, before erosion had cut to its present depth. The overlying lean porphyry was leached of its scant copper content, the copper descending as sulphate to become precipitated as chalcocite on the primary pyrite in depth. At some places the copper solutions may have been derived partly from once overlying, now eroded contact-metamorphic deposits.

These deposits are then old—marooned, as it were, high above their normal position and in an unstable condition. Probably they were once thicker and poorer than now and covered by a gossan. Erosion has carried away the surface gossan, and the scant rain waters have leached the upper part of the underlying chalcocite zone—now the barren zone—and driven the copper downward to replace the remaining pyrite at the level in the zone where the oxygen of the descending water became exhausted. Thus is explained the richness near the top, and it follows as a corollary that chalcocite may be deposited above the permanent water level, provided not much oxygen is present.
Clifton.—At Clifton, Arizona, in a region of sharply accentuated topography and extremely low water level, a large body of granite porphyry cuts across pre-Cambrian granite and a moderately thick series of Paleozoic limestone. Contact-metamorphic deposits were developed in the limestone and somewhat later high-temperature fissure veins or broad fissured zones in the sedimentary and igneous rocks close to the contact. In both contact deposits and veins the primary ore is of low grade, consisting mostly of pyrite with a little chalcopyrite and zinc blende.

In the limestone the oxidation descends irregularly, rarely to a greater depth than 400 feet. The croppings of these deposits often show much limonite and azurite. In depth the principal ores are malachite and azurite with limonite and soft manganese minerals. There is ordinarily little chalcolite. The veins in sedimentary rocks are narrow and comparatively unimportant. Those in the sericitized porphyry contain large bodies of chalcoite ordinarily carrying from 2 to 5 per cent. of copper; but there were also found large masses of almost pure and compact chalcoite replacing massive pyritic veins.

The surface zone extends from 50 to 200 feet below the crop-
pings. It is generally barren, though in places it contains bro-
chantite or chrysocolla. On Copper Mountain, where the prin-
cipal mines are located, the outcrops of the veins are almost
completely barren and even the iron has been leached from them.
The chalcocite zone (Fig. 254) is from 100 to 200 feet or locally
even more in thickness; it contains chalcocite grains with pyrite
kernels, disseminated in sericitized and partly kaolinized por-
phyry. The upper part is the richer; some veins show oxidation
by the development of cuprite, native copper, and some covellite
near the upper limit of the chalcocite; in others, at this level, the
chalcocite is first leached and a shallow zone of rusty pyrite with
seams of chalcanthite remains. The copper in the chalcocite
zone gradually decreases in depth; at some places the lower limit
is sharply defined, the transition between barren pyrite and
pay ore taking place within 20 feet. The upper limit appears
to be represented by a curve somewhat less convex than the
surface contour. The lower limit shows great irregularities.
Below the chalcocite zone is the primary lean pyritic ore,
occuring both as thick seams or veins and as impregnations
of the country rock surrounding these veins.

Another type of deposit is represented by dikes of porphyry
in limestone, in which a chalcocite zone similar to that in the
veins has been formed.

Both in contact-metamorphic deposits and in veins the period
of chalcocitization began at an early date, before the deposition
of the Gila conglomerate, most likely in the early Tertiary. The
chalcocite deposits lie under the summits of the ridges and hills.
Along the canyons, eroded since the epoch of main chalcociti-
zation, there has been but slight enrichment of primary veins, at
most a superficial coating of the pyrite by the cuprous sulphide.

Globe.—The copper deposits at Globe, Arizona, and the geology
of the surrounding region have been described by Ransome. ¹
The deposits are replacements in limestone and veins in diabase;
in the former the oxidation has produced oxidized copper minerals;
in the latter a zone of chalcocitization is encountered. Illustrat-
ing the changes, Ransome describes a specimen from the Old
Dominion mine consisting of chalcocite, altering to malachite;
above the malachite are druses of quartz; calcite encrusts the
quartz and native copper has been deposited on the calcite.

A few miles from Globe, in a region of moderate relief, there is an area of granite (Schultze granite) intrusive into the pre-Cambrian Pinal schist; in the latter near the contact several disseminated chalcocite deposits have lately been discovered.

At the Miami mine the leached zone is about 200 feet deep and contains in places oxidized ores; a sharp line of demarcation separates it from the underlying chalcocite. The deposit forms a flattened mass which in depth gradually increases in extent. On the 270-foot level the chalcocite area occupies 1 acre; on the 370-foot level, 3 acres; on the 470-foot level, 16 acres. The average tenor of the ore is over 3 per cent. of copper near the top of the chalcocite zone, but falls to 2.65 per cent. on the 570-foot level. At greater depth the percentage of copper in the ore changes abruptly from 2 per cent. to 1 per cent. or less. The mine produces a little water on the 450-foot level.

At the neighboring Inspiration mine the leached surface zone is from 50 to 575 feet deep, averaging 367 feet, while the underlying enriched zone averages 155 feet in thickness. It is stated that 21,000,000 tons of ore containing 2 per cent. copper has been developed over an area of 40 acres. To develop this ore 81 holes were drilled and underground development work aggregating 27,500 feet was done. In the whole ore zone, it is said, 80,000,000 tons of 2 to 2.5 per cent. ore has been developed.

These deposits are thought to have been formed during the last part of the Tertiary period. Their oxidation is now in progress, with enrichment and concentration of the underlying chalcocite.

Ray.—At Ray, Arizona, about 25 miles southwest of Globe, a similar but more extensive chalcocite blanket has been discovered and developed by churn drills. The Ray mines are situated in a basin on the upper part of a creek, at an elevation of about 2,200 feet. The deposits are in an area of crushed and altered pre-Cambrian schist, cut by dikes of granite porphyry.

5. Recent developments have shown that the chalcocite zone at one place lies at a depth of 1,200 feet below the surface.
6. W. Lindgren, personal observations.
and diabase. The upper leached zone, containing some oxidized copper ore, is from 50 to 150 feet thick. The chalcocite, disclosed by drilling and underground operations, extends over a large area, probably more than 100 acres; its thickness is from 20 to 300 feet and in a considerable part of the area averages 60 feet. The chalcocite zone is richest at the top and gradually becomes poorer in depth. An enormous amount of ore, said to average 2.3 per cent. copper, has been shown to exist, and the exploitation of this great deposit began in 1910. The region had long been known as copper-bearing and futile operations on small masses of oxidized ore along diabase dikes had been undertaken. Until about ten years ago, however, it was not thought that ore of so low a grade could be mined profitably. Water begins to come in at the lower limits of the ore-body, which lies below the level of the creek.

According to Weed the granite porphyry is later than the diabase, and it is probable that both at Miami and at Ray the intrusion of the granite porphyry was the cause of the primary mineralization of lean cupriferous pyrite in the schists. According to the same author there are some exceptions to the rule of sharp definition between the leached zone and the ore, for at the Ray Central mine the change is gradual and for some distance above the 200-foot level the ore consists of one-half chalcocite and one-half cuprite. The passage into primary sulphides is usually effected within 50 feet. In this deepest zone are found disseminated pyrite, a little chalcopyrite and molybdenite, and quartz veinlets. This material contains less than 1 per cent. copper.

Silver Deposits

Las Chispas.—The deposit worked by the Las Chispas mine, Sonora, Mexico, situated in an arid region, is a quartz vein in rhyolite and tuffs. In recent years a large production has been reported; the production for 1909 is stated as 485,000 ounces of silver and 3,500 ounces of gold. The depth attained is 900 feet, water beginning to appear in quantity at the 300-foot level. Down to the 200-foot level the ore contained chiefly horn silver with some native gold. Below that depth appeared pyrite, argentite, and pyrrargyrite, with large masses of stephanite and polybasite; there is also a little chalcopyrite. Some of the sul-

phides at the bottom, 600 feet below water level, are considered to be due to secondary deposition. Horizontal barren zones are said to exist in the sulphide ore, suggesting repeated changes of water level. A streak of solid argentiferous hematite is reported at a depth of 900 feet.

Georgetown.—In the Georgetown district, Colorado, argentiferous veins cut pre-Cambrian granites and schists. The climate is rigorous, the relief strong, the water level high. The zone of complete oxidation, in which the ores are rich in silver, extends at most 40 feet below the surface. Below this are friable black sulphides and secondary galena rich in silver and with more gold than occurs at greater depth; the primary sulphides, which contained about 25 ounces of silver per ton, are here enriched and carry more than 200 ounces per ton. Below the zone where the soft secondary sulphides occur and irregularly overlapping the lower portion of this zone are rich ores containing polybasite, tetrahedrite, and ruby silver, better crystallized and more massive than the pulverulent sulphides, but also subsequent in origin to the massive (primary) galena-blende ore. These richer ores diminish in quantity as depth increases, although gradually and irregularly, so that the lower portion of the veins contains relatively less silver and lead. The best ore in most veins has been found in the uppermost 500 feet, although good ore extends locally down to 700 or 800 feet, and in the Colorado Central and to a minor extent in other veins down to 1,000 feet or more.

Tonopah.—At Tonopah, Nevada, a series of rich silver-gold quartz veins (Au:Ag = 9:1 by weight), containing native gold, argentite, polybasite, pyrite, etc., with some rhodonite, adularia, and carbonates, cut across Tertiary andesites. The climate is exceedingly dry, and the veins are situated in a group of hills rising from the desert. The deposits are oxidized down to a depth of about 700 feet; ground water is lacking, but from 1,000 feet downward tepid and hot waters, containing mainly alkaline sulphates, are met. The oxidation is irregular and incomplete;

2 Tetrahedrite is, in part at least, a constituent of the primary ore at Georgetown.—W. L.
J. A. Burgess, Econ. Geol., vol. 6, 1911, pp. 13–21.
the pyrite is changed to limonite, and much chloride of silver, with some bromide and iodide, has formed. In general, cerargyrite is found in the upper part of the oxidized zone; bromyrite in the middle, and iodyrite in the lower part; Burgess believes that \(\text{Ag}_2\text{SO}_4 \) was slowly added from oxidizing argentite to descending alkaline haloid salts. Other minerals of the oxidized zone are kaolin, hyalite, gypsum, limonite, hematite, jarosite, and wulfenite. Burgess also mentions an interesting occurrence of white, secondary apatite; finally hydrous phosphates like turquoise and wavellite. The earthy carbonates are dissolved and the manganese precipitated as \(\text{MnO}_4^- \). On the whole the oxidized ore contains more silver than the primary ore.

Below the oxidized zone the fissures and cracks in the hard quartzose ore contain some secondary argentite, polybasite, pyrargyrite, and also chalcopyrite. Even the oxidized zone contains some veinlets filled with pyrargyrite. There is no well-defined zone of sulphide enrichment; secondary pyrite, blende, and galena are absent. Spurr believes that "the secondary sulphides in the oxidized zone originated from descending surface waters, and probably part but not all of the sulphides in druses in the sulphide ore have a similar origin." Manganese being present, it would be natural to expect some evidence of transportation of gold, but the facts are against this.

Analyses show that the carbonates were removed from the primary ore and with them most of the lime and magnesia; iron, manganese, copper, lead, and zinc have been largely removed, likewise most of the selenium, arsenic, and antimony. The argentite has largely remained unaltered, while polybasite and the selenides have been decomposed; a little As and Sb remain to form ruby silver. The silver in the oxidized ore is combined as argentite, haloid compounds, and gold alloy.

Broken Hill.—In the desert region of western New South Wales, at Broken Hill,\(^1\) lies one of the world's greatest deposits of lead and zinc. It is a vein-like mass of high-temperature origin in gneiss and consists of galena, zinc blende, a little pyrite, and chalcopyrite with quartz, garnet, and rhodonite. The deposit has been followed down to a depth of 2,400 feet and at the deepest levels contains large bodies of ore.

The surface gave little indication of the character of the deposit. Down to a depth of 300 feet the outcrops and upper parts of the vein formed a strong gossan 20 to 100 feet wide of siliceous and manganiferous limonite, hematite, and kaolin. Below the gossan were found great masses of cerussite, anglesite, cuprite, and malachite, with abundant cerargyrite, embolite, and iodyrite. There was but little smithsonite.

Where the oxidized ores changed to primary sulphide ores there was a thin deposit of sooty material rich in silver and copper and evidently representing a zone of secondary sulphides; the slight depth of this sulphide zone is remarkable. No fully adequate accounts of the occurrence are available.

A vein of different type in the same district, known as the Australian-Broken Hill Consols,\(^1\) carries primary tetrahedrite, siderite, and calcite. Large masses of stromeyerite (Ag_3S.Cu_2S) and dyscrasite (Ag_Sb), both secondary, were found in the oxidized zone, especially at the intersection with a cross vein.

Granite-Bimetallic Mine.—The Granite Bimetallic mine, in western Montana, described by W. H. Emmons,\(^2\) offers an interesting example of secondary changes in a fissure vein. It is contained in granite country rock and the developments extend to a depth of 2,600 feet. The mine is not worked at present, but its early production amounted to $32,000,000 in gold and silver. The lode is a typical steep fissure with filling from 1 to 20 feet wide, of simple structure and remarkable horizontal and vertical persistence. The primary ore consists of quartz and rhodochrosite with much pyrite, arsenopyrite, galena, and tetrahedrite, some galena and zinc blende, and specks of pyargyrite. The ore is of comparatively low grade, containing 20 to 30 ounces of silver and about $2 in gold per ton.

The uppermost, oxidized zone, from 50 to 300 feet deep, is a poor iron-stained quartz, with little silver and a trace of gold. The material, which is so poor that many of the claims along the vein were abandoned during its early history, also contains some cerussite, malachite, etc., as well as remnants of unoxidized sulphides. Emmons considers that this leached zone is derived by incomplete oxidation of the lower zone of enriched sulphides.

Below this leached zone lies another called by Emmons the zone of enriched oxidized ore; it is for the most part between the

100-foot and 400-foot levels. This ore is composed of quartz, stained by iron and manganese, but contains much cerargyrite and native silver as thin seams. There is also some argentite, galena, etc. This ore contains much silver and from $5 to $16 in gold per ton. Its value is generally less than that of the ore in the next lower zone.

The zone of enriched sulphides extends in the main from 300 to 800 feet below the surface. It is extremely rich in silver and yields from $4 to $8 in gold per ton. Quartz and rhodochrosite are the gangue minerals; there is much argentite, pyrargyrite, and proustite, as well as abundant remains of primary ore minerals. The ruby silver, which is the most valuable mineral, is contained in veinlets or seams; in places occur also chalcopyrite, zinc blende, and pyrite of secondary deposition.

There is then here a distinct leached zone, a zone of moderate gold enrichment, and a zone of strong silver enrichment.

While it cannot be asserted that all of the primary ore was poor it is very unlikely that its value reached the high figures shown in the zone of secondary sulphides, which for a vertical distance of 300 to 400 feet averaged from 100 to 175 ounces of silver to the ton. Emmons concludes that the silver and gold from the upper parts of the vein, now eroded, have been carried down and that a successive enrichment has thus taken place. The moderate gold enrichment in the lower part of the oxidized zone is, according to Emmons, due to solution of gold by free chlorine (p. 798) and precipitation by ferrous sulphate.

Gold Deposits

Eastern Oregon.—In the Blue Mountains of Oregon,¹ a region of heavy precipitation but dry summers and rather high topographic relief, gold-quartz veins are contained in Paleozoic argillites and in intrusive diorite. The ores, which in places carry much free gold, are oxidized down to a depth of 100 to 300 feet. At the Sanger mine, on Eagle Creek, the uppermost 100 feet showed a narrow vein, caused by collapse of outcrops, yielding $25 per ton, while farther down the vein widened and its gold was reduced to $12 per ton.

In the highly productive gold veins of the Cracker Creek and Granite districts the sulphides and arsenopyrite are in fine dis-

OXIDATION OF METALLIC ORES 833

tribution and much of the ore is rather hard. The water level is high, but on the steep hillsides the oxidized zone is in places 250 feet deep. The oxidation to this depth is only partial, but there is a surprisingly slight difference in tenor between the surface ore and the primary ore. In the latter the gold is contained mainly in the sulphides; free gold is present in the oxidized ore, but there is not enough to convert the material into free-milling ore. No great reduction of volume has taken place, and weathering has only slightly increased the tenor of gold, while the small silver content has been slightly leached.

Cripple Creek.—The gold-telluride lodes of Cripple Creek, Colorado,¹ are mainly sheeted zones in which the seams are filled with quartz, fluorite, and calaverite (Au(Ag)Te₂). These deposits oxidize to brownish clayey material in which the original vein structure is no longer apparent. As quartz is not abundant, the main product of the oxidation is kaolin, with some limonite. The fluorite is carried away, while the tellurides are very easily reduced to dark-brown powdery gold. The tellurium is partly carried away in solution but to some extent remains as colorless tellurite (TeO₂) and green ferric tellurites like durdenite and emmonsite.

The oxidation extends to the water level, which is from 300 to 900 feet below the surface, and in places the ore is oxidized for some distance below the water level. There has been little or no enrichment of gold in the oxidized zone, but a decided leaching of the small amount of primary silver originally contained as telluride or tetrahedrite. No secondary silver sulphides were detected, nor is there evidence of secondary deposition of tellurides.

Lead and Zinc Deposits

Coeur d'Alene.—In the Coeur d'Alene district,² northern Idaho, the precipitation is heavy, the topography is accentuated, and the water level stands near the surface of the ground. The veins, which are encased in quartzite country rock, contain galena, zinc blende, and siderite. Little pyrite is present. The lower limit of oxidation is very irregular. Complete oxidation is con-

fined to the vicinity of the surface, but cerussite occurs in
vugs and fractures several hundred feet below the surface, while
the galena may in places occur in the outcrops. In the Morning
lode the oxidation extends 200 feet below the surface. The
minerals first attacked are pyrite and sphalerite, while the
solid galena is very resistant. The chief products of oxidation
are limonite, occurring as great masses at the outcrops, and
cerussite, to which as the latest product pyromorphite is added.
Owing to the prevalence of siderite, cerussite is the predomi-
nating oxidized lead mineral; anglesite is absent. No oxidized
zinc ores are encountered, although the conditions for their
deposition would seem to have been favorable. The quantity of
silver contained in the galena is small and there is no evidence of
enrichment either in the oxidized zone or below it.

Mississippi Valley.—The effects of oxidation on the lead and
zinc deposits of the Ozark region have been described by Bain,1
Siebenthal and Smith,2 and Buckley and Buehler.3 The primary
ores are contained in flat-lying limestone or chert as breccias,
fillings of cavities, or disseminations through the rocks. The
oxidation is mostly confined to the zone between the surface and
the water level, which is rarely as much as 100 feet below the
surface. The oxidized ore is, to a considerable degree, a product
of the residual weathering of limestone and chert and thus con-
sists of a confused mass of red residual clay, with layers and frag-
ments of white chert, in which are found galena and the oxidized
ores of lead and zinc. Galena is the only sulphide found in
quantity above the water level. Calamine is most abundant in
the northwestern districts and smithsonite in the others.

The zinc blende alters either to calamine or to smithsonite and
nodular masses of each sometimes hold a kernel of the sulphide.
A soft "tallow clay," mainly an impure kaolin with admixed
calamine, occurs in many deposits. Bain asserts that secondary
sulphides of zinc and lead with pyrite and chalcocite have been
deposited at Joplin, below the zone of oxidation. Possibly this
has taken place on a small scale, but most of the ore immediately

1 H. Foster Bain, Lead and zinc deposits of the Ozark region, Twenty-
2 C. E. Siebenthal and W. S. Tangier Smith, Joplin folio, Geol. Atlas U. S.
No. 148, 1907.
3 E. R. Buckley and H. A. Buehler, Geology of the Granby area, Missouri
below the oxidized zone appears to be of primary origin. Zinc blende and galena may easily have been deposited by the reduction of sulphate solutions by means of metallic iron (spikes), as illustrated in Bain's report, or by organic matter. There is scarcely enough pyrite in the Missouri deposits to cause extensive replacement (according to Schürmann's reactions) of pyrite by galena and zinc blende. Moreover, should the deposition have taken place by precipitation on sulphides, galena could replace zinc blende, but the reverse reaction could not take place. The occasional appearance of coatings of greenockite (CdS) upon zinc blende indicates, however, that in this case a sulphide enrichment has occurred. There are undoubtedly two generations of blende, one earlier in the chert and another and less important deposition of small red crystals on dolomite, but this scarcely proves that enrichment has taken place. During oxidation the solutions are probably acid only where considerable amounts of iron sulphide are present. A frequently occurring association is that of calamine surmounted by crystals of dolomite, which could not have been deposited from solutions containing free sulphuric acid.

In the upper Mississippi Valley, according to C. R. Van Hise, galena and zinc blende, with marcasite, occur in gash veins or other openings in limestone, the succession of primary minerals being marcasite (oldest), sphalerite, galena, and barite.

Above the level of ground water, which lies close to the surface, the main valuable minerals are smithsonite and galena; encrusting the galena are some cerussite and less anglesite; with the smithsonite is some zinc blende. The smithsonite may extend 15 to 30 feet below water level, but at greater depth the oxidized products almost wholly disappear. Below this level zinc blende with much marcasite forms the principal ore-bodies. Above the water level, then, the iron sulphide has been dissolved, as well as much of the zinc blende, leaving a richer concentrate of galena. The galena at or below the water level may in part be secondary, precipitated by a reaction between lead sulphate and iron sulphide. At a still lower secondary zinc blende may have been deposited, but no cogent proof of this has been furnished.

MINERAL DEPOSITS

MINE WATERS

Chloride Waters

In ores free from sulphides and other easily decomposed minerals the mine waters differ little from the ordinary ground waters of the region. Examples of such waters are found in the iron and copper mines of Michigan. In the following table analyses 1, 2, and 3 represent average waters of the upper circulation; 4 and 5 give the composition of the deep waters of the same region, which differ very materially from the shallow waters and contain an abundance of calcium chloride. The deep waters in the copper region contain some copper, zinc, nickel, and traces of boron.

ANALYSIS OF MINE WATERS FROM UPPER AND LOWER LEVELS OF IRON AND COPPER MINES OF MICHIGAN

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>3.5</td>
<td>18.68</td>
<td>6.00</td>
<td>25,360</td>
<td>176,027</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td></td>
<td>2,200</td>
<td></td>
</tr>
<tr>
<td>CO$_3$</td>
<td>24.2</td>
<td>163.00</td>
<td>41.60</td>
<td>Not det.</td>
<td></td>
</tr>
<tr>
<td>SO$_4$</td>
<td>18.8</td>
<td>13.14</td>
<td>12.10</td>
<td>1,045</td>
<td>110</td>
</tr>
<tr>
<td>Ca</td>
<td>12.9</td>
<td>62.29</td>
<td>15.20</td>
<td>7,902</td>
<td>86,478</td>
</tr>
<tr>
<td>Mg</td>
<td>2.0</td>
<td>28.20</td>
<td>9.60</td>
<td>566</td>
<td>20</td>
</tr>
<tr>
<td>Na</td>
<td>11.3</td>
<td>19.00</td>
<td>4.00</td>
<td>7,290</td>
<td>15,188</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>1.50</td>
<td>700</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>4.0</td>
<td>18.20</td>
<td>0.60</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td></td>
<td>1.23</td>
<td>700</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>14.5</td>
<td>9.80</td>
<td>8.43</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>94.0</td>
<td>332.31</td>
<td>100.26</td>
<td>42,863</td>
<td>280,490</td>
</tr>
</tbody>
</table>

1CO$_2$.

Occasionally mine waters comparatively rich in silica may be encountered. Thus, E. T. Allen analyzed a surface water from the Mesabi iron range, Minnesota, which contained 22 parts per million of silica and only about 14 parts of sulphates and 5 parts of carbonates of calcium and alkali metals.¹

Salt waters, containing mainly sodium chloride to the amount of several per cent., are reported from the Kalgoorlie mines in Western Australia, where they began to come in at water level, a few hundred feet below the surface. At the Great Boulder Proprietary the water contained 9 per cent. of sodium chloride and also much magnesium chloride.² Similars waters are now coming into the deep levels of the Bendigo mines.³ Sulphides are not abundant in these mines. The analysis of a sample taken 4,280 feet below the surface, in the Victoria Reef quartz, where the temperature of the water is 114° F., is given below.

ANALYSIS OF DEEP MINE WATER FROM WESTERN AUSTRALIA

<table>
<thead>
<tr>
<th></th>
<th>[Parts per million]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1,308.45</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>75.79</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>37.18</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>124.41</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>45.76</td>
</tr>
<tr>
<td>SiO₂</td>
<td>21.45</td>
</tr>
<tr>
<td>(Al, Fe)₂O₃</td>
<td>2.86</td>
</tr>
</tbody>
</table>

| | Total 1,615.90 |

According to T. A. Rickard\(^1\) the mine water at Mammoth, Pinal County, Arizona, contains 86 parts per million of sodium chloride, and that from Stratton's Independence mine, at Cripple Creek, Colorado, 51 parts of the same salt.

Carbonate Waters

The mine waters from the Wardner lead mines, in the Coeur d'Alene district, Idaho, are rich in ferrous carbonate (from siderite in the ore) and deposit abundant limonite. A sample from the Reed level, Bunker Hill & Sullivan mine, showed 70 parts per million of total solids, chiefly bicarbonate and sulphate of calcium.\(^2\)

A number of analyses of waters from the lead mines of southwestern Missouri are given by E. R. Buckley.\(^3\) The waters come from the La Motte sandstone and Bonneterre dolomite, generally at depths of a few hundred feet. The total solids are at most 500 parts per million, of which 200 parts or more are calculated as calcium-magnesium carbonates. The sulphates, calculated as the magnesium salt, are at most 200 parts per million, while sodium chloride averages only 50 parts. Silica is low. All contain a little lead, at most 1 part per million, calculated as lead sulphate, and generally a trace of zinc. They are weak waters and this is due mainly to the small amount of pyrite in the deposit.

Sulphate Waters

Oxidation of Pyrite.—Where pyrite is present in notable quantities its oxidation materially changes the composition of the waters. The sulphuric acid radicle increases rapidly and displaces the equilibrium so that the normal calcium carbonate waters are changed into those containing mainly calcium sulphate. When the free sulphuric acid increases still further the water becomes rich in the sulphates of aluminum (by the decomposition of sericite and other silicates) and iron, the latter present as both ferrous and ferric sulphate. Free hydrochloric acid is sometimes present. In waters above or at the water level these sulphates may be

present in large quantities. Below the water level free acid is rarely found and the sulphate of aluminum is absent. The iron is present as ferrous sulphate and diminishes in quantity with increasing depth. The characteristic calcium sulphate waters persist for wide spaces around pyritic deposits and also reach considerable depths. Besides the sulphates mentioned, the mine waters of the oxidized zone contain almost all the metals occurring in the deposit. Zinc sulphate is especially abundant; copper sulphate is usually present, lead much more rarely; arsenic is common and antimony rare.

The deeper waters from mines poor in pyrite are often deficient in sulphates, although galena and zinc blende may occur in the deposit.

The waters of coal mines show plainly the result of the oxidation of the pyrite and marcasite occurring in the beds. Such waters are often rich in the sulphates of ammonium, calcium, iron, and aluminum, and even in free sulphuric acid. In the drainage from the mines the iron appears as ferrous sulphate, from which, by oxidation, ferric sulphate is formed. Leighton found that coarsely crushed coal washed with distilled water actually yielded free sulphuric acid in the filtrate. Mine waters from coal mines occasionally contain zinc, copper, cobalt, and nickel. A water from the coal mine of the Dravo-Doyle Company, in Pennsylvania, showed according to analysis by the Pittsburgh testing laboratory of the Bureau of Mines:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2SO_4</td>
<td>117</td>
</tr>
<tr>
<td>$\text{Fe}_2(\text{SO}_4)_3$</td>
<td>4,970</td>
</tr>
<tr>
<td>$\text{Al}_2(\text{SO}_4)_3$</td>
<td>140</td>
</tr>
<tr>
<td>FeSO_4</td>
<td>54</td>
</tr>
</tbody>
</table>

More or less of the sulphate of calcium and magnesium are also usually present.

Examples.—A series of analyses of the Comstock waters, Nevada, by J. A. Reid well illustrates the occurrence of sulphate waters. No. 3 is a concentrated sulphate water from the oxidized zone; Nos. 1 and 2 are deeper hot waters, resulting from the reaction between an ascending sodium-carbonate water and sulphuric acid from the upper zones. The ores contain mainly gold and silver and are not rich in pyrite.
MINERAL DEPOSITS

ANALYSES OF MINE WATERS FROM THE COMSTOCK LODE

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO₂</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO₂</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>1.37</td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>6.33</td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
</tbody>
</table>

Total salinity... 764.40 965.60 110,958.30

3. Vadose water from the Central tunnel. *Idem.*

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothschrönerberger tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
Oxidation of Metallic Ores

Analyses of Mine Waters

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td></td>
<td>Trace.</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td>16.2</td>
<td></td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td></td>
<td>7.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Fe⁺²</td>
<td></td>
<td>474.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Fe⁺³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>832.0</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>3.7</td>
<td></td>
<td>Trace.</td>
<td>59.1</td>
</tr>
<tr>
<td>Co⁺⁺</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>9,727.5</td>
<td>231.6</td>
<td>655.1</td>
<td>4,204.5</td>
</tr>
</tbody>
</table>

4. Water from 1,200-foot level, crosscut St. Lawrence, Butte, Montana, Cd and Sn possibly accidentally introduced? Faintly acid. W. F. Hillebrand, analyst. Fe⁺² probably changed to Fe⁺³ during exposure to air.

F. L. Ransome mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson describes the mine water from the Ruth mine 335 feet below the surface, in the chalcocite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEA, MEXICO

F. G. Hawley, Analyst

Parts per million

<table>
<thead>
<tr>
<th></th>
<th>300-foot level.</th>
<th>900-foot level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined.</td>
<td>22</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined.</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined.</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>2,097</td>
<td>76</td>
</tr>
<tr>
<td>(K,H)₂O</td>
<td>Not determined.</td>
<td>198</td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe".
H₂SO₄ not subtracted from total SO₄.

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopyrite.
Analyses of Mine Water from Ducktown, Tennessee

R. C. Wells, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe⁺⁺</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>nil</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcocite zone.

2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.

3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcocite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood\(^2\) has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalies, chloride, and sulphuric acid and a

\(^1\) Quoted in *Bull. U. S. Geol. Survey* No. 529, 1913, pp. 60, 61.

\(^2\) *Econ. Geol.*, vol. 6, 1911, pp. 738-744.
100-foot and 400-foot levels. This ore is composed of quartz, stained by iron and manganese, but contains much cerargyrite and native silver as thin seams. There is also some argentite, galena, etc. This ore contains much silver and from $5 to $16 in gold per ton. Its value is generally less than that of the ore in the next lower zone.

The zone of enriched sulphides extends in the main from 300 to 800 feet below the surface. It is extremely rich in silver and yields from $4 to $8 in gold per ton. Quartz and rhodochrosite are the gangue minerals; there is much argentite, pyrargyrite, and proustite, as well as abundant remains of primary ore minerals. The ruby silver, which is the most valuable mineral, is contained in veinlets or seams; in places occur also chalcopyrite, zinc blende, and pyrite of secondary deposition.

There is then here a distinct leached zone, a zone of moderate gold enrichment, and a zone of strong silver enrichment.

While it cannot be asserted that all of the primary ore was poor it is very unlikely that its value reached the high figures shown in the zone of secondary sulphides, which for a vertical distance of 300 to 400 feet averaged from 100 to 175 ounces of silver to the ton. Emmons concludes that the silver and gold from the upper parts of the vein, now eroded, have been carried down and that a successive enrichment has thus taken place. The moderate gold enrichment in the lower part of the oxidized zone is, according to Emmons, due to solution of gold by free chlorine (p. 798) and precipitation by ferrous sulphate.

Gold Deposits

Eastern Oregon.—In the Blue Mountains of Oregon,¹ a region of heavy precipitation but dry summers and rather high topographic relief, gold-quartz veins are contained in Paleozoic argillites and in intrusive diorite. The ores, which in places carry much free gold, are oxidized down to a depth of 100 to 300 feet. At the Sanger mine, on Eagle Creek, the uppermost 100 feet showed a narrow vein, caused by collapse of outcrops, yielding $25 per ton, while farther down the vein widened and its gold was reduced to $12 per ton.

In the highly productive gold veins of the Cracker Creek and Granite districts the sulphides and arsenopyrite are in fine dis-

OXIDATION OF METALLIC ORES

Oxidation and much of the ore is rather hard. The water level is high, but on the steep hillsides the oxidized zone is in places 250 feet deep. The oxidation to this depth is only partial, but there is a surprisingly slight difference in tenor between the surface ore and the primary ore. In the latter the gold is contained mainly in the sulphides; free gold is present in the oxidized ore, but there is not enough to convert the material into free-milling ore. No great reduction of volume has taken place, and weathering has only slightly increased the tenor of gold, while the small silver content has been slightly leached.

Cripple Creek.—The gold-telluride lodes of Cripple Creek, Colorado, are mainly sheeted zones in which the seams are filled with quartz, fluorite, and calaverite (Ag(Au)Te₂). These deposits oxidize to brownish clayey material in which the original vein structure is no longer apparent. As quartz is not abundant, the main product of the oxidation is kaolin, with some limonite. The fluorite is carried away, while the tellurides are very easily reduced to dark-brown powdery gold. The tellurium is partly carried away in solution but to some extent remains as colorless tellurite (TeO₂) and green ferric tellurites like durdenite and emmonsite.

The oxidation extends to the water level, which is from 300 to 900 feet below the surface, and in places the ore is oxidized for some distance below the water level. There has been little or no enrichment of gold in the oxidized zone, but a decided leaching of the small amount of primary silver originally contained as telluride or tetrahedrite. No secondary silver sulphides were detected, nor is there evidence of secondary deposition of tellurides.

Lead and Zinc Deposits

Coeur d'Alene.—In the Coeur d'Alene district, northern Idaho, the precipitation is heavy, the topography is accentuated, and the water level stands near the surface of the ground. The veins, which are enclosed in quartzite country rock, contain galena, zinc blende, and siderite. Little pyrite is present. The lower limit of oxidation is very irregular. Complete oxidation is con-

fined to the vicinity of the surface, but cerussite occurs in vugs and fractures several hundred feet below the surface, while the galena may in places occur in the outcrops. In the Morning lode the oxidation extends 200 feet below the surface. The minerals first attacked are pyrite and sphalerite, while the solid galena is very resistant. The chief products of oxidation are limonite, occurring as great masses at the outcrops, and cerussite, to which as the latest product pyromorphite is added. Owing to the prevalence of siderite, cerussite is the predominating oxidized lead mineral; anglesite is absent. No oxidized zinc ores are encountered, although the conditions for their deposition would seem to have been favorable. The quantity of silver contained in the galena is small and there is no evidence of enrichment either in the oxidized zone or below it.

Mississippi Valley.—The effects of oxidation on the lead and zinc deposits of the Ozark region have been described by Bain,¹ Siebenthal and Smith,² and Buckley and Buehler.³ The primary ores are contained in flat-lying limestone or chert as breccias, fillings of cavities, or disseminations through the rocks. The oxidation is mostly confined to the zone between the surface and the water level, which is rarely as much as 100 feet below the surface. The oxidized ore is, to a considerable degree, a product of the residual weathering of limestone and chert and thus consists of a confused mass of red residual clay, with layers and fragments of white chert, in which are found galena and the oxidized ores of lead and zinc. Galena is the only sulphide found in quantity above the water level. Calamine is most abundant in the northwestern districts and smithsonite in the others.

The zinc blende alters either to calamine or to smithsonite and nodular masses of each sometimes hold a kernel of the sulphide. A soft "tallow clay," mainly an impure kaolin with admixed calamine, occurs in many deposits. Bain asserts that secondary sulphides of zinc and lead with pyrite and chalcocite have been deposited at Joplin, below the zone of oxidation. Possibly this has taken place on a small scale, but most of the ore immediately

below the oxidized zone appears to be of primary origin. Zinc blende and galena may easily have been deposited by the reduction of sulphate solutions by means of metallic iron (spikes), as illustrated in Bain's report, or by organic matter. There is scarcely enough pyrite in the Missouri deposits to cause extensive replacement (according to Schürmann's reactions) of pyrite by galena and zinc blende. Moreover, should the deposition have taken place by precipitation on sulphides, galena could replace zinc blende, but the reverse reaction could not take place. The occasional appearance of coatings of greenockite (CdS) upon zinc blende indicates, however, that in this case a sulphide enrichment has occurred. There are undoubtedly two generations of blende, one earlier in the chert and another and less important deposition of small red crystals on dolomite, but this scarcely proves that enrichment has taken place. During oxidation the solutions are probably acid only where considerable amounts of iron sulphide are present. A frequently occurring association is that of calamine surmounted by crystals of dolomite, which could not have been deposited from solutions containing free sulphuric acid.

In the upper Mississippi Valley, according to C. R. Van Hise, galena and zinc blende, with marcasite, occur in gash veins or other openings in limestone, the succession of primary minerals being marcasite (oldest), sphalerite, galena, and barite.

Above the level of ground water, which lies close to the surface, the main valuable minerals are smithsonite and galena; encrusting the galena are some cerussite and less anglesite; with the smithsonite is some zinc blende. The smithsonite may extend 15 to 30 feet below water level, but at greater depth the oxidized products almost wholly disappear. Below this level zinc blende with much marcasite forms the principal ore-bodies. Above the water level, then, the iron sulphide has been dissolved, as well as much of the zinc blende, leaving a richer concentrate of galena. The galena at or below the water level may in part be secondary, precipitated by a reaction between lead sulphate and iron sulphide. At a still lower secondary zinc blende may have been deposited, but no cogent proof of this has been furnished.

MINE WATERS

Chloride Waters

In ores free from sulphides and other easily decomposed minerals the mine waters differ little from the ordinary ground waters of the region. Examples of such waters are found in the iron and copper mines of Michigan. In the following table analyses 1, 2, and 3 represent average waters of the upper circulation; 4 and 5 give the composition of the deep waters of the same region, which differ very materially from the shallow waters and contain an abundance of calcium chloride. The deep waters in the copper region contain some copper, zinc, nickel, and traces of boron.

ANALYSIS OF MINE WATERS FROM UPPER AND LOWER LEVELS OF IRON AND COPPER MINES OF MICHIGAN

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>3.5</td>
<td>18.68</td>
<td>6.00</td>
<td>25,360</td>
<td>176,027</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,200</td>
</tr>
<tr>
<td>CO₃</td>
<td>24.2</td>
<td>163.00</td>
<td>41.60</td>
<td>Not det.</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>18.8</td>
<td>13.14</td>
<td>12.10</td>
<td>1,045</td>
<td>110</td>
</tr>
<tr>
<td>Ca</td>
<td>12.9</td>
<td>62.29</td>
<td>15.20</td>
<td>7,902</td>
<td>86,478</td>
</tr>
<tr>
<td>Mg</td>
<td>2.0</td>
<td>28.20</td>
<td>9.60</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>11.3</td>
<td></td>
<td>4.00</td>
<td>7,290</td>
<td>15,188</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>19.00</td>
<td>1.50</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.0</td>
<td>18.20</td>
<td>0.60</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td></td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>14.5</td>
<td>9.80</td>
<td>8.43</td>
<td>42,863</td>
<td>280,490</td>
</tr>
<tr>
<td>Loss</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ CO₂.

OXIDATION OF METALLIC ORES

Occasionally mine waters comparatively rich in silica may be encountered. Thus, E. T. Allen analyzed a surface water from the Mesabi iron range, Minnesota, which contained 22 parts per million of silica and only about 14 parts of sulphates and 5 parts of carbonates of calcium and alkali metals.¹

Salt waters, containing mainly sodium chloride to the amount of several per cent., are reported from the Kalgoorlie mines in Western Australia, where they began to come in at water level, a few hundred feet below the surface. At the Great Boulder Proprietary the water contained 9 per cent. of sodium chloride and also much magnesium chloride.² Similar waters are now coming into the deep levels of the Bendigo mines.³ Sulphides are not abundant in these mines. The analysis of a sample taken 4,280 feet below the surface, in the Victoria Reef quartz, where the temperature of the water is 114° F., is given below.

ANALYSIS OF DEEP MINE WATER FROM WESTERN AUSTRALIA

[Parts per million]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1,308.45</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>75.79</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>37.18</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>124.41</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>45.76</td>
</tr>
<tr>
<td>SiO₂</td>
<td>21.45</td>
</tr>
<tr>
<td>(Al, Fe)₃O₃</td>
<td>2.86</td>
</tr>
<tr>
<td>Total</td>
<td>1,615.90</td>
</tr>
</tbody>
</table>

Analyses of several mine waters from the Baraboo range are recorded by S. Weidman, The Baraboo iron-bearing district, Bull. No. 13, Wis. Geol. and Nat. Hist. Survey, 1904, p. 111. In the main they are similar to No. 3 of the table above, though containing more Ca and Mg.

According to T. A. Rickard\(^1\) the mine water at Mammoth, Pinal County, Arizona, contains 86 parts per million of sodium chloride, and that from Stratton's Independence mine, at Cripple Creek, Colorado, 51 parts of the same salt.

Carbonate Waters

The mine waters from the Wardner lead mines, in the Coeur d'Alene district, Idaho, are rich in ferrous carbonate (from siderite in the ore) and deposit abundant limonite. A sample from the Reed level, Bunker Hill & Sullivan mine, showed 70 parts per million of total solids, chiefly bicarbonate and sulphate of calcium.\(^2\)

A number of analyses of waters from the lead mines of south-eastern Missouri are given by E. R. Buckley.\(^3\) The waters come from the La Motte sandstone and Bonneterre dolomite, generally at depths of a few hundred feet. The total solids are at most 500 parts per million, of which 200 parts or more are calculated as calcium-magnesium carbonates. The sulphates, calculated as the magnesium salt, are at most 200 parts per million, while sodium chloride averages only 50 parts. Silica is low. All contain a little lead, at most 1 part per million, calculated as lead sulphate, and generally a trace of zinc. They are weak waters and this is due mainly to the small amount of pyrite in the deposit.

Sulphate Waters

Oxidation of Pyrite.—Where pyrite is present in notable quantities its oxidation materially changes the composition of the waters. The sulphuric acid radicle increases rapidly and displaces the equilibrium so that the normal calcium carbonate waters are changed into those containing mainly calcium sulphate. When the free sulphuric acid increases still further the water becomes rich in the sulphates of aluminum (by the decomposition of sericite and other silicates) and iron, the latter present as both ferrous and ferric sulphate. Free hydrochloric acid is sometimes present. In waters above or at the water level these sulphates may be

present in large quantities. Below the water level free acid is rarely found and the sulphate of aluminum is absent. The iron is present as ferrous sulphate and diminishes in quantity with increasing depth. The characteristic calcium sulphate waters persist for wide spaces around pyritic deposits and also reach considerable depths. Besides the sulphates mentioned, the mine waters of the oxidized zone contain almost all the metals occurring in the deposit. Zinc sulphate is especially abundant; copper sulphate is usually present, lead much more rarely; arsenic is common and antimony rare.

The deeper waters from mines poor in pyrite are often deficient in sulphates, although galena and zinc blende may occur in the deposit.

The waters of coal mines show plainly the result of the oxidation of the pyrite and marcasite occurring in the beds. Such waters are often rich in the sulphates of ammonium, calcium, iron, and aluminum, and even in free sulphuric acid. In the drainage from the mines the iron appears as ferrous sulphate, from which, by oxidation, ferric sulphate is formed. Leighton found that coarsely crushed coal washed with distilled water actually yielded free sulphuric acid in the filtrate. Mine waters from coal mines occasionally contain zinc, copper, cobalt, and nickel. A water from the coal mine of the Dravo-Doyle Company, in Pennsylvania, showed according to analysis by the Pittsburgh testing laboratory of the Bureau of Mines:

\[
\begin{align*}
\text{Free H}_2\text{SO}_4 & \quad 117 \text{ parts per million} \\
\text{Fe}_2(\text{SO}_4)_3 & \quad 4,970 \text{ parts per million} \\
\text{Al}_2(\text{SO}_4)_3 & \quad 140 \text{ parts per million} \\
\text{FeSO}_4 & \quad 54 \text{ parts per million}
\end{align*}
\]

More or less of the sulphate of calcium and magnesium are also usually present.

Examples.—A series of analyses of the Comstock waters, Nevada, by J. A. Reid well illustrates the occurrence of sulphate waters. No. 3 is a concentrated sulphate water from the oxidized zone; Nos. 1 and 2 are deeper hot waters, resulting from the reaction between an ascending sodium-carbonate water and sulphuric acid from the upper zones. The ores contain mainly gold and silver and are not rich in pyrite.
ANALYSES OF MINE WATERS FROM THE COMSTOCK LODE

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO_4</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO_2</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>1.37</td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO_2</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>6.33</td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
</tbody>
</table>

Total salinity 764.40 965.60 110,958.30

3. Vadose water from the Central tunnel. *Idem*.

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothsçonberger tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
Analyses of Mine Waters

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td>Trace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td></td>
<td>16.2</td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td></td>
<td>7.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>474.6</td>
<td>6.6</td>
<td></td>
<td>159.8</td>
</tr>
<tr>
<td>Fe⁴⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Zn</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>852.0</td>
</tr>
<tr>
<td>Cd</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7</td>
<td></td>
<td>Trace.</td>
<td>59.1</td>
</tr>
<tr>
<td>Co + Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9,727.5</td>
<td>231.6</td>
<td>655.1</td>
<td>4,204.5</td>
</tr>
</tbody>
</table>

4. Water from 1,200-foot level, crosscut St. Lawrence, Butte, Montana, Cd and Sn possibly accidentally introduced? Faintly acid. W. F. Hillebrand, analyst. Fe⁺⁺ probably changed to Fe⁺⁺⁺ during exposure to air.

F. L. Ransome mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson describes the mine water from the Ruth mine 335 feet below the surface, in the chalcocite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEAN, MEXICO

F. G. Hawley, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>300-foot level.</th>
<th>900-foot level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined.</td>
<td>22</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined.</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined.</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>2,097</td>
<td>76</td>
</tr>
<tr>
<td>(K₂Ca)₂O</td>
<td>Not determined.</td>
<td>198</td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe²⁺.
H₂SO₄ not subtracted from total SO₄.

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopyrite.
OXIDATION OF METALLIC ORES

ANALYSES OF MINE WATER FROM DUCKTOWN, TENNESSEE

R. C. Wells, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe''</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe'"</td>
<td>nil.</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcocite zone.
2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.
3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcocite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalies, chlorine, and sulphuric acid and a

2 Econ. Geol., vol. 6, 1911, pp. 738–744.
salinity of about 300 parts per million. The ordinary mine water from the upper levels has a salinity of 510 parts and contains CaSO₄ and (Ca,Mg)CO₃. The deeper waters, from the 1,100 and 1,550 foot levels, have a higher salinity, as much as 1,228 parts, caused mainly by increase of CaSO₄. The salinity increases during dry periods. During a recent mine fire when the mine was flooded with water the salinity increased to 5,790 parts per million, with SO₄ as high as 2,339 parts. A strong increase in alkalies, lime, and magnesia was noted. The chlorine did not increase notably. One of the waters collected during the fire period contained gold to the amount of 0.1 cent per ton (0.0017 part per million).
CHAPTER XXX

THE CALCULATION OF ROCK ANALYSES

The direct comparison of analyses of rocks in various states of alteration brings out the general character of the changes that have taken place but is really a comparison of equal masses of the rocks, or, more strictly speaking, of the rock powders as prepared and weighed by the analyst. What is really desired is to know the chemical changes which the unit weight or the unit volume of the original material has suffered in the transformation to the altered material, or, more precisely, what constituents have been added to or subtracted from this original unit of substance. Direct comparison gives the information needed only when there has been no change in mass—that is, when the additions and losses of constituents balance and 100 grains of fresh rock change to 100 grains of altered rock. This would of course rarely happen.

Molecular Ratio Method.—The mineralogical composition of an altered rock is determined by study of a thin section; by using the Rosiwal method it can even be determined quantitatively, at least approximately. The composition can be calculated with more accuracy from the analysis of the rock by the usual method of converting the parts by weight into molecular ratios. This is done by dividing the percentage figures by the numbers representing the molecular weights, grouping these molecular ratios properly to correspond to mineral molecules, and then converting the molecular ratios of the minerals into parts by weight. This method is described in detail by J. F. Kemp\(^1\) and by Iddings and others\(^2\) and is facilitated by tables of molecular ratios, the most exhaustive being those published by A. Osann.\(^3\) A more direct method, in which the translation is accomplished with less computation by the

\(^1\) The recalculation of the chemical analyses of rocks, *School of Mines Quarterly*, vol. 22, p. 75.

\(^2\) Iddings, Cross, Pirsson, and Washington, Quantitative classification of igneous rocks, 1903.

\(^3\) Molecular-quotienten zur Berechnung von Gesteinanalysen, Stuttgart, 1903.
use of decimal tables of mineral composition, has been published by Alfred Harker.\(^1\)

A still more convenient graphic percentage method has been explained by W. J. Mead.\(^2\) The simplicity of most of the minerals forming parts of altered rocks facilitates this mode of computation, which, however, does not have the scientific exactness of the method by molecular ratios.

In either of these methods it is necessary to know the composition of the constituent minerals, and, strictly speaking, the problem is not fully solved unless each of the minerals as well as the rock itself is analyzed. The exact calculation of complicated silicates like those occurring in igneous or metamorphic rocks may therefore become impossible, as it is rarely practicable to analyze each constituent.

Calculation of Specific Gravity.—If the percentages and mineral composition are known the specific gravity of the rocks may be calculated,\(^3\) according to the formula

\[
D = \frac{100}{\frac{W_1}{D_1} + \frac{W_2}{D_2} + \frac{W_3}{D_3} + \text{ etc.}}
\]

in which \(D\) is the specific gravity sought, \(D_1, D_2, \text{ etc.}\), the specific gravities of the minerals constituting the rock, and \(W_1, W_2, \text{ etc.}\), the percentage weights. In such a calculation it will necessarily be assumed that the rock is non-porous.

Constituent Minerals.—The calculation of constituent minerals should always be undertaken when rock analyses are obtainable, for unsuspected minerals may often be identified by this means. The quantity of kaolinite and sericite present can usually be easily determined. The presence of diaspore or gibbsite or of zeolites may be revealed.

Calculation on Basis of One Constant.—In the weathering of rocks to loose material and soils it is impossible to ascertain directly the changes in volume and the substances must be first compared by unit weight. It is possible to attain this end if it is known that one constituent, occurring in notable quantities in the rock, has remained constant. In weathering,

\(^1\) Private publication, Cambridge University Press, 1910.

where no sulphuric acid is present, alumina may be considered about constant, and the changes are usually calculated on this basis. The analysis of the altered rock is recalculated as follows:

If 100 grams of fresh rock contain \(a \) grams of alumina and the same amount of altered rock contains \(a_1 \) grams we have the equation 100: \(a_1 = x : a \), or

\[
x = \frac{a \times 100}{a_1}
\]

where \(x \) expresses the number of grams of the altered rock required to contain the amount of alumina originally present in 100 grams of the fresh rock. Assume \(b_1, c_1, d_1 \), etc., to be the percentages of other constituents in the altered rock, and \(b_x, c_x, d_x \), etc., the weight of each of these constituents contained in \(x \) grams of altered rock; then

\[
b_x = \frac{b_1 x}{100}, \quad c_x = \frac{c_1 x}{100}, \quad \text{etc.}
\]

Comparison with the analysis of the fresh rock will show the loss or gain in weight of each constituent.

If the mineral composition of both rocks is known by percentages it is possible to calculate the loss or gain in volume during the alteration. But this holds only if the original supposition of a constant constituent is true. In few processes of alteration can such constancy be assumed.

Graphic Method.—Graphic methods have been suggested by which in the comparison of two analyses the constancy of any constituent may be tested. One rather complicated plan\(^1\) is to plot the percentages as sectors of a circle and show the relations of the altered to the fresh rock by concentric circles cutting off parts of the sectors corresponding to the ratio between the constituent of the fresh and that of the altered rock. A simpler diagram\(^2\) is obtained by utilizing a straight line divided according to the logarithmic scale. On this are plotted the various values for \(x = \frac{a \times 100}{a_1} \) obtained by considering each constituent in turn as having remained constant. This will show at a glance the gains and losses in each suppositional case of constancy.

MINERAL DEPOSITS

MINE WATERS

Chloride Waters

In ores free from sulphides and other easily decomposed minerals the mine waters differ little from the ordinary ground waters of the region. Examples of such waters are found in the iron and copper mines of Michigan. In the following table analyses 1, 2, and 3 represent average waters of the upper circulation; 4 and 5 give the composition of the deep waters of the same region, which differ very materially from the shallow waters and contain an abundance of calcium chloride. The deep waters in the copper region contain some copper, zinc, nickel, and traces of boron.

ANALYSIS OF MINE WATERS FROM UPPER AND LOWER LEVELS OF IRON AND COPPER MINES OF MICHIGAN

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>3.5</td>
<td>18.68</td>
<td>6.00</td>
<td>25,360</td>
<td>176,027</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,200</td>
</tr>
<tr>
<td>CO₃</td>
<td>24.2</td>
<td>163.00</td>
<td>41.60</td>
<td>Not det.</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>18.8</td>
<td>13.14</td>
<td>12.10</td>
<td>1,045</td>
<td>110</td>
</tr>
<tr>
<td>Ca</td>
<td>12.9</td>
<td>62.29</td>
<td>15.20</td>
<td>7,902</td>
<td>86,478</td>
</tr>
<tr>
<td>Mg</td>
<td>2.0</td>
<td>28.20</td>
<td>9.60</td>
<td>566</td>
<td>20</td>
</tr>
<tr>
<td>Na</td>
<td>11.3</td>
<td></td>
<td>4.00</td>
<td></td>
<td>15,188</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>19.00</td>
<td>1.50</td>
<td>7,290</td>
<td>411</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.0</td>
<td>18.20</td>
<td>0.60</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>14.5</td>
<td>9.80</td>
<td>8.43</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Loss</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | 94.0 | 332.31 | 100.26 | 42,863 | 280,490 |

¹ CO₃

OXIDATION OF METALLIC ORES

Occasionally mine waters comparatively rich in silica may be encountered. Thus, E. T. Allen analyzed a surface water from the Mesabi iron range, Minnesota, which contained 22 parts per million of silica and only about 14 parts of sulphates and 5 parts of carbonates of calcium and alkali metals.¹

Salt waters, containing mainly sodium chloride to the amount of several per cent., are reported from the Kalgoorlie mines in Western Australia, where they began to come in at water level, a few hundred feet below the surface. At the Great Boulder Proprietary the water contained 9 per cent. of sodium chloride and also much magnesium chloride.² Similar waters are now coming into the deep levels of the Bendigo mines.³ Sulphides are not abundant in these mines. The analysis of a sample taken 4,280 feet below the surface, in the Victoria Reef quartz, where the temperature of the water is 114° F., is given below.

ANALYSIS OF DEEP MINE WATER FROM WESTERN AUSTRALIA

<table>
<thead>
<tr>
<th>[Parts per million]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1,308.45</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>75.79</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>37.18</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>124.41</td>
</tr>
<tr>
<td>MgCO₃</td>
<td>45.76</td>
</tr>
<tr>
<td>SiO₂</td>
<td>21.45</td>
</tr>
<tr>
<td>(Al, Fe)₂O₃</td>
<td>2.86</td>
</tr>
</tbody>
</table>

Total 1,615.90

Analyses of several mine waters from the Baraboo range are recorded by S. Weidman, The Baraboo iron-bearing district, Bull. No. 13, Wis. Geol. and Nat. Hist. Survey, 1904, p. 111. In the main they are similar to No. 3 of the table above, though containing more Ca and Mg.

According to T. A. Rickard the mine water at Mammoth, Pinal County, Arizona, contains 86 parts per million of sodium chloride, and that from Stratton's Independence mine, at Cripple Creek, Colorado, 51 parts of the same salt.

Carbonate Waters

The mine waters from the Wardner lead mines, in the Coeur d'Alene district, Idaho, are rich in ferrous carbonate (from siderite in the ore) and deposit abundant limonite. A sample from the Reed level, Bunker Hill & Sullivan mine, showed 70 parts per million of total solids, chiefly bicarbonate and sulphate of calcium.

A number of analyses of waters from the lead mines of south-eastern Missouri are given by E. R. Buckley. The waters come from the La Motte sandstone and Bonneterre dolomite, generally at depths of a few hundred feet. The total solids are at most 500 parts per million, of which 200 parts or more are calculated as calcium-magnesium carbonates. The sulphates, calculated as the magnesium salt, are at most 200 parts per million, while sodium chloride averages only 50 parts. Silica is low. All contain a little lead, at most 1 part per million, calculated as lead sulphate, and generally a trace of zinc. They are weak waters and this is due mainly to the small amount of pyrite in the deposit.

Sulphate Waters

Oxidation of Pyrite.—Where pyrite is present in notable quantities its oxidation materially changes the composition of the waters. The sulphuric acid radicle increases rapidly and displaces the equilibrium so that the normal calcium carbonate waters are changed into those containing mainly calcium sulphate. When the free sulphuric acid increases still further the water becomes rich in the sulphates of aluminum (by the decomposition of sericite and other silicates) and iron, the latter present as both ferrous and ferric sulphate. Free hydrochloric acid is sometimes present. In waters above or at the water level these sulphates may be

OXIDATION OF METALLIC ORES

present in large quantities. Below the water level free acid is
rarely found and the sulphate of aluminum is absent. The iron is
present as ferrous sulphate and diminishes in quantity with
increasing depth. The characteristic calcium sulphate waters
persist for wide spaces around pyritic deposits and also reach
considerable depths. Besides the sulphates mentioned, the mine
waters of the oxidized zone contain almost all the metals occur-
ing in the deposit. Zinc sulphate is especially abundant;
copper sulphate is usually present, lead much more rarely;
arsenic is common and antimony rare.

The deeper waters from mines poor in pyrite are often deficient
in sulphates, although galena and zinc blende may occur in the
deposit.

The waters of coal mines show plainly the result of the oxida-
tion of the pyrite and marcasite occurring in the beds. Such
waters are often rich in the sulphates of ammonium, calcium, iron,
and aluminum, and even in free sulphuric acid. In the drainage
from the mines the iron appears as ferrous sulphate, from which,
by oxidation, ferric sulphate is formed. Leighton found that
coarsely crushed coal washed with distilled water actually yielded
free sulphuric acid in the filtrate. Mine waters from coal mines
occasionally contain zinc, copper, cobalt, and nickel. A water
from the coal mine of the Dravo-Doyle Company, in Pennsylvania,
showed according to analysis by the Pittsburgh testing laboratory
of the Bureau of Mines:

\[
\begin{align*}
\text{Free H}_2\text{SO}_4 & \quad 117 \text{ parts per million} \\
\text{Fe}_2(\text{SO}_4)_3 & \quad 4,970 \text{ parts per million} \\
\text{Al}_2(\text{SO}_4)_3 & \quad 140 \text{ parts per million} \\
\text{FeSO}_4 & \quad 54 \text{ parts per million}
\end{align*}
\]

More or less of the sulphate of calcium and magnesium are also
usually present.

Examples.—A series of analyses of the Comstock waters,
Nevada, by J. A. Reid well illustrates the occurrence of sulphate
waters. No. 3 is a concentrated sulphate water from the oxidized
zone; Nos. 1 and 2 are deeper hot waters, resulting from the
reaction between an ascending sodium-carbonate water and
sulphuric acid from the upper zones. The ores contain mainly
gold and silver and are not rich in pyrite.
ANALYSES OF MINE WATERS FROM THE COMSTOCK LODE

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO₄</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO₃</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td>1.37</td>
<td></td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td>6.33</td>
<td></td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
</tbody>
</table>

Total salinity: 764.40 965.60 110,958.30

3. Vadose water from the Central tunnel. *Idem.*

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothsönberger tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂⁻</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₃⁻</td>
<td></td>
<td></td>
<td>Trace.</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td></td>
<td>16.2</td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td></td>
<td>7.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>474.6</td>
<td>6.6</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Zn</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>852.0</td>
</tr>
<tr>
<td>Cd</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7</td>
<td></td>
<td>Trace.</td>
<td>59.1</td>
</tr>
<tr>
<td>Co+Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
</tbody>
</table>

| | 9,727.5 | 231.6| 655.1| 4,204.5|

4. Water from 1,200-foot level, crosscut St. Lawrence, Butte, Montana, Cd and Sn possibly accidentally introduced? Faintly acid. W. F. Hillebrand, analyst. Fe⁺⁺ probably changed to Fe⁺⁺⁺ during exposure to air.

F. L. Ransome¹ mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson² describes the mine water from the Ruth mine 335 feet below the surface, in the chalcolite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEA, MEXICO

F. G. Hawley, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>300-foot level.</th>
<th>900-foot level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined.</td>
<td>22</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined.</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined.</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>2,097</td>
<td>76</td>
</tr>
<tr>
<td>(K₂Fe₆O₁₃)O</td>
<td>Not determined.</td>
<td>198</td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe".
H₂SO₄ not subtracted from total SO₄.

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopyrite.
OXIDATION OF METALLIC ORES

ANALYSES OF MINE WATER FROM DUCKTOWN, TENNESSEE

R. C. Wells, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe⁺⁺</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>nil</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcocite zone.

2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.

3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcocite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalis, chlorine, and sulphuric acid and a

2 Econ. Geol., vol. 6, 1911, pp. 738-744.
salinity of about 300 parts per million. The ordinary mine water from the upper levels has a salinity of 510 parts and contains CaSO₄ and (Ca,Mg)CO₃. The deeper waters, from the 1,100 and 1,550 foot levels, have a higher salinity, as much as 1,228 parts, caused mainly by increase of CaSO₄. The salinity increases during dry periods. During a recent mine fire when the mine was flooded with water the salinity increased to 5,790 parts per million, with SO₄ as high as 2,339 parts. A strong increase in alkalies, lime, and magnesia was noted. The chlorine did not increase notably. One of the waters collected during the fire period contained gold to the amount of 0.1 cent per ton (0.0017 part per million).
CHAPTER XXX

THE CALCULATION OF ROCK ANALYSES

The direct comparison of analyses of rocks in various states of alteration brings out the general character of the changes that have taken place but is really a comparison of equal masses of the rocks, or, more strictly speaking, of the rock powders as prepared and weighed by the analyst. What is really desired is to know the chemical changes which the unit weight or the unit volume of the original material has suffered in the transformation to the altered material, or, more precisely, what constituents have been added to or subtracted from this original unit of substance. Direct comparison gives the information needed only when there has been no change in mass—that is, when the additions and losses of constituents balance and 100 grains of fresh rock change to 100 grains of altered rock. This would of course rarely happen.

Molecular Ratio Method.—The mineralogical composition of an altered rock is determined by study of a thin section; by using the Rosiwal method it can even be determined quantitatively, at least approximately. The composition can be calculated with more accuracy from the analysis of the rock by the usual method of converting the parts by weight into molecular ratios. This is done by dividing the percentage figures by the numbers representing the molecular weights, grouping these molecular ratios properly to correspond to mineral molecules, and then converting the molecular ratios of the minerals into parts by weight. This method is described in detail by J. F. Kemp\(^1\) and by Iddings and others\(^2\) and is facilitated by tables of molecular ratios, the most exhaustive being those published by A. Osann.\(^3\) A more direct method, in which the translation is accomplished with less computation by the

\(^1\) The recalculation of the chemical analyses of rocks, *School of Mines Quarterly*, vol. 22, p. 75.

\(^3\) *Molecular-quotienten zur Berechnung von Gesteinanalysen*, Stuttgart, 1903.
use of decimal tables of mineral composition, has been published by Alfred Harker. ¹

A still more convenient graphic percentage method has been explained by W. J. Mead. ² The simplicity of most of the minerals forming parts of altered rocks facilitates this mode of computation, which, however, does not have the scientific exactness of the method by molecular ratios.

In either of these methods it is necessary to know the composition of the constituent minerals, and, strictly speaking, the problem is not fully solved unless each of the minerals as well as the rock itself is analyzed. The exact calculation of complicated silicates like those occurring in igneous or metamorphic rocks may therefore become impossible, as it is rarely practicable to analyze each constituent.

Calculation of Specific Gravity.—If the percentages and mineral composition are known the specific gravity of the rocks may be calculated, ³ according to the formula

\[
D = \frac{100}{D_1 + \frac{W_1}{D_1} + \frac{W_2}{D_1} + \text{etc.}}
\]

in which \(D\) is the specific gravity sought, \(D_1, D_2, \text{etc.}\), the specific gravities of the minerals constituting the rock, and \(W_1, W_2, \text{etc.}\), the percentage weights. In such a calculation it will necessarily be assumed that the rock is non-porous.

Constituent Minerals.—The calculation of constituent minerals should always be undertaken when rock analyses are obtainable, for unsuspected minerals may often be identified by this means. The quantity of kaolinite and sericite present can usually be easily determined. The presence of diaspore or gibbsite or of zeolites may be revealed.

Calculation on Basis of One Constant.—In the weathering of rocks to loose material and soils it is impossible to ascertain directly the changes in volume and the substances must be first compared by unit weight. It is possible to attain this end if it is known that one constituent, occurring in notable quantities in the rock, has remained constant. In weathering,

¹ Private publication, Cambridge University Press, 1910.
THE CALCULATION OF ROCK ANALYSES

where no sulphuric acid is present, alumina may be considered about constant, and the changes are usually calculated on this basis. The analysis of the altered rock is recalculated as follows:

If 100 grams of fresh rock contain \(a\) grams of alumina and the same amount of altered rock contains \(a_1\) grams we have the equation 100: \(a_1 = x \cdot a\), or

\[x = \frac{a \times 100}{a_1}\]

where \(x\) expresses the number of grams of the altered rock required to contain the amount of alumina originally present in 100 grams of the fresh rock. Assume \(b_1, c_1, d_1, \text{ etc.},\) to be the percentages of other constituents in the altered rock, and \(b_x, c_x, d_x, \text{ etc.},\) the weight of each of these constituents contained in \(x\) grams of altered rock; then

\[b_x = \frac{b_1 \times 100}{100}, \quad c_x = \frac{c_1 \times 100}{100}, \text{ etc.}\]

Comparison with the analysis of the fresh rock will show the loss or gain in weight of each constituent.

If the mineral composition of both rocks is known by percentages it is possible to calculate the loss or gain in volume during the alteration. But this holds only if the original supposition of a constant constituent is true. In few processes of alteration can such constancy be assumed.

Graphic Method.—Graphic methods have been suggested by which in the comparison of two analyses the constancy of any constituent may be tested. One rather complicated plan\(^1\) is to plot the percentages as sectors of a circle and show the relations of the altered to the fresh rock by concentric circles cutting off parts of the sectors corresponding to the ratio between the constituent of the fresh and that of the altered rock. A simpler diagram\(^2\) is obtained by utilizing a straight line divided according to the logarithmic scale. On this are plotted the various values for \(x = \frac{a \times 100}{a_1}\) obtained by considering each constituent in turn as having remained constant. This will show at a glance the gains and losses in each suppositional case of constancy.

\(^2\) W. J. Mead, Some geological short cuts, Econ. Geol., vol. 7, p. 136, 1912.
MINERAL DEPOSITS

MINE WATERS

Chloride Waters

In ores free from sulphides and other easily decomposed minerals the mine waters differ little from the ordinary ground waters of the region. Examples of such waters are found in the iron and copper mines of Michigan. In the following table analyses 1, 2, and 3 represent average waters of the upper circulation; 4 and 5 give the composition of the deep waters of the same region, which differ very materially from the shallow waters and contain an abundance of calcium chloride. The deep waters in the copper region contain some copper, zinc, nickel, and traces of boron.

ANALYSIS OF MINE WATERS FROM UPPER AND LOWER LEVELS OF IRON AND COPPER MINES OF MICHIGAN

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>3.5</td>
<td>18.68</td>
<td>6.00</td>
<td>25,360</td>
<td>176,027</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,200</td>
</tr>
<tr>
<td>CO₃</td>
<td>24.2</td>
<td>163.00¹</td>
<td>41.60</td>
<td></td>
<td>Not det.</td>
</tr>
<tr>
<td>SO₄</td>
<td>18.8</td>
<td>13.14</td>
<td>12.10</td>
<td>1,045</td>
<td>110</td>
</tr>
<tr>
<td>Ca</td>
<td>12.9</td>
<td>62.29</td>
<td>15.20</td>
<td>7,902</td>
<td>86,478</td>
</tr>
<tr>
<td>Mg</td>
<td>2.0</td>
<td>28.20</td>
<td>9.60</td>
<td>566</td>
<td>20</td>
</tr>
<tr>
<td>Na</td>
<td>11.3</td>
<td></td>
<td>4.00</td>
<td>7,290</td>
<td>15,188</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>19.00</td>
<td>1.50</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.0</td>
<td></td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>18.20</td>
<td>1.23</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>14.5</td>
<td>9.80</td>
<td>8.43</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Loss</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>94.0</td>
<td>332.31</td>
<td>100.26</td>
<td>42,863</td>
<td>280,490</td>
</tr>
</tbody>
</table>

¹ CO₂

OXIDATION OF METALLIC ORES

Occasionally mine waters comparatively rich in silica may be encountered. Thus, E. T. Allen analyzed a surface water from the Mesabi iron range, Minnesota, which contained 22 parts per million of silica and only about 14 parts of sulphates and 5 parts of carbonates of calcium and alkali metals.¹

Salt waters, containing mainly sodium chloride to the amount of several per cent., are reported from the Kalgoorlie mines in Western Australia, where they began to come in at water level, a few hundred feet below the surface. At the Great Boulder Proprietary the water contained 9 per cent. of sodium chloride and also much magnesium chloride.² Similar waters are now coming into the deep levels of the Bendigo mines.³ Sulphides are not abundant in these mines. The analysis of a sample taken 4,280 feet below the surface, in the Victoria Reef quartz, where the temperature of the water is 114° F., is given below.

ANALYSIS OF DEEP MINE WATER FROM WESTERN AUSTRALIA

<table>
<thead>
<tr>
<th>[Parts per million]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>Na₂SO₄</td>
</tr>
<tr>
<td>Na₂CO₃</td>
</tr>
<tr>
<td>CaCO₃</td>
</tr>
<tr>
<td>MgCO₃</td>
</tr>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>(Al, Fe)₂O₃</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

² Analyses of several mine waters from the Baraboo range are recorded by S. Weidman, *The Baraboo iron-bearing district*, *Bull*. No. 13, Wis. Geol. and Nat. Hist. Survey, 1904, p. 111. In the main they are similar to No. 3 of the table above, though containing more Ca and Mg.

According to T. A. Rickard1 the mine water at Mammoth, Pinal County, Arizona, contains 86 parts per million of sodium chloride, and that from Stratton’s Independence mine, at Cripple Creek, Colorado, 51 parts of the same salt.

Carbonate Waters

The mine waters from the Wardner lead mines, in the Coeur d’Alene district, Idaho, are rich in ferrous carbonate (from siderite in the ore) and deposit abundant limonite. A sample from the Reed level, Bunker Hill & Sullivan mine, showed 70 parts per million of total solids, chiefly bicarbonate and sulphate of calcium.2 A number of analyses of waters from the lead mines of southeastern Missouri are given by E. R. Buckley.3 The waters come from the La Motte sandstone and Bonneterre dolomite, generally at depths of a few hundred feet. The total solids are at most 500 parts per million, of which 200 parts or more are calculated as calcium-magnesium carbonates. The sulphates, calculated as the magnesium salt, are at most 200 parts per million, while sodium chloride averages only 50 parts. Silica is low. All contain a little lead, at most 1 part per million, calculated as lead sulphate, and generally a trace of zinc. They are weak waters and this is due mainly to the small amount of pyrite in the deposit.

Sulphate Waters

Oxidation of Pyrite.—Where pyrite is present in notable quantities its oxidation materially changes the composition of the waters. The sulphuric acid radicle increases rapidly and displaces the equilibrium so that the normal calcium carbonate waters are changed into those containing mainly calcium sulphate. When the free sulphuric acid increases still further the water becomes rich in the sulphates of aluminum (by the decomposition of sericite and other silicates) and iron, the latter present as both ferrous and ferric sulphate. Free hydrochloric acid is sometimes present. In waters above or at the water level these sulphates may be

1 Trans., Am. Inst. Min. Eng., vol. 31, pp. 198–220.

present in large quantities. Below the water level free acid is rarely found and the sulphate of aluminum is absent. The iron is present as ferrous sulphate and diminishes in quantity with increasing depth. The characteristic calcium sulphate waters persist for wide spaces around pyritic deposits and also reach considerable depths. Besides the sulphates mentioned, the mine waters of the oxidized zone contain almost all the metals occurring in the deposit. Zinc sulphate is especially abundant; copper sulphate is usually present, lead much more rarely; arsenic is common and antimony rare.

The deeper waters from mines poor in pyrite are often deficient in sulphates, although galena and zinc blende may occur in the deposit.

The waters of coal mines show plainly the result of the oxidation of the pyrite and marcasite occurring in the beds. Such waters are often rich in the sulphates of ammonium, calcium, iron, and aluminum, and even in free sulphuric acid. In the drainage from the mines the iron appears as ferrous sulphate, from which, by oxidation, ferric sulphate is formed. Leighton found that coarsely crushed coal washed with distilled water actually yielded free sulphuric acid in the filtrate. Mine waters from coal mines occasionally contain zinc, copper, cobalt, and nickel. A water from the coal mine of the Dravo-Doyle Company, in Pennsylvania, showed according to analysis by the Pittsburgh testing laboratory of the Bureau of Mines:

$$\begin{align*}
\text{Free } H_2SO_4 & \quad 117 \text{ parts per million} \\
Fe_2(SO_4)_3 & \quad 4,970 \text{ parts per million} \\
Al_2(SO_4)_3 & \quad 140 \text{ parts per million} \\
FeSO_4 & \quad 54 \text{ parts per million}
\end{align*}$$

More or less of the sulphate of calcium and magnesium are also usually present.

Examples.—A series of analyses of the Comstock waters, Nevada, by J. A. Reid well illustrates the occurrence of sulphate waters. No. 3 is a concentrated sulphate water from the oxidized zone; Nos. 1 and 2 are deeper hot waters, resulting from the reaction between an ascending sodium-carbonate water and sulphuric acid from the upper zones. The ores contain mainly gold and silver and are not rich in pyrite.
ANALYSES OF MINE WATERS FROM THE COMSTOCK LODGE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO₄</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO₃</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>1.37</td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>6.33</td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
</tbody>
</table>

Total salinity.. 764.40 965.60 110,958.30

3. Vadose water from the Central tunnel. *Idem.*

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothschröner tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
Analyses of Mine Waters

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃</td>
<td></td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td></td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td>14.0</td>
<td>16.2</td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td></td>
<td>7.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Fe"</td>
<td>474.6</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe""</td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Zn</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>852.0</td>
</tr>
<tr>
<td>Cd</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7</td>
<td></td>
<td>Trace</td>
<td>59.1</td>
</tr>
<tr>
<td>Co+Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
9,727.5 & \quad 231.6 & \quad 655.1 & \quad 4,204.5
\end{align*}
\]

F. L. Ransome¹ mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson² describes the mine water from the Ruth mine 335 feet below the surface, in the chalcopyrite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEA, MEXICO
F. G. Hawley, Analyst
[Parts per millioun]

<table>
<thead>
<tr>
<th></th>
<th>300-foot level</th>
<th>900-foot level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined.</td>
<td>22</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined.</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined.</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>2,097</td>
<td>76</td>
</tr>
<tr>
<td>(KNa)₂O</td>
<td>Not determined.</td>
<td>198</td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe".
H₂SO₄ not subtracted from total SO₄.

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopyrite.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe⁶⁺</td>
<td>nil</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcopyrite zone.
2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.
3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcopyrite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood² has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalies, chlorine, and sulphuric acid and a

¹ Quoted in Bull. U. S. Geol. Survey No. 529, 1913, pp. 60, 61.
² Econ. Geol., vol. 6, 1911, pp. 738-744.
salinity of about 300 parts per million. The ordinary mine water from the upper levels has a salinity of 510 parts and contains CaSO₄ and (Ca,Mg)CO₃. The deeper waters, from the 1,100 and 1,550 foot levels, have a higher salinity, as much as 1,228 parts, caused mainly by increase of CaSO₄. The salinity increases during dry periods. During a recent mine fire when the mine was flooded with water the salinity increased to 5,790 parts per million, with SO₄ as high as 2,339 parts. A strong increase in alkalies, lime, and magnesia was noted. The chlorine did not increase notably. One of the waters collected during the fire period contained gold to the amount of 0.1 cent per ton (0.0017 part per million).
CHAPTER XXX

THE CALCULATION OF ROCK ANALYSES

The direct comparison of analyses of rocks in various states of alteration brings out the general character of the changes that have taken place but is really a comparison of equal masses of the rocks, or, more strictly speaking, of the rock powders as prepared and weighed by the analyst. What is really desired is to know the chemical changes which the unit weight or the unit volume of the original material has suffered in the transformation to the altered material, or, more precisely, what constituents have been added to or subtracted from this original unit of substance. Direct comparison gives the information needed only when there has been no change in mass—that is, when the additions and losses of constituents balance and 100 grains of fresh rock change to 100 grains of altered rock. This would of course rarely happen.

Molecular Ratio Method.—The mineralogical composition of an altered rock is determined by study of a thin section; by using the Rosiwal method it can even be determined quantitatively, at least approximately. The composition can be calculated with more accuracy from the analysis of the rock by the usual method of converting the parts by weight into molecular ratios. This is done by dividing the percentage figures by the numbers representing the molecular weights, grouping these molecular ratios properly to correspond to mineral molecules, and then converting the molecular ratios of the minerals into parts by weight. This method is described in detail by J. F. Kemp and by Iddings and others and is facilitated by tables of molecular ratios, the most exhaustive being those published by A. Osann. A more direct method, in which the translation is accomplished with less computation by the

1 The recalculation of the chemical analyses of rocks, School of Mines Quarterly, vol. 22, p. 75.
2 Iddings, Cross, Pirsson, and Washington, Quantitative classification of igneous rocks, 1903.
3 Molecular-quotienten zur Berechnung von Gesteinanalysen, Stuttgart, 1903.
use of decimal tables of mineral composition, has been published by Alfred Harker.¹

A still more convenient graphic percentage method has been explained by W. J. Mead.² The simplicity of most of the minerals forming parts of altered rocks facilitates this mode of computation, which, however, does not have the scientific exactness of the method by molecular ratios.

In either of these methods it is necessary to know the composition of the constituent minerals, and, strictly speaking, the problem is not fully solved unless each of the minerals as well as the rock itself is analyzed. The exact calculation of complicated silicates like those occurring in igneous or metamorphic rocks may therefore become impossible, as it is rarely practicable to analyze each constituent.

Calculation of Specific Gravity.—If the percentages and mineral composition are known the specific gravity of the rocks may be calculated,³ according to the formula

\[D = \frac{100}{W_1 \cdot D_1 + W_2 \cdot D_2 + \ldots} \]

in which \(D \) is the specific gravity sought, \(D_1, D_2, \) etc., the specific gravities of the minerals constituting the rock, and \(W_1, W_2, \) etc., the percentage weights. In such a calculation it will necessarily be assumed that the rock is non-porous.

Constituent Minerals.—The calculation of constituent minerals should always be undertaken when rock analyses are obtainable, for unsuspected minerals may often be identified by this means. The quantity of kaolinite and sericite present can usually be easily determined. The presence of diaspore or gibbsite or of zeolites may be revealed.

Calculation on Basis of One Constant.—In the weathering of rocks to loose material and soils it is impossible to ascertain directly the changes in volume and the substances must be first compared by unit weight. It is possible to attain this end if it is known that one constituent, occurring in notable quantities in the rock, has remained constant. In weathering,

¹ Private publication, Cambridge University Press, 1910.
where no sulphuric acid is present, alumina may be considered about constant, and the changes are usually calculated on this basis. The analysis of the altered rock is recalculated as follows:

If 100 grams of fresh rock contain a grams of alumina and the same amount of altered rock contains a_1 grams we have the equation 100: $a_1 = x : a$, or

$$x = \frac{a \times 100}{a_1}$$

where x expresses the number of grams of the altered rock required to contain the amount of alumina originally present in 100 grams of the fresh rock. Assume b_1, c_1, d_1, etc., to be the percentages of other constituents in the altered rock, and b_x, c_x, d_x, etc., the weight of each of these constituents contained in x grams of altered rock; then

$$b_x = \frac{b_1x}{100}, c_x = \frac{c_1x}{100}, \text{ etc.}$$

Comparison with the analysis of the fresh rock will show the loss or gain in weight of each constituent.

If the mineral composition of both rocks is known by percentages it is possible to calculate the loss or gain in volume during the alteration. But this holds only if the original supposition of a constant constituent is true. In few processes of alteration can such constancy be assumed.

Graphic Method.—Graphic methods have been suggested by which in the comparison of two analyses the constancy of any constituent may be tested. One rather complicated plan is to plot the percentages as sectors of a circle and show the relations of the altered to the fresh rock by concentric circles cutting off parts of the sectors corresponding to the ratio between the constituent of the fresh and that of the altered rock. A simpler diagram is obtained by utilizing a straight line divided according to the logarithmic scale. On this are plotted the various values for $x = \frac{a \times 100}{a_1}$ obtained by considering each constituent in turn as having remained constant. This will show at a glance the gains and losses in each suppositional case of constancy.

Calculation on Basis of No Change in Volume.—If the change in volume during the alteration is known the gains or losses per unit volume may be calculated without the knowledge of constancy of any constituent. In replacements proceeding in solid rocks there is little or no change in volume because the volume of the replacing mineral equals that of the replaced.\(^1\) This may not be true in certain forms of replacement with rapidly moving solutions. Ordinarily the altered rocks give no evidence of changes of volume and the assumption of equal volumes is justified. The calculation may then proceed with the determination of weight of constituents in grams in 100 cubic centimeters of fresh and altered rocks. The comparison of these weights gives gains and losses of each constituent and this may be followed by tables giving gain or loss of each constituent in percentage of original mass of each constituent and gain or loss in percentage of total original rock mass.\(^2\)

These calculations are usually based on the determination of the specific gravities of lumps of the rocks, as the aim is to determine the change taking place during the alteration of unit volume of fresh rock, and as porosity of the altered rock, if existing, expresses part of this change. If the changes are calculated with reference to equal volumes of non-porous rocks the results might be very different and would fail to express what has actually taken place. The porosity is ascertained by determining the specific gravity of the finely ground rock powder and comparing it with the specific weight determined in lumps.

The porosity of the fresh rocks consolidated at some depth is usually less than 1 per cent. Ransome found, by comparison of specific gravity of rock and powder, a porosity of 0.9 per cent. for a dacite from Goldfield, Nevada, and 1.4 per cent. for a diorite porphyry from Breckenridge, Colorado. While the altered alunite rock from Goldfield showed a porosity of nearly 10 per cent., the corresponding sericite rock from Breckenridge gave porosities of 0.3 and 0.5 per cent. It is probable that strong solutions moving rapidly result in increased pore space of the altered rock.

method that a separate diagram must be used for each analysis and that it is difficult to indicate losses or gains of the substances occurring in small quantities only.

If the losses and gains of each chemical constituent in terms of percentage of mass or original rock are known, the fresh rock may be represented by a circle and the losses or gains laid off outside or inside along radii representing certain constituents. Where several rocks are to be compared this diagram is apt to become confused. Fig. 256, from Ransome's report on the Goldfield district, Nevada, illustrates this mode of graphic representation.

One method—really the most effective—consists in a coordinate system, in which the abscissas represent the distance from the vein, which may be taken as the origin of the acting solutions, and the ordinates represent the molecular ratios multiplied by 100, except for silica, for which the scale must be reduced to bring the diagram within a convenient compass. Fig. 257 shows this method applied to Ransome's analyses from the Breckenridge district, Colorado.
According to T. A. Rickard1 the mine water at Mammoth, Pinal County, Arizona, contains 86 parts per million of sodium chloride, and that from Stratton's Independence mine, at Cripple Creek, Colorado, 51 parts of the same salt.

Carbonate Waters

The mine waters from the Wardner lead mines, in the Coeur d'Alene district, Idaho, are rich in ferrous carbonate (from siderite in the ore) and deposit abundant limonite. A sample from the Reed level, Bunker Hill \& Sullivan mine, showed 70 parts per million of total solids, chiefly bicarbonate and sulphate of calcium.2

A number of analyses of waters from the lead mines of southeastern Missouri are given by E. R. Buckley.3 The waters come from the La Motte sandstone and Bonneterre dolomite, generally at depths of a few hundred feet. The total solids are at most 500 parts per million, of which 200 parts or more are calculated as calcium-magnesium carbonates. The sulphates, calculated as the magnesium salt, are at most 200 parts per million, while sodium chloride averages only 50 parts. Silica is low. All contain a little lead, at most 1 part per million, calculated as lead sulphate, and generally a trace of zinc. They are weak waters and this is due mainly to the small amount of pyrite in the deposit.

Sulphate Waters

Oxidation of Pyrite.—Where pyrite is present in notable quantities its oxidation materially changes the composition of the waters. The sulphuric acid radicle increases rapidly and displaces the equilibrium so that the normal calcium carbonate waters are changed into those containing mainly calcium sulphate. When the free sulphuric acid increases still further the water becomes rich in the sulphates of aluminum (by the decomposition of sericite and other silicates) and iron, the latter present as both ferrous and ferric sulphate. Free hydrochloric acid is sometimes present. In waters above or at the water level these sulphates may be

1 Trans., Am. Inst. Min. Eng., vol. 31, pp. 198–220.

OXIDATION OF METALLIC ORES

present in large quantities. Below the water level free acid is rarely found and the sulphate of aluminum is absent. The iron is present as ferrous sulphate and diminishes in quantity with increasing depth. The characteristic calcium sulphate waters persist for wide spaces around pyritic deposits and also reach considerable depths. Besides the sulphates mentioned, the mine waters of the oxidized zone contain almost all the metals occurring in the deposit. Zinc sulphate is especially abundant; copper sulphate is usually present, lead much more rarely; arsenic is common and antimony rare.

The deeper waters from mines poor in pyrite are often deficient in sulphates, although galena and zinc blende may occur in the deposit.

The waters of coal mines show plainly the result of the oxidation of the pyrite and marcasite occurring in the beds. Such waters are often rich in the sulphates of ammonium, calcium, iron, and aluminum, and even in free sulphuric acid. In the drainage from the mines the iron appears as ferrous sulphate, from which, by oxidation, ferric sulphate is formed. Leighton found that coarsely crushed coal washed with distilled water actually yielded free sulphuric acid in the filtrate. Mine waters from coal mines occasionally contain zinc, copper, cobalt, and nickel. A water from the coal mine of the Dravo-Doyle Company, in Pennsylvania, showed according to analysis by the Pittsburgh testing laboratory of the Bureau of Mines:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃(SO₄)₂</td>
<td>4,970</td>
</tr>
<tr>
<td>Al₂(SO₄)₃</td>
<td>140</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>54</td>
</tr>
</tbody>
</table>

More or less of the sulphate of calcium and magnesium are also usually present.

Examples.—A series of analyses of the Comstock waters, Nevada, by J. A. Reid well illustrates the occurrence of sulphate waters. No. 3 is a concentrated sulphate water from the oxidized zone; Nos. 1 and 2 are deeper hot waters, resulting from the reaction between an ascending sodium-carbonate water and sulphuric acid from the upper zones. The ores contain mainly gold and silver and are not rich in pyrite.
Analyses of Mine Waters from the Comstock Lode

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO₄</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO₃</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>1.37</td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>6.33</td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
<tr>
<td>Total salinity</td>
<td>764.40</td>
<td>965.60</td>
<td>110,958.30</td>
</tr>
</tbody>
</table>

3. Vadose water from the Central tunnel. *Idem.*

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothsönberger tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
Analyses of Mine Waters

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₄³⁻</td>
<td></td>
<td></td>
<td>Trace.</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td></td>
<td>16.2</td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td></td>
<td>7.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>474.6</td>
<td>6.6</td>
<td></td>
<td>159.8</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td></td>
<td>0.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Zn</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>852.0</td>
</tr>
<tr>
<td>Cd</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7</td>
<td></td>
<td>Trace.</td>
<td>59.1</td>
</tr>
<tr>
<td>Co + Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>9,727.5</td>
<td>231.6</td>
<td>655.1</td>
<td>4,204.5</td>
</tr>
</tbody>
</table>

4. Water from 1,200-foot level, crossect St. Lawrence, Butte, Montana, Cd and Sn possibly accidentally introduced? Faintly acid. W. F. Hillebrand, analyst. Fe²⁺ probably changed to Fe³⁺ during exposure to air.

F. L. Ransome mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson describes the mine water from the Ruth mine 335 feet below the surface, in the chalcocite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEA, MEXICO

F. G. Hawley, Analyst

<table>
<thead>
<tr>
<th></th>
<th>300-foot level.</th>
<th>900-foot level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SO}_4)</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined.</td>
<td>22</td>
</tr>
<tr>
<td>(\text{H}_2\text{SO}_4) (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined.</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined.</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>2,097</td>
<td>76</td>
</tr>
<tr>
<td>(K₂O·Na₂O)</td>
<td>Not determined.</td>
<td>198</td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe".
\(\text{H}_2\text{SO}_4 \), not subtracted from total \(\text{SO}_4 \).

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopryrite.
OXIDATION OF METALLIC ORES

ANALYSES OF MINE WATER FROM DUCKTOWN, TENNESSEE:

R. C. Wells, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe⁺⁺</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>nil.</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcocite zone.

2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.

3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcocite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalies, chlorine, and sulphuric acid and a

¹ Quoted in Bull. U. S. Geol. Survey No. 529, 1913, pp. 60, 61.

² Econ. Geol., vol. 6, 1911, pp. 738-744.
salinity of about 300 parts per million. The ordinary mine water from the upper levels has a salinity of 510 parts and contains \(\text{CaSO}_4 \) and \((\text{Ca,Mg})\text{CO}_3\). The deeper waters, from the 1,100 and 1,550 foot levels, have a higher salinity, as much as 1,228 parts, caused mainly by increase of \(\text{CaSO}_4 \). The salinity increases during dry periods. During a recent mine fire when the mine was flooded with water the salinity increased to 5,790 parts per million, with \(\text{SO}_4 \) as high as 2,339 parts. A strong increase in alkali, lime, and magnesia was noted. The chlorine did not increase notably. One of the waters collected during the fire period contained gold to the amount of 0.1 cent per ton (0.0017 part per million).
CHAPTER XXX

THE CALCULATION OF ROCK ANALYSES

The direct comparison of analyses of rocks in various states of alteration brings out the general character of the changes that have taken place but is really a comparison of equal masses of the rocks, or, more strictly speaking, of the rock powders as prepared and weighed by the analyst. What is really desired is to know the chemical changes which the unit weight or the unit volume of the original material has suffered in the transformation to the altered material, or, more precisely, what constituents have been added to or subtracted from this original unit of substance. Direct comparison gives the information needed only when there has been no change in mass—that is, when the additions and losses of constituents balance and 100 grains of fresh rock change to 100 grains of altered rock. This would of course rarely happen.

Molecular Ratio Method.—The mineralogical composition of an altered rock is determined by study of a thin section; by using the Rosiwal method it can even be determined quantitatively, at least approximately. The composition can be calculated with more accuracy from the analysis of the rock by the usual method of converting the parts by weight into molecular ratios. This is done by dividing the percentage figures by the numbers representing the molecular weights, grouping these molecular ratios properly to correspond to mineral molecules, and then converting the molecular ratios of the minerals into parts by weight. This method is described in detail by J. F. Kemp1 and by Iddings and others2 and is facilitated by tables of molecular ratios, the most exhaustive being those published by A. Osann.3 A more direct method, in which the translation is accomplished with less computation by the

1 The recalculation of the chemical analyses of rocks, School of Mines Quarterly, vol. 22, p. 75.
2 Iddings, Cross, Pirsson, and Washington, Quantitative classification of igneous rocks, 1903.
3 Molecular-quotienten zur Berechnung von Gesteinanalysen, Stuttgart, 1903.

845
use of decimal tables of mineral composition, has been published by Alfred Harker.¹

A still more convenient graphic percentage method has been explained by W. J. Mead.² The simplicity of most of the minerals forming parts of altered rocks facilitates this mode of computation, which, however, does not have the scientific exactness of the method by molecular ratios.

In either of these methods it is necessary to know the composition of the constituent minerals, and, strictly speaking, the problem is not fully solved unless each of the minerals as well as the rock itself is analyzed. The exact calculation of complicated silicates like those occurring in igneous or metamorphic rocks may therefore become impossible, as it is rarely practicable to analyze each constituent.

Calculation of Specific Gravity.—If the percentages and mineral composition are known the specific gravity of the rocks may be calculated,³ according to the formula

\[
D = \frac{100}{W_1 + \frac{W}{D_1} + \frac{W}{D_2} + \frac{W}{D_i}, \text{ etc.}}
\]

in which \(D\) is the specific gravity sought, \(D_1, D_2, \text{ etc.}\), the specific gravities of the minerals constituting the rock, and \(W_1, W_2, \text{ etc.}\), the percentage weights. In such a calculation it will necessarily be assumed that the rock is non-porous.

Constituent Minerals.—The calculation of constituent minerals should always be undertaken when rock analyses are obtainable, for unsuspected minerals may often be identified by this means. The quantity of kaolinite and sericite present can usually be easily determined. The presence of diaspore or gibbsite or of zeolites may be revealed.

Calculation on Basis of One Constant.—In the weathering of rocks to loose material and soils it is impossible to ascertain directly the changes in volume and the substances must be first compared by unit weight. It is possible to attain the end if it is known that one constituent, occurring in notable quantities in the rock, has remained constant. In weathering,

¹ Private publication, Cambridge University Press, 1910.
where no sulphuric acid is present, alumina may be considered about constant, and the changes are usually calculated on this basis. The analysis of the altered rock is recalculated as follows:

If 100 grams of fresh rock contain \(a \) grams of alumina and the same amount of altered rock contains \(a_1 \) grams we have the equation 100: \(a_1 = x : a \), or

\[
x = \frac{a \times 100}{a_1}
\]

where \(x \) expresses the number of grams of the altered rock required to contain the amount of alumina originally present in 100 grams of the fresh rock. Assume \(b_1, c_1, d_1 \), etc., to be the percentages of other constituents in the altered rock, and \(b_x, c_x, d_x \), etc., the weight of each of these constituents contained in \(x \) grams of altered rock; then

\[
b_x = \frac{b_1 x}{100}, \quad c_x = \frac{c_1 x}{100}, \quad \text{etc.}
\]

Comparison with the analysis of the fresh rock will show the loss or gain in weight of each constituent.

If the mineral composition of both rocks is known by percentages it is possible to calculate the loss or gain in volume during the alteration. But this holds only if the original supposition of a constant constituent is true. In few processes of alteration can such constancy be assumed.

Graphic Method.—Graphic methods have been suggested by which in the comparison of two analyses the constancy of any constituent may be tested. One rather complicated plan is to plot the percentages as sectors of a circle and show the relations of the altered to the fresh rock by concentric circles cutting off parts of the sectors corresponding to the ratio between the constituent of the fresh and that of the altered rock. A simpler diagram is obtained by utilizing a straight line divided according to the logarithmic scale. On this are plotted the various values for \(x = \frac{a \times 100}{a_1} \) obtained by considering each constituent in turn as having remained constant. This will show at a glance the gains and losses in each suppositional case of constancy.

E. Steidtmann, Econ. Geol., vol. 3, 1908, pp. 381-409.
Calculation on Basis of No Change in Volume.—If the change in volume during the alteration is known the gains or losses per unit volume may be calculated without the knowledge of constancy of any constituent. In replacements proceeding in solid rocks there is little or no change in volume because the volume of the replacing mineral equals that of the replaced.\(^1\) This may not be true in certain forms of replacement with rapidly moving solutions. Ordinarily the altered rocks give no evidence of changes of volume and the assumption of equal volumes is justified. The calculation may then proceed with the determination of weight of constituents in grams in 100 cubic centimeters of fresh and altered rocks. The comparison of these weights gives gains and losses of each constituent and this may be followed by tables giving gain or loss of each constituent in percentage of original mass of each constituent and gain or loss in percentage of total original rock mass.\(^2\)

These calculations are usually based on the determination of the specific gravities of lumps of the rocks, as the aim is to determine the change taking place during the alteration of unit volume of fresh rock, and as porosity of the altered rock, if existing, expresses part of this change. If the changes are calculated with reference to equal volumes of non-porous rocks the results might be very different and would fail to express what has actually taken place. The porosity is ascertained by determining the specific gravity of the finely ground rock powder and comparing it with the specific weight determined in lumps.

The porosity of the fresh rocks consolidated at some depth is usually less than 1 per cent. Ransome found, by comparison of specific gravity of rock and powder, a porosity of 0.9 per cent. for a dacite from Goldfield, Nevada, and 1.4 per cent. for a diorite porphyry from Breckenridge, Colorado. While the altered alunite rock from Goldfield showed a porosity of nearly 10 per cent., the corresponding sericite rock from Breckenridge gave porosities of 0.3 and 0.5 per cent. It is probable that strong solutions moving rapidly result in increased pore space of the altered rock.

\(^1\) W. Lindgren, The nature of replacement, *Econ. Geol.*, vol. 7, No. 7.
method that a separate diagram must be used for each analysis and that it is difficult to indicate losses or gains of the substances occurring in small quantities only.

If the losses and gains of each chemical constituent in terms of percentage of mass or original rock are known, the fresh rock may be represented by a circle and the losses or gains laid off outside or inside along radii representing certain constituents. Where several rocks are to be compared this diagram is apt to become confused. Fig. 256, from Ransome's report on the Goldfield district, Nevada, illustrates this mode of graphic representation.

One method—really the most effective—consists in a coördinate system, in which the abscissas represent the distance from the vein, which may be taken as the origin of the acting solutions, and the ordinates represent the molecular ratios multiplied by 100, except for silica, for which the scale must be reduced to bring the diagram within a convenient compass. Fig. 257 shows this method applied to Ransome's analyses from the Breckenridge district, Colorado.
Diagrams.—Progressive alteration is best illustrated by the use of diagrams. In plotting the proportions of the various

Fig. 255.—Diagrams showing changes brought about by alteration of the earlier andesite at Tonopah, Nrvada. After J. E. Spurr, U. S. Geol. Survey.

Fig. 256.—Diagram showing gains and losses of each constituent in alteration of dacite at Goldfield, Nevada, expressed in terms of percentage of mass of original fresh dacite. After F. L. Ransome, U. S. Geol. Survey.

Substances the molecular ratios obtained by dividing the weight percentages by the molecular weights\(^1\) are generally employed.

\(^1\) For convenience these ratios are usually multiplied by 100.
ANALYSES OF MINE WATERS FROM THE COMSTOCK LODE

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1.27</td>
<td>19.00</td>
<td>127.60</td>
</tr>
<tr>
<td>SO₄</td>
<td>380.38</td>
<td>474.00</td>
<td>209,100.00</td>
</tr>
<tr>
<td>CO₃</td>
<td>115.03</td>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.39</td>
<td>53.40</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>57.13</td>
<td>132.00</td>
<td>535.00</td>
</tr>
<tr>
<td>Ca</td>
<td>148.10</td>
<td>100.10</td>
<td>1,286.00</td>
</tr>
<tr>
<td>Mg</td>
<td>154.03</td>
<td>5.88</td>
<td>6,590.00</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>1.37</td>
<td>9,670.00</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td>885.10</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td>147.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>30.50</td>
<td>133.40</td>
<td>616.00</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>6.33</td>
<td>5,025.02</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>2,575.00</td>
</tr>
</tbody>
</table>

Total salinity... 764.40 965.60 110,958.30

3. Vadose water from the Central tunnel. *Idem*.

Some of the mine waters of the Joplin zinc region, where the deposits contain, besides zinc blende and galena, some pyrite or marcasite, are extremely rich in zinc sulphate and contain also the sulphates of iron and aluminum. (See analysis No. 1 in table on p. 841.)

The water of the Rothschenberger tunnel, draining the mines at Freiberg, Saxony, is a good example of a dilute mine water which has traversed the old workings of veins carrying pyrite, galena, and zinc blende. (See analysis No. 2, p. 841.)

The same principle is illustrated by the analyses of two waters from the mines at Butte, Montana. No. 3 is from a deep level, but rather far from the principal vein system; No. 4 is from the 1,200-foot level in one of the principal mines; it has acquired the habit of a water of the upper oxidized zone because the water level has been artificially lowered and the oxidation of the pyrite is progressing rapidly.
Analyses of Mine Waters

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>12.4</td>
<td>6.8</td>
<td>13.0</td>
</tr>
<tr>
<td>HCO₃</td>
<td></td>
<td></td>
<td></td>
<td>13.5</td>
</tr>
<tr>
<td>SO₄</td>
<td>6,153.2</td>
<td>124.8</td>
<td>406.5</td>
<td>2,672.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>107.6</td>
<td>18.0</td>
<td>23.0</td>
<td>47.7</td>
</tr>
<tr>
<td>AsO₄</td>
<td></td>
<td></td>
<td>Trace.</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>345.3</td>
<td>46.4</td>
<td>151.2</td>
<td>132.5</td>
</tr>
<tr>
<td>Mg</td>
<td>25.2</td>
<td>14.5</td>
<td>28.2</td>
<td>61.6</td>
</tr>
<tr>
<td>Na</td>
<td>49.9</td>
<td>16.2</td>
<td></td>
<td>39.6</td>
</tr>
<tr>
<td>K</td>
<td>0.5</td>
<td>7.1</td>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td>Fe</td>
<td>474.6</td>
<td>6.6</td>
<td>{1.8}</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>1.7</td>
<td>0.5</td>
<td></td>
<td>12.0</td>
</tr>
<tr>
<td>Zn</td>
<td>2,412.0</td>
<td>8.9</td>
<td>0.3</td>
<td>852.0</td>
</tr>
<tr>
<td>Cd</td>
<td>9.0</td>
<td></td>
<td></td>
<td>41.1</td>
</tr>
<tr>
<td>Al</td>
<td>142.1</td>
<td></td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7</td>
<td>Trace.</td>
<td></td>
<td>59.1</td>
</tr>
<tr>
<td>Co+Ni</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>9,727.5</td>
<td>231.6</td>
<td>655.1</td>
<td>4,204.5</td>
</tr>
</tbody>
</table>

4. Water from 1,200-foot level, crosscut St. Lawrence, Butte, Montana, Cd and Sn possibly accidentally introduced? Faintly acid. W. F. Hillebrand, analyst. Fe'' probably changed to Fe''' during exposure to air.

F. L. Ransome mentions a mine water from Goldfield, Nevada, which contained about 4,250 parts per million of total solids, mostly sulphates of iron, sodium, magnesium, and calcium. The silica in such waters is generally low.

A. C. Lawson describes the mine water from the Ruth mine 335 feet below the surface, in the chalcocite blanket in the

porphyry of Ely, Nevada. The temperature was 16° C., decidedly higher than the average annual temperature of the region. The total solids were 1,094 parts per million, of which 359 parts were calculated as calcium sulphate, 130 as magnesium sulphate, 93 as alkaline chlorides, 160 as ferrous sulphate, and 7 as ferric sulphate.

A valuable series of analyses of the mine waters at the copper mines of Cananea, Mexico, has been received through the courtesy of Mr. W. H. Emmons. The waters come from three deeper levels and have percolated through a sericitized rock with a considerable amount of chalcocite and pyrite, though there are no solid masses of pyrite.

ANALYSES OF WATERS FROM THE CAPOTE MINE, CANANEA, MEXICO

F. G. Hawley, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>300-foot level.</th>
<th>900-foot level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>4,220</td>
<td>3,714</td>
</tr>
<tr>
<td>Cl</td>
<td>Not determined</td>
<td>22</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>970</td>
<td>nil.</td>
</tr>
<tr>
<td>SiO₂</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>FeO</td>
<td>393</td>
<td>674</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Not determined</td>
<td>42</td>
</tr>
<tr>
<td>CaO</td>
<td>610</td>
<td>1,053</td>
</tr>
<tr>
<td>MgO</td>
<td>102</td>
<td>144</td>
</tr>
<tr>
<td>MnO</td>
<td>305</td>
<td>198</td>
</tr>
<tr>
<td>ZnO</td>
<td>Not determined</td>
<td>315</td>
</tr>
<tr>
<td>CuO</td>
<td>Not determined</td>
<td>198</td>
</tr>
<tr>
<td>(K, Na)₂O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fe almost wholly as Fe⁺⁺.
H₂SO₄ not subtracted from total SO₄.

The deeper waters contain much more calcium sulphate as well as ferrous sulphate, but much less copper. Chalcocite probably reduces the ferric sulphate to ferrous.

Another instructive series was collected by Emmons and Laney at Ducktown, Tennessee. Here the water level is high and the ores consist of heavy masses of pyrrhotite with some chalcopyrite.
OXIDATION OF METALLIC ORES

ANALYSES OF MINE WATER FROM DUCKTOWN, TENNESSEE

R. C. Wells, Analyst

[Parts per million]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄</td>
<td>6,664.0</td>
<td>415.8</td>
<td>474.8</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.6</td>
<td>37.0</td>
<td>49.9</td>
</tr>
<tr>
<td>H₂SO₄ (free)</td>
<td>129.6</td>
<td>210.2</td>
<td>97.5</td>
</tr>
<tr>
<td>Al</td>
<td>433.0</td>
<td>14.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Fe⁺⁺⁺</td>
<td>2,178.0</td>
<td>71.4</td>
<td>89.2</td>
</tr>
<tr>
<td>Fe⁺⁺⁺⁺</td>
<td>nil.</td>
<td>20.3</td>
<td>55.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>67.6</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Mg</td>
<td>40.6</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cu</td>
<td>312.1</td>
<td>28.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Zn</td>
<td>199.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>K</td>
<td>19.8</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Na</td>
<td>23.4</td>
<td>5.2</td>
<td>5.5</td>
</tr>
</tbody>
</table>

1. Burra-Burra mine. Circulating water dripping from roof of drift just below chalcocite zone.

2. Callaway shaft, standing water, at water level, 90 feet below surface. Both 1 and 2 were collected with special precautions and sealed to prevent oxidation.

3. Callaway shaft, standing water 37 feet below water level.

All three waters are rich in free acid, the deepest sample being the least acid. The water of No. 1, collected just below the chalcocite zone, is extremely rich in sulphates but contains no ferric sulphate, while the water standing in the shaft contains both ferrous and ferric sulphate. There is less copper in the lower part of the standing body of water than at the surface but more calcium.

W. J. Sharwood has recently contributed a series of very valuable analyses of the waters in the Homestake mine, South Dakota. The deposit is a large lenticular body of gold ore with much pyrite, pyrrhotite, quartz, and amphibole. The sulphides, though abundant, make up only a part of the ore. The ordinary creek waters are of the normal calcium carbonate type, with little silica, alkalies, chlorine, and sulphuric acid and a

2 *Econ. Geol.*, vol. 6, 1911, pp. 738–744.
salinity of about 300 parts per million. The ordinary mine water from the upper levels has a salinity of 510 parts and contains CaSO₄ and (Ca,Mg)CO₃. The deeper waters, from the 1,100 and 1,550 foot levels, have a higher salinity, as much as 1,228 parts, caused mainly by increase of CaSO₄. The salinity increases during dry periods. During a recent mine fire when the mine was flooded with water the salinity increased to 5,790 parts per million, with SO₄ as high as 2,339 parts. A strong increase in alkalies, lime, and magnesia was noted. The chlorine did not increase notably. One of the waters collected during the fire period contained gold to the amount of 0.1 cent per ton (0.0017 part per million).
CHAPTER XXX

THE CALCULATION OF ROCK ANALYSES

The direct comparison of analyses of rocks in various states of alteration brings out the general character of the changes that have taken place but is really a comparison of equal masses of the rocks, or, more strictly speaking, of the rock powders as prepared and weighed by the analyst. What is really desired is to know the chemical changes which the unit weight or the unit volume of the original material has suffered in the transformation to the altered material, or, more precisely, what constituents have been added to or subtracted from this original unit of substance. Direct comparison gives the information needed only when there has been no change in mass—that is, when the additions and losses of constituents balance and 100 grains of fresh rock change to 100 grains of altered rock. This would of course rarely happen.

Molecular Ratio Method.—The mineralogical composition of an altered rock is determined by study of a thin section; by using the Rosiwal method it can even be determined quantitatively, at least approximately. The composition can be calculated with more accuracy from the analysis of the rock by the usual method of converting the parts by weight into molecular ratios. This is done by dividing the percentage figures by the numbers representing the molecular weights, grouping these molecular ratios properly to correspond to mineral molecules, and then converting the molecular ratios of the minerals into parts by weight. This method is described in detail by J. F. Kemp¹ and by Iddings and others² and is facilitated by tables of molecular ratios, the most exhaustive being those published by A. Osann.³ A more direct method, in which the translation is accomplished with less computation by the

¹ The recalculation of the chemical analyses of rocks, School of Mines Quarterly, vol. 22, p. 75.
² Iddings, Cross, Pirsson, and Washington, Quantitative classification of igneous rocks, 1903.
³ Molecular-quotienten zur Berechnung von Gesteinanalysen, Stuttgart, 1903.
use of decimal tables of mineral composition, has been published by Alfred Harker.\(^1\)

A still more convenient graphic percentage method has been explained by W. J. Mead.\(^2\) The simplicity of most of the minerals forming parts of altered rocks facilitates this mode of computation, which, however, does not have the scientific exactness of the method by molecular ratios.

In either of these methods it is necessary to know the composition of the constituent minerals, and, strictly speaking, the problem is not fully solved unless each of the minerals as well as the rock itself is analyzed. The exact calculation of complicated silicates like those occurring in igneous or metamorphic rocks may therefore become impossible, as it is rarely practicable to analyze each constituent.

Calculation of Specific Gravity.—If the percentages and mineral composition are known the specific gravity of the rocks may be calculated,\(^3\) according to the formula

\[
D = \frac{100}{\left(\frac{W_1}{D_1} + \frac{W_2}{D_2} + \frac{W_3}{D_3} + \ldots\right)}
\]

in which \(D\) is the specific gravity sought, \(D_1, D_2, \text{ etc.}\), the specific gravities of the minerals constituting the rock, and \(W_1, W_2, \text{ etc.}\), the percentage weights. In such a calculation it will necessarily be assumed that the rock is non-porous.

Constituent Minerals.—The calculation of constituent minerals should always be undertaken when rock analyses are obtainable, for unsuspected minerals may often be identified by this means. The quantity of kaolinite and sericite present can usually be easily determined. The presence of diaspore or gibbsite or of zeolites may be revealed.

Calculation on Basis of One Constant.—In the weathering of rocks to loose material and soils it is impossible to ascertain directly the changes in volume and the substances must be first compared by unit weight. It is possible to attain this end if it is known that one constituent, occurring in notable quantities in the rock, has remained constant. In weathering,

\(^1\) Private publication, Cambridge University Press, 1910.
where no sulphuric acid is present, alumina may be considered about constant, and the changes are usually calculated on this basis. The analysis of the altered rock is recalculated as follows:

If 100 grams of fresh rock contain \(a \) grams of alumina and the same amount of altered rock contains \(a_1 \) grams we have the equation 100: \(a_1 = x : a \), or

\[
x = \frac{a \times 100}{a_1}
\]

where \(x \) expresses the number of grams of the altered rock required to contain the amount of alumina originally present in 100 grams of the fresh rock. Assume \(b_1, c_1, d_1, \) etc., to be the percentages of other constituents in the altered rock, and \(b_x, c_x, d_x, \) etc., the weight of each of these constituents contained in \(x \) grams of altered rock; then

\[
b_x = \frac{b_1}{100}, \quad c_x = \frac{c_1}{100}, \quad \text{etc.}
\]

Comparison with the analysis of the fresh rock will show the loss or gain in weight of each constituent.

If the mineral composition of both rocks is known by percentages it is possible to calculate the loss or gain in volume during the alteration. But this holds only if the original supposition of a constant constituent is true. In few processes of alteration can such constancy be assumed.

Graphic Method.—Graphic methods have been suggested by which in the comparison of two analyses the constancy of any constituent may be tested. One rather complicated plan\(^1\) is to plot the percentages as sectors of a circle and show the relations of the altered to the fresh rock by concentric circles cutting off parts of the sectors corresponding to the ratio between the constituent of the fresh and that of the altered rock. A simpler diagram\(^2\) is obtained by utilizing a straight line divided according to the logarithmic scale. On this are plotted the various values for \(x = \frac{a \times 100}{a_1} \) obtained by considering each constituent in turn as having remained constant. This will show at a glance the gains and losses in each suppositional case of constancy.

Calculation on Basis of No Change in Volume.—If the change in volume during the alteration is known the gains or losses per unit volume may be calculated without the knowledge of constancy of any constituent. In replacements proceeding in solid rocks there is little or no change in volume because the volume of the replacing mineral equals that of the replaced.\(^1\) This may not be true in certain forms of replacement with rapidly moving solutions. Ordinarily the altered rocks give no evidence of changes of volume and the assumption of equal volumes is justified. The calculation may then proceed with the determination of weight of constituents in grams in 100 cubic centimeters of fresh and altered rocks. The comparison of these weights gives gains and losses of each constituent and this may be followed by tables giving gain or loss of each constituent in percentage of original mass of each constituent and gain or loss in percentage of total original rock mass.\(^2\)

These calculations are usually based on the determination of the specific gravities of lumps of the rocks, as the aim is to determine the change taking place during the alteration of unit volume of fresh rock, and as porosity of the altered rock, if existing, expresses part of this change. If the changes are calculated with reference to equal volumes of non-porous rocks the results might be very different and would fail to express what has actually taken place. The porosity is ascertained by determining the specific gravity of the finely ground rock powder and comparing it with the specific weight determined in lumps.

The porosity of the fresh rocks consolidated at some depth is usually less than 1 per cent. Ransome found, by comparison of specific gravity of rock and powder, a porosity of 0.9 per cent. for a dacite from Goldfield, Nevada, and 1.4 per cent. for a diorite porphyry from Breckenridge, Colorado. While the altered alunite rock from Goldfield showed a porosity of nearly 10 per cent., the corresponding sericite rock from Breckenridge gave porosities of 0.3 and 0.5 per cent. It is probable that strong solutions moving rapidly result in increased pore space of the altered rock.

\(^1\) W. Lindgren, The nature of replacement, *Econ. Geol.*, vol. 7, No. 7.

method that a separate diagram must be used for each analysis and that it is difficult to indicate losses or gains of the substances occurring in small quantities only.

If the losses and gains of each chemical constituent in terms of percentage of mass or original rock are known, the fresh rock may be represented by a circle and the losses or gains laid off outside or inside along radii representing certain constituents. Where several rocks are to be compared this diagram is apt to become confused. Fig. 256, from Ransome’s report on the Goldfield district, Nevada, illustrates this mode of graphic representation.

One method—really the most effective—consists in a coördinate system, in which the abscissas represent the distance from the vein, which may be taken as the origin of the acting solutions, and the ordinates represent the molecular ratios multiplied by 100, except for silica, for which the scale must be reduced to bring the diagram within a convenient compass. Fig. 257 shows this method applied to Ransome’s analyses from the Breckenridge district, Colorado.
Diagrams.—Progressive alteration is best illustrated by the use of diagrams. In plotting the proportions of the various

Fig. 255.—Diagrams showing changes brought about by alteration of the earlier andesite at Tonopah, Nevada. After J. E. Spurr, U. S. Geol. Survey.

Fig. 256.—Diagram showing gains and losses of each constituent in alteration of dacite at Goldfield, Nevada, expressed in terms of percentage of mass of original fresh dacite. After F. L. Ransome, U. S. Geol. Survey.

substances the molecular ratios obtained by dividing the weight percentages by the molecular weights\(^1\) are generally employed.

\(^{1}\) For convenience these ratios are usually multiplied by 100.
The simplest diagrammatic representation is made by plotting separately the proportions of each substance in the various analyses as straight lines. This will show, for instance, the progressive removal of sodium in altered rocks.

Brøgger’s diagram is often used. In this the molecular proportions are laid off as radii vector; silica is represented by a horizontal line below which Al₂O₃, K₂O, and Na₂O are entered and above which CaO, MgO, FeO, and Fe₂O₃ are set off.

A broken line joining the intercepts on the eight radii vector forms a polygon whose outline indicates the general composition of the rock. Fig. 255 illustrates the alteration of the earlier andesite at Tonopah, Nevada. It is a disadvantage of this
INDEX

Aar, Switzerland, zeolitic veins, crystallization, 596
Abilene well, Kansas, analysis of water, 54
Abitibi, Ontario, gold-quartz veins, 636
Abo formation, copper ores, 373
Abosanobori mine, Japan, sulphur, 338
Absorption ratio, 29
Acid sulphate waters in igneous rocks, 56
Acidic pegmatites, 720
Adalbert vein, Przibram, Bohemia, 564
Adamson and Wright mine, Winnemucca, Nevada, 471
Adirondack graphite deposits, 701
Adirondack Mountains, magnetite veins, 756
Al: quicksilver deposits, 460
Adsorption, 24
Adularia, 404, 434, 435, 436, 451
Ajo, Arizona, section of ore, 806
Akmolinsk district, copper deposits, 369
Alabama Coon mine, Joplin, Missouri, analysis of water from, 841
Alabandite, 762
Alaska gold-quartz veins, 641
Alaska-Treadwell gold mine, Alaska, section, 643
Alaskite, 641
Alderley Edge, England, copper ores, 370
Alexo nickel deposit, Ontario, 765
Alge, as precipitants in spring waters 95
Alleghany, California, gold masses, 208
Alleghany Springs, Virginia, composition of water, 55
Alma, Colorado, deposits, 580
Almaden, Spain, quicksilver deposits, 461, 464, 465
Almandite, 705
Alpine veins, 593
Alta vein, Helena, Montana, 658
Altaite, 797
Altar, Sonora, Mexico, stibnite deposits, 474
Altenberg, Saxony, granite, analysis, 621; greisen, analysis, 621; stockwork, 629
Alteration, definition, 63; in rocks, representation by diagrams, 849; of intrusive rock in contact metamorphism, 675; of sedimentary rocks, 622; propylitic analyses showing, 448; types of, 446
Alum well, Versailles, Missouri, analysis of water, 54
Alundum, 331
Alunite, 204, 506
Amblygonite, 254, 729
American Graphite Company, mine, 701
American River, California, gravel bars, 201
Amherst County, Virginia, rutile deposits, 722
Åmmeberg, Sweden, zinc ores, 779
Amphibole asbestos, 348
Amphibolite, analyses, 645, 646, 652
Amphibolite schist, analysis, 519
Amygdaloid copper-bearing beds, 402
Amygdaloïdes, definition, 131
Amygdules, definition, 131
Analcite, 394
Analyses, of rocks, calculation of, 845; of water, interpretation, 63
Analysis of igneous rocks, average, 5
Anamorphism, definition, 69; zone of, 71
Andesite, analyses, 448, 452, 454; copper in, 8
853
INDEX

Andreasberg silver deposits, Harz Mountains, 587
Angels Camp deposits, Calaveras County, California, 517
Anhydrite, 269, 271, 288
Annaberger cobalt veins, Saxony, 589
Anna Lee ore chimney, Cripple Creek, Colorado, 170
Anse-La-Butte salt deposit, Louisiana, section, 287
Anthophyllite, 348
Anticline, 112
Antimony, 473; solubility, 794
Antiochia, Asia Minor, chromite, 748
Anvil Creek, Alaska, gravels, 207
Apatite, 253, 729
Apophyllite, 394
Appalachian region, hematites, 307; gold deposits, 633; manganese deposits, 318
Aquamarine, 731
Aragonite, 228; in spring deposits, 95, 99
Argentine, Colorado, deposits, 580, 581
Argentite, 434, 795, 810
Argentite deposits, 441
Argentite veins, 487
Argentite-gold deposits, 441
Argentite-gold-quartz veins, 484
Argonaut vein, Amador County, California, 534
Arid regions, ground water of, 30, 31
Arizona Central mine, Morenci, Arizona, magnetite, 685
Arkansas zinc deposits, 424
Arqueros silver veins, Chile, zeolites, 588
Arrowhead Spring, California, character of water, 54
Arsenic, solubility, 794
Artesian water, 35
Artificial diamonds, 744
Asbestos, 348
Asbestos Hill, Quebec, asbestos, 350
Aspen, Colorado, deposits, 569, 575, 576
Assay valuations, table of, 19
Assay walls, 149
Associated gold mine, Kalgoorlie, Western Australia, 651
Atacama desert, Chile, nitrate deposits, 275
Atolia, Kern County, California, tungsten deposits, 584
Auburn, California, vein system, 532
Auriferous water courses, grade, 213
Aurora, Missouri, plan of workings, 424
Australia, eastern, map, 544
Avala, Servia, quicksilver, 460
Average analysis of igneous rocks, 5
Avery Island, Louisiana, salt deposits, 288
Awaruite, 746
Ayrshire mine, Lomagundi, Mashonaland, Africa, auriferous quartz diorite gneiss, 13
Aztec Spring, New Mexico, analysis of water, 43
Azurite crystals replacing kaolin, Clifton, Arizona, 803
Balaklala copper mine, Shasta County, California, 599; section, 600
Ballarat gravels, Victoria, 206
Ballarat nuggets, 208
Banded structure of veins, 154
Banka, greisen, section, 618; tin deposits, 630
Banat province, Hungary, magnetite deposits, 661, 684
Bannock, Montana, gold deposits, 697
Banos del Toro, Chile, borate deposition, 277
Baringer Hill, Texas, rare earths, 727
Barite, 233, 333; in spring deposits, 100, 101; residuary, 321
Barriers, impermeable, effect on ore-shoots, 174
Bartlett Springs, California, composition of water, 45
Basalt showing blowholes, 132
Base-metal deposits, 441, 496
Basic pegmatites, 721
Bassick deposits, Silver Cliff, Colorado, 496
INDEX

Batagol, Siberia, graphite deposits, 703
Batesville, Arkansas, manganese ore deposits, 317; section, 316
Bauxite, 326, 731; analyses, 331; distribution, 326; origin, 328
Bay of Fundy, Nova Scotia, native copper, 392
Beach placers, 204
Beaches, 203
Bear Creek, Colorado, vanadium-bearing sandstone, 378
Beaver County, Utah, sulphur deposits, 338
Beaver Valley, Utah, analysis of water, 57
Beck's classification of mineral deposits, 181
Bed veins, 147, 148
Bedford Alum Spring, Virginia, composition of water, 55
Bellevue mine, Nevada City, California, altered granodiorite, 518; granodiorite, analysis, 519
Belowda Beacon, Cornwall, vein, section, 622
Bendigo, Victoria, saddle reef, 135, 136, 545; spur reef, 546; trough reef, 546
Bennett mine, Virginia, barite deposit, 335
Beresowsk, Ural Mountains, gold veins, 636
Berggiesshübel, Saxony, contact metamorphism, 668; contact-metamorphic deposits, 697
Berlin mine, Nevada, faulted vein, 128, 130
Berners Bay mining district, Alaska, 642, 644
Bersbo, Sweden, copper deposit, 771; pyritic deposits, 598
Bertha zinc mines, Virginia, section, 322
Bessemer, Michigan, iron deposit, 359
Beuthen, Silesia, zinc-bearing beds, section, 417
Bilbao, Spain, iron ores, 310

Billiton, tin deposits, 630
Bingham, Utah, alteration of rocks, 525; analyses, 526; copper deposits, 692, 823; cupriferous monzonite, 3; galena on zinc blende, 812
Bird Reef series, South Africa, 220
Birmingham district, sedimentary rocks, 244; section, 245
Bisbee, Arizona, copper deposits, 681, 690
Bismuth, 733
Bismuthinite, 733
Biwabik iron-bearing formation, Mesabi district, Minnesota, section, 361
Black Hills, South Dakota, gold deposits, 637–639; mica, 724; ore deposits, 552; section, 552; pegmatitic tin deposits, 726; tin veins, 630
Black Hills-Pine Ridge section, 35
Black Mountains, Arizona, gold deposits, 482
Black Reef series, South Africa, 219
Bleiberg, Carinthia, zinc deposits, 417
Blue Mountains, Oregon, gold-quartz veins, 832; wall rocks of veins, 521
Bodenmais, Bavaria, pyritic deposits, 598, 768
Bog iron ore, 234; analysis, 235; origin, 235
Bog manganese ore, 251
Bonanza mine, Alaska, copper, 383
Bonanza mine, Sonora, California, 538

Bonanza Valley, Yukon, gravel deposits, 210

Bonanzas, 440
Book structure of veins, 154
Boone formation, 421
Bor, Servia, enargite, 597
Boracite, 278, 282
Borate beds, California, origin, 282
Borate deposits, California and Nevada, map, 279; marine, 278
Borates, 277
Borax, 277
INDEX

Borax Lake, Lake County, California, borax deposit, 278
Borax marshes, 278
Bornite, 792; in igneous rocks, 771
Boron, 278; occurrence, 84
Boulder County, Colorado, deposits, 583; tungsten deposits, 584; wolframite veins, 632
Bourbon-l’Archambault springs, 104
Brád, Transylvania, gold-quartz veins, 475, 476, 477
Branchville, Connecticut, pegmatitic quartz, 719
Braunite, 315
Brazil, manganese deposits, 320; gold deposits, 639
Breckenridge, Colorado, deposits, 527, 580, 581; galena on zinc blende, 812; rocks, analyses, 528
Breece and Wheeler mine, California, 209
Bremen mine, New Mexico, ore-shoots, 175
Brochantite, deposition, 803
Brodbo, Sweden, rare earths, 727
Brögger’s diagram, 850
Broken Hill, New South Wales, lead and zinc deposits, 830
Bromine, 291
Bromymite, 796
Brussa, Asia Minor, chromite, 748
Buckingham Township, graphite veins, section, 702
Bucksain Peak, Nevada, cinnabar, 471
Bull-Domingo deposits, Silver Cliff, Colorado, 496
Bullfrog district, Nevada, gold deposits, 483
Bullion district, Nevada, sketch map, 661
Bully Hill copper mine, Shasta County, California, 599
Bunker Hill & Sullivan ore zone, Coeur d’Alene, Idaho, section, 561
Bunker Hill vein, Amador County, California, 535
Bunker Hill vein, Coeur d’Alene, Idaho, 560
Bunkerville, Nevada, platinum, 746
Bunny mine, St. Austell, Cornwall, section, 627
Buried placers, 204
Burra-Burra mine, Ducktown, Tennessee, analysis of mine water from, 843
Butte, Montana, copper deposits, 596, 819; depth of oxidation, 781; water conditions, 38
Butte granite, copper in, 8
Byron Hot Springs, California, character of water, 48

Cable mine, Montana, altaite, 697; contact-metamorphic gold deposit, 695; magnetite ore, 683
Cacaria, Mexico, tin deposits, 632
Cache la Poudre River, Colorado, analysis of water, 43
Cactus mine, Utah, 657
Calamine, 412
Calaveras County, California, copper deposits, 354, 355
Calaverite, 491, 797
Calcasieu Parish, Louisiana, sulphur deposit, 342
Calcite, 228; in spring deposits, 95, 99
Calcium carbonate deposits, 94
Calcium carbonate waters in igneous rocks, 42; in sedimentary rocks, 44
Calcium sulphate, solubility, 273
Caledonia mine, New Zealand, 478
Caliche, Chile, analysis, 276
Calico, California, vadose silver ores, 172
Calico Mountains, California, colemanite deposits, 280
California Hill, Terlingua, Texas, section, 468, 469
California mining districts, map, 531
California quicksilver deposits, 467
Calumet & Hecla mine, Michigan, analysis of mine water, 408; copper, 401
Calumet conglomerate, 401; analyses, 409
INDEX 857

Cameron's Bath, Rotura geysers district, New Zealand, analysis of water, 57
Camp Bird lode, Ouray County, Colorado, 503
Campiglia Marittima, Tuscany, contact-metamorphic deposits, 697
Campo Seco, California, copper deposits, 384
Canadian asbestos deposits, 350
Canadian mica, 725
Cananea, Mexico, copper deposits, 691
Capote mine, Cananea, Mexico, analyses of water from, 842
Carbon dioxide in rocks, source, 85
Carbonaceous material, precipitation by, 174
Carbonate rocks, relation to ore deposits, 230
Carbonate waters, 58–59, 838
Carbonates, solubility, 802
Carbonization, 70
Carlsbad, Bohemia, analysis of water, 60
Carlsbad springs, composition of deposits of, 99
Carnallite, 290
Carn Brea lode, Cornwall, England, 628
Carnotite, 377
Cartersville ocher deposits, Georgia, 323
Cash, Oklahoma, zircon deposits, 728
Cashin mine, Colorado, copper ores, 372
Cassiterite, 725; solubility, 800
Cassiterite deposits, contact-metamorphic type, 697
Cassiterite placers, 224
Cassiterite veins, 616; of Cornwall, England, 625–628; of Saxony, 628–629
Catoctin type of copper ores, 411
Cave deposits, 133
Caves, formation of, 132
Celestite, 336
Cementation, definition, 68; zone of, 70

Central City, Colorado, deposits, 527
Central Eureka mine, Mother Lode belt, California, 534
Centrosphere, definition, 69
Cerargyrite, 796
Cerbat Range, Arizona, veins, 567
Cervantite, 474
Ceylon graphite deposits, 703
Chabazite, 394; in spring deposits, 99
Chaguarama Valley, Venezuela, cinnamon, 471
Chalcocite, 791, 809, 813
Chalcopyrite, 791, 808
Chalcopyrite deposits, 687
Chalk, 229
Chamosite, composition, 242; occurrence, 243
Chandler mine, Minnesota, section, 362
Charters Towers, Queensland, gold deposits, 548
Chemical changes produced by weathering, 301
Cherokee, California, diamonds, 742
Chilean nitrate deposits, 275
Chiltern Valley gravels, 206
Chimneys, definition, 167
China stibnite mines, 473
Chloride springs, Germany, 48
Chloride waters, 836; in igneous rocks, 50; in sedimentary rocks, 46
Chromite, 747
Chrysotile, 349
Cincinnati artesian well, analysis of water, 49
Cinnabar, 457, 462, 465, 800, 812; deposition, 107; oxidation, 469
Cinnabar deposits, 441
Circulation of water, deeper, 30
Clarke, F. W., average analysis of igneous rocks, 5
Classes of high-temperature deposits, 614
Classification, of faults, 118; of fluvialite and marine placers, 203; of mineral deposits, 178, 188; of mineral deposits, principles, 182
INDEX

Clausthal, Germany, character of spring in mine, 101; lead-silver veins, 562
Clay, definition, 190; residuary, 302; origin, 304
Clay deposits, 190
Clay gouge, 143
Clear Creek district, Colorado, deposits, 581
Cleveland County, North Carolina, beryl, 731
Cleveland Hills, England, carbonate ore, 239
Clifton, Arizona, azurite crystals replacing kaolin, 803; chalcedite zone, 809; contact-metamorphic deposits, 677, 689; contact-metamorphic ore, section, 687; copper deposits, 815, 823, 824; section, 825; cupriferous pyrite veins, 659; ore-bodies, section, 679; ore deposits, 681; section of ore, 807
Clinton ores, 244; composition, 246; origin, 246; Wolcott, Wayne County, New York, 249
Closed fault, definition, 117
Coast Ranges, California, quicksilver deposits, 459
Cobalt district, Ontario, geological section, 591; ore, analysis, 592; quicksilver, 457; silver veins, 590
Cobalt-nickel veins, 588, 590
Cobalt ores, solubility, 795
Cobalt-tourmaline veins, 658
Cobalt veins, Annaberg, Saxony, 589
Cody, Wyoming, sulphur, 338
Coeur d'Alene district, Idaho, lead and zinc deposits, 833; lead-silver deposits, 559
Colby mine, Michigan, iron, 359
Colemanite, 280, 282
Colloids, 25
Colombia, South America, platinum gravels, 224
Colorado mining regions, map, 498
Coloradoite, 457, 797
Colorados, outcrop, 149
Columbite, 726
Combination mine, Goldfield, Nevada, section, 510
Commern, Prussia, lead mines, 370
Composite veins or lodes, 144
Comstock lode, Nevada, analyses of waters from, 840; gold-silver, 485; hot waters, 106; propylite, analysis, 448; propylitic alteration, 448
Concentration, of gold, 202; of minerals, 75
Concentration processes, 197
Concepcion del Oro, Mexico, contact phenomena, 676
Concretionary texture, 152
Conglomerates, gold-bearing, occurrence, 194; South Africa, 218
Congress Spring, Saratoga, New York, analysis of water, 49
Conjugated system of fractures, 138
Connate water, 35, 82
Conneautsville, Pennsylvania, well, analysis of water, 49
Conrad vein, Ophir, California, amphibolite schist, analysis, 519
Consolidation temperature, 718
Constituent minerals, calculation of, 846
Contact deposits, 662
Contact vein, definition, 148
Contact-metamorphic deposits, depth of formation, 673; distribution, 680; physical conditions at the contact, 674; types, 682
Contact-metamorphic minerals, 678
Contact-metamorphic ores, texture and structure, 678
Contact metamorphism, 664
Contraction joints produced by shrinking of limestone when changed to dolomite, 134; produced by tensile stress in igneous rock, 133
Contrexévile springs, 104
Conversion of water analyses, 64
Conversion tables, 17–20
Cooper, Maine, molybdenite, 733
Copper, native, with epidote in basic lavas, 411; occurrence in rocks, 8
INDEX

Copper-bearing shales of Mansfield, Germany, 379
Copper-bearing veins allied to contact-metamorphic deposits, 659
Copper Cliff mine, Sudbury, Ontario, 767
Copper deposits in sandstone, 369; Lake Superior region, 399; literature, 399; of Monte Catini, Italy, 410; oxidation, 814; Shasta County, California, 599; with zeolites in basic lavas, 392
Copper-gold-tourmaline deposits, 654
Copper Mountain, Prince of Wales Island, Alaska, copper deposits, 694
Copper ores, American occurrences, 371; Lake Superior, origin, 405; sedimentary, genesis, 375; tenor of, 15; zeolitic, origin, 393
Copper sulphide veins in basic lavas, 382; in intrusive basic rocks, 383
Copper veins, 596
Copperopolis mine, Oregon, section of ore, 656
Coral Springs, Yellowstone National Park, analysis of water, 51
Cornubianite, 622
Cornwall, copper-tourmaline veins, 655; geologic map, 626
Cornwall, Pennsylvania, magnetite deposits, 674, 686
Cornwall cassiterite veins, 625–628
Cornwall mines, water conditions, 38
Coro-Coro, Bolivia, copper deposits, 374
Cortez, Nevada, section, 569
Corundum, 758–761; in syenite, 760
Corundum Hill, Macon County, Georgia, corundum deposits, 759
Côte Carline, Louisiana, salt deposits, 287
Cotopaxi mine, Fremont County, Colorado, sulphide deposits, 766
Cotta's classification of mineral deposits, 178
Cove Creek, Beaver Valley, Utah, analysis of water, 57
Cove Creek mine, Utah, sulphur, 338
Covellite, 792, 805, 813
Cowee Valley, North Carolina, rubies, 731
Cowles, New Mexico, copper deposit, 656
Cracker Creek, Oregon, gold veins, 832
Cranberry district, North Carolina, magnetite ores, 715
Crawford Mountains, Utah, phosphate, analysis, 264
Creede district, Colorado, 505
Cresson Spring, Pennsylvania, character of water, 44
Creswick district, Victoria, placers, 200
Crimora mine, Virginia, manganese deposits, 317; analysis of ore, 318
Cripple Creek, district, Colorado, depth of oxidation, 781; gold deposits, 488; gold ores, 440; gold-telluride lodes, 833; original surface, 443; section, 489; sheeted zone, 145; vein system, 137; water conditions, 37
Crocidolite, 348
Croesus vein, Hailey, Idaho, diorite, analysis, 521
Cross veins, 148
Crust of earth, composition, 5; zones, 31
Crustification, 152, 153
Cryolite, 730
Crystalline minerals, 26
Crystallization in minerals, relative power of, 158; of magmas, 737; process, 27; Riecke's law, 71
Cuba residual iron ores, 310; map, 311; origin, 312
Cumberland, Rhode Island, iron deposits, 751
Cupferous shale, average analysis, 381
Cuprite, 792
Cuprite, Nevada, sulphur deposits, 338
Cuylerville, New York, salt mine, 285
INDEX

Cyrite-enargite veins, 596

Dacite, Goldfield, Nevada, photomicrograph, 511

Daghardy chromite mine, Brussa, Asia Minor, 748

Dahlonega, Georgia, gold veins, 634

Dahlonega mining system, 196

Dakota sandstone, water in, 53; water reservoir, 35

Danby, California, salt deposits, 286

Dartmoor, Devonshire, England, contact-metamorphic deposits, 697

Datolite, 394

Daubrée’s experiment on glass plates, 134

Dead Sea, analysis of water, 267

Decatur County, Georgia, fuller’s earth, 192

Deccan diamond mines, India, 741

Decomposition of minerals, 299

Deep-seated deposits, 74

Deer Park district, Washington, wolframite veins, 632

Deformed pyritic deposits, 774

De Lamar, Idaho, lamellar quartz, 437, 438; section of lamellar ore, 437; spring deposits, 97; vein system, 481

Delamar mine, Nevada, plan, 553

Deposition of minerals, 21

Deposits due to igneous metamorphism not distinctly related to contacts, 705; formed by evaporation of bodies of surface waters, 265; by mechanical processes, 189; by processes of igneous metamorphism, 660; of igneous origin texture, 151; of native copper with zeolites in basic lavas, 392; produced by chemical processes, 228; resulting from regional metamorphism, 388

Depth of formation of mineral deposits, 131; of oxidation, 781

Desilication, 70

Desmine, 394

Detrital and sedimentary deposits, 183, 189

Detrital clay deposits, 190

Detrital quartz deposits, 189

Detritus, superficial, 29

Deviation, 116

Devil’s Inkpot, Yellowstone National Park, analysis of water, 57

Diabase, analysis, 519; copper in, 8

Diabase porphyrite, analysis, 409

Diamond placers, 227

Diamonds, 741

Diapore, 506

Diatomaceous earth, 231

Differentiation, in magmas, 739; products, 187

Dikes, pegmatite, 716

Dillon, Montana, graphite, 702

Diorite, analyses, 464; copper in, 8

Diorite porphyry, analyses, 528

Dip fault, definition, 120

Dip of ore body, 141

Dip-shift, definition, 122

Dip-slip, definition, 121

Dip-slip faults, definition, 126

Dip throw, definition, 124

Discharge zone of water, 31

Disintegration, 70, 297

Dislocation, use of term, 119

Displacement, use of term, 119

Dissemination, definition, 68; of sulphides, 389

Djebel Hamimat, Algeria, stibnite deposits, 474

Dochida River, Transbaikal, native copper, 392

Dognazka, Hungary, magnetite mine, 684

Dolcoath lode, Cornwall, England, 628

Dolcoath mine, Elkhorn, Montana, gold deposits, 697

Dolomite, 230; section of, 159

Dolomite series, South Africa, 219

Dolores mine, San Luis Potosi, Mexico, contact metamorphism, 671

Domes, salt, origin, 288

Donetz basin, Russia, quicksilver, 461
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Island mining district, Alaska, 642</td>
<td></td>
</tr>
<tr>
<td>Downthrow, in faulting, 118</td>
<td></td>
</tr>
<tr>
<td>Drag of ore, 116</td>
<td></td>
</tr>
<tr>
<td>Dragon mine, Tintic, Utah, alteration of rocks, 524, 525; monzonite, analyses, 525</td>
<td></td>
</tr>
<tr>
<td>Dredging process of working gold, 218</td>
<td></td>
</tr>
<tr>
<td>Drusy structure, 152</td>
<td></td>
</tr>
<tr>
<td>“Dry ores,” analysis, 776</td>
<td></td>
</tr>
<tr>
<td>Ducktown, Tennessee, analyses of mine waters from, 843; copper deposits, 707; section, 816; pyritic deposits, 598</td>
<td></td>
</tr>
<tr>
<td>Dunderland iron ores, Norway, 777</td>
<td></td>
</tr>
<tr>
<td>Durango, Mexico, tin deposits, 632</td>
<td></td>
</tr>
<tr>
<td>Durango lead mine, Mapimi, Mexico, depth of oxidation, 781</td>
<td></td>
</tr>
<tr>
<td>Durango quadrangle, Colorado, 505</td>
<td></td>
</tr>
<tr>
<td>Dyscrasite, 457</td>
<td></td>
</tr>
<tr>
<td>Eagle Creek mining district, Alaska, 642</td>
<td></td>
</tr>
<tr>
<td>Earth’s crust, composition, 5; zones 31</td>
<td></td>
</tr>
<tr>
<td>East Union, Maine, olivine, section, 763</td>
<td></td>
</tr>
<tr>
<td>Economic geology, definition, 2; scope 1</td>
<td></td>
</tr>
<tr>
<td>Ederveen, Netherlands, spring water, analysis, 234</td>
<td></td>
</tr>
<tr>
<td>Eibenstock vein, Saxony, 622</td>
<td></td>
</tr>
<tr>
<td>Eisener hut, outcrop, 149</td>
<td></td>
</tr>
<tr>
<td>Ekersund ilmenite deposits, Norway, 750</td>
<td></td>
</tr>
<tr>
<td>Eldorado County, California, placer gold, 216</td>
<td></td>
</tr>
<tr>
<td>Electromotive force of minerals, 789</td>
<td></td>
</tr>
<tr>
<td>Elements, distribution, 4; relative abundance, 6</td>
<td></td>
</tr>
<tr>
<td>Elizabethtown, New York, titaniferous iron ores, 750</td>
<td></td>
</tr>
<tr>
<td>Elkhorn, Montana, deposits, 569</td>
<td></td>
</tr>
<tr>
<td>Elkton mine, Cripple Creek, Colorado, 489</td>
<td></td>
</tr>
<tr>
<td>El Paso, Texas, tin vein, 629</td>
<td></td>
</tr>
<tr>
<td>El Paso mine, Cripple Creek, Colorado, 489</td>
<td></td>
</tr>
<tr>
<td>Eluvial deposits, 195, 196</td>
<td></td>
</tr>
<tr>
<td>Ely, Nevada, copper deposits, 821; plan and section, 822; silicification, 671</td>
<td></td>
</tr>
<tr>
<td>Ely, Vermont, water conditions, 38</td>
<td></td>
</tr>
<tr>
<td>Embolite, 796</td>
<td></td>
</tr>
<tr>
<td>Emerald, 731</td>
<td></td>
</tr>
<tr>
<td>Emery, 761</td>
<td></td>
</tr>
<tr>
<td>Ems springs, 104</td>
<td></td>
</tr>
<tr>
<td>Enargite, 597</td>
<td></td>
</tr>
<tr>
<td>Encampment district, Wyoming, copper, 8, 385, 821</td>
<td></td>
</tr>
<tr>
<td>Encarnacion, Hidalgo, Mexico, contact-metamorphic deposits, 677</td>
<td></td>
</tr>
<tr>
<td>Enrichment of mineral deposits, 187; of veins, 390; sulphide, 804</td>
<td></td>
</tr>
<tr>
<td>Enterprise vein, Boulder County, Colorado, 583</td>
<td></td>
</tr>
<tr>
<td>Eolian deposits, 198</td>
<td></td>
</tr>
<tr>
<td>Epigenetic deposits, texture, 152</td>
<td></td>
</tr>
<tr>
<td>Epigenetic high-temperature deposits, replacement in, 164</td>
<td></td>
</tr>
<tr>
<td>Epigenetic low-temperature deposits, replacement in, 165</td>
<td></td>
</tr>
<tr>
<td>Epigenetic mineral deposits, 140, 141</td>
<td></td>
</tr>
<tr>
<td>Epsomite, 785</td>
<td></td>
</tr>
<tr>
<td>Equilibrium, movable, 22</td>
<td></td>
</tr>
<tr>
<td>Erzgebirge, Bohemia, hot springs, 60</td>
<td></td>
</tr>
<tr>
<td>Esch, minette measures, 241</td>
<td></td>
</tr>
<tr>
<td>Eski-Shehr, Asia Minor, meer-schaum, 345</td>
<td></td>
</tr>
<tr>
<td>Esmeralda County, Nevada, sulphur deposits, 338</td>
<td></td>
</tr>
<tr>
<td>Etta mine, Black Hills, South Dakota, columbite, 726; lithium, 729; minerals in, 730; spodumene crystals, 719; tin deposits, 726</td>
<td></td>
</tr>
<tr>
<td>Eureka, Nevada, deposits, 569</td>
<td></td>
</tr>
<tr>
<td>Eureka-Idaho ore-shoot, Grass Valley, California, 169</td>
<td></td>
</tr>
<tr>
<td>Eutectic texture, 151</td>
<td></td>
</tr>
<tr>
<td>Evaporation producing precipitation, 23</td>
<td></td>
</tr>
<tr>
<td>Expansion joints produced by increase of rock volume, 134</td>
<td></td>
</tr>
<tr>
<td>Faeroer, Scotland, native copper, 392</td>
<td></td>
</tr>
<tr>
<td>F-hilbands, definition, 389</td>
<td></td>
</tr>
<tr>
<td>Fahlun, Sweden, pyritic deposits, 598</td>
<td></td>
</tr>
</tbody>
</table>
Fairbanks, Alaska, placers, 205
Fairplay, Colorado, deposits, 580
Fairport Harbor, Ohio, bittern, 295
Falun copper deposit, Sweden, 770
Fault, definition, 117
Fault breccia, definition, 118
Fault dip, definition, 118
Fault line, definition, 117
Fault space, definition, 117
Fault strike, definition, 118
Fault surface, definition, 117
Faulting, 109, 114; complexity of, 130
Faults, classified according to direction of movement, 125; in stratified rocks, 120; mineralization of, 128; special classes of, 127
Federal Lead Company, Missouri, section of mine workings, 427
Federal Loan mine, spring, 42; analysis of water, 43
Feldspar, 723
Feltrick-New North Pool section, Cornwall, 628
Fierro, New Mexico, magnetite deposit, 684
Filled deposits, primary texture, 152; secondary textures, 155
Finbo, Sweden, rare earths, 727
Fissure veins, 128
Fissures produced by torsional stress, 134
Fissuring and filling, mode of, 615
Flake gold, 202
Flaws, definition, 128
Florida phosphates, 262; analysis, 264
Flour gold, 202
Flow of underground water, 28
Fluorescein, use to show flow of water, 30
Fluorine in spring deposits, 98
Fluorite, replacing limestone, 164, 165; in spring deposits, 99
Folding, 109
Foot wall, definition, 118
Fractional crystallization, 74
Fracture zone of earth's crust, 1
Fractures, influence on water circulation, 33
Franckeite, 631
Franklin Furnace, New Jersey, graphite, 700; zinc deposits, 675; zinc-manganese deposits, 709
Franklinite, 710
Franklin mine, Georgia, 634
Franklin Mountains, Texas, tin vein, 629
Free water, 29; in earth's crust, 39
Freiberg, Saxony, silver-lead deposits, 442, 565-567
Freihung, Palatinate, copper ores, 370
French bauxite deposits, 330
Frostberg vein, Georgetown, Colorado, section, 582
Fuller's earth, 191
Fumarolic gases, 88
Furnace Creek region, California, colemanite beds, 281
Gabbro, copper in, 8
Gadolinite, 727
Gadsden Co., Florida, fuller's earth, 192
Gaffney, South Carolina, pegmatitic tin, 224, 725
Gafsa, Tunis, analysis, 264
Gagnon silver mine, Butte, Montana, wurtzite, 812
Gahnite, 762
Galena, replacing limestone, 164
Galena-siderite veins, 559
Gangue, definition, 4
Gangue minerals, deposition of, 98
Garnet, 705
Garnetization, 676
Garrison mine, Cortez, Nevada, section, 569
Gases in rocks, origin, 85
Gash veins, definition, 132, 147
Gathering zone of water, definition, 31
Gel, definition, 25
Gellivare iron mines, Kiruna, Sweden, 754
Gem minerals, 731
Genetic classifications of mineral deposits, 180
INDEX

Georgetown, Colorado, deposits, 527; sections, 582; silver deposits, 829
Geothermal gradients, 78
German potassium salts, 289
Geyser mine, Colorado, analysis of water, 43
Geyser regions, composition of waters, 52
Geyser, Sonoma County, California, character of water, 56
Gibbsite, 506
Gilpin County, Colorado, gold-bearing veins, 583; replacement, 810
Glaucocite, composition, 242
Globe, Arizona, copper deposits, 823, 826; mineralization, 387
Gneiss, gold in, 13
Götite, 236
Gold, assays for, 11; conversion tables, 18–20; divisibility, 202; fineness, 211; in ashes of trees, 215; in pegmatite dikes, 731; in sea water, 12; native, 433; occurrence in pegmatite, 11; occurrence in rocks, 9; placer, cost of working, 217; origin, 185; production, 217; relation to bed-rock, 211; redeposition, 800; size in placers, 208; solution and precipitation, 214
Gold-alunite deposits, 506
Gold-arsenopyrite type of contact-metamorphic deposit, 696
Gold-bearing conglomerates, occurrence, 194; of South Africa, 218
Gold-bearing replacement deposits in limestone, 550; in porphyry, 554; in quartzite, 553
Gold-bearing veins of Brazil, 639
Gold Creek mining district, Alaska, 642
Gold deposits, contact-metamorphic type, 695; oxidation, 832
Goldfield district, Nevada, 507; original surface, 443
Gold ores, solubility, 797; tenor of, 15
Gold placers, 193
Gold-quartz veins, 633; alteration of adjoining wall rocks, 516; in andesite, 475; in rhyolite, 481; of California and Victoria type, 529; of interior Cordilleran region, 541; of Ontario, 635; of the Sierra Nevada, 530; of Silver Peak, Nevada, 640; of southeastern Alaska, 641; types of, 529
Gold Road mine, Arizona, 482
Gold-selenide deposits, 441, 493
Gold-selenide veins, 493
Gold-telluride deposits, 441
Gold-telluride veins, 488
Gold-telluride veins of Western Australia, 647
Golden Curry mine, Elkhorn, Montana, 764
Golden Cycle mine, Cripple Creek, Colorado, 489; depth of oxidation, 781
Goroblagodat magnetite deposits, Ural Mountains, 755
Goslarite, 412, 785
Gossan, 149, 783
Gouge, definition, 118
Gouverneur, New York, talc, 347
Gowganda, Ontario, cobalt-silver veins, 591
Grade of auriferous water courses, 213
Gradients, geothermal, 78
Granby, British Columbia, pyritic deposits, 598
Grand-Grille spring, Vichy, France, analysis of water, 60
Grandview, Arizona, copper ores, 372
Granite, analyses, 621; copper in, 8; gold in, 10
Granite district, Oregon, gold veins, 832
Granite-Bimetallic mine, Montana, gold and silver deposits, 555, 831
Granodiorite, analysis, 519; copper in, 9
Granulite, 771
Granville district, Quebec, graphite vein, section, 703
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphic methods of comparing analyses</td>
<td>847</td>
</tr>
<tr>
<td>Graphite</td>
<td>698-705</td>
</tr>
<tr>
<td>Grass Valley, California, conjugated systems of fractures</td>
<td>138; diabase, analysis</td>
</tr>
<tr>
<td>Gravel plains</td>
<td>203</td>
</tr>
<tr>
<td>Gravels, Tertiary, Sierra Nevada</td>
<td>207</td>
</tr>
<tr>
<td>Gravitative adjustment in magmatic differentiation</td>
<td>740</td>
</tr>
<tr>
<td>Great Boulder gold mine, Kalgoorlie, Western Australia</td>
<td>651</td>
</tr>
<tr>
<td>Great Boulder Proprietary, Western Australia, salt waters</td>
<td>837</td>
</tr>
<tr>
<td>Great Eastern mine, California, section</td>
<td>467</td>
</tr>
<tr>
<td>Great Fingall gold mine, Western Australia</td>
<td>649</td>
</tr>
<tr>
<td>Great Geyser, Iceland, analysis of water</td>
<td>51</td>
</tr>
<tr>
<td>Great Northern mine, Canyon, Oregon, section of ore</td>
<td>542</td>
</tr>
<tr>
<td>Great Salt Lake, analysis of water</td>
<td>267</td>
</tr>
<tr>
<td>Greenalite, composition, occurrence</td>
<td>243</td>
</tr>
<tr>
<td>Green Mountain mine, Butte, Montana, analysis of water from</td>
<td>841</td>
</tr>
<tr>
<td>Greensand marls</td>
<td>294</td>
</tr>
<tr>
<td>Greensands</td>
<td>242</td>
</tr>
<tr>
<td>Greenwood, British Columbia, copper deposits</td>
<td>706</td>
</tr>
<tr>
<td>Greisen, 165, 619, 620; analyses</td>
<td>621</td>
</tr>
<tr>
<td>Grodeck's classification of mineral deposits</td>
<td>180</td>
</tr>
<tr>
<td>Ground-water level</td>
<td>29</td>
</tr>
<tr>
<td>Guadalcazar, Mexico, selenides</td>
<td>464</td>
</tr>
<tr>
<td>Guano</td>
<td>256</td>
</tr>
<tr>
<td>Gulch and creek gravels</td>
<td>203</td>
</tr>
<tr>
<td>Gulf of Karabogaz, Caspian Sea, illustration of bar theory</td>
<td>271</td>
</tr>
<tr>
<td>Gypsite</td>
<td>272</td>
</tr>
<tr>
<td>Gypsum, 265, 268, 269, 271; occurrence</td>
<td>99</td>
</tr>
<tr>
<td>Gypsum beds, distribution</td>
<td>272</td>
</tr>
<tr>
<td>Hade, definition</td>
<td>118; of ore body</td>
</tr>
<tr>
<td>Haile mine, South Carolina</td>
<td>634</td>
</tr>
<tr>
<td>Hailey, Idaho, rocks, analyses, silver-lead veins</td>
<td>521; 556</td>
</tr>
<tr>
<td>Halloysite</td>
<td>191</td>
</tr>
<tr>
<td>Halsbrücker Spat vein, Freiberg, Germany</td>
<td>4, 792</td>
</tr>
<tr>
<td>Hanging wall, definition</td>
<td>118</td>
</tr>
<tr>
<td>Hanover, New Mexico, ore deposits</td>
<td>681</td>
</tr>
<tr>
<td>Hargraves, New South Wales, gold deposits</td>
<td>548</td>
</tr>
<tr>
<td>Harmony channel, Nevada City, gravel</td>
<td>210</td>
</tr>
<tr>
<td>Harney Peak, Black Hills, South Dakota, tin deposits</td>
<td>726</td>
</tr>
<tr>
<td>Hartville, Wyoming, iron deposits</td>
<td>367</td>
</tr>
<tr>
<td>Harz Mountains, mineral veins</td>
<td>386</td>
</tr>
<tr>
<td>Hauraki Peninsula, New Zealand, gold deposits</td>
<td>478; propylitization</td>
</tr>
<tr>
<td>Heave</td>
<td>123</td>
</tr>
<tr>
<td>Helena, Montana, sapphires</td>
<td>227, 760</td>
</tr>
<tr>
<td>Hematite, 305, 307</td>
<td></td>
</tr>
<tr>
<td>Hematite deposits, Lake Superior region</td>
<td>351</td>
</tr>
<tr>
<td>Hematite ores, oölitic</td>
<td>243</td>
</tr>
<tr>
<td>Heptahydrate</td>
<td>269</td>
</tr>
<tr>
<td>Hercynite</td>
<td>759</td>
</tr>
<tr>
<td>Hermann shaft, Sulphur Bank, California, analysis of water</td>
<td>60</td>
</tr>
<tr>
<td>Heroult, California, magnetite deposits</td>
<td>685</td>
</tr>
<tr>
<td>Hesseite</td>
<td>797</td>
</tr>
<tr>
<td>Hiddenite</td>
<td>731</td>
</tr>
<tr>
<td>Hidden Treasure vein, Neal district, Idaho</td>
<td>541</td>
</tr>
<tr>
<td>Highland Boy mine, Bingham, Utah</td>
<td>598; section of ore</td>
</tr>
<tr>
<td>High-temperature deposits, classes of</td>
<td>614</td>
</tr>
<tr>
<td>High-temperature minerals</td>
<td>611</td>
</tr>
<tr>
<td>Hill End, Bathurst, New South Wales, gold deposits</td>
<td>208, 548</td>
</tr>
<tr>
<td>Hill Grove, New England district, New South Wales, gold deposits</td>
<td>548</td>
</tr>
</tbody>
</table>
INDEX

Hillsborough, New Brunswick, manganese ore, 252
Hitterö, Norway, rare earths, 727
Hogback mine, Alabama, 634
Hokkaido, Japan, sulphur deposits, 338
Holgot gold mine, Korea, contact metamorphism, 668; contact metamorphic ore, section, 688
Homebush placer, Victoria, 213
Homer mine, Colorado, deflection of vein, 115
Homestake lode, Black Hills, South Dakota, 194; section of ore-body, 637; section of ore, 638
Homestake mine, South Dakota, mine waters of, 843
Hornfels, definition, 664
Horn Silver mine, Frisco, Utah, wurtzite, 811
Horses, 148; definition, 118
Horseshoe gold mine, Kalgoorlie, Western Australia, 651
Hot springs, producing quicksilver deposits, 470
Hot Springs, Arkansas, analysis of water, 45
Houghton, Michigan, amygdualoid basalt, 402; copper-bearing beds, section, 400
Hualpái mining district, Arizona, deposits, 567
Huancavelica district, Peru, quicksilver, 460
Huiztzo, Mexico, livingstonite, 464
Humboldt County, Nevada, copper deposits, 693; sulphur deposits, 338
Hunter Hot Springs, Montana, character of water, 100
Hydrated silicates of nickel, deposits, 324
Hydration, 70
Hydraulic limestone, 229
Hydrogen sulphide in rocks, source, 88
Hydrostatic level, definition, 29
Hydrozincite, 412, 793
Hypidiomorphic texture, 153
Idaho, gold-quartz veins, analyses of wall rocks, 521
Idaho Basin, monaxite placer, 226
Idaho-Maryland vein, Grass Valley, California, 537
Idria, Austria, quicksilver, 460, 466
Igneous activity, influence on mineral deposits, 73
Igneous emanations, 186
Igneous rocks, average composition, 5; acid sulphate waters in, 56; calcium carbonate waters in, 42; chloride waters in, 50; copper in, 8–9; gold in, 10, 12; salts from, 83; silver in, 12; sodium carbonate waters in, 59
Illinois lead and zinc district, 425
Ilmenite, 748
Ilmenite ore, analysis, 751
Impermeable barriers, effect on ore-shoots, 174
Impregnation, definition, 68
Imbach, German Palatinate ores, 442
Independence mine, Cripple Creek, Colorado, 489, 490, 491, 492
India, manganese ores, 320
Indian mica, 725
Infiltration from ocean, 46
Injected pyritic deposits, 768
Insiswa, Cape Colony, sulphide deposits, 768; section of olivine nartite, 769
Inspiration mine, Globe, Arizona, copper deposits, 827
Interpretation of water analyses, 63, Intersections, effects on ore-shoots, 176
Inverell, New South Wales, greisen, analysis, 621
Iodyrite, 796
Iowa lead and zinc district, 425
Iowa Hill, California, weathering of pebbles, 306
Iridosmine, 745
Irkutsk, Siberia, graphite deposits, 703
Iron, native, occurrence, 746
Iron formations, Lake Superior region, 355
Iron Hill, Leadville, Colorado, section, 578
Iron Mountain, Iron Springs, Utah, plan, 686
Iron Mountain, Missouri, iron deposits, 367; section, 226
Iron Mountain, Wyoming, ilmenite, 750; analysis of ore, 751
Iron Mountain copper mine, Shasta County, California, 599
Iron ores, bog, 234; metamorphosed, 775; residual, 305; classification, 306; sedimentary, 233; tenor of, 14; Lake Superior region, 351; average analysis, 357; origin, 363; time of formation, 366
Iron Springs, Utah, laccolith, depth, 673; magnetite deposits, 686
Ironstone outcrop, 149
Ivanhoe gold mine, Kalgoorlie, Western Australia, 651
Ivigtut, Greenland, cryolite deposits, 730

Jägerfontein diamond district, Orange Colony, 742
January mine, Goldfield, Nevada, plan and section, 509
Jarbridge district, Nevada, gold deposits, 482; section of lamellar quartz and adularia, 438; veins, 442
Jarilla, New Mexico, chalcopyrite ores, 681
Jasperoids, 516, 570
Joachimsthal, Bohemia, springs, 105; uranium ore, 589
Johannesburg, South Africa, gold-bearing conglomerate, 221
Joints, 133-134
Joplin district, Missouri, analysis of well water, 45; section, 420; zinc deposits, 419
Jordan alum springs, Virginia, composition of water, 55
Josephinite, 746
Jumbo gold mine, Hart, California, 481
Jurassic siderites of England, 239

Juvenile origin of springs, 92
Kainite, 290, 292
Kalgoorlie gold mines, Western Australia, 649-654; Western Australia, salt waters, 837
Kalgoorlie ores, mineral composition, 653
Kanowna crystallized gold, 215
Kansas salt deposits, 286
Kaolin, 302; analyses, 303; development of, 455
Kaoilinite, 191, 303, 455
Kaolinization, Transylvania, 475
Karangahake, New Zealand, gold deposits, 479
Karkaralinsk district, copper deposits, 369
Karoo system, South Africa, 219
Karst topography, Missouri, 421
Katamorphism, definition, 69
Katanga, Belgian Congo, copper ores, 375
Kears-Keith mine, Park City, Utah, section, 573
Keltz mine, Tuolumne County, California, section of gold-bearing quartz, 539
Kemp's classification of mineral deposits, 180
Kennedy mine, Mother Lode belt, California, 534
Ketchikan, Alaska, contact-metamorphic copper deposits, 693
Keweenaw copper deposits, 400
Keweenawan series, 400
Khirgiz steppes, copper deposits, 369
Kieserite, 269, 291
Kimberley diamond field, South Africa, 742, 743
Kimberley series, South Africa, 220
Kimberlite, 742
King's Mineral Spring, Dallas, Indiana, analysis of water, 54
Kiruna magnetite deposit, Sweden, 753
Klackberg ore-body, Sweden, 714
Klondike gravels, 207
INDEX

Knob Hill-Ironsides mine, British Columbia, section of ore-body, 707
Kochbrunnen, Wiesbaden, Germany, analysis of water, 50
Kokomo, Colorado, deposits, 580
Kolar gold fields, Mysore, India, 647
Kongsberg, Norway, fahlbands, 389; quicksilver, 457; silver mines, 586
Korarvvet, Sweden, rare earths, 727
Kostainik, Servia, stibnite deposits, 474
Kran mine, Persberg, Sweden, sections, 713
Krennerite, 797
Kreutznach springs, 105
Kristiania, Norway, contact-metamorphic deposits, 662, 672; native copper, 392
Kristiania type of ore deposits, 662
Kunzite, 731
Kupferschiefer, Mansfield, Germany, 379
Kutais, Trans-Caucasia, manganese deposits, 252
Kyschtim deposits, Ural Mountains, 598; section of ore, 806
Ladak, Kashmir, British India, borax, 277
Ladder veins, 133; definition, 146
La Ferrière-aux-Étangs, France, Silurian iron ore, 248
La Junta, Colorado, analysis of artesian water, 61
Lake Chelan, Washington, molybdenite deposit, 632
Lake City district, Colorado, 505; galena on zinc blende, 812
Lake of the Woods, Ontario, gold-quartz veins, 635
Lake Sanford, New York, titaniferous iron ores, 750
Lake Superior copper deposits, 399; literature, 399
Lake Superior copper ores, mining and smelting operations, 409; origin, 405; paragenesis of minerals, 404
Lake Superior iron ores, origin, 363; time of formation, 366
Lake Superior region, geologic sketch map, 353; geology, 354
Lake Valley, New Mexico, deposits, 569
Lake View Consolidated gold mine, Kalgoorlie, Western Australia, 651
Lamalou springs, 104
Lamorna granite, Lands End, Cornwall, analysis, 621
Lancaster Gap, Pennsylvania, sulphide ores, 765
Lands End, Cornwall, granite, analysis, 621; greisen, analysis, 621
Långbanshytten, Sweden, manganese deposits, 714
La Plata quadrangle, Colorado, 505
Larder Lake, Ontario, gold-quartz veins, 636
La Rose vein, Cobalt, Ontario, 590
La Sal valley, Colorado, vanadium, ores, 377
Las Chispas mine, Sonora, Mexico, silver deposits, 828
Las Condes veins, Chile, 655
Last Chance lode, Bingham, Utah, alteration of rocks, 525, 526
Latah County, Idaho, mica, 724
Laterite, 327
Laumontite, 394, 439
Laurel Creek corundum mine, Rabun County, Georgia, 759
Lavas, copper in, 8
Lead, occurrence in rocks, 9; solubility, 793
Lead and zinc deposits in sedimentary rocks, 412; origin, 413; oxidation, 833; Upper Mississippi Valley, section showing occurrence, 426
Lead deposits, 694; in sandstone, 369; sulphide enrichment in, 811
Lead ore, Missouri, analysis, 428
Lead ores, tenor of, 15
Lead-silver veins with calcite, siderite, and barite, 562
Lead-silver-tourmaline veins, 658
Leadville, Colorado, deposits, 569, 576–580; sections, 577, 578, 579; manganese, 318; water conditions, 38
Iron Hill, Leadville, Colorado, section, 578
Iron Mountain, Iron Springs, Utah, plan, 686
Iron Mountain, Missouri, iron deposits, 367; section, 226
Iron Mountain, Wyoming, ilmenite, 750; analysis of ore, 751
Iron Mountain copper mine, Shasta County, California, 599
Iron ores, bog, 234; metamorphosed, 775; residual, 305; classification, 306; sedimentary, 233; tenor of, 14; Lake Superior region, 351; average analysis, 357; origin, 363; time of formation, 366
Iron Springs, Utah, laccolith, depth, 673; magnetite deposits, 686
Ironstone outcrop, 149
Ivanhoe gold mine, Kalgoorlie, Western Australia, 651
Ivigtut, Greenland, cryolite deposits, 730
Jägerfontein diamond district, Orange Colony, 742
January mine, Goldfield, Nevada, plan and section, 509
Jarbridge district, Nevada, gold deposits, 482; section of lamellar quartz and adularia, 438; veins, 442
Jarilla, New Mexico, chalcopyrite ores, 681
Jasperoids, 516, 570
Joachimsthal, Bohemia, springs, 105; uranium ores, 589
Johannesburg, South Africa, gold-bearing conglomerate, 221
Joints, 133–134
Joplin district, Missouri, analysis of well water, 45; section, 420; zinc deposits, 419
Jordan alum springs, Virginia, composition of water, 55
Josephinite, 746
Jumbo gold mine, Hart, California, 481
Jurassic siderites of England, 239
Juvenile origin of springs, 92
Kainite, 290, 292
Kalgoorlie gold mines, Western Australia, 649–654; Western Australia, salt waters, 837
Kalgoorlie ores, mineral composition, 653
Kanowna crystallized gold, 215
Kansas salt deposits, 286
Kaolin, 302; analyses, 303; development of, 455
Kaolinite, 191, 303, 455
Kaolinization, Transylvania, 475
Karangahake, New Zealand, gold deposits, 479
Karkaralinsk district, copper deposits, 369
Karoo system, South Africa, 219
Karst topography, Missouri, 421
Katamorphism, definition, 69
Katanga, Belgian Congo, copper ores, 375
Kearns-Keith mine, Park City, Utah, section, 573
Keltz mine, Tuolumne County, California, section of gold-bearing quartz, 539
Kemp’s classification of mineral deposits, 180
Kennedy mine, Mother Lode belt, California, 534
Ketchikan, Alaska, contact-metamorphic copper deposits, 693
Keweenaw copper deposits, 400
Keweenawan series, 400
Khirgiz steppes, copper deposits, 369
Kieserite, 269, 291
Kimberley diamond field, South Africa, 742, 743
Kimberley series, South Africa, 220
Kimberlite, 742
King’s Mineral Spring, Dallas, Indiana, analysis of water, 54
Kiruna magnetite deposit, Sweden, 753
Klackberg ore-body, Sweden, 714
Klondike gravels, 207
INDEX

Knob Hill-Ironsides mine, British Columbia, section of ore-body, 707
Kochbrunnen, Wiesbaden, Germany, analysis of water, 50
Kokomo, Colorado, deposits, 580
Kolar gold fields, Mysore, India, 647
Kongsberg, Norway, fahlbands, 389; quicksilver, 457; silver mines, 586
Korarvet, Sweden, rare earths, 727
Kostainik, Servia, stibnite deposits, 474
Kran mine, Persberg, Sweden, sections, 713
Krennerite, 797
Kreutznach springs, 105
Kristiania, Norway, contact-metamorphic deposits, 662, 672; native copper, 392
Kristiania type of ore deposits, 662
Kunzite, 731
Kupferschiefer, Mansfield, Germany, 379
Kutas, Trans-Caucasia, manganese deposits, 252
Kyschtim deposits, Ural Mountains, 598; section of ore, 806
Ladak, Kashmir, British India, borax, 277
Ladder veins, 133; definition, 146
La Ferrière-aux-Étangs, France, Silurian iron ore, 248
La Junta, Colorado, analysis of artesian water, 61
Lake Chelan, Washington, molybdenite deposit, 632
Lake City district, Colorado, 505; galena on zinc blende, 812
Lake of the Woods, Ontario, gold-quartz veins, 635
Lake Sanford, New York, titaniferous iron ores, 750
Lake Superior copper deposits, 399; literature, 399
Lake Superior copper ores, mining and smelting operations, 409; origin, 405; paragenesis of minerals, 404
Lake Superior iron ores, origin, 363; time of formation, 366
Lake Superior region, geologic sketch map, 353; geology, 354
Lake Valley, New Mexico, deposits, 569
Lake View Consolidated gold mine, Kalgoorie, Western Australia, 651
Lamalou springs, 104
Lamorna granite, Lands End, Cornwall, analysis, 621
Lancaster Gap, Pennsylvania, sulphide ores, 765
Lands End, Cornwall, granite, analysis, 621; greisen, analysis, 621
Långbanahytten, Sweden, manganese deposits, 714
La Plata quadrangle, Colorado, 505
Larder Lake, Ontario, gold-quartz veins, 636
La Rose vein, Cobalt, Ontario, 590
La Sal valley, Colorado, vanadium, ores, 377
Las Chispas mine, Sonora, Mexico, silver deposits, 828
Las Condes veins, Chile, 655
Last Chance lode, Bingham, Utah, alteration of rocks, 525, 526
Latah County, Idaho, mica, 724
Laterite, 327
Laumontite, 394, 439
Laurel Creek corundum mine, Rabun County, Georgia, 759
Lavas, copper in, 8
Lead, occurrence in rocks, 9; solubility, 793
Lead and zinc deposits in sedimentary rocks, 412; origin, 413; oxidation, 833; Upper Mississippi Valley, section showing occurrence, 426
Lead deposits, 694; in sandstone, 369; sulphide enrichment in, 811
Lead ore, Missouri, analysis, 428
Lead ores, tenor of, 15
Lead-silver veins with calcite, siderite, and barite, 562
Lead-silver-tourmaline veins, 658
Leadville, Colorado, deposits, 509, 576–580; sections, 577, 578, 579; manganese, 318; water conditions, 38
INDEX

Leadville-Boulder County belt of deposits, 580
Le Chatelier's law of pressure, 22
Lenox, Mass., overturned anticline, 113
Lenticular veins, 146
Lepidolite, 729
Les Challanches, France, fahlbands, 391
Liberty Bell mine, Telluride district, Colorado, 500
Lila C. borate mine, Inyo County, California, 281
Lime, 229
Limestone, definition and origin, 228
Limonite, 236, 305
Limonite deposits, 94
Limonites, oölitic, 240; marine, 239; in swamps and lakes, 234
Lincoln, California, granodiorite, analysis, 519
Linked veins, 144
Linnæite, 428
Lithium minerals, 729
Lithographic stone, 229
Lithosphere, definition, 69
Livingstone Reef series, South Africa, 220
Livingstonite, 464
Livonia, New York, salt mine, 285
Llano region, Texas, quartz-magnetite ores, 778
Lomagundi, Mashonaland, Africa, auriferous quartz diorite gneiss, 13
London shaft, Silverton, Colorado section, 502
Longfellow ore-body, Arizona, 690
Long Island, ground-water table, 30
Longitudinal fault, definition, 121
Los Pilares, Nacozari, Sonora, Mexico, copper deposits, 496, 814
Lost Packer vein, Idaho, 597
Lost River, Seward Peninsula, Alaska, contact-metamorphic de-

positions, 698
Lot, France, phosphates, 259
Lot-et-Garonne, France, phosphates, 259
Louisiana salt deposits, 287
Louisiana sulphur deposits, 341
Lyon Mountain, New York, magnetite mine, 756
Maas copper mine, Michigan, analysis of water, 836
McClelland well, Cass County, Missouri, analysis of water, 60
Madrid, New Mexico, graphite, 702
Magmas, constitution, 735, 736; crystallization of, 737; differentia-
tion in, 739
Magmatic concentration, mineral deposits formed by, 735
Magmatic differentiation, 76; products, 187
Magmatic exhalations, 92
Magmatic water, 82
Magdalena, New Mexico, ore deposits, 681
Magdalena mines, New Mexico, lead and zinc ores, 694
Magnesium deposits, 342
Magnesite, 344
Magnetite, 226, 751
Magnetite deposits, 682; of Sweden, 711
Main Reef series, South Africa, 220
Malaga, Spain, niccolite, 748
Malay Peninsula, tin deposits, 630
Mallardite, 785
Mammillary texture, 152
Mammoth, Pinal County, Arizona, mine water, 837
Mammoth copper mine, Shasta County, California, 599
Mammoth Cave, Kentucky, 132
Mancayan, Philippine Islands, enargite, 597
Manganese in lacustrine and marine beds, 252
Manganese ore, bog, 251; residual, 315; origin, 320; sedimentary, 251
Manganite, 315
Mansfield, Germany, copper-bearing shales, 379
Maraviza, Hungary, magnetite mine, 684
Marcasite, 789
INDEX

Marine oolitic hematite ores, 243
Marine oolitic silicate ores, 242
Marine placers, 204
Mariposite, 378
Marquette Range, iron deposits, 359
Martha lode, Waihi, New Zealand, 479, 480
Massa Marittima, Tuscany, copper veins, 659
Mary mine, Ducktown, Tennessee, section, 708
Mary Creek iron mine, Virginia, section, 308
Marysburgh, Victoria, paystreak, 214
Marysville, Montana, batholith, depth, 673; contact metamorphism, 666
Marysville, Utah, tiemannite and onofrite, 462
Mayari iron district, Cuba, 310, 313
Meadow Lake gold-tourmaline veins, California, 656
Measurements, of fault movements, 117; of metals, 17
Mechernich, Prussia, lead ores, 370
Meerschaum, 345
Meggen, Germany, pyritic deposit, 232, 233
Meissen, Saxony, Kaolin deposit, 304
Melones deposits, California, 517
Mendota vein, faulting in, 114
Menominee Range, iron deposits, 360
Mercur district, Utah, ore deposits, 550
Mesabi Range, iron deposits, 360
Metacinnabarite, 457, 800, 812
Metacryst, definition, 158
Metallic ores, oxidation, 780
Metalliferous deposits formed at intermediate depths by ascending thermal waters and in genetic connection with intrusive rocks, 513; formed near surface by ascending thermal waters and in genetic connection with igneous rocks, 432
Metals, price of, 16; relative abundance, 6, 14; traces in rocks, 7
Metamorphism, contact, 664; definition, 66; influence on various rocks, 677; of mineral deposits 187; regional, 185; in production of ore deposits, 388; successive epochs, 666; zones, 65, 69
Metamorphosed deposits, processes involved, 773
Metamorphosed iron ores, 775
Metasomatic deposits, textures, 156
Metasomatic magnetite deposits of Sweden, 711
Metasomatic processes, 444, 515, 612, 617; in deposits of Cornwall, 619; Silverton, Colorado, 455; Tonopah Nevada, 451; veins of southeastern Alaska, 644; Western Australia, 651
Metasomatic rocks, California gold-quartz veins, analyses, 519
Metasomatism, contact, 666; definition, 67
Metasome, definition, 67, 158
Mexico, argentite veins, 488; tin deposits, 632
Mexican mine, Goldenville, Nova Scotia, quartz vein, 549
Mey Spring, Haute Savoie, character of water, 48
Miami, Arizona, copper deposits, 815, 827
Mica, 723
Michigan basin, section, 285; salt production, 285
Michigan brines, 47
Michigan copper deposits, 400; water conditions in mines, 38
Michigan iron and copper mines, analyses of mine waters, 836
Milan copper mine, New Hampshire, 774; deformation of vein, 775
Millerite, 462
Mina Rica vein, Ophir, California, amphibolite schist, analysis, 519
Minas Geraios, Brazil, diamond fields, 741; gold deposits, 639
Minasragra, Peru, vanadium deposits, 378
INDEX

Mine Hill ore-body, Franklin Furnace, New Jersey, section, 710
Mine waters, 38, 47, 58, 105, 407, 836; analyses, 408, 836, 837, 840, 841, 842, 843
Mineville magnetite mines, New York, 757
Mineral deposits, classification, 178, 188; definition, 2; form, structure, and texture, 140; formed by concentration in molten magmas, 735; of the pegmatite dikes, 716; relation to igneous activity, 73; relation to metamorphic zones, 72; relation to mineral springs, 103; resulting from processes of rock decay and weathering, 296
Mineral springs, relation to mineral deposits, 103
Mineralization of faults, 128; successive phases, 436
Mineralizers, 611, 716
Minerals, crystalline, 26; crystallization power, 158; decomposition, 299; deposition of, 21; derivation, 74; high-temperature, 611; in gold placers, 209
"Minettes," 240
Mining districts, Nevada and California, map, 531
Minnie Moore mine, Wood River district, Idaho, 556
Mirabilite, 269
Mississippi Valley lead and zinc deposits, 418, 834; genesis, 429; Missouri barite deposits, 335
Missouri, southeastern, lead deposits, 426
Missouri zinc deposits, 419
Mittel-Sohland, Saxony, sulphide ores, 764
Moab iron district, Cuba, 310; analyses of ore and serpentine, 312
Moccasin district, Montana, ore deposits, 551
Modoc mine, Organ Mountains, New Mexico, lead and zinc ores, 694
Modum parish, Norway, fahlbands, 390
Mohawk mine, Goldfield, Nevada, analysis of ore, 512
Molecular ratio method, of calculating rock analyses, 845
Molly Gibson mine, Aspen, Colorado, 575
Molybdenite, 733, 794
Molybdenite veins, 632
Monazite, 727, 728
Monazite placers, 225
Mono Lake, California, character of water, 266; analysis, 267
Monte Catini, Italy, copper deposit, 410
Monteponi, Italy, cinnabar, 458; zinc deposits, 418
Montezuma, Colorado, deposits, 580, 581
Montpelier, Idaho, phosphate deposits, 260, 261
Montroydite, 469
Monumental mine, California, 538; native gold, 208
Monzonite, analyses, 525, 526
Morenci district, Arizona, contact metamorphism 669; magnetite deposit, 685; ore deposits, section, 690
Moresnet district, Belgium, zinc deposits, 416
Morning lode, Coeur d’Alene, Idaho, oxidation, 834
Morning Star Dyke, Victoria, ladder vein, 134
Morro Velho mine, Brazil, section, 640
Mother Lode, Mariposa County, California, section, 533; vein system, 138; mines, production, 538
Mottoram St. Andrews, copper ores, 370
Mottramite, 370
Mount Baldy district, Utah, ore, 438
Mount Bischoff dikes, Tasmania, 619
INDEX

Mount Bischoff tin deposits, Tasmania, 630
Mount Bohemia, Michigan, copper ores, 384
Mount Lyell, Tasmania, pyritic deposits, 598, 601, 817, 818; ore, analysis, 601
Mt. Margaret gold field, Western Australia, 649
Mount Morgan, Queensland, gold and copper deposits, 817
Mountain iron ores, 308
Movement of water, examples, 35
Murchison gold field, Western Australia, 649
Murfreesboro, Pike County, Arkansas, diamonds, 742
Muscovite, 300, 723

Nacimiento copper deposits, New Mexico, 373
Naevarhaugen iron ores, Norway, 777
Nagyagite, 797
Nankat, Turkestan, copper deposits, 369
Napa Consolidated mine, California, section, 466
Napa Soda, character of water, 62
National, Nevada, gold ore, 483; stibnite crystals, 473, 474
Native copper with epidote in basic lavas (Catactin type), 411
Native copper deposits, 392
Native gold, 433; in metamorphic gneisses, 13
Native silver, 434; occurrence, 14
Native silver deposits, 586
Natrolite, 394
Natron, 269
Navassa Island, guano, 257
Naxos, Greek Archipelago, emery deposits, 761
Necks, definition, 167
Nederland, Colorado, tungsten ores, 584
Needle Mountains quadrangle, Colorado, 505
Nelson County, Virginia, rutile deposits, 722
Nelsonite, 722
Nernst's law of solution, 23
Neu Hoffnung vein, Freiberg, Germany, ore-shoots, 177
Nevada mining districts, map, 531
Nevada quicksilver deposits, 459
Nevada City, California, conjugated systems of fractures, 138; geological section, 533; grano-diorite, analysis, 519; ore-shoots, 169
New Caledonia nickel ores, 325, 766
New Almaden, California, quicksilver mine, 468
New Almaden Vichy, character of water, 62
New England, New South Wales, granite, analysis, 621; greisen, 726
New Guinea, native copper, 392
New Idria, California. quicksilver deposits, 468
Newmire, Colorado, vanadium reduction plant, 376
New North Pool-Feltrick section, Cornwall, 628
Newport mine, Gogebic district Michigan, analysis of water, 836; iron, 358
New South Wales, gold districts, 547
New York, mica mine South Dakota, section, 724
Nécolite, 748
Nickel, 746; hydrated silicate deposits, 324
Nickel ores, solubility, 795
Nickel Plate mine, British Columbia, gold deposits, 696
Nickel silicates, analyses, 325
Nikitowska, Russia, quicksilver, 461
Nikolai greenstone, Alaska, 382
Nitrate deposits, Chile, 275
Nume beaches, Alaska, 207
Nomenclature of faults, 117
Nontronite, 306
Normal faults, definition, 126
Normal-shift, definition, 122
North Star vein, Grass Valley, California, 151, 534; diabase, analysis, 519
Novaculite of Arkansas, 190
Nova Scotia, gold-quartz veins, 548
Nuggets of gold, 208

Oberstein a.d. Nahe, Germany, native copper, 392
Oblique fault, definition, 120
Oblique-slip faults, definition, 126
Ochreous deposits, 94
Ochres, residuary, 322
Offset, definition, 120
Offset of a stratum, definition, 124
Ojo Caliente Spring, Taos, New Mexico, analysis of water, 60
Old Dominion mine, Globe, Arizona, chalcocitization, 826
Old Faithful geyser, Yellowstone National Park, analysis of water, 51
Oldhamite, 762
Olivine rock, analysis, 764
Omaha mine, Grass Valley, California, section of gold-bearing quartz, 539
Onofrite, 457
Ontario, corundum deposits, 760; gold-quartz veins, 635; silver-bearing cobalt-nickel veins, 590
Onyx, 229
Öölitic hematite ores, marine, 243
Öölitic limonites, 240
Öölitic marine limonites, 239
Öölitic silicate ores, marine, 242
Öölitic texture, 152
Open fault, definition, 117
Openings in rocks, 32, 131; origin, 131; produced by compressive stress, 136; produced by folding of sedimentary rocks, 135; produced by shearing stress under the influence of gravity, 136
Ophir mine, Comstock lode, Nevada, ore, 487
Ophir mining district, Placer County, California, 384
Ophir, California, vein system, 532
Oravica, Hungary, magnetite mine, 684
Ore, definition, 3
Ore deposition by saline waters, 387
Ore-shoots, 166; causes, 172; terminology of dimensions, 168
Ores, precipitation by silicates, 802; tenor of, 14
Oriskany ores, Virginia, 309
Organ district, New Mexico, metamorphism, 670; veins, 555
Oro La Plata mine, Leadville, Colorado, section, 579
Oronogo circle, Joplin, Missouri, lead workings, 421
Orovilie dredging ground, California, 205
Oroya-Brownhill gold mine, Kalgoorlie, Western Australia, 651
Orthoclase quarry, 719
Oruro, Bolivia, tin deposits, 631
Oscura Range, New Mexico, copper deposits, 373
Ouray district, Colorado, 503
Outcrops, of deposits, 782; of veins, 149
Overthrust faults, 112
Overthrusts, definition, 128
Overturned folds, 109
Ovifak, Greenland, graphite, 699; native iron, 746
Owens Lake, California, sodium deposits, 274
Oxidation, 70, 439
Oxidation, depth of, 781; examples, 814; of metallic ores, 780; principles of, 784
Oxide ores, 725
Ozark region lead and zinc deposits, 834
Pacific Congress, character of water, 62
Pacheca, Mexico, argentite veins, 487
Pala, San Diego County, California, amblygonite, 729; tourmaline, 731
Palladium, 640, 744
Pandermite, 282
Pandiomorphic texture, 153
Paradox valley, Colorado, vanadium ores, 377
INDEX

Paragenesis, cassiterite veins, 617; of minerals in Lake Superior copper ores, 404; in pegmatites, 718; silver deposits, 588
Parallel displacement faults, 118
Pareta, Tuscany, stibnite deposits, 474
Park City, Utah, deposits, 569, 571–573
Park City formation, phosphate deposits, 260
Park’s classification of mineral deposits, 179
Pasco, Peru, vanadium deposits, 378
Paso Robles Hot Springs, character of water, 62
Passagem lode, Brazil, gold, 639, 732
Passau, Bavaria, graphite deposits, 704
Patronite, 378
Paystreak, gold placers, 213
Paystreaks, development of, 199
Peekskill, Westchester County, New York, emery deposits, 759
Peerless mine, Keystone, South Dakota, lithium, 729
Pegmatite dikes, economic features, 723; mineral deposits, 716; texture, 151
Pegmatites, occurrence and general character, 719; types of, 720
Pelican vein, Georgetown, Colorado, section, 582
Penokee-Gogebic Range, iron deposits, 360
Pentlandite, 768
Peralillo veins, Chile, 655
Permian salt formation, Kansas, section, 285
Persberg mines, Sweden, plan, 712; composition of ore, 714
Perseverance gold mine, Kalgoorlie, Western Australia, 651
 Persistent minerals, 66
Peru quicksilver deposits, 460
Petalite, 729
Petzite, 797
Pfal quartz vein, Bavarian Forest, 150
Philipsburg, Montana, magnetite ore, section, 683
Phoenix, British Columbia, copper deposits, 706
Pholerite, 191
Phosphate beds, sedimentary, 253
Phosphate rocks, occurrence, 259; origin, 256–258
Phosphates, analyses, 264; residuary, 323
Phosphorus in shells of animals, 257
Piezometamorphism, 679
Pilbara gold fields, Western Australia, 651
Pilot Knob, Missouri, iron deposits, 367
Pipe veins, definition, 132
Pipes, definition, 167
Pisolitic texture, 152
Pitch of a fold, 112
Pitchstone, gold in, 10
Pitkäranta, Finland, contact-metamorphic deposits, 697
Pitsfield mines, Victoria, 206
Pitsfield placer, Victoria, 213
Pittsburgh vein, Nevada City, California, 536
Placer County, California, copper deposits, 384
Placer deposits, 192
Placer gold, origin, 195; relation to primary deposits, 216
Placers classified, 203
Placerville, California, diamonds, 742; vanadium deposits, 376
Plantz vein, Ophir, California, granodiorite, analysis, 519
Plasticity of clay, 303
Platinum, 744; occurrence, 7; solubility, 800
Platinum placers, 223
Platinum sand, California, analysis, 745
Plombières springs, 99
Plunge of ore-body, 142
Polybasite, 810
Porcupine district, Ontario, gold deposits, 636; section of ore, 636
Porosity, definition, 29
INDEX

Porphyry, analyses, 528, 604; gold and silver in, 13
Porterville, California, magnesite, 344
Portland mine, Cripple Creek, Colorado, 489, 490
Port Snettisham mining district, Alaska, 642
Potassium in brines, 294
Potassium salts, German, 289; sources, 293
Potchefstroom system, 219
Potrillos, Mexico, tin deposits, 632
Pre-Cambrian gold veins of Cordilleran region, 637
Precious stones, 731, 744
Precipitation, by carbonaceous material, 174; causes of, 22; of ores by silicates, 802
Prehnite, 394, 404
Premier diamond mine, Pretoria, Transvaal, 742, 743
Pressure, change of, producing precipitation, 22; decrease of, in producing ore-shoots, 172
Pretoria series, South Africa, 219
Price of metals, 16
Primary ore-shoots, 439
Primary ore-shoots, form, 166
Principles of classification of mineral deposits, 182
Production of gold, 217
Propylite, analysis, 448
Propylitic alteration of rocks, analyses showing, 448
Propylitization, 448; Transylvania, 475
Prosser mine, Portland, Oregon, limonite ore, 237
Proustite, 810
Providence Hill, California, gold-coated magnetite, 215
Przibram, Bohemia, lead-silver veins, 563; water conditions, 38
Pseudomorphic textures, 158
Psilomelane, 251, 315
Pueblo, Colorado, well, character of water, 53
Pyrrargyrite, 810
Pyrite, 232, 789; experiments with, 787; oxidation, 838
Pyritic deposits, injected, 768; of Mount Lyell, Tasmania, 601; of Rammelsberg, Germany, 606-610; of Rio Tinto, Spain, 602-606
Pyritic galena-quartz veins, 565
Pyritic replacement deposits, 597
Pyrolusite, 315
Pyromorphite, 254
Pyrophyllite, 347
Pyrrhotite, 789
Quaquaversal, 112
Quartz, 434, 723; conversion point, 719; fluid inclusion, analysis, 595
Quartz-adularia-zeolite veins (Alpine type), 593
Quartz deposits, 189
Quartz-tetrahedrite-galena veins, 555
Quartz veins of Ontario, 635
Quebec graphite deposits, 704
Queensland gold districts, 547
Quelites Spring, character of water, 48
Queretaro, Mexico, stibnite mines, 473
Quicksilver, occurrence, 107
Quicksilver deposits, 457; distribution, 459; genesis, 469; geological features, 461; relation to other ore deposits, 472; structure, 464
Quicksilver ores, mineralogy, 462, 463
Quincy, Massachusetts, pegmatite pipes, 721
Quincy mine, Hancock, Michigan, analysis of water, 49, 408, 836
Rabbit Hole sulphur deposit, Nevada, 338, 470
Radjiang-Lebong field, Sumatra, gold deposits, 495
Ragtown, Nevada, soda deposits, 274
Rainy Lake, Ontario, gold-quartz veins, 636
Rambler mine, Wyoming, platinum, 745
INDEX

Rammelsberg copper deposit, Harz Mountains, Germany, 598, 774; pyritic deposit, Germany, 606-610
Rare metals, occurrence, 7
Rare minerals, 727
Rarer elements contained in waters, 89
Raton, New Mexico, graphite, 702
Ray, Arizona, copper deposits, 823, 827
"Red Beds" copper ores, 371
Red Cliff district, Colorado, deposits, 581
Red Gulch, Colorado, chalcocite nodules, 371
Redington cinnabar mine, California, section, 464, 467
Red Mountain, Colorado, altered rocks, 456
Red Mountain, New Zealand, avaruite, 746
Reforma mine, Guererro, Mexico, pyritic deposits, 818
Regional metamorphism, 185; in production of ore deposits, 388
Regionally metamorphosed iron ores, 775
Reibl, Carinthia, zinc deposits, 418
Reichenstein, Silesia, gold deposits, 697
Replacement, 67; definition, 68; in epigenetic high-temperature deposits, 164; in epigenetic low-temperature deposits, 165; of shale by pyrite, 115
Replacement deposits formed at high temperature and pressure and in genetic connection with intrusive rocks, 611; in limestone, 141; gold-bearing, 550; in porphyry gold-bearing, 554; in quartzite, gold-bearing, 553; of silver-lead in limestone, 568
Replacement structures, 159-163
Republic, Washington, gold-selenide veins, 493; laumontite, 439; quartz veins, 439; zeolites in silver veins, 588
Republic iron mine, Michigan, analysis of water, 836
Residual iron ores, 305; distribution and stability, 313
Residual manganese ores, 315; origin, 320
Residual sea water, 409
Residual weathering, 184
Residuary barite, 321
Residuary and oxidized deposits, texture, 152
Residuary clay, 302; origin, 304
Residuary ochers, 322
Residuary phosphates, 323
Residuary zinc ore, 322
Reverse faults, definition, 126
Reynolds Mountain, Virginia, manganese breccia ore, 319
Rhodochrosite, 252
Rhodonite, 252
Ribbon structure, 157
Rich Hill mine, Virginia, section showing brown ore deposits, 307
Rico district, Colorado, 503; banded ore, 504
Rico dome, Colorado, section, 504
Rico Mountains, Colorado, geology, 503
Riddles nickel mines, Oregon, 325
Ridgeway mine, Silverton, Colorado, section of ore, 502
Riecke's law of crystallization, 71
Rio Tinto pyritic deposits, Spain, 598, 602-606, 816; geology, 603; section, 603
River and bar gravels, 203
Riverside, California, tin veins, 630
Rock analyses, calculation of, 845
Rock alteration, Calumet conglomerate, 409
Rockbridge Alum Springs, Virginia, analysis of water, 54
Rock flowage zone of earth's crust, 31
Rock salt, composition, 289
Rocks, gases in, 85; openings in, 32, 131; origin, 131; secular decay, 195; stability, 65
Rodaito silver veins, Chile, zeolites, 588
Romaine, Quebec, molybdenite, 733
Rörløs, Norway, pyritic deposits, 598, 771
Roscopelite, 378
Rosenbusch rule of magmatic crystallization, 737
Rossland, British Columbia, gold-copper deposits, 657; water conditions, 38
Roswell, New Mexico, wells, character of water, 53
Rotatory faults, 118, 128
Rothschönberger Stolln, Freiberg, Saxony, analysis of water from, 841
Roturoa geysier district, New Zealand, analysis of water, 51, 57; hot springs, deposits, 97
Routivare, Sweden, titanic iron ore, 750
Roviberg district, Transvaal, tin deposits, 630
Rubies, 731
"Run of gold," 213
Ruth mine, Ely, Nevada, composition of mine water, 841
Rutherglen gravels, 206
Ruze, Belgian Congo, ore deposits, 375
Ryepatch mine, Unionville, Nevada, section, 570
Saarlouis, Lorraine, lead and copper ores, 370
Saddle reefs, Nova Scotia, 549; Victoria, Australia, 543, 544, 545
St. John del Rey gold mine, Brazil, 639; section, 640
St. Lawrence mine, Butte, Montana, analysis of water from, 841
St. Michaels Mount, Lands End, Cornwall, greisen, analysis, 621
St. Urbain, Quebec, titanic iron ore, 750
Saline deposits, solution, 46
Saline residues, 265
Sall Mountain, Georgia, asbestos, 349
Salt beds, 283; sections, 285
Salt deposits, mode of formation, 270
Salt domes, 288
Salt wells, Tully, New York, sections, 284
Salton, California, salt deposit, 286
Salts from igneous rocks, 83; from sedimentary rocks, 83; normal succession, 268
Samarskite, 726
San Dionisio mine, Rio Tinto, Spain, analysis of porphyry, 604
Sandstone, porosity, 29
San Felipe iron district, Cuba, 310
San Juan Capistrano, character of water, 62
San Juan cobalt-tourmaline veins, Chile, 658
San Juan Mountains, geology, 498
San Juan region, Colorado, ore deposits, 443, 496, 497, 506
San Miguel County, New Mexico, copper ores, 373
San Pedro, New Mexico, chalcopyrite ores, 681; contact-metamorphic deposits, 688
Santa Barbara Hot Springs, character of water, 62
Santa Cruz County, California, beaches, 208
Santa Fe mine, Chiapas, Mexico, gold deposits, 695
Santa Maria, Sonora, Mexico, graphite, 702
Santander, Spain, cinnabar, 458; zinc deposits, 418
Santa Rita, New Mexico, copper deposits, 823
Santiago, Cuba, iron ores, 310
Sao Paulo, Brazil, native copper, 392
Sapphire, 760
Saratoga Springs, New York, character of water, 47
Saturation of rocks, 29
Sauce, Argentina, wolframite veins, 632
Savage mine, California, analysis of mine water, 840
INDEX

Saxony, caesiterite veins, 628–629; silver-bearing cobalt-nickel veins, 588
Scapolite, 665
Scheelite, 584
Schemnitz deposits, Hungary, 496
Schladming, Styria, fahlsbands, 391
Schlegelmilch quartz vein, South Carolina, 146
Schliersen, 747; definition, 736
Schneeberg veins, Saxony, 589
Schorl, 620
Schwarzenberg, Saxony, contact-metamorphic deposits, 697; contact metamorphism, 668
Scorodite, occurrence, 96
Seam diggings, 145; definition, 535
Sea water, gold and silver in, 12; salts in, 5
Searles Marsh, California, borax deposits, 280; potassium, 295
Secondary copper sulphides, 805
Secondary enrichment, 784
Secular decay of rocks, 195
Sedalia, Chaffee County, Colorado, sulphide deposits, 765
Sedimentary copper ores, genesis, 375
Sedimentary deposits, texture, 152
Sedimentary iron ores, 233, 247
Sedimentary manganese ores, 251
Sedimentary phosphate beds, 253
Sedimentary rocks, alteration, 622; calcium carbonate waters in, 44; chloride waters in, 46; salts from, 83; sodium carbonate waters in, 58; sulphate waters in, 52
Sedimentary sulphide deposits, 231
Scenides, occurrence, 493
Selukwe, Rhodesia, chromite, 747
Senarmontite, 474
Sepiolite, 345
Sericitization, 447
Serpentine, 312, 343
Serpentine asbestos, 349
Seven Devils, Idaho, contact-metamorphic deposits, 662
Shannon mine, Clifton, Arizona, section, 679
Shannon Mountain, Arizona, contact-metamorphic deposits, 690
Shasta County, California, copper deposits, 385, 599
Shear zone, 144; definition, 118
Sheep Creek mining district, Alaska, 642
Sheeted zone, 139, 144
Shift, definition, 119, 122
Shoots of successive mineralizations, 171
“Shot ore,” 234
Sicilian sulphur deposits, 339, 341
Siderite, 237
Siderites, Jurassic, England, 239; of marine and brackish-water strata, 237
Siebert lake beds, 484
Sierra Famatine, Argentina, energite, 597
Sierra Hachita district, New Mexico, copper deposits, 659
Sierra Mojada, Mexico, deposits, 569
Sierra Nevada, gold-quartz veins, 530; water conditions, 36
Silesian zinc deposits, 416; section, 417
Silica in spring deposits, 95
Silicate ores, oolitic, 242
Silicates, precipitants of ore, 802
Silicification, 158, 671; of limestone, 161
Silver, conversion tables, 18–20; in sea water, 12; native, 434, 586; occurrence at Aspen, Colorado, 586; in rocks, 9
Silver-bearing cobalt-nickel veins of Ontario, 590; of Saxony, 588
Silver Bell, Arizona, copper deposits, 692
Silver Cliff, springs, 106
Silver Crown lode, Silverton, Colorado, 143
Silver deposits, oxidation, 828; sulphide enrichment in, 810
Silver Gem ore-body, Tintic, Utah, section, 574
Silver Islet veins, Lake Superior, 590
INDEX

Silver ores, solubility, 795, 796; tenor of, 15
Silver Peak, Nevada, gold deposits, 640, 732
Silver Reef, Utah, silver deposits, 374
Silver Wreath vein, Willow Creek, Idaho, analysis of rock, 521
Silver-lead replacement deposits in limestone, 568
Silver-lead veins, 554
Silverton district, Colorado, 501
Sindbad valley, Colorado, vanadium ores, 377
Sink-holes, formation of, 133
Sinter deposits, 96
Skarn ores, 777
Skarn rocks, definition, 672
Skutterud, Norway, fahlbands, 390
Slip, definition, 119, 121
Slocan district, British Columbia, veins, 559
Smectite, 191
Smelter flux, 230
Smithsonite, 412
Smuggler vein, Telluride, Colorado, section, 500
Smuggler-Union mine, Telluride district, Colorado, 500, 501
Smyrna, Asia Minor, chromite, 748
Snake River, Idaho, gold deposits, 202
Snarum, Norway, fahlbands, 390
Snowstorm bed-vein, Idaho, 147
Soapstone; 345
Sodium carbonate, 274
Sodium carbonate waters, in igneous rocks, 59; in sedimentary rocks, 58
Sodium chloride, 283
Sodium nitrate, 275
Sodium sulphate, 274
Sodium sulphide waters, 62
Soffioni, Tuscany, Italy, 277
Solfat, formation of, 297
Solomon River, Alaska, dredging operations, 205
Solowoff Mountain, Ural Mountains, platinum, 745
Solubility of sulphides, 786

Solution, agency in concentration of minerals, 75; law of, 23; producing cavities in rocks, 132
Solution and precipitation, 21; of gold, 214
Sombrero Island, guano, 257
Sonoma County, California, geysers, character of water, 56
Sons of Gwalia gold mine, Western Australia, 649
Soret’s principle, 739
South Africa, geology, 219
South Lorrain, Ontario, cobalt-silver veins, 591
South Mountain, Idaho, lead and zinc deposits, 694
South Republic mine, Republic Washington, zeolites, 588
Southwestern chalcoite deposits, 823
Spacial relations of veins, 142
Specific gravity, calculation of, 846
Specularite, 445
Speereenberg, Germany, bore-hole, 283
Sperrylite, 745
Spessartite, 252
Spokane, Washington, cassiterite, 726
Spodumene, 729
Springs, production of, 33; warm, 33
Spring deposits at surface, 94
Spring waters, elements in, 89; origin, 90
Sprudel, Carlsbad, Bohemia, analysis of water, 60
Stability of rocks, 65
Stalactitic texture, 152
Stanley Basin, Idaho, quicksilver, 458
Stassfurt, Germany, potassium salts, 291
Stassfurt-Egeln anticline, section, 290
Staten Island, New York, bog iron ore, 237
Static zone of water, 31
INDEX

Steamboat Springs, Nevada, analysis of water, 51; deposits, 95; hot springs, 470
Stephanite, 810
Sterling, New Jersey, magnetite deposits, 752
Sterling, Scotland, native copper, 392
Sterling Hill, Franklin Furnace, New Jersey, zinc deposits, 709
Stibiconite, 474
Stibnite, 434, 462; at Steamboat Springs, Nevada, 95
Stibnite deposits, 441, 473
Stilbite, occurrence, 99, 100
Stockworks, 133, 145
Stone ore-shoot, Iron Hill, Leadville, Colorado, section, 578
Stratigraphic throw, definition, 124
Stratton’s Independence mine, Cripple Creek, Colorado, 489, 490, 491, 492; mine water, 837
Stream deposits, 198
Stress, zones of, 31
Strieberg, Sweden, analysis of ore, 776
Strike fault, classes, 126; definition, 120
Strike of tabular ore-body, 141
Strike-shift, definition, 122
Strike-slip, definition, 121
Strike-slip faults, definition, 126
Stringer lead or stringer lode, 145
Strontianite, 336
Strontium in spring water, 102
Styrian magnesite deposits, 344
Substitution, definition, 68
Sudbury, Ontario, nickel deposits, 766; platinum, 745; pyritic deposits, 598
Sulitjelma, Norway; pyritic deposits, 598, 771
Sulphate waters, 838; acid, 56; in sedimentary rocks, 52
Sulphates, solubility, 802
Sulphide deposits, sedimentary, 231
Sulphide enrichment. 439, 804; criteria, 812; in silver deposits, 810; in zinc and lead deposits, 811
Sulphide ores of igneous origin, 761
Sulphide waters, 62
Sulphides, dissemination of, 389; solubility, 786
Sulphur, 337
Sulphur Bank, California, springs, 107, 470; analysis of water, 60; sulphur deposits, 338
Sulphur deposits, origin, 339
Sumatra gold deposits, 495
Sundtite, 631
Susanville, Oregon, cinnabar, 458
Swaziland schists, 219
Swedish “dry ores,” 776
Swedish magnetite deposits, 711, 752
Switzerland, mineral veins, 594
Syd Varanger ore, Norway, section, 778
Sylvanite, 797
Sylite, 292
Syncline, 112
Syngenetic deposits, texture, 151
Syngenetic mineral deposits, 140
Taberg, Sweden, magmatic ore deposits, 751
Table Mountain sandstone, Cape of Good Hope, 219
Tables for conversion, 17–20
Talc, 345
Talcville, New York, t alc, 337
Tamarack mine, Michigan, copper, 401
Tamaya mines, Chile, 655
Tangential thrusting, 109
Tantalite, 726
Tapanhoancanga, Brazil, 197
Tarnowitz, Silesia, zinc-bearing beds, section, 417
Tecolote district, New Mexico, copper ores, 373
Telluride district, Colorado, 500; section, 499
Telluride type of gold deposits, 697
Tellurides, 797
Tellurite, 797
Temescal Mountains, California, tin veins, 630
INDEX

Temperature, change of, producing precipitation, 22; decrease of, in producing ore-shoots, 172; in deposition of minerals, 613; of consolidation, 718

Temperatures, underground, 77; measurement, 81

Tenmile district, Colorado, deposits, 581

Tennessee phosphates, 260

Tenor of ores, 14

Terlingua district, Texas, quicksilver deposits, 460, 469

Terminology of ore-shoots, 167

Tertiary borate beds, California, origin, 282

Tertiary gravels, Sierra Nevada, 207

Tertiary lake beds, 280

Tetrahedrite-galena-siderite veins, 555

Textures, of epigenetic deposits, 152; of metamorphic deposits, 156; of pegmatite dikes, 151; of residuary and oxidized deposits, 152; of sedimentary deposits, 152; of syngeneic deposits, 151

Thames district, New Zealand, analyses of rocks, 449; gold deposits, 478

Thenardite, 269

Thermal springs, source of water, 91

Thermopolis, Wyoming, sulphur, 338

Thetford, Quebec, asbestos deposits, 350

Thomsonite, 394

Thorium minerals, 727

Throw, definition, 120, 123

Thuringite, composition, 242; occurrence, 243

Tiecderoga, New York, graphite, 700

Tiemannite, 457

Tilly Foster mine, New York, magnetite deposits, 715

Tin-bearing veins, origin, 623

Tin deposits, occurrence, 224–225

Tin ores, tenor of, 16

Tintic, Utah, alteration of rocks, 524; deposits, 569, 573–575; depth of oxidation, 781

Tinton, South Dakota, tin mining, 726

Titanic iron ore, 748

Tomboy mine, Telluride district, Colorado, 500

Tohopah, Nevada, faulted vein, 129, 130; gold-silver district, 484; metamorphic processes, 451; mineralization, 442; minerals, 436; silver-gold quartz veins, 829; silver-gold veins, depth of oxidation, 781

Torsional stress, 134

Tourmaline, 731

Tourmaline veins, origin, 658

Transverse fault, definition, 121

Transylvania gold-quartz veins, 475

Treadwell gold deposits, Alaska, 642, 643

Tres Cruces, Bolivia, tin deposits, 631

Tres Hermanas, New Mexico, contact metamorphism, 671; zinc deposits, 694

Triassic basalts, New Jersey, zeolitization, 398

Triphylite, 729

Troilite, 762

Trona, 269

Tulameen River, British Columbia, platinum, 224, 745

Tulare County, California, magnesite deposit, 344

Tully, New York, salt wells, sections, 284

Tungsten deposits, Boulder County, Colorado, 584

Turgite, 236

Turquoise, 254

Turret, Chaffee County, Colorado, sulphide deposits, 766

Tuscany, Italy, quicksilver, 460; soffioni, 277

Twin Buttes, Arizona, copper deposits, 692

Tyee deposits, Vancouver Island, 598
INDEX

Types of deposits, 441, 741

Ukiah Vichy, character of water, 62
Ulexite, 280
Underground temperatures, 77; measurement, 81
Underground water, chemical work, 65; composition, 41; flow, 28; origin, 82
Underlie of ore-body, 141
Upper Harz, Germany, linked-vein system, 144
Upper Mississippi Valley, lead and zinc deposits, 425
Upthrow, in faulting, 118
Ural Mountains, platinum placers, 223
Uranium ores, Bohemia, 589
Utah Hot Springs, analysis of water, 49

Vadose ore-shoots, 171
Vadose water, definition, 82
Valencianite, 434
Vallalta-Sagron, quicksilver, 460
Valley iron ores, 308
Valuations, assay, 19
Values, decrease in depth, 173
Vanadinite, 376
Vanadium deposits, genesis, 379
Vanadium ores in sandstone, 376
Van Hise's classification of ores, 181
Van't Hoff's law of mineral composition, 66
Van't Hoff's law of movable equilibrium, 22
Vegetable remains in chalcedonic spring deposits, 97
Vein gold, fineness, 211
Vein walls, 149
Veins deposited by waters of the upper circulation, 386; formed at high temperature and pressure and in genetic connection with intrusive rocks, 611; in relation to country rock, 148; length and depth, 149
Velardeña, Mexico, alteration of intrusive rock, 675

Venterdorp volcanic system, South Africa, 219, 220
Vermilion Range, iron deposits, 302
Vertical faults, definition, 126
Vertical shift, definition, 122
Victoria, Australia, buried 206; gold-bearing region, 157
Victoria Reef, Western Australia, analysis of mine water, 837
Vignäs, Norway, pyritic deposits, 598, 771
Vindicator mine, Cripple Creek, Colorado, 489
Virgilina district, Virginia and North Carolina, bornite, 597
Virginia barite deposits, 334
Virginia Hot Springs, analysis of water, 45
Virginia lead and zinc ores, 426
Virginia soapstone deposits, 347
Vivianite, 235, 254
Volborthite, 376
Volcanic ash, copper in, 8
Volcanic emanations, 444
Volcanic gases, 88
Volcanism, influence on weathering, 34
Volume relations, in metamorphism, 669
Vulcan iron mine, Michigan, analysis of water, 836

Wad, 251, 315
Wagoner, Luther, assays for gold, 11
Wahnapitae, Ontario, gold-quartz veins, 636
Waihi, New Zealand gold deposits, 442, 479, 480; analyses of rocks, 449
Wall mine, Virgilina, North Carolina, bornite and chalcocite, 814
Wall rock, character of, effect on ore-shoots, 173
Wardner lead mines, Coeur d'Alene, Idaho, 562; mine waters, 838
War Eagle mine, Rossland, British Columbia, replacement veinlet, section, 657
Warm springs, location, 33
INDEX

Warren, Idaho, quicksilver, 458
Washington, District of Columbia, zeolites in gneiss, 395
Washington Camp, Arizona, contact-metamorphic deposits, 663
Water, connate, 35; depth in crystalline rocks, 36; discharge zone, 31; gathering zone, 31; in crystalline rocks, composition, 43; in volcanic eruptions, 445; Kentucky, minerals in, 431; Missouri region, minerals in, 431; movement, examples, 35; oceanic type, composition, 267; residual type, composition, 267; static zone, 31; types of, 266; volcanic type, composition, 267; underground, see Underground water.
Water analyses, interpretation, 63
Water circulation, influence of fractures, 33
Water courses, auriferous, grade, 213
Water level, definition, 29; depth of, 39
Water table, definition, 29, 30; position, 30
Waterberg system, South Africa, 219
Wavellite, 254
Weathering, definition, 69, 296; process, 297; residual, 184; zones of, 69
Webster, Jackson County, North Carolina, corundum deposits, 759
Weed's classification of mineral deposits, 181
Weeks Island, Louisiana, salt deposits, 288
Weigel's table of solubility of sulphides, 786
Weights, conversion tables, 20
Wellington lode, Breckenridge, Colorado, 527; analyses of rocks, 528
Western Australia, geological map, 648; gold-telluride veins, 647-654
Western Australia-Mt. Morgan gold mine, Western Australia, 649
Whetstones, origin, 190
White channel deposit, Klondike, 211, 213
White Horse, Northwest Territory, contact metamorphism, 668
White Knob, Idaho, garnetization, 676
White River region, Alaska, native copper, 393
Wickes, Mont., manganese ore, 252
Wieliczkia salt mine, Galicia, 286
Wiesbaden springs, 105
Wilkinson County, Georgia, bauxite deposits, 330
Willemite, 412, 710
Willow Creek, Idaho, rocks, analyses, 521
Wilton iron mine, Virginia, section, 309
Windham Bay mining district, Alaska, 642
Winscott mine, He ena, Montana, gold, 732
Wisconsin lead and zinc district, 425
Witwatersrand, gold-bearing conglomerates, 219; gold, genesis, 222
Witwatersrand system, South Africa, 220
Wolcott, New York, Clinton ore, 249
Wolframite, 584, 726
Wolframite veins, 632
Wood River district, Idaho, rocks, analyses, 522; silver-lead veins, 556; vein system, 557, 558
Wood River type of veins, 555
Wurtzite, 811
Wyomingite, 334
Wyssokaja Gora, Ural Mountains, magnetite deposits, 684, 755
Xenotime, 727
Yauli district, Peru, quicksilver, 460
Yogo Gulch, Montana, sapphire-bearing dike, 758, 760
Ytterby, Sweden, rare earths, 727
Yttrialite, 727
Yttrium and thorium minerals, 727
Yuba River, California, Tertiary section, 208
Yuma County, Arizona, copper deposits, 385
INDEX

Zechstein, 380
Zeehan tin district, Tasmania, 631
Zeolites, deposition, 586; formation of, 396; occurrence, 394, 395
Zeolitic copper ores, origin, 393
Zeolitic enrichments, 586
Zeolitic replacement, 439
Zeolitization, 185, 394, 397
Zillerthal, Tyrol, veins, 594
Zinc, occurrence in rocks, 9; solubility, 792
Zinc and lead deposits, contact-metamorphic type, 694; sulphide enrichment in, 811
Zinc blende, 762, 811; concentrated, Joplin region, analysis, 422
Zinc deposits in sedimentary rocks, 412; origin, 413
Zinc ore, residuary, 322
Zinc ores, tenor of, 15; of Ammeberg, Sweden, 779
Zincite, 710
Zinnwald vein, Saxony, section, 629
Zircon, 728
Zirconia, Henderson County, North Carolina, zircon deposits, 728
Zuni Mountains, New Mexico, copper-bearing beds, 373