


MECHANICS OF ENGINEERING.

[FLUIDS.]

A TreaTisE oN Hypravrics AND PNEUMATICS.

FOR USE IN TECHNICAL SCHOOLS.

BY

IRVING P. CHURCH, C.E.,

ASSISTANT PROPESSOR oF CIviL ENGINEERRING, CORNELL UNIVERSITY.
(IN CHARGE OF APPLIED MECHANICS.)

NEW YORK:
JOHN WILEY & SONS,
15 AsTOoR PLACE.
1889.



Sun L0 1917
R PE TE ¢ I B0

P VPN R Y S UIIVN:S 4

Copyright, 1889,
BY
Irving P. CHURCH.

Nroanorp & Nev, B
Printers,
1 to 7 Hague Street, - \

New York. New York



PREFACEL.

THE same general design has been kept in view in the prep-
aration of the following work as in the preceding pages on
Solids, viz. : to combine clearness and consistency in the setting
forth and illustration of theoretical principles; to provide nu-
merous and fully-lettered diagrams, in which in most cases the
notation of the accompanying text can be apprehended at a
glance ; and to invite close attention to the proper use of systems
of units in numerical examples, the latter being introduced very
copiously and with detailed explanations.

Advantage has been taken of the results of the most recent
experimental investigations in Hydraulics in assigning values of
the numerous coefficients necessary in this science. The re-
searches of Messrs. Fteley and Stearns in 1880 and of M. Bazin
in 1887 on the flow of water over weirs, and of Mr. Clemens
Herschel in testing his invention the ¢ Venturi Water-meter,”
are instances in point; as also some late experiments on the
transmission of compressed air and of natural gas.

Though space has forbidden dealing at any great length with
the action of fluid motors, sufficient matter is given in treating
of the mode of working of steam, gas, and hot-air engines, air-
compressors, and pumping-engines, together with numerical ex-
amples, to be of considerable advantage, it is thought, to students
not making a specialty of mechanical engineering.

Special acknowledgment is due to Col. J. T. Fanning, the
well-known author of ¢ Hydraulic and Water-supply Engineer-
ing,” for his consent to the use of an abridgment of the table of
coefficients for friction of water in pipes, given in that work ;
and to Prof. C. L. Crandall, of this university, for permission to
incorporate the chapter on Retaining-walls.

References to original research in the Hydraulic Laboratory of
the Civil Engineering Department at this institution will be
found on pp. 694 and 729.

CorNELL UNIVERsITY, ITHACA, N. Y., May 1889.
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PART IV.
HYDRAULICS.

CHAPTER 1.
DEFINITIONS—FLUID PRESSURE—HYDROSTATICS BEGUN.

406. A Perfect Fluid is a substance the particles of which
are capable of moving upon each other with the greatest free.
dom, absolutely without friction, and are destitute of mutual
attraction. In other words, the stress between any two con-
tiguous portions of a perfect fluid is always one of compression
and normal to the dividing surface at every point; i.e., no
shear or tangential action can exist on any imaginary cutting
Plane.

Hence if a perfect fluid is contained in a vessel of rigid ma-
terial the pressure experienced by the walls of the vessel is
normal to the surface of contact at all points.

For the practical purposes of Engineering, water, alcohol,
mercury, air, steam, and all gases may be treated as perfect
fluids within certain limits of temperature.

407. Liquids and Gases.—A fluid a definite mass of which
occupies a definite volume at a given temperature, and is in-
capable both of expanding into a larger volume and of being
compressed into a smaller volume at that temperature, is called
a Liquid, of which water, mercury, etc., are common examples;
whereas a Gas is a fluid a mass of which is capable of almost
indefinite expansion or compression, according as the space
within the confining vessel is made larger or smaller, and al-
ways tends to fill the vessel, which must therefore be closed in
every direction to prevent its escape.

515



516 MECHANICS OF ENGINEERING.

Liquids are sometimes called inelastic fluids, and gases
elastic fluids.

408. Remarks.—Though practically we may treat all liquids
as incompressible, experiment shows them to be compressible
to a slight extent. Thus, a cubic inch of water under a pres-
sure of 15 lbs. on each of its six faces loses only fifty millionths
(0.000050) of its original volume, while remaining at the same
temperature; if the temperature be sufficiently raised, how-
ever, its bulk will remain unchanged (provided the initial tem-
perature is over 40° Fahr.). Conversely, by heating a liquid in
a rigid vessel completely filled by it, a great bursting pressure
may be produced. The slight cohesion existing between the
particles of most liquids is too insignificant to be considered in
the present connection.

The property of indefinite expansion, on the part of gases,
by which a confined mass of gas can continue to fill a confined
space which is progressively enlarging, and exert pressure
against its walls, is satisfactorily explained by the * Kinetic
Theory of Gases,” according to which the gaseous particles are
perfectly elastic and in continual motion, impinging against
each other and the confining walls. Nevertheless, for prac-
tical purposes, we may consider a gas as a continuous sub-
stance.

Although by the abstraction of heat, or the application of
great pressure, or both, all known gases may be reduced to
liquids (some being even solidified); and although by con-
verse processes (imparting heat and diminishing the pressure)
liquids may be transformed into gases, the range of tempera-
ture and pressure in all problems to be considered in this work
is supposed kept within such limits that no extreme changes of
state, of this character, take place. A gas approaching the
point of liquefaction is called a Vapor.

Between the solid and the liquid state we find all grades of
intermediate conditions of matter. For example, some sub-
stances are described as soft and plastic solids, as soft putty,
moist earth, pitch, fresh mortar, etc.; and others as viscous and
sluggish liquids, as molasses and glycerine. In sufficient bulk,
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however, the latter may still be considered as perfect fluids.
Even water is slightly viscous.

409. Heaviness of Fluids.—The weight of a cubic unit of a
homogeneous fluid will be called its Aeaviness, or rate of
weight (see § 7), and is a measure of its density. Denoting it
by y, and the volume of a definite portion of the fluid by ¥,
we have, for the weight of that portion,

G=Vy. . . .. ... (1

This, like the great majority of equations used or derived in
this work, is of Aomogeneous form (§ 6), i.e., admits of any sys-
tem of units. E.g., in the metre-kilogram-second system, if y
is given in kilos. per cubic metre, ¥ must be expressed in
cubic metres, and G will be obtained in kilos.; and similarly
in any other system. The quality of y, = G = V, is evidently
one dimension of force divided by three dimensions of length.

In the following table, in the case of gases, the temperature
and pressure are mentioned at which they have the given
heaviness, since under other conditions the heaviness would be
different ; in the case of liquids, however, for ordinary pur-
poses the effect of a change of temperature may be neglected
(within certain limits).

HEAVINESS OF VARIOUS FLUIDS.*
[In ft. Ib. sec. system; y = weight in lbs. of a cubic foot.]

At temp. of melting ice;
Liquids. Gues{ Ibs. xger 8q. in. uf..ﬁﬁn“d u1
Fresh water, y= 62.5 | Atmospheric Air............ 0.08076
Sea Water.....covivetrecennnns 84.0 | Oxygen......coevevvenennn. 0.0892
Mercul?' ..................... 848.7 | Nitrogen........cevvevans. 0.0786
Alcohol........cvoiiinaet, 49.8 | Hydrogen...........ceecun.. 0 0056
Crude Petroleum, about....... 55.0 Il uminating from .
(N.B.—A cubic inch of water

* Qas
weighs 0.036024 lbs.; and a cubic Natural Gas, about
foot 1000 av. oz.)

* See Trautwine’s Civ. Engineer’s Pocket Book for an extended table—
p. 380, edition of 1885.
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For use in problems where needed, values for the heaviness
of pure fresh water are given in the following table (from
Rossetti) for temperatures ranging from freezing to boiling;
as also the relative density, that at the temperature of maxi-
mum density, 39°.3 Fahr. being taken as unity. The temper-
atures are Fabr., and y is in lbs. per cubic foot.

i 1, .
“ Temp. D%leas. Y. Temp. Dens. Y.
82° .99987| 62.416 60°| .99907 62.366| 140 .98838 61.386
85° .00996| 62.421 70°| .99802| 62.800!| 150°| .98043 61.208
89°.8] 1.00000( 62.424 80°| .99669| 62.217(| 160°| .97729 61.006
40° 99999 62.423 90°| .99510, 62.118| 170°| .97397 60.7

43° .99997| 62.422|| 100°| .99318| 61.998| 180°| .97056 60.586
45° .09992) 62.419| 110°| .99105| 61.865 180°| .96701 60.865
60° .99975| 62.408 | 120°| .98870, 61.719)| 200°| .96383 60.135
55° .99946 62.890| 180°! .98608| 61.555 212° .95865 59.843

Rel.

Temp.| pens. Y.

ExamprLe 1. What is the heaviness of a gas, 432 cub. in. of
which weigh 0.368 ounces? Use ft.-lb.-sec. system.
432 cub. in. = } cub. ft. and 0.368 oz. = 0.023 lbs.

ooy =-IG7_ 92—23_ 0.092 1bs. per cub. foot.

ExampLE 2. Required the weight of a right prism of mer-
cury of 1 sq. inch section and 30 inches altitnde.

¥ =80 X 1 =30 cub. in. 17 2 § cub. feet; while from the
table, y for mercury = 848.7 lbs. per cub. ft.

30

its welght = 6 = Vy = 7o X 848.7 = 14.73 Ibs,

410. Definitions.—By Hydraulics we understand the me-
chanics of fluids as utilized in Engineering. It may be divided
into

Hydrostatics, treating of ﬂmds at rest ; and

Hydrodynamics (or Hydrokinetics), wlnch deals with fluids
in motion. (The name Preumatics is sometimes used to cover
both the statics and dynamics of gaseous fluids.)
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[Rankine’s nomenclature has been adopted in the present
work. Some recent writers use the term Hydromechanics for
mechanics of fluids, subdividing it into Hydrostatics and
Hydrokinetics, as above ; they also use the term Dynamics to
embrace both of the two divisions called Statics and Dynamics
by Rankine, which by them are called Statics and Kinetics re-
spectively. Though unusual, perhaps, the term Hydraulics is
here used to cover the applied Mechanics of Fluids as well as
of Liquids.]

Before treating separately of liquids and gases, a few para-
graphs will be presented applicable to both kinds of fluids.

411, Pressure per Unit Area, or Intensity of Pressure.—As in
§ 180 in dealing with solids, so here with fluids we indicate the
pressure per unit area between two contiguous portions of
fluid, or between a fluid and the wall of the containing vessel,
by p, so that if dP is the total pressure on a small area d7,
we have

P=i17........(1)

as the pressure per unit area, or intensity of pressure (often,
though ambiguously, called the fension in speaking of a gas)
on the small surface d#. If pressure of the same intensity
exists over a finite plane surface of area = Z| the total pres-
sure on that surface is .

P= F = pfdF = Fp,
foif =1 p} R
or p:F.

(N.B.—For brevity the single word ‘¢ pressure” will some-
times be used, instead of intensity of pressure, where no am-
biguity can arise.) Thus, it is found that, under ordinary con-
ditions at the sea level, the atmosphere exerts a normal pressure
(normal, because fluid pressure) on all surfaces, of an intensity
of about p = 14.7 1bs. per sq. inch (= 2116. lbs. per sq. ft.).
This intensity of pressure is called one atmosphere. For ex-
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ample, the total atmospheric pressure on a surface of 100 sq.
in. i8 [inch, lb., sec.]

P = Fp=100 X 14.7=1470 lbs. (= 0.735 tons.)

The quality of p is evidently one dimension of force divid-
ed by two dimensions of length.

412. Hydrostatic Pressure; per Unit Area, in the Interior of a
Fluid at Rest.—In a body of fluid of uniform heaviness, at
rest, it is required to find the mutual pressure per unit area be-
tween the portions of fluid on opposite sides of any imaginary
cutting plane. As customary, we shall consider portions of
the fluid as free bodies, by supplying the forces exerted on
them by all contiguous portions (of fluid or vessel wall), also
those of the earth (their weights), and then apply the condi-
tions of equilibrium.

First, cutting plane horizontal.—Fig. 451 shows a body of
homogeneous fluid confined in a rigid
vessel closed at the top with a small air-
tight but frictionless piston (a horizontal
disk) of weight = & and exposed to at-
mospheric pressure (= p, per unit area)
on its upper face. Let the area of piston-
face be = . Then for the equilibrium
of the piston the total pressure between
its under surface and the fluid at O must
be

P=G+Fp¢”

and hence the intensity of this pressure is
G
P=ptPe o (D

It is now required to find the intensity, p, of fluid pressure
between the portions of fluid contignous to the horizontal cut-
ting plane BCat a vertical distance = 4 vertically below the pis-
ton 0. In Fig. 452 we have as a free body the right parallelo-
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piped OBC of Fig. 451 with vertical sides (two || to paper and
four 7 to it). 'The pressures acting on its six faces are normal
to them respectively, and the weight of the prism is = vol.
x y = Fhy, supposing y to have the same value at all parts of
the column (which is practically true for any height of liquid
and for a small height of gas). Since the ~—Fp,
prism is in equilibrium under the forces L1
shown in the figure, and would still be so T —
were it to become rigid, we may put (§ 36)
= (vert. compons.) = 0 and hence obtain

Fp— Fp,— Fhy=0.. . (2 Fhy

o

LI
|11

(In the figure the pressures on the ver- 8 H ¢
tical faces || to paper have no vertical com- fr
ponents, and hence are not drawn.) From Fia. 452,

(2) we have
p=p.+hky. . . . . .. @

(Ay, being the weight of a column of homogeneous fluid of unity
cross-section and height A, would be the total pressure on the
base of such a column, if at rest and with no pressure on the
upper base, and hence might be called intensity due to weight.)
Secondly, cutting plane obligue.—Fig. 453. Consider free
an infinitely small right triangular prism bed, whose bases are
|| to the paper, while the three side
faces (rectangles), having areas = d 7,
dF,,and dF,, are respectively hori-
zontal, vertical, and oblique ; let angle

cbd = a. The surface bc is a portion

2%, of the plane BC of Fig. 452. Given
2 (= intensity of pressure on dF) and

a, required p,, the intensity of pressure

on the oblique face bd, of area dF..

[N. B.—The prism is taken very small

in order that the intensity of pressure may be considered con-
stant over any one face; and also that the weight of the prism
may be neglected, since it involves the volume (three dimen-

pdF

e

P

Fia. 488.
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sions) of the prism, while the total face pressures involve only
two, and is hence a differential of a higher order.]
From = (vert. compons.) = 0 we shall have

PAF, co8 a — pdF =0; but dF = dF, = cos a;
Pi=D o « o+ o« @

which is independent of the angle a.

Hence, the intensity of fluid pressure at a given point 18
the same on all imaginary cutting planes containing the
point. This is the most important property of a fluid, and is
true whether the liquid is at rest or has any kind of motion ;
for, in case of rectilinear accelerated motion, e.g., although the
sum of the force-components in the direction of the accelera-
tion does not in general = 0, but = mass X acc., still, the
mass of the body in question is = weight < ¢, and therefore
the terin mass X acc. is a differential of a higher order than
the other terms of the equation, and hence the same result
follows as when there is no motion (or uniform rectilinear
motion).

413. The Intensity of Pressure is Equal at all Points of ary
Horizontal Plane in a body of homogeneous fluid at rest. If
we consider a right prism of the fluid in Fig. 451, of small
vertical thickness, its axis lying. in any horizontal plane BC,
its bases will be vertical and of equal area d#. The pressures
on its sides, being normal to them, and hence to the axis, have
no components || to the axis. The weight of the prism also
has no horizontal component. Hence from = (hor. comps.
Il to axis) = 0, we have, p, and p, being the pressure-intensi-
ties at the two bases,

pAF —pdF=0; “.p=p,, . . . . ()

which proves the statement at the head of this article.

It is now plain, from this and the preceding article, that
the pressure-intensity p at any point in a homogeneous fluid
at rest is equal to that at any higher point, plus the weight
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{hy) of a column of the fluid of section unity and of altitude
(k) = vertical distance between the points.

.6y p=ptly, . . . . . . . (2

whether they are in the same vertical or not, and whatever be
the shape of the containing
vessel (or pipes), provided the
Suid is continuous between
the two points; for, Fig. 454,
by considering a series of
small prisms, alternately ver-
tical and horizontal, obede, we
know that

Fio.454.
Po=pthy;  po=p;
Pa=Po— hyy ; and p, = pa;
hence, finally, by addition we have

Pe =p.+hy

(in which 2 = A, — 4,).

If, therefore, upon a small piston at o, of area = F,, a force
P, be exerted, and an inelastic fluid (liquid) completely fills the
vessel, then, for equilibrium, the force to be exerted upon the pis-
ton at ¢, viz., P,, is thus computed: Forequilibrium of fluid
2. =p,+ ky; and for equil. of piston o, p, = P, + F,; also,

p.=P,+ F,;

.-.P,=£—:‘P,+F;lcy. B

From (8) we learn that if the pistons are at the same level
(A =0) the total pressures on their inner faces are directly
proportional to their areas.

If the fluid is gaseous (2) and (3) are practically correct if
h is not > 100 feet (for, gas being compressible, the lower
strata are generally more dense than the upper), but in (3) the
pistons must be fixed, and P, and P, refer solely to the in-
terior pressures.
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Again, if A is small or p, very great, the term Ay may be
omitted altogether in egs. (2) and (3) (especially with gases,
since for them y (heaviness) is usually small), and we then
have, from (2),

P=Pys + + « + « « « . B

being the algebraic form of the statement: A lody of fluid
at rest transmits pressure with equal intensity in every direc-
tion and to all of its parts. [Principle of “Equal Transmis-
sion of Pressure.’’]

414. Moving Pistons—If the fluid in Fig. 454 is inelastic
and the vessel walls rigid, the motion of one piston (o) through
a distance s, causes the other to move through a distance s, de-
termined by the relation s, = /s, (since the volumes de-
scribed by them must be equal, as liquids are incompressible) ;
but on account of the inertia of the liquid, and friction on the
vessel walls, equations (2) and (3) no longer hold exactly, still
are approximately true if the motion is very slow and the
vessel short, as with the cylinder of a water-pressure engine.

But if the fluid is compressible and elastic (gases and vapors ;
steam, or air) and hence of small density, the effect of inertia
and friction is not appreciable in short wide vessels like ‘the
cylinders of steam- and air-engines, and those of air-compres-
- sors; and eqs. (2) and (3) still hold, practically, even with high
pistonspeeds. For example, in the space A B,
Fig. 455, between the piston and cylinder-head
of a steam-engine (piston moving toward the
right) the intensity of pressure, p, of the
steam against the moving piston B is prac-

Fia. 455. tically equal to that against the cylinder-head
A at the same instant.

415. An Important Distinction between gases and liquids
(i.e., between elastic and inelastic fluids) consists in this:

A liquid can exert pressure against the walls of the contain-
ing vessel only by its weight, or (when confined on all sides)
by transmitted pressure coming from without (due to piston
pressure, atmospheric pressure, etc.); whereas—
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A gas, confined, as it must be, on all sides to prevent dif-
fusion, exerts pressure on the vessel not only by its weight,
but by its elasticity or tendency to expand. If pressure from
without is also applied, the gas is compressed and exerts a still
greater pressure on the vessel walls.

416. Component, of Pressure, in a Given Direction.—Let
ABCD, whose area = dF, be a small element of a surface,
plane or curved, and p the intensity of
fluid pressure upon this element, then g,
the total pressure upon it is pd ¥, and is
of course normal to it. Let A’ B’CD be
the projection of the element 4 upon ¢
a plane CDM making an angle a with
the element, and let it be required to
find the value of the component of pd#
in a direction normal to this last plane (the other component
being understood to be || to the same plane). We shall have

Compon. of pdF 7 to CDM = pdF cos a = p(dF .cos a). (1)

But dF. cos @ = area A’B’'CD, the projection of dF upon
the plane CDM.

.. Compon. to plane CDM = p X (project. of AF on CDM);

i.e., the component of fluid pressure (on an element of a sur-
face) in a given direction (the other component being 7 to
the first) <s found by multiplying the intensity of the pressure
by the area of the projection of the element upon a plane 7 to
‘the given direction.

It is seen, as an example of this, that if the fluid pressures
on the elements of the inner surface of one hemisphere of a
hollow sphere containing a gas are resolved into components
and || to the plane of the circular base of the hemisphere, the
sum of the former components simply = #r"p, where » is the
radius of the sphere, and p the intensity of the fluid pressure ;
for, from the foregoing, the sum of these components is just
the same as the total pressure would be, having an intensity p,
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-ou a great circle of the sphere, the area, 7:% of this circle being
the sum of the areas of the projections, upon this circle as a
base, of all the elements of the hemispherical surface. (Weight
of fluid neglected.)

A similar statement may be made as to the pressures on
the inner curved surface of a right cylinder.

417. Non-planar Pistons.—From the foregoing it follows that
the sum of the components || to the piston-rod, of the fluid
pressures upon the piston at 4, Fig. 457, is just the same as at
B, if the cylinders are of equal size and the steam, or air, is at
the same tension. For the sum of the projections of all the
elements of the curved surface of A upon a plane 7 to the
piston-rod is always = 7r* = area of section of cylinder-bore.

3
ir

Fia. 457,

If the surface of A is symmetrical about the axis of the cylin-
der the other components (i.e., those 7 to the piston-rod) will
neutralize each other. If the line of intersection of that sur-
face with the surface of the cylinder is not symmetrical about
the axis of the cylinder, the piston may be pressed laterally
against the cylinder-wall, but the thrust along the rod or
“working force” (§128) is the same (except for friction in-
duced by the lateral pressure), in all instances, as if the surface
were plane and 7 to piston-rod.

418, Bramah, or Hydraulic, Press,—This is a familiar instance
of the principle of transmission of fluid pressure. Fig. 458.
Let the small piston at O have a diameter d = 1 inch = ¢ ft.,
while the plunger Z, or large piston, has a diameter d’ = AB
= CD =15 in.=4 ft. The lever MV weighs G, =3 lbs,,
and a weight G = 40 lbs. is hung at M. The ieverarms of
these forces about the fulerum &V are given in ihe figure.
The apparatus being full of water (oil is otten used), the fiuid
pressure P, against the small piston is found by putting
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S(moms. about N) =0 for the equilibrium of the lever;.
whence [ft., 1b., sec.]

P,x1—40x3—3X%x2=0. .. P,=1261bs

’

AL
e

But, denoting atmospheric pressure by p,, and that of the
water against the piston by p, (per unit area), we may also
write

P,=Fp,— F,po =} 7d(p, — Po)-
Solving for p,, we have, putting p, = 14,7 X 144 1bs. per
sq. ft.,
p=[126+7 (8 |+ 147 X 144 = 25236 Ibs. per sq. ft.

Hence at ¢ the press. per unit area, from §409, and (2), § 413, is
Do = P+ hy = 25936 - 3 X 62.5 = 25423 Ibs. per sq. ft.

= 175.6 1bs. per sq. inch or 11.9 atmospheres, and the total
upward pressure at ¢ on base of plunger is

P=Fp = %— 2. =} 7(§)' X 25423 = 21194 lbs.,
or almost 16 tons (of 2000 1lbs. each). The compressive force:

upon the block or bale, C, = P less the weight of the plunger
and total atmos. pressure on a circle of 15 in. diameter.
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419. The Dividing Surface of Two Fluids (which do not mix) in
Contact, and at Rest, is a Horizontal Plane.—For, Fig. 459, sup-
posing any two points ¢ and O of this sur-

face to be at different levels (the pressure

at O being p,, that at ¢ p,, and the heavi-

nesses of the two fluids y, and y, respec-

tively), we would have, from a considera-

tion of the two elementary prisms eb and

Fia. 450, b0 (vertical and horizontal), the relation
.p e =p¢ + ,"y 1 ;
while from the prisms ec and ¢O, the relation
_pc =.p . + h}’ 3°

These equations are conflicting, hence the apove supposition
is absurd. Therefore the proposition is true.

For stable equilibrium, evidently, the heavier fluid must oc-
cupy the lowest position in the vessel, and if there are several
fluids (which do not mix), they will arrange
themselves vertically, in the order of their den-
sities, the heaviest at the bottom, Fig. 460. On
account of the property called dé¢ffusion the par-
ticles of two gases placed in contact soon inter-
mingle and form a uniform mixture. This fact
gives strong support to the * Kinetic Theory of Fro. 460
Gases” (§ 408). . T

420. Free Surface of a Liguid at Rest—The surface (of a
liquid) not in contact with the walls of the containing vessel
is called a free surface, and is necessarily
. horizontal (from § 419) when the liquid is at
" rest. Fig. 461. (A gas, from its tendency
to indefinite expansion, is incapable of hav-
ing a free surface.) This is true even if the
space above the liquid is vacuous, for if the
surface were inclined or curved, points in the
body of the liquid and in the same horizon-
tal plane would have different heights (or ¢ heads”) of liquid
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between them and the surface, producing different intensities
of pressure in the plane, which is contrary to § 413.

When large bodies of liquid like the ocean are considered,
gravity can no longer be regarded as acting in parallel lines;
consequently the free surface of the liquid is curved, being 7
to the direction of (apparent) gravity at all points. For ordi-
nary engineering purposes (except in Geodesy) the free surface
of water at rest is a horizontal plane.

421. Two Liquids (which do not mix) at Rest in a Bent Tube
open at Both Ends to the Air, Fig. 460; water and mercury, for
instance. Let their heavinesses be y,
and y, respectively. The pressure at ¢
may be written (§ 413) either

Pe=po,+hy . . . Q)

or :
Pc=1’0.+/l-}’- LI (2)

according as we refer it to the water
column or the mercury column and
their respective free surfaces where the ount
pressure pg, = po, = p* = atmos. press.

¢ is the surface of contact of the two liquids. Hence we have

Pat hy.=pa+ hy,; ie,h ik ;.', I ()

i.e., the heights of the free surfaces of the two liguids above the
surface of contact are inversely proportional to their respec-
tive heavinesses.

ExampLe.—If the pressure at ¢ = 2 atmospheres (§ 396) we
shall have from (1) (inch-lb.-sec. system of units)

hy, =D, — pa = 2 X 147 — 14.7 = 14.7 1bs. per sq. inch.
< h, must = 14.7 = [848.7 < 1728] = 30 inches

(since, for mercury, y, = 848.7 lbs. per cub. ft.). Hence,
from (3),

_hy, _ 30 X [848.7 = 1728] _ , _ . _
h, = o= 625 = T738 = 408 mcheg = 34 feet.
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t.e., for equilibrium, and that p, may = 2 atmospheres, 4, and
h, (of mercury and water) must be 30 in. and 34 feet respec-
tively.

422. City Water-pipes.—If 4 = vertical distance of a point
B of a water-pipe below the free surface of reservoir, and the
water be at rest, the pressure on the inner surface of the pipe
at B (per unit of area) is

P =p,+ A y; and here p, = p, = atmos. press.
ExampLe—If A = 200 ft. (using the inch, Ib., and second)
P =147 4 [200 X 12][62.5 = 1728] = 101.5 bs. per sq. in.

The term Ay, alone, = 86.8 lbs. per sq. inch, is epoken of as the
hydrostatic pressure due to 200 feet height, or “Head,” of
water. (See Trautwine’s Pocket Book for a table of h)dro-
static pressures for various depths.)

If, however, the water is flowing through the pipe, the pres-
sure against the interior wall becomes less (a problem of Hy-
drodynamics to be treated subsequently), while if that motion
is suddenly checked, the pressure becomes momentarily much
greater than the hydrostatic. This shock is called * water-
ram” and ¢ water-hammer,” and may be as great as 200 to 300
Ibs. per sq. inch.

423. Barometers and Manometers for Fluid Pressure.—If a
tube, closed at one end, is filled with water, and the other ex-
tremity is temporarily stopped and afterwards
opened under water, the closed end being then

4, @ (vertical) height = /4 above the surface of
i the water, it is required to find the intensity,
--t- p, , of fluid pressure at the top of the tube, sup-
posing it to remain filled with water. Fig.
463. At X inside the tube the pressure is
14.7 1bs. per sq. inch, the same as that outside
at the same level (§ 413) ; hence, from pz = p,

Po=pe—ly.. . . . . . . @A)
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ExamprE.—Let 2 = 10 feet (with inch-lb.-sec. system); then
P, =147 — 120 X [62.5 + 1728] = 10.4 Ibs. per sq. inch,

or about § of an atmosphere. If now we inquire the value
of A to make p, = zero, we put pgz — Ay = 0 and obtain - =
408 inches, = 34 ft., which is called the height of the water-
barometer. Hence, Fig. 463a, ordinary atinospheric pressure
will not sustain a column of water higher than 34 feet. If
mercury is used instead of water the height supported by one
atmosphere is

b= 14.7 + [848.7 = 1728] = 30 inches,

=76 centims. (about), and the tube is of more manageable
proportions than with water, aside from the ad-
vantage that no vapor of mercury forms above
the liquid at ordinary temperatures [In fact, the
water-barometer height b = 34 feet has onlya °
theoretical existence since at ordinary tempera-
tures (40° to 80° Fahr.) vapor of water would .
form above the column and depress it by from
0.30 to 1.09 ft.]. Such an apparatus is called a
Barometer, and is used not only for measuring
the varying tension of the atmosphere (from 14.5
to 15 lbs. per sq. inch, according to the weather and height
above sea-level), but also that of any body of gas. Thus, Fig.
464, the gas in D is put in communication with
the space above the mercury in the cistern at
C; and we have p = hy, where y = heav. of
mercury, and p is the pressure on the liquid in
the cistern. For delicate measurements an at-
tached thermometer is also used, as the heavi-
ness y varies slightly with the temperature.
~%  If the vertical distance CD is small. the ten-
ZTERhPh sion in C is considered the same as in .
Fio. 464, For gas-tensions greater than one atmosphere.
the tnbe may be left open at the top, forming an open ma-

F1a. 463a.
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nometer, Fig. 465. In this case, the tension of the gas above
the mercury in the cistern is

=Ck+by,. . . . . (6]

in which b is the height of mercury (about 30
4 in.)to which the tension of the atmosphere above
| the mercury column is equivalent.

ExampLe—If % =51 inches, Fig. 465, we
have (ft., Ib., sec.)

) Fia. 46;-
— [4.25 ft. + 2.5 ft.] 848.7 = 5728 Ibs. per sq. foot
= 89.7 lbs. per sq. inch = 2.7 atmospheres.

Another form of the open manometer consists of a U tube,
Fig. 464, the atmosphere having access to one branch, the gas
to be examined, to the other, while the ,
mercury lies in the curve. As before, we
have

=G40y =~ty+p., - (2

where p, = atmos. tension, and & as above. [
The tension of a gas is sometimes spoken |
of as measured by so many <nches of mer- |
cury. For example, a tension of 22.05 Fia. 466,

Ibs. per sq. mch (1% atmos.) is measured by 45 inches of mer-
cury in a vacuum manometer (i.e, a common barometer),
Fig. 464. 'With the open manometer this tension (13 atmos.)
would be indicated by 15 inches of actual mercury, Figs. 465
and 466. An ordinary steam-gauge indicates the cxrcess of
tension over one atmosphere ; thus “ 40 lbs. of steam” implies
a tension of 40 + 14.7 = 54.7 1bs. per sq. in.

The Bourdon steam-gauge in common use consists of a
curved elastic metal tube of flattened or elliptical section
(with the long axis 7] to the plane of the tube), and has one
end fixed. The movement of the other end, which is free and
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closed, by proper mechanical connection gives motion to the
pointer of a dial. This movement is caused by any change of
tension in the steam or gas admitted, through the fixed end, to
the interior of the tube. As the tension increases the ellip-
tical section becomes less flat, i.e., more nearly circular, caus-
ing the two ends of the tube to separate more widely, i.e., the
free end moves away from the fixed end ; and vice versd.

Such gauges, however, are not always reliable. They are
graduated by comparison with mercury manometers; and
should be tested from time to time in the same way.

424. Tension of Illuminating Gas.—This is often spoken of as
measured by tnches of water (from 1 to 3 inches usually).
Strictly it should be stated that this
water-height measures the excess of
its tension over that of the atmos-
phere. Thus, in Fig. 466, water
being used instead of mercury, A =
say 2 inches, while b = 408 inches.

This difference of tension may be
largely affected by a change in the
barometer due to the weather, or by 77:
a difference in altitude, as the follow-
ing example will illustrate :

ExampLE.—Supposing the gas at rest, and the tension at the
gasometer A, Fig. 467, to be “two inches of water,” required
the water-column A” (in open tube) that the gas will support
in the pipe at B, 120 feet (vertically) above the gasometer.
Let the temperature be freezing (nearly), and the outside air at
a tension of 14.7 Ibs. per sq. inch; the heaviness of the gas at
this temperature being 0.036 lbs. per cubic foot. For the
small difference of 120 ft. we may treat both the atmosphere
and the gas as liquids, that is, of constant density throughout
the vertical column, and therefore apply the principles of
§ 413 ; with the following result:

The tension of the outside air at B, supposed to be at the
same temperature as at A, will sustain a water-column less
than the 408 inches at 4 by an amount corresponding to the

‘\\‘ L-—-- B o e
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120 feet of air between, of the heaviness .0807 Ibs. per cub.
ft. 120 feet of air weighing .0807 lbs. per cub. ft. will balance
0.154 ft. of water weighing 62.5 lbs. per cubic ft., i.e., 1.85
inches of water. Now the tension of the gas at B is also less.
than its tension at A, but the difference is not so great as with
the outside air, for the 120 ft. of gas is lighter than the 120 ft.
of air. Since 120 ft. of gas weighing 0.036 lbs. per cubic ft.
will balance 0.0691 ft., or 0.83 inches, of water, therefore the
difference between the tensions of the two fluids at B is greater
than at 4 by (1.85 — 0.83 =) 1.02 inches; or, at B the total
difference is 2.00 4 1.02 = 3.02 inches.

Hence if a small aperture is made in the pipe at B the gas
will flow out with greater velocity than at A. At Ithaca,
N. Y., where the University buildings are 400 ft. above the
gas-works, this phenomenon is very marked.

‘When the difference of level is great the decrease of tension
as we proceed upward in the atmosphere, even with constant
temperature, does not follow the simple law of §413; see
§ 477,

For velocity of flow of gases through orifices, see § 548, etc.

425. Safety-valves—Fig. 468. Required the proper weight
G to be hung at the extremity of the horizontal lever 4 B,
with fulerum at B, that the flat
disk-valve £ shall not be forced
upward by the steain pressure, ’,
until the latter reaches a given
value =p. Let the weight of
the arm be &, , its centre of grav-
ity being at (, a distance = ¢
from B; the other horizontal distances are marked in the
figure.

Suppose the valve on the point of rising; then the forces
acting on the lever are the fulerum-reaction at B, the weights
G and @,, and the two fluid-pressures on the disk, viz.: Fp,
(atmospheric) downward, and Fp (steam) upward. Hence,
from Z(moms. z) =0,

Gb+ Ge+ Fpa— Fpa=0. . . . (1)
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Solving, we have
G -7 F(p pa) - o o . . . (2)

ExampLe.—With @ =2 inches, 6 = 2 feet, c =1 foot
G, =41bs., p =6 atmos., and diam. of disk =1 inch; with
the foot and pound,

G= ( )[6x147x144—1x147x144] 4 x4

2 7
24'4
.. G = 2.811bs.

[Notice the cancelling of the 144 ; for F{ p — p,) is pounds,
being one dimension of force, if the pound is selected as the
unit of force, whether the inch or foot is used in both fac-
tors.] Hence when the steam pressure has risen to 6 atmos.
(= 88.2 1bs. per square inch) (corresponding to 73.5 lbs. persq.
in. by steam-gauge) the valve will open if ¢ = 2.81 lbs., or be
on the point of opening.

426. Proper Thickness of Thin Hollow Cylinders (i.e. Pipes
and Tubes) to Resist Bursting by Fluid Pressure.

Case 1. Stresses in the cross-section due to End Pressure;
Fig. 469.—Let A B be the circular cap clos-
ing the end of a cylindrical tube containing
fluid at a tension = p. Let » = internal
radius of the tube or pipe. Then considering
the cap free, neglecting its weight, we have
three sets of || forces in equilibrium (see
IT in figure), viz.: the iuternal fluid pres-
sure = z7r’p; the external fluid pressure
= nr'p,; while the total stress (tensile) on
the small ring, whose area now exposed is
27rt (nearly), is = 27rip, , where ¢ is the thickness of the pipe,
and p, the tensile stress per unit area induced by the end-pres-
sures (fluid).
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For equilibrinm, therefore, we may put =(hor. comps.) = 0;
ie.,
Zrp — Py — 27rtp, = 0;

. __7'(]’—]70)
P e e e e (1)

(Strictly, the two circular areas sustaining the fluid pressures
are different in area, but to consider them equal occasions but
a small error.)

Eq. (1) also gives the tension in the central section of a tAin
hollow sphere, under bursting pressure.

Cask I1. Stresses in the longitudinal section of pipe, due to
radial fluid pressures.*—Consider free the half (semi-circular)
of any length I of the pipe, be-
tween two cross-sections. Take an
axis X (as in Fig. 470) 7 to the
longitudinal section which has been
made. Let p, denote the tensile
stress (per unit area) produced in
the narrow rectangies exposed at A
and B (those in the half-ring edges,
having no X components, are not.
drawn in the figure). On the in-
ternal curved surface the fluid pres-

Fia. 470. sure is considered of equal intensity
= p at all points (practically true even with liquids, if 2» is
small compared with the head of water producing p). The
fluid pressure on any dF or elementary area of the internal
curved surface is = pdF. Its X component (see § 416) is
obtained by multiplying p by the projection of d# on the ver-
tical plane A BC, and since p is the same for all the d#7s of
the curved surface, the sum of all the X components of the in-
ternal fluid pressures must = p multiplied by the area of rect-
angle ABCD, = 2rlp; and similarly the X components of the

* Analytically this problem is identical with that of the smooth cord on
a smooth cylinder, § 169, and is seen to give the same result.
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external atmos. pressures = 2rip, (nearly). The tensile stresses
(Il to X)) are equal to 2Up, ; hence for equilibrium, 2X =0
gives

9ltp, — rlp + 2rlp, = 0;

.'.p,:lr(‘—p—t_—’@-).. « o & o . (2)

This tensile stress, called koop tension, p,, opposing rupture by
longitudinal tearing, is seen-to be double the tensile stress p,
induced, under the same circumstances, on the annular cross-
section in Case I. Hence eq. (2), and not eq. (1), should be
used to determine a safe value for the thickness of metal, ¢, or
any other one unknown quantity involved in the equation.

For safety against rupture, we must put p, = 7", a safe
tensile stress per unit area for the material of the pipe or tube
(see §§ 195 and 203);

o _r(p—pa)
lot—_T‘CO . L] ° . . (3)

(For a thin hollow sphere, t may be computed from eq. (1);
that is, need be only half ‘as great as with the cylinder, other
things being equal.)

X ExampLE.—A pipe of twenty inches internal diameter is to
contain water at rest under a head of 340 feet; required the
proper thickness, if of cast-iron.

340 feet of water measures 10 atmospheres, so that the in
ternal fluid pressure is 11 atmospheres; but the external pres
sure p, being one atmos., we must write (inch, lb., sec.)

(p — 2.) = 10 X 14.7 = 147.0 1bs. per sq. in., and » = 10 in.,

while (§ 203) we may put 7" =% of 9000 = 4500 Ibs. per sq.
in.; whence
_ 10 x 147

t= 500 = 0.326 inches.
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But to insure safety in handling pipes and imperviousness to
the water, a somewhat greater thickness is adopted in practice
than given by the above theory.

Thus, Weisbach recommends (as proved experimentally also)
for

Plpes of sheet iron, ¢ = [0.00172 »A4 4 0 12] inches;

% “cast « £=[0.00476 »4 + 0.34] *
g “ cop pper t = [0.00296 74 + 0.16] «
2] « “lea t=[0.01014 r4 4+ 0.21] «
2| “ «zne ¢ = [0.00484 74 + 0.16] «

in which ¢ = thickness in inches, » = radius in inches, and A4
= excess of internal over external fluid pressure (i.e., p — p,)
expressed in atmospheres.

For instance, for the example just given, we should have
(cast-iron)

t = .00476 X 10 X 10+ 0.34 = 0.816 inches.

If the pipe is subject to “ water-ram” (§ 422) the strength
should be much greater. To provide against ‘ water-ram,”
Mr. J. T. Fanning, on p. 453 of his “ Hydraulic and Water-
supply Engineering,” advises adding 230 feet to the static
bead in computing the thickness of cast-iron pipes.

For thick hollow cylinders see Rankine’s Applied Mechan-
ics, p. 290, and Cotterill’s Applied Mechanics, p. 403.

427. Collapsing of Tubes under Fluid Pressure. (Cylindrical
boiler-flues, for example.)—If the external exceeds the internal
fluid pressure, and the thickness of metal is small compared
with the diameter, the slightest deformation of the tube or
pipe gives the external pressure greater capability to produce
a further change of form, and hence possibly a final collapse;
just as with long columns (§ 303) a slight bending gives great
advantage to the terminal forces. Hence the theory of § 426
is inapplicable. According to Sir Wm. Fairbairn’s experi-
ments (1858) a thin wrought-iron cylindrical (circular) tube
will not collapse until the excess of external over internal
pressure is



COLLAPSE OF TUBES. 539

2(in 1bs. per sq. in.) = 9672000 % . . (1) . . (oot homog.)
(t. I, and d must all be expressed in the same linear unit.)
Here ¢ = thickness of the wall of the tube, & its diameter, and
lits length ; the ends being understood to be so supported as
to preclude a local collapse.

ExamprLe.—With ! =10 ft. =120 inches,d = 4 in., and ¢ =
& inch, we have

p = 9672000 [% + (120 X 4)] = 901.5 Ibs. per sq. inch.

For safety, 4 of this, viz. 40 lbs. per sq. inch, should not be
exceeded ; e.g., with 14.7 lbs. internal and 54.7 lbs. external.
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CHAPTER 1II.

HYDROSTATICS (Continuedy—PRESSURE OF LIQUIDS IN TANKiL
AND RESERVOIRS.

428. Body of Liquid in Motion, but in Relative Equilibrium.—
By relative equilibrium it is meant that the particles are not
changing their relative positions, i.e., are not moving among
each other. On account of this relative equilibrium the fol-
lowing problems are placed in the present chapter, instead of
under the head of Hydrodynamics, where they strictly belong.
As relative equilibrium is an essential property of rigid bodies,
we may apply the equations of motion of rigid bodies to bodies
of liquid in relative equilibrium.

Case 1. AUl the particles moving in parallel right lines
with equal velocities ; at any given instant (i.e., a motion of
translation.)—If the common velocity is constant we have a
uniform translation, and all the forces acting on any one par-
ticle are balanced, as if it were not moving at all (according to
Newton’s Laws, § 54); hence the relations of internal pressure,
free surface, etc., are the same as if the liquid were at rest.
Thus, Fig. 471, if the liquid in the moving tank is at rest rel-

o  atively to the tank at a given instant, with

™ its free surface horizontal, and the motion

of the tank be one of translation with a uni-

form velocity, the liquid will remain in this

condition of relative rest, as the motion
proceeds.

But if the velocity of the tank is accelerated with a constant
acceleration = p (this symbol must not be confused with p
for pressure), the free surface will begin to oscillate, and finally
come to relative equilibrium at some angle & with the horizon-
tal, which is thus found, when the motion is horizontal. See
Fig. 472, in"which the position and value of a are the same,
whether the motion is uniformly accelerated from left to right

Fig. 471,
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or uniformly retarded from right to left. Let O be the lowest
point of the free surface, and Ob a
small prism of the liquid with its
axis horizontal, and of length =z;
nb is a vertical prism of length =
2, and extending from the extremity
of Ob to the free surface. The
pressure at both O and = is p, = 2 2
atmos. pres. Let the area of cross- Fio. 472,
section of both prisms be = dF.

Now since 0b is being accelerated in direction X (horizont.),
the difference between the forces on its two ends, i.e., its =X,
must = its mass X accel. (§ 109).

P BF — pdF = [@dF .y +glp. . . . (1)

(y = heaviness of liquid ; p, = press. at 4); and since the ver-
tical prism nd has no vertical acceleration, the =(vert. com-
pons.) for it must = 0.

o po@F — pdF — 2dF . y=’0. B )
From (1) and (2),

Wop=2y; n2=2 . ... 9
g
Hence On is a right line, and therefore
R
tan a, or —, =§. B €]

[Another, and perhaps more direct, method of deriving this
result is to consider free a small particle of the liquid lying in
the surface. The forces acting on this particle are two: the
first its weight = @& ; and the second the resultant action of
its immediate neighbor-particles. Now this latter force (point-
ing obliquely upward) must be normal to the free surface of
the liquid, and therefore must make the unknown angle a with
the vertical. Since the particle has at this instant a rectilinear
accelerated motion in a horizontal direction, the resultant of the
two forces mentioned must be horizontal and have a value =
mass X acceleration. That is, the diagonal formed on the two
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forces must be horizontal and have the value mentioned, =
(dG = g)p; while from the nature of the figure (let the stu-
dent make the diagram for himself) it must also = d @ tan a.

.'.thana:‘?.p?;or,tana:%. e Q.E.D.]

If the translation were wertical, and the acceleration upward
[i.e., if the vessel had a uniformly accelerated upward motion
or a uniformly retarded downward motion], the free surface
would be horizontal, but the pressure at a depth = 4 below the
surface instead of p = p, + Ay would be obtained as follows:
Considering free a small vertical prism of height = A2 with
upper base in the free surface, and putting =(vert. compons.)
= mass X acceleration, we have
dF _kdF.y —.

Pp—AF . p,— MF .y = P

.'.p=p,,+ley[:-g—_*g_17]. .' N

If the acceleration is downward (not the velocity necessarily)
we make p negative in (5). If the vessel falls freely, p == g
and .". p =p,, in all parts of the liquid.

Query : Suppose p downward and > g:

Case 1I. Uniform Rotation about a Vertical Awis.—If the
narrow vessel in Fig. 473, open at top and containing a liquid,
be kept rotating at a uniform angu-
lar velocity @ (see § 110) about a
vertical axis Z, the liquid after some
oscillations will be brought (by fric-
tion) to relative equilibrium (rotat-
ing about Z, as if rigid). Required
the form of the free surface (evi-
dently a surface of revolution) at
each point of which we know
P = Par

Let O be the intersection of the
axis Z with the surface, and » any point in the surface; b being
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a point vertically under » and in same horizontal plane as O.
Every point of the small right prism nb (of altitude =z and
sectional area d /") is describing a horizontal circle about 2, and
has therefore no vertiacl acceleration. Hence for this prism,
free, we have 2Z = 0; i.e,,

dF.py—dF.p.—zdF.y=0.. . . . (1)

Now the horizontal right prism Ob (call the direction O...5,
X)) is rotating uniformly about a vertical axis through one ex-
tremity, as if it were a rigid body. Hence the forces acting
on it must be equivalent to a single horizontal force, — &*Mp,
(8§122a,) coinciding in direction with X. [}/ = mass of prism
= its weight - g, and p = distance of its centre of gravity
from O; here p = § = § length of prism]. Hence the =X
of the forces acting on the prism Ob must = — &* w—(—;fy%z.
But the forces acting on the two ends of this prism are their
own X components, while the lateral pressures and the weights

of its particles have no X compons. ;

—@CdF . y

N BF py—dF . py= %

@
From (1) and (2) we have

= (w2 _ 2,
-— 29 -_— 2"& 9 o . . . . . (3)
where v = ax = linear velocity of the point » in its circular
path.

[As in Case I, we may obtain the same result by considering
a single surface-particle free, and would derive for the resultant
force acting upon it the value G tan a in a horizontal direc-
tion and intersecting the axis of rotation. DBut here a is dif-
ferent for particles at different distances from the axis. tan a
being the g—; of the curve On. As the particle is moving uni-
formly in a circle the resultant force must point toward the-
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centre of the circle, i.e., horizontally, and have a value E g,
where 2 is the radius of the circle [§ 74, eq. (5)];
thana:ﬁ(m). or tan a, =% _ m’-
g "~ g’

fdz:—fﬁw,or,z——— Q. E.D.

Hence any vertical section of the free surface through the
axis of rotation Z is a parabola, with its axis vertical and vertex
at O; i.e., the free surface is a paraboloid of revolution, with
Z as its axis. Since ax is the linear velocity » of the point
b in its circular path, z = “height due to velocity” » [§ 52].

- ExampLE.—If the vessel in Fig. 473 makes 100 revol. per
minute, required the ordinate z at a horizontal distance of # =
4 inches from the axis (ft.-1b.-sec. system). The angular veloc-
ity @ = [27 100 =- 60] radians per sec. [N. B.—A radion =
the angular space of which 3.1415926 . . . make a half-revol.,
or angle of 180°]. With # = § ft. and g = 32.2,

2= G;Z” = (1%”)’(%)’641. = 0.188 ft. = 2} inches,

and the pressure at b (Fig. 471) is (now use inch, 1b., sec.)

=patey = UT+ 24 X .5 = 14781 Ibs. per sg. in.

Prof. Mendelejeff of Russia has recently utilized the fact an-
nounced as the result of this problem, for forming perfectly
true paraboloidal surfaces of plaster of Paris, to receive by
galvanic process a deposit of metal, and thus produce specula
of exact figure for reflecting telescopes. The vessel contain-
ing the liquid plaster is kept rotating about a vertical axis
at the proper uniform speed, and the plaster assumes the de-
sired shape before solidifying. A fusible alloy, melted, may
also be placed in the vessel, instead of liquid plaster.
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Remarx.—If the vessel is quite full and closed on top, ex-
except at 0’ where it communicates
by a stationary pipe with a reser-
voir, Fig. 474, the free surface
cannot be formed, but the pres-
sure at any point in the water is
just the same during uniform rota-
tion, as if a free surface were formed
with vertex at O;

ie, Py =Pa+t (2, + 2)7' . (4’)

See tigure for 4,and z. (In subse-
quent paragraphs of this chapter
the liquid will be at rest.)

428a, Pressure on the Bottom of a Vessel containing Liquid at

Rest.—If the bottom of the vessel is plane and horizontal, the
intensity of pressure upon it is the same at all points, being

Fia. 475,

2 =pa+ hy (Figs. 475 and 476), and the pressures on the ele-
ments of the surface form a set of parallel (vertical) forces.
This is true even if the side of the vessel overhangs, Fig. 476,
the resultant fluid pressure on the bottom in both cases being

P=Fp—Fpo=Fhy. . . . . . (1)

(Atmospheric pressure is supposed to act under the bottom.)
It is further evident that if the bottom is a rigid homogeneous
plate and has no support at its edges, it may be supported at a
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single point (Fig. 477), which in this case (horizontal plate)
is its centre of gravity. This point is called
the Centre of Pressure, or the point of appli-
cation of the resultant of all the fluid pressures
acting on the plate. The present case is such
that these pressures reduce to a single result-
ant, but this is not always practicable.
% ExampLe—In Fig. 476 (cylindrical vessel
Fo. 477. containing water), given A =20 ft., /A, =
15 ft., », = 2 ft., 7, = 4 ft., required the pressure on the bot-
tom, the vertical tension in the cylindrical wall €4, and the
hoop tension (§ 426)at C. (Ft.,1b,,sec.) Press.on bottom =
Fhy = nr’hy = 716 X 20 X 62.5 = 62857 lbs.; while the
upward pull on 04 =

(nr, — rHhy = 7(16 — 4)15 X 62.5 = 35357 1bs.
If the vertical wall is ¢ = 4 inch thick at C this tension will
be borne by a ring-shaped cross-section of area = 277, (nearly)
= 2748 X {; = 30.17 sq. inches, giving (35357 <+ 30.17) =
about 1200 lbs. per sq. inch tensile stress (vertical).
The %oop tension at C is horizontal and is
P’ =1(p —pa) + t (see § 426), where p = p, X A,y ;

=48 x15x12 :; (625 = 1728) _ 3105 1he. per sq. in.

(using the inch and pound).

429, Centre of Pressure.—In subsequent work in this chapter,
since the atmosphere has access both to the free surface of
liquid and to the outside of the vessel walls, and p, would can-
cel out in finding the resultant fluid pressure on any elemen-
tary area ¢ of those walls, we shall write:

The resultant fluid pressure on any dF of the vessel wall s
normal to its surface and 78 AP = pdF = zydF, in which 2
is the vertical distance of the element below the free surface
of the liquid (i.e., z=the “head of water”). If the surface
pressed on is plane, these elementary pressures form a system
of parallel forces, and may be replaced by a single resultant
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(if the plate is rigid) which will equal their sum, and whose
point of application, called the Centre of Pressure, may be
located by the equations of § 22, put into calculus form.

If the surface is curved the elementary pressures form a sys
tem of forces in space, and hence (§ 38) cannot in general be
reduced to a single resultant, but to two, the point of applica-
tion of one of which is arbitrary (viz., the arbitrary origin,
§ 38).

Of course, the object of replacing a set of fluid pressures by
a single resultant is for convenience in examining the equi-
librium, or stability, of arigid body the forces acting on which
include these fluid pressures. As to their effect in distorting
the rigid body, the fluid pressures must be considered in their
true positions (see example in § 264), and cannot be replaced
by a resultant.

430. Resultant Liquid Pressure on a Plane Surface forming
Part of a Vessel Wall. Co-ordinates of the Centre of Pressure.—
Fig. 478. Let AB be a portion (of any shape) of a plane
surface at any angle with the
horizontal, sustaining liquid
pressure. Prolong the plane
of A B till it intersects the free
surface of the liquid. Take
this intersection as an axis Y,
O being any point on Y. The
axis X, 7 to Y, lies in the
given plane. Let a =angle
between the plane and the free
surface. Then « and y are the
co-ordinates of any elementary
area dF of the surface, referred to X and Y. 2z = the “head
of water,” below the free surface, of any d#. The pressures
are parallel.

The normal pressure on any dF = zyd F'; hence the sum of
these, = their resultant,

=P =yfedF=Fzy; . . . . . (1)
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in which z = the “ mean 2,” i.e., the z of the centre of gravity
G of the plane figure AB, and ¥ = total area of AB[Fz =
J2dF, fromeq. (4), § 23). y = heaviness of liquid (see § 409).

That is, the total liquid pressure on a plane figure is equal
to the weight of an imaginary prism of the liqguid having a
base = area of the given figure and an altitude = vertical
depth of the centre of gravity of the figure below the surface
of the liguid. For example, if the figure is a rectangle with
one base (length = ) in the surface, and lying in a vertical
plane,

P =bh.thy = ky.

Evidently, if the altitude be increased, P varies as its square.

From (1) it is evident that the total pressure does not de-
pend on the horizontal extent of the water in the reservoir.

Now let z, and y, denote the co-ordinates, in plane Y OX,
of the centre of pressure, C, or point of application of the re-
sultant pressure P, and apply the principle that the sum of
the moments of each of several parallel forces, about an axis
to them, is equal to the moment of their resultant about the
same axis [§ 22]. First taking OY as an axis of moments,
and then OX, we have

Pz, = ./; B(zde):v, and Py, = '/: B(zde)y. E)

But P = Fzy = Fu(sin a)y, aud the z of any dF =z sin a.
Hence eqgs. (2) become (after cancelling the constant, y sin a)
SPIE_ Ly gy = LY (g

= 5 .

Fae Fa Fz

z, =

in which Jy = the “mom. of inertia” of tke plane figure re-
ferred to Y (see § 85). [N. B.—The centre of pressure as
thus found is identical with the centre of oscillation (§ 117)
and the centre of percussion [§ 113] of a thin homogeneous
plate, referred to axes X and Y, Y being the axis of suspen-
sion.]

Evidently, if the plane figure is vertical @ = 90°, z = z for
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all dF%, and z = z. It is also noteworthy that the position
of the centre of pressure is independent of a.

Nore.—Since the pressures on the equal ¢#”s lying in any
horizontal strip of the plane figure form a set of equal parallel
forces equally spaced along the strip, and are therefore equiva-
lent to their sum applied in the middle of the strip, it follows
that for rectangles and triangles with horizontal bases, the
centre of pressure must lie on the straight line on which the
middles of all horizontal strips are situated.

431. Centre of Pressure of Rectangles and Triangles with Bases
Horizontal —Since all the d#”s of one horizontal strip have
the same 2, we may take the area of the strip X
for ¥ in the summation /2’d#. Hence for T o[ [T
the rectangle A B, Fig 479, we have from eq. | A !

(3), § 430, with A = bd, ;
& dz
i
- —- k k 3’ 2 , - < -- cemadp
b(la. h ) + K k h Fro. 47, °

while (see note, § 430) y. = 9.

When the upper base lies in the surface, h, = 0, and z, =
3%, = % of the altitude.

For a triangle with its base horizontal and vertex up, Fig.
480, the length % of a horizontal strip is variable and dF' =

wudx. From similar triangles v =

7 (z — A,); therefore

h, —
; ?:A‘ Bo= 7= = T = h,)[h FIh =R
dz But fz"(w h)dz —Ijh‘ i hl3.)
VEgre® = (R A — 4R
Fia. 40, = 115' (Il,, - kl)'(gkt + 2’1.]7,, + kl’);
3,": + 2"’1"” + kl’

Sw,=1. oh T F N )]
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Aiso, since the centre of pressure must lie on the line 4B join-
ing the vertex to the middle of base (see note, § 430), we easily
determine its position.

Evidently for A, = 0, i.e., when the vertex is in the surface,

o Yy @, = }h,. Similarly, for a triangle with
iopmennnd —iM Dase horizontal and vertew down, Fig. 481,
™ 7 o we find that
1 3A'42hh, A}
c’ {" z =g %+ i A )
t.. If the base is in the surface, A, = 0 and
"o, 481, (3) reduces to z, = }4,.

It is to be noticed that in the case of the triangle the value
of , is the same whatever be its shape, so long as 4, and 4,
remain unchanged and the base is horizontal. If the base is
not horizontal, we may easily, by one horizontal line, divide
the triangle into two triangles whose bases are horizontal and
whose combined areas make up the area of the first. The re-
sultant pressure on each of the component triangles is easily
found by the foregoing principles, as also its point of applica-
tion. The resultant of the two parallel forces so determined
will act at some point on the line joining the centres of pres-
sures of the component triangles, this point being easily found
by the method of moments, while the amount of this final re-
sultant pressure is the sum of its two components, since the
latter are parallel. An instance of this procedure will be
given in Example 3 of § 433. Similarly, the rectangle of Fig.
479 may be distorted into an oblique parallelogram with hori-
zontal bases without affecting the value of z,, nor the amount
of resultant pressure, so long as %, and A, remain unchanged.

432. Centre of Pressure of Circle—Fig. 482. It will lie on
the vertical diameter. Let » = radius. From eq. (3), § 413,

° s Y I,  IL+F% _ jmr'+ nra
- Fas s

/w
/ o>\- (See eq. (4), § 88, and also § 91.)

kL.cj .'.2,:5—{—;-.

8
Il
[

(OF

811,
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433, Examples.—It will be noticed that although the total
pressure on the plane figure depends for its value upon the
head, z, of the centre of gravity, its point of application is al-
ways lower than the centre of gravity.

Examrre 1.—If 6 ft. of a vertical sluice-gate, 4 ft. wide,
Fig. 483, is below the water-surface, the total
water pressure against it is (ft., 1b., sec.; eq. \
(1), § 430)

P="Fzy=6X4X3X 625 = 4500 Ibs,

~

B

and (so far as the pressures on the vertical °
posts on which the gate slides are concerned)
is equivalent to a single horizontal force of 7
that value applied at a distance x, = § of Fio. 488.
6 = 4 ft. below the surface (§ 431).

ExampLE 2.—To (begin to) lift the gate in Fig. 483, the
gate itself weighing 200 1lbs., and the coefficient of friction
between the gate and posts being /= 0.40 (abstract numb.) (see
§ 156), we must employ an upward vertical force at least

B et

= P’ = 200 4 0.40 X 4500 = 2000 1bs.

ExawmprE 3.—It is required to find the resultant hydro-
‘static pressure on the trapezoid in Fig. 483a with the dimen-
sions there given and its bases horizontal ; also its point of ap-

plication, i.e., the centre of pressure of
- the plane figure in the position there
A 8 ' ¢ oshown. From symmetry the C. of P. will
' be in the middle vertical of the figure,
§ as also that of the rectangle B CF'E, and
that of the two triangles A B and
AD=10" CDF taken together (conceived to be
EF- &8’ o, 4650, shifted horizontally so that CZ and

’ BE coincide on the middle vertical,
thus forming a single triangle of 5 ft. base, and having the
same total pressure and C. of P. as the two actual triangles
taken together). Let /?, = the total pressure, and «, refer to
the C. of P., for the rectangle; P, and z,", for the 5 ft. tri-

o
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angle; A, =4 ft. and A, = 10 ft. being the same for both.
Then from eq. (1), § 430, we have (with the ft., Ib., and sec.)

P, =30 X Ty =210y; and P, =% X 6 X 5 X 6y = 90y;
while from egs. (1) and (3) of § 431 we have also (respectively)-

,_ 2 1000—64 2 936
T3°7100—16 ~ 3 8%

pr—1 484804100 298
°cT 9 8+ 10 T2 x18

z, = 7.438 feet;

= 6.333 feet.

The total pressure on the trapezoid, being the resultant of
P, and P,, has an amount = P, 4 P, (since they are parallel),
and has a lever-arm x, about the axis O Y to be found by the
principle of moments, as follows:

o — Pa/+ Pa’ _ (210 X 7438 490 X 6.33)y
Ay @10+ 90)y

= 7.09 ft.

The total hydrostatic pressure on the trapezoid is (for fresh
water)
P =P, + P, =[210 4 90] 62.5 = 18750 Ibs.

ExampLE 4.—Required the horizontal force 7', Fig. 484, to
be applied at &V (with a leverage of @’ = 30 inches about the
fulerum M ') necessary to (begin
to) lift the circular disk AB of
radius » =10 in., covering an
opening of equal sizee. NMARB
is a single rigid lever weighing
G’ =210 lbs. The centre of
gravity, G, of disk, being a ver-
tical distance z = O'G = 40
inches from the surface, is 50
inches (viz., the sum of OM =
k= 20" and MG = 30") from
( axis 0Y; ie., =250 inches.

Fia. 484. The centre of gravity of the
whole lever is a horizontal distance ¥’y = 12 inches, from M.
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For impending lifting we must have, for equilibrium of the
lever,

Pd=66V+P,—k); . . . . (1

where P = total water pressure on circular disk, and z, =
OC. From eq. (1), § 430, (using inch, 1b., and sec.,)

o = 625
P=Fzy= nrzy_nIOOxwxi-m-_454.61bs.

” 1 100

From §433, z, = 07):54-% 50+ 3- -56-=50.5in.

z
P = },[G’b’ + P, — k)]
= ?716 [210 X 12 4 454.6 x 30.5] = 546 Ibs.

434, Example of Flood-gate.—Fig. 485. Supposing the rigid
double gate 4D, 8 ft. in total width, to

have four hinges; two at ¢, and two at f, mermmeer— ot ,
1 ft. from top and bottom of water chan- =—=—==— L ¥
nel ; required the pressures upon them, —F 4
taking dimensions from the figure (ft., =} —

1b., sec.).

[l
l

|
|

|
|

Wat. press. = P = Fzy .
LAY 5 e
=172 X 44 X 62.5 = 20250 T

pounds, and its point of application (cent. of press.)is a dis-
tance z, =4 of 9’ =6’ from O (§ 431). Considering the
whole gate free and taking moments about ¢, we shall have

(press. at f) X 7' =20250 X 5; .. press. at /' = 14464 lbs.
(half on each hinge at ), and
.. press. at ¢ = P — press. at /' = 5875 Ibe.

(Lalf coming on each hinge).
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If the two gates do not form a single rigid body, and hence
are not in the same plane when closed, a wedge-like or toggle-
joint action is induced, producing much greater thrusts against
the hinges, and each of these thrusts is not 7 to the plane of
the corresponding gate. Sunch a case forms a good exercise
for the student.

435. 8tability of a Vertical Rectangular Wall against Water
Pressure on One Side.—Fig. 486. All dimensions are shown in
the figure, except /, which is the length
of wall 7 to paper. Supposing the wall
to be a single rigid block, its weight G
=bN'ly’ (¥ being its heaviness (§ 7),
and 7 its length). Given the water
depth = 4, required the proper width
b’ for stability. For proper security :
S First, the resultant of ¢’ and the

Fia. 486. water-pressure /> must fall within the
base BD (or, which amounts to the same thing), the moment
of G about D, the outer toe of the wall, must be numerically
greater than that of P; and

Secondly, P must be less than the sliding friction /G’ (see
§ 156) on the base BD.

Thirdly, the maximum pressure per unit of arca on the
base must not exceed a safe value (compare § 348).

4
'
e
1
[]
]
1
v

of T

NowP = Fzy=hl g’ = %Iz‘ly (y = heaviness of water);

and z, = $A.
Hence for stability against tipping about D,

Pk must be <@'3'; ie., J0'ly < J"Kly'; . Q)
while, as to sliding on the base,
P mustbe < fG'; ie., 3h'ly <fORl/. . . (2)

As for values of the coefficient of friction, £, on the base of
wall, Mr. Fanning quotes the following among others, from
various authorities :
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For point-dressed granite on dry clay, J =051
“ oo« “ “ ¢ moist clay, 0.33
({3 6« (19 D (13 grave], 0.58
“ “ o ¢« « gmooth concrete, 0.62
“ oo« “ “  « gimilar granite, 0.70

For dressed hard limestone on like limestone, 0.38

“ “ “ “ brickwork, 0.60

For common bricks on common bricks, 0.64

To satisfactorily investigate the third condition requires the
detail of the next paragraph.

436. Parallelopipedical Reservoir Walls, More Detailed and
Exact Solution.—If (1) in the last paragraph were an exact
equality, instead of an inequality,
the resultant 2 of P and &’
would pass through the corner
D, tipping would be impending, =
and the pressure per unit area at
D would be theoretically infinite. i

To avoid this we wish the wall ol N
to be wide enough that the re- ——3R
sultant 7, Fig. 487, may cut Fra. 481.

BD in such a point, £, as to cause the pressure per unit area,
Pm, at D to have a definite safe value (for the pressure p,, at
D, or quite near D, will evidently be greater than elsewhere
on BDj i.e., it is the maximum pressure to be found on BD).
This may be done by the principles of §§ 346 and 362.

First, assume that R cuts BD outside of the middle third,
i.e., that .

VE', =nb, > }b'(or n > });

where n denotes the ratio of the distance of £’ from the mid-
dle of the base to the whole width, &', of base. Then the pres-
sure (per unit area) on small equal elements of the base B.D
(see § 346) may be considered to vary as the ordinates of a
triangle M N D (the vertex M being within the distance B.D),
and £7D will = } M D i.e.,
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MD =33 — n).

The mean pressure per unit area, on M.D,
= ¢ +(1.MD),

and hence the maximum pressure (viz., at D), being double:
the mean, is

Pn=2@ = [3VIE—n)]; . . . . (0)

and if p,, is to equal C’(see §§ 201 and 203), a safe value for the
crushing resistance, per unit area, of the material, we shall
have

Vig — n)C' = 3@ = PAly,

n=§—§—67/—;. . . . . . (1)

To find &', knowing n, we put the Z(moms.) of the ¢’ and P
at £, about £’, = zero (for the only other forces acting on
the wall are the pressures of the foundation against it, along
MD; and since the resultant of these latter passes throngh £”,
the sum of their moments about £’ is already zero); i.e.,

G'nb’ — P}h=0; or, nb"Aly'= }h .30y ;

o B — IW
.b_k”‘/W. P )}

Having ob ained &', we must also ascertain if P is < fG, the
friction ; i.e.,if Pis < f4'A'ly’. If not,d’ must be still further:
increased. (Or, graphically, the resultant of ¢’ and / must
not make an angle > ¢, the angle of friction, with the ver-
tical.

If n, computed from (1), should prove to be < }, our first
assumption is wrong, and we therefore assume n < }, and pro-
ceed thus:

Secondly, n being < } (see §§ 346 and 362), we have a
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trapezoid of pressures, instead of a triangle, on BD. Let the
pressure per unit area at D be p,, (the maximum on base).
The whole base now receives pressure, the mean pressure (per
unit area) being = G + [5’7]; and therefore, from § 362,
Case I, we have

GI
p- = [6n + 1] b—,-l—; e o o o e (Oa)
and since, here, ' = b’A'ly’, we may write

P = (6n+ DAY

For safety as to crushing resistance we put

14
6(n + 1)h'y’ = C’; whence n = :—; Iz’iy’ - l:l. . (1a)

Having found n from eq. (1a), we determine the proper
width of base &’ from eq. (2), in case the assumption n < } is
verified.

ExampLe.—In Fig. 486, let A’ =12 ft., A = 10 ft., while
the masonry weighs (y’ =) 150 1bs. per cub. ft. Supposing
it desirable to bring no greater compressive stress than 100 lbs.
per sq. inch (= 14400 lbs. per sq. ft.) on the cement of the
joints, we put C' 14400, using the ft.-lb.-sec. system of units.

Assuming n > }, we use eq. (1), and obtain

_1_ 2 12x150 5
12’

2 3 14400

which is > }; hence the assumption is confirmed, also the
propriety of using eq. (1) rather than (1a).
Passing to eq. (2), we have

L 625 X 10 _

But, as regards frictional stability, we find that, with /= 0.30,
a low value, and & = 3.7 ft. (ft., 1b,, sec.),
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P Wy 100 X 62.5
FGF VRl T 203X 37X 12 X 150

which is greater than unity, showing the friction to be insuf-
ticient to prevent sliding (with /= 0.30); a greater width
must therefore be chosen, for frictional stability.

If we make n = }, i.e., make 22 cut the base at the outer
-edge of middle third (§ 362), we have, from eq. (2),

625)(10
= = 5.8 ¢

and the pressure at D is now of course well within the safe
limit ; while as regards friction we find

P = fG' = 0.92, < unity,

and therefore the wall is safe in this respect also.

With a width of base = 3.7 feet first obtained, the portion
MD, Fig. 487, of the base which receives pressure [according
to Navier’s theory (§ 346)] would be only 0.92 feet in length,
or about one sixth of the base, the portion BM tending to
open, and perhaps actually suffering tension, if capable (i.e., if
cemented to a rock foundation), in which case these tensions
should properly be taken into account, as with beams (§ 295),
thus modifying the results.

It has been considered safe by some designers of high
masonry dams, to neglect these possible tensile resistances, as
has just been done in deriving &’ = 3.7 feet; but others, in
view of the more or less uncertain and speculative character of
Navier’s theory, when applied to the very wide bases of such
structures, prefer, in using the theory (as the best available),
to keep the resultant pressure within the middle third at the
base (and also at all horizontal beds above the base), and thus
avoid the chances of tensile stresses.

This latter plan is supported by Messrs. Church and Fteley,
as engineers of the proposed Quaker Bridge Dam in connec-
tion with the New Croton Aqueduct of New York City, in
their report of 1887. See § 438.



RESERVOIR WALLS. 559

437. Wall of Trapezoidal Profile. =~ Water-face Vertical.—
Economy of material is favored by using a trapezoidal profile,,
Fig. 488. With this form the A<-dl- >
stability may be investigated in ]
a corresponding manner. The
portion of wall above each
horizontal bed should be ex-
amined similarly. The weight
G’ acts through the centre of
gravity of the whole mass.

Detail—Let Fig. 488 show
the vertical cross-section of a R -7
trapezoidal wall, with mnotation - 0 0~ T TIUN
for dimensions as indicated ; the Fro. 488.
portion considered having a length =/, 7 to the paper. Let
y = heaviness of water, y’ that of the masonry (assumed homo-
geneous), with » as in § 436.

Fora triangle of pressure, MD, on the base, i.e., withn > },
or resultant falling outside the middle third (neglecting pos-
sibility of tensile stresses on left of J/), if the intensity of
pressure p,, at D is to = €’ (§ 203), we put, as in § 436,

L‘ﬂ

1
|
T

Uty
Il

L]

it

i
=  TETT

Vi —n]C' = ﬁG", ie, =& .30 + 0"y,
whence

1 My v gy

For a trapezoid of pressure, i.e. with n < }, or the resultant
of P and ( falling within the middle third, we have, as be-
fore (§ 362, Case I),

Pmyor O/y= (6n+4-1) I%;
whence

11 C%1 . 1 20’y
= --] - —_— s 1.CG. = — —.__—.—-1 . l ¢
Tl 1]""’” 6LAY T+ ] (12)
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From the geometry of the figure, having joined the middles
of the two bases, we have

(§ 26, Prob. 6), and, by similar triangles, OV : XV :: g0 : ¥/,
whence

1 ] (bl + 2bll)(bl

— b”) ,
6 b/+b// +nb" (a)

OE,=0V+TVE, =

The lines of action of ¢’ and P meet at Z, and their result-
ant cuts the base in some point £’. The sum of their moments
about %’ should be zero, i.e., P.}h = G'. OL"; that is, (see
eq. (a) above, and eq. (1), § 430,)

ity =wyye+o0 5 CEEIE= Loy ]

i.e., cancelling,
Ry=3% Iz’y’[(b’ + 20") — &) + 6nb'(Y' 4~ b")]. (@)

Hence we have two equations for finding two unknowns
viz.: (1)'and (2)’ when » > }; and (1a)’ and (2)" when n < }.

For dams of small height (less than 40 ft., say), if we im-
mediately put » = }, thus restricting the resultant pressure to
the edge of middle third, and solve (2)' for &', 5" being as-
sumed of some proper value for a coping, foot-walk, or road-
way, while 2" may be taken enough greater than A to provide
against the greatest height of waves, from 2.5 to 6 ft., the
value of p,, at D will probably be < C’. In any case, for a
value of n =, or <, } we put p,, for C’in equation (1a)’ and
solve for p,,, to determine if it is no greater than C".

Mr. Fanning recommends the following values for ¢’ (¢n lbs.
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per &. fool) with coursed rubble masonry laid in strong mor-
tar:

For Limestone. Sandstone.  Granite. Brick.
C = 50,000 50,000 60,000 35,000

the masonry in 132 154 120

Av. heaviness of
152
Ibs. per cub, ft.

As to frictional resistance, P must be < fG'; i.e.,
Ry < fRy'3® +0"). . . . . . (8

If the base is cemented to a rock jfoundation with good
material and workmanship throughout, Messrs. Church and
Fteley (see § 436) consider that the wall may be treated as
amply safe against sliding on the base (or any horizontal bed),
provided the other two conditions of safety are already satis-
fied.

438, Triangular Wall with Vertical Water-face.—Making
4" = 0 in the preceding article, the trapezoid becomes a right
triangle, and the equations reduce to the following :

2h'y’

p..=3—_Tnforn>}, N )

and
Pa=%ty6n4+1]forn<} . . . (la)”

{Pw Dot to exceed C’ in any case); while to determine the

breadth of base, %, after n is computed [or assumed, for small
height of wall], we have from eq. (2), (for n < $,)

Ry ="y'6n+1}. . . . . (%)
Also, for frictional stability,

$A4'ly must be < $/A%%/ . . . . . (3)
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439. High Masonry Dams.—Although the principle of the
arch may be utilized for vertical stone dikes of small height
(30 to 50 feet) and small span, for
L Z Z greatell' fheights and. spans the

e —— 7 ; ormula for hoop tension, § 4?6 (or
o rather, here, “ hoop compression”),
/7 on the vertical radial joints of the
horizontal arch rings, Fig. 489, calls
for so great a radial thickness of
joint in the lower courses, that
" straight dikes (or “gravity dams”)
are usually built instead, even
where firm rock abutments are available laterally.

For example, at a depth of 100 feet, where the hydrostatic
pressure is Ay = 100 X 62.5 = 6250 lbs. per &q. ft., if we as-
sume for the voussoirs a (radial, horizontal) thickness = 4 ft.,
with a (horizontal) radius of curvature » =100 feet, we shall
find a compression between their vertical radial faces of (ft.,
Ib,, sec.)

P = e t—p a) — 100 16250 = 156250 1bs. per sq. ft.,

v
IMIIl

Fio. 489,

or 1085 1bs. per sq. inch ; far too great for safety, even if there
were no danger of collapse, the dike being short. If now the
thickness is increased, in order to distribute the pressure over
a greater surface, we are met by the fact that the formula for
“ hoop compression’ is no longer strictly applicable, the law of
distribution of pressure becoming very uncertain; and even
supposing a uniform distribution over the joint, the thickness
demanded for proper safety against crushing is greater than
for a straight dam (“ gravity dam’’) at a very moderate depth
below the water surface, unless the radius of curvature of arch
can be made small. But the smaller the radius the more does
the dam encroach on the storage capacity of the reservoir, while
in no case, of course, can it be made smaller than half the span.

Another point is, that as masonry is not destitute of elas-
ticity, the longer the span the more unlikely is it that the
parts of the arch will “cldse up” properly, and develop the
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abutment reactions when the water is first admitted to the
reservoir; which should occur if it is to act as an arch instead
of by gravity resistance.

For these reasons the engineers of the proposed Quaker
Bridge Dam reported unfavorably to the plan of a curved de-
sign for that structure, and recommended that a straight dam
be built. See reference in § 436. According to their designs
this dam is to be 258 feet in height (which exceeds by about 90
feet the height of any dam previously built), about 1400 feet
in length at the top, and 216 feet in width at the lowest
point of base, joining the bed-rock.

More recently, however (1888), a board of experts, specially
appointed for the purpose, having examined a number of dif-
ferent plans, have reported favorably to the adoption of a
curved form for the dam, as offering greater resistance under
extraordinary circumstances (impact of ice-floes, earthquakes,
etc.), on account of its arched form (though resisting by
gravity action under usual conditions) than a straight struc-
ture ; and also as more pleasing in appearance.

Fig. 490 shows the profile of a straight high masonry dam
as designed at the present day. Assuming a width ¥ = from
6 to 22 feet at the top, and a sufficient A"’ (see figure) to ex-
ceed the maximum height of waves, the up-stream outline
A CM is made nearly vertical and perhaps somewhat concave,
while the down-stream profile BDXN, by computation or
graphical trial, or both, is so formed that when the reservoir is
full the resultant 22, of the weight Frsg
@ of the portion ABCD of ma- 5%
sonry above each horizontal bed, as =
CD, and the hydrostatic pressure P
on the corresponding up-stream face
AQC, shall cut the bed CD in such a
point £’ as not to cause too great
compression p,, at the outer edge D
(not over 85 1bs. per sq. inch accord-
ing to M. Krantz in “ Reservoir Fia. 490,

‘Walls”). p,, being computed by one of the equations [(0) and
(0c) of § 436]
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For E’ outside the middle third } 20 (1)
and neglecting tension ey D .l($)—n —a
For %" inside middle third } . 7. (6’2 z‘_il)f, (1a)™"

where ! = length of wall 7 to paper, usually taken = one foot,
or one inch, according to the unit of length adopted; for =,
see § 436.

Nor, when the reservoir is empty and the water pressure
lacking, must the weight G resting on each bed, as CD, cut
the bed in a point £ so near the edge C as to produce exces-
sive pressure there (computed as above). The figure shows
the general form of profile resulting from these conditions.
The masonry should be of such a character, by irregular bond-
ing in every direction, as to make the wall if possible a mono-
lith. For more detail see next paragraph.

440. Quaker Bridge Dam (on the New Croton Aqueduct).—
Attempts, by strict analysis, to determine the equation of the
curve BN, AM being assumed straight, so as to bring the
point £’ at the outer edge of the middle third of its joint, or
to make the pressure at D) constant below a definite joint, have
failed, up to the present time; but approximate and tentative
methods are in use which serve all practical purposes. As an
illustration the method set forth in the report on the Quaker
Bridge Dam will be briefly outlined ; thus method confines E'
to tﬁe middle third.

The width A8 = " is taken = 22’ for aroadway, and A" =
7 ft. The profile is made a vertical rectangle from A down
to a depth of 33 ft. below the water surface (reservoir full).
Combining the weight of this rectangle of masonry with the
corresponding water pressure (for a length of wall = one foot),
we find the resultant pressure comes a little within the outer
edge of the middle third of the base of the rectangle, while
Pm i8 of course small.

The rectangular form of profile might be continued below
this horizontal joint, as far as complying with the middle
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third requirement, and the limitation of pressure-intensity, are
concerned ; but, not to make the widening of the joints too
abrupt in a lower position where it would be absolutely re-
quired, a beginning is made at the joint just mentioned by
forming a trapezoid between it and a joint 11 ft. farther down,
making the lower base of the latter of some trial width, which
can be altered when the results to which it gives rise become
evident. Having computed the weight of this trapezoid and
constructed its line of action through the centre of gravity of
the trapezoid, the value of the resultant & of this weight and
that of the rectangle is found (by principle of moments or by
an equilibrium polygon) in amount and position, and combined
with the water pressure of the corresponding 44 ft. of water to
form the force R, whose point of intersection with the new
joint or bed (lower base of trapezoid) is noted and the value of
Pa computed. These should both be somewhat nearer their
limits than in the preceding joint. If not, a different width
ghould be chosen, and changed again, if necessary, until satis-
factory. Similarly, another layer, 11 ft. in height and of
trapezoidal form, is added below and treated in the same way ;
and so on until in the joint at a depth of 66 ft. from the
water surface a width is found where the point £ is very
close upon its limiting position, while p,, is quite a little under
the limit set for the upper joints of the dam, 8 tons per square
foot. For the next three 11 ft. trapezoidal layers the chief
governing element is the middle-third requirement, £’ being
kept quite close to the limit, while the increase of p,, to 7.95
tons per sq. ft. is unobjectionable; also, we begin to move
the left-hand edge to the left of the vertical, so that when the
reservoir is empty the point £’ shall not be too near the up-
stream edge C.

Down to a depth of about 200 ft. the value of p,, is allowed
to increase to 10.48 tons per sq. ft., while the position of £’
gradually retreats from the edge of its limit. Beyond 200 ft.
depth, to prevent a rapid increase of width and consequent
extreme flattening of the dowm-stream curve, p,, is allowed
to mount rapidly to 16.63 tons per sq. ft. (=231 lbs. per
8q. in.), which value it reaches at the point V of the base of
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the dam, which has a width = 216 ft., and is 258 feet below
the water surface when the reservoir is full.

The heaviness of the masonry is taken as ' = 156.25 lbs.
per cubic foot, just § of y = 62.5 lbs. per cub. foot, the heavi-
ness taken for water.

‘When the reservoir s empty, we have the weight G of the
superincumbent mass resting on any bed CD, and applied
through the point £ ; the pressure per unit area at ¢ can
then be computed by eq. (1a)"”’, § 439, n being the quotient of
(3CD — CE") = UD for this purpose. In the present case
we find £ to be within middle third at all joints, and the
pressures at C to be under the limit.

For further details the reader is referred to the report itself
(reprinted in FEngineering News, January, 1888, p. 20). The
graphic results were checked by computation, Wegmann’s
method, applied to each trapezoid in turn.

441. Earthwork Dam, of Trapezoidal S8ection.—Fig. 491. Itis
required to find the conditions of sta-
bility of the straight earthwork dam
ABDE, whose length =1 L to
Ppaper, as regards sliding horizontally
on the plane AZ’; i.c., its frictional
stability. With the dimensions of
the figure, y and »’ being the heavi-

Fro. 491. nesses of the water and earth respec-
tively (see § 7), we bave

Weight of dam = @, = vol. X y’' = lA,[b+ #(a, + )]y’ (1)
Resultant water press. = P=Fzy = 04 X I X thy. . (2)
Horiz. comp. of P=H = Psin a

=[0A sin alghly =44%. . . . (3)

From (8) it is evident that the horizontal component of 2 is
just the same, viz., = Al . $Ay, as the water pressure would be
on a vertical rectangle equal to the vertical projection of 0A
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and with its centre of gravity at the same cepth (32). Com-
pare §416. Also,

Vert. comp. of P= V=P cos «
= [OA4 cos al§hly = §ably, . . . (4

and is the same as the water pressure on the horizontal projec-
‘tion of OA if placed at a depth = 0'G = 3A.

For stability against sliding, the horizontal component of P
must be less than the friction due to the total vertical pressure
on the plane A £ viz.,, G, + V'; hence if f is the coefficient of
friction on A £, we musthave 2 < f [@, + V], i.e. (see above),

$ly must be < f] 15 +1(e, + )y +dally |. . ()

However, if the water leak under the dam on the surface 4 Z|
80 as to exert an upward hydrostatic pressure

V' =[a,+ b+ cJlhy,
(to make an extreme supposition,) the friction will be only
=f1G.+ V-7V,
and (5) will be replaced by
H<flG+V-V7 . ... . (6

Experiment shows (Weisbach) that with /=0.33 computa-
tions made from (6) (treated as a bare equality) give satisfactory
results.

ExampLe—(Ft., Ib,, sec.) With /= 0.33,4A =20 ft., A, =
22 ft., a = 24 ft., @, = 26.4 ft., and ¢ = 30 ft., we have, mak-
ing (6) an equality, with y’' = 2y,

iy =7 [ yh(o +2F) + ety — @, + 1+ oy |5

o $(400)=}[22(5 4 28.2)2 + § (24 X 20) —(26.4+ b+ 30)20];
whence, solving for &, the width of top, & = 10.3 feet.
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442. Liquid Pressure on Both Sides of a Gate or Rigid Plate.—
The sluice-gate 4 B, for example, Fig. 492, receives a pressure,

A P, , from the *“head-water” M, and
el [ - £ “an opposing pressure P, from the
=g _"'_ L “tail-water” V. Since these two
i | =—_+ horizontal forces are not in the same

—_ == line, though parallel, their resultant
A —— R, which = P, — P,, acts horizon--
——tallyin the same plane, but at a dis-

Fro. 492 tance below O, = u, which we may
find by placing the moment of /2 about 0,, equal to the alge-
braic sum of those of 72, and P, about O,.

. Ru=Px/ — P/ +4). . . . . @)
S [P w —_ ,((Do" + h)]
o | P 1P, O )

C, and C, are the respective centres of pressure of the surfaces
0,B and 0,B, and » = distance of %2 from O,, while A = dif-
ference of level between head and tail waters. If the surfaces
O,B and O,B are both rectangular,

z, =4k, and o/ = 4§,

ExampLE.—Let the dimensions be as in Fig. 493, both sur-

1A faces under pressure being rect-
ol __. ... angularand 8 ft. wide. Then (ft.,
FT==lo, Tut ¥ Ib., sec.) R = P, — P,, or (§ 430)

R=[12X8X 6—8X8X4]62.5

= 20000 1bs, = 10 tons;

” while from ex. (2)

_[12X8X6x8—8X8X 491625 _
20000

That is, w = 6.93 feet, which locates C. Hence the pressure
of the gate upon its hinges or other support is the same (aside
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from its own weight), provided it is rigid, as if the single
horizontal force /2 = 10 tons acted at the point C, 2.93 ft. be-
low the level of the tail-water surface.

443. If the plate, or gate, is entirely below the tail-water
surface, the resultant pressure is applied in the centre of gravity
of the plate.—Proof as follows: Conceive the surface to be
divided into a great number of small equal areas, each = dF’;
then, the head of water of any d# being =, on the head-
water side, and = z, on the tail-water side, the resultant pres-
sure on the dF is ydFlo, — «,) =yAhdF, in which % is the
difference of level between head and tail water. That is, the
resultant pressures on the equal d/”s are equal, and hence
form a system of equal parallel forces distributed over the plate
in the same manner as the weights of the corresponding por-
tions of the plate; therefore their single resultant acts throngh
the centre of gravity of the plate; Q. E. D. This single re-
sultant = [yhdF = yhfdF = Fhy.

ExampLe.—Fig. 494. The resultant pressure on a circular
disk ab of radius = 8 inches, (in
the vertical partition OK) which
has its centre of gravity 3 ft.
below the tail-water surface, with
h = 2 ft., is (ft., 1b., sec.)

R =Fhy =nrhy

. 625
=78 X 24X 1798 = 174.61bs,,
and is applied through the centre =
of grawity of the circle. Ewi-
dently R s the same for any
depth below the tailwater surface, so long as h = 2ft. [Let
the student find a graphic proof of this statement.]

444. Liquid Pressure on Curved Surfaces.—If the rigid surface
is curved, the pressures on the individual 4/7s, or elements of
area, do not form a system of parallel forces, and the single re-
sultant (if one is obtainable) is not equal to their sum. In
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general, the system is not equivalent to a single force, but can
always be reduced to two forces (§ 38) the point of application
of one of which is arbitrary (the arbitrary origin of § 38) and
its amount = ¥(ZX) + (2 Y ) + (2Z).

A single Example will be given ; that of a thin rigid shell
having the shape of the curved surface of a right cone, Fig.
495, its altitude being 4 and radius of base =7. It hasno
bottom, is placed on a smooth horizontal table, vertex up, and
is filled with water through a small hole in the apex O, which is
left open (to admit atmospheric
pressure). What load, besides its
own weight ', must be placed
upon it to prevent the water from
lifting it and escaping under the
edge A? The pressure on each
——— (1 of the inner curved surface is
77 ayd F and is normal to the surface.

Its vertical compon. is zyd F'sin a,
and horizontal compon. = zydF cos a. The dF’s have all
the same a, but different z’s (or heads of water). The lifting
tendency of the water on the thin shell is due to the vertical
components forming a system of || forces, while the horizon-
tal components, radiating symmetrically from the axis of the
cone, neutralize each other. Hence the resultant lifting force
is

V = S(vert. comps.) = y sin a f2dF = y sin a Fz; (1)

where F = total area of curved surface, and z = the “head of

water” of its centre of gravity. Eq. (1) may also be written

thus: _
V:yﬂz;.......(%

in which #, = F'sin @ = area of the circular base = area of
the projection of the curved surface upon a planme 7 to the
vertical, i.e., upon a horizontal plane. Hence we may write

V=3%yarh, . . . . . . . (3

since z = A, being the z of the centre of gravity of the curved
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surface and not that of the base. y = heaviness of water. If
G’ = weight of the shell and is < V| an additional load of
V — @' will beneeded to prevent the lifting. If the shell has
a bottom of weight = G, forming a base for the cone and
rigidly attached to it, we find that the vertical forces acting on
the whole rigid body, base and all, are: ¥V upward; G’ and
G downward; and the liquid pressure on the base, viz.,
V' = nr*hy (§ 428a) also downward. Hence the resultant
vertical force to be counteracted by the table is downward, and

=G+ 6"+ V'— V, which = ¢'+ @" 4 }7r'hy ; (4)

1.e., the total weight of the rigid vessel and the water in it, as
we know, of course, in advance.



CHAPTER IIL

EARTH PRESSURE AND RETAINING WALLS.

[Nore.—This chapter was outlined and written mainly by
Prof. C. L. Crandall, and is here incorporated with his permis-
sion. The theory of earth pressure is arranged from Bau-
meister.]

445, Angle of Repose.—Granular materials, like dry sand,
loose earth, soil, gravel, pease, shot, etc., on account of the
friction between the component grains, occupy an intermediate
position between liquids and large rigid bodies. When heaped
up, the side of the mass cannot be made to stand at an inclina-
tion with the horizontal greater than a definite angle called the
angle of natural slope,.or angle of repose, different for each
material ; so that if the side of the mass is to be retained per-
manently at some greater angle, a Retaining Wall (or « Revet-
ment Wall,” in military parlance) becomes necessary to sup-
port it. If the material is somewhat moist it may be made to
stand alone at an inclination grcater than that of the natural
slope, on account of the cohesion thus produced, but only as
long as the degree of moisture remains; while if much water
is present, it assumes the consistency of mud and may require
a much thicker wall, if it is to be supported laterally, than if
dry. ‘

In dealing with earth to be supported by a retaining wall,
we consider the former to have lost any original cohesion
which may have existed among its particles, or that it will
eventnally lose it through the action of the weather ; and hence
treat it as a granular material.

A few approximate values of the angle of natural slope are
573
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given below, being taken from Fanning, p. 345 ; see reference
on p. 538 of this work.

! flicient Ratio
MaTERIAL. otlge%gse. octolﬁrlguou. of Slope.
Horiz. to vert.

Drysand, fine.........cooovvnennnn. 28° .532 1.88 to 1
$C Y COBIBE......ovesnnsnsrnnans 80° b7 1.98 « 1
Damp clay......cooeveiieiiinniinnn. 45° 1.000 1.00 «“ 1
Wetclay.....ccveveeieneennniennnnns 15° .268 878 «“ 1
Claye{ gravel....coieiiiiiiiiniiiinns 45° 1.000 1.00 «“ 1
Shingle....cooveviiiviiiennnan... 42° .900 1.11 <« 1
Gravel.......oieeiiiinineinanennnn. 88° .81 1.28 ‘¢ 1
Firmloam.... ...cvvviinnvniennnn. 86° ST 1.88 «“ 1
Vegetablesoil.,.........ccoouvnennn . 35° .700 148 «“ 1
Peat... c.vviiiiiiiiiiiiiatiiiiineans 20° .864 2. «“ 1

The angle of repose, or natural slope, is also, evidently, the
angle of friction between two masses of the same granular
material.

446. Earth Pressure, and Wedge of Maximum Thrust.—Fig.
496. Let AB be a retaining wall, having a plane face 4B in
contact with a mass of earth 4 BD, both wall and earth being
of indefinite extent 7 to the paper.

Let A.D be the natural slope of the earth, making an angle g
with the vertical (8 is the complement of the angle of repose;
see preceding table). Since 458, making an angle a with
the vertical, is more nearly vertical than A, the retaining
wall is necessary, to keep the mass ABD in the position
shown. The profile ZCD may be of any form in this general
discussion. Suppose the wall to be on the point of giving
way ; then the following motions are impending :

1st. Sliding is impending between some portion A BC’A of
the mass of earth and the remainder C’A D, the surface of
rupture AC’ (C’ not shown in figure because not found yet,
but lying somewhere on the profile BCZD) being assumed
plane, and making some angle ¢’ (to be determined) with the
vertical. At this instant the resultant pressure V' of AC'D
on the plane AC’ of the mass ABC’ (a wedge) must make
an angle = B (= comp. of angle of friction) with AC’ on
the upper side.
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2d. A downward sliding of the mass A BC’ along the back
face AB of the wall. That is, the resultant pressure P’ of
the wall against the mass BA ('’ at this instant makes an angle

3- - /7\‘\
e
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6 (= complement of angle of friction between the earth and
wall) with the plane AB and on the upper side. The weight
of the wedge of earth BAC’ will be called ¢, and we desire
to find the pressure />’ against the wall.

Let BAC bea wedge (of the earth-mass), in which A ¢ makes
any angle ¢ with A B, and suppose ¢¢ to be on the point of
moving down and forcing out the wall; thus encountering
friction both on the plane 4 and the plane AB. Then the
forces acting on it are three, acting in known directions ; viz. :
G, its own weight, vertical ; %V, the resultant pressure of the
earth below it, making an angle g with AC on upper side;
and 2P, the resultant pressure of the wall, at angle 6 with 4B
(see Fig. 496 for positions of V and ). If now we express
the force P in terms of ¢ and other quantities, and find that
value ¢, of ¢, for which 2 is a maximum, we thereby deter-
mine the “ wedge of maximum thrust,” ABC'A ; while this
maximum thrust, 7/, is the force which the wall must be de-
signed to withstand. [If the wall is overturned, the earth
will sink with it until this part of its surface gradually as-
sumes the natural slope.]

Let G = weight of prism of base A B, and altitude = unity
7 to paper; then G = y X area ABC, where y = “ heavi-
ness” = wgt. per cub. unit, of earth. Now P, G, and N
balance ; therefore, in triangle abc, if ab and ac are drawn ||

t
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and = G and AV respectively, bc is = and || to P; and from
Trigonometry we have

_ o sn[B—g] |
P_Gsin[ﬂ_-l—6——¢j’ C e

in which & stands for a + 6, for brevity, being the angle
which P makes with the vertical. /V makes an angle = 8 — ¢
with the vertical.

The value, ¢, of ¢, which makes P a maximum is found

by placin ap = 0. From eq. (1), remembering that G is a
y € i q 8

function of ¢, and that 8 and J are constants, we have

dG
ap sin(8+38 - )| 7o sin (B—¢) ~ Geos (B - ¢)] +Gsin(B - 4)cos (B+3 - ¢)
s sin® [B+ 3 - ¢]

For P to be a maximum we must put

numerator of above =0. . . . . . (a)

To find a geometrical equivalent of %g, denote AC by L,

and draw AZ, making an angle =d¢ with AC. Now the
area ACI = Al X $3CE=(L + dL)}Ldyp = $Ld¢ . . .
(neglecting infinitesimal of 2d order). Now

G _ 41 . (a) becomes

d@ =y X area ACI X unity; .- Z_d’

sin (8 + 6 — @)y L*sin (B— ¢)— sin (8 + 6 — ¢) G cos (6— )

+ Gin (8 — ¢) cos (B + 6 — ¢) = 0;
i.e., G =

3y sin (B — ¢) sin (B+ 6 — &)
#in (B+ 6 — ¢) co8 (B — ) — cos (B+ 0 — @) sin (B — )
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when P is a maximum ; and hence, calling ¢’ and ¢’ and L’
the values of &, ¢, and L, for max. P, we have

, » 80 (8 —¢) sin (B4 6 — @) :
¢ =1L sin 6 e @
and therefore from (1) 2 max. itself is

Py B¢ (g

sin &

447. Geometric Interpretation and Construction.—If in .Fig.
496 we draw CF, making angle 6 with AD, C being any
point on the ground surface B.D, we have

ﬁv_:_LSin B—9)

sin &

Drop a perpendicular 74 from F to AC, and we shall have

FIl= (?F.sin(ﬂ+6_¢),=L.9in(ﬂ—¢)8in(ﬂ+6—-¢),

sin &

From this it follows that the weight of prism of base ACF
and unit height

=4yl . FE=3y SnB—sin(f+6—9)

gin &

When AC (as ¢ varies) assumes the position and value AC’,
bounding the prism of maximum thrust, Fig. 497, L becomes
= L', and ¢ = ¢'; and eq. (4) gives the weight of the prism
AC'F’. This weight is seen to be equal to that of the prism
(or wedge) of maximum thrust A BC’, by comparing eq. (4)
with eq. (2); that is, AC’ bisects the area ABC'F’, and
hence may be determined by fiwing such a point C’, on the
upper profile BD, as to make the triangular areca AC'F’
equal to the sectional area of the wedge BC’A; C'F' being
drawn at an angle = & with A.D.

This holds for any form of ground surface BD, or any
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values of the constants 8, a, or 6. O’ is best found graphic-
ally by trial, in dealing with
an irregular profile B.D.
Having found AC’, =
L', P’ can be found from

R

(8), or graphically as fol- P 1

lows: (Fig.497) With £ >, /7/{@ }\\’/////
as a centre and radius = ‘?"V'i//ﬂﬂﬁ[/ﬁ 4///4
C'F’, describe an arc cut- ,91‘7/7/7%_{{/{/_/{_/&//4 0 //:T\

ting AD in J',and join 7/
C'J’. The weight of prism Fia. 497.

with base C'J'F’ and unit height will = 2. For that prism
has a weight :

=3y . FT . O ; ot FT =FC = fﬂ‘gi(_:ig‘il;
bat FJ =FC = fli",(_ﬂ:ji),

sin &
and C'H' = L' sin (B — ¢);

weight of prism O'J'F = §yL’* i[';%;—‘p/l; =P.
(See eq. (3).]

448. Point of Application of the Resultant Earth Thrust.—
This thrust (called P’ throughout this chapter except in the
present paragraph)is now known in magnitude and direction,
but not in position ; i.e., we must still determine its line of
action, as follows:

Divide AB into a number of equal parts, ab, bc, cd, ete.;
see Fig. 498. Treat ab as a small retaining wall, and find the
magnitude £’ of the thrust against it by § 447; treat ac simi-
larly, thus finding the thrust, 7", against it ; then ad, ae, etc.,
the thrusts against them being found to be ', P'¥, etc.; and
so on. Now the pressure

P’ on ab is applied nearly at middle of ab,
&«

P — P « [{3 &« bc‘
P p « 43 13 “ cd,
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and so on. Erect perpendiculars at the middle points of ab,
be, cd, ete., equal respectively to P,
P’ — Py P" — P’ ete, and join the
ends of the perpendiculars. The per-
pendicular through the centre of gravity
of the area so formed (Fig. 498) will
give, on A DB, the required point of ap-
plication of the thrust or earth pressure
on AB, and this, with the direction and
Fio. 498. magnitude already found in § 447, will
completely determine the thrust against the wall .4 B.

449. Special Law of Loading.-—If the material to be retained
consists of loose stone, masses of masonry, buildings, or even
moving loads, as in the case of a wharf or roadway, each can
be replaced by the same weight of earth or other material
which will render the bank homogeneous, situated on the same
verticals, and the profile thus reduced can be treated by §§447
and 448.

Should the solid mass extend below the plane of rupture,
A (', and the plane of natural slope, it will become a retaining
wall for the material beyond, if strong enough to act as such
(limiting the profile ABCD of Fig. 496 to the front of the
mass, or to the front and line of rupture for maximum thrust
above it, if it does not reach the surface); if not strong enough,
or if it does not reach below the plane of natural slope, its
presence is better ignored, probably, except that the increased
weight must be considered.

The spandrel wall of an arch may present two of these
special cases; i.e., the profile may be enlarged to include a
moving load, while it may be limited at the back by the other
spandrel.

If the earth profile starts at the front edge of the top of
wall, instead of from the back as at B, Fig. 496, eq. (3) would
only apply to the portion behind A B prolonged, leaving the
part on the wall (top) to be treated as a part of the wall to aid
in resisting the thrust.

If the wall is stepped in from the footings, or foundation



RETAINING WALLS. 579

courses, probably the weak section will be just above them ; if
stepped at intervals up the back of the wall, the surface of separa-
tion between the wall and filling, if it is plane, will probably
pass through the first step and incline forward as much as pos-
sible without cutting the wall.

450. Straight Earth-profile—The general case can be simpli-
fied as follows (the earth-profile B being straight, at angle
= § with vertical, = DET’): Since the triangles A BC’ and

C’'AF' are equal, from § 447, and AC’ is common, therefore
BS = F'H (both being drawn 7] to AC’). Draw AE and
BM || to F'C’ (i.e, at angle & with AD), cutting DB, pro-
longed, in £. We have

DE_ _EA__ L OE_ ¥4
C'E EA—CF"’ BE EA-—BM

But C'F’' = BM (since BS= H'F");

therefore {)f = ?T;-;
C'E BE
which justifies the following construction for locating the de-
sired point €’ on BD, and thus finding AC” = L’ and the
angle ¢”: Describe a circle on ZD as a diameter, and draw

ie, DE. BE= C'E",
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BX 7 to BD, thus fixing X in the curve. With centre ¥
describe a circular arc through X, cutting BD in C’, required.

Having AC’ (i.e, L'), ¢’ is known; hence from eq. (3) we
obtain the earth thrust or pressure P’ or, with /" as centre
and radius = C'F”, describe arc C’J’; then the triangle C'#"J’
is the base of a prism of unity helght whose weight = P’ (as
in § 447).

Centre of Pressure.—Applying the method of § 448, Fig.
498, to this case, we find that the successive L’’s are propor-
tional to the depths ab, ac, ad, etc., and that the successive P’s
are proportional [see (3)] to the squares of the depths; hence
the area in Fig. 498 must be triangular in this case, and the
point of application of the resultant pressure on A5 is one
third of AB from A : just as with liquid pressure.

451, Resistance of Retaining Walls.—(Fig. 500.) Knowing
the height of the wall we can find its weight, = @&, , for an as-
sumed thickness, and unity width 7 to paper. The resultant
of @, ,acting through the centre of gravity of wall, and /7, the
thrust of the embankment, in its proper
line of action, should cut the base A V
within the middle third and make an
angle with the normal (to the base) less
than the angle of friction.

For the straight wall and straight
earth-profile of Fig. 499 and § 450, the
. 500 length L', = A C’, can be expressed in
terms of the (vertical) height, A, of wall, thus:

h

CO8

AB =

’

and I’ = AC' = AB. gin (€ — a) _ A sin (§ — a)

gin( {—¢) cosa sin({—¢)’

*. eq. (3) becomes
A sin'(f — @) sin’(C—a) _ Lt A.(5)

cos' @~ sin 6 sin'({ — @)

P =3y

[A representing the large fraction for brevity.]
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This equation will require, for a wall of rectangular section,
that the thickness, d, increase as 4, in order that its weight may
increase as A’ (i.e., a8 /') and that its resisting moment may
increase with the overturning moment.

By this equality of moments is meant that P'c = G};
where a and b are the respective lever-arms of the two forces
about the front edge of the middle third. (A4.B is the back of
the wall.) In other words, their resultant will pass through
this point.

The following table is computed on the basis just mentioned,
viz., that the resultant of P’ and G shall pass through the

Jront edge of the midde third.

The wall is vertical, i.e., « i8 = 0, and is of rectangular sec-
tion ; and we further suppose that the heaviness of the earth is
two thirds that of the masonry of the wall; & is the proper
safe thickness to be given to the wall on the basis spoken of, 4
being its altitude. Whether the wall is safe against sliding on
its base, and whether a safe compression per unit area is ex-
ceeded on the front edge of the base, are matters for separate
consideration. See Figs. 499 and 500, and the foregoing text,
for the meaning of all symbols employed. The above assump-
tion as to the relative densities of wall and earth is realized if
the wall is of first-quality masonry weighing 150 lbs. per cubic
foot, supporting earth of 100 lbs. per cubic foot. Note that
6 = a- 6; ie., 6 = 0 for this table.

a = 0; i.e., wall is vertical; also density of wall = § that of the earth.

L 1L 1ML
= = 90° =
P+ §28 §28

tan 8 ] ¢’ A d [ 4 A d [ A d
1.0 | 45° 22!»' 17 | .34A | 26° 18 | .22k | 45° 7| .88
1.5 | 563° || 28 .29 | 444 | 88° 26 | .804 | 56° 83 | 434
2.0 | 684° || 814° | .88 | .514 | 88° 88 | .86k ° 89 | .514
40 | 76° 88° .61 | .644 | 45° 54 | .50h | 76° 97 | .65h
Infinity| 90° 45° 1.00 | 8232 | 90° | 1.00 | .824 | 90° [ 1.00 | .82A

In Case I of table, since a =0, § =90° and { = 90°;
<. 6 =90° and hence C'F’ of Fig. 499 is 7 to AD, so that
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(since the area of AABC' = AAC'F') ¢' must = 3.
These values, in (5), give
P =3yk tan’ 38; ie, A=tan’3p. . . . (6)
In Case II, since { =90° a=0and =248, ... 6=4;
and (5) reduces to
.P,-T-'% h? sin’ (ﬂ ¢) i A= sin (ﬂ ¢’) . (7)

sin 8 cos’ ¢’ slnﬂ cos s @

In Case III, { = g and BD will be || to AD, D being at
\ 2 infinity. See Fig. 501. Through
’\\”"\L’ B draw Bl 7 to AD,and BF"
L/ \\\ making angle 6 with AD. (' is
= ? ~> now to be located on BD, so as
///k **Fto make (area of) AABC' =

‘ \\\%. (area of) AAC'F’ (according
Y to §447), the angle C'F" A being
) \ =06 =a+ 0; = 6, in this case,
and hence also = 8. Conceive
Fio. 501. B and F" to be joined.

\

Now AAC’'F'= pnABF" + ABF'F”.
But AABC’ = A BF'F" (equal bases and altitudes).

Hence A ABC' cannot = p AC'F’ unless C' is moved out
to infinity ; and then ¢’ becomes = B, and eq. (5) reduces to

=4yh'sin B; ie,Ad=sing . . . (8)

[Increasing o« from zero will decrease the thickness d'; i.e.,
inclining the wall inwards will decrease the required thickness,
but diminish the frictional stability at the base, unless the lat-
ter be ] to AB. The back of the wall is frequently inclined
outwards, making the section a trapezoid, to increase the fric-
tional stability at the base when necessary, as with timber
walls supporting water.]
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452. Practical Considerations. — An examination of the
values of A and 4 in the table of § 451 will show that in sup-
porting quicksand and many kinds of clay which are almost
fluid under the influence of water, it is important to know
what kind of drainage can be secured, for on that will depend
the thickness of the wall. With well compacted material free
from water-bearing strata, an assumed natural slope of 1§ to 1
(i.e., 1§ hor. to 1 vert.) will be safe; the actual pressure below
the effect of frost and surface water will be that due to a much
steeper slope on account of cokesion (neglected in this theory).

The thrust from freshly placed material can be reduced by
depositing it in layers sloping back from the wall. If it is not
so placed, however, the patural slope will seldom be flatter
than 14 to 1 unless reduced by water. In supporting material
which contains water-bearing strata sloping toward the wall
and overlain by strata which are liable to become semi-fluid
and slippery, the thrust may exceed that due to semi-fluid ma-
terial on account of the surcharge. If these strata are under
the wall and cannot be reached by the foundation, or if resist-
ance to sliding cannot be obtained from the material in front
by sheet-piling. no amount of masonry can give security.

Water at the back of the wall will, by freezing, cause the
material to exert an indefinitely great pressure, besides disinte-
grating the wall 1tself. If there is danger of its accumulation,
drainage should be provided by a layer of loose stone at the
back leading to * weep-holes” through the wall.

A friction-angle at the back of the wall equal to that of the
filling should always be realized by making the back rough by
steps, or projecting stones or bricks. Its effect on the required
thickness is too great to be economically ignored.

The resistance to slipping at the base can be increased, when
necessary, by inclining the foundation inwards; by stepping
or sloping the back of the wall so as to add to its effective
weight or incline the thrust more nearly to the vertical; by
sheet-piling in front of the foundation, thus gaining the resist-
ance offered by the piles to lateral motion ; by deeper founda-
tions, gaining the resistance of the earth in front of the wall.
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The coefficient of friction on the base ranges, according to
Trautwine, from 0.20 to 0.30 on wet clay;
“ b0to .66 “ dry earth;
“ .66to .75 “ sand or gravel;
“ .60 on a dry wooden platform; to .75 ona
wet one.

If the wall is partially submerged, the buoyant effort should
be subtracted from &, , the weight of wall.

453. Results of Experience.—(Trautwine.) In railroad prac-
tice, a vertical wall of rectangular section, sustaining sand,
gravel, or earth, level with the top [p. 682 of Civ. Eng. Pocket
Book] and loosely deposited, as when dumped from carts, cars,
ete., should have a thickness d, as follows:

If of cut stone, or of first-class large ranged rubble, in mortar. . ..d = .35%
“ good common scabbled mortar-rubble, or brick..............d =.40%
“ well scabbled dry rubble.................. Ceeereeeienenas = .50%

‘Where 4 includes the total height, or about 3 ft. of foundations.

() For the best masonry of its class ~ may be taken from
the top of the foundation in front.

(b)) A mixture of sand or earth, with a large proportion of
round boulders or.cobbles, will weigh more than the backing
assumed above ; requiring & to be increased from one eighth to
one sixth part.

(¢) The wall will be stronger by inclining the back inwards,
especially if of dry masonry, or if the backing is put in place
before the mortar has set.

(@) The back of the wall should be left rough to increase
friction.

(¢) Where deep freezing occurs, the back should slope out-
ward for 3 or 4 feet below the top and be left smooth.

(/) When a wall is too thin, it will generally fail by bulging
outward at about one third the height. The failure is usually
gradual and may take years.

(9) Counterforts, or buttresses at the back of the wall, usually
of rectangular section, may be regarded as a waste of ma-
sonry, although considerably used in Europe; the bond will
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seldom hold them to the wall. Buttresses in front add to the
strength, but are not common, on account of expense.

(k) Land-ties of iron or wood, tying the wall to anchors im-
bedded below the line of natural slope, are sometimes used to
increase stability. .

(¢) Walls with curved cross-sections are not recommended.

454. Conclusions of Mr. B. Baker.—(* Actual Lateral Pressure
of Earthwork.”) Experience has shown that d = 0.25A, with
batter of 1 to 2 inches per foot on face, is sufficient when
backing and foundation are both favorable ; also that under no
ordinary conditions of surcharge or heavy backing, with solid
foundation, is it necessary for & to be greater than 0.50A.

Mr. Baker’s own rule is to make d = 0.33% at the top of
the footings, with a face batter of 14 inches per foot, in ground
of average character; and, if any material is taken out to form
a face-panel, three fourths of it is put back in the form of a
pilaster. The object of the batter, and of the panel if used, is
to distribute the pressure better on the foundation. All the
walls of the ¢ District Railway” (London) were designed on
this basis, and there has not been a single instance of settle-
ment, of overturning, or of sliding forward.

455. Experiments with Models.—Accounts of experiments
with apparatus on a small scale, with sand, etc., may be found
in vol. Lxx1 of Proceedings of Institution of Civil Engineers,
London, England (p. 350); also in vol. m of the “ Annales des
Ponts et Chaussées” for 1885 (p. 788).



CHAPTER IV.
HYDROSTATICS (Continued—IMMERSION AND FLOTATION.

456. Rigid Body Immersed in a Liquid. Buoyant Effort.—If
any portion of a body of homogeneous liquid at rest be con-
ceived to become rigid without alteration of shape or bulk, it
would evidently still remain at rest ; i.e., its weight, applied at
its centre of gravity, would be balanced by the pressures, on its
bounding surfaces, of the contiguous portions of the liquid;
hence,

If a rigid body or solid is tmmersed in a liquid, both being
at rest, the resultant action upon it of the surrounding liquid
(or fluid) is a wvertical upward force called the “buoyant
effort”’ equal in amount to the weight of liquid displaced,
and acting through the centre of gravity of the wvolume (con-
sidered as homogeneous) of displacement (now occupied by the
solid). This point is called the centre of buoyancy, and is
sometimes spoken of as the centre of gravity of the displaced
water. If V' = the volume of displacement, and y = heavi-
ness of the liquid, then the

buoyant effort = V'y. . . . . . (1)

(By “ volume of displacement” is meant, of course, the volume
of liquid actually displaced when the body is immersed.)

If the weight ¢’ of the solid is not equal to the buoyant
effort, or if its centre of gravity does not lie in the same verti-
cal as the centre of buoyaney, the two forces form an unbal-
anced system and motion begins. But as a consequence of
this very motion the action of the liquid is modified in a man.
ner dependent on the shape and kind of motion of the body.

586
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Problems in this chapter are restricted to cases of rest, i.e.,
balanced forces.

Suppose G’ = V'y; then,

If the centre of gravity lies in the same vertical line as the
centre of buoyancy and underneath the latter, the equilibrium
is stable; i.e., after a slight angular disturbance the body re-
turns to its original position (after several oscillations); while
if above the latter, the equilibrium is unstable. If they coin-
cide, as when the solid is homogeneous (but not hollow), and
of the same heaviness (§ 7) as the liquid, the equilibrium is
indifferent, i.e., possible in any position of the body.

The following is interesting in this connection :

In an account of the new British submarine boat ¢ Nautilus,”
a writer in Chambers's Journal rerarked [1887]: “ At each
side of the vessel are four port-holes, into which fit eylinders
two feet in diameter. When these cylinders are projected
outwards, as they can be by suitable gearing, the displacement
of the boat is so much increased that the vessel rises to the
surface; but when the cylinders are withdrawn into their
sockets, it will sink.”

As another case in point, large water-tight canvas “air-bags”
have recently been used for raising sunken ships. They are
sunk in a collapsed state, attached by divers to the submerged
vessel, and then inflated with air from pumps above, which of
course largely augments their displacement while adding no
appreciable weight.

457. Examples of Immersion.—Fig. 502. At (a) is an ex-
ample of stable equi-
librium, the centre of
buoyancy B being above
the centre of gravity C,
and the buoyant effort
V'y = G’ = the weight
of the solid ; at (a"), con-
versely, we have un-
stable eqnilibrium, with
V'y still= G'. At (b) the buoyant effort V'y is > &', and

F1a. 502.)
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to preserve equilibrium the body is attached by a cord to the
bottom of the vessel. The tension in this cord is

S=Vy—&. . ... ..qQ

At (c) V'yis < &, and the cord must be attached to a
support above, and its tension is

S=6a=TVy. . . . . .. @

If in eq. (2) [(¢) in figure] we call S, the apparent weight of
the immersed body, and measure it by a spring- or beam-bal-
ance, we may say that

The apparent weight of a solid totally immersed in a liguid
equals its real weight diminished by that of the amount of
liguid displaced ; in other words, the loss of weight = the
weight of displaced liguid.

ExampLE 1.—How great a mass (not hollow) of cast-iron can
be supported in water by a wrought-iron ecylinder weighing
140 lbs., if the latter contains a vacuous space and displaces
3 cub. feet of water, both bodies being completely immersed $
[Ft., Ib., sec.]

The buoyant effort on the cylinder is

V'y =8 X 62.5 = 187.5 lbs,,

leaving a residue of 47.5 Ibs. upward force to buoy the cast-
iron, whose volume V'’ is unknown, while its heaviness (§ 7)
is ¥’ = 450 lbs. per cub. foot. The direct buoyant effort of
the water on the cast-iron is V"”y = [V" X 62.5] lbs,
and the problem requires that this force 4 47.5 1lbs. shall
= V"y" = the weight ¢"’ of the cast-iron;

V"X 6254475 = V" x 450 ;

. V" =0.12 cub. ft., while 0.12 X 450= 54 1bs. of cast-iron.
Ans.
ExampLE 2—Required the volume V', and heaviness y’,
of a homogeneous solid which weighs 6 lbhs. out of water and
4 1bs. when immersed (apparent weight) (ft., 1b., sec).
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From eq. (2),4=6 —V’ X 62.5; .. V’'=0.032 cub. feet;
oy =G + V' =6-0.032 =187.5 lbs. per cub. ft.,

and the ratio of y’ to y is 187.5 : 62.5 = 3.0 (abstract num-
ber); i.e., the substance of this solid is three times as dense,
or three times as heavy, as water. [The buoyant effort of the
air has been neglected in giving the true weight as 6 1bs.]

458. Specific Gravity. —By specific gravity is meant the ratio
of the heaviness of a given homogencous substance to that of
a standard homogeneous substance; in other words, the ratio
of the weight of a certain volume of the substance to the
weight of an equal volume of the standard substance. Dis-
tilled water at the temperature of maximum density (4° Centi-
grade) under a pressure of 147 lbs. per sq. inch is sometimes
taken as the standard substance, more frequently, however, at
62° Fahrenheit (16°.6 Centigrade). Water, then, being the
standard substance, the numerical example last given illustrates
a common method of determining experimentally the specific
gravity of a homogeneous solid substance, the value there ob-
tained being 8. The symbol o will be used to denote specific
gravity, which is evidently an abstract number. The standard
substance should always be mentioned, and its heaviness y ;
then the heaviness of a substance whose specific gravity is o is

Y=oy, . . . . ... Q

and the weight @’ of any volume V"’ of the substance may be
written
F=Vy=V0oy. . . ... (9

Evidently a knowledge of the value of j’ dispenses with the
use of o, though when the latter can be introduced into prob-
lems involving the buoyant effort of a liquid the criterion as
to whether a Aomogeneous solid will sink or rise, when im-
mersed in the standard liquid, is more easily applied, thus:
Being immersed, the volume ¥V’ of the body = that, V| of
displaced liquid. Hence,
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if @is> V'y,ie,if V'y' is > V'y,or o > 1, it sinks;
whileif @is< V'y, . . . . . .oro <1,itrises;

ie., according as the weight G’ is > or < than the buoyant
effort. '

Other methods of determining the specific gravity of solids,
liquids, and gases are given in works on Physics.

459. Equilibrium of Flotation.—In case the weight G’ of an
imwmersed solid is less than the buoyant effort ¥’y (where V' is
the volume of displacement, and y the heaviness of liquid) the
body rises to the surface, and after a series of oscillations comes
to rest in such a position, Fig. 503, that its centre of gravity C
and the centre of buoyancy B (the new B, belonging to the
new volume of displacement, which is limited above by the
horizontal plane of the free surface of the liquid) are in the
same vertical (called the axis of flotation, or line of support),
and that the volume of displacement has diminished to such a
new value V, that

Vy=¢. . . . . . . . (Q

In the figure, ¥V = vol. AN D, below the horizontal plane
AN, and the slightest motion of the body will change the form
of this volume, in general (whereas with
complete immersion the volume of dis-
placement remains constant). For stable
equilibrium it is not essential in every
case that C (centre of gravity of body)
should be below B (the centre of buoy-
ancy) as with complete immersion, since if

Fia. 508. the solid is turned, 53 may change its posi-
tion in the body, as the form of the volume A N.D changes.

There is now no definite relation between the volume of
displacement ¥ and that of the body, V’, unless the latter is
homogeneous, and then for G’ we may write V'y/, ie.

V'y’ = Vy (for a homogeneous solid) ; . . (2)

or, the volumes are inversely proportional to the heavinesses.



FLOTATION. 591

The buoyant effort of the air on the portion ANE may be
neglected in most practical cases, as being insignificant.

If the solid is Aollow, the position of its centre of gravity ¢
may be easily varied (by shifting ballast, e.g.) within certain
limits, but that of the centre of buoyancy B depends only on
the geometrical form of the volume of displacement A.N.D,
below the horizontal plane 4.

ExaurLe.—(Ft., Ib, sec.) Will a solid weighing G’ = 400
lbs., and having a volume V' = 8 cub. feet, without hollows
or recesses, float in water? To obtain a buoyant effort of
400 lbs., we need a volume of displacement, see eq. (1), of

V' ="= 400 = only 6.4 cub. ft.

Hence the solid will float with 8 — 6.4, or 1.6, cub. ft. pro-
jecting above the water level.

Query : A vessel contains water, reaching to its brim, and
also a piece of ice which floats without touching the vessel.
When the ice melts will the water overflow ¢

460. The Hydrometer is a floating instrument for determin-
ing the relative heavinesses of liquids. Fig. 504 shows a sim-
ple form, consisting of a bulb and a cylin-
drical stem of glass, so designed and I
weighted as to float upright in all liquids
whose heavinesses it is to compare. Let #
denote the uniform sectional area of the
stem (a circle), and suppose that when float-
ing in water (whose heaviness = y) the —=
water surface marks a point 4 on the stem; ——
and that when floating in another liquid, =
say petroleuni, whose heaviness, = y,, we —=
wish to determine, it floats at a greater —— =
depth, the liquid surface now marking 4’
on the stem, a height = 2 above 4. ' is
the same in both experiments; but while the volnme of dis-
placement in water is V| in petroleum it is ¥+ Fx. There-

fore from eq. (1), § 459,
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wn the water G=Vy, . ... .0
and in the petroloum G’ = ( V+ Foyy,; . . (2
from which, knowing &, F, «, and ¥, we find V and y,, i.e.,

(7 Gy

V=7 and yp:m—m' 3)

[N.B.—F'is best determined by noting the additional dis-
tance, = /, through which the instrument sinks in water under
an additional load P, not immersed; for then

& +P=(V+Fl)y, o F= l—i
ExampLE.—[Using the ¢nch, ouncs, and second, in which
system y = 1000 = 1728 = 0.578 (§ 409).] With &' =3
ounces, and #'=0.10 sq. inch, # being observed, on the
graduated stem, to be 5 inches, we have for the petroleum

3 X 0.578

¥o=13 000 X § X 0578 = 0.525 oz. per cubic inch

= 56.7 lbs. per cub. foot.

Temperature influences the heaviness of most liqnids to
some extent.

In another kind of instrument a scale-pan is fixed to the top
of the stem, and the specific gravity computed from the weight
necessary to be placed on this pan to cause the hydrometer to
sink to the same point in all liquids for which it is used.

461. Depth of Flotation.—If the weight and external shape
of the floating body are known, and the centre of gravity so
situated that the position of flotation is known, the depth of
the lowest point below the surface may be determined.
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Case 1. Right prism or cylinder with its axis vertical.—
Fig. 505. (For stability in this position,

see § 464a.) Let ¢’ = weight of cylin- ~

der, F the area of its crosssection (full ==Z|

circle), A its altitude, and A the un- <==| 7 | =

known depth of flotation (or draught); —= ==

then from eq. (1), § 426, = B =
==| ¢ ===
== ==

¢ =Fhy; - h= 1%;‘ W == Y |==
in which y = heaviness of the liqunid. Fro. 505,

If the prism (or cylinder) is Aomo-
geneous (and then C, at the middle of A’,is higher than B)
and y its heaviness, we then have

h=—2 =" h=0k; R ]
Sh=c @

in which o = specific gravity of solid referred to the liquid as
standard. (See § 458.)

Cask II. Pyramid or cone with axis vertical and wvertex
down.—Fig. 506. Let V' = volume of
whole pyramid (or cone), and ¥ = vol-
_ume of displacement. From similar
pyramids, '

B

V_h'. . s V.k’.
VERS "

But ¢ = Vy;or, V= g; whence

s/ &
l"“"’"sV—,y.......@)
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Cask II1. Ditto, but vertex up.—Fig. 507. Let the nota-
tion be as before, for ¥V and V’. The
part out of water is a pyramid of volume
= V" =V’ — V, and is similar to the
whole pyramid ;
S V=V VIR R
Gl

Also, V= > H

R Y7 VA V,_V_ ’3 V,V_G,.
VA AL

., finally, k=k’[1 —/T—16 = V'y]]. L@
Case IV. Sphere—Fig. 508. The volume immersed is

V= ‘/‘.37::::;’)&' = ﬂ‘/qz2rz —2dz = ﬂh’[ - é] >

and hence, since Vy G’ = weight
of sphere,

1

i

ML
il

=
]
§

(5)

ark® —

mh' _ &
3 ¥
From which cubic equation %2 may be
= obtained by successive trials and ap-
—_——— — — — prox1matlons
Fio. 506, [An exact solution of (5) for the
unknown /% is impossible, as it falls under the irreducible case
of Cardan’s Rule.]
Case V. Right cylinder with axis horizontal.—Fig. 509.

Vol. im-
yo. } [area of seg. ADB] X

= (r*a — ¥’ sin 2a)l;
hence, since V' = %,

’

lr’[a—}sin2a]=—§—. N ()
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From this transcendental equation we can obtain a, by trial,
in radtians (see example in § 428), and finally A, since

h=rl—cosa) . . . . . . (7

ExampLE 1.—A sphere of 40 inches diameter is observed to
have a depth of flotation 2 =9 in. in water. Required its
weight ¢’. From eq. (5) (inch, 1b., sec.) we have

G’ = [62.5 + 1728]79°[20 — } X 9] = 156.5 Ibs.

The sphere may be hollow, e.g., of sheet metal loaded with
shot; constructed in any way, so long as G’ and the volume
V of displacement remain unchanged. But if the sphere is
homogeneous, its heaviness (§ 1) y’ must be

=G =+ V' =G =+ §nr = (156.5) + 4720
= .00466 1bs. per cubic inch,

and hence, referred to water, its specific gravity is o = about
0.13.

ExampLE 2.—The right eylinder in Fig. 509 is homogeneous
and 10 inches in diameter, and has a specific gravity (referred
to water) of & = 0.30. Required the depth of flotation A.

Its heaviness must be ¥’ = oy ; hence its weight

G = Viey = arloy;
hence, from eq. (6),
rl[a — } sin 2a] = nr'lo, . a — } sin 2a = 70
(involving abstract numbers only). Trying @ = 60°( = }= in
radians), we have

}m — % 8in 120° = 0.614; whereas wo = .9424

For a = 70°, 1.2217 — } sin 140° = 0.9003 ;

For a = 71°, 1.2391 — % sin 142° = 0.9313 ;

For a = T71° 22/, 1.2455 — § sin 142° 44’ = 0.9428, which may
be considered sufficiently close. Now from eq. (7),

A= (5in) (1 — cos 71° 22') = 3.40 in.—Ans.
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462. Draught of S8hips—In designing a ship, especially if of
a new model, the position of the centre of gravity is found by
eq. (3) of § 23 (with weights instead of volumes); i.e., the sum
of the products obtained by multiplying the weight of each
portion of the hull and cargo by the distance of its centre of
gravity from a convenient reference-plane (e.g., the horizontal
plane of the keel bottom) is divided by the sum of the weights,
and the quotient is the distance of the centre of gravity of the
whole from the reference-plane.

Similarly, the distance from another reference-plane is de-
termined. These two co-ordinates and the fact that the centre
of gravity lies in the median vertical plane of symmetry of the
ship (assuming a symmetrical arrangement of the framework
and cargo) fix its location. The total weight, ¢, equals, of
course, the sum of the individual weights just mentioned. The
centre of buoyancy, for any assumed draught and correspond-
ing position of ship, is found by the same method ; but more
simply, since it is the centre of gravity of the imaginary homo-
geneous volume between the water-line plane and the wetted
surface of the hull. This volume (of *displacement”) is
divided into an even number (say 4 to 8) of horizontal laming
of equal thickness, and Simpson’s Rule applied to find the vol-
ume (i.e., the V of preceding formuls), and also (eq. 3, § 23)
the height of its centre of gravity above the keel. Similarly,
by division into (from 8 to 20) vertical slices, 7 to keel (an
even number and of equal thickness), we find the distance of
the centre of gravity from the bow. Thus the centre of buoy-
ancy is fixed, and the corresponding buoyant effort Vy (tech-
nically called the displacement and usually expressed in tons)
computed, for any assumed draught of ship (upright). That
position in which the “displacement” = ¢’ = weight of ship
is the position of equilibrium of the ship when floating up-
right in still water, and the corresponding draught is noted.
As to whether this equilibrium is stable or unstable, the fol-
lowing will show.

In most ships the centre of gravity C is several feet above
the centre of buoyancy, B, and a foot or more below the water
line.
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After a ship is afloat and its dranght actually noted its total
weight G',= Vy, can be computed, the values of V for dif-
ferent draughts having been calculated in advance. In this
way the weights of different cargoes can also be measured.

ExampLE.—A ship having a displacement- of 5000 tons is
itself 5000 tons in weight, and displaces a volume of salt water
V = G'+ y = 10,000,000 lbs. = 64 lbs. per cub. ft. = 156250
cub. ft.

463. Angular Stability of 8hips.—If a vessel floating upright
were of the peculiar form and position of
Fig. 510 (the water-line section having an {
area — zero) its tendency to regain that “
position, or depart from it, when slightly
inclined an angle ¢ from the vertical is due
to the action of the couple now formed by
the equal and parallel forces Vy and &,
which are no longer directly opposed. This
couple is called a righting couple if it acts
to restore the first position (as in Fig. 511,
where C is lower than B), and an
upsetting couple if the reverse, C
above B. In either case the mo-
ment of the couple is

= Vy . BC sin ¢ = Vyesin ¢,

and the centre of buoyancy B does not
change tts position in the vessel,since
the water-displacing shape remains
the same; i.e., no mew portions of
the vessel are either immersed or
raised out of the water.

Butin a vessel of ordinary form, when turned an angle ¢ from
the vertical, Fig. 512 (in which £D is a line which is vertical
when the ship is upright), there is a new centre of buoyancy,
B, , corresponding to the new shape 4, ¥V, D of the displacement-
volume, and the couple to right the vessel (or the reverse)
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consists of the two forces ¢’ at C and Vy at B,, and has a
moment (which we may call &, or
moment of stability) of a value

(§ 28)
M="Vy.mCsinp. . . 1)

/N=— Now conceive put in at B (centre

— of buoyancy of the upright posi-
tion) two vertical and opposite
forces, each = Vy = G, calling
them P and P, (see § 20), Fig. 512.
We can now regard the couple [, Vy] as replaced by the
two couples [¢', P] and [P,, Vy]; for evidently

Vy.mC sin ¢ =Vy.BCsin ¢ + Vy.mB sin ¢;
(§§ 33 and 34;)
“M=VyBCsing+ VymBsing. . . (2)

But the couple [¢', ] would be the only one to right the
vessel if no new portions of the hull entered the water or
emerged from it, in the inclined position; hence the other
couple [P,, Vy] owes its existence to the emersion of the

wedge A0OA,, and the immersion

of the wedge NON,; i.e., to the
loss of a buoyant force @ = (vol-
ume A 0A,)X y on oneside, and the
- gain of an equal buoyant force on
the other, therefore this couple

==X —==—-"— couple [, Q], Fig. 515, formed by

e —— putting in at the centre of buoyancy
Y= = of each of the two wedges a vertical
Fio. 913, force

Q = (vol. of wedge) X v = V,y. (See figure.)
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If a denotes the arm of this couple, we may write
Vy .mBsin ¢, [of eq. )], = Vwya; . . (3)
and hence, denoting BC by ¢, we have
M=% Vyesinp+ Voya; . . . . (4)

the negative sign in which is to be used when C is above B
(as with most ships). O, the intersection of ZD and AN,
does not necessarily lie on the new water-line plane 4,%,.

Exampre.—If a ship of (¥y =) 3000 tons displacement
with C 4 ft. above B (ie., ¢ = — 4 ft.) is deviated 10° from
the vertical, in sal¢ water, for which angle the wedges 4 04, and
NOXN, have each a volume of 4000 cubic feet, while the hori-
zontal distance « between their centres of buoyancy is 18 feet,
the moment of the acting couple will be, from eq. (4) (ft.-ton-
sec.'system, in which y of salt water = 0.032),

M = — 3000 40.1736 44000 X 0.032 X 18 = 220.8 ft. tons,
which being - indicates a 7ighting couple.

464. Remark.—If with a given ship and cargo this moment
of stability, A/, be computed, by eq. (4), for a number of values
of ¢, and the results plotted as ordinates (to scale) of a curve,
¢ being the abscissa, the curve ob-
tained is indicative of the general
stability of the ship. See Fig. 514.
For some value of ¢ = OK (as well
as for ¢ = 0) the value of M is
zero, and for ¢ > OK, M is nega-
tive, indicating an wpsetting couple. Fia. 514,

That is, for ¢ = 0 the equilibrium is stable, but for ¢ = OK,
unstable ; and M = 0 in both positions. From eq. (4) we see
why, if Cis above B, instability does not necessarily follow.

464a. Metacentre of a S8hip.—Referring again to Fig. 512,
we note that the entire couple [, Vy] will be a righting
couple, or an upsetting couple, according as the point m (the
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intersection of the vertical through B,, the new centre of
buoyancy, with B prolonged) is above or below the centre
of gravity C of the ship. The location of this point 7 changes
with ¢; but as ¢ becomes very small (and ultimately zero) m
approaches a definite position on the line DE, though not oc-
cupying it exactly till » = 0. This limiting position of m is
called the metacentre, and accordingly the following may be
stated : A ship floating upright is in stable equilibrium if its
metacentre 8 above ils centre of gravity; and vice versd.
In other words, for a slight inclination from the vertical a
righting, and not an upsetting, couple is called into action, if
m is above C. To find the metacentre, by means of the dis-
tance Bm, we have, from eq. (3),

—s  Vyoya
mB—Vysina’ B ()]

and wish ultimately to make ¢ =0. Now the moment
(V.y)a = the sum of the moments about the horizontal fore-
and-aft water-line axis OLZ, Fig. 515, of the buoyant efforts
pzdfy due to the immersion of the

{..-cz=o-.. L Separate vertical elementary
"J= prisms of the wedge OLN N,
—~ plus the moments of those lost,

OLAA. Let OA,LN, be the
new water-line section of the
- ship when inclined a small
Fia. 515. angle ¢ from the vertical
(¢ =NO,N), and OALN the old waterline. Let z= the
7 distance of any elementary area d/ of the water-line section
from OL (which is the intersection of the two water-line
planes). Each dZ'is the base of an elementary prism, with
altitude = ¢z, of the wedge V,OLN (or of wedge A,0LA
when z is negative). The buoyant effort of this prism = (its
vol) X y = yz¢pdF, and its moment about OL is ¢pyz'dF.
Hence the total moment, = Qa, or V,ya, of Fig. 505,

=@yfZdF =y¢ X I
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of water-line section, in which 7,;, denotes the * moment of
inertia” (§ 85) of the plane figure 0 A LN O about the axis O L.
Hence from (5), putting ¢ = sin ¢ (true when ¢ = 0), we have
mB = I, +~ V; and therefore the distance mC, of the meta-
centre m above C, the centre of gravity of the ship, Fig. 5192, is

70, = ha, = {on (of water-line sec.) te. ... (6

7

in which ¢ = B( = distance from the centre of gravity to the
centre of buoyancy, the negative sign being used when Cis
above B; while V' = whole volume of water displaced by the
ship.

‘We may also write, from eqs. (6) and (1), for small values
o

Mom. of righting couple = M = Vy sin ¢ Zg_;. + e], . )
or

M=ysinp[log+ V. . . . . (7

Eqs. (7) and (7)’ will give close approximations for ¢ < 10° or
15° with ships of ordinary forms.

ExampLe 1.— A homogeneous right parallelopiped, of
heaviness y’, floats upright as in
Fig. 516. Find the distance b
mC = h,, for its metacentre in this
position, and whether the equilibrium
is stable. Here the centre of gravity,
C, being the centre of figure, is of
course above B, the centre of buoy-
ancy ; hence ¢ 78 negative. B is the i
centre of gravity of the displacement, — —~ ——-—=
and is therefore a distance 34 below
the water-line. We here assume that [ is greater than &'
From eq. (2), § 461,
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and since CD =}/, and BD =34, .». e = §A'— R);
ie,e= /z’l:l - Z,];
¥ 4

while (§ 90) Z,, of the water-line section AN, = #{'b".
Also,

V=>a =0tk L ;
14
and hence, from eq. (6), we have
l’bn ’ ’3 4 J/ ! ]
Fom = 12041y —ih [ y 121 2% I:b —047> ( ;)

Hence if 5" is > 64"* ;: (l —= ) the position in Fig. 516 is
Yy

one of stable equilibrium, and wice versd. E.g.,if y’ = 3y,
b =12 inches and A’ = 6 inches, we have (inch, pound, sec.)

by =mC = g [144 — 6 X 38(1 - $)] = 2.5 in.

The equilibrium will be unstable if, with ' = 4y, 4’ is made
less than 1.225 A’; for, putting m(C =0, we obtain &’ =
1.225 2.

ExampLE 2.—(Ft.,1b.,sec.) Let Fig. 517 represent the Aalf
water-line section of a loaded ship of ¢’ = Vy = 1010 tons

Fia. 517,

displacement ; required the height of the metacentre above.the
centre of buoyancy, i.e., mB =1 (See equation just before eq.
(6).) Now the quantity Z,., of the water-line section, may,
from symmetry, (see § 93,) be written

10L=2f0”§y=dz,. e e . @
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in which y = the ordinate 7 to the axis OL at any point; and
this, again, by Simpson’s Rule for approximate integration,
OL being divided into an even number, 7, of equal parts, and
ordinates erected (see figure), may be written

2()L

1 oL = 3

A )
2+t R

From which, by numerical substitution (see figure for dimen-
sions; n = 8),

Iop = g _x‘i [0 +4+12' 418 +7)

1 9(9" 414" +-11°) + 0.5'] :
125
1728 799
or, 2197 2744
343 1331
Top = 42[0.125 14 X 4393 42 X 4802 - 0.125]
— 1 120801

= 120801 biquad. ft.; ... mB =
= 3.8 feet.

~ [2020000 - 64

That is, the metacentre is 3.8 feet above the centre of buoyancy,
and hence, if BC = 2 feet, is 1.90 ft. above the centre of
gravity. [See Johnson’s Cyclopedia, article Naval Architec-
ture.]

465. Metacentre for Longitudinal Stability.—If we consider
the stability of a vessel with respect to pitching, in a manner
similar to that just pursued for rolling, we derive the position
of the metacentre for pitching or for longitudinal stability—
and this of course occupies a much higher position than that
for rolling, involving as it does the moment of inertia of the
water-line section about a horizontal gravity axis 7 to the keel.
‘With this one change, eq. (6) holds for this case also. In
large ships the height of this metacentre above the centre of
gravity of the ship may be as groat as 90 feet.



CHAPTER V.
HYDROSTATICS (Continued)—GASEOUS FLUIDS.

466. Thermometers—The temperature, or * Aotness,” of
liquids has, within certain limits, but little influence on their
statical behavior, but with gases must always be taken into
account, since the three quantities, tension, temperature, and
volume, of a given mass of gas are connected by a nearly in-
variable law, as will be seen.

An air-thermometer, Fig. 518, consists of a large glass bulb
filled with air, from which projects a fine straight tube of
. even bore (so that equal lengths
“: represent equal volumes). A
== small drop of liquid, 4, sepa-
i+ rates the internal from the ex-
ternal air, both of which are
at a tension of (say) one at-
mosphere (14.7 1be. per sq. inch). When the bulb is placed
in melting ice (freezing-point) the drop stands at some point #’
in the tube; when in boiling water (boiling under a pressure
of one atmosphere), the drop is found at B3, on account of the
expansion of the internal air under the influence of the heat
imparted to it. (The glass also expands, but only about 4
as much; this will be neglected.) The distance #'B along the
tube may now be divided into a convenient number of equal
parts called degrees. If into one hundred degrees, it is found
that each degree represents a volume equal to the {3f%%+
(.00367) part of the total volume occupied by the air at freez-
ing-point ; i.e., the increase of volume from the temperature of
freezing-point to that of the boiling-point of water = 0.367 of the
volume at freezing, the pressure being the same, and even having
any value whatever (as well as one atmosphere), within ordi-

nary limits, so long as it is the same both at freezing and boil-
604

Fio. 518.
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ing. It must be understood, however, that by temperature of
boiling is always meant that of water boiling under one at-
mosphere pressure. Another way of stating the above, if one
hundred degrees are used between freezing and boiling, is as
follows: That for each degree increase of temperature the in-
crease of volume is g4y of the total volume at freezing; 273
being the reciprocal of .00367.

As it is not always practicable to preserve the pressure con-
stant under all circumstances with an air-thermometer, we use
the common mercurial thermometer for most practical pur-
poses. In this, the tube is sealed at the outer extremity, with
a vacuum above the column of mercury, and its indications
agree very closely with those of the air-thermometer. That
equal absolute increments of volume should imply equal incre-
ments of heat imparted to these thermometric fluids (under
constant pressure) could not reasonably be asserted without
satisfactory experimental evidence. This, however, is not al-
together wanting, so that we are enabled to say that within a
moderate range of temperature equal increments of heat pro-
duce equal increments of volume in a given mass not only of
atmospheric air, but of the so-called * perfect” or “ permanent”
gases, oxygen, nitrogen, hydrogen, etc. (so named before it was
found that they could be liquefied). This is nearly true for
mercury also, and for alcohol, dut not for water. Alcohol has
never been frozen, and hence is used instead of mercury as a
thermometric substance to measure temperatures below the
freezing-point of the latter.

The scale of a mercurial thermometer is fixed ; but with an
air-thermometer we should have to use a new scale,and in a
new position on the tube, for each value of the pressure.

467. Thermometric Scales. —In the Fakrenheit scale the tube
between freezing and boiling is marked off into 180 equal
parts, and the zero placed at 32 of these parts below the freez-
ing-point, which is hence 4 32°, and the boiling-point - 212°.

The Centigrade, or Celsius, scale, which is the one chietly
used in scientific practice, places its zero at freezing, and 100°
at boiling-point. Hence to reduce



606 MECHANICS OF ENGiNEERING.

Fabr. readings to Centigrade, subtract 32° and multiply by §;
Cent. “  “ Fahrenheit, multiply by  and add 32°.

468. Absolute Temperature—Experiment also shows that if
a mass of air or other perfect gas is confined in a vessel whose
volume is but slightly affected by changes of temperature,
equal increments of temperature (and therefore equal incre-
ments of heat imparted to the gas, according to the preceding
paragraph) produce equal increments of tension (i.e., pressure
per unit area); or, as to the amount of the increase, that when
the temperature is raised by an amount 1° Centigrade, the ten-
sion is increased 5}y of its value at freezing-point. Hence,
theoretically, an ideal barometer (containing a liquid unaffected
by changes of temperature) commuuicating with the confined
gas (whose volume practically remains constant) would by
its indications serve as a thermometer,
Fig. 519, and the attached scale could be
graduated accordingly. Thus, if the col-
umn stood at 4 when the temperature
was freezing, A would be marked 0° on
the Centigrade system, and the degree
spaces above and below A4 would each
= g}y of the height AB, and therefore
the point B (cistern level) to which the column would sink if
the gas-tension were zero would be marked — 273° Centi-
grade.

But a zero-pressure, in the Kinetic Theory of Gases (§ 408),
signifies that the gaseous molecules, no longer impinging
against the vessel walls (so that the press. = 0), have become
motionless; and this, in the Mechanical Theory of Heat, or
Thermodynamics,implies that the gas is totally destitute of heat.
Hence this ideal temperature of — 273° Centigrade, or — 460°
Fahrenheit, is called the Absolute Zero of Temperature, and by
reckoning temperatures from it as a starting-point, our formule
will be rendered much more simple and compact. Tempera-
ture so reckoned is called absolute temperature, and will be
denoted by the letter 7. Hence the following rules for
duction : :
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Abesol. temp. 7' in Cent. degrees = Ordinary Cent.  273°;
Absol. temp. 7 in Fahr. degrees = Ordinary Fahr. 4 460°.

For example, for 20° Cent., 77 = 293° Abs. Cent.

469. Distinction Between Gases and Vapors.—All known
gases can be converted into liquids by a sufficient reduction of
temperatare or increase of pressure, or both; some, however,
with great difficulty, such as atmospheric air, oxygen, hydro-
gen, nitrogen, etc., these having been but recently (1878) re-
duced to the liquid form. A wapor is a gas near the point of
liquefaction, and does not show that regularity of behavior
under changes of temperature and pressure characteristic of a
gas when at a temperature much above the point of liquefac-
tion. All gases treated in this chapter (except steam) are sup-
posed in a condition far removed from this stage. The fol-
lowing will illustrate the properties of vapors. See Fig. 520.
Let a quantity of liquid, say water, be intro- ..
duced into a closed space, previously vacuous,
of considerably larger volume than the water,
and furnished with a manometer and ther-
mometer. Vapor of water immediately be-
gins to form in the space above the liquid, and
continues to do so until its pressure attains a .
definite value dependent on the temperature,
and not on the ratio of the volume of the vessel and the origi-
nal volume of water; e.g., if the temperature is 70° Fahren-
heit, the vapor ceases to form when the tension reaches a value
of 0.36 lbs. per sq. inch. If heat be gradually applied to raise
the temperature, more vapor will form (with ebullition ; i.e.,
from the body of the liquid, unless the heat is applied very
slowly), but the tension will not rise above a fixzed wvalue for
each temperature (independent of size of vessel) so long as
there is any liquid left. Some of these corresponding values,
for water, are as follows: Fora

Fahr. temp. = 70° 100° 150° 212° 220° 287° 300°

Tension(lbs. | _
persq.in.)} =036 093 3.69 147 172 550 672

Tl /7777 777

Fia. 520.

= one atm.
At any such stage the vapor is said to be saturated.
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Finally, at some temperature, dependent on the ratio of the
original volume of water to that of the vessel, all of the water
will have been converted into vapor (i.e., steam); and if the
temperature be still further increased, the tension also increases
and no longer depends on the temperature alone, but also on
the heaviness of the vapor when the water disappeared. The
vapor i8 now said to be superheated, and conforms more in its
properties to perfect gases.

470. Critical Temperature.—From certain experiments there
seems to be reason to believe that at a certain temperature,
called the critical temperature, different for different liquids,
all of the liquid in the vessel (if any remains, and supposing
the vessel strong enough to resist the pressure)is converted
into vapor, whatever be the size of the vessel. That is, above
the critical temperature the substance is mnecessarily gaseous,
in the most exclusive sense, incapable of liquefaction by pres-
sure alone ; while below this temperature it is a vapor,and lique-
faction will begin if, by compression in a cylinder and conse-
quent increase of pressure, the tension can be raised to a value
corresponding, for a state of saturation, to the temperature
(in such a table as that just given for water). For example, if
vapor of water at 220° Fahrenheit and tension of 10 lbs. per
8q. inch (this is superheated steam, since 220° is higher than
the temperature which for saturation corresponds to p = 10
Ibs. per gq. inch) is compressed slowly (slowly, to avoid change
of temperature) till the tension rises to 17.2 lbs. per sq. in.,
which (see above table) is the pressure of saturation for a tem-
perature of 220° Fahrenheit for water-vapor, the vapor is satu-
rated, i.e., liquefaction is ready to begin, and during any fur-
ther slow reduction of volume the pressure remains constant
and some of the vapor is liquefied.

By ¢ perfect gases,” or gases proper, we may understand,
therefore, those which cannot be liquefied by pressure unac-
companied by great reduction of temperature; i.e, whose
¢ critical temperatures” are very low. The critical temperature
of NO,, or nitrous oxide gas, is between — 11° and + 8° Cen-
tigrade, while that of oxygen is said to be at — 118° Centi-
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grade. [See p. 471, vol. 122 of the Journal of the Franklin
Institute. For an account of the liquefaction of oxygen, ete.,
see the same periodical, January to June, 1878.]

471. Law of Charles (and of Gay Lussac).—The mode of gradu-
ation of the air-thermometer may be expressed in the follow-
ing formula, which holds good (for practical purposes) within
the ordinary limits of experiment for a given mass of any
perfect gas, the tension remaining constant:

V="V, + 000367Vt = V,14.00867); . . (1)

in which V| denotes the volume occupied by the given mass
at freezing-point under the given pressare, V its volume at
any other temperature ¢ Centigrade under the same pressure.
Now, 273 being the reciprocal of .00367, we may write

_ @84y, . V_T ress. | .
V= K—273 5 lLe., 70—— ]'-,—o o {gonst. } ’ (2)

(see §468;)in which 7, = the absolute temperature of freezing-
point, = 273° absolute Centigrade, and 7" the absolute tem-
perature corresponding to ¢ Centigrade. Eq. (2) is also true
when 7 and 7, are both expressed in Fahrenheit degrees (from
absolute zero, of course). Accordingly, we may say that, tke
pressure remaining the same, the volume of a given mass of
gas varies directly as the absolute temperature.

Since the weight of the given mass of gas is invariable at a
given place on the earth’s surface, we may

always use the equation Vy=Vy,, « « .« « . « . (8
pressure constant or not, and hence (2) may be rewritten

;’7° = TZ . . (press. const.); . (4)

i.e., if the pressure is constant, the heaviness (and therefore
the specific gravity) varies inversely as the absolute tempera-

ture.
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Experiment also shows (§468) that if the volume [and there-
fore the heaviness, eq. (3)] remains constant, while the tem-
perature varies, the tension p will change according to the
following relation, in which p, = the tension when the tem-
perature is freezing :

273 + ¢
p=Po+rhpot=p.—2—7;'—, N ()

t denoting the Centigrade temperature. Hence transforming,
as before, we have

P_ T (vol, and .|,
» TI° (hea;., const. } i - (6
or, the volume and heaviness remaining constant, the tension
of a given mass of gas varies directly as the absolute tempera-
ture. This is called the Law of Charles (or of Gay Lussac).

472. General Formule for any Change of State of a Perfect Gas.
—If any two of the three quantities, viz., vnlume (or heavi-
ness), tension, and lemperature, are changed, the new value of
the third is determinate from those of the other two, according
A s to a relation proved as follows (remember-
Vo, v, ing that Aenceforth the absolute temperature

pT.. o T, only will be used, 7, § 468): Fig. 521.
r - At A a certain mass of gas at a tension of
v 2., one atmosphere, and absolute tempera-

c ’

p,7. | tare 7, (freezing), occupies a volume V,.
Let it now be heated to an absolute temp.
= 7", without change of tension (expanding
behind a piston, for instance). Its volume will increase to a

value ¥ which from (2) of § 471 will satisfy the relation

Fie. 521,

I (4

N
Il
NN

(See B in figure.)
Let it now be heated without change of volume to an abso-
lute temperature 7" (C in figure). Its volume is still ¥, but
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the tension has risen to a value p, such that, on comparing B
and C by eq. (6), we have

T
‘{;’.:T........(S)

Combining (7) and (8), we obtain for any state in which the
tension is p, volume V, and absolute temperature 7 in

(General) . . . 21_11/_’:]),,]117._,; or{i}::acomtant;. 9

or

(General) . . . . Pm Vm__:l’u Va

Tm T,. ) (10)

which, since
(General) . . Vy=Vy, = Vaym= Vava, - . . (11)

is true for any change of state, we may also write

(General) . . . . ;L’T_=y1’},, N ¢ 0]
or

Pm_— Pn_ ... (13)

yﬂTm yﬂTl.

These equations (9) to (13), inclusive, hold good for any state
of a mass of any perfect gas (most accurately for air). The
subscript O refers to the state of one-atmosphere tension and
freezing-point temperature, 22 and n to any two states what-
ever (within practical limits) ; y is the heaviness, §§ 7 and 409,
and 7 the absolute temperature, § 468.

If p, V,and T of equation (9) be treated as variables, and
laid off to scale as co-ordinates parallel to three axes in space,
respectively, the surface so formed of which (9) is the equation
is a hyperbolic paraboloid.

473. Examples. —ExampLE 1.—What cubic space will be
occupied by 2 Ibs. of hydrogen gas at a tension of two atmos-
pheres and a temperature of 27° Centigrade ?
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With the ¢nch-lb.-sec. system we have p, = 14.7 lbs. per sq.
inch, y, = [.0056 < 1728] lbs. per cubic inch, and 7, = 273°
absolute Centigrade, when the gas is at freezing-point at one
atmosphere (i.e., in state sub-zero). In the state mentioned in
the problem, we have p = 2 X 14.7 lbs. per sq. in.,

T = 273 4 27 = 300° absolute Centigrade,

while y is required. Hence, from eq. (12),

2 X 14.7 _ 14.7
y 300 ( 0056 =— 17 28)273 ;
.0102
Ny = 798 1bs. per cub. in. = .0102 lbs. per cub. foot ; and if

the total weight, = @, = Vy, is to be 2 lbs., we have (ft., Ib.,
sec.) V =2 + 0102 = 196 cubic feet.—Ans.

ExampLE 2.—A 1mass of air originally at 24° Centigrade
and a tension indicated by a barometric column of 40 inches
of mercury has been simultaneously reduced to half its
former volume and heated to 100° Centigrade; required its
tension in this new state, which we call the state n, m being the
original state. Use the inch, lb., sec. We have given, there-
fore, p,, = 4§ X 14.7 lbs. per sq. itich, 77, = 273 4 24 = 297°
absolute Centigrade, the ratio

Vw: Vao=2:1,and 7}, = 278 4 100 =373° Abs. Cent.;

while p, is the unknown quantity. From eq. (10), hence,

Va Ta

p"——V; 7 D=2 X #¥}. 4§ X 14.7= 49.221bs. persq. in.,

which an ordinary steam-gauge would indicate as

(49.22 — 14.7) = 34.52 1bs. per sq. inch.

(That is, if the weather barometer indicated exactly 14.7 1bs.
per sq. inch.)
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ExanmpLE 3.—A mass of air, Fig. 522, occupies a rigid closed
vessel at a temperature of 15° Centlgrade (equal to that of sur-
rounding objects) and a tension | O™
of four atmospheres [state m].
By opening a stop-cock a few
seconds, thus allowing a portion
of the gas to escape quickly, and [
then shutting it, the remainder Fia. 522.
of the air [now in state n] is found to have a tension of only
2.5 atmospheres (measured immediately) ; its temperature can-
not be measured immediately (so much time being necessary
to affect a thermometer), and is less than before. To compute
this temperature, 7, we allow the air now in the vessel to
come again to the same temperature as surrounding objects
(15° Centigrade) ; find then the tension to be 2.92 atmospheres.
Call the last state, state r (inch, 1b., sec.). The problem then
stands thus:

8 (¢

Pm =4 X 14.7 P = 2.5 X 14.7 P =2.92 X 14.7
Ym=1" y.._.? ¥r=1yn (8ince Vp= Vau)
T = 288° Abs. Cent. | Th = ?{ principal * | 7 — 7, = 288° Abs. Cent.

In states » and » the heaviness is the same ; hence an equa:
tion like (6) of § 471 is applicable, whence

2o g‘ ", or I, = 25 X1 ;’2><x11‘477. X 288 = 246° Abs. Cent.

or — 27° Centigrade ; considerably below freezing, as a result of
allowing the sudden escape of a portion of the air, and the con-
sequent sudden expansion, and reduction of tension, of the re-
mainder. In this sudden passage from state = to state n, the
remainder altered its heaviness (and its volume in inverse ratio)
in the ratio (see egs. (11) and (10) of § 472)

Z"_ — Vi _ Pn T _25X147 288

V pm 7”—‘ = m'z— . —216- = 0-73-

Now the heaviness in state m (see eq. (12), § 472) was
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_Pm ¥ T, _4X147 .0807 273 _ .306
Ve = T P 988 1728 147 1728

Ibs. per cub. in. = .306 lbs. per cub. ft.
oo Y= 0.73 X ¥, = 0.223 lbs. per cub. ft.,

and also, since ¥V, = 0.73 ¥V, about &% of the original quan-
tity of air in vessel has escaped.

[Nore.—By numerous experiments like this, the law of
cooling, when a mass of gas is allowed to expand suddenly (as,
e.g., behind a piston, doing work) has been determined ; and
vice versd, the law of heating under sudden compression ; see

§ 487.]

474. The Closed Air-manometer.—If a manometer be formed
of a straight tube of glass, of uniform cylindrical bore, which
is partially filled with mercury and then inverted in a cistern
of mercury, a gquantity of air having been left between the
mercury and the upper end of the

vie ]!' ;“; F i tube, which is closed, the tension of
- ! 'rh this confined air (to be computed
A A gl-t-f- from its observed volume and tem-
B H ! perature) must be added to that due
! H % to the mercury column, in order to
L i._ obtain the tension p’ to be measured.

E See Fig. 523. The advantage of this

|\ - kind of instrument is, that to meas-
5 ure great tensions the tube need not
be very long. Let the temperature
7, of whole instrument, and the tension p, of the air or gas
in the cistern, be known when the mercury in the tube stands
at the same level as that in the cistern. The tension of the
air in the tube must now be p, also, its temperature 7', and its .
volume is V, = F4,, F being the sectional area of the bore of
the tube ; see on left of figure. When the instrument is used,
gas of unknown tension p’ is admitted to the cistern, the tem-
perature of the whole instrument being noted (= 7°), and the
heights A and A" are observed (% /4" cannot be put = A,

Fia. 528,
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unless the cistern is very large). p’ is then computed as fol-
lows (eq. (2), § 413):
=tya+p; - . . . . .1

in which p =the tension of the air in the tube, and y,, the
heaviness of mercury. But from eq. (10), § 472, putting
V.,=Fh, and V=Fh,

A S ®
p—'pV ]-'l h]’:pl.’ L] . .

Hence finally, from (1) and (2),

R V7] ) _-7_7_
p =h y..-l"‘x. ]"‘Pl' D (3)

Since 7, p,, and A, are fixed constants for each instrument,
we may, from (3), compute p’ for any observed values of 4 and
T (N.B. T and T, are absolute temperatures), and construct
a series of tables each of which shall give values of p’ for a
range of values of 4, and one special value of 7,

ExavpLE.—Supposing the fixed constants of a closed air-
manometer to be (in inch-lb.-sec. system) p, = 14.7 (or one
atmosphere), 7", = 285° Abs. Cent. (i.e., 12° Centigrade), and
h, =38’ 4 = 40 inches; required the tension in the cistern
indicated by A" =25 inches and 4 =15 inches, when the
temperature is — 3° Centigrade, or 7" = 270° Abs. Cent.

For mercury, y,, = [848.7 = 1728] (§ 409) (though strictly
it should be specially computed for the temperature, since it
varies about .00002 of itself for each Centigrade degree).
Hence, eq. (3),

, 25X 8487 | 40 270

1728—+15 285)(1-17—.1226-{—3713—4939

Ibs. per sq. inch, or nearly 334 atmospheres [steam-gange would
read 34.7 lbs. per sq. in.].

475. Mariotte's Law, (or Boyle's,) Temperature Constant; i.e.,
Isothermal Change.—If .a mass of gas be compressed, or al-
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lowed to expand, <sothermally, i.e., without change of tem.
perature (practically this cannot be done unless the walls of the
vessel are conductors of heat, and then the motion must be
slow), eq. (10) of § 472 now becomes (since 7, = 7,)

m_ Va
2Dn s or%:v-; (D

Mariotteés Law —
{ Temp. conatané} + Vupa=

i.e., the temperature remaining unchanged, the tensions are
wnversely proportional to the volumes, of a given mass of a
perfect gas; or,the product of volume by tension 8 a constant
quantity. Again, since V,y. = V,y, for any change of
state,

{.Mam’otte’s _Law,} . pm_:y_n’ or Pm—_Pn. (@)

Temp. constant " Pn Vn Ym  Vn'&

i.e., the pressures (or tensions are directly proportional to the
(first power of the) heavinesses, if the temperature is the same.
This law, which is very closely followed by all the perfect
gases, was discovered by Boyle in England and Mariotte in
Frauce more than two hundred years ago, but of course is only
a particular case of the general formula, for any change of
state, in § 472. " It may be verified experimen- -

A\ ( tally in several ways. E.g., in Fig. 524, the
¢ tube OM being closed at the top, while PNV is
open, let mercury be poured in at P until it
reaches the level A’B’. The air in 0A4’is now
-{e/ at a tension of one atmosphere. Let more mer-
cury be slowly poured in at 2, until the air
confined in O has been compressed to a volume

A" OA” =3} of OA’, and the height B”E" then
measured ; it will be found to be 30 inches; i.e.,
=|A the tension of the airin O is now fwo atmos-
[m  pheres (corresponding to 60 inches of mercury).
Fia. 594, Again, compress the air in O to } its original
volume (when at one atmosphere), i.c., to volume 0A"' =
$0A’, and the mercury height 3’/ £’" will be 60 inches, show-
ing a tension of three atmospheres in the confined air at O (90
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inches of mercury in a barometer). It is understood fhat the
temperature is the same, i.e., that time is given the compressed
air to acquire the temperature of surrounding objects after
being heated by the compression, if sudden.

[Nore.—The law of decrease of steam-pressure in a steam-
engine cylinder, after the piston has passed the point of ¢ cut-
off ” and the confined steam is expandmg, does not materially
differ from Mariotte’s law, which is often applied to the case
of expanding steam ; see § 479.]

While Mariotte’s law may be considered exact for practical
purposes, it is only approximately true, the amount of the
deviations being different at different temperatures. Thus,
for decreasing temperatures the product ¥V of volume by
tension becomes smaller, with most gases.

ExampLe 1.—If a mass of compressed air expands in a
cylinder behind a piston, having a tension of 60 lbs. per sq.
inch (45.3 by steam-gauge) at the beginning of the expansion,
which is supposed slow (that the temperature may not fall);
then when it has doubled in volume its tension will be only
30 lbs. per sq. inch ; when it has tripled in volume its tension
will be only 20 lbs. per sq. inch, and so on.

ExawrLe 2. Dwmg-bell —Fig. 525. 1If the cylmdncal
diving-bell 4B is 10 ft. in height, in what
depth, & = 9, of salt water, can it be let down
to the bottom, without allowing the water to
rise in the bell more than a distance @ = 4 ft.§
Call the horizontal sectional area, #. The
mass of air in the bell is constant, at a constant
temperature.  First, algebraically; at the

il
lfl'l
~
|
|

I
:
1

l

L+

1
|
P

surface this mass of air occupied a volume FZ—2=—=_
V= FA" at a tension p, = 14.7 X 144 lbs. ~:|':: :;:,i
per sq. ft., while at the depth mentioned itis ||~
compressed to a volume V,=F (A" —a), and | il |2

is at a tension p, = p,, + (A — @)y.., in which Zzzzzzzz7777
¥ = heaviness of salt water. Hence, from Fio. 8.

eq. (1),
Dnm Fh' = [pn +(h - a)yw]F(k” - a); LI (3)
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_a[1+_,,1.""_a);:] N )

hence, numerically, (ft., 1b., sec.,)

14.7 X 144

{0 — 4 64 = 26.05 feet.

=4 x [1 4t

476, Mixture of Gases.—It is sometimes stated that if a vessel
is occupied by a mixture of gases (between which there is no
chemical action), the tension of the mixture is equal to the sum
of the pressures of each of the component gases present; or,
more definitely, is equal to the sum of the pressures which the
separate masses of gas would exert on the vessel if each in turn
occupied it alone at the same temperature.

This is a direct consequence of Mariotte’s law, and may be
demonstrated as follows:

Let the actual tension be p, and the capacity of the vessel V.
Also let V), V,, ete., be the volumes actually occupied by the
separate masses of gas, so that

Vi+Vi+...=V; . . . .. Q)

and p,, 2,, etc., the pressures they would individually exert
when occupying the volume V alone at the same tempera-
ture. Then, by Mariotte’s law,

Vpo=Vp; Vp=Vp; ete; . . . (2
whence, by addition, we have

Votrt )=+ Vit By
ie, p=p+p.+... . . . . . (3

Of course, the same statement applies to any number of
separate parts into which we may imagine a mass of homo-
geneous gas to be divided.

For numerical examples and practical questions in the solu-
tion of which this principle is useful, see p. 239, etc., Ran-
kine’s Steamn-engine. (Rankine uses 0.365, where 0.367 has
been used here.)
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477. Barometric Levelling.—By measuring with a barometer
the tension of the atmosphere at two different levels, simul-
taneously, and on a still day, the two localities not being widely
separated horizontally, we may compute their vertical distance
apart if the temperature of the stratum of air between them
is known, being the same, or nearly so, at both
stations. Since the heaviness of the air is ™{ .71 7Tf
different in different layers of the vertical ::'z: '
column between the two elevations N and M, " i '
Fig. 526, we cannot immediately regard the izl
whole of such a column as a free body (as was . - LiTy "2
done with a liquid, § 412), but must consider "~ ! SRR
a horizontal thin lamina, Z, of thickness . ::i® ¥!.’ %
=2 dz and at a distance = z (variable) below . -
M, the level of the upper station, IV being - :-N;
the lower level at a distance, A, from /. /7

The tension, p, must increase from A/
downwards, since the lower laming have to support a greater
weight than the upper; and the heaviness y must also increase,
proportionally to p, since we assume that all parts of the col-
umn are at the same temperature, thus being able to apply
Mariotte’s law. Let the tension and heaviness of the air at
the upper base of the elementary lamina, Z, be p and y re-
spectively. At the lower base, a distance dz below the upper,
the tension is p + dp. Let the area of the base of lamina be
F; then the vertical forces acting on the lamina are #p, down-
ward ; its weight yFdz downward ; and #{p + dp) upward.
For its equilibrinm =(vert. compons.) must = 0;

o Hp+dp)— Fp— Fydz=0;

ie,dp=ydz, . . . . . . (1)

which contains three variables. But from Mariotte’s law,
§ 475, eq. (2), if p, and y, refer to the air at ¥, we may

substitute y = ;—"  and obtain, after dividing by p, to separate

the variables p and z,



620 MECHANICS OF ENGINEERING.

&.d—p=d.......2
v P 2 @)

Summing equations like (2), one for each lamina between
M (where p = p,, and z = 0) and V (where p = p,andz = &),

we have
Pn f dp / dz;

i.e.,k:i/’_: log.. [%],. N )

which gives 4, the difference of level, or altitude, between M
and &, in terms of the observed tensions p, and p,,, and of y,,
the heaviness of the air at &V, which may be computed from
eq. (12), § 472, substituting from which we have finally

_p T Pn
h_}_,;.To.log..[]Tm], L@

in which the subscript 0 refers to freezing-point and one at-
mosphere tension ; 7, and 7, are absolute tempe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>