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INTRODUCTION

FORCED AND SHRINKAGE FITS

A shrinkage fit is a cylindrical or slightly conical joint between two

machine members, as a crank-web and a shaft, in which the bore of

the outer member or crank is smaller than the diameter of the inner

member or shaft, so that the outer member must be expanded by heat

before it can be set in place, while, in the subsequent cooling, it con

tracts and grips the inner member with a force which depends on the

character of the metals, on the thickness of the outer member, and

on the difference between the original diameter of the bore and that

of the inner member. This difference is called the allowance for

shrinkage. A forced fit is based on the same principle and is virtually

of the same character, except that the parts are forced together when

cold by hydraulic or other pressure.

These fits have a wide range of application, extending from Small

machine parts to built-up crank-shafts for heavy engines and the mass

ive forgings for high-powered guns. As a rule, the forced fit is re

stricted to parts of small or moderate size, while shrinkage joints have

no such limitations, being applicable especially where a maximum

“grip” is desired, or, as in ordnance, where accurate results as to

the intensity of the stresses produced in the parts thus united, are

required. With both types, skillful machining and care in assembling

are essential; but the shrinkage joint is compact, has the fewest pos

sible parts, is secure against slip to the extent for which it was de

signed, and is tight against fluid pressure.

The fundamental principle governing the construction of the joint

is the same with both types: the bore of the outer hub or other mem

ber is smaller, and the diameter of the pin or shaft larger, than the

diameter of the finished fit. Hence, the inner member is compressed,

the outer expanded, and the elasticity of the metals produces a radial

pressure at the contact-surfaces of the fit, which pressure gives the fit

its resistance to slip. The same principle is applied in the rolled joints

used in expanding the ends of boiler tubes in place, although, in this

case, the process is reversed, the hollow inner member or tube being

stretched by rolling so that, if free, it would be greater in diameter

than the hole in the tube-sheet or header.

As the integrity of the fit thus depends on the elasticity of the metals

of the members, and as the formulas which follow are based on this

elasticity and on the actions which occur during expansion and com

pression, it may be well to review these actions briefly and to give the

sense in which the various terms relating to them are used in this

treatise.

24 (632.



CHAPTER I

PRELIMINARY CONSIDERATIONS

Stress—Deformation—Lateral Contraction

An external force applied to a body acts, partially or wholly, to

change the shape of the latter. A stress is the force acting within the

body to oppose this change of shape. The unit stress is the stress

on a unit of area of the cross-section. Thus, if the upper end of a

steel rod, one inch square, be fixed, and a weight of 10,000 pounds be

suspended from the lower end, the unit-stress on the metal will be

10,000 pounds; if the sectional area of the rod be two square inches and

the weight remain the same, the unit-stress will be 10,000 —:- 2 = 5,000

pounds. Stresses may be either tensile (those that tend to elongate

the body), compressive (those that will shorten it, as in a column), or

shearing (which act to cut across the body, as in punching a rivet

hole). Both tensile and compressive stresses may act at the same time,

in the same line, on the same body, in which case the resultant stress

will be the difference between the two, and in kind like the greater.

Tensile stresses are usually considered as positive, and compressive

stresses as negative, the resultant stress being their algebraic sum.

An external force not only puts the material under stress, but also

causes some, usually slight, change in its shape. This change is called

a deformation, and this deformation may be, under tension, an elonga

tion; under compression, a shortening; or, under shearing, a detrusion

or thrusting aside of the metal. The unit-deformation is the change

in shape of a unit of the original length of the body. Thus, if a rod,

50 feet (600 inches) long, be stretched one inch by an applied load, the

unit-deformation will be 1/600 of an inch.

A stress, tensile or compressive, has not only full effect in its line

of action, but also produces compression in a direction at right angles

to that line. This action is called lateral contraction. Thus, referring

to Fig. 1, if the short length between the planes ab and ca of a rectangu

lar bar be subjected to the unit tensile stress T at right angles to the

ends ab and ca, the stress in planes parallel to the line of action of

T will be equal to T; but the stretching of the metal in the direction

of this line causes a contraction in the directions which are perpendicu

lar to it. This contraction is equivalent to that which would be caused

by a unit compressive stress Pl, acting on the sides bc and ad, and by

a similar stress P, acting on the sides ac and bal. The magnitude of

these induced compressive stresses depends on the metal. For wrought

iron and steel, P, and P. are each taken usually as equal to 1/3 T; for

cast iron, the ordinary values are about 1/4 T. This fraction, 1/3 or

1/4, is called the factor of lateral contraction, which factor will be des.

ignated by p in the following. “Poisson's ratio,” which is a constant

* * . . .



PRELIMINARY CONSIDERATIONS 5

used to determine the lateral effect of direct stress, refers to the same

action.

If the unit-stress T, Fig. 1, had been compressive instead of tensile,

there would still have been compression on planes parallel to its line

of action, but that compression would then act outward from, instead of

inward toward, the axis of the body. The lateral effect would be to

elongate, not to contract. So far as is known, the factor of lateral

contraction has the same value in compression as in tension. Thus,

in Fig. 1, assume that P, and P. are direct compressive stresses and

that there is no direct tensile stress like T. Then P, and P. will each

Pl

Machinery,N.Y.

Fig. 1. Lateral Contraction Induced by Direct Tensional Stresses

develop lateral and equivalent tensile stresses, so that the actual unit

stresses will be:

In the direction of T, q, (P, + P.).

In the direction of Pl, q, P,- P.

In the direction of P., p P - P.

A stress thus developed by lateral action is identical in effect with

a direct stress of its direction and magnitude. The direct stress, which

does not consider lateral contraction, if the latter exist, is known as

the apparent stress, while the true stress is the algebraic sum of the

apparent stress and the stresses in its direction due to lateral action.

It should be borne in mind that the true stress is the actual stress to

which the body is subjected and by which the deformation is caused.

Merriman says in “Mechanics of Materials,” edition of 1899, page 291:

“The true resistance of a body depends upon the actual deformations

produced, and these are measured by the true internal stresses.” .
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When there are several direct stresses acting on a body, the use of

a general equation in which all stresses are assumed to be tensile, will

prevent error in ascertaining the true stress in any given direction.

Thus, let there be three direct or apparent tensile stresses, t, t, and

ts, applied to the three sets of parallel sides of the body in Fig. 2, and

let T1, T2, and T, be the corresponding true stresses. Then:

T1 = t, – p tº — q tº

which is the general equation for this stress. If t, had been a com

pressive stress, the equation would be:

T, = tl — p (— t.) — q tº — tº + q2 (t, — ts)

t 1, t2, t 3= APPARENT UNIT.STRESSES

T1, T., Ts= coRRESPONDING

TRUE STRESSES Machinery, N. Y.

Fig. 2. True and Apparent Stresses

In this way, by writing the general equation for each stress on the

assumption that all are tensile, and then changing the signs of those

which are compressive, the true stresses are readily found.

Elastic Limit—Modulus of Elasticity

The elastic limit is that unit-stress at which the elasticity of the

metal begins to disappear, that is, the stress at which it will not

wholly regain its original form after the removal of the stress, and,

hence, at which some “permanent set” makes its appearance. Theo

retically, this limit occurs at a definite point, but experimentally it

cannot be sharply marked, and is taken as the stress at which the “set”

becomes fully distinguishable. Within the elastic limit, the deforma

tion is approximately proportional to the stress producing it; beyond
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that limit, this ratio is no longer constant. General values of the elas

tic limit are: Cast iron, in tension, 6000, and in compression, 20,000

pounds per square inch; wrought-iron and steel, in either tension or

compression, 25,000 and 50,000 pounds per square inch, respectively.

These values, however, differ considerably for different kinds of steel,

and also depend upon its treatment.

The modulus or coefficient of elasticity, E, is the ratio of a unit

stress to the unit-deformation which that stress produces. Thus, if

S is the stress and S the deformation, E = S –– S. E is a constant for

each similarly treated metal until the stress reaches the elastic limit.

General values of E, for either tension or compression, are: Cast iron,

15,000,000; wrought-iron, 25,000,000; steel, 30,000,000.

Shrinkage Stresses—Approximate Method (Tires)

When the thickness cf the outer member of a shrinkage fit is rela

tively small as compared with the diameter of the inner member, as is

the case with a locomotive wheel-center and tire, the compression of

the inner member is negligible in practice and the radial pressure on

the fitted surfaces may be considered as expended wholly in producing

stresses in the outer member. In a tire thus shrunk on, there are

two stresses, one radial and compressive, and the other the circumfer

ential or “hoop” stress which acts tangentially on a diametral plane

to burst the tire. This tangential or hoop stress is the only one re

quiring consideration.

Let Ro = original internal radius of tire,

R = radius of wheel-center,

t = mean unit tensile hoop stress in tire when expanded,

et = unit-deformation (elongation) due to t,

t

E=—=modulus of elasticity,

€t

p = unit radial pressure on fitted surfaces of wheel-center and

tire,

b = width of tire, axially,

T=thickness of expanded tire, radially,

f= coefficient of friction at fitted surfaces.

The deformation or elongation per unit of length of the tire may be

taken as equal to the increase in length of the latter by expansion, di

vided by the original internal length. Since the length of the circum

ference is directly proportional to that of its radius, we have:

R—Ro

€t F

Ro

The expanded tire is virtually in the condition of a cylinder subjected

at all points internally to the outward pressure p. The force tending
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to rupture such a cylinder on a diametral plane is equal to the pro

jected area of the cylinder, multiplied by the internal pressure, or:

2R × b X p

and the resistance opposed by the tire to rupture is equal to the

product of its sectional area by the average hoop stress, or:

2b X TX t

Equating the force and resistance, and substituting the value of t,

we have:

Tt ET (R—R,)

p=—=—

R R Ro

Multiplying the area of the fitted surface by the radial pressure and

the coefficient of friction, the total resistance to slip is:

- R— Ro A.

2-ºxºxx,---ºr, (". )Ro

As an example, assume that a steel tire, 5% inches wide and 3%

inches thick, is shrunk on a wheel-center 66 inches in diameter. Let

the allowance for shrinkage be about 0.001 inch per inch of diameter,

0.070

or 0.070 inch, total. Then R = 33 inches, Ro = 33 ———= 32.965

2

inches, and, taking E as 30,000,000, the average tensile stress in the

tire is 31,900 pounds per square inch, which is well within an elastic

limit of 50,000 pounds. This value of t gives p = 3380 pounds per

square inch, and, taking f = 0.2, the total resistance to slip is approxi

mately 385 tons of 2000 pounds each.

This method is approximate for several reasons:

1. As we have assumed no compression in the wheel-center, the

value et, as given in the first equation, is really the unit-deformation

at the inner surface of the tire, where that deformation is a maximum,

so that the value found for t is, as an average stress, too high, as is

that of p also; thus, the compression of the wheel-center, if considered,

would slightly reduce the average tensile stress.

2. The lateral contraction, due to the radial stress in the tire, is

neglected, and this action would increase the tensile stress, as found

above.

3. The tensile stress is assumed to be uniform over the cross-section

of the tire, while it is really a maximum (see Fig. 5) at the fitted sur

face. As the thickness of the tire is relatively small as compared with

its diameter, the aggregate error will not be material, if the shrink

age-allowance is moderate as in this case.



CHAPTER II

DERIVATION AND APPLICATION OF

LAME'S FORMULAS

When the outer member of a shrinkage fit is relatively thick, as a

wheel-hub or a crank-web, the approximate method given in the previ

ous section will not serve, and recourse must be had to the formulas

deduced for the investigation of the stresses in thick cylinders sub

jected to radial pressure—this pressure being internal for the outer

member of the fit and external for the inner member. As in the tire,

there are two “apparent” stresses in such a cylinder, the tangential or

“hoop” stress, and the radial stress. The latter is always compressive;

the former, in a shrinkage fit, is tensile in the outer member and com

pressive in the inner, while, in a gun, built up of superposed cylinders,

it may be either tensile or compressive, as the location of the cylinder

and the magnitude of the powder pressure determine. In any event,

the tangential and radial stresses are interdependent; they affect each

other by lateral contraction; and, through the latter action, they pro

duce in the outer member a longitudinal compressive stress, parallel to

the axis of the fit.

Various formulas have been proposed for the determination of the

stresses in thick cylinders. Those founded on the principles estab

lished by Lamé have found general acceptance, since they avoid the

assumptions on which others are based. Their close approach to ac

curacy is shown by their use in the design of high-powered guns, in

which the stresses at the instant of explosion are very near the elas

tic limit of the metal. Lamé's fundamental formula may be deduced

in several ways; the method” given below is due to Professor P. R.

Alger, U. S. Navy, of the Bureau of Ordnance.

Fig. 3 represents a thick, hollow cylinder subjected to internal and

external fluid pressure; the cylinder is assumed to be free at the ends,

in order to prevent direct longitudinal stress.

Let Po = internal unit pressure,

P. = external unit pressure,

Ro= internal radius of cylinder,

R1= external radius of cylinder,

r = radius of any point within cylinder walls,

t = “apparent” tensile tangential or “hoop” unit stress at ra

dius r,

p= “apparent” radial compressive unit-stress at radius r,

l = “true” longitudinal unit-stress at radius r, due to lateral

contraction,

* Cathcart, “Machine Design: Fastenings,” New York, 1903, page 30.
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T., - “true” tangential stress at inner surface of radius Ro,

T. = “true” tangential stress at outer surface of radius R, ,

e t = unit-deformation due to “true” tangential stress at radius r,

er = unit-deformation due to “true” radial stress at radius r,

e1 = unit-deformation due to “true” longitudinal stress at ra

dius r,

q = factor of lateral contraction = 1/3 for steel,

E= modulus of elasticity = 30,000,000 for steel.

In this deduction, it is assumed:

a. That there is no direct longitudinal stress in any layer of the

cylinder walls.

b. That a transverse section of the cylinder when not under pressure,

remains a plane normal to the axis of the cylinder when the latter is

Pl

Po ! P,

Machinery. N. Y.

Fig. 3. Thick Hollow Cylinder Subjected to Internal and

External Fluid Pressure

under stress, i.e., that the longitudinal stress due to lateral contraction

is uniform over the whole cross-section.

c. That the total or “true” stress in any direction is the measure of

the tendency to yield in that direction.

d. That the factor of lateral contraction is equal to 1/3.

The true stresses in the indefinitely thin cylinder of radius r are:

p

tangential unit-stress = t — ( — p p) = t + —

3

t

radial unit-stress= — p — p t=— ( p + |)
3

t p

longitudinal unit-stress =— q t + p p =-(---
3

By the definition of the modulus of elasticity, the corresponding unit

deformations are:
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et = (t + pſ3) -- E

er=— (p + ty3) -- E (1)

e1 =—(t/3 — pſ3) -- E

Since, by hypothesis, e1 is constant:

i - º

t – p = constant = k

But, *

R

ſ t d r = P, R, - P, R,

and, assuming t=f' (r), this gives:

R

f(r)]. = P. R. – 1, R.
r d p

whence f (r) =— pr; and so t = f' (r) =— p ——.

d r

Thus, we have

rap

t – p = k, and t + p=—

dr

rdp

whence 2p + k =— the integration of which gives:

dr -

k,”

2p + k = -

r?

where k, is a constant of integration. Combining with t— p= k, we

k,”

have t + p =

r2

The equations which express the relation between “hoop” or tangen

tial tension and radial stress at all points within the cylinder walls

are then:

t – p = k = To — P., E.T. - P,

(t + p) r" = k,”= (T, + Po) R.?= (T, + P.) R.”

Eliminating T, between the last parts of these equations, we have:

P., (R,” + R,”) 2R, P,

To =—————

R,”—R.” R,”—R,”

and substituting this in the first parts of the same equations, we have,

after combining:

P.R.”—P, R,” R.” R,”(P. - P.) 1

t = + X — (2)

R,”—R,” R,”—R,” ra

P.R.'—P, R,” R. R.” (P,-P,) 1

p =—— + X — (3)

R*— R.” R,”—R,” ra

which are Lamé's fundamental formulas for the “apparent” stresses in a

thick cylinder subjected, internally and externally, to fluid pressure.

In deriving these formulas, p has been taken as a compressive stress. If

it had been assumed to be tensile, the signs in Equation (3) would
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bave been reversed. With this change, however, it will be found that,

in the shrinkage fit, this equation will give negative values, showing

that p is a compressive stress. To obtain the “true” or actual stresses,

the values of t and p from (2) and (3) are modified in the succeeding

equations for the effect of lateral contraction, according to the methods

of Clavarino. -

Application of Lame's Formulas to Compound Cylinders

The shrinkage fit is applied to a compound cylinder, i. e., to two cyl

inders, one superposed on the other. The inner cylinder may be solid,

as in the ordinary shaft or hollow, as shafts and large crank-pins of

steel are often made. Fig. 4 represents such a compound cylinder, the

conditions being the same as in Fig. 3, except that the radial pressure

P, is, in Fig. 4, produced by the shrinkage of the outer cylinder of ex

TANGENTIAL STRESSES

TRUE APPARENT

º
r

Machinery, N. Y.

Fig. 4. Compound Cylinder consisting of an Outer

Cylinder shrunk onto an Inner

ternal radius R. There is no external pressure on this cylinder, ex

cept that of the atmosphere, which is negligible. In the shrinkage fit,

the metals of the inner and outer members may not be the same, and

the tangential stresses in the two cylinders at the contact surface also

differ.

Let E = modulus of elasticity, outer cylinder,

E,- modulus of elasticity, inner cylinder,

q = factor of lateral contraction, outer cylinder,

q, - factor of lateral contraction, inner cylinder,

to = apparent tangential unit-stress, inner surface of inner cyl

inder,

i = apparent tangential unit-stress, outer surface of inner cyl- .

inder.

To and T. = corresponding true tangential stresses,

po and p, = corresponding apparent radial stresses,

tº – apparent tangential unit-stress, inner surface of outer cyl

inder, - -

T. = corresponding true tangential stress,

p2 = corresponding apparent radial stress.
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It should be observed that, in deriving Equation (2), t was assumed

to be a tensile stress. Therefore, in the deductions by substitution

which follow, if the formula gives a negative value, the stress to or

t, which represents t for these conditions, is compressive. Similarly

in Equation (3) p is by hypothesis always a compressive stress, and

the formula gives, in the substitutions, simply its numerical value, as

p, p.2, etc., for various conditions, and these values, when used in the

equations for the true stresses, should have the minus sign.

Outer Cylinder

In a shrinkage fit, the only important stress in this cylinder is the

true tangential stress at the inner surface, where that stress is a maxi

Machinery,N.Y.

Fig. 5. Graphical Representation of Stresses produced by Shrinkage Fits

mum. (See Fig. 5). Since, for equilibrium, the pressure P, from the

outer cylinder must be opposed by an equal and opposite pressure from

the inner cylinder, the former cylinder is virtually under the same

conditions as the latter, except that it is not subjected to external pres

sure. Hence, Equations (2) and (3) may be applied to the outer cyl

inder, by changing R, to R, R, to R, P, to P, and P, to zero. Making

these substitutions and with r= R, we then have the apparent unit

stresses in the outer cylinder at the inner surface:

P, (R, +R,”)

tº =— (4)

R,”—R,”

p2 = P1 (5)

Considering lateral contraction, the corresponding true tangential

tensile unit-stress is:

T. = t2 – (– p p.) = t2 + q pa

R.” -- R,”

T.= P, ( #1.) (6)

R,” — R,”
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Inner Cylinder, Hollow

This cylinder corresponds to a hollow shaft forming the inner mem

ber of a shrinkage fit. The stresses to be found are the true tangen

tial stress at the outer surface, which is required to determine the al

lowances, and the similar stress at the inner surface, since the tangen

tial stress in such a cylinder is compressive and reaches its maximum

at the bore (See Fig. 6). Equations (2) and (3) are applicable, if P,

be made equal to zero, since there is only the atmospheric pressure on

the bore of the shaft.

tg t 2

t 3 t 3

e Je

i

No
d e (I l A:

|

|

Pl º He——R1 }

|
| b a a" H+|H te"

|

| K–––RT-—->|<——Ro->||FKR,

| - | | | Pra

K-————R-———- º

l |
W

t 1 |

y

20

to Machinery, N. Y.

Fig. 6. Graphical Representation of Stresses produced by Shrinkage Fits

Making r= R1, and Po= zero, we have the apparent unit-stresses in

the inner cylinder at the outer surface:

P, (R, + R,”)

t, E— (7)

R,” — R,”

p, - P, (8)

The corresponding true tangential compressive stress is:

T1 = ti - (- p. p1) = t 1 + q', p,

R,” + R,”

T =— P, I——q), (9)

R,”- R.”

For the inner surface, r= Ro, and P,- zero in Equations (2) and

(3). The apparent stresses, therefore, are:
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2 R,”

tº–— P, X —— (10)

R,” — R.”

p,= 0 (11)

Since po= 0, the true tangential compressive stress is:

2 P, R,” -

T,- t, =—— (12)

R,”- R.”

which is evidently greater, numerically, than T.

Inner Cylinder, Solid

If the inner cylinder be solid, the conditions will correspond With

those of a solid shaft forming the inner member of the fit. Equations

(2) and (3) will apply, if R, and Po be made equal to zero. The only

stress of importance is the tangential stress at the outer surface, which

is required in determining the allowances.

Making these substitutions, the apparent stresses at the outer surface

are:

t, -— P, (13)

p1 = P, (14)

The true tangential compressive stress is, therefore:

T. = ti — (– pip,) =t + qi p,

The values given in Equations (13), (14) and (15) are valid for any

point between the outer surface and the center of a solid shaft, since, if

in Equations (2) and (3), Ro and Po be made equal to zero, the second

term of the right-hand member of each equation vanishes, no matter

what value may be given to r, the radius of the point considered. In

general, therefore, in a solid shaft subjected to a uniform external

radial pressure, the true radial and tangential compressive stresses are

equal at all points, and the intensity of each is uniform throughout.



CHAPTER III

FORMULAS FOR STRESSES IN THE HUE

As shown in Fig. 5, the tangential tensile stress in the hub reaches

its maximum at the inner surface and decreases rapidly from that Sur

face outward. The true stress at the bore is therefore of primary im

portance, since the metal is under its greatest stress there. This stress

must not exceed the elastic limit, and is one of the factors which deter

mine the “grip” of the fit. In Equation (6), the radii are those of the

expanded hub, and the use of these dimensions would make computa

tion complex. No material error will be caused by the substitution for

them of the corresponding nominal radii, i. e., those of the hub before

expansion, and thus disregarding the allowances which are but a few

thousandths of an inch.

Let D, - nominal internal diameter of hub,

D. := nominal external diameter of hub,

R.” + R.” D,” + D,”

Q –—– -

R – R. D. —D.'

q = 1/3 for steel and 1/4 for cast-iron.

Substituting in Equation (6):

T. = P, (a + q)) (16)

4D,” + 2D,”

T,EP, X for steel, (17)

3 (D.” — D,”)

5.D.” -- 3D,”

T. = P, X—for cast-iron. (18)

4 (D.”- D,”)

Resistahce of Hub to Bursting Load

The relation between the bursting load on the hub, due to the radial

pressure on the fit, and the true tangential stress which resists it, is

shown graphically in Fig. 5. If a cylinder be subjected to the unit in

ternal radial pressure P1, the force tending to burst it on a diametral

plane is equal, for a section of unit length, to the product of this pres

sure by the diameter, or P, X 2R, which is the area of the load-dia

gram dee'd'. This bursting load is resisted by, and equal to, the sum

of the true tangential stresses in the cylinder-walls, which sum is rep

resented by the two equal stress-diagrams, abod and a'b'c'd''. Hence:

Load-area dee'd'+ 2 × stress-area abed.

The stress-area is laid out by plotting as ordinates on the diameter

the values of the true tangential stress, t + p p, as found by the meth

ods on page 13, and giving r various values from R, to R. The aver
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age tensile unit-stress in the cylinder-wall, or in the hub in this case,

is equal to the area of the load-diagram, divided by the thickness of

P, R,

the hub i. e., -.

R2— R,

Fig. 5 shows that it is impossible for the shrinkage-load on the hub

to burst that member, so long as the true hoop stress T', at the bore

does not exceed the ultimate tensile stress of the metal. Again, divid

ing Equation (5) by (4), we have from the apparent stresses:

102 P, R.”— R.”

—, (19)

ta ta R.” + R,”

which equation proves that the radial pressure P, at the fit can never

be equal to the apparent hoop stress to in the hub at the bore, even if

tº be the ultimate tensile strength and R, be increased indefinitely.

This is again shown by the fact that the equation may be transformed

into

R. N tº + Pl

R1 tº- P,

from which it appears that if P = t2, R, becomes infinite, i. e., no thick

ness whatever will prevent rupture. This condition fixes the useful

limit of thickness of a cylinder, not reinforced by one or more enclos

ing cylinders so shrunk on as to put the innermost cylinder under ex

terior compression. No unsupported cylinder can be made thick

enough to withstand an internal pressure per square inch which is as

great as, or greater than, the ultimate tensile strength of the metal.

Rankine gives in “Applied Mechanics,” London, 1869, page 293:

R, T + P,

R, N T — P. -- 2 P,

in which T is the ultimate tensile strength of the metal of the cylin

der. From this equation it follows that if the internal pressure P, is

equal to or greater than the sum T + 2 Pa, of the ultimate strength and

twice the external pressure, no thickness, however great, will enable

the cylinder to resist the pressure.

With regard to the possible intensity of shrinkage-stresses, it should

be borne in mind that shrinkage fits are usually made on the working

parts of machines, and hence that the stresses due to shrinkage may be

increased by others developed by the external forces applied to the

member when the machine is in operation. In such cases, the total

stress which will exist at any time should be considered in determining

the shrinkage-allowances.

Effect of Thickness of Hub on Resistance to Slip

The principle governing the effect of the thickness of hub on the re

sistance to slip may be seen most readily from the formulas for the

apparent stresses. Thus, Equation (19) shows that if the radius of the
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fit and the tangential stress at the bore of the hub are constant, the

effect of variation in the external radius is simply to change the inten

sity of the radial pressure P, at the fit—a greater hub-thickness in

creasing the “grip,” and a smaller decreasing it. Thus, if R,+ 2 R,

P. - 0.6 t.; if R,= 3 R, P, = 0.8 t, etc.

From Equations (17) and (18), we have:

3 (D.”—D,”)

P, - T, X——for steel, (20)

4 D.” + 2 D,”

TABLE I

Values of Ratio 4, as computed from Equation (22).

- P1 - Pl

Ratio of Nomi. Ratio A *T ||Ratio of Nomi-] Ratio A = TI
nal Dameº 2 nalDiamº 2

of Hub,+ |TT|| of Hub,+
D1 Steel | Cast Iron D1 Steel | Cast Iron

(q = 3) | (p = }) (? = }) ] (b = 3)

1.5 0.341 0.351 2.8 0.615 0.648

1.6 0.382 0.395 8.0 0.682 0.666

1.8 0.449 0.466 8, 2 0.645 0.682

2.0 0. 500 0. 522 3.4 0.657 0.695

2.2 0. 539 0. 565 3.6 0.666 || 0 706

2.4 0.570 0. 599 3. 8 0.675 0.715

2.6 0. 595 0.626 4.0 0.682 0.728

4 (D,” — D,”)

P, = T, X for cast-iron, (21)

5 D,” + 3 D,”

which give the values of the radial pressure at the fit in terms of the

true tangential stress at the bore of the hub.

From Equation (16):

P, 1 D.”—D,”

-: =A (22)

T, a + p D,” (1 + q ) + D,” (1–4)

a ratio which is of service in computing the allowances. Table I gives

values of A for various diametral ratios. If the true tangential stress

T, is known or assumed for any of the diametral ratios tabulated, the

intensity of P. and hence the resistance of the fit to slip may be found

by multiplying T, by the corresponding value of A.



CHAPTER IV

FORMULAS FOR STRESSES IN THE SHAFT

The radial and tangential stresses in the inner member are, as shown

previously, both compressive. To both, the same principle applies:

each is a measure of the deformation in its direction only at the point

where the given intensity of stress exists. If, for example, the radial

stress varies from the circumference to the center, its intensity at any

given point will not measure the deformation of the entire radius of

the member, but only the amount of deformation at the point consid

ered. The only stress which will cover both cases—solid and hollow

shafts—and give the reduction in the external diameter of the mem

ber, is, therefore, the true tangential stress at the outer surface, since

the circumference of that surface and its diameter must decrease to

gether. As with the hub, the nominal diameters may be substituted

for the corresponding dimensions of the compressed shaft.

Let Do = nominal internal diameter of hollow shaft,

D,- nominal external diameter of hollow or solid shaft,

R,” + R. D,” + D,”

h- - »

R,”— R. D.”— D."

T,

—= B

P,

p, - 1/3 for steel and 1/4 for cast iron.

Solid Inner Members

Equation (15) gives the true tangential stress at the outer surface.

From that equation:

T =— 2/3 P. for steel (23)

T =—3/4 P, for cast iron. (24)

Since T, is a compressive stress:

T, -

—= 1— p, = B for solid inner members (25)

P,

This ratio is of service in computing the allowances. In a solid

shaft, both the radial and tangential stresses are, as mentioned before,

uniform in intensity from the outer surface to the center, and are equal

at all points.

BIollow Inner Members

Equation (9) gives the true tangential stress at the outer surface.

From that equation: -

T. =— P, (h — q,) (26)

2 D,” + 4 D.”

T.=— P, X for steel, (27)

3 (D,”- D.”)
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and, since T, is compressive:

T,

—= h – p, — B for hollow inner members. (28)

P,

Equation (12) gives the true tangential stress To at the inner surface.

From (12) and (27):

T, 3 D,”

—=—for steel. (29)

T, D,” + 2 D,”

This expression shows the marked increase in the tangential stress

from the outer surface to the bore.

The values of B for hollow steel shafts of various diametral ratios

are given in Table II.

Work Done in Compressing Solid and Hollow Shafts

The compressibilities of solid and hollow shafts differ, the solid shaft

being the stiffer. In a solid shaft under radial pressure, the radial and

TABLE II

Values of Ratio B for hollow steel shafts of external and internal

diameters, 191 and Do, respectively.

D1 T, D1 T,

- B = — - B = —

Do P1 Do P1

2.0 1.333 3.0 0.917

2.5 1.048 3.5 0.844

For solid inner members Equation (25), B = 2/3 for steel and 3/4

for cast iron.

tangential stresses are equal at all points, as mentioned, and their in

tensity is uniform throughout. This can be proved from Equations (2)

and (3) by making Ro and Po equal to zero. The second term of the

right-hand members of both equations will then disappear, and for any

value of r from zero to R, t=— P, and p = Pl, p being a compressive

stress by hypothesis. These relations are shown graphically in Fig. 6,

where Oa= co - P = t= p. The diagram Oabc, therefore, repre

sents the total apparent tangential stress in one-half of a solid shaft.

Since this total stress is produced by the total stress in the left side of

the hub, whose tangential value is represented by the diagram cdef,

the two stress-areas are equal, or Oabc = cdef = P, X R.

Now, consider the hollow shaft on the right-hand side (Fig. 6), whose

original diameter was sufficiently greater than that of the solid shaft

to make the radius R, of the fit and the radial pressure P, on the latter

the same as before, with the same hub and hub stresses, so that ghkl =

cdef. From Equation (7) it will be seen that the apparent tangential

stress at the outer surface is P1 h, and is hence greater than that of a

solid shaft [Equation (13) 1, since h is always more than unity. Equa
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tions (2) and (3), with suitable substitutions, show that the tangential

stress increases rapidly toward the bore, where its magnitude is given

by Equation (10). The area representing the total tangential stress is

lmnq. Fig. 6, and, as before, lmma= ghkl = cdef = P, X R. The

radial stress is no longer uniform as in a solid shaft, but is equal to

P, at the outer surface, and decreases to zero at the bore [see Equa

tions (8) and (11)].

It will be seen, then, that if two shafts—one solid, the other hollow—

when subjected to the same external radial pressure P, are compressed

to the same radius R, the tangential stresses in the hollow shaft will

be considerably greater than those in the solid shaft. The reason for

this increased effect of P, on the tangential stress is that the hollow

shaft lacks the support of the solid and compressed cylinder of radius

R, which has been removed at the bore. In the solid shaft, at the

layer of radius Ro, there is an outward radial pressure equal to Pi,

while, in the hollow shaft, at this radius, the radial pressure is zero.

These relations can be shown by making Po= P, in Equation (2),

when the second term of the right-hand member will disappear, and,

at all radii between Ro and R, the tangential stress will be equal to

Pl, as in a solid shaft. In this assumed case, the outward radial pres

sure P, at the bore produces the total apparent tangential tensile stress

in the hollow shaft shown by the area qsvl, and, if this be deducted

from the area liming, the remainder will be the area luxarq, corresponding

with that for a solid shaft between the radii R, and Ro. The deduc

tions, as above, apply also to the true tangential stresses, which are the

same in kind as the apparent stresses, although differing in intensity.

Effect of Lateral Contraction

It has been shown that in the outer member of a shrinkage fit, lateral

contraction increases the apparent radial and tangential stresses, each

by an amount equal to one-third for steel, so that the true stresses are

that much greater, and that in the inner member there is the same pro

portionate, but reverse, effect, which acts to reduce the intensity of the

direct stresses. This action also develops secondary longitudinal stress

es in both members, which, however, are negligible in a shrinkage fit.

Thus, in the outer member, the tangential tensile stress t produces a

longitudinal compressive stress whose intensity is p t, and the radial

compressive stress p causes a longitudinal tensile stress equal to pp.

The resultant longitudinal compressive stress at any point of radius r

is then (see Fig. 3):

=— p t + q p =— p (t — p)

As an extreme example, take a steel hub shrunk on a solid steel shaft,

the external diameter of the hub being 1.5 times that of the shaft. Let

the shrinkage allowances be such as to produce a true tangential tensile

stress of 30,000 pounds per square inch at the bore of the hub. From

Table I we find that the unit radial pressure on the fit is 10,230 pounds.

Applying the formulas previously given:
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Hub at Bore: Apparent Stress True Stress

Tangential tensile stress 26,598 30,000

rtadial compressive stress 10,230 19,096

Shaft at Outer Surface:

Tangential compressive stress 10,230 6,820

Radial compressive stress 10,230 6,820

The stresses given in the table above were calculated as follows:

The true tangential unit stress T, at the bore of the hub is 30,000

R.

pounds, the ratio of the hub diameter is —= 1.5; from this ratio, R. =

R,

2.25 R,”. From Table I, when R, +- R,= 1.5, with both members of steel,

ratio A = 0.341. Hence

P, P,

T. 30,000

P, = 30,000 × 0.341 = 10,230 pounds = unit radial pressure.

Hub at bore.—The apparent tangential tensile stress is:

P. (R.” + R,”)

t,-— (4)

R.” — R,”

Substituting the values of P, and R, :

= 0.341

3.25

t,- 10,230 × —=26,598 pounds.

1.25

The apparent radial compressive stress is:

p2 = P1= 10,230 pounds. (5)

1

The factor of lateral contraction p, for steel, is —=0.333. The true

3

tangential stress is:

R.? -- R,”

T. - P, —H· q, (6)

R,” — Riº

3.25

== P, + 0.333 || = 30,000 pounds.

1.25

The true radial stress is:

4 (R,” + R,”)

Ps = P, 1 +—

R2" — Riº

3.25

-*( + 0.333 × ) =19,096 pounds.

1.25

Shaft at outer surface.—The shaft is solid. The apparent tan

gential (compressive) stress at the outer surface is:

t, - P = 10,230 pounds. (13)

The apparent radial (compressive) stress is:

pl = P,- 10,230 pounds. (14)
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The true tangential stress is:

T. = P, (1— p) = 10,230 (1– 0.333) = 6,820 pounds. (15)

The true radial stress is:

P", = P, (1 — p) = 6,820 pounds.

It will be seen that the use of the apparent, in place of the true,

stresses introduces errors which, with regard to the hub, may be

serious even in less extreme cases than the above.

Resistance to Slip

The resistance of the fit to slip is theoretically equal to the product

of the area of the contact-surface times the unit radial pressure on

that surface times the coefficient of friction.

Let D, - nominal diameter of fit,

L = length of fit,

P. = unit radial pressure on fitted surfaces,

f = coefficient of friction,

Q = total resistance to slip.

Then Q = tril), X L X P, X f (30)

Since slip begins with the parts at rest, the coefficient of friction

for rest applies in computing the initial resistance. There is con

siderable variation in the values given for this coefficient. Reuleaux

and Weisbach use 0.2. Rennie, in experiments on metals usually

unlubricated, found the following values for f:

Wrought-iron on cast iron 0.28 to 0.37

Steel on cast iron 0.3 to 0.36

In Professor Wilmore's experiments, the average value of this co

efficient was 0.102. These tests were made with a series of cast-iron

disks, 4 inches in diameter and 1 inch thick, which were either forced

or shrunk on steel spindles about 1 inch in diameter, the fit being

about 1 inch long. Five sets of these spindles were used, the diam

eter of the first set being 1.001 inch and the allowances for each

subsequent set increasing by 0.0005 inch. The spindles were pulled

from the disks in the “tension” tests of the fit and twisted in the

holes in measuring the resistance to slip in torsion. The shrinkage

fits were found to be 1.5 times, and the forced fits 1.3 times, stronger

in torsion than in tension. This result was to be expected, if the

resistance measured was not that to initial slip only, since, in torsion,

the grip is undiminished during progressive slipping, while, in ten

sion, the area under pressure decreased steadily as the spindles left

the disks. -

Let P= force acting to twist a solid shaft,

p= lever arm of P,

J= polar moment of inertia of shaft,

c = distance of most remote fiber of shaft from axis of latter,

S.= shearing stress at distance c = maximum unit shearing

Stress,

D, - diameter of shaft.
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Then:

J ºr D14

PX p = S, X — = S,

C

and from equation (30):

QD, D,

—= m. D, LP, f X —

2 2

Taking P, and S, as constant, and equating, we have L = KD, in

which K is a constant. Therefore with a constant radial pressure,

the length of the hub should vary as the diameter of the shaft, in

order to make the grip of the fit proportional to the torsional strength

of a solid shaft. For both practical and theoretical reasons, it is

impossible to make the grip equal to this strength. Hence, with

diameters of 2 inches and upwards, keys should be fitted in addition.



CHAPTER V

SHRINKAGE ALLOWANCES

The total allowance for shrinkage is the difference between the

external diameter of the inner member (shaft) and the internal

diameter of the outer (hub), before shrinkage. The unit shrinkage

allowance is the allowance per inch of nominal diameter, in either

case, as above; and also, in either case, the unit-deformation of a

given circumference or diameter is the difference between its lengths

before and after shrinkage, divided by its original length. The prin

ciple which is applied in the derivation of formulas for shrinkage

allowances, is that the unit-deformation at any point is the quotient

of the unit-stress at that point, divided by the modulus of elasticity.

In a shrinkage fit, the unit-deformations considered are those at the

fit, and the unit-stresses to which these deformations correspond are

manifestly the “true” or actual stresses, and not those which have

been termed “apparent” in this discussion, since, as has been shown,

the effect of lateral contraction is important.

The length of a given circumference varies directly as that of its

diameter. Hence the unit-deformation will be the same for both,

and this deformation when due to the true tangential stress in the

hub at the bore, will be the unit-deformation of the internal diam

eter of the hub. Similarly, for both solid and hollow shafts, the unit

deformations of the external diameters are those of the circumfer

ences of their outer surfaces, produced by the true tangential stresses

there, since that circumference and the external diameter decrease

together. For the unit-deformation of the external diameter of the

inner member, that due to the true radial stress at the outer surface

will serve only for a solid shaft, since in it, as shown in Fig. 6, the

tangential and radial stresses are equal to each other at all points

from the circumference to the center, while, in the hollow shaft, the

intensity of the radial stress varies from P1 at the outer surface to

zero at the bore, and hence the deformation due to this stress at any

given point is that corresponding only with the infinitely small element

of radius in which that stress exists, and not with the average unit

deformation of the whole radius. -

The algebraic methods employed below are those of Reuleaux*,

the true stresses being substituted, since his formulas do not con

sider lateral contraction, and apply only to solid shafts, as the radial

stress in the inner member is used in their deduction. As before, let

P. = radial pressure on fitted surfaces,

T. = true tangential compressive stress at outer surface, inner

member,

“The Constructor,” Suplee's translation, Philadelphia, Pa., 1895, page 17.
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T. = true tangential tensile stress at inner surface, outer member,

R, + radius of fit,

R = actual internal radius of outer member before expansion,

R’ = actual external radius of inner member before compression,

R” – R.

S = unit shrinkage-allowance=—,

R

E and p = modulus of elasticity and factor of contraction, outer

member,

E, and p, — modulus of elasticity and factor of contraction, inner

member.

P. T,

A =—; =—; C=A × B= T, -- T.

T. P,

TABLE III

Values of Ratio C for solid steel shafts of nominal diameter D1, and

hubs of steel or cast-iron of nominal external and internal diameters A),

and D1, respectively.

T, T,

Ratio of pian- “” “*** T || Ratio ofBºm- C = A X B = T.

eters 2 - eters 2

1. Steel Cast-iron 1. Steel Cast-iron

Hub Hub Hub Hub

1.5. 0.227 | 0.234 2.8 0.410 || 0.432

1.6 0.255 0.263 3.0 0.421 0.444

1.8 0.299 () 311 3.2 0.430 0.455

2.0 0.333 || 0.348 3.4 0.438 0.463

2.2 0.359 || 0.377 3.6 0.444 0.471

2.4 0.380 0.399 3.8 0.450 0.477

2.6 0.397 0.417 4.0 0.455 0.482

By the definition of the modulus of elasticity, we have, at the ra

dius R, of the fit, for: -

R, - R T,

outer member,—=—

R E.

R" — R, T,

inner member, --—

R’ 1.

Adding, we have:

RT, R"T

R”– R = + (31)

E E,

Dividing by R:

R” – R. T. R. T.,

S =—=— —— — X – (32)

From (31):
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Substituting this value in (32):

T, T,

—- -H—

E E,

S=——.

T,

1 ——

E,

TABLE IV

Values of Ratio C for hollow steel shafts of external and internal

diameters /9, and /Po, respectively, and steel hubs of nominal external

diameter D2.

-

-

−

==

-

D2 D1 D2 D1

-- - C | - - C

D1 Do D1 Do

2.0 0.455 2.0 0.820

1.5 2.5 0.357 2.8 2.5 0.645

- 3. () (). 313 *~ . 3.0 0. 564

3.5 0.288 3.5 0. 519

2 0 (). 509 2.0 0.842

1.6 2.5 0.400 3.0 2.5 0.662
- 3. () 0.350 •x . 3.0 0. 580

3.5 0.322 3.5 0. 533

2.0 0. 599 | 2.0 0.860

1.8 2.5 0.471 3.2 2.5 (). 676

- 3.0 0.412 - 3.0 0. 591

3.5 0.379 3.5 0.544

#! 0.667 2.0 0.876

- (). 524 2.5 0.689
2.0 3.0 (). 459 3.4 3.0 0.602

3.5 0.422 3.5 0. 555

2.0 0.718 2.0 0.888

2.2 2.5 0. 565 3.6 2.5 0.698

... aw 3.0 0.494 - 3.0 0.611

3.5 0.455 3.5 0. 562

2.0 0.7.60 2.0 0.900

2 5 () 597 2.5 0.707

*4 3.3% 3.8 3.0 || 0.619

3.5 0.481 3.5 0.570

2. () 0.793 2.0 0.909

2. (3 2 5 0.624 4.0 2.5 0.715

. U 3.0 0.546 - 3.0 (). 625

3.5 0. 502 3.5 0. 576

The second term of the denominator is so small as to be negligible.

Hence:

T. T,

S=— ——— (33)

E. E,

This equation is not in a practical form, since for a given value of

S, there are two unknown quantities.
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P,

From Equation (22), A = ; Equations (25) and (28) give

2

T, T, T,

the value of B= Let A X B= C=—. Then T. = ——

- 1 T, C

and T.= CT. Substituting in (33):

TABLE V

Values of Ratio C for hollow steel shafts and cast-iron hubs.

Notation as in Table IV. -

D2 D1 D2 D1

-- -- C -- C

D1 Do D1 Do

2.0 0.468 2.0 0.864

1.5 2.5 0.368 2.8 2.5 0.679

- 3.0 0.322 - 3.0 0. 594

3.5 0.296 3.5 0. 547

2.0 0. 527 2.0 0.888

1.6 2.5 0.414 3.0 2.5 0.698

- 3.0 0.362 - 3.0 0.611

3.5 0.333 3.5 0. 562

2.0 0.621 2.0 0.909

1.8 2.5 0.488 3.2 2.5 0.715

- 3.0 0.427 - 3.0 0.625

3.5 0.393 3.5 0.576

2.0 0.696 2.0 0.926

2.0 2.5 0.547 3.4 2.5 0.728

- 3.0 0.479 - 3.0 0.637

3.5 0.441 3.5 0. 587

2 0 0.753 2.0 0.941

2.5 0. 592 - 2.5 0.740
2.2 3.0 0. 518 3.6 3.0 0.647

3.5 0.477 3.5 0. 596

2.0 0.798 | 2.0 0.953

2.5 0.628 2.5 0.749

2.4 3.0 0. 549 3.8 3.0 0.656

3.5 0. 506 3.5 0.603

2.0 (). 834 2.0 0.964

2.6 2.5 0.656 4.0 2.5 0.758

- 3.0 0. 574 - 3.0 0.663

3.5 0. 528 3.5 0.610

T, CT,

S=— —— (34)

E E1

T, T,

S = +— (35)

E1 CE

Multiplying (22) by (25), and also by (28), we have,

1 — p,

for a solid inner member, C= (36)

a + 'p
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h — p,

for a hollow inner member, C= (37)

a + 'p

The values of C for various diametral ratios are given, for solid steel

shafts with steel or cast-iron hubs in Table III; and, similarly, for

hollow steel shafts, in Tables IV and V.

Taking the modulus of elasticity for steel as 30,000,000, and for cast

iron as 15,000,000, equations (34) and (35) become, for a cast-iron hub

and a steel shaft:

T, (2 + C)

S = - (38)

30,000,000

T, (2 + C)

S=— (39)

C X 30,000,000

and, for both hub and shaft of steel:

T, (1 + C)

S =— (40)

30,000,000

T, (1 + C)

S=— (41)

C X 30,000,000
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CALCULATING SEIRINKAGE FITS

In designing shrinkage fits, there are but two main principles to

remember. First, the stress in the hub at the bore, which is the most

important consideration, depends chiefly on the shrinkage-allowances.

If the latter be, too large, the elastic limit will be exceeded and per

manent set will occur; or, in extreme cases, the ultimate strength of

the metal will be passed and the hub will burst. Second, the inten

sity of the grip of the fit, and hence the resistance of the latter to

slip, depends mainly on the thickness of the hub. The greater this

thickness, the stronger the grip; and vice versa. Formulas (34) and

(35) and Tables I and III serve all general purposes in practice. In

formation in detail can be obtained as follows:

a. For a given allowance per inch of diameter, the true tensile

stress T, in the hub at the bore can be found from Equations (34),

(38), or (40). These equations hold only up to the elastic limit. It

will be seen that by increasing or decreasing the allowances, any

stress up to this limit can be produced at the bore, and this stress will

be the maximum tensile stress in the hub.

b. When T., is assumed at any desired value below the elastic

limit, the corresponding unit-allowances can be found by substituting

in Equation (34).

c. Equations (6) and (22) and Table I show the relation between

the true tensile stress in the hub at the bore and the radial pressure

on the fit. There are several factors which govern the intensity of

this radial pressure: the magnitude of the allowances, the compres

sibility of the inner member, and the expansibility of the outer. The

two latter depend on the metals; the last is affected by the thickness

of the hub.

d. When T., is known, the value of P, can be obtained from Table

I or equation (22).

e. The true tangential compressive stress T, at the outer surface

of the inner member is usually of minor importance in design; its in

tensity can be found from (35). The true radial compressive stress

at the surface is equal to the radial pressure Pl, minus the product of

q, by the value of t, as given by (7) and (13).

f. At the bore of a hollow shaft, the radial pressure is zero. Equa

tion (12) gives the true tangential compressive stress.

g. The intensity of the apparent stresses is, in general, of academic

interest only. To ascertain their magnitude, the true stresses are first

found from (34) and (35); Equations (25) or (28) will then give the

value of the radial pressure P, and, by substituting this in the equa

tions on pages 13 to 15, the apparent stresses can be determined.
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Examples

, Erample 1.-A steel crank-web, 15 inches least outside diameter, is

to be shrunk on a 10-inch solid steel shaft. Required the allowance

per inch of shaft-diameter to produce a maximum tensile stress in

the crank of 25,000 pounds per square inch, assuming the stresses in

the crank to be equivalent to those in a ring of the diameter given.

D., 15

—=—=1.5; T.= 25,000. From Table III, c = 0.227. Substi

D1 10

tuting in Equation (40), we find S = 0.001 inch.

Eacample 2.-Let the shaft in Example 1 have a 5-inch axial hole

bored through it, other conditions being the same. Find the unit

allowance. -

D2 D, 10

= 1.5, as before; —=—=2; T.= 25,000. From Table IV we

D1 Do 5

find C= 0.455.

Substituting in Equation (40), we find S= 0.0012 inch, the increase.

in the allowance being due to the fact that the hollow shaft is the more

compressible of the two.

Eacample 3.−Let the crank-web in Example 1 be of cast-iron and

the maximum tensile stress in the hub be 4000 pounds per square inch.

Find the unit-allowance.

D -

-*-- 1.5; T-4000. From Table III, we find c=0.234. Sub

D1

stituting in (38) S= 0.0003 inch, which, owing to the lower tensile

strength of cast iron, is about one-third of the shrinkage-allowance

in Example 1, although the stress is two-thirds of the elastic limit.

For a forced fit, good practice gives (see Table VI) a unit-allowance

of 0.0013 inch, or one-third greater than that of Example 1. The

stresses which such an allowance would produce are, however, uncer

tain, as will be further discussed in the following chapter.

Eacample 4.—What is the radial pressure P, in the above examples?

P

For Examples 1 and 2, we find from Table I that-–0.341. Hence,

2

P, = 25,000 × 0.341= 8.525 pounds per square inch.

P

For Example 3, we find from Table I that ––0.351. In this case

2

T. = 4000, hence,

P. = 4000 × 0.351 = 1404 pounds per square inch.

Erample 5.-What is the resistance to slip per inch of length of hub

in Example 3?

In Equation (30), D, = 10, L = 1, and from Example 4 we have Pl

= 1404; f may be taken as 0.2. Then Q = 8817 pounds, which is the

total resistance of a ring of the hub, one inch in length.

Erample 6.-Let the crank in Example 3 be 20 inches least diameter,
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the other dimensions and the tensile stress remaining the same. Find

the increase in the radial pressure P1, and hence that in the resistance

to slip.

D,

In this case —=2, Table I gives the ratio A, for this condition,

1.

equal to 0.522, which is 49 per cent greater than the ratio A = 0.351

D. -

for —= 1.5. This percentage is the increase in radial pressure, and,

1.

hence, that in the resistance to slip.

Eacample 7.-What is the true tangential stress (compressive) at the

bore of the shaft in Example 22

The radial pressure P, is, from Example 4, 8525 pounds. Substi

tuting this value, and also R, = 5, and R, = 2.5 in Equation (12), the

true stress To=22,733 pounds per square inch. -

Eacample 8.-What is the intensity of the apparent tangential stresses

in the crank and shaft, Example 12

The radial pressure P, is, from Example 4, 8525 pounds. Substi

tuting this value, and also R, = 7.5, and R. = 5 in Equation (4), the

apparent tensile stress to at the bore of the hub is 22,165 pounds per

square inch. The similar compressive stress t, at the outer surface

of the shaft is, from Equation (13), equal to P.

Shrinkage Temperatures

The temperature to which the Outer member in a shrinkage fit should

be heated for clearance in assembling the parts, depends on the total

expansion required and on the coefficient a of linear expansion of the

metal, i. e., the increase in length of any section of the metal in any

direction for an increase in temperature of 1 degree F. The total ex

pansion in diameter which is required, consists of the total allowance

for shrinkage and an added amount for clearance.

The value of the coefficient a is, for nickel-steel, 0.000007; for steel

in general, 0.0000065; for cast iron, 0.0000062. As an example, take

an outer member of steel to be expanded 0.005 inch per inch of in

ternal diameter, 0.001 being the shrinkage allowance and the re

mainder for clearance. Then:

a × tº — 0.005

0.005

t =—=769 degrees F.

0.0000065

The value t is the number of degrees F. which the temperature of

the member must be raised.



CHAPTER VII -

PRACTICAL CONSIDERATIONS

Cylindrical and Tapered Fits

The form of the shrinkage fit is usually truly cylindrical and of one

diameter throughout; but both forced and shrinkage fits are, for some

classes of work, either tapered or double-cylindrical, i.e., with part of

the fit of one diameter and part of another. The advantages of the

tapered form in forced fits are: The possibility of abrasion of the

fitted surfaces is reduced; less work is required to drive the inner

member home; the drawings may be marked “Fit pin — inches from

end of hole,” which is the most trustworthy way of measuring the al

lowances; and the parts are more readily separated, if a renewal of the

fit is desired. On the other hand, the difficulty of securing with ac

curacy the same form for both fitted surfaces, is somewhat greater;

and the tapered fit is less reliable, since, if slip begins, the entire fit

is virtually free with but little movement. These advantages and dis

advantages apply also, but in less degree, to the double-cylinder form.

The practice of a prominent shipbuilding company, for both forced

and shrinkage fits in either iron or steel, is: With large fits, both

the inner and outer members have a taper of 1/16 inch to the foot;

the allowances are 0.001 inch per inch of diameter with 0.001 inch

added to the total. If the conditions are such that it is more con

venient to ream the hole with standard parallel reamers, the inner

member is tapered one half-thousandth inch (0.0005) per inch of

length, unless the fit is so long that this taper would reduce the al

lowance at the small end to less than one-half that at the other ex

tremity of the fit.

Differences between Forced and Shrinkage Fits ---

Lamé's formulas, as given in Equations (2) and (3) and as changed

in the subsequent equations for lateral contraction according to the

principles established by Clavarino, are the basis of the ordnance for

mulas employed by the United States Army and Navy. For economy

in weight, the stresses in the metal of a gun, at the instant of ex

plosion, approach closely to the elastic limit. It is evident, then, that

the use of these formulas for such work makes their accuracy, for

shrinkage fits in gun-steel, unquestionable. So far as is known, their

fundamental principles are general, and they can be employed with

equal accuracy for similar fits in cast iron. It has been customary to

assume that they could be applied also for the determination of the

stresses in the metals of forced fits. This assumption is, in the au

thor's opinion, unwarranted, so far, at least, as cast iron outer mem

bers with large forcing allowances are concerned. There seems to be

considerable evidence in support of this contention.
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The basic principle cf: shrinkage and forced fits is the same—the

radial pressure on the contact-surfaces produced by the expansion of

the outer member and the compression of the inner; but there is a

radical difference between the methods by which this principle is ap

plied in the two cases. In the shrinkage fit, the outer member, owing

to its expansion, slips freely into place, giving, in cooling, clean,

smooth, and accurately fitted surfaces. In forced fits, on the contrary,

there may be, in forcing, more or less abrasion, and, further, if the

allowances be large, there may be an axial flow of the metal of the

hub in advance of the entering shaft. It should be noted that, in

forcing allowances, we are dealing with a layer of metal whose thick

ness is, in general, but 0.001 inch per inch of diameter, so that the

total volume of the metal thus displaced would be very small, while

its removal, with that lost by abrasion, would reduce materially the

amount of the effective allowances, and, in consequence, the stresses

and “grip” of the fit. Taking the elastic limit in tension of cast iron

as 6000 to 7000 pounds and that of steel as 50,000 pounds, and con

sidering the corresponding values of E, the former will endure, with

out permanent set, less than one-fourth the deformation of the latter,

yet the forcing allowances of the two metals are often made the same,

and, further, with the same metals and dimensions, some builders

make the allowances for forcing considerably greater than those for

shrinkage fits. In such cases, there must be either permanent set in

the cast-iron hub, or the effective allowances must be materially les

sened by abrasion, displacement, or both.

In Professor Wilmore's tests, the average resistance of the shrinkage

fit to slip was, for an axial pull, 3.66 times greater than that of the

forced fit, and, in rotation or torsion, 3.2 times greater. In each com

parative test, the dimensions and allowances were the same for both.

These results imply either permanent set or considerable abrasion or

displacement of the metal of the forced fit. While these experiments

were made on a small scale, they agree with the general estimate of

the comparative strength of forced fits.

Table VI represents the practice of one of the largest builders of

engines and other machinery in the United States, in forcing cast

iron cranks and wheel-hubs on steel shafts. The allowance for a

crank is greater than that for a wheel-hub, and, with both, the allow

ance per inch of diameter decreases with increasing diameter. Take -

the unit-allowance for a 12-inch wheel-hub which is 0.001 inch. AS

Sume the ratio of the external diameter of the hub to that of the shaft

(solid) as 1.8, which gives a hub-thickness of 4.8 inches. If in Equa

tion (38), S= 0.001, and, from Table III, C = 0.311, then the true

tensile stress T., at the bore of the hub is about 13,000 pounds, or twice

the elastic limit of cast iron. Again, we have here indications of per

manent set, excessive abrasion, or very considerable displacement of

the metal, so that the effective allowances cannot be those initially

given.

Finally, the following formulas given by Mr. Stanley H. Moore may
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be cited. In these formulas, d denotes the total allowance, and D is

the diameter of the shaft, in inches.

17

— D + 0.5

16

Shrinkage fit d =

1000

2 D + 0.5

Forced fit - d =—

1000

These formulas show again a much greater allowance for forcing

than for shrinkage. -

Forced fits may be made by levers, screw-jacks, or hydraulic pres

sure, the latter being the most common. In the drive-fit, the pin is

TABLE VI. ALLOWANCES FOR FORCED FITs

Steel Shaft and Pin to Cast-iron || Steel Shaft to Cast-iron Wheel-hubs.

Cranks. Average pressure re- Average pressure required = 10

quired = 12.5 tons (of 2000 pounds) tons (of 2000 pounds) per inch of

per inch of diameter. diameter.

Diameter of Allowance per Inch Diameter of Allowance per Inch

shaft, inches “offiameter” shaft, inches of Siameter

4 (). ()030 12 0.0010

5 0.0024 13 0.0009

6 0.0020 15 0.0008

7 0.0017 17 0.0007

8 0 0015 18 0.0006

9 - 0.00185 19 0.00055

10 0.0013 22 0.0004

11 0.0012 23 0.00035

12 0.0010 - 24 0.0003

13 (). 0010 26 0.00025

14 0.0010 | 27 0.0002

15 (). 0010 - - - - - - - - - - -

16 ().0009 - - - - - - - - - - -

18 0.0008 - - - - - - - - - - - -

20 0.00075 - - - - - - - - - - -

sent home by sledges; the allowances are usually about half that of a

forced fit. With these various methods and the many purposes for

which forced fits can be used, it is natural that the custom as to the

amount of the allowances should differ, as it does, very widely, so that

the practice cited here is not universal. The purpose of this dis

cussion has been simply to point out that shrinkage formulas will not

give with accuracy the stresses in a cast-iron hub, when the allow

ances are very large, or in any forced fit, with undue allowances. Such

a fit differs essentially from the shrinkage joint for which the formulas

were constructed.

Cotterill says in his “Applied Mechanics,” London, 1895, page 412:

“When the limit of elasticity is overpassed, the formula (Lamé's).

fails, and the distribution of stress becomes different. If the pressure

be imagined gradually to increase until the innermost layer of the

cylinder begins to stretch beyond the limit, more of the pressure is
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transmitted into the interior of the cylinder, so that the stress be

comes partially equalized. If the pressure increases still further, the

tension of the innermost layer is little altered, and, in soft materials,

longitudinal flow of the metal commences under the direct action of

the fluid pressure. The internal diameter of the cylinder then in

creases perceptibly and permanently. This is well known to happen

in the cylinders employed in the manufacture of lead piping, which

are exposed to the severe pressure necessary to produce flow in the

lead. The cylinder is not weakened but strengthened, having adapted

itself to sustain the pressure. Cast-iron hydraulic press cylinders are

often worked at the great pressure of 3 tons per square inch, a fact

which may perhaps be explained by a similar equilization.”

Forcing Pressure

When the fit is cylindrical, the forcing pressure varies as the rate

of advance of the inner member, reaching a maximum in continuous

forcing when the pin or shaft is at the inner end of the hole. At this

point, the pressure is theoretically equal to Q, the resistance to slip,

as given in Equation (30), the coefficient of friction f being probably

between 0.12 and 0.2, although it may vary widely. Tables VI and

VIII give values of the forcing pressure, as found in practice. The

assumption above, that the maximum forcing pressure is equal to the

resistance to slip, is true only if that pressure is expended wholly in

overcoming the obstruction to motion produced by the resistance of

the outer member to expansion and of the inner to compression. If

there is abrasion of the surfaces, or axial displacement of the metal

in advance of the entering member, the assumption is not fully jus

tified.

Applications in Practice

Railway Work. In railway work, steel tires are shrunk on the cast

iron wheel-centers of driving wheels. The fit is cylindrical; a com

mon, although not universal, shrinkage-allowance is 0.001 inch per

inch of diameter of the finished wheel. Forced fits are used for se

curing wheels to axles and crank-pins to driving wheels. In wheel

fits, the joint is cylindrical; the pressure is usually 9 to 10 tons per

inch of diameter of fit. In removing a wheel after long service, the

total pressure may reach 150 tons.

Stationary Engines. Shrinkage and forced fits—the latter more fre

quently—are used for crank-pins, cranks, wheel-hubs, and minor parts.

With different builders, the amount of the unit-allowance has a wide

range, owing to differences in the thickness of hubs, the forcing pres

sure employed, etc. General practice seems to favor a smaller allow

ance for shrinkage than for forcing, and, with increasing diameter, a

decreasing unit-allowance. The latter is usually greater for cast iron

than for steel. Table VII, which gives the data for typical fits from

different builders, shows the variation in practice. In Table VIII*

will be found complete data for forced fits from 2 to 9 inches in diam

eter.

* MACHINERY, May, 1897.
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Marine Engines. In marine work, built-up crank-shafts are as

sembled and the casings of propeller shafts are secured by shrinkage

fits. Forced fits have been employed for crank-shafts and are fre

quently used for smaller parts. In building up a steel shaft, the al

lowance is usually 0.001 inch per inch of diameter; the cranks and

crank-pins are keyed, in addition to the shrinking. The crank-webs

are heated by gas in a sheet-iron furnace until the expansion is suf

ficient for a free fit; they are then removed, the pin is pushed home

and keyed, and the webs and pin are cooled with Water. The webs

are then set with the bores for the shaft vertical, and one is heated

as before until sufficiently expanded, when the section of the shaft

TABLE VII. EXAMPLES OF TYPICAL FITS, FROM PRACTICE

Total Allowance,

Diameter of Pin Inches

or Shaft, — Metals

Inches

Shrinkage Forcing

1.8798 . . . . . . . . 0.0031 | Shaft, steel. Hub, cast iron

4.2505 |. . . . . . . . 0.0103 || Shaft, steel. Hub, cast iron

8.9 |. . . . . . . . 0.0152 | Shaft, steel. Hub, cast iron

4 to 5 0.0045 0.0090 | Cast iron crank

7.5 to 9 0.0027 | 0.0055 | Cast iron crank

16 to 18 0.0015 || 0.0030 | Cast iron crank

4 . . . . . . . . 0.0120 | Crank, cast iron. Shaft, steel

8 . . . . . . . . 0.0120 | Crank, cast iron. Shaft, steel

16 |. . . . . . . . 0.0144 | Crank, cast iron. Shaft, steel

1 to 2 0.0090 (). 0010

4 to 6 0.0156 | . . . . . . . .

5 to 7 |. . . . . . . . 0.005)

9 to 12 0.0313 | . . . . . . . .

10 to 12 . . . . . . . . (). 0100 -

5 . . . . . . . . 0.0050 | Shaft, steel. Crank, cast steel

5 . . . . . . . . 0.0100 | Shaft, steel. Crank, cast iron

11 0.0070 | | Cast iron counter-balance

13 0.0060 { plates on steel crank-disks

is lowered into place and keyed; the same method is followed with the

other section of the shaft.

Shaft casings are of bronze, usually from 5% inch to 1 inch thick at

various sections of the shaft. In one case there were two such sections

of casing, each 8 feet long and 2014, inches internal diameter. The

shrinkage-allowance, total, was 0.013 inch, or 0.000634 inch per inch

of diameter. Each section was set vertical and heated internally by

gas. When expanded, it was slipped in place on the shaft, and the

inner end was held firmly and cooled with water until it gripped the

shaft.

Gun Construction. When a charge is exploded in the powder-cham

ber, the principal stress to which a gun is subjected is that due to the

radial pressure of the gases which tends to burst it on an axial plane.

This stress produces tangential (circumferential) tension in the tube,

jacket, and hoops, and, in addition, there is a direct longitudinal stress
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in the layer of the tube in which the breech-plug houses. There also

exists at all times, except during explosion, a radial compressive stress

on the inner cylinders of the system, due to the shrinkage pressures

of those outside of them. At the breech, there may be three or four

of these superposed cylinders—the tube, the jacket, and one or two

sets of concentric hoops. The radial pressure of the gases would pro

duce in the tube, if the latter were unsupported, a circumferential

tensile stress which would exceed the elastic limit of the metal. To

TABLE VIII. DATA FOR FORCED FITS, FROM PRACTICE

f < *- º º -

i. , É * | * | #. # # 4 - | #

i, É, #, is #|iº || | | #| |
3 : ‘5 § § 3. C 9 @ 35 3 : 3 || ſiz #F. § 2

2:5 - 5 £5 - a = : ; H 5 9 8 5

ää | ##| | ##| || “. g; ## ###| #é # ÉÉ
s 5 5 E ää | # s”3 | g ÉÉ #

# | * | # É # * | *| | | #

> # 2. 3 3 § >

1.8798 |6.125 | 1.8767 |0.0031|00.0170 | 86.0 | 16 10 | 20

1.8819 || 6.125 | 1.87.70 || 0.0042 |0.00220 || 36.0 16 15 23

1.8774 || 4.375 | 1.8764 |0.0010 |0.00052 24.4 || 13 5| 1 1

2.7455 |4.500 2.7387 |0.0068||0.00247 | 38.

2.7465 4.500 2.7437 0.0028 0.00100 || 38.

3.2610 || 5.000 || 3.2542 |0.0068||0.00210 || 51.

3.2625 || 5.000 || 3.2555 |0.0070 |0.00200 || 51.

3.2670 5.000 || 3.2610 |0.0060 |0.00180 || 51.

4.2505 || 6.000 || 4.2402 || 0.0103 |0.00240 || 79.

4.2388 || 6.625 || 4.2478 |0.0091 |0.00210 || 78.

4.2303 || 6.500 4.2224|0.0079 |0.00190 95.

5.9343 || 4.062 5.9216 || 0.01.27 |0.00220 || 75.

5.9381 || 4.000 || 5.9252 || 0.01.29 |0.00220 || 74.

5.9294 || 4.125 || 5.9194 || 0.0100 |0.00170 || 76.

6.8829 5.125 6.8697 || 0.0132 |0.00200 || 110.

6.8890 5.000 || 6.8785 || 0.0105 |0.00150 || 108.

6.8692 |4.875 6.8550 0.0142|0.00210 || 104.

7.8884 || 5.500 || 7.8730 || 0.0154 }; 135.

0

0

;

7.8715 6.500 7.8575 0.0140 |0.00180 | 160.

7.8620 5.625 7.8460 |0.0160 |0.00200 138.

8.9240 6.125 8.9050 0.0190 0.

8. 9000 6.750 8.8848 0.0152 0.00170 188.4 419.

8.8780 |6.500 8.8889,0.01130.00180 180.7 401.

91

16 25112

1

counteract this, the jacket and hoops are shrunk on, each of these

cylinders putting the one which it encases under compression, and

the aggregate of these radial pressures being transmitted to the tube.

The actual tensile stress in the latter, during the burning of the pow

der, is then the difference between the tensile stress developed by the

gases and the compressive stress due to the jacket and hoops—a re

mainder which is less than, but usually fairly close to, the elastic

limit of the metal.

For maximum economy of material, the relations of the thicknesses

and shrinkage-allowances should be such that the stresses at all points
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in the walls of the built-up gun will be, during explosion, not only

approximately equal but also the greatest permissible, with due re

gard to the elastic limit and the factor of safety. The outer layers

of the metal are, therefore, in a state of initial tension, the inner un

der initial compression, and during explosion all are in tension. The

various thicknesses and allowances for the cylinders of any given gun

can be computed by an extension of the methods shown by Formulas

(2) and (3), and those in (1) for the corresponding unit-deformations

due to the true stresses. The principles involved are, therefore, those

which have been treated herein for shrinkage fits, with the added re

quirement that the superposed cylinders, during explosion and the Sub

sequent release from pressure, must expand and contract together, so

that each cylinder must have a definite shrinkage-allowance with re

gard to all the others of the system.

The 16-inch Army rifle, now at Sandy Hook, was designed for a pow

der-pressure of 38,000 pounds per square inch, a muzzle-velocity of

2500 feet per second, a muzzle-energy of 88,000 foot-tons, a penetration

at the muzzle of 42.3 inches in steel, and a range of 21 miles. The

weight of the gun is 126 tons and its total length is 49 feet 2.9 inches.

At the breech, the gun is built up of a tube, a jacket, and two sets of

hoops, the thicknesses being 5.3, 7.2, 3.7, and 4.3 inches, respectively.

The tube and jacket are of nickel-steel, not fluid-compressed; the hoops

are of fluid-compressed steel containing no nickel. The elastic limits

in tension of the two metals were about 52,000 and 57,000 pounds, re

spectively, the hoop-metal being thus the harder and stronger. The

forgings, after being rough-turned and bored, were tempered in oil

and annealed. In expanding the jacket or a hoop, it was set vertically

in a cylindrical furnace of fire-brick, and was then encased in a muf

fle of 14-inch boiler steel. The combustion-chamber between the muf

fle and the furnace-wall was 11 inches wide. The fuel was oil sprayed

with steam through 20 burner openings, the flame striking the muf

fle at a tangent, so as to give a spiral movement to the gases. The

circulation of the air between the muffle and the hoop kept the tem

perature of the latter uniform at all points. The heating of the jacket

required 30 hours, and its bore was calipered three times during that

period to determine the expansion.

In shrinking on the jacket, the tube was first set vertical, muzzle

end down, in a shrinkage-pit adjacent to the furnace; the lower end

was secured in a cast-iron chuck anchored in the concrete foundations

of the pit. Water-connections were made for cooling the interior of

the tube and the exterior of the jacket when seated. The latter, when

removed from the furnace, was measured, centered, and lowered into

place. Water was then applied at the muzzle-end; the cooling con

tinued for nine hours, the number of encircling “water-rings” or pipes

varying from four, as a maximum, to two at the close of the operation.

The shrinkage of the hoops near the muzzle was effected similarly;

the remainder were assembled with the gun in a horizontal position

in the lathe, each hoop during shrinkage being under the axial pres

sure of two 30-ton hydraulic jacks.
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MACHINEry

MONTHLY.

Engineering Edition

12 numbers a year.

1000 9 x 13 pages.

48 6 x 9 Data Sheets

$2.00 a Year.





No. 1. Screw ºhreads-United States,

Whitworth, Sharp V- and British Associa

tion Standard Threads: Briggs Pipe

Thread; Oil Well Casing Gages; Fire Hose

Connections, A cine Thread; Worm

Threads; Metric Threads: Machine, Wood,

and Lag. Screw Threads; Carriage Bolt

Threads, etc.

No. 2. Screws, Boits and Nuts.-Fil

lister-head, Square-head, Headless, Col

lar-head and Hexagon-head Screws; Stand

ard and Special Nuts; T ºuts, T-bolts and

Washers; Thumb Screws and Nuts; A. L.

A. M. Standard Screws and Nuts; Machine

Screw Heads; Wood Screws, Tap Drills;

Lock Nuts; Eye-bolts, etc.

No. 3. Taps and pies. Hand, Machine,

Tapper and Machine Screw Taps; Taper

Die Taps; sellers Hobs; Screw Machine

Taps; Straight and Taper Boiler Taps;

Stay-bolt, Washout, and Patch-bolt Taps;

Pipe Taps and Hobs; Solid Square, Round

* and Spring Screw Threading

les.

No. 4. Reamers, sockets, Drills and

Milling Cutters.-Hand Reamers; Shell

Reamers and Arbors; Pipe Reamers; Taper

Pins and Reamers: Brown & Sharpe,

Morse and Jarno Taper Sockets and Ream

ers; Drills; Wire Gages; Milling Cutters:

Setting Angles for Milling Teeth in End

Mills and Angular Cutters, etc.

No. 5 spur Gearing.—Diametral and

Circular Pitch; Dimensions of Spur Gears;

Tables of Pitch Diameters; Odontograph

Tables; Rolling Mill Gearing; Strength of

spur Gears; Horsepower Transmitted by
Cºast-iron and Rawhide Pinions; Design of

spur Gears; Weight of Cast-iron Gears;

Epicyclic Gearing.

No. 6. Bevel, spiral and Worm Gear

ing.—Rules and Formulas for Bevel

Gears; strength of Bevel Gears; Design

of Bevel Gears; Rules and Formulas for

spiral Gearing; Tables Facilitating Calcu

lations; Diagram for Cutters for Spiral

Gears: Rules and Formulas for Worm

Gearing, etc.

No. 7. Shafting, Keys and Keyways

Horsepower of Shafting: Diagrams and

Tables for the Strength of Shafting:

Forcing, Driving, Shrinking and Running

Fits; Woodruff Keys; United States Navy

standard Keys; Gib Keys; Milling Key

ways; Duplex Keys.

No. 8. Bearings, Couplings, Clutches,

Crane Chain and Hooks—Pillow Blocks;

Babbitted Bearings; Ball and Roller Bear

ings; Clamp Couplings; Plate Couplings:

Flange Couplings; Tooth Clutches; Crab
Couplings; Cône Clutches: Universal

Joints; Crane Chain; Chain Friction;

Crane Hooks; Drum Scores.

No. 9, springs, slides and Machine
details.-Fºrmulas and Tables for Spring

Calculations; Machine Slides; Machine

Handles and Levers; Collars; Hand

Wheels; Pins and Cotters; Turn-buckles,

etc.

No. 10. Motor Drive, Speeds and Feeds,

change Gearing, and Boring Barsº-Power

required for Machine Tools; Cutting

speeds and Feeds for Carbon and High

speed Steel; Screw Machine Speeds and

Feeds; Heat Treatment of High-speed

MacHINERy, the monthly mechanical journal, originator of the Reference and

Data Sheet Series, is published in three editions—the Shop Edition, $1.00 a year;

CONTENT'S OF DATA SHEET BOOKS

Steel Tools; Taper Turning; Change Gear

ing for the Lathe; Boring Bars and Tools,

etc.

No. 11. Milling ºachine indexing,

Clamping Devices and Planer Jacks.-

Tables for Milling Machine Indexing;

Change Gears for Milling Spirals; Angles

for setting Indexing Head when Milling

Clutches; Jig Clamping Devices; Straps

and Clamps; Planer Jacks.

No. 12. Pipe and Pipe Pittings.-Pipe

Threads and Gases, Cast-iron Fittings;

Bronze Fittings, Pipe Flanges, Pipe

Bends; Pipe Clanºs and Hangers; Dimen

sions of Pipe fºr Various Services, etc.

No. 13. Boilers and Chimneys-Flue

Spacing and Bracing fºr Boilers; Strength

of Boiler Joints, Riveting; Boiler Setting;

Chimneys.

No. 14. Locomotive and Railway-Data.

—Locomotive Boilers; Bearing Pressures

for Locomotive Journals; Locomotive

Classifications; Rail Sections; Frogs,

Switches and Cross-overs; Tires; Tractive

Force; Inertia of Trains: Brake Levers;

Brake Rods, etc.

No. 15. Steam and Gas Engines.—Sat

urated Steam; Steam Pipe Sizes; Steam

Engine Design; Volume of Cylinders,

Stuffling Boxes; Setting Corliss Engine

Valve Gears; Colle ser and Air Pump

Data: Horsepowe of Gasoline Engines.

Automobile Engine Crankshafts, etc.

No. 16. Mathematical Tables.—Squares

of Mixed Numbers, Functions of Frac

tions; Circumference and Diameters of

Circles; Tables for Spa ring off Circles.

Solution of Triangles; Formulas for Salv

ing Regular Polygons; Geometrical Pro

gression, etc.

No. 17. Mechanics and Strength of Ma

terials.-Work: Energy; Centrifugal

Force; Center of Gravity: Motion: Fric

tion; Pendulum; Falling E es: Strength

of Materials; Strength ºlat Plates:

Ratio of Outside and Inside Radii of

Thick Cylinders, etc. -

no. is seam roºmulas and structural

Design-Beam Formulas; Sectional Mod

uli of Structural Shapes; Beam Charts:

Net Areas of Structural Angles; Rivet

Spacing; Splices for Channels and I

beams; Stresses in Roof Trusses, etc.

No. 19. Belt, Rope and Chain Drives.-

Dimensions of Pulleys; Weights of Pul

leys; Horsepower of Belting; Belt Veloc

ity; Angular Belt Drives; Horsepower

transmitted by Rones; Sheaves for Rope

Drive; Bending Stresses in Wire Ropes:

Sprockets for Link Chains; Formulas and

º for Various Classes of Driving

all

No. 20. wiring Diagrams, Heating and

ventilation, and Miscellaneous ºables--

Typical Motor Wiring Diagrams: Resist

ance of Round Copper Wire; Rubber Cov

ered Cables: Current Densities for Vari

ous Contacts and Materials; Centrifugal

Fan and Blower Capacities; Hot Water

Main Capacities; Miscellaneous Tables:

Decimal Equivalents, Metric Conversion

Tables, Weights and Specific Gravity of

Metals, Weights of Fillets, Drafting-room

Conventions, etc.

the Engineering Edition, $2.00 a year, and the Foreign Edition, $3.00 a year.
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