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CHAPTER I

PRINCIPLES OF SPRING CALCULATIONS*

Although made in a great variety of shapes, the working and effi

ciency of any spring can be readily understood and investigated if a

few fundamental principles determining the resistance to bending or

twisting, and the deflection of elastic bodies are understood. Springs

are generally made of steel or brass, and when under tension are

either bent or twisted. Let us, therefore, first consider a flat piece of

tempered tool steel of even thickness and width, firmly clamped at one

end, and with a weight suspended at the free end, as shown in Fig. 1.

The free length is a little over 12 inches, the width 1% inch, the thick

ness 1/16 inch, and the suspended weight 10 pounds. The deflection

at the free end will be about 4% inches, and the curvature will be as

|
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Fig. 1

shown in the figure. If made of high carbon crucible steel, properly

tempered, 10 pounds is a safe load on this spring, but it may carry con

siderably more before the elastic limit is reached. These facts were

obtained by calculation, by methods explained later.

It is obvious that the curvature of any part of the spring depends on

the leverage or arm of bending, or rather on the “moment of bending,”

which is the weight multiplied by its arm of leverage. At A the arm

is 12 inches, at E it is about 6 inches; the moment of bending at E,

therefore, is only half the moment of bending at Al; at B there is no

arm, and therefore ‘no bending. Consider a small part—an element—

of the curve at A. This element will be bent to the arc of a circle, and

the radius of this arc is called the radius of curvature at A ; any ele

* MACHINERY, May, July and August, 1898.
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ment nearer B will have a larger radius of curvature. At A the radius

of curvature is about 11 inches, at E it is about 22 inches, and at B

it is infinite.

Carrying Capacity of a Flat Spring

Considering any spring, we must first know whether it is strong

enough to carry the load or will stand the work for which it is in

tended. The mistake is often made of using, or attempting to use, a

spring which has not sufficient strength or endurance for the work it

has to do, and which, consequently, gives out after being in use a short

time. The Spring shown in Fig. 1 being of even thickness through its

entire length, is evidently weakest where it is bent most, that is at A.

The moment of bending at this point is 10 × 12 = 120, and the bend

ing brings forth a moment of resistance or internal resisting moment

in the steel equal in magnitude to the bending moment of the extrane

Machinery,N.Y.

ous force, and the question to be decided is: What is the greatest fiber

stress for this moment? Is it within the safe limit? -

Let Fig. 2 represent a small part of the spring greatly magnified and

the bending greatly exaggerated, and let the dotted lines represent im

aginary fibers or thin parallel strings or strips of steel. The upper

half of these will be stretched, and the lower half will be compressed;

but right in the center line of the thickness of the spring the fibers

will neither be stretched nor compressed, and this line is therefore

called the neutral line. We may consider any point in this line as a

pivot for a double-armed lever to which the fibers are attached. Let P

be the pivot and let KL represent the position of the lever before bend

ing, and suppose that this lever, by the bending of the spring, is

thrown in the position MN, and then KM represents the amount of

stretching of the extreme upper fibers, and NL represents the compres

-sion of the extreme lower fibers, or rather of a small part of these.

Steel is not fibrous, but we may call a string of molecules a fiber. All

the fibers will be stretched or compressed in proportion to their dis

tance from the neutral line, and they will therefore exert a certain re

sistance on the imaginary lever MN, and this collective resistance will

exactly counterbalance the weight on the end of the spring acting on
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the lever AB, Fig. 1. The outside fibers will be stretched or compressed

most, and if they are stretched beyond a certain limit, the spring will

break or receive a permanent set. If we double the thickness of the

spring, it can evidently only bend half as much before the limit of

fiber stress is reached; but the average distance of the fibers from

pivot P will, in this case, be doubled—that is, the leverage of resist

ance Will be doubled and the number of fibers will also be doubled.

The total resistance to bending at the same limit of fiber stress will

therefore be twice doubled; that is, it will be 2 × 2 = 2* = 4 times as

great, or, in other words, doubling the thickness of a spring quad

ruples its carrying capacity. If we had increased the thickness by

one-half only, we should have (1%)* = 214 times greater strength.

In general, let T and U represent the respective thicknesses of two

similar springs of same width and length; then

carrying capacity of spring T T2

carrying capacity of spring U Uz

or, the carrying capacities of otherwise similar springs are as the

square of their respective thicknesses. This rule applies to bending

only, and not to springs which are twisted. The strength of a flat

spring is in simple proportion to its width, which is obvious without

demonstration, and therefore, if thickness = t and width = b, the

moment of resistance for a given fiber stress = cbt”, where c is a con

stant factor dependent on the allowable fiber stress. This factor can

be found experimentally. Suppose, for instance, it is known that 10

pounds is the greatest load which the spring shown in Fig. 1 ought to

carry, then in this case, the moment of bending = 10 × 12 = 120, and

3

the moment of resistance = c X 14% X (1/16)* = — c. Equating

512

these two quantities we have 120=—c, or c = 20,480. Now c being

512

a known constant factor, we can always find the moment of resistance

from the formula cot”, and this product divided by the leverage of the

load gives the carrying capacity or admissible load. For instance, let

the length or leverage be 10 inches, the width I inch, and the thickness

#3 inch, then,

20,480 × 1 × (4%)* 20,480

- =32 pounds,

10 640

which is the safe load on the free end of the spring. Great exactness

is not necessary in such calculations, and the factor 20,500, being

easier to remember, may be used instead of 20,480. If a spring is con

tinually working, a smaller factor must be used than would be admis

sible if it were only occasionally in action, and a much higher factor

may be used if it has only to exert a constant pressure without any bend

ing motion. If a spring is sufficiently strong and durable under certain

conditions, we may, from the formula here given, design any number

of springs equally strong under similar conditions.
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Deflection of a Flat Spring

We will now consider the amount of deflection of a flat spring. Re

ferring to Fig. 3, suppose there be one flexible element at A, and sup

pose the rest of the spring to be perfectly stiff or unelastic, which part

We Will call the “arm,” and suppose the deflection at A will bring

the arm in the position AF. If there now, instead of one flexible ele

ment, be two such elements at A. the inclination of the arm will be on

line AG, and deflection GB = 2BF. For three flexible elements the de

flection would be three times BF, and so on, provided the length of the

arm remains the same; that is, the deflection of the arm AB is directly

proportional to the number of flexible elements at A. Now suppose we

double the length of the arm, as shown by the dotted lines; then we

also double the moment of bending, and the deflection at the end of the

arm will therefore be twice doubled. Therefore, by doubling the num

ber of elements at A and by doubling the arm, we increase the linear

deflection at the free end 2 × 2 × 2 = 2* = 8 times. In reality the

%
B

A-E:*----- i

--__ TTT------------J

G TTT------__ |s TT-------l
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Fig. 3

arm itself is flexible, and considering it as made up of flexible ele

ments, we may imagine the deflection at the free end as made up of a

series of decreasing elementary deflections corresponding to a series

of flexible elements of the spring and their respective arms.

Fig. 4 shows the curve of two similar springs of different lengths

similarly loaded. AC represents the curve when the length is double

that of A.E. Suppose we divide AE into a number of small parts and

call these elements, and divide AC into the same number of parts;

each of these will contain two elements, that is, for each element of AE

there will be two corresponding elements of AC, and the distance of

any two such elements from the end of the spring will be twice the

distance of the corresponding element of AE from E. That is, the arm

and the moment of bending of any two elements of AC will be twice

the arm and moment of bending of the corresponding element of A.E.

The deflection of spring AC will therefore be 2 × 2 × 2 = 2* = 8

times the deflection of spring A.E. If the deflection of Spring AE is

3% inch, the deflection of spring AC will be 2" × 3% = 3 inches. If

the deflection of AE is 114 inch, the deflection of AC will be 2° X 1% =

10 inches, provided it is strong enough to carry the load.

If spring AC had been three times as long as AE there Would, ſor

each element of AE, be three corresponding elements of AC, and the

moment of bending of any such group of elements would be three

times the moment of bending of the corresponding single element of

AE, and the distance of any group of three elements of AC from C
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would be three times the corresponding distance on AE; we should,

therefore, in this case have a deflection at the free end of AC = 3* =

27 times the corresponding deflection of A.E. If in this case the de

flection of AE were 14 inch, the deflection of AC would be 3” X 14 inch

= 6% inches. If the length of AC were 1% times the length of A.E, we

27

should have the deflection of AC = (1+%)* X #4 inch = 32 inch.

3

In general, the deflection at the end is proportional to the third

power of the length of the spring. The amount of deflection can be

expressed by the formula al”, in which l is the length and a is a factor

dependent on the load, width, thickness and material of the Spring.

If we double the width, the bending moment for each element of the

width will be halved, and the deflection will consequently be half of

Machinery,N.Y.

Fig. 4

that of the narrower spring. If we double the thickness of the spring,

its area of cross-section is doubled, as is also the average distance of

the fibers from the neutral axis, and besides for a given curvature or

deflection the outer fibers will be stretched twice as much and will

therefore offer twice the resistance (see Fig. 2). The total resisting

moment is therefore increased 2 × 2 × 2 = 2* = 8 times, or, in gen

eral, the moment of resistance is proportional to the third power of

the thickness, and the deflection will be inversely proportional to this.

If, for instance, we double the thickness and double the length of a

flat spring, the deflection will remain the same for the same load. The

deflection will also be directly proportional to the load.

It should be observed that we have here the moment of resistance

in its general sense, that is, without any restriction in regard to the

fiber stress. If we impose the condition that the fibers shall be

stretched to a certain extent, as in the formula for strength, we have,

in that case, the thickness squared in the moment of resistance, and it

should be remembered that this is only in the formula for strength.

We are now able to calculate the deflection of any flat spring if we

know the deflection of any other flat spring of the same material.
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Let f = deflection of the free end, b = the width of the spring, t =

the thickness, l = the length, w = the load, and k = a constant factor

depending on the material, then,

401”

kbt”

Suppose we have a spring 1% inch wide, 1/16 inch thick and 12

inches long, and find that it deflects 4% inches under a load of 10

pounds, then we have:

10 × 12”

k X 14% X (1/16)*

from which we deduce k = 10,500,000.

Suppose we have a spring 1 inch wide, 4% inch thick, 12 inches long

and a load of 25 pounds at the end of it. If this spring is made of

best high carbon steel, properly tempered, we may use the constant

factor, 20,500, in the formula for carrying capacity, and have the

greatest permissible moment of resistance = 20,500 X (1/8)*= 320.3,

and the moment of bending = 12 × 25 = 300. Twenty-five pounds is

therefore a safe load on this spring. For k = 10,500,000 we have the

25 × 12*

deflection. =—= 2% inches. A spring #3

10,500,000 × 1 × (4%)*

inch thick will carry four times as great a load as one 1/16 inch thick,

and the deflection under this load will only be one-half of that of the

thinner spring; or generally, for the same fiber stress and the same

length, the deflection will be inversely proportional to the thickness.

It is an easy matter to find the deflection of a spring by actual trial

and then obtain the correct value of the constant k by calculation, as

here explained; but the thickness of the Spring must be very carefully

measured, for it will be observed that a small variation in the thick

ness has a great effect on the deflection, and particularly so if thin

springs are used. If, for instance, the deflection of a spring 1/16 inch

thick is 4 inches, then the deflection of a similar spring which is

1/100 inch thicker will only be two inches for the same load.

4% =

The Modulus of Elasticity

The deflection may also be found if the “modulus of elasticity” of

the material is known. The modulus of elasticity is the ratio of a di

rect pulling force to the extension per unit of length of a rod of 1

square inch sectional area. The extension must be within the elastic

limit of the material, and is a very small quantity which can only be

found by very careful measurement in a testing machine, but as it is

obtained by a straight pull, it cannot furnish so trustworthy a con

stant for the calculation of bending deflection as that obtained by the

method just explained. If a steel bar 1 inch square and 10 inches long

is stretched one-hundredth of an inch by a pull of 30,000 pounds, the

modulus of elasticity is 30,000 + 0.001 = 30,000,000 which is the

approximately correct figure for unhardened steel. For hardened tool

steel it is about 42,600,000 according to Reuleaux. The tensile strength
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of different steels varies considerably. The strength of high carbon

steel is greatly increased by hardening. The so-called spring steel is

probably more elastic, but less strong, and it is doubtful whether hard

ening changes its elasticity, while it no doubt increases the elastic limit

and the tensile strength; but no spring steel can compare in strength

with high-grade high carbon crucible tool steel, properly tempered.

The allowable fiber stress depends to a great extent on the treatment

of the steel; it may, according to Reuleaux, exceed 200,000 pounds per

square inch at the elastic limit. In the formula for carrying capacity,

the factor c should be one-sixth of the allowable fiber stress, and in

Machinery,N.Y.

Fig. 5

the formula for deflection of a flat spring of even thickness and width:

the factor k should be one-fourth of the modulus of elasticity. The al

lowable fiber stress, is, of course, always less than the elastic limit.

Springs of Uniform Strength

A single steel band of even thickness and width does not always

make a desirable spring, for if it is made just strong enough at its

base, it will be stronger than necessary at other points, and the deflec

tion at the free end will be less than if every part of the spring were

equally strong—that is, if the fiber stress were uniform throughout the

entire length. The spring shown in Fig. 5 is of nearly correct form;

it is of even thickness and the edges converge nearly to a point.

It is obvious that, in practice, the end must be made a little blunt,

but if it Were continued to a sharp point, it will be seen that the Width

wetºld be at any point of the length, proportional to the arm of leverage;



10 No. 58—SPRINGS

the radius of curvature would, therefore, be the same at any point—that

is, the spring would bend to the arc of a circle. The strength is the

same as that of a spring. With parallel sides, but the deflection at the

end will be one-half greater, and in the formula for deflection the fac

tor k becomes two-thirds of that for parallel sides. Let the triangular

spring be 2 inches wide at the base, 10 inches long, 1/16 inch thick,

and made of high carbon steel, hardened, then,

2 × 20,500

—=16 pounds

16” X 10 -

is a safe load, and the deflection for this load is

16 × 10° x 16” .

—=411/16 inehes.

7,000,000 × 2

The factor 7,000,000 is here one-sixth of the supposed modulus of

elasticity. All that has been said about Springs with parallel sides is

I

%
——

Machinery,N.Y.

Fig. 6

also applicable to triangular springs, with the exception of the form

of the curve and the factor k in the formula for deflection.

Built-up Leaf Springs

To get the most work out of a spring of given length or weight, it

will often be found advantageous to use thin wide springs instead of

thicker narrow ones, for it will be noticed that it is only the outside

fibers which can be fully stretched or compressed, while all the others

will be less useful in proportion to their proximity to the neutral axis.

Instead of one broad triangular spring we may use a number of parallel

springs, one on top of the other, as shown in Fig. 6. Each leaf or

plate of this spring will be bent nearly to the same curve, and the de

flection will be nearly equal to that of a triangular spring with a base

equal to the collective width of all the leaves. Fig. 7 shows the leaves

in the same plane laid side by side, and the dotted lines show the ap

proximate size of the equivalent triangular spring. Suppose there be

five leaves of tempered spring steel 2 inches wide and 3% inch thick,

and let the working length of the main leaf be 18 inches; also suppose
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that the safe working fiber stress for this spring is 96,000 pounds per

square inch; then we may, in the formula for strength, put

96,000

factor C= =16,000,

and the safe moment of resistance becomes 5 × 2 × (%)" X 16,000=

22,500, which, divided by 18 gives 1250 pounds as a safe working load

*~
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Fig. 7

on the end of the spring. Let the modulus of elasticity be 30,000,000,

then we may in this case put k = 5,000,000, and the deflection equals

1250 × 18”

—=2% inches.

- 5,000,000 × 10 × (%)"

The factor 10 in the denominator is the total sum of the width of

the leaves.

Machinery,N.Y.

Fig. 8

It should be remarked that the deflection of such Springs may vary

considerably from that of the supposed equivalent triangular spring,

and to get fairly correct results the factor k should be obtained by

actual trial, and not from the supposed modulus of elasticity.

Fig. 8 represents a steel plate supported at both ends and a load P

applied at the center. The upward pressure or reaction of each sup

port is 34, P, and it will readily be seen that the deflection of this

spring must be exactly as if it had been supported at the center and
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loaded with 4% P at each end; that is, the moment of bending at the

center is 4 Pl.

Fig. 9 represents a so-called elliptic spring, of a type used on car

riages, automobiles and railroad cars. It is made of steel plates 4

inches wide and 3% inch thick. The distance between centers is 30

inches, and there are five plates in each part. The following experi

mental data have been ascertained for this spring: light load = 2000

pounds; maximum working load = 7000 pounds; deflection due to a

load of 5000 pounds = 3 inches. Comparing this case with that repre

sented by Fig. 8, we take into account half of the ellipse only, and as

suming the band b to be 3 inches wide we have l = 13% inches, and

the moment of bending for maximum load = 13% X 3500 = 47,250.

45

Moment of resistance = 5 × 4 × (9%)” X c=— c. These two quanti

16

45

ties must be equal, therefore 47,250 = — c, or c = 16,800. This

16

k—————————-

l @

Yachtnery, N.Y.

Fig. 9

value of c may correspond to a fiber stress of 6 × 16,800 = 100,800

pounds per square inch; but it would not be an absolutely safe assump.

tion, for the theory of indirect molecular action is not yet fully sub

stantiated by experimental data. The deflection of one-half of this

spring is 1% inch for 5000 pounds load; therefore:

2500 × (13.1%)*

k × 20 × (%)"

that is, k = 3,888,000. Assuming the curve of deflection similar to

that of a single triangular spring, we should have, approximately, the

modulus of elasticity = 6 × 3,888,000 = 23,328,000, but this is prob

ably too low a figure. By using the constant factor 3,888,000, suffi

ciently accurate results would be obtained for similar springs of simi

lar material.

1% =

Miscellaneous Classes of Springs

The available space for a spring may determine its shape and size.

A long straight spring cannot often be used. Fig. 10 shows a spring
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which may be useful in a limited space. It is supposed to be made of

a strip of high carbon crucible steel 11% inch wide and 1/16 inch thick,

and to be spring tempered. The moment of resistance is 1% X

(1/16)* X c, where c is supposed to be one-sixth of the allowable fiber

stress per square inch, or the allowable unit-stress. For c = 15,000

we have the moment of resistance = 88. At A the lever arm is 4

88

inches, and the permissible load at B is therefore about — = 22

4

pounds. The moment of bending varies directly as the distance from

B; at E and F it is 2 X 22 = 44 inch-pounds. If we imagine the

spring divided into a number of small parts or elements, there will, for

B

Fig.11 Machinery,N.Y.

Figs. 10 to 12

each of these, be a small deflection at B proportional to the square of

its perpendicular distance from B. The horizontal deflection at F will

be as if that element had been at O. But as the curve of the spring is

longer than the straight line from A to B, and has a correspondingly

greater number of elements, the entire horizontal deflection at B will

be greater than that of a straight spring fixed at A. For a modulus of

elasticity of 42,000,000, the deflection at B is about 114 inch, or about

three times the deflection of a straight spring 4 inches long. A similar

Spring of the same thickness and width, but twice as large, would only

carry 11 pounds, but it would deflect 2" × 114 = 5 inches under that

load. Generally, for the same thickness and same unit stress the bend

ing deflection of similar springs of this type varies as the square of

their lengths.

It will be noticed that the bending moment for different parts of this

spring varies considerably, while the moment of resistance is constant.
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At Al the lever arm is greatest and the unit stress is there at the safe

limit, but at other points the spring will be stiffer than necessary; we

may therefore improve it by varying the width in proportion to the

bending moments; for then the same unit stress is obtained at any

point of the length, whereby the deflection is increased without reduc

ing the strength. Fig. 11 shows the spring when straightened out and

shaped so as to give a nearly constant unit stress. This will make the

deflection at B about one-third greater.

A great deal of potential energy may be stored in a small space by

coiling a strip of steel like the main spring of a watch. If the ends

are fixed and guided concentrically, the moment of bending will be con

stant for the whole length; and as the spring can be very long, it may

be very efficient in a limited space. Fig. 12 represents a spring of this

kind. Let W = bending force at end of the lever, R = length of lever,

S = unit stress, b = width and t = thickness of spring; then

Sbt”

W=

- . . ." 6R

If the spring be. made of 1 × 1/3 inch spring steel and the length of

the lever is 6 inches and'the unit stress is 96,000 pounds, then,

96,000 × (%)"
W= - =42 pounds, nearly.

6 × 6

Let l = length of spring, E = modulus of elasticity, and F = deflec

tion or length of arc described by the end of the lever; then,

12 lWR2

Ebt?

E=28,000,000 and l = 56 inches gives

12 X 56 × 42 × 6*

F=—=18.1% inches.

28,000,000 × (1%)*

Hence the lever turns nearly one-half of a revolution. This result

may be found more directly from the formula

Sl

U =

TEt

where U is the deflection expressed in revolutions and tri- 3.1416. By

Substitution as above,

96,000 × 56 × 8

U=—=0.49,

tr X 28,000,000

or nearly one-half revolution, which agrees with the former result.

From this formula it appears that the deflection for a given unit stress

varies directly as the length and inversely as the thickness, and is

independent of the width of the spring. If we had this, Spring 1/16

inch thick, the lever could be turned nearly a whole revolution, but

the force would be only 10% pounds. If we then had twice as many

turns in the spiral, the lever would turn nearly two revolutions before
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the limit of stress would be reached. Such springs may also be useful

when a nearly constant pressure through a shorter motion is desired,

for this can be obtained by a considerable initial deflection. The

great efficiency of watch springs is due to the high elastic limit and

careful treatment of the steel.

It is sometimes preferable to coil the spring in a screw-line, as

shown in Fig. 13. As in the former case, the motion is supposed to be

about a fixed center, and the same formulas may be used in both cases.

Let there be 72 inches of 14 inch square spring steel, and let the lever

be 3 inches long, then,

96,000 × (14)” X 14

W=—=83 pounds.

6 × 3

Machinery,N.Y.

Fig. 13

We have further for this spring

96,000 × 72 × 4

U=—=0.31,

tr X 28,000,000

or about 5/16 of one revolution of the lever, which is the maximum al

lowable motion for a unit stress of 90,000 pounds.

Sºrt* Stº

For round Steel W = - , nearly. Therefore if this spring

32 R. 10 R.

is made of 34-inch round steel, then,

96,000 -

W=—=50 pounds.

10 × 3 × 4°

Round steel has only 3/5 of the strength of square steel of the same

diameter under bending action, but the value of U is the same in both

Cases. - -

The various springs treated of here are all of uniform thickness

throughout their entire length. Good results may also be obtained by

varying the thickness of a spring so as to correspond with a variable

bending moment; but as such springs cannot be rolled to shape and
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can only receive the correct shape by skillful hand work, they are used

very little. The forging down of the ends of flat springs is a simple

matter and is often done. It improves the appearance of leaf springs

and is preferable to blunt ends.

Torsional Springs

What really happens to the molecules of a bar when it is twisted

within the elastic limit is a matter of conjecture, but all formulas for

strength and deflection of torsional springs are based upon the assump

tion that the molecules receive a sort of lateral or sliding displace

ment, as if subjected to a shearing action. Whether or not this as

Sumption is correct, it is certainly supported by experimental results.

It is, for instance, known that the angle of deflection is directly pro

portional to the twisting force, which fact would hardly agree with

Other theories.

Fig. 15 represents a cross-section of a steel rod divided into a num

ber of imaginary concentric rings of equal thickness. The torsional

*

2*

Machinery,N.Y.

Tig. 14 Fig. 15 Fig. 16

strength of this rod depends on the resistance to shearing of the rings

and on their respective distances from the center, which are their

leverages of resistance. Ring a is twice as large as ring b and is

twice as far removed from the center, and offers, therefore, 2 × 2 =

2* = 4 times the resistance to a twisting force. Suppose we have an

other rod twice as large in diameter, and divided it into the same

number of rings, then each ring will be twice as thick, twice as long

and twice as far removed from the center as the corresponding ring

of the first rod; the torsional resistance will, therefore, be 2 × 2 × 2

= 2* = 8 times that of the first rod, provided the resistance per unit

area is the same in both cases. In other words, by increasing the di

ameter of the rod we increase both the thickness, length and leverage

of resistance of the rings in the same proportion. The torsional

strength, therefore, is proportional to the third power of the diameter.

The formulas for torsional strength are,

T 1

Zd” = — Zd", nearly. (1)

16 5

For round bars RW=

1 1

Zd”=— Zd", nearly. (2)

3 V2 4

For square bars RW=
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in which W= twisting force in pounds,

R = lever arm in inches,

Z = shearing unit stress of outside ring, in pounds,

d =diameter or size of bar, in inches, -

For tool steel we may put Z = 80,000 pounds, and the moment of

resistance of round steel = 1/5 × 80,000 d" = 16,000 d”. This gives

for a 4-inch rod, the safe moment of resistance = (14)” X 16,000 =

2000. If we twist the rod with a 6-inch lever, the safe load on the

2000

end of the lever = = 333 pounds. A 58-inch rod would carry

16,000

X (%)" = 650 pounds on the end of a 6-inch lever. It will be

noticed that a small increase of diameter greatly increases the strength,

and that square steel will carry about one-fourth more than round

steel of the same diameter.

We will now consider the torsional deflection. Fig. 14 is an end

view or section of a twisted steel rod, r and r’ are imaginary radial

lines, and r is supposed to be in a plane above r" and is supposed to

have just covered r’ before the rod was twisted, that is, a small par

ticle directly over r" is moved horizontally a distance r"r through an

angle v. Fig. 16 is an elevation of part of the rod where the dotted

lines indicate the twisting of the surface much exaggerated. The

planes of r and r’ are supposed to be 1 inch apart and rp represents

the transverse displacement of a small particle originally at p. The

maximum unit stress in each transverse section of the rod is supposed

to be equal to the product of this displacement and a certain constant

multiplier. J f the material be tool steel and Z = 80,000, the distance

pr is about 1/150 inch. It varies directly as Z, and is independent of

the diameter of the rod. The multiplier is in this case 12,000,000,

which, according to our hypothesis, is a constant for tool steel. It is

a purely hypothetical quantity, which bears no rational relation to

the modulus of elasticity of the material, but we may call it the tor

sional modulus of elasticity, because it takes the same place in the cal

culation of torsional deflection as the modulus of elasticity takes in the

calculation of bending deflection. It will be seen that a rectangular

area in the surface of the rod becomes a rhomboid when the rod is

twisted. Area rr’ba is a rhomboid, or deformed rectangle; suppose

that pr’ represents the unit of length, and let distance prºbe the dis

placement caused for a torsional unit stress of one pound at the sur

face of the rod, then this displacement becomes the modulus or meas

ure of deformation, which is the reciprocal of the torsional modulus of

elasticity; but it will be readily inferred that such deformation does

not produce a lateral or shearing stress, as if the surface had been

stretched lengthwise of the rod a distance equal to pr, and that the

torsional modulus of elasticity must be considerably less than the

modulus of elasticity for bending. We have seen that for a given

maximum unit stress Z, the moment of torsional resistance varies as

the third power of the diameter; but without this limitation of stress



18 No. 58—SPRINGS

the mean unit stress for any given angular deflection varies directly

as the diameter of the rod, and under this condition the moment of

resistance, therefore, becomes proportional to the fourth power of the

diameter; and the deflection will be inversely proportional to this.

That the entire angle of deflection must be proportional to the length

of the rod requires no demonstration. It is also directly proportional

to the load.

The following are convenient formulas for torsional deflection:

32 WR21 10 WR21

=—=—, nearly. (3)
4 4.

For round Steel ºrg/d Gd

2ZlR

=– (4)

Gd

6 WRºl

For square steel ga

V 221B

F=— (6)

Gd -

in which F = linear deflection at end of lever,

W = twisting force at end of lever,

R = length of lever,

l = length of rod, _*

G = torsional modulus of elasticity,

Z = unit shearing stress in periphery of cross-section,

d = diameter of rod.

For spring steel G = 12,000,000 is a nearly correct mean value. The

proper Value of Z depends on the Working conditions. A Spring that

is continually working should be strained less than one whose action

is intermittent or irregular; and it should be observed that shearing

resistance at the elastic limit is somewhat less than tensile strength

at the same limit. Z = 80,000 is probably not too much, unless the

spring is continually working to its full capacity. But when the con

struction and circumstances are such as to admit of a lower stress,

it is always preferable.

As a simple example of torsional springs, take a rod of 14-inch

round steel 3 feet long, fixed solidly at one end, and the other end so

guided as to prevent lateral motion, and let there be a 6-inch lever

keyed to this end. How much will it be safe to load the end of the lever

if the rod is twisted 100 times a minute? The rod is not supposed to

be hardened, and though its ultimate strength is considerable, the

elastic limit is comparatively low. Let Z = 30,000 and E = 12,000,000.

Then, substituting in Formula (1) we have:

6000 1000

6 W = 1/5 × 30,000 × (1%)* = 8 , and W = = 125 pounds

which is the admissible force on the end of the lever. The deflection for

this force can easily be found from Formula (4), because the value of
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Z is known. We have

2 × 30,000 × 36 × 6 × 2

F=—=2.16 inches.

12,000,000

If this rod were of hardened steel we might put Z = 70,000, and

would then have W = 125 X 7/3 = 292 pounds, and F = 2.16 × 7/3 =

5.04 inches.

Steel used for springs should have a high elastic limit and prefer

ably a low modulus of elasticity, for the deflection is proportional to

Z

the quotient — and the greater efficiency of torsional Springs is due to

G.

the smaller modulus of elasticity, as compared with that of bending.

For the same unit stress at the surface of the rod the angular deflec

tion will vary inversely as the diameter, which is an important rule

easy to remember. But for the same load and varying diameters the

deflection varies inversely as the fourth power of the diameter. The

torsional deflection of a 53-inch rod, for instance, would only be about

2/5 of that of a 14-inch rod under the same load.

Helical Springs

The rod would in many cases have to be very long to give the de

sired deflection, and a straight rod would therefore often be imprac

ticable; but fortunately it can be bent so as to make a comparatively

short spring, easy to make and easy to harden. This is obtained by

bending it in the form of a cylindrical helix, or screw-line, as shown

in Figs. 17 and 18. One of these springs will be compressed and the

other will be stretched, but the former may, by a slight change in the

connections, be used both ways. These are true torsional springs,

though it may not appear so at first sight. The following analogous

case will explain it. Fig. 19 shows an open ring of steel wire firmly

fixed and supported at A, and a radial lever firmly attached to the

free end at B. A pressure exerted on this lever at the center of the

ring perpendicular to its plane will twist the wire while it pushes

point B back. This will be better understood by reference to the bent

wire, shown in the dotted line. At a point N is drawn a tangent and

from C a perpendicular CM. There will be a bending moment at N

represented by line MN and a twisting moment represented by line

CM; but when the curve becomes a circle With center at C the bend

ing moment disappears and there is nothing but a twisting moment

left, and this twisting moment is constant for any part of the concen

tric ring. We see that when the rod is coiled, the twisting lever is

equal to the mean radius, and the deflection will be in line with the

axis of the helix. The helical form is compact, and the weight of a

helical spring of round steel is only about 5/12 of that of a leaf spring

of the same capacity.

In the following are given a number of formulas for helical springs.

Calculated values based on these formulas are given in MACHINERY's

Data Sheet Book No. 9, pages 8 to 11, inclusive.
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The following formulas apply to helical springs:

40 Zd”

W= - (7)

100 (D–d)

8 W (D–d)*

For round steel - F=— (8)

Gd"

314 Z (D– d.)” -

F=— (9)

100 Gd

ſ 47 Zd”

- W=—— (10)

- 100 (D — d.)

47 W. (D — d.)*

For square steel - F=— (11)

10 Gd"

222 Z (D— d.)”

F=— (12)

l 100 Gd

In these formulas F is the deflection of one coil, and D is the outside

diameter of the coil, and the meaning of the other letters is the same

as in Formulas (1) to (6). It appears from these formulas that

square steel is about 17 per cent stronger than round steel, but for the

Vsame unit stress the deflection of square steel is about 30 per cent

less. Round steel is, therefore, better adapted to helical springs.

This may easily be perceived without any calculation, considering that

when square steel is twisted, the corners cannot add very much to the

strength on account of the smallness of their areas, which terminate

in four points; but these points, being furthest removed from the cen

ter, will take the greatest strain, and will limit the angle of deflection

as much as a full circle including the points, would do.

Fig. 18 shows a car spring of, say, 1-inch round steel, 5 inches out

side diameter. How much will it carry? It must not close under the

maximum static load, but it may close entirely by the jolting of the

car, and we will therefore put Z = 50,000 pounds for the maximum

static load, assuming the elastic limit to be above 100,000 pounds unit

stress. Substituting these values in Formula (7) we have:

40 × 50,000

W =—=5000 pounds,

100 × 4

and assuming Z = 100,000 pounds when the spring is entirely closed,

we have from Formula (9):

314 × 100,000 × 16

F=—=7/16 inch, nearly.

100 × 12,000,000

That is, the coils should be 7/16 inch apart without load, and they

will be 7/32 inch apart under maximum load.

The spring in Fig. 17 is, say, 3 inches in diameter and is made of 14

inch round steel, and there are 24 coils. How much may this spring be

extended if used on a shaft governor? As its Work is intermittent,
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and as it very seldom is fully extended, we may put Z = 70,000, and

we have from Formula (9):

314 × 70,000 × (2%)”

F=—=0.23 inch.

100 × 12,000,000 × 4

which is the allowable deflection of one coil, and 0.23 × 24 = 5%

inches is, therefore, the safe extension of this spring. From Formula

(7) we find the maximum load to be 1400 pounds. Closed coil springs,

as represented by Fig. 17, are sometimes distinguished by a consider

able initial tension; that is, it takes some initial force to separate the

coils, and the elongation cannot be calculated from the above formulas.

The probabilities are that they are made from cold rolled wire, un

º

Fig.18 Machinery,N.Y.

IFig.19

Figs. 17 to 19

tempered, for the initial tension would be removed by the process of

tempering. Such springs are easily distinguishable by their resist

ance to bending before they are stretched.

It will be noticed that in the calculations of springs the supposed

elastic limit is approached closer than would be judicious in the cal

culation of other machine parts; but the results agree with the average

common practice, and there are several reasons why this is so. In the

first place, springs are made of tool steel of moderate dimensions,

which is a most reliable material. In the second place, the form is

such that no part can be subjected to unexpected or unaccountable

strains, and on account of their great elasticity springs do not suffer

materially by shocks or blows.

There seems to be considerable uncertainty or lack of knowledge as

to the proper modulus of elasticity of hardened steel. The compara

tively small demand for such knowledge except for the calculation of

springs is a probable reason for its scarcity. According to various
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tests, the modulus of elasticity of untempered steel is from 28,000,000

to 32,000,000, and it appears from calculations of bending and twisting

deflection of ordinary springs that the modulus of elasticity is not in

creased by tempering. Still it will hardly do to overlook the figures

given by Reuleaux, which appear in his “Constructor.” His figures for

the elastic limit and ultimate tensile strength are also interesting. In

the heading, he states that the figures are mean values of numerous

experiments by various experimenters on materials of different make,

and in actual use.

Ultimate

Tensile

Strength,

Modulus of Elastic Pounds per

Elasticity’ Limit Square Inch

Spring steel, tempered. . . . . . . . . . . . 28,440,000 71,000 to 113,700

99,500

Tool steel, untempered............ 28,440,000 35,500 113,700

Tool steel, spring tempered. . . . . . . . 42,600,000 92,000 to 142,000

213,000



CHAPTER II

THE DESIGN OF HEAVY HELICAL SPRINGS*

A spring is usually specified by three dimensions, although some

specifications complete the design by a fourth. The dimensions usually

given are the outside diameter, free height, and diameter of bar. The .

fourth dimension, the solid height, is not generally given, so that the

actual design of the spring is really left to the manufacturer. In

some cases the number of coils or “rings” is specified, but this should

never be done, as a tapered coil may be considered by one as a full coil

and by another as a partial coil, thus causing confusion.

Investigation of such formulas as are found in the general text

books, hand-books, and books of reference, indicates the need of more

direct formulas to facilitate the design of Springs. It is the Writer's

intention to present the derivation of such formulas with parallel ex

amples, showing the ease of application. For this purpose we adopt

the following notation:

d = diameter of bar,

D = mean diameter of coil,

f = total deflection,

h = solid height,

H = free height,

L = blunt length of bar,

W = weight of bar, or spring,

P = capacity of coil,

P. = any load less than capacity,

h, - height of coil under load Pl,

S = maximum fiber Stress,

G = torsional modulus,

w =Weight of steel per cubic inch.

Only round bar coils will be considered.

I. Length of Bar when Solid Height is Given

L

Total number of coils =—.

7r D

h

Total number of coils =—.

d

Hence,

L h

* D - a

D D \-

L = tr (; h -- 3.1416 || – || h

d d

* MACHINERY, January, 1910, Railway Edition.
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Eacample: Outside diameter = 4% inches,

Bar = 7/16 inch,

Solid height = 10 inches.

1 5

3};

I6

L = 3.1416 × ( ) X 10 = 282.74 inches.

II. Deflection when Solid Height is Given

Fundamentally, as given in most text-books,

LDS

f=

Gd

But

- ZD

L = m – h

d

Hence,

Tr S / D\?

1–4() h.

G \Ol

D\?

f= 0.019946 (...) h
d

Eacample: Outside diameter = 414 inches,

Diameter of bar = % inch,

Solid height = 10 inches.

Or, for steel springs,

3}\*

f = 0.019946 (...) X 10 = 4.34 inches.

#

III. Ratio between Free and Solid Heights

H = h -- f

Tr S / D\?

f= (; h

G V Cl

Tr S / D\?

n- +(),

ſº

)

IHence,

Or, for steel springs,

AX

H = | + 0.019946 (i. |
d

h =—

D\?

1 + 0.019946 (#)
d

h

h

and
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Earample 1: Outside diameter = 6 inches,

Diameter of bar = 1% inch,

Free height = 13% inches.

Find solid height it.

13.75

4}\*

1 + 0.019946 –

1}

Example 2: Outside diameter = 7% inches,

Diameter of bar = 1% inch,

Solid height = 10 inches.

Find free height H.

6 \2T.

H= [. -- 0.019946 (i)] × 10 = 15.67 inches.

14 -

IV. Deflection when only Free Height is Given

h =
= 10 inches.

tr S / DV 2

f= — h

G \ Cl

But

H

h =

tr S M D \?

1 + — I—

G \d

Hence, -

f=

tr S M D \?

1 ++(#)G \d

H

f=

G / d \?

1 + -

Tr S \D

Or, for steel springs,

H

f =

(i \?

1 + 50.1337 })
- D

Outside diameter = 5% inches,

Diameter of bar = 1% inch,

Free height = 11% inches.

11%

1}\*

1 + wºn( )4;

Eacample:

f=
= 134 very nearly.
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V. Weight when Solid Height is Given

Tr d”

Area of cross section =

4

L tra”

Cubical contents of bar=

L ºr d” w

Then W=—

4

I)

But *-(#).
- d

Tr” w

Hence, W= d D h

4

For steel springs, where one cubic foot of steel weighs 486.6 pounds,

W = 0.694 dB)h.

Outside diameter = 3% inches,

Diameter of bar = 15/16 inch,

Solid height = 10 inches.

Eacample:

15 13

W = 0.694 × — X 2 — X 10 = 18.3 pounds.

16 16

VI. When Free and Solid Heights are Given

to Determine Stress

H

h =

ºr S M D \?

1 +— —

G \ 0.

(H— h) G. d \?

S=—X || –

ºr h. (...)

Gf (...)
=—X || –

Trh, D

f / d \?

S= 4,010,700— —

{{..)
Outside diameter = 4% inches,

Diameter of bar = % inch,

Free height = 22% inches,

Solid height = 10 inches.

12.75 ( 0.5
2

**) = 80,000 pounds.

4

For steel springs,

Eacample:

S = 4,010,700 X
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VII. When Free and Solid Heights are Given

to Determine Capacity

S Tr d”

P=—

8 D

and

G f / d \?

S=— —

tr h \D

Hence,

G f d"

T 8 h D

For steel springs,

f d"

P= 1,575,000

h D*

Eacample: Outside diameter = 2% inches,

Diameter of bar = % inch,

Free height = 1414, inches,

Solid height = 10 inches.

4.5 × 0.5°

P= 1,575,000 ×—=1653 pounds.

10 × 2.375°

These last two formulas are very useful in ascertaining the stresses

and loads of the separate coils of double and triple coil springs.

VIII. Given Free Height, Diameter of Spring and Bar, and

Load Carried at Given Height. To Find

Proper Solid Height

P, f,

P T f

H = f + h

H= f; + h,

Hence, f, = f + h— h,

Then P (f -- h — h,) = Plf

Plf — Pf + Ph.

Hence h =—

P

Pi—P

h = X f –H ha

tr S / DV 2

But f=— — h

#(#)
Hence,

ºr S / DV 2 / Pi— P

=– (#) (***) h + h)

G \ 0. P
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hi

tr S / P-P, D\?

G P d

h,

P— J'i A)\?

1 + 0.019946 **) (#)
P d

Eacample: Outside diameter = 5% inches,

Diameter of bar = % inch,

Free height = 18"inches.

For steel springs,

h =

What solid height is required for carrying 1395 pounds at 14 inches? -

S Tr d”

P =2790 pounds by formula P= — -

8 D

Then,

14

h = - =10 inches.

2790–1395 \ {4}\*

1 + 0.019946 || –– (*)
2790 #

IX. To Determine the Quality of the Steel

The value of G is the index to the quality of the steel, and upon this

Value depend all properties of the spring. By transposing either the

formula given in (VII) for capacity, or that for load, we find a method

for ascertaining this value, i. e.: *

h / DY"

o–-s}(#)f \d -

Or

h D3

G = 8 P.

f d"

Eacample: Outside diameter = 4% inches,

Diameter of bar = 11/16 inch,

Load = 1219 pounds,

Deflection = 3.7 inches,

Solid height = 10 inches.

10 × (4 ſº, )* -

G= 8 × 1219 ×—=12,600,000.

3.7 × (+4)*

General Remarks

Concentric coils, as shown in Fig. 21, are made generally of the same

free and solid heights. Presuming that such coils are all made of the

D

same quality of steel, the ratio of — should be the same throughout,

d

for the formula in (II) clearly shows that this is necessary to obtain

equal stresses in all coils.
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The formula in (I) shows that after all values of — are made the

d

same, the lengths of all bars will be the same before tapering. A

D

study of all the formulas reveals the fact that the ratio of — deter

d

mines everything; this ratio might well be called the spring indea.

Fig. 21. Concentric Coil Springs for Railroad Cars

The absolutely perfect design of concentric springs is seldom possible

where a scale of sixteenths inch for dimensions is used, with the cus

tomary one-eighth inch between inside diameter of one spring and out

side diameter of the next. As cases of perfect design, however, the

following springs are given as examples:



30 No. 58—SPRINGS

Spring No. 1

Outer: 5 inches outside diameter, 15/16 inch bar.

Inner: 3 inches outside diameter, 9/16 inch bar.

D

In this design—= 4 1/3.

d

- Spring No. 2

Outer: 2% inches outside diameter, 3% inch bar.

Inner: 1% inch outside diameter, 14 inch bar.

D

In this design —= 6.

d

In concentric coil springs where perfect design is impossible, the

coil having the least value of — will be stressed the highest, as shown

d -

Fig. 22. - Groups of Coil Springs held together by Plates at Top and Bottom

by the formula in (VI); this coil may therefore be called the govern

ing coil, inasmuch as the motion, or deflection, of the Spring as a

whole depends upon this coil. To estimate the capacity of such con

centric coils we have recourse to the formula in (VII), while the form

ula in (VI) shows the separate stresses. The load which the concen

tric spring will carry at any height is then found by the fact that all

loads are proportional to deflection. -

In actual design adjacent coils are wound in opposite directions to

prevent binding, as shown in Fig. 21. Instead of using concentric

coils, groups of similar coils are sometimes used which are held to

gether by pressed steel or cast spring-plates, as shown in Fig. 22. It

is customary to suspend the static load at one-half the deflection.

A helical spring for railroad service is almost invariably made of

round bar spring steel. The analysis of spring steel most frequently

used is known as P. R. R. analysis, and its composition is as follows:
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Carbon, 1.0 per cent (not under 0.90 per cent); phosphorous, 0.05 per

cent (not over 0.07 per cent); manganese, 0.25 per cent (not over 0.50

per cent); silicon, not over 0.10 per cent; sulphur, not over 0.03 per

cent.

For spring steel of this character the maximum fiber stress should

not be over 80,000 pounds per square inch, and the torsional modulus

should be taken as 12,600,000 pounds.



CHAPTER III

THE DESIGN OF ELLIPTIC SPRINGS*

It is doubtful if scientific calculations ever entered into the design

of the original forms of such springs as are used under ordinary road

carriages. Satisfactory as they are, they are not engineering results,

hut accepted standards born long ago of the cut-and-try methods of the

blacksmith shop. Their manufacture belongs to such arts as are

taught by father to son, or acquired through years of experience, dur

ing which have been gathered the “tricks of the trade.” The manu

facturer of this class of springs does not attempt to arrive at results

by mathematics. He has learned as a part of his trade that certain

styles of carriages should have certain springs. -

Sufficient time did not exist during the development of railroad cars

for a gradual development of definite types of springs for various types

of cars. It devolved, therefore, upon the engineer to design these

springs; but as soon as the spring maker found that the 70,000-, 80,000.,

and 100,000-pound capacity car each had its own peculiar set of springs,

and that any car could be fitted with springs according to its capacity,

he adopted the engineer's designs as another class of standards. Rail

road cars, while resting on Springs whose dimensions were originally

scientifically estimated, are now, therefore, suspended largely upon

Springs belonging to a few fixed classes.

With the advent of the automobile came a carriage traveling fast

over uneven country roads, meeting severe usage in inexperienced

hands, and demanding the extreme of comfort and safety. The ques

tion of springs and spring suspension thus becomes of primary import

ance, so that in these carriages each particular design requires a spe

cially designed suspension. Automobile springs are fundamentally

cantilevers, the same as all leaf springs. This class of springs more

readily lends itself to an easy vibration, as well as to a better general

design of the machine. It is possible to carry a load on a narrow

leafed elliptic leaf Spring where there would not be room for a helical

spring. Also, the addition of a leaf to an elliptic leaf spring adds to

its capacity without changing its deflection, while the addition of a

coil to a helical spring does not change its capacity but adds to its de

flection. - -

Any leaf spring, tightly banded around the middle, should be con

sidered as composed of two cantilevers of length l, where l is one-half

the distance from center to center of the end bearings less one-half the

width of the band. The length of each cantilever is then expressed

(see Fig. 24):

C— w

2

* MACHINERY, January, 1910, Engineering Edition.
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To consider a spring as a simple beam of length c, is to overlook the

effect of the band. It is easily demonstrated that variations in the

width of the band cause corresponding variations in the strength and

deflection of the spring. The elliptic spring, graduated throughout,

with but one leaf in each section extending from end bearing to end

bearing, is fundamentally a cantilever of uniform strength ; and the

formulas applicable are based on the fundamental formulas of that

type of cantilever. An elliptic spring with all leaves in each section

extending from end bearing to end bearing is, on the other hand, a

cantilever of uniform section, and the formulas for this type of canti

lever are then applicable.

The springs used in automobile practice are frequently combina

tions of these two forms, inasmuch as a considerable portion of the

leaves extend the full length from bearing to bearing. It follows that

neither of the above formulas will apply, but that the applicable form

ulas may be derived by combining the fundamental formulas for the

‘. . . .”
-

F———————c-——————————

*———————iº-te-i--——--——-
I |

Machinery,N.Y.

Fig. 24. Diagrammatical Sketch of Graduated Spring, giving Length

Notation used in Formulas

two types of cantilevers. The load capacity of a cantilever is not

affected by its form, for in either case:

S b hº 3.

P=

6 * ~,

in which P = load,

= allowable stress, %

b = width of beam,

h = thickness of beam,

! = length of cantilever.

In other words, the load capacity is equal for like conditions, such as

stress, size of beam, and length of span.

A great difference exists, however, in the deflections under the same

load, One being fifty per cent more than the other:

4 P lº ,

- , for uniform section Cantilevers,

E b hº

6 P is º,

F , for uniform strength cantilevers,”

E b hº - - -

in which f = deflection, and E = modulus of elasticity.

* The formula given is that for a cantilever of uniform strength, where the

height h is uniform, but the width of the section of the cantilever decreases

towards the outer end ; b is the width at the support.
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When such a difference as this exists, it is rather remarkable that

many engineers calculate the properties of an elliptic spring no matter

what the cantilever conditions, as though all elliptic springs were sub

ject to the same rules and formulas; but, as a matter of fact, the pro

portion of back leaves, or the leaves on the longer side of the spring

which commonly extends the full length, ranges from 5 to 50 per cent

of the total number of leaves. It is not unusual to see attempts made

through actual tests of the springs themselves to find the proper con

stant with which to modify the uniform strength equations so as to

render them applicable to springs composed of uniform section canti

levers in combination with uniform strength cantilevers. The de

sired modifier, however, is a variable quantity, depending upon the

relative size of the fundamental spring elements.

Lack of due consideration of this combination of different cantilevers

accounts also for the different and conflicting formulas which various

r ra --

R= P +P R=P+P"

o Machinery,N.Y.

Fig. 25. Showing Division of Spring into Cantilevers of Uniform Section

(Upper Portion) and Cantilevers of Uniform Strength (Lower Portion). One of

the Full Length Leaves should always be considered as a Part of the Gradu

ated Leaves

authorities advance. Thus Goodman, in “Mechanics Applied to Engi

neering”; Reuleaux, in his “Constructor”; and “Des Ingenieurs

Taschenbuch” (Hütte), give formulas all of which reduce to uniform

strength cantilevers. Molesworth and the Automotor Pocket Book

base their formulas on uniform section cantilevers. Henderson, who

assumed all semi-elliptic springs to contain one-fourth full length

leaves, and made an approximation of the result, was the first to recog

nize the influence of the combination of cantilevers.

Deduction of General Formulas

For further consideration we will adopt the following notation, dis

cussing only the semi-elliptic spring:

P = total load on Spring,

P. = portion of load on one end of spring,

P’ = portion of load on one end of full-length leaves, or on uniform

section cantilever,

P”= portion of load on one end of graduated leaves, or on uniform

strength cantilever,
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m = total number of leaves,

m’ = number of full-length leaves,

m" = number of graduated leaves,

S = maximum fiber stress in spring,

S’ = maximum fiber stress in full-length leaves,

S” = maximum fiber stress in graduated leaves,

= total deflection of banded leaves,

f" = total deflection of full-length leaves if unbanded,

f" = total deflection of graduated leaves if unbanded,

b = width of leaves,

h = thickness of leaves,

l = length of cantilever,

L = net length of spring, i. e., actual distance between end bearings,

less width of band,

a = proper initial space between fundamental cantilevers before

banding.

It is but reasonable to assume that the maximum fiber strain

should be the same in both fundamental parts, or

S’ = S^*.

But

6 P' i

S’ = º

m’ b hº

6 Pºl

S”- -

m” b hº

Hence,

P’ m’

P” - n”

In a well-designed spring there should be, at full load, a division of

the work proportional to the respective number of leaves in the two

fundamental parts. The fundamental formulas of the two cantilevers

have shown, however, that such proportional loads would produce dif

ferent deflections in their respectiye carriers. This difference in de

flection would cause a separation of the two portions of the spring

were they initially together and unbanded. Were they initially to

gether and banded the result would be internal stress under load

which would mean that a division of the load proportional to the re

spective number of leaves in the two fundamental parts could not exist.

It is evident that by placing a space between the two fundamental

parts when unloaded and unbanded, equal to the difference between

the two deflections, there will result no space between the two funda

mental parts at full load ; and hence if banded in this position there

will be no internal stress, so that the load on each part will be propor

tional to the number of leaves in that part. If then the load be re

moved, it follows that the band alone holds the two portions together
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and that there must exist a resulting stress upon the band and leaves.

NOW

4 P* is

f’=— (1)

E m” b hº

and

6 Prº Tº

f’’=— (2)

E mº' b hº

But, as shown,

or

4 P* !”

Hence f* =—, as derived by substituting in (1).

E mº' b h"

Hence,

2 Prº 12

f" – f' = -

E mºb h”

Also, since

We have

Also since

P Lº

8 E m b hº

Or

P Lº

a: =—

8 E m b h"

This last expression is then a general expression of the proper in

itial distance between the two fundamental portions before banding,

expressed in terms of total load on spring, total number of leaves in

spring, and net span of spring. To find the actual working deflection

of the entire spring it is only necessary now to ascertain how much

either portion is deflected by the process of bending. For this purpose

let us adopt the following notation : -

P. = force exerted by band,

f,' = deflection of full-length leaves caused by band,

f," = deflection of graduated leaves caused by band.
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Then,

2 P. la 3 P, is

fx'=—and f.” =

E nº b hº E n” b hº

Hence

P. 13 f.' m’ f." m"

E on T 2 T 3

or

2 / 1 — r

f.' - - f.”

3 r

But

Pla

f.' -- f." =—

E m b hº

Hence

2 / 1 — r \. P is

j." + - f."F

8 r E m b h"

3r P 13

f." = -

2 + r J E m b hº

But

3 P, tº

f.” =—

E mº" b hº

Hence - -

3 P. l' 3 r Pl,

E m” b hº =(#) E m b h"

or

3 P, tº 3 r P is

Fºr=(#) E ºn b hº

or

r (1 – r)

P. = | — )e
2 + r.

The expression inside the bracket in the above equation becomes

zero for either extreme value of r, as would be expected, the extreme

values of r being unity and zero. The formula gives the force exerted

by the band, i. e., the load upon the band.

The total deflection of the graduated leaves, as already developed, is,

3 P is

f/

E no hº

The deflection of the graduated leaves, caused by the band, is

3 r P is

fx" = -

2 + r. E m b h"

The difference is, therefore, the deflection left in the graduated

leaves after banding, or the general formula sought for the deflection

of such a spring:
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- 3 ºr P Jº

rº-º-º-(+)-Hº2 + r E m b hº

6 P P

f= —

2 + r J E m b h”

**)

Or,

or, since l=— and

2

P=2 P =2

6 J

* 6 2snow'). L.
-* f=

2 + r. 31 J's Enon,

Hence

1 S L*

ºf+–x–
" .. 2 (2 +*r). E hº

This last expression is then a general formula for the deflection of

all semi-elliſtic springs. If all the leaves are graduated, r = 0, and

• *-*. - S Lº . .

- - ". f= 1/4 × * .

- x, * - E h s

º. It all thé leaves are full length, r = 1, and
-

-

; º'
-

* , .3% ... • S L”
, 4. *.

* ..., f=1/6 ×−.
:- A. E. h.

…?

As was to be expected, the spring composed of all graduated leaves

has a deflection, according to the above general formula, 50 per cent

above that of a spring composed of all full-length leaves. For values

of r above zero, the -deflection will be found to decrease until r equals

unity.

General Remarks

The general formulas given above were first deduced by the writer

in the early part of 1905, at which time they were placed before Prof.

C. H. Benjamin,then of the Case School of Applied Science, with a view

of making extended experiments for the preparation of a thesis. It

was the intention to have springs built with initial space as deduced,

and compare the actual deflections of such springs with the estimated

deflections. Although these experiments were not carried out, they

are mentioned because it is believed that when such experiments are

made, they will prove valuable. The deduction of the formulas was

published for the first time in MACHINERY, in the January, 1910,

issue, engineering edition. This deduction was made in connec

tion with certain springs which were giving very poor service, al

though designed by the same formulas as other elliptic springs. It

was the writer's conclusion that had the springs been built with the

proper initial space between the fundamental parts, these springs

would not have broken, and that the omission of this space caused
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an over-stress in the full-length leaves, and an under-stress in the

graduated leaves, which caused the over-strained leaves to break,

throwing an overload upon the previously under-stressed leaves which

also broke when the stress became excessive. This conclusion seems to

explain why springs of this type are frequently found with only the

long leaves broken; the remaining leaves, all being of one type, divide

uhe resultant overload evenly so that the over-stress is not so excessive.

Perhaps the strongest indication of the correctness of the deduction

lies in the well-known fact that the percentage of breakage is always

much greater with semi-elliptic springs (of the combination type,

usually) than with full elliptic springs. Also, it is generally found

upon unbanding these springs that no initial space exists.

Fig. 26. Front Spring Arrangement of the 1910 Model

Winton Six-cylinder Car

Comparison of deflections estimated from the above formulas, with

actual deflections, has in some cases been quite satisfactory, while in

other cases the actual deflections have appeared closer to those esti

mated by uniform strength formulas. In such cases where the Writer

has been able to make comparisons, however, the springs had been

made to specified deflections which evidently were estimated by the

wniform strength formulas. Experienced spring makers know that it

is quite possible by putting a “pull” in the springs to vary the deflec

tion and load. This trade term, “pull,” is itself nothing more nor less

than the introduction of an initial space between the leaves before

banding.

Suspension of Automobiles

In road carriages, except in the heavier wagons, it is usual to find

but two springs, one over each axle placed across the width of the

carriage. In automobiles, one finds almost invariably at least the

rear suspended upon two springs running lengthwise of the car, while,

as is shown in the accompanying illustrations, it is the tendency to
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use the same suspension in the front. Such an arrangement takes up

the forward and side lunges in a manner impossible with simple

transverse springs. The further use of links and shackles, and of

scroll ends, adds to the comfort, allowing the car to swing upon the

springs rather than to be thrown upon them. In quite a few models,

the two rear springs are attached in front to the frame and in the

rear to a platform spring, which is itself attached to the center of the

rear cross member of the frame. The three-quarter elliptic spring

lends itself to both comfort and convenience of arrangement, and is

****

Fig. 27. Spring Support of the Lozier Motor Co.'s “Light Six” Car

rapidly coming into general use in this country, our manufacturers

having apparently adopted it from foreign cars.

Steel Used in Automobile Springs

Automobile springs call for a high grade of steel, the ordinary

spring steel lacking in strength and elasticity. Various grades of high

carbon, silicon, manganese, nickel, chromium, and vanadium steels are

used. Often such alloys are used as silico-manganese, chrome-nickel,

and chrome-vanadium, the stiffening elements seeming to rank in the

order given. Data as to the physical properties of such steels cannot

well be given, as such properties must depend upon the proportions in

the particular alloy used. Certain alloys of the vanadium group hav

irg an elastic limit of from 180,000 to 225,000 pounds per square inch,

and tensile strength from 190,000 to 250,000 pounds, appear to be the

most ideal steels yet produced.

Calculations of Springs

The calculation of Spring properties by formulas is long and tedious.

The writer appends, therefore, a table based on a modulus of elasticity



42 No. 58—SPRINGS

of 25,400,000 and a fiber stress under maximum safe load of 80,000

pounds per square inch. Calculations of springs made of materials

having other physical properties are made by simple proportion. This

table is to be used only when all leaves are fully graduated.

The safe load on one leaf one inch wide is found by dividing the

constant given under Pu by the net length. The corresponding deflec

tion is found by multiplying the constant given under fu by the Square

of the net length.

Eacample: What is the safe load on a semi-elliptic full graduated

spring of five leaves if of one-quarter by two inch steel; length between

end bearings, thirty-six inches; band or seat, three inches?

Net length = 36 — 3 = 33 inches.

3333.33

Load on one leaf one inch wide =—= 101.01 pounds.

33

semi-ELLIPTIC SPRING TABLE

Giving safe load and deflection for 1 inch wide leaves, 1 inch net length.

sed only when all leaves are fully graduated

Thick

ness of Pu ſu Steel Au ſu

Leaf

*s 52.08 || 0.02519 *s 4218.75 0.00280

I's 208.83 : 0.01260 * 5208.33 0.00252

*s 468.75 0.00840 # 6302,08 0.00229

§ 838.33 0.00680 § 7500.00 0.00210

* 1302.08 0.00504 # 8802.08 0.00194

1, 1875.00 0.00420 i’s 10208.33 0.00180

iſs 2552.08 0.00360 # 11718.75 0.00168

3333.38 0.00315 # 13333.33 0.00157

Load on one leaf two inches wide = 2 × 101.01 = 202.02 pounds.

Load on five two-inch leaves = 5 X 202.02 = 1010.10 pounds.

Corresponding deflection is:

0.00315 × (33)* = 3.43 inches.

Formulas can easily be deduced making it possible to use the ac

companying table for other classes of elliptic springs than those of

the semi-elliptic type with all leaves fully graduated.

The formulas for the semi-elliptic spring with all leaves graduated

are:

2 S m b h" S L*

P=—and f= -

3 L 4 E h

To find the values of Pu given in the table, insert S = 80,000, n = 1,

b = 1, h = the value given in the first column in the table, and L = 1.

To find the values of fu, insert in the second formula S = 80,000, L =

1, E = 25,400,000, and h = the value given in the first column in the

table.

Now if the values in the table are to be used for other springs, Con

stants can be deduced by which the table values may be multiplied.
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For a semi-elliptic spring with a portion of the leaves graduated the

load P remains the same as for a spring with all leaves graduated.

The formula for the deflection, however, is:

1 S L*

- X -

2 (2 + r.) E h

The values in the table, therefore, must be multiplied by the quantity

2

(2 + r.)

and graduated spring of effective length L.

X. L* to find the deflection for any given combination full leaf

Fig. 28. Arrangement of Semi-elliptic Springs on the Lozier

Motor Co.'s Four-cylinder Model

For a full elliptic spring with all leaves graduated, P still remains

the same as for a semi-elliptic spring, but f doubles its value, or:

S L2

2 E h

The values in the table, therefore, in this case must be multiplied

by 2 L’.

For the full elliptic spring with only part of the leaves graduated,

the load P remains the same as before, but the deflection is twice that

of a semi-elliptic spring:

1 2 S L* S L2

f= X - -

2 (2 + r.) E. h. (2 + r.) E h

In this case, then, the values for the deflection in the table are to be

multiplied by X L*.

2 + r

- The flexibility of a spring is the amount of deflection as compared

to the load. This may be expressed as so many inches deflection per

hundred pounds, or y.
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Earample: Assume a full-elliptic, fully graduated spring, where

S= 80,000,

E=25,400,000,

b = 1% inch,

m = 4,

= 14 inch,

L= 30 inches.

Then the safe load equals:

3333.33

P=4 × 1% X— ——ws pounds.

And the deflection equals:

f= 30° X 2 × 0.00315 = 5.67 inches.

Then, -

5.67

Ay =— X 100= 0.73 inch.

778

On the other hand, assume that the thickness and number of leaves

are unknown. Then we have:

P= 778 pounds,

S= 80,000,

E= 25,400,000,

b = 1% inch,

L= 30 inches,

Aſ = 0.73 inch.

Then

778

f =—X (.73 = 5.67 inches.

100

But f = 2 fu L*, where fu is the constant for deflection in the accom

panying table.

Hence,

f 5.67

fu =—= = 0.00315.

2 L2 1800

The thickness of steel in the table which corresponds to this value

of fu is one-fourth inch. -

The number of leaves is found by using Pu.

Load on one leaf, one inch wide is:

3333.333

30

Load on one leaf 1% inch wide is:

111.11 × 1% = 194.25.

Number of leaves is then,

= 111.11 pounds.

778

—=4.

194.25
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The present calculation makes no allowance for the leaves of a

spring varying in thickness. Where such springs are used, the deflec

tion of the different leaves will not be uniform. Hence, in such springs

also a suitable initial “pull” should exist, and such springs should be

estimated by a general formula based upon a combination of different

cantilevers, thus making allowance for different depths of cantilevers.

****

Fig. 29. Three-quarter Elliptic Spring Suspension on the

F. B. Stearns Co.'s 15-30 H. P. Car

It is much better to use springs composed of but one thickness of

leaves, as the combination of different thicknesses adds a complexity

scarcely necessary.

Results obtained from fully graduated full elliptic springs would

seem to show that the action of the friction between the leaves is not

great enough to seriously affect the bending action, in that the formu

las give results agreeing very closely with actual conditions.



CHAPTER IV

THE DESIGN OF SPRINGS FOR GAS

ENGINE VALVES”

Springs for gas engines should be carefully designed, and if properly

proportioned for the work they must do, should be just as reliable as

any other part of the mechanism. While the general data for spring

design are well known to engineers, yet attention may properly be

given to some considerations specially applicable to gas engine valve

springs. This chapter will consider compression springs of round steel

wire only, as the writer knows of no valid reason for the use of any

other material or section for this class of springs. It is well known

that square steel is less desirable than round steel for springs, both

on account of the higher cost of the springs per pound, and from the

standpoint of efficiency.

The first consideration is the selection of the proper values for the

fiber stress S and the torsional modulus of elasticity G. Experiments

have shown that a fair value for G is 12,500,000, which value is fairly

constant for the various grades and tempers of Steel within their elas

tic limits. The safe value for S is not so easily determined, because

the correct value for any given class of springs is largely a matter of

experience. The highest normal value of S varies from about 120,000

pounds per square inch for 1/16-inch wire, to 90,000 pounds for 56-inch

wire, which includes the range of sizes generally used on valves. The

term “normal value” is used to distinguish these figures from the

higher values which can be reached by spring makers, and which are

sometimes necessary, but should never be used for rapidly vibrating

springs, or for springs where safety and long life are primary consid

erations, as in this class of springs. In fact, even the above normal

values are far too high for gas engine springs. These values are used

very generally on machinery springs, etc., but should be reduced very

materially to obtain springs which will give the maximum of service

in gas engine work. A value of S of from 25,000 to 30,000 pounds per

square inch has been found to give best results for gas engine valves.

The third variable is the length of the spring, which should be as

long as practicable in order to keep the pressure on the lever or cam

which operates the valve from being higher than necessary at the

extreme lift of the valve. To illustrate this point we will take a

valve on which a pressure of 40 pounds when closed is desired, and

which opens 14, inch. If the spring is under 4, inch compression

when the valve is closed, and holding 40 pounds, the pressure when

the valve is open will be 80 pounds. But if we use a spring under

1% inch compression to hold 40 pounds when the valve is closed,

when the valve is opened the 14-inch travel, the pressure will be

- • Machinery, May, 1908.
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increased to only 56 pounds. The diameter and assembled length of

the spring will usually be determined by the general design of the

engine. The diameter should be as large as convenient, which will

lessen the tendency to buckle.

We will now design a spring for an exhaust valve, the lift of the

valve being 4% inch, the assembled length of the spring 6 inches, the

pitch diameter of the spring 2 inches, and the value of S at extreme

compression 25,000 pounds per square inch. We will make the spring

714 inches long, thus giving a total compression of 1% inch, and a final

pressure of 56 pounds. The following formulas will be used:

11d"S *

-— (1)

28 D

22D*S

, =— (2)

7Gd.

in which

P= pressure at given compression,

d=diameter of wire in inches,

D =pitch diameter of spring in inches, º

f = deflection of one coil in inches,

S=fiber stress in pounds per square inch,

G=torsional modulus of elasticity.

The common forms of the Formulas (1) and (2) are:

Stral”

P=— (3)

16R

32PR21

f=— (4)

Gºrd"

In these formulas P, d, S, and G denote the same quantities as in

Formulas (1) and (2), and

R = pitch radius of spring in inches,

f= deflection of the whole spring under load,

l = full length of Wire in Spring.

The Formulas (3) and (4) can easily be transformed to the form in

(1) and (2) by Writing tri- 22/7, R = D/2, and l = trl)n (n being the

number of coils in the spring).

We use Formula (1) to determine the size of the wire. Substituting

the known values, we have:

11d" × 25,000

56 =—, or d= 0.225.

28 × 2

We therefore will use No. 4 Washburn & Moen gage wire, which is

0.225. To determine the deflection per coil, we will substitute the

known values in Formula (2), as follows:

22 × 4 × 25,000

fi =—=0.112 inch.

7 × 12,500,000 × 0.225
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The free length of the spring is 7% inches, and the length with the

valve open is 5% inches; the compression therefore is 1% inch. Then

1% + 0.112 (the compression per coil) gives 15% acting coils ap

proximately, and adding one coil on each end, for a flat bearing to be

ground at right angles to the axis of the spring, gives 17% total coils.

Therefore the spring will be 2 inches pitch diameter, 7% inches free

length, No. 4 W. & M. gage wire, 17% total coils, squared and ground

ends, holding 40 pounds at 6 inches long, and 56 pounds at 5% inches

long, with a fiber stress at 5% inches long of 25,000 pounds per square

inch.

If it is desirable that the pressure, when the valve is open, rise as

little as possible above 40 pounds, we must make the spring as long as

possible and still compress to the closed length given. We will assume

a spring 2 inches pitch diameter, to hold 40 pounds when 6 inches long,

and as little over 40 pounds as possible at 5% inches long. As we do

not know the pressure at 5% inches long, we will take the fiber stress

25,000 pounds at 6 inches long, instead of at total compression. Using

11d." X 25,000 224

Formula (1): 40 =—, or d”=

28 × 2 27,500

will therefore use No. 5 W. & M. gage wire, which is 0.207. Using Form

22 × 4 × 25,000

ula (2): fl =—=0.1215 inch compression per

7 × 12,500,000 × 0.207

coil when holding 40 pounds. Then 5% inches solid length less twice

0.207 gives the length occupied by the acting coils when solid, or 5.086

inches, and 5.086 -- 0.207 = 24.5 acting coils. Further, 24.5 × 0.1215

= 2.975 inches compression, which added to 6 inches gives 8.975

inches free length of the spring, say 9 inches. The spring therefore

compresses 3 inches when holding 40 pounds, with a value of S of

25,000 pounds and at 5% inches long, being compressed 3% inches,

46 2/3

, and d = 0.200. We

holds 46 2/3 pounds, with a value of S of × 25,000 or 29,166 2/3

40

pounds.

In these examples we have not corrected the values of S to allow

for the variation in sizes of wire used, from the theoretical sizes ob

tained, as it is not necessary to do so in practice. It is interesting to

note, however, the difference in this value at final compression, ob

tained by the above method of proportion based on 25,000 pounds at 40

pounds pressure, from that obtained by using the original formula

with the final pressure at 46 2/3 pounds, and wire of 0.207 inch diam

eter. The first method gives 29,166 pounds, while the second method

gives 26,782 pounds, this difference being caused by the difference of

0.007 in the size of Wire.
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Tapp r and Machine screw Taps;

A. M. Standard Screws and Nuts: Machine

Screw Heads; Wood Screws; Tap Drills;

Lock Nuts: Eye-bolts, to.

No. 3. Taps and Dies.-Hand, Machine,

Taper

Die ºups: Sellers Holºs, Screw Machine

Taps; Straight and Taper Boiler Taps.

Stay-bolt, Washout, and Patch-bolt Taps;

Pipe Taps and Hobs; Solid Square, Round

-

ing.

* and Spring Screw Threading

--

No. 4. Reamers, sockets, Drills and

Milling Cutters-Hand Reamers; Shell

Reamers and Arbors; Pipe Reamers; Taper

Pins and Reamers; Brown & Sharpe,

Morse and Jarno Taper Sockets and Ream

ers: Drills; Wire Gages; Milling Cutters:

Setting Angles for Milling Teeth in End

Mills and Angular Cutters, etc.

No. 5. Spur Gearing.—Diametral and

Circular Pitch; Dimensions of Spur Gears;

Tables of Pitch Diameters; Odontograph

Tables Rolling Mill Gearing; Strength of

Spur Geº sº I ºr sepower Transmitted by

Cast-iron and Rawhide Pinions; Design of

Spur Gears; Weight of Cast-iron Gears;

Epicyclic Gearing.

No. 6. Bevel, Spiral and worm Gear

Rules and Formulas for Bevel

Gears; Strength of Bevel Gears; Design

of Bevel Gears; ules and Formulas for

Spiral Gearing; Tables Facilitating Calcu

lations; Diagram for Cutters for Spiral

Gears: Rules and Formulas for Worm

Gearing, etc.

No. 7. Shafting, Keys and Reyways.-

Horsepower of Shafting; Diagrams and

Tables for the Strength of Shafting:

Forcing, Driving, Shrinking and Running

Fits; Woodruff Keys; United States Navy

Standard Keys; Gib Keys; Milling Key

ways; Duplex Reys.

No. 8. Bearings, Couplings, Clutches,

Crane Chain and Rooks—Pillow Blocks;

Babbitted Bearinº Ball and Roller Bear

ings; Clamp Co lings, Plate Couplings;

Flange Couplings; Tooth Clutches; Crab

Couplings; Cone Clutches: Universal

Joints; Crane Chain; Chain Friction;

Crane Hooks; Drum Scores.

Springs, Slides and Machine

Details-Formulas and Tables for Spring

Calculations; Machine Slides; Machine

Handles and Levers; Collars; Hand

* Pins and Cotters; Turn-buckles,

---

No. 10. Motor Drive, Speeds and Feeds,

Change Gearing, and Boring Bars.-Power

required for Machine Tools, Cutting

Speeds and Feeds for Carbon and High

speed Steel; Screw Machine Speeds and

Feeds; Heat Treatment of High-speed.

CONTENT'S OF DATA SHEET BOOKS

Steel Tools ºrane, Turning: Change Gear

ing for the Jºe Boring Bars and Tools.
etc. -

No. 11. ing Machine Indexing,

Clamping vices and Planer Jacks.-

Tables 1 ºr Milling Machine Indexin

Change Cears Milling Spirals: Anºle

for setti º udºxing Head when Milling

Clutches; Ji lamping Devices; Straps

and Clamps: ºlaner Jacks.

No. 12. Pipe and Pipe Fittings.-Pipe

Threads and Galºes, Cast-iron Fittings:

Bronze Fittings. Pipe Flanges, Pipe

Bends, Pipe Clamps and Hangers; Dimen

sions of Pipe for Various Services, etc.

No. 13. Foilers and Chimneys.-Flue

Spacing and Bracing for Boilers; Strength

of Boiler Joints; Riveting; Boiler Setting;

Chimneys.

No. 14. Loc motive and Railway Data.

–Locomoti-e oilers; Bearing Pressures

for Locomotiv - Journals. Locomotive

Classifications; Rail Sections: Frogs,

Switches and Cross-overs, Tires; Tractive

Force; Inertia of Trains, Brake Levers:

Brake Rod, et.

No. 15, steam and Gas Engines.--Sat

urated Steam; Steam Pipe sizes; Slºan

Engine Design: Volume of Cylinº ºr's

Stuffing Boxes; Setting Corliss Ei ine

Valve Gears; Condenser and Air Pump

Data; Horsepower of Gasoline Engines.

Automobile Engine Crankshafts, et

No. 16. Mathematº a rables.-sav rºs

of Mixed Numbers; Functions of H-at

tions; Circumference and Diameter of

Circles; Tables for Spacing ºff Cir es;

olution of Triangles: Formulas for sº lºv

ing Regular Polygons, Geometrical Pro

gression, etc.

No. 17. Mechanics and stren of Ma

terials.-Work. Energy. Centrifugal

Force; Center of Gravity: Motion; ºio

tion; Pendulum; Falling Bodies; Stre ºth

of Materials, Strength of Flat Plº tes:

Ratio of Outside and Inside Radiº ºf

Thick Cylinders, etc.

No. 18. Beam ºormulas and Structural

Design-Beam Formulas: Sectional Mº -

uli of Structural Shapes: Beam Chºi sº

Net Areas of Structural Angles; Rººt

Spacing; Splices for Channels an

beams; Stresses in Roof Trusses, et

No. 19.

Dimensions of Pulleys, Weights of ul

leys; Horsepower of Belting; i.e. It V cº

ity; Angular Belt Drives: Horsepower

transmitted by Ropes; Sheaves for Rope

Drive; Bending Stresses in Wir

Sprockets for Link Chains. Formulas and

Tables for Various Classes of Driving

Chain.

No. 20, wiring Diagrams, Heating and

ventilation, and Miscellaneous Tables.--

Typical Motor Wiring Diagrams, Resist

ance of Round Copper Wire Rubber ºv

ered Cables: Current Densities for Vari

ous Contacts and Materials. Centriº --

Fan and Blower Capacities: Hot Water

Main Capacities; Miscellaneous Tables:

Decimal Equivalents, Metric Conversion

Tables, Weights and Specific Gravity of

Metals, Weights of Fillets, Drafting-roºm

Conventions, etc.
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