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FIRST PRINCIPLES OP MECHANICS.

Mechanics is that branch of science which treats of the action of

force, and of its effects. A force is commonly defined as any cause

tending to produce or modify motion. Its action is always equivalent

to a push or pull, such as is exerted when we use our muscles, and

until we have made some progress in the study of the subject, it will

be simpler to consider force in this sense, simply, without regard to

its effects. For the present, therefore, a force may be defined as any

cause producing a push or a pull. There are many familiar examples

of force, as muscular effort, gravity, the expansive force of steam, the

elasticity of a spring, the attraction of a magnet, etc.

The unit by which force is usually measured is the standard pound,

avoirdupois; that is, the common pound. A force of 100 pounds is one

capable of sustaining a weight of 100 pounds. It will appear here

after that the weight of the pound varies with the locality, so that

this unit is not an absolute . one. The variation is so slight, however,

that it is of no consequence, except in very accurate physical investi

gations.

Matter.

Thg material of which anything is composed is called matter. The

term is a collective one, and is used when no particular substance is

referred to. Lead, iron, water, air, or any other substance is spoken

of in a general way as "matter."

Matter exists in three states: the solid, the liquid, and the gaseous.

A solid, of which wood and iron are examples, is characterized by a

tendency to resist any attempt to change either its shape or size. A

liquid readily changes its shape, but its volume or size remains con

stant under the same temperature conditions. A pint of water will

fill a pint vessel of any shape, but it cannot be forced into a vessel

holding less than a pint.* A gas has neither definite shape nor definite

volume. It will accommodate itself in any shape, like a liquid, can

be compressed easily, and will also expand into a larger space. Air,

oxygen, nitrogen and hydrogen are examples of gases.

Since force can act upon all three forms of matter, the subject of

mechanics is divided into the mechanics of solids, the mechanics of

liquids or hydraulics, and the mechanics of gases, or pneumatics. For

the present, only the mechanics of solids will be considered.

A Vody is a definite portion of matter, as a pound of lead, an iron

bar, a quart of water, or a cubic foot of air. It is believed that all

bodies are made up Of extremely small portions of matter, called mole-

* Liquids are very slightly compressible. Water will diminish about 0.00005
In volume under a pressure of 15 pounds per square inch.
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cules, which are separated from one another by distances that are

great compared with their size. These molecules are so minute that

it is impossible to detect them, even with the most powerful micro

scope; but there are many facts determined by experiment, that make

their existence seem very probable. If the speculations of scientists

are correct, at least 500,000 molecules could be placed in a row between

the measuring surfaces of a micrometer caliper, when it is set to read

0.001 inch. A molecule is the smallest portion of matter that can

exist and still retain the properties of the substance of which it is a

part.

It is believed, further, that every molecule contains two or more

indivisible portions of matter, called atoms. Thus a molecule of water

is composed of two atoms of hydrogen gas and one atom of oxygen

gas. A molecule can be separated into its atoms by chemical action

only, and then the separation is only momentary, for the atoms at

once combine to form other molecules, usually of a different nature.

The atom is purely a chemical unit; we are not concerned with it in

mechanics.

Molecular Forces.

Two opposing forces reside in the molecules—an attractive force

that binds the molecules together, and a repellent force, that tends to

push them apart. The three states of matter, solid, liquid, and gaseous,

depend upon the relation of these forces. If the attractive force pre

dominates, the body is solid; if the repellent, it is gaseous; if the two

are nearly balanced, it is liquid.

The repellent force is probably one manifestation of the phenomenon

which we call heat. Thus, when a bar of steel is heated, the attractive

force is gradually overcome by the repellent force, as is seen in the

expansion and finally in the melting of the bar. So, also, if we heat a

piece of ice, the ice is turned to water, and at last, when the repellent

force becomes very strong, the water is turned into steam.

The attractive force is capable of acting not only between molecules

of the same kind and in the same body; but between the surfaces of

different bodies which are in contact, as well. In the former case it

is called cohesion, and, in the latter, adhesion. It is cohesion that

resists any attempt to pull apart a body, like a string or a wire, and

adhesion that holds together bodies that stick to one another, as in

the case of two pieces of wood, when united by glue, or of drops of

rain on a window-pane, pencil or ink marks on a piece of paper, etc.

The effect of adhesion is usually more noticeable between solids and

liquids than elsewhere. Neither force will act, except at insensible

distances. To join two pieces of iron, for example, welding must be

resorted to, in which process the hammering brings the molecules in

the two parts near enough together for the cohesive force to take

effect. Adhesion and cohesion are of the same nature, the difference

between them being one of name or definition rather than of kind.

Two absolutely smooth surfaces, if such were possible, would adhere

to one another perfectly, since their contact would be perfect, and it
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might then as properly be said that the adjoining particles were held

together by cohesion as by adhesion.

Work and Power.

The terms force, work and power are of frequent occurrence in me-

chanices, and are oftentimes misused. As a definition of force has just

been given, it will be advantageous to now take up the subjects of

work and power, so that the meanings of the three may be compared

and thus firmly impressed upon the memory.

Work.

Work is said to be performed when a force produces motion in oppo

sition to a resistance. Force has one element only, namely, the push

or pull exerted. Work is the result of the two elements, force and

motion. When no motion results from the action of a force, no work

is done. A jack-screw supporting a weight does no "work, except when

the screw is turned so as to raise the weight. Likewise, no mechani

cal work results when a man pushes against a heavy body which he is

unable to move, however much it may seem like work to him in the

common acceptance of the term. Should he push with equal force

against a smaller body, however, and move it, work would be per

formed.

Measurement of Work,

(a) In order to calculate the work done, the magnitude of the

force applied is measured in pounds and the distance moved in feet.

The product of these quantities, obtained by multiplying them together,

is the work in foot-pounds. Or, briefly stated,

Work= force X distance. (1)

The foot-pound is called the unit of work, and may be defined as the

work done by a force of one pound acting through a distance of one

foot.

(6) In the estimation of work it is sometimes more convenient to

multiply the resistance overcome by the distance, than to multiply the

force applied by the distance, in which case

Work — resistance X distance. (2)

It is clear that the resistance and the force applied must always be

equal, so that it makes no numerical difference which method is used.

For example, if a man raises a weight of 10 pounds through a certain

height, he performs work. The resistance of the weight is equal to 10

pounds, and the force that he exerts is just sufficient to raise it, or

equal to 10 pounds, also.

(c) The simplest example of work is that just cited, of a weight

raised against the force of gravity. When solving such examples, care

must be taken always to multiply the weight by the vertical height

through which it moves. Thus, in Fig. 1, suppose the ball B to be

rolled from the bottom to the top of the inclined plane. If W represent

the weight of the ball and h the height that it is raised, the work done

upon the ball would be W X h. It is true that the ball has moved

through the distance l, but the force required to roll the ball through

this distance, and which acts in the direction of the arrow, is less
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than the weight W, and hence, if W were multiplied by 1, the result

would be too great. If it were known, however, what force, acting in

the direction of the arrow, was required to roll the ball, then this force,

multiplied by l, would give the work.

Power.

From what has been said upon work, it is plain that a force, how

ever small, can perform any required amount of work, provided time

enough be allowed. A toy engine, for example, might do 1,000,000

foot-pounds of work in a few hours, while an engine of moderate pro

portions would accomplish as much during a few strokes of the piston.

Foot-pounds of work, merely, with time left out of account, would
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form no basis by which the capacities of the two engines could be com

pared. Hence, to compare the work done, either by or upon some

agent, the time required must be considered.

The term power is employed to indicate the quantity of work done

in a given time. "One million foot-pounds" is an expression indicating

work; 1,000,000 foot-pounds of work performed in a day, or an hour

or minute indicates power. Work has the two elements, force and

the distance through which the force acts; power has three elements:

force, distance and time.

The unit of power adopted for engineering work is the horse-power

(abbreviated H. P.). One horse-power is equal to 33,000 foot-pounds

per minute, or it may be said to equal 33,000 pounds raised one foot

high in a minute.* Hence, to find the horse-power when work is done,

divide the number of foot-pounds of work done in one minute by 33,000.

Lest it lead to confusion when met with, it should here be stated

* The horse-power unit was introduced by James Watt, the great Improver
of the steam engine, for the purpose of designating the power developed by his
engines. He had ascertained by experiments that an average cart horse could
develop 22,000 foot-pounds of work per minute, and being anxious to give good
value to the purchasers of his engines he added 50 per cent to this amount,
thus obtaining (22,000 + 11,000) the 33,000 foot-pounds per minute unit by
which the power of steam and other engines has ever since been estimated.—

Jamieson'8 Applied Mechanics.
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that the term power is frequently used by writers on mechanics in the

sense of force. In the so-called "mechanical powers," such as the

lever, wheel and axle, wedge, screw, etc., it is quite usual to speak of

the applied force as the power. Thus, the bar or lever shown in Fig. 2

is pivoted at 0 and at the end bears the weight W. At the other end

a force, such as the pressure of the hand, acts downward in the direc

tion of the arrow, and thus supports or raises the weight W. This

pressure, which is the applied force, is what is called the power. Such

use of the word, when force is what is meant, is ambiguous and can

easily be avoided.

Friction.

Friction is the surface resistance which opposes the motion of one

body upon another. It must be regarded as a force, although it is not

always natural to think of it as such, for the reason, perhaps, that its

action in resisting motion is of a negative character. The force of

^ Machinery,.V.F.

Pig. 2.

friction always acts in a direction parallel to the surfaces in contact.

Thus, in Fig. 3, in pulling the block B along the surface, as shown, the

frictional resistance is exerted in an opposite direction and parallel

to the surfaces, as indicated by the arrow F.

Friction should not be confounded with adhesion, which not only

resists the motion of one body upon another, but tends to hold the two

together so that they cannot be separated. Adhesion is independent

of the pressure between the bodies, while friction increases with the

pressure. Moreover, the smoother the rubbing surfaces the less the

friction; two perfectly smooth surfaces, if such were possible, would be

frictionless, while, as has been previously stated, an adhesion between

them would be very great. Lubricants increase the adhesion and

diminish the friction. When the pressure between two bodies is small,

the adhesion forms a considerable part of the resistance, and as the

pressure increases, it becomes proportionately less, since adhesion does

not increase with the pressure. At ordinary pressures the effect of

adhesion can generally be neglected, and the whole resistance consid

ered as the friction.

Kinds of Friction.

(a) A distinction is usually made between friction of rest and fric

tion of motion, the former being the frictional resistance to be over

come in starting a body into motion, and the latter the resistance that

continually accompanies the motion. Friction of rest is generally

greater than friction of motion, other conditions being equal.

(6) When friction is mentioned, sliding friction is understood, i.e..
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such as that between an engine crosshead and its guides, or between

a journal and its bearing. It is due to the roughness of the surfaces

in contact. Whenever wheels are employed, or rollers or balls placed

between the surfaces, the resistance is called rolling friction, the

nature of which is somewhat different; it is then due to the fact that

the rolling body makes a greater or less depression in the surface of

the other, so that it has continually to rise out of a hollow, as it were.

(c) Frictional resistance also occurs between the molecules of

liquids and gases, or between them and any solid body with which

they may be in contact, as in the case of air when blown through a
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pipe, or a ship when sailing. This kind of resistance is called fluid

friction. Its action is very different from that of the friction of solid

bodies, and it is different in its nature.

Laws of Friction.

Certain conclusions have been drawn from early experiments upon

friction, which are known as the laws of friction. They are only

approximately true, however, and apply only within certain limits.

Outside of those limits they have been proved by later experiments to

vary, in some cases very widely. They are:

(1) Friction is proportional to the normal pressure between the

surfaces.

(2) It is independent of the areas, or sizes, of the rubbing surfaces.

(3) It is independent of the velocity of motion, though friction of

rest is greater than friction of motion.

In law 1, by "normal pressure" is meant the pressure in a direction

at right angles to the surface. If an object rests upon a horizontal

plane, like the top of a table, the normal pressure is equal to its

weight. If it rests upon an inclined plane, as in Fig. 4, the normal

pressure (at right angles to the inclined plane) is found by dividing

the horizontal distance b by the length l of the plane, and multiplying

the result by the weight W of the object, or

6

Pressure =— X W (3)

l

Law 1, therefore, means that for any increase or diminution of the

perpendicular pressure, the friction varies in the same ratio; thus, if

the pressure is doubled or tripled, the friction becomes twice or three

times as great. Law 3 varies most widely at high velocities, which

tend to diminish the friction. In order that these laws shall hold, the
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velocity of motion of the sliding pieces must be comparatively slow,

the surfaces must have little or no lubrication, and the normal pres

sure must be great enough so that the effect of adhesion will be inap

preciable, but not so great as to cause the surfaces to "seize."

It is not intended to treat of fluid friction here, but it will be con

venient to have the laws for comparison with those just given. The

three most important laws are as follows:

(1) Fluid friction is independent of the pressure.

(2) It is proportional to the area of the rubbing surfaces.

(3) It is proportional to the square of the velocity at moderate and

high speeds, and to the velocity, nearly, at low speed.

The friction of lubricated surfaces departs widely from any set of

laws. Where the lubricant is very freely supplied, the friction depends

upon the nature of the lubricant more than upon the material of the

surfaces. As the surfaces become dry, the friction becomes like that

of solid bodies; and when they are flooded with oil, it is more nearly

like fluid friction. The friction of lubricated bearings, therefore, has

become a subject of entirely independent investigations, and cannot be

treated in a general way like the dry friction of solid bodies.

Coefficient of Friction.

If it should require a force of 10 pounds to pull a wooden block

weighing 20 pounds along the surface of a board, the frictional resist

ance would be y2' or 0.5 of the normal pressure. Again, if a weight of

40 pounds were added to the block, making a total weight of 60

pounds, we know from law 1 that the resistance would be three times

as great, or 30 pounds, which is still 0.5 of the pressure; and so, for

any weight within the limit of law 1 the ratio of the friction to the

pressure would remain this constant number 0.5. Knowing this, if it

were desired to obtain the friction for any given weight of block, it

would only be necessary to multiply the weight by 0.5, and if we had

different numbers for different materials and various conditions, it

would be very easy to calculate the friction for any particular case.

Any constant number like that above, which depends for its value

upon the substance or conditions in question, ~ is called a coefficient,

and in the present case the coefficient of friction, which may be defined

as that fraction of the normal pressure which is required to overcome

the friction between two surfaces. It is found by dividing the force

of friction by the normal pressure. Or expressed* as a formula,

Letting f = the coefficient^ of friction,

F= the force of friction,

and P— the normal pressure,

F

t =— (4)

P

The following coefficients of friction may be taken as average

values where more complete tables are not at hand. Under varying

conditions a wide variation from these values may be found, and where

coefficients are to be used, they should be obtained, if possible, from

experiments suited to the particular case.
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Wood on wood, dry

Metals on metals, dry

Metals on metals, lubricated

Metals on wood, dry

Leather on metals, dry

0.4 to 0.6

0.15 to 0.2

0.03 to 0.08

0.5 to 0.6

0.3

If a body is placed on a plane surface, and the latter inclined until

the body is just at the point of sliding down, the angle made by the

plane with the horizontal at that instant is called the angle of friction,

or the angle of repose. It can be shown that when the plane is at this

point, its height divided by the base (h -=- 6 in Fig. 4) is equal to the

coefficient of friction. This fact affords one means of finding the co- "

efficient of friction of materials by experiment. Written as a formula,

we have,, f being the coefficient of friction,

The attractive force that exists between the earth and all bodies at

or near its surface is called gravity. Weight is due to gravity. A

body has weight because it is pulled downward by the force of gravity,

and the amount that it weighs is a measure of this pull. A piece of

iron, for example, weighs one pound when it is of such a size and

density that it is drawn to the earth by a force equal to that which

attracts a standard pound weight.

As has been previously mentioned, the weight of a body (that is,

the force by which it is attracted to the earth), varies slightly with

the locality.

(a) Weight varies with the altitude. A body weighs the most at

the surface of the earth, as the attraction is there the strongest. Beloiv

the surface its weight decreases in the same ratio that its distance

from the center of the earth decreases. Thus, calling the radius of

the earth 4,000 miles, the relative weight of a body at the surface and

at one mile below the surface would be as 4,000 : 3,999; or at the

latter point its weight would have diminished 1/4,000 part. Above the

surface, the weight decreases in the same ratio that the square of the

distance from the center increases. That is to say, if a body be car

ried from the surface to the top of a mountain one mile high, the

relative weights in the two positions would be as 4,0012 : 4,0002, or

as 16,008,001 : 16,000,000. Its weight would therefore diminish about

8,000 parts in 16,000,000, or 1/2,000 part.

(!)) Weight varies with the latitude, or distance north and south

of the equator. In passing from the equator to either pole, the attrac

tion of gravity increases by 1/568 of its original amount. This is due

to the want of sphericity of the earth, the polar diameter being 26

miles shorter than the diameter at the equator. At the poles, however,

a body would actually weigh more than this, or about 1/193 more than

at the equator. The difference, 1/289, is due to the rotation of the

earth on its axis, the effect of which is to produce a force directly

opposite to that of gravity, (centrifugal force), which is greatest at

 

(5)

Gravity.
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the equator and diminishes in moving from it, until at the poles it

becomes nothing.

How Gravity Acts.

Under the influence of gravity, all bodies tend to move in a direction

toward the earth's center, or to "fall," as we say, our idea of "down"

being always in a direction towards this point. Gravity, therefore,

acts in the direction of lines converging or meeting at the center of

the earth, a point so far distant, compared with the dimensions of any

bodies that are likely to be considered, that these lines of action are

always assumed to be parallel. The question naturally arises, at what

point in a body does gravity act? The answer is, at every point. All

bodies are composed of particles, each of which has weight, and conse

quently is attracted by gravity. A body, therefore, is really drawn

downward by a large number of forces of gravity—as many as there

are molecules in the body.

It is always assumed, however, that gravity acts as a single force

at a point called the center of gravity. In Fig. 5 let the dots p, p, etc.,

represent particles of the body B, under the influence of forces of
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gravity, acting in parallel lines as shown by the direction of the arrows.

Now, into whatever position this body be placed, there is always one

invariable point through which the resultant of the attracting forces

always passes. This point is called the center of gravity. It is a point,

as eg, in Fig. 5, at which, if a single force of gravity were to act, in

place of all the other forces, and equal in intensity to their sum, the

effect upon the body would be the same as before. Again, since the

intensity of the gravity force at each particle may be taken to repre

sent its weight and the sum of these forces the weight of the body, we

may consider the center of gravity as a point at which the weight of

a body is concentrated.

Center of Gravity.

We have in the previous paragraph given an explanation of the

meaning of the term center of gravity. We will now consider some of
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the principles involved in finding this point, together with a few of

their applications. A body suspended at its center of gravity will

balance in whatever position . it may be placed. For this reason, the

center of gravity is sometimes defined as that point about which a

body will balance, in any position. Any homogeneous body will bal

ance about its center of magnitude; that is, about its central point.

Hence, in the case of regular geometrical figures, the center of gravity

is readily determined, as the center of magnitude can usually be found

by geometrical construction.

Center of Gravity of Geometrical Figures.

The center of gravity of a line is at its middle point; of a circle,

at its center; of a rectangle, at the intersection of two lines joining

the opposite corners; of a sphere or ball, at its center; of a prism and

cylinder, at the middle point of a line joining the centers of gravity

of the two ends. To illustrate the last two cases, the center of grav

ity of a bar of any homogeneous material, four feet long, two inches

 

Machineru,y. F.

Fig. 6. Fig. 1. Fig. 8.

wide and one inch thick, lies at a point two feet from one end, one

inch from the edge and one-half inch from one side; and of a round

bar of the same length, at a point on its axis two feet from one end.

The center of gravity of a triangle lies at the intersection of two

lines drawn from the vertices (points) of any two angles to the middle

of the opposite sides (Fig. 6). This point may also be found by draw

ing one of the lines, as A B, and laying off two-thirds of its length

from the vertex. Thus, the center of gravity <? in the figure is at a

distance A <? from A, equal to two-thirds of the length of the line A B,

and the same proportion holds with the lines drawn from the other

two vertices.

The center of gravity of a parallelogram is at the intersection of its

diagonals, as AB and C D in Fig. 7. A parallelogram is a figure hav

ing four sides, the opposite ones being equal and parallel.

The center of gravity of a cone or of a pyramid is on a line drawn

from the vertex to the center of gravity of the base, and at a distance

from the vertex equal to three-fourths of the length of the line.

A help in finding the center of gravity of a plane figure is the fact

that, if it has an axis of symmetry, the center of gravity will lie at
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some point upon this axis, and if it has two such axes, the center

of gravity will lie at their point of intersection.

A plane figure is here understood to be a flat, material body, that is

very thin compared with its extent or area, such as figures cut out

of paper or sheet metal. Strictly speaking, a plane figure has extent,

but no thickness.

An axis of symmetry is a line so drawn across a figure that it

divides the latter into two parts, one of which would exactly coin-

side with the other, if the figure were folded over along this line.

Thus, if the regular pentagon in Pig. 8 were folded about the line A 0,
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the parts ABD and AF E would exactly coincide; and If it were

folded about B N, parts B AF and B D E would coincide. Hence, A 0

and B N are axes of symmetry, and the center of gravity of the figure

lies at their intersection, or at (?.

Center of Gravity of Two or More Bodies.

In Fig. 9 let the point G be the position of the center of gravity

of the two bodies w and W. It must be so situated that they will

balance about it, if rigidly connected. The turning effect exerted by

each body about the point G is as though the weight of each were con

centrated at its own center of gravity, and acted downward at that

point, as indicated by the arrows. Moreover, as will appear when the

subjects of moments and levers have been studied, if w and W are to

balance, the ratio of the distances D' and D must be such that, calling

w and W the weights of the two bodies, the proportion w : D =W : D'

will exist. Thus', if w= 50 pounds, W, 250 pounds, and D', 25 inches,

25 X 50

then 50 : Z> = 250 : 25, and D = —=5 inches.

250

The center of gravity lies upon a line connecting the center of grav

ity of each weight, and its distance D' from the smaller weight ii

expressed by the formula

Wx

D'= (6)

W + w

where x = the distance between the centers of gravity of the weights

W — the weight of the larger body,

and w= the weight of the smaller body.

Stated as a rule, to find the distance D', multiply the larger weight
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by the distance between the centers of gravity of the two weights, and

divide by the sum of the weights.

Center of Gravity by Trial.

If a body be suspended from a point, or otherwise supported so that

it is free to vibrate and find its "own center," its center of gravity will

place itself in the lowest possible position. If a piece of sheet metal

be freely suspended from a nail, for example, the center of gravity will

lie in a vertical direction from beneath the point of support. This

fact may be taken advantage of in order to find the center of gravity

of a flat plate by trial. Suspend it from some point, as in Pig. 10, and

from the same point hang the plumb-bob B',. When both have come

to rest, hold the string against the plate, and, using it as a guide,

draw a line A B across the plate. As the center of gravity falls verti

cally below the point of support, it must lie at some point in this
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line. Next, suspend the plate from some other convenient point (Fig.

11), and repeat the operation, drawing the line CD. The center of

gravity must lie in this line, also, and hence its location is at the

intersection of lines A B and C D, since this is the only point com

mon to them both. Furthermore, from however many points the plate

might be suspended, the plumb-line would pass through this point of

intersection. Two suspensions determine the point, however, and are

all that are required.

Applications of Principles.

(a) A body is said to be in equilibrium when it balances, or has no

tendency to overturn. When acted upon solely by the force of gravity,

the only conditions necessary for the equilibrium of a body is that a

vertical line through the center of gravity should pass through the

point or surface which supports it. Thus, in Fig. 11, the plate is in

equilibrium as drawn, and theoretically it would also be in equilibrium

if it were turned half-way around, so that the center of gravity came

directly above the point of support. In the former case, however, the

V

Fig. lO.
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equilibrium is said to be stable, while in the latter it is unstable.

Stable equilibrium exists where, on moving the body, the center of

gravity ascends; and unstable equilibrium when it descends. By

swinging the plate of Fig. 11 about its point of support, the center of

gravity would rise, and with the position of the plate reversed, if it

were moved either way, the center of gravity would fall.

The case of bodies resting on a horizontal base is illustrated in

Fig. 12. A leaning body, a chimney, for example, would remain in

equilibrium so long as a vertical through its center of gravity passed

within the base, as is the case here with the center of gravity at G.

Moreover, the equilibrium would be stable, because the chimney, in

overturning, would act as though pivoted at 0, which is at tlie right

of <?, and therefore the center of gravity would have to ascend, slightly,

along arc Gi. Should the center of gravity be located at Ot', the

equilibrium would be unstable, because, at the moment of overturn

ing, Or' would begin to descend along the arc G'B. With the center of

gravity at O", the vertical falls without the base, and the chimney

would overturn.

Equilibrium is said to be neutral when, upon moving a body, its cen

ter of gravity neither ascends nor descends. Examples: A flat plate

suspended at its center of gravity ; a cylinder, cone or sphere rolling

upon a horizontal surface.

(6) A Hseful application is found in one of the theorems of Pap

pus, which is that the volume of any solid which can be generated by

the revolution of the surface about an axis, is equal to the area of the

surface by the circumference described by its center of gravity.

Moments.

The tendency of a force acting upon a body is, in general, to pro

duce either a motion of translation (that is, to cause every part of the
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body to move in a straight line) or to produce a motion of rotation.

A moment, in mechanics, is the measure of the turning effect of a

force which tends to produce rotation. For example, suppose a force

to act upon a body which is supported by a pivot. Unless the line of

action of the force happens to pass through the pivot, the body will

tend to rotate. Its tendency to rotate, moreover, will depend upon two

things: (1) upon the magnitude of the force acting, and (2) upon

the distance of the force from the pivot, measuring along a line at

right angles to the line of action of the force. These two factors taken

together always determine the turning effect, and their product is

called the moment of the force.

To illustrate further, suppose the wrench shown in Fig. 13 to be in

position No. 1, and that a person grasps it at point F and pulls in the
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Pig. 13.

direction of the arrow along the line CD, first with a force of 25

pounds, and then with a force of 50 pounds. The bolt 0 acts as a

pivot, and the tendency to turn the wrench and nut about it is twice

as great in the latter as in the former case, because the first factor,

namely, the magnitude of the force, has been increased twofold. Again,

grasping the wrench at E and pulling along the line A B, its effective

ness would be lessened, for the reason that the second factor, or the

distance, l, measured from the point 0 and at right angles to the line

AB, is less than the distance f measured at right angles to line CD.

Finally, suppose the wrench to be in position No. 2, and to be grasped
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at the end at F, and to be pulled with a force of 50 pounds in the

direction of line IE, parallel to lines A B and CD. Here the wrench

is held at the same point and pulled with the same force as at first,

but we know from experience that, so far as turning the nut is con

cerned, the wrench will be far less effective when in position No. 1.

The explanation is found in the fact that the effective distance of the

force from 0 is the distance h, measured at right angles to the line

IK, along which the force is supposed to act, and that this distance

is less than either I or f.

From this illustration we see that the moment of a force is numeri

cally equal to the product of the magnitude of the force and the per

pendicular distance from the axis, or pivot, to the line of action of the

force. To find the moment of a force, therefore, (1) determine the

location of the axis about which the body is supposed to turn; (2)

draw an indefinite line representing the line of action of the force;

(3) multiply the force by the perpendicular distance from the axis to

the line.

This perpendicular distance, as h, l, or f in Fig. 13, is called the

lever arm of the moment, and the axis or pivot the center of rotation.

If the force is taken in pounds and the lever arm in inches, the result

will be in inch-pounds, while if the foot were used as the unit of

length, the result would be in foot-pounds. The term foot-pounds,

however, has here a very different meaning from that which has been

given to it before. In this case it is the unit of rotative effect, and

in the other the unit of work, or the work done in raising one pound

one foot high. The two should not be confused.

In Fig. 13, if the pull along CD should be 50 pounds and the dis

tance f, 15 inches; the moment of the force would be 15 X 50 = 750

inch-pounds, or

15 X 50

= 62.5

12

foot-pounds. If the wrench in position No. 2 should be pulled in the

direction of the arrow along the line M N, the moment would be the

product of the force and the lever arm e. When a force tends to pro

duce right-hand rotation, or rotation in the direction in which the

hands of a watch move, its moment is said to be positive, and negative

when the rotation tends in the opposite direction.

The Reaction of the Pivot.

If a block of wood be set on end on a smooth sheet of ice, as in

Fig. 14, and a horizontal force be steadily applied at its upper end,

it will simply slide along the surface; but let the wooden block

be placed upon a rougher surface, and the result will be that it

will overturn or rotate about the point O, which acts as a pivot. In

both cases the frictional resistance F on the lower end of the block is

a force acting in a direction opposite to P. On the ice, the force F

is smaller than the force P, but on the rougher surface it becomes

exactly equal to it; for, if F should be smaller than P, instead of equal

to it, the block would not overturn, but would move to the left as it
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did when resting upon the ice. Similarly, whenever rotary motion of

any body occurs, there must be at least two equal and opposite forces,

not in the same straight line. This principle is universal.

In Fig. 13, for example, the bolt must re-act with a force equal and

opposite to thai' applied to the handle of the wrench. There is a

reaction at the shaft and bearing of a gear wheel or pulley, which is

equal and opposite to the force applied by the driving gear or belt.

The Principle of Moments.

When two or more forces act upon a rigid body and tend to turn

it about an axis, then, for equilibrium to exist, the sum of the moments

of the forces which tend to turn the body in one direction must be

equal to the sum of the moments of those which tend to turn it in

the opposite direction about the same axis.

In Fig. 15, a lever 30 inches long is pivoted at the fulcrum 0. At

the right, and 10 inches from 0 is a weight, B, of 12 pounds, tending

to turn the bar in a right-hand direction about its fulcrum 0. At

the left end, 12 inches from 0, the weight A of 4 pounds tends to turn
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Fig. 14. Pig. 10.

the bar in a left-hand direction, while weight C, at the other end,

18 inches from 0, has a like effect, through the use of the string and

pulley P. Taking moments about 0, which is the center of rotation,

we have:

Moment of B = 10 X 12 = 120 inch-pounds.

Opposed to this are the moments of A and C:

Moment of A = 4 X 12 = 48 inch-pounds.

Moment of B = 4 X 18 = 72 inch-pounds.

Sum of negative moments = 120 inch-pounds.

Hence, the opposing moments are equal, and, if we suppose, for

simplicity, that the lever is weightless, it will balance or be in equili

brium. Should weight A be increased, the negative moments would be

greater and the lever would turn to the left, while if B should be

increased, or its distance from 0 be made greater, the lever would turn

to the right. In the following treatment on the lever some additional

examples will be taken up.

Another application of the principle of moments is given in Fig. 16.

A beam of uniform cross-section, weighing 200 pounds, rests upon two

supports, Tf'and R', which are 12 feet apart. The weight of the beam

is considered to be concentrated at its center of gravity O, at a dis

tance of 6 feet from each support. A weight of 50 pounds is placed

upon the beam at a distance of 9 feet from the right-hand support, R'.

Required, the portion of the total weight borne by each support.
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Before proceeding, it should be explained that the two supports

react or push upward, with a force equal to the downward pressure

of the beam. To make this clear, suppose two men to take hold of

the beam, one at each end, and that the supports be withdrawn. Then,

in order to hold the beam in position, the two men must together lift

or pull upward an amount equal to the weight of the beam and its

load, or 250 pounds. Placing the supports in position again, and rest

ing the beam upon them, does not change the conditions. The supports

must react upwards just as the men had to pull up. The weight of

the beam acts downward, and the supports react by an equal amount.

This is an extension of the principle of the reaction of the pivot men

tioned above.

Now, to solve the problem, assume the beam to be pivoted at one

support, say at R'. The forces or weights of 50 pounds and 200 pounds

tend to rotate the beam in a left-hand direction about this point, while
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the reaction of R in an upward direction tends to give it a right-hand

rotation. As the beam is balanced and has no tendency to rotate, it is

in equilibrium, and the opposing moments of these forces must balance.

Hence, taking moments,

9 X 50 = 450 foot-pounds.

6 X 200 = 1,200 foot-pounds.

Sum of negative moments = 1,650 foot-pounds.

Letting R represent the reaction of support,

Moment of R = R X 12 foot-pounds.

By the principle of moments, R X 12 = 1,650. That is, if R, the

quantity which we wish to obtain, be multiplied by 12, the result will

be 1,650. Hence, to obtain R, divide 1,650 by 12, whence R = 137.5

pounds, which is also the weight of that end of the beam. As the total

load is 250 pounds, the weight of the other end must be 250 — 137.5 =

112.5 pounds. 1

The Lever.

Under the subject of moments, it was shown that, for a lever to be

in equilibrium—that is, for it to balance—the sum of the moments

tending to turn it in one direction about its fulcrum, must balance

or equal the sum of those which tend to turn it in the opposite

direction. This simple principle enables us to solve examples where

it is desired to find the length of one of the lever arms, or one of the
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forces or resistances acting upon the lever, the operations being some-

■vhat similar to those used in finding the reaction of the supports of

the beam shown in Fig. 16.

A very common, but at the same time a useful, illustration is found

in the lever safety-valve. In Fig. 17, let /S be the inside diameter of

the valve seat; G, the center of gravity of the lever; and W the weight

used to hold down the lever and keep the valve closed. The pivot or

fulcrum O is the point about which moments are to be taken, and

when the valve is just at the point of blowing off, the opposing

moments which keep the lever in equilibrium are (1) the pressure

.-.gainst the valve multiplied by the distance A. tending to turn it in
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a left-hand direction, and (2) the weight W multiplied by C, plus the

weight of the lever multiplied by B, tending to turn it in a right-hand

direction. The weight of the valve itself is comparatively small and

may be neglected.

The Principle of Work.

There is another principle of more importance than the principle of

moments, even in the study of machine elements. It is called the

principle of work, and to make it clear, we will analyze the process of

the operation of a machine.

1. A force such as the pull of a driving belt, or the pressure of

steam, is applied in a given direction at one or more points. The

product of the force, and the distance through which it moves, meas

ure the work that is put into the machine.

2. The applied force is transmitted to the point where the" opera

tion is to be performed. During the transmission the force is

modified in direction and amount, partly by the arrangement of the

mechanism and partly by the resisting force of friction, which it

must overcome.

3. At the point where the operation is performed the modified

force overcomes a resistance in any required direction, such, for

example, as the resistance of metal to a cutting tool. The product

of the resistance, and the distance through which it is overcome,

measures the work done' by the machine.
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The principle of work states that, neglecting frictional or other

losses, the applied force, multiplied by the distance through which it

moves, equals the resistance overcome, multiplied by the distance

through which it is overcome. That is, a force acting through a

given distance, can be made to overcome a greater force acting as a

resistance through a less distance; but no possible arrangement can

be made to overcome a greater force through the same distance.

The principle of work may also be stated as follows:

Work put in = lost work + work done by machine.

 

Pig. 18. Fig. 19.

This principle holds absolutely in every case. It applies equally to

a simple lever, the most complex mechanism, or to a so-called "per

petual motion" machine. No machine can be made to perform work

unless a somewhat greater amount—enough to make up for the

losses—be applied by some external agent. As in the "perpetual

motion" machine no such outside force is supposed to be applied, this

problem is absolutely impossible, and against all the laws of mechanics.

The Wheel and Axle.

This mechanism, Pig. 18, is simply an arrangement for continuing

the action of the lever as long as required. So long as a sufficient

pull is applied to the rope, which fits, into the grooved wheel, to over

come the resistance of the load attached to the rope that passes over

the drum, the weight will be raised.

(a) First we will apply the principle of moments. In Fig. 19, let

the larger circle represent the circumference of a wheel of radius R,

to the periphery of which a force P is applied. Let the smaller circle

represent the circumference of the drum of radius r, to the periphery

of which is applied a resistance W. P and W correspond to the pull

on the rope and the resistance of the weight indicated in Fig. 18.

The moment of the force P about the center 0, which corresponds

to the fulcrum of a lever, is P multiplied by the perpendicular distance

R, it being a principle of geometry that a radius is perpendicular to a
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line drawn tangent to a circle, at the point of tangency. Also the op

posing moment of W is W X r. Hence, by the principle of moments,

P x R =W X r.

(6) Now, for comparison, we will apply the principle of work. As

suming this principle to be true, the pull P multiplied by the distance

passed through by the rope should equal the resistance W multiplied

by the distance that the load is raised. In one revolution the driving

rope passes through a distance equal to the circumference of the wheel,

which is equal to 2 X 3.1416 X R — 6.2832 X R, and the hoisting rope

passes through a distance equal to 2 X 3.1416 X r. Hence, by the

principle of work,

6.2832 X P X R = 6.2832 X W X r.

This statement simply shows that P X R multiplied by 6.2832 equals

W X r multiplied by the same number, and it is evident therefore,

that the equality will not be altered by canceling the 6.2832 and writing

P X R =W X r.

But this is the same statement that was obtained above by applying

the principle of moments. Hence, we see that the principle of moments

and the principle of work harmonize.

It is to be observed that in the wheel and axle mechanism the drum

may be of any size and that the wheel may be replaced by a crank,

since the path described by the crank handle or crank pin is the cir

cumference of a circle of a radius equal to the length of the crank.

Wheel-work.

A series of two or more axles geared together by toothed wheels, or

by pulleys connected by belts, is called a train. A wheel which im

parts motion is called a driver, and one which receives the motion a

driven wheel. It can easily be shown that the basis of operation of a

train of wheels is a continuation of the principle of the wheel and

axle. In the latter the wheel is in reality a driven wheel and the axle

or drum a driver, and hence we have that the product of the applied

force and the radius of the driven equals the product of the resistance

and the radius of the driver. To extend the rule to the wheel train,

we have that the continued product of the applied force and the radii

of the driven wheels equals the continued product of the resistance

and the radii of the drivers. In calculations, the diameters, or the

number of teeth in the wheels may be used instead of the radii, as

stated above.

The Pulley.

The pulley, as a machine element, consists, in its simplest form, of

a grooved wheel or sheave turning within a frame, called a block, by

means of a cord or rope which passes over it. Combinations of these

blocks are used in order to gain a mechanical advantage in raising

weights.

In Fig. 20 is a fixed and movable pulley. The fixed pulley A, and

also one end of the rope, is attached to the beam overhead, while

pulley B may be raised or lowered through the action of the rope.

The distance through which B and hence the weight W move is equal
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to one-half the movement of the free end of the rope. The applied

force P, therefore, acts through twice the distance passed through by

the weight, and will raise an object whose weight is equal to 2 P, neg

lecting, of course, all frictional losses. As the rope passes freely over

the pulleys, the stress is the same at every point and is equal to the

pull P. Assuming P to be 100 pounds, the pull exerted in either direc

tion by the rope at sections a, h and c would therefore be 100 pounds,

and hence the forces supporting W would be 100 + 100 = 200 Bounds,

the pull upon eye-bolt C would be 100 pounds, and the forces acting

at D, 100 + 100 = 200 pounds.

In Fig. 21 is represented a combination of a double and a triple

block. The pulleys of each turn freely upon the same pin as an axis,

and for convenience in illustration are drawn with different diameters,

this method serving well to show the principles of operation. In

Fig. 22 are the same blocks, but with their positions reversed, the

triple block being the movable one and the double block being fixed,

while the end of the rope is here made fast to the upper or fixed block
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Fig. 22.

instead of to the movable one, as in Fig. 21. In either case, by the

principle of work, the applied force P, times the distance through which

it moves, must equal the weight W, times the height that it is raised.

Suppose W and the movable block to be raised bodily one foot without

pulling at P. In Fig. 21 there would then be one foot of slack in each

of the parts of the rope numbered from 1 to 5, or five feet in all, and

to take up this the free end of the rope would have to be pulled down

five feet, which is five times the distance moved through by the

weight W. Hence, in lifting the weight a given distance, the force P

moves through five times this distance; and applying the principle of

work, PX5=¥X 1, or an applied force of one pound will be suf

ficient to lift a weight of five pounds. By similar reasoning it will

appear that, as arranged in Fig. 22, an applied force of one pound will

lift a weight of six pounds, there being six parts of the rope in which

slack can be taken up instead of five, as before. Whatever the arrange
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ment or number of the pulleys, the weight that can be raised can be

calculated by observing the relative distances passed through by the

two forces P and W, It should be noticed however, that the resistance

that can be overcome is always equal to the applied force multiplied by

the number of the parts of the rope that engage with the movable

block, which is a convenient rule to use. Thus, if there were seven

parts springing from the movable block, a force of 100 pounds would

overcome a resistance of 100 X 7 = 700 pounds, neglecting frictional

losses.

This rule may also be arrived at by considering that the force P

produces a uniform stress equal to P throughout the whole length of

the rope, as was mentioned in connection with Pig. 20. In Fig. 21, for

example, the tension in each of the numbered parts is equal to P,

and the total upward force supporting the weight is equal to 5 X P.

In the foregoing it is assumed that the supporting ropes all hang

vertically. In practice, they usually do, very nearly. In case they

should not, however, the problem is more complicated. We shall deal

with this problem later.

The Screw.

By this time the universal character of the principle of work must

be apparent, even to one who but imperfectly understood its importance

before. The law that work received equals work delivered, is every

where true, if we disregard the losses of transmission. In the case

of the screw, the initial force moves through the circumference of a

circle, the point of application usually being at the end of a crank or

bar, at the surface of a pulley, or applied in some similar manner. A

screw may be defined as a cylinder around which threads are wound in

successive coils or helices, equally spaced. The lead of a single-thread

ed screw is the distance between like points on successive threads

measured on a line parallel to the axis of the screw. The amount that

a screw advances in one turn is equal to the lead, and in fractional

turns it is equal to the same fraction of the lead. Thus, if a screw

is given one-fourth turn it advances one-fourth of the lead, and the

ratio is the same as though the screw vers supposed to malf om

complete turn and to advance a distance equal to the full lead. Hence,

we have for the screw that the applied force multiplied by the circum

ference of the circle described by the force equals the resistance multi

plied by the lead.

Machine Efficiency.

Thus far in problems of work we have neglected entirely the effect

of frictional losses, which in many cases require a greater expenditure

of power than that necessary for the operations actually performed by

the machine.

The efficiency of a machine is the ratio of the work got out of a

machine to the work put in, and is obtain-d by dividing the former

quantity by the latter. If 1,000 foot-pounds of work were done by a

machine in a given time, and 1,000 foot-pounds of work were put in

in the same time, then the efficiency would be equal to 1,000/1,000 = 1,
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or 100 per cent; but if only 250 foot-pounds were done by the machine,

the rest being absorbed by friction, the efficiency would be 250/1,000 =

0.25, or '25 per cent. The efficiency of a machine can never be greater

than 1.

Graphical Representation of Forces.

A force possesses three prominent characteristics which, when known,

determine it. They are: its direction, place of application, and magni

tude. The direction of a force is the direction in which it tends to

move the body upon which it acts. If not influenced by any other

forces, this will always be along a straight line. The place of applica

tion of a force is generally, though not always, taken at a point, as

at the center of gravity. The magnitude of a force is measured in

pounds.

Previously we have represented forces which have been supposed to

act at a given point, or in certain directions, by means of straight lines

and arrowheads, this being a natural and convenient way to do. It can

be shown, moreover, that this method serves to represent very accu

rately the three characteristics mentioned above. The straight line

indicates the line of action of the force, the arrowhead the direction

in which the force is supposed to act along the line, and the length of

the line and magnitude of the force, a suitable scale being adopted.

Thus, if a scale of 1/16 of an inch to ten pounds were used, a line

2y2 inches long would represent a force of 400 pounds. The point of

application may occur at any point on the line, but it is generally

convenient to assume it to be at one end.

To illustrate, in Fig. 23, a force is supposed to act along the line

IB in a direction from left to right. The length A B may be made to

show the magnitude of the force. If A is the point of application, the

force is exerted as a pull, and if B should be assumed to be the point

at which it acts, it would indicate that the force was exerted as a

push. The single force which will produce the same effect upon a body

as two or more forces acting together upon it is called their resultant.

The separate forces themselves, which can be so combined, are called

the components. The process of finding the resultant of, two or more

forces is called the composition of forces, and of finding two or more

components of a given force, the resolution of forces.

Parallelogram of Forces.

In Fig. 24, let A and B be two pulleys which are pivoted to a board,

and around which a cord is passed, having weights P and Q at the

ends. Near the center of the cord a third weight, R, is suspended as

shown. We will assume that the three weights are so proportioned

that they will come to rest in the positions shown, and thus the point

0 will be acted upon by three forces in equilibrium, whose lines of

action lie in the directions taken by the three parts of the cord. It is

obvious, moreover, and this point should be carefully noted, that

under these conditions the force acting along O G must be exactly

equal and opposite to the resultant of the forces acting along OA and

0 B. Now measure along O B the part O b containing as many inches
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as there are pounds in the weight Q, and along 0 A the part 0 a con

taining as many inches as there are pounds in the weight P. With a

pencil^ draw the lines O a and 0 & upon the supporting board and com

plete the parallelogram 0 a r b. Then 0 a and 0 6 will represent the

magnitude and direction of the forces acting along 0 A and 0 B, and

upon, examination it will be found that if the diagonal Or be drawn,

it will extend in the same line as the cord 0 C and will contain as

many inches as there are pounds in R. Therefore, 0 r, being opposite

to 0 G, represents in magnitude and direction the resultant of forces

0 a and 0 6.

The foregoing is an experimental proof of the principle of the paral

lelogram of forces, which is as follows:

If two forces applied at a point are represented in magnitude and

direction by the adjacent sides of a parallelogram (A B and AC in

Fig. 25), their resultant will be represented in magnitude and direction

by the diagonal (AR) lying between those sides.

As an illustration of the use of the parallelogram of forces, let it

be required to find the force acting through the connecting-rod of a

steam engine due to the steam pressure upon the piston. In Fig. 26

A B
o »-
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Pig. 28. Fig. 34. Fig. 26.

the steam pressure is transmitted through the piston-rod P A, and at

the cross-head A is resolved into two components, one along the con

necting-rod and the other at right angles to the piston-rod. This is

due to the angle made by the connecting-rod which creates a pressure

upon the guides. Since the decomposition of the force occurs at A,

from this point draw the line A R, representing in magnitude and

direction the force of the steam pressure against the piston. Draw an

indefinite line A E at right angles to the piston-rod, and from R draw

R B and R G parallel to A E and A D, respectively. Then the points of

intersection, B and C, will determine the lengths of the component

A B acting along the connecting-rod, and of the component A G perpen

dicular to the guides.

Motion.

Motion is a progressive change of position. We can judge of the

motion of a body only by comparison with the position of some other

body, which latter does not have the same motion. Motion, then, is

a relative term. A railroad train running at 10 miles an hour has

this speed in relation to the earth, but in relation to another train

moving at the same rate on a parallel track, and in the opposite

direction, its motion is at the rate of 20 miles an hour. A brakeman

running from the forward to the rear end of a freight train at the
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rate of 5 miles an hour, might be moving with either a greater or less

velocity than this when compared with the ground, depending upon

the motion of the train; and if it should happen that the train was

moving forward at the rate of 5 miles an hour, the man would appear

stationary to an observer standing beside the track.

To put a body into motion, or to alter its motion, requires the

expenditure of force, as is a matter of common observance, and a little

consideration will show that the tendency of force is always to produce

motion, or to modify it. In case the body acted upon is perfectly free

to move, however, as is nearly the condition, for example, of a heavy

ball suspended from the ceiling by a long wire, the effect will always

be to actually produce motion however slight the . force. In that

branch of mechanics called dynamics, which treats of the motion of

bodies, we generally have to deal only with cases of this kind. Should

 

it be necessary, however, to take frictional resistances into account,

we deduct that part of the applied force which is used in overcoming

friction, and assume that the remainder of the force acts as though

such resistance did not exist

Velocity is the rate of motion. When speaking above of the train

moving 10 miles an hour, or of the brakeman running 5 miles an hour,

the velocity of the train or brakeman was meant. Uniform velocity

takes place when equal spaces are passed over in equal times, and

variable velocity when the spaces are unequal. In physical problems,

velocity is generally expressed in feet per second, and in engineering

work in feet per minute. Other units are also used, as when we speak

of the velocity of a railroad train as being a certain number of miles

per hour.

The velocity of a body is equal to the distance passed through,

uniformly divided by the time. In problems in dynamics it is custom

ary to speak of distance as space, and in conformity with this we

will represent it by the letter 8.

Let S = the space, or distance; y= the velocity; and t = the time.

Then 8

Y=—. (7)

*

Formula (7) may be re-wrltten so as to find the values of 8 and t,

thus: 8

8 = Vt and t =—.

y
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Acceleration is the rate at which velocity changes when it is variable,

that is, acceleration is the change in the velocity of a body during a

very short interval of time, as a second. Thus, suppose a body to have

a velocity one second of 100 feet per second, and the next second

of 110 feet per second. The acceleration is then 10 feet per second

in a second. If it should require two seconds for this increase of

velocity to occur, the acceleration would be 10 2 = 5 feet per second

in a second, and if it should occur during an interval of one-fourth of

a second, it would be 10 ,4- % = 40 feet per second in a second. When

motion is decreasing instead of increasing, it is called retarded motion.

An important application of accelerated motion is found in the case

of bodies falling under the influence of gravity; this will be taken up

later. A body falling freely from rest to the earth acquires during

the first second a velocity of about 32 feet per second; at the end of

the second second a velocity of about 32 + 32= 64 feet per second ; at

the end of the third second a velocity of 64 + 32 = 96 feet per second,

and so on. It is thus a case of uniformly accelerated motion. This

acceleration, due to the gravity of 32 feet per second in a second (32.2,

more exactly, for the vicinity of London, and 32.16 for the vicinity of

New York) enters so much into calculations that it is customary to

always represent it by the same letter—the letter g.

Mass.

The mass of a body is the quantity of matter that it contains. We

are accustomed to think of the weight of a body as a measure of

its mass. When one speaks of a ton of coal, the word ton conveys

at once an idea of the quantity of coal that is referred to. We know,

however, that weight varies with the locality, decreasing as we go

above the sea level, and increasing in passing either north or south

from the equator. This fact was briefly explained in the first part

of this treatise. The variation is slight, and in any case could not be

detected with the ordinary balance scales, but it nevertheless exists.

If a load of coal should weigh 2,000 pounds at the sea level on a pair

of platform scales, and should then be drawn to the top of a mountain

a mile high and similarly weighed, the scales would again balance at

2,000 pounds, because any variation in the attraction of gravity between

the two places would affect the counterpoise of the scales in the same

ratio that it affected the body weighed. But if the coal were weighed

in a large spring balance, it would be found to weigh only about 1,999

pounds on the mountain top; yet it is perfectly plain that the quantity

of matter in the coal would not be altered in any way by the journey.

We thus see how easy it is, and also how erroneous, to form the idea

that weight is a correct measure for quantity of matter or mass.

To obtain a numerical expression for mass, divide the weight of a

body as determined by a spring balance g, by the acceleration due to

gravity at that point; or for practical purposes, the weight as deter

mined by a pair of good scales by 32.16. Expressed as a formula:

weight

mass = . (8)

0
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This expression fulfills the condition required; namely, it gives a

constant value, wherever the locality. Weight varies directly as the

force of gravity, and so does the value of g. Hence, if the weight and

g are both determined at the same place, their ratio will be constant

100

for all places. Thus the mass of a 100-pound weight =3.11

32.16

pounds. On the surface of the sun, where the force of gravity is 28

times as great as here, the same object would weigh 2,800 pounds, but

28 X 100

its mass would be = 3.11 pounds, as before. It will be

28 X 32.16

observed that both mass and weight are taken in pounds. This double

use of the word pound is customary, though somewhat ambiguous.

Mass is an important factor in the study of motion.

Newton's Laws of Motion.

The first clear statement of the fundamental relations existing

between force and motion was made in the 17th century by Sir Isaac

Newton, the English mathematician and physicist. It was put in the

form of three laws, which are given as originally stated by Newton:

I. Every body continues in its state of rest, or uniform motion in a

straight line, except in so far as it may be compelled by force to

change that state.

II. Change of motion is proportional to the force applied and takes

place in the direction in which that force acts.

III. To every action there is always an equal reaction; or, the

mutual action of two bodies are always equal and oppositely directed.

Law. I. The first law is known as the law of inertia, and it is, in

fact, a statement of the principle of inertia. Inertia is a general prop

erty of matter, that is, a peculiar quality possessed by all bodies, just

as elasticity, hardness, ductility, brittleness, etc., are properties com

mon to different substances. By virtue of this property, called inertia,

all bodies are compelled to remain at rest, when placed at rest, or in

motion when placed in motion, until acted upon by some force. The

term inertia means simply the inability of matter to change its state

with regard to motion or rest.

The fact, as stated in the first law of motion, that any object at rest

cannot of itself acquire motion, is a matter of every-day observation.

Whenever a body passes from a state of rest to one of motion, a cause

can always be assigned for the change, such as a blow or a push or

pull. The truth of this statement on the second part of the law, how

ever, is not so easily grasped. It is asserted that a body once in

motion will continue in motion, following the path of a straight line,

unless acted upon from without, and it is implied that it is as natural

for a body to continue indefinitely in mo' ion as it is for it to remain

at rest. Looking about, however, it will be seen that whenever the

motion of a body is altered, or changes from a rectilinear path, it is

because of outside interference. A ball, for example, when thrown

from the hand, moves in a curved path and finally comes to rest
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because of the attraction of gravity and the resistance of the air. If

the ball be rolled along the rough ground, its loss of motion is

accounted for by the friction, for we observe that the smoother the

ground the further the ball will roll. Again, if we can conceive it

possible that the ball could be hurled out into space away from these

resistances, it is reasonable to suppose that it would go on forever.

The effect of inertia is also exhibited whenever we attempt to put

a body suddenly into motion or to stop one already in motion. The

quick start of a railway train throws everybody against the back of

his seat, as we say, and in a similar manner the passengers are thrown

forward when the brakes are quickly applied.

Law II. The term "motion" as here used by Newton embraces all

the elements that go to make up the motion of a body, and hence intro

duces both mass and velocity, or what is called momentum. The

momentum of a body is measured by the product of the mass M of the

body by the velocity V, or

W

momentum —MV=—. V. (9)

9

It is sometimes denned as the quantity of motion in a body. It is

not a force, but rather the measure cf the effect of a force in a given

time, since to produce velocity in a mass requires time.

The second part of this law states that the motion takes place in

the direction in which the force acts. From this follows the principle

of the independence of motions, that when two or more forces act upon

a body at the same time, each produces exactly the same effect as

though it acted alone, whether the body be originally at rest or in

motion. Thus, if a person threw a ball due north from the roof of a

house, while the wind is blowing from the west, the effect of the throw

in the northerly direction will be exactly the same as it would if the

air were quiet, while, the distance that the ball is carried to the east

will be equal to the distance that it would travel in the same time if

it were under the influence of the wind alone, disregarding, of course,

any unequal frictional resistances of the air. Moreover, as the ball

leaves the hand, it will gradually drop to the earth under the influence

of gravity, and it will take precisely as long for it to reach the ground

as it would if it had been simply dropped from the edge of the roof.

That is to say, the effect of the force of gravity is exactly the same as

though it acted alone; each motion goes on independently, although

the position of the ball at any time depends upon the action of all the

forces acting.

Law III. We have seen, under the subject of moments, how the

supports of a beam react with a force equal to the downward pressure

of the beam. There are many other evident illustrations of this law.

A ton weight hanging on a crane hook exerts a downward pull of 2,000

pounds, and the reaction of the hook and chain is also 2,000 pounds.

When a horse pulls a cart there is the reaction of the load. In jump

ing from a boat the reaction shoves the boat away from the shore.

A man cannot "lift himself by his boot straps," because the downward

push, or reaction, is equal to the upward pull.
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Palling Bodies.

Under the influence of gravity alone, all bodies fall to the earth with

the same velocity. The fact that heavy bodies actually fall more

rapidly than those of less weight or density, as would be observed in

the dropping of a stone and a leaf, is due solely to the greater retard

ing effect of the air upon the latter. Weight does not affect the time

of fall. "Weight is the measure of the attractive force of gravity, and

if one body weighs twice as much as another, the attraction of gravity

upon it is two times as great as upon the lighter body; but as this

force must accelerate twice as great a mass in the former body as in

the latter, the velocity of each must be alike. An apparatus used to

prove this consists of a long glass tube with closed ends, arranged so

that the air can be exhausted. When this has been done, it is found

that objects of varying sizes and weights will fall from one end of the

tube to the other with equal rapidity.

It has been stated before that in the vicinity of New York the

acceleration due to gravity is 32.16 feet per second in a second. That

is, the constant increase of velocity given by gravity during each second

is 32.16 feet per second. For convenience we will call it 32 feet per

second. Supposing a body to be dropped from such a height, therefore,

that it falls during an interval of five seconds, its velocity at the end

of each succeeding second will be as follows:

Feet per

second.

Velocity at end of 1st second = 32

Velocity at end of 2d second = 32 + 32 = 64

Velocity at end of 3d second = 64 + 32= 96

Velocity at end of 4th second = 96 + 32 = 128

Velocity at end of 5th second = 128 + 32 = 160

It will be seen that the results 32, 64, 96, etc., may be obtained by

multiplying the number of seconds by 32, the value of gravity. Hence,

for finding the velocity at the end of any second, we have

v = gt. (10)

In this and succeeding formulas for falling todies we will let

v= velocity of feet per second.

i = time in seconds.

g = acceleration due to gravity.

h = height in feet.

During the first second of fall the velocity at the start is 0 and at

the close 32 feet per second. The mean velocity is 16 feet per second.

Hence, the space traversed during this second is 16 X 1 = 16 feet. A

body, therefore, falls 16 feet during the first second of motion.

In like manner, the space passed through during the second second

is equal to the mean velocity during that second, multiplied by the

time. The mean velocity is equal to the sum of the velocities at the

beginning and end, divided by the two. Hence, by the aid of the table

above, we may make out another table showing the distance passed

through in each second. Since the time is one second, or unity, the

multiplication by this factor may be omitted.
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Feet.

During 1st second, space = 16

32 +64

During 2d second, space = = 48

2

64 + 96

During 3d second, space = = 80

2

96 + 128

During 4th second, space = . = 112

2

128 + 160

During 5th second, space = = 144

2

It will be observed that 48 = 3 X 16, or three times the space passed

through in the first second. Also, 80 = 5X16; 112 = 7X16; and

144 = 9 X 16. From this we conclude that the spaces traversed during

each succeeding second are proportional to the odd numbers 1, 3, 5, 7,

9, 11, etc., which is a useful fact to remember.

We have seen that a body falls 16 feet the first second, 48 feet the

second, 80 feet the third, and so on. In two seconds, therefore, it falls

16 + 48 = 64 feet; in three seconds, 16+ 48 + 80 = 144 feet, and so

on. But 64 = 16 X 4, or 16 X 22, and 144 = 16 X 9, or 16 X 32, the

2 and 3 in each case being the number of seconds required for a body

to fall 64 to 144 feet, respectively. And, in general, the space that a

body will fall in a given time is equal to 16 multiplied by the square of

the number of seconds. Hence,

At the end of 2d space = 16 + 48 = 64 = 16 X 2":

At the end of 3d space = 16 + 48 + 80 = 144 = 16 X 32.

At the end of 4th space = 16 + 48 + 80 + 112 = 256 = 16 X 42.

At the «nd of 5th space = 16 + 48 + 80 + 112 + 144 = 400 = 16 X 52.

The factor 16 that has been used is one-half of 32, the acceleration

due to gravity, or % g. Hence, to find the total space for any time,

multiply the square of that time in seconds by % g. Therefore,

7i = %fir«2. (11)

Formulas 10 and 11 are the fundamental formulas for falling bodies.

By combining them algebraically, we may obtain as an expression for

velocity :

v'= sJZgh (12)

From 10 and 12 may also be derived

v ^2g~h \~2h

t=-= =J (13)

g g 9

These formulas apply to retarded motion which takes place when a

body is thrown into the air, as well as to the accelerated motion pro

duced by the action of gravity upon a falling body. Thus, when a body

is thrown upward it is gradually retarded by the same amount that it

is accelerated upon its return, and when it reaches the earth again, it

has the same velocity that it had when it left the hand.
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The Pendulum.

In its simplest practical form, the pendulum consists of a ball of

lead or other heavy material suspended by a fine cord or wire. For

convenience, this, may be called a simple pendulum, and any pendulum

in which the weight is not so concentrated, is a compound pendulum.

Strictly, however, a true simple pendulum is merely an ideal concep

tion—it is a particle of matter suspended by a weightless cord, and

capable of vibrating without friction, while any pendulum that can be

actually constructed is a compound pendulum.

The length of a pendulum is the distance from the point of suspen

sion to a point lying below the center of gravity, called the center of

oscillation. One vibration of a pendulum consists of one complete beat

one way. When it swings back and forth once, two vibrations take

place.

Law I. When the arc swung through is small, the vibrations occur

in equal times, irrespective of the distance passed through. Moreover,

the arc may vary widely in length without materially affecting the

time of vibration. Thus, a pendulum of such a length that it will

vibrate once in one second, when its arc of action is 5 degrees, would

require only 1/200 of a second longer to vibrate through an arc of

30 degrees.

Law II. The times of vibration of different pendulums are propor

tional to the square root of their lengths. Thus, the times of vibra

tions of pendulums 1, 9 and 25 inches long would be proportional to the

numbers 1, 3 and 5. It would take the second pendulum three times as

long to vibrate as the first, and the third five times as long. A pendu

lum which vibrates once in four seconds must be four times as long

as one which vibrates in two seconds, because the times of vibrations

are as 2:1, and these must be proportional to the square roots of

the lengths, or as* V7: VT

Law III. Time of vibration varies with the attraction of gravity,

but is independent of the mass. This has been proved by swinging

pendulums of different lengths in various localities and pendulums of

the same length, but of different materials, at the same place.

Center of Oscillation.

The center of oscillation of a pendulum is that point which vibrates

in the same time that it would if disconnected from all remaining

particles. From Law II it is clear that the upper part of a pendulum

tends to vibrate faster than the lower part, and so hasten its motion,

while the lower part tends to vibrate slower and thus retard the motion

of the whole. Between these two limits is the center of oscillation,

which has the average velocity of all the particles of the pendulum,

and which is neither quickened nor retarded by them. It vibrates in

the same time that it would if it were a particle swinging by a

weightless cord, as in the simple pendulum.

It may make it clearer to state that the center of oscillation and

center of percussion of a body are at the same point. Hold an iron bar

)n the hand and strike an anvil a sharp blow with the end of the bar;
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it will sting the hand. Strike the anvil again with that part of the

bar which is near the hand, and the effect of the blow will again be

felt. Now, at some point between these two a blow may be delivered

and no jerk or sting will be experienced. That point is the center of

percussion, which, as just mentioned, is the same as the center of

oscillation. In the case of a bar of uniform cross-section, and sus

pended at one end, the center of oscillation lies at a distance of two-

thirds of the length of the rod from the point of suspension.

The Compound Pendulum.

In order to apply the three laws to a compound pendulum, it is

necessary to determine its length, which, according to the definition

previously given, is the distance from its point of suspension to its

center of oscillation. This done, it may be considered as a simple

pendulum having the same length, for any simple pendulum of a given

length will vibrate in the same time that a compound pendulum of the

same length will vibrate.

It is important, therefore, to be able to locate the center of oscillation.

This may be done by trial. The point of suspension and center of

oscillation of a pendulum are mutually controvertible. If, therefore, a

pendulum be inverted and another point of suspension found about

which it will vibrate in the same time as before, this point will be the

position of the first center of oscillation, and its distance from the

first point of suspension can be measured.

Time of Vibration.

The time of vibration of a pendulum is found by the formula

t = 3.1416^— (14)

where t = time in seconds. •

l = length in feet.

g = acceleration due to gravity.

In the vicinity of New York, for t = 1, I = 39.1 inches, or the length

of the seconds pendulum is 39.1 inches.

Energy.

An agent is said to possess energy when it has the capacity of doing

work—that is, of overcoming a resistance through a distance. In

general, energy is something that is given to a body by doing work

upon it, as when a weight is raised or is given a rapid motion, or when

a spring is compressed; the energy, in turn, is given out when the body

itself performs work. Energy is therefore sometimes defined as stored

work. It is expressed in foot-pounds, the same unit that is used to

express work.

Energy is either potential or kinetic.

(a) Potential energy is the power of doing work possessed by a body

in virtue of its position or condition. If a body be so situated that it

is acted upon by a force which will produce motion in it upon the

removal of some restraining force, it is said to have potential energy.
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Thus, a ball suspended by a string has the power of doing work,

because, when the cord is cut, the ball will fall and will be capable of

overcoming a resistance through a distance, the amount of the work

depending upon the weight of the ball and the extent of the fall. A

compressed spring and a head of water also have the capacity of doing

work and are stored with potential energy.

The potential energy in any case is equal to the product of the force

tending to produce motion, and the distance through which the body is

able to move. If the suspended ball should weigh 10 pounds and hang

25 feet from the ground, it would possess 250 foot-pounds of energy.

The force acting is here equal to the weight, or 10 pounds, and to raise

the ball to its suspended position would require an expenditure of

10 X 25 = 250 foot-pounds of work, and when it falls it can give out

just this amount of energy, which has been stored within it.

(6) Kinetic energy is the power of doing work possessed by a body

in virtue of its motion. A moving railroad train, a fly-wheel, a cur

rent of air driving a wind-mill, a falling body, all possess kinetic

energy. The kinetic energy of a body is obtained by multiplying one-

half Its mass by the square of its velocity in feet per second. Or,

E = %Mv1 (15)

where E = energy in foot-pounds, Jf= mass, and v = velocity in feet

per second. The value of mass, we have already seen, is obtained by

dividing the weight of a body by 32.16, the acceleration due to grav

ity, or

W

M— .

32.16

W

Hence we may write in formula (15), giving

32.16

Wv* Wv* Wt)1

E=y2X = = . (16)

32.16 64.32 2g

It will be shown, shortly, how this formula is obtained.

Conservation of Energy.

Energy exists in various forms, such as mechanical, molecular, and

chemical. It is stored in all kinds of fuel, and is made apparent by

chemical reactions, by muscular effort, and by many other means.

There is the potential energy of the electrical charge and the kinetic

energy of the electrical current. Heat is a form of energy. In the

present instance, we are concerned with these different kinds, other

than mechanical, only in that the universal and important law of the

conservation of energy embraces them all. This law states, first, that

energy may be transformed directly or indirectly from any one form

to any other form; and second, that, however energy may be trans

formed or dissipated, the total amount of energy must forever remain

the same. Energy can neither be created nor destroyed. It simply

exists, and the various processes by which it is utilized are simply

meafis for transforming it from one form to another. The steam

engine changes heat energy into mechanical energy, and the percussion
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of a bullet against a rock converts mechanical into heat energy and

melts the bullet. A body just at the point of falling from an elevation

has a store of potential energy. As it falls it loses potential energy,

but its velocity increases and its potential energy is gradually changed

into kinetic energy. This will be illustrated by an example.

Suppose a body weighing 100 pounds, a cannon ball, for example, to

be so situated that it has no store of potential energy, and that it is

shot vertically upwards with a velocity of 1,500 feet per second. Prom

formula (16) we find its kinetic energy at the start to be

100 X (1,500) 2

E = = 3,498,100 foot-pounds.

64.32

This results from the potential, chemical energy of the gunpowder,

part of which has gone to produce heat and sound. As the ball rises,

it does work against gravity, and also overcomes the frictional resist

ance of the air, the latter generating heat. When the ball is two miles

high, its potential energy is equal to 100 X 2 X 5,280= 1,056,000 foot

pounds, and neglecting the frictional loss, its remaining kinetic energy

is 3,498,100 — 1,056,000 = 2,442,100 foot pounds. At the highest point

reached the kinetic energy is entirely spent and the ball has its great

est store of potential energy. Could this be gathered together with

the energy required for producing the heat and sound, it would exactly

equal the amount of energy originally produced by the powder. As

the ball drops to the earth again, its potential is changed back to

kinetic energy, and when it reaches the ground it has the same velocity,

and hence the same amount of kinetic energy as when it left the gun,

excepting the loss through friction.

We are now in a position to understand the derivation of formulas

15 and 16.

The potential energy of a body of weight W and at a height h is

equal to W h, or

E = Wh (17)

But, from the law of the conservation of energy, the kinetic energy

of the body in falling from the height h has the same value. Hence,

formula (16) may be used for kinetic energy, provided an expression

for velocity can be introduced into it. From formula (12) may be

obtained the expression

v*

~-2g

and writing this for h in (17), we get

v* Wv2

E — WX = ,

2g 2g

which is the same as before.

In examples involving the transformation of energy and its conver

sion into work, it should be remembered that work is done only when

a resistance is overcome. A freely falling body is stored with energy,

but is does no work until it meets with a resistance. The law of the

energy stored in bodies is one of the most important ones in applied

mechanics, particularly in hydraulics.
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Rotating Bodies.

When a body revolves about an axis, the particles at different dis

tances from the center have different velocities, and hence different

amounts of kinetic energy. For any such body, however, there is a

mean radius of rotation, which is of such a length that if the whole

mass of the body could be concentrated at the circumference of a cir

cle having this radius, and rotated at the same speed as before, the

same amount of kinetic energy would be developed. This mean radius

is called the radius of gyration. For a solid, cylindrical body, like a

disk or an emery-wheel, the radius of gyration is equal to the radius

of the disk divided by V2. For a fly-wheel rim, it is sufficiently accu

rate to assume it to be the distance from the center to a point half

way between the outer and inner edges of the rim.

The object of the fly-wheel is to store up energy when the machine

to which it is attached accelerates, or speeds up, and to give out energy

when- the motion is retarded. This acceleration or retardation may be

due either to a fluctuation of the load or to a change in the applied

energy.

Force of a Blow.

It will be remembered that the principle of work, as applied to

machines, teaches that, neglecting frictional or other losses, the work

put into a machine equals the work done by the machine. This is

merely a special case of the principle of the conservation of energy,

and it can be used to find the force of the blow delivered by a hammer

or a falling body. The work put in by the energy of a hammer at the

instant of striking equals the work done in compressing or penetrating

the material operated upon, and is equal to the resistance offered by

the material, multiplied by the amount of this penetration.

It is clear that the resistance offered to the blow at any instant is

equal to the force of the blow at that instant, and hence the work done

equals the force> of the blow multiplied by the amount of the penetra

tion. It appears from this, moreover, that the force of a blow varies

with the degree of penetration. Thus, suppose the energy of the first

blow of a pile driver to be 10,000 foot-pounds, and that the pile sinks

into the ground a distance of two feet. Before the ram can be brought

to rest it must do 10,000 foot-pounds of work, and hence the average

force acting must be 5,000 pounds; for 5,000 (the force acting) times 2

(the distance through which it acts) equals 10,000 (the available foot

pounds of energy). At the second stroke, suppose the ram to deliver

10,000 foot-pounds of energy and the pile to sink one foot. Again the

work done must equal the force times the distance, or in this case

10,000 X 1; that is, the force of the blow is twice as great as before.





MACHINERY'S REFERENCE SERIES.

This series has been planned to thoroughly cover the whole field of

mechanical practice; yet each pamphlet will he complete in itself, and

may be purchased separately. It is the purpose of this important

series to greatly extend the work Machinery does; to give coherence,

permanence and practical usefulness to a mass of exceedingly valuable

but unorganized material not generally available, and to amplify this

material wherever necessary. It will place within the reach of every

reader, from the apprentice to the master mechanic, the best that has

been published, selected because it is the best, collected, condensed and

revised by men well equipped for the work by mechanical as well as

editorial experience; the whole being classified and arranged in accord

ance with a well-considered plan adapted to the practical needs of the

drafting room, the machine shop, and the engineering office. These

pamphlets will be sold at a price so low that any draftsman, machinist,

or apprentice can begin at once to build for himself a complete refer

ence file, selecting as he goes along only those subjects likely to be

of the most direct and immediate value to him; or building, if he

pleases, on a broader plan a complete working library of compact,

convenient and inexpensive units.

Men in the mechanical field are now nearly all specialists, and

Machinery's Reference Series is to be a practical file for specialists.

Those who have the time and the inclination to range over the whole

field of mechanical knowledge can buy the complete series, taking the

pamphlets as issued; but the offers which follow are purposely ar

ranged to suit the needs and the purses of the great majority. They

are planned to allow each to secure exactly what he wants, as near as

may be, just when he wants it, at a price anyone can afford. For

example: a draftsman or a machinist who wants to post up thoroughly

on Worm Gearing can buy just that, for twenty-five cents, and will

know that he is getting, in condensed form, the very best information

on the subject that it is possible to obtain—because the best writers

send their contributions to Machinery.

Under the following offers you can start your reference file with

one pamphlet, for twenty-five cents, if you are a subscriber for

Machinery; or with one dollar, if you are not a subscriber—the dollar

paying for your subscription and the reference pamphlet you select.

A subscriber for Machinery can buy as many pamphlets as he pleases,

at any time, by paying at the rate of twenty-five cents for each pamph

let; or by renewing or extending the term of his subscription, he can

secure from one to ten of the pamphlets without cost, in accordance



with the offers—selecting exactly what he wants; but not more than

two copies of one title will be sent to one subscriber. New subscribers

can do the same—the offers are open to everyone who sends his sub

scription, and on exactly the same terms.

THE OFFERS.

The regular yearly subscription rates for Machinery are as follows:

Engineering Edition, ?2.00; Shop Edition, $1.00; Railway Machinery,

$2.00; Foreign Edition, $7.00.

We will send you 1 Pamphlet, your own selection, and Machinery,

Shop Edition, one year, for $1.00

We will send you 2 Pamphlets, your own selection, and Machin

ery, Engineering Edition, one year, for 2.00

We will send you 7 Pamphlets, your own selection, and Machin

ery, Engineering Edition, one year, for 3.90

We will send you 4 Pamphlets, your own selection, and Machin

ery, Engineering Edition, two years, for 4.00

We will send you 10 Pamphlets, your own selection, and Machin

ery, Engineering Edition, two years, for 5.00

We will send you 6 Pamphlets, your own selection, and Machin

ery, Engineering Edition, three years, for 6.00

We will send you 16 Pamphlets, your own selection, and Machin

ery, Engineering Edition, three years, for 8.00

We will send you 26 Pamphlets, your own selection, and Machin

ery, Engineering Edition, three years, for 10.00

Subscribers for Railway Machinery (the railway edition of Machin

ery) and for the Foreign Edition receive the same benefits as sub

scribers for the Shop and Engineering Editions, by entering or extend

ing their subscriptions for the time specified in the foregoing. The

Shop Edition is not sent to foreign countries.

Anyone can secure Machinery's Reference Series for himself, with

out expense, by organizing a club of subscribers among his acquaint

ances. We shall be glad to send full particulars on receipt of a post

card.

The Industrial Press, Publishers of Machinery,

49-55 Lafayette Street, New York City, U, S. A.






