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CHAPTER I.

THE FACTOR OF SAFETY.

It is the custom among most firms engaged in the designing of

machinery to settle upon certain stresses* as proper for given materials

in given classes of work. These stresses are chosen as the result of

man}- years of experience on their own part, or of observation of the

successful experience of others, and so long as the quality of the ma

terial remains unchanged, and the service does not vary in character,

the method is eminently satisfactory.

Progress, however, brings up new service, for which precedent is

lacking, and materials of different qualities, either better or cheaper,

for which the safe working stresses have not been determined, and

the designer is compelled to determine the stress proper for the work

in hand by using a so-called "factor of safety." The name "factor

of safety" is misleading for several reasons. In the first place, it is

not a factor at all, from a mathematical point of view, but is in its

use a divisor, and in its derivation a product. In order to

obtain the safe working stress, we divide the ultimate strength

of the material by the proper "factor of safety," and in order

to obtain this factor of safety we multiply together several

factors which depend in turn upon the qualities of the material,

and the conditions of service. So our factor of safety is

both a product and a divisor, but it is not a factor. Then again, we

infer, naturally, that with a factor of twelve, say, we could increase

the load upon a machine member to twelve times its ordinary amount

before rupture would occur, when, as a matter of fact, this is not so,

at least not in a machine with moving parts, sometimes under load,

and sometimes not subjected to working stresses. Still more danger

ous conditions are met with when the parts are subjected to load first

in one direction, and then in the other, or to shocks or sudden loading

and unloading. The margin of safety is, therefore, apparent, not real,

and we will therefore call the quantity we are dealing with the "ap

parent factor of safety," for the name factor is too firmly fixed in

our minds to easily throw it off.

* Throughout this chapter we will adhere to the following definitions :

A "stress" is a force acting within a material, resisting a deformation.
A "load" is a force applied to a body, from without. It tends to produce a

deformation, and is resisted by the stress which it creates within the body.
A "working load" is the maximum load occurring under ordinary working

conditions.
A "working stress" is the stress produced by the working load, statically

applied.
The "safe working stress" is the maximum permissible working stress under

the given conditions.
The "ultimate strength" of a material is its breaking strength in pounds per

square inch, in tension, compression, or shearing, as the case may be.
The "total stress" is the sum of all the stresses existing at any section of a

body.
Unless a stress Is mentioned as a total stress, the number of pounds per

square inch of section, sometimes called "the intensity of stress," will be meant.
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Formula for Factor of Safety.

The apparent factor of safety, as has been intimated, is the product

of four factors, which for the purpose of our discussion, we will desig

nate as factors a, 6, c, and d. Factors 6 and c, as will appear later,

may be, and often are, 1, but none the less they must always be con

sidered and given their proper values. Designating the apparent factor

of safety by F, we have then

F = aXiXcXd.

The first of these factors, a, is the ratio of the ultimate strength of

the material to its elastic limit. By the elastic limit we do not mean

the yield point, but the true elastic limit within which the material is,

in so far as we can discover, perfectly elastic, and takes no permanent

set. There are several reasons for keeping the working stress witl)in

this limit, the two most important being: First, that the material

wiil rupture if strained repeatedly beyond this limit; and second, that

the form and dimensions of the piece would be destroyed under the

same circumstances. If a piece of wire be bent backward and forward

in a vise, we all know that it will soon break. And no matter how

little we bend it, provided only that we bend it sufficiently to prevent

it from entirely recovering its straightness, it will still break if we

continue the operation long enough. And similarly, if the axle of a

car, the piston rod of an engine, or whatever piece we choose, be

strained time after time beyond its limit of elasticity, no matter how

little, it will inevitably break. Or suppose, as is the case with a boiler,

that the load is only a steady and unremitting pressure. The yielding

of the material will open up the seams, allowing leakage. It will

throw the strains upon the shorter braces more than upon the others,

thus rupturing them in detail. It is absolutely necessary, therefore,

excepting in very exceptional cases, that we limit our working stress

to less than the elastic limit of the material.

Among French designers it is customary to deal entirely with the

elastic limit of the material, instead of the ultimate strength, and

with such a procedure no such factor as we have been discussing would

ever appear in the make-up of our apparent factor of safety. Although

this method is rational enough, it is not customary outside of France,

because many of the materials we use, notably cast iron, and sometimes

wrought iron and hard steeds, have no definite elastic limit. In any

case where the elastic limit is unknown or ill-defined, we arbitrarily

assume it to be one-half the ultimate strength, and factor a becomes 2.

For nickel-steel and oil-tempered forgings the elastic limit becomes

two-thirds of the ultimate strength, or even more, and the factor is

accordingly reduced to 1%.

The second factor, 6, appearing in our equation is one depending

upon the character of the stress produced within the material. The

experiments of Wohler, conducted by him between the years 1859 and

1870 at the instance of the Prussian government, on the effects of

repeated stresses, confirmed a fact already well known, namely, that

the repeated application of a load which would produce a stress less
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than the ultimate strength of a material would often rupture it. But

they did more. They showed the exact relation between the variation

of the load and the breaking strength of the material under that

variation. The investigation was subsequently extended by Weyrauch

to cover the entire possible range of variation. Cut of the mass of

experimental data so obtained a rather complicated formula was de

duced, giving the relation between the variation, of the load (or rather

the stress it produced), the strength of the material under the given

conditions (which is generally known as the "carrying strength" of

the material) and the ultimate strength. To Prof. J. B. Johnson, we

believe, is due the credit of substituting for this formula a' much

simpler and more manageable one, which perhaps represents the actual

facts with almost equal accuracy. Prof. Johnson's formula is as fol

lows:

V

1 — —

P'

2

P

where f is the "carrying strength" when the load varies repeatedly

between a maximum value, p, and a minimum value, p', and U is the

ultimate strength of the material. The quantities p and p' have plus

signs when they repfesent loads producing tension, and minus signs

when they represent loads producing compression.

Prom what has just been said, it follows that if the load is variable

in character, factor 6 must have a value,

V p'

~ 1 ~ V '

Let us now see what this factor .will be for the ordinary variations

in loading.

p' 1

Taking first a steady, or dead load, p' = p and therefore — =—= 1,

P 1

and we have our factor,

P'

6 = 2 = 2 — 1 = 1. .

P

In other words, this factor may be omitted for a dead load.

Taking a load varying between zero and a maximum,

p' 0

p p

and we have for our factor,

P'

6 = 2 = 2 — 0 = 2.

P

Again, taking a load that produces alternately a tension and a com

pression equal in amount,

P'

p' = —p and —=—] ,

P
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and we have, for our factor,

P'

6 = 2 = 2 — (—1) = 2 + 1 = 3.

P

A fourth time, taking a load which produces alternately a tension

and a compression, the former being three times the latter,

P'

p = — 'dp' and — = — I,

P

and we have for our factor,

P'

b = 2 = 2 - (- i) = 2 + * = 8*.

P

Recapitulating our results, we may say that when the load is uni

form, factor 6 = 1; when it varies between zero and a maximum,

factor 6 = 2; when it varies between equal and opposite values, factor

6 = 3; when the load varies between two values, p and p', of which

P'

p' is the lesser factor, 6 = 2 .

P

The experiments which have been made upon the effects of variable

loads have almost without exception been made upon mild steel and

wrought iron. Designers are in need of data based upon the results

obtained with bronze, nickel steel, cast iron, etc.

It has already been noted that a stress many times repeated will

rupture a piece when that stress is greater than the elastic limit, but

less than the ultimate strength. It is also known that the application

of a stress will change the elastic limit of a material, often by a very

considerable amount. A material has really two elastic limits, an

upper and a lower one, the latter often being negative in value (t. e.,

. an elastic limit in compression). Between these two limits there is a

range of stress, which we may call the elastic range of the material,

and within which the material is, so far as we can discover, perfectly

elastic. It has been assumed, therefore, that under the influence of

the varying or repeated load, this elastic range takes on certain

limiting values depending on the character of the variation. So long

as the variation is confined within these limits, the piece is safe. If,

however, the range of variation of the stress exceeds the elastic range

of the material under the given conditions, the piece breaks down.

In confirmation of this view of the case, it has been found that pieces

long subjected to alternating stresses have an elastic limit of one-third

their ultimate strength, while pieces subjected to either repeated ten

sions, or compressions, only, have an elastic limit of one-half their

ultimate strength.

From lack of data we cannot speak with authority in this matter,

but it is probable that for material whose elastic limit is other than

one-half its ultimate strength, Prof. Johnson's formula, and considera

tions derived from it, no longer hold. It is more than likely that with
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fuller knowledge of the subject we will find that the facts of the

case may be more truly expressed by the formula,

nV

f =

P'

1 (1—n)

P

where n is the ratio of the elastic limit to the ultimate strength.

The third factor, c, entering into our equation, depends upon the

manner in which the load is applied to the piece. A load suddenly

applied to a machine member produces twice the stress within that

member that the same load would produce if gradually applied. When

the load is gradually applied, the stress in the member gradually

increases, until finally, when the full load is applied, the total stress in

the member corresponds to this full load. When, however, the load

is suddenly applied, the stress is at first zero, but very swiftly in

creases. Since both the load and the stress act through whatever

slight distance the piece yields, the product of the average total stress

into this distance must equal the product of the load into this same

distance. In order that the average stress should equal the load, it is

necessary that the maximum value of the stress should equal twice the

load. In recognition of this fact, we introduce the factor c = 2 into

our equation when the load is suddenly applied.

It sometimes occurs that not all of the load is applied suddenly, in

which case the factor 2 is reduced accordingly. If one-half the load

were suddenly applied, the factor would be properly 1%;, and in gen

re

eral, if a certain fraction of the load, —, is suddenly applied, the

m

n

factor is 1 H . Or, again, it may occur that friction, or some spe-

m

cially introduced provision, may prevent the sudden application of

the load from having its full effect, in which case, if the amount of

the reduction of, this effect be known, or if -it be possible to compute

it, an appropriate reduction may be made in the value of this factor.

Sometimes, however, a load is applied not only suddenly, but with

impact. In such a case it is highly desirable to compute the total

stress produced by the load, and to substitute it for the load when

obtaining the working section. Failing in this, it is necessary to

make factor c more than 2, and sometimes as high as 10 or more. As

an example of the possibilities arising in ordinary work, we may

instance an elevator suspended by a wire rope of one square inch in

section, and fifty feet long. If a truck weighing 500 pounds were

wheeled over the threshold and allowed to drop two inches onto the

elevator platform, a stress of over 10,000 pounds would be produced

in the rope. Thus we see that in this very ordinary case arising in

elevator service, this factor would need to be as much as 20.

The last factor, d, in our equation, we might call the "factor of

ignorance." All the other factors have provided against known con
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tingencies; this provides against the unknown. It commonly varies

in value between 1% and 3, although occasionally it becomes as great

as 10. It provides against excessive or accidental overload, against

unexpectedly severe service, against unreliable or imperfect materials,

and against all unforeseen contingencies of manufacture or operation.

When we can compute the load exactly, when we know what kind

of a load it will be, steady or variable, impulsive or gradual in its

application, when we know that this load will not be likely to be

increased, that our material is reliable, that failure will not result

disastrously, or even that our piece for some reason must be small or

light, this factor will be reduced to its lowest limit, iy2.

The conditions of service in some degree determine this factor.

When a machine is to be placed in the hands of unskilled labor, when

it is to receive hard knocks or rough treatment, the factor must be

made larger. When it will be profitable to overload a machine by

increasing its work or its speed in such a way as to throw unusual

strains upon it, we are obliged to discount the probability of this

being done by increasing this factor. Or again, when life or property

would be endangered by the failure of the piece we are designing, this

factor must be made larger in recognition of the fact. Thus, while

it is 1% to 2 in most ordinary steel constructions, it is rarely less

than 2% for a better grade of steel in a boiler. Even if property were

not in danger of destruction, and the failure of the piece would

simply result in considerable loss in output or wages, as in the case

of the stoppage of a factory, it is best to increase this factor somewhat.

The reliability of the material in a great measure determines the

value of this factor. For instance, in all cases where it would be \Vi

for mild steel, it is made 2 for cast iron. It will be larger for those

materials subject to internal strains, for instance for complicated cast

ings, heavy forgings, hardened steel, and the like. It will be larger

for those materials more easily injured by improper and unskillful

handling, unless we know that the work will be done by skilled and

careful workmen. It will be larger for those materials subject to

hidden defects, such as internal flaws in forgings, spongy places in

castings, etc. It will be smaller for ductile and larger for brittle

materials. It will be smaller as we are sure that our piece has

received uniform treatment, and as the tests we have give more

uniform results and more accurate indications of the real strength

and quality of the piece itself.

Of all these factors that we have been considering, the last one

alone has an element of chance or judgment in it, except when we

make an allowance for shock. In fixing it, the designer must depend

on his judgment, guided by the general rules laid down.

Someone may ask at this point, why, if we introduce a factor for

the elastic limit, do we also introduce a factor for repeated loads?

It may be argued that if we keep the stress within the elastic limit,

no harm will be done, no matter how often the load be repeated, and

they are right. However, with a dead load acting upon a piece and
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straining it to its elastic limit, we have as a margin of safety the

difference between its elastic limit and its ultimate strength. But

when the load is a repeated load, of the same amount as before, the

piece has no margin of safety, unless its section be increased, and

it does not have the same margin of safety as it had in the first place,

until its section is doubled.

Examples of Application of Formula.

It remains to illustrate the method outlined for developing an

"apparent factor of safety" by some practical examples. Let us take

first the piston rod of a steam engine. It will be of forged steel, of

simple form and reasonable size. The elastic limit will presumably

be slightly more than one-half the ultimate strength, so factor a = 2.

The rod will be in alternate tension and compression many times a

minute and factor 6 = 3. The steam pressure will be applied sud

denly (in a great many engines, on account of compression, only a

part of this load is applied suddenly)' and factor c = 2. And since

the material is reliable, and the service definite and not excessively

severe, factor d= l%. Then,

F— 2 X 3 X 2 X 1% = 18.

Taking next a steam boiler, our factor o = 2 as before. While the

load in reality varies between zero and a maximum, since the load is

steady in operation, and gradually applied, it is correct to make factor

6 = 1 and factor o— 1. Although we have an exceptionally reliable

material, corrosion is likely to occur, and failure would be disastrous

to life and property, so factor d = 2% or 3, depending upon the work

manship.

Then, F= 2 X 1 X 1 X 2% (or 3) =5 (or 6).

For our last illustration we will take the rim of a cast iron flywheel

for a steam engine. Factor o = 2, factor 6 = 1, and factor c = 1, for

the load which is due to centrifugal force is constant. However, the

material is the most unreliable with which the designer has to deal.

It is probably spongy, and has great internal stress resulting from

the cooling. It would be easy and profitable to increase both the

power of the engine and the strain in the rim, by speeding it up. In

ordinary cases we would make factor & equal to 3 or 4, but in this

case the stress in the rim increases, not with the speed, but with the

square of the speed, and it is entirely proper to make factor <Z = 10.

So we have

F— 2 X 1 X 1 X 10 = 20.

Table of Factors of Safety.

The following table may be helpful in assisting the designer in a

proper choice of the factor of safety. It shows the value of the four

factors for various materials and conditions of service, and will give

helpful hints to the young designers as to what factors to use under

similar circumstances.
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-Factor
Class of Service or Materials. a b c d

2 1 1 4%- 6

Piston and connecting rods for

double-acting engines 3 2 1% 13V2-18

Piston and connecting rod for

l%-2 2 2 1% 9 -12

Shaft carrying bandwheel, fly-

l%-2 3 1 1% 6%- 9

2 2 2 1% 12

Mill shafting 2 3 2 2 24

2 1 1 2 4

2 1 1 2% 5

2 1 2 1% 6

2 1 1 10 20

2 1 1 4 8

Materials. Minimum Values.

Cast iron and other castings. , 2 1 1 2 4

Wrought iron or mild steel . . . 2 1 1 1% 3

Oil tempered or nickel steel . . 1% 1 1 1% 2y<
1% 1 1 2 3

Bronze and brass, rolled or forged 2 1 1 1% 3

CHAPTER II.

WORKING STRENGTH OP BOLTS.

Doubtless most mechanics have heard of the rule in use in many

drafting offices, "Use no bolts smaller than %-inch diameter, unless

space or weight is limited." Or perhaps they may have heard pretty

much the same thing stated in another way, namely, that a man will

twist off a %-inch bolt, trying to make a steam-tight joint. It is a

matter of common experience among mechanics that a bolt has to

be strained a good deal in order to make a tight packed joint, and

that bolts must not only be made large enough to properly sustain

the load due to the steam or water pressure, but to sustain this

initial stress as well.

Bolts subject to tension are called upon for two different classes

of service. Either they serve to hold two heavy and rigid flanges

together, metal to metal, or they serve to compress a comparatively

elastic packing, in order to make a joint steam-tight. In either case

the bolt is under a considerable initial tension, due to the strain of

screwing up, and hence the advisability of not making it smaller than

% inch diameter. When the flanges are pressed together iron to iron,

they are much more unyielding than the bolts. Hence when the bolts

are screwed up, they are stretched a good deal more than the flanges

are compressed. If we assume that the flanges are so heavy and

unyielding that they cannot be compressed at all, the bolt is virtually

a spring, and in order to produce in it a stress greater than the initial

stress, we must pull so hard on the flanges as to separate them.
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The truth of this statement may be seen by referring to Fig. 1. The

Tjolt shown clamps together the two flanges, and the nut is screwed

down so tight that the bolt is stretched 1/1000 inch.' We will assume

that the bolt is of such a size that the stress produced in it by this

elongation is 1,000 pounds. If so, the flanges are pressed together with

a force of 1,000 pounds. Supposing now that we pull the flanges apart

in the manner shown by the arrows, with a force of 500 pounds. We
 

Figs. 1 to 4. Illustrations of Stresses in Bolts.

cannot produce a greater stress in the bolt than 1,000 pounds until

we stretch it a little more than it is stretched already. We cannot do

this unless we separate the flanges, and it will take a pull of over

1,000 pounds to do that. Although the pull of 500 pounds adds nothing

to the stress in the bolt, it does diminish the pressure between the

flanges, which will be now the pressure holding them together, less

the force pulling them apart, or 500 pounds. Exactly the same effects

would have been noted had we chosen any other force than 500 pounds,
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provided it was less than 1,000 pounds. The stress in the bolt would

not have been increased, but the pressure between the flanges would

have been diminished by exactly the amount of the force applied.

On the other hand, supposing that we apply a force of 2,000 pounds

to separate the flanges, we will find that the bolt will stretch under

this load 2/1000 inch, allowing the flanges to separate by only half

that amount, and the pressure between them is nothing. It follows

then that the stress in the bolt is now 2,000 pounds. If we had chosen

any other force greater than 1,000 pounds, it would have been sufficient

to separate the flanges, and the stress in the bolt would have been

equal to the force applied. In other words, we find that the stress in

the bolt is always either the initial stress, or else the force tending

to separate the flanges, and it is always the greater of the two.

If, however, we place a piece of packing between the faces of the

flanges, we find it is the packing rather than the bolt that is elastic.

On tightening up the nut the packing will be compressed say 1/100

inch. The stress in the bolt we will again assume to be 1,000 pounds.

Applying a force of 500 pounds in the same manner as before, as

shown in Fig. 2, we will not stretch the bolt very much in comparison

to the amount by which we have already compressed the packing.

Hence the packing will maintain its pressure against the flanges with

almost undiminished force. We have simply added the 500 pounds to

the 1,000 pounds stress already in the bolt. Exactly the same thing

occurs when the force is increased to 2,000 pounds. The bolt

will not give sufficiently to materially reduce the pressure due to the

elasticity of the packing, and the stress in the bolt is the initial

stress, plus the stress due to the force tending to separate the flanges.

The principles involved in the above discussion may be more easily

understood by a reference to the illustrations, Figs. 3 and 4. The

yielding members in Figs. 1 and 2 are represented in Figs. 3 and 4

as springs. A few moments consideration of the forces acting in each

case will convince one of the truth of these two rules:

1. When the bolt is more elastic than the material it compresses,

the stress in the bolt is either the initial stress or the force applied,

whichever is greater.

2. When the material compressed is more elastic than the bolt,

the stress in the bolt is the sum of the initial stress, and the force

applied.

Some experiments were made at the mechanical laboratories of

Sibley "College, Cornell University, some years ago, to determine the

initial stress due to screwing up the bolts in a packed joint in an

effort to get it steam-tight. The tests were made with %, %, 1, and

lj^-lnch bolts. Twelve experienced mechanics were allowed to select

their own wrenches, and tighten up three bolts of each size in the

same way as they would in making a steam-tight joint. The bolts were

so connected in a testing machine that the stress produced was accu

rately weighed. The wrenches chosen were from 10 to 12 inches long

in the case of the %-inch holts, and ranged up to 18 and 22 inches long
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in* the case of the l^i-inch bolts. Thirty-six tests were made with

each size of bolt, and while the results were not very close together in

all cases, it was shown that the stress in the bolt due to screwing up

varies about as its diameter, and that the stress produced in this way

is often sufficient to break off a %-inch bolt, but never anything larger.

Now since the stress varies about as the diameter of the bolt, and the

area varies as the square of the diameter, it is evident that the

larger the bolt is, the greater the margin of safety it will have. If

the stress in a %-inch bolt is equal to its tensile strength, the stress

in a 1-inch bolt will be about one-half its tensile strength, and in a

2-inch bolt, one-quarter of its tensile strength. These are very low

factors of safety, especially in the case of the sizes commonly used.

When we come to add the stress due to the force tending to separate

the flanges, there is an exceedingly small margin left, which is in

many cases absolutely wiped out by any sudden increase of pressure

due to water hammer, or some similar cause. If, however, we are to

use the same factors of safety in designing, the bolting for packed

joints as we do in designing the other parts of machinery, we would

use nothing smaller than 1%-inch bolts under any circumstances, and

generally bolts y2 inch or so larger. Such a proposition as this seems

ridiculous in the light of successful practice, and so the writer was

moved some time ago to investigate a great many flanged joints,

some successful and some otherwise, with a view to obtain if possible

some rule for proportioning the bolts so that they can always be relied

upon.

From this investigation it was found that we may take for the

"working section" of a bolt in a joint its area at the root of the

thread, less the area of a %-iracft bolt at the root of the thread times

twice the diameter of the given bolt, in inches. This working section

must be sufficient to sustain, with a liberal factor of safety, the stress

due to the steam load, op other force tending to separate the flanges.

The largest unit stress, found by dividing the stress due to the load

on the bolt produced by the steam pressure, or other such cause, by

the working section of the bolt, is about 10,000 pounds per square

inch. Let us take as an example of the application of this rule the

case of an inch bolt. Its area at the root of the thread is 0.550

square inch. Twice its diameter in inches is 2. The area of a %-inch

bolt at the root of the thread is 0.126 square inch. If from 0.550 square

inch we subtract 2 X 0.126 square inch, the result, 0.298 square inch,

is the working section of the 1-inch bolt. At 10,000 pounds to the

square inch this bolt will sustain a stress of not quite 3,000 pounds,

in addition to the stress due to screwing up.

There is reason, although not very sound, for this allowance. It has

already been noted that a %-inch bolt will sometimes be twisted off in

screwing it up to make a steam-tight joint. It has also been noted

that an inch bolt will have twice the initial stress due to this cause

that a %-inch bolt will. Therefore if we could divide the area of

the inch bolt into two parts, 0.252 square inches of it would be strained
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to the breaking limit, resisting the initial stress, and the rest of the

area, 0.298 square inches, would be free to tend to the other stresses

that might come upon it. As a matter of fact, we cannot so divide

the area, so the reasoning is not very sound, but inasmuch as the

rule corresponds to the best practice in this regard, while theoretically

more perfect rules would give us excessive and undesirable diameters,

it seems better to use it than to adopt the familiar method of using

a high factor of safety, and paying no attention to the initial stress.

The latter method invariably leads one to grief, unless one is familiar

TABLE I. WORKING STRENGTH OP BOLTS.

o i:
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iSto
(O

X .126 0 0 0 0 0 ,0 0

% .202 .044 220 264 308 352 440 528

% .302 .113 565 678 791 904 1,130 1,356

1*

.420 .200 1,000 1,200 1,400 1,600 2,000 2,400

.550 .298 1,490 1,788 2,086 2,384 2,980 8,476

.694 .411 2,055 2,466 2,877 3,288 4,110 4,932

.893 .578 2,890 3,468 4,046 4,634 5,780 6,936

m 1.057 .710 3,550 4,260 4,970 5,680 7,100 8,520

1H
1.295 ,917 4,585 5,502 6,419 7,336 9,170 10,504

i% 1.515 1.105 5,525 6,630 7,735 8,840 11,050 13,260

1M 1.746 1.305 6,525 7,830 9,135 10,440 13,050 15,660

1^ 2.051 1.578 7,890 9,468 11,046 12,624 15,780 18,936

2 3.302 1.798 8,990 10,788 12,586 14,384 17,980 21,576

3.023 2.456 12,280 14,736 17,192 19,648 24,560 29,473

3.719 3.089 15,445 18,534 21,623 24,712 30,890 37,068

4.620 3.927 19,635 23,562 27,489 31,416 39,270 47,124

3 5.428 4.672 23,360 28,032 32,704 37,376 46,720 56,064

3M 6.510 5.690 2-1,450 34,140

39,996

39,830 45,520 56,900 68,280

7.548 6.666 33,330 46,664 53,328 66,660 79,992

by long experience with the proper working stress to use with each

size of bolt.

It will be found that for ordinary sizes of bolts the above rule works

out in about the following form:

S = f (0.55 D2 — 0.25D)

where S = the strength of the bolt when used in a packed joint,

D = the diameter of the bolt in inches,

/ = the safe working stress in pounds per square inch.

This formula is simple to use, and not difficult to remember. It

must be borne in mind that it is only approximate, and not exact. As

an example of its use, we will take the case of the inch bolt again.

Using a working strength of 10,000 pounds per square inch it will be

found that

B = 10,000 (0.55 — 0.25) =3,000.
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As the sizes of the bolts become greater, the formula gives results

lower than they should be. It is very nearly correct for the common

sizes of bolts, and on the safe side for the uncommon sizes.

Table I on the opposite page has been prepared, giving the diam-

 

40.000'

X* V»
O O O Machinery. .V. F.

Fig. 5. Diagram of Working Strength of Bolts.

eters, least areas, working sections, and strengths of different sizes

of bolts with U. S. standard threads. Thus from the table we

find that the area of a 1%-inch bolt, at the root of the thread, is 0.893

square inch. Its working section is 0.578 square inch, and its strength
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at 8,000 pounds per square inch working stress is 4,624 pounds. As an

example of the use of the table, let us design the bolting of a valve

chest 8 inches wide and 12 inches long. Let us assume that the

steam pressure is 100 pounds per square inch, and that ten bolts will

be needed. The total load on the ten bolts will then be 8 X 12 X 100,

or 9,600 pounds. The load per bolt is 960 pounds. Assuming a work

ing stress of 6,000 pounds, we find that a %-inch bolt is necessary.

The diagram, Fig. 5, gives the strength of any number of bolts, of

any given size, with any required working stress when used in a

packed joint. Supposing that it is required to find the strengh of 20

%-inch bolts when used with a working stress of 6,000 pounds to the

square inch. Finding the figure "20" at the right-hand side of the

chart, we follow horizontally to the left on the heavy line, until we

reach the diagonal line marked % inch. We then descend the vertical

line which intersects the line % inch at the same point as does line

20, until this vertical line intersects the diagonal line marked 6,000.

We then follow the horizontal line which intersects line 6,000 at this

point, to the left-hand edge of the chart, where the figures adjacent

indicate that the answer is 13,500 pounds. If we check the answer

from the table we will find that the strength of a %-inch bolt at 6,000

pounds working stress is 678 pounds, and therefore the strength of 20

of them is 13,560 pounds.

In designing flanged joints it must be .remembered that an unlimited

number of bolts cannot be crowded into a flange. The largest number

of bolts that it is possible to use in a flanged joint and still have

room to turn the nuts with an ordinary wrench is equal to the diam

eter of the bolt circle, divided by the diameter of the bolts, both in

inches. A greater number of bolts than this can be used if necessary

but a special form of wrench must be provided. The number of bolts

generally used is about D — 2 V~B + 8, where D is the diameter of

the interior of the pipe or cylinder in inches. For ordinary pressures

this does not crowd the bolts too closely, although it puts them close

enough together so that the flange will not leak under steam. The

number of bolts actually taken for any flange is usually the nearest

number divisible by four. For instance, for a water chamber of 60 inches

diameter, the number of bolts obtained from the formula is 60 — 2 V 60

+ 8, or 52%. The number of bolts actually taken might be 52 or 56,

probably 52.

For our last problem let us take a rather extreme case. We will

suppose the case of the water chambers of a high-pressure mining

pump, 30 inches internal diameter, and subject to a pressure of 500

pounds per square inch. The number of bolts taken will be 30 — 2 X

V~30-f8, or taking the nearest number exactly divisible by four, 28

bolts. The area of the 30-inch circle is 0.7854 X 302, or 706.86 square

inches. The total load on all the bolts due to the water pressure is

706.86 X 500, or 353,430 pounds. It will be noted that the diagram

which we have already used does not extend above 40,000 pounds

strength, but by multiplying both the number of pounds strength and
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the number of bolts by 10, the effective range can be increased to

400,000 pounds strength and 200 bolts. Taking, then, 35,300 instead

of 353,000 at the left-hand edge of the chart, we follow to the right to

the intersection with the diagonal line marked 8,000, then ascend the

vertical line passing through this intersection till it meets horizontal

line 2.8, we find that this point falls between the radial lines marked

1%-inch and 2 inches, thus indicating that 28 bolts 1%-inch diameter

are not strong enough, and 28 bolts 2 inches diameter are stronger

than is necessary. In fact the vertical line we have been following

intersects the line marked 2 inches at the horizontal line 2.4, indicat

ing that 24 2-inch bolts would be required.

Stresses on Bolts Caused by Tightening- of the Nuts by a Wrench.

An interesting discussion on the stresses thrown upon bolts by the

tightening of the nut by a wrench appeared in the Locomotive, July,

1905, and it may be considered proper to include the substance of this

discussion in this chapter. While, it is impossible to make any accu

rate computation of the tensile stress that is thrown upon a bolt by

tightening a nut on its end, says the author of the article referred to,

it is possible to obtain a roughly approximate estimate of that stress,

when the nut is tightened under given conditions.

Let us suppose that a given screw is provided with a nut, which is

to be turned up solidly against some resisting surface, so as to throw

a tensile stress on the screw. Let the nut be turned by means of a

wrench whose effective length is L inches. When the nut has been

brought up pretty well into place, let us suppose that a force of P

pounds, when applied to the end of the wrench in the most effective

manner, will just move it. The work done by the man at the wrench,

per revolution of the nut under these circumstances, is found by mul

tiplying the force P by the circumference of the circle described by

the end of the wrench. The wrench being L inches long, the circum

ference of this circle is 2 n L inches, where v = 3.1416. Hence the

work performed by the workman, per revolution, is 2 it LP inch-pounds.

Let us assume, for the moment, that the screw runs absolutely without

friction, either in the nut, or against the surface where the nut bears

against its seat. Then the work performed by the workman is all

expended in stretching the screw, or deforming the structure to which

it is attached. Hence, if the screw has n threads per inch of its length,

and T is the total tension upon it in pounds, the work performed may

also be expressed in the form T -f- n; for in one turn the screw should

be drawn forward 1 -f- n inch, against the resistance T. Under the

assumed conditions of perfection, the two foregoing expressions for

the work done must be equal to each other. That is, we should have

2 it LP= T -r- n, or

T= 2 vnLP.

from which we could calculate the tension, T, on the bolt, if the screw

were absolutely frictionless in all respects.

We come, now, to the matter of making allowances for the fact that

in the real screw the friction is very far from being negligible. The
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actual tension that the given pull would produce in the bolt will be

smaller than the value here calculated, and the fraction (which we

will denote by the letter E) by which the foregoing result must be

multiplied in order to get the true result is called the efficiency of the

screw. The efficiency of screws has been studied both experimentally

and theoretically; but the experimental data that are at present avail

able are far less numerous than might be supposed, considering the

elementary character and the fundamental importance of the screw

in nearly every branch of applied mechanics. In the Transactions of

the American Society of Mechanical Engineers, Volume ,12, 1891, pages

781 to 789, there is a paper on screws by Mr. James McBride, followed

by a discussion by Messrs. Wilfred Lewis and Arthur A. Falkenau, to

which we desire to direct the reader's attention. In this place Mr.

Lewis gives a formula for the efficiency of a screw of the ordinary

kind, which appears to be quite good enough for all ordinary purposes,

and which may be written in the form

E= l -4- (l + nd),

where d is the external diameter of the screw. If we multiply the

value T, as found above, by this "factor of efficiency," the value of T,

as corrected for friction, becomes

2irnLP

T=

1 + nd

As an example of the application of this formula, let us consider the

case in which a workman tightens up a nut on a two-inch bolt, by

means of a wrench whose effective length is 50 inches, the maximum

effort exerted at the end of the wrench being, say, 100 pounds. A

standard two-inch bolt has 4.5 threads per inch; so that in this ex

ample the letters in the foregoing formula have the following values:

n = 4.5; L — 50 lnche.3; P = 100 pounds; d = 2 inches; and it stands

for 3.1416. Making these substitutions, the formula gives

2 X 3.1416 X 4.5 X 50 X 100 141,372

T= —= = 14,137 pounds.

1 + 4.5 X 2 10

That is, the actual total tension on the bolt, under these conditions, is

somewhat over 14,000 pounds, according to the formula. As another

example, let us consider a screw 1.5 inch in external diameter,' with

the nut set up with the same force and the same wrench as before. A

standard screw of this size has six threads to the inch, so that the for

mula gives in this case

2 X 3.1416 X 6 X 50 X 100 188,496

T = = = 14,500 pounds, approx.

1 + 6X2 13

Comparative Strength of Screw Threads.

A subject nearly related to the working strength of bolts is the com

parative strength of screw threads. There has been considerable dis

cussion from time to time among mechanics as to which of the three

forms of thread, V, square, and Acme, is the strongest against shear.
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The following report of tests undertaken by C. Bert Padon at the James

Mllllkin University, Decatur, 111., to settle this question, with the idea

of determining as nearly as possible with the means at hand just

what relation these styles of thread bear to each other, will, therefore,

prove of interest.

Each of the three forms was tested under two different conditions.

First, a screw and nut of each form was made with threads all the

same outside diameter, 15/16 inch, and with both screw and nut of the

same axial length, 17/32 inch, and of the same material, the grade of

steel commonly known in the shop as "machine steel." These three

samples .are shown at a, 6, and c in Pig. 6, in which a is the V-thread,

6, the Acme thread, and c, the square thread. In the second test all

three screws were of the same root diameter, about % inch, and were

 

Fig. G. Test Pieces used for Finding the Comparative Strength of
Screw Threads.

all made of gray cast iron, while the nuts were of machine steel. The

length of the thread helix in each screw was such that each of the

samples would present the same shearing area, the assumption being

that they would shear at the root diameter of the screw since the

screw was made of the weaker material. The different thicknesses of

the nuts to suit the length of the helix required for this will be no

ticed in the halftone at d. e. and /, which show respectively the V-thread.

Acme, and square samples. All the threads were made a snug fit, with

the threaded length of the screw exactly the same as the thickness of

the nut. The diameter of the shank was less than the root diameter of

the thread in each case. The screws had all 6 threads per inch.

In the cut the upper row shows the samples before testing, while

the lower row shows the nature of the failure of each sample under test.

A 50,000-pound Olsen machine was used. The nuts were supported on the

ring shown with sample f, to allow room for the screw to drop through

the nut when it failed, while pressure was applied at the top of the

shank, which was carefully squared. The shank of the Acme thread
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screw e in the second set of three samples was not strong enough to

withstand compression, but crushed before the thread gave way, at a

pressure of 29,300 pounds. The fragments of the broken shank are

shown. The screw was afterwards pushed through with a short piece

of steel rod, falling at 29,600 pounds pressure. Table II gives the re

sults of the test. As will be seen from the table, the Acme, or 29-de-

TABLE II. RESULTS OF TESTS OP SHEARING STRENGTH OF SCREW THREADS.

Sample.
Style of
Thread.

Material.
Thickness
of Nut.

Diameter
of Screw.

Breaking

Threads same outside diameter and all 6 threads per inch.

Screw. Nut.

Load
In pounds.

a

b

c

Sharp V

Acme

Square

M. S.* M. S. a

n

h

il 29,980f

34,090$

23,880$

Threads same root diameter, % inch, and same area of section to

resist shear. All are 6 threads per inch.

t (

H

* t

&

d

e

f

Sharp V

Acme

Square

C. I* M. S. i 0.914 20,450}:

29,600$

25,550$

it

tt

tt 0.792

0.792t t

* M. S. stands for Machinery Steel ; C. I. for Cast Iron,
t Threads bent over in both screw and nut.
I Sheared at. root of thread.

gree thread, makes the best showing in each case. The V-thread sample,

o, evidently could not have failed in the way described without ex

panding the nut enough to allow the distorted threads to slip by each

other. In this case, then, the thickness and strength Of the nut play

an important part. If the hole had been tapped in a larger piece of

metal, it is difficult to believe that the thread would have failed by

shearing, or in any other way, at a pressure less than that sustained

by the Acme thread.



CHAPTER III.

FLANGE BOLTS.

The calculations required for determining the number and size of

bolts necessary to hold down a pillar crane are very instructive. The

illustrations herewith, Figs. 7 to 9, show three examples of bolts used in

this manner—that is, a series of bolts equally spaced around a cir

cular flange intended to resist overturning. The first shows a pillar

crane where the load has a tendency to overturn the pillar ; the second,

a radial drill where the pressure on the drill has a tendency to over

turn the column, and the third a self-supporting chimney, where the

wind pressure has an overturning effect.
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Fig. 7. Jib Crane; Load has a Tendency to Overturn.

It will be noted that there are two elements—one of tension due to

the strain in the bolts, and one of compression due to the compression

set up in the foundation. To exaggerate matters, suppose we were to

place a layer of soft wood between the flange of the crane and the

foundation. It is evident that the load would have a tendency to

stretch the bolts on the side opposite the load and also to sink that part

of the flange nearest the load, into the wood as in Fig. 10. The neutral

axis would be a line drawn through the point where the flange and the

foundation separate and at right angles to the direction of the load.

On one side of this line we have the compression element due to the

foundation, the bolts on this side having no value whatever. Starting
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at this neutral line and running the other way, we note that each

bolt has a different value. To find the total value of the holts, which

constitutes our problem, we must add up these different values, and in

consequence must know the position of the neutral axis.

If instead of coming in contact with the foundation or bed-plate, the

flange was supported by studs as shown in Fig. 11, we would have half

of the studs in compression and the other half in tension, and the

neutral axis would pass through the center of the bolt circle. If the

flange had an annular surface inside of the bolts upon which to rest,

as in Fig. 12, the neutral axis would lie somewhere inside of the

larger circumference of this annular bearing surface as indicated. If

conditions were as in Fig. 13, the neutral axis would be somewhere

 

Fig. 8. Radial DrUl; Pressure of Feed Fiff. 0. Wind Pressure Tends
Tends to Overturn. to Overturn Chimney.

between the bolt circle and the outside circumference of the flange, or

possibly tangent to the bolt circle. Let us first determine the total bolt

values for certain given positions of the neutral axis, aild later look

into the factors that control the position of this axis.

Referring to Fig. 10 it will be evident that the amount each bolt

is stretched, and therefore the stress it resists, varies directly as its

distance from the neutral axis-. It will be further noted that the mo

ment of any one bolt as regards the neutral axis is directly propor

tional to the square of its distance from this axis, because the mo

ment of any bolt is the product of the force it exerts, and the distance

through which it acts. Consequently, U we could easily determine the

value of the mean square, as we surely can, we will then only have

to multiply it by the number of bolts to obtain the sum of the squares.
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Consider six bolts, as in Fig. 14, spaced equidistant on a circle of

radius = 1. Let the maximum stress in any bolt be 8,000 pounds, and

take the neutral axis as being tangent to the bolt circle. Hence we

have the following:

TABLE III. SIX BOLTS.

Bolt No. Distance. Square of
Distance

Stress. Moment.

1 2.00 4.00 8,000 16,000

2 1.50 2.25 6,000 9,000

3 .50 .25 2,000 1,000

4

"50 "255 2,000 1,000

6 1.50 2.25 6,000 9,000

Totals .... 9.00 36,000

This gives a value for the mean square 9.00 -f- 6 = 1.50. If the ra

dius were twice as great, the mean square would, of course, be four

times as great. This table, therefore, indicates that the

Mean square = 1.50 iJ" = % D2 (1)

 

Figs. 10 and 11. Location of Neutral Axis under Varying Conditions.

The total of these square values represents the moment of inertia

of the set of bolts, and if we multiply the sum by the maximum stress

and divide it by the distance of the point at which that stress acts, viz.,
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D, we obtain the moment of resistance just as we do in figuring the

strength of a beam in flexure. Hence we have the following:

Moment of inertia = No. of bolts X mean square = 1.50 R2N = %

D2N, and

1.50 R2 N S

Moment of resistance = = %ND8 (2)

D

where S is the maximum total stress in any bolt.

TABLE IV. TWELVE BOLTS.

Bolt No. Distance. Square of
Distance.

Stress. Moment.

1 2.000 4.000 8,000 16,000.0

2 1.866 3.482 7,464 13,928.3

3 1.500 2.250 6.000 9 000.0

4 1.000 1.000 4,000 4,000.0

5 .500 .250 2,000 1,000.0

6 .134 .018 536 71.8

7

8 .134 .018 "536 71 8

9 .500 .250 2,000 1,000.0

10 1.000 1.000 4,000 4,000.0

11 1.500 2.250 6,000 9,000.0

12 1.866 3.482 7.464 18,928.3

Totals 18.000 72,000.2"

TABLE V. TWENTY-FOUR BOLTS.

Bolt No. Distance. Square of

Distance.
Stress. Moment

1 2.000 4.000 8 000 16,000

2-24 1.966 3.865 7 864' 15 461

3-23 1.866 3.482 7,404 13.928

4-22 1.707 2.914 6,828 11,655

5-21 1.500 2.250 6,000 9,000

6-20 1.259 1.585 5,036 6,340

7-19 1.000 1.000 4,000 4 000

8- is :. . .741 .549 2,964 . 2,196

9-17 .500 .250 2 000 1,000

10-16 .293 .086 1.172 343

11-15 .134 .018 536 72

12-14....... . .034 .001 136 5

Totals 36.000 144,000

Applying this to Fig. 14 we have % X 6 X 2 X 8,000 = 36,000, which

is verified by Table III where the moment of each bolt is computed

separately.

Similarly we may take twelve bolts, and considering that the maxi

mum stress on any bolt is 8,000, the distance to, and stress in, each

bolt are as given in Table IV.

By equation (2) we have

Moment of resistance = % ND8= % X 12 X 2 X 8,000 = 72,000, which
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agrees with the result found by computing the moment of each bolt

separately, as Table IV shows. The value of the mean square is by

equation (1) equal to 1.5 R2, and the table gives in this case 18-5-12 =

1%. This table, then, verifies our formulas for both mean square and

total moment exerted by the twelve bolts.

For twenty-four bolts the results are the same, and Table V on the

previous page is given to show that the formulas are applicable to any

number of bolts.

 

Figs. 12 and 13. Location of Neutral Axis under Varying Conditions.

Moment = % NDB= % X 24 X 2 X 8,000 = 144,000.

36

Mean square 1.5 B2 =—= 1.5.

24

The foregoing applies only where the neutral axis is tangent to the

bolt circle, but knowing what the moment of a series of bolts is when

the neutral axis is in this position, it is a simple matter to determine

the moment for any other known position.

Referring to Fig. 16, let the neutral axis have the position XY. It

will be evident that the moment depends upon the mean square of a

series of distances, which are composed of two parts, viz., a constant <f>

and a variable such as a, 6, c, d. Hence for the total of the squares

we have

(.<P + 0)2 + (0 + o)2 + (0 + 6)2+ (0 + c)2+ ... .

which may be written Ntf + 20 (o + 6 + c + . . .) + a2 + 62 + c2 +
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Referring to Fig. 16 it will be seen that the average of 0 and f —

radius; a and e = radius; b and d = radius, etc., which means that the

sum of a + 6 + c . . . = NR, which may be written for the second

term of the previous expression. For the third term we may write

aa+6' + c* . . . =%ND2 by equation (1) which we have already

outlined.

Hence we may write for the sum of the squares

Ntf + N<t>D + % ND2.

To obtain the moment of resistance we must divide this by the dis

tance of the point of maximum stress from the neutral axis and

multipy it by the maximum stress. Therefore

N (0» + 02) + % D>) 8

Moment of resistance =——: (3)

<f + D
 

Figs. 14 and 15. Finding the Stress on the Bolts for Six and Twelve Bolts.

When the neutral axis lies inside of the bolt circle we have (0 — <p) +

(a — 0) + (6 — 0) + (c— 0) + . . . which may be written N$*—

20 (o + 6 + c + • • •) + a? + 6* + c* + . . . and for the moment we

have

N (0!— 0D + 8

Moment of resistance = (4)

D — 0

The only remaining factor to determine is the position of the neutral

axis so that we can apply the above formula. In the first place it

would be well to point out certain conditions that render this some

what uncertain. In these, as in most all bolt calculations, the initial

strain set up in a bolt by tightening the nut cannot be definitely deter

mined. Then again, the assumption that each bolt is strained directly

in proportion to its distance from the neutral axis necessitates that

the flange be absolutely rigid. While a heavy cast iron flange with a

large fillet, and possibly a few stiffening ribs, is about as rigid as

anything we might find in construction work, yet it is not absolutely

rigid. Finally we might mention the weight of the structure or pillar

that is borne by the flange. This factor has a tendency to increase the

element of compression and decrease the element of tension to a slight

extent.
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It is, however, much more practical and advisable to determine the

position of the neutral axis as closely as possible than to attempt to

determine these several uncertain quantities. The formula will at best

give uniformity of results, and if experience points out that our results

are correct in one case, they will also be correct for other cases when

they apply to similar conditions.

It is an accepted fact that in all cases of flexure the neutral axis

 

Fig. 16. Finding the Stress on the Bolts when the
Neutral Axis is Outside the Bolt Circle.

passes through the center of gravity of the section. This means that

in Figs. 10, 11, 12 and 13, the moment of the shaded area in compres

sion on one side of the line would exactly balance the moment of the

bolt areas on the other side, provided, of course, that the same material

were used throughout. It would therefore seem that the practical

method to locate this neutral axis would be to lay out the bolts and

that part of the flange in contact with the foundation and find the

center of gravity, making allowance for the fact that the weight per

unit of area of tension and compression areas should be taken as

proportional to their respective stresses per square inch.



CHAPTER IV.

FORMULAS FOE DESIGNING RIVETED JOINTS.

In designing a riveted joint it is first necessary to know the pressure

per square inch and the diameter of the cylinder, or the thickness of

the metal.

In the following formulas the notation below is used:

t — thickness of the plate,

P= pressure to be resisted by 12 inches of the joint,

D = diameter of the cylinder, in inches,

a = pressure per square inch,

8 = ultimate shearing strength of rivet or plate,

p = pitch of rivets,

f= factor of safety = ratio of bursting pressure to working pressure,

T— tensile strength of the plate,

d = diameter of the rivet hole,

B = bearing value of the plate,

I = distance from center of rivet to the edge of the plate,

6 = diagonal pitch,

e = efficiency of the joint,

n = number of rows of rivets.

The value of some of the above letters are as follows:

g= 0.75 to 0.80 of the tensile strength of the plate, for a rivet in

single shear; a rivet in double shear is taken as 1% times one in

single shear. As the rivets of a joint are protected from deterioration

while the plates are thinned by wear, the shearing strength of a rivet

is frequently taken as equal to the tensile strength. Also, in deter

mining the shearing value of a rivet from the tensile strength of the

plates, if iron rivets are being used with steel plates, the shearing

value of the rivet must be determined from the tensile strength of

iron, and not from the tensile strength of steel.

f = 6, for cylinders of moderately good materials and workmanship.

The following additions should be made for structural defects when

they exist, viz., an addition of 25 per cent when the rivets are not good

and fair in the girth seams; 50 per cent if the rivets are not good and

fair in the longitudinal seams; 100 per cent if the seams are single

riveted; and 200 per cent when the quality of materials or workman

ship is doubtful or unsatisfactory.

r= for steel plates about 55,000 to 60,000 pounds per square inch;

for wrought iron about 45,000 pounds per square inch. The tensile

strength of wrought iron plates across the grain is on an average 10

per cent less than along the grain.

3T

£= for ordinary bearing, and, 2T for web bearing.

2
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The formulas apply to joints having only one pitch.

If the thickness, t, of the plate is known

V * X 92 1

d= + — (5)

8 16

dJX 0.7854 X 8 X n

V— h <t (6)

t X T

A riveted joint is twice as strong against circumferential rupture as

against longitudinal rupture. Therefore, a cylinder which requires a

double riveted lap joint for the longitudinal seams will only require a

single riveted lap joint of the same diameter and pitch for the circular

seams.

P = 6aD (7)

Now choose a trial value, d, for the diameter of the rivet hole; com

mercial rivets vary by 1/16 inch up to % inch, more commonly by %

inch; % inch, % inch, % inch, and 1 inch being the most frequently

used. Remember that the cold rivet is 1/16 inch diameter less than

the hole, and that the diameter of the hole must be greater than the

thickness of the plate, otBerwlse the punch will not be likely to endure

the work of punching.

Substitute the chosen value of d in the following equations until the

proper pitch is found. Six diameters of the rivet is the maximum pitch

for proper calking, owing to the liability of the plates to pucker up

when being calked.

9.4248d2S

P = (8)

Pf

for single riveted lap joints.

18.8496eZ2iSr

P — (9)

Pf

for double riveted lap joints and single riveted butt joints with two

cover plates.

37.6992d2S

P= (10)

Pf

for double riveted butt joints with two cover plates.

Notice that twice the result found by (8) is equal to the result found

by (9), and that four times the result found by (8) is equal to the

result found by (10).

Having now the pitch and diameter of the rivet, try the percentage

of strength, or efficiency, of the plate, by,

p— d

e= , (11)

P

and if the result is not satisfactory, try a new diameter of rivet and

And its corresponding pitch as before.

The strength or efficiency of a well designed single riveted joint may
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be 56 per cent; of a double riveted joint 70 per cent; and of a triple

riveted joint 80 per cent of that of the solid plate.

In determining the pitch of rivets and the efficiency of joints with

punched holes, the larger diameter of the punched hole should be used

in determining the efficiency, and the smaller diameter, or the diameter

of the rivet, should be used in determining the bearing value, etc., of

the rivet.

fXPXp

t= (12)

12 X T(f> — d)

Now check the pitch, diameter and thickness by substituting these

values in (6).

If the rivet fills the hole, and is well driven, there is no bending

moment exerted on it unless it passes through several plates. Prac

tical tests have shown that rivets cannot be made to surely fill the

holes if the combined thickness of plates exceeds 5 diameters of the

rivets.

Butt joints are generally used for plates over % inch in thickness.

Where one cover plate is used on a butt joint, its thickness is 1% times

the thickness of the plate. Where two cover plates are used each

should be about % of the plate thickness.

Now check the diameter, thickness and pitch for crushing by

12dtB

= or > Pf (13)

for single riveted joint.

24dtB

- = or > Pf (14)

P

for double riveted joint.

The distance from the center of the rivet to the edge of the plate

after being beveled for calking should be l%d + % inch. Check by

fPp

1 = (15)

24tS

and if the result is greater than 1%#, use it, adding ya inch.

The diagonal pitch of rivet of a seam having several rows of rivets,

all of the same pitch, is generally equal to 0.75 to 0.80 of the straight

pitch, and should not be less than

(p X 6) + {dia. of rivet X 4)

6 = , (16)

10

Diagonal Seams.

The ratio of strength, R, of an inclined or diagonal seam to that of

a straight seam, or ordinary longitudinal seam, may be found by

(17)

V cos of angle of inclination X 3 + 1
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Rivet Material.

It is necessary to make the rivets of the same material as the plates

to prevent corrosive wasting from galvanic action. That is, iron rivets

should be used .with iron plates, steel rivets with steel plates, and

copper rivets for copper plates.

Elastic Limit of Riveted Joints of Steam Boilers.

The riveted seams of a steam boiler should cease to be steam tight

for some time before the internal pressure is equal to the elastic

limits of the plate. If a boiler were stretched beyond the elastic limit

of the material, the rivet holes would become stretched and the joints

of the plates would be disturbed, resulting in large leakage from the

rivet holes and seams.

The elastic limit of riveted joints of wrought iron and mild steel

is as follows:

Best quality of mild steel, 32,000 to 34,000 pounds per square inch.

Ordinary quality of mild steel, 28,000 to 30,000 pounds per square

inch.

Best quality of wrought iron, 24,000 to 26,000 pounds per square

inch.

Ordinary quality of wrought iron, 20,000 to 22,000 pounds per square

inch.

Weight of Seams or Riveted Joints of Cylinders.

The weight of seams of cylinders varies according to their propor

tions and must be calculated in each particular case. A rough approxi

mation of the weight of riveted seams may, however, be obtained by

increasing the weight of the cylinder by 1/6, if formed with single

riveted circumferential seams and double riveted longitudinal seams;

and by 1/5, if formed with double riveted circumferential seams and

triple riveted longitudinal seams.

Gripping- Power of Rivets.

When two plates are fastened together by properly proportioned

and well closed rivets, the frictional adhesion of the plates depends

upon the longitudinal tension of the rivets. The adhesion of the plates

or their resistance to sliding, per square inch of sectional area of the

rivets, is in a general way equal to 2/9 of the ultimate tensile strength

of the rivet.

Punched Holes.

The distressing effect on the plate due to punching may generally be

neutralized by countersinking % inch in width around the rivet hole

with a reamer. All rivet holes shall be so accurately spaced and

punched that when several parts are assembled together, a rivet 1/16

inch less in diameter than the hole can generally be entered hot into

any hole. In the better class of plate work it is now the practice to

drill rivet holes in plates after the plates are in place, so that the

holes are sure to be fair. In some cases the holes are punched to a

smaller diameter, and then drilled out to final size after the plates
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are in place. In either case the plates are afterwards separated, and

the burr left by the drill removed.

The effect of clearance between the punch and die is to produce a

conical hole in the plate. The punched plates are generally arranged

with the large ends of the holes outside or the small ends together.

Comparative Strength of Boiler Joints.

An interesting fact about riveted joints, which will prove instructive to

discuss more fully, is that the stress in the second row of rivets always

amounts to more than that in the first row. This is the case when

a triple joint is used, having a narrow outer butt strap and a wide

one inside, and when the pitch in the second row is half the pitch of

the first, and all rivets have the same diameter. We will here show

how to calculate the stress of the shell plate at both rows of rivets.

Take the joint shown in Fig. 17, i. e.: shell, % inch, rivets, 11/16

Rowl

Eown—

<f>

? $
—

 

4-4-

+
-4-

Fig. 17. Joint to be Investigated.

inch = 1.06 inch, about; radius of shell, 29 inches; pitch, 7% inches;

pressure, 200 pounds per square inch.

Row I. Pull along one pitch = 7.75 X 29 X 200 = 45,000 pounds.

Length of plate = 7% — 1 1/16 = 6.68 inches.

45,000

Tearing of plate = = 10,780 pounds per square

6.68 X 0.625 inch.

Shearing of rivets =

45,000

- = 5,650 pounds per

square inch.

9 X — X 1.062

4

Row II. Pull in second row of rivets is 45,000 pounds less the amount

taken away by rivet in (I); that is, the amount transmitted

in row (I) through one rivet to the butt straps.

r

45,000 — 5,650 X — X 1.062 = 45,000— 5,000 = 40,000 pounds.

4

Length of plate = 7% — 2 X 1 1/16 inch = 5% = 5.625 inches.

40,000

Tearing of plate = = 11,380 pounds per square

5.625 X 0.625

inch or about 5% per cent more than in row (I).
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To avoid this there are two methods possible; one of them is shown

in Fig. 18. Use the sameT>itch at row (I), but increase the pitch at

rows (II) and (III), all rivets remaining the same diameter.

Row I. Pull along one pitch = 7.75 X 29 X 200 = 45,000 pounds.

45,000

Tearing of plate = = 10,780 pounds per square

6.68 X 0.625 inch.

Shearing of rivets = -

45,000

7 X — X 1.062

4

38,000

Factor of safety = =5.22.

7,275

- = 7,275 pounds per

square inch.

Row II—

9—

_.-<j> <*> " 1g j g f 9-

,diam,

MachineryJl. T<

Fig. 18. Joint Re-designed to give Less Stress in Row II than in Row I.

Row II. Full along one pitch = 45,000 — 7,275 X — X 1.062 = 38,575

pounds. 4

Length of plate =7.75 — 1.5 X 1.06 = 7.75 — 1.6 = 6.15 inches.

38,575

Tearing of plate = ,—= 10,050 pounds per square

6.15 X 0.625

inch or 7 per cent less than in row (I).

A second method, shown In Fig. 19, consists in increasing the pitch

and diameter of rivets in the first row, or using smaller rivets in the

second and third rows. Of course, this is somewhat awkward, on

account of it being necessary to change the riveting tools (but on the

European continent this is the usual practice) for the two sizes of

rivets. If, however, we keep the 1 1/16-inch rivets in the first row,

and use 15/16-inch rivets in the second and third rows, we get:

Row I. Pull along one pitch = 7.75 X 29 X 200 = 45,000 pounds.

Area of rivets = |l X — X 1.06s | + ^8 X — X 0.948 j =

0.883 + 5.550 = 6.433 square inches.

Length of plate = 7% — 1 1/16 = 6.68 inches.

45,000

Tearing of plate = = 10,780 pounds per square

6.68 X 0.625 inch.



34 ELEMENTS OF MACHINE DESIGN

45,000

Shearing of rivets = = 7,000 pounds per square inch.

6,433

Row II. Full = 45,000 — 0.883 X 7,000 = 38,820 pounds.

Length of plate = 7.75 — 2 X 15/16 = 5.875 inches.

38,820

Tearing of plate = = 10,580 pounds per square

5.875 X 0.625

inch or 1% per cent less than in row (I).

If, instead of using smaller diameter rivets in the second and third

rows, we keep 1 1/16-inch rivets, hut increase the diameter of rivets

in the first row to 1 3-1/16 inch, and also the pitch to give the same

percentage, similar results would he obtained. In a triple butt joint

with straps of equal width, the stress in the second row would always

Row I
---T^r--

Rown -—©'

~-i \f, diam.

— ^ j-

- ■ ^ (jj (j) tjj (jj (j)—

4-

Fig. 19. Joint in which the Stresses are Nearly Equalized.

be less than in the first row; on this account, therefore, it is unneces

sary to make any calculations of row (II).

English Practice.

In England it is customary to use higher working stresses than in

the United States; while here plates are used with a tensile strength

of 55,000 pounds per square inch, with a factor of safety of 5, they use

there plates of not less than 60,000 pounds, allowing a factor of safety

of 5 for double butt joints, and a factor of safety of 4% for triple

butt joints. In England they never use iron rivets, but always steel

rivets, with a shearing strength of 50,000 pounds per square inch, and

a factor of safety of 5, which equals 10,000 pounds per square inch,

under pressure. It is also their rule to take the diameter of the steel

rivets from 1.1VT to 1.2VT, where T equals thickness of plate in

inches; so that in the previous case they would have used 1.2V0.625 =

15/16 inch for the diameter of the rivets, and the riveting as shown

in Fig. 18.



CHAPTER V.

CALCULATING THE STRENGTH OP A MOUTHPIECE

RING AND COVER.

There are thousands of digesters, vulcanizers and other similar ves

sels in use working under considerable pressure. Accidents to these,

particularly the bursting of the head or of the ring to which it is

clamped, are almost as common as boiler explosions, and oftentimes

do considerable damage and sometimes result in the loss of life. There

are one or two points relating to the problem of designing vessels of

this kind which do not always receive proper attention from the men

 

Pig. 20. Design of Mouthpiece Ring and Cover.

responsible for the calculations involved, and it is with the object of

calling attention to some of these points that we give herewith the

calculations made for figuring the strength of a cover and mouthpiece

ring.

Fig. 20 shows the essential features of the design. The body of the

cylinder itself is a welded steel tube 4 feet in diameter, % inch

thick, and about 7 feet long. To this is riveted a mouthpiece ring,

presumably of cast iron, having slots for 24 one-inch steel bolts by

which the cover is made fast. The important dimensions are shown.

No other information being at hand, the material of the cover is taken

as cast iron, while the shell is supposed to be made of steel having a

tensile strength about equal to that of boiler plate. The following

data as to the strength of the materials are assumed:
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Factor of safety 5

Cast iron, ultimate tensile strength 20,000 pounds

Steel shell, ultimate tensile strength 55,000 pounds

Rivets, ultimate shearing strength 40,000 pounds

Rivets, ultimate bearing strength 90,000 pounds

Steel bolt, working tensile stress 4,000 pounds

Working pressure to which vessel is subjected, 60 pounds per square

inch.

The blueprint from which these details were taken calls for a test

ing pressure of 125 pounds per square inch. On this question some

thing will be said later.

The ways in which it is possible for this structure to fall are almost

too numerous to catalogue. A rapid inspection, however, shows the

following as being the only ones which we need to consider:

First, bursting of the cylinder head.

Second, rupture of cover bolts.

Third, failure of rivets from shearing.

Fourth, failure of mouthpiece ring from tensile stresses in lower

edge of the hub.

In considering failure from the first cause, the cover may be treated

the same as the cylinder head of an engine would be. The formulas

given in Kent's Handbook for determining the thickness of cylinder

heads may be used; a number of different ones will be found there.

Taking, for instance, Thurston's rule, the first one given:

Dp

t =— +Y4.

3,000

in which D is the diameter of the circle in which the thickness is

taken, p is the maximum working pressure per square inch, and t is

the thickness of the head. Substituting the known values in this

equation we have

52 X 60

t = h% inch = 1.040 + 0.250 = 1.290 inch.

3,000

The diameter taken is, roughly, the diameter of the gasket. The

result, 1.290 inch, is found to be somewhat greater than the figure

given on the sketch, but to the cover there shown is added the

strengthening effect of the heavy ribs provided; the cover with these

should be entirely satisfactory for a working pressure of 60 pounds.

The crowning shape of this part also adds to its strength.

The strength of the bolts to resist rupture will next be considered.

The iuside diameter of the gasket is 4 feet 3% inches, or 51% inches,

and the area of a 51%-inch circle is about 2,100 square inches. With

a pressure of 60 pounds per square inch this gives a total load on the

head equal to 2,100 X 60 = 126,000 pounds. Since there are 24 cover

bolts the pressure sustained by each cover bolt will be 126,000 pounds

divided by 24, or 5,250 pounds, the amount due to the steam pressure.

The area of a 1-inch United States standard bolt at the bottom of the
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thread is about 0.55 square inch. The fiber stress in the bolt due to

the steam pressure will then be 5,250 -i- 0.55 = 9,550 pounds, about.

This figure in itself is well within the safe limit for steel of the

quality from which such bolts 'are usually made. We have, however,

to reckon with a number of other factors. We have, for instance, to

consider the old question as to whether there is any greater tension

on the cover bolts after the steam has been turned on above the

initial tension due to the tightening of the cover. With the elastic

gasket used it can be shown that the steam pressure will be added to

the tension produced by setting up the bolts, which will thus have to

be stronger than they would if a metal to metal joint were provided.

For a full discussion of the question of the stresses in cover bolts the

reader is referred to Chapter II, and also to a paper read by Carl

Hering before the Engineers' Club of Philadelphia, January, 1906. Con

sidering that these bolts will be tightened by comparatively inexperi

enced men, opened and closed a number of times a day, and are certain

at some time to be overstrained, and that the constant use to which

they are subjected will tend in time to weaken the material through

fatigue, it is not at all advisable to put a stress of more than 4,000

pounds per square inch on these bolts. It is suggested that the

diameter of these bolts be increased to 1% inch and that their number

be increased to 36. We would then have for the tension of each bolt

126,000 -f- 36 = 3,500 pounds, and since the area of a 1%-inch bolt at

the root of the thread is about 0.89 square inch, the stress on the bolt

will be 3,500 -f- 0.89 = 3,930 pounds per square inch. This is none too

low, taking into account the elastic gasket and the possibility of

abnormal tightening through the occasional use of a pipe extension

to the wrench.

Calculation for the strength of the rivets in shear is very simple.

There are 96 of these rivets, so that each of them bears as its part of

the load on the cover an amount equal to

24.52 X t X 60

= 1,180 pounds, about.

96

This amount divided by 0.44, the area of a %-inch ring, gives a

shearing stress of 2,680 pounds, a figure which need never cause the

slightest anxiety. The bearing value of the rivet will be proportion

ately low.

The last question to be considered, that of the tensile stress in the

lower edge of the hub of the ring, is discussed at length in The Loco

motive, issue of July, 1905, published by the Hartford Steam Boiler

Inspection and Insurance Co. This cause of failure was, until recently,

a rather obscure one. The engraving, Fig. 21, shows the action which

causes the deformation. There is an upward pull of the cover bolts

at P with a downward pressure of the gasket at Q, and a further down

ward pull at 8 due to the pressure of the steam on the bottom of the

vessel. These three forces, working together, tend to turn the ring

inside out, as we might say, elevating the outer edge and depressing
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the inner edge, and thus expanding the lower portion of the hub.

From this distortion the principal stress is that of tension in the hub.

The way in which the part fails under these circumstances is shown

in Fig. 22. "Hub cracks" are introduced running from the lower edge

up into the body of the ring, sometimes passing through the rivet

holes and sometimes avoiding them. The formula given in The Loco

motive for determining the maximum tensile stress at this point is

as follows:

(mNE + LD) (ft — a)

F=

6.2832 (I — a2A)

in which J^t-he tensile stress per square inch,

m = the distance from the gasket to the bolt circle,

N = the total number of the cover bolts,

E = the excess of the actual tension on each cover bolt above

 

Fig*. 21. Stresses on the Ring. Fig". 22. Usual Manner
of Failure.

that due to the steam load (1,200 pounds is suggested

in the article referred to),

Z/ = total steam load,

D = the distance from the inner edge of the ring to the bolt

circle,

ft = height of the ring,

o = the distance from the center of gravity of the ring sec

tion to the face of the ring,

7 = the moment of inertia of the ring section about axis

OX (see Figs. 23 and 24),

A = area of the ring section.

Those letters which refer to dimensions will be found in Fig. 23,

where a diagrammatical sketch of the ring section is given. The

quantity of the denominator (Z — d?A) amounts to the same as the

moment of inertia of the section about the neutral axis. It is put in

the form given for convenience in calculating, the issue of The Loco

motive referred to having a table of moments of inertia of rectangles

provided for the purpose. No explanation need be given here of the

methods of finding the center of gravity and moment of inertia of a
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Bectlon. This will be found discussed in any text book dealing with

the strength of materials.

Drawing the diagram shown in Fig. 23 and for the sake of sim

plicity risking the leaving out of the gasket groove, we find the fol

lowing values:

A = 15 1/16 square inches,

a = 2.91 inches,

I Cabout axis OX) = 184.6.

Substituting the known values in the given formula we have

(2T5T X 24 X 1200 + 126,000 X 4) (6.5 - 2.91)

F = = 5.600 pounds.

6.28S2 (184.6 - 2.91* X 15^)

Twenty thousand pounds was taken as a safe figure for the tensile

strength of cast iron. This is none too high, especially if great care

 

SJacldntry, A\Y.
Fig. 23. Data for Original Ring. Pig 24. Suggested Section.

is not taken in the selection of the irbn and the inspection of the

casting after it is completed. With a factor of safety of 5 we have

4,000 pounds as the safe figure for a working tensile strength. The

results of our calculation would thus show that the stresses in the

ring are high enough to be dangerous. To give the additional strength

necessary the section shown in Fig. 24 is suggested. The hub has

been made 1% inch longer, and the thickness of the flange has been

increased about % inch. This latter change was made both to keep

the parts in good proportion so far as looks are concerned, and from

the fear, as well, that the ring might fail by breaking at the corner

of the gasket groove. The possibility of this would be a rather difficult

thing to calculate with assurance, but good judgment would seem to

indicate that the casting is none too strong at this point. Repeating

the same operation on this enlarged section that we went through in

calculating the strength of the smaller section, also now considering

36 bolts instead of 24, as already suggested, we have

A = 18^2 square inches,

0 = 3.6 inches,

1 (about axis OX) =343.6.
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Substituting the known values in the equation as before, we have

(2Jy X 36 X 1200 + 126,000 X 4) (8 - 3.6)

F = 4,070 pounds.
6.2832 X (343.6 - 3.6s X 18.5)

This figure, while a little large, may be considered safe, perhaps, if

a good casting from a good quality of iron is used.

The value of E used above is that recommended in the discussion

from which the formula was taken, namely 1,200 pounds. This is

arbitrarily selected, and although it would seem somewhat low in view

of the possibilities for excessive strain afforded by the wrench and

pipe combination, the boiler insurance company referred to has found

that the formula, as given, is rather on the side of safety. The large

bolts suggested for the improved section are favorable for reducing

the excess pressure, since the workman is not liable to overstrain a

large bolt in the same proportion that he would a smaller one.

It would be unwise to conclude this chapter without some reference

to the testing pressure called for on the blueprint previously referred

to. All the parts have thus far been figured out for a working press

ure of 60 pounds. If this really is to be the maximum working

pressure, and the parts have been proportioned with this figure in

view, it is an exceedingly unwise thing to do to test the vessel at a

pressure greatly in excess of this; 75 or 80 pounds at least should

never be exceeded in testing the structure. Damage is often done by

careless use of excessive pressures in testing, these injuries sometimes

not showing at the time, but being disastrous later on. If the pressure

in use will occasionally run up to a figure approaching 125 pounds

per square inch that is another matter, and the whole design should

be altered to make this possible without straining the parts" beyond

what they are able to bear.



CHAPTER VI.

KEYS AND KBYWAYS.

It is not very common in practice to determine the dimensions of

keys by calculation, but rather according to the results of experience,

so that great differences between the sizes used by different machine

builders are not uncommon. Twenty years ago, however, *a collection

was made of the various key standards, and a system of average

dimensions was founded on this basis. These dimensions, having

stood the test of time, can be utilized as a basis for the examination

of the strain to which keys are exposed. If we assume that the nar

row side of the key alone has to take up the moment of rotation, then

the strain of these narrow sides must be about the same as the strain

of the material in the shaft itself. The narrow sides are subjected to

the specific superficial pressure p, while the tension k in a shaft of the

Fig. 26. Shaft with Ordinary Rectangular Key.

diameter d is produced by the moment of rotation M. (See Fig. 25.)

The lateral surface pressure Q on the key is therefore

M 7T

Q =—=— d2k = 0Ad2k (approximately). (18)

a 8

2

This pressure has to be taken up by half the narrow side of the key,

and therefore ft

0Ad2k = ^-lp (19)

2

The length Z of the key is usually about 1 or l%<f, the value l = d

being the average minimum. The superficial pressure p should not be

allowed to exceed 17,000 pounds per square inch. The strain of rota

tion k should be taken at a lower value than in the case of shafts

exposed to a pure twisting strain, since keyed shafts are almost invari
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ably subjected to a high bending strain at the same time by the pull

of belting, the pressure of gear teeth, etc. Consequently fc may be

taken from 2,800 to 5 600 pounds per square inch, or an average of

4,200 pounds to the square inch.

By substituting the values k = 4,200, p = 17,000, and l = d in equa

tion (19) we have approximately h = 0.2d. The key should therefore

be sunk into the shaft and hub to a depth equal to 1/10 of the shaft

diameter in each case, the depth being measured at the side of the

key and not at "the center.

The ordinary key offers a resistance to twist on the broad and nar

row sides, the manner in which the strain is distributed between them

being illustrated in Fig. 26. When the hub and shaft undergo a rela

tive displacement through the angle w, the point A, on the narrow

side moves toward A2 and the point on the broad side toward point

B2. This results in a compression of the material to an extent indi

cated by a on the narrow side and by b on the broad side, the latter

distance being about 1/6 of the former. The resistance to twist about

the actual grooved surface for an equal strain on the material is

proportionate to these two distances calculated on the relative dimen

sions of the two effective surfaces of the groove. For medium key

dimensions this proportion is about i to 3%, or in other words, the

narrow sides are exposed to more than three times the twist of the

broad sides. A key of the usual form, that is, slightly tapered and

driven in place, takes up little or no strain on its narrow sides until

the twisting force comes into play, but a very slight twist between the

hub and shaft, resulting from slight changes in form in the broad

sides, will bring the narrow sides into action. Whether the changes

formed on the broad side exceed the elastic limit depends entirely on

the care with which the groove has been cut and the key fitted. For

these reasons the desire to secure both radial and tangential tension

in one and the same key has led to the form shown in Fig. 27. Such

a key wou:d not be very difficult to make, the slots being given a

considerable radial taper.

 

Fig. 26. Diagram of Forces Acting on
Key.

Fig. 27. Proposed Form of Key, Equaliz
ing the Radial and Tangential Pressuie.



CHAPTER VII.

TOGGLE-JOINTS.

The toggle-joint, while one of the simplest mechanisms to construct,

is quite as difficult to understand as many of the more complicated

movements. In Figs. 28 and 29 are shown the two simplest forms in

which the toggle-joint appears. In the first instance the force is sup

posed to be applied at F to overcome a pressure at P. In the second

figure the right-hand arm is extended so as to form a handle to which

the force is applied in a direction at right angles to the arm. It

should be noted that while this mechanism is called a "toggle-joint,"

it is really nothing more nor less than a crank and connecting-rod,

I

 

Fig. 28. Example of Simple Form of Design in -which the Toggle-Joint Appears.

of which the cross-head is at P, and the connecting-rod from P to E,

the right-hand arm corresponding to the crank.

The problem is generally to find how great a resistance at P will be

overcome by a force applied at F ; and as the resistance that can be

overcome at P for a given applied force increases as the two arms

approach a straight line, no calculation can be made until the positions

of the arms are known.

Instantaneous Center.

All cases of the toggle-joint can be easily solved by what is known

as the principle of instantaneous centers. This principle is simple,

and is clearly illustrated in Figs. 30 to 33, which apply to the two

forms of toggle-joint shown in Figs. 28 and 29.

In any machine, simple or complex, no matter what its construction,

the force applied, multiplied by the distance through which it acts,

must equal the resistance overcome by the machine, multiplied by the

distance through which it is moved. The principle of the instantaneous
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center affords us the means of finding the relative distances moved

by the points where the force is applied and the resistance overcome.

In Fig. 30 ad and cd are the arms of the toggle-joint. What we call

the instantaneous center is at o. It is located at the intersection of the

perpendiculars to the lines along which the two ends of the arm ad

move, this being the arm upon which forces F and P act. Thus, the

end a moves in a horizontal line at right angles to line oo, and the

end d, which is guided by the arm cd, and travels about the center c,

moves for the instant at right angles to line do. The point of inter

section o of lines ao and do is the instantaneous center.

The reason why this point is given the name of "instantaneous cen

ter" is because, if we consider the movements of the ends of the arm

and the forces F and P for an instant, that is, for an infinitesimal

time, they will be exactly the same as though the forces were rotating

 

Fig. 29. Another Example of Simple Design in which the Toggle-joint Principle
is Employed.

about the center o for that instant. To make this clearer, Fig. 31 has

been drawn. This represents a bell-crank lever with arms eo and ao

corresponding to the lines designated by these letters in Fig. 30. The

axis o corresponds to the position of the instantaneous center of Fig.

30. Now it is plain, that if the lever be moved an exceedingly small

distance about center o, the movements of points e and a will be pre

cisely the same as the movements of forces F and P in the actual

toggle-joint.

For example: Suppose it were fcund that for the position of the

toggle-joint shown in Fig. 30, a downward push of 0.001 inch at d pro

duced a movement at a of 0.002 inch. Also, suppose the lever in Fig.

31 to be constructed as directed, with the center-lines of its arms

corresponding to eo and ao in Fig. 30. It will then be the case that a



TOGGLE-JOINTS 45

downward movement of 0.001 inch at e will move point a 0.002 inch,

just as in the toggle-joint.

Since the movements of the extremities of the two arms of a lever

are proportional to the lengths of the arms, it makes the calculation

of any toggle-joint very simple to first find the instantaneous center

about which an equivalent lever may be assumed to turn, and then

 

Figrs. 30 and 31. Analysis of Principles Involved in Design Pig. 28.

make the calculations as though based upon the lengths of these lever

arms.

Basing our calculations, now, upon the respective lengths of the

lever arms, it ought to be clear from the reasoning given above, or

even without that reasoning, that if the lever in Fig. 31 is in balance,

the force at e multiplied by the length of the arm eo will equal the

force at a by the length of the arm ao. Returning to Fig. 30, this is

 

Pigs. 32 and 33. Analysis of Principles Involved in Design Pig. 29.

equivalent to saying that F X eo — P X ao. To locate point o con

veniently, erect at point o the perpendicular to the direction of force

P. and continue cd until it intersects the perpendicular at o.

Transposing our formula, we now have

F X eo

P =

ao

When, as is often the case, the two arms of the toggle are of equal

length, then eo will be equal to one-half ac. or ac and ao will equal
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twice bd. Substituting ft for bd in Fig. 28 and I for ab, we shall then

have, for a toggle-joint with equal arms, like that in Fig. 28,

F X I

2ft

Referring to Fig. 29, this case is best solved by first neglecting the

handle F, and assuming the toggle-joint to be composed of the linkage

afc as in Fig. 32. Here the force f acts at right angles to the arm cd.

It rotates about the center o with a radius fo, and P rotates about o

with a radius ao, as indicated in Fig. 33. Therefore, f X do = P X ao,

or,

F X do

P = -
 

Fig. 34. Toggle-Joint Design where Pressure is Exerted
by Handwheel and Screw.

With equal arms, do = dc = r in Fig. 29, and ao = 2 X ft. Hence,

for equal arms, as in Fig. 29,

fXr

P=

2ft

Now, taking into account the increased leverage afforded by the

handle, with the force acting at F, we have f X r = F X R. Or,

FXR

f=

r

Combining this with the equation above, the effect of force F upon

P is found to be,

FXR

P =

2ft

Double Toggle-Joint.

In most presses in which a screw and toggle-joint are used, the latter

is usually made in the form of a double toggle-joint, as shown
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in Figs. 35 and 36. The question is often asked whether such an ar

rangement is twice as powerful as a single joint, and to make this

point clear let us first take up the joint and screw of Fig. 34.

Assume for illustration that the two arms are of equal length and

at an angle of 90 degrees with each other, and that a force F of 100

pounds is applied by means of the hand-wheel. With the proportions

and position assumed, it is evident that a small movement of the joint

at F will produce twice as much movement at P, and consequently only

half as much resistance, or 50 pounds, can be overcome at P.

In Fig. 35 the same proportions and positions of the parts are used

as in Fig. 34. While the action of these different joints can easily be

demonstrated, whatever the proportions, it is simpler to take the posi

tions shown, because the relative movements of the parts can be seen

at a glance.' In Fig. 35 a right- and left-hand screw is used of the

 

Fig. 35. Double Toggle-Joint.

same pitch as in Fig. 34, and one turn of the hand-wheel will therefore

advance each one of the toggle joints and also the point P just as far

as the corresponding parts were advanced in Fig. 34, and no farther.

It will, therefore, take just the same pull on the hand-wheel to over

come 50 pounds at P as in Fig. 34, but as each joint takes half the

strain, there will be only 50 pounds tension in the rod between the

joints instead of 100 pounds as before.

In Fig. 36 the case is somewhat different. Here the rod is threaded

at one end only, of the same pitch as before, and the hand-wheel screws

on the threaded part, drawing the two parts of the joint together. One

turn of the hand-wheel will advance the hand-wheel itself a distance,

relative to the screw, equal to the pitch. Each side of the toggle-

joint will be advanced a distance equal to half the pitch, and point P

will be moved twice this amount, or a distance equal to the pitch, or

the same distance that the hand-wheel moves along the screw. Hence,
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if the hand-wheel produces a force of 100 pounds, a resistance of 100

pounds can be overcome at P, or twice as much as in Fig. 35. The

stress in the rod will, of course, be 100 pounds.

To summarize, one inch horizontal movement of the hand-wheel in

 

Fig. 3d. Alternative Design of Double Toggle-Joint.

Fig. 34 will produce two inches movement at P; one inch movement in

Fig. 35 will accomplish the same result, and hence the resistance

overcome will be the same; but one inch movement- of the wheel in

Fig. 36 will produce the same movement, or one inch at P, and this

form of toggle-joint has twice the power, but half the motion, of the

other two.






