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CHAPTER I.

CALCULATING SPIRAL GEAES.

In taking up the subject of spiral gears with students at the Wor

cester Polytechnic Institute, some difficulty was experienced over the

formulas relating to their construction. If these trouble men accus

tomed to the use of trigonometry, they must certainly be confusing

to shop men. As the explanation of the method of figuring these

gears, which has been arrived at for the students' use, involves a

minimum amount of mathematics, it may be of value to others. At

the same time, the formulas given will be thoroughly explained and

mathematically proved for the benefit of those who wish to fully study

the subject.

As it is most convenient to adapt these gears to the standard diame

tral pitch cutters used for spur gears, we will consider the subject only

from that point of view. This gives us at once the normal pitch, that

is, the pitch measured perpendicular to the face of the tooth, and also

the shape and depth of the tooth.

In the case of a spur gear, we cut the teeth at right angles with the

base of the cylinder on which the gear is cut, as at a in Fig. 1. The

space appears in its true size and shape on the base of the blank. If,

now, we cut the teeth at some other angle, say at 30 degrees with a

line parallel to the axis of the gear blank, as at 6 in Pig. 1, we see

that the width of the space measured on the base is greater, and it

will be greater still if the angle is increased. It is thus evident that

the number of teeth that can be cut on a given cylinder decreases as

the angle of the teeth with a line parallel with the axis of the gear

increases. 3 A © ° ^
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Number of Teeth and Diameter of Blank.

Referring to Fig. 2, suppose the line 6 c to be a part of the base of

the cylinder, and the two parallel lines making the angle 8 with a line

parallel with- the axis to represent the center lines of two adjacent

teeth. Then, a 6 will represent the normal pitch, and 6 c the circum

ferential pitch; but, as ff = 8,

a b = 6 c cos 8, whence

a 6

6c = .

cos $

The number of spur-gear teeth that can be cut in a blank of pitch

radius r is expressed by the formula:

Nc= 2rP, (1)

where P is the diametral pitch and Nc the number of teeth.

Prom this we see that the number of teeth in a spiral gear of this

pitch and pitch radius, and of angle 8, will be

N— 2 rP cos8. (2)

Take as an example a gear to be cut 6-pitch, with teeth at an angle

of 60 degrees to a line parallel with the axis of the gear, and a pitch

diameter of about 2% inches. Then, r = l%; P — 6; cos0 = O.5. .Hence,

N — 2X 1% X 6 X 0.5 = 7%,

As a gear of 7% teeth is impossible for continuous rotation, we must

make the number of teeth either 7 or 8. Suppose we make it 8. Then,

to find the pitch diameter of the gear we use the same formula, but

transposed as follows:

N

r = ,

2 p cos 8

from which we get, after substituting 8 for N,

8

r — =1 1/3.

2 X 6 X 0.5

The pitch diameter of our blank must, therefore, be 2 2/3 inches,

the same as for a spur gear of 16 teeth. As we are using diametral

pitch cutters, the addendum will be the same as for a spur gear of the

1

same pitch. Adding — to the pitch diameter on each side will make

P

the whole diameter 3 inches in this case.

Milling Spiral Teeth.

In order to mill the teeth, we must be able to set up the machine

so as to make, approximately, the correct advance per revolution of

the work. This advance will be equal to the circumference of the

blank, measured on the pitch line, multiplied by the cotangent of the

angle of the teeth. As this usually presents no difficulty, we pass it

over with simply saying that gears run together quite nicely, even if

the lead as figured is not exactly obtainable on the milling machine.

After having set pur machine to cut the desired spiral, we next wish
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to select the proper cutter. This will be, unless the angle 8 is very

small, quite a different cutter from that used for a spur gear of the

same diameter, or of the same number of teeth. Brown & Sharpe Co.

advises turning up a blank of the size of the pitch diameter and laying

out on it a helix at right angles to the helix of the teeth of the gear to

be cut, as in Fig. 3, fitting a cardboard templet to the face of the cylin

der along this curve, and then finding the diameter of the circle cor

responding to this templet.

The cutter should be such as will be suitable for a gear of this

diameter and the given normal pitch. This is a sufficiently close

method for gears of a large number of teeth, but requires considerable

care for gears of 12 or less teeth. Moreover, we require a method
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Fig. 3. Fig. 4.

that can be worked out entirely in the drafting room. Grant says that

the cutter should be right for a spur gear having a number of teeth

equal to the number of teeth in the spiral gear, divided by the cube

of the cosine of the angle of the teeth. This gives an exact result, but

he offers no explanation of his statement. The following, we hope,

will seem a clear demonstration.

Demonstration of Grant's Formula.

It will be seen that what we wish to find at the start is a circle

having the same ' radius as the helix which is drawn on our pitch

cylinder perpendicular to the teeth, as in Fig. 3. The angle of this

helix will be 90 — 8 degrees. If R = radius of curvature of this helix,

then from the well-known formula in analytic geometry for the radius

of curvature of a helix, we have

r r

R = = . (3)

sin2 (90 — 9) cos? 8

The demonstration of this formula is as follows:

Assume that r = radius of the cylinder on which the helix is drawn,

and 8 is the angle of the helix with a line parallel to the axis of the cyl

inder. In Pig. 5 is a cylinder of radius m' c' = r, on which is drawn a
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helix. We have assumed three points, o, 6, and c equidistant on the

helix, the middle point, 6, being taken at the extreme front of the

helix, for convenience only.

We w ish to draw a circle passing through the three points, a, 6, and

c. To do this we have revolved the two outside points into the same

horizontal plane as 6, placing a at g and c at f. We represent these

points in the top view by g' and f. Through g', 6', and f we draw a

circle having its center at k' and radius fc' f, which we will call R2.

This circle will be represented in the front view by the horizontal line

g to f. The original position of this circle in the front view is repre

sented by the straight line a to c. The angle between these two lines

we call Remember that this is not the angle of the helix with the

base, but is the angle of the original plane of the circle through o, 6,

and c with the horizontal. Now,

b n = d' c' = b c cos 03 (4)

 

Haehlntri/.lf-r.

FlfS. 6.

bc-bf = d'f. (5)

Then,

d' e' = d' f cos 02. (6)
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Squaring,

(d' c')2 = (d'f')s cos2 02 (7)

(of' c')2 = (to' c')2 - (m' d')2 = r2 - (to' d')2 (8)

(d'/')2 = (fc'/')2 - (fc' d')2 = R\ - (K d')2. (9)

Substituting (8) and (9) in (7), we have,

r2 - (to' d')2 = [B22 - (k' d')2] cos2 02 (10)

m' d' = r — d' b'

(to' d')2 = r2 - 2 r (d' b') + (d 5')' (11)

A;' d' = iJj — d' 6'

(fc' d')2 = R2" - 2 iJ2 (d' 5') + (d' b')2. (12)

Substituting from (11) and (12) in (10) we get:

r2 - r2 + 2 r (d' b') - (d 6')2 =

[R«a - Bs2 + 2 -Ra (d' b') - (d' 6')2] cos2 82. (13)

Cancelling we have,

2 r - d' V = (2 J?„ - d' V) cos2 0a. (14)

This expression is true for any three points equidistant on the helix.

Let us remember that the radius of curvature for any curve is the

radius of the circle passing through any three consecutive points. We

will accordingly consider points a and c moved up so that they become

consecutive points with 6, and see what the effect is on equation (14).

Then

r will remain constant,

d' 6' will become practically zero on each side of the equation and

may be neglected,

R.x becomes R, the radius of curvature of the helix, and

$, becomes 8, the angle of the helix.

Substituting these values in (14), we have,

2r=2jecos2S (15)

r

or, R =

cos2 8

Referring, now, to formula (1), and applying it to a gear of radius

R, we have

2r
i\Tc = 2 R X P = X P. (16)

cos2 8

For our spiral gear we found, by formula (2), that:

N= 2 r P cos 8.

Dividing (16) by (2), we have

Nc 2rP 1 1

N cos2 8 2 r P cos 8 cos3 8

N

or, Ac = ■

cos8 8

Another derivation of the same formula, which may be of interest

to some, was presented by H. W. Henes in Machinery, April, 1908.

The following notation is used in this derivation:
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iVc = number of teeth in spur gear for which cutter is intended.

N= number of teeth in the desired spiral gear.

a = the angle which the direction of the spiral makes with the

axis of the gear.

Let Pn be the perpendicular distance between two consecutive teeth

on the spiral gear, and let Dt be the diameter of the spiral gear. Let

the gear be represented as in Fig. 6, and pass a plane through it per

pendicular to the direction of the teeth. The section will be an ellipse

as shown in CEDJP. Designate the semi-major and semi-minor axes

by a and 6 respectively.
 

A I
Machtnery,X. Y.

Fig. 6. Diagram for Deriving the Formula for Determining Spur
. Gear Cutter for Cutting Spiral Gears.

Now Nc is the number of teeth which a spur gear would have if its

radius were equal to the radius of curvature of the ellipse at E. There

fore, it is required to determine the radius of this curvature of the

ellipse. This is done as follows:

From the figure we have:

26 = axis EF = Dt (17)

HI D1

2a = axis CD = OH= = (18)

cos a cos a

From (17) and (IS) we have for o and 6,

6 = -

and

2

(19)

(20)

2 cos a

It is known, and shown by the methods of calculus, that the mini

mum curvature of an ellipse, that is, the curvature at E or F, equals
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b

—. Taking the values of a and b found in (19) and (20), we have the

a2

curvature at E:

Pi

o 2 4D1cos2a 2 cos! a

Curvature = — = = = (21)

o2 2D2 2),

4 cos2 a

1

It is also shown in calculus that the curvature is equal to — where

R

R is the radius of curvature at the point E. Therefore from (5) we

have:

1 2 cos2 a D,

— , whence R = (22)

R Dy 2 cos" a

Formula (22) can also be arrived at directly, without reference to

the minimum curvature of the ellipse, by introducing the formula for

the radius of curvature in the first place. The curvature is simply the

reciprocal value of the radius of curvature, and is only a comparative

means of measurement. The radius of curvature of an ellipse at the

a'

end of its short axis is —, from which formula (22) may be derived

6

directly by introducing the values of a and 6 from equations (19)

and (20).

Having now found the radius of curvature of the ellipse at E, we

proceed to find the number of teeth which a spur gear of that radius

would have. From Fig. 6 we have:

Pn

AB = (23)

cos a

Now, if A 2? be multiplied by the number of teeth of the spiral gear,

we shall obtain a quantity equal to the circumference of the gear;

that is:

P„

A B X N = tt D,t and since AB = — from (23)

cos a

Pn

XN=irD1 (24)

cos a

Since Nc is the number of teeth which a spur gear of radius R

would have, then,

2ir R

Nc = (25)

P„

In equation (25) the numerator of the fraction is the circumfer

ence of the spur gear whose radius is R, and the denominator is the

circular pitch corresponding to the cutter.
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From equation (22) we have:

R =

2 cos2 a

Substituting this value of R in (25), we have:

2 it A

JVC =

Pi X 2 cos2 a

(26)

From equation (24) we have:

NP*

A= (27)

7t cos a

Substitute this value of A in equation (26) and we have:

2 r iVP„

iVc =

2 Pair COS3 a
 

(28)

COS3 a

Since N is the number of teeth in our spiral gear and Nc is the num

ber of teeth in a spur gear which has the same radius as the radius

of curvature of the helix above referred to, this is the equivalent of

saying that the cutter to be used should be correct for a number of

teeth which can be obtained by dividing the actual number of teeth in

the gear by the cube of the cosine of the tooth angle. Since the cosine

of angle 8 (or a, as it was denoted in the derivation of the cutter

formula last given) is always less than unity, its cube will be still

less, so Nc is certain to be greater than N, which will account for the

fact that spiral gears of less than 12 teeth can be cut with the stan

dard cutters. The getting of the cube of cos 0 may bother some, as

the cubing of any fraction is apt to do, but a graphical method is

given later in this chapter which, even if roughly laid out, will give

sufficiently accurate results for this purpose. For the other uses of

this graphical method, care must be used, or the results are not to

be depended on.

Now we are able to cut the gear, once having decided on the number

of teeth, pitch (or pitch diameter) , and angle of teeth, but in designing

we almost always wish to transmit motion with some definite velocity

ratio. If we were dealing with spur gears we would know that the

ratio of speeds would be inversely proportional to the pitch diameters

or the number of teeth. -If the teeth were twisted or cut spiral on

the surface and the axes still were left parallel, this same velocity

ratio would obtain, but the moment we move the axes out of the same

plane, this convenient ratio ceases to exist. Then there can be but one

point of contact of the pitch cylinders, consequently all motion must

be transmitted as if through this one point, if smooth running is to be

attained. The actual motion of the tooth at this point must be at

Calculation of Velocity Ratio.
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right angles to the axis of the gear, but it may be considered as the

resultant of two motions, one of sliding parallel to the teeth, which

we can see must happen since the two gears do not run in the same

plane, and the other perpendicular to the teeth, which is the effective,

or driving motion. This latter motion normal to the teeth must be

the same for both gears.

In the case of a driving gear of radius r and angle 8, the velocity

of this point in a plane perpendicular to the axis will be 2 it r n,

where n is the number of revolutions per minute of the driving gear.

Let us consider the point c of the gear in Fig. 3. Assume the line o 6

to represent the linear velocity and to be equal to 2 tt r n. The line

c 6 is perpendicular to the tooth, and o c parallel to the tooth. These

three lines complete the triangle o 6 c, and therefore o c will represent

the sliding component of the point c, and c b the motion perpendicular

to the tooth. Then,

6 c = 2 7r r n cos 8,

since in the triangle a 6 c the angle a 6 c is equal to 8.

This, also, is the velocity of the contact point of the driven gear in

the same direction, or in a direction normal to the teeth of the driven

gear. We will assume this gear to have a radius r1 and angle 8'. Con

sidering the gear in Pig. 4 to be the driven gear, with axis at right

angles to the axis of the driving gear, we have

o c (Fig. 4) = 6 c (Fig. 3) =2 ir r n cos 8.

The resulting motion perpendicular to the axis of the gear will then

be

ac 2irrn cos 8

c 6 (Fig. 4) = =

cos 8' cos 8'

This is the linear velocity of the point a; to get the number of revo

lutions of the driven gear we divide by the circumference of the driven

gear, which is 2 w r', giving

2 tt r n cos 8

n' = ,

2 7r r* cos 8'

n' r cos 8

whence —=

n r1 cos 8'

That is, the relative motion of the two gears is inversely proportional

to the product of their diameters and the cosines of the angles of

their teeth.

If both are 45-degree gears, this last factor becomes inoperative,

and the gears produce motion in the same ratio as spur gears of the

same sizes. The same is also true if the axes are parallel, for 8 and 8'

then become equal.

cos 8 cos 8

If the axes are at right angles, 8 — 90 = 8', and =

cos 8' sin 8

n' r

cot 8, whence : —=— X cot 8.

n r*
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This property of spiral gears, of having a varying velocity ratio

for both size and angle, is valuable, in that it enables one to obtain

varying velocity ratios with the same size gear. For example, sup

pose we have two gears, one of 8 teeth and one of 16 teeth, both 45-

degree gears, on axes at right angles. The velocity ratio is 2 to 1.

If, now, we want a velocity ratio of 3 to 1 on the same axes with the

same size gears, we use the formula last arrived at,

n' r 11

— - — cot 8, or, —=— cot 8,

n r' 3 2

2

cot0=—= 0.6666.

3

9 will then be 56° 19' and 8' will be 33° 41'.

If we use cutters of the same pitch as before, the number of teeth

become fractional numbers, thus making impossible conditions for

practical use. It will, then, be necessary to use a fractional pitch cut

ter. To find what this cutter should be, decide on the number of teeth

to be used in each of the two gears to give the desired new velocity

ratio of 3 to 1; then solve formula (2) for P, substituting the required

data from either of the two gears.

The relation between the angles of the shafts and gear teeth will be

readily understood by a little thought. In gears whose axes are at

right angles we have seen that the sum of the angles of the gear teeth

is equal to 90 degrees, the angle of the shafts. This is true for any

gears whose spirals are both right-hand or both left-hand. Carrying

this to an extreme, we find that if the tooth angles become zero de

grees (as in spur gears), the shaft angle becomes 180 degrees, or the

shafts are parallel. If one gear is right-hand and the other left-hand,

then the angle of the shafts will be equal to the difference of the tooth

angles. If the gears have their teeth at equal angles, but one right-

hand and one left-hand, then the shaft angle will be zero; that is,

the shafts are parallel and the gears are twisted gears, or Hooke's

gears.

Fig. 7, while it is innocent looking enough, contains a solution of

all the bothersome points of the figuring of the spiral gears to be cut

with the usual diametral pitch cutters.

To illustrate the use of the figure, we will,take as an illustration a

24-tooth gear of 30-degree spiral angle, to be cut with an 8-pitch

spur-gear cutter.

Lay off o 6 = 3 inches, the diameter of a spur gear of 24 teeth, 8-

pitch. Lay off the angle 8 30 degrees as shown, and erect a perpen

dicular at 6 to a b, intersecting at a c at c. The line o c will be the

pitch diameter of the required spiral gear (3.46 inches). The out-

2

side diameter will be equal to this diameter plus —, as in spur gears

P

(3.71 inches). The depth of tooth will be the same as for a spur

gear of the same pitch.
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Extend a 6 and a c. At c erect a perpendicular to a c, meeting a b

at d. At d, in turn, erect a perpendicular to a d, meeting a c at e;

a e will be the diameter of a spur gear having the correct number of

teeth from which to choose a cutter to cut our spiral. In this case

the diameter is 4% inches, corresponding to a 37-tooth gear. So we

will use the same cutter to cut our 24-tooth spiral gear as that we

would use to cut a 37-tooth spur gear.

Extend, in turn, a d and a e till a line, of length equal to a c, drawn

perpendicular to a d will meet a e, as f g; then f a X ir will be the
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Pig. 7. Graphical Solution of Spiral Gear Problems.

lead of the spiral to which we should set the milling machine (in this

case 18.85 inches). The diagram depends on the following facts relat

ing to spiral gears.

6 o diam. spur gear

= cos e —

a c diam. spiral gear

6 a

a c -.

ad — -

cos 8

a c ha

cos 8

ad

cos2 8

ha

cos 8

Lead of helix

cos2 8

:tan (90° — 8)

Circumference of pitch cylinder

Divide by tt and transpose

Lead f a= diameter of pitch cylinder X

n fg

But pitch diameter = a c = f g; therefore

fa

Lead = x f g X w = faX rr

fg

Therefore lead of helix = f a X ■*.



CHAPTER II.

RULES AND FORMULAS FOR DESIGNING SPIRAL

GEARS.

In accordance with time-honored custom, this contribution to the art

of designing helical or "spiral" gears opens with an apology. The

subject is one which, from its very nature, can be approached from

any one of a number of different ways, and it has been approached

from so many of these possible different ways that perhaps the sub

ject has become quite confused in the minds of many readers of tech

nical literature. The writer does not offer the excuse of novelty in the

methods presented in the "following paragraphs, since some of the

details which were independently worked out by him have been de

scribed by others. His reason for adding one more to the series of

solutions of helical gear problems is that the method described appears

to reduce the more serious of this class of problems to its most simple

elements. The method of procedure will be described without proof

or comment.

Two terms will be used which may require some explanation. In

using the expression "tooth angle," the angle made by the teeth with

the axis of the gear is meant, not the angle of the tooth with the face

of the gear, an unfortunate use sanctioned by some writers. Fig. 8

shows aa as the tooth angle of gear a, and ab as the tooth angle of

gear 6, used in the sense in which we will use them. The angle be

tween the shafts, 7, is 90 degrees in all the examples which will be

considered in this chapter. The first rule to be used in the design of

helical gears relates to the tooth angles.

Rule 1. The sum of the tooth angles of a pair of mating helical

gears is equal to the shaft angle.

.That is to say, in Fig. 8, angle a, added to angle ab equals angle 7,

as is self-evident from the cut.

The second term which requires explanation is the "equivalent diam

eter." The quotient obtained by dividing the number of teeth in a

helical gear by the diametral pitch of the cutter used gives us a very

useful factor for figuring out the dimensions of helical gears, so the

writer has ventured to give it this name "equivalent diameter," an

abbreviation of the words "diameter of equivalent spur gears," which

more accurately describe it. This quantity cannot be measured on

the finished gear with a rule, being only an imaginary unit of measure

ment. The next rule deals with this term.

Rule 2. The equivalent diameter of a helical gear is found by divid

ing the number of teeth in the gear by the diametral pitch of the cutter

with which it is cut.

For instance, in a 20-tooth gear, cut with an 8 diametral pitch cutter,
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the equivalent diameter will be 2V2 inches. The actual diameter of

the gear will vary widely from this, depending on the tooth angle.

The process of locating a railway line over a mountain range is

divided into two parts; the preliminary survey or period of explora

tion, and the final determination of the grade line. The problem of

designing a pair of helical gears resembles this engineering problem

in having many possible solutions, from which it is the business of the

designer to select the most feasible. For the exploration or prelimi

nary survey the diagram shown in Fig. 9 will be found a great con

venience. The materials required are a ruler with a good straight

edge, and a piece of accurately ruled, or, preferably, engraved, cross-

section paper. If a point, 0, be so located on the paper that B 0, the

distance to one margin line, be equal to the equivalent diameter of

gear o, while B' 0, the distance to the other margin line, be equal to

 

Fig. 8. Diagram Showing Notation used for Tooth Angles.

the equivalent diameter of gear 5, then (when the rule is laid diagon

ally across the paper in any position that cuts the margin lines and

passes through point 0) D 0 will be the pitch diameter of gear a, D' 0

the pitch diameter of gear 6, angle B0D the tooth angle of gear a

and angle B' 0 D' the tooth angle of gear 6. This simple diagram

presents instantly to the eye all possible combinations for any given

problem. It is, of course, understood that in the shape shown it can

only be used for shafts making an angle of 90 degrees with each other.

The diagram as illustrated shows that a pair of helical gears having

12 and 21 teeth each, cut with a 5-pitch cutter, and having shafts at 90

degrees from each other and 5 inches apart, may have tooth angles of

36° 52' and 53° 8' respectively, and pitch diameters of 3 inches and 7

inches.

Suppose it were required to figure out the essential data for three

sets of helical gears with shafts at right angles, as follows:
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1st. Velocity ratio 2 to 1, center distance between shafts 2% inches.

2d. Velocity ratio 2 to 1, center distance between shafts 3% inches.

3d. Velocity ratio 2 to 1, center distance between shafts 4 inches.

We will take the first of these to illustrate the method of procedure

about to be described.

We have a center distance of 2% inches and a speed ratio between

driver and driven shafts of 2 to 1. The first thing to determine is

the pitch of the cutter we wish to use. The designer selects this ac

cording to his best judgment, taking into consideration the cutters on

hand and the work the gearing will have to do. Suppose he decides

that 12-pitch will he about right. In Fig. 9 it will be remembered

 

Machi'irryJl.T.

Fig. 9. Preliminary Solution with Rule and Cross-section Paper.

that D 0 was the pitch diameter of gear o, while D' 0 was the pitch

diameter of gear 6. That being the case D 0 D' is equal to twice the

distance between the shafts. In the problem under consideration this

will be equal to 2X2%, or 4% inches. Fig. 10 is a skeleton outline

showing the operation of making the preliminary survey with rule

and cross-section paper. A G and A Q' represent the margin lines of

the sheet, while D D' represents the graduated straight edge. By the

conditions of the problem the distance between points D and D', where

the ruler crosses the margin lines, must be equal to 4% inches. There

has next to be determined at what angle of inclination the ruler shall

be placed in locating this line. To do this, we will first find our

"ratio line." Select any point C such that C F' is to C F as 2 is to 1,

which is the required ratio of our gears. Draw through point C, so
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located, the line A E. Line A £ is then the ratio line, that is, a line

so drawn that the measurements taken from any point on it to the

margin lines will be to each other in the same ratio as the required

ratio between the driving and driven gear. Now, by shifting the ruler

on the margin lines, always being careful that they cut off the required

distance of 4% inches on the graduations, it is found that when the

rule is laid as shown in position No. 1, cutting the ratio line at 0',

the distance from the point of intersection to corner A is at its maxi

mum. For the minimum value, the tooth angle is the limiting feature.

For a gear of this kind, 30 degrees is, perhaps, about as small as would

be advisable, so when the ruler is inclined at an angle of about 30

 

Pig. 10. Preliminary Graphical Solution for Problem No. 1.

degrees with margin line A G', and occupies position No. 2 as shown,

it will cut line A E at 0", and the distance cut off from the point of

intersection to corner A will be at its minimum value. The ruler

must then be located at some intermediate position between No. 1 and

No. 2.

Supposing, for example, 14 teeth in gear o and 28 teeth in gear 6 be

tried. According to Rule 2, the equivalent diameter of gear a will

then be 14 -t- 12, or 1.1666 inch; the equivalent diameter of 6 will be

28 -r 12, or 2.3333 inches. Returning to the diagram to locate the

point of intersection, it will be found that point 0'" is so located that

lines drawn from it to A G and A G' will be equal to 1.1666 inch and

2.3333 inches respectively, but this is beyond point 0', which was

found to be the outermost point possible to intersect with a 4%-inch
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line, D D'. This shows that the conditions are impossible of fulfill

ment.

Trying next 12 teeth and 24 teeth, respectively, for the two gears,

the equivalent diameters by Rule 2 will be 1 inch and 2 inches. Point

0 is now so located that 0 B equals 1 inch and 0 B' equals 2 inches.

Seeing that this falls as required between 0' and 0", stick a pin in

at this point to rest the straight edge against, and shift the straight

edge about until it is located in such an angular position that the

margin lines AO and AG' cut off 4% inches, or twice the required

Histance between the shafts, on the graduations. This gives the pre

liminary solution to the problem. Measuring as carefully as possible,

D 0, the pitch diameter of gear a, is found to be about 1.265 inch diam

eter, and D' 0, the pitch diameter of gear b, about 3.235 inches. Angle

B0D, the tooth angle of gear a, measures about 37° 50'. Angle

B'0D', the tooth angle of gear 6, would then be 52° 10' according to

Rule 1. To determine angle B0D more accurately than is feasible by

a graphical process, use the following rule:

Rule 3. The tooth angle cf gear a in a pair of mating helical gears,

a and b, whose axes are 90° apart, must be so selected that the equiva

lent diameter of gear b plus the product of the tangent of the tooth

angle of gear a by the equivalent diameter of gear a, mil be equal to

the product of twice the center distance by the sine of the tooth angle

of gear a.

That is to say, yi this case, 0 B' + (OBX the tangent of angle

B 0 D) — D D' X the sine of angle B0D. Perform the operations indi

cated, using the dimensions which were derived from the diagram, to

see whether the equality expressed in this equation holds true. Sub

stituting the numerical values;

2 + (1 X 0.77661) =4.5 X 0.61337,

2.77661 = 2.76016,

a result which is evidently inaccurate.

The solution of the problem now requires that other values for angle

B0D, slightly greater or less than 37° 50', be tried until one is found

that will bring the desired equality. It will be found finally that if

the value of 38° 20' be used as the tooth angle of gear a, the angle

is as nearly right as one could wish. Working out Rule 3 for this

value :

2 + (1 X 0.79070) =4.5 X 0.62024,

2.79070 = 2.79108.

This gives a difference of only 0.00038 between the two sides of the

equation. The final value of the tooth angle of gear a is thus settled as'

being equal to 38° 20'. Applying Rule 1 to find the tooth angle of

gear 6 we have: 90° — 38° 20' = 51° 40'. The next rule relates to find

ing the pitch diameter of the gears.

Rule 4. The pitch diameter of a helical gear equals the equivalent

diameter divided by the cosine of the tooth angle; or the equivalent

diameter multiplied by the secant of the tooth angle.

If a table of secants is at hand, it will be somewhat easier to use
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the second method suggested by the rule, since multiplying is usually

easier than dividing. Using in this case, however, the table of cosines,

and performing the operation indicated by Rule 4, we have for the

pitch diameter of gear a:

1 -=- 0.78442 = 1.2748, or 1.275 inch, nearly;

and for the pitch diameter of gear b:

2 -f- 0.62024 = 3.2245, or 3.225 inch, nearly.

To check up the calculations thus far, the pitch diameter of the two

gears thus found may be added together. The sum should equal twice

the center distance, thus:

1.275 + 3.225 = 4.500,

which proves the calculations for the angle.

Rule 5. The outside diameter of a helical gear equals the pitch

diameter plus the quotient of 2 divided by the diametral pitch of the

cutter used.

Applying this rule to gear a:

1.2748 + (2 -r- 12) = 1.2748 + 0.1666 = 1.4414 = 1.441 inch, nearly.

For gear b:

3.2245 + (2 -f 12) = 3.2245 + 0.1666 = 3.3911 = 3.391 inches, nearly.

In cutting spur gears of any given pitch, different shapes of cutters

are used, depending upon the number of teeth in the gear to be cut.

For instance, according to the Brown & Sharpe system for involute

gears, eight different shapes are used for a gear from 12 teeth to a

rack. The fact that a certain cutter is suited for cutting a 12-tooth

spur gear is no sign that it is suitable for cutting a 12-tooth helical

gear, since the fact that the teeth are cut on an angle alters their

shape considerably. To find out the number of teeth for which the

cutter should be selected, use the following rule:

Rule 6. The number of teeth for which the cutter should be selected

to cut a helical gear is found by dividing the number of teeth in the

gear by the cube of the cosine of the tooth angle.

Applying this rule to gear a:

12 -r- 0.7842 = 12 -f- 0.4818 = 25—,

and for gear 6:

24 0.620' = 24 -=- 0.2383 = 100 +,

giving, according to the Brown & Sharpe catalogue, cutter No. 5 for

gear a and cutter No. 2 for gear 6.

In gearing up the head of the milling machine to cut these gears

it is necessary to know the lead of the helix or "spiral" required to

give the tooth the proper angle. To find this, use Rule 7.

Rule 7. The lead of the helix or "spiral" of a helical gear is equal

to the product of the cotangent of the tooth angle by the pitch diame

ter by 3.14.

In solving problems by this rule, as for Rule 6, it will be sufficient

to use trigonometrical functions to three significant places only, this
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being accurate enough for all practical purposes. Solving by Rule 7

to find the lead to set up the gearing for in cutting a:

1.275 X 1.265 X 3.14 = 5.065, or 5 1/16 inches, nearly;

for gear 6."

3.225 X 0.791 X 3.14 = 8.010, or 8 3/32 inches, nearly.

The lead of the helix must be, in general, the adjustable quantity

in any spiral gear calculation. If special cutters are to be made, the

lead of the helix may be determined arbitrarily from those given in

the milling machine table; this will, however, probably necessitate a

cutter of fractional pitch. On the other hand, by using stock cutters

and varying the center distance slightly, we might find a combination

which would give us for one gear a lead found in the milling machine

table, but it would only be chance that would make the lead for the

helix in the mating gear also of standard length. It is then generally

better to calculate the milling machine change gears according to

the usual methods to suit odd leads, rather than to adapt the other

conditions to suit an even lead. It will be found in practice that the

lead of the helix may be varied somewhat from that calculated with

out seriously affecting the efficiency of the gears.

The remaining rules relating to the proportions of the teeth do not

vary from those for spur gears and are here set down for the sake of

completeness only.

•Rule 8. The thickness of the tooth of a standard gear at the pitch

line is equal to 1.5708 divided by the diametral pitch of the cutter.

For gears a and 6 of our problem this gives:

1.5708 12 = 0.1309 inch.

Rule 9. The addendum of a standard gear is equal to 1 divided by

the diametral pitch of the cutter.

For gears a and 6 this will give:

1-M2 = 0.0833 inch.

Rule 10. The whole _ depth of the tooth of a standard gear is equal

to 2.1571 divided by the diametral pitch of the cutter.

This gives for gears a and b:

2.1571 4- 12 = 0.1797 inch.

This completes all the calculations required to give the essential

data for making our first pair of helical gears. To illustrate the variety

of conditions for which these problems may be solved, the other cases

will be worked out somewhat differently. In the case just considered

no allowance was made for possible conditions which might have lim

ited the dimensions of the gears, and the problem was solved for what

might be considered general good practice. Gear a, however, might

have been too small to put on the shaft on which it was intended to

go, while gear 6 might have been too large to enter the space available

for it. If, as we may assume, these gears are intended to drive the cam

shaft of a gas engine, the solution would probably be unsatisfactory.

Case No. 2 will therefore be solved for a center distance of 3% inches
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as required, but the two gears will be made of about equal diameter.

Fig. 11 shows the preliminary graphical solution of this problem, the

reference letters in all cases being the same as in Fig. 10. With a

10-pitch cutter, if this suited the judgment of the designer, 15 teeth

in gear a and 30 teeth in gear 6 would require that the point of inter

section on the ratio line A E be located at 0 where B 0 equals the

equivalent diameter of gear o, which equals 1% inch, while B' 0 equals

 

Fig. 11. Solution of Problem No. 2 for Equal Diameters.

the equivalent diameter of gear 6, or 3 inches, both calculated in

accordance with Rule 2. The required condition now is that DO be

approximated to D' 0; that is to say, that the pitch diameters of the

two gears be about equal. After continued trial it will be found impos

sible to locate 0, using a cutter of standard diametral pitch, so that D 0

and D' 0 shall be equal, and at the same time have D D' equal to twice

the required center distance, which is 2 X 3% inches or 6% inches.

If this center distance could be varied slightly without harm, B D

could be taken as equal to AB; then it would be found that

a line drawn from D through 0 to D', though giving a somewhat
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shortened center distance, would make two gears of exactly the same

pitch diameter.

Drawing line D 0 D', however, as first described to suit the condi

tions of the problem, and measuring it for a preliminary solution the

following results are obtained: The tooth angle of gear a = angle

B 0 D = 63° 45'; and the tooth angle of gear B = angle B' 0 D' = 90° —

63° 45' = 26° 15', according to Rule 1. Performing the operations indi

cated in Rule 3 to correct these angles, it is found that when th'e tooth

angle of gear a is 63° 54', and that for gear 6 is 26° 6', the equation of

Rule 3-becomes

3 + (15 X 2.04125) =6.75 X 0.89803

6.06187 = 6.06170

which is near enough for all practical purposes. The other dimensions

are easily obtained as before by using the remaining rules.

To still further illustrate the flexibility of the helical gear problem,

the third case, for a center distance of 4 inches, will be solved in a

third way. It is shown in MacCord's Kinematics that to give the least

amount of sliding friction between the teeth of a pair of mating helical

gears, the angles should be so proportioned that, in our diagrams, line

D D' will be approximately at right angles to ratio line A E. On the

other hand, to give the least end thrust against the bearings, line D D'

should make an angle of 45° with the margin lines A G and A G', in

the case of gears with axes at an angle of 90°, as are the ones being

considered. The first example worked out in detail was solved in

accordance with "good practice," and line D D' was located about one-

half way between the two positions just described, thus giving in some

measure the advantage of a comparative absence of sliding friction,

combined with as small degree of end thrust as is practicable. To

illustrate some of the peculiarities of the problem, Case 3 will now be

solved to give the minimum amount of sliding friction, neglecting

entirely the end thrust, which is considered to be taken up by ball

thrust bearings or some equally efficient device. On trial it will be

found that, with the same number of teeth in the gear and with the

same pitch as in Case 2, giving in Fig. 12, B 0, the equivalent diameter

of gear o, a value of 1% inch, and B' 0, the equivalent diameter of gear

6, a value of 3 inches as in Pig. 11, line D D' which is equal to twice

the center distance, or 8 inches, can then lie at an angle of about 90°

with A E, thus meeting the condition required as to sliding friction.

Thus this diagram, while relating to gears having the same pitch and

number of teeth as Pig. 11, yet has an entirely different appearance, and

gives different tooth angles and center distances, solving the problem

as it does for the least sliding friction instead of for equal diameters

of gears.

Measuring the diagram as accurately as may be, the following results

are obtained: Tooth angle of gear a — B0D— 28°; tooth angle of

gear 6 = angle B' 0 D' = 90° — 28° = 62°. This is the preliminary

solution. After accurately working it out by the process before

described, we have as a final solution, tooth angle of gear a = 28° 28';
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tooth angle of gear 6 = 61" 32'. Prom this the remaining data can be

calculated.

For designers who feel themselves skillful enough to solve such prob

lems as these graphically without reference to calculations, the dia

gram may be used for the final solution. The variation between the

results obtained graphically and those obtained in the more accurate

mathematical solution is a measure of the skill of the draftsman as

a graphical mathematician. The method is simple enough to be readily

copied in a note book or carried in the head. If the graphical method

is to be used entirely, it will be best not to trust to the cross-section

paper, which may not be accurately ruled; instead skeleton diagrams

like those shown in Figs. 10, 11, and 12 may be drawn. For rough

solutions however, to be afterward mathematically corrected, as in

 

Pig. 12. Solution of Problem No. 3 for Minimum Sliding Friction.

the examples considered in this article, good cross-section paper is

accurate enough. It permits of solving a problem without drawing a

line. Point 0 may be located by reading the graduations; a pin

inserted here may be used as a stop for the rule, from which the diame

ter and center distance are read directly ; dividing A D, read from the

paper, by D D', read from the rule, will give the sine of the tooth

angle of the gear a.

Formulas for Spiral Gearing;.

For sensible people, who prefer their rules to be embodied in form

ulas, the appended list has been prepared, using the following reference

letters, which agree in general with the nomenclature of the Brown

& Sharpe gear books.

iV, = No. of teeth in gear a.

JVb = No. of teeth in gear 6.

R = Velocity ratio = 2Vb -t- Na.

P" = Normal diametral pitch or pitch of cutter.

E — Equivalent diameter (explained above).
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D = Pitch diameter.

0=: Center distance.

B — Blank or outside diameter.

r = No. of teeth for which cutter is selected.

L= Lead of spiral.

7= Angle of axes.

a = Angle of tooth with axis.

* = Thickness of tooth on pitch line.

$ : Addendum.

D" + f— Whole depth of tooth.

Where subscript letters s and b are used, reference is made to gears

a and 6, as for instance, "Nt" and "Nb," where the letter N refers to

the number of teeth in gears a and 6, respectively, of a pair of gears

a and 6.

7 = a. + ab. (29)

N

E — . (30)

P"

-Eb+(#aXtan aa)=2 0Xsln a.. (31)

E

D = = EXseca. (32)

cos a

2

B = D + (3.i)

P"

N

T— (34)

(COS a)*

L = cot a X D X ir. (35)

1.5708

t =— . (36)

P"

1

S = . (37)

P"

2.1571

D" + f = . (38)



CHAPTER III.

DIAGRAMS FOR DESIGNING SPIRAL GEARS.

Great difficulties are usually experienced in designing spiral gears,

and these difficulties are greatly accentuated when one has to design

them for two shafts whose center distance cannot he altered to suit

the gears, and also when the angle between the shafts is not a right

angle, and the speed ratio is not equal. The general practice is to

work out the gears by lengthy mathematics, and should the answer not

come out as desired, then a new trial is made, varying either one or

the other factor, until the angles and diameters are correct. This

method of "cut and try" entails a great deal of work and waste of

time. The following method, together with the diagrams used with'

it, will remove some of the difficulties, and enable one to arrive at the

data required in a very short time. The method adopted is graphical,

but the results may be checked by simple figuring.

As the pitch diameter, spiral angle, and circular pitch are interde

pendent, they cannot be considered as a starting point in solving the

problem, because they are not known. The starting point, therefore,

must be the speed ratio, and some idea of the strength required, to

gether with the center distance. These factors, as a rule, can easily

be ascertained. As it is common usage to employ ordinary spur gear

cutters for regular diametral pitch to cut spiral gears with, the normal

pitch, or distance from one tooth to the next measured at right angles

to the tooth, must be the same as the pitch of a spur gear for which

the cutter to be used is imtended; therefore the corresponding diam

etral pitch and the speed ratio must be the initial data, all others be

ing obtained afterwards.

Three diagrams are given for the graphical solution of spiral gears.

The diagram in Fig. 13 shows the relation between the quotient of

number of teeth -~ diametral pitch, spiral angles, and pitch diameters.

The diagram in Fig. 14 shows the relation between the diametral

pitch, the number of teeth, and the quotient of the number of teeth -5-

diametral pitch. Finally, the diagram in Fig. 15 shows the relation

between the pitch diameter, the spiral angle, and the lead of the helix.

We will now proceed to give some typical examples illustrating the

use of the diagrams.

Example 1. Given a gear having 24 teeth, 6 diametral pitch, and a

spiral angle of 40 degrees. Find the pitch diameter.

First obtain the value of the ratio, number of teeth -f- diametral

pitch, which, in this case, can be obtained without referring to dia

gram Fig. 14, being simply 24 -f- 6 = 4. Locate 4 on the horizontal

line in diagram Fig. 13, and project vertically until the line from figure

4 intersects the line for 40 degrees spiral angle. Then follow the
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circular arc from this point, either to the right or downward, reading

off *<6.22 on the corresponding scale, this being the pitch diameter.

Should the diameter be required accurately, we can figure it by the

formula:

No. of teeth 1

Pitch diameter = X

Diametral pitch cos spiral angle

1

= 4 X = 5.222 inches.

cos 40 deg.

This also gives a check of the result obtained by means of the dia

gram. The lead of the helix is now obtained from Fig. 15, by pro-

5 1.5 * 3.5 3 2.5 2 1.5 I .5 U
 

Fig. 13. Diagram of Relation between Number of Teeth, Diametral Fitch, Spiral
Angles, and Pitch Diameters.

jecting the pitch diameter 5.22 horizontally to the radial line for the

spiral angle, and then, following the vertical line to the lead scale

at the bottom of the diagram, we find, in this case, a lead of 19.6

imhes. Of course, the outside diameter of the blank would be 5.222 +

2 X 1/6 = 5.555 inches, which is the pitch diameter + 2 times the

addendum.

Example 2. Required two gears which are to be equal in all respects,
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the diametral pitch being 8, and the centers' to be approximately 4

inches apart.

As the centers are not fixed, the gears in this case may be made

with 45 degrees spiral angle, and the center distance may be slightly

adjusted to suit the pitch diameters. Referring to Fig. 13, follow the

circular arc from diameter of gear = 4 inches, until it intersects the

radial line for 45 degrees spiral angle; then follow the vertical line

down to the scale of the ratio between the number of teeth and diam

etral pitch, which is found to be 2.82. Then, from Fig. 14, we find

that with this ratio and 8 diametral pitch, the number of teeth is not a

whole number, but the nearest number is 23, giving a ratio of 2.875

instead of 2.82, which, by reversing the process and referring to dia-

DIAMETR1CAL PITCH= DP

1 1.5 2 S.5 3 4 5 6 7 8 9 10
 

0 5 10 15 20 25 EO 86 40 46 60

NUMBER OF TEETH OF GEAR= N Machinery^.T.

Fig. 14. Relation between Diametral Pitch, Number of Teeth, and Quotient of
Number of Teeth divided by Diametral Pitch.

gram Fig. 13, gives a pitch diameter of 4.07 inches. These results

may be checked as follows:

No. of teeth 1

Pitch diameter = X

Diametral pitch cos 45 deg.

1

= 2.875 X = 4.07 inches.

0.707

The outside diameter is 4.07 + 2 X 0.125 = 4.32. The lead, as ob

tained from diagram Fig. 15, in the same way as in Example 1, is

12.79 inches.

. * Example 3. Required a pair of spiral gears having a normal pitch

corresponding to 10 diametral pitch, having a given center distance of

214 inches approximately, the sum of the spiral angles being 90 degrees,

and the speed ratio equal to 5 to 1.

In this case both portions of diagram Fig. 13 are used, the upper part

being employed for one gear and the lower part for the other, the

easiest way being to get a strip of paper with two lines marked on its
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edge 5 inches (twice the center distance) apart, drawn to the same

scale as the diagram. Move this strip of paper on the diagram (so

that the edge, of the strip passes through the center), as indicated at

A, Fig. 16, until the lines marked coincide with points where the

ratios of number of teeth -f- diametral pitch equal 5 -r- 1, and then

determine from Fig. 14 that these diameters also give whole numbers

of teeth with 10 diametral pitch. We find that 0.5 and 2.5 at 78 de

grees and 12 degrees are two such positions, and also 0.6 and 3.0 at 70

degrees and 20 degrees. If we use the latter values, we will have 6

teeth and 30 teeth at 70 and 20 degrees angle respectively. The exact

diameters can now be determined, as in our previous problem, and are

1.75 and 3.19 inches, respectively, the outside diameters being 0.2 inch

SPIRAL ANGLE IN DEGREES 

1 4; 1 1 „ '„ l„ ■ „ I,, 1 1 U I I 1 I ' I I I | I
1 2 S 4 6 6 7 8 9" 10 11 12" 13" U 15" 16" 17" 18" 19" 20'

LEAD IN INCHES Machinery,X.T.

Fig. 15. Relation between Pitch Diameter, Spiral Angle, and Lead of Helix.

larger, or 1.95 and 3.39 inches, respectively. This gives the center dis

tances 2.47. These values can now be figured from the formulas as

before, and the leads obtained.

Example 4. Required a pair of spiral gears, having a fixed center

distance of 4.5 inches, running at equal speeds, the diametral pitch

being 7. The method of procedure is similar to that of the last ex

ample, using a strip of paper having a distance of 9 inches marked on

the edge in the proper scale, as Indicated at B in Fig. 16. At about

40 degrees spiral angle we find in Fig. 13 the ratio of number of-

teeth to diametral pitch to equal 3.14. This ratio must be adjusted

on diagram 14, as previously shown, so as to enable one to get a

whole number of teeth with 7 diametral pitch, this number being in

this case 22. The ratio is then 3.143, and following from this in

Fig. 13 to the 40-degree line, one obtains a pitch diameter of about 4.1

inches for one gear, and at 50 degrees about 4.9 inches for the other.
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The spiral angles should now be carefully checked mathematically

as follows:

1

Cos spiral angle ( first gear) = 3 . 143 X = 0. 766 ; spiral angle = 40 deg.

4.1

1

Cos spiral angle (second gear) = 3.143 X = 0.642;

4.9

spiral angle = 50 deg. , nearly.

Now obtain the leads from diagram Fig. 15 in the same way as

before, giving the leads of the gears 15.4 and 12.9 inches, respectively.

Example 5. Required a pair of spiral gears, the axes of which are

at an angle of 120 degrees; center distance 4.125; the ratios between

number of teeth and diametral pitch should be to each other as 2 to 3,

and the diametral pitch equals 5.

We require first of all two numbers representing the ratios of num

ber of teeth to diametral pitch, these two numbers bearing the ratio to

 

Fig. 16. Separate Diagrams for the Solution of some of the Problems Presented.

each other of 2 to 3, and giving a whole number of teeth with 5 diam

etral pitch. These two numbers, when projected onto two spiral

angle lines in a diagram made up as in Fig. 13, the sum of the angles of

which equals 120 or 60 degrees, give two diameters whose sum equals

the center distances multiplied by 2, or 8.25. In this case we cannot

use both parts of the diagram Fig. 13, as it is made up for shafts at

90 degrees angle, and for this reason we must take the two readings

from the same part of the diagram. The ratios 3 and 4.5 at 30 degrees

give corresponding diameters of 3.5 and 5.2, the sum being 8.7. The

ratios 2.8 and 4.2 giving 14 and 21 teeth at 25 and 35 degrees, respect

ively, have diameters of 3.1 and 5.15 (equals 8.25). From this we see

that we must use 14 and 21 teeth and the ratios 2.8 and 4.2. The

diameters and spiral angles can now be obtained graphically and more

accurately in this manner:

Draw two radial lines, as shown at C in Fig. 16, at 120 degrees angle

on a separate piece of paper, and lay off on these to same scale 2.8 and

4.2. From these points draw lines at right angles to the radial lines.

It is now necessary to find the position of a line 8.25 inches long,
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terminating upon these lines, and passing through the center. A

strip of paper is used in the same manner as before, and upon careful

measuring of the respective distances from the center to the lines, one

obtains the distances 3.075 and 5.175 inches, which represent the re

spective diameters, the sum being 8.25. The spiral angle is obtained

by measuring or calculating as follows:

1

Cos spiral angle of first gear = 2.8 X = 0.910;

3.075

spiral angle = 24 deg. 15 min.

1

Cos spiral angle of second gear = 4.2 X = 0.812;

5.175

spiral angle = 35 deg. 45 min.

The above examples will show the careful student the manner of

working out each kind of gear required, and if the directions are prop

erly followed, this method will be found to be a great time-saver. It

may be mentioned that it is advisable to keep the spiral angle as

nearly equal in the two gears as possible in order to obtain the great

est efficiency of transmission. It should be noted that when diagrams

of this type are to be used for practical calculation of spiral gears,

they should be laid out in a much larger scale than is possible to

show in these pages, and it would be advisable to lay out radial lines

in Fig. 13 for every degree, and vertical and horizontal lines for every

tenth of an inch, and circular arcs for equally fine subdivisions. The

same is true of the diagrams in Figs. 14 and 15. In Fig. 14, horizontal

lines should be laid out for every tenth of an inch, and vertical lines

should be laid out for all whole numbers of teeth. In Fig. 15, the

horizontal lines should be laid out for every tenth of an inch, vertical

lines for at least every 0.2 of an inch, and radial lines for every de

gree. This diagram should also be laid out so that leads over 20

inches may be read off, as well as those below this figure.

In Fig. 17 is given a diagram for determining the cutter to use

when milling the teeth of spiral gears. The instructions for the use

of the diagram are given directly on the chart itself, so that no other

explanation is necessary. This diagram was contributed to Machinery

by Elmer G. Eberhardt, and appeared in the September, 1907, issue.



CHAPTER IV.

COMPARISON OF EFFICIENCY OF SPIRAL GEARS.

Suppose a problem, accompanied by the data shown in Fig. 18, were

presented as follows: "Given two different sets of spiral gears for gas

engines. In each case the cam shaft runs at half the speed of the

crank-shaft; to be decided which is the better arrangement for effi

ciency and wearing qualities, taking into consideration the nature of

the work the drive has to perform, viz., a single cylinder gas engine

working on the 'Otto' cycle."

The solution of this problem involves a little work along the line

 

Angle of Teeth
with Asia

Diameter of
Pitch Circle

Number
of Teeth

A 45° 4" 20

B 45' 4" 20

C 03^-26' 4 " 10

D 26"-34' 4" 20

Angle of Teeth Diameter of Number
with.Aiia Piteh Circle of Teeth

E 63^26' 4" 10

F 26^34' 4' 20

G 45° 4" 20

H 15= 4' 20

MaMtmrf y.r.

Pig. 18. The Two Arrangements to be Investigated.

of resolution of forces and the calculation of efficiency; it is entirely

elementary, but interesting nevertheless, as a practical illustration of

the working of well-known principles in mechanics. For the sake,

then, of their value as illustrations of the principles involved, these

calculations are here given in detail.

The problem requires us to find which of the two arrangements, that

in Case 1 or Case 2, is superior in efficiency and wearing qualities.

It may be roughly stated that, other things being equal, the more

efficient of two mechanisms is the more durable. We will consider

this to be true in this case, so will examine the two arrangements for

efficiency in the transmission of power. The power losses in the vari

ous journals we cannot estimate, because we do not know enough about

the arrangement and design of the bearing surfaces. "We can easily

make an estimate for the power lost in the thrust bearings, and we
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may also get a comparative idea, at least, of the power lost in the

rubbing of the teeth on each other, so to these losses, which are the

principal ones, we will confine ourselves.

When two bodies are sliding under pressure, the power lost is equal

to the continued product of the normal pressure between the surfaces,

the linear velocity of the rubbing, and the coefficient of friction. To

estimate the power lost at the various bearing points we are to con

sider, we have then to estimate these three factors for each case.

We will first estimate the relative bearing pressures at the different

places where friction is met with in Case 1. To be logical, we will

commence our calculations at the driven end of the train of gears, since

the forces in the mechanism are due to the resistance offered by the

driven members. Fig. 19 is another view of Case 1 as shown in Fig. 18.

Gears A and B make contact on line Y which represents the direc

tion of the teeth at the point of contact; W X represents the position

of the teeth of gears C and D in contact.

As gear 0 revolves in the direction shown, its teeth, set at the angle

 

Fig. 19. Force Diagrams for Case 1.

of the line W X, have a wedging action on those of gear D which

revolves them in the direction shown. The action and the forces in

volved can best be understood by referring to Fig. 20. Here C is a

slide moving upward. Its beveled edge, representing the tooth sur

face of gear C, forces to the left on the beveled edge on slide D, which

represents the tooth surface of gear D. If slide D offers a resistance

to this movement, of a magnitude represented by the length of line

Fs in the parallelogram of forces shown, slide C will evidently have

to exert a force equal to F2 to overcome this resistance. The resulting

normal pressure on the inclined bearing surface of contact will evi

dently be Ft. The .end thrust or pressure against its abutment of slide

D will be Fs, while that of slide 0 against its abutment will be Fs.

Understanding the method of applying the parallelogram of forces

in Fig. 20, we may transfer the construction to gears C and D in Fig.

19. Having F5 given, we can find Ft and Fs as there shown. F, is the

tangential pressure at the pitch line, required to be given by gear C

to move the mechanism against the resistance Fs offered by gear D.

Since gears B and C have the same diameter, F2 must likewise be the
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tangential pressure applied at the pitch line to gear B. Constructing

a second parallelogram of forces for gears A and B, as shown, we find

that F2 is the normal pressure between the faces of the teeth in con

tact, and F1 is the tangential force which has to be brought to bear

at the pitch line of gear A to move the mechanism. Consider that Fc

equals unity (since we require comparative results only) and meas

ure the other forces to this scale. [This can be done fully as well by

calculation as by measurement. An elementary knowledge of trig

onometry will give us the following results:

Fb = l

Fi = Fs + sin ac = 1 -s- 0.894 = 1.118

F, = F6 X tanak = 1 X 0.500 = 0.500

F2 = F, -h sin a, = 0.500 0.707 = 0.707

Ft = Fa X tan ab = 0.500 X 1.000 = 0.500.

We have next to find the rubbing velocities of the various bearing

points. Fig. 21 will assist us in this. Here we have the same slides

C and D, representing gears C and D in Fig. 19 or Fig. 22. If we con

sider that slide C is moved upward at a uniform velocity, in a unit of

time it will traverse a distance equal to ~Vs, moving from position g h

to fir' h'. This evidently forces slide D to the left at a uniform velocity,

moving it in a unit of time from e f to e' f, a distance measured by di

mension Y5. The beveled surface of slide D has meanwhile slipped on

that of slide C so that corners f and h, which were in contact, have

reached positions f and W, a distance measured by dimension Tt. It

is evident then that V2, V„ and V5 may be taken as measures of rela

tive velocities of the parts in question.

Since the mechanism shown in Fig. 21 represents, in principle, con

ditions existing between gear C and D in Fig. 22, we may transfer the

velocity diagram of Fig. 21 to Fig. 22, where V5 rerpesents the pitch

velocity of gear D, V, the rate of rubbing at the pitch line between

gears C and D, and T2 the circumferential velocity at the pitch line

of gear C. The circumferential velocity at the pitch line of gear B is

evidently the same as that of gear C, since they are of the same diam-

 

Pig. 20. Illustration of Principle
Involved in Fig. 19.

Machinery, A', r.

Fig. 21. Illustration of Prin
ciple Involved in Fig. 22.
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eter and move together. Ts being thus known, a similar velocity

diagram may be drawn for gears A and B, in which V, equals the

velocity at the pitch line of gear A, and V2 equals the velocity of slid

ing between the teeth of gears A and B.

We may, if we wish, measure these lines to the scale V, = 1 to ob

tain the relative velocities desired, or, better, we may derive formulas

from these velocities, thus making unnecessary the drawing of dia

grams for subsequent examples of this kind. By a simple use of trig

onometrical functions, after carefully examining the diagrams, it is

plain that the following relations hold true:

V1 = 1

F2 = Vt sin a. = 1 0.707 = 1.414

V2 = V, X tan a„ - 1 X 1.000 = 1.000

Vt = Va sin ac = 1 0.891 = 1.118

Vt - Va X tan ad = 1 X 0.500 = 0.500

The power lost in any bearing is equal to the continued product

of the total pressure on that bearing, the velocity of sliding, and the

 

Fig. 22. Velocity Diagrams for Case 1.

coefficient of friction. We will first find the power lost in end thrust.

Since our calculation is being made for comparison_only, and not for

positive results, we will consider the coefficient of friction as being

equal to 1. We will make the assumption that the mean diameter of

the end thrust bearings of the various shafts is equal to half the pitch

diameter of the gears. The mean velocity of rubbing will then be

half the velocity of the gears at the pitch line. For the loss of power

in the thrust bearing of shaft A we have:

Vt

Fa X — X 1 = 0.500 X 0.500 X 1 = 0.250.

2

The end thrust on the intermediate shaft is that due to the differ

ence between the opposing forces F1 and Fs in Pig. 19. For lost work

in the end thrust of the intermediate shaft we then have:
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(F5 - F,) X X 1 = (1 - 0.500) X 0.500 X 1 = 0.250.

2

The loss in the thrust bearing of shaft D equals

F, X — X 1 = 0 500 X 0.250 X 1 = 0.125.

2

Adding these three losses together we get a total value of 0.625 as the

power loss in end thrust.

For the power loss in tooth friction, we had better use a somewhat

higher coefficient; perhaps' 1.5 would be about right. The velocity of

sliding between gears A and B is V2, the normal pressure of the sur

faces of contact is F2. We have then for the lost power at this point:

F2 X V2 X 1.5 = 0.707 X 1.414 X 1.5 = 1.500.

Similarly, the work lost between gears C and D equals

F, X V, X 1.5 = 1.118 X 1.118 X 1.5 = 1.875.

The total loss due to tooth friction is then equal to the sum of

these two or 3.375, which, added to the loss in the thrust bearings,

gives us 3.375 + 0.625 = 4.0, the total loss with this form of gearing.

It will not be necessary to draw new diagrams, like those in Figs.

19 and 22, for the second case, since we may use the formulas already

derived for obtaining the various forces and velocities, making, how

ever, the following substitutions. This change is in accordance with

the data in Case 2.

Change aa to ae = 63° 26' Change ac to aK = 45°

" ab to ae = 26° 34' " Od to Oh = 45°

Solving these formulas for velocities, we obtain the following quan

tities:

V1 = 1

Vt = V, ~- sin ae = 1 -r- 0.894 = 1.118

V2 = V, x tan at — 1 X 0.500 = 0.500

Vt - V, -r- sin as = 0.500 0.707 = 0.707

V, = V2 X tan oh = 0.500 X 1.000 = 0.500

and for pressures we have the following:

F5 = 1

Ft ' Ft -h sin ae = 1 -v- 0.707 = 1 414

Fs = Ft X tan ah = 1 X 1.000 = 1.000

1\ = F2 sin ae = 1.000 -h 0.894 = 1.118

Ft = F2 X tan a, = 1.000 X 0.500 = 0 500

The work lost with the thrust bearing on shaft E equals

V,

F2 X X 1 = 1 X 0.5 X 1 = 0.5.

2

Tnat lost in the intermediate shaft equals

V,

(F, - Ft) X X 1 = (I - 0.5) X 0.25 X 1 = 0.125.

2

The loss in power due to end thrust in shaft H equals

• Vt

F, X — x 1 = 1 X 0.25 x 1 = 0.25

2
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These three losses added together equal 0.875.

The loss of power due to tooth friction between E and F, assuming

a coefficient of friction of 1.5 as before, equals

f2 X F2 X 1.5 = 1.118 X 1.118 X 1.5 = 1.875.

Friction loss between (? and H equals

f, X F, X 1.5 = 1.414 X 0.707 X 1.5 = 1.5.

The tooth friction loss in the tooth surfaces then equals 1.875 + 1.500

= 3.375. For Case 2 the total lost work due to tooth friction and end

thrust friction equals 3.375 + 0.875 = 4.250. The difference between

this quantity and the 4.000 obtained for Case 1 is scarcely large enough

to be of any practical importance. There is but one consideration,

in fact, we can think of for preferring one construction to the other.

The 45-degree gears have teeth of slightly smaller size than those of

ihe other pair in each case, and they are therefore somewhat weaker.

In Case 1, these teeth are subjected to a normal pressure F2 of 0.707.

In Case 2 they are subjected to a normal pressure Ft of 1.414, twice as

great. In Case 1, then, the strongest teeth are bearing the greatest

strain, which is as it should be.,

CHAPTER V.

SETTING THE TABLE WHEN MILLING

SPIRAL GEARS.

In cutting a spiral gear in a milling machine as ordinarily arranged,

it is necessary to set the table to the helix angle in order that the

sides of the cutter may not interfere, or drag in the cut. But the

helix angle varies with the depth, being greatest at the top of the

tooth, less at the pitch line, and still less at the bottom of the cut.

In fact, if the cut were deep enough to reach all the way to the

center of the piece being operated on, the helix angle would become

zero, or parallel to the center line. If the general run of mechanics

were asked what would be the proper angle at which to set the table,

they would say that the helix angle at the pitch line would be the one

to determine the setting. This setting has the effect of making the

width of the cut exactly right at the pitch line, but it does so at the

expense of undercutting and weakening the teeth. For quite some

time the writer has thought that the helix angle at or near the bot

tom of the cut should be the one to set the table to in order to get a

strong tooth, and to convince other mechanics of the correctness of

this view the following experiments were made:

The piece O, Fig. 23, is a cast iron taper stem with a flange cast on,

and fits in the dividing head of the milling machine. H is a brass

chuck that was made for another job, and is fastened to G with four
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screws. K is a piece of 1%-inch round brass, with the ends faced

true, while L is a piece of scrap brass with two faces machined at an

angle of 30 degrees, one of these faces being tapped for the screw M,

and also containing the two dowel pins N. H, K, and L are sweated

together with soft solder.

The six pieces of sheet brass, A, B, C, D, E, and F, Fig. 24, were

drilled so they would fit onto the dowel pins on the 30-degree face of

the improvised chuck, F being shown in place in the line cut, Fig. 23.

These six pieces were placed in succession on this chuck and the

curved edges of all turned to a diameter of 1.23 inch. The object was

to make a spiral cut in each of these six pieces, varying the setting

of the table angle, and also the shape of the cutter, and to compare

the shape of the cut with that of the cutter that made it.

The lead used was 5.33 inches to one turn, and the depth of cut %

 

Fig. 23. Chuck for Mounting the Pieces shown in Fig. 24.

inch, both these elements being alike in all six cases. The pieces of

sheet brass were intended to stand at right angles with the cut, but,

of course, this was impossible, as the helix angle varied with the depth,

so they were set to stand at right angles with the helix at half depth.

Assuming this helix angle to be 30 degrees, we can find the diameter

of the imaginary cylinder whose surface is at half the depth of the

cut by multiplying the lead, 5.33 inches, by the tangent of 30 degrees,

and dividing by 3.1416, which gives 0.98 inch. Adding 0.25 inch to

this, we get 1.23 inch for the outside diameter, and also, by subtracting

0.25 from 0.98, we get 0.73 inch for the diameter at the bottom of the

cut. Knowing the outside diameter to be 1.23 inch, we multiply this

by 3.1416 and divide by 5.33 to get the tangent of the helix angle at

the top, which we find to be 35 degrees 56 minutes. In a similar

manner we multiply the bottom diameter, 0.73, by 3.1416 and divide

by 5.33 to get the tangent of the helix angle at bottom of cut, which

we find to be 23 degrees 17 minutes.
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The cutter used in this job was a fly-cutter, the holder being shown

in the half-tone illustration Fig. 25, while its blades, R and 8, are

shown in the line illustration Pig. 24. R was used to cut A, B, and C,

while 8 was used to cut D, E, and F. The table setting was nearly 36

degrees for A and D, 30 degrees for B and E, and about 23% degrees

for C and F.

The shapes of the cuts show that the width of the cutter is- accu

rately reproduced only at the particular depth where the helix angle

is the same as the table setting, this point being shown by the arrow

heads at the sides of the various cuts. The shapes of the cuts also

show that the departure from the true form of the cutter due to faulty

 

Fig. 24. Pieces Milled on the Chuck, Fig. 28, with Fly-cutters R and S, Bhowing
the Effect of varying the setting of the Milling Machine Table.

table setting is less in the case of the more flaring cutter 8 than in

the case of cutter R, whose sides come nearer to being parallel.

This demonstrates that the table setting for a spiral gear should be

the same as the helix angle at or near the bottom of the cut, because

at this point the sides of the cutter come closer to parallelism, while

at the top of the cut they are more flaring, and the table setting not

being correct for the helix angle at this point would produce a com

paratively slight error. This also suggests a slight modification in

selecting a cutter to do the job, as the tops of the teeth would be

rounded off somewhat more than in the case of a spur gear cut with

the same cutter. Therefore, the writer suggests that it would be well



40 SPIRAL GEARING

to select a cutter tor a greater number of teeth than the spiral gear

formula

T = calls for.

cos2 a

Setting the table for a less angle than that of the pitch line helix

also has the effect of slightly increasing the width of the cut at the

pitch line, but not to the extent that a comparison of C and R would

seem to indicate, as in the experiments here described the depth of

the cut was purposely made a very large percentage of the diameter

in order to accentuate the errors due to faulty setting of the table,

and if the table is to be set correct for the bottom of the cut, it might

be well to consider the normal circular pitch as slightly greater than

 

Fig. 25. Chuck, Fly-cutter, aud Pieces Milled in Experiments Described.

that rightfully belonging to the cutter in use, and size the blank ac

cordingly. These experiments were entirely of a qualitative nature,

and were only intended to guide the judgment of the designer and

the man who puts the design in material form in cold metal.

Those not thoroughly familiar with universal milling machine use

should carefully distinguish, between the table angle and the helix

angle produced by the gearing of the dividing head. The dividing

head is geared to produce the required helix angle, measured on the

pitch line the same as usual, of course. What is advocated, in order

to reduce interference, is simply setting the table to some helix angle

between the pitch line and the dedendum or root circle rather than to

the helix angle indicated by the pitch line. A point worth attention,

also, is that the interference of a cutter increases with increase of

diameter. Small cutters, therefore, tend to reproduce their outlines

more accurately than large cutters, other things being equal.






