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INTRODUCTION.

In the following, some of the most common shop subjects requiring
simple calculations have been treated, and special efforts have been
made to treat each subject as simply as possible, so that the present
_ treatise may be of service to those, particularly, who have not pre-

viously acquired a great amount of knowledge about handling figures,
and who are not familiar with mathematical expressions and usages.
In order to fix the processes and rules more firmly in the reader's mind,
examples have been given in almost all instances, and in many cases
a number of similar examples have been given, so as te permit the
repetition of the same calculation a number of times. All formulas
in the first part of the pamphlet have been written out in words,
. as this gives a better idea about what the formula actually means, at

least to those not familiar with handbooks. Mathematical signs have
also been avoided in the text to a certain extent, and the correspond-
ing words have been written out in full. In short, all precautions
have been taken to present the methods in as plain and simple
language as possible. Many text-books deal with principles rather
than with specific examples, and to a person who is not used to solving
problems of the kind that are met with in the machine shop, it is often
difficult to apply the principles involved to each particular case. The
purpose of this book has therefore been to select the most common
specific cases, and show directly how the principles are applied.

‘While the subject in hand has been treated to accommodate the
requirements of those who demand a book that is plain and simple,
it has been necessary to presuppose fundamental knowledge in regard
to the use of numbers in calculations, that is, the reader must be
fairly competent to add, subtract, multiply, and divide whole numbers
and decimals, and also have some fundamental ideas of the use of
common fractions. If such knowledge has been acquired, no difficulty
will be experienced in making use of the rules and formulas given.

It is assumed that the reader is familiar with the common mathe-
matical signs, 4+ (plus) which signifies addition, — (minus) which
signifies subtraction, X (times) which signifies multiplication, and
< (divided by) which signifies division, as well as with the sign —
(equals) which {8 put between quantities which are equal to one an-
other to signify this condition. But it may be appropriate to call
attention to the different methods commonly used for indicating divi-
sjon, as these may not be clear to all. Usually, as we already have
said, in arithmetic, division is indicated by the sign -, so that we
have, for instance,

12 - 3=4.
A more common method in technical works, however, is to simply
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write the dividend as the numerator of a fraction and the divisor as
ithe denominator, thus:

—={,
3

In that case the fraction indicates a division. This system will be
followed in many of the following formulas, and it should therefore be -
remembered that the line between the numerator and demominator in
a fraction always indicates a division, the numerator to be divided dy
the denominator.

The actual division, however, i8 not necessarily worked out in every
cass where division is thus implied. When two divisions are multi-
plied together, cancellation, and the following operations of addition
or subtraction, may make the actual numerical work very simple.

Although knowledge of common fractions is presupposed, as men-
tioned, it may be well at this point to mention the rules for multiplica-
tion and division of common fractions, as in the following many
operations of this kind must be made. Two fractions are multiplied
by multiplying numerator by numerator and denominator by denom-
inator, (numerator being the upper, and denominator the lower quan-
tity in a fraction). For instance, let it be required to multiply 3% by

3. We have then,
1 3 1X3 3

4 8 4X8 32
If the numbers to be multiplied contain whole numbers, these are
first converted into fractions. Let it be required to multiply 13 by
314. We have then
1 1 3 13 65 1
- 1— X3 ——=— X —=—=4—
4 -4 4 4 16 16
Division is simply the reverse of multiplication. The number which
is to be divided is called the dividend, and the number by which we
divide is called the divisor. 1f one number is to be divided by another,
\wve simply invert the divisor, and proceed as in multiplication. To
invert the divisor means that we place the denominator as numerator,
and the numerator as denominator, as, for instance, 3/8 inverted is 8/3.
Suppose that we wish to divide 3 by 7/16. We have then,

3 7 3 16 48 20 b

—_—teee=m——=—=1—=1—

4 16 4 7T 28 28 1

If the number to be divided contains a whole number besides a frac
tion, we first convert this to a fraction, and then proceed as before.
Suppose that we wish to divide 214 by 3%. We have then,

1 3 9 16 9 4 36 3

4 4 4 4 4 15 60 5

After this introduction, we are ready to take up some of the most
commonly occurring shop problems, and apply to them the principles
of general arithmetic.

22—+ 8—=— =X = — =




CHAPTER 1.

FIGURING TAPERS.

In all circular or round pleces of work, the expressions ‘“taper per
inch” and “taper per foot” mean the taper on the diameter, or the
difference between the smaller and the larger diameter of a plece,
measured one inch or one foot apart, as the case may be. Suppose
in Fig. 1 that the diameter at A is one inch, and the diameter at B,
one and one-half inch, and that the distance or dimension between A4
and B is 12 inches or one foot. This piece, then, tapers one-half inch
per foot, because the difference between the diameter at A, one inch,
and at B, one and one-half inch, is one-half inch. In Fig. 2, the diam-
eter at C i8 7/16 inch, and at D, % inch, and the distance between
C and D i8 one inch. This piece of work, therefore, tapers 1/16 inch
per inch. Tapers may also be expressed for other lengths than one
inch and one foot. In Fig. 3, the diameter at E is 114 inch,and at F,
19/32 inch, and the dimension from E to F is 6 inches. This plece of
work, therefore, tapers 65/32 inch in 5 inches, the difference between
19/32 and 11/8 being 5/82.

If we know the taper in a certain number of inches, as for instance,
that the taper in 6 inches is 5/82, it is easy to find the taper per inch.
It is clear that the taper per each inch is onefifth of what the taper
is in 5 inches. We only divide the taper in 6 inches by 5, and we
get the taper per inch. In this case, dividing 5/32 by 5 would give
us 1/32. If we now want to find the taper per foot we only have to
multiply the taper per inch by 12. It is clear that the taper per foot,
or the taper in 12 inches, is 12 times the taper in one inch. In this
case, therefore, the taper per foot would be equal to 12 times 1/32, or-
8 inch.

The problems met with in regard to flguring tapers may be of
three classes. In the first place we may have given us the figures for
the large and small end of a piece of work, and the length of the
work, as in Fig. 4, and we want to find the taper per foot. In the
. second place we may know the diameter at one end, the length of the
work, and the taper per foot, as in Fig. 5, and we want to find the
diameter at the other end of the work. In the third place we may
know the required diameters at both ends of the work, and the taper
per foot, as in Fig. 6, and we want to find the dimension between the
glven diameters, or the length of the piece. We will now treat each
of these problems in detail.

1. To find the taper per foot when the diameters at the large and
small ends of the work, and the length, are given,

Relerring to Fig. 4, the diameter at the large end of the work is 284
inches, the diameter at the small end, 23/16 inches, and the length
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of the work 7 inches. The taper in 7 inches is then equal to the
difference between 2% inches and 2 3/16 inches, or 7/16 inch. The
taper in one inch equals 7/16 divided by 7, or 1/16 inch; and the taper
per foot is 12 times the taper per inch, or 12 times 1/16, which equals
8 inch. The taper per foot in our case in Fig. 4, then, equals & inch.

If the dimension between the small and the large diameter is not
expressed in even inches, but is 58/16 inches, for instance, as in
Fig. 7, the procedure is exactly the same. Here the diameter at the
large end is 2.216 inches and at the small end 2 inches. The taper
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In 53/16 inches is, therefore, 0.216 inch. This 18 divided by 5 3/16
to find the taper per i!;ch

838 16
0.216 = 5 —=0.216 -~ —=10.216 X —=10.0416.
16 16 83

The taper per inch, consequently equals 0.0416 inch, and the taper
per foot is 12 times this amount, or almost exactly 14 inch.

Bxpressed in a formula, if all dimensions given are in inches, the
previous calculation would take this form:

large dia.—small dfa.
taper per foot = — —— ———————
length of work
It makes, of course, no difference if the large and small diameters are
measured at the extreme ends of the work or at some other place on

the work, provided the length or distance between the points where
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the diameters are given, is stated. In Fig. 8, the smaller and larger
diameters are given at certain distances from the ends of the work,
but the dimension from G to H is given, and the figuring is carried
out exactly as if the work were no longer than between G and H. The
following examples will tend to show how the figuring of the taper
per foot enters in actual shop work.

Ezample 1.—Fig. 9 shows the blank for a taper reamer. The diam-
eters at the large and small ends of the filutes, and the length of the
fluted part, are stated on the drawing. It is required to find the taper
per foot in order to be able to set the taper turning attachment of the
lethe.

Referring to the figures given in Fig. 9, the difference in diameters
at the large and small ends of the taper is 15/64 inch. This divided

__T————’_"j
-
S

) ’ FiG. 10=1 e

¥igs. © and 10.

by the length of the flute, 714 inches, gives us the taper per inch.
This we find to be 1/32. The taper per. foot is 12 times the taper per
inch, or, in this case, then, 3¢ inch. The taper attachment of the ’
lathe is, therefore, set to the 3g-inch graduation, and the taper turned
will be according to the diameters given on the drawihg.

Ezample 2—Fig. 10 shows a taper clamping bolt, entering into the
design of a special machine tool. As seen from the cut, the drawing
calls for a diameter of 27% inches a certain distance from the large
end of the taper, and for a diameter of 2.542 inches a distance 4 inches
further down on the taper. The taper in 4 inches is then 27 inches
minus 2.542 inches, or 0.333 inch. The taper in one inch equals this
divided by 4, or 0.0833. The taper per foot is 12 times the taper per
inch, or 12 times 0.0833, which equals one inch, almost exactly. The
taper to which to turn the bolt in Fig. 10 is thus one inch per foot.

2. If the diameter at one end of the taper is given, and also the
 length of the work and the taper per foot, to find the diameter at the

other end of the work.

Referring to Fig. 5, the diameter at the large end of the work {is
154 inch, the length of the work is 31, inches, and the taper per
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foot is 3 inch. We now want to find the diameter at the small end.
In this case we simply reverse the method employed in our previous
problems, wherc we wanted to find the taper per foot. In this case
we know that the taper per foot is equal to 8; inch. The taper in one
inch must be one-twelfth of this, or % inch divided by 12, which
equals 1/16 inch. Now, the taper in 314 inches, which we want to
find in order to know what the diameter is at the small end of the
work, must be 314 times the taper in one inch, or 31 times 1/16,
which equals 7/32. The taper in 31 inches, then, 18 7/32 inch, which
means that the dlameter at the small end of a plece of work, 3%
inches long, is 7/32 inch smaller than the diameter at the large end.
The diameter at the large end, according to our drawing, is 1% inch.
The diameter at the small end, being 7/32 inch smaller, is therefore
113/32 inch.

e ' K
+ I N lh
3 I 1
I: 3 taper per foot T % taper per foot LH
2. gy
' , -7 Maskinery, A.T.
Pig. 11. rig. 13.

Expressed in a formula, the previous calculation would take this
form:
per foot
18

If we now take a case where the diameter at the small end is given,
as in Fig. 11, and the diameter at the large end is wanted, the figuring
is exactly the same, except of course, we add the amount of taper in
the length of the work to the small diameter to find the large diam-
eter. When the large diameter is given, we subiract the amount of
taper in the length of the wdrk to find the small diameter. This is
20 self-evident that no difficulties ought to be experienced on this
account. R

Referring again to Fig. 11, where the small diameter is given as
1.636 inch, the length of the work as § inches, and the taper per foot
as 13 inch, how large is the large diameter of the work? If the taper
per foot is 14 inch, the taper per inch is 14 divided by 12 which equals
0.0208, and the taper in 5 inches consequently & times 0.0208, or 0.104
inch. The diameter at the large end of the work, which we are figur-
ing, is, then, 0.104 inch larger than the diameter at the small end.
The diameter at the small end is given on the drawings as 1.636 inch;
adding 0.104 inch to this, we get 1.740 inch as the diameter at the
large end.

Expressed in a formula, the previous calculation would take this
form:

) taper
dia. at small end = dia. at large end — X length of work ).

taper per foot
dia. at large end = dia. at small end 4+ { —MM8M8M —
1

X length of work)
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It may again be well to call attention to the fact that it makes no
difference whether the large and small diameters are figured at the
extreme ends of the work or at some other points, as long as the
diameter to be found is located at one end of the length dimension,
and the diameter stated on the drawing on the other. Thus, in Fig.
12 the diameter stated at I is given a certain distance up on the
taper, and the diameter at K, which is wanted, {8 not at the end of
the faper. But the dimension 51% is given between the points I and K

(£

"
8¢

k Machaery, N.T.

" mg.18.

where these diameters are to be measured, and in figuring, one may
reason as if the work ended at I and K, the diameter at I being the
small diameter, the diameter at K, the large diameter, and 534 inches
the total length of the work. The following examples of direct prac-
tical application to shop work will prove helpful in remembering the
.principles outlined.

Ezample 1.—Fig. 13 shows a taper tap, the blank for which is to be
turned. The diameter at the large end of the threaded part is 314,
inches, a8 given on the drawing, the length of the thread is 614 inches,
and the taper per foot is % inch. We want to find the diameter at

.

é_ —
IV

Fig. 14.

the small end, in order to measure this end and:ascertain that the
tap blank has been correctly turned.

The taper per foot being 8, Inch, the taper per inch is % divided
by 12, or 1/16 inch. The taper in 614 inches is 614 times the taper in
one inch, or 614 times 1/16 inch, which equals 13/32 inch. The taper
in 614 inches being 13/32 inch means that the diameter at the small
end of the tap blank is 13/32 inch smaller than the diameter at the
large end. The diameter at the small end is, therefore, 3 3/32 inches.

Ezample 2.—Fig. 14 shows a taper gage for a standard Morse taper
No. 1. The diameter at the small end is 0.356 inch, the length of the
gage part is 23 inches, and the taper per foot 0.600 inch. We want
the diameter at the large end, in the first place in order to know what
size stock to use for the gage, and later for measuring this diameter.
when turned, to see that the taper turned is correct.

Maskinery, N.¥ o
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A taper of 0.600 per foot, gives us a taper of 0.060 per inch. In
284 inches the taper equals 23; times 0.060, or 0.119 inch. This added
to the diameter at the small end gives us the diameter at the large
end: 0.356 + 0.119=0.476 inch.

Ezample 3.—Fig. 16 shows a taper bolt used as a clamp boit. The
diameter 314 inches is given 3 inches from the large end of the taper.
The total length of the taper is 10 inches. The taper is 3¢ inch per
foot. We want to find the diameters at the extreme large and small
ends of this plece.

We will first find the diameter at the large end. The taper per foot
being 34 inch, the taper per inch equals 1/32 inch. The taper in 3
inches is consequently 3/32. This added to 3% inches will give us
the diameter at the large end, which is 3 11/32 inches.

To find the dlameter at the small end, subtract the taper in 10
inches, which is 10 times the taper in one inch, or 10 times 1/32, which

)" inch per foot -

Machinery, .Y
Pig. 15.

equals 5/16, from the diameter 3 11/32 inches at the large end. This
gives us the diameter at the small end 3 1/32 inches.

We can also find the diameter at the small end without previously
finding the diameter at the extreme large end. The total length of the
taper is 10 inches, and the dimension from where the diameter 3%
inches is given to the large end is 3 inches. Consequently, the dimen-
sion from where the diameter 314 inches is given to the smalil end is
7 inches. The taper in one inch was 1/32 inch; in 7 inches, therefore,
7/32 inch. The diameter at the small end of the work is 7/32 inch
smaller than 314 inches, or 3 1/32 inches, the same as found previously
when we figured from the extreme large diameter of the taper.

3. To find the distance between two given diameters on a tapered
piece of work, if the taper per foot is known.

Referring to Fig. 6, if the diameters at both ends of a tapered plece
are known, together with the taper per foot, it is required to find the
length of the work. Assume that the diameter at the large end of the
plece is 1.760 inch, and at the small end, 1.400 inch. The taper per
foot is 0.600 inch. How long is this piece of work required to be, in
order to have the given diameters at the ends, with the taper stated?
We know that the taper per foot is 0.600 inch. The taper per inch
is then 0.600 divided by 12, or 0.050 inch. The difference in diameters
between the large and the small ends of the work is 1.760 — 1.400, or
0.350 inch, which represents the taper in the length of the work
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- Now, we know that the taper i8 0.060 inch in one inch. How many
inches does it then require to get a taper of 0.360 inch? This we find
by seeing how many times 0.060 is contained in 0.350, or, in other
words, by dividing 0.350 by 0.050, which gives us 7 as answer. This
means that it takes 7 inches for a piece of work to taper 0.850 inch,
it the taper is 0.600 per foot. The length of the work consequently s
7 inches in the case referred to.

Expressed in a formula the previous calculation would take the

form:
dia. at large end — dia. at small end

len; of work =
gth taper per foot + 18

The taper per foot divided by 12, as given in the formula above, of

A ¢ taper per foot .
S —— e ——1
T Fig. 16

” 5>
2 L]

- fe—1'y
k——23%

Fig. 17
Figs. 16 and 17.

course simply represents the taper per inch. The formula may there-
fore be written:

length of work =

H
o

A

-1

dia. at large end — dia. at small end

ts;;er per inch

A few examples of the application of these rules will make their
use in actual shop work clearer.

Ezample 1.—A taper reamer, Fig. 16, for standard taper pins, hav-
ing 14 Inch taper per foot, is to be made. The diameter at the large
end of the flutes is wanted to be 0.720 inch. The diameter at the point
of the reamer must be 0.580 inch, in order to accommodate the longest
taper pins of this size made. How long should the fluted part of the
reamer be made?

The taper per foot is 0.250 inch, and the taper per inch, consequently,
0.260 divided by 12, or 0.0208 inch. The taper in the length of reamer
required is equal to the difference between the large and the small
diameter, or 0.720 — 0.580 equals 0.140 inch. This amount of taper
divided by the taper in one inch gives the required length of the flutes.
Thus, 0.140 divided by 0.0208 equals 6.731, which represents the length
of flutes required. This dimension is nearly 6% inches, and, being a
length dimension of no particular importance, it would be made to an
even fractional part of one inch.

Ezample 2.—In Fig. 17 is shown a taper master gage intended for
inspecting taper ring gages of various dimensions. The smallest
diameter of the smallest ring gage is 13 inch, and the largest diam-
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eter of the largest ring gage is 2% inches. The taper per foot is 1%
inch. It is required that the master gage extends one inch outside of
the gages at both the small and the large ends, when these are tested.
How long should the gage portion of this piece of work be?

The taper per foot is 114 inch, which is equivalent to % inch taper
per inch. The total taper from A to B in Fig. 17 is 2%, minus 1%, or
one inch. Therefore, as the taper per inch, 14, is contained in the taper
of one inch in the distance from A to B exactly 8 times, the dimension
from A to B is 8 inches. The gage extends one inch beyond 4 and B,
respectively, at either end, and the total length of the gage is, there-
fore, 10 inches.

Rules for Figuring Tapers.

If we formulate the previous discussion for figuring tapers into
rules, these may be stated as follows:

1. If the taper per foot is known, the taper per inch is found by
dividing the taper per foot dy 12.

2. If the taper per inch is known, the taper per foot is found by
multiplying the taper per inch dy 12.

8. To find the taper per foot, when the diameters at the large and
small ends and the length of the taper are given, sudiract the small
diameter from the large, divide the remainder dby the lengih of the
taper, and multiply the result dy 12.

4. To find the diameter at the small end when the diameter at the
large end, the length of the taper, and the taper per foot are given,
divide the taper per foot by 12, multiply the result dy the length of
the taper, and subtract the resulting dimension from the diameter at
the large end.

5. To find the diameter at the large end when the diameter at the
small end, the length of the taper, and the taper per foot are given,
divide the taper per foot dy 12, multiply the result dby the length of
the taper, and add the resulting dimension to the diameter at the
small end.

6. To find the dimension between two given diameters of a plece
of work, when the taper per foot i8 given, sudiract the diameter at
the small end from the diameter at the large end, and divide the
remainder by the taper per foot divided dy 12.

7. To find how much a piece of work tapers in a certain length,
when the taper per foot is given, divide the taper per foot dy 12, and
multiply the result by the dimensfon of the certain lengith in which
the taper is required.




CHAPTER 1II.

SETTING OVER TAIL-STOCK FOR TAPER TURNING.

‘When the tail-stock of the lathe is set over for turning taper, in
cases where no taper turning attachment is available, the amount to
set over the tail-stock can be determined, if the taper per foot of the
work, und the length, are known. Suppose a plece of work is 714
inches long, as shown in Fig. 18, and that the taper per foot is %
inch. We first require to know how much the work tapers in 71§
inches. According to our previous discussion, Rule 7, page 12, we find
that the work tapers % divided by 12, times 7%, or 15/32 inch in
714 inches. The purpose of setting over the tail-stock is to make the
front of the work come parallel with the travel of the lathe carriage,

o o
1°% [
Fig. 18
Fig. 19
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Figs. 18 to 30.

or, which is the same, paraliel with the center line of the lathe spindle,
as shown in Fig. 19. It is clear, upon examination of Fig. 20, where
the dotted lines indicate the original position of the work, that in
order to get the front side of the work parallel with the center line
of the spindle, its small end must be moved forward a distance equal
to one-half the taper in the length of the work. This forward move-
ment is accomplished by moving the tailstock over an amount equal
one-half of this taper, as shown at @, Fig. 19. In the case in Fig. 18,
where, as we have found, the taper in the length of the work is 15/32
inch, the tall-stock should be moved 15/64 inch sideways in relation
to the spindle of the lathe. '
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If the diameters at both the large and the small énds of the work
are given, we can determine the amount to set over the tail-stock with-
out knowing the taper per foot, because all we need to-know is the
amount of taper in the length between the centers of the lathe. Im
Fig. 21, for instance, the diameter at the large end of the work is 135
inch, and the diameter at the small end i8 11 inch. The amount to set
over the tail-stock will be one-half of the difference between 115 and
13, or 14 inch. ’

If part of the work is turned straight, and part of it turned taper,
as shown in Fig. 22, we must determine the amount of taper in the
whole length of the work, and then set over the tail-stock one-half of
this amount. In Fig. 22 the plece of work shown is 13 inch at the
small end of the taper. It is then turned taper for 4 inches, and is
15 inch in diameter at the large end of the taper. It is then turned

AG. 21

1 Tapes-
—— Straight v ap

fe—— IK_—"
15—

_ 10 ~:
FIG. 22 Mackinery, K.X.
PFigs. 21 and 23.

straight for the remalning 6 inches, the total length of the work being
10 inches. In this case we must first ind out what the amount of
taper would be in 10 inches, if the whole piece had been turned taper,
with the same taper as now required for 4 inches. The taper in 4
inches 18 166—13, or 34 inch. The taper in one inch is consequently
1/16 inch, and in 10 inches 8§ inch. The amount to set over the talil-
stock is one-half of this, or 5/16 inch.

If in the case in Fig. 22, the diameter at the small end had not been
given, but the taper per foot of the tapered part been stated instead,
the diameter at the small end would first have been found according
to Rule 4, page 12, and then the taper in the total length of the work,
and the amount to set over the tail-stock, would have been found
exactly as indicated above.

If we state what has previously been said in formulas, we would
get, for the case when the taper per foot and the length of the work
are known:

1 taper per foot
amorat to ot = T x (T X length of work)

S
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For the case in Fig. 21, we would have:

1
:?;:-“tﬁl-?to‘:kt = 3 X (dln. at large end — dia. at small end.)

Finally, for the case in Fig. 22, we would have:
1 dia. at large end of taper — dia. at small end total
:azntﬁl'tﬁ'::: = ; X ( length of taper ‘ X g?:vgoti‘li:.

For those who prefer rules in words to formulas, the following rules
have been formulated:

1. To find the amount to set over the tail-stock for work tapering
for its full length, when the taper per foot and length of the work
are known, divide the taper per foot by 12, multiply the resuilt by the
length of the work, and divide this result, in turn, by 2.

—'%~ —-—-—-—x.—‘kp-rperﬁoot—---—-—-—
[4 " ‘.'.
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FIG. 25
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2. To find the amount to set over the tail-stock for work tapering
for i{ts full length, when the diameters at the large and small ends are
known, subdbiract the small diameter from the large, and divide the
remainder by 2.

3. To find the amount to set over the tail-stock for work partly
tapered and partly straight, when the diameters at the large and small
ends of the taper, the length of the taper, and the total length of the
work are known, subdéract the small diameter from the large, divide the
remainder by the length of the taper, multiply the result thus odtained
by the total length of the work, and finally divide by 2.

The following examples will help to give a clear idea of the applica-
tion of these rules.

Ezample 1.—The taper pin shown in Fig. 23 is 8 inches long, and
tapers % inch per foot. How much should the tall-stock be set over
whan turning this pin?
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* Dividing the taper per foot by 12 gives us 0.0208. Multiplying this
figure (which represents the taper per inch) by 8 gives us 0.166 as
the taper in 8 inches. Dividing this by 2 gives us the amount required
to set over the tail-stock. This amount, then, is 0.083 inch.

Ezample 2.—Another taper pin, Fig. 24, is 1 inch in diameter at the
large end, and 13/16 inch at the small end. How much should the tail-
stock be set over for turning this pin?

The total taper of this pin is found by subtracting the diameter at
the small end, 13/16 inch, from the diameter at the large end, 1 inch.
This gives us a remainder of 3/16. One-half of this amount, or 3/32
inch, represents the amount which the tail-stock should be set over.

Ezample 3.—A taper gage, as shown in Fig. 26, is to be turned by
gsetting over the tail-stock. The diameter at the large end of the
taper i3 214 inches, the diameter at the small end is 18; inch, the length
of the taper, 8 inches, and the total length, 12 inches. How much
should the tail-stock be set over?

Subtracting the diameter at the small end, 18; inch, from the diam-
eter at the large end, 214 inches, gives us a taper of 14 inch in 8 inches.
Dividing 14 by 8, gives us the taper in one inch, which is 1/16 inch.
Multiplying this with the total length of the work, 12 inches, gives us
8, Inch, which, divided by 2, gives us, finally, the required amount to
which to set over the tail-stock. This latter is, therefore, set over 3
inch. .

CHAPTER III

CUTTING SPEEDS AND FEEDS.

There is a certain mathematical relation between the diameter of
the work turned in a lathe or on a boring mill (or the diameter of
the drill, or hole drilled, in a drill press), the number of revolutions,
and the cutting speed of the work or tool. This relationship is simple,
and can be easily explained.

The cutting speed of a tool is the speed with which the tool passes
over the surface of the work operated upon, counted in so many feet
per minute. Thus, if the point of a lathe tool passes over the surface
of a casting turned in the lathe at a rate of 40 feet per minute, this
figure expresses the cutting speed. Of course, the tool point is really
stationary, and it is the casting surface that passes by the tool point,
but it {s customary to say that the ‘‘tool passes over the work,” as it
actually does in a shaper, for instance.

The feed of a tool is its sideways motion for each revolution or
stroke of the work. Thus in a lathe, if the feed is 1/16 inch, it means
that for each revolution of the work the tool moves along the lathe
bed 1/16 inch, so as to cut a chip 1/16 inch wide. In a planer, the feed
would mean the amount the tool-carrying head is moved sideways for
each complete stroke of the table or platen.
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Cutting Speeds.

The problems which meet the machinist in regard to cutting speeds
may be divided up in two groups: If the diameter of the work is
known (which, of course, can always be, at least approximately, meas-
ured), and a certain cutting speed is required, how many revolutions
per minute ought the work to make; and, if the diameter of the work
and the number of revolutions are known, what is the cutting speed?
‘We will now deal with each of these problems in the order they come.

1. The diameter of the work turned in a lathe or boring mill (or
the diameter of the drill, or drilled hole, in_a drill press) and the
required cutling speed are known. How many revolutions per minlte
should the work make?

Assume that the diameter of the work is 5 inches, and the required
cutting speed 40 feet per minute. When the diameter of a plece of
work is known, its circumference equals the diameter times 3.14.
Therefore, the circumference of the work in hand is 15.7 inches. It
is.evident, that for each revolution of the work the length of its cir-
cumference passes by the tool once. Thus, for each revolution 15.7
inches passes by the tool. As the cutting speed Is expressed in feet,
this length should also be given in feet, and not in inches, when we
figure. To transform 15.7 inches into feet we -divide by 12, thus
obtaining 1.308 feet as the circumference of the work. How many
revolutions, each represented by 1.308 feet, does it require to get a
cutting speed of 40 feet? This we evidently get by finding how many
times 1.308 feet is contained in 40 feet, or, in other words, by dividing
40 by 1.308. Carrying out the division gives us 30.6 revolutions per
minute, as required to obtain a cutting speed of 40 feet per minute with
a plece of work 5 inches in diameter.

The calculation carried out above is expressed, shortly, by the for-
mula
' cutting speed in feet per minute

diameter of
work {n inches X 8'“) + 12

A few examples may tend to make this formula clearer.

Ezample 1—A tool steel arbor is turned, using an ordinary carbon
steel for turning. The diameter of the arbor is 2 inches. The cutting
speed, in feet per minute, ought to be about 18 feet. How many revo-
lutions ought the work to make per minute?

The diameter of the work, 2 inches, multiplied by 3.14, gives us a
circumference of 6.28 inches. This circumference, expressed in feet, is
obtained by dividing 6.28 by 12, getting 0.523 as a result. The cutting
speed per minute, 18 feet, divided by the circumference (or the dis-
tance traveled for one revolution) gives us the number of revolutions.
Thus 18 divided by 0.523, which equals 34.4, represents the proper
number of revolutions for a plece of work 2 inches in diameter, being
cut at a rate of 18 feet surface speed per minute.

Ezxample 2.—A brass rod, 1 inch in diameter, {8 belng turned. The
proper cutting speed for this' material is 100 feet per minute. How
many revolutions, should the work make?

number of revolutions per minute =
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The circumference of the work in inches is 3.14, and expressed in
feet, 3.14 divided by 12, or 0.262. The cutting speed, 100 feet, divided
by 0.262 gives us 382 revolutions, approximately, as the proper number
of revolutions.

Ezample 3.—A Y%-inch drill, cutting cast iron, may cut at a speed of
40 feet per minute. How many revolutions ought it to make?

Tae circumference in feet equals 14 times 3.14 divided by 12, or 0.131.
This divided in 40 gives us approximately 306 as the proper number
of revoiutions.

2. The number of revolutions which the work makes in a lathe or
bering mill, or the nuimber of revolutions of the tool in a drill press,
and the diameter are known. What is the cutting speed?

Assume that the work is a tool steel stud, 4 inches in diameter, and
revolving at a speed of 16 revolutions a minute. The circumference
of the work is figured as before, and transformed into feet. The cir-
cumference, in feet, equals, in this case, 4 times 3.14 divided by 12,
or 1.05 foot. This is the distance traversed by the tool for each revo-
lution. For 16 revolutions the distance traversed is evidently 16 times
greater, or 16 times 1.05, which equals 16.8. As the work makes 16
revolutions a minute, and during that time the tool traverses 16.8
feet on its surface, that means that the cutting speed is 16.8 feet per
minute.

The calculation carried out above is expressed by the formula:

cutting speed in feet _ 4i8- of work in inches X 8.14 ., myer of revolutions
per minute = 18 . per minute

The following examples will tend to make clear the use of this
formula:

Ezample 1.—A cast iron pulley, the rim of which is being turned,
revolves in the lathe at a rate of 614 revolutions per minute. The
diameter of the pulley is 23 inches. What is the cutting speed?

The circumference of this pulley in feet equals 23 times 3.14 divided
by 12, which is 6.02. Multiplying the circumference by the number
of revolutions, 614, gives the cutting speed. We have, then, 6.02 times
6.5, equals 39.13, which is the cutting speed in feet.

Ezample 2—A one-inch drill, cutting tool steel,” revolves at a rate
of 60 revolutions per minute. What is the cutting speed?

The circumference of the drill, in feet, is 3.14 divided by 12, or
'0.262. This multiplied by the number of revolutions, 60, gives us
15.72 feet as the cutting speed of the drill.

Rules for Calculating Cutting Speeds.

‘What has been previously stated in formulas, may be expressed in
rules as follows:

1. To find the number of revolutions per minute, when the diameter
of work (or drill) in inches and the cutting speed in feet per minute
are known, multiply the diameter by 3.14, and divide the result dby 12;
then divide the cutting speed by the figure thus obtained.

2. To find the cutting speed in feet per minute, when the diameter
of the work (or drill) in inches, and the number of revolutions per
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minute are given, multiply the diameter by 3.14 and divide the result
by 12; then multiply the result thus obtained dy the numbder of revo-
lutions per minute.

Feed of Cutting Tool.

The feed of the cutting tool enters but little in the calculations
that a machinist would be required to make. The most common ques-
tion into which the feed enters is the time required for turning or
planing a certain piece of work. In this case both the cutting speed,
or the number of revolutions per minute, and the feed would have to
be considered.

Suppose for instance that a tool steel arbor is 2 inches in diameter;
that its length is 10 inches; that the cutting speed of the work is
18 feet per minute; and that the feed of the cutting tool along the
~ work is 1/16 Inch per revolution. How long time would it require to
take one cut over the surface of the work?’

We first find from our discussion on the cutting speed, and from
Rule 1 on previous page, that the revolutions per minute of the work
equal 34, approximately. As the tool feeds forward 1/16 inch for
each revolution of the work, it is fed forward 34/16 or 23 inches in 34
revolutions, or in one minute. The time required to traverse the
whole length of the work, 10 inches, will evidently be found by find-
ing how many times 214 is contained in 10 inches, or, in other words,
.by dividing 10 by 214. The result of this division is 4.7 minutes.
It would therefore take 5 minutes, approximately, to traverse the
work once with the cutting speed and feed mentioned.

Expressed in a formula, our calculation would take this form:

total length of work (or length of cut)

time required for one cut over the work =
. revolutions per minute’ X feed per revolution

Expressed as a rule, the formula takes this form:

To find the time required for one complete cut over the work, when
the feed per revolution, the total length of the cut, and the number
of revolutions per minute are given, divide the total lengih of the cut
by fhe number of revolutions per minute multiplied by the feed per
revolution. If the cutting speed is given, originally, instead of the
number of revolutions, find the latter number first from Rule 1,

page 18.




CHAPTER 1IV.

TRAINS OF GHARS.

Suppose that we have two shafts A and B, as shown in Fig. 26, and
that we want to connect these shafts by gears so that the shaft 4 is
making one revolution while shaft B makes three. In order to do
this we must place a gear on A having three times the number of
teeth as compared with the number of teeth in the gear on B. The
stud with the larger gear will always run slower than the stud with
a smaller gear. Suppose that we have 90 teeth in the gear on A. The
gear on B must then only have 30 teeth, because the gear on 4 was to
have three times the number of teeth in the gear on B. Each time
the gear on B turns around ome complete revolution, it engages 30

teeth In the gear on stud A. It is then plain that it must turn around
three complete revolutions in order to engage all the 90 teeth of the
gear on A, or, in other words, turn around three times in order to turn
the gear on A once. The numbers expressing the relationship between
the number of times one gear revolves, to the corresponding number
of times the other revolves, is called the ratio of the gearing. Thus,
in the present case, the ratio is 3 to 1, one gear revolving 3 times,
while the other revolves once.

‘When the ratio of the speed of studs or shafts is given, it is possible
to find the géars which will cause the gears to run at the required
speed. In Fig. 27, suppose that shafts 0 and D are required to run
in a ratio of 6 to 1, that is, shaft C is to revolve 5 times, while shaft
D revolves once. What gears should we select to make the shafts
run as required? If we place a 20-tooth gear on shaft O, the gear on
shaft D should have 5 times as many teeth, or 100. Then it will
revolve but once, when the gear on C revolves 5 times. Suppose
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that we put gears with the number of teeth mentioned on the shafts.
Now the distance between the shafts may be such that the gears
would not reach together. We can then place an intermediate gear
E, mounted on stud F, in the train, which meshes with the gears on
both C and D. The intermediate gear simply transmits motion from
the gear on C to the gear on D, and does not have any {nfluence on
the relative speed ratio. When the intermediate gear is inserted, the
gear on C still revolves 6 times while the gear on D revolves once.

If we placed a number of intermediate gears, E, F, and @, in the
train, as in Fig. 28, the result would still be the same, the gear on O
would turn 5 times while the gear on D turned once, as long as the
cumber of teeth in the gear on D is 5 times the number of teeth in
the gear on 0.

Fig. 27.

In order to prove this, let us assume that-in Fig. 28, as before, the
gear on stud 0 has 20 teeth, and the gear on stud D, 100 teeth, so
that consequently the stud C makes 5 revolutions, while stud D makes
one. The intermediate gears, E, F, and @, have 50, 40, and 40 teeth,
respectively, as shown in the cut. Now, when the gear on D turns
around once, the gear G must turn 21 times (100/40=21). The
gear F, having the same number of teeth as gear @, makes one revo-
lution while G makes one, and consequently also turns 214 times while
the gear on D turns once.- The gear on E, having 50 teeth, turns 4/5
of a revolution while gear F revolves once (40/50—=4/5), and conse-
quently, while F makes 2% revolutions, gear E makes 21/2 X 4/6=
5/2 X 4/56 =2 revolutions. Thus E turns twice while the gear on stud
D revolves once. Finally, the gear on C turns 21% times to each revo-
lution of gear E (50/20 =21%), or 5 times to 2 revolutions of E. But
2 revolutions of E correspond, as we have seen, to one revolution of
the gear on stud D; consequently, the gear on stud C makes 6 revolu-
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tions to one of the gear on stud D, which, as we previously found, is
also the case if these two gears had been connected directly without
any intermediate gearing.

Principles of Compound Gearing.

Compound gearing consists of a train of gears in which certain gears
are placed in palrs on the same stud as shown at A, Fig. 29, and turn
together, one of the gears, D, being driven by another gear B, and the
other gear, E, in turn driving a gear C. The simplest, and most com-
mon case of compound gearing consists of four gears, as shown in
the cut referred to. Suppose that the stud, F, carrying gear C, Fig. 29,
is required to revolve 6 times while stud G, carrying gear B, revolves

Fig. 28.

5 times. The ratio in speed of these two shafts would then be 6 to 5.
Gears are not available so that studs F and G can be directly con-
nected, or to make it possible to put in an intermediate gear to trans-
mit the motion directly. In such cases the gears are compounded,
that is, the train of gears is made up of two sets of gears, in each
of which sets one gear is the driving and one the driven gear. In
Fig. 29, B and E are driving gears, and ¢ and D are driven gears.
Each of these two sets of gears has a speed ratio of its own, which
combined with the ratio of the other set gives the total ratio of the
whole system. Referring to our specific case in Fig. 29, if gear B has
90 teeth, and gear D, 45 teeth, then gear D revolves two times while
gear B revolves once, or, as our ratio between C and B is 6 to 5, let
us say that gear D turns around 10 times while B turns around 5
times. Gear E is placed on the same stud as gear D and, therefore,
also turns 10 times while B turns 5 times. Gear E drives gear C,
which is required to turn 6 times to the 5 times of gear B. It, there-
fore, must also turn 6 times to the 10 times of gear E. If, then, gear
E has 60 teeth and gear C, 100 teeth, this requirement will be filled.
We now have gear C turning 6 times while gear B turns 6 times.
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. How could we have found the gears for this compound gearing directly
by calculation?

The ratio required was 6 to 5, or if written as a fraction, 6/5. We
can maltiply numerator and denominator in a fraction by the same
number without changing its value. We can also divide up the numer-
ator and dencminator in factors, and multiply each pair of factors
with the same number. Thus we have:

6 2X3 (2 X 45) X (3 X 20) 90 X 60

B 1X5  (1LX46) X (5X20) 45X 100
Here we have, then, the gears used in our train. The gears in the

T
'
a
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numerator are the driving gears B and E. The gears in the denomina-
tor are the driven gears D and C.

We may formulate a rule from the foregoing for finding gears for
transmitting motion, in general, when the speed ratios between the
driving and driven shafts are known.

1. Place the mumbder of revolutions of the driven shaft in the
numerator, and the corresponding number of revolutions of the driving
shaft in the denominalor of a fraction (or, in general, write the
rativ in the form of a fraction), and multiply the numerator and
denominator with the same number, until a new fraction is obtained
having numerator and denominator expressing suitable numbers of
teeth for the gears. The gear represented by the new numerator is
the driving gear, and that represented by the new denominator is the
driven gear. '

2. If compounding of the gears is necessary or advisable, divide
up botn numerator and denominator in the fraction. giving the ratio,
in two factors, and multiply each pair of factors (one factor in the
numerator and one in the denominator making “one pair”) by the
same numbers, unti! gears with suitable numbers of teeth are found.
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The most common application of trains of gearing is that occurring
in lathes, and used for thread cutting. We shall, therefore, apply
the principles of trains of gears to this case. But it should be clearly
understood that the same principles hold good, no matter what machine
the gears are applied to, and that the fundamental condition which
determines the number of teeth in the gears connecting two shafts is
the ratio of speed, that is, the number of turns made by one gear to a
certain number of turns made by another.

Pitch and Lead of Screw Threads.

The terms pitch and lead of screw threads are often confused, and
particularly in the case of multiple threaded screws does this confusion
cause difficulties. Before we therefore enter upon the subject of figur-
ing change gears for the lathe for cutting screw threads, it may be

’ x«u:-y.ﬂ.r.'
Fig. 80.
well to make clear the real meaning of the words *“pitch” and “lead,”
and their relation to the number of. threads per inch.

THe pitch of a screw thread is the distance from the top-of one
thread to the top of the next, as shewn in Fig. 30. No matter whether
the screw has single, double, triple, or quadruple thread, the pitch is
always the distance from the top of one thread to the top of the next.
Often, though improperly, the word ‘“pitch” is used in the shop to
denote “number of threads per inch.” We hear of screws having
12 pitch thread, 16 pitch thread, etc. This is not correct usage of the
word pitch, and only tends to cause unnecessary confusion.

The lead of a screw thread is the distance the screw will move
forward in a nut if turned around one full revolution. It is clear that
for a single-threaded screw the pitch and the lead are equal, as the
screw would then move forward the distance from one thread to the
nex: if turned around once. In a double-threaded screw, however, the
screw will move forward two threads, or twice the pitch, so that in
a double-threaded screw the lead equals twice the pitch. In a triple-
threaded screw the lead equals three times the pitch, and so forth.

Tae lead may also be expressed as being the distance from center
to center of the same thread, after this thread has made one turn
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around the screw. In the single-threaded screw the same thread is
the next thread to the one first considered. In a double-threaded screw
there are two threads running side by side around the screw, so that
the same thread here is the second one from the one first considered.
In a triple-threaded screw it is the third one, in a quadruple-threaded,
the fourth, and so forth. However we consider this, we still see that
the lead and pitch are alike for a single-threaded screw, that the lead
18 twice the pitch for a double-threaded, and three times for a triple-
threaded, as already stated. The actual relationship is very plainly
shown in Fig. 31, where are shown parts of three screws with Acme
threads, the first single-threaded, the second double-threaded, and the
last triple-threaded. ’

The main point to remember, however, 1s that in any kind of a

SINGLE THREAD DOUBLE THREAD TRIPLE THREAD
Meckinery, N, Y.
Fig. 81.

screw, the lead is the distance which the screw will move forward in
-a nut if turned around one revolution.

In this connection it may be appropriate to give the rules and
formulas for the relation between the lead and the number of threads
per inch. If there are 8 threads, single, in one inch, the lead is evi-
.dently 1% inch. This we found, mathematically, by dividing one by 8,
which is the number of threads per inch. Tpe formula, therefore, is

1
= humber of threads per inch

This formula, expressed in words, says: The lead of a screw equals
-one divided by the number of threads per inch.

Confusion is often caused by indefinite designation of multiple thread
gcrews. The most common way to state the lead and the class -of
thread is perhaps to say % inch lead, double, which means a screw
with a double thread, which, when cut, has the lathe geared for four
threaas per inch, but each thread is cut only to a depth corresponding
to eight threads per inch. The same condition 1s also expressed by:
4 threads per inch, double. These two ways of expressing the number
-of multiple threads are both correct, but the expression which ought
to be used in order to avoid misunderstanding under any ecircum-
:stances would be: 14 lead, 14 pitch, doubdle thread.

lead




CHAPTER V.

LATHE CHANGE GEARS.

Whiue the principles and rules governing the calculation of change
gears are very simple, they, of course, presuppose some fundamental
knowledg of the use of common fractions. If such knowledge is at
hand, the subject of figuring change gears, if once thoroughly under-
stood, can hardly ever be forgotten. It should be impressed upon the
ninds of all who have found difficulties with this subject that the
matter i8 not approached in a logical manner, and is usually grasped
by the memory rather than by the intellect. Before answering the
question in regard to any rules for figuring change gears, let us there-
fore analyze the subject. The lead-screw B of the lathe (see Fig. 32)
must be recognised as our first factor, and the spindle as the second.
1f tne lead-screw has six threads per inch, then, if the lead-screw
makes six revolutions, the carriage travels one inch, and the thread-
cutting tool travels one inch along the piece to be threaded. If the
spindle makes the same number of revolutions in a given time as the
lead-screw, it 18 clear the tool will cut six threads per inch. In such a
case the gear D on the spindle stud J/, and gear E on the lead-screw,
are alike. If the spindle makes twice the number of revolutions of
the lead-screw, the spindle revolves twelve times while the tool moves
one inch, and consequently twelve threads per inch will be cut. But
in order to make the spindle revolve twice as fast as the lead-screw,
it is necessary that a gear be put on the spindle stud of only half
the number of teeth of the gear on the lead-screw, so that when the
lead-screw revolves once the spindle stud gear makes two revolutions.
The conditions governing the relationship between the number of
1eeth in gears and the number of revolutions of the studs on which
they are mounted were, as we remember, explained In the last
chapter.

Simple Gearing.

Suprose we wish to cut nine threads per inch with a lead-screw
of six threads per inch, as referred to above. Then the six threads of
the lead-screw correspond to nine threads on the piece to be threaded,
which is the same as to say that six revolutions of the lead-screw
correspond to nine revolutions of the spindle; or in other words, one
revolution of the lead-screw corresponds to 114 of the spindle. From
this it is evident that the gear on the lead-screw must make only
one revolution while the spindle stud gear makes 114. Thus, if the
leaa-screw gear has, for instance, 36 teeth the gear on the spindle
stud should have only 24; the smaller gear, of course, revolving faster
than the larger. If we express what has been previously said in a
tormula we have:

threads per inch of lead-screw _ teeth in gear on spindle stud

threads per inch to be cut ~  teeth in gear of lead-sorew
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Applying this to the case above, we have:
6 24 .

9 36

‘The values 24 and 36 are obtained by multiplying 6 and 9, respectively,
by 4. By mixltiplying both the numerator and the denominator by the
same number, we do not change the proportion. As a general rule we
may then say that the change gears necessary to cut a certain number
cf threads per inch are found by placing the number of threads in the
lead-screw in the numerator, the number of threads to be cut in the
denominator, and then multiply numerator as well as denominator by
the same number, by trial, until two gears are obtained, the number
of teeth of which are both to be found in the set of gears accompany-
ing the lathe. The gear with the number of teeth designated by the

Pig. 52. Fig. 38,

new numerator is to be placed on the spindle stud (at J, Fig. 32), and
the gear with the number of teeth corresponding to the denominator on
the lead-screw B,

A few examples of this will more clearly explain the rule. Suppose
the number of teeth of the change gears of a lathe are 24, 28, 32, 36,
and so forth, increasing by 4 teeth up to 100. Assume that the lead-
screw i8 provided with 6 threads per inch, and that 10 threads per

inch are to be cut. Then,
6 6 X4 24

10 10X 4 40
By multiplying both numerator and denominator by 4, we obtain

two available gears with 24 and 40 teeth, respectively. The 24-tooth
gear goes on the spindle stud, and the 40-tooth gear on the lead-screw.
Assuming the same lathe and gears, let us find the gears for cutting
1115 threads per inch, this being the standard number of threads for
certain sizes of pipe thread. Then,

6 6X8 48

11 11% X8 92
1t will be found that multiplying with any other number than eight
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would, in this case, not have given us gears with such number of
teeth ag we have in our set with this lathe. Until getting accustomed
to figuring of this kind, we can, of course, only by trial find out the
correct number by which to multiply numerator and denominator.
The number of teeth in the intermediate gear F, Fig. 32, which meshes
with both the spindle stud gear and the lead-screw gear, is of no con-
‘sequence.
Lathes with Reduction Gearing in Head-stock.

In some lathes, however, there is a reduction gearing in the head-
stock of the lathe, so that if equal gears are placed on the lead-screw
and the spindle stud, the spindle does not make the same number
of revolutions as the lead-screw, but a greater number.. Usually in
such lathes the ratio of the gearing in the head-stock is 2 to 1, so
that with equal gears the spindle makes two revolutions to one of
the lead-screw. This is particularly common in lathes intended for
cutting fine pitches or, in general, in small lathes. In figuring the
gears this must, of course, be taken into consideration. As the spindle
makes twice as many revolutions as the lead-screw with equal gears,
«if the ratip of the gears be 2 to 1, that means that if the head-stock
gearing were eliminated, and the lead-screw instead had twice the
number of threads per inch as it has, with equal gears the spindle
would still revolve the same as before for each inch of travel along
the piece to be threaded. In other words, the gearing in the head-
stock may be disregarded, if the number of threads of the lead-screw
18 multiplied by the ratio of this gearing. Suppose, for instance, that
In a lathe the lead-screw has eight threads per inch, that the lathe
is geared in the head-stock with a ratio of 2 to 1, and that 20 threads

are to be cut. Then
2X8 16 16X 4 64

20 20 20X4 80
which two last values signify the number of teeth in the gears to use.

Sometimes the ratio of the gearing in the head-stock cannot be
determined by counting the teeth in the gears, because the gears are
80 placed that they cannot be plainly seen. In such a case, equal
gears are placed on the lead-screw and the spindle stud, and a thread
cut on a piece in the lathe. The number of threads per inch of this
piece should be used for the numerator in our calculation instead of
the actual number of threads of the lead-screw. The ratio of the gear-
ing in the head-stock is equal to the ratio between the number of
threads cut on the piece in the lathe and the actual number of threads
per inch of the lead-screw.

Compound Gearing.

The cases with only two gears in a train referred to are termed
simple gearing. Sometimes it is not possible to obtain the correct
ratio excepting by introducing two more gears in the train, which, as
has previously been said, is termed compound gearing. This class of
gearing is shown in Fig. 33. The rules for figuring compound gear-
ing are exactly the same as for simple gzaring, excepting that we
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muat divide both our numerator and denominator into two factors,
each of which are multiplied with the same number in order to obtain
the change gears. .

Suppose a lathe has a lead-screw with six threads per inch, that the
number of the teeth in the gears available are 30, 35, 40, and so forth,
increasing by 5 up to 100. Assume that it is desired to cut 24 threads
rer inch. We have then,

— =ratlo.
2

By dividing up the numerator and denominator in- factors, and multi-
plying each pair of factors by the same number, we find the gears:
6 2X3 (2 X 20) X (3 X10) 40 X 30

24 4X6 (4 X 20) X (6 X1Q) 80 X 60

The last four numbers indicate the gears which should be used. The
upper two, 40 and 30, are driving gears, the lower two, with 80 and 60
teeth, are driven gears. Driving gears are, of course, the gear D,
Fig 38, on the spindle stud, and the gear P on the intermediate stud
K, meshing with the lead-screw gear. Driven gears are the lead-screw
gear, E, and the gear N on the intermediate stud meshing with the
gpindle stud gear. It makes no difference which of the driving gears
is placed@ on the spindle stud, or which of the driven is placed on the
lead-screw. )

Suppose, for a final example that we wish to cut 13 threads per
inch on a lathe with a lead-screw having six threads per inch, and that
the gears run from 24 and up to 100 teeth, increasing by 4. Proceed-
ing as before, we have

6 2X%X3 (2 X 36) X (3 X16) 72 X 48

184 1X1%4 (1 X36) X (1% X 16) 36 X 28
This is the case directly illustrated in Fig. 32. The gear with 72
teeth is placed on the spindle stud J, the one with 48 on the inter-
mediate stud K, meshing with the lead-screw gear. These two gears
(72- and 48-teeth) are the driving gears. The gears with 36 and 28
teeth are placed on the lead-screw, and on the intermediate stud, as
shown, and are the driven gears.

Fractional Threads.

Sometimes the lead of the thread is expressed by a fraction of an
inch, instead of -stating the number of threads per inch. For instance,
a thread may be required to be cut having a 3¢-inch lead. In such a
case the expression “3g-inch lead” should first be transformed to “num-
ber ot threads per inch,” after which we can proceed in the same way
as has already been explained. To find how many threads per inch
there is when the lead is stated, we simply find how many times the
lead is contained in one inch, or, in other words, we divide one by
ihe given lead. Thus cne divided by 3/8 gives us 2 2/3, which is the
number of threads per inch of a thread having %-inch lead. To find
change gears to cut such a thread we would proceed as follows:




30 ’ SHOP ARITHMETIC

Assume that the lead-screw has 6 threads per inch, ani that the
change gears run from 24 up to 100 teeth, increasing by 4. Proceeding
to find the gears as before, we have:

6 2x8 (2 X 86) X (8 X 4) X 72

2%  1x2%  (1X88) X (2% X 24) 86 X 64
The rule for finding the number of threads per inch, when the lead
is given, may be expressed by the formula:

1
number of threads per inch = ——
lead of thread

which is simply a reversal of the formula given on page 25.

‘What has been said in the foregoing in regard to the figuring of
change gears for the lathe may be summed up in the following rules:

1. To find the number of threads per inch, if the lead of a thread
is given, divide one by the lead.

2. To find the change gears used in simple gearing, when the num-
ber or threads per inch on the lead-screw, and the number of threads
per inch to be cut are given, place the number of threads on the lead-
screw as numerator and the number of threads to be cut as denom-
snator in a fraction, and multiply numerator and denominator with
tne same number uniil @ new fraction results representing suitadle
number of teeth for the change gears. In the new fraction, the
numerator represents the number of teeth on the spindle stud, and the
denominator, the number of teeth in the gear on the lead-screw.

3. To find the change gears used in compound gearing, place the
number of threads per inch on the lead-screw as numerator, and the
number of threads per inch to be cut as denominator in a fraction,
divide up both numerator and denominator in two factors each, and
multiply each pair of factors (one factor in the numerator and one
in the denominator making “a pair’) by the same number, until new
fractions result representing suitable number of teeth for the change
gears. The gears represented by the numbers in the new numerators
are ariving gears, and those in the denominators are driven gears.



CHAPTEE{ VI.

SPEED OF PULLEYS.

The principle applied to gearing in regard to the ratio between the
speeds of two shafts, may be directly applied to the question of sizes
of pulleys, with the only difference that we here deal with the number
of inches to the diameter of the pulley instead of the number of teeth
in the gear. Suppose that a shaft is required to make 300 revolutions
per minute, and that this shaft is driven from a line-shaft making 180
revolutions per minute, as shown in Fig. 34. The pulley on the line-
shaft is already in place, and is 15 inches in diameter. What diameter
should the pulley on the shaft making 300 revolutions per minute be
made?

As the belt over the two pulleys runs at the same speed as the
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circumference of the pulleys, it is clear that the circumferences of
both pulleys run at' the same speed. The pulley running a fewer
number of revolutions consequently must be larger, in order that its
circumference may run at the same speed as the circumference of the
pulley running faster in regard to number of revolutions. The ecir-
cumference depends directly upon the length of the diameter, because
we know that the circumference equals the diameter times 3.1416.
But as the factor 3.1416 would enter in the case of both pulleys, it is
not necessary to carry it along in the calculation. We can flgure
with the diameter directly, substituting the diameter for the circum-
ference, so to say. For the obtaining of our ratio of speed between
the pulleys, the diameters serve the same purpose in figuring as the
circumferences, because the ratio between the diameters is the same
as the ratio between the circumferences. Now, the circumference of
the pulley making 180 revolutions, and having a diameter of 15 inches,
passes through a distance of 180 times its circumference in one minute,
or 180 X 15 X 3.1416. The circumference of the pulley making 300
revolutions must.pass through the same distance, for as we have
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sald, the belt causes the circumferences to run equally fast. There-
fore, for each revolution the latter pulley must pass through the
~ distance 180 X 16 X 3.1416 divided by 300. This then would be the
circumference of the smaller pulley, or its diameter times 3.1416. We
can therefore write

180 X 156 X 3.1416

300 .

Ag we sald before, 3.1416 enters as a factor in both cases, and we
can therefore cancel it. Then we have

180 X 16

300

From this we can formulate a rule for all figuring of pulleys:

The number of revolutions of one shaft mulliplied with the diam-
eter of the pulley on the same shaft, divided by the number of revolu-
tions of the second shaft, gives the diameter of the pulley of the second
shayt.

W may also write this as a formula, thus:

number of revolutions x dmmeter of pulle! on
diameter of pulley on __ of first shaft first shaft i

second shaft in inches = number of revolutions of second shaft

If we know the sizes of the pulleys, and the number of revolutions
of one shaft, and want to find out the number of revolutions of the
other shaft, the method is very similar to that used for figuring
change gears. Evidently this should be so, because the diameters of
the pulleys simply express the ratio of speeds of the shaft. Suppose
one pulley is 12 inches in diameter, and another 20, and the shaft
with the 12-inch pulley makes 180 revolutions. How many revolutions
does the other pulley make?

20
Our ratio is —, Now multiply the numerator, 20, with a number
12

— diameter of small pulley X 3.1416.

—dlameter of small pulley =—9 inches.

giving 180 as result. This number is 9. Multiply the denominator
by the same number, and we get 9 times 12 equals 108 as the number
of revolutions of the second pulley. In other words, we have

20 20X 9 180

12 12 X9 108
It should be understood that the number of revolutions are in a
reverse ratio to the ratio of the diameters, that is,

diameter of first pulley _ revolutions of second pulley
diameter of second pulley ~ revolutions of first pulley

In the first ratio (of diameters), the diameter of the first pulley is
the numerator and that of the second pulley is the denominator, but
in the second ratio (of revolutions), the number of revolutions of the
second pulley is the numerator, and that of the first pulley is the
denominator.

A few examples may tend to make this clearer and fix the procedure
more firmly in the mind of the reader.

Ezample 1.—A line-shaft for a few grinding machines is required
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to run at 320 revolutions per minute, and to be driven from a main
line-shaft, running at 200 revolutions per minute. The pulley on the
main lineshaft is already in place, and is 24 inches in diameter. What
diameter ought the pulley on the grinding machine' line-shatt to be?

We find this diameter directly from our rule on page 32 saying that
the number of revolutions of one shaft times the diameter of the pulley
on this shaft, divided by the number of revolutions of the second shaft,
gives us the diameter of the pulley of the second shaft. Thus

200 X 24 4800 ’
—_——=15.
320 320

The diameter of the pulley on the grinding machine line-shaft, there-
fore, should be 15 inches.

Ezample 2.—The pulley of a machine tool is 8 inches in diameter.
The driving pulley on the line-shaft is 34 inches in diameter. It is
known that the line-shaft makes 120 revolutions per minute. How
many revolutions per minute does the 8-fnch pulley on the machine
make? - .

The diameters of the pulleys are in inverse ratio to the number of
revolutions, that is, as already said,

diameter of first pulley _ revolutions of second pulley
diameter of second pulley  revolutions of first pulley

From this we have, then, in our present example,
8 8 X 16 120

34 34X%x15 510

The 8-inch pulley, consequently, makes 510 revolutions per minute.

Ezample 3.—The largest step of a cone-pulley in the countershaft
of a machine is 12 inches in diameter. The smallest step is 6 inches.
The largest step of the cone pulley on the machine is 10 inches, the
smallest, 4. If the countershaft runs 300 revolutions per minute,
which are the highest and lowest speeds of the spindle of the machine
on which the cone pulley is mounted?

The largest step on each respective pulley runs with the smallest
step of the other. Therefore, proceeding exactly as if we had two sets
of pulleys, one set 12 and 4, and one 6 and 10 inches in diameter, we
find by figuring exactly as in our previous example:

4 4X 75 300

12 12%X17 900
and
10 10X 30 300

6 6Xx30 180
The smallest speed is therefore 180 revolutions per minute. and the
Jargect 960 revolutions.



CHAPTER VIIL

INDEXING MOVEMENTS FOR MILLING MACHINE.

The figuring of indexing movements for the dividing head of the
milling machine is a subject which many mechanics think complicated,
although it really is very simple. The index head is constructed
with a worm and worm-wheel mechanism, the worm being on the
crank turned when indexing, and the worm-wheel being mounted
on the index spindle to which the work is attached. The worm-wheel
has 40 teeth, so that turning fhe crank around one full revolution,
which also turns the worm one revolution, moves the worm-wheel
one tooth, or one-fortieth of its circumference. In the same way,
to turn the worm-wheel and the spindle on which it is mounted
around one full revolution, we must turn the i{ndex-crank 40 revo-
lutfons. If we thoroughly understand this, the figuring of indexing
movements is very easy. Suppose that we want to mill a hexagon.
We then want to turn the work one-sixth of a revolution for each
side milled. As it requires 40 revolutions of the index-crank to turn
the index-spindle once, it evidently requires only one-sixth of that
_ numnber to turn the index-spindle one-sixth revolution. Consequently,

40
the index-crank should be turned around —=—6 2/3 revolutions for
6

milling a hexagon. That is, we first turn the crank around 6 times.
and then, by means of the index-plate, we turn it 2/3 of a revolution.
This would mean 12 holes in an 18-hole circle, for instance, as 12 is
two-thirds of 18.

Suppose we should want to mill a piece of work having 8 sides,
regularly spaced. The indexing for each space is found by dividing

40
40 by 8. Then, —=—5, represents the number of turns of the index-~
8

crank for each side indexed. If we want to cut 9 flutes, regularly
spaced, in a reamer, we must turn the crank 40/9 —=4 4/9 revolutions
{0 index for each flute. The 4/9 of a revolution would correspond to 8
holes in the 18-hole circle, because 8/18 —=4/9.

In order to find which index circle to use, and how many holes in the
index circle to move for a certain fractional turn of the index-crank,
numerator and denominator of the fraction expressing the fractional
turn are multiplied by the same number, this number being so selrcted
that tne denominator in the new fraction equals the number of holes
in some index circle. The new numerator then expresses how many
holes in this circle the crank is to be moved. Suppose that we want
to Index for 12 flutes in a large tap. We first divide 40 by 12 to find
the number of turns of the Index-crank required. Writing out this
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division as a fraction, and carrying out the calculation, gives us:

40 4 1

—=83—=3—.

12 12 3 _

The fractional turn required is 1/3 of a revolution. Now multiply,
accoraing to the rule given, the numerator and denominator of this
fraction by a number so that the denominator equals the number of
holes in some index circle. Multiplying with 6 would give us
1X6 6

3 X6 18
in which fraction 18 is a number expressing the number of holes in the
index circle to use, and 6 the number of holes the crank has to be
moved in this circle to turn one-third of a revolution.

Suppose, that instead of having given a certain number of times
which the work is to be indexed to complete one revolution (as 80
for an 80-tooth gear; 6 for a hexagon nut, etc.), we instead had given
a certain number of degrees which it is required that the work be
turned before taking another cut by the milling cutter.

As there are 360 degrees in a complete circle or turn (one right
angle is 90 degrees, and the whole circle, of course, consists of four
right angles), and as 40 turns of the index crank are required for one
revolution of the work, one turn of the index crank must correspond to
360/40 =9 degrees. Then, if one complete turn of the index crank
equals 9 degrees, it is clear that if we index in the 18-hole circle, 2
holes must correspond to one degree. This is. therefore, the funda-
meatal principle or rule for indexing angular movement. Two holes
in the 18-hole circle equals a movement of one degree of the work.

Suppose that we wish to index 11 degrees. We first, then, divide’
the number of degrees by 9 to find how many complete turns the index
crank should make; and the number of degrees left. to turn when we
have completed our full turns are indexed by taking two holes in the
18-hole circle for each degree. In this case 11/9=—1 2/9, which gives us
the answer that we must turn the crank one full revolution, and then
index 2 degrees more, or 4 holes in the 18-hole circle.

It is evident that one hole in the 18-hole circle represents 1/2 degree.
when two holes represent one degree. Should it be required to index
only 1/3 degree. this may be done by using the 27-hole circle. 1f two
holes in the 18-hole circle, which is 1/9 of a turn, equals one degree,
three holes in the 27-hole circle, which also is 1/9 of a turn, must also
equal one degree; and if a 3-hole movement equals one degree, a
1-hole movement in that circle must equal 1/3 degree. Therefore, if
we wish to index the work through an angle of 48 degrees 40 minutes
(there are 60 minutes to one degree, so that 40 minutes equals 2/3
degree), we simply turn the crank five complete turns for 45 degrees
(3 X 9=145), and we have then 3 degrees 40 minutes, or 3 2/3 degrees
left. In the 27-hole circle 3 degrees correspond to 9 holes, and 2/3
degree to 2 holes, according to what we have just said. Consequently.
we turn the crank 11 holes, in all, further in the 27-hole circle to com-
plete the angular ‘movement of 48 degrees 40 minutes.
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CHANGE GEARS FOR MILLING SPIRALS.

The method for the figuring of change gears for cutting spirals on
the milling machine, is, in principle, exactly the same as that used
for flguring change gears for the lathe, but it will be mecessary to
shortly refer to the construction of the mechanism for connecting
the index head spindle and the feed-screw to make perfectly clear the
fundamental ideas governing the selection of change gears. In Fig. 35,
A I8 the feed-screw of the milling machine; and B is the gear placed on
this feed-screw, commonly called the feed-screw gear. This gear meshes
with the gear C, placed on the stud D, from which, in turn, motion is
imparted to the worm in the index head and from the worm to the
worm-wheel and the index spindle. The gear C on the stud D is called
the worm gear, because it directly operates the movement of the worm.
This expression “worm gear” should not be confused with the worm-
wheel, which {8 placed on the index spindle. The case shown in Fig. 35
is one of simple gearing. In Fig. 36 is shown a case of compound
gearing. Here B still represents the feed-screw gear, E is a gear on the
intermediate stud, meshing with gear B, and gear F is another gear
on the same intermediate stud, meshing with gear C, thus transmitting
motion from the feed-screw to the stud D by compounding the gears.

The figuring of change gears for the milling machine consists simply
in the selection of the proper gears, B and C, used in a simple train, as
in Fig. 35, or gears B, E, F, and C, as used in a compound train of gears,
as shown in Fig. 36.

In order to flgure change gears for the lathe we remember that it
was necessary to first know the number of threads per inch in the
lead-screw. Knowing that, we knew how many revolutions the lead-
screw had to make to move the carriage and the thread tool ome
inch along the work. 1ln the case of the milling machine we must
know how far the tadble travels while the index spindle makes one
complete revolution, when gears B and C, Fig. 35, have an equal number
of teeth. This distance is the constant which we use in figuring the
change gears, the same as we used the number of threads per inch
of the lead-screw in figuring change gears for the lathe. This con-
stant, which may be different for different milling machines, is called
the lead of the milling machine. We will now see how this constant
is found.

Suppose, for instance, that in a milling machine one revolution of
the worm gear, C, Figs. 35 and 36, will produce exactly one revolution
of the shaft on which the worm is placed, that is, one revolution of the
index crank. and suppose that equal gears are placed on the feed-
screw and on the stud D, so that one revolution of the feed-screw
produces exactly one revolution of the gear C and stud D. Then, if the
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feed-screw revolves one revolution, the milling machine table will
advance a distance equal to the lead of the feed-screw, because, as we
have said before, the lead of the screw is the distance which it will
advance in one turn.

Now, when the table of the milling machine moves forward a dis-
tance equal to the lead of the feed-screw, or a distance equal to one
thread in the feed-screw, the feed-screw turns one revolution, and gear
O also turns one revolution, the worm-shaft and the index crank turn
one revolution, ind, there being 40 teeth in the worm-wheel which is
mounted on the index head spindle, this worm-wheel, with its spindle,
will turn 1/40 of one revolution. To make one complete revolution of
the index head spindle, the feed-screw would have to be revolved as
many times as there are teeth in the worm-wheel, each revolution,
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a8 we have seen, moving it one tooth. The distance which the milling
machine table will advance, when the index head spindle revolves
one complete revolution, is, as we have said, the lead of the machine.
This distance evidently equals the distance that the feed-screw ad-
vances the table in one revolution (which is the lead of the screw)
times the number of revolutions made. If we assume that the feed-
screw has a lead of 14 inch, and that there are 40 teeth in the worm-
wheel on the index head spindle, the feed-screw, when the gears B and
O are equal, will have to turn 40 times, in order to move the index
head spindle around once, and the distance the table will then advance
will be 40 times 3§ inch, or § inches. In this particular case, 6 inches
i8 then the lead of the machine. If now a plece of work had been
affixed to the index spindle, it is clear that this piece of work would
have made one complete revolution, while the milling machine table
advanced 5 inches, and that the lead of the spiral cut on the work
would have been 5 inches.
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A general rule for finding the lead of a milling machine may be
stated as follows: To find the lead of a milling machine, place equal
gears on stud D, Fig. 35, and on the feed-screw, and mulliply the
number of revolutions made by the feed-screw in order to produce one
revolution of the index head spindle, dy the lead of the feed-screw.

Suppose, for an example, that it is necessary to make 40 revolutions
of the feed-screw in order to turn the index head spindle one complete
revolution, when gears B and O, Fig.. 35, are equal, and that the lead
of the feed-screw of the milling machine is 14 inch, then the lead of
the machine equals 40 X 34 inch, or 10 inches.

The rule just given is general, and will apply even if the number
of teeth in the indexing worm-wheel were different from that in
standard indexing heads, because, in the rule no consideration.is taken
of the number of teeth of the worm-wheel, directly, but simply the
number of turns made by the feed-screw to, correspond to one turn of -
the index spindle itself.

If it 18 now perfectly clear that the lead of the machine means the
distance which the table of the milling machine must move forward
in order to turn the work placed on the index head spindle around one
complete revolution, with equal gears, then we see that if we want to
get a spiral that is twice as long as the lead of the machine, we must
place gears on the feed-screw and on the stud D of such size that the
indexing spincfle will only turn half a revolution while the table
moves forward a distance equal to the lead of the machine. Suppose,
for instance, that we want to cut a spiral, having a lead of 20 inches,
that is, making one complete turn in a distance of 20 inches, and that
the lead of the milling machine is 10 inches. Then, while the table
moves forward 20 inches, we want the indexing spindle to turn once.
In order to make the table move forward 20 inches, when the indexing
spindle turns around once, the feed-screw evidently must turn twice
as many times as it did in the case when the table only moved 10
inches for one turn in the index spindle, in which case we had equal
gears on the feed-screw and on stud D. Here we then have two studs
or shafts, A and D, where we wish that the one should turn twice as
fast as the other. The ratio between the speeds, then, is 2 to 1, which
means that the feed-screw, which is required to turn twice while the
stud D turns once, must have a gear that has only half the number of
teeth of the gear placed on stud D.

If the lead of the machine be 10 inches, and the lead required to be
cut on a plece of work is 30 inches, then it would be necessary to
have the ratio between the gears 3 to 1, which, of course, is the same
as the ratio between the lead of the machine and the lead of the spiral
to be cut (30 to 10 equals 3 to 1). We can therefore express the rule
for finding the change gears by a simple formula:

lead of spiral to be cut _ number of teeth in gear on worm stud (D, Fig. 85)

lead of machine number of teeth in gear on feed-screw
Expressed as a rule, this formula would read: 7o find the change
gears to be used in a simple train of gearing, when cutting spirals on
a milling machine, place the lead of the spiral in the numerator and
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the lead of the milling machine in the denominator of a fraction, and
multiply the numerator and denominator with the same numbder, until
a6 new fraction is obiained in which the numerator and denominator
give suilable numbers of teeth.

As an example of the above rule, we will take the case of a milling
machine in which we have found that there are 4 threads per inch on
the feed-screw, and that 20 revolutions of the feed-screw are necessary
to make the index spindle turn one complete revolution when having
equal gears on A and D, Fig. 36. On a machine of this kind, assume that
it is required to cut a spiral the lead of which is 12 inches. The first
thing for us to do is to find the lead of the machine. This, as we
have already sald, is equal to the revolutions of the feed-screw neces-
sary to turn the index spindle one revolution, muiltiplied by the lead
of the feedscrew. As the feed-screw has 4 threads per inch, the
lead of the feed-screw- 1s®1, inch, and this, multiplied by 20, gives us

1 20
-4—><20=—4—-=5. To find our gears we now place the lead of the

spiral in the numerator of a fraction and the lead of the machine in
the denominator, and multiply both numerator and denominator with

t the same number until we get a new fraction in which the numerator

and denominator express a suitable number of teeth. Following this

rule, we have then:
: 12 12X 6 72

5 bX6 30

The gear with 72 teeth is placed on stud D, which, of course, is
required to revolve slower than the feed-screw, in order to cut a spiral
which is 12 inches, when the spiral cut with equal gears is only 5
inches, or equal to the lead of the machine. The gear having 30 teeth
i1s placed on the feed-screw. If it should be necessary to put an inter-
mediate gear between the gear on the feed-screw and the gear on stud
D, the number of teeth in this intermediate gear would have no influ-
ence on the ratio of the speeds of feed-screw A and stud D, but would
simply serve the purpose of transmitting motion from the one gear to
the ‘other. In Chapter IV this matter of the intermediate gear was
treated at length, and an example given showing that even a series of
intermediate gears did not influence the ratio of speeds of two shafts.

Compound Gearing.

If it is not possible to find a set of two gears that will transmit the
motion required, it will be necessary to use compound gearing. In this
case the manner of getting the compound gears is exactly the same as
that of getting compound gearing for the lathe. We have already
explained that the lead of the spiral to be cut is placed in the numnera-
tor of the fraction, and the lead of the milling machine in the
denominator. We then divide up this numerator and denominator in
two factors, the same as we did in the case of figuring lathe change
gears, and having divided them up in two factors, we multiply each two
of these factors by the same number, exactly as before, thus getting
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the gears we require. As an example, let us suppose that the lead of
& certain machine is 10 inches, and that we wish to cut a spiral the lead
of which is 60 inches. We then have:

60 6X10 (6x15)x(1oxs) 90 X 80

10 2X6 (2x15)x(5x8) 30x40

The gear having 90 teeth is placed on the stud D, and meshes with
the 80-tooth gear F' (see Fig. 36) on the intermediate stud; on the same
intermediate stud is then also placed the gear having 80 teeth, which
is driven by the gear having 40 teeth placed on the feed-screw. This
makes the gears having 90 and 80 teeth the driven gears, and the gears
having ‘30 and 40 teeth the driving gears, the whole train of gears
being driven from the feed-screw of the table.

In general, for compound gearing it may be well to remember the
rule given by the formula: .

lead of spiral to be cut _ product of driven gears

lead of machine = product of driving gears

CHAPTER IX.

SQUARE AND SQUARE ROOT.

The expressions “square” and “square root” often occur in technical
formulas, and to one unfamiliar with these names, and the mathemati-
cal operations which they signity, as well as the signs by which they
are Indicated, it may appear that difficult mathematical operations are
ifnvolved. But this is not the case.

The square of a number is simply the product of that number mul-
tiplied by itself. Thus, the square of 2 is 2 X 2—4, and the square of
3 18 3 X 3—=9. Similarly, the square of 177 is 177 X 177=231,329.
Instead of writing 177 X 177, it is common practice to signify this
operation 177*, which is read “177 square,” and simply means that
177 is multiplied by itself. Thus we have 6*=—5 X 5=26, and
27* =27 X 27=1729. The “2” at the upper right-hand corner is called
erponent. Most mechanical and engineering handbooks have tables
which give the squares of all numbers up to 1,000, so that by means
of such a handbook it is unnecessary to figure out the squares of the
numbers there given when required, by actual multiplication. The
square of numbers is very much used in solving many of the prob-
lems occurring in the machine shop.

The square root of a number is that number which, lf multiplied
by itself, would give the given quantity. Thus, the square root of
4 is 2, because 2 multiplied by itself equals 4. The square root of 25
is 6, and so forth. 1t will be noticed at once that the square root is
simply the reverse of the square, so that if the square of 25 is 625,
then the square root of 625 is 25. The mathematical sign for the
square root is 4/, Thus, \/4=2, \/16=4, and so forth. The engin-
eering handbooks give tables of the square roots of all numbers up to
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1,000 or more, so that the process of actually figuring the square root,
which is rather complicated, and which space does not permit to deal
with here, has been omitted.

In the same way as we write 2°=—4 we can write 2*—=38, in which
case 2°=2 X 2 X 2=38, the exponent indicating how many times the
number given is to be repeated as factor. Simlilarly, 4+—=4X 4 X 4=
64. The expression 4* is read “4 cube” or “the third power of 4.” The
expression 2° would mean that two is to be repeated as factor five
times; thus, 22 =2 X 2 X 2 X 2 x 2 = 32. The expression 2* is
read “the.fifth power of 2.”

In the same way as the square root means the reverse of square, so
cube root means the reverse of cube (or “third power”), that is, the
cube root of a number is the number which, if repeated as factor three
times, would give the number given. Thus, the cube root (or “third
root”) of 27 i8 3, because 3 X 3 X 3=27. We see, of course, that if
the cube of a number, as 5, is 126 (6 X 6§ X 5==125), then the cube
root-of 125 is 5. The sign for the cube root is . Thus, B'8=2 (be-
cause 2 X 2 X 2=38), and P 27=3 (because 3 X 3 X 3=27). Similar-
ly $/126 =5, and 1728000 =120.

If we want the number which repeated as factor four times gives a
given number, we must get the “fourth root” or i, . Thus, \[ﬁ-—a
because 3 X 3 X.3 X 3=281. Similarly we write the fifth root, 3/ ; and
we write {/32=2, because 2 X 2X 2 X 2 X 2=32.

8 x4

After this explanation, formulas reading ————— \/ 36 do not any longer

look 80 mysterious.
If we simplify, according to the meanings given to squares and
square roots, we have:

— I — T e = 3
\/ 786 6 6
Similarly,
P+ P66 8+6 9
= =-=1,
8s 9 9
and

5* +4* 25+16 41

54 625 625
Right Angle Triangles.

One of the most common applications of the squares of numbers is
that of the right angle triangle, as shown in Fig. 37, in which angle 4
is a right, or 90 degree angle. If we assume the lengths of the sides
to be b inches, 4 inches, and 3 inches, respectively, as indicated on the

cut, we find that

6*=—4*4- 3% or 26 =16 + 9.
This holds good for all right angle triangles. The square of the side
opposite the right angle equals the sum of the squares of the sides
including the right angle.
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Suppose, for Instance, that in Fig. 38 we know the length of the
two sides including the right angle to be 6 inches and 8 inches, and we
want to know the length of the side BC opposite the right angle,
Then the sum of the squares of the two given sides which include the
right angle equals the square of the side opposite the right angle, and
the square root of this number must be the length of BCO. Thus

. 6* + 8 = 36 + 64 = 100.

The square of the length BC is then 100, and the length itself is the
square root of 100, or Vv 100=10. The side BC is therefore 10 inches
long.

If we knew that BO was 10 inches, and AB 8 inches, and wanted to
find AC, we would subtract the square of AB from the square of BC to
find the square of AQ, or

10* — 8*=100 — 64 — 36 —square of AC.
V36 =—6 —1length of AQ.

A little thought, of course, at once convinces us that if the sum of

two numbers equals a third, then if one of the first numbers is sub-

__}[_.C

A T :
mg. 87. Fig. 88. Hackinery, 2.1
tracted from the third, the remainder equals the other of the given
numbers. Thus, in Fig. 38, we have the square of AB plus the square
of AC equals the square of BC; and the square of BC minus the square
of AB equals the square of AC; and, finally, the square of BO minus
-the square of AC equals the square of AB. In this case, where the sides
are 10, 8, and 6 inches, respectively, we then have
8+ 6°=10% or 64+ 36—=—100.
10* —8*= 6 or 100 — 64— 36.
10— 6*=— 8?, or 100 — 36— 64.
As general formulas we may write this,
AB* 4+ AC* = BC*, or BC = \/AB" + AC?
BC* — AB* = AC*, or AC =+/BC* — AB?
BC® — AC* = AB*, or AB=+/BC* — 4C*

These last formulas say, that no matter what the actual numerical
values of the sides AB, AC, and BC, the relationship between thefir °
squares, as expressed by the formulas, holds true for any right angle
triangle. . This carries us directly in on the subject of the use of
formulas for expressing mathematical and engineering facts and data.



CHAPTER X.

USE OF FORMULAS,

As we have said before, if the three sides in a right angle triangle

are 10, 8, and 6 inches long, respectively, we know that
10> =8+ 62

But if we write the formula in this manner, although it may be
true for this particular triangle, there is no indication of that the
same relationship holds good for any right angle triangle. If, however,
we substitute the numbers giving the lengths of the sides by the letters
a, b, and ¢, we have

. o' =b+c, )
and this formula expresses the rule given for any right angle triangle,
where the length of the side opposite the right angle is @, and the
length of the sides including the right angle b and ¢. The letters
simply stand in place of the figures that would de applied in each par-
ticular case.

Formulas serve the purpose of expressing shortly and precisely some
general law or relationship in calculations. Each letter stands for a
certain quantity, and when we figure any special case we put the
figures for this case into our formula, and figure as usual. Some
examples will make this clear.

If we return to the guestion of figuring tapers, we have on page 6
the formula
1a; dia. — .

rgl::::;:l: of.::lrlkdh x 1.

Now this formula can be expressed far more simply by putting letters
in place of the various quantities given. Let, for instance,

t =taper per foot,

a=1large dlameter of work,

b—small diameter of work, and

taper per foot =

* 1=1length of work. )
Then our formula would take the form:
a—D>
t= X 12,

- 1
It we apply this formula to the example shown in Fig. 9, we have
directly,

13—-14 i} 15 1 15 2 1 8
t= X12=—X12=(—+7-))(12=—X—X12=—X12=—.
('} % 64 2 64 15 82 8

As t stands for the taper per foot, this, consequently equals 8§ {nch,
It is seen that the dimensions for the large and small ends of the work,
the length, etec., are simply put in place of the letters in the formula,
and then simple arithmetic is applied. Formulas are very easy to use
if this is understood. It is only necessary to know exactly what quan-
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tity each letter stands for, and then put the numerical value of that
quantity into the formula.
The formula for finding the number of teeth in the change gears for
a lathe may, for instance, be written,
IXa T

cXa t

in which formula
!—number of threads per inch on lead-screw,
¢ =number of threads to be cut,
@ =the number by which numerator and denominator is multiplied to
find the number of teeth in change gears,
T =—number of teeth in spindle stud gear, and
=—number of teeth in lead-screw gear.
Suppose now that we want to cut 16 threads per inch in a lathe hav-
ing a lead-screw with 6 threads per inch, and let the number with

END VIEW OF PIECE
FORMING TOOL TO BE FORMED

Machinery N.Y.
rig. 39.

which we multiply numerator and denominator be 6. Then, by put-
ting these figures in place of the letters in the formula we have:
6X6 3 T

Consequently 7', or the number of teeth in the spindle stud gear, is
36, and ¢, or the number of teeth in the lead-screw gear, is 96. ’

A useful application both of the use of formulas and of the square
and square root of numbers, is found in the problems occurring when
figuring forming tools. .

Formulas for Oircular Forming Tools.

When laying out circular forming tools, such as shown in Fig. 39,
the cutting edge, as is well known, must be located a certaln amount
below the horizontal center line of the tool, in order to provide for
sufficient clearance for the cut. On account of this, the actual dif-
ferences of diameters in the pilece of work to be formed cannot be
directly copied in the forming tool. The distance A in the piece to be
formed must equal the distance @ on the forming tool, but as this latter
distance is measured in a plane a certain distance b below the hori-
zontal plane through the center of the forming tool, it is evident that
the differences of diameters in the tool and the piece to be formed
are not the same. A general formula may, however, be deduced, by use
of elementary geometry, by means of which the various diameters of
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the forming tool may be determined if the largest (or smallest) diam-
eter of the tool, the amount that the cutting edge is below the center,
and, of course, the diameters of the piece to be formed, are known.
If R=the largest radius of the tool,
o = difference in radii of steps in the work, and
b=—amount cutting edge is below center,
then, if r be the radius looked for,

r=A/ (VR =b* —a)* + b
If the smaller radius r is given and the larger radius R sought, the
formula takes the form:
R=A(/r" —b" +a)* + b
Suppose, for an example, that a tool is to be made to form the plece
in Fig. 40. Assume that the largest diameter of the tool is to be 8
inches, and that the cutting edge is to be 14 inch below the center of
the tool. Then the diameter next smaller to 3 inches is found from
the formulas given by inserting the given values: R-=—=11% Iinch,

Q1
L ]
4"

Machinery,N.Y.
Fig. 40.

d=1% inch, and a=1 inch (half the difference between 4 and 3%
inches; see Fig. 40).
Then

5.017

r=V VAN - @ - D+ D =V WVHE-D R ="
=1.264 inch.

‘While the formula looks complicated, by means of a table of squares
the calculations are easily simplified and can be carried out in three
or four minutes. The value of r being 1.264 inch, the diameter to make
the smaller step of the forming tool will be 2.508 inches, instead of 214
inches exact, as would have been the case if the cutting edge had been
on the center line.

A parenthesis ( ) used In a formula indicates that all the operations
of figuring inside of the parenthesis are to be performed first, before
‘we go turther Thus, for instance,

R R e

It 18 common in formulas to leave out the multiplication sign (X)
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between two letters and write them together without any sign at all.
Thus ed means @ X b, and the expression
2APLN ZXAXPXLXN

33,000 33,000
Using Decimal Equivalents Instead ot Common Fract.long

It seems to be the general impression that it is easier and quicker
to use the decimal equivalent of a fraction, instead of the fraction
itself, when multiplying or dividing. There are very few cases, how-
ever, where the calculation can be made simpler by this substitution,
and the results obtained are invariably less correct, hecause all +h»
decimals which are necessary to correctly express the \“lue o’ tnh:
fraction are, as a rule, not used, and when multiplying, ar. original
eirror of only one-half thousandth inch may finally cause serious
errors In close work.

An example will plainly ﬂlustrate this assertion. In a certain prob-
lem the formula reads:

a4+ (b—c)d

2 (a — ¥%c)

Now suppose that ¢ = 11/16, b — 1%, and ¢ = %. Then, if the
formula I8 written with decimal equivalents substituted for the let-
ters, and these equivalents are given to the thousandth of an inch, as
is most common, the formula would read,

0.687* + (1.5—0.76) 1.5

Proceeding we find 2 (0.687 — 0.375)
. 0.472 4 1.126  1.597
R

0624  0.624
‘1f instead of using decimal equivalents for the fraction originally
given in the problem we use the fractions themselves, we would

write
1
——1-
2
=
16 8
Simplifying this expression we find
121 1 121
—_t+1- —+9
2566 8 82 409
= = = — = 2.556
5 5 160

We notice in the first place that the denominator 0.624 ought to have
been 0.626 or 55, and further, the final result shows a difference of
0.003 inch, which is enough to spoil many a job which may not even be
required to be of extreme accuracy. This error is all due to the seem-
ingly small original error of writing 0.687 instead of 0.6875.




CHAPTER XI.

USE OF TABLES OF SINES. COSINES, TANGENTS
AND COTANGENTS.

The figuring of angles the average machinist usually looks upon as
something above his capacity, and regards the knowledge of this mathe-
matical process with more or less awe. But simple cases of the figur-
ing of angles from given formulas are very easy, indeed; in fact, these
cases are often much simpler than many ordinary arithmetical prob-
lems in the shop which the machinist tackles with success. All that is
necessary 18 a table of sines, cosines, tangents, and cotangents; after
bhaving found the flgures corresponding to a given angle from the
table, the whole thlﬁg resolves itself to a case of simple multiplication
or division.

Often, in technical papers, the reader will find himself confronted
by such formulas as, for instance, o1

A=—
cos 36 deg.

Of course, it is impossible to figure out how much A is from this
formula, unless the expression ‘“cos 36 deg.” (read: cosine of 36
degrees) can be transformed and expressed in plain figures. But if we
know how much ‘“‘cos 36 deg.” is expressed in plain figures, then we
can immediately divide 27 by this value, and thus find the value of A.
Suppose that A stands for the length of one side in a triangle, and
that the expression “cos 36 deg.” equals 0.80901. Then,

27
= = 33.37.
0.80901

The tables of sines, cosines, tangents, and cotangents simply serve
the purpose of giving in flgures the values of these expressions for
different angles. The angles are given in degrees and minutes. A right
angle is 90 degrees (90°), and each degree is further subdivided into
60 minutes (60’). The four expressions: sine, cosine, tangent, and
cotangent, which are used to designate certain numerical values, to be
found from the tables, are called the functions of the angle. These
functions or numerical values equal a definite amount for each dif-
ferent angle. On pages 48, 49, 650, and 51 will be found tables giving
the values referred to for all degrees and for every ten minutes (1/6
of a degree). The four expressions sine, cosine, tangent, and cotan-
gent are abbreviated “sin,” ‘““cos,” “tan,” and “cot,” respectively.

The tables of sines, cosines, etc., are read the same -as a railroad
time-table. It will be noticed that at the top of the tables on pages
48 and 49 the heading reads “Table of Sines,” and at the bottom
of the same tables it says “Table of Cosines.” At the top of the two
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TABLE OF SINES.

Read degrees in left-hand column and minutes at top.

Example: sin 7° 10’ = .12475.

PR BRRRRRRBRSEBRRRRBEREES

o 10 2 4 w 4 o
.00000 | .00291 | .00581 | .00872 | .01163 | .01454 | .01745
.01745 | .02086 | .02826 | .02617 | .02008 | .08109
.03480 | .03780 | .04071 | .04361 { .04652 | .04948 | .05288
.05238 |’ 05814 | .06104 | .06395 | .06685 | 06975
08975 | .07265 | .07556 | .07845 | .08185 | .08425 | .08715
.08718 09205 | .09584 | .08874 | .10163 | .10452
10452 | 10743 | .11031 | .11820 | .11609 { .11898 | .13186
12188 .12475 | .12764 | .18052 | .13341 | .18620 | .18917
18917 | .14205 | .14498 | .14780 | .15068 | .15856.| .15648
.15648 | .15980 | .16217.] .16504 | .16791 | .17078 | .17864
.17864 | .17651 | .17987 | .18298 | .18500 | .18795 | .19080
19080 | .19366 | .19651 | .19986 | .20221 | .20500 | .20791
.20791 | .21075 | .218569 | .21644 | .21927 | .22211 | .224905
.32405 | .22778 | .23061 | .23844 | .28627 | .28000 | .24182
.24102 | .24474 | 24756 | .25088 | .256819 | .25600 | .25881
25881 | .26163 | 26443 | .26728.] .27004 | .27284 | .27563
27563 | .27848 | .28123 | .28401 | .28680 20287
29287 | 20515 80070 | .30847 | .30624 | .80001
.80901 | .81178 | ,81454 | .81780 | .82000 | .82281 | .32556
.82656 | .82881 | .83106 | .83380 | .33654 | .38028 | .34202
.84202 | .84475 | .84748 | .85020"| .85203 | .85565 | .85886
.85886 | .86108 { .36379 | .86650 | .86920 | .87190 | .87460
.87460 | .87780 | .87099 | .838268 | . 88805 | .89078
<89078 | .89840 | .808607 | .30874 | .40141 | .40407 | .40678
.40678 | .40089 | .41204 | .41460 | .41783 | .41998 | .42261
42261 | 42525 | .42788 | .43051 | .48318 | .48575 | .48887
.48837 | .44008 | .44859 | .44619 | .44879 | .45189 | .45809
.45399 | 45658 | .45916 | .46174 | .46482 | .46600 | .46947
.46047 | 47203 | .47460 | 47715 | .47971 | .48226 | .48481
.48481 | .48735 | .48080 | .40243 | .49495 | .49747 | .50000
.50000 | ~.60251 | .50508 | .50758 | .51004 | .51254 | .51508
51508 | .B1752 | .52001 | .52240 | 52497 | .52745 | .523091
.52001 |..58288 | .58484-| 58730 | .53075 | .54219
.54468 | .54707 | .54950 | .55198 | .55436 { .55677 | 55019
55019 | .56160 [. .56400 | .56640 | .56880 | .57119 | .57857
57857 | .57506 |-.57883 | .58070 | .58300 | .58543 | .
58778 | .59018 | .59248 | .50482 | .50715 | .59048 | .60181
.60181 | .60418 {-.60845 | .60876 | .61106 | .61386 | .61568
.61566 | .61795 | .62038 | .62251 | .62478 .62082
.62083 | .68157 | .63383 | .63607 | .68882 | .64055 | .64278
.64278 | .64501 | .64728 | .64044 | .65165 | .65886 | .65605
.65605 | . .66043 | .66262 | .66479 | .60696 | .66018
.66918 | .67128 | .67844 | .67569 | .67778 | .67986 | .68199
.68199 | .68413 | .68624 69046
.69465 | .60674 | .69883 | .'70000 | .70208 | .70504 | .70710

00 174 w 4 20 10 o

§ 552282292728 322322222232 833N IINIITRIBLRRIBS

Read degrees in right-hand column and minutes at bottom.

TABLE OF COSINES.

Example: cos 56° 20' = .55486.
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TABLE OF SINES.

Read degrees in left-hand column and minutes at top.
Example: sin 56° 20 — .88227.

49

-80885
80001 | .81072 | 81243 | .81411 | .81580 | .81748 | .81915
81915 | .82081 | .82247 | .82412 | .82577 | .82740 3

85716 -86014 | .86162 | .86310 | .86456

866023 | .86747 | .86893 | .87035 | .87178 | .87820 | .87462
87462 | .87602 | .87743 | .87881 88157 | .88204
88294 | .88430 | .88566 | .88701 88968 | .89100
89100 | .89283 | .80863.| .80493 | .89622 |..89751 | .80879
89870 { .90006 | .90132 | .00258 | .90383 | .90507 | .90630
90680 90875 | .90096 | .91116 | .01285 | .91854

B T T .

g
®

TABLE OF COSINES.

Read degrees in right-hand column and minutes at bottom.

Example: cos 7° 10’ = .99218.
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TABLE OF TANGENTS.

Read degrees in left-hand column and minutes at top.
Example: tan 7° 10’ = .12578.

CHADA I RWO 5’

.83010

.93251
.96568

63707'

.68728

.71829

76782
79543

.82483

.85408
.88472

.01633 | .9

94896
.98269

.52798

.57847
598690

.64528
.687028

.12210
.74900

- .T7661

.83415
.86419
89515
.92709

99419
10’

g 3T b SRR RS SRR EEE RE R FEE S T4 S8 3

Read degrees in right-hand column and minutes at bottom.
Example: cot 56° 20 =

TABLE OF COTANGENTS.

.66607.
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TABLE OF TANGENTS.

Read degrees in left-hand column aud minutes at top.
Example: tan 56° 20’ = 1.5018.

51

SEHERAN §
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1.0058 | 1.0117
1.0415 | 1.0476
1.0786 | 1.0849
1.1171 | 1.1336
1.1571 | 1.1639
1.1988 | 1:2059°
1.2423 | 1.2496
1.2876 | 1.2054
1.8351 | 1.8432
1.8848 | 1.8033
1.4370 | 1.4459
14919 | 1.5018 |-
1.5497 | 1.5596
1.6107 | 1.6212
1.6753 | 1.6864
1.7487 | 1.7555
1.8164 | 1.8290
1.8040 | 1.9074
1.9768 | 1.9911
2.0855 | 2.0809
2.1609 | 2.4774
2.2687.| 2.2818
2.8750 | 2.8944
2.4959 |.2.5171
2.6219 |'2.6510
2.7725 | 3.7980
2.9818 | 2.9600
3.1084 | 8.1897
3.3052 | 8.8402
8.5260 | 8.5655
8.7759 | 3.8208
4.0610 | 4.1125
4.8806. | 4.4404
4.7728 | 4.8430
5.2256 | 5.3002
5.7693 | 5.8708
6.4348 | 6.5605
7.2687 |-7.4287
8. 8.5555

2.0056
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Read degrees in right-hand column and minutes at bottom.

TABLE OF COTANGENTS.

Example: cot 7° 10' = 7.9580.
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following pages the heading reads “Table of Tangents,” and at the
bottom of these pages is the legend “Table of Cotangents.” At the
top of the tables themselves we find that the heading of the extreme
left-hand column reads “Deg.” and then the following columns are
headed 0, 10/, 20’, and so forth. If we look at the bottom of the pages,
we find the same legends under the columns, but reading from the
extreme right-hand column to the left. The purpose of this will be
immediately explained.

‘When we wish to find the sine or tangent for a given angle, we first
find the number of degrees in the extreme left-hand column of the
respective tables, and then the number of minutes at the top of the
columns. We then follow the column over which the number of min-
utes i8 given downward until we come to the figure in line with
the given number of degrees. This figure is then the numerical value
which we call the sine or the tangent, as the case may be, for the
given angle, If the angle is given in even degrees, with no minutes
given, the corresponding value will be found opposite the number of
the degrees in the column marked 0’ (the sign ’ indicates minutes,
just as the sign ° indicates degrees).

The cosines and tangents of angles are found in the same tables as
the sines and tangents, but when we want these quantities we read
the tables from the bottom up. The number of degrees we find in
the extreme right-hand column, and the number of minutes at the
bottom of the columns. This is the reason that we read the legends
“Cosines” and “Cotangents” at the bottom of the pages, because these
functions are read from below and up. If the number of minutes given
should not be an even number, as 10’, 20’, 30°, etc., but 26’, for Instance,
it is, for nearly all calculations in the shop, near enough to take the
figures given for the nearest given number of minutes, being in this
case, then, for 30 minutes.

If we now return to our formula

A=

27

cos 36 deg.'

we find in the table on page 49, opposite 36 degrees in the right-hand
column aud in the column marked 0’ at the bottom, the figures 0.80901.
This is the cosine for 36 degrees, and should be placed in the formula
instead of the expression “cos 36 deg.” We have, then, as we have
already shown, 97

A=

0.80901

which we can calculate by simple division.
. Suppose the angle had been 36 degrees 20 minutes, instead of 36
degrees even. We then would have read the figures in the colummn
marked 20’ at the bottom, and opposite 36 degrees we would have found
0.80558. A few more examples will tend to make the use of these
tables clearer.

In a right angle triangle, as shown in Fig. 41, the side BC, which is
opposite the right angle, equals the side AB divided by the cosine of
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the angle B, included between these two sides. Expressed as a formula
this rule would be:
AB
BO—=——-.
cos g
In a particular case let us assume that AB equals 6 inches and the
angle B is 37 degrees. How long is the side BC?

6
According to our formula, B0 =-————— The cosine for 37 de-
cos 37 deg.

grees we flnd from the table to be 0.79863. Then BC —
0.79863

=17.61

inches.

In order to become familiar with the use of the tables, let us find
the sine for 56 degrees 20 minutes, or, as it is written in formulas,
sin 56° 20°. The “sines” are found by reading the tables from the top.
Find 56 in the tables of sines in the left-hand column and read off the
value 0.83227 in the column marked 20°. This is the sine 56° 20’.

Find the tangent for 56 degrees 20 minutes, or, as it is written,
tan 56° 20°. Exactly in the same way as we found the sine, we find
the tangent in the tables headed “Tangents” to be 1.5013.

The cotangent for the same angle (cot 56° 20’) is found by reading
the table from the bottom, first finding 66 in the right-hand column,
and the required value in line with this figure 56 in the column marked
‘20’ at the bottom. The totangent of 56 degrees 20 minutes we thus
find to be 0.66607.

These tables are constantly used when flguring triangles. In every
triangle, if we know the length of all the three sides, or of two sides
and the measure in degrees of one angle, or of one side and two angles,
we can figure the other sides or angles by means of certain formulas
into which these angular functions enter.

Suppose, for instance, that we call the three sides in a right angle
triangle a, b, and c, as shown in Fig. 42, and the angles opposite those
sides 4, B, and C. The angle A, of course, is a right or 90-degree angle.
Then, for all right angle triangles these formulas hold true:

b b
a= H a= ;
cos C . sin B
c [
a= H a= ;
cos B sin C
b—acos C; b=asin B;
b=ctan B; D=ccotC;
c=—acos B; c=asinC; .
c=>btanC; c=2> cot B.

It will be remembered that expressions such as ¢ cot C mean simply
¢ X cot C.

By means of the formulas given above, and a table of sines, cosines,
etc., either of the sides in a right angle triangle may be found when
one side and one angle, besides the 90-degree angle, are known. If
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two sides are known, but no angle outside of ﬁe 90-degree angle, the
third side may be found from the formulas on page 42, and the
angles found from the formulas:

] c
sin B=—; . C08 B—=—;
a a
b c
tan B=—; cot B=—;
c ]
c - ]
sihC=—; cos 0 =—;
e a
[ d h
tan(,'——-' cotc'——_
b c

Thus, suppose that in Fig. 42 b—4 inches and ¢—=3 inches.
Then a =/ {4)® + (8)® = /16 + 9 = 4/25 = 5 inches.
To find angle b, write
d 4
sin B =—=——=—0.800,
[} [
and from our table of sines, finding 0.800 in the column marked 10’ at

/

c ¥
(]
»
e
37 \1\

’

A -B 1 H

< pLd . ! ” 1

b L4 » ; b el
Maskdnery X T.

Fig. 41 . Fig. 48.

the top of the page, we find that the angle B is 53 degrees 10 minutes,
very closely. Angle O is found from formula’

This angle is then 36 degrees 50 minutes as read from below in the
tables of cosines at the bottom.

For the finding og any angle or side in any triangle when the
requisite number of sides or angles are given, the chart on page 65, and
the tables of angular functions are used. The whole process consists
merely in finding the corresponding value of the function of the angle
in the table, insert it into the formula, and figure as if the whole were
simple arithmetic. This simple process of figuring angles embodjies the
principles of what is called, in mathematics, Trigonometry. But com-
plicated names do not, as we have seen, necessarily imply complicated
‘processes of figuring.

We will figure an example to show the use of the chart on page 65.
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CHART FOR SOLUTION OF TRIANGLES.*

" Parts o be found.
Rarts.
Glven = b= Cn LA L8 LC
PrCP ¥
oo-c . T e s
bsind ., SIA.
b-C-LA | o e m |54 o €
—c- asin8 csin8
g-c-tb o poe cas 5 Gacasn™A| Fecasy e
- [4 )
a-b-Lc 5™ 20 cas C | -acas € b"a‘-gmcb’_a
a-0-14 ogmc L3indegpnp | 180°-cars)
a-b-L8 boine |a3inBuging 100%C4+8)
amC-s4 o | 180%CArC) | S0 gy ¢
a—~c-4C %’.-:"_”cg ﬂéﬂ-’;ﬂ A 2(A+C)
v-c-18 g " 10%(84C) €388 ginC
»-c-LC ‘;;:,”' #0%(8+¢) | 220.C 2 sin g
a-LA-LE asnp agnc #0°(418)
a-tA-LC agnf | aghc #80°CA+C)
a-18-tc eng | 2t | motisec
b-24-18 | t5nd Lync .| mocarm
S/inA inC o
b-18-Lc | £524 b 180 C8¢C)
c-ea-8 | <22 ‘W’;” g 180°~(A+5)
—ym inA csin8 . . c4vC,
c~LA-LC %f/’T”C' She /80°=(ArC)
c-28-s¢c | <324 cging 180°-(87C)
€ Nore /i~ Bymeans of tne fatke any part of an obligue Friangle
may b rourc sierr any 1978 orher parrs are givern,
with the following exceptior :
) a Given 1mo sides and e arghe /7% one of fherr; 1her,
1 1he sidle anpasite /3 kess Hhan the adjacent X 1he sine
of he ang/e, the friang/e ks impossible; or/f e s/icle
site = rhe ad/acent X rhe sine of e ang/e,
A 8 the friangle /s a right Friangle; or /7 fhe side oo~
Fig. /. posife is Jess thoan The cent bvY does rrol come
under, the adore, he triangle /s capabl/e of fwo
sdiutions and con be drawn as in Fig 2 as we//
as in Fig./.

Note 2~ In Some cases wo s/eps are mecessary roso/re,
as for example, haring given sidks a and b and
angle A4, fo r/nd c: e formeu/a reads
c= %ﬁ but angle € must firs? be derived from

” C= /80°~ A+ B), and the same app/res
£7g.2. %o ofher ang/es in cerfarn cases as /s agparent abore.

* Reproduced from MACHINERY'S Data Sheets, February, 1908. Contributed by E. A. Johnson.
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Assume that in a triangle as shown in Fig. 43, one side c¢ is known
to be 6 inches long. The angle A equals 50 degrees and B is 68 de-
grees. How long are sides @ and b, and how many degrees is angle 0?

The parts given are side ¢ and angles A and B. We, therefore,
first find In our chart the line containing the formulas corresponding .
to our problem. We find that the extreme left-hand column is headed
“Parts given,” and following it down we finally find “c— / A— £ B,’

Pz

°-
L Y
[} A ,
r ¢~¢inch 7 Mackiney KT
Fig. 48.

in which the sign / simply stands for “angle.” In line with this in
the table we find the formulas for finding the sides a and b, and the
angle 0 (£ 0), as follows:

esin A csin B :
a= ; b= ; 0=180°— (A 4 B).
sin C sin ¢
Substituting in these formulas the values for ¢, A, and B, we have:
6 X sin 50 deg. 6 X sin 68 deg.
¢ = =
sin C sin 0

In these formulas, however, we filnd that sin C is required. The
angle C is found from the third formula given:
¢ =180° — (50° 4 68°) —180° — 118° —62 degrees.
We have then,
6 X sin 50 deg. 6 X sin 68 deg.
== b
sin 62 deg. sin 62 deg.
We now find, from our tables of sines, the value of the expressions
“sin 50 deg.,” “sin 62 deg.,” and so forth. These values we put in plaee
of these expressions in our formulas, and obtain:

6 X 0.76604
=——=5.206,
0.88294
6 X 0.92718
b—=————=—6.301. .
0.88294

We have thus found that the sides @ and b equal 5.206 and 6.301
inches, respectively, and the angle C, 62 degrees.
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