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CHAPTER I.

FIRST PRINCIPLES OP GEARING.

Gear wheels are such common objects about the machine shop, and

are manufactured with such rapidity and ease by the aid of the modern

automatic gear cutter, that many seldom stop to think what they

really are, why the teeth must be constructed with certain curves,

and what it is desired that they shall accomplish. In a following

chapter we shall take up some of the practical questions, touching

upon the calculations that come up in the shop, but will here deal

chiefly with a few of the theoretical points of the subject that are

seldom explained in a simple manner for the benefit of those who have

had neither the time nor the opportunity to look into matters of this

kind.

Suppose there are two wheels arranged as in Fig. 1 with their faces

in close, frictional contact, and that both are exactly the same size, so

 

pig. 1.

that when the crank is turned around once, wheel B will turn exactly

once also, provided, of course, there is no slipping between the two

wheels. It must be noticed, moreover, that if the crank be turned uni

formly, wheel B will not only make the correct number of revolutions

relative to A, but it will revolve uniformly, as well; that is, both its

total motion and the motion from point to point will be correct.

Now there are many places in machine construction where the slip

ping inseparable from friction wheels cannot be tolerated, and this

difficulty might be overcome by fastening small projections to one of

the wheels, as on A in Fig. 2, and cutting grooves in the other wheel,

B. Then, if the crank were turned, wheel B would always make just

the right number of turns, even if considerable power were transmit

ted. It is probable, however, that these projections and grooves would

not fulfill the purpose of gear teeth. What is wanted of gear teeth is

that they shall give exactly the same kind of motion as corresponding

friction wheels, running without slipping. They must not only keep
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the number of revolutions right, but they must give a perfectly even

and smooth motion from point to point or from tooth to tooth.

Fig. 3 will show clearly how such a result is obtained. It represents

the friction wheels with teeth fastened to them, the teeth, of course,

extending all the way around instead of part way as shown. These

teeth are set so as to be partly without and partly within the edges

of the two wheels, as obviously they will give better results thus

arranged than with all the projections on one wheel and all the grooves

or depressions on the other, as in Pig. 2.

 

Pig- 2.

With the wheels fitted in this way it can be proved that the only

conditions which must be fulfilled in order that the teeth shall give

wheel B the same motion that it would have if it were driven by

frictional contact with wheel A is that a line drawn from the point O,

where the two wheels meet, to the point where the tooth curves touch

shall be at right angles to both tooth curves at this point, whatever the

 

Pig. 3.

position of the gears. For example, in Fig. 3, two of the teeth touch

at h. If the curves are of the right shape, a line mn, drawn through

h and 0, will be at right angles to both curves at point U. This is

the law of tooth curves, and it makes no difference what the shape of

the teeth is, so far as their correct action is concerned, if this law

holds true for every successive point where the teeth come in contact.

In technical language the "friction wheels" mentioned are known

as "pitch cylinders," and they are always represented on a gear draw

ing by a line—usually a dash and dot line—called the ."pitch line." As
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teeth are generally proportioned, this line falls nearly, but not quite,

midway between the tops and bottoms of the teeth, the inequality

being due to the space left at the bottom of the teeth! for clearance.

The diameter of the pitch cylinder is called the "pitch diameter."

Involute System.

We are now ready to consider the particular forms of teeth most

often used. The one that is at present most in favor is the involute

tooth, the term "involute" being the name of a curve described by the

 

Fig. 4.

end of a cord as it is unwound from another curve. For example, to

draw an involute, wind a cord around a circular disk of any con

venient material, and make a loop in the outer end of the cord. Lay

the disk flat on a piece of paper, and with a pencil in the loop, unwind

the string, keeping it drawn tight, and let the point of the pencil trace

a curve, which will then be an involute.

In Fig. 4 is shown how the same principle is applied to forming

tooth curves. A and B, with centers at M and N, are two disks which
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serve the purpose of pitch cylinders. G and D are two smaller disks

fastened to the larger ones and around which a cord is stretched and

fastened at points O and H. When either disk is turned, the cord is

supposed to pull the other one around at the same speed that it would

go if moved solely by frictional contact between disks A and B. To do

this, it is simply necessary to have the disks C and D in the same

ratio as A and B. If A, for example, is half as large as B, then C

must be half as large as D.

To make room for drawing the curves, let pieces F and E be fastened

to the large and small wheels, respectively. With a pencil fixed at

point d on the cord, turn the wheels in the direction of the solid

 

Fig. 5.

arrow, meanwhile moving the pencil outward, and the curve db will

be described, which will be a suitable tooth curve for the larger wheel,

and which it can be proved will answer the requirements of the gen

eral law. Starting again with the pencil at o, and turning the wheels

in the direction of the dotted arrow, and moving the pencil outward, a

similar curve, ac, for the smaller wheel will be traced.

The circles representing the disks C and D are called "base circles,"

and in practice are drawn at a distance from the pitch circle of about

one-sixtieth of the pitch diameter. This brings the angle, KOd, called

the angle of obliquity, in Fig. 4. about 14% degrees; and although it

is not by any means certain that this is the best angle, it is the one

commonly used.
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Cycloldal System.

Take a silver dollar and roll it along the edge of a ruler, holding

the point of a pencil at the rim of the dollar, so that as the latter rolls,

the pencil will trace a curve. This curve is a cycloid. Should the

dollar be rolled on the edge of a circular disk, however, the curve

traced would be an epi-cycloid, and should it be rolled on the inside of

a hoop, it would be called a hypo-cycloid. These curves are employed

for the teeth of the cycloidal system of gears.

In Fig. 5 it is shown how the face or the outer portion of the tooth

is rolled up by the point A on the outer rolling circle, and how the

flank or inner portion is generated by point B on the inner rolling

circle. In this case the hypo-cycloid and flank are straight lines, the

reason for this being that, as drawn, the diameter of the rolling circle

 

Pig ej-

is one-half the diameter of the pitch circle of the gear, and the hypo-

cycloid generated under these conditions becomes a straight line.

The involute and cycloidal systems are the only two that are used to

any extent, and in Fig. 6 a gear tooth and rack tooth of both are

shown for comparison. The involute gear tooth has the involute curve

from point o to point 6 on the base circle, and from 6 to c at the bottom

of the tooth the flank is a straight, radial line. One difficulty with the

involute system is that with the standard length of tooth the point a

will interfere when running with gears or pinions having a small

number of teeth. To avoid this, the point is rounded off a little below

the involute curve. In general appearance the tooth seems to have a

broad, strong base, and a continuous curve from a to c. A strong fea

ture of the involute gearing is that it will run correctly even if the

distance between the centers of the wheels is not exactly right. This

will be evident by referring to Fig. 4, where it will appear that the

relative velocities of the two wheels will be the same however far
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apart they may be, and if involute teeth are used in place of the string

connection there shown, the action will be just the same. The involute

rack tooth has straight sides at an angle of 14% degrees, with the

points rounded off.

Of the cycloidal teeth but little need be said except that they have

two distinct curves above and below the pitch line, as previously ex

plained, and that in the rack tooth the two curves are just alike, but

reversed.

Whatever system is used, it is essential that all the wheels of a

given pitch should be capable of running together. To make this pos

sible with the involute, all the wheels must have the same angle of

obliquity; and with the cycloidal system the same size rolling or de

scribing circle must be employed for all sizes. The circle generally

chosen is one having half the diameter of a 12-tooth pinion, which

makes the flanks of this pinion radial. In Fig. 5, if the diameter of

the rolling circle had been either greater or less than half the diameter

of the pitch circle, the flank of the tooth would have been curved, and

in the case of the greater circle, the curve would have fallen inside of

the radial flank drawn in the figure, causing a weak, under-cut tooth.

With the smaller circle, the curve would fall outside, making a strong

tooth.



CHAPTER II.

FORMULAS FOR DIMENSIONS OF SPUR GEARS.

When we consider the number of gears used in machinery, and the

number of men employed in the manufacture of machines using gears,

it is rather surprising to find men who are unable to find the outside

diameter, having given the pitch diameter and pitch, or to find the

distance between centers of two gears, having given the number of

teeth and pitch, and similar problems. The object of this chapter is

to explain in as clear and practical a manner as possible the under

lying principles of gearing, and to give concise rules or formulas for the

solution of problems which arise in our everyday work upon gears.

Pitch Diameters.

Two shafts A and A' (Fig. 7) carry rollers B and B'. By having

pressure on the shafts as indicated by the arrows, and revolving A, the
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Fig. 7.

friction of the rolls at the point of contact, X, will cause A' to revolve,

but we can readily see that if any great amount of power is to be

transmitted, the rolls are liable to slip at the point of contact X, which

will not give a positive motion ; that is, it will require more than one

revolution of the shaft A to produce one revolution of the shaft A'.

Suppose, as shown in Fig. 8, that we put projections on the surface

of the roller B and cut recesses in the roller B', making them of 'such

shape that the sides of the projections on roller B will slide with as

little friction as possible upon the sides of the projections caused by

cutting the recesses in roller B'. Then, when shaft A is revolved, shaft

A' must also revolve. The identity of the rollers B and B' is not lost,

for we have simply added a number of projections to one, and cut the

same number of recesses in the other, and the point of contact of the

two rollers is still at X, but in this case there is no special pressure

required to keep the rollers together as in the preceding case, nor is

■
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there any slip, and consequently shaft A' will make one revolution in

the same time that shaft A does.

In Pig. 9 we have changed Pig. 8 by adding projections between

recesses in roller B', and by cutting recesses on roller B between pro

jections, and we have the regular gear tooth. We have now no visible

part of the original rollers B and B' left, but we have in their places

imaginary rollers, the diameters of which are the pitch diameters of

 

Fig. 8.

the gears. Thus we might have called our original rollers pitch

rollers, and then proceeded to put on our projections and cut our

recesses, which would have given us the gear wheel. This has already

been explained in a general way in Chapter I.

Of course, in practice gears are never made in this way; the gear

blank is first turned up to the correct diameter, and then the space

 

Fig. o.

between the teeth is cut. The method of finding the outside diameter

will be given later, this illustration being used simply to show the evo

lution of the gear wheel from the friction disks or pitch rollers.

Pitch.

When we speak of the pitch of a gear, the diametral pitch is gen

erally referred to. The gear really has two pitches, diametral and

circular. The diametral pitch of a gear is the number of teeth for

each inch of pitch diameter. If a gear has 20 teeth and the pitch diam
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eter is 2 inches, the diametral pitch would equal 20 2, or 10 ; or

there are 10 teeth in the gear for each inch of pitch diameter which

it contains, and we would call it a 10-pitch gear. The circular pitch

of a gear is the distance from the center of one tooth to the center of

the next adjacent tooth, measured on the pitch lines. It is very seldom

that circular pitch is used in describing cut gears.

It can readily be seen that the circular pitch being equal to the dis

tance from the center of one tooth to the center of the next, must be

the result of dividing the circumference of the pitch circle by the

number of teeth in the gear. Should an occasion arise where it would

be necessary to obtain the circular pitch, having the diametral pitch

given, divide 3.1416 by the diametral pitch, and the quotient will be the

circular pitch, or, expressed in its simplest form,

3.1416

= P, (1)

P

in which P = diametral pitch; P; = circular pitch.

Example.—If the diametral pitch of a gear is 4, and it is required to

find the circular pitch, divide 3.1416 by 4, and the quotient, 0.7854, is

the circular pitch of the gear.

If the circular pitch be given, to find the diametral pitch, we can

readily see that formula (1) would have to be transposed and would

read thus:

3.1416

= P (2)

P.

. P and P1 representing the same as before.

Now, having given the rules, we will proceed to explain how they

were obtained. We know that the distance around the circumference

of a circle is equal to 3.1416, multiplied by the diameter of the circle;

consequently, fcr every inch of diameter we have 3.1416 inches of cir

cumference. If the diametral pitch of a gear is equal to the number

of teeth for each inch of pitch diameter, and each inch of diameter is

represented by 3.1416 inches of circumference, then the diametral

pitch equals number of teeth for each 3.1416 inches of circumference.

As the circular pitch is the distance from the center of one tooth to

the center of the next, then the. circular pitch must be equal to 3.1416

divided by the number of teeth in that 3.1416 inches of circumference,

and, as we have shown that the diametral pitch is equal to the number

of teeth in each 3.1416 inches of circumference, then the circular pitch

must equal 3.1416 divided by the diametral pitch, which proves for

mula (1).

It may not be actually necessary to show how we obtain the diametral

pitch from the circular pitch, but we will endeavor to explain every

thing as we go along. As in the preceding case, we begin with the

ratio of the circumference of the circle to its diameter, which is 3.1416.

In each 3.1416 inches of circumference we have a certain number of

teeth, which is the diametral pitch of the gear. Now, having given the

circular pitch, if we divide 3.1416 by that, we obtain the number of
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teeth for 3.1416 inch of the circumference, which is the diametral pitch

of the gear, which proves formula (2).

The accompanying tables will facilitate the finding of corresponding

diametral and circular pitches. Table I gives the even diametral

pitches with the corresponding circular pitches, while Table II gives

the even ciscular pitches with the corresponding diametral pitches.

TABLE I. DIAMETRAL PITCH CONVERTED INTO CIRCULAR PITCH.

'iametral Pitch. Circular Pitch. Diametral Pitch. Circular Pitch.

2 1.571 inch. 12 0.262 inch.

2% 1.396 " 14 0.224 "

2% 1.257 " 16 0.196 "

2% 1.142 " 18 0.175 "

3 1.047 " 20 0.157 "

3% 0.898 " 22 0.143 "

4 0.785 " 24 0.131 "

5 0.628 " 26 0.121 "

6 0.524 " 28 0.112 "

7 . 0.449 " 30 0.105 "

8 0.393 " 32 0.098 "

9 0.349 " 36 0.087 "

10 0.314 " 40 0.079 "

11 0.286 " 48 0.065 "

TABLE II. CIRCULAR PITCH CONVERTED INTO DIAMETRAL PITCH.

Circular Pitch. Diametral Pitch. Circular Pitch. Diametral Pitch.

2 inches. 1.571 7/8 inch. 3.590

17/8
1i

1.676 13/16
i«

3.867

13/4
il

1.795 3/4
ci

4.189

15/8
"

1.933 11/16
ii

4.570

1 1/2
ii

2.094 5/8
ii

5.027 '

17/16
"

2.185 9/16
"

5.585 '

13/8
ii

2.285 1/2
ii

6.283

15/16
ii

2.394 7/16 7.181

11/4
ii

2.513 3/8
ii

8.3.78

13/16
.(

2.646 5/16
ii

10.053

11/8
"

2.793 1/4
ii

12.566

11/16 2.957 3/16
ii

16.755

1
ii

3.142 1/8
ii

25.133

15/16
ii

3.351 1/16
.I

50.266

Pitch Diameter.

Having given the diametral pitch and number of teeth in a gear, to

find tne pitch diameter, divide the number of teeth by the pitch, and

the quotient will be the pitch diameter, which, expressed in its simplest

form, is:

N

—=D (3)

P

in which N = number of teeth; P = pitch (diametral) ; D = pitch diam

eter.
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Example.—A 10-pitch gear has 35 teeth, what is the pitch diameter?

Divide 35 (the number of teeth) by 10 (the pitch), and the quotient

3% is the pitch diameter of the gear.

The definition of diametral pitch proves this formula. If the dia

metral pitch equals the number of teeth to each inch of pitch diameter,

then dividing the number of teeth in the gear by the diametral pitch

will give the number of inches of the pitch diameter. If the circular

pitch and number of teeth are given, first find the diametral pitch, and

proceed as given above.

Addendum.

The addendum of a gear tooth is the distance from the pitch circle

to the outside circumference of the gear. This distance is always equal

to the reciprocal of the diametral pitch, or 1 divided by the diametral

pitch, and, expressed as a formula, is:

1

A=— (4)

P

in which A = addendum ; P — diametral pitch.

Outside Diameter.

When we start to make a gear, we first wish to know the outside

diameter. If we have the pitch and number of teeth given, this may

easily be found by the following rule: Add 2 to the number of teeth,

and divide by the pitch. This, expressed as a formula, is:

N+2

. = D, (5)

P

in which N= number of teeth; P = diametral pitch; D1 = outside diam

eter.

Example.—Given a gear of 20 teeth and 4 pitch, to find the outside

diameter. The number of teeth, 20, plus 2 equals 22, and 22 divided

by 4 (the pitch of the gear) equals 5%, the outside diameter of the

gear.

This formula is simply a combination of formulas 3 and 4, for

we first find the pitch diameter, and then add the addendum twice,

for it must be added on each side of the pitch diameter. The mathe

matical solution is as follows:

N 11

— = D; D + — + — = D,

P P P

2 N + 2

D1 — D + — ;D1 = (5)

P P

Dedendum and Clearance.

The dedendum is the working depth of the tooth below the pitch

1

line, and must be equal to the addendum or —, for the pitch circles

P

of two gears are tangent (touching), so the addendum of one will give

the working depth of the other below the pitch line. The clearance

is the distance from the end of the dedendum to the bottom of the
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space between the teeth. There is no common standard for this dis

tance, different gear makers using different distances, yet the differ

ence between them is very slight.

The Brown & Sharpe formula for this distance is:

0.157

F— (6)

P

in which F= clearance ; P = diametral pitch.

The Geo. B. Grant formula is:

A

F =— (7)

8

in which F = clearance ; A = addendum.

Thickness of Tooth.

The thickness of tooth and width of the space of a gear are always

equal at the pitch line, and if the circular pitch is the distance from

the center of one tooth to the center of the next tooth measured on

the pitch line, tooth and space being equal, then the thickness of tooth

must be equal to one-half the circular pitch, or

Pi

T=— (8)

2

in which T = thickness of tooth at pitch line ; P1 = circular pitch.

We know by formula (1) that

3.1416

P,= (1)

P

and substituting this value for P1 in formula (8) we have:

3.1416

T = -

2

and this formula resolved to its simplest form is:

1.5708

T =— (9)

P

in which T — thickness of tooth at pitch line; P = diametral pitch.

Example.—Given a gear 1 3/16 circular pitch, what is the thickness

of tooth at the pitch line? 1 3/16 (the circular pitch) divided by 2

gives 19/32, the thickness of tooth at the pitch line.

Example.—Given a 6-pitch gear to find the thickness of tooth at the

pitch line. 1.5708 divided by 6 (the diametral pitch of the gear) gives

0.262, the thickness of tooth at the pitch line.

Table III gives the thickness of tooth at the pitch line for the differ

ent diametral pitches.

Depth of Tooth.

After we get the gear blank turned up, we next want to know how

deep to run the gear cutter in order to get a perfect tooth. The work

ing depth of the tooth we have shown to be equal to the sum of the
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112

addendum and dedendum, or 1 = —, and the whole depth of the

P P P

2

tooth must equal — plus the clearance.

P

2 0.157

Using the Brown & Sharpe standard, we have 1 =

P P

2.157

E = (10)

P

in which E = full depth of tooth; P = diametral pitch.

Example.—Given a gear of 6 diametral pitch, to find the depth of

cut to be taken to get a perfect gear tooth.

Divide 2.157 by 6 (diametral pitch) and the quotient 0.359 is the

depth to be cut in the gear.

If we had the circular pitch given, to find the depth of tooth, we

TABLE III. THICKNESS OP TOOTH AT PITCH LINE.

t->-,~„*-„i dum. Thickness of Tooth ni.„^,.i Kt„i, Thickness of Tooth
Diametral Pitch. at Pitch Line. Diametral Pitch. at Pitch Line.

2 0.785 inch. 12 0.131 inch.

2Vi 0.697 " 14 0.112 "

2% 0.628 " 16 0.098 "

2% 0.570 " 18 0.087 "

3 0.523 " 20 0.079 "

3V2 0.448 " 22 0.071 "

4 0.393 " 24 0.065 "

5 0.314 " 26 0.060 "

6 0.262 " 28 0.056 "

7 0.224 " 30 0/052 •"

8 0.196 " 32 0.049 "

9 0.175 " 36 0.044 "

10 0.157 " 40 0.039 "

11 0.143 *' 48 0.033 "

could substitute in formula (10) the value of P as given in the formula

(2), and we would have

2.157

JjJ

3.1416 -s- P1

which, reduced to its simplest form, is:

E = 0.6866 P, (11)

in which E = depth to be cut in gear;

P1 = circular pitch.

Example.—Given a gear iy2 inch circular pitch, to find the depth to

be cut.

Multiply 0.6866 by iy2 (circular pitch), and the product 1.030 is the

depth to be cut in gear.

Table IV gives the depth to be cut in a gear for different diametral

pitches.
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Distance Between Centers.

Having given the number of teeth and diametral pitch of two gears,

to find the distance between centers, add the number of teeth together,

and divide by twice the diametral pitch, or

N + n

= C (12)

2P

in which N= number of teeth in one gear.

n = number of teeth' in other gear.

P= diametral pitch.

C — distance between centers.

This formula is obtained from formula (3):

N

—= D.

P

This formula gives us the pitch diameter of one gear, and, if we get

the pitch diameters of two gears and add them together, we have twice

TABLE IV. DEPTH OP TOOTH.

tral Pitch.
Depth to be cut

in gear.
Diametral Pitch.

Depth to be cut
in gear.

'2 1.078 inch. 12 0.180 inch.

21/4 0.958
(i

14 0.154 "

2% 0.863
ii

16 0.135 "

2% 0.784
ii

18 0.120 "

3 0.719
ii

20 0.108 "

3%, 0.616
ii

22 0.098 "

4 0.539
ii

24 0.090 "

5 0.431
ii

26 0.083 "

6 0.359
"

28 0.077 "

7 0.308
ii

30 0.072 "

8 0.270
ii

32 0.067 "

9 0.240
ii

36 0.060 "

10 0.216
ii

40 0.054 "

11 0.196
ii

48 0.045 "

the distance between centers, for the sum of the pitch diameters is

twice the sum of the pitch radii, which is the distance between centers.

We have now traced, by the aid of a few "rules," the proportions of

a gear tooth, having given the pitch and number of teeth, through

pitch diameter, addendum, dedendum, clearance, width of tooth and

depth to be cut, up to the distance between centers. We now give

some formulas for the solution of problems in which some of the quan

tities which were known in preceding problems are unknown.

Pitch.

1 To find the pitch, having given the pitch diameter and number

of teeth. Divide the number of teeth by the pitch diameter, and the

quotient will be the pitch. The proof of this assertion is derived from

the formula:

N

D =— (3)

P
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If the pitch diameter equals the number of teeth divided by the pitch,

then the pitch diameter multiplied by the pitch must equal the num

ber of teeth; therefore the pitch must equal the number of teeth

divided by the pitch diameter, and this, expressed in its simplest

form, is:

N

P =— (13)

D

in which P = pitch (diametral); N — number of teeth in gear; D =

pitch diameter.

Example.—A gear, 3 inches pitch diameter, has 36 teeth. Find the

diametral pitch.

Divide 36 (the number of teeth) by 3 (the pitch diameter), and we

have 12, the diametral pitch of the gear.

2. Having given the outside diameter and number of teeth, to find

the diametral pitch. Add 2 to the number of teeth, and divide by the

outside diameter, and the quotient will be the pitch of the gear.

In formula (5) we have:

N + 2

= D1 (5)

P

If the number of teeth + 2 divided by the pitch equals the outside

diameter, then the outside diameter multiplied by the pitch must equal

the number of teeth + 2, and then the pitch must equal the number

of teeth + 2 divided by the outside diameter, which, expressed as a

formula, is:

N + 2

= P (14)

D>

in which N = number of teeth in gear; D^ — outside diameter; P= dia

metral pitch.

Example.—Given a gear of 36 teeth and 31/6-inch outside diameter;

to find the diametral pitch.

36 (the number of teeth) + 2 = 38.

38 -J- 3 1/6 = 12, the diametral pitch of the gear.

Pitch Diameter.

1. Having given the outside diameter and the pitch, to find the pitch

diameter. The distance from the pitch diameter to the outside diam-

1

eter is —, as explained in formula

P

1

A =— (4)

P

and as this is to be added on each side of the center, the outside diam-

2

eter of the gear must be equal to the pitch diameter plus —. If this.

P

2

is so, then — subtracted from the outside diameter will give the

P

pitch diameter, or
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2

D = D1 (15)

P

in which D = pitch diameter; D1 = outside diameter; jP = diametral

pitch.

Example.-rGiven a gear 31/6 inches outside diameter and 12 pitch;

to find the pitch diameter.

3 1/6 inches (the outside diameter) — 2/12 = 3 inches, the pitch

diameter of the gear.

2. Having given the outside diameter and numher of teeth, to find

the pitch diameter. Multiply the outside diameter by the number of

teeth, and divide by the number of teeth plus 2.

We have shown in formula (5) that the outside diameter equals

the number of teeth + 2 divided by pitch, or

N + 2

D, = (5)

P

and in formula (13) that pitch equals the number of teeth divided by

the pitch diameter, or

N

P=— (13)

D

Now, if the outside diameter equals the number of teeth plus 2

divided "by the diametral pitch (and the diametral pitch equals the

number of teeth divided by the pitch diameter), then the outside diam

eter must be equal to the number of teeth plus 2, divided by a fraction

with the number of teeth as numerator and the pitch diameter as

denominator. This is simply substituting the value of the pitch as

shown in formula (13) for the pitch in formula (5), and expressed as a

formula, is:

N + 2

D, =

N+ D

N

Multiplying both sides of the equal sign by — we have

D

N D^N

D1X—= N + 2, or = N + 2,

D D

and now, multiplying both sides by D, we have

D, X N= (N + 2) XD

and dividing both sides by N + 2 we get

D, X N D,XN

= D, or D = (16)

N+2 N+2

in which D = pitch diameter; N= number of teeth; D1 = outside diam

eter.

Example.—Given a gear 3 1/6 inches outside diameter and 36 teeth.

To find the pitch diameter.

3 1/6 (the outside diameter) multiplied by 36 (the number of teeth)

equals 114. 36 (the number of teeth) + 2 = 38. 114 (D, X N) divided

by 38 (N + 2) =3 inches, the pitch diameter of the gear.
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Number of Teeth.

1. Having given the pitch diameter and pitch, to find the number of

teeth. Multiply the pitch diameter by the pitch, and the product will

be the number of teeth in the gear.

The diametral pitch of a gear equals the number of teeth for each

inch of pitch diameter; hence, if we multiply the pitch by the num

ber of inches of pitch diameter we will have the number of teeth in

the gear, which, expressed as a formula, is:

N =PXD (17)

in which P = diametral pitch; D = pitch diameter.

Example.—Given a gear 3 inches pitch diameter and 12 diametral

pitch, to find the number of teeth. 3 (pitch diameter) multiplied by

12 (diametral pitch) = 36, the number of teeth in the gear.

2. To find the number of teeth, having given the outside diameter

and pitch. Multiply the outside diameter by the pitch and subtract

2, or

Jf=(D,X?)- 2 (18)

in which N— number of teeth; I>1 — outside diameter; P = diametral

pitch.

This formula is simply the reverse of formula

N + 2

= D, (5)

P

If the outside diameter equals the number of teeth + 2 divided by

the pitch, which we have already proved, then the number of teeth

plus 2 must equal the outside diameter multiplied by the pitch, and

subtracting 2 from this result we have the number of teeth in the

gear.

Example.—Given a gear 3 1/6 inches outside diameter and 12 pitch,

to find the number of teeth. Multiply 3 1/6 (outside diameter) by 12

(the pitch) and we have 38, and subtracting 2 from this result we

have 36, the number of teeth in the gear.

Outside Diameter.

To find the outside diameter having given the- pitch diameter and

pitch. Divide 2 by the pitch and add to the pitch diameter, or

2

£, = D + — (19)

P

in which D,= outside diameter.

D = pitch diameter.

P = pitch.

1

The addendum of a gear is — [formula (4)] and this, added on each

P

side of the pitch diameter, gives the outside diameter.

Example.—Given a gear 3 inches pitch diameter and 12 pitch; to find

the outside diameter.

G)-

3 (ii-itch diameter) plus 2/12 ( — | =3 1/6 inches, the outside

diameter of the gear.
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Summary of Formulas.

Having given the general principles of the proportions of gear teeth,

we will now group the formulas (which we have proved to be cor

rect) under one head, so that they may be more easily found when

wanted.

In the following formulas,

P = diametral pitch.

P,= circular pitch.

D = pitch diameter.

■Di = outside diameter.

N = number of teeth in one gear.

n = number of teeth in mating gear.

A — addendum.

T = thickness of tooth at the pitch line.

E = full depth of tooth.

C — distance between centers.

F = clearance.

3.1416 2.157

P,= (1) E= (10)

P P

3.1416 E = 0.6866 P, (11)

*> C = (12)

N 2P

D =— (3)

P

1 D

A=— (4) N+2

N

p=- (13)

P P = -

T= -

2

1.5708

(14)

A= (5) 2

P D = D, (15)

0.157 A _ P

P= or— (6 and 7) n D1 X N

P 8 D~ C16)

N + 2

T=- (8) N=PXD (17)

N=(D1XP)— 2 (18)

2

(9) A = D + — (19)

P



CHAPTER III.

DESIGN AND CALCULATION OF GEAR WHEELS.

The complete calculations required for the design of a pair of gears

according to the usual shop practice are few and simple, and it is

proposed to put these calculations into easily-understood form in the

present chapter. The calculations should be made in the following

manner: First—Find out if the gears are intended to give a certain

velocity ratio between two shafts, or a certain power ratio between

the shafts; and, assuming the number of teeth in one gear, make the

number of teeth in the other gear such as to have the required ratio

to the number of teeth in the first gear. Second—Assume the pitch of

the gears, and calculate the pitch diameters of the two gears, and the

distance between the centers of the shafts. Third—Calculate the width

of face required to give the gears proper strength. Fourth—Lay out

the gears and the tooth forms. The relations of these several steps one

to another are such as to make some assumptions necessary, and these

depend upon the judgment and experience of the designer, especially

when the distance between the shafts is approximately settled, and cer

tain ratios are to be obtained without materially changing the shaft

centers. In the case of the younger designers, however, these assump

tions are all made beforehand and given to them with instructions

to lay out the gears. The several steps will now be taken up and

each explained.

Speed Ratios.

Fig. 10 represents two shafts connected by a pair of spur gears, A

being the driven shaft, and B, the driving shaft. If shaft A is required

to revolve half as fast as shaft B, it is easily seen that the gear on A

must be twice as large, and, being of the same pitch, must have twice

as many teeth as the gear on B. If n and Ji1 represent the number of

teeth in each gear, respectively, we have the proportion,

xn

y : x = n : n1 or = y.

»i

If, now, a third shaft were to be driven by gears from shaft A, we

would assume A to be the driver revolving y times a minute, and by

the above proportion determine the revolutions of the third shaft, and

so continue indefinitely for as many shafts as are geared together in

any one train. Thus follows the rule: The, speed of the last shaft

equals the speed of the first shaft multiplied by the product of the

number of teeth in the driving gears and divided by the product of

the number of teeth of the driven gears.

Power Ratios.

In case a certain ratio of power is wanted, we shall find some sort
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of a crank or pulley, the radius R of which is known, upon the power

shaft B, and upon the driven shaft there will also he some sort of a

crank, pulley or drum, the radius r of which is known. We can now

make the equation (referring to Fig. 10) :

PRnL

= Q

n r

This expression may be made general by following through as before

from shaft to shaft, and may be given as the following rule: The

power, multiplied by the power arm, times the product of the number

of teeth in the driven gears, and divided by the weight arm times the

product of the number of teeth in the driving gears, equals the weight.

Fig. 11 shows in tabular form several different forms of gear trains

with their formulas for speed and power ratios. It is to be noted that

 

1X1 * i

y=-RBV. PER MIN.

1X1 b 2

a;=REv. PER MIN.

IndvitrialJ^eu, A. Y.

Fig. 10. Speed and Power Ratios.

in place of using the numbers of teeth in these ratios we may use the

pitch diameters of the gears, but as these diameters are very often

expressed in fractional parts of an inch, while the number of teeth is

always a whole number, it is found more convenient to use the latter.

Idlers are often used, as shown in the sketch in section 2, Fig. 11,

and they have no -effect upon either the speed or power ratios. They

are introduced either to connect two shafts where the great distance

between centers would involve very large gears if geared directly

together, or to effect a change in direction of motion, as may be seen

by the arrows in Fig. 12. An inspection of this engraving proves the

rule that an even number of idlers does not change the direction of

motion between two shafts, while an odd number of idlers reverses the

direction of motion.
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FirstIllustration.

Speedratio:

xnn,

Powerratio:

PRutin, nn,r

=Q

IndustrialPreu.S.T,

SecondIllustration.

Speedratio:

inn,xn

Powerratio:

PRriinaPRna

nriirnr

Note.—Asthenumberofidlerscancels

outtheydonotaffecttheresult.

ThirdIllustration.

Speedratio: Powerratio:

ni

=y

PRrii

Notation.—nnxn,n,=numberofteethingears,x=rev.permin.ofpowershaft,y=rev.permin.ofdrivenshaft

R—rad.ofpowerarm.r=rad.ofloadarm.

Pig.11.DiagramsIllustratingSpeedandPowerRatiosofGearing.
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Pitch Diameters.

Having determined upon the velocity or power ratio required of our

gears, the next step is to determine the two pitch diameters of the

gears. To do this it is necessary to assume the pitch of the gears, and

this assumption depends upon the judgment and experience of the

 

Flff. 12. Illustration of the Effect of Idlers.

designer, although very often it may be confirmed by comparison with

gears of about the same size and doing about the same work as those

to be designed. After assuming the pitch and finding the pitch diam

eters, a calculation for the strength of the gears will show whether

 

Fig. 13. Terms used to denote Gear Quantities.

the assumed pitch is right, and it it then proves to be too small or

too large, the calculation may be repeated with another 'assumed pitch.

Pitch of Gears.

It is first necessary to understand what is meant by the pitch of a
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gear, and its relation to the diameter. This has been explained in the

previous chapter, but in order to make the present discussion a com

plete whole by itself, the most important definitions and formulas have

here been repeated. Fig. 13 shows a gear of twelve teeth (such a

small gear is often called a pinion), and the names of the different

parts are clearly indicated. As will be seen, the circular pitch is the

distance on the pitch circle from a point on one tooth to the corre

sponding point on the next tooth. The circumference of the pitch

TABLE V. CONSTANT FOB DETERMINING CHORD PITCH.

Number Constant Number Constant Number Constant

of Teeth. E. of Teeth. K. of Teeth. K.

12 .258 31 .102" 52 .059

13 .239 32 .097 54 .057

14 .222 33 .094 56 .055

15 .207 34 .093 58 .053

16 .195 35 .089 60 .052

17 .184 36 .087 62 .049

18 .173 37 .084 64 .048

19 .165 38 .082 66 .045

20 .156 39 .080 68 .044

21 .148 40 .078 70 .043

22 .141 41 .076 75 .041

23 .136 42 .075 80 .039

24 .130 43 .073 85 .036

25 .125 44 .071 90 .034

26 .120 45. .069 95 .032

27 .115 46 .067 100 .031

28 .112 47 .066 125 .025

29 .107 48 .065 150 .019

30 .104 49 .063 175 .017

50 .061 200 .015

circle is equal to the pitch multiplied by the number of teeth and

dividing this by 3.1416 gives the diameter of the pitch circle, or

Z> = -

3.1416

when, D = the diameter of the pitch circle,

i> =: the number of teeth,

P1 = the circular pitch.

After having determined the pitch diameter and drawn the pitch

circle, we must divide the pitch circle into as many equal parts as the

number of teeth, or, what is the same thing, lay off the circular pitch

upon the pitch circle. In the case of a small pinion, such as Pig. 13,

this may be most easily done by trial with a pair of dividers. It very

often happens, however, that a gear is so large as to make this method

impracticable, because only a portion of the gear, showing a few teeth,

will be drawn. It thus becomes necessary to have some method of

accurately laying off the circular pitch upon the pitch circle when

only a portion of the circle is drawn. From Fig. 13 it is evident that

if we set our dividers to the circular pitch, and attempt to step off the
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spaces, what we shall actually be stepping off will be chords instead

of circular arcs, and the resulting arcs will be greater than the circular

pitch. In very large gears this error is very small, but in ordinary

gears it is quite appreciable, and the dividers should be set to the

chord pitch. Table V has been computed to enable the chord pitch to

be easily determined, as the pitch diameter multiplied by the constant

E, opposite the number of teeth in the table, equals the chord pitch.

Relation between Number of Teeth, Pitch, and Pitch Diameter

of Gears.

Molded or rough-cast gears are usually designed by circular pitch,

but cut gears are designed by what is known as diametral pitch. Since

the number of teeth bears a fixed relation to the pitch circumference,

and the pitch diameter bears a fixed relation to the pitch circumference,

it follows that the number of teeth bears a fixed relation to the pitch

diameter. This being so, we may divide the pitch diameter expressed

in inches by the number of teeth, and the result will be what is termed

the diametral pitch. It is also evident that if the number of teeth

bears a fixed relation to the pitch circumference and pitch diameter,

the circular pitch and diametral pitch must have some fixed relation

to each other. These different relations are most conveniently given

for use as follows:

Circular pitch = Px Diametral pitch = P

P^U N

D= D=—

r P

Dv N

P1 = P =-

N D

Dir N =PD

N= N + 2

P. D1 =

/>, = !> + 0.6 P1 P

D + D2 P1N1 D+D. N,

C — = G = -

2 27r 2 2P

Relation of Circular and Diametral Pitch.

7T IT

= ' , Pi =— P=—

P P,

rt = 3.1416,

P1 = circular pitch, i

P = diametral pitch,

D = pitch diameter,

D2= pitch diameter of mating gear,

Z), = outside diameter,

N = number of teeth,

N1 = number of teeth in a pair of gears = sum of the teeth in each

gear,

C = distance between centers of shafts.

When designing cut gears it is not necessary to lay out the form of

the teeth, as these are formed by the ge'ar-cutting process, and it is
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.only necessary for the designer to calculate the pitch diameters that

will give the required ratios, and then to find the outside diameter of

the blank from which the gear is to be cut. For such gears diametral
 

Fig. 14.

pitch is a great convenience, as the relations of pitch, diameter' and

number of teeth are so simple.

Strength of Teeth and Width of Face.

Before proceeding further, it is well to know if our assumed pitch

for the gears will give strong enough feeth without requiring a wider

face than is practical, and it becomes necessary to know the force or

power transmitted by the gears. The most convenient way to do this

is to get the force in pounds which is carried by the gear at the pitch

TABLE V£. FACTOR FOB CALCULATING WIDTH OF FACE OF TEETH.

Radial Flanks* Involute 15°.

Number of Teeth. Factor Y. Number of Teeth. Factor Y.

12 052 38 .107

18 053 43 .110

14 .054 50 .112

15 055 60 .114

16 .056 75 .116

17 057 100 .118

18 .058 150 .120

19 .059 300 .122

20 .060 Rack .124

21 .061

23 .062

25 .063

27 .064

30 .065

34 .066 -

line. In Fig. 14, let it be supposed that the power ratio is such as to

make it just possible to move the load Q with a force P upon the crank.

Then the force W at the pitch line of the gears will be,

PR
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Having found W we may calculate the required width of face for our.

gears having the assumed pitch, and if the required face proves to be

too wide, we shall have to assume a larger pitch, in order to get

stronger teeth. The most widely used formula for the strength of

gears is that proposed by Mr. Wilfred Lewis and given in Kent's hand-

took, page 901, as

W= SP FY,

in which W= force on pitch line in pounds,

P = circular pitch,

S — allowable fiber stress for the material used,

F= width of face of gear,

Y= variable from Table VI.

S may be assumed as 3,500 pounds for cast iron, and 8,000 pounds

for cast steel, and as the pitch has been already assumed, the formula

may be changed to give the required width of face thus,

W

F= .

SPY

Substituting in this formula the values already obtained for W, £,

P, and Y, we find the required face for the gears, and if this is too

great, a larger pitch must be used.

Chart for Strength of Spur Gears.

The accompanying chart, Fig. 15, for the strength of spur gears,

enables problems to be solved easily and quickly, and the result of any

changes in pitch or face to be quickly seen. The heavy line with the

arrows shows the method of working out the problem for a 50-tooth

gear as stated in the upper right-hand corner of the chart. The chart

also shows the safe working loads for different speeds as given by

Mr. Lewis. Enter the chart on the left at the number of teeth; then

follow over to the diagonal line for the pitch of the gear, then up or

down to the diagonal line for the allowable fiber stress for the mate

rial of which the gear is to be made, then over to the diagonal line for

the face of the gear, then down, and read the load in pounds that the

gear will carry at the pitch line. If the load to be carried and the

number of teeth required are known, the chart may be entered at each

end, that is, at the number of teeth and at the load, and by then

following each way, the face required for a certain pitch, or the pitch

required for a certain face are easily seen, and thus the best combina

tion of face and pitch for any case is easily determined without any

calculations.

Laying out the Tooth Outlines.

Having gone through the steps described previously, we shall know

the pitch diameter, pitch, number of teeth, and face of the gear to be

designed, and are ready to lay out the gear and tooth outlines. As has

been mentioned in Chapter I, two forms of teeth are in general use,

the cycloidal and the involute, each having its champions among able

designers. The involute form has the advantage of being the more

easily ground to an approximately correct tooth form in the case of
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molded gears, and of running well with a small deviation from the

true distance between centers. The involute form only will be consid

ered, as it is believed that this form is becoming very much the more

common of the two. The tooth outlines are most conveniently laid out

by the use of an odontograph table (Table VII), in which the dimen

sions shown in Fig. 16 are given in terms of the pitch. Two gears are

shown in mesh with a rack—that on the left showing the method of

laying out a gear having from 12 to 36 teeth, and that on the right

showing the method for a gear having 36 teeth or more.

TABLE VII. DIMENSIONS AND CONSTANTS FOB LAYING OUT GEAR TEETH.

Circular Pitch. Diametral Pitch.

0 8 X pitch.

0.4 X pitch, below 1".

0.375 X pitch, above 1".

0.016 x pitch diameter.

0.53 X pitch.

0.47 X pitch.

0 1 X pitch.

 

1

1.15

pitch,

pitch.

Multiply by Number of Teeth.

Pitch. A. B. Pitch. A. B.

0.03 o.or5 1" 0.125 0.062

vs" 0.035 0.0175 0.100" 0.050

i" 0.04 0.02 0 083 0.041

0.045 0.0225 HT 0.071 0.035

i«" 0.05 0.025 2" 0.062 0.031

0.055 0.0275 2M"
2^"

0.056 0.028

0.06 0.03 0.050 0.025

0.065 0.08;>5 m" 0.045 0.022

0.07 0.035 3" 0.042 0.021

w

0.075 0.0375 3^"

4"

0 036 0.018

0.08 0.04 0.031 0 015

zy*" 0.085 0.0425 5" 0.025 0.012

0.09 0 045 6" 0.021 0.010

2%" 0.095 0.0475

8JT 0.100 0.05

Multiply by Number of Teeth.

When laying out a molded gear, first draw the pitch circle of a

diameter equal to the pitch diameter previously determined. Draw the

point circle outside the pitch circle, and a distance from the pitch

circle of 0.3 times the pitch, and draw the root circle inside the pitch

circle and a distance from the pitch circle of 0.4 times the pitch. These

two distances are given as a and 6, respectively, in Fig. 16, and in

Table VII it will be seen that as the point is 0.3 of the pitch outside

the pitch circle, while the root is 0.4 of the pitch inside the pitch circle,

the teeth of the two meshing gears will have a clearance between point

and root of 0.1 of the pitch. For gears having greater than 1-inch pitch,

this clearance will be greater than necessary even for rough gears,

and will not- look well; so for gears above 1-inch pitch, 0.375 instead of
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0.4 may be the multiplier for the pitch, as will be found noted in the

table. The base line is now drawn at a distance 0.016 times the pitch

diameter from the pitch circle. This base line may sometimes come

inside the root circle. The pitch is then laid off upon the pitch circle

as before described, and the spaces thus made upon the pitch circle

are to be divided into tooth and space parts. The tooth part will be

0.47 times the pitch, and the space part will be 0.53 times the pitch,

thus giving the tooth a small clearance in the space. We are now

ready to draw in the tooth outlines, which are circular arcs drawn

from centers on the base line. In the case of a gear of less than 36

teeth the tooth outline will be composed of two arcs, while for all

gears of 36 teeth or more the tooth outline is only one arc. The radii

for these arcs are found by multiplying the number of teeth in the

gear by the constants found in the odontograph table opposite the

pitch of the gear. These radii are designated in Fig. 16 and Table VII

as A and B. In the case of gears of less than 36 teeth "the tooth out

line is completed by radial lines as shown in Fig. 16.



CHAPTER IV.

STRENGTH OF GEAR TEETH.

In considering the strength of gear teeth we shall, in the first place,

neglect the actual shape of the tooth and assume it to be rectangular

in every section, as shown in Fig. 17. Further, for the sake of simpli

city, it will be assumed that the load, P, acts on the outer circumfer

ence of the gear, and hence at the extremity of the tooth. If we con

sider the conditions under which the load is assumed to be applied in •

actual practice, we shall find that: (1) A rough cast gear may have

the whole load concentrated upon one corner of a tooth; or the gear

itself may be well made, but may be out of alignment, due to springing

of shaft, bad workmanship, or other causes; in this case also the load

may be concentrated upon the corner of one tooth. (2) The gear may

  

Machinery, y.Y,

Fig. 17. Fig. 18.

be well made, with accurately cut or cast teeth, well mounted upon

heavy shafts having proper alignment, in which case the load may be

distributed over the entire width of a single tooth. In determining

a formula, then, for the pitch of a gear tooth, we must know the kind

of gears we have to deal with, and what considerations affect their

strength.

In the first case, if the gear is rough cast or placed so that the load

may come upon one corner of a tooth, we must consider not only that

the tooth is a cantilever, as in Fig. 17, but that the corner of the tooth

is itself a cantilever, as in Fig. 18, in which the whole load, P, is con

centrated at the point, g, so that the moment tending to break the cor

ner off from the tooth is P multiplied by the perpendicular distance

from P to the line, at; hence PXgj= Pfo sin a = bending moment.

Now, the resistance which the tooth offers depends upon the character

of the metal, as well as its actual section, which in the present case
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is the rectangle a c e i. It can be shown that the resistance of this

corner to breaking across is equal to

n

1/6 f t2 X ai = l/$ft2 (20)

COS a

in which f = stress in the metal. Equating this to the bending moment,

we have

h

Ph sin a = 1/6 f t2 (21)

cos a

or

6 P sin a cos a

f = (22)

t2

Noting that sin a cos a = % sin 2 a, and substituting in (22) we

have :

3P

f= sin 2 o

t*

When a = 45 degrees, we have sin 2 o = a maximum = 1; therefore

3 P P |~8P

f = — ; orP = / — ; and* = . -- (23)

P 3 - N /

For new teeth, rough cast, in which t = 0.48 p, (p1 being the circular

pitch) we have:

/ 3P ' IP

0.48 p, = ^ — ; or p1 = 3.6 — (24)

For wooden cogs working with cast iron teeth, in which t = 0.6 p„

we have:

P, = 2.9 J - (25)

If in any case the width of face, 6, is less than the height of tooth,

the above formulas do not apply. In this case we have used the-thick-

ness of tooth without considering loss of strength, due to wear; but we

have also assumed the whole load as concentrated upon the corner,

whereas, as wear occurs, although the tooth itself is reduced in sec

tion, yet the load is better distributed, and the tooth may be actually

stronger.

In the case of rough cast iron and mortise gears in which the whole

load may come upon the corner of one tooth, the width of gear does not

affect its strength, and there is no advantage, as far as strength is

1

concerned, in making such a gear wider than h X , or 1.41 h;

cos 45 deg.

as h, the height of the tooth, is frequently made equal to 0.7 p„ we have

the safe width of tooth, 6 = 1.41 X 0.7p, = ^,, very nearly.

In order to prevent excessive wear, such gearing is frequently made

so that its breadth of face b = 2 pv So far we have assumed that the

tooth section was a rectangle, but in practice the tooth may have the
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shape shown in Fig. 19, or that in Fig. 20, which represent a wide

range in the strength of two.gears, when accurately made and aligned,

but for a load concentrated upon one corner the difference is not so

marked as the shape of the teeth would indicate.

Investigation shows that if the smaller of two gears has at least 18

teeth, and not more than 50, the strength of the tooth will be practi

cally the same as that determined by the above formulas. Since these

values may be said to represent fairly well the limits of the number

of teeth in the smaller of two gears in those cases where rough gear

ing is permissible, we shall not at the present time discuss the influence

of shape upon the strength of this kind of gearing.

Of more importance is the consideration of that case in which the

load is supposed to be equally distributed between two gear teeth.

This matter relates to the strength of all gear teeth, and we shall

discuss its effects in general.

The point of contact between tooth surfaces in correct gearing can

readily be determined when the system upon which the gears have

been designed is known. Thus in the involute system, the point of

contact is located on the straight line passing through the line of cen

ters "at the point of intersection of the pitch circles, and making an

angle with the horizontal of l4%' degrees to 22% degrees, as shown by

P, T P' in Fig. 21.

On the other hand, the point of contact between two tooth surfaces

of the cycloidal system will always be upon a reverse curve, which is

a portion of the describing circle for the faces and flanks of the tooth ;

thus, in the interchangeable system of 12-tooth base, i. e., in that sys

tem where the smallest pair of gears in the set is assumed to have

12 teeth and these have radial flanks, the diameter of rolling circle

will evidently be equal to the radius of the 12-tooth pinion; and since

 

Fig. 19. Fig. 20.
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the tooth profiles are generated by rolling this circle upon the pitch

circles of any pair of gears in the set, the point of contact will always

fall upon the circumference of this describing circle when the center

of the latter lies upon the line joining the centers of the two gears,

as shown in Fig. 22. If in Figs. 21 and 22 M' N' and R' 8' represent

the addendum circles, or the circles drawn through the tops of the

teeth of the two gears, we shall have the two loci P' T P„ of the points

of contact, as shown in heavy lines; that is, contact will begin in each

case at P' and, as the teeth move around, the point of contact between

the surfaces will travel along the line or reverse curve, P' T P„ until

contact ceases. Now, considering Fig. 22, if the pitch were equal

to the arc P' TP,, one tooth would just be beginning action at P', while

another would be quitting at P,. In practice, in order to obtain smooth

ness of action the effective height of tooth is usually taken at about

six-tenths of the circular pitch in cast gears, and about 0.64 of the

A
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Pig. 21.

circular pitch in cut gears. If p = diametral pitch, p' = circular pitch,

and h = effective height of tooth, we have: 7i = 0.6p' for cast gears;

and

2

h, = 0.64 p' =— for cut gears.

P

We would here note that the effective height of tooth is not the total

height, as an additional amount, frequently 0.1 p' for cast gears, is

allowed for clearance between the root circle and the tops of the teeth

of the mating gear. With an addendum equal to half the above height

of tooth, it will be found that the average arc of contact for gears

between 12 teeth and a rack, in both the involute and cycloidal systems,

has a length equal to about one and two-thirds times the circular pitch.

In any case, by stepping off the pitch on P' TP,, Fig. 22, from both P'

and P„ we shall obtain the points o and 6, which indicate that with

perfect gearing the two pairs of teeth will be simultaneously in con

tact at P' and at a and will remain in contact until 6 and P1 are

reached; the distance from 6 to a will be traversed with only one pair

of teeth in contact; however, in this latter case, it will be noticed that

the leverage of the tooth is very much reduced. For a 12-toothed

pinion (cycloidal system), this leverage, shown in Fig. 22 as h', is

0.41 p'; and for a rack it is 0.35 p'. Under these conditions, then, the
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dimensions of the tooth would be determined upon the supposition that

the whole working load is carried by one tooth, and that the force is

applied with a leverage of 0.35 p' to 0.41 p', the constant depending

upon, the number of teeth. For the 15-degree involute system the

effective height for a 12-toothed pinion is the same as for the cycloidal

system, viz: 0.41 p', but for a 15-degree involute rack there are always

two teeth in contact.

This determination is correct for all gear teeth properly shaped and

spaced, but as Mr. Wilfred Lewis has so ably pointed out, it must be

admitted that mechanical perfection in forming and spacing has not
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yet been reached, and that the slightest deviation in either respect is

sufficient to concentrate the entire load at the end of one tooth. Even

with cut gears the same conditions obtain, for the cutters ordinarily

employed are correct only for a single gear, although they are used

within certain equidistant limits for various other gears. To what

extent the elasticity of bronze, copper, and steel influences the distribu

tion of pressure on cut gears is not known, and it is, therefore, unsafe

to consider its effect. As the teeth become worn, the concentration

of the load may be reduced, but until this wear takes place, the whole

load should be assumed as acting at the extreme end of the tooth.

For rough cast iron and mortise gears, as we have shown, it is pos

sible for the whole load to be concentrated on the corner of one tooth,

and this may occur even with the best cut gears, owing to careless

alignment, or lack of stiffness in the shafting and supports; but when
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iron patterns are used with accurately cut teeth, especially if the mold

is baked, or when the gear is machine molded, or the teeth are cut,

the contact should be fairly uniform, and the load evenly distributed

across the face of the tooth. It must be understood, however, that in

many cases circumstances will arise when it is impossible to secure

these favorable conditions; particularly is this true when the gearing

is subjected to shock and variable loads. However, with careful work,

stiff shafts and not too wide a face, the assumption of fairly uniform

distribution of pressure across the tooth may be considered as satis

factory for general practice.

The pressure which comes upon the tooth in the direction of the

line of thrust (the common normal to the tooth surface) is greater
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Fig. 23.

than that which transmits motion, for if we resolve the force, F, along

and perpendicular to the radius at. the point of contact, Pv Fig. 23,

the radial component, R, does not tend to produce rotation; it will,

however, exert a pressure on the bearings, and tends to crush the

tooth; as the compressive force has little effect upon the strength of

the tooth, especially with cast iron gears, its influence may be neg

lected. The other component, or P, acts at right angles to the radius

and produces rotation by its pressure on the tooth, and thus may be

considered as the effective working load.

Now considering the tooth as a rectangular cantilever with the load

P uniformly distributed across the outer edge, as in Fig. 17, the thick

ness, t, assumed equal to 0.49 p' —- 0.02 inch for well-made cast gears,

may be obtained by equating the bending moment to the moment of

resistance of the tooth; that is
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1

Ph — fX—bf1 (26)

6

Assuming the effective height of tooth ft = 0.6p' (circular pitch);

breadth of face, b = xp'; thickness of tooth, t = 0.49 p' —0.02, there

fore i= = 0.24 ' (p')z — 2 X 0.0098 p' + 0.0004, in which we may neglect

the last two terms, as they will not appreciably affect the result.

Substituting these values in (26) we have:

fxp' x 0.24 (p')*

PX0.6j3' =

R
x X 0.24 (p')s

P—f = 0 066/x (p')> (2?)

3.6

| P I 15 P

P' = J = J (28)
> 0.066 fx N fx

For cut gears the addendum is usually made equal to the reciprocal

of the diametral pitch, or 1/p; but since pp' = 7r = 3.14 we have 1/p

= 0.32 p', hence the effective height of tooth now becomes 0.64 p'.

The thickness of tooth in this case is 0.5 p'; therefore the load, from

(26) is:

! 15.4P
P- 0.065 fx (p')sandp' = . I ,

N /- x

results practically the same as those just obtained. For cast gears,

if the breadth of face equals twice the pitch

or x = 2, then p' = 2.74

if x = 2^, then p' = 2

if x = 3, then p' = 2.24

••J £

if a; = 3^, then _p' = 2.07

It will be noticed that the formulas thus deduced apply only to

rectangular teeth, as in Fig. 17, whereas in practice we have to deal

with such forms as given in Figs. 19 and 20. . In Fig. 19, the width

of tooth is considerably less measured on the working depth circle

than on the pitch circle, and fracture would occur along the line

(i a, where the thickness is V. «

With a uniformly distributed pressure, P, acting at the extremity of

the tooth as shown, the relative strength of this tooth compared with

one of rectangular section having the uniform thickness t varies as

(t)'

Thus if a gear tooth of 1 diametral pitch (p' = 3.14) meas
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ures 1.52 inch on the pitch circle and 1.34 inch on the working depth

circle between the points a and a, Fig. 19, the strength of the tooth

will be only

(1.34\!

1.52/ ~

thicki

; a a, 1

a

0.78 of that which it would have if the tooth

had the constant thickness 1.52 inch. In the same way, if the thick

ness of tooth at a a, Fig. 20, measures 1.76 inch, then its relative

strength will be I I = 1.34.

vw

This suggests a convenient method not only of ascertaining the load

which a given gear will sustain, but also one which will give a suit

able pitch when the load and number of teeth are known.

If in the first case the pitch had been determined from formula (28),

the tooth would have only about three-fourths of its assumed strength

for a given load P, whereas in the second case, the formula would give

a tooth about a third stronger than necessary for the same load P.
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Tig. 24.

Since the pitch varies as the square root of the pressure, it will be

evident that if we multply the pitch in each case by the inverse ratio

f

of — we shall obtain a pitch giving the actual strength required in

*

both cases. Therefore, since

1.52 1.52

= 1.14, and = 0.86,

1.34 1.76

the respective pitches will be 1.14 p' and 0.86 p', in which

( 15 P

P' = J
> fx

from formula (28).

It is evident that the method of laying out the gear tooth will have

some influence upon its strength; this is very clearly shown in Fig.

24, which represents a twelve-tooth pinion of 3.14 inches pitch accu

rately drawn for the four systems represented, viz: (1) cycloidal, 12

base, i. e., the smallest pair of gears is assumed to have twelve teeth,
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and these have radial flanks, so that the diameter of rolling circle is

one-half of the diameter of pitch circle of a twelve-tooth pinion; (2)

cycloidal, 15 base; (3) involute, 15 degrees line of action, and (4)

involute, 22% degrees lines of action. By laying out a series of differ

ent gears, according to the different systems represented, the exact

thickness of V and t may be determined graphically, from which the

values of the ratios — and f — 1 may be readily ascertained.— and I — 1

r W

This has been done, and the results are given in Tables VIII -and IX,

in which the ratio is presented in the form of a coefficient correspond

ing to the number of teeth in the gear.

t
TABLE VIII. VALUES OP COEFFICIENT Cp = —

No. of Teeth in Gear Value of Coefficient Cp

Involute System Cycloidal System

Exact Intervals 15 deg. 12 Tooth 15 Tooth

Base Base

12 12 1.14 1.00 1.12 1.33

13% 13- 14 1.10 0.96 1.08 1.19

15% 15- 16 1.07 0.92 1.04 1.10

17% 17- 18 1.04 0.88 1.00 1.03

20 19- 21 1.01 0.84 0.96 0.98

23 22- 24 0.98 0.80 0.92 0.95

27 25- 29 0.95 0.76 0.88 0.92

33 30- 36 0.92 0.73 0.85 0.89 .

42 37- 48 0.88 0.70 0.82 0.86

58 49- 72 0.84 0.68 0.79 0.83

97 73- 144 0.80 0.66 0.76 0.80

290 145- Rack 0.76 0.65 0.73 0.77

Combining these coefficients with formulas (27) and (28) we obtain

P = 0.066 fx C, (p')! (29)

and

I 15 P

P' = Cp J

^ fx

(80)

In the same way formulas may be deduced for wooden cogs, working

with cast iron, by assuming the width of tooth equal to 0.6 p'.

In these formulas, as previously stated, the effective or working

height of tooth was used instead of the total height, which is always

somewhat greater, but as the strength of the tooth varies with the

square of its thickness, and as this value increases below the working

depth circle more rapidly than the increased height of tooth on account

of the fillet, we are justified in neglecting that portion of the tooth

between the working depth and root circles, assuming that a suitable

fillet has been used at the base of the tooth.

The formula here presented will give a close approximation to the

working strength of a gear tooth when the pitch and number of teeth

are given, provided we know the working stress in the material of
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which the tooth is composed. This is, however, such a variable factor

that it is possible only to suggest limitations covering general condi

tions; and the judgment of the designer, based on a knowledge of the

conditions under which the gear is to work, must modify the general

values, as occasion may require. Indeed, it is much more satisfactory

to the designer to use a general formula involving a choice of stress

than to employ an entirely empirical rule in which the stress is

unknown, and which offers no opportunity for variation under varying

conditions.

Professor TJnwin assumes that for cast iron f may have the three

values 9,600, 6,100, and 4,300 pounds per square inch for "little shock,"

"moderate shock," and "excessive shock," respectively, for those gears

TABLE IX. VALUES OP COEFFICIENT Cs -

No. o£ Teeth in Gear Value of Coefficient C«

= 0"

Involute System Cycloidal System

Exact Intervals 15 deg. deg. 12 Tooth

Base

15 Tooth

Base

12 12 0.77 1.00 0.79 0.56

13 y2 13- 14 0.83 1.08 0.85 0.70

15% 15- 16 0.87 1.18 0.92 0.83

17% 17- 18 0.92 1.29 1.00 0.94

20 19- 21 0.98 1.42 1.08 1.04

23 22- 24 1.02 1.56 1.18 1.11

27 25- 29 1.10 1.72 1.29 1.18

33 30- 36 1.18 1.87 1.38 1.26

42 37- 48 1.29 2.03 1.48 1.35

58 49- 72 1.42 2.16 1.60 1.45

97 73-144 1.56 2.29 1.73 1.56

290 145 - Rack 1.72 2.39 1.87 1.69

in which, from inaccuracy of form or mounting the pressure may come

on a corner of the tooth. For carefully fitted gearing, however, in

which the pressure is assumed to be distributed along the whole width

of the tooth, he suggests 4,350 and 2,780 pounds per square inch, "the

latter to apply to cases where there is some vibration and shock."

In selecting these values he assumed that the load is divided between

two pairs of teeth in all cases, so that the pressure on each tooth is

2-3P. Multiplying these several values of f by 2-3, we obtain the stress

in pounds per square inch, assuming the total load to be carried on

one tooth.

TABLE X. VALUES OF STRESS f FOR CAST IRON (UNWIN).

Little Moderate Excessive

Shock Shock Shock

Inaccurate gearing 6,300 4,000 2,850

Well formed gearing 2,875 .... 1,850

It will be noted that the real stress in the well formed gearing may

be considerably less than that given, on account of the influence of

increased thickness of tooth at the base. Professor Reuleaux, in his

"Constructor," states that the dimensions of gear wheels must, for the
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same pressure on the teeth, be increased to meet shock in proportion

to the increase in initial velocity. For slow-running gears, however,

he neglects this action and divides gears into two classes, viz., hoisting

gears, and transmission gears, and includes under hoisting gears all

those having a linear velocity at the pitch circle, of not more than 100

feet per minute, and under transmission gears all those running at a

higher velocity. For hoisting gears he recommends a fiber stress of

about 4,200 pounds per square inch for cast iron, and states that an

increase of one-fourth in the permissible stress would reduce the pitch

only 7 per cent, but on the other hand, he notes that too low a value

of. f causes unnecessary increase in the size and weight, not only of

the gears, but also of the bearings, frame work and other parts of the

machine. In assuming this value of f, Reuleaux does not consider any

increase in strength due to increased section at the base of the tooth,

although he states that "the actual stress is properly somewhat less,

because the thickness of the tooth at the base is usually more than

one-half the pitch as assumed in the formula."

For transmission gears Reuleaux states that the fiber stress should

be taken smaller for a given force P, as, when the circumferential

velocity increases, the dynamic action of shock and vibration also

increases.

For cast iron he recommends

9,600,000

f =

V + 2,164

in which V is the velocity of the pitch circle in feet per minute. For

steel he states that f may be taken 31/3 times, and for wood, 6/10

times the value thus obtained.

Arranged in tabular form this gives results as shown in Table XI.

TABLE XI. VALUES OP SAFE STRESS f FOR TRANSMISSION GEARS (REULEAUX).

Velocity in Feet

per Minute. 100 200 400 600 800 1000 1500 2000 2500

For cast iron f = 4240 4060 3744 3473 3238 3034 2620 2302 2068

For steel f = 14112 13020 12467 11565 10782 10103 8725 7665 6886

For wood f = 2544 2436 2246 2083 1943 1820 1572 1381 1240

Mr. Wilfred Lewis in his paper on Gearing, read before the Engi

neers' Club of Philadelphia, in 1893, makes the following pertinent

remarks:

"What fiber stress is allowable under different circumstances and

conditions cannot be definitely settled at present, nor is it probable

that any conclusions will be acceptable to engineers unless based upon

carefully made experiments. In the article referred to, certain factors

are given as applicable to certain speeds, and in the absence of any

later or better lights upon the subject. Table XII has been constructed

to embody in convenient form the values recommended.

It cannot be doubted that slow speeds admit of higher working

stresses than high speeds, but it may be questioned whether teeth

running at 100 feet a minute are twice as strong as at 600 feet a

minute, or four times as strong as the same teeth at 1.800 feet a min
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ute. For teeth which are perfectly formed and spaced, it is difficult to

see how there can be a. greater difference in strength than >the well-

known difference occasioned by a live load or a dead load, or two to

one in extreme cases. But, for teeth as they actually exist, a greater

difference than two. to one may easily be imagined from the noise

sometimes produced in running, and it should be said that this table

is submitted for criticism rather than tor general adoption. It is one

which has given good results for a number of years in machine design,

and its faults, such as they may be, are believed to be in the right

direction."

TABLE XII. 6A.FE WORKING STRESS f FOR DIFFERENT SPEEDS (LEWIS).

Speed of Teeth in 100 200 300 600 900 1,200 1,800 2,400

Feet per Minute or less

Cast iron 8,000 6,000 4,800 4,000 3,000 2,400 2,000 1,700

Steel 20,000 15,000 12,000 10,000 7,500 6,000 5,000 4,300

If the formulas and coefficients presented by the writer are followed

in the determination of the proportions of gear teeth, the permissible

stress may be considerably greater than the real, as determined from

the thickness of tooth near the base; this accounts in a large measure

for the high stresses assumed to be carried by some gears. Thus, for

instance, a gear having sixty-two teeth, 3.6-inch pitch, and 15-inch face,

runs at 280 feet per minute and carries a load of 22,240 pounds. The

working stress f is assumed to be 7,250 pounds, but if the increased

section on the working depth circle be taken into consideration the

working stress is reduced to 5,200 pounds.

While high rim speed does not necessarily imply shock, yet the

effect of shock is more liable to be disastrous if high speed obtains,

and for this reason the stress should diminish as the speed increases.

Another reason for this is found in the fact that the stress is increased,

due to the centrifugal force set up in the metal itself, which varies

as the square of velocity; while this is not very great at ordinary

speeds, it is still of sufficient importance to be considered for high

speeds.

The influence of change of load is well understood in engineering

construction, and usually a factor of safety is adopted for such loads

from two to three times greater than would be the case for a steady

or dead load, the value depending largely upon the range of stress

involved. There seems good reason to believe that a similar relation

modified by the effect of speed should obtain in selecting a suitable

value for the working stress in gear teeth. From the foregoing con

siderations, then, It would appear that the working value of / should

be chosen both with reference to the velocity and to the character of

the acting force. With this in view the author of the present chapter

has deduced the following formula for working stress;

50,000

f=

k + fV

in which f = the allowable stress in pounds per square inch; 9
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~V = velocity at pitch circle in feet per minute;

fc = a constant having the values: 5 for little shock, 10 for

moderate shock, and 15 for violent shock.

From this formula Table XIII has been calculated, and is offered as

TABLE XIII. VALUE OP STRESS f FOR CAST IRON (FLATHER).

Velocity in Feet Value of Stress in pounds per square inch.

per Minute Little Shock Moderate Shock Violent Shock

100 5,200 3,400 2,550

200 4,600 3,150 2,400

400 4,050 2,900 2,250

600 3,700 2,700 2,150

800 3,500 2,600 2,050

1,000 3,300 2,500 2,000

1,400 3,100 2,350 1,900

1,800 2,900 2,250 1,840

2,400 2,700 2,150 1,770

3,000 2,600 2,050 1,700

a guide to the designer in selecting suitable values of f under varying

conditions.

While the previous discussion and the formulas given are of inter

est to the student of the subject of strength of gear teeth, as indi-

TABLE XIV. OUTLINE FACTORS FOR USE WITH LEWIS FORMULA.

Factor for Strength, Y. Factor for Strength, Y.
No of
Teeth. -

No. of
Teeth.

Involute 20°
Obliquity.

Involute 15°
and Cycloidal.

Involute 30°
Obliquity.

Involute 15°
and Cycloidal.

12 .078 .007 27 .111 .100

13 .083 .070 30 .114 .102

14 .088 .072 34 .118 .104

15 .092 .075 38 .122 .107

16 .094 .077 43 .126 .110

17 .096 .080 50 .130 .112

18 .098 .083 60 .134 .114

19 .100 .087 75 .138 .116

20 .102 .090 100 .142 .118

21 .104 .092 150 .146 .120

23 .106 .094 300 .150 .122

25 .108 .097 Rack. .154 .124

eating what has been done and proposed along this line, it should be

mentioned here that the Lewis formula given on page 28 is the form

ula now almost exclusively used. Table XIV gives the factor Y neces

sary for use with this formula for a complete range of number of

teeth, and fcr both involute and cycloidal tooth-forms.



CHAPTER V.

VARIATION OP THE STRENGTH OF GEAR

TEETH WITH THE VELOCITY.

The generally accepted formula for calculating the strength of gear

teeth is that proposed by Mr. Wilfred Lewis, first published in the

Proceedings of the Engineers' Club of Philadelphia, January, 1893,

and referred to in the preceding chapter.

The merit of this formula lies in the great number of variables

taken into account as compared with other rules in more or less com

mon use, and in the fact that these variables are rationally considered.

The effect of each of them can be calculated with some assurance, with

A — IMAGINARY NON-DEFLECTING MATERIAL AND PERFECT TOOTH SHAPE.

B = SHOCK ABSORBING MATERIAL SUCH AS RAWHIDE.

C = TEETH OF CAST IRON AND PERFECT TOOTH SHAPE,
D = TEETH OF CAST IROU AND COMMERCIAL ACCURACY.

w E = TEETH OF CAST IRON AND POOR WORKMANSHIP.
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Fig. 25. Hypothetical Diagram showing the Relation of the Velocity to

the Fiber Stress.

the single exception of the influence of the velocity on the safe stress.

In the fifteen years since the formula was first proposed, the original

values for the stress as affected by the velocity have been largely used.

Many designers, however, have felt that these values are rather unsat

isfactory, although most of them will agree that they err rather on

the side of safety than otherwise. By referring to Mr. Lewis' original

paper it will be seen that these values were not given as being defi

nitely determined, but merely as agreeing well with successful cases

met with in his own practice. The following is a general analysis of

the conditions involved.
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A variation in the strength of the teeth of a gear, due to a variation

in the velocity, can be due, of course, to but one thing—impact. To

illustrate this idea, and to show the cause of the impact, we will study

the action of gearing under three different conditions.

1. Gears of an imaginary undetectable material.—In Fig. 25 is a

diagram in which the horizontal distances give velocity in feet per

minute, and vertical distances give stresses in pounds per square inch,

starting in this case at 4,000, which is assumed to be the maximum

fiber stress in the gear we are considering, due to the load at the pitch

line, which is supposed to be constant at all speeds. If the teeth of this

FULL LINE8 SHOW CONDITIONS
 

Machinery,N.Y.

Fig. 26. The Action of Gear Teeth under Load, Greatly Exaggerated.

gear are perfectly formed and well fitted together, so that there is no

back lash, if the power is delivered to them steadily and smoothly, and

the mechanism they drive runs without shock, any disturbance of the

even movement will be impossible, and impact will be entirely absent.

In the diagram in Fig. 1, then, there will be no rise of maximum fiber

stresses with the velocity, so that the horizontal line A will show the

conditions for this imaginary case.

2. With commercial material and theoretically accurate workman

ship. The conditions in this case are shown in Fig. 26, with all the

phenomena greatly exaggerated. The full lines show the conditions

under load, while the dotted outlines show the conditions when the

load is removed from the driven gear. The teeth Au S„ and A„, B,,

carrying the load, are deflected by it, as shown. Tooth B, just about

to come into contact with tooth A, is on that account shifted from its

normal position; it should be located as shown by the dotted lines. If

it were in this position, it would come in contact with tooth A under

mathematically perfect conditions, and there would be no shock of en

gagement. As it is, the two come suddenly into action as shown at E,

under different conditions than those contemplated by the design, thus

the contact takes place in the form of a slight blow, after which the



48 SPUR GEARING

teeth are deflected more and more, until they have taken up their share

of the load, as shown later at A1 and B,. If the gears are moving very

slowly, the deflection takes place very slowly, and the problem is prac

tically a static one. If the gears are running at a high velocity, the

problem becomes essentially a dynamic one, and the stresses are greater

than with the slow speed. The increase in stress with the increase in

speed for this second case could probably be represented by a line

something like O, in Fig. 25. i

3. With commercial materials and commercial accuracy. This is, •

of course, the practical case to consider. A line to show the relation

of the velocity to the maximum fiber stress for a given gear, would

very probably look something like D in Fig. 25. This is, in fact, approxi

mately the line which embodiesi the conclusions of the Lewis tables for

a static stress of 4,000 pounds. It is considerably higher than line

C, because impact due to irregular tooth outlines is added to the im

pact due to the deflection.

Practical Considerations Affecting Design.

The fact that the variation of the strength with the velocity is due

to impact, suggests also a number of points relating to design.

1. Value of accuracy. It is evident that this theory of impact puts

a premium on accuracy in workmanship for gears that are to run at

high speed under a heavy load. It is probable that the strength of a

given pair of gears may be cut in two if the tooth outlines are not

carefully determined, and if the cutter is not set centrally. This sug

gests the desirability of a greater sub-division of the standard cutter

series for work of this kind.

2. Resilience of design and materials. In high-speed gearing it is

evident that the shock due to the impact should be absorbed as quickly

and as fully as possible. This suggests the use, at abnormally high

speeds, of rawhide, wood, etc., for one of the members of the pair of

gears. The introduction of spring couplings or similar devices may

also be desirable, especially where the other parts of the mechanism

are liable to transmit shock to the gearing.

3. Easing off the po'nts of the tooth. There has always been a

sort of superstition that the points of the tooth should be eased off to

make the action smoother. This is done, of course, in standard involute

gears, though for another reason, that of avoiding interference with

the flanks of the pinions. It can now be seen that there is a solid

basis for this practice in all cases where gears are to run at such

speeds that severe impact is liable to take place. Referring to Fig. 26,

teeth A and B are taking up the load very suddenly, owing to the fact

that they are out of step, due to the deflection of the other teeth

momentarily carrying the load. Easing away the points of A and B

would mitigate this sudden reception of the load, allowing the inevitable

deflection to take place more slowly, with a consequent gain in the

strength of the gear at high speeds.






