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PREFACE

In the design of machinery, there is nothing more important than to

be able to determine the stresses to which a machine member is sub

jected and to give it the adequate strength for the purpose for which

it is intended. It is the object of this book to give in as simple a

manner as possible the principles of the methods used in calculating

the strength of parts met with in machine design and engineering work

generally, and to give the formulas used in such a shape that they can

be directly employed by the practical man. No attempt has been made

to show how the formulas are derived mathematically, as this would be

impossible in a book of limited size. However, the book will be all the

more acceptable to the great number of practical men, because it avoids

involved mathematical treatment and presents every formula in its

simplest shape. Numerous examples have also been given to show the

application of the rules and formulas. While thus the subject is treated

in as simple a manner as possible, the book is still comprehensive and

covers all the more important questions connected with the subject.

A special effort has been made to indicate the use of standard en

gineering handbooks in connection with the calculations of strength of

materials, and numerous references are made to tables and formulas

that are to be found in works of that kind.



CHAPTER I

PRINCIPLES OP THE STRENGTH OF MATERIALS

It may be said, in a general way, that when designing machinery

the designer must take into consideration two main factors. One is

to so design the mechanism mechanically that the various motions

required can be obtained by means of the machine. The other is to

so proportion the parts that they will be strong enough to do the

work for which they are intended without breakage and, in most cases,

without distortion. A third factor also enters prominently into the

design, that of so designing a machine that the various parts can be

easily manufactured, but this last factor, while commercially fully

as important as the other two, has not a direct bearing upon the

actual working of the completed mechanism.

The subject that will be dealt with in this Reference Book relates

to the second of the two main questions affecting the design, that of

proportioning the parts so that they will be strong enough to properly

do the work for which they are intended. This problem, in turn, may

be divided into two sections, one of which deals with the determining

of the forces which act upon a machine part, tending to break or

distort it, and the determination of the actual proportions necessary

to resist these forces. The science of determining the forces acting

upon a machine part or, in general, upon an engineering structure, is

termed mechanics. this word being used in its more limited sense,

often referred to as theoretical mechanics. The problem of actually

determining the dimensions of details of machines or structures with

regard to their strength is covered by that part of mechanical knowl

edge which is known as the strength of materials. It should be under

stood, however, that the question of determining the forces acting

upon an engineering structure or machine and the determination of

the actual dimensions and materials required to resist these forces,

are so closely connected that in dealing with the strength of materials

we must also deal, to a very large extent, with the mechanical theory

of forces.

When the forces acting upon a machine part are definitely known,

it is, as a rule, comparatively easy to determine the actual propor

tions required to resist the action of these forces. There are, however,

a number of instances in which the forces are applied in such a

manner that it has so far proved impossible for the mathematician

to determine with exact preciseness formulas that would cover each

individual case, and many of the formulas used in calculating the

strength of materials are based on results obtained by experiments

and on practical experience. Of course, it must be understood at the

outset that the actual strength of any material, such as steel, brass,
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copper, etc., must have been experimentally determined before any

calculations at all can be made that would give definite results.

Hence, what is known as the testing of the strength of materials lies

at the basis of all calculations of strength and endurance.

Important Definitions

There are a number of expressions used in connection with calcu

lations of strength of materials that must be explained at the outset.

A stress is a force acting within a material or machine part resisting

deformation. A load is a force applied from without to a material.

The load tends to produce deformation and is resisted by the stress

which it creates within the body.

A working load is the maximum load applied to a material under

ordinary working conditions. A working stress is the stress produced

in the material by this working load. A safe working stress is the

maximum permissible working stress under given conditions, as, for

example, for a certain material.

The ultimate strength of a material is its breaking strength in

pounds per square inch, in tension, compression or shearing, as the

case may be.

The total stress is the sum of all the stresses caused at one section

of the body, irrespective of its area in square inches; while the expres

sion stress, working stress, or intensity of stress generally means the

number of pounds stress per each square inch of section.

Analysis of the Forces that Act upon a Machine Member

As mentioned, it is necessary to analyze or determine the forces

that act upon a machine member, in order to be able to determine the

actual dimensions necessary to insure its strength to resist distort'on

or breaking. Ordinarily, only the actual load resting upon or trans

mitted through the machine element need to be considered, but, in

many Instances, as in the' case of bridges, elevator ropes for deep

shafts, beams, etc., the weight of the part itself must be taken into

account. In other instances, frictional resistance and forces due to

inertia caused by change of velocity, as well as centrifugal forces

must be considered. This latter consideration is especially necessary

in the case of flywheels or pulleys moving at high velocities. In some

instances, stresses are caused by forces due to changes in the tempera

ture, as when a metal part is constrained between other metal surfaces.

These loads may be applied in three different ways. They may be

applied steadily in one direction, in which case we speak of a steady

or dead load. They may be alternately applied and removed, the load

being constantly in motion, in which case we speak of a live load.

A live load may be applied first in one direction and then in the re

verse direction, or it may be applied intermittently in one direction.

It may be gradually applied and gradually relieved, or it may be

suddenly applied, in which case we speak of the material as being

subjected to shock or impact.
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Ultimate Strength of Materials

The materials used in machine building are mainly metals, whereas,

in civil engineering, wood, natural and artificial stones, as well as

metals, are used. These materials may be subjected to a stress either

in tension, that is when the forces acting upon the material are try

ing to pull it apart, or in compression, when the forces acting are try

ing to crush the material, or in shear, a stress which results either

from a direct shearing action or a twisting or turning action. The

strength of materials is usually measured in pounds per square inch.

For example, when we say that structural steel has a strength of

60,000 pounds per square inch in tension, we mean that a bar of

structural steel, the cross-section of which is one square inch, will,

on an average, not break before subjected to a load trying to pull it

apart, of 60,000 pounds.

Structural steel has also a strength of 60,000 pounds per square

inch in compression, but many metals have not the same strength in

tension as in compression. Cast iron, for example, has only a strength

of 15,000 pounds per square inch in tension, whereas its strength in

compression, on an average, is 80,000 pounds per square inch. These

values are the ultimate strength of the metals. When used in struc

tures or machine members, the metals must never be subjected to so

severe a strain, but the actual load must be much less per square

inch in order to provide for a factor of safety.

In calculations of the strength of materials, one of the first con

siderations, after an analysis of the forces acting upon the material

has been made and the problem thus been mechanically determined,

is to assume the average ultimate strength of the material used in the

construction in pounds per square inch. As already mentioned, this

assumption is based upon the experiments made on these materials

by many investigators in the past, and a table is given herewith

which shows the strength of the metals most commonly used. A table

is also given showing the average ultimate strength of common

materials other than metals. In all calculations the ultimate strength

of the materials may be taken from these tables, but in order to

make sure that there is a margin for safety, a suitable factor of

safety must, of course, be assumed.

The Factor of Safety

If the ultimate strength of a material like machine steel is 60,000

pounds per square inch in tension or compression, and we subject it

to a load of 10,000 pounds per square inch, a factor of safety of 6 is

used; that is, the ultimate strength of the material is six times as

great as the load to which the material is subjected. The factor of

safety must be greater for moving loads than for dead or steady loads.

It must also be greater if the load is applied suddenly and suddenly

removed than if the load is constant at all times. In other words,

when the load varies from zero to maximum in one direction, as

shown in the accompanying table, "Factors of Safety," that is, when

the load varies from no-load to full-load, the factor of safety must in
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ULTIMATE STRENGTH OF COMMON METALS: POUNDS PER SQUARE INCH

Material Tension Compression Shear Ela'aticity'

Aluminum 15,000 12,000 12,000 11,000,000

Brass, cast 24,000 30,000 36,000 9,000,000

Bronze, gun-metal 32,000 20,000 10,000,000

Bronze, manganese 60,000 120,000

Bronze, phosphor 50,000 14,000,000

Copper, cast 24,000 40,000 30,000 10,000,000

Copper Wire, annealed 36,000 15,000,000

Copper Wire, unannealed. . 60,000 18,000,000

Iron, cast 15,000 80,000 18,000 12,000,000

Iron Wire, annealed 60,000 15,000,000

Iron Wire, unannealed 80,000 25,000,000

Iron, wrought 48,000 46,000 40,000 27,000,000

Lead, cast 2,000 1,000,000

Steel Castings 70,000 70,000 60,000 30,000,000

Steel, structural 60,000 60,000 50,000 29,000,000

Steel Wire, annealed 80,000 . 29,000,000

Steel Wire, unannealed... 120,000 30,000,000

Steel Wire, crucible 180,000 30,000,000

Steel Wire, plow 268,000

Steel Wire, susp. bridge. .. 200,000 — 30,000,000

Steel Wire, piano 300,000

Tin, cast 3,500 6,000 4,000,000

Zinc, cast 5,000 20,000 13,000,000

AVERAGE STRENGTH OF COMMON MATERIALS OTHER THAN METALS

Compression Tension

Bricks, best hard 12,000 400

Bricks, light red 1.000 40

Brickwork, common 1,000 50

Brickwork, best 2,000 300

Cement, Portland, one month old 2,000 400

Cement, Portland, one year old 3,000 500

Concrete, Portland 1,000 200

Concrete, Portland, one year old 2,000 400

Hemlock 4,000 6,000

Pine, short leaf yellow 6,000 9,000

Pine, Georgia 8.000 12.000

Pine, White 5,500 7,000

White Oak 7,000 10,000

FACTORS OF SAFETY

Load Varying Load Varying
from Zero from Zero Suddenly

Material Steady to Maximum to Maximum Varying Loada
Load in one in both and Shocks

Direction Directions

Cast Iron 6 10 15 20

Wrought Iron 4 6 8 12

Steel 5 6 8 12

Wood 8 10 15 20

Brick 15 20 25 30

Stone 15 20 25 30
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crease as compared with that for a steady load. Now, if the load

varies from a maximum in one direction to no-load, and then to a

maximum in the other direction, as, for example, in a rod which is

first submitted to a pulling or tensional stress, then to no load at all,

and then to a crushing or compression stress, the factor of safety

must again be increased. If the loads vary very suddenly, taking the

nature of shocks, a very high factor of safety is required, even with

the most reliable materials. This will be understood by studying the

figures in the. table "Factors of Safety."* The factor of safety re

quired with various materials also differs. It must, for example, be

greater for cast iron than for wrought iron because cast iron is not

so dependable a material.

The following factors of safety are given as a general guide, and

may be used under ordinary conditions:

Boilers, from 4% to C; piston- and connecting-rods for double-acting

engines, from 12 to 18; piston- and connecting-rods for single-acting

engines, from 9 to 12; shafts carrying flywheels, armature, etc., from

7 to 9; mill shafting, 24; steel work in buildings, 4; steel work in

bridges, 5; steel work, generally, 6; cast-iron wheel-rims, 20; steel

wheel-rims, 8.

Influence of Temperature on the- Strength of Metals

The degree of temperature to which a machine or a structural

member made from metal is subjected has a considerable influence

upon its strength. If we assume that metals have what we might

call a "normal strength" at 70 degrees F., we will find upon investiga

tion that this strength often increases with an increase in tempera

ture up to a certain degree, and then rapidly decreases with further

• In an article published in Machinery in January, 1906, Prof. F. E. Cardullo

analyzes tile nature of the factor of safety in a systematic manner, and the method,
given below is abstracted from and based upon this article. •

The factor of safety may be considered as the product of four primary factors

which may be designated as factors a, b, c and d. Designating the factor of safety

by P,

" = «X»X'X*-
The first of these factors, a, is the ratio of the ultimate strength of the material

to the elastic limit, meaning, in this case, by the elastic limit, that boundary line
within which the material ls |,erfeetly elastic and takes no permanent set. For

ordinary materials, the factor a is 2; for nickel steel and oil tempered forgings, it

is reduced to 1%.
The second factor b depends on the character of the stress within the material.

This factor is 1, for a dead load; 2, for a load varying between zero and maximum;
and 3, for a load which produces alternately a tension and a compression equal in

amount.
The third factor e depends upon the manner ln which the load is applied to the

piece under stress. For a loud gradually applied, this factor -is 1. For a load
suddenly applied, the factor is 2. If the load is applied not only suddenly but witn

impact, this factor must be still further increased in value.
The last factor d may be called the factor of ignorance. The other factors pro

vide against known conditions and this provides against the unknown. It commonly
varies in value between 1 Va and 3 and occasionally should be given as high a value
as 10. It provides against accidental overload, against unexpectedly severe service

and unreliable or imperfect materials, etc. When all the conditions are thoroughly
known and there is no danger of overload, this factor may be made equal to IVi
for wrought iron and mild steel, and 2, for cast iron.

As an example of the use of the formula given for the factor of safety, find the
factor of safety that ought to be used for a forged steel steam-engine piston-rod.

The elastic limit will probably be slightly more than one-half the ultimate strenglh;
hence, a = 2. The rod will be alternately in tension and compression; hence, b = 3.
The steam pressure will be applied suddenly or nearly so; hence, c =: 2. The

material is of n reliable kind; hence, d = lVj. Then: F = 2 X 3 X ! X =
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increase in temperature. For example, if the strength of wrought iron

is assumed to be 100 per cent at 70 degrees F., it will be found to

rise to 112 at 400 degrees F., and to 116 at 570 degrees F., but from

this point it falls to 96 per cent at 750 degrees F., to 76 per cent at

930 degrees F., to 42 per cent at 1100 degrees F., until at 1475 degrees

F. only 15 per cent of the original strength remains. Structural steel

shows a maximum strength of 132 per cent at 400 degrees F., from

which point it falls to 86 per cent at 750, and 28 per cent at 1100

degrees F. The strength of copper falls immediately so that at 210

degrees it is only 95 per cent, at 570 degrees, 73 per cent, and at 930

degrees, 42 per cent of the original strength. Bronze falls even more

rapidly, retaining at 570 degrees only 57 per cent of its strength at 70

degrees F. Cast iron seems to retain its strength up to about 550

degrees F., from which point it falls off to 75 per cent at 930 degrees

F. and 42 per cent at 1100 degrees F. Cast steel reaches its maximum

strength at about 400 degrees F. and has only 57 per cent of its

strength left at 930 degrees F.

Elasticity and Elastic Limit

When external forces act upon a material they produce stresses

within it as mentioned. These stresses are fundamentally tension,

compression or shearing stresses, although we sometimes speak of

bending or torsional stresses. Bending stresses, however, are only a

combination of tension and compression stresses, and possibly also of

shearing stresses, as will be explained later. Torsional stresses are

merely shearing stresses. In most instances, a combination of two

or more of these stresses is produced, especially in machine parts. In

structural designs, such as bridges, for example, it is quite common

that members are subjected to tension only or compression only, but

in machine parts simple stresses of this kind are not as frequently

met with, especially if the parts enter into the moving mechanism.

All stresses to which a material is subjected tend to cause a deforma

tion in it. If the stress is not too great, however, the material will

return to its original shape and dimensions when the external load

is removed. The property which enables a material to return to its

original shape and dimensions is called elasticity and differs greatly

in different materials. Of the metals, lead, for example, has little or

no elasticity, whereas the elasticity of steel is great by comparison.

If a material has been subjected to such a load that upon its re

moval the material cannot fully return to its original shape and

dimensions, it is said that it has been stressed beyond its elastic limit.

Up to the elastic limit deformation is directly proportional to the

load, but when the elastic limit has been reached, and the load is still

increasing, the deformation will cease to be proportional to the stress,

although the material will not actually break before a much greater

load has been applied. The elastic limit is difficult to determine with

accuracy, although in iron and steel which has not been heat-treated,

it is frequently about one-half of the ultimate strength of the material.

In all engineering designs, the loads applied to the material must
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never be so great that the elastic limit is ever exceeded. If it is,

there will be a permanent set in the material which naturally inter

feres both with the action of a machine and with its safe operation.

Modulus of Elasticity

The modulus of elasticity is another expression used to determine a

certain quality in materials of engineering which is of great im

portance in the calculations of strength. The modulus of elasticity of

a material may be defined as the quotient obtained by dividing the

stress per square inch by the elongation in the length of one inch

caused by this stress. The modulus of elasticity is quite generally

denoted by E. Suppose that a steel bar 10 inches long is subjected to

a load of 45,000 pounds per each square inch of cross-section of the

bar, and assume further that in the total length of 10 inches the bar

elongates under its load 0.015 inch; then the elongation for each inch

of length would be 0.0015 inch and the modulus of elasticity would

be obtained as follows:

45,000

E = — = 30,000,000.

0.0015

As the elongation e is assumed to be proportional to the load up

to the elastic limit, the modulus of elasticity of a material E may be

used for finding the elongation per each inch produced by any load

per square inch S, according to the following formula:

8

c =—.

E

For example, the modulus of elasticity of wrought iron is 27,000,000.

Find the elongation per inch produced by a stress of 15,000 pounds per

square inch.

15,000

e = = 0.00055 inch.

27,000,000

Elongation and Reduction of Area

When a piece of material is tested for tensile strength in a test

ing machine, it elongates a certain amount before rupture takes

place. This elongation constitutes an important quality in the

material, as it indicates its toughness or the degree to which the

material is likely to give warning before it will actually break. It

is measured or recorded as the percentage or stretch or elongation oc

curring in a given length of the original piece; this length is fre

quently assumed as two inches. For example, if a test piece two

inches long is found to be 2^4 inches long after rupture, the elonga

tion in two inches is said to be 12% per cent. It should be noted

that the recorded value of elongation for any test depends largely

upon the original length selected for comparison, because the total

elongation consists partly of a general extension which takes place

mainly before the ultimate stress has been reached and which is dis

tributed fairly uniformly over the whole length of the piece, and

partly of an elongation in the vicinity of the section where the
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rupture will occur, where the local elongation is much greater, and

practically independent of the total length of the piece. At this point,

the elongation is also accompanied by a marked contraction of cross-

sectional area. The elongation at the time of rupture cannot be cal

culated, but, in every case, is found by actual tests.

As mentioned, a piece of material tested to failure in tension con

tracts or decreases in cross-sectional area at the point of rupture. The

percentage of decrease of area in relation to the original normal

cross-section is known as "reduction of area." For example, if the

original cross-sectional area of a bar was 0.78 square inches and the

section, after having tested the piece to failure, was 0.44 square inches,

then the decrease of area would be 0.34 square inches and the reduc

tion of area would be 0.34 -4- 0.78 = 0.44, or 44 per cent. The area of a

round bar tested to destruction is usually computed from the mean of

two diameters measured at right angles to each other.

Brittle materials fail without appreciable deformation. Thus the

percentage of elongation and the reduction of area in test pieces of

brittle materials are very small. As an example may be mentioned

cast iron, which will break with practically no deformation.

Strength of Alloy Steels

Special alloy steels can, by proper heat-treatment, be made to show

an increase of strength several hundred per cent greater than that of

ordinary machine steel. It should be noted, however, that the great

gain in strength of alloy steels is obtained only by certain heat-

treatments. In the annealed condition, special alloy steels are but

little superior to an ordinary carbon steel. As an example of what

can be obtained by heat-treatment may be mentioned that while a

carbon steel containing about 0.50 per cent carbon can by heat-treat

ment be made to attain an elastic limit up to 100,000 pounds per

square inch, under the very best conditions, a nickel steel with about

3.5 per cent nickel may be heat-treated to attain an elastic limit of

200,000 pounds per square inch, under the most favorable conditions.

Nickel-chromium steels have been heat-treated to show an elastic

limit of from 175,000 to 250,000 pounds per square inch. Chrome-

vanadium steels with proper heat-treatment may attain an elastic

limit up to 225,000 pounds per square inch. A curious result of heat-

treatment is that the elastic limit can be brought up much closer to

the ultimate strength than in the case of unannealed or untreated

materials. As an example may be mentioned a chrome-vanadium

steel which in its annealed state has an elastic limit of 94,000 pounds

per square inch and an ultimate tensile strength of 134,000 pounds per

square inch. After having been heat-treated this steel possesses an

elastic limit of 191,500 pounds per square inch and an ultimate

strength of 210,000 pounds per square inch. In general, it is un

certain to base calculations relating to the strength of alloy steels on

anything except actual tests performed with specimens having the

exact composition and which have been given the exact heat-treatment

that the parts calculated for will be given.



CHAPTER II

TENSION, COMPRESSION AND SHEARING STRESSES

The simple stresses, to which all other stresses in materials may

be reduced, are tension, compression and shearing stresses. Bend

ing and torsional stresses, as well as so-called "compound" stresses,

are merely special forms or combinations of these three simple types

of stresses.

With the various expressions used in the calculations of the strength

of materials now defined, it is possible to take up the specific cases of

calculations, considering one at a time. The simplest case is that of

direct.tension.

Tenslonal Stresses in Materials

Assume that a load is applied at the end of a bar, as indicated in

the accompanying engraving Fig. 1. The stress in the bar caused by

the load is assumed to be evenly distributed over the whole cross-

sectional area of the bar. Hence, the stress per square inch in the

section will equal the total load divided by the number of square

inches in the bar, or:

Load

Stress per square inch = .

Area

If 8 = permissible working stress in pounds per square inch;

P = total load in pounds;

A = area of cross-section in square inches.

P

Then B = —.

A

Example.—A wrought-iron bar supports in tension a load of 40,000

pounds. (See Fig. 2.) The load is gradually applied, and then after

having reached its maximum value, is gradually removed. Find the

diameter of round bar required.

From the table "Ultimate Strength of Common Metals," the ulti

mate strength of wrought iron is found to be 48,000 pounds per square

inch in tension. From the table "Factors of Safety," we find that a

load varying from zero to maximum in one direction, gradually ap

plied, requires a factor of safety of 6 for wrought iron. Hence, the

safe working stress, in this case, would be 48,000 h- 6 = 8000 pounds

per square inch. Inserting known values in the given formula, we

find:

P 40,000 40,000

S = — ; 8000 = ; A = = 5.

A A 8000

The cross-section of the bar, hence, must be about 5 square inches.

As the bar is circular in section, the diameter must then be about 2%

inches, the area of a circle of this diameter being 4.9 square inches.
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The elongation of a bar subjected to a load in tension is expressed

by the formula:

P X I

e =

AXE

in which e = elongation in inches;

P = total load in pounds;

I = length of bar in inches;

A = area of cross-section of bar in square inches;

E = modulus of elasticity.

Example.—What would be the total elongation of a bar supporting

in tension a load of 40,000 pounds, assuming that the cross-sectional

area of the bar is 5 square inches and that the bar is 5 feet long?

If we insert the known values in the formula just given, we will

find the elongation. In this case, P = 40,000; Z = 5 X 12 = 60; A = 5;

AREA

= A
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and E (obtained from the table "Ultimate Strength of Common

Metals") for wrought iron-=^ 27,000,000.

Then:

40,000 X 60

e = = 0.018 inch.

5 X 27,000,000

Compression

If a material is subjected to compression, the load is assumed as

being equally distributed over the total cross-sectional area and the

formula for compression has exactly the same form as the formula

for tension. If 8, P and A have the same meaning as for tensional

stress :

P

S = —.

Example.—A short structural steel bar supports in compression a

load of 40,000 pounds. See Fig. 3. The load is steady. Find the

diameter of the bar required.
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From the tables, we find that structural steel has an ultimate

strength of 60,000 pounds per square inch in compression and that

steel subjected to a steady load should have a factor of safety of 5.

Hence, the safe working stress equals 60,000 -4- 5 = 12,000 pounds per

square inch. Inserting the known values in the formula:

40,000 * 40,000

12,000 = , or A = = 3.33 square inches.

A * 12,000

The diameter of a bar, the cross-section of which is 3.33 square

inches is 2 1/16 inches approximately.

The compression or shortening of a material subjected to a compres

sive stress corresponds to the elongation of a bar subjected to a tensile

stress, and follows the same laws. Hence, let

e — shortening in inches of bar subjected to compression;

P = total load in pounds;

f = total length of bar in inches;

A = area of cross-section of bar in square inches;

E = modulus of elasticity.

Then,

P X I

e = .

AXE

Example.—If the bar in the example just given were 8 inches

long, how much would it be compressed or shortened by a load of

40,000 pounds, under the conditions stated?

In this case, P = 40,000; 1 = 8; A = 3.33; and E, from table, =

29,000,000. Hence,

40,000 X 8

e = — = 0.003 inch, approximately.

3.33 X 29,000,000

The formulas that apply to compression should be used only if the

length of the member being compressed is not greater than 6 times

the least cross-sectional dimension. For example, these formulas

should be applied to round bars only when the length of the bar is

less than 6 times the diameter. If the bar is rectangular in shape,

they should be applied only to bars that have a length less than 6

times the shortest side of the rectangle. When bars are longer than

this, a compressive stress causes a sidewise bending action, and an

even distribution of the compression stresses over the total area of

the cross-section is no longer to be depended upon. Special formulas

for long bars or columns will be given later. As a rule, bars subjected

to simple tension or compression should be made round or square to

insure an even distribution of the stress. If they are made of irregular

section, particularly if they are made thin in one direction and wide

in the other, the load will not be evenly distributed over the whole

section, but may be concentrated at one edge, in which case this

edge may be over-stressed while the other edge takes but little of the

load.

While in the case of members subjected to compression the length

of the member is limited, members subjected to tension can have any
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length, providing the weight of the member itself is not so great as to

enter into the problem. Whether the member is short or long, the

stress will be evenly distributed in tension, and the safe stress will

not be exceeded; but in instances where the elongation is a factor to

be taken into account it is evident that the total elongation of a long

bar subjected to tension will be greater than that of a short bar.

Shearing Stresses

The pin E shown in the illustration, Fig. 4, is subjected to shear.

Parts G and B are held together by the pin and tend to shear it off at

C and D. The areas resisting the shearing action are equal to the
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Fig. 4. Connecting-rod with Pin subjected to Shearing Stresses

cross-sectional areas of the pin at these points. The general formula

for shear is

load = cross-sectional area X working stress.

Expressed as a formula, if

P = total load in pounds;

A = area of cross-section in square inches;

S = permissible working stress in pounds per square inch;

then,

P = A X S.

The permissible working stress for shear is assumed as four-fifths

or five-sixths of the permissible working stress in tension.

If a pin is subjected to shear as in Fig. 4, so that two surfaces, as

at C and D, must fail by shearing before breakage takes place, the

areas of both surfaces must be taken into consideration when calcu

lating the strength. The pin is then said to be in double shear. It

the lower part F of connecting-rod B were removed, so that member G

were connected with B by a pin subjected to shear at C only, the pin

would be said to be in single shear.

Example.—Assume that in Fig. 4 the load at G pulling on the con

necting-rod is 20,000 pounds. The material of the pin is steel. The

load varies from a maximum in one direction to a maximum in the
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other direction, and is applied in such a manner that shocks are

liable to occur. Find the required dimensions for the pin.

The load P is 20,000 pounds. The ultimate strength of steel in

shear is 50,000 pounds per square inch. As shocks are liable to occur,

the factor of safety to be used in this case is 12. (See the tables

given for ultimate strength and factor of safety.) Hence the safe

working stress 8 = 50,000 -4- 12 = 4170 pounds per square inch. In

serting the known values in the formula given, we have:

20,000

20,000 = A X 4170, or A = = 4.8 square inches.

4170

As the pin is in double shear, that is, as there are two surfaces C

and D over which the shearing stress is distributed, each of them

must have an area of one-half the total shearing area A. In this case,

then, the cross-sectional area of the pin will be 2.4 inches, and the

diameter of the pin, to give a cross-sectional area of 2.4 inches, must

be 1% inch.

Stresses in Machine Parte due to Temperature

If a bar of metal is confined in a space so that it is prevented from

expanding or contracting, stresses will be induced in it if it is sub

jected to temperature changes. These stresses are termed tempera

ture stresses, and their magnitude is measured by the amount of com

pression or elongation. In general, it is necessary to avoid tempera

ture stresses in all designs of machinery and structures, and, if pos

sible, allowance should be made for the expansion and contraction of

members due to temperature changes. The stress per square inch

produced by temperature changes may be determined by the follow

ing formula:

8 = C X T X E

in which 8 = stress produced in the member by temperature change,

in pounds per square inch;

C = coefficient of linear expansion of the metal under con

sideration;

T = the change in temperature in degrees F. ;

E = modulus of elasticity.

The value of the coefficient of linear expansion for 1 degree F. equals

0.0000074 for high-carbon steel; 0.0000065 for machine steel; 0.0000062

for cast iron; and 0.0000068 for wrought iron.

Example.—What is the stress induced in a machine-steel machine

member confined in a space so that it is prevented from expanding, if

its temperature is raised from room temperature of 68 degrees F. to

150 degrees F.?

The modulus of elasticity E for machine steel may be assumed at

29,000,000. The change in temperature in degrees F. equals

150 — 68 = 82 = T.

C, the coefficient of linear expansion, as given above, is 0.0000065;

hence, by inserting the known values in the formula given, we have:

8 = 0.0000065 X 82 X 29,000,000, = 15,500 pounds per square inch,

approx.
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It will thus be seen that a stress of considerable magnitude can

be induced in a metal member simply by a temperature change, if the

member is not free to expand under the influence of the increased

temperature.

Shape of Machine Parts

While the size of a machine part depends mainly upon the magni

tude of the stresses to which it is subjected, its shape depends, to a

large extent, upon the manner or direction in which the load or strain

is brought to bear upon it. If a part is subjected to tension only, that

is, if it merely resists a force tending to pull it apart, the shape is not

very material, but, in general, a round bar is the best. This shape

is also most compact and generally the cheapest. Almost any other

shape is satisfactory, however, although it is well to avoid using parts

which are thin in one direction and wide in the other, because, as

already mentioned, the strain may then be brought to bear upon one

edge instead of being uniformly distributed over the whole area, and

a stress may be caused in one part of the cross-section which will be

greater than that for which the material is adapted. The material

may then begin to rupture at one edge and may thus gradually break,

although the cross-sectional area, as a whole, would be large enough,

if properly shaped, to carry the load imposed upon it.

When a machine part is designed to resist compression, it should,

in general, have a shape similar to that required for resisting ten

sion. There are, however, exceptions to this statement as, for instance,

when the proportion of the length of the bar to its diameter or thick

ness is such that the member is likely to buckle or bend. As men

tioned, this will take place in many cases when the length exceeds

six times the diameter or the smallest distance across the member,

and, in such cases, it may become desirable to use hollow or cross-

ribbed forms of construction so as to bring the metal that resists com

pression as far from the axis of the member as possible; thus a hol

low cylindrical form is very effective to resist compression, and a

hollow square or cross-ribbed form may also be adopted for reasons of

appearance or cheapness of production.

Stresses in Castings

Stresses in castings, due to shrinkage in cooling, often increase, to

a considerable extent, the stresses due to the load. If all parts of a

casting could be made to cool equally fast there would be little trouble

from this source, but as different parts of the casting vary in thick

ness, the time required for cooling varies and stresses are set up

which are sometimes great enough to rupture the casting without any

additional load being placed upon it. In the case of a pulley, the hub,

in cooling, tends to draw the arms away from the rim. As these

strains are primarily due to uneven cooling, it is evident that in

order to reduce them to the lowest point it is necessary to make the

different parts of the casting of as nearly uniform thickness as pos

sible. This is not always feasible, and in cases where it is not, a
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liberal allowance should be made for the internal stresses by using a

larger factor of safety when calculating for the external load.

Shrinkage strains often become so serious that it is necessary to

make castings in two or more parts, which it would otherwise be pos

sible to make at much less expense in one piece. As examples of this

may be mentioned large jacketed cylinders for steam and gas engines.

If these are cast in one piece the shrinkage stresses, together with

the stresses set up by the varying temperatures incident to the service

of these parts, are often sufficient to crack them.

Sometimes, however, as mentioned on page 33 of Machinery's

Reference Book No. 14, it is possible to utilize the shrinkage stresses

to advantage. For instance, when cast iron was the standard material

for the manufacture of ordnance, guns were cast with cores through

which water was circulated so as to cool the surface of the bore before

the outer part solidified. When the gun was fired the inner layers of

metal stretched more than the outer ones. By cooling the inner

layers of the metal first, shrinkage strains were induced in the walls

of the guns, causing the outer layers of the metal to compress the

inner ones. The combined effect of the shrinkage stresses and the

stresses produced by the explosion was to produce a uniform stress

throughout the walls of the guns and thus to reduce the chance of

rupture. A similar condition is taken advantage of in the manu

facture of modern ordnance, except that in this case steel is used as

the material and various rings or layers are shrunk the one upon the

other. The stresses induced by shrinking one layer upon the other

are counteracted at the moment of firing by the stress induced by the

explosion of the charge.

It is not often, however, that advantage can be taken of shrinkage

strains in this way. More often are they troublesome and cause the

work to warp in the process of machining as well as causing un

expected breakage at what seems insignificant loads. The designer

must take as much care in proportioning the cast-iron parts so that as

small shrinkage stresses as possible are induced as he does in calcu

lating the correct proportions to resist the stresses caused by the ex

ternal load. In order that unequal contraction shall not produce dan

gerous stresses in the metal, it is necessary, in addition to making the

parts as nearly uniform in thickness as possible, to avoid sharp

corners and to see that the various parts shall be free to expand when

necessary.



CHAPTER III

BEAMS AND BENDING STRESSES

When a body is subjected to bending, it is supported at one or more

points and a load is applied at a point that is not directly supported,

thus causing a bending action. Parts of machines and structures

subjected to bending are known mechanically as beams. Hence, in

this sense, a lever fixed at one end and subjected to a force at its

other end, a rod supported at both ends and subjected to a load at

its center, or the overhanging arm of a jib crane, would all be known

as beams. The theory of the stresses in beams and the method of

determining them is a subject that is not as simple as when materials

are subjected to tension or compression only. It will be necessary to

go into considerable details to explain the action of the forces upon

beams and the method of determining the dimensions required for

resisting these forces.
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Fig. 5. Exaggerated Example, showing Effect of Bending

Streases in Beams

The stresses in a beam are principally tension and compression

stresses. In Fig. 5 is shown a beam supported at A and B, a load is

applied at P, and the beam is shown bent or deflected in an exag

gerated manner in order to Illustrate the principles involved. The

lower fibers are stretched by the bending action and are thus sub

jected to a tensile stress, while the upper fibers are compressed and

thus subjected to a compressive stress. There will be a slight length

ening of the fibers in the lower part of the beam, while those on the

upper side will be somewhat shorter, depending upon the amount of

deflection. If we assume the beam illustrated to be of round or

square cross-section, there will be a layer or surface through its

center line which will be neither in compression or in tension. This

surface is known as the neutral surface. In metals and similar

materials this neutral surface passes through the center of gravity of

the cross-section, as long as the material is not stressed beyond the

elastic limit. It is evident that this neutral surface divides the beam
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into two sections, one of which is located above and one below it,

those sections above it in the illustration being all in compression,

while those beneath are all in tension. The stresses of the individual

layers or fibers of the beam will be proportional to their distances

from the neutral surface, the stresses being greater the further away

from the neutral surface the fiber is located. Hence, there is no stress

on the fibers in the neutral surface, but there is a maximum tension

on the fibers at the extreme lower side and a maximum compression

on the fibers at the extreme upper side of the beam. In calculating the

strength of beams, it is, therefore, only necessary to determine that

the fibers of the beam which are at the greatest distance from the

neutral surface are not stressed beyond the safe working stress of

the material. If this is the case, all the other parts of the section of

the beam are not stressed beyond the safe working stress of the

material.
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Fig. 6. Diagrammatical Illustration showing Action of Shearing Stresses

in a Beam subjected to Load

Shearing Stresses in Beams

In addition to the tension and compression stresses mentioned in

the previous paragraphs, a loaded beam is also subjected to a stress

which tends to shear it, as indicated at C and D in Fig. 6. This shear

ing stress equals the load to which the beam is subjected. In most

cases, the shearing action can be ignored for metal beams, especially

if the beams are long and the loads far from the supports. If the

beams are very short and the load quite close to a support, then the

shearing stress may become equal to or greater than the tension or

compression stresses in the beam and in that case the beam should be

calculated for shear in the manner already explained under "Shearing

Stresses."

Reaction at the Supports

When a beam is loaded by vertical loads or forces, the sum of the

reactions at the supports equals the sum of the loads. In a simple

beam, when the loads are symmetrically placed with reference to the

supports, or when the load is uniformly distributed, the reaction at

each end will equal one-half of the sum of the loads. When the loads

are not symmetrically placed, the reaction at each support may be

ascertained from the fact that the algebraic sum of the moments must
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equal zero. In the accompanying illustration. Fig. 7, if moments are

taken about the support to the left, then:

R, X 40 — 8000 X 10 — 10,000 X 16 — 20,000 X 20 = 0 ;

if. = 16,000 pounds.

Moments taken about the support at the right will, in the same way,

give

K, = 22,000 pounds.

The sum of the reactions equals 38,000 pounds, which is also the sum

of the loads. If part of the load is uniformly distributed over the

beam, this part is first equally divided between the two supports, or

the uniform load may be considered as concentrated at its center of

gravity.

Example.—In Fig. 7 there is a uniformly distributed load of 30,000

pounds on the beam between the supports, in addition to the loads

8000, 10,000, and 20,000 pounds indicated in the engraving. Find the

reactions at the support.
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Fig. 7. Diagrammatical View Illustrating the Principle of Reaction

at the Supports

The uniformly distributed load adds 15,000 pounds to the reaction at

each support. We have already found It, = 22,000 pounds and R. =

16,000 pounds, in case the uniform load is not considered. Hence,

with uniform load:

R, = 22,000 + 15,000 = 37,000 pounds.

R, = 16,000 + 15,000 = 31,000 pounds.

Bending- Moments

The bending action of a load upon a beam is called the bending

moment. For example, in Fig. 8 the load P acting downward on the

free end of the cantilever beam has a moment or bending action about

the support at A equal to the load multiplied by its distance from the

support. The bending moment is commonly expressed in inch-pounds,

the load being expressed in pounds and the lever arm or distance

from the support in inches. The length of the lever arm should

always be measured in a direction at right angles to the direction of

the load. Thus, in Fig. 9, the bending moment is not P X a, but is

P X !, because 1 is measured in a direction at right angles to the

direction of the load P.

The ability of a beam to resist the bending action or the bending

moment is called the moment of resistance of the beam. It is evident
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that the bending moment must be equal to the moment of resistance.

The moment of resistance, in turn, is equal to the stress in the fiber

furthest away from the neutral plane multiplied by the section

modulus. The section modulus is a factor which depends upon the

shape and size of the cross-section of a beam, and is given for different

cross-sections in all engineering handbooks. (See Machinery's Hand

book, page 308.) The section modulus, in turn equals the moment of

inertia of the cross-section, divided by the distance from the neutral

surface to the most extreme fiber. The moment of inertia for various

cross-sections will also be found tabulated in standard engineering

handbooks. Let,

Mb = bending moment in inch-pounds;

8 = permissible working stress in pounds per square inch;

Z = section modulus;

/ = moment of inertia of cross-section ;

y = distance from neutral plane to most remote fiber of cross-

section.
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Figs. 8 and 9. Views illustrating Principle of Bending Moments

Then the following formula may be given as the fundamental

formula for bending of beams:

81 Mi,

if„ = -= 8Z; and 8 = —

V Z

The moment of inertia / is a property of the cross-section that de

termines its relative strength. In calculations of strength of materials,

a standard engineering handbook is necessary because of the tabulated

information of section moduli and moments of inertia, areas of cross-

sections, etc., to be found therein.

The bending moments for beams supported and loaded in various

ways are also given in standard handbooks. There are a great many

different ways in which a beam can be supported and loaded, and the

bending moment caused by a given load varies greatly according to

whether the beam is supported at one end only or whether it is

supported at both ends, and also according to whether it is freely sup

ported at the ends or whether the beam is held firmly. Then the load

may be equally distributed over the full length of the beam or may

be applied at one point either in the center or near to one or the

other of the supports. The point where the stress is maximum is gen
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erally called the critical point. In some handbooks, instead of giving

the bending moment, the stress at the critical point, which equals

bending moment divided by section modulus (see preceding formula)

is given.

Examples of Strength of Beams

A number of examples of the strength of beams will illustrate the

use of the formulas given and also of the formulas to be found in

standard handbooks.

Example 1.—A square bar, held firmly at one end, is supporting a

load of 3000 pounds at the outer free end. The length of the bar is

2% feet. The bar is made of structural steel and the load is steady.

Find the size of bar required for safe loading.

Mb = load X lever arm in inches = 3000 X 30 = 90,000;

B = safe stress = 60,000 5 = 12,000 ;

From Machinery's Handbook, page 308:

/, for a square = *' -4- 12, if s = side of square;

y, in the present case = * -4- 2.

Then,

s1

12,000 X —

12 12,000 X *'

90,000 = = = 2000s«;

s 6

2

90,000
ss = = 45; and s = 3.56 inches.

2000

Example 2.—A rectangular steel bar two inches thick and firmly

built into a wall, as shown in Fig. 10, is to support 3000 pounds at

its outer end 36 inches from the wall. What would be the necessary

depth h of the beam to support this weight?

The bending moment equals the load times the distance from the

point of support, or, 3000 X 36 = 108,000 inch-pounds.

The permissible fiber stress in the steel bar in this case may be

found by using a factor of safety of 5, giving 60,000 -r- 5 = 12,000

pounds per square inch. Hence, M<, = 108,000, and 8 = 12,000.

Inserting these values in formula, Mi, = 8Z, we have:

108,000 = 12,000 Z, from which

108,000

7. = = 9.

12,000

Now from a standard handbook (Machinery's Handbook, page

bd'

308), we find that the section modulus for a rectangle equals ,

6

in which 6 is the length of the shorter side and d of the longer side

of the present rectangle. Hence, Z = .

6

But Z = 9 and 6 = 2.



STRESSES IN BEAMS 23

Inserting these values into the formula, we have:

2d'

9 = ,

6

from which d* = 27, and d = 5.2 inches. This value d corresponds to

dimension h in Fig. 10. Hence, the required depth of the beam to

support a load of 3000 pounds at the outer end with a factor of safety

of 5 would be 5.2 inches.

Example 3.—A round steel bar is supported at A and B as shown

in Fig. 11. It is uniformly loaded with a load of 20,000 pounds. The

distance between supports is 5 feet. The eteel bar Is 3 inches in

diameter. Assuming steel to have an ultimate tensile and compressive

strength of 60,000 pounds per square inch, what factor of safety has

been assumed in the case described?

From Machineky's Handbook, page 340, we find that for a bar sup-

 

Figs. 10 and 11. Examples of Problems met with in Beam Calculations

ported at the ends and uniformly loaded, the maximum stress (here

termed 8) is at the center and equals:

Wl

S =

iZ

where W = total load in pounds, uniformly distributed;

I — length of beam in inches;

Z = section modulus.

In this case W = 20,000; i = 5 X 12 = 60 inches; Z for bar 3 inches

in diameter (see Machinery's Handbook, page 327) = 2.651. Hence,

20,000 X 60

8 = = 56,600 pounds per square inch.

8 X 2.651

As the ultimate strength of the material is 60,000 pounds per square

inch, this gives practically no factor of safety at all. The bar must

either be relieved of part of the load, or a much larger bar must be

used to support the given load. With a factor of safety of 5 the bar

would not support much more than 20,000 -f- 5 = 4000 pounds in this

case.

Strength of Channels

Experiments on standard channels carried out by Bach (published

in 1909) show that the regular bending formula for beams freely

supported at their ends and loaded in the center gives too high a

value for the strength of structural channels. The experiments show
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that the amount by which the value obtained from the formula is

greater than that obtained by experiments, is, for channels 4% inches

high, 7 per cent; for channels 8% inches high, 18 per cent; and for

channels 11% inches high, 26 per cent. These values are those found

when the load is assumed to be applied in the center line of the web of

the channel as shown in Fig. 12. If the load is placed along the line

of the vertical neutral axis of the channel as shown in Fig. 13, the per

missible load according to the beam formula is 10, 25.5 and 34 per

cent greater than that shown by the experiments. These experiments,

therefore, indicate that when the usual formulas are employed in

calculations, for channels or other structural shapes, a liberal factor

of safety should be allowed in order to compensate for the difference

of the results given by the formula and those of actual experiments.

It should be noted that the formula for bending is fully correct when

ever the section of the member is such that the load is fully dis

tributed over the whole sectional area, as in a rectangular section,

i f p ; i

± ± 

Fig. 12 Fig. 13 Fig. 14

Fig. 14; but in the case of channels as well as many other structural

shapes, the load is not, as a rule, properly distributed over the whole

section, but stresses certain portions of the section in a higher degree

than others.

Deflection of Beams

When a beam is loaded, it will deflect a certain amount under a

given load. The formulas for the deflection are generally quite com

plicated, but will be found for all ordinary conditions in the standard

handbooks. For this reason, there is no need of entering upon the

subject of deflection here, since all that could be done would be to

repeat these formulas here; this would prove too voluminous for a

treatise of the kind here attempted, the purpose of which is to give

a general idea of the principles employed, and to act as a guide with

relation to the use of the formulas and tables found in general en

gineering handbooks.
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Bending- Stresses Combined with Direct Tension or Compression

In U-shaped machine parts, such as, for example, punch or shear

frames, the metal in the back of the frame resists both a uniformly

distributed tensile stress due to the pressure between the jaws, and

stresses due to the bending moment set up by the same pressure. In

a punch or shear frame, the bending stresses will appear as tensile

stresses towards the front of the frame and as acmpressive stresses

at the back. The maximum stress in a case of this kind, therefore,

is composed of the sum of the uniformly distributed tensile stress and

the tensile stress due to the bending moment.

Should, again, the machine part be of such design and shape that

the pressure exerted upon it is in such a direction that the stresses

induced are partly compression and partly bending stresses, then the

stress due to direct compression should be added to the compressive

stress due to bending in order to find the total compressive stress to

which the machine part is subjected.

As a simple example illustrating this principle, assume that we have

a U-clamp of rectangular cross-section, as illustrated in Fig. 15. A

force of 5000 pounds tends to force the ends of the U-clamp apart, as

indicated. What will be the tensile stress at At

The dimensions of the cross-section of the clamp are given in the

illustration.

The bending moment equals 5000 X 20 = 100,000 inch-pounds.

 

Machftiery

Fig. 15. Bending Stresses Combined with Direct Tension Stresses

 

we have, by inserting the known values:

100,000

S = — = 1875 pounds per square inch.

53.3
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The direct tensile stress of 5000 pounds is uniformly distributed

over the whole cross-sectional area; hence this stress equals

5000 5000

= = 125 pounds per square inch.

5X8 40

The total tensile stress at A is then:

1875 + 125 = 2000 pounds per square inch.

Beams of Uniform Strength Throughout Their Length

As a rule, there is a certain point along a beam at which the bend

ing moment is at its maximum, and at every other point along the

beam the bending moment is less. Therefore, when a beam is of uni

form cross-section, it is made strong enough to resist the bending

moment at the section where the stress in the beam will be the greatest,

and will as a result be excessively strong or have an excess of material

at every other section. Sometimes it may be desirable to have the

cross-section uniform on account of the simplicity of manufacture, as,

for example, in the case of structural steel sections. In other cases,

however, the metal can be more advantageously distributed if the

beam is so designed that its cross-section varies from point to point,

so that at every point it is just great enough to take care of the bend

ing stresses at that point with an ample factor of safety. This con

struction is especially suitable for cast members and is also employed

when members such as girders are built up from a number of dif

ferent plates, I-beams and angles.

In the following a number of beams will be shown in which the load

is applied in different ways and which are supported by different

methods, and in which the shape of the beam required for uniform

strength will be indicated. In the examples shown, it should be noted

that the shape given is the theoretical shape required to resist bend

ing only. It is apparent that sufficient cross-section of the beam must

also be added either at the points of support, in the case of beams

supported at both ends, or at the point of the application of the load,

in the case of beams loaded at one end and supported at the other,

to take care of the vertical shear.

In Fig. 16 is shown a beam held rigidly at one end and loaded at

the other. The width of the beam is uniform. In order that the

beam shall be of uniform strength throughout its length, its depth

must decrease towards the loaded end. The outline of the beam

shape will be that of a parabola with its vertex at the loaded end. If

the outline is made like that of half a parabola, as shown in Fig. 17,

the beam will also be of uniform strength throughout its length, and

it may also be reversed so that the upper edge is parabolic, as shown

in Fig. 18. In all these cases, let

P = carrying capacity in pounds;

8 = safe working stress in pounds per square inch;

6 = width of beam in inches;

ft = height of beam in inches at support;

I = length of beam in inches.
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Then the carrying capacity will be found from the following formula:

Soft'

61

A beam of approximately uniform strength, firmly secured at one

end and loaded at the other, is shown in Fig. 19. The depth of the

beam decreases towards the loaded end, the proportions of the beam

being as indicated in the engraving. The same formula for the car

rying capacity as given above for beams of parabolic shape is used for

this beam also.

If the beam is loaded with a uniformly distributed load and the

width of the beam is uniform, then the depth of the beam will de

crease towards the outer end in such a manner that the outline of

the beam will be -triangular, as indicated in Fig. 20.

In this case, if the symbols in the formula denote the same quanti

ties as in the formula previously given for beams of this class, the

carrying capacity is found as follows:

Soft'

P = .

3!

If the depth ft of the beam is uniform, the load is uniformly dis

tributed, and the beam held rigidly at one end, then the width of

the beam will gradually decrease towards the point, as indicated in

Fig. 21, the outline of the beam being formed by two parabolas which

are tangent to each other at their apexes at the outer end of the

beam. In this case also the formula for the carrying capacity is

written as follows:

8bh'

P = .

31

Figs. 22 to 24 show beams supported at both ends. In Fig. 22 the

load is concentrated in the center, the depth of the beam is uniform,

the width of the beam is maximum at the point of loading, and from

here the beam tapers towards both ends, as indicated.

In Fig. 23 the load is also concentrated at the center but the width

of the beam is uniform and the variation for strength is made in the

depth, the depth being maximum at the point of loading, and the out

line of the beam being determined by two parabolas with apexes at the

points of support.

In both of the above cases, the formula for the carrying capacity is:

2 Soft'

P =

32

in which the symbols are the same as in the other formulas given for

beams of uniform strength.

In Fig. 24 a beam is shown supported at both ends with the load

uniformly distributed. The width of the beam is uniform and the

depth of the beam is maximum at the center, the outline of the beam
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in this case being one-half of an ellipse. The carrying capacity in this

case is determined by the formula:

4 8bh'

P = .

31

A number of other cases of beams of uniform strength throughout

their length will be found in more exhaustive works on beams and the

strength of materials. A total of twelve different cases will be found

in Machinery's Handbook, pages 352 and 353.

 

Tigs. 16 to 24. Beams of Uniform Strength

It should be noted that the theoretical shapes of the beams shown

in Figs. 16 to 24 are based on the stated assumptions of uniformity

of width or depth of cross-section, and unless these are observed in

the design, the theoretical outlines do not apply without modifications.

For example, in a cantilever with the load at one end, the outline is

a parabola only when the width of the beam is uniform. It is not

correct to use a strictly parabolic shape when the thickness, is not

uniform, as, for instance, when the beam is made of an I- or T-section.

In such cases, some modifications may be necessary; but it is evident

that whatever the shape adopted, the correct depth of the section can

be obtained by an investigation of the bending moment and the"shear-

ing load at a number of points, and then a line can be drawn through

the points thus ascertained, which will provide for a beam of practi

cally uniform strength whether the cross-section be of uniform width

or not.
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Cross-sectional Shape of Beams

When a member is designed to resist bending, it should always have

its greatest depth of material in the direction in which the force is

applied, because the capacity of a member to resist bending, as indi

cated by the formula for the section modulus, referred to on page

21, increases as the square of its thickness or depth in the direc

tion of the force, and only directly as its width. For example, if the

depth of a beam is increased two times in the direction of the force,

its capacity to resist bending increases four times, whereas, if its

width is increased two times, its capacity to resist bending is only

increased two times. Again, if the depth in the direction of the force

is increased three times, its capacity to resist bending is increased

 

PiB.26. PlB.ae. Fig. 27. MachtnerU

Figs. 25 to 27. Cross-sectional Shape of Beams depending upon
Method of Loading

nine times, while if it was increased three times in width only, the

strength would increase only three times. The proportion of depth

and width must, of course, not be carried to an extreme, as in that

case there might be a tendency for the member to buckle or yield

sideways.

When a material such as steel is used, which has oractically the

same properties in tension or compression, the most economical form

of beam cross-section is an I-beam, if the beam is subjected to vertical

loading only; that is, if a load in one direction only is applied to it,

as indicated in Fig. 25. If, again, the beam is loaded in both a verti

cal and horizontal direction, that is, in two directions at right angles

to each other, then a beam of hollo'w rectangular section, as shown in

Fig. 26, will require the least amount of material for a given strength

and stiffness. If the load is the same in the horizontal as in the verti

cal direction, then the cross-section would, of course, be a hollow

square. For equal loading in any direction, a hollow circular section,

as shown in Fig. 27, should be used. Pipe sections lend themselves

exceedingly well for use in such instances.



CHAPTER IV

TORSIONAL STRESSES AND APPLICATIONS

Assume that a shaft A, as shown in Fig. 28, is subjected to a twisting

action caused by the force P acting at the end of lever L. In that case

the twisting moment is P X I. This also is frequently called the tor

sional moment. The torsional moment must be equal to the moment

of resistance in torsion which, in turn, equals the stress multiplied by

the section modulus for torsion, similarly as in the case explained for

bending. The section modulus for torsion, in turn, equals the polar

moment of inertia divided by the distance from the center of gravity

 

Fig. 28. Shaft Subjeoted to Torsional Stress

to the most extreme fiber, so that the fundamental formula for torsion

may be given as:

7P M,

Mt = 8ZP = S—; or S = —

V Zv

in which Aft = moment of force tending to twist (torsional moment)

in inch-pounds;

8 = permissible working stress in pounds per square inch;

/P = polar moment of inertia;

ZP = section modulus for torsion ;

y = distance from center of gravity to most remote fiber.

This formula holds true only for circular sections, but may be ap

plied with fair accuracy also to sections which are nearly circular.

For other sections the section modulus does not equal the polar

moment of inertia divided by the distance from the center of gravity

to the most remote fiber. In Machinery's Handbook, page 448, will

be found a table of "Polar Moments of Inertia and Polar Section

Moduli," for a number of cross-sections.
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The polar section modulus or section modulus for torsion for a

circle is that most commonly used and equals:

3.1416 X D'

Z„ = = 0.196 IT

16

in which D = diameter of circle.

The permissible working stress for torsion is equal to the per

missible working stress for shear, because the torsional stress is

practically nothing but a shearing stress, and may, therefore, be as

sumed as about four-fifths or five-sixths of the permissible stress in

tension.

Example.—A square bar is subjected to a steady torsional moment

of 90,000 inch-pounds. The bar is made of structural steel. Find the

size of bar required for safe loading.

In this case,

Torsional moment M, = 90,000;

Safe working stress 8 = 50,000 5 = 10,000;

Polar section modulus (see Machinery's Handbook, page 448)

= 0.22s' for a square, if s is the side of the square.

Hence,

M, = 8ZV, or 90,000 = 10,000 X 0.22s'.

90,000

s' = = 40.9, and s = 3.45 inches.

2200

The two most common applications of torsional strength met with

in machine design are the strength of shafting and the carrying

capacity of helical springs.

Application to Shafting

In the case of shafting, the formulas for torsional strength can be

given in a simplified form, provided the shafting is always of cir

cular cross-section. The twisting strength of a shaft may then be

determined from the formulas:

3.14 d'S iPS

T = PR = =

16 5.1

or

5.1 PR , I 321,000 H.P.

8 > nS

in which T= twisting moment in inch-pounds;

P = force acting upon the shaft, producing rotation, in

pounds;

R = length of lever arm of force P, in inches;

d = diameter of shaft in inches;

8 — allowable torsional shearing stress in pounds per square

inch;

n = number of revolutions of shaft per minute;

H.P. = horsepower to be transmitted.

Example.—Find the ciameter of shaft required to transmit 60 horse
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power at 300 revolutions per minute, if the maximum safe stress of

the material (special alloy steel) of which the shaft is made is 10,000

pounds per square inch.

The formula for finding the diameter of shaft is:

.4

321,000 X H. P.

nS

If we insert the given values, we have:

, s
321,000 X 60

= V 6.42 = 1.86 inch.

300 X 10,000

The shaft may, therefore, be made, say, 1% inch in diameter.

The allowable stress for ordinary shafting may be assumed as 4000

pounds per square inch for main power-transmitting shafts; 6000

pounds per square inch for lineshafts carrying pulleys; and 8500

pounds per square inch for small, short shafts, countershafts, etc.

The horsepower transmitted using these allowable stresses is as

follows:

For main power-transmitting shafts:

<P» ' \ 80 H.P.

H.P. =— ; or d = A

80 \ „

For lineshafts carrying pulleys:

d'n sl 53.5 H.P.

H.P. = ; or d = x

53.5 \ n

For small, short shafts:

<**» H.P.
H.P. = ;ord=

38 M n

Shafting which is subjected to shocks, sudden starting and stop

ping, etc., should be given a greater factor of safety than is indicated

by the allowable stresses just mentioned.

Example.—What would be the diameter of a lineshaft to transmit

10 horsepower? The shaft makes 150 revolutions per minute.

'/ 53.5 X 10
d = \ = 1.53, or, say, 1 9/16 inch.

V 150

Example.—What horsepower would a short shaft, 2 inches in

diameter, carrying but two pulleys close to the bearings transmit?

The shaft makes 300 revolutions per minute.

2' X 300

H.P. = = 63.

38

Shafting Subjected to Unusual or Severe Stresses

The formulas given in the preceding paragraphs relate to shafting

used under normal conditions. Sometimes the distance between bear

ings must be abnormally great or the shafts are subjected to very

severe stresses between the bearings due to the gears, pulleys, etc.,

mounted on it. In such cases, it is necessary to calculate the stresses

in the shafting and consider both the weight of the shafting itself and
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that of the pulleys, gears or other machine parts mounted on it. In

calculating the stresses caused by the weight of the shaft itself the

total weight beween the bearings is considered as uniformly dis

tributed along the whole shaft, the shaft being considered as a

beam freely supported at the bearings. The bending moments caused

by pulleys, gears, etc., are then determined and added to find the total

bending moment. This, in turn, is then combined with the torsional

moment in the manner indicated in the following.

It should be noted that in the case of shafting, the location and

direction of the tooth loads, belt pulls, etc., which produce bending,

remain fixed while the shaft rotates. The bending stresses are thus

constantly varying in direction, and a greater factor of safety should

be used than for a beam subjected to a load in one direction only.

Combined Bending and Torsion

If a bar or beam is subjected to both bending and torsion at the

same time, the moment to which it is subjected is known as the com

bined moment and an empirical formula for this condition may be

written:

Combined moment = >jMi,' + Mi' = BZ

in which 8 = permissible working stress in pounds per square inch;

Z = section modulus for bending (moment of resistance);

Mi, = maximum bending moment in inch-pounds;

Mt = maximum torsional moment in inch-pounds.

This formula is entirely empirical. It was published in 1900 by J.

J. Guest as the result of experiments made by him. It Is apparently

not applicable in cases where the torsional moment is very large

compared with the bending moment, but for most practical conditions,

where it is likely that both moments are of appreciable magnitude,

or especially where the bending moment is larger, the formula gives

satisfactory values in cases where shafts, beams and machine parts are

subjected to combined bending and torsional stresses. The formula

has been proved by experiments to be especially applicable to mild

steel (machine and structural steel), and as the machine designer is

almost exclusively concerned with this material, when dealing with

questions of combined bending and twisting stresses, the formula may

be accepted as safe and correct for all practical purposes. The safe

stress 8 in this formula may be assumed to be equal to the safe stress

in bending.

Example.—Assume that a square bar is subjected to a combined

bending and 'torsional moment. The bending moment is caused by a

load of 3000 pounds supported at the outer free end of the bar, the

length of which is 30 inches. The torsional moment is 90,000 inch-

pounds. Find the size of square bar made from structural steel which

will stand the combined moment with a factor of safety of 5.

In this case.

Mi, = 3000 X 30 = 90,000 inch-pounds;

M, = 90,000 inch-pounds;
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8 = 60,000 -s- 5 = 12,000 pounds per square inch;

Z for a square section (see Machinery's Handbook, page 308)

= o* .+- 6. in which a = the side of the square.

Then:

Combined moment = V 90,000' + 90,000' = 127,000 approx. and

a'

127,000 = SZ = 12,000 X — = 2000 a';

6

127,000

a' = =63.5;

2000

a = 4 inches, very nearly.

Combined Torsion and Compression

Propeller shafts of steamers and vertical shafts carrying considerable

weight, are subjected to combined torsion and compression. Let P, =

maximum resultant compressive stress; P, = maximum resultant shear

ing stress; C = the compressive stress due to the thrust; 8 = the

shearing stress due to the twisting moment. Then,

P, = % (C + s/C + 48'); P,= Us/C* + iS'

It is evident that the safe compressive stress must not exceed P„

and the safe shearing or torsional stress must not exceed P,.

Torsional Deflection of Shafting

Shafting must be proportioned not only so that it has the required

strength for transmitting a given amount of power, but so that it can

not be twisted through a greater angle than has been found satisfactory

by previous experience. Ordinarily, it is assumed by many authorities

that the allowable twist in degrees should not exceed five minutes or

about 0.08 degree per foot length of the shaft. The following formula

gives the angle of torsional deflection of a cylindrical shaft:

584 Tl

a =

d'G

in which a = angle of torsional deflection in degrees;

T = twisting moment in inch-pounds;

I = length of shaft being twisted in inches;

d = diameter of shaft in inches;

G = torsional modulus of elasticity, generally assumed as

12,000,000 for steel shafting.

It will be seen from an inspection of the formula above that in the

case of torsional deflection the length of the shaft enters in the calcu

lation. From the previous formulas relating to the strength of the

shaft, it will be seen that when mere strength is calculated, the length

of the shaft subjected to torsion only does not influence its strength.

Example.—Find the torsional deflection for a shaft 4 inches in

diameter and 48 inches long, subjected to a twisting moment of

24,000 inch-pounds.

584 X 24,000 X 48

a = = 0.22 degree, or 13 minutes.

4' X 12,000,000
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The deflection per foot, then, equals 13 -i- 4 = 3 V4 minutes, which

is within the limits generally allowed.

If it is required to find the diameter of shaft which will give a cer

tain angle of torsional deflection, the following formula may be used:

in which d = diameter of shaft;

P = force acting on the shaft, producing rotation, in pounds;

R = length of lever arm of force P, in inches ;

o = angle of torsional deflection in degrees ;

L = length of shaft being twisted in feet;

G = torsional modulus of elasticity (= 12,000,000).

For an angle of deflection equal to 0.08 degree per foot length of the

shaft, or a total angle a of 0.08 L degrees.

Example.—Find the diameter of a lineshaft to transmit 10 horse

power at 150 revolutions per minute, with a torsional deflection not

exceeding 0.08 degree per foot of length.

It will be seen, by comparing with the section, "Application to

Shafting," that a larger diameter is required, in this case, to prevent

excessive torsional deflection than is required by mere considerations

of strength. For short shafts, it is unnecessary to calculate for the

angular deflection. It is only in the case of long shafts that this is

necessary, and even then only if the torsional deflection would be

objectionable.

Shafting is subjected to combined bending and twisting moments,

the twisting being caused by the forces which give it rotary motion,

while the bending is caused partly by the weight of the shaft itself

between the bearings and partly by the load placed upon it in the

form of pulleys, gears, etc. In the case of shafting, the deflection due

to bending must be considered, as well as the torsional deflection and

torsional strength. It is considered good practice for line-shafting to

limit the deflection to a maximum of 0.010 inch per foot of length. The

maximum distance in feet between bearings for average conditions, in

order to avoid excessive linear deflection, is determined by the

formulas:

L = ^720df for bare shafts;

L = 140d* for shafts carrying pulleys, etc.,

in which d — diameter of shaft in inches;

L = maximum distance between bearings in feet.

 

 

 

10

= 2.35 inches.

150

Linear Deflection of Shafting
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It is understood that to avoid excessive deflection due to bending,

pulleys and gears should be placed as close to the bearings as possible.

Hollow Shafts

For the same weight per linear foot, or, which is the same, for the

same area of cross-section or the same amount of material, a hollow

shaft is stronger than a solid shaft, because the section modulus for

an annular ring is greater than for a "solid" circle of the same area.

The hollow shaft, of course, has a greater diameter than the solid shaft.

Calculations will easily show the above statement to be true.

The use of hollow shafts not only reduces the weight of a shaft for

a given strength, but increases the reliability of the shafting, on ac

count of the removal of the metal from the core of the shaft. This

applies especially to shafts of large diameters, as in large steel ingots

the central core is likely to be less dense than the outer portion and

to show shrinkage cavities near the center. If the ingot is bored out,

the spongy or "piped" portion will be removed, and the metal remaining

will be superior in quality to that in a solid shaft. Ingots for shafting

should, however, not be cast hollow, but be bored out after having been

cast solid.

The following is a simple method given by Mr. E. Hammarstrom

in Machinery for finding the dimensions of a hollow shaft which can

be substituted for a solid shaft of equal strength to resist bending or

torsion:

Let D, = diameter of solid shaft;

D = outside diameter of hollow shaft;

d — inside diameter of hollow shaft;

t = i (D — d) = thickness of metal of hollow shaft;

k = d h- D = ratio of diameters of hollow shaft.

As the hollow shaft is to have the same strength to resist bending

as the solid shaft, the moment of resistance of both must be equal.

Hence:

tt{D* — a') irD,\ d'

= , from which D' = D? (1)

32 D 32 O

If kD is substituted for d in Equation (1):

D s f ~i

D' — D'k' =£),*, from which — = A (2)

Z>, \ 1 — k'

d

In a similar manner, by substituting — for D in Equation (1):

k

d si I

D, \ 1 — k*

Further, as t = } (D — d), Formula (4) is found by substitution and

simplification:

— = J (4)
D, 2 \ 1 — k*

In the accompanying table the values of the factors containing k in
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Equations (2), (3), and (4) are calculated for certain values of k.

The bottom line of the table gives the weight of the hollow shaft in

per cent of that of the solid.

It is evident that Equation (1) would be the same, if it were derived

under the assumption that the hollow shaft had the same torsional

strength as the solid one, instead of having the same strength against

bending, as assumed. The table will therefore hold true for shafts

subjected to bending or torsion, or both.

Assume, as an example, that a solid shaft 3 inches in diameter is

TABLE OF FACTORS FOR FINDING DIMENSIONS OF HOLLOW SHAFTS
TO REPLACE! SOLID BHAFTS

 

Ratio of

Ratio d + D=k

0.50 0 55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

D + Dt =

d+D^

t + D,=

1.021

0.510

0.257

1.032

0.567

0.232

1.047

0.628

0.200

1.067

0.694

0.186

1 095

0.767

0.164

1.185

0 851

0.141

1.192

0.951

0.119

1.279

1.087

0.096

1 427

1 284

0.071

Weightof hol
low shaft*.... 78.8 74.35 70.2 65.8 61.3 56.4 51.6 45.4 38.7

• Weight of hollow shaft is given ln per cent of weight of solid shaft.

to be replaced by a hollow shaft, ratio ft being 0.5. Then, by inserting

the value found from the table in Equation (2):

D

— = 1.021 and D = 3 X 1 021 = 3.063 inches,

A

d = 0.5 D = 1.532 inch.

Application to Helical Springs

In helical springs the safe load W that may be placed upon a spring

made from a round wire or rod may be found from the following

formula:

0.4 Sd'

W =

D—ct-

in which 8 = safe shearing strength of material in pounds per square

inch;

d = diameter of wire or bar from which spring is made;

D = outside diameter of helical spring.

The deflection in one coil of a helical spring may be found for a

spring made from round wire or rod from the following formula:

>! W(D—d)' 3.14 S(D—d)'

F = =

Gd' (id
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in which F = deflection in one coil in inches;

W = safe load in pounds;

D = outside diameter of helical spring in inches;

G = torsional modulus of elasticity ( 12,600,000 for spring

steel ) ;

8 = safe shearing strength of material in pounds per square

inch;

d = diameter of wire or bar from which spring is made, in

inches.

Complete formulas covering all classes of springs will be found in

standard handbooks. (See Machinery's Handbook, page 412.)

Maximum Safe Stresses in Coil Spring-s

The following values may be used for the torsional or shearing

stresses in coil springs made from a good grade of steel. Assume

the ratio of the mean diameter of the spring to the diameter of the

bar to equal R; then:

For bars below % inch diameter:

R = 3 8 = 112,000 pounds per square inch.

R = 8 S = 85,000 pounds per square inch.

For bars 7/16 to 3/4 inch in diameter:

R = 3 S = 110,000 pounds per square inch.

R = 8 8 = 80,000 pounds per square inch.

For bars from 13/16 to 1 1/4 Inch in diameter:

! R = 3 8 = 105,000 pounds per square inch.

R ='8 S = 75,000 pounds per square inch.

For bars over 1V4 inch in diameter a stress of more than 100,000

should not be used. Where a spring is subjected to sudden shocks, a

smaller value of 8 is necessary.

These values are applicable to compression springs with open coils.

Experience has shown that in close-coiled springs and extension springs

the safe value of the stress per square inch, 8, is only about two-thirds

of that for open-coiled compression springs of the same dimensions.

The safe torsional or shearing strength for spring brass and phosphor-

bronze may be taken as 25,000 pounds per square inch. The torsional

modulus of elasticity may be taken as 6,000,000 for spring brass and

phosphor-bronze, and 12,600,000 for Steel.

The best proportions for coil springs is to use an outside diameter

of the spring equal to from five to eight times the diameter of wire or

bar from which the spring is made; under no circumstances should the

outside diameter be made less than four times the diameter of the

wire. The effective number of coils in a compression spring may be

considered as 2 less than the actual number, owing to the squared ends

of the spring. Springs of small diameter may be safely subjected to a

higher unit stress than those of large diameter.

Materials Used for Sprites

Steel containing about one per cent carbon and comparatively free

from phosphorus and sulphur, generally known as spring steel, is

ordinarily used for springs.
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For small springs, music wire is used to a great extent and is the

best material obtainable for this purpose. It is especially recommended

for devices where the spring is compressed frequently and suddenly.

Vanadium steel has recently come into use to a considerable extent

for springs. The addition of a small percentage of vanadium to steel

increases the elasticity of the material, but the cost of springs made

from this material is considerably higher.

Brass and phosphor-bronze should be used for springs that must

resist moisture. These springs, however, are much more expensive

than steel springs, both on account of the higher cost of the material,

and because the permissible stress is less, thus making larger sizes

of these springs necessary for the same capacity.

Factor of Safety in Springs Frequently Compressed

When a spring acts only occasionally it can be safely designed to

carry a load which causes a fiber stress nearly equal to the elastic

limit of the spring, but when the compressions or extensions are

frequent, a larger factor of safety must be used. A valve spring in an

automobile motor, for example, which operates, say, 200 times a min

ute, should have a factor of safety of at least 4. In other words, a

spring made of %-inch wire, which ordinarily could be designed for a

torsional stress of 100,000 pounds per square inch, should be designed

to work at a stress not over 25,000 pounds per square inch when used

in service of the kind mentioned.

High-class springs, such as valve springs, should have the ends

squared and ground at right angles to their axis; the outside diameter

should be at least one-third of the length, and it should be supported

its entire length, unless it is very short, in order to prevent buckling,

which introduces bending and twisting strains. High-class valve

springs when placed on end on a flat plate should not vary more than

% degree from the perpendicular to the plate. These springs should

be protected from rusting by a good coat of japan, baked on, or by

electro-galvanizing.



CHAPTER V

MISCELLANEOUS APPLICATIONS

Strength of Columns or Struts

When a member subjected to compression stresses has considerable

length in proportion to its width, depth or diameter, the ordinary

formulas for compression are not applicable, because bending stresses

are set up on account of the length of the column or strut, and these

. stresses tend to bend or bulge the member. A number of empirical

formulas have been devised for calculating the strength of columns.

These formulas are all based upon what is known as the Gordon

formula. In the formulas given in the following,

p = ultimate load in pounds per square inch;

I = length of column or strut in inches;

r — radius of gyration in inches.

The radius of gyration r is found from the moment of inertia and

the area of section as follows:
 

moment of inertia

area of section

To find the safe load for a given section from the formulas given

in the following, it is necessary to multiply the value of p, as found

from the formulas, by the area of the section, thus finding the total

ultimate load for the whole section; then divide this load by the

factor of safety to find the safe load that may be placed on the column

or strut. Formulas for seven different cases will be given.

1. Assume that a steel column has both ends fixed or resting on

a flat support, preventing any sidewise motion. The formula for this

case is:

50,000

P =

J*

1+

36,000 r*

2. For a steel column with one end fixed or resting on a flat support

and with the other end round or hinged, the formula is:

50,000

P =

P

1+

24,000 r'

3. For a steel column with both ends round or hinged, the formula is:

50,000

P =— .

P

1 +

18,000 r'
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4. For a round cast-iron column, solid, having both ends fixed or

resting on a flat support, and where d is the diameter of the column,

the formula is:

80,000

p =

1 +.

800 (P

5. For a cast-iron column, circular in cross-section, but cast hollow

and having both ends fixed or resting on fiat supports, the formula is

(d = outside diameter of column):

80,000

P =

1 + -

800 <f

6. For a cast-iron column, square cross-section, cast with a hollow

square in the center and having both ends fixed or resting on flat sup

ports, the formula is (s = outside dimension of square):

80,000

P =

1 +

1000 s'

7. For a square wooden column with flat supports or with both ends

fixed, in which the side of the square is s. the formula is:

5000

P =

/'

1 +

250 s'

Example:—What would be the load .that could safely be carried by

a steel column of bar stock, 2 inches in diameter, 5 feet long, with a

factor of safety of 4, assuming that both ends of the bar are hinged?

1 50,000 50,000

(5 X 12)' 1 + 0.8

1 +

18,000 X (0.5)'

Safe load on column :

27,800 X 3.14

27,800 pounds per square inch.

21,800 pounds.

4

Pipe Columns

The allowable compressive stress for steel pipe columns may be

determined from the formula:

S = 15,200 — 58 L h- R

in which 8 = allowable compressive stress in pounds per square inch;

L = length of column in inches; R = radius of gyration in inches. This

formula is applicable to steel pipe columns with fiat 6nds. No columns

should be used having an unsupported length greater than 120 times its

radius of gyration. The formula is based upon the requirements of the

New York Building Code.
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A similar formula, based upon the Chicago Building Ordinances, is:

8 = 16,000 — 70 L R

in which the letters denote the same quantities as in the previous

formula.

Flat Stayed Surfaces

In many cases, large fiat areas are held against pressure by stays

distributed at regular intervals over the surface. In boiler work, these

stays are usually screwed into the plate and the projecting end riveted

over to insure steam tightness. The U. S. Board of Supervising In

spectors and the American Boiler Makers' Association rules give the

following formula for fiat stayed surfaces:

cxc

p =

8'

in which P = pressure in pounds per square inch;

C = a constant which equals 112, for plate 7/16 inch and

under; 120, for plates over 7/16 inch thick; 140, for

plates with stays having a nut and bolt on the inside

and outside; and 160, for plates with stays having

washers of at least one-half the thickness of the plate,

and with a diameter at least one-half of the greatest

pitch.

t — thickness of plate in sixteenths of an inch (thickness =

7/16. t = 7) ;

8 = greatest pitch of stays in inches.

Strength of Flat Plates

The machine designer is often called upon to carry out designs

consisting in part of flat surfaces, such as plates supported or fixed

at the edges, with or without intermediate supports or ribs. Exact

formulas for finding the bending moments of flat plates supported

along their edges and subjected to stresses created by pressures

normal to their surfaces have not been determined. The formulas

given by different authorities are founded on assumptions and should

be considered as approximations only; they should be used with

caution, as the results obtained are not likely to be very accurate.

A square cast-iron plate rigidly held at the edges and loaded with

a uniformly distributed load, or a load concentrated at the center,

would be likely to fail as shown in Fig. 29. It would first fracture

along the diagonal lines from A to' B and then fail at or near the

fixed edges along lines BB. The plate might also shear off along the

edges BB, depending upon the method of loading and the thickness

of the plate. If the plate were merely supported along all the four

edges, but not rigidly held, it would be likely to fail by breaking

along the diagonal lines AB only.

In Fig. 30 is illustrated the probable manner of failure of a flat

rectangular plate of cast iron, loaded with a uniformly distributed

load. The plate, if secured along all the four edges, would probably

fail by fracturing along the center line AA of the long axis of the
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plate and along the diagonal lines AB, and then fall at or near the

edges of the support along the lines BB. If the plate were merely

supported along all four edges, it would fail simply by fracturing

along the center line AA and the diagonal lines AB. A plate firmly

secured at the edges offers greater resistance to the stress created

by the load than does a plate merely supported at the edges.

Approximate formulas for round, square and rectangular plates will

be found in standard handbooks. An unusually complete set of

formulas will be found in Machinery's Data Book No. 17, "Mechanics

and Strength of Materials," and also in Machinery's Handbook, page

363. While the formulas given are approximate only, it is important

that formulas be deduced and used for designs of this character,

because they indicate, in a general way, the dimensions required,

and the factor of safety assumed will always be taken large enough

so that, practically, the approximate nature of the formulas does not

detract from their value.

In the following formulas for spherical shells subjected to internal

pressure let,

D = internal diameter of shell in inches;

P = internal pressure in pounds per square inch;

S = safe tensile stress per square inch;

t = the thickness of metal in the shell in inches. Then:

This formula also applies to hemi-spherical shells, such as the heml«

spherical head of a cylindrical container subjected to internal

pressure, etc.

Example.—Find the thickness of metal required in the hemi-

spherical end of a cylindrical vessel, 2 feet in diameter, subjected to

an internal pressure of 500 pounds per square inch. The material

is mild steel and a tensile stress of 10,000 pounds per square inch is

allowable.

 

Fir. 29 Fig. 30

Spherical Shells Subjected to Internal Pressure

irD'

P =

4

PD

nDt8, and t =
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500 X 2 X 12

(
-

0.3 inch.

4 X 10,000

If the radius of curvature of the dome head of a boiler or container

subjected to internal pressure is made equal to the diameter of the

boiler, the thickness of the cylindrical shell and of the spherical head

should be made the same. For example, if a boiler is 3 feet in

diameter, the radius of curvature of its head should be made 3 feet,

if material of the same thickness is to be used and the stresses are

to be equal in both the head and cylindrical portion.

Collapsing: Pressures of Cylinders and Tubes Subjected to

External Pressures

The following formulas may be used for finding the collapsing pres

sures of modern lap-welded Bessemer steel tubes:

t

in which P — collapsing pressure in pounds per square inch; D —

outside diameter of tube or cylinder in inches; t = thickness of wall

in inches.

Formula (1) is for values of P greater than 580 pounds per square

inch, and Formula (2) is for values of P less than 580 pounds per

square inch. These formulas are substantially correct for all lengths

of pipe greater than six diameters between transverse joints that tend

to hold the pipe to a circular form. The pressure P found is the

actual collapsing pressure, and a suitable factor of safety must be

used. Ordinarily, a factor of safety of 5 is sufficient. In cases where

there are repeated fluctuations of the pressure, vibration, shocks and

other stresses, a factor of safety of from 6 to 12 should be used.

The Formulas (1) and (2), for steel tubes, given above, were

determined by Prof. R. T. Stewart, Dean of the Mechanical Engineer

ing Department of the University of Pittsburg, in a series of experi

ments carried out at the plant of the National Tube Co., McKeesport,

Pa. These tests occupied a period of four years. A full report of the

details of these experiments will be found in a paper presented by

Prof. Stewart before the American Society of Mechanical Engineers

in May, 1906. The principal conclusions to be drawn from the results

of this research may be briefly stated as follows:

The length of tube, between transverse joints tending to hold it to

a circular form, has no practical influence upon the collapsing pressure

of a commercial lap-welded steel tube, so long as this length is not

less than about six times the diameter of the tube.

The apparent fiber stress under which the different tubes failed

varied from about 7000 pounds per square inch for the relatively

thinnest to 35,000 pounds per square inch for the relatively thickest

walls. Since the average yield point of the material tested was 37,000

P = 86,670 1386

D

(1)

 

(2)
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pounds and the tensile strength 58,000 pounds per square inch, it is

evident that the strength of a tube subjected to external fluid col

lapsing pressure is not dependent alone upon the elastic limit or

ultimate strength of the material from which it is made.

Strength of Cylinders Subjected to Internal Pressure

In low-pressure work, the general practice is to make the thickness

of the metal equal to the internal diameter in inches times the pressure

in pounds per square inch, and this product divided by twice the al

lowable working stress of the material. To this is added a variable

quantity to allow for unsound castings and possible unknown stresses.

Hence, if t = thickness in inches; d = inside diameter in inches; P =

pressure in pounds per square inch; S = allowable tensile stress in

pounds per square inch, then:

dP

28

To the value of t thus obtained must then be added an amount to

allow for variations in the material and possible excessive stresses

when the cylinder is in operation.

Example.—Find the thickness required for a cast-iron cylinder, 15

inches in diameter (inside), to withstand an internal pressure of 200

pounds per square inch. Assume the allowable working stress for

cast iron to be 4000 pounds per square inch. Then:

15 X 200 3

l = = -inch.

2 X 4000 8

The material being cast iron, a liberal allowance must be added to

this thickness to take care of possible defects in the casting.

The formula given should be used only for low pressures. When

the pressures rise, the Barlow formula is preferable. This formula is

similar in form to the one already given, but it gives results quite

different when applied to tubes and pipes having walls of considerable

thickness in proportion to the diameter, because the Barlow formula

is expressed in terms of the outside diameter, whereas the formula

given above is expressed in terms of the inside diameter. The Barlow

formula is:

DP

28

in which t = thickness in inches; D — outside diameter in inches; P —

pressure in pounds per square inch; 8 = allowable tensile stress in

pounds per square inch.

This formula is based on assumptions which cannot be considered

as theoretically correct, but the error is on the side of safety, and

experiments have proved that of the various formulas proposed for

the strength of tubes and pipes subjected to moderate pressures, the

Barlow formula gives the most reliable results.

The average ultimate tensile strength of seamless steel tubes may be

assumed at 55,000 pounds per square inch; that for butt-welded steel
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pipe at 40,000; that for lap-welded steel pipe at 50,000; and that for

wrought-iron pipe (butt-welded or lap-welded) at 28,000 pounds per

square inch.

If seamless steel tubes are assumed to have a strength of 100 per

cent, butt-welded steel pipe has a comparative strength of 73 per cent,

and lap-welded steel pipe of 92 per cent. From this it will be seen that

the strength of a butt-weld is only about 80 per cent of that of a lap-

weld. The relative strengths of wrought-iron and steel pipe are as

follows: Butt-welded wrought-iron pipe has 70 per cent of the strength

of similar butt-welded steel pipe, and lap-welded wrought-iron pipe

has 57 per cent of the strength of similar lap-welded steel pipe.

Cylinders Subjected to Hlgh Internal Pressure

For high pressures, Lamp's formula is used. This formula is in its

usual form,

t

sometimes inconvenient to use. The following forms of the same

formula obtained by substitution are often useful:

If-

8

\8 +

R = rJ

N s —

-v/rR' + r' N 8 + P

In these formulas:

8 = maximum allowable fiber stress per square inch;

R = outer radius of cylinder in inches;

r = inner radius of cylinder in inches;

P = pressure within the cylinder in pounds per square inch;

t = R — r = thickness of cylinder in inches.

Unless very high-grade material is used and sound castings assured,

cast iron should not be used for pressures exceeding 2000 pounds per

square inch. When pressures exceed 2500 pounds per square inch,

the packings are likely to leak and the valves and pipe fittings give

trouble. It is, therefore, advisable to keep the pressure below this

point, if possible. It is well to leave more metal in the bottom of a hy

draulic cylinder than is indicated by the results of calculations, be

cause a hole of some size must be cored in the bottom to permit the

entrance of a boring bar when finishing the cylinder, and when this

hole is subsequently tapped and plugged it often gives trouble if the

precaution mentioned is not taken.

For steady or gradually applied stresses, the maximum allowable

fiber stress S in the formulas above may be assumed from 3500 to

4000 pounds per square inch for cast iron; from 6000 to 7000 pounds

per square inch for brass; and as 12,000 pounds per square inch for

steel castings. For intermittent stresses, such as in cylinders for

steam and hydraulic work, 3000 pounds per square 1nch is the
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maximum that can be used with ample safety for cast iron; 5000

pounds per square inch for brass; and 10,000 pounds per square inch

for steel castings.

Example: Find the thickness of a cast iron cylinder to withstand

a pressure of 1,000 pounds per square inch; the inside diameter of the

cylinder is to be 10 inches, and the maximum allowable fiber stress

per square inch 4,000 pounds.

The thickness is found by the following formula:
 

in which t =- thickness of cylinder wall in inches,

r = inside radius of cylinder in inches,

P = working pressure in pounds per square inch,

S = allowable fiber stress in pounds per square inch.

Inserting the given values, we have:

10 / 4000 + 1000 \

i=— l) =5 (V 1667 — 1) =

2 \\ 4000 — 1000 /

5 (1.29 — 1) = 5 X 0.29 = 1.45, or say 1% inch.

Conclusion

As indicated by the directions and formulas given in the preceding

pages, accurate calculations can be made for the strength of a great

many of the component parts that enter into machine design; but it

remains a fact nevertheless, that there are many instances where

calculations are impossible, or where they would be so involved, cum

bersome or uncertain, that judgment and experience are almost the

only guides upon which the machine designer can depend. Wherever

calculations can be conveniently made, they should be carried out; but

past successful designs and the results of practical experience should

be compared with the calculated results whenever possible, as in this

way theory and practice can be made to supplement each other in a

most valuable way. There are many practical conditions, especially

when dealing with such metals as cast-iron, which require considera

tion, in addition to the mere calculated strength; and in all cases

where a machine part is exposed to excessive wear, this factor must

be considered also. Sometimes, as in the case of gear teeth, wear

may be a more important factor than strength, and in such cases the

designer must necessarily base the dimensions necessary upon the

results of designs that have worked successfully in the past. There

are no hard and fast rules in regards to this problem of machine de

sign, and judgment and experience win always prove most valuable

aids to the designer, no matter how well versed he may be in the

theory of the strength of materials.
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