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PREFACE

After a careful examination of existing books, the University

of Pennsylvania has failed to find a satisfactory text from which to

teach its civil engineering students the fundamental principles of

geodetic surveying and the adjustment of observations as it

feels they should be taught to this class of men. A canvass of

the leading colleges of the country has shown that the same lack

of a suitable book has been felt by many other institutions. The

present volume has been prepared to meet this apparent need.

No attempt has been made, therefore, to treat the subject

exhaustively for the benefit of the professional geodesist, but

rather to build up a book containing everything that can be con-

sidered desirable for the student or useful to the practicing civil

engineer. In order to make the book complete for such engineers

it has been necessary to include a large amount of matter not

desirable or suitable for class-room work, the arrangement of

the college course being left to the judgment of the instructor.

In writing the book in two parts the aim has been to make each

part complete in itself, so that either part may be read intelligently

without having read the other part. Those who wish to make
a study of geodetic work without entering into involved mathe-

matical discussions, will find a complete treatment of geodetic

methods and the rules for making the necessary adjustments
in the first part of the book. Those who wish to become familiar

with the fundamental principles of least squares, or those familiar

with geodetic work who wish to understand the mathematical

theory on which the rules for adjusting observations are based,

may read the second part of the book alone. The book has

been written with the intention, however, that engineering students

shall take the two parts in succession.
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In the first part of the book the initial chapter takes up the

principles of triangulation work as the best introduction to geodetic
work in general. Nothing new of any special importance is

available in the general scheme of triangulation, and the chapter
is written as briefly and logically as possible.

The second chapter treats of the subject of base-line measure-

ment, including measurements with base-bars, steel tapes, invar

tapes, and steel and brass wires. Special care has been taken

to have such constants as the temperature coefficient, the modulus

of elasticity, and the specific weight correct and complete for

the different materials involved. The mathematical treatment

of the corrections required in base-line work has been made as

simple as possible, avoiding needless transformations of mathemat-
ical formulas to cover unusual methods of work.

The third chapter takes up the subject of angle measurement,
and is intended to make clear the most approved methods of using

the instruments and performing the actual work in the field.

The repeating method is given in much detail on account of the

excellent results obtainable by this method with the ordinary

engineer's transit.

The fourth chapter includes the computations and adjust-

ments required in triangulation work, and is intended to cover

all points of interest to the civil engineer.

The fifth chapter takes up the subject of computing the geodetic

positions from the results of the triangulation work. The mathe-

matical treatment of this subject is so difficult that the formulas

to be used are given without demonstration, but all the rules and

constants are given that the engineer will ever require.

The sixth chapter is devoted to geodetic leveling, and contains

the familiar knowledge on this subject arranged as briefly as is

consistent with clearness and completeness.

The seventh chapter is devoted to astronomical determina-

tions, giving in detail such work as falls within the province of the

engineer, and in outline such general information as the educated

engineer should possess, but which is seldom found in engineering

text-books. The number of methods for making astronomical

determinations is almost without limit, but the older and well-

tried methods are here retained as best adapted to the needs of

the engineer.

The eighth chapter considers the principal methods of map
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projection, and differs from the treatment found in other books

chiefly by including the formulas which alone make it possible

to use the different methods.

Chapters IX to XVI form the second part of the book, devoted

to the development of the Method of Least Squares and its applica-

tion to the adjustment of observations.

Chapter IX includes the necessary classification of values,

quantities and errors, and also the laws of chance on which the

theory of errors is founded. This is followed in Chapter X by
the development of the mathematical theory of errors, which is

the fundamental basis from which all the rules for adjustments

are derived.

Chapter XI develops the mathematical methods for obtaining

the most probable values of independent quantities in general

from their observed values, and Chapter XII extends the methods

so as to include conditioned and computed quantities.

Chapter XIII explains the meaning of and methods of obtaining

the probable error for both observed and computed quantities.

The derivation of the necessary formulas is considered too

abstruse for the average student, and these formulas are given

without demonstration.

Chapters XIV, XV, and XVI, deal respectively with the

application of the theory of least squares to the various condi-

tions met with and adjustments required in angle work, base-

line work, and level work, covering all cases likely to be of interest

to the civil engineer.

In the preparation of the text the following points have been

kept constantly in view : to bring the book up to date
;
to make the

treatment of each subject as clear and concise as possible; to

use the same symbols throughout the book for the same meaning,

adopting the symbols having the most general acceptance; to

define each symbol in a formula where the formula is developed,

so that the user of the formula is never required to hunt for the

meaning of its terms; to give for every formula the unit in which

each symbol is to be taken; to clear up any doubt as to what

algebraic sign is to be given to a symbol in a formula, as the sign

required in a geodetic formula is not infrequently the opposite

of what would naturally be supposed; to make perfectly rigid

such demonstrations as are given; where demonstrations are

not given to state where they may be found; to give the best
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obtainable values for all constants required in geodetic work;
and to state the accuracy attainable with different instruments

and methods, so that a proper choice may be made. Attention

is called to the very large number of illustrative examples that

are given, and which are worked out in detail so that every

process may be thoroughly understood.

E. L. I.

Philadelphia, Pa., December, 1911.
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GEODETIC SURVEYING
AND

THE ADJUSTMENT OF OBSERVATIONS

(METHOD OF LEAST SQUARES)

INTRODUCTION

1. Geodesy is that branch of science which treats of making
extended measurements on the surface of the earth, and of

related problems. Primarily the object of such work is to furnish

precise locations for the controlling points of extensive surveys.

The determination of the figure and dimensions of the earth,

however, is also a fundamental object.

2. The Importance of Geodetic Work is recognized by all

civilized nations, each of which maintains an extensive organi-
zation fo:- this purpose. The knowledge thus gained of the earth

and its surface has been of great benefit to humanity. In further-

ance of this object an International Geodetic Association has been

formed (1886), and includes the United States (1889) in its mem-
bership.

3. Geodetic Work in the United States is carried on mainly by
the United States Coast and Geodetic Survey, a branch of the De-

partment of Commerce and Labor. The valuable papers on geo-

detic work published by this department may be obtained free of

charge by addressing the "
Superintendent United States Coast

and Geodetic Survey, Washington, D. C."

4. History. Plane surveying dates from about the year
2000 B.C. Geodesy literally began about 230 B.C., in the time of

Erastosthenes and the famous school of Alexandria, at which
time very fair results were secured in the effort to determine the
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shape and size of the earth. Modern geodesy practically began
in the seventeenth century in the time of Newton, owing to

disputes concerning the shape of the earth and the flattening of

the poles. (See Chapter V for further treatment of this subject.)

6. The Scope of Geodesy originally involved only the shape
of the earth and its dimensions. Modern geodesy covers many
topics, the principal ones being about as follows :

Leveling (on land) ;

Soundings (oceans, lakes, rivers);

Mean Sea Level;

Triangulation;

Time;
Latitude (by observation) ;

Longitude (by observation) ;

Azimuth (by observation) ;

Computation of Geodetic Positions (latitude, longitude, and

azimuth by computation) ;

Problems of Location;

Figure and Dimensions of the Earth;

Configuration of the Earth;

Map Projection;

Gravity ;

Terrestrial Magnetism ;

Deviation of the Plumb Line
;

Tides and Tidal Phenomena;
Ocean Currents;

Meteorology.

6. Geodetic Surveying. This class of surveying is distin-

guished from plane surveying by the fact that it takes account

of the curvature of the earth, usually necessitated by the large

distances or areas covered. Work of this character requires the

utmost refinement of methods and instruments,

1st, Because allowing for the curvature of the earth is in

itself a refinement;

2nd, Because small measurements have to be greatly

expanded ;

3rd, Because the magnitude of the work involves an accumu-

lation of errors.

The fundamental operations of geodetic surve}ang are Triangu-

lation and Precise Leveling. These in turn require the deter-
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mination of time, latitude, longitude, and azimuth; the deter-

mination of mean sea level; and a knowledge of the figure and

dimensions of the earth. The first part of this book covers

such points on these subjects as are likely to interest the civil

engineer.

7. The Adjustment of Observations. All measurements are

subject to more or less unknown and unavoidable sources of

error. Repeated measurements of the same quantity can not

be made to agree precisely by any refinement of methods or

instruments. Measurements made on different parts of the same

figure do not give results that are absolutely consistent with the

rigid geometrical requirements of the case. Some method of

adjustment is therefore necessary in order that these discrepan-

cies may be removed. Obviously that method of adjustment
will be the most satisfactory which assigns the most probable

values to the unknown quantities in view of all the measurements

that have been taken and the conditions which must be satisfied.

Such adjustments are now universally made by the Method of

Least Squares. The application of this method to the elementary

problems of geodetic work forms the subject-matter of the second

part of this book.
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GEODETIC SURVEYING

CHAPTER 1

PRINCIPLES OF TRIANGULATION

8. General Scheme. The woid tricingulalion, as used in

geodetic surveying, includes all those operations required to

determine either the relative or the absolute positions of different

points on the surface of the earth, when such operations are

based on the properties of plane and spherical triangles. By the

relative position of a point is meant its location with reference

to one or more other points in terms of angles or distance as may
be necessary. In geodetic work distances are usually expressed
in meters, and are always reduced to mean sea level, as explained
later on. By the absolute position of a point is meant its loca-

tion by latitude and longitude. Strictly speaking the absolute

position of a point also includes its elevation above mean sea

level, but if this is desired it forms a special piece of work, and

comes under the head of leveling. Directions are either relative

or absolute. The relative directions of the lines of a survey are

shown by the measured or computed angles. The absolute

direction of a line is given by its azimuth, which is the angle it

makes with a meridian through either of its ends, counting clock-

wise from the south point and continuously up to 360. For

reasons which will appear later the azimuth of a line must always
be stated in a way that clearly shows which end it refers to.

In the actual field work of the triangulation suitable points,

called stations, are selected and definitely marked throughout
the area to be covered, the selection of these stations depending
on the character of the country and the object of the survey.

4
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The stations thus established are regarded as forming the vertices

of a set of mutually connected triangles (overlapping or not, as

the case may be), the complete figure being called a triangula-

tion system. At least one side and all the angles in the triangula-

tion system are directly measured, using the utmost care. All

the remaining sides are obtained by computation of the successive

triangles, which (corrected for spherical excess, if necessary)

are treated as plane triangles. The line which is actuallv measured

is called the base line. It is common to measure an additional

line near the close of the work, this line being connected with

the triangulation system so that its length may also be obtained

by calculation. Such a line is called a check base, forming an

excellent check on both the field work and the computations of the

whole survey. In work of large extent intermediate bases or check

bases are often introduced. Lines which are actually measured on

the ground are always reduced to mean sea level before any further

use is made of them. It is evident that all computed lengths will

therefore refer to mean sea level without further reduction.

The stations forming a triangulation system are called triangu-

lation stations. Those stations (usually triangulation stations)

at which special work is done are commonly given corresponding

names, such as base-line stations, astronomical stations, latitude

stations, longitude stations, azimuth stations, etc.

An example of a small triangulation system (United States

and Mexico Boundary Survey, 1891-1896) is shown in Fig. 1,

page 6, the object being to connect the "
Boundary Post " on

the azimuth line to the westward with " Monument 204 " on the

azimuth line to the eastward. The air-line distance between

these points is about 23 miles. The system is made up of the

quadrilateral West Base, Azimuth Station, East Base, Station

No. 9; the quadrilateral Pilot Knob, Azimuth Station, Station

No. 10, Station No. 9; the quadrilateral Pilot Knob, Azimuth

Station, Station No. 10, Monument 204; and the triangle Pilot

Knob, Boundary Post, Azimuth Station. The base line (West
Base to East Base) has a length of 2,205 meters

(
1.37 -j- miles),

and the successive expansions are evident from the figure.

9. Geometrical Conditions. The triangles and combinations

thereof which make up a triangulation system form a figure involv-

ing rigid geometrical relations among the various lines and angles.
The measured values seldom or never exactly satisfy these con-
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ditions, and must therefore be adjusted until they do. In the

nature of things the true values of the lines and angles can never

be known, but the greater the number of independent conditions

on which an adjustment is based the greater the probability that

the adjusted values lie nearer to the truth than the measured

values. It is for this reason that work of an extended character

is arranged so that some or all of the measured values will be

involved in more than one triangle, thus greatly increasing the

number of conditions which must be satisfied by the adjustment.

The simplest system of triangulation is that in which the work

is expanded or carried forward through a succession of independent

triangles, each of which is separately adjusted and computed;
and where the work is of moderate extent this is usually all that is

necessary. The best triangulation system, under ordinary circum-

stances, when the survey is of a more extended character, or

great accuracy is desired, is that in which the work is so arranged

as to form a succession of independent quadrilaterals, each of

which is separately adjusted and computed. (In work of great

magnitude the entire system would be adjusted as a whole.)

A geodetic quadrilateral is the figure formed by connecting any
four stations in every possible way, the result being the ordinary

quadrilateral with both its diagonals included
;
there is no station

where the diagonals intersect. The eight corner angles of the

quadrilateral are always measured independently, and then

adjusted (as explained later) so as to satisfy all the geometric

requirements of such a figure. Other arrangements of triangles

are sometimes used for special work. More complicated systems

of triangles or adjustment are seldom necessary or desirable,

except in the very largest class of work. Since triangulation

systems are usually treated as a succession of independent figures

it evidently makes no difference whether the figures overlap or

extend into new territory.

Every triangulation system is fundamentally made up of

triangles, and in order that small errors of measurement shall not

produce large errors in the computed values, it is necessary that

only well shaped triangles should be permitted. The best shaped

triangle is evidently equilateral, while the best shaped quadri-

lateral is a perfect square, and these are the figures which it is

desirable to approximate as far as possible. A well shaped

triangle is one which contains no angle smaller than 30 (involving
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the requirement that no angle must exceed 120). In a quadri-

lateral, however, angles much less than 30 are often necessary
and justifiable in the component triangles.

10. Special Cases. It is often desirable and feasible (espe-

cially on reconnoissance) to connect two distant stations with a

narrow and approximately straight triangulation system, as shown

diagrammatically by the several plans in Fig. 2. In these diagrams
the heavy dots represent the stations occupied, all the angles at

each station being directly measured. The maximum length

Fig. 2.

of sight is approximately the same in each case. The stations

to be connected are marked A and B. In an actual survey, of

course, the location of the stations could only approximate the

perfect regularity of the sketches.

In System I the terminal stations are connected by a simple

chain of triangles. This plan is the cheapest and most rapid,

but also the least accurate.

System II is given in two forms, which are substantially alike

in cost and results, the hexagonal idea being the basis of each

construction. This system not only covers the largest area,

but greatly increases the accuracy attainable. The large num-
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ber of stations in this system necessarily increases both the labor

and the cost.

System III is formed by a continuous succession of quadri-

laterals, and is the one to use where the highest degree of accuracy

is desired. The area covered is less than in System I, but the cost

and labor approximate System II.

11. Classification of Triangulation Systems. It has been

found convenient to classify triangulation systems (and the

triangles involved) as primary, secondary and tertiary, based on

the magnitude and accuracy of the work.

Primary triangulation is that which is of the greatest magnitude
and importance, sometimes extending over an entire continent.

In work of this character the highest attainable degree of accuracy

(1 in 500,000 or better) is sought, using long base lines, large and

well shaped triangles, the highest grade of instruments, and the

best known methods of observation and computation. Primary
base lines may measure from three to ten or more miles in length,

with successive base lines occurring at intervals of one hundred

to several hundreds of miles (about 30 to 100 times the length

of base), depending on the character of the country traversed and

the instrument used in making the measurement. In primary

triangulation the sides of the triangles may vary from 20 to 100

miles or more in length.

Secondary triangulation covers work of great importance,

often including many hundred miles of territory, but where the

base lines and triangles are smaller than in primary systems, and

where the same extreme refinement of instruments and methods

is not necessarily required. An accuracy of 1 in 50,000 is good
work. Base lines in secondary work may measure from one to

three miles in length, and occur at intervals of about twenty to

fifty times the length of base. The triangle sides may vary from

about five to forty miles in length.

Tertiary triangulation includes all those smaller systems
which are not of sufficient size or importance to be ranked as

primary or secondary. The accuracy of such work ranges upwards
from about 1 in 5,000. The base lines measure from about a

half to one and a half miles long, occurring at intervals of about

ten to twenty-five times the length of base. The triangle sides may
measure from a fraction of a mile up to about six miles in length.

In an extended survey the primary triangulation furnishes
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the great main skeleton on which the accuracy of the whole survey

depends; the secondary systems (branching from the primary)
furnish a great many well located intermediate points; and the

tertiary systems (branching from the secondary) furnish the

multitude of closely connected points which serve as the reference

points for the final detailed work of the survey.
12. Selection of Stations. This part of the work calls for the

greatest care and judgment, as it practically controls both the

accuracy and the cost of the survey. Every effort, therefore,

should be made to secure the best arrangement of stations con-

sistent with the object of the survey, the grade of work desired,

and the allowable cost. The base line is usually much smaller

than the principal lines of the triangulation system, and there-

fore requires an especially favorable location, in order that its

length may be accurately determined. Approximately level

or gently sloping ground (not over about 4) is demanded for

good base-line work. It is also necessary that the base line be

connected as directly as possible with one of the main lines of the

system, using a minimum number of well shaped triangles. The

base-line stations and the connecting triangulation stations are

consequently dependent on each other, in order that both objects

may be served. In flat country the greatest freedom of choice

would probably lie with the base-line stations, while in rough

country the triangulation stations would probably be largely

controlled by a necessary base-line location.

The various stations in a triangulation system must be selected

not only with regard to the territory to be covered and the for-

mation of well shaped triangles, but so as to secure at a minimum

expense the necessary intervisibility between stations for the

angles to be measured. Clearing out lines of sight is expensive

in itself, and may also result in damages to private interests.

Building high stations in order to see over obstructions is like-

wise expensive. A judicious selection of stations may materially

reduce the cost of such work without prejudicing the other

interests of the survey. It is important that lines of sight should

not pass over factories or other sources of atmospheric disturb-

ance. These and similar points familiar to surveyors must all

receive the most careful consideration.

13. Reconnoissance. The preliminary work of examining

the country to be surveyed, selecting and marking the various
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base-line and angle stations, determining the required height

for tower stations, etc., is called reconnoissance. As much infor-

mation as possible is obtained from existing maps, such as the

height and relative location of probable station points and desir-

able arrangement of triangles. The reconnoissance party then

selects in the field the best location of stations consistent with the

grade and object of the survey and in accordance with the prin-

ciples laid down in the preceding article. The reconnoissance

is often carried forward as a survey itself, so that fairly good
values are obtained of all the quantities which will finally be

determined with greater accuracy by the main survey. When a

point is thought to be suitable for a station a high signal is erected,

such as a flag on a pole fastened on top of a tree or building,

and the surrounding country is scanned in all directions to pick

up previously located signals and to select favorable points for

advance stations.

The instrumental outfit of the reconnoissance party is selected

in accordance with the character of the information which it

proposes to obtain. In any event it must be provided with

convenient means for measuring angles, directions, and eleva-

tions. A minimum outfit would probably contain a sextant for

measuring angles, a prismatic compass for measuring directions,

an aneroid barometer for measuring elevations, a good field glass,

and creepers for climbing poles and trees.

A common problem lor the reconnoissance party is to estab-

lish the direction between two stations which can not be seen

from each other until the forest growth is cleared out along
the connecting line. Any kind of a traverse run from one station

to the other would furnish the means for

computing this direction, but the follow-

ing simple plan can often be used :

Let AB, Fig. 3, be the direction it is

desired to establish. Find two inter-

visible points C and D from each of

which both A and B can be seen.

Measure each of the two angles at C
and D and assume any value (one is Fig. 3.

the simplest) for the length CD. From
the triangle ACD compute the relative value of AD. Sim-

ilarly from BCD get the relative value of BD. Then from the
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triangle ABD compute the angles at A and B, which will give
the direction of AB from either end with reference to the point
D. All computed lengths are necessarily only relative because

CD was assumed, but the computed angles are of course correct.

The required intervisibility of any two stations must be finally

determined on the ground by the reconnoissance party, but a

knowledge of the theoretical considerations governing this ques-
tion is of the greatest importance and usefulness.

14. Curvature and Refraction. Before discussing the inter-

visibility of stations it is necessary to. consider the effect of curva-

ture and refraction on a line of sight. In geodetic work curvature

Fig. 4.

is understood to mean the apparent reduction of elevation of

an observed station, due to the rotundity of the earth and

consequent falling away of a level line (see Art. 76) from a

horizontal line of sight. Refraction is understood to mean the

apparent increase of elevation of an observed station, due to

the refraction of light and consequent curving of the line of sight

as it passes through air of differing densities. The net result

is an apparent loss of elevation, causing an angle of depression

in sighting between two stations of equal altitude. In Fig. 4

the circle ADE represents a level line through the observing

point A, necessarily following the curvature of the earth. Assum-
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ing the line of sight to be truly level or horizontal at the point

A, the observer apparently sees .in the straight line direction

AB (tangent to the circle at A), but owing to the refraction of

light actually looks along the curved line AC (also tangent at

^4). The observer therefore.regards C as having the same eleva-

tion as A, whereas the point D is the one which really has the

same elevation as A. There is hence an apparent loss of eleva-

tion at C equal to CD, as the net result of the loss BD due to

curvature and the gain BC due to refraction. Just as C appears

to lie at B, so any point F appears to lie at a corresponding point

G. The apparent difference of elevation of the points A and

F is measured by the line BG, the true difference being DF.
As DF = BG + BD - FG, the apparent loss equals BD - FG,
which does not ordinarily differ much from CD.

Fig. 5.

So far as the intervisibility of two stations is concerned it is

only necessary to know the effect of curvature and refraction

with reference to a straight line tangent to the earth at mean
sea level. Referring to Fig. 5, BD represents the effect of

curvature, and BC the effect of refraction, as in the previous

figure. By geometry we have

AB* =BD X BE.

The earth is so large as compared with any actual case in

practice that we may substitute AD (= distance, called K)
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for AB, and DE (
= 2R) for BE, without any practical error,

and write

n ^ Distance2 K2

BD = curvature = -. -p ; =- = -
.

Aver. diam. of earth 2R '

in which all values are to be taken in the same units. (For
mean value of R see Table X at end of book.) As the result of

proper investigations we may also write

- .. Distance2 K2
n K2

BC = refraction = m-.
-, F *=- = m-=- 2m =

,

Aver. rad. of earth R 2R

in which m is a coefficient having a mean value of .070, and K and

R are the same as before. (For additional values of m see Art. 85.)

We thus have

K2

BD~BC=CD= curv. and refract. = (1
- 2m)-^ .

Table I (at end of book) shows the effect of curvature and

refraction, computed by the above formula, for distances from

1 to 66 miles.

15. Intervisibility of Stations The elevation (or altitude)

of a station is the elevation of the observing instrument above

mean sea level. This is not to be confused with the height of a

station, which is the elevation of the instrument above the natural

ground. In order that two stations may be visible from each

other the line of sight must clear all intermediate points. The

necessary (or minimum) elevation of each station will therefore

be governed by the following considerations:

1. The elevation of the other station. Obviously a line of sight

which is required to clear a given point by a certain amount can

not be lowered at one end without being raised at the other.

2. The profile of the intervening country. It is evidently not

only the height of an intermediate point but also its location

between the two stations that will determine its influence on their

intervisibility. An elevation great enough to obstruct the line

of sight if located near the lower station might be readily seen

over if located near the higher station.

3. The distance between the stations. Owing to the curvature

of the earth it is necessary in looking from one point to another

to see over the intervening rotundity, the extent of which depends
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on the distance between the stations. Since lines of sight are

nearly straight this can not be accomplished unless at least one

of the stations has a greater elevation than any intermediate

point. Owing to the refraction of light the line of sight is not

really a straight line, but in any actual case is practically the arc

of a circle, with the concavity downwards, and a radius about

seven times that of the earth. This fact slightly lessens the

elevation necessary to see over the rotundity, but otherwise

does not change the conditions to be met. Thus in Fig. 5 the

points F and C are just barely intervisible, though F and C both

have greater elevations than A.

In view of the above facts it is usually necessary to place

stations on the highest available ground, such as ridge lines,

summits, or mountain peaks, increasing the height, if necessary,

by suitably built towers.

The simplest question of intervisibility is illustrated in Fig. 5,

page 13, where all points between stations F and C lie at the

elevation of mean sea level. If the elevation of F is given or as-

sumed the corresponding distance HA to the point of tangency is

taken out directly from Table I (interpolating if necessary) . The

value CD corresponding to the remaining distance AD is then

taken out from the same table, and gives the minimum elevation

of C which will make it visible from F. Thus if HD = 30.0

miles, and elevation of F = 97.0 it., we have HA - 13.0 miles,

and the remaining distance AD = 17.0 miles, calling for a min-

imum elevation of 165.8 ft. for station C.

In general the profile between two stations is more or less

irregular, and the question can not be handled in the above

simple manner. It is usually necessary to compute the elevations

of the line of sight at a number of different points and compare

the results with the ground elevation at such points. The critical

points are usually evident from an inspection of the profile.

Owing to the uncertainties of refraction accurate methods of

computation are not worth while; different methods of approx-

imation give slightly different results, but all sufficiently near

the truth for the desired purpose.

The following example will show a satisfactory method of pro-

cedure in any case that may arise in practice. The line AEJP,

Fig. 6, page 16, is the natural profile of the ground, and it is desired

if possible to establish stations at A and P. The critical points
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that might obstruct the line of sight are evidently at E and J.

Assume the following data to be known:

Distances (at mean sea level) . Elevations (above M. S. L.).

BE =30.0 miles A = 1140.6 ft. = AB
HN = \0A " E = 1322.7 " =EH
NR = 10.7

" J = 1689.0 " =JN
P =2098.3 " = PR

For an imaginary line of sight BQ, horizontal at B we have

from Table I (by interpolating) :

f G = 516.4 ft. =GH.
Elevation of \M = 922.8 " =MN. Hence PQ = 617.4. ft.

[ Q = 1480.9 " =QR.

Fig. 6.

Assuming the lines of sight BP, AP, and AG to have the same

radius of curvature as BQ, we may write approximately

FGBGBJI LM = BM _ BN
PQ~ BQ~ BR PQ

==

BQ
==

BR '

giving, by substitution, FG = 364.6 ft. and LM = 498.3 ft.

F = 881.0 ft.
Hence we have elevation of

I
1421.1 ft.

By the similar approximations

DF
AB

FP
BP

HR KL
BR and AB

LP
BP

NR
BR'
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we find DF = 467.0 ft. and KL - 240.2 ft.

D - 1348.0 ft.
Hence we have elevation of

-, K = 1661.3 It.

Hence the line of sight AP clears E by 25.3 ft., but fails to

clear J by 27.7 ft.

16. Height of Stations. Referring to the previous article,

suppose it is desired to erect a tower OP, so that the line of sight

OA shall clear the obstruction J. It was found that the line

PA failed to clear J by 27.7 ft., and it is not desirable to have a

line of sight less than 6 ft. from the ground, hence IK should be

about 34 ft. Using the approximation

OP AP m OP_ = 5G\8

TK~ AK~ BN r
34.0

"
40.1 '

we find OP= 43.1 ft.

Hence a suitable tower at P should not be less than 43 ft.

high. If it were desired to build a smaller tower at P, the instru-

ment at A would also have to be elevated, the amount being

determined by a similar plan of approximation. It is evident

that the least total height of towers is obtained by building a

single tower at the station nearest to the obstruction. If the

obstruction is practically midway between the stations the com-

bined height of any two corresponding towers would of course

come the same as that of a suitable single tower. If more than

one obstruction is to be seen over, the most economical arrange-

ment of towers is readily found by a few trial computations.
In heavily wooded country tower stations extending above the

tree tops are frequently more economical than clearing out long

lines of sight, and their construction is therefore justified even

though the intervening country would not otherwise demand
their use. In general it is not wise to have a line of sight near

the ground for any large portion of its length, on account of the

unsteadiness of the atmosphere and the risk of sidewise refraction.

17. Station Marks. Any kind of a survey requires the station

marks to remain unchanged at least during the period of the

survey. When work is of sufficient magnitude or importance
to justify geodetic methods and instruments, permanent station

marks are usually desirable. The best plan seems to be to place

the principal mark below the ground, as least likely to suffer
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disturbance by frost, accident, or malicious interference. Though
many plans have been tried, the common underground mark
consists of a stone about 6"X6"X24" placed vertically with

its top about 30" below the surface of the ground, the center

point being marked by a small hole or copper bolt. The under-

ground mark is of course only used in case there is reason to

think the surface mark has been moved. The surface mark

usually consists of a similar stone, reaching nearly down to the

bottom stone and extending a few inches above the surface,

with the station point similarly marked. Three witness stones

are commonly set near the station (where least likely to be dis-

turbed, ordinarily 200 or more feet from the station, and forming

approximately an equilateral triangle), with their azimuths

and distances recorded, so that the station might be restored

if entirely destroyed. Stones about 36" long and projecting
about 12" above the surface have proven satisfactory. Other

means of establishing permanent stations will suggest themselves

to the surveyor when the surrounding conditions are known.

18. Observing Stations and Towers. In addition to the station

mark a suitable support is required to carry the observing instru-

ment. Unless the tripod is very heavy and stiff it will not prove

satisfactory. In such a case a rigid support must be provided.

Heavy posts well set in the ground may serve as the basis for

such a construction for a low height, bracing as may prove neces-

sary for rigidity. If an observing platform is built it must not

be connected in any way with the structure that carries the instru-

ment. A low masonry pier makes an excellent station. Under

15 ft. in height a tripod can be built at the station heavy enough
to be satisfactory as an instrument support. For greater heights

a regular tower should be built to carry the instrument, so braced

and guyed as to be absolutely immovable and free from vibra-

tion. The observer's platform must be carried by an entirely

independent structure surrounding the instrument tower with-

out being in any way connected with it, or in any way possible

to come in contact with it. A light awning on a framework

attached to the observer's platform should shelter the instrument

from the sun. Fig. 7 shows a common form of tower station.

19. Station Signals or Targets. These terms (used more or

less interchangeably) refer to that object at a station which is

sighted at by observers at other stations. A satisfactory target
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Fig. 7. Tower Station.

From Appendix No. 9, Report for 1882, U. S. C. and G. S.
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must be distinctly visible against any background and of suit-

able width for accurate bisection, and preferably free from phase.
When the face of a target is partially illuminated and partially

in shadow, the observer usually sees only the illuminated portion
and thus makes an erroneous bisection, the apparent displace-

ment of the center of the target being called phase. Targets of

this kind have been used and rules for correction for phase devised,

but targets free from phase are much to be preferred. The target

may be a permanent part of the station (such as a flagpole carried

by an overhead construction so as to clear the instrument), or

only brought into service when the station is not occupied (such

as flagpoles, heliotropes or night signals). In any case a signal

must of course be accurately centered over the station. Eccentric

signals are sometimes used, involving a corresponding reduction

of results, but where the instrument and signal can not occupy
the same position it is more common to regard the signal as the

true station and the instrument as eccentric.

Board Signals. Approximately square boards, three or more

feet wide, painted in black and white vertical stripes or other

designs, have been tried as targets and found usually unsatis-

factory, except for distances of a few miles only. The painted

designs are hard to see unless in direct sunlight and not easy to

bisect even then. They present their full width in only one

direction. If two such boards are placed at right angles (whether

as a cross or one above the other) so as to give a good apparent
width in any direction, the shadow of one board on the other

produces the very phase difficulty that board targets were designed

to prevent.

Pole Signals. Round (sometimes square) poles, painted black

and white in alternate lengths, are frequently used for signals.

Against a sky background they give good results, but against

a dark background they may give the usual trouble from phase.

Their diameter should be about 1 inches for the first mile,

increasing roughly as the square root of the distance. Their size

becomes prohibitory for distances of over 15 or 20 miles. The

equivalent of a pole signal, made out of wire and canvas and free

from phase, was found very satisfactory on the Mississippi River

Survey. The general construction consisted of four vertical

wires forming a square, held in place by wire rings (all con-

nections soldered), black and white canvas being stretched
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across the diagonal wires between the successive rings, so as to

form a vertical series of black and white planes at right angles

to each other and showing both colors in both directions. The

distance between the rings was made several times the diameter

of the rings, so that any shadow or phase effect would affect only

a very small part of the length of each canvas. In addition to

being accurately centered any pole or equivalent signal must of

course be set truly vertical.

Heliotropes. When the distance between stations exceeds

about 15 or 20 miles resort is had to reflected sunlight as a signal.

If the reflecting surface is of proper size such a signal is entirely

satisfactory for any distance from the smallest to the largest,

on account of the certainty with which it is seen. Any device

Fig. 8. Heliotrope.

by which the rays of the sun may be reflected in a given direction

is called a heliotrope, the essential features being a plane mirror

and a line of sight. A simple form of such an instrument is

shown in Fig. 8. An additional mirror (called the back mirror)

is also required, in order to reflect the sunlight onto the main

mirror when it can not be directly received. The heliotrope is

generally mounted on a tripod, with a horizontal motion for

lining in with the distant station, and is centered over its own

station with a plumb bob.

In more elaborate forms a telescope with universal motion

furnishes the line of sight, the mirror and vanes being mounted

on top of it.

In using the instrument it is pointed towards the observing
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station by means of the sight vanes or telescope, and the mirror

is turned so as to throw the shadow of the near vane centrally
on the farther vane, an attendant moving the mirror slightly

every few minutes as required. The cone of rays reflected by
the mirror subtends an angle of about 32 minutes (the angular
diameter of the sun as seen from the earth), or about 50 feet

in width per mile. The light will therefore be seen at the observ-

ing station if the error of pointing is less than 16 minutes or about

25 feet per mile. The topographical features of the country

generally enable the heliotroper to locate a station with this degree
of approximation without any other aid, though it is well to be

provided with a good pair of field glasses if the heliotrope has no

telescope. The observing station usually has a heliotrope also,

so that the two stations may be in communication by agreed

signals or by using the telegraphic alphabet of dots and dashes

(long flashes for dashes and short ones for dots, swinging a hat or

other handy object in front of the mirror to obscure the light as

desired) . When each station has a heliotrope they soon find each

other by swinging the light around slowly until either one catches

the other's light, when the two heliotropes are quickly and

accurately centered on each other.

The best size of mirror to use depends on the character of the

observing instrument, the state of the atmosphere, and the dis-

tance between stations. In order to have a signal capable of

accurate bisection it must be neither dangerously indistinct nor

dazzlingly bright. Between these limits there is a wide range
of light which is satisfactory. If the light is too bright it is

readily reduced by covering the mirror with a cardboard disc

containing a suitable sized hole. A mirror whose diameter is

proportioned at the rate of 0.2 inch per mile of distance will

answer well for average conditions of climate and instruments.

In the dry climate of our western states one-half this rate will

prove sufficient. In the southern part of California the writer

has seen a six-inch mirror for 80 miles across the Yuma desert with

the naked eye, but this required exceptionally favorable conditions.

The apparent size of the heliotrope light varies remarkably
with the time of day and the condition of the atmosphere, this

phenomenon being an actual measurable fact and not an optical

illusion. At sunrise and sunset the light appears as small as a

star, almost covered by the vertical hair, and giving a perfect
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pointing. Anywhere within about two hours of sunrise and sunset

the image is circular, clean cut, and readily bisected, the size

of the image increasing rapidly with the distance of the sun above

the horizon. After the sun has risen a couple of hours above the

horizon until noon the image- gradually becomes more and more

irregular in outline and gains in size at an enormous rate, some-

times filling 25 per cent of the field of view of the telescope at

noon. The image then decreases in size and becomes gradually

more regular in outline, becoming fit to observe again about two

hours before sunset. When the wind blows strongly the image

elongates like an ellipse, and appears to wave and flutter like

a flag. If the attendant neglects his work, so that either the

back mirror or main mirror is poorly pointed, the image loses

rapidly in brilliancy. On the United States Boundary Survey,

however, it was found by the most careful micrometric experi-

ments that the center of the apparent image always corresponded

with the true center of station.

Only one objection has been urged against the heliotrope,

namely, that it can only be used when the sun is shining, while

angles are best measured on cloudy days. Nevertheless, the

heliotrope furnishes the best solution for long distance signals

in the daytime, and good results can be obtained by making the

measurements close to sunrise and sunset. For the best class

of work the afternoon period is much the best, as great risk of

sidewise (lateral) refraction always endangers the work of the

morning period.

Night signals. A great deal of geodetic work has been done

at night, using an artificial light as a signal, aided by a lens or

parabolic reflector. Up to about forty miles a kerosene light with

an Argand burner is entirely satisfactory. For any practicable

distance the acetylene gas lamp is found to meet every require-

ment. Other kinds of lights have been successfully used, but

those above given have the advantage that only unskilled labor

is required to operate them, such as can operate heliotropes in

the daytime. Up to midnight fully as good work can be done

as in the daytime, but the remainder of the night does not pro-

vide favorable atmospheric conditions for close work. The chief

advantage of night work is, of course, the fact that it practically

doubles the number of hours per day available for good work.



CHAPTER II

BASE-LINE MEASUREMENT

20. General Scheme. The accurate measurement of base

lines required for geodetic work may be accomplished with rigid

base-bars placed successively end to end, or with flexible wires

or tapes stretched successively from point to point. Base-bars

were formerly used exclusively for the highest grade of work,

but tape or wire measurements are rapidly growing in favor.

The invar tape (a special kind of steel tape) is now being used ex-

clusively by the United States Coast and Geodetic Survey for its

base line measurements. The convenience of the steel tape is

apparent, and the ease and rapidity with which it can be used

are strong points in its favor.

No form of measuring apparatus maintains a constant length
at all temperatures, nor is it often possible to measure along a

mathematically straight line. Base lines can seldom be located at

sea level. The actual length of a bar or tape under standard

conditions (called its absolute length) is seldom found to be

exactly the same as its designated length. Tapes and wires are

elastic, and their length varies with the tension (pull) under

which they are used. The weight of tapes or wires (when unsup-

ported) causes them to sag and thus draw the ends closer together.

In base-bar work corrections may hence be required for absolute

length, temperature, horizontal and vertical alignment, and reduc-

tion to mean sea level. With tape or wire measurements correc-

tions may be required for absolute length, temperature, pull,

sag, horizontal and vertical alignment, and reduction to mean sea

level. These corrections will be considered in turn after describ-

ing the types and use of bars and tapes.

21. Base-bars and Their Use. The fundamental idea of a

base-bar is a rigid measuring unit, such as a metallic rod. The

general scheme of measuring a base requires the use of two

such bars. The first bar is placed in approximate position,

24
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supported at the quarter points by two tripods or trestles, care-

fully aligned both horizontally and vertically, and moved longi-

tudinally forward or backward until its rear end is vertically

over one end of the base line. The second bar, similarly supported
and aligned, is then drawn longitudinally backward until its rear

end is just in contact with the forward end of the first bar. The

first bar and its supports are then carried forward, alignment and

contact made as before, and the measurement so continued to

the end of the base. In the simple form outlined above the

method would not produce results of sufficient accuracy for

geodetic work, but with the perfected methods and appa-
ratus in actual use measurements of extreme precision may be

made.

Several features are more or less common to all types of base-

bar. The actual measuring unit is generally made of metal and

protected by an outer casing of wood or metal. Mercurial

thermometers are located inside the casing for temperature
measurements. Means are provided for aligning the bars hori-

zontally, usually a telescope suitably mounted at the forward

end of the bar. Vertical alignment is provided for, usually

by a graduated sector carrying a level bubble, mounted on the

side ol the bar near its central point, so that the bar may be made

truly horizontal or its inclination determined. A slow motion

is provided for making the contact with the previous bar; the

slow motion is produced by turning a milled head at the rear of

the bar, which moves the measuring unit only, the casing remain-

ing stationary in its approximate position on the tripods on

account of the friction due to the weight of the bar. The rod

(or tube) constituting the measuring unit terminates at its for-

ward end with a small vertical abutting plane; the rear end

of the rod carries a sliding sleeve pressed outward by a light

spring and ending in a small straight knife edge for making the

contact with the abutting plane of the previous bar; the length

of the bar is the distance between the knife edge and the abutting

plane of its measuring unit when the sliding sleeve is in its proper

place, indicated by a mark on the sleeve coinciding with a mark
on the rod; the forward bar is therefore brought into proper

position without disturbing the rear bar, the only pressure on

the rear bar being that due to the light spring controlling the

contact sleeve while the forward measuring unit is slowly drawn
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backward until the coincidence of the indicating lines shows that

the bar is in its proper place.

One of the earlier forms of bar used by the U. S. Coast and

Geodetic Survey is described in Appendix No. 17, Report for 1880,

and called a perfected form of a contact-slide base apparatus.

This bar was an improvement on similar bars in previous use,

and besides the features enumerated above contained a new
device for determining its own temperature. The actual measuring
unit was a steel rod 8 mm. in diameter. A zinc tube 9.5 mm.
in diameter was placed on each side of the steel rod (not quite

reaching either end) . The rear end of one zinc tube was soldered

to the rear end of the steel rod, and the forward end of the other

zinc tube was soldered to the forward end of the steel rod. By
suitable scales on the steel rod and the free ends of the zinc tubes

the apparatus was thus converted into a metallic thermometer

Fig. 9. Thermometric Base-bar.

(zinc having a coefficient of expansion about 2| times that of

steel), so that the temperature of the bar became very accurately
measured. In Fig. 9 the arrangement is shown in outline,

the light line indicating steel and the heavy lines zinc. This bar

was 4 meters long.

In Appendix No. 7, Report for 1882, a compensating bar is

described. This bar is made of a central zinc rod and two side

steel rods, as shown in Fig. 10. The ends of this bar remain

Fig. 10. Compensating Base-bar.

nearly the same distance apart at all temperatures. The com-

pensation is not absolutely perfect, however, and the scales at

each end indicate the temperature so that the final small correc-

tion may be made for this cause. This bar was 5 meters long.

In Appendix No. 11, Report for 1897, the Eimbeck duplex

base-bar is described, this bar having almost entirely superseded

those previously discussed. This bar is a bi-metallic contact-
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slide apparatus consisting of two measuring units of precisely

similar construction, one of steel and one of brass, each 5 meters

in length, and weighs complete 118 pounds. The measuring

units are made of tubing f inch in diameter, each having a

thickness of wall corresponding to the conductivity and specific

heat of the material of which it is made, so that under changing

conditions each tube shall keep the same temperature as the

other one, which is an essential requirement. The two measuring

tubes are carried in a brass protecting casing, which turns on

its longitudinal axis in an outer brass protecting casing which

remains stationary. The inner casing is rotated 180 from time

to time to equalize temperature distribution. This bar is illus-

trated in Figs. 11 and 12. The two measuring units are entirely

disconnected, and contact is always made brass to brass and steel

to steel, so that two independent measures of the base are

obtained, one by the brass unit and one by the steel unit. The

difference in the length of these two measurements furnishes

the key to the average temperature of the bars during the

measuring, so that the correction for temperature can be very

closely determined. Since the coefficient of expansion for brass

is about H times that for steel, the two measuring units are

seldom of the same length, and the shorter one continually

gains on the longer one. To overcome this difficulty the meas-

uring units are provided with vernier scales, and the brass

bar is occasionally shifted a small amount which is read from

the scales and recorded for an evident purpose. The duplex bar

is superior to the bars previously described both in speed

and accuracy. A speed of forty bars per hour is readily main-

tained.

The tripods used to support base-bars must be absolutely

rigid. Special heads are provided so that both quick and slow

motion are available for raising the bar support. The rear tripod

usually has a knife-edge support and the front one a roller sup-

port. By easing the weight on the edge support the bar may
be readily moved on the roller support and quickly brought into

proper position.

Satisfactory work is accomplished with base-bars at all hours

of the day. In order to protect the bars from the extreme heat

of the sun, however, a portable awning is often placed over them,

which is dragged steadily forward as the work advances.
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22. Steel Tapes and Their Use. Steel tapes for base-line work

do not differ materially from ordinary tapes except in length.

Surveyors generally use tapes 50 or 100 feet long, and with

proper precautions a high grade of work can be done. Better

or quicker work, however, can probably be done with longer

tapes, such tapes usually being also somewhat smaller in cross-

section. Experience shows that tapes 300 to 500 feet in length

and with about 0.0025 square inch cross-section are entirely

satisfactory.

It is seldom desirable to use the tape directly on the ground,

on account of the uneven surface and the imcertainties of fric-

tion. The usual way is to support the tape at a number of equi-

distant points (20 to 100 feet), letting it hang suspended between

these points and computing the corresponding correction for

sag. In order to avoid any friction the supports are usually

wire loops swinging from nails driven in carefully aligned stakes.

Unless the points of support are on an even and determined

grade it is necessary to measure the elevation of each such point,

in order to make the necessary reduction for vertical alignment,

that is, reduction to the horizontal. The points of support

must have such elevations that the pull on the tape will not

lift it free of any of the supports. No change of horizontal

alignment is allowable within a single tape length. It is evident

that good work can not be done with a suspended tape if an

appreciable wind is blowing.

The pull on the tape must be exerted through the medium

of a spring balance or other device attached to the forward end.

The pull adopted may be from 12 to 20 pounds, depending on the

weight of the tape and the distance between supports, so as to

prevent excessive sagging and to hold the tape in line. For an

accuracy of 1 in 50,000 the pull may be made with a good spring

balance, properly steadied by connection with a good stake.

For extreme accuracy the pull must be known within a question

of ounces, and special stretching devices attached to firmly driven

stakes are required. The desired amount of pull can be very

accurately made through the simple device of a weight acting

through a right-angled lever turning on a knife-edge fulcrum;

the device must be so mounted that the lever arms can be brought

into a truly vertical and horizontal position when the strain is

on the tape.
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The length of a steel tape is materially modified by a moderate

change of temperature, so that the greatest care is required in

making the corresponding correction. It is found in practice

that a high grade of work can not be done in direct sunlight,

owing to the difficulty of ascertaining the temperature of the tape,

a mercurial thermometer held near the tape or in contact with it

failing to give the true value by many degrees. An accuracy
of 1 in 0,000 requires the mean temperature of the tape to be

known within a degree, and an accuracy of 1 in 500,000 to within

one-fifth of a degree. The highest grade of work can therefore

be done only on densely cloudy days or at night.

In the common method of using steel tapes the tape is stretched

(suspended) between two tripods (or posts driven or braced until

immovable), the rear one being carried forward in turn for each

new tape length. Intermediate supports are provided as previ-

ously described, if necessary. The rear end of the tape is con-

nected with a straining stake a few feet back of the rear tripod;

the front end is connected with the spring balance or other device

for giving the desired pull, the strain at this end also being
resisted by a suitable stake or stakes beyond the forward tripod;

in this way no strain is allowed to come on either tripod. A
small strip of zinc is secured to the top of each tripod, and each

tripod is set with sufficient care so that the end mark on the

tape will come somewhere on the zinc strip, the exact point being
marked by making a fine scratch on the zinc with any suitable

instrument. In regard to temperature measurements tapes 100

feet or less in length ought to have two thermometers tied to

them, one at each quarter point; longer tapes, up to about 300

feet, ought to be equipped with three thermometers, one at the

center, and one about one-sixth the length from each end.

Professor Edward Jaderin of Stockholm has obtained the very
best results in a method slightly differing from the above. Profes-

sor Jaderin prefers a tape 25 meters long, 5 centimeters each

side of the 25-meter mark being graduated to millimeters and

read by estimation to the nearest tenth of a millimeter. Each

tripod carries a single fixed graduation, and the distance between

the marks on two successive tripods must not vary more than 5

centimeters either way from 25 meters. By means of the end

scale on the tape the exact distance from tripod to tripod is

determined and the whole base found by the sum of the results.
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The best work can only be done on densely cloudy days or at

night.

23. Invar Tapes. By alloying steel with about 35 per cent

of nickel a material is produced possessing an exceedingly small

coefficient of expansion, this discovery being due to C. I. Guil-

laume (of the International Bureau of Weights and Measures,
near Paris). For this reason the name "invar" (from "inva-

riable ") has been applied to this material. Tapes made of invar

have proven extremely satisfactory for the accurate measure-

ment of base lines, errors in determining the temperature of the

tape being of so much less importance than with steel tapes, which

makes it possible to do first class work at all hours of the day.
The coefficient of expansion of invar is about 1 : 28 that of

steel, or about 0.00000022 per degree Fahrenheit. The modulus

of elasticity is about 8: 10 that of steel, or about 23,000,000 pounds

per square inch. The tensile strength is about 100,000 pounds

per square inch, or about half that of the ordinary steel tape, but

amply sufficient for the purpose. The yield point is about 70

per cent of the tensile strength.

In 1905 the Coast Survey purchased six invar tapes from

J. H. Agar Baugh, London, Eng., for the purpose of subjecting

them to the actual test of field work and comparing them with

steel tapes under similar conditions. (See Appendix No. 4,

1907.) These tapes averaged about 0".02X0".25 in cross-

section, about 53 meters in length, looked more like nickel than

steel, and were full of innumerable small kinks which, however,

did not cause any inaccuracy in actual service. They were very
soft and easily bent, being much less elastic than steel, and requir-

ing reels 16 inches in diameter to prevent permanent bending.

Steady loads up to 60 pounds caused no permanent set. While

rusting more slowly than steel tapes they were found to need oiling

and care.

The experience of the Coast Survey with invar tapes indicates

that they possess no properties derogatory to their use for base-

line work, and that under similar conditions both better and

cheaper work can be done than with steel tapes. They are used

in all respects like steel tapes, using special care to avoid injury

from bending.

24. Measurements with Steel and Brass Wires. Professor

Edward Jaderin of Stockholm has found it possible to do excellent
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base-line work throughout the entire day by using steel and brass

wires instead of steel tapes. (See U. S. C. and G. S. Appendix
No. 5, Report for 1893.) The object of using the metal in wire

form instead of tape form is to minimize the effect of the wind,

since the circular cross-section- (for the same area) exposes much

less surface to the action of the wind than the flat surface of

the tape form. The method used is the same as described in the

last paragraph of Art. 22, except that two values are obtained

for the distance between each pair of tripods, one with the steel

and one with the brass wire. Two measurements of the whole

base line are thus obtained, and from their difference the average

temperature of the wires is deduced and hence the corresponding

correction. The assumption is made that the wires are always of

equal temperature, both being given the same surface (nickel

plate, for example), the same cross-section, and the same hand-

ling. The principle is identical with that of the Eimbeck

duplex base-bar described in Art. 21.

25. Standardizing Bars and Tapes. The nominal length of a

bar or tape is its ordinary designated length, as, for example, a

fifty-foot tape or a five-meter bar. The actual length seldom

equals the nominal length, but varies with changing conditions.

The absolute length is the actual length under specified conditions.

If the absolute length is known, the laws governing the change of

length with changing conditions, and the particular conditions

at the time of measuring, then the actual length of the measuring
unit becomes known, and consequently the actual length of the

line measured. By standardizing a bar or tape is meant deter-

mining its absolute length. Such an expression as the " tem-

perature at which a bar or tape is standard " means the tempera-
ture at which the actual and designated lengths agree.

The absolute length of a bar or tape may be determined in a

number of ways, but the essential principle in each case is the

same, namely, the comparing of the unknown length with some

known standard length at an accurately known temperature.
If the comparison is made in-doors, the room must be one (such

as in the basement of a building) where the temperature remains

practically constant for long periods, so that the temperature of

the measuring units will be the same as that of the surrounding-

air. If the comparison is made in the open air the work must be

done on a densely cloudy day or at night, for the same reason.
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Tapes are standardized unsupported, or supported horizontally

throughout their length, at any convenient pull and temperature,
the Coast Survey reducing the results by computation to a stand-

ard pull of 10 pounds and temperature of 62 F. The absolute

length of a tape may be found by measuring it with a shorter

unit (such as a standard yard or meter bar) ; by comparing it

with a similar tape whose absolute length is known
; by comparing

it with fixed points whose distance apart is accurately known;
or by measuring with it a base line whose length is already accur-

ately known. For a nominal fee the Coast Survey at Washington
will determine the absolute length of any tape up to 100 feet in

length.

Any device or apparatus which permits a measuring unit to

be compared with a standard length is called a comparator. It

is quite common at the commencement of a survey to fix two

points at a permanent and well determined distance apart, and

compare all tapes used with these points from time to time; the

standard or reference distance thus established would be called

a comparator. In the laboratory the comparator may be a very
elaborate piece of apparatus with micrometer microscopes, by
which the most accurate comparisons may be made, or with

which a measuring unit may be most accurately measured by a

shorter standard.

Base-bars are probably most readily and accurately standard-

ized by measuring a base line of known length with them. The
actual length of the bar thus becomes known, by computation,
for the temperature at which the measurement was made; and

by means of its coefficient of expansion its length becomes known
at any temperature.

Measuring the same base with the same bar or tape, at widely
different temperatures, furnishes a good means of determining
the coefficient of expansion if it is not otherwise known. With

the compensating bar the coefficient of the residual expansion

(since the compensation is never perfect) may be thus obtained.

If a base line of known length is measured with a duplex
base-bar at a certain average temperature, the average actual

length of each component bar (steel and brass) becomes known
for that temperature, and the difference in these average lengths

indicates that particular temperature and that particular length of
each bar. The absolute length of each component is thus known
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for that particular temperature. If the same thing is done at a

widely different temperature the same information is obtained

at the new temperature. Since the average length of each com-

ponent is obtained at the two different temperatures the coefficient

of expansion of each component becomes known. Since the differ-

ence in the lengths of the components is known at two widely

separated temperatures, and since this difference changes uniformly

from the lower to the higher temperature, the temperature corre-

sponding to any particular difference in the length of the bars also

becomes known. In measuring an unknown base w.th a duplex
bar (provisionally using the absolute length of each component
at the standard temperature on which the coefficient of expansion
is based) the total difference by the two component bars becomes

known, hence the average difference per bar length, hence the

average temperature, hence by combination with the coefficient

of expansion the actual length of each component at the time

of measurement, hence the actual length of the base line. The

result must, of course, be the same whether finally deduced from

the steel or from the brass component, thus furnishing a good
check on the computations. When base lines are measured

with steel and brass wires these wires are standardized and used

in the same manner as the duplex base-bar.

A base line of known length, to be used for standardizing

bars or tapes, may be one that is measured with apparatus already

standardized, or one measured with a base-bar packed in melting

ice so as to ensure a constant and known temperature.

26. Corrections Required in Base-line Work. As explained

in Art. 20, if a base line is measured with base -bars corrections

may be required for absolute length, temperature, horizontal and

vertical alignment, and reduction to mean sea level. If the base

line is measured with supported tapes or wires an additional

correction may be required for pull. If unsupported tapes or

wires are used additional corrections may be required for both

pull and sag. With a simple or a compensating base-bar, there-

fore, it is necessary to know its absolute length and coefficient

of expansion before it can be used for base-line work. With a

duplex base-bar (and correspondingly with double wire measure-

ments) it is necessary to know the absolute length and coefficient

of expansion of each of the component units. With tapes and

wires it is necessary to know the absolute length, coefficient of
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expansion, modulus of elasticity, area of cross-section, and weight.

Except in work of great accuracy average values may be assumed
for the weight, coefficient of expansion, and modulus of elasticity

for the material of which the wire or tape is made.

The above corrections are relatively so small that they may be

computed individually from the uncorrected length of base line,

and their algebraic sum taken as the total correction required. A
plus correction means that the uncorrected length is to be increased

to obtain the true length, and a minus correction the reverse.

27. Correction for Absolute Length. The absolute length of

a measuring unit is generally stated as its designated length plus
or minus a correction. The total correction will have the same

sign, and be equal to the given correction multiplied by the num-
ber of tape or bar lengths in the base (including fractional lengths

expressed in decimals); or what amounts to the same thing,

multiply the given correction by the length of the base and divide

by the length of the measuring unit.

If Ca =correction for absolute length;

c= correction to measuring unit;

I =uncorrected length of measuring unit;

L =uncorrected length of base;

then T

r _Lc
La ~T'

In duplex measurements the absolute lengths are used directly
in the computations in order to determine the average temperature.

The quantities L and I must be expressed in the same unit

(feet or meters, for instance) ,
and Ca will be in the same unit as c

(which need not be the same as used for L and I) .

28. Correction for Temperature. In measuring a base line

the temperature usually varies more or less during the progress
of the work, but it is found entirely satisfactory to apply a

correction due to their average temperature to the sum of all

the even bar or tape lengths, and add a final correction for any
fractional lengths and corresponding temperatures.

If Ct
= correction for temperature ;

a = coefficient of expansion;
Tm mean temperature for length L;
Ts
= temperature of standardization:

L length to be corrected;
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then practically, since the measuring unit changes length uni-

formly with the temperature,

Ct =a(Tm -T.)L.

Ct
will be in the same unit as L and must be applied with its

algebraic sign.

The coefficient of expansion for steel wires and tapes may vary

from 0.0000055 to 0.0000070 per degree F., and if its value is

not known for any particular case may be assumed as 0.0000063

.(Coast Survey value). For the most accurate work the coeffi-

cient of expansion for the particular tape or wire ought to be

carefully determined, either in the laboratory or by measuring a

known base at widely different temperatures.

The coefficient of expansion for brass wires was found by

Professor Jaderin to average 0.0000096 per degree F.

The coefficient of expansion of invar may be 0.00000022 per

degree F., or less.

In the case of duplex measurements the average temperature

and corresponding corrections may be deduced as follows :

Let Ls
= provisional length of base, using absolute length of

steel component at the standard temperature

(usually 32 F. or C.) to which coefficient of ex-

pansion refers;

Lb
= same for brass;

As
= coefficient of expansion of steel;

Ab
= same for brass;

T = average number of degrees temperature above

standard
;

then the true length of base in terms of steel component

=
Llg + ljgAgl y

and in terms of brass component

= Lb + LbA bT.

Equating and reducing, we have

y_,
LgLi

LbAb LgAg
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and correction for steel-component measurement

n - t a m _Ij8 {Lg Lb)A8C t8 -L8A81-
LbAb_ LgI;

,

or practically

Ct8
= correction to measurement by steel component

=
(Ls- L

b)-jkrj;,
and similarly

C tb
= correction to measurement by brass component

= (L8-Lb)-

Ab

Ab-A8

'

These corrections will be in the same unit as L8 and Lb and are to

be used with their algebraic signs.

29. Correction for Pull. This correction only occurs with

tapes and wires; if the pull used is not the same as that to which

the absolute length is referred a corresponding correction must
be made.

Let C P
= correction for pull;

Pm =
pull while measuring base line

;

Pa = pull corresponding to absolute length;

S = area of cross-section of tape;
E = modulus of elasticity of tape;
L = uncorrected length of line;

then practically

ri {' m *
aj-*-'

Lp ~ SE
'

If E is taken in pounds per square inch, then Pm and Pa must

be in pounds, L in inches, and S in squares inches, whence CP

will be in inches, and is to be applied with its algebraic sign.

If the cross-section is unknown it may readily be found by
weighing the tape or wire (without the box or reel), and finding

its volume by comparison with the specific weight of the same

material. The cross-section then equals the volume divided by
the length. The weight of a cubic foot may be assumed as 490

pounds for steel tapes, 500 pounds for steel wires, 520 pounds
for brass wires, and 510 pounds for invar tapes.
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If the modulus of elasticity is unknown it may be found as

follows: Support the tape horizontally throughout its length,

and apply two widely different pulls, noting how much the tape

changes in length due to the change in the amount of pull.

Let Ps
= smaller pull ;

Pi =
larger pull;

I = length of tape ;

lc
= change in length caused by change in pull ;

S = cross-section of tape;

E = modulus of elasticity ;

then

(P t -P.)l
SL

'

If Pi and Ps are taken in pounds, I and l
c
in inches, and S in

square inches, then E will be in pounds per square inch.

Except for the most accurate work E may be assumed as

follows :

for steel, E = 28,000,000 lbs. per sq. in.

for brass, E = 14,000,000

for invar, E = 23,000,000

30. Correction for Sag. This correction only occurs in the case

of unsupported tapes and wires. In any actual case in practice

the catenary curve thus formed will not differ sensibly in length

from a parabola. The correction required is the difference in

length between the curve and its chord.

Let C8
= correction for sag for one tape length;

c correction for sag for the interval between one

pair of supports;

I = length of tape;

d = horizontal distance between supports (for which the

uncorrected distance given by the tape is used

in practice without sensible error) ;

v = the amount of sag;

P = the pull ;

w = weight of a unit length of tape.

The difference in length between the arc and chord of a very flat

parabola (such as occurs in tape measurements) is found by the
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calculus to be very nearly ,
but the formula is never used in

this form since it is inconvenient and unnecessary to measure

v in actual work. Passing a vertical section midway between

supports, and taking moments around one support, we have

_ wd d wd2

Pu =T X
4
=

-8-'

from which

wd2

whence

v =w
8v2

d(wd)
2 d(wdf

or
3d 24P2 24P2 '

and if there are n intervals per tape

~ _ nd(wd)
2
_ l(wd)

2

8 ~~^2AP2
~

~~2iP2
'

The correction to the whole base line is found by multiplying

the correction per tape length by the number of whole tape

lengths, and adding thereto the corrections for any fractional

tape lengths (which must be computed separately).

If w is taken as pounds per inch, then P must be taken in

pounds and d and I in inches, whence C8 will be in inches.

The normal tension of a tape is such a tension as will cause

the effects of pull and sag to neutralize each other, so that no

correction need be made for these effects. Since the effects of

pull and sag are opposite in character (pull increasing and sag

decreasing distance between ends of tape) such a value can always
be found by equating the formulas (for a tape length) for sag

and for pull, and solving for Pn or pull to be used during measure-

ment of line.

31. Correction for Horizontal Alignment. Ordinarily base

lines are made straight horizontally, but sometimes slight devi-

ations have to be introduced, forming what is called a broken

base. Fig. 13 shows a common case of a broken base, a, b, and

6 being measured, and c found by computation, some unavoidable
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condition preventing the direct measurement of c. From trig-

onometry we have

a2 + b2 + 2ab cos = c2
,

so that c can always be found. If, however, is very smaL>

(say not over 3) we may proceed as follows :

Let Cm = correction for broken base; then

Cbb [(a + b)
-

c];

but

a2 + b2 + 2ab cos = c2
;

a2 + &2 c2 = 2ab cos 0.

Adding 2a& to both members

a2 + 2ab + b2 - c2 = 2ab - 2a6 cos 0;

(a + 6)
2 - c2 = 2a& (1

-
cos0).

Substituting (1 cos 0)
= 2 sin2 ^0,

[(a + b)
-

c] X [(a + 6) + c]
= 4a6 sin2 0.

Hence

Aab sin2

Cfc6
=

(a + 6) + c

If is very small (which is practically always the case) Cbb will

be very small, and we may substitute

sin \Q = \0 sin 1' and (a + b) + c - 2 (a + 6),

whence

~ a&02 sin2 T
C *6

~
a + 6

X ~^ '

in which must be expressed in minutes, and Cbb will be' in the

same unit as a and b.

oin2 1 '

-^- = 0.00000004231.
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32. Correction for Vertical Alignment. When measurements

are taken with wires or tapes the elevations of the different

points of support will usually be different, though frequently
a number of successive points may be made to fall on the same

grade.

Let h, I2, etc., be the successive lengths of uniform grades;

hi, /&2, etc., be the differences of elevation between the

successive ends of these grades;

Ci, C2, etc., be the numerical corrections for the single

grades;

Cg
= total correction for grade;

then for any one grade

c =1 - y/P - h2
,

c -I = - Vl2 - h2
,

c2 - 2lc + I
2 = I

2 - h2
,

c2 - 2lc = - h2
,

2lc - c2 = h2
,

h2

c =
21 -c'

but since c is very small in comparison with I we may write with

sufficient precision

whence
21

\2ti 2I2 2ln

If the grade lengths are all equal, as, for instance, when h

is taken at every tape length,

1 Ih 2

Cg - -
^{h,

2 + h2
2

. . . + hn2) = -
-p

Fractional tape lengths must be reduced separately.

When base-bars are used the angles of inclination are measured,

and the correction is the same for the same angle whether the

angle is one of elevation or depression.
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Let Cg
= grade correction for one bar length;

I = length of bar;
= angle of inclination from the horizontal;

then

Cg
= - I (1

- cos 6) - - 21 sin2 \6.

If is less than 6 we may write without material error

sin 10 = hOsinl',

whence

Cg

sin2 1'

or

C.

OH,

0.00000004231 OH,

with the understanding that is to be expressed in minutes,

and Cg will be in the same unit as I. The grade correction for

the entire line will be the sum of the individual corrections for

the several bar lengths.

33. Reduction to Mean Sea Level. In geodetic work all

horizontal distances are referred to mean sea level, that is, the

stations are all supposed to be

projected radially (more strictly,

normally) on to a mean-sea-level

surface, and all distances are

reckoned on this surface. All the

angles of a triangulation system
are measured as horizontal angles,

and are not practically affected by
the different elevations which the

various stations may have. If the

lines which are actually measured

(bases and check bases) are re-

duced to mean sea level, all com-

puted lines will correspond to this

level without further reduction.

It is necessary, therefore, to con-

nect the ends of base lines with

the nearest bench marks whose

elevations are known with reference to mean sea level. (See

Art. 77 for determination of mean sea level.)
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Let Cmsl
= reduction to mean sea level;

r = mean radius of earth;

a average elevation of base line;

B = length of base as measured;
b = length of base at mean sea level;

then, from Fig. 14, page 43,

r + a r

b =

a

B 6'

Br

= -(B-b) = -(b -

r + a'

Br \ Ba
r + aJ r + a'

or since a is always very small as compared with r, we may write

r _ ?!

in which a and r must be in the same unit, and in which Cms i

will be in the same unit as B (need not be in the same unit as

for a and r) .

r (in meters) = 6,367,465 log.
= 6.8039665.

r (in feet) =20,890,592 log.
= 7.3199507.

34. Computing Gaps in Base Lines. Sometimes an obstacle

occurs which prevents the direct measurement of a portion of

a straight base line, as, for instance, between B and in Fig. 15.

In such a case if two auxiliary points A and D (on the base)

are taken, x can be computed if the distances a and b and the

angles a, /?,
and 6 are measured. Draw BE and CF perpendicular

to AO, and CG and BH perpendicular to DO. Then

BE BA BO sin a a
or

whence

Also

CF CA CO sin (a +/?) x + a'

BO _ a sin (a + /?)

CO {x + a) sin a

BH_ ^BD BO sin (/? + 0) = x + b

CG
~
CD

r
CO sin b

'

(1)
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whence

BO = (x + b) sin d

CO bsin(p + d)
K)

Comparing (1) and (2)

a sin (a + /?) _ (x + b) sin d
t

(x + a) sin a b sin (/?+ 6)
'

or

(x + a) (x + 6)
= ^BM+flBin(ff+fl)

sin a sin S

which gives

V
/
ab sin (a+/?) sin (^ + ^) /a

- b\
2 a + b

X T \ I n ~T
2

A

It is evident that good results can not be obtained unless the

points A, D, and are selected so as to make a well shaped

figure.

35. Accuracy of Base-line Measurements. The accuracy

possible in the determination of the length of a base line depends
on the precision with which the various constants of the meas-

uring apparatus have been obtained and the precision with which

the field work is done. The instrumental constants can be

determined with a degree of precision commensurate with the

highest grade of field work. The precision attainable in the field

is judged by making repeated measurements of the same base

with the same apparatus and comparing the results. From the

discrepancies in these measurements the probable error (Chapter

XIII) of the average (arithmetic mean) of the determinations
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is found and compared with the total length of the line as a

measure of the precision attained. This measure of precision

is called the uncertainty.

An exact comparison of the merits of different base-line

apparatus is manifestly impossible, but under similar conditions

the following results have been obtained :

Uncertainty of Mean Length of Base. Steel tapes in cloudy

weather or at night, 1 in 1,000,000 or better. Invar tapes at all

hours, 1 in 1,000,000 or better. Steel and brass wires at all

hours, 1 in 1,000,000 or better. Ordinary base-bars, 1 in 2,000,000

or better. Duplex base-bars, 1 in 5,000,000 or better.

The probable error of a base line is obtained as follows :

Let ra
= probable error of mean length;

Mi, Mi, etc. = value of each determination;

z = mean length of line;

Mi
M2

etc., m residuals;

Hv2 = sum of squares of residuals;

n = number of measurements;

then



CHAPTER III

MEASUREMENT OF ANGLES

36. General Conditions. Assuming that the stations and

signals have been arranged to the best advantage, as described

in Chapter I, the finest grade of instruments and favorable atmos-

pheric conditions are required for the highest grade of work. The
U. S. Coast and Geodetic Survey does satisfactory work at all

hours, but it is not easy to do good work in the middle of the

day. From dawn to sunrise (and within about an hour after

sunrise if heliotropes are used), and from about four o'clock in

the afternoon until dark, represent the hours most desirable

for the highest grade of work; even the early morning period

frequently proves unsatisfactory. In densely cloudy weather

work may be carried on all day. If night signals are used (see

Art. 19), good work can be done up till about midnight. Accu-

rate results can not be expected if the instrument is exposed
to the direct rays of the sun immediately before or during the

measurement of an angle. The effect of the sun's rays is to

cause heat radiation, producing an apparent unsteadiness of all

objects seen through the telescope, due to the irregular refraction

caused by the currents of air of different temperatures; an

uncertain amount of sidewise refraction, even if the unsteadiness

is not sufficient to prevent a good bisection of the signal; a

disturbance of the adjustments of the instrument and bubbles,

and an actual twisting of the instrument on a vertical axis, both

caused by unequal expansion and contraction; and a twisting
of the station itself on a vertical axis, if it have any particular

height (the twisting being generally toward the sun's movement,
and amounting to as much as a second of arc per minute on a

75-foot tower).

37. Instruments for Angular Measurements. Two types of

instrument are in use for fine angle work, the Repeating Instru-

ment, and the Direction Instrument, the latter being considered

47
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the best in the hands of well-trained observers. If either instru-

ment is provided with a vertical arc or circle it is called an

Altazimuth Instrument. The term Theodolite is frequently applied
to any large instrument of high grade, though more correctly
limited to istruments in which the telescope can not be reversed

without being lifted out of its supports (on account of the low-

ness of the standards). When an instrument has to be reversed

in this manner the telescope must be turned end for end without

reversing the pivots in the wyes. The illustrations are all of

high grade instruments, Fig. 16 being a repeating instrument,

Fig. 17 a direction instrument, and Fig. 18 an altazimuth instru-

ment (in this case also a repeating instrument). In general,

geodetic instruments are larger than surveyors' instruments,

though experience has shown that horizontal circles greater than

10 or 12 inches in diameter offer no further advantage in the

accuracy of the work that can be done with them. Such instru-

ments are made of the best available material and with the greatest

care, the utmost care being taken with the graduations and

the making and fitting of the centers. Lifting rings are often

provided to avoid strain in handling. The instruments are

supported on three leveling screws (instead of four as ordinarily

found on surveyors' transits), and in addition a delicate striding

level is provided for direct application to the horizontal axis

of the telescope. All the levels are more delicate than on a

common transit, the plate levels running from about 10 to 20

seconds per division, and the striding level from 1 to 5 seconds per

division. Repeating instruments are usually read by verniers,

an 8-inch instrument reading to 10 seconds and a 10- or 12-inch

instrument even down to 5 seconds, attached reading glasses

of high power taking the place of the ordinary vernier glass.

Direction instruments generally read to single seconds, as described

in detail later on. The leveling screws (which support the

instruments) are pointed at the lower ends and rest in V-shaped

grooves, so that they are not constrained in any way. If tri-

pods are used the grooves are usually cut in round foot plates

(about H inches in diameter) properly placed on the tripod

head by the maker. Extra foot plates are often provided which

can be screwed to piers or station heads as desired. A trivet

is a device often used for the same purpose, consisting of a frame

containing three equally-spaced radial V-shaped grooves cut in
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Fig. 17. Direction Instrument.

From a photograph loaned by the U. S. C. and G 3.
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Fig. 18. Altazimuth Instrument.
From a photograph loaned by the U. S. C. and G. S.
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suitable arms. A three-screw instrument is leveled by setting
a bubble parallel to a pair of leveling screws and bringing it

to the center by turning that pair of screws equally in opposite

directions; the crosswise bubble is then leveled by using only
the single screw that is left.

38. The Repeating Instrument and its Use. Besides the

features common to all first-class instruments, as described in

the previous article, the repeating instrument must contain the

special feature of a double vertical axis (as is always the case

in the surveyor's transit), thus permitting angles to be measured

by the method of repetition. The fundamental idea of measuring
an angle by repetition is to measure the angle a number of times

without resetting the plates to zero between the successive

measurements, and dividing the accumulated result by the

number of repetitions. It was at first thought that any desired

degree of accuracy could be obtained by this method by simply

increasing the number of repetitions, but it is now known that

increasing the number of repetitions beyond a certain limit does

not improve the result, on account of systematic errors introduced

by the instrument itself, chiefly due to the clamping attach-

ments. The method is nevertheless very meritorious, and excel-

lent work can be done. The object of the repetition is twofold:

First, the errors in the pointings tend to compensate each other,

and the remaining error is largely reduced by the division;

Second, the accumulated reading is theoretically correct to the

least count of the vernier, and the division by the number of

repetitions tends to make the reduced value as close as if the

least count were just that much finer. There are two ways of

measuring an angle by the method of repetition, each designed

to eliminate as far as possible the various instrumental errors,

but based on somewhat different arguments.

39. First Method with Repeating Instrument. The common,
but not the best, method consists in repeating the angle any
desired number of times, measuring from the left-hand to the

right-hand station, with telescope direct, and dividing by the

number of repetitions to obtain one value of the angle; then

measuring the same angle in the reverse direction (right-hand

to left-hand station), using the same number of repetitions, but

with telescope reversed, and dividing as before to obtain a second

value of the angle; the average of the two determinations is then
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taken as the value of the angle (as given by that set, and of

course as many sets as desired may be averaged together). The
number of repetitions in each set is commonly so taken as to

make each of the accumulated readings approximately equal
to one or more times 360, in order to eliminate errors of gradu-
ation. If this plan would require an unreasonable number of

repetitions, a number of smaller sets may be taken from sym-
metrical points around the graduated limb, and the results

averaged. Thus four independent sets might be taken, the start-

ing point for vernier A for each set being respectively 0, 45,
90 and 135. The reversal of the telescope is designed to elimi-

nate errors caused by imperfect adjustment of the collimation

and the horizontal axis of the telescope. Measuring in opposite

directions between stations is designed to eliminate errors caused

by the clamping apparatus. The reading of the instrument at

any time is understood to be the mean of the readings of the

two verniers, as the eccentricity of the verniers and of the centers

is thus eliminated. The argument advanced in favor of this

method is that reversing all the processes for the second half

of a set ought to reverse the signs of the various errors, so that

theoretically they ought to largely vanish from the mean value.

As this method is not recommended it is not given in any further

detail.

40. Second Method with Repeating Instrument. In this

method, considered the best, the instrument is always revolved

about its vertical axis in the same direction

(almost universally clockwise), no matter which

clamp is loosened nor how great the angle

through which it must be turned to point to

the desired station. The fundamental scheme

of this method is to measure (see Fig. 19) the

desired angle from A to B (called the interior

angle) ,
and also to measure the other angle (called

the exterior angle) from the B the rest of the way
around to A, measuring this remaining angle being
called closing the horizon. The interior angle A to Fig 19.

B is repeated as many times as desired with the

telescope direct (often called normal) and an equal number of

times with the telescope reversed, and the accumulated reading
divided by the total number of repetitions for the provisional
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value of this angle. The exterior angle B to A is measured in

exactly the same way with the same number of repetitions,

etc. The values thus obtained for the interior and exterior

angles are added together, and if the result is not exactly 360

the discrepancy is equally divided between the two angles.

The entire operation makes one set. The argument in favor

of this method is that since the exterior angle is measured in

identically the same way as the interior angle it ought to be

subject to exactly the same error; adding the two angles together,

therefore, should double the error; and the value of this double

error be made apparent by the failure of the sum to equal 360.

The assumption is evidently made that the errors which it is

sought to eliminate by this method are independent of the size

of the angle, and this is generally believed to be true. In practice

the verniers are not reset to zero after completing the measure-

ment of the interior angle, but become the starting point for the

measurement of the exterior angle just as they stand; the

instrument is thus made to automatically add the interior and

exterior angles on its own graduations, and the verniers should

therefore read zero (360) at the completion of the set if no errors

were involved. It is more common for the combined angles to run

under than over 360, about 10" per repetition not being an

unusual amount. It is found by experience with this method that

six repetitions (3 direct and 3 reversed) of the interior angle, and

the same for the exterior angle, make a very satisfactory set;

and the average of two such sets (if in close agreement) gives

a very good determination of the desired angle. The plates are

not reset to zero between the two sets, but left undisturbed as

a starting point for the second set, so that the vernier readings

become slightly different each time and the mind is free from

bias. The complete program for a double set would be as follows :

PROGRAM

First Set.

1. Level up, set vernier A to zero, read vernier B.

Set telescope direct and

2. Undamped below, turn clockwise and set on left station.

3.
"

above,
" "

right
"

4. Unclamp below, and read vernier A.
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Leaving verniers unchanged^

5. Undamped below, turn clockwise and set

6.
"

above,

7.
"

below,

8.
"

above,

Reverse telescope and

9. Undamped below, turn clockwise and set

10.
"

above,

11.
"

below,

12.
"

above,

13.
"

below,

14.
"

above,

15. Unclamp below and read both verniers.

Leaving telescope reversed and verniers unchanged,

16. Undamped below, turn clockwise and set

17.
"

above,

18.
"

below,

19.
"

above,

20.
"

below,

21.
" above

on left station,

right

left

right
"

on left station,

right

left

right

left

right

on right station,

left

right

left

right

left

Set telescope direct and

22. Undamped below, turn clockwise and set

23.
"

above,

24.
"

below,

25.
"

above,

26.
"

below,

27.
" '

above,

28. Unclamp below and read both verniers.

on right station.

left

right

left

right

left

Second Set.

1. Leaving verniers unchanged from previous set, relevel

with lower motion undamped.

Set telescope direct and

2. Undamped below, turn clockwise and set on left station.

3.
"

above,
" "

right
"

etc. etc.
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40a. Reducing the Notes. The following points are taken

advantage of to save labor in reducing the notes:

First. In finding the average value of the six repetitions

by dividing by six, it will be noted that the remainder from the

degrees gives the first figure of the minutes, and the remainder

from the minutes gives the first figure of the seconds, so it

becomes unnecessary to reduce these remainders to the next

lower unit, as would be required with any other number of

repetitions. For example, let the accumulated reading be

250 57' 15",

6)250 57' 15"

41 49 32.5'

6 into 250 goes 41 times and 4 over, and 4 is the first figure of

the minutes
;
6 into 57 goes 9 times and 3 over, and 3 is the first

figure of the seconds.

Second. The same numerical result can be reached without

carrying out the reduction exactly as described in the explanation
of the method.

Let a = mean of verniers at beginning of a set;

b = mean of verniers after six repetitions on interior

angle;

c = mean of verniers after six repetitions on exterior

angle;

n = number of times vernier passes initial point in the

six repetitions of the interior angle;

I = interior angle as measured;
E = exterior angle as measured;
v = adjustment to be added to either angle as measured;
A = adjusted value of interior angle.

Since the interior and exterior angles together make 360,
and each has been repeated six times, the total angle turned

through must be 360 X 6, or what amounts to the same thing,

5 complete circuits plus the indications of the verniers and the

correction for the accumulated errors; so that if n equals the

number of complete circuits involved in the six repetitions of

the interior angle, then (5 n) must represent the number of

complete circuits involved in the six repetitions of the exterior

angle. Hence



MEASUREMENT OF ANGLES 57

E

1 + E

360n + b - a

6

360(5 -
n) + c -b
6 -

'

360 X 5 + c - a

6

l (o*n 360X5 + c-a
,=-(360

1 /360 - c + a\

2\ 6 )'

A = I + v,

360n + b - a

6

. 1/360 c +
-)

l/360?i + b - a 360n + (360 + b)

'2\ 6
+

-l[h + '-) *
(

*

. )

(360 + b)
-_c\"|

6

In actual work no attempt is made to observe the value of n,

as its value is always evident from the approximate value of

the angle as given by the first reading. The remainder of the

formula involves very simple operations on the three mean vernier

readings.

40b. Illustrative Example. A complete example of notes and reduc-

tions for a double set of angle measurements is here given to illustrate the

above method.

Station occupied
= A.

Date = Aug. 28, 1911.

Time = 4.30 p.m.



58 GEODETIC SURVEYING

It will be noted that vernier A was set to zero to begin with, and vernier

B read 180 00' 10". This setting to zero is, of course, not essential, but

convenient, as the next reading at once gives a close value of the desired

angle without computation. There is no object in reading vernier B for

this approximate determination. The remaining readings are taken at the

proper time just as the instrument reads, paying no attention to the number
of times the 360 point has been passed. 1. D means one measurement of

the angle with the telescope direct. 6. D & R means six repetitions, using

the telescope equally both direct and reversed (hence 6. D & R means the

result after 3 direct and 3 reversed measurements). It will also be noted

that no resetting of verniers has taken place at any time throughout the

complete double set. Vernier B is only read in order to average out instru-

mental errors (which are always very small), and therefore in filling in this

column the degrees are recorded the same as given by vernier A, that

is, the constant difference of 180 between vernier A and B is not allowed

to affect the mean. In filling out the column marked angle the first and

the final reading of each set are subtracted from the middle reading (adding

360 if necessary to make the subtraction possible), dividing the remainder

by 6, and adding as many times 60 as may be needed to make the result

correspond to the 1. D reading.

91 13' 50"
360

91
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instruments are so well graduated, however, that it is doubtful

if any increased accuracy is gained by this refinement when

measuring angles by any method of repetition.

If it is desired to measure more than one angle at the same

station, as for instance AOB and BOC, Fig. 20, we may take six

repetitions on each of these angles and close the horizon by six

repetitions on the angle from C clockwise around to A, and divide

the failure to total 360 equally among the three angles; or we

may measure AOB and its exterior angle without regard to station

C, and then measure BOC and its exterior

angle without regard to station A.

In using the above or any other methods

of measuring an angle by repetition it is

presumed the surveyor will use every pre-

caution possible in the handling of the instru-

ment. Avoid walking around the instrument,

if supported on a tripod; unclamp the lower

motion and revolve the instrument if it is

desired to read the verniers. Do not relevel

during the progress . of measuring an angle j, IG 20.

except at such times as the upper motion is

clamped and the lower motion free. Revolve the instrument

very carefully on its vertical axis to avoid slipping the plates.

Read each vernier independently, without regard to what the

other one may have read.

41. Adjustments of the Repeating Instrument. For the

measurement of horizontal angles the required adjustments
include :

The plate-bubble adjustment;
The striding-level adjustment;

The collimation adjustment;
The horizontal-axis adjustment.

These adjustments may be made as here described, but there

is usually more than one way of making the same adjustment.
The Plate-bubble Adjustment. This is made in the same

manner as with a surveyor's transit. Place one bubble parallel

to two of the leveling screws, and bring both bubbles to the center.

Turn the instrument 180 on the vertical axis, and adjust each

bubble for one-half of its movement. Level up and test again,
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and so continue until revolution on the vertical axis causes no

movement of the bubbles.

The Striding-level Adjustment. Level up the instrument by
the plate bubbles (not absolutely necessary but convenient).

Place striding level in position with telescope parallel to one pair

of screws. Bring striding-level bubble to center with remaining
screw. Lift striding level off, and replace in reversed position.

Adjust it for one-half the bubble movement. Again bring bubble

to middle as before with the leveling screw, test again, and repeat
until reversal of the striding level causes no movement of its

bubble.

The Collimation Adjustment. This is the same as with a

surveyor's transit. Set up on nearly level ground, level up
with the plate bubbles, and then perfect the leveling with the

striding level, so that revolution on the vertical axis of the

instrument causes no movement of the striding-level bubble.

Unless the horizontal axis is in adjustment this stationary posi-

tion of the bubble will not be in the middle. With the instrument

clamped set a point about 200 feet away, plunge and set a second

point about the same distance in the opposite direction, with

the telescope reversed. Unclamp, revolve on vertical axis, set

on first point with telescope reversed. Plunge and set a third

point near the second point. Adjust by bringing the vertical

hair back one quarter of the disagreement. Repeat the whole

process until no discrepancy can be detected.

The Horizontal-axis Adjustment. This is the same as with the

surveyor's transit. Level up perfectly with the striding level

near an approximately vertical wall or equivalent. Set on a

high point, with instrument clamped. Drop the telescope and

mark a low point about level with the telescope. Unclamp,
revolve on vertical axis, and set on high point with the telescope

reversed. Drop the telescope and set a low point abreast of the

first low point. Adjust the horizontal axis so that the line of

sight will pass through the high point and bisect the space between

the low points. If the striding level and the horizontal axis are

both in adjustment and the instrument level, the striding-level

bubble should stay unmoved in its middle position while the

instrument is turned completely around on its vertical axis.

42. The Direction Instrument and its Use. Besides the

features common to all first-class instruments, as described in
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Art. 37, the direction instrument has two distinguishing features:

First, it has only one vertical axis, so that angles can not be meas-

ured by repetition (means often provided for shifting the limb

between sets of readings must not be used for angle repetition) ;

Second, it is provided with two or more micrometer microscopes

for reading the angles measured. The single center and clamp,

instead of the two centers and clamps of the repeating instru-

ment, undoubtedly add to the stability of the instrument and

the trueness of its motion. The limb of a 10-inch or 12-inch

direction instrument is commonly graduated into 5-minute spaces,

and the micrometer microscopes enable an angle to be read at

once to the nearest second, as described later on.

In using the direction instrument each angle is read a number
of times, and the results averaged, to eliminate errors of pointing;

all the microscopes are read at each pointing, to eliminate eccen-

tricity of vertical axis or microscopes; half of the readings are

taken with the telescope direct and half with it reversed, to

eliminate errors of collimation and horizontal axis; half of the

readings are taken to the right and half to the left, to eliminate

errors due to twisting of the instrument and station. In the

highest grade of work the limb of the instrument is shifted between

each set of readings through an angular distance equal to the

angular distance between the successive microscopes divided by
the number of sets, to eliminate errors of graduation. This last

refinement may be omitted in ordinary work.

43. First Method with Direction Instrument. The instru-

ment having been set up and leveled with the telescope in its

normal position is directed to the first station, and all of the

micrometers read, and so on to the right (clockwise) to each

station in order, the values of the different angles being obtained

by taking the differences of the successive readings, as will be

illustrated by an example when the method of using the microm-

eters is explained. When the last station to the right has been

reached the instrument may be turned still further in the same

direction until it reaches the initial station, called closing the

horizon, and any difference between the initial and final readings

equally divided among all the angles, but experience does not

appear to show any advantage in thus closing the horizon, and

it is commonly not done. When the last pointing to the right

has been made, the instrument is brought back station by station
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to the initial point, thus making a new series of values for the

angles. The right and left pointings are again repeated, this

time with the telescope reversed. The four series of values thus

obtained constitute one set, and as many sets as desired may be

averaged together. When for any cause a set is incomplete or

inconsistent the entire set is rejected. When there are several

angles to be measured at one station they are sometimes measured

in various combinations as well as singly, the method of adjust-

ment appearing later. The program in measuring a single angle,

Fig. 21, is as follows:

PROGRAM
First Set.

1. Level the instrument.

Set telescope direct and

2. Set on A and read micrometers.

3.
" B

4.
" A

Reverse telescope and

5. Set on A and read micrometers.

6.
" B

J "A " "

Second Set.

1. Shift limb. Relevel.

Leave telescope reversed and

2. Set on A and read micrometers.

3.
" B

4.
" A
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Set telescope direct and

5. Set on A and read micrometers.

6.
" B "

n tt a tt tt

If there were two angles to be measured at a station, as illus-

trated in Fig. 22, the program would be as follows :

PROGRAM
First Set.

1. Level the instrument.

Set telescope direct and

2. Set on A and read micrometers.

3.
" B

4.
" C " "

5.
" B

6.
" A

Reverse telescope and

7. Set on A and read micrometers.

8.
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and similarly for any number of angles at one station. It will be

noted that in the above method the telescope is reversed in posi-

tion only at the initial station.

44. Second Method with Direction Instrument. If it is not

desired to make so many pointings (in order to reduce the labor and

time) the telescope may be reversed at both the initial and final

stations and the number of pointings be greatly reduced.

The determination of the different angles, however, by this second

method would not be considered as good on account of the decreased

number of pointings. If a sufficient number of sets were taken

to equalize the number of pointings the two methods would, of

course, be equivalent. Referring to Fig. 21, page 62, the program
for a single angle by the second method would be as follows :

PROGRAM

First Set.

1. Level the instrument.

Set telescope direct and

2. Set on A and read micrometers.

3.
" B

Reverse telescope and

4. Set on B and read micrometers.

5.
" A

Second Set.

1. Shift limb. Relevel.

Leave telescope reversed and

2. Set on A and read micrometers.

3.
" B

Set telescope direct and

4. Set on B and read micrometers.

5.
" A

Referring to Fig. 22, page 62, the program by the second

method for two angles at a station would be as follows :
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PROGRAM
First Set.

1. Level up instrument.

Set telescope direct and

2. Set on A and read micrometers.

3.
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stations. Combined with each microscope is an instrument called

a filar micrometer, by means of which the exact position of the

zero point of the microscope on the scale may be determined.

Fig. 23 represents diagrammatically a sectional view of a filar

micrometer. A is the micrometer box, attached to the microscope

Fig. 23. Filar Micrometer.

as seen in Fig. 17. The micrometer is made up of the following

parts :

A, micrometer box;

b, b, fixed guide rods;

c, movable frame carrying comb scale d;

d, comb scale attached to movable frame c;

e, movable frame carrying cross-hairs /;

/, cross-hairs attached to movable frame e;

9> 9> 9> spiral springs to take up lost motion of movable

frames c and e;

h, fixed screw whose revolution adjusts movable frame c;

m, micrometer screw attached to movable frame e;

n, fixed nut whose revolution moves cross-hairs across

field of view;

p, milled head for revolving nut n;

s, graduated head for indicating fractional revolutions of

nut n;

t, fixed index for reading scale on graduated head s;

v, dust cap to protect micrometer screw m.

The central notch of the comb scale is marked by a small hole

drilled behind it (or greater depth to that notch, or other equiv-

alent), and is intended to be practically at the center of the field
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of view. Every fifth notch is indicated usually by its greater

depth and square bottom. All counting is done with the notches

and not with the points of the teeth. Each revolution of the

micrometer screw moves the cross-hairs over a space equal to the

distance between the bottoms of two adjacent notches. When
the microscope is properly adjusted the image of the graduated

ring is formed in the plane of the micrometer cross-hairs, so that

both image and cross-hairs are seen sharply defined on looking

into the eyepiece, the microscope ordinarily having a magnifying

power of 30 to 50 diameters. The comb scale is placed as close as

possible to the cross-hairs without touching them, and hence is

seen at the same time and in sufficiently good focus. As ordinarily

arranged the limb of the instrument is graduated into five-minute

spaces, and the micrometer head into sixty, spaces, and five

revolutions of the micrometer screw carry the cross-hairs across

the image of the limb from one five-minute division to the next

five-minute division; so that one notch on the comb scale or

one revolution of the micrometer screw indicates one minute of

angle, and each division on the head indicates one second.

46. Reading the Micrometers. The cross-hairs /, Fig. 23,

consist of two parallel spider threads, placed just a little further

apart than the width of the graduation lines on the instrument,
so that when a graduation line comes central between the hairs

a narrow illuminated line appears to lie on each side of the gradu-
ation. It is found in practice that the hairs can be centered over

a graduation in this way better than by any other plan (such

as a single thread or intersecting threads). Everything being
in good adjustment the zero point of the microscopes is the

center of the space between the cross-hairs when they are opposite

the central notch of the comb scale and the zero of the head is

opposite the index line. It is important to note that the comb
scale is not an essential part of a micrometer, but simply a con-

venience, enabling the observer to see at any moment how many
complete revolutions of the micrometer screw have taken place

at any time without keeping track of the matter while the screw

is being turned; no attempt must be made to get the value of a

reading by the comb scale beyond its intended purpose of indicat-

ing whole revolutions or single minutes, the seconds being read

entirely from the micrometer head; as long as the comb scale

serves its intended purpose, therefore, of counting whole revolu-
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tions, it does not matter whether its position in the field of view

is microscopically exact or not. Referring to Fig. 24, a greatly

exaggerated view is given of what is seen through one of the

microscopes for a certain pointing of the telescope. As seen in

the microscope (which reverses the actual fact) the scale reads

from left to right. Assuming the cross-hairs set to their index

or zero point the reading is seen to be 65 10' plus the value

between the 10-minute division and the center between the

two hairs. Running the micrometer screw backwards until

the hairs exactly center over the 10-minute division it is found

Fig. 24.

that one notch has been passed over by the hairs, but that they

have not gone far enough to center over the second notch from

the middle one. The screw has therefore been turned through

more than one but less than two revolutions. The numbers

on the micrometer head increase as the hairs run toward the left,

and assuming the index to stand opposite 25 the complete microm-

eter reading is 1' 25.0", making the complete reading for the

pointing

65 10' + V 25.0" = 65 11' 25.0",

if no corrections were required. The head reading is usually

estimated to the nearest tenth of a second.

46a. Run of the Micrometer. It is not found practicable

in actual work to adjust the microscopes so perfectly that the
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screw will be turned through exactly five revolutions (or indicate

exactly 300 seconds) in drawing the hairs from one five-minute

division to the next one, but the excess or deficiency should not

exceed about 2". The closer the microscope is brought to the

graduated ring the larger becomes the image in the plane of the

cross-hairs. It is almost impossible to get the image the exact

size that corresponds to precisely five revolutions of the screw;

even if this result were accomplished at one part of the graduated

ring the instrument is seldom made so true that it would hold

good all around the ring, either on account of slight errors in the

graduations or a lack of perfect trueness of the ring itself, and

many other reasons; owing to temperature changes and other

reasons it will not remain true or the same at the same part of

the ring. In running from one scale division to another the amount

by which the micrometer measurement varies from 300 seconds

is called the run of the micrometer between those divisions, and

must be determined at the time the pointing is made. Whatever

the micrometer head may read when the hairs are set over one five-

minute division, it must necessarily read the same when the hairs

are advanced to the next five-minute division, provided there is

no run of the micrometer, that is, provided that the screw turns

through precisely five revolutions or 300". If the two head read-

ings are not the same the difference gives the value of the run of

the micrometer between these two divisions. In drawing the

hairs from left to right the head readings decrease, so that the

micrometer overruns when the forward head reading is less

than the backward head reading, and vice versa. The run of the

micrometer for the 300" space, therefore, equals the backward

head reading minus the forward head reading, and the micrometer

measurement of the 300" space equals 300" plus the run of the

micrometer for this space. Since the micrometer does not

measure the five-minute (300") space correctly, it follows that a

proportionate error exists for intermediate points; or for any
intermediate point we have

Correction for run

Run of micrometer for 300" space

_ Micrometer measurement for intermediate point

Micrometer measurement of 300" space
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Let n = number of full turns to back division;
o = back head reading;

p = forward head reading;
b = backward reading in seconds = 60 n -f o;

/ = forward reading (so called) in seconds = 60 n + p;

*+/m =
;

2
'

d = run of micrometer for 300" space = o p = b /;
c = correction for run to value b;

D = 300";
A = micrometer measurement of 300" space = 300 + d =

D +d;
M =

adjusted micrometer reading to add to scale read-

ing = b c;

then

c _ b _ b

d~ A
~
D + d'

db
c =

M = b -

D + d'

db

D +d'
substituting

u b +f b -f d

but since d is always very small in comparison with D we may
write instead the extremely close approximation.

,,
,
d mdM = m + 2--D>

in which care must be taken to use d algebraically with its correct

sign. Since the adjusted reading is based entirely on 6 and / it

is evidently unnecessary to set the micrometer to its zero point
before reading either b or /. When a pointing is made in actual

work b is taken as the mean value of all the back readings of the
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different microscopes, and / as the corresponding mean of the

forward readings, and only one reduction is made for a pointing.

The scale reading is taken for one micrometer only. The eyepiece

of each microscope must be very carefully focussed by the observer,

as any perceptible parallax renders good work impossible.

A complete example of notes and reduction is given on pages
72 and 73.

47. Adjustments of the Direction Instrument. For the

measurement of horizontal angles the required adjustments
include :

The plate-bubble adjustment;
The striding-level adjustment;
The collimation adjustment;
The horizontal -axis adjustment;
The microscope and micrometer adjustment.

These may be made as here described, but there is usually

more than one way of making the same adjustment.
The Plate-bubble Adjustment. This is made in the same

manner as with a surveyor's transit. Place one bubble parallel

to two of the leveling screws, and bring both bubbles to the

center. Turn the instrument 180 on the vertical axis, and

adjust each bubble for one-half its movement. Level up and

test again, and so continue until revolution on the vertical axis

causes no movement of the bubbles.

The Striding-level Adjustment. Level up the instrument by
the plate bubbles (not absolutely necessary but convenient).

Place striding level in position with telescope parallel to one pair

of screws. Bring striding-level bubble to center with remaining
screw. Lift striding level off, and replace in reversed position.

Adjust it for one-half the bubble movement. Again bring bubble

to middle as before with the leveling screw, test again, and repeat

until reversal of striding level causes no movement of its bubble.

The Collimation Adjustment. This is the same as with a

surveyor's transit. Set up on nearly level ground, level up with

the plate bubbles, and then perfect the leveling with the strid-

ing level, so that revolution on the vertical axis of the instrument

causes no movement of the striding-level bubble. Unless the

horizontal axis is in adjustment this stationary position of the

bubble will not be in the middle. With the instrument clamped,
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ANGLE MEASUREMENT WITH

Station occupied
= Sta. A.

Date = May 15, 1910.

Time = 5.00 p.m.
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THE DIRECTION INSTRUMENT

Angle = Sta.' B to Sta. C.

Observer = Wm. S. Brown.

Instrument = Brandis No. 20.
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set a point about 200 feet away, plunge and set a second point
in the opposite direction with telescope reversed. Unclamp,
revolve on vertical axis, set on first point with telescope reversed.

Plunge and set a third point near the second point. Adjust by

bringing the vertical hair back one quarter of the disagreement.

Repeat the whole process until no discrepancy can be detected.

The Horizontal-axis Adjustment. This is the same as with the

surveyor's transit. Level up perfectly with the striding level near

an approximately vertical wall or equivalent. Set on a high

point, with instrument clamped. Drop the telescope and mark
a low point about level with the telescope. Unclamp, revolve

on vertical axis, and set on high point with the telescope reversed.

Drop the telescope and set a low point abreast of the first low

point. Adjust the horizontal axis so that the line of sight will

pass through the high point and bisect the space between the

low points. If the striding level and the horizontal axis are both

in adjustment and the instrument level, the striding-level bubble

should stay unmoved in its middle position while the instrument

is turned completely around on its vertical axis.

The Microscope and Micrometer Adjustment. It is necessary

to have the graduated arc pass practically across the center of

the field of view, and the supporting frame is generally provided
with self-evident means of making this adjustment. Sometimes

all but one of the microscopes may be moved circumferentially

so as to space them equally around the circle, but frequently

they are permanently mounted by the makers in their proper

places. The microscope tube may be rotated on its own axis

until the cross-hairs are exactly parallel to the graduation lines.

The microscope can be adjusted so as to change the distance

between the objective and the cross-hairs, and the whole micro-

scope can be moved so as to change the distance between the

objective and the graduated plate; if the micrometer overruns,

the image of the graduations is too large, and must be made

smaller by decreasing the distance between the objective and

cross-hairs slightly, and then carefully moving the whole micro-

scope away from the graduations until a perfect focus is again

obtained exactly in the plane of the cross-hairs, as shown by the

fact that properly focussing the eyepiece shows both the hairs

and the graduations sharply denned and without parallax; if

the micrometer underruns the image is too small, the objective
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must be moved away from the cross-hairs, and the whole micro-

scope moved toward the graduations; this adjustment should be

perfected until the error does not exceed 2". The zero point

of each microscope can be changed by shifting the comb scale

and revolving the graduated head on the micrometer screw;

this adjustment enables two microscopes to be set exactly 180

apart, three microscopes 120 apart, etc. Great care and skill

are necessary to properly adjust the microscopes and micrometers.

48. Reduction to Center. It is sometimes impossible to set

up an instrument exactly over a given station, a flag pole or steeple,

for instance. In such a case an eccentric station is taken as near

the true station as possible, and the eccentric angle is measured

with the same precision as would have been used for the real

angle. From the location of the true station with reference to

the eccentric station a correction is computed which will reduce

the eccentric angle to what it would have been if measured at

the true station, this operation being known as reduction to center.

The true station is generally referred to the eccentric station

by an angle and a distance, a single measurement of the angle

being sufficiently accurate for the pur-

pose. Referring to Fig. 25, C is the

true station, E the eccentric station,

ACB the desired angle, AEP the

angle actually measured, and a and r

the angle and distance connecting the

true station with the eccentric station.

In the triangle ABC the angles at A
and B are known by actual measure-

ment, and one of the sides of the

triangle must be known by measure-

ment or by computation from its con-

nection with the triangulation system. Having one side and two

angles given we may regard all the parts of the triangle ABC as

known with sufficient accuracy for the present reduction, on

account of the desired correction always being very small. Oppo-
site angles at D being equal, we have

C + y =E+ ar

or

C =E + {x-y),
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but

hence
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sini r . sin y r= and -! - = -
sin a a

sm x =

sin (E + a) b

r sin {E + a) and sin y = r sm a

a

Since x and y are very small angles, we may write

sin x = x sin 1" and sin y = y sin 1",

or

whence

J ' >MJ and /.p^Yfc*\sm \" ) b
y

\sml'7 a !

C =# +
r Tsin (E + a) sin

"|

sinT'L &~ a~ J'

in which the correction to be applied to E will be in seconds,

and may be essentially positive or negative, since the true angle

may be either larger or smaller than

the eccentric angle. If care is taken

to use the proper value of a, to re-

member that angles between 180 and

360 have negative sines, and to work

out the formula for C algebraically, the

correct value of C will be obtained

whether it be larger or smaller than E,
and without knowing what the plotted

figure would look like. If measured

from r the angle a must be taken

counter-clockwise all the way around to

the line EB no matter how large it may come; if measured

from EB it must be taken clockwise around to r; thus in

Fig. 26 the angle a is the one so marked and not the insi'e

angle BEG.
The correction to be applied to E to obtain C depends entirely

on the values of x and y, and these may be computed directly

if preferred, and combined in the proper way by inspection of

the figure, since the observer can scarcely be ignorant of how the

different stations are related to each other and hence can quickly

Fig. 26.
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draw a sketch of the actual conditions. All the possible cases

are shown in Fig. 27, page 77, for any angle less than 180.

49. Eccentricity of Signal. It sometimes becomes necessary
in measuring an angle to sight on an eccentric signal ;

for instance,

as in Fig. 28, it may be necessary to

sight to B' instead of the true station

B. The measured angle ACB' must
therefore be corrected by the small

angle BCB' to obtain the desired angle

ACB. In the triangle ABC the angles

at A and B are measured, and one side

is always known through connection

with
,
the rest of the system, so that

the side BC can be computed with

sufficient closeness for the present

purpose. The distance BD, perpen-
dicular to CB' and called the eccen-

tricity, is either directly measured or computed from a measure-

ment of the distance B'B and the angle at B' . Then

BCB' (in seconds) =
BC sin 1"

50. Accuracy of Angle Measurements. When the same

instrument is used by a skilled observer under the same condi-

tions results are obtained which differ but slightly from each other.

In measuring an angle with an ordinary 30-second transit of

good make two sets taken by the method of repetition, in accord-

ance with the example given on page 57, should not differ by
more than 5". A 10-inch repeating instrument used in the same

way, or a 10-inch direction instrument used in accordance with the

example on pages 72 and 73, should give sets differing by less than

2"'. A great many sets may be taken at the same time and agree

with each other within these limits, but it does not follow that the

value of the angle is obtained with this degree of precision. If the

same observer measures the same angle with the same instrument

under different conditions a new series of values may be obtained

closely agreeing with each other, but the mean of the values

belonging to the first series may differ several seconds from the

mean of the second series; in fact, the two means may differ more

from each other than the result of any one set differs from the
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mean of its own series. Morning measurements often differ

from afternoon measurements, even when the atmospheric

conditions appear to be the same. In the finest work an angle

is measured on many different days (sometimes with an equal

number of a.m. and p.m. measurements), under as different

conditions as possible, and a general average taken of all the values

obtained, called the arithmetic mean.

In the Coast Survey work the probable error (Chapter XIII)

of a primary angle must not exceed 0".3, and primary triangles

must close within 3". In secondary work the probable error

of an angle must not exceed 0".7, and triangles must close

within 6". In work of less importance a greater probable error

is allowable, but the triangles are expected to close within about

12". A sufficient number of measurements must be taken to

bring about these results, but in primary work in any event

at least five double sets like those given in the examples ought
to be taken.

The probable error of an angle is obtained as follows :

Let ra
=

probable error of mean angle (in seconds) ;

M\, M2 ,
etc. = value given by each set;

z = mean value of angle;

Mi z = v\

M2 z = V2
etc. =residuals (in seconds) ;

Sv2 = sum of squares of residuals;

n = number of sets.

then
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The algebraic sum of the residuals is zero, as it always should be.

r<i
=

0.674^^-
= 0.55.

If the several determinations of the angle are not considered

equally good (on account of a difference in the number of repe-

titions or in the atmospheric conditions, etc.), and the values are

correspondingly weighted, each value is multiplied by its weight
and the sum cf the products divided by the sum of the weights,

giving the weighted arithmetic mean, the probable error of which is

rPa = 0.6745J-
2p(n -

1)'

in which Upv2 equals the sum of the results obtained by multiplying

each squared residual by the corresponding weight; and 2p equals

the sum of the weights.



CHAPTER IV

TRIANGULATION ADJUSTMENTS AND COMPUTATIONS

51. Adjustments. After the field work of angle measurement
has been completed there still remains the office adjustment
of the angles necessary to satisfy the rigid geometrical conditions

involved; thus all the angles around a point must add up to

360, the three angles of a triangle must add up to 180, etc.

All such geometrical conditions must be satisfied before .the

lengths of the various lines of the system are computed. The

adjustment of the angles at any station without regard to meas-

urements taken at other stations (such as making the angles
around a point add up to 360), is called station adjustment. The
mutual adjustment of the several angles of a given figure (such

as making the angles of a triangle add up to 180), is called figure

adjustment. Easily applied rules for simple cases of adjustment
can be derived by the method of least squares or the theory of

weights; more complicated cases are better adjusted directly

by the method of least squares, as explained in Part II of this

book. The object in any case of adjustment is, of course, to

find from the measured values the most probable values con-

sistent with the geometrical conditions involved.

52. Theory of Weights. The weight of a quantity is defined

as its relative worth. The term weight, therefore, is purely relative

and must never be understood in an absolute sense. A distance of

3 feet or 3 miles is an absolute and definite distance
;
a weight of 3

does not represent any definite degree of precision, but is simply a

comparison with that which is assigned a weight of 1 . The basis of

comparison is fundamentally the number of observations of unit

weight from which the given value is derived; thus if 5 measure-

ments of an angle were regarded as equally reliable, expressed

mathematically by assigning to each a weight of 1, the mean value

of the angle (by definition) would have a weight of 5. Weights are

often arbitrarily assigned as a matter of judgment, however,
81
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where the corresponding number of observations does not exist;

thus a measurement obtained under unusually favorable condi-

tions might be considered as good as the mean of two measure-

ments taken under less favorable conditions, and hence a weight
of 2 assigned to this single favorable measurement. Since,

therefore, the numbers representing weight are purely relative,

and do not necessarily represent a corresponding number of

observations, any number, whole or fractional, may be so used;

thus two quantities may be said to have the weights respectively

of 1 and 2, or ^ and 1, or 0.12 and 0.24, and their relative worth

is the same in either case. The mean value as understood above

is the arithmetic mean, and is only used when the quantities are

of equal weight. When the different values are of unequal weight
each value is multiplied by its weight, and the sum of the products

is divided by the sum of the weights, the result obtained being

called the weighted arithmetic mean.

53. Laws of Weights. The following principles (established

by the method of least squares) govern the use of weights :

1. The weight of the arithmetic mean (with measurements

of unit weight) equals the number of observations.

Example. Angle A by different mensurements equals

29 21' 59". 1, weight 1

29 22 06 .4,
"

1

29 21 58 .1,
"

1

3)83 06' 03" .6

Arithmetic mean = 29 22' 01". 2, weight 3.

2. The weight of the weighted arithmetic mean equals the sum

of the individual weights.

Example. Base line AB by different measurements equals

4863.241 ft., weight 2

4863.182 ft.,
"

1

whence

4863.241 X 2 = 9726.482

4863 . 182 X 1 = 4863 . 182

3)14589.664

Weighted arithmetic mean= 4863.221, weight 3.



TKIANGULATION ADJUSTMENTS AND COMPUTATIONS 83

3. The weight of the algebraic sum of two or more numbers is

equal to the reciprocal of the sum of the reciprocals of the indi-

vidual weights.

Example. Angle A = 45 14' 11" .2, weight 2

Angle B = 11 21 19 .6,
" 3

1 6
A + B = 56 35' 30". 8, weight =m 5'

1 6
A - B =33 52' 51". 6, weight =

^
=
g

4. Multiplying a quantity by a factor divides its weight by
the square of that factor.

Example. Angled = 67 10' 12". 5, weighty

3 3
2A = 134 20' 25". 0, weight =

2X2 4

5. Dividing a quantity by a factor multiplies its weight by
the square of that factor.

Example. Base AB = 2716. 124 ft., weight 3,

AB = 1358.062 ft., weight = 3 X 4 = 12.

6. Multiplying an equation by its own weight (or dividing it

by the reciprocal of its weight), inverts its weight.

Example. |(x + y)
= 400, weight f ; multiplying by f (or dividing by

s), we have

4
2(x + y)

= 300, weight -.

7. Changing all the signs of an equation, or combining the

equation with a constant by addition or subtraction, leaves the

weight unchanged.

Example. x + y= 11 10' 14". 6, weight 2.3,

and

360 -
(x + y) = 348 49' 45". 4, weight 2.3.
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54. Station Adjustment. This consists, as explained in

Art. 51, of making the angles at a station geometrically consistent,

such as making all the angles around

a point add up to 360. The following

cases are worked out as shown :

Case 1. The angles at a point have

been measured with equal care (giving

them equal or unit weight). In this

case any discrepancy is equally dis-

tributed among the three angles. Thus

in Fig. 29, if the angles x, y, z, as

measured, added up to 360 00' 06",

then each measured value would be re-

duced by 2".

As an application of the theory cf weights, let us suppose
we have by measurement

x =
a, weight 1

y=b, "
1

z =c, "1
From third observation 360 z = 360 c, weight 1

or x + y
= 360 -

c, "1
By second observation y =

b,
"

1

Fig. 29.

By subtraction

By first observation

x =360 - b -c, weighty
x =

a,
"

1

Taking the weighted arithmetic mean of these values of x,

By addition

whence

\x = i(360
c

x = a

b - c)

\x = a + (360 -b -
c)

x - fa -f- K360 - b - c)

= a + |(360
o -a -b -

c)

= a + i [360
-

(a + b + c)],

which indicates that the most probable value of x is found by

correcting the measured value a by one-third the discrepancy ;
and

the same result would be reached for y and z. In combining the

observations as above it is to be noted that each observation can
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be used but once, as otherwise additional observations would be

implied that in fact have not been taken. The above rule for

the distribution of the station error is, of course, the same as

would be obtained by the method of least squares.

Case 2. The angles as measured around a point, Fig. 29,

have been assigned different weights. In this case any discrep-

ancy is distributed inversely as the weights. Thus if the weights
are

for x, 1, for y, 2, for z, 3,

the distribution of error would be as

which is the same as
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and z measurements would each be increased by 2", and the

measured sum would be reduced by 2".

Case 4- Several angles at a point, and also their sum, have

been measured, and different weights have been assigned to the

measured values. In this case any discrepancy is distributed

among all the measured values inversely as their weights. Thus

in Fig. 30, page 85, suppose

x measured with weight 2;

y
" "

l;

z
" "

3;

(x+y+z) " "
1,

the division of error would be as

which is the same as

which equals

1 .1 -I -I
2

:

1
:

3
:

1'

3 6.26
6

:

6
:

6
:

6'

3:6:2:6;

and since 3 + 6 + 2 + 6 =
17, we have

correction for x =
y=

of discrepancy;

y =

z =

A"
17

17

"
(x 4- y + z) -

j|
".

If the measured values of x, y, and z add up to less than the

measured sum (x + y + z), then the corrections for x, y, and z,

are to be added, and the correction for (x + y + z) subtracted,

and vice versa.

General Rule. Any case of station adjustment in which the

coefficients in the equations are all unity and the signs are all
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positive (as is usually the case) ,
and in which the horizon has not

been closed or the closing has been evaded in the equations by

subtracting one or more angles from 360, and in which the weights

of the final results are not desired, may be solved as follows:

Multiply each equation by its own weight ;
add together separately

all the new equations containing x, y, z, etc., as shown in the

following example, and solve the resulting equations as simulta-

neous.

Example. Observed values, Fig. 31,

x = 14 11' 17".l, weight 1

y = 19 07 21 .3,
"

x + y = 33 18 43 A,
"

z = 326 41 18 .2,
"

y + z = 345 48 39 .2,
"

Subtracting the angles involving z from 360".

weight 1

" 2

x = U 11' 17".l,

y = 19 07 21 .3,

x + y = 33 18 43 .4,

360 - z - x + y = 33 18 41 .8,

360 -
(y + 2) - x - 14 11 20 .8.

Multiplying each equation by its weight, Fig. 31.

x = 14 11' 17".l

+ 2y = 38 14 42 .6

x + y = 33 18 43 .4

2x + 2y = 66 37 23 .6

3x = 42 34 02 .4

Combining separately all equations containing x, and all equations contain-

ing y, we have

7x + Sy = 156 41' 26".5

3x + 5y = 138 10 49 .6

which, solved as simultaneous equations, give

x = 14 11' 20".14

y = 19 07 21 .83

the sum of which subtracted from 360 gives

2 = 326 41' 18".03.

55. Figure Adjustment. Having found by measurement and
station adjustment the best attainable values of the different

angles of a system, the next step is to make the figure adjustment.

(If the work is very important and the angles so involved that
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making the figure adjustment would disturb the station adjust-

ment, all the adjustments would have to be made in one operation

by the method of least squares.) The figure adjustment, as

explained in Art. 51, consists in making such slight changes in

the various measured angles as will make the figure geometrically

consistent, such as making the angles of a triangle add up to 180,
the angles of a quadrilateral add up to 360, etc. The adjust-

ment required in any case could be made in an infinite number
of ways, but the adjustment that is sought is the one that assigns

the most probable values to the various angles in view of their

actually measured values. Since all the angles measured are

spherical angles, it is necessary to compute the spherical excess

in work of any magnitude before it can be determined to what

extent the measured values are geometrically inconsistent.

If all the triangulation stations (referred to mean sea level)

were connected by chords instead of arcs, we would have a net-

work of plane triangles perfectly locating all the stations, and

through which the computations could be carried with perfect

accuracy, provided the plane angles were known and used.

These plane angles become as well known as the actually

measured spherical angles by a proper reduction for spherical

excess. On account of the simplicity and saving of labor the

computations in practice are always made on the basis of plane

triangles. In carrying forward the azimuths of the various lines,

however, the reduction for spherical excess must be restored to

the adjusted plane angles, and a further allowance made for

convergence of meridians, as explained in Chapter V.

56. Spherical Excess. The sum of the angles of a spherical

triangle is always greater than 180 by an amount directly pro-

portional to the area of the triangle and inversely proportional

to the surface of the sphere, the value of the increase being called

the spherical excess. It follows that the rule must also hold good
for any spherical polygon, since such a figure can always be divided

up into spherical triangles. Owing to the shape of the earth,

which is not a perfect sphere, the spherical excess for the same

area decreases slightly as we advance from the equator toward

the poles; except for very large areas it may be taken as 1"

for every 76 square miles, the true value for this area being

1".0035 + in latitude 18 and 0".9925 + in latitude 72. It may
ordinarily be disregarded entirely where the area is less than 10
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square miles. The precise formula for any triangle may be

written,

area X (1 e2 sin2
(f>)

2

=
C

in which

e = spherical excess in seconds of arc;

(J)
= latitude at center of triangle;

loge
2 =7.8305026 -

10;

r 1.8787228 (for area in square miles)

log C = 9.3239906 (
"

square feet)

1 8.2920224 (
"

square meters).

For logarithms of (1 e2 sin2
<j>)

see Table IX.

It is evident that neither the area nor the latitude need be

known with extreme precision for the present purpose, and may
be estimated before any adjustments have been made.

57. Triangle Adjustment. The failure of the measured

values of the angles of a triangle to add up to 180 is due to the

spherical excess and the errors of measurement. If the spherical

excess be computed, as explained in the previous article, the

balance of the discrepancy represents the errors of measurement;
or in order words, 180 + spherical excess sum of angles =
errors of measurement. The recognized adjustment for spherical

excess is a deduction of one-third of the total excess from each

angle, which is not mathematically correct unless the angles are

all equal, but which may be so considered in any case that arises

in practice ;
the reason for this is found in the fact that the excess

is always a small quantity (rarely reaching 60"), and also that

the triangles are always well shaped in this class of work. The

theoretical adjustment for errors of measurement is to divide the

amount among the three angles inversely as their weights; if

the angles are of equal weight this results in correcting each angle

by one-third of the error. In view of the above considerations

the failure of the angles of a triangle, as measured, to add up to

180 is adjusted as follows:

1 . If all the angles as measured are considered equally reliable

(of equal weight) the discrepancy is divided equally among the

three angles. The spherical excess need not be computed in

this case, unless it is desired for other purposes.
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2. In important work where the angle measurements have

different weights, each angle is first reduced by one-third of the

spherical excess, and then corrected for the errors of measure-

ment inversely as its weight.

3. In small triangles or work of minor importance, where the

angle measurements are of unequal weight, the total discrepancy
is divided among the angles inversely as their weights.

58. The Geodetic Quadrilateral. A geodetic quadrilateral is

formed when the four stations, A, B, C, D, are connected as

shown in Fig. 32. The size of the largest quadrilateral occurring

Fig. 32. The Geodetic Quadrilateral.

in practice is relatively so small as compared with the size of the

earth that we may always assume without material error that

the four stations lie in a plane. In such a quadrilateral one side,

as AD, must be known, either by direct measurement or connec-

tion with the system; and the eight angles a, b, c, d, e, f, g, h,

must be measured. If the quadrilateral is of sufficient size to

require it the measured angles must be reduced for the spherical

excess; in minor work this may be distributed equally among
the eight angles; in more important work each of the four triangles

formed by the intersection of the diagonals would be treated

separately that is, each angle would be reduced by one-third of

the excess appropriate to its own triangle. In the plane quadri-

lateral ABCD there are seven angle conditions and three side
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conditions that must be satisfied to make such a figure geometric-

ally possible, and these ten conditions can all be covered by three

angle equations and one side equation.

The seven angle conditions are as follows:

1. The sum of the eight corner angles must be exactly 360.

This furnishes one angle condition.

2. The opposite angles where the diagonals cross must be

equal. This furnishes two angle conditions.

3. In each of the four triangles formed among the stations,

such as ABC, the sum cf the three angles must be exactly 180.

This furnishes four angle conditions.

These seven conditions are so involved, however, that if any
three independent ones are satisfied the other four are also satis-

fied. As the first three conditions are independent all the angle

conditions will be satisfied if we have

a+b+c+d+e+f+g+h = 360;
a 4- b = e + /;

c + d = g + h.

The three side conditions arise from the fact that each unknown
side is contained in two different triangles, so that each side may
be found by two independent computations which must give

identical results; thus the unknown side BC may be computed
from the known side AD through the triangles ACT) and BCD,
or through the triangles ABD and ABC, and the two values thus

obtained must be the same. These three conditions are not

independent, however, for if any one of them is satisfied the other

two are also satisfied. It is well to note that all the seven angle
conditions may be satisfied without satisfying any of the side

conditions. . From the figure we have

also

whence

or

BC = AB*^= AD^-l*-?*
sin d sin b sin d

BC =CD^-l=AD^ 1,
sin c sin e sin c

BC _ sin a sin g _ sin / sin h

AD sin b sin d sin c sin e
'

sin a sin c sin e sin g

sin b sin d sin / sin h
1
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which is called the side equation. When this equation is true

the side conditions will all be satisfied. Writing the side equation
in logarithmic form, which is the most convenient form for use,

we have

(log sin a + log sin c + log sin e + log sin g)

(log sin b -f log sin d + log sin / -f- log sin h) = 0.

59. Approximate Adjustment of a Quadrilateral. Assuming
the angles to have been measured with equal care (and reduced

for spherical excess, if necessary), a quadrilateral of moderate

size or minor importance can be adjusted with sufficient approx-
imation and with comparatively little labor by the method here

given.

Referring to Art. 58, the equations of condition which must

be satisfied are as follows :

Angle equations,

a+b+c+d+e+f+g+h= 360;
a + b = e + f;

c + d = g + h.

Side equation,

(log sin a + log sin c + log sin e + log sin g)

(log sin b + log sin d + log sin / + log sin ft)
= 0.

The adjustments for the three angle equations are made first;

since these three equations are independent the adjustments

required to satisfy them may be made in any order, and will not

disturb each other. Since the angles are supposed to be equally

well determined the adjustments made to satisfy any one of the

angle equations ought to have the same value for each angle

affected. Therefore, if the eight angles fail to add up to 360,
each angle is corrected by one-eighth of the discrepancy; thus

if the sum of the eight angles were 360 00' 08", each angle would

be reduced 1". If a + b fails to equal e + f each angle is cor-

rected by one-fourth the discrepancy, reducing the larger side

of the equation and increasing the smaller one; thus if a -+ b

exceed e + f by 8", 7 and b must each be reduced by 2" and e
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and / must each be increased by 2". Similarly, if c + d fails

to equal g + h, then each of these angles must be corrected for

one-quarter of this discrepancy.

The adjustment for the side equation is then made as follows:

Let A, B, etc., represent the measured angles as thus far

adjusted;

I, represent the value of the first member of the side

equation when A, B, etc., are substituted for a, b, etc.;

V, represent the numerical value of I;

va , vj, , etc., represent the numerical change in seconds

required in A, 5, etc., in order to satisfy the side equation;

da , db , etc., represent the tabular differences for 1" for log

sin A, log sin B, etc. Then

(log sin A -f log sin C + log sin E -f log sin G)

(log sin B + log sin D + log sin F + log sin H) = I.

Since the adjustment of the angles must reduce I to zero (with a

minimum change in each angle), it is seen from this equation
that when I is positive the first four terms must be reduced and

the last four increased, and vice versa when I is negative. This

is equivalent to saying that if I is 'positive, the angles A, C, E,
and G must be reduced if less than 90, and increased if greater

than 90, and the angles B, D, F, and H increased if less than

90, and decreased if greater than 90; and that if I is negative,

the angles A, C, E, and G must be increased if less than 90, and

decreased if greater than 90, and the angles B, D, F, and H
decreased if less than 90, and increased if greater than 90.
It therefore only remains necessary to find the numerical values

of the corrections. In either case, in order that I may vanish,

the numerical sum of the logarithmic changes must equal the

numerical value of I. Since changing the angle A by va changes

log sin A by vada , etc., we have

vada + vcdc + vede + Vgdg + vbdb + vddd + v
/
df + vhdh = V

,

in which all the terms are to be made positive. Since this equation
contains eight unknown quantities, va ,

vc , etc., it can not be solved

unless some additional relationship among the unknowns is

assumed. This relationship is found in the fact that the values
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va ,
vc , etc., are to be the most probable ones; and it is generally

admitted that the most probable values are those that are pro-

portional to their influence in building up the quantity V . Thus

if da is twice dc , then, second by second, va is twice as effective

as vc in building up the total, V; and this effectiveness should be

recognized by allotting twice as many seconds to va as are allotted

to vc ,
and so on. We thus have

va vc : ve , etc. = da : dc : de , etc.

But if ^ - i
,
^ - ^, etc.,

vc dc
'

ve de
'

then
vJa = dl v&^dl ^
vcdc dc

2 '

vede de
l ' ''

or vada : vcdc : vede ,
etc. = d 2

: d 2
: de

2
,
etc.

Referring to the equation to be solved, therefore, we see that

V is to be divided into 8 pieces which shall be in the ratio of the

numbers da2 ,
dc

2
,
de

2
, etc., giving for the successive terms of the

equation the values

Hence

d 2V d 2V d 2V

2d2 ' 2d2 ' 2d2 '

vaQa
yi
M ?

VCUC yi 12 '
GtC.

and we have the numerical values

va = a
\ V^2/>

Vc ~ c
\ Y!W2 /'

etC,

the signs of these corrections having been determined as pre-

viously explained.

The side-equation adjustment (having been derived without

regard to the angle-equation requirements) will probably disturb

the angle-equation adjustment slightly, but seldom seriously.

If necessary, the two adjustments may be repeated in turn until

both are satisfied with sufficient approximation.
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A complete example of adjustment by this method is

worked out in the table on page 95. In this particular

case the side-equation adjustment has disturbed the angle-equa-

tion adjustment to a maximum extent of 1".49. If this approxi-

mation is not as close as desired the adjusted values may be

treated like original values, and be readjusted by the same

method. A second adjustment gives the following values:

a = 46 18' 38".47

b = 53 26 11 .92

99 44 50 .39

c =42 11 27 .26

d = 38 03 42 .35

80 15 09 .61

e = 58 19 10 .54

/ = 41 25 39 .90

99 44 50 .44

g
= 34 33 47 .38

h = 45 41 22 .18

80 15 09 .56

360 00 00 .00

log sin
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Angle equations,

a + b + c+d + e+f + g+h= 360;

a + b = e + /;

c + d = g + h.

Side equation,

(log sin a + log sin c + log sin e -f- log sin g)

(log sin b + log sin d + log sin/ + log sin h)
= 0.

As in the case of the approximate method, a provisional adjust-

ment is first made that will satisfy the angle equations, being

made in the same way as there explained because it recognizes

as far as possible the fact that all the angles have been measured

with equal care. This adjustment is made as follows:

If a + b + c +, etc., fails to equal 360, correct each angle

by of the discrepancy.

If a + b fails to equal e + f, increase each member of the

smaller sum and decrease each member of the larger sum by J

of the discrepancy.

If c + d fails to equal g + h, increase each member of the

smaller sum and decrease each member of the larger sum by \

of the discrepancy.

The side-equation adjustment is then made, but made in

such a way as will not disturb the angle-equation adjustments.

Let A, B, etc., represent the angles as thus far adjusted;

I, represent the value of the first member of the side

equation when A, B, etc., are substituted for a, b, etc.;

va , Vf, , etc., represent the total corrections in seconds to

A, B, etc., to satisfy the side equation;

x, X\, X2, X3, X4, represent the partial corrections of which

va , vi, , etc., are composed;
da ,

db , etc., represent the tabular differences for 1" for log

sin A, log sin B, etc., taken as positive for angles less

than 90 and negative for angles greater than 90;
then

(log sin A + log sin C + log sin E + log sin G)

(log sin B + log sin D + log sin F + log sin H) =
l\
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and in order that the logarithmic corrections shall cause I to

vanish we must have

(vada + vcdc + vede + Vgdg) (vbdb + vddd + Vjdf + vhdh) =
I,

in which such values must be assigned to va ,
vb , etc., as will not

disturb the angle-equation adjustments already made. These

adjustments have given us

(A + B) + (C + D) + (E + F) + (G + H) =360;

{A + B) = (E + F);

(C + D)- (Q + H).

It is evident from these three equations of condition that there

are only two possible ways in which the adjusted angles A, B,

etc., can be modified without disturbing the angle-equation

adjustments. First, any correction can be made to the sum of

A and B, provided the same correction is made to the sum of

E and F, and at the same time an equal and opposite correction

is made to each of the other two sums; since the two angles

of any sum are equally reliable the same numerical change
must be made to each angle and will be denoted by x. Second,

any group, such as (A + B), may have any correction applied to

one of its members, provided an equal and opposite correction

is made to its other member; these corrections are independent

of the first correction and of each other, and will be represented

by X\, x2 ,
x3 ,

and :r4 . In accordance with the above considera-

tions the side-equation adjustments must have the following

relative values:

Va = + X + X\ ve = + X + x3

Vb = + X X\ Vf
== + X Xz

Vc
= X + X2 Vg

-= X + X4

Vd = x X2 Vh = x 4
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Substituting these values in our conditional side equation

(vada + vcdc + vede + Vgdg)
-

(vbdb + vddd + vfdf + vhdh) = -
I,

and rearranging the terms, we have

[(da + dd + de + dh) (db + dc + df + dg)]x + (da + db) x x

+ (dc + dd)x2 + (de + df)x3 + (dg+ d^x^ =
I,

which for convenience we write

Cx + C\X\ + C2x2 + C3x3 + C4X4 = I.

Since this equation contains five unknown quantities it can not

be solved unless some additional relationship among the unknowns

is assumed. The most probable relationship is therefore taken,

namely, that the unknowns are proportional to their average

effectiveness per angle in building up the quantity ( I) . Hence,
since x affects 8 angles and the other unknowns only 2 each, we
write

C C\ C2 C3 W C n n n nx \ x x \ x2 \ x3 \ x = -
\ \ \ \

=
^\

L x \ C2 \ C3 \ C .

But if

then

C
x _ 4_ %\ _C\ X2 _(h
^

~
c? x2 ~c2

'

x~3

~
cy

etc
''

C2

Cx 4 C x x x C1 2 C2x2 _ C22
=

2 } etc.,
Cixi C\

2 ' C2x2 C2
2 ' C3x3 x3

2

or

f>2

Cx : ClXl : C2x2 : C3x3 : C4x4 = ^ : C1 2
: C2

2
: C3

2
: C4

2
.

4

Referring to the equation to be solved, therefore, we see

that ( I) is to be divided into five pieces which shall be in the
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C2

ratio of the numbers -r-, C\2,
C2

2
,
C3

2
, C42 , giving for the succes-

sive terms of the equation the values

^~ l) C^-'>
,

etc.
f2 ' C2

^ + d2 + C2
2 + C3

2 + C4
2 ^ + d2 + C2

2 + C3
2 + C4

2

Hence, writing S =
-^ ,

we have

^ + C,2 + C2
2 + C3

2 + C4
2

C2 (7
Cz = -r S, whence x =

-j S;

d*, = d2
S,

"
xi

=
CiS;

C2x2
= C2

2
S,

" x2 = C2S;

C3x3 = C3
2
S,

" x3 - C3S;

C4x = CJS,
" x4

= C4S.

Combining these values of x, x%, x2, etc., to form va ,
vb , etc., and

applying these corrections to A, B, etc., we obtain the most

probable values of the angles a, b, etc., consistent with the geo-

metrical necessities of the figure and with the fact that all the

angles were measured with equal care.

A complete example of adjustment by this method is worked

out in the table on page 101, using the same quadrilateral

that was adjusted by the approximate method (pages 95 and 96) in

order to compare results. It will be noted that the first approxi-

mate adjustment has a maximum variation of only 0".42 from

the rigorous adjustment, and that the second approximation

comes within 0".02 of the rigorous values.

61. Weighted Adjustments and Larger Systems. If the

measured angles of a triangle have different weights, the adjust-

ment is made as already explained. If the measured angles of

a quadrilateral or other figure are not of equal weight, the adjust-

ment is best made by the method of least squares.
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In work of moderate extent or importance a system composed
of a series of triangles or quadrilaterals would have each triangle
or quadrilateral independently adjusted. In work of the highest

importance, such as primary triangulation, the entire system
would be adjusted simultaneously by the method of least squares.

62. Computing the Lines of the System. After a figure or

system is satisfactorily adjusted the distances between the various

stations are computed, solving each triangle in order (as a plane

triangle) by the ordinary sine ratio. In the case of the quadri-
lateral the two diagonals and the sides adjacent to the known
side (called the base) are computed from the triangles involving
the base; the side opposite the base is then computed from both

the triangles in which it occurs, and the mean of the two results

taken as its value. These two values would of course be exactly

alike if the angle adjustments were perfect, but these adjust-

ments are only correct as far as they are carried out decimally;

a material disagreement in the two values would indicate errors

in the computations.

63. Accuracy of Triangulation Work. The accuracy of this

class of work is judged by measuring a check base at the end of

the system, if the work is of moderate extent, with intermediate

check bases if the work covers a large territory. The length of

the check base as computed through the triangulation system
should agree closely with its measured length. In triangulation

work by the U. S. Coast and Geodetic Survey, extending over

several states in one system, extremely close results are reached.

In systems 600 to 800 miles in length the computed and measured

values of check bases may agree within fractions cf an inch.



CHAPTER V

COMPUTING THE GEODETIC POSITIONS

64. The Problem. After the triangulation system has been

computed as described in the last chapter the relative positions

of the various stations are known. By computing the geodetic

positions is meant computing the absolute positions (latitudes

and longitudes) cf the triangulation stations from their relative

positions; this computation can be made if we have the latitude

and longitude of one of the stations and the azimuth of one of

the lines through that station, provided we know the shape and

dimensions of the earth. The problem, then, may be stated

as follows: Given the latitude and longitude of a station and the

azimuth and distance to another station, to find the latitude and

longitude and the back azimuth at the second station. This

problem is often called the L. M. Z. problem, the letters meaning

latitude, longitude (meridian), and azimuth. The back azimuth

at the second station will seldom be the same as the forward

azimuth at the first station, on account of the convergence of

the meridians. Having found the latitude, longitude, and back

azimuth at the second station, the azimuths of the other lines

at that station become known through the adjusted angles at

that station, remembering that azimuths are counted clockwise

from the south point continuously up to 360, and that if the

spherical excess has been removed from any angle it must be

restored for the present purpose. By proceeding with the com-

putations in the same manner from station to station we obtain

the latitudes, longitudes, and azimuths for the whole system.
There are many methods of solving the given problem, depending
on the distance involved and the precision required; all methods
are somewhat complicated on account of the shape of the earth.

Two of the best solutions will be considered after discussing the

figure of the earth.

103
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65. The Figure of the Earth. It is doubtful when it was first

realized that the surface of the earth is not a plane. Early
Greek philosophers believed in solid figures of various shapes.

Aristotle (340 B.C.) gives reasons for believing the shape to be

spherical, geometers estimating the circumference at 300,000

stadia. The famous School of Alexandria appears to have made
the first actual measurements of the curvature of the earth,

and hence its radius, the earliest measurement being made by

Erastosthenes, about the year 230 B.C., and a second one a little

later. Erastosthenes concluded that the circumference of the

earth was about 250,000 stadia in length, but the exact length of

the stadium is now unknown. The knowledge which the Greeks

obtained of the size and shape of the earth was lost during the

declining civilization that followed, and no further measurements

were made for upwards of a thousand years. About the year 825

the Arabs made a very good determination of the radius of the

earth by measuring the arc of a meridian on the plains of Mesopo-
tamia. This was followed by another lapse of about 700 years

before any further measurements were undertaken. During
the middle ages Europeans generally believed the earth to be

flat until about the 15th century, when a few men, such as Colum-

bus, declared it to be globular. In the 16th century general

belief in the spherical shape of the earth was again established.

From the earliest measurements to the present time the

principle employed has been essentially the same, but a very

much higher degree of accuracy is now reached on account of the

great refinement in detail. The fundamental idea is to obtain

both the linear and the angular measure of the arc of a meridian,

whence the distance divided by the number of degrees gives the

length of one degree, and this multiplied by 360 gives the length

of the entire circumference. In early times the meridian arc

was actually staked out and its length obtained by direct meas-

urement, but modern methods of measuring and computing are

so improved that distances measured in any direction may be

utilized. The angular measure of the arc is the angle between

its two end radii (which meet near the center of the earth), and

its value is obtained by finding the latitude at each end and

taking their difference.

When Newton discovered the law of gravitation late in the

17th century he proved that the earth as a revolving plastic body
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subject to its own attraction should have taken the form of a

slightly flattened sphere, while an arc measured in France between

1683 and 1716 indicated an elongated sphere. To settle the

question an arc was measured in the equatorial regions of Peru

(1735-1741) and another in the polar regions of Lapland (1736-

1737), which showed that a degree of latitude was longer near

the pole than near the equator and that Newton's theory was

correct. Since these dates a large amount of geodetic work has

been done, in which France, Great Britain, Germany, Russia,

and the United States have taken a leading part. Among the

more recent arcs measured may be mentioned the Anglo-French

arc, extending from the northern part of the British Isles south-

ward into Africa; the great Russian arc, extending from the

Arctic Ocean to the northern boundary of Turkey ;
the great Indian

arc, extending from the southern point of India to the Himalayas;

the European arc of a parallel, extending from southern Ireland

eastward to central Russia; and in the United States, the trans-

continental arc, extending along the 39th parallel from the

Atlantic Ocean to the Pacific Ocean, and the eastern oblique arc,

extending parallel to the Atlantic coast from Maine to Louisiana.

These six arcs joined end to end would reach about two-fifths

of the way around the earth.

66. The Precise Figure. Various names have been applied

to the earth from time to time in the attempt to describe its

shape more exactly as our knowledge has advanced. Roughly
it may be called a sphere, since the flattening at the poles is rela-

tively very small; a model with an equatorial diameter of fifty

feet would only be flattened one inch at each pole. As the result

of many precise measurements the shape has been found to be

such that with considerable exactness any section parallel to the

equator is a circle, and any section through the poles is an ellipse ;

the figure is such as may be generated by revolving an ellipse

about its minor axis and is called an oblate spheroid. To be

still more exact, the equatorial section is not exactly circular

but very slightly elliptical, so that a section in any direction

through the center would be an ellipse; such a figure is called

an ellipsoid. Still further exactness indicates that the southern

hemisphere is a trifle larger than the northern, and that all polar

sections are therefore slightly oval, leading to the name ovaloid.

As a matter of absolute precision no geometrical solid exactly
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represents the shape of the earth, and this has been recognized

by applying the special name geoid.

67. The Practical Figure. All the computations in geodetic

work are based on the assumption that the figure of the earth

is an oblate spheroid; this is found to be amply precise, since the

variations from this figure are relatively very small. The most

important determinations of the elements of the spheroid,

founded on the best available data, are those made by Bessel in

1841 and Clarke in 1866. Bessel's spheroid is still largely used

in Europe, but all computations in the United States are made on

the basis of Clarke's spheroid, which conforms better to the actual

surface of this country. According to Clarke's comparison of

standards a meter contained 3.2808693 feet, a result which is now
known to be too large. In the legal units of the United States

the meter contains exactly 39.37 inches, which equals 3.2808333

feet, a value which is believed to be very close to the exact truth.

The elements of Clarke's spheroid in U. S. legal units are as

follows :

Semi-major axis = a = 6,378,276.5 meters, log = 6.8047033

20,926,062 feet, log = 7.3206875

a . . , 6,356,653.7 meters, log
= 6.8032285

bemi-mmor axis = o =
\

'

orr iri1 .
, _ ,,,,-,

[20,855,121 feet, log = 7.3192127

Ellipticity
= L̂- = e = 0.00339007, log = 7.5302093 - 10

Eccentricity =Ja

^- = e = 0.08227184, log - 8.9152513-10

Eccentricity
2 = a ~

= e2 = 0.0067686580, log
= 7.8305026 - 10

Ratio of axes - - = |^|, log
= 9.9985252 - 10

a 294.98

68. Geometrical Considerations. In Fig. 33 the ellipse

WNES represents a polar section of the earth, in which WNES
is the meridian; NS, the polar axis, or minor axis of the ellipse;

WE, the equatorial diameter, or major axis of the ellipse; n,

any point on the meridian; nt, the tangent at n; nlpm, the normal

at n, or the direction of the plumb line if there is no local deflection
;
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np, the radius of curvature at n; no, the radius of the small circle

or parallel of latitude at n; f, f, the foci of the ellipse; <j>,
the

latitude of the point n. It is to be noted that the normal nm
from the point n does not pass through the center c (except when

n is at the poles or on the equator), and that the radius of curva-

ture (and hence the length of a degree of latitude) increases from

the equator to the poles; that the radii of curvature for different

latitudes on a meridian do not intersect unless produced; and

that for different latitudes not on the same meridian the normals

(which include the radii of curvature) do not intersect at all.

Since the normals for two points of different latitudes and

longitudes do not intersect, they do not lie in a plane; hence,

Fig. 34, page 108, the vertical plane at A(AaB) which includes

B and the line of sight from A to B, is not the same as the vertical
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plane at B{BbA) which includes A and the line of sight from B to A.

The lines which these planes cut at the surface of the spheroid

are called elliptic arcs. In setting points from A to B an observer

at A would mark out the line AaB, while an observer at B would

mark out the line BbA; the greatest discrepancy between the

lines would be practically at the center, and under extreme con-

ditions might amount to about an inch for 50 mile lines and 10

feet for 500 mile lines; the angles bAa and bBa might approx-
imate 0".l for 50 mile lines and 2".0 for 500 mile lines. For

lines 100 miles or so long, therefore, it is evident that the two

elliptic arcs may usually be regarded as identical, but that for

greater distances the question may often be of considerable

Fig. 34.

importance. If an observer should set up his instrument at any
intermediate point on either elliptic arc he would not find himself

in line with A and B; if he sighted on A, for instance, he could not

sight on B by simply transiting his telescope, as the angle between

A and B would not measure 180. An alignment curve (as repre-

sented by the dotted line CD, Fig. 34) is such a line that at any
intermediate point a vertical plane can be established that will

pass through both end stations; as seen from any intermediate

point the two end stations are always 180 apart; such a line is

a line of double curvature, slightly less in length than the elliptic

arcs between which it lies, and tangent to the line of sight at each
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end. A geodesic line is the shortest line that can be drawn between

two points on a spheroid, and is a line of double curvature resem-

bling the alignment curve, but the reverse curvature is not so

pronounced. Between any two points on the earth that are

actually intervisible all the lines described may be regarded as of

equal length.

In geodetic work the term latitude always refers to the angle

<j) (Fig. 33, page 107) or geodetic latitude, and not to the angle ncd

or geocentric latitude. The astronomical latitude, or angular

distance from the equator to the zenith, is the same as the geodetic

latitude except where there is local deflection of the plumb line.

By longitude is meant the angular distance from some fixed meridian

(usually Greenwich) to the given meridian, positive when counted

westward. By the azimuth of a line (or a direction) from a given

point is meant its angular divergence from the meridian at that

point, counted clockwise from the south continuously up to 360.

Thus in Fig. 34, the angle DAa is the azimuth at A towards B
(AaB being the line of sight from A), and the angle SBb (clock-

wise as marked) is the azimuth from B towards A. The azimuth

(or forward azimuth) of a line means taken forward along the

line, and back azimuth means in the reverse direction; the

azimuth and back azimuth at the same point differ by 180.

The angles NAa and NBb, inside the two polar triangles NAB,
are called azimuthal angles, the angle at each station being taken

to the line of sight from that station; the relation of these angles

to the azimuth above described is self evident. In solving either

of the triangles NAB the angles at both A and B must be taken

in the same triangle, the necessary reduction being made by
means of the auxiliary angles bBa and bAa.

69. Analytical Considerations. The most important section

of the spheroid is the meridian section, Fig. 33, page 107, of which

N and R are the principal functions.

Let N = the normal nm;
R = radius of curvature np;
r = radius no of parallel of latitude;

T = tangent nt;

$ = latitude (geodetic) ;

/?
=

geocentric latitude;

p
= radius vector nc;
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then from analytical geometry

(l-^sin 2
^)*'

~
(1
- e2 sin2 <)*

'

62 a2
it at equator =

,
R at poles = -r-,

r = JV cos 0, 7
1 = JV cot <,

nZ = iV(l
- e2), nd =

JV(1
- e2) sin 0,

&2

tan p = ^ tan 0, p = a(l-e2 sin2 /3)* (approx.),

/ . aVl e2VRN = radius of osculating sphere at n =
1 e2 sin2

(/>'

in which the logarithms of the constants are as follows :

Quantity.
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A vertical plane at a given point that is neither a meridional

plane nor a prime-vertical plane, is called an azimuth plane; such

a plane cuts an azimuth section from the spheroid and traces

an azimuth line on its surface, that is, a straight line whose initial

direction is not at right angles to the meridian. All the prop-

erties of an azimuth section may be deduced from those of the

prime-vertical and meridional

sections. Thus, for instance,

Let a = azimuth of azimuth

line at initial point;

N= normal at same point ;

R = radius of curvature

of meridian section

at same point;

R
tt
= radius of curvature

of azimuth section

at same point;

then

R
Ra

cos2 a ( 1 + tan2 a

70. Convergence of the

Meridians. On account of the

convergence of the meridians

the azimuth of a line varies

from point to point, unless

the given line be the equator
or a meridian. By the con-

vergence of the meridians is

meant their angular drawing
towards each other in passing pIG 35
from the equator to the poles.

Any two meridians are parallel at the equator or have a zero

convergence (meaning no inclination towards each other);
in moving towards the poles the meridians incline more and
more towards each other, until at the poles the convergence
is just equal to the difference of longitude. Referring to Fig. 35,
the convergence at any two points, n, n\ which are in the

same latitude 0i, is found by drawing tangents from n and n'
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to their intersection t on the polar axis, in which case the angle
6 is the convergence for those two meridians for the common
latitude <j>,. When the two points P and P' are not in the same

latitude the ccnvergence for the middle (average) latitude is

understood; so that if <fr and </>' represent the latitudes of the

two points we may write in any case <f>i
=

$(<j> + <'), and n

and nf represent points on the middle parallel of latitude.

Let <j>i
= the common latitude for the points n and n' (or the

average latitude for any two latitudes <j> and <f>') ;

A\ = difference of longitude for the two meridians;
no = r = radius of parallel of latitude at n;

nt = T =
tangent at n.

From the figure

Chord nn' = 2T7

sin \fi~2r sin h(JX).

Substituting r = T sin <j>i,

2T sin id = 2T sin <t>\ sin i(jA),

or

sin id = sin i(^A) sin ^1,

which in terms of the latitudes <]> and ft. becomes

sin id = sin l(JX) sin l(<f> + <j>').

When the difference of longitude, A\ is small, 6 will also be small,

and we may write with great closeness

=
(JX) sin h(<j> + <'),

in which 6 will be in the same unit as A\ (usually taken in minutes

or seconds). Thus in an average latitude of 40 and a difference

of longitude of one degree, or about 60 miles, the error of the

approximation would be less than the one thousandth part of

a second.

Referring to Fig. 36, let rr' be a straight line in the plane

stv, and passing as close as possible to the points P and P'. In

any case occurring in practice the angle rpv will differ but very
little from the forward azimuth at P of a true geodetic line from

P through P', and the angle rp's will closely represent the corre-



COMPUTING THE GEODETIC POSITIONS 113

sponding forward azimuth at P'. We may therefore write with

great closeness

Change of azimuth rp's rpv.

But from the figure

=
rpv rp's,

or

Change of azimuth = d = {AX) sin \(<f> + <').

Hence, in passing from one station to another, the change of

azimuth is very closely the same in numerical value as the corre-

sponding convergence of the

meridians. The error in the

approximation in running 60

miles in any direction in the

neighborhood of 40 latitude

would not exceed one tenth of

a second. In the northern

hemisphere the azimuth of a

line decreases in running west-

ward, and increases in running

eastward, and vice versa in

the southern hemisphere. The
minus signs in the last formula

must therefore be changed to

plus in the southern hemi-

sphere. In running approxi-

mately east and west in about

40 latitude the change of azi-

muth will be over half a minute per mile. The back azimuth

of a line is equal to the forward azimuth at the same point

plus 180 (less 360 if this number is exceeded).

71. The Puissant Solution. Given the latitude and longitude

of a station and the azimuth and distance to a second station,

the problem (Art. 64) is to find the latitude, longitude, and

back azimuth at the second station. The Puissant solution

(as modified by the U. S. C. & G. S.) is found amply precise

if the distance between the stations does not exceed about 1

of arc or about 69 miles (in which case the errors of the com-

puted values might run from 0.001 to 0.003 seconds). For a

Fig. 36.
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less degree of accuracy the method may be used up to about

100 miles. The Puissant method has the advantage that only

seven place logarithms are required. With the help of special

tables for certain factors in the formulas the actual work of

computation is not very great. For a derivation of the for-

mulas, examples of their use, and a complete set of tables, see

Appendix No .9, Report for 1894, U .S. Coast and Geodetic Survey.

These formulas (in slightly different form) are as follows:

Let </>
= the known latitude at the first station;

A = the known longitude at the first station;

a = the known azimuth at the first station;

4>'
= the unknown latitude at the second station;

X' = the unknown longitude at the second station;

a' = the unknown back azimuth at the second

station;

s = the known distance between the stations;

A, B, etc.,
= certain factors required in the formulas;

then by successive steps we have

h = s cos ol . B,

d<f>
= -

(h + s
2
sin

2 a.C - h.s
2
sin

2
a-E),

or with ample precision

< (for 15 miles or less)
= -

(h + s
2
sin

2
a-C).

In either case

Aj>
= dcf>- (dj>)

2
.D,

and

<j)' cf> + dcf)
= latitude of second station;

\ cos <p )

and
X' = X + JX = longitude of second station;

or with ample precision

Ja (for 15 miles or less)
-

(i/) sin (< + <f>'),
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which agrees with the result of Art. 70. The sign of Aa is for

the northern hemisphere, and is to be reversed in the southern

hemisphere. Then

a' = a + Aa -\- ISO = back azimuth at second station.

In the above formulas the values of -f
<^>,

Ak
}
and Aa are obtained

in seconds. In using the formulas both north and south latitude

are to be taken as positive, west longitude as positive and east

longitude as negative, and the trigonometric functions are to be

given their proper signs. The lettered factors of the formulas

have the following values:

A = A'{\ - e2 sin* W, D =W?^.Y
\1 e2 sm2

0/

B = B'{\ - e2 sin2 0)i, E -
J?'(l + 3 tan2 <f>)(l

- e2 sin2 <),

C = C"(l
- e2 sin2 0)

2 tan
<j>,
F = F' (sin <jS

cos2
<j>),

G = value determined by second part of Table II,

in which the logarithms of the constants are as follows:
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Coast Survey tables referred to (and corrected -to agree with

the U. S. legal meter of 39.37 inches).

72. The Clarke Solution. This solution of the problem (Art.

64) is adapted to greater distances than the previous one, being

sufficiently precise for the longest lines (say about 300 miles) that

could ever be directly observed. It has the advantage of being

reasonably convenient in use, even without specially prepared

tables, but requires not less than nine place logarithms for close

work, on account of the size of the numbers involved. In this

method the azimuthal angles are used in the computations

instead of the azimuths themselves. The azimuthal angles

(shown in Fig. 34, page 108, and explained at end of Art. 68),

are the angles (at the stations) inside the polar triangles which

are formed by the nearest pole and the two stations, the relation

to the corresponding azimuths being always self-evident. The

formulas used in this solution (taken from Appendix No. 9,

Report for 1885, U. S. Coast and Geodetic Survey, but modi-

fied in form) are as follows:

Let
<f>
= the known latitude at the first station

;

X = the known longitude at the first station;

a = the known azimuthal angle at the first station;

<' = the unknown latitude at the second station;

X' = the unknown longitude at the second station;

a' = the unknown azimuthal angle at the second station
;

s = the known distance between the stations;

6 = the angle between terminal normals;
= auxiliary azimuthal angle at second station;

A X = k' X = difference of longitude ;

J0 =
(j)' (f)

= difference of latitude
;

Y
= 90

(f)
= co-latitude at first station

;

N = normal (to minor axis) at first station
;

R = radius of curvature of meridian at middle latitude;

$(4> + 4>')
= middle latitude.

From Art. 69,

(1
- e2 sin2

<j>)
* [1

- e2 sin2 \ (<f> + 0')]*'

Then
s

,
/ e2 sin2 l"\ fl, 9 , 2

6 = at i// + a7i 2T I
6 cos cos a '

N sin 1" \ 6(1 e2) /
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But if s is not over about 100 miles we may write with ample

precision

N sin I"'

In either case s and N must be in the same unit, and is obtained

in seconds. If the second term is used in finding the approx-
imate value of is used in that term. The value of this second

term is always extremely small. Then

^ =
\ (\- e2) )fl

2 C0S2 Sil1 2a '

in which is obtained in seconds and is always a very small

quantity;

n sin \ (r d) .a
tan P =

. :;
'

,

'
cot k,

_ cos(?-- 0) . a
tan Q =

f7^ cot o>cos
(7- + d) 2'

from which values

a' = P + Q = azimuihal angle at second station;

Ak=Q -
P;

X' = \ + AX =
longitude at second station.

The difference of latitude is found from the formula

s /sin$(a' + X, a)\ V /sin2 1"\ 1

J0=^-^ 77 ,,,,.,, r 1 + -7T (9
2 C0S2 K -

) >^
/t!sin l"\sm i(a

' + X, + a)) |_ \ 12 /
" v

']'

in which A(j> is obtained in seconds, and in which s and R must
be in the same unit. Then

(f>'
=

cf)
+ J$ latitude at second station.

It must be noted, however, that the d<f> formula requires the

use of R for the middle latitude, which is not known until Acf>

is found. Acj) must therefore be found by successive approximation
that is, an approximate value of R must first be used to obtain

an approximate value of i</>, a greatly improved value of R thus

becoming available to find a much closer value of A<j>, and so on.
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A few trials will soon give a value of R which is consistent with the

value of <t>' to which it leads. As with the Puissant formulas,
both north and south latitude are to be taken as positive, west

longitude as positive and east longitude as negative, and trig-

onometric functions used with their proper signs. The constants

which enter into the above formulas have the following values:

Quantity. Log. Quantity. Log.

a (metric) 6.8047033 o(l
- e2) (metric) 6.8017537

a (feet) 7.3206875 a{\
- e2) (feet) 7.3177379

e2 7.8305026 - 10 (1
- e2) 9.9970504 - 10

6.4264506 - 20 sin 1" 4.6855749 - 10
e2 sin2 1"

6(1
- e2)

p mn 1 sin 1

.,* \s 1.9169671-10
"

8.2919684-20
4(1 ez) 12

When the distance is so great that the Clarke solution is not

satisfactory, resort must be had to more direct solutions, requiring

at least ten place logarithms. The solutions by Bessel (1826)

and Helmert (1880) are of this character.

73. The Inverse Problem. In this case the latitude and

longitude are known at each of two stations, and the problem
is to find the connecting distance and the mutual azimuths.

The solution may be effected with either the Puissant or the

Clarke formulas.

By the Puissant Formulas. There are several ways of

securing the desired result; the one here given is chosen on

account of its directness and simplicity. By transforming and

combining the formulas in Art. 71, omitting terms which are

too small to be appreciable, and writing x and y for the resulting

values, we have

{AX) cos <b'

s sin a = y =
-^

;

s CoS a = x - -
^[Acj>

+ C-y2 + D{A<i>)
2 + E{A$)y

2 + E-C-y*],

from which we obtain

V i y x
tan a = and s = -r2- =

.

x sin a cos a
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The closest value of s is obtained from the fraction whose numer-

ator is the smallest. Then, from Art. 71,

i
[tJfl

sinW +*1jS^ +
UW-f],

Ja (for 15 miles or less)
= {AX) sin b(<j> + <f>'),

and in either casi*

a' = a + Aa + 180.

Either station may be called the first station, so that the problem

may be worked both ways as a check, if desired, in which case

da need not be computed at all. As in Art. 71, the values

da
f J<f) y

and AX are expressed in seconds, and s will be in the

same unit as that on which the factors A, B, etc., are based.

By the Clarke Formulas. In this method the desired values

are found by successive approximation. The Puissant method

Fig. 37.

is applied first, therefore, to obtain as close an approximation

as possible to begin with. The approximate values of s and a

(changed to the azimuthal angle) are then substituted in the

Clarke formulas, calling either station the first station, and com-

puting the latitude and longitude for the second station. The

computed values will usually disagree a small amount with the

known latitude and longitude of the second station, and a new

trial has to be made with s and a slightly changed, and so on

until the assumed values of s and a satisfy the known con-

ditions. The disagreement to be adjusted is always very small,

and when all the circumstances are known it is not difficult to
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judge which way and how much to modify s and o- to remove

the difficulty. Referring to Fig. 37, let the lines NS represent

meridians, the line CB a parallel of latitude, and A and B the

points whose latitude and longitude are known. With the assumed

distance s and the assumed azimuthal angle <x suppose, for

instance, that the computation gives us the point B' instead

of the desired point B. We then have

BC = error in longitude in seconds of arc;

B'C = error in latitude in seconds of arc;

BB' (in seconds) = V BC2 + B'C2
;

b = BB' in distance = (BB')R sin 1" (approximately);

t&n CB'B = ~;

BB'D = 180 - a' - CB'B;

b cos BB'D = B'D = approximate error in the assumed value

for distance s;

-: pf
= BAD (nearly) in seconds = approximate error in

assumed value of angle a.

74. Locating a Parallel of Latitude. For marking bound-

aries, or other purposes, it often becomes desirable to stake out

a parallel of latitude directly on the ground. Points on the

parallel are most conveniently found by offsets from a tangent

(Art. 69). Thus in Fig. 38, ABD is a tangent from the point

A, and ACF is the corresponding parallel; the point C on the

parallel, for instance, is determined by the offset BC and the

back-azimuth angle SBA. It is seldom desirable to run a tangent

over 50 miles on account of the long offsets required; if the parallel

is of greater length it is better to start new tangents occasionally.

The computations may be made by either the Puissant (Art.

71), or the Clarke (Art. 72) formulas, which are much simplified

by the east and west azimuths. Using the Puissant formulas,

substituting 90 (westward) or 270 (eastward) for a
,
and omitting
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inappreciable terms, we have with great precision for a hundred

miles or more

Jcf) (in seconds) = s2 -C,

.

f running W, + 1 s-A
AX (in seconds) = \ r n ',

[ running E, J
cos

cf>'

whence

S t-RIl (f>

J</> (in linear units)
=

(s
2
C) R sin 1" =

N

in which either formula may be used as preferred, and in which

all linear quantities must be taken in the same unit. The

expressions for N and R are given in Art. 69. For the change
of azimuth we have

Ja (in seconds) = 1^
hemi

^
here'-

|[(JJ)smi0+0')
+ (^) 8

-,F];

or for the field work (within one-tenth of a second),

Ja (in seconds) \a' tt (ii) sin
<j>.

It is seen from the above formulas that the offsets (in seconds

or linear units) may be taken to vary directly as the square of

the distance, and the change of azimuth directly as the change
of longitude.

In actual practice the point A may have to be located, or

may be given by description or monument; in either case the

latitude and meridian at A are determined by astronomical
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observations, and the tangent AB (or a line parallel thereto)

run out by the ordinary method of double centering. At the

end of the tangent the computed value of the back azimuth

should be compared with an astronomical determination; in

the writer's experience on the Mexican Boundary Survey with

an 8-inch repeating instrument (with striding level), and heliotrope

sights ranging in length from 6 to 80 miles, the back-azimuth

error was readily kept below one-tenth of a second per mile,

regardless of the number of prolongations in the line. The
conditions met with in the survey referred to are illustrated

in Fig. 39, which shows also the adjustment made for back-

azimuth error. The boundary line was intended to be the parallel

of 31 47', but according to treaty all existing monuments had

to be accepted as marking the true line. The astronomical

station was conveniently located, and proved to be slightly south

of the desired parallel, which in turn passed south of the old

monument L. When the last point on the tangent was reached

the back azimuth measured less than the theoretical value,

indicating that the tangent as staked out swerved slightly to

the south from its original direction. Assuming all corresponding

distances on tangents and parallels to be equal and the azimuth

error to accumulate uniformly from A to d,

Let E = azimuth error at d;

Eb = azimuth error at b;

then

Eb = Td
E

'>

*D~T EBiRl"
i

bB = Md Esin1 "''

DF -
A4> (linear) for AD; BC =

J<f> (linear) for AB;

dM and AL are known by measurement
;

FG =CH = AL;

GM = dM - dD - DF - AL;

HP=GM^ = GM^..LG Ad

Hence for any point P, on the adjusted boundary, we have

bP = bB + BC + CH + HP.
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75. Deviation of the Plumb Line. There is always more or

less uncertainty at any station as to the plumb line hanging

truly vertical, or normal to the surface of the spheroid; it is

not uncommon for the deviation to amount to 10 or more seconds

of arc, with occasional values of 15 to 30 seconds. This fact

is forced on our notice in a number of ways; if, for instance,

the computed latitudes and longitudes of the stations in a triangu-

lation system are tested by astronomical observations, the dis-

crepancies are often greater than can be charged to either

determination; if a parallel of latitude is staked out and tested

astronomically at different points, the same discrepancies appear.

By a proper combination of geodetic and astronomical measure-

ments involving a number of stations, the probable deviation

at each station and the probable errors in the latitude and long-

itude determinations can be computed. Astronomical and

computed azimuths disagree for the same reason, and require

similar adjustment. In moderate sized triangulation systems,

such as are likely to engage the attention of the civil engineer,

adjustments of this kind are rarely called for; but in extended

systems astronomical latitudes, longitudes, and azimuths are

taken at many stations, in order that such adjustments may be

made.



CHAPTER VI

GEODETIC LEVELING

76. Principles and Methods. Leveling is the operation of

determining the relative elevations of different points on the

surface of the earth. By relative elevation is meant the difference

of elevation between any two points compared. The absolute

elevation of a point is its elevation above some particular point
or surface of reference, mean low water, for instance; in geodetic
work elevations are commonly referred to mean sea level. A
level line is a line having the same absolute elevation at every point.

By geodetic leveling is meant that class of leveling in which extra

precision is sought by refinement of instruments and methods.

Three principal methods are available for determining dif-

ferences of elevation, (A) Barometric Leveling, (B) Trigonometric

Leveling, (C) Precise Spirit Leveling. Barometric leveling, based on

determinations of atmospheric pressure, is briefly treated below

on account of its usefulness in reconnaissance work. Geodetic

leveling is generally understood to mean either trigonometric

leveling, based on vertical angles (corrected for curvature and

refraction) ,
or precise spirit leveling, which differs from ordinary

spirit leveling only in the refinement of its details.

77, Determination of Mean Sea Level. By mean sea level is

meant the average elevation of the surface of the sea due to

its continual change of level; and not, as might be supposed,
the mean elevation of its high and low waters. In order to

average out the irregularities due to winds and other causes

the observations at any point should extend over a period of

several years. Further, since tidal variations are relatively large

during a lunar month, only complete lunations can be allowed

in the reductions; if any storm period, for instance, is rejected

on account of its excessive irregularities, that entire lunation

must be rejected.

Observations of the varying elevation of the surface of the

sea are best made by means of automatic tide gauges. An
125
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,

automatic or self-registering tide gauge consists essentially of

a well made clock and attached mechanism, by which a sheet

of paper is drawn continuously past a pencil point which is moved
crosswise of the paper by connection with a float; a rising and

falling curve is thus traced on the paper, in which the ordinate

of any point shows the elevation of the water at the time indi-

cated by the corresponding abscissa. The float moves up and

down in a vertical box admitting water only through a small

opening in the bottom, which practically prevents oscillation

of the float by wave action. A catgut cord or fine wire connects

the float with the pencil through a suitable reducing mechanism.

Pin points are often arranged to prick the even hours on the

paper. The clock is often designed to run a week without

rewinding, and the paper to last a month without changing.

A scale of one inch per foot and f of an inch per hour makes

a very good record.

A staff tide gauge is always placed as near as possible to the

automatic gauge, and its zero point connected by accurate

leveling with a permanent bench mark near by. At least once

a week the attendant carefully raises and lowers the float so that

the pencil of the automatic gauge will mark the true direction

of the ordinates at that time; and near the ordinate thus made

he records the date, the staff reading, and the clock reading and

error. The attendant's visits should be so timed that his staff

readings will be alternately near high and low water, thus fur-

nishing scales for different parts of the sheet that will practically

neutralize errors due to stretching or shrinking of the paper or

float connections. Hourly ordinates are drawn on all the records

obtained at a station, and the average value of these ordinates

is taken as the staff reading of mean sea level at that station.

The relation of the permanent bench mark to the zero of the

staff having been determined, as previously described, the ele-

vation of the bench mark with reference to mean sea level becomes

known, and furnishes the basis of the precise level lines that

are extended to inland points.

A. Barometric Leveling

78. Instruments and Methods. The instruments available

are the familiar types of aneroid and mercurial barometers.
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The mercurial barometer is the standard instrument for indicating

atmospheric pressure, but lacks the aneroid's advantage of

convenience in portability. The aneroid barometer is decidedly

inferior to the mercurial barometer as a pressure indicator,

but is sufficiently accurate for many purposes, such as recon-

naissance work. Pocket aneroids (about 3 inches in diameter)

are found to be as reliable as the larger sizes. Aneroids are

intended to read the same as mercurial barometers under the

same conditions, being compensated for the effect of tempera-

ture on their own construction; they are not compensated for

the effect of temperature on atmospheric pressures. The aneroid

requires careful handling, should be kept in its case at all times

and away from the heat of the body, should be read in the open

air and in a horizontal position, and should be gently tapped

when reading to overcome any friction among its moving parts.

If all the conditions were the same at two different stations,

the difference in atmospheric pressure would correspond to the

difference in altitude; for points not over about 100 miles apart

the conditions may be assumed to be nearly the same at the same

time in ordinary calm weather. Two barometers are necessary

for good work, the office barometer which is kept at the reference

station, and the field barometer, which is carried from point

to point. If the office barometer is an aneroid it must be stand-

ardized, that is, adjusted by the small screw at the back until it

reads the same as a mercurial barometer. During the period of ob-

servations the office barometer and attached thermometer are read

at regular intervals (about 15 or 30 minutes), so that by inter-

polation the readings are assumed to be known for any instant.

The time and temperature are recorded whenever a field reading

is taken, so that comparison may be made with the office

readings for the same time. If the field barometer is an aneroid

its readings will need correction for initial error and inertia.

Before starting out to take readings with the field barometer

it is compared with the office barometer and any difference is

its initial error, which will affect all its readings to the same

extent. On returning to the office after one or more observations

the field barometer is again compared with the office one, and

the amount by which the initial error has changed is called

the inertia error; this error is distributed among the different

readings in proportion to the elapsed time.
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79. The Computations. The complete barometric formula

(for which see Appendix No. 10, Report for 1881, U. S. Coast
and Geodetic Survey) is very complicated and the smaller terms

are generally omitted in ordinary work. Assuming all readings
reduced to the standard of the office barometer,

Let H = elevation in feet of the office barometer above a

plane corresponding to a barometric pressure of

30 inches for dry air at a temperature of 50 F.
;

h the same for the field barometer;
B =

reading of office barometer in inches;

b = corrected reading of field barometer in inches;

t
= Fahrenheit temperature at office barometer;

t'
= Fahrenheit temperature at field barometer;

C = correction coefficient for mean temperature ^ for

average conditions of humidity;
z = difference of elevation of the two barometers in feet;

then we have, nearly,

H = 62737 log ~, h= 62737 log ^,
x>

and

z = (h-H)(l + C),

in which H and h may be obtained from Table III, and C from

Table IV opposite (t + t').

Example. In the following table the field observations were taken with

an aneroid and require the corrections described above.

Field Notes and Reductions, May 17, 1910.

Station.
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Office Notes and Reductions, May 17, 1910.

129

Station.



130 . GEODETIC SURVEYING

varied from 6900 to 7021 feet, the average for the three years

being 6965 feet; according to railroad levelings the true dif-

ference is 6989 feet. Summit is about 77 miles from Sacramento

in an air line; the altitude of Sacramento is about 30 feet above

mean sea level. The example given is a fair illustration of

the general experience in this class of work, with plus and minus

errors about equal. The chief source of error in barometric

work seems to be due to the lack of knowledge of the true

average temperature of the air column between the levels of

any two given stations, the mean of the station temperatures be-

ing only a fair approximation.

B. Trigonometric Leveling

81. Instruments and Ilcthods. Trigonometric leveling can

be done with any instrument capable of measuring angles

of elevation and depression, but good work can be done

only when the angles can be measured with precision. While

the ordinary surveyor's transit may read vertical angles only
to the nearest minute, a fine altazimuth instrument may be

provided with micrometer microscopes reading such angles to

single seconds. In round numbers a minute of arc corresponds

to a foot and a half per mile, and a second to three-tenths of an

inch; with moderate sized vertical angles, such as would usually

occur in trigonometric leveling, the resulting effect in altitude

is practically the same. It is presumed that the observer under-

stands how to adjust and use his particular instrument to the

best advantage.
The elevation of a station from which the open sea is visible

can be determined by measuring the angle of depression to the

sea horizon. The difference of elevation of two stations whose

distance apart is known can be determined by measuring the

angular elevation of one of them as seen from the other, con-

stituting an "observation at one station," or by measuring the

angular elevation of each station as seen from the other, con-

stituting
"
reciprocal observations." From the nature of the

case the effects of curvature and refraction are necessarily involved

in any form of trigonometric leveling. The best results are

obtained between 9.00 a.m. and 3.30 p.m., during which time the

refraction has its least value and is comparatively stationary.
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82. By the Sea Horizon Method. If a station is so situated

as to command a view of the open sea its elevation above the

surface of the water may be determined by measuring the angle

of depression to the sea horizon. The advantage of this method
lies in the fact that no distance is required to be known. Fig. 40

represents the vertical plane of the measured angle, in which

A is the station whose elevation is

desired; SS is an elliptic arc at the

level of the sea horizon, but it is here

assumed to be the arc of a circle;

AE is a straight line from A tangent
to the arc SS at the point E or true

sea horizon; BC (on the vertical line

AC) is the radius of the arc SS, and

is assumed to be equal to the mean-

sea-level radius of the section for the

point A, the point C being in general

not at the center of the earth. E'

is the false horizon caused by the

refraction of light; d is the apparent
and C the true angle of depression

to the sea horizon; and BD is a

tangent at B. From well known

geometrical principles the angles

GAD, ADB, and BCE are equal, and the line DC bisects the

angle at C.

Let R = BC = the mean-sea-level radius of the section for

the point A ;

C = the true angle of depression = angle at center;
d = the apparent angle of depression;

Z = 90 + d = apparent zenith distance of sea horizon;
m = coefficient of refraction;

h = AB = elevation of station A above surface of sea;

then from the figure we have

h = BD tan C,

BD = Rtan
2'

C
h = R tan tan C;
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or since C is always a small angle (rarely 60'),

h = % C2 tan2 1".

On account of refraction (Art. 14) the observer does not sight

along the true line AE, but in the direction of the dotted line

from A, which is tangent to a curved line of sight from A to

the false horizon E'. The practical result of the refraction is

to make the measured angle 8 too small by the amount mC,
so that

d =C-mC,

C= d

1 w'

and

-5(t*=Y*-M".2\l-ra

whence by transposition

m / tan2 1" \
90o)2 /

tan2 l- \

in which h and r must be taken in the same unit, and d must

be taken in seconds. By many experiments the mean value of

m on the New England coast has been found to be 0.078' if we
use this value we may write

/ tan2 1" \

In order to secure the best results it is necessary to measure

the azimuth of the plane in which the angle of depression is

taken, and use the mean-sea-level value of R for this azimuth

and the latitude of the station. This value may be taken from

Tables V and VI, or computed as explained in Art. 69. If errors

which may range up to say about 1 in 300 are not objectionable,

we may use a mean value of R and write

. I"/ tan2 1" \_1
f metric, 5.9446244-10] . . .

l

^[\W=W*r\
=

1 feet, 6.4606086- 10
J
<PP"**te; f
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or

[metric, 0.000088 d2 ,

*-{feet, 0.000289^

in which d must be taken in seconds of arc.

83. By an Observation at One Station. When the distance

between two stations is known their difference of elevation can

be computed if the vertical angle of either as seen from the

other is measured. The advantage of this method over the

reciprocal method (Art. 84) lies in the economies due to occupying

only one station, but the results are not likely to be so good

on account of the uncertainty in the assumed value for the

coefficient of refraction. Fig. 41 represents a plane through

the two stations A and B, taken vertical at their middle lat-

itude, and assumed to be vertical at both stations; SS is the

elliptic arc cut from the spheroid, but it is here assumed to be the

arc of a circle; the radius of the arc SS is taken as the mean-

sea-level radius of the section at the middle latitude, the center

C being in general not at the center of the earth; AC and BC
are drawn to the center C and assumed to be vertical; Z is the

apparent zenith distance of A as seen from B, and is in error

by the small angle mC due to refraction.
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Let h = AM = elevation of station A above mean sea level;

ti = BN = elevation of station B above mean sea level;

K = MN = mean-sea-level distance between stations

A and B;
R = MC = mean-sea-level radius of section at middle

latitude between A and B '

C = central angle ACB;
Z =

apparent zenith distance of A as seen from B;
a = 90 Z =

apparent elevation of A as seen from B;
mC = elevation of line of sight due to refraction:

then

AC + BC ^ 2R+h + h' _ tan %(ABC + BAC)
AC-BC h-h' tan \(ABC - BAC)'

ABC + BAC - 180 -
C,

C
2'

tan \(ABC 4- BAC) = tan
(90

~
f )

= cot

ABC = 180 - Z - mC

BAC = Z+ mC-C
ABC - BAC = 180 -2Z -2mC + C

(ABC - BAC) = 90 -
(z + mC -

^Y

tan %(ABC - BAC) = cotlz + mC -
^Y

2R + h + h'
COt

2 1

h-h'
cotlz + mC --j tan-cot(Z + mC 5-,)

CI C\
h -h' = (2R + h +h') tan-cot(Z + mC -

-J

(7 .

Expanding tan in series, we have

. C C C3
tan

2
=

2
+

24
+
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But C (in arc)
=

-^
,

whence

tn
2 2R 2AR^ '"

Hence by substitution and reduction and the omission of an inap-

preciable factor, we have

2A T
272

'

12i?2

Also

whence

C (in seconds) = ^ : 77-. ,

it sin 1

A - V - X cot
[Z

+ (m - jp] (l
+ ^T + S)

= K tan
[.+

-
)^-p] (l

+ ^- +
i|p).

or approximately (error seldom over 1 in 3000)

h - h' = K cot \Z + (m -
b)jr- p> (approximate),

= K tan a + ( m)p- 77? (approximate).

The value of (h h') is always found first by the approximate

formula, after which a closer value may be obtained from the

complete formula if so desired. In these formulas h, h', K, and

R must all be in the same unit. The coefficient of refraction

m will average about 0.070 inland, and about 0.078 on the coast.

The radius R is to be taken for the middle latitude of A and B
and the approximate azimuth of the line joining them; this

value may be taken from Tables V and VI, or computed as

explained in Art. 6
9;, If errors which may reach or possibly

exceed about 1 in 500 are permissible we may use a mean value

of R and write

. [metric, 6.80396651 .

l0gi*
=

jfeet, 7.3199507|
mean Value -
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84. By Reciprocal Observations. When the distance between

two stations is known their difference of elevation can be com-

puted without assuming any particular value for the coefficient

of refraction if the vertical angle of each station as seen from

the other is measured. This result is brought about by assuming
that the refraction is the same at each station, which is probably

very nearly true if the observations are made at the same time

on a calm day, although this is not always done. The advantage
of this method over the single observation method (Art. 83)

lies in the increased accuracy of the results. Fig. 42 (as in Fig. 41,

Art. 83) represents a plane through the two stations A and B,
taken vertical at their middle latitude and assumed to be

vertical at both stations; SS is the elliptic arc cut from the

spheroid, but it is here assumed to be the arc of a circle; the

radius of the arc SS is taken as the mean-sea-level radius of the

section at the middle latitude, the center C being in general

not at the center of the earth; AC and BC are drawn to the

center C and assumed to be vertical; Z and Z' are the apparent

zenith distances of the stations as seen from each other, each

angle being assumed equally in error by the small angle mC
due to refraction.

Let h = AM = elevation of station A above mean sea level;

h' = BN = elevation of station B above mean sea level
;
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K = MN = mean-sea-level distance between stations

A and B;
R = MC = mean-sea-level radius of section at middle

latitude between A and B;
C = central angle ACB;
Z = apparent zenith distance of A as seen from B;
Z' = apparent zenith distance of B as seen from A

;

a = 90 Z = apparent elevation of A as seen from B;
a' = 90 Z' = apparent elevation of B as seen from A;
mC = elevation of lines of sight due to refraction;

AC + BC = 2R + h + h' _ tan %(ABC + BAC)
AC -BC~ h -h'

~
tan %(ABC - BAC)'

ABC + BAC - 180 -
C,

tan i(ABC + BAC) = tan
(90

-
^ J

= cot
^,

ABC = 180 - Z -mC
li . \ C = 180 - Z' - mC
ABC - BAC = Z' -Z

tan \ (ABC - BAC) = tan \{Z'
-

Z),

2R + h + h'
COt

2 1

A -A' tan(Z' -Z) C\ .,_,
'

2V y tan - tan \{Z'
-

Z)

fc
- A' - (2J? + h + A') tan ^ tan \{Z'

-
Z).

C .

Expanding tan in series, we have

But

whence

C C C3
,tan

2
=

2
+

24
+ "

C (in arc) - -~
,

5 A _*L.tan
2 2#

+
24^3

+
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Hence by substitution and reduction and the omission of an

inappreciable factor, we have,

i-r-rt.i(r-<|(i.+^ +
i^)

= K tan } (
-

')(l
+

't
~^~ +

i^),
or approximately (error seldom over 1 in 3000)

h h! = K tan \ (Z
f

Z) (approximate) ,

= K tan h (a a') (approximate).

The value of (h h') is always found first by the approximate

formula, after which a closer value may be obtained from the

complete formula if so desired. In these formulas h, ti, K,
and R must all be in the same unit. Except for very important
work the mean value of R as given in Art. 83 is sufficiently precise.

For very exact results the radius R is to be taken for the middle

latitude of A and B and the approximate azimuth of the line

joining them; this value may be taken from Tables V and VI,

or computed as explained in Art. 69.

85. Coefficient of Refraction. If the distance between two

stations is known, the coefficient of refraction to, may be obtained

as follows:

1st. If the angular elevation of either station as seen from

the other is measured, and the difference of elevation is obtained

by spirit leveling, we have from Art. 83,

Z + (W -
J):h - *' - K cot

= K tan a + (i
-

to)

R sin 1"

K
R sin 1"

V 2R
T

12R2
/

\
^

2R
^

12R2
/'

in either of which expressions it is only neccessary to substitute

the known values and solve for to. The exact value of R is to

be used, as explained in Art. 83.

2nd. If the angular elevation of each station as seen from

the other is measued, we have from Fig. 42, page 136,

Z + mC - C = 180 - Z' - mC;

whence 2mC - 180 - Z - Z' + C,

180 - Z - Z' + C a + a' + C
and to

2C
=

2C '
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in which all the angular values must be expressed in the same

unit (degrees, minutes, or seconds). From Art. 83 we have

C (in seconds) =
yt~- rr, >

ic sin 1

in which K and R must be in the same unit.

The average value of the coefficient of refraction from many
Coast Survey observations (Appendix No. 9, Report for 1882),

is as follows:

Across parts of the sea near the coast 0.078

Between primary stations 0.071

In the interior of the country 0.065

86. Accuracy of Trigonometric Leveling. The U. S. Coast

and Geodetic Survey has done a large amount of leveling of this

class in connection with its triangulation work, with sights

sometimes exceeding a hundred miles in length in mountainous

regions. The best results are obtained by reciprocal observations,

taken on a number of different days so as to average up the

atmospheric conditions. When the work is conducted in this

manner on lines not over about 20 miles in length the probable

error may be kept down to about one inchjaer mile^ When the

lines exceed about 20 miles in length it is necessary to take a

great many observations under especially favorable conditions to

secure good results. In order to prevent an accumulation of

errors in the elevations determined by trigonometric leveling,

connection is made at various points with precise-level bench

marks, and the trigonometric leveling is adjusted to fit the precise

leveling between these points.

C. Precise Spirit Leveling.

87. Instrumental Features. The instruments used for precise

leveling are the same in principle as the various types of engineers'

levels, the essential feature being a telescopic line of sight and

a spirit level (detachable or fixed) to determine its horizontality.

Engineers' levels are designed to be as rapid and convenient

in use as possible, consistent with the requirements of engineering

work. Precise levels are designed to attain the highest possible
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degree of precision in the work which is done with them. Such

instruments are made in various forms, two of which are shown
in Figs. 43 and 44 and described in Arts. 89 and 90. Certain

features are more or less common to all types of precise level.

A rigid construction and the highest grade of material and

workmanship are demanded. Especial care is taken to make
the line of collimation true for all distances. The telescope is

made inverting (the increased illumination permitting a higher

magnifying power), and has three horizontal hairs (as equally

spaced as possible) whose mean position determines the line of

sight. The convenience of having the line of sight at right

angles to the vertical axis of the instrument is abandoned in

order to place a delicate control of the position of the bubble

in the hands of the observer; this is accomplished by pivoting
the telescope near the object-glass end, and providing a fine

screw motion near the eyepiece end, so that the inclination of

the telescope can be changed as desired. Such a screw is commonly
called a micrometer screw because it was originally provided
with a graduated head for measuring the value of small changes
of inclination. The level vial is placed above the telescope,

and a mirror or other means provided to enable the observer

to see the bubble at the moment of taking an observation. A
sensitive bubble is used, one division corresponding to about

1 to 3 seconds of arc (against about 20 seconds in the ordinary

wye or dumpy level). The level vial is chambered, permitting
the observer to adjust the bubble to its most efficient length,

and is so mounted that it is free to expand and contract. The
instrument is supported on three pointed leveling screws resting

freely in V-shaped metal grooves on the tripod head. Such

an instrument is leveled by setting the bubble parallel to a pair

of leveling screws and bringing it to the center by turning that

pair of screws equally in opposite directions, then turning the

bubble in line with the remaining leveling screw and bringing

it to the center with that screw alone; then turn the instrument

180 on its vertical axis, and if the bubble moves from the center

bring it half way back by the micrometer screw of the telescope

and relevel both ways as before; when the bubble will stay within

a few divisions of the center all the way around the leveling

is satisfactory, as the precise leveling of the line of sight is accom-

plished with the micrometer screw while taking the observation.
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The tripods used with these instruments must be strong and rigid.

Rods of special pattern and metallic turning points, as described

in Art. 91, are used in this class of work.

88. General Field Methods. In order to secure a high degree

of precision in leveling the greatest care is required in the field

work and methods. Five sources of error have to be guarded

against, namely, errors of observation, instrumental errors,

curvature and refraction errors, atmospheric errors, and errors

from unstable supports.

Errors of observation are kept as small as possible by care

on the part of the observer; by keeping the rods plumb; by

using a proper length of sight, 100 meters or about 300 feet

being suitable for average conditions; by comparing at every

sight the two intervals furnished by the readings of the three

wires, any material disagreement (more than 2 millimeters)

denoting an erroneous reading; by the fact that each pointing

is taken as the mean of the three wire readings; and by the

further fact that every line is run in duplicate in the reverse

direction and a limit set on the allowable discrepancies.

Instrumental errors are kept as small as possible by keeping
the instrument in good adjustment; by determining the instru-

mental constants with care and applying the corresponding

corrections when necessary; by using a program of observations

adapted to the type of instrument used, so as to eliminate the

instrumental errors as far as possible; by making the length

of each foresight nearly equal, if possible, to that of the corre-

sponding backsight; by balancing any extra long or short fore-

sight by a similar long or short backsight elsewhere, and vice

versa; and by keeping the sum of the lengths of the foresights

as nearly equal as possible to the sum of the lengths of the back-

sights, with suitable corrections for the net difference. If the

foresights and backsights were all exactly equal no correction

would be required for instrumental errors. The effect of the

various instrumental errors is to give the line of sight an inclina-

tion with the horizontal. The value of the inclination becomes

known through the instrumental constants, as explained later.

The required correction in elevation is found by multiplying
the net difference in length of sights by the sine of this incli-

nation.

Curvature and refraction errors exist in every line of sight,
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as explained in Art. 14, but are obviously eliminated if the

foresights and backsights are kept equal. If these sights are

kept nearly balanced, as explained in the previous paragraph,
and a suitable correction made for the net difference, the effects

of curvature and ordinary refraction are practically reduced to

zero. The correction which is made is the value of the curva-

ture and refraction for the net difference in the lengths of the

foresights and backsights. The net difference should be kept
so small that no such correction may be necessary, but if required

it can be taken from Table VII or computed as explained in

Art. 14.

Atmospheric errors are those due to an actual unsteadiness

of the rod or instrument, caused by the wind; an apparent

unsteadiness of the rod, caused by heated air currents, commonly
called heat radiation; an irregular vertical displacement of the

line of sight, caused by variable refraction; and the disturbance

of the relation between the line of sight and the axis of the bubble,

caused by unequal expansion and contraction of the different

parts of the instrument. Moderate winds do not prevent good

work, especially if wind shields are used around the instrument;

but when the wind reaches about eight miles an hour it becomes

impracticable to do first class work. When the rod becomes un-

steady through heat radiation it becomes necessary to decrease

the length of the sights in order to read the rod satisfactorily, but

the increased number of sights increases the probable error of

the result; if it becomes necessary to decrease the length of sight

below 50 meters, or about 150 feet, it is not advisable to continue

the work. Refraction is nearly stationary and has its least

value between about 9.00 a.m. and 3.30 p.m., but during this

period heat radiation is apt to be very troublesome; outside

of these hours the refraction may be very variable. The result

is that in perfectly clear weather the best class of work is only

possible during a few hours of the day. In order to guard against

unequal expansion and contraction the instrument is protected

with a large sunshade (umbrella), and never exposed to the direct

rays of the sun either while in use or while being carried to a new

set-up.

By the errors from unstable supports are meant the errors

caused by the instrument or turning points changing their eleva-

tions slightly between readings. It is shown by experience that
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either rising or settling may take place, though settling is the

most common. If the instrument settles between the backward

reading and the forward reading the final elevation will be too

high; the same result will occur if the rod settles between the

forward reading and the backward reading on it. Errors of this

class are kept as small as possible by planting the instrument

firmly; by using well driven metallic turning points; by taking

both readings from each set-up with as little intermediate delay

as possible, using two rodmen for this reason as well as the saving

of time; by reading the back rod first for every other set-up,

and the fore rod first for the intermediate set-ups; and by duplicat-

ing each line in the opposite direction, and correcting for half

of the discrepancy.

Certain field methods have been discarded, after years of

extensive use, because the results have not proven as satisfactory

as by other methods. Among these may be mentioned methods

involving computations based on readings of the micrometer

screw. The best results are obtained when all the observations are

taken with the bubble in the center, the micrometer screw being

used simply as the means of keeping it there. Another unsatis-

factory method is the running of so-called simultaneous lines,

in which readings are taken at each set-up to the turning points

of two separate lines, as a substitute for running duplicate lines

in opposite directions.

89. The European Level. A typical leveling instrument of

this form, made in France, is illustrated in Fig. 43 (page 141).

The European type of instrument is essentially a wye level,

in which different makers have followed the same general

design, but with modified details. The telescope may be rotated

in the wyes or lifted from the wyes and reversed. The level

is separate from the instrument, being an ordinary striding

level with the addition of a movable mirror over the bubble;

by holding the eyes in a vertical line the image of the bubble

may be seen with one eye while the rod is seen through the tele-

scope with the other eye, the bubble being kept in the center

with the micrometer screw while the observation is being made.

The magnifying power is about forty-five diameters. Besides

the above special features the instrument has all the general features

of a good instrument, as described in Art. 87. With this type of

level there are three so-called constants and two adjustments.
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89a. Constants of European Level. The three constants of

this instrument, which should be examined at least once a year,
are as follows:

1. The angular value of one division of the bubble, meaning the

change in inclination which causes the bubble to shift its position

by one division on the bubble scale. Modern level vials are

ground so nearly uniform in curvature that it is customary to

measure the change of inclination for the whole run of the bubble,

dividing by the number of divisions through which the bubble

moves to obtain the average value of one division. By the posi-

tion of the bubble, or the movement of the bubble, is meant the

position or the movement of its central point; the ends of the

bubble are constantly changing their position on account of the

changing length of the bubble, but the center remains stationary

as long as there is no change of inclination. Bubble tubes are

sometimes graduated from one end, but more frequently both

ways from the center, in which case the divisions one way from

the center are called positive and the other way negative. The

reading of the center of the bubble is the algebraic mean of its

two end readings. The movement of the bubble between any
two positions is the algebraic difference of its two center readings.

The practical operation of finding the value of one division is as

follows : Level up the instrument with the striding level in place,

and have a leveling rod held at a fixed point at a known distance

of about 200 feet. Turn the micrometer screw until the bubble

comes near one end of its run, note each wire reading on the rod

as closely as possible, and each end reading of the bubble to the

nearest tenth of a division. Run the bubble to the other end

of the tube and note the rod and bubble readings for this posi-

tion. Take a number of readings in this way at both ends, with

the bubble in slightly different positions so as to obtain unbiassed

values. Compute the position of the center of the bubble for each

reading, then the average of the center readings for each end of

the run, and then the movement corresponcing to these average

centers, which will be the average movement of the bubble.

Subtract the mean of the lower readings from the mean of the

upper readings on the rod for the average movement of the line

of sight, which divided by the distance times the sine of 1" will

give the average change of inclination in seconds of arc. The

angular value of one division of the bubble in seconds will be this
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average change of inclination divided by the average movement

of the bubble. In this process the rod readings and the dis-

tances must be expressed in the same unit. In the following

example illustrating the above principles the bubble tube is

graduated each way from the center and a metric rod is held 70

meters from the instrument. Each recorded rod reading is the

average of the three wire readings.

Example. Angular Value of One Division of Bubble Tube

Looking Up.
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the instrument is approximately leveled, and clamped on its

vertical axis. Bubble readings are then taken with the telescope

direct and also when reversed end for end in the wyes. If the

striding level and telescope were reversed together (as one piece)

the movement of the bubble would measure twice the angle

between the axis of the bubble and the bottom line of the pivot

rings. If the striding level were in perfect adjustment (axis of

bubble parallel to line of feet) this would mean the same thing

as twice the angle between the top line and bottom line of the

rings, or four times the pivot inequality (angle between center

line and tops of rings). The striding level is seldom in perfect

adjustment, but its error is eliminated by taking its average

reading for its direct and reversed positions for each position

of the telescope. The telescope is generally reversed a number

of times and the average result taken. It is found in practice

that the inclination of the telescope is liable to be changing

during the progress of the observations, and thus lead to erroneous

conclusions. Readings are therefore not only taken for alternate

positions of the telescope, but the last position is made the same

as the first position; the assumption is then made that the mean
of the direct sets and the mean of the reverse sets correspond

to the same instant of time. When the pivot inequality is

obtained in bubble divisions its angular value is found by multiply-

ing this result by the angular value of one division of the bubble.

In the following example illustrating the above principles the

level tube is graduated both ways from the center, and is called

direct with the marked end towards the eyepiece.

It will be noted in this example that the average effect

of reversing the telescope (from eye-end left to eye-end right),

is to cause the bubble to move to the right or towards the eye-

end, showing the eye-end ring to be larger than the other ring

which it replaces; when the tops of the rings are in a level plane,

therefore, as indicated by the striding level, it follows that the

line of sight (center line of the rings) must look up. If the tele-

scope looks up it will cause the final elevation to be too low for

an excess in the foresights and too high for an excess in the back-

sights, and vice versa when the telescope looks down. The

amount of the correction required will be equal to the excess

distance multiplied by the angular inequality of the pivots and

by the sine of 1".
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Example, Inequality of Pivot Rings

149

Telescope.
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then, from the theory of stadia measurements,

A - d-U+c)
i s

'

D =AS + (f+c),

in which formulas D, S, d, s, /, and c must all be taken in the same
unit. The field work of finding A consists in focussing on a

distant point and measuring on the telescope the values of /
and c; then measure a distance of about 100 meters or about 300

feet from the vertical axis of the instrument, and take the rod

readings at this point (with the instrument leveled) for the upper
and lower hairs; the intercept s of the formula is the difference

of these readings; then substitute the values d, s, f, and c in the

formula for A. The value of A may run from about 100 to about

300, the instrument maker usually setting the hairs as near as

possible for an even hundred. With the value of A known and

the recorded rod readings a simple substitution in the formula

for D at once gives the distance between the instrument and cor-

responding turning point. Since the corrections for instrumental

errors are only applied to the excess distance between foresights

and backsights, a running total is kept of the corresponding
wire intervals, and the formula for D applied to this excess interval

only, omitting the small constant (/+c).
89b. Adjustments of European Level. The two adjustments

of this instrument, which should be examined daily, are as follows:

1. The collimation adjustment, meaning the adjustment of

the position of the ring that carries the cross-hairs so that the

actual line of sight (as indicated by the mean position of the hairs)

shall coincide with the true line of sight or center line of the rings.

This adjustment is made by leveling up the instrument and sight-

ing at a rod (about 100 meters distant) with the telescope both

direct and inverted. If the mean of the three wire readings is

not the same in each case the reticule is moved in the apparent

direction needed to correct the error and an amount equal to

half the discrepancy. It is essential that the instrument be

perfectly leveled for each reading. When the discrepancy is

brought down to about two millimeters it may be considered

satisfactory, as it is easy to apply a correction for the residual



GEODETIC LEVELING 151

error, or the error may be eliminated by the method of observing.

The collimation error is the angular amount by which the

actual line of sight (determined by mean position of cross-hairs)

deviates from the center line of the rings. The collimation error

only affects the excess distance, like all the other instrumental

errors.

Let C = collimation correction for excess distance D;
D = excess distance between backsights and foresights;

c = collimation error;

d = a known distance
;

Ri = mean rod reading for d with telescope normal;
R2

= mean rod reading for d with telescope inverted;

then evidently,

and C = cD,

in which all values must be taken in the same unit.

2. The bubble adjustment, meaning the adjustment by which

the axis of the bubble is made parallel to the line joining the feet

of the striding level. This adjustment is made by leveling up
the instrument, clamping the vertical axis, bringing the bubble

exactly central with the micrometer screw, and then reversing

the striding level without disturbing the telescope. If the bubble

is not central after reversal it is to be adjusted for one-half of

its movement. Relevel with the micrometer screw, reverse

again, and so on until the adjustment is satisfactory (within

about one division of the scale). The bubble error or inclination

of the bubble is the angle between the axis of the bubble and the

line joining the feet of the striding level; this angle would be

zero if the bubble were in perfect adjustment. To determine

the bubble error level up the instrument approximately, clamp the

vertical axis, bring the bubble near the center with the micrometer

screw, and then read the bubble a number of times in direct and

reversed positions, making the last position the same as the first

position. The bubble error in bubble divisions is half the average

movement of the bubble; the inclination of the bubble is the error

in bubble divisions multiplied by the angular value of one

division. In the following example illustrating the above principles

the level tube is graduated both ways from the center, and is

called direct with the marked end towards the eyepiece.
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Example. Inclination of Bubble
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previous backsight (pacing is satisfactory); keeping the sum of

the foresights nearly equal to the sum of the backsights, as

indicated by the corresponding sums of the wire intervals; plant-

ing the instrument firmly and making the turning points solid;

keeping the rod plumb; watching the wire intervals at every

sight, and taking a new reading of each of the three wires when-

ever the half intervals disagree by more than two millimeters;

and running a duplicate line in the opposite direction as a check,

and in order to eliminate errors from unstable supports (by using

the mean difference of elevation as the true value).

Program of observations for each set-up. Level up the instru-

ment; sight at the back rod; take each of the three wire readings

with the bubble kept centered with the micrometer screw; sight

on the forward rod and read with bubble central as before; remove

striding level, invert telescope in wyes, replace striding level

reversed end for end; read forward rod with bubble central;

sight on back rod and read with bubble central. This method
of observing eliminates both the bubble error and the collimation

error, even with the foresights and backsights unbalanced. The
correction for inequality of pivots, however, must be applied to

any excess distance, as also the correction for curvature and

refraction if the excess distance makes the amount appreciable.

An example of notes and reductions is given on the next page.

In this case the backsights are in excess, but not enough to require

appreciable corrections.

90. The Coast Survey Level. Previous to 1900 the precise

leveling of the U.S. Coast and Geodetic Survey was done with

the European type of instrument. Commencing with the summer
of 1900 this work has been done with a type of instrument designed

by the Department and known as the Coast Survey level. A
view of this level is shown in Fig. 44, page 142. The instrument

is essentially a dumpy level, as the telescope does not rest in wyes,
can not be removed from its supports, and can neither be inverted

nor reversed. The base of the instrument is of the usual three

leveling screw type, except that the center socket is unusually

long and extends downwards through the tripod head. An
outer protecting tube through which the telescope passes is

rigidly attached to the vertical axis; the telescope is pivoted at

one end of this outer tube, and has its inclination controlled by a

micrometer screw at the other end. The collimation adjustment
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FORM OF NOTES EUROPEAN LEVEL
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which the left eye may see an image of the bubble while the right

eye is observing the rod, the head being held in its natural posi-

tion, and the tube being adjustable sideways to suit the eyes

of different observers. Besides the lens in its eyepiece the tube

contains two prisms, adjustable for length of bubble, and placed

opposite a slot running abreast of the level vial. The bubble is

brought within the view of the left eye through the eye lens, the

two prisms, and a mirror attached to the telescope. The telescope

tube and outer casing are made of a nickel-iron alloy that has

a coefficient of expansion which is only one-fourth that of brass,

while the micrometer screw and other important screws are made
of nickel-steel having a coefficient of expansion as low as 0.000001

per degree centigrade. A detailed description of this instrument

(from which the above notes have been gathered) is given in

Appendix No. 3, Report for 1903, U. S. Coast and Geodetic

Survey. Work with this level has been extremely satisfactory,

better results being secured with greater rapidity and a much
reduced cost. The Coast Survey level has two constants and

one adjustment.
90a. Constants of Coast Survey Level. The two constants of

this instrument, which should be examined at least once a year,

are as follows:

1. The angular value of one division of the bubble. This is

found by the optical method, as described in Art. 89a.

2. The angular value of the wire interval. This is also

found as described in Art. 89a.

90b. Adjustments of Coast Survey Level. The only adjust-

ment of this instrument, which should be examined daily, is as

follows :

To make the axis of the bubble parallel to the line of sight.

This adjustment is made by the ordinary peg method (as adapted
to this type of instrument), the bubble tube being raised or lowered

at the adjusting end as may be required. The cross-hairs must
never be disturbed as these have been permanently adjusted for

collimation by the instrument maker. In testing the adjustment
the rod reading is taken as the mean of the three wire readings,

and the rod interval as the difference between the outside wire

readings, the bubble being kept exactly centered while reading
each of the three wires. Two pegs or turning-point pins are

firmly driven about 100 meters apart, each rod being kept
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on its own point if two rods are used, or one rod being shifted as

required. The instrument is set up approximately in line with

the two points, first about ten meters beyond one point, and then

about the same distance beyond the other point. The rod read-

ing is taken for each point in each position of the instrument,

the terms near rod and distant rod being used to indicate the

relative position of the rods for each set-up. Having taken

the four readings we have

_ (sum of near-rod readings) (sum of distant-rod readings)

(sum of distant-rod intervals) (sum of near-rod intervals)
'

in which C is called the bubble error or constant for the day's

work. If C does not exceed 0.010 (numerically) it is not advisable

to change the adjustment. The telescope looks down when C
is positive and up when C is negative, so that if an adjustment

is found to be necessary the line of sight (middle wire) is raised

or lowered on the distant rod by C times the corresponding

interval, and the bubble tube adjusted to bring the bubble

central. A new determination of C is always made after each

adjustment, and in very precise work the distant-rod readings

are corrected for curvature and refraction (Table VII) before

using in the formula, as these errors double up instead of canceling

out in this method of adjustment. A correction equal to C times

the excess interval between the foresights and backsights is

applied to the final elevation; if the backsights are in excess the

correction has the same sign as C, and the opposite sign when the

foresights are in excess.

90c. Use of Coast Survey Level. In order to obtain the best

results with this instrument all the precautions given in Art. 88,

and briefly summarized in Art. 89c, must be observed. The

program of observations is much simpler than with the European

level, there being nothing to do at each set-up except to obtain

the three wire readings on each rod, with the bubble kept exactly

centered while reading each wire. It is considered advisable

to read the fore rod first on every other set-up. In the precise

leveling of the U. S. Coast and Geodetic Survey a correction for

excess of sights is applied for curvature and refraction and also

for bubble error, together with corrections for absolute length

of rod and average temperature of rod. An example illustrating

the keeping of the notes is given on the next page.
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91. Reds and Turning Points. Various types of rods and

turning points have been used in precise level work, with details

changing from time to time. The notes here given are intended

to briefly cover the points of interest to engineers.

Rods. Precise leveling rods are now generally made of wood,
sometimes soaked in melted paraffin to eliminate changes of length

by absorption cf atmospheric moisture, cross or T-shaped in

section, about 3.5 meters in length, graduated metrically, pro-

vided with a plumb line or level, and designed to be used with-

out targets. The Coast Survey rod is cross-shaped in section,

of pine wood which has absorbed about 20 per cent of its original

weight of paraffin, graduated to centimeters and read by estima-

tion to millimeters, and provided with a circular level for making
it vertical. Target rods were abandoned by the Coast Survey
in 1899. For a description of Coast Survey rods see Appendix
No. 8, Report for 1895, and Appendix No. 8, Report for 1900. The

precise rods used by the Corps of Engineers, U. S. A., are similar

to the above, but T-shaped in cross-section. The Molitor

rod (designed by Mr. David S. Molitor, and described in Trans.

Am. Soc. C.E., Vol. XLV, page 12) is illustrated in Fig. 45, and

is a precise rod of the highest class. The smallest divisions are

two millimeters wide, and the reading is taken to millimeters or

closer by estimation.

Rod constant and adjustment. The precise leveling rod has one

constant, and one adjustment. The rod constant is its absolute

length between extreme divisions, which may differ slightly

from its designated length, and which should be examined at

least once a year. If the rod is long or short a self-evident

correction is required, which only affects the final difference

of elevation between two points. The rod adjustment is the

adjustment of its level, which should be examined daily by

making the rod vertical with a plumb line, and corrected if

necessary.

Turning points. Both foot-plates and foot-pins have been

used for turning points. Cast iron foot-plates about six inches

in diameter have been used extensively by the Coast Survey,

but were practically abandoned in 1903 as inferior to pins. Fig. 45

shows a style of foot-pin first used by Prof. J. B. Johnson in 1881,

and meeting every requirement of a good pin. It is driven nearly

flush with the ground with a wooden mallet. Such a pin is
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O

Fig. 45. Molitor's Precise-level Rod and Johnson's Foot-pin.
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best made of steel. The little groove in the head is to prevent
dust or sand from settling on the bearing point.

92. Adjustment of Level Work. In running level lines of

any importance the work is always arranged so as to furnish

a check on itself, or to connect with other systems, and a cor-

responding adjustment is required to eliminate the discrepancies

which appear. The problem may always be solved by the method
of least squares when definite weights have been assigned to the

various lines. When the work is all of the same grade the lines

are weighted inversely as their length. This rule requires an

error to be distributed uniformly along any given line to adjust

the intermediate points. A common rule for intermediate points

on a line or circuit is to distribute the error as the square root

of the various lengths; but as this rule is inconsistent with itself

it is not recommended. The following rules for the adjustment
of level work will usually be found sufficient and satisfactory.

Duplicate lines. A duplicate line is understood to mean a

line run over the same route, but in the opposite direction and

with different turning points. This is the best way of checking

a single line of levels. The discrepancy which usually appears

is divided equally between the two lines.

Simultaneous lines. These are lines run over the same route

in the same direction, but with different turning points. In

this case the final elevation is taken as the mean of the elevations

given by the different lines.

Multiple lines. This is understood to mean two or more

lines run between two points by different routes. In this case

the difference of elevation as given by each line is weighted inversely

as the length of that line, and the weighted arithmetic mean
is taken as the most probable difference of elevation. Thus if

the difference of elevation between A and B is 9.811 by a 6-mile

line, 9.802 by an 8-mile line, and 9.840 by a 12-mile line, we have

Mean difference of elevation

(9811 X J) + (9.802 X{) + (9.840 X T\) QQ1 .

Intermediate points. These may occur on a line whose ends

have been satisfactorily adjusted or on a closed circuit. In

either case the required adjustment is distributed uniformly

throughout the line, making the correction between any two
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points directly proportional to the length between those two

points.

Level nets. Any combination of level lines forming a series

of closed circuits is called a polygonal system or level net. Fig. 46

represents such a system. If the true difference of elevation

were known from point to point, then the algebraic sum of the

differences in any closed circuit would always equal zero, the

rise and fall balancing. In practical work the various circuits

seldom add up to zero, and an adjustment has to be made to

eliminate the discrepancies. A rigor-

ous adjustment requires the use of

the method of least squares, but the

approximate adjustment here described

will generally give very nearly the same

results. Pick out the circuit which

shows the largest discrepancy, and

distribute the error among the differ-

ent lines in direct proportion to their

length. Take the circuit showing the

next largest discrepancy, and distribute

its error uniformly among any of its

lines not previously adjusted in some

other circuit, continuing in this way
until all the circuits have been ad-

justed. The circuits here intended are

the single closed figures, as BEFC, and not such a circuit as

ABEFCA; and no attention is to be paid to the direction or

combination in which the lines may have been run.

93. Accuracy of Precise Spirit Leveling. The accuracy

attainable in precise spirit leveling may be judged by noting the

discrepancies between duplicate lines (Art. 92). On the U. S.

Coast and Geodetic Survey the limit of discrepancy allowed

between duplicate lines is 4mm. Va, meaning 4 millimeters

multiplied by the square root of the distance in kilometers between

the ends of the lines; if this limit is exceeded the line must be

rerun both ways until two results are obtained which fall within

the specified limits. In various important surveys the allowable

limit has ranged from 5mm. ViC to 10mm. Vlf, or 0.021ft.V^M

to 0.042ft. VM where M is the distance in miles. The probable

error of the mean result of a pair of duplicate lines is practically
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one-third of the discrepancy, and in actual work of the highest

grade falls below lmm.v.K'. The adjusted value of the eleva-

tion above mean sea level of Coast Survey bench mark K in

St. Louis has a probable error of only 32 millimeters or about

1} inches, and it is almost certain that no amount of leveling

will ever change the adopted elevation as much as 6 inches.

A much more severe test of the accuracy of leveling is obtained

from the closures of large circuits running up sometimes to 1000

or more miles in circumference. The greatest error indicated

by the circuit closures in any line in about 20,000 miles of precise

spirit leveling executed by the U. S. Coast and Geodetic Survey
and other organizations, is about one-tenth of an inch per mile.

With the Coast Survey level of Art. 90 very much closer results

have been reached.



CHAPTER VII

ASTRONOMICAL DETERMINATIONS

94. General Considerations. The astronomical determina-

tions required in practical geodesy are Time, Latitude, Longitude

and Azimuth. The precise determination of these quantities

requires special instruments as well as special knowledge and skill,

and falls within the province of the astronomer or professional

geodesist rather than that of the civil engineer. A fair deter-

mination, however, of one or more of these quantities is not

infrequently required of the engineer, so that a partial knowledge
of the subject is necessary. A complete discussion of the sub-

jects of this chapter may be found in Doolittle's Practical Astron-

omy, or in Appendix No. 7, Report for 1897-98, U. S. Coast and

Geodetic Survey. As the work of the fixed observatory is out-

side the sphere of the engineer, the following articles are intended

to cover field methods only.

The instruments used by the engineer will generally be limited

to the sextant, the engineer's transit, one of the higher grades

of transits, or the altazimuth instruments of Chapter III. All

of these instruments are suitable for either day or night observa-

tions, except that the ordinary engineer's transit is not usually

furnished with means for illuminating the cross-hairs at night.

This difficulty may be overcome by substituting in place of the

sunshade a similar shade of thin white paper, a flat piece of bright

tin bent over in front of the object glass at an angle of about 45

and containing an oblong hole having a slightly less area than

that of the lens, or a special reflecting shade which may be bought
from the maker of the instrument. The light of a bull's-eye

lantern thrown on any of these devices will render the cross-hairs

visible.

In astronomical work the observer is assumed to be at the

center of the earth, this point being taken as the center of a great
163
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celestial sphere on which all the heavenly bodies are regarded as

being projected. Any appreciable errors arising from the assumption
that the earth is stationary or that the observer is at its center,

are duly corrected. All vertical and horizontal planes and the

planes of the earth's equator and meridians are imagined extended

to an intersection with the celestial sphere, and are correspond-

ingly named. Fig. 47, page 166, is a diagram of the celestial

sphere, and the accompanying text contains the definitions and

notation used in the discussions. A thorough study and compre-
hension of the figure and text are absolutely essential for an

understanding of what follows. The necessary values of the

right ascensions, declinations, etc., required in the formulas, are

obtained from the American Ephemeris, commonly called the

Nautical Almanac, which is issued yearly (three years in advance)

by the Government.

Time

95. General Principles. Time is measured by the rotation

of the earth on its axis, which may be considered perfectly uniform

for the closest work. The rotation is marked by the observer's

meridian sweeping around the heavens. The intersection of

this meridian with the celestial equator furnishes a point whose

uniform movement around the equator marks off time in angular

value. The angle thus measured at any moment between the

observer's meridian and the meridian of any given point (which

may itself be moving) is the hour angle of that point at that

moment. These angles are, of course, identical with the cor-

responding spherical angles at the pole. When 360 of the equa-

tor have passed by the meridian of a reference point (whether

moving or not) the elapsed time is called twenty-four hours, so

that any kind of time is changed from angular value to the hour

system by dividing by 15, and vice versa. There are two kinds

of time in common use, mean solar time and sidereal time, based

on the character of the reference point. Mean solar time is the

ordinary time of civil life, and sidereal time is the time chiefly used

in astronomical work.

96. Mean Solar Time. The fundamental idea of solar time is to

use as the measure of time the apparent daily motion of the sun
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around the earth; this is called apparent solar time, the upper transit

of the sun at the observer's meridian being called apparent noon.

Apparent solar time, however, is not uniform, on account of a

lack of uniformity in the apparent annual motion of the sun

around the earth. This is due to the fact that the apparent
annual motion is in the ecliptic, the plane of which makes an angle

with the plane of the equator, and the further fact that even in

the ecliptic the apparent motion is not uniform. To overcome

this difficulty, a fictitious sun, called the mean sun, is assumed to

move annually around the equator at a perfectly uniform rate,

and to make the circuit of the equator in the same total time that

the true sun apparently makes the circuit of the ecliptic. Mean
solar time is time as indicated by the apparent daily motion of

the mean sun and is perfectly uniform. The difference between

apparent solar time and mean solar time is called the equation

of time, varies both ways from zero to about seventeen minutes,

and is given in the Nautical Almanac for each day of the year.

Local mean time for any meridian is the hour angle of the mean
sun measured westward from that meridian, local mean noon

being the time of the upper transit of the mean sun for that

meridian.

96a. Standard Time. This time, as now used in the United

States, is mean solar time for certain specified meridians, each

district using the time of one of these standard meridians instead

of its own local time. The meridians used are the 75th, 90th,

105th and 120th west of Greenwich, furnishing respectively

Eastern, Central, Mountain and Pacific standard time. Standard

time for all points in the United States differs only by even hours,

with very large belts having exactly the same time, the variation

from local mean time seldom exceeding a half hour. In the lat-

itude of New York local mean time varies about four seconds

for every mile east or west. Standard time may be obtained at

any telegraph station with a probable error of less than a second.

In all astronomical work standard time must be changed to local

mean time.

96b. To Change Standard Time to Local Mean Time and vice

versa. The difference between standard time and local mean
time at any point equals the difference of longitude (expressed
in time units, Art. 113) between the given point and the standard

time meridian used. For points east of the standard time
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North
Pole

Fig. 47. The Celestial Sphere.

EXPLANATION

HZH'N = meridian of observer;

Z, W, N = points on prime vertical;

M, m = projection of azimuth marks on celestial sphere;
Z = observer's zenith;

N = observer's nadir;

Angles at Z, and corresponding horizontal angles at 0, are azimuth angles;

Angels at P, and corresponding equatorial angles at O, are hour angles.

Conversion op Arc and Time

Arc. Time.

1 = 4 minutes

1' =4 seconds

1" = tV second

Time. Arc.

1 hour = 15

1 minute = 15'

1 second = 15"
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DEFINITIONS

The zenith (at a given station) is the intersection of a vertical line with
the upper portion of the celestial sphere.

The nadir is the intersection of a vertical line with the lower portion
of the celestial sphere.

The meridian plane is the vertical plane through the zenith and the celes-

tial poles, the meridian being the intersection of this plane with the celestial

sphere.
The prime vertical is the vertical plane (at the point of observation) at

right angles with the meridian plane.
The latitude of a station is the angular distance of the zenith from the

equator, and has the same value as the altitude of the elevated pole. Lati-

tude may also be denned as the declination of the zenith. North latitude

is positive and south latitude negative.
Co-latitude = 90 latitude.

Right ascension is the equatorial angular distance of a heavenly body
measured eastward from the vernal equinox.

Declination is the angular distance of a heavenly body from the equator.
North declination is positive and south declination negative.

Co-declination or polar distance = 90 declination.

The hour angle of a heavenly body is its equatorial angular distance

from the meridian. Hour angles measured towards the west are positive,
and vice versa.

The azimuth of a heavenly body (or other point) is its horizontal angular
distance from the south point of the meridian (unless specified as from the

north point). Azimuth is positive when measured clockwise, and vice

versa.

The altitude of a heavenly body is its angular distance above the horizon.

Co-altitude or zenith distance = 90 altitude.

Refraction is the angular increase in the apparent elevation of a heavenly
body due to the refraction of light, and is always a negative correction.

Parallax (in altitude) is the angular decrease in the apparent elevation

of a heavenly body due to the observation being taken at the surface instead

of at the center of the earth, and is always a positive correction.

NOTATION

(J>
= latitude (+ when north, when south);

a = right ascension
;

8= declination (+ when north, when south);

J = hour angle (+ to west, to east);

A = azimuth from north point (+ when measured clockwise);

Z = azimuth from south point (+ when measured clockwise);

h = altitude;

z= zenith distance;

r = refraction;

p = parallax.
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meridian local mean time is later than standard time, and vice

versa.

Example 1. New York, NY., uses 75th-meridian standard time. Given
the longitude of Columbia College as 73 58' 24".6 west of Greenwich, what
is the local mean time at 10h 14m 17 8 .2 p.m. standard time?

75 00' 00" .0 10h 14m 17s .2 p.m.

73 58 24 .6 4 06 .4

15) 1 01' 35".4 Ans. = 10h 18m 238 .6 P.m.

lm 068 .4

Example 2. Philadelphia, Pa., uses 75th-meridian standard time. Given
the longitude of Flower Observatory as 5h 01m 08s

.6 west of Greenwich, what
is the standard time at 9h 06m 18s . 1 a.m. local mean time.

15)75 00' 00".0 9h 06m 18s
.l a.m.

5h 00m OOs.O 1 06 .6

5 01 06 .6

Ans. =9h 07m 24s.7 a.m.

lm 06s.6

97. Sidereal Time. In this kind of time a sidereal day of

twenty-four hours corresponds exactly to one revolution of the

earth on its axis, as marked by two successive upper transits

of any star over the same meridian. The sidereal day for any
meridian commences when that meridian crosses the vernal

equinox, and runs from zero to twenty-four hours. The sidereal

time at any moment is the hour angle of the vernal equinox at

that moment, counting westward from the meridian. As the

right ascensions of stars and meridians are counted eastward

from the vernal equinox, it follows that the sidereal time

for any observer is the same as the right ascension of his

meridian at that moment. Hence when a star of known

right ascension crosses the meridian the sidereal time

becomes known at that moment. The right ascension

of the mean sun at Greenwich mean noon (called sidereal

time of Greenwich mean noon) is given in the Nautical

Almanac for every day of the year, and is readily found

for local mean noon at any other meridian by adding the

product of 9.8565 seconds by the given longitude west of Green-

wich expressed in hours.
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98. To Change a Sidereal to a Mean Time Interval, and vice

versa. Owing to the relative directions in which the earth rotates

on its axis and revolves around the sun the number of sidereal

days in a tropical year (one complete revolution of the earth

around the sun) is exactly one more than the number of solar

days. According to Bessel the tropical year contains 365.24222

mean solar days, hence 365.24222 mean solar days
= 366.24222

sidereal days, and therefore

1 mean solar day= 1.0027379 sidereal days;

1 sidereal day = 0.9972696 mean solar days;

whence if Is is any sidereal interval of time and Im the mean solar

interval of equal value, we have

/-/'+ 0.0027379 / (log 0.0027379 = 7.4374176 -
10)

Im = Is
- 0.0027304 Is (log 0.0027304 = 7.4362263 -

10)

Where there is much of this work to be done the labor of computa-
tion is lessened by usin^ the tables found in the Nautical Almanac

and books of logarithms.

99. To Change Local Mean Time or Standard Time to Sidereal.

For local mean time this is done by converting the mean time

interval between the given time and noon into the equivalent

sidereal interval (Art. 98), and combining the result with the

sidereal time of mean noon for the given place and date. Since

the right ascension of the mean sun increases 360 or twenty-
four hours in one year, the increase per day will be 3

m
56

s

.555,

or 9
8
.8565 per hour. The sidereal time of mean noon for the

given place is therefore found by taking the sidereal time of Green-

wich mean noon from the Nautical Almanac and adding thereto

the product of 9
8
.8565 by the longitude in hours of the given

meridian, counted westward from the meridian of Greenwich.

If standard time is used it must first be changed to local mean
time (Art. 966) before applying the above rule.

Example. To find the sidereal time at Syracuse, N. Y., longitude
76 08' 20".40 west of Greenwich, when the standard (75th meridian) time
is 10h 42m 00 s

am., January 17th, 1911.
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76 08' 20". 40 10h 42 00 s
. 00 standard time

75 - 4 33 .36

15) 1 08' 20". 40 10 37 26 . 64 local mean time

4m 338.36 12

log4953.36 =3.6948999 1^ 22m 33 s
. 36 = 4953 s

. 36

log 0.0027379 = 7. 4374176 +13 .56

log (13
s

. 56) =1.1323175 1 22 46 . 92 sidereal interval

15)76 08' 20". 40
log 9.8565=0.9937227

log 5.0759 = 0.7055131
5h 04m 33s .36

= 5 .0759 hrs. log (50
s
.03)

= 1 . 6992358

Sidereal time of Greenwich mean noon 19h 43m 09 s
. 48

Reduction to Syracuse meridian + 50 .03

Sidereal time of Syracuse mean noon 19 43 59 . 51

Sid. int. from Syracuse mean noon 1 22 46 .92

Sidereal time at given instant 18h 21m 12 s
. 59

100. To Change Sidereal to Local Mean Time or Standard

Time. This is the reverse of the process in Art. 99, and consists

in finding the difference between the given time and the sidereal

time of mean noon for the given place and date, changing this

interval to the corresponding mean time interval (Art. 98), and

combining the result with twelve o'clock (mean noon) by addi-

tion or subtraction as the case requires. The result is local mean

time, and if standard time is wanted it is then obtained as

explained in Art. 966.

Example. To find the local mean time and standard (75th meridian)
time at Syracuse, N. Y., longitude 76 08' 20".40 west of Greenwich, when
the sidereal time it 18h 21m 12 8

.59, January 17, 1911.

76 08' 20". 40- 75 =1 08' 20". 40 = 4m 33s
. 36

log 9.8565 =0.9937227
15)76 08' 20-.40

5.0759=0.7055131
5h 04m 33". 36

= 5.0759 hrs. log (50". 03) =1.6992358
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Sidereal time of Greenwich mean noon 19h 43m 09 s .48

Reduction to Syracuse meridian + 50 .03

Sidereal time of Syracuse mean noon 19 43 59 .51

Sidereal time at given instant 18 21 12.59

Sidereal interval before Syracuse mean noon l h 22m 46 s
. 92

lh 22m 46 s
. 92 = 4966 s

. 92

log 4966 .92 = 3 6960872 Reduction to , lh 22 46 s
. 92

log 0.0027304 = 7. 4362263 mean time
- 13 .56

log (13
s

. 56) =1.1323135 l interval J
1 22 33.36

12

Local mean time at given instant (morning) 10h 37m 26s
. 64

Reduction to standard time +4 33 . 36

Standard time at given instant (morning) 10h 42m 00 s
. 00

101. Time by Single Altitudes. The altitude of any heavenly

body as seen by an observer at a given point is constantly chang-

ing, each different altitude corresponding to a particular instant

of time which can be. computed if the latitude and longitude are

approximately known. In finding local mean time or sidereal

time it is sufficient to know the latitude to the nearest minute

and the longitude within a few degrees. In changing from local

to standard time, however, an error of I
s
will be caused by each

15" error of longitude. If the latitude is not known it may
generally be scaled sufficiently close from a good map, or it may
be determined as explained in Arts. 107 or 108. By comparing
the observed time for a certain measured altitude of sun or star

with the corresponding computed time the error of the observer's

timepiece is at once determined. The observation may be

made with a transit (or altazimuth instrument), or with a sextant

(and artificial horizon), the latter being the most accurate. In

either case several observations ought to be taken in imme-

diate succession, as described below, and the average time and

average altitude used in the reductions. The probable error of

the result may be several seconds with a transit, and a second

or two with the sextant. The actual error is apt to be larger on

account of the uncertainties of refraction. The observation is

commonly made with the sextant and on the sun.
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101a. Making the Observation. The best time for making
an observation on the sun is between 8 and 9 o'clock in the

morning and between 3 and 4 o'clock in the afternoon, in order

to secure a rapidly changing altitude and at the same time avoid

irregular refraction as far as possible. The altitude of the

center of the sun is never directly measured, but the observations

are taken on either the upper or lower limb, or preferably an equal
number of times on each limb. Star observations may be made
at any hour of the night, selecting stars which are about three

hours from the meridian and near the prime vertical, and hence

changing rapidly in altitude at the time and place of observation.

If two stars are observed at about the same time having about

the same declination and about the same altitude, but lying on

opposite sides of the meridian, the mean of the two results (de-

terminations of the clock error) will be largely free from the errors

due to the uncertainties of refraction.

In taking the observation an attendant notes the watch

time to the nearest second at the exact moment the pointing

is made. // the transit is used, an equal number of readings

should be taken with the telescope direct and reversed, the plate

bubble parallel to the telescope being brought exactly central

for each individual pointing in order to eliminate the instrumental

errors of adjustment. If a star or one limb of the sun is observed

there should be not less than 3 direct and 3 reversed readings.

If both limbs of the sun are observed there should be not less

than 2 direct and 2 reversed readings on each limb, or 3 direct

on one limb and 3 reversed on the other limb. // the sextant and

artificial horizon are used, and the pointings are made on a star

or on one limb of the sun, not less than 5 readings of the double

altitude should be taken; if both limbs of the sun are observed,

not less than 3 readings should be taken for each limb. These

double altitudes are always corrected for index error and some-

times for eccentricity. It is considered better not to use the

cover on the artificial horizon, but if it has to be done it should

be reversed on half of the readings. If as much tin foil is added

to commercial mercury as it will unite with, an amalgam is formed

whose surface is not readily disturbed by the wind, thus rendering

the cover unnecessary. When the mercury is poured in its

dish it must be skimmed with a card to clean its reflecting surface.

In all of the above methods of observing, the work is supposed
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to be carried on with reasonable regularity and expedition when
once started. With any method it is desirable to take at least

two sets of readings and compute them independently as a check,

the extent of the disagreement showing the quality of the work

that has been done, while the mean value is probably nearer the

truth than the result of any single set.

101b. The Computation. The first step in the computation
of any set of observations is to find the average value of the meas-

ured altitudes and the average value of the recorded times, these

average values constituting the observed altitude and time for

that set. This observed altitude is then reduced to the true

altitude for the center of the object observed. The reductions

which may be required are for refraction, parallax, and semi-

diameter. The apparent altitude of all heavenly bodies is too

large on account of the refraction of light; Table VIII gives the

average angular value of refraction, which is a negative correc-

tion for all measured altitudes. Parallax is an apparent dis-

placement of a heavenly body due to the fact that the observer

is not at the center of the earth; star observations require no

correction for parallax; all solar observations require a positive

correction for parallax, the amount being equal to 8".9 multiplied

by the cosine of the observed altitude. The correction for

semi-diameter is only required in solar work, and not even then

for the average of an equal number of observations on both limbs;

when the average altitude refers to only one limb a self-evident

positive or negative correction is required for semi-diameter,

the value of which is given in the Nautical Almanac for the me-
ridian of Greenwich for every day of the year, and can readily

be interpolated for the given longitude. Letting h equal true

altitude for center, h! equal measured altitude, r equal refrac-

tion, p equal parallax, and s equal semi-diameter, we have

h (for a star)
= h' r;

h (sun, both limbs)
= h' r + p;

h (sun, one limb)
= h' r + p s.

In the polar triangle ZPS, Fig. 47, page 166, the three sides are

known. ZP, the co-latitude, is found by subtracting the observer's

latitude from 90. PS, the polar distance or co-declination, is
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found by subtracting the declination of the observed body from 90.

In the case of the sun the declination is constantly changing and

must be taken for the given date and hour (the time being always

approximately known). The sun's declination for Greenwich

mean noon is given in the Nautical Almanac for every day in the

year, and can be interpolated for the Greenwich time of the observa-

tion; the Greenwich time of the observation differs from the

observer's time by the difference in longitude in hours, remember-

ing that for points west of Greenwich the clock time is earlier, and

vice versa. ZS, the co-altitude, is found by subtracting the

reduced altitude h from 90. Using the notation of Fig. 47,

we have from spherical trigonometry

cos z = sin
<f>

sin d + cos
<f>

cos d cos t,

whence

cos z sin 4> sin d
cos t = -7 ^-r

,
cos <p cos o

which for logarithmic computation is reduced to the form

tan
Jsinflz + (</>- 3)] sin j[z

-
(<f>

-
d)]

21 ^COS ^[2 + (0 + d)] COS i[z -(<f> + d)]'

The value of t thus found is the hour angle of the observed body,

or angular distance from the observer's meridian. Dividing t

by 15 changes the angular value to the corresponding time interval.

For a solar observation the time interval is subtracted from or

added to 12 o'clock according as the sun is east or west of the

meridian, giving the apparent solar time of the observation.

This apparent time must be reduced to mean time by applying

the equation of time for the given date and hour, taken from the

Nautical Almanac in the manner above described for finding the

declination. The local mean time of the observation as thus

found may be changed to standard time (Art. 966), or sidereal

time (Art. 99), if so desired.

For a star observation the time interval is subtracted from or

added to the star's right ascension according as the star is east

or west of the meridian, giving the sidereal time of the observation.

This may be changed to local mean time (Art. 100), and thence

to standard time (Art. 966), if so desired.
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EXAMPLE. TIME BY SINGLE ALTITUDES OF THE SUN

Chicago, III., June 1, 1911.

Latitude =41 50' 01". N.

Longitude = 87 36' 42".0 = 5h 50m 26 s
. 8 = 5. 84 hrs. W. of Greenwich.

Uses 90th meridian (Central Standard) time = 6.00 hrs. W. of Greenwich.

Local time Standard time = 6h 00m 00 s .0-5h 50m 26 s .8 = 9m 33 s
. 2.

Sun. h'
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In either case the error of the observer's timepiece (as deter-

mined by any given set of observations) is obtained by comparing
the observer's average time for the given set with the computed
true time for the same set.

102. Time by Equal Altitudes. In this method the clock

time is noted at which the sun (or a star) has the same altitude

on each side of the meridian, from which the clock time of meridian

passage (upper or lower transit or culmination) is readily obtained.

By comparing the clock time with the true time of meridian

passage the error of the observer's clock is at once made known.

The advantages of this method over the method of single altitudes

are as follows: the results are in general more reliable; the com-

putation is simpler, as it does not involve the solution of a spherical

triangle; no correction is required for refraction, parallax, semi-

diameter, nor instrumental errors; the latitude need not be known
at all for star observations, and only very approximately for

solar work. The observations may be made with a transit or a

sextant (with artificial horizon), the latter being the most accurate.

In either case several observations ought to be taken in immediate

succession, as described below, and the average time used in the

reductions. The probable error of the result should not exceed

about two seconds with the transit nor about one second with

the sextant. The actual error may be greater on account of the

uncertainties of refraction. The method evidently assumes that

the refraction will be the same for each of the equal altitudes,

but on account of the lapse of time between the observations

this is not necessarily true. The observation is commonly made
with the sextant and on the sun.

102a. Making the Observation. As with the previous

method, the best time for making an observation on the sun is

between 8 and 9 o'clock in the morning and between 3 and 4

o'clock in the afternoon. The observations may be taken entirely

on one limb of the sun or an equal number of times on each limb.

The equal altitudes may be taken on the morning and afternoon

of the same day, or on the afternoon of one day and the morning
of the next day. For star observations a star should be selected

which will be about three hours from the meridian and near the

prime vertical at the times of observation. Since the equal

altitudes observed must be within the hours of darkness, a star

is required whose meridian passage occurs within about three



ASTRONOMICAL DETERMINATIONS 177

hours after dark and three hours before daylight. The sidereal

time of meridian passage is always known, since it is the same

as the star's right ascension, and the corresponding values of

mean time and standard time are readily found by Arts. 100 and

96b. The equal altitudes may be taken during the same night, or

on the morning and evening of the same day.

In taking the observation the attendant notes the watch

time to the nearest second at the exact moment the pointing is

made. If the transit is used the telescope is not reversed, but the

plate bubble parallel to the telescope is brought exactly central

for each individual pointing; no corrections are made to the result-

ing reading for any instrumental errors. 7/ the sextant and

artificial horizon are used no corrections are applied to the result-

ing double altitude as measured. There is no great objection

to using the cover of the artificial horizon in this method, and

when used it is not reversed (as in Art. 101a); it is necessary,

however, to use it in the same position at both periods of equal

altitudes.

If a star or one limb of the sun is observed there should be

not less than 5 readings taken at each period of equal altitudes.

If both limbs of the sun are observed there should be not less than

3 readings (at each period) for each limb. The angular readings

in this method are always equally spaced, the instrument being
set in turn for each equal change of altitude and the time noted

when the event occurs. In commencing operations the observer

measures the approximate altitude, sets his vernier to the next

convenient even reading, and watches for that altitude to be

reached; the next setting is then made and that altitude waited

for, and so on. At the second period the same settings must be

used, but in reverse order. The size of the angular interval

will depend on the ability of the observer to make each setting

in time to catch the given occurrence, and can best be found by
trial; under average conditions a good observer would not find

it difficult to use 10' settings on the transit and 20' on the sextant.

It is desirable to take at least two independent sets of observa-

tions, and compute them separately as a check and as an indica-

tion of the reliability of the results; the adopted value would

then be taken as the mean of the several determinations.

102b. The Computation. In this method there is no object
in finding the average of the observed altitudes, the method
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being based on the equality of the corresponding altitudes in-

stead of their value. For each set of observations, however,
it is necessary to find the average of the time readings for

each of the two periods of equal altitudes. From these values

the middle time (half-way point between the two average time

readings) is found for star observations, and the middle time and

elapsed time (interval between average time readings) for solar

observations. For star observations the middle time is the

observer's time of meridian passage. For solar observations

a correction must be applied to the middle time to obtain the

observer's time of meridian passage, on account of the changing
declination of the sun.

For solar observations on the same day, expressed in mean time

units, we have from astronomy

tt _ m ddj_t
/tan

<f>
tan d'

15 \ sin t tan t

in which

U = observer's time at apparent noon (upper transit of sun) ;

M = middle time of the observations;

t
= one-half elapsed time, in hours to three places outside

of parentheses and angular value inside of parentheses;

cf>
= observer's latitude (approximate), + for north and

for south latitude;

d = sun 's declination at mean noon for given date and longi-

tude, + for north and for south declination;

dd = hourly change of declination at mean noon for given

date and longitude, + when north declination is increasing

or south declination decreasing, and when north declina-

tion is decreasing or south declination increasing.

The values for d and dd for the given date are found in the

Nautical Almanac for Greenwich mean noon and interpolated for

the given meridian. If a sidereal chronometer is used it is neces-

sary to convert t into a mean time interval before inserting in the

corrective term in the above formula, and the value of this term

must then be reduced to a sidereal interval before subtracting

from M.
The true mean time of apparent noon is found by applying
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to 12 o'clock (the apparent time) the equation of time for the given
date and longitude. The equation of time (with directions for

applying) is found in the Nautical Almanac for Greenwich

apparent noon of the given date, and interpolated for the given
meridian. The true mean time of apparent noon is then reduced

to standard time (Art. 966), or sidereal time (Art. 99), if so desired.

By comparing the observer's time, U, with the corresponding
true time of apparent noon, the error of the observer's timepiece
at apparent noon is made known.

For solar observations on an afternoon and following morning,

expressed in mean time units, we have from astronomy

r -, dd-t /tan
<j>

tan d
L = M i z-z- 1 .

- + -
lo \ sin t tan t

in which L is the observer's time at apparent midnight (lower
transit of sun), d and dd the declination and hourly change for

mean midnight of initial date, and the other quantities remain

as before. This problem is worked out as in the preceding case

except that d, dd, and the equation of time must be interpolated

for twelve hours more than the given longitude, and the clock

error is determined for apparent midnight of the initial date.

For star observations during the same night, taken on the same

star, the middle time represents the observer's time for the star's

upper transit. The true sidereal time of this transit equals the

star's right ascension, as given in the Nautical Almanac, and this

is changed to local mean time (Art. 100), and thence to standard

time (Art 966), if so desired.

By comparing the observer's middle time with the true time

of upper transit, the error of the observer's timepiece is deter-

mined for the moment at which it indicated the middle time.

For star observations on morning and evening of same day, taken

on the same star, the middle time represents the observer's time

for the star's lower transit. The true sidereal time of this transit

equals the star's right ascension plus twelve hours, and this is

changed to local mean time (Art. 100), and thence to standard

time (Art. 986), if so desired.

By comparing the observer's middle time with the true time

of lower transit, the error of the observer's timepiece is determined

for the moment at which it indicated the middle time.
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EXAMPLE. TIME BY EQUAL ALTITUDES OF THE SUN

Albany, N. Y, May 10, 1911.

Latitude =42 39' 12". 7 N.

Longitude= 73 46' 42".0 = 4h 55m 06 8 .8 = 4.92hrs. W. of Greenwich.

Uses 75th meridian (Eastern Standard)time = 5.00 hrs. W. of Greenwich.

Local time -Standard time= 5h 00m 00 s
.0-4* 55m 068 .8= 4m 53s

. 2

Time.

At Greenwich mean noon
At Greenwich app. noon
Reduction for 4 . 92 hrs.

At Albany mean noon
At Albany app. noon

+ 17 23' 56". 7 +39". 87

dd Eg. of Time.

+
+ 17 c

3 15 .8

27' 12". 5

-
+ 39'

.15

.72

3ra 41 8 .2

+ 0.6

3m 418.8

Equation of time subtractive from apparent time(on given date).

0.73X4.92

24""
=0".15

39.87 + 39.72 = 39". 80

0. 126X4. 92 = S
. 62

Sun. App. alt.

Upper limb

Lower limb

00'

20

40

40

00
20

39

Watch, a.m.

8h 58m 228

9 00 18

02

0.-)

07

09

12

14

10

05

6)54* 22m 21 s

80X4.92 =195". 8

Watch, p.m.

2h 54m 133

2 52 18
2 50 24

2 47 20
2 45 25
2 43 29

6)16h 53m 098

M = 11* 56m 178 .5

f = 2h 52m 348 .0

t\
= 2.88 hrs.

I =43 08'30".0

9h 03m 43 s

( + 12) 2 48 51

5

5

2)23h 52m358 .0

Ilk 56m 178.5

( + 12)2
h 48m 51 8 .5

9 03 43 .5

2)5h 45m 088 .0

2h 52 348.0

log.

tan< (42 39' 12". 7) = 9.9643882

sin ((43 08 30 .0) =9.8349320
tan^ (17 27' 12". 5) :

tan t (43 08 30 ,0)

log.

9.4974948
9.9718084

(1.3473) = 0.1294562 (0.3355) = 9.5256864

1.3473-0.3355 = 1.0118 dd (39.72)
t (2.88)

15 (a.c.)

1.0118

= 1 . 5990092
=0.4593925
=8.8239087
=0.0050947

M=Ub 56m 17 8 .5
- 7 .7

C/=llh 56m 09s 8 (7
8
.7) =0.8874051

Local apparent noon 1 2h 00m 00 8
.

Equation of time 3 41 .8

Local mean time at apparent noon llh 56m 188 .2

Watch time at apparent noon 11 56 09 .8

Watch slow by mean time m 08 s
. 4

Reduction to standard time 4 53 .2

Watch fast by standard time 4m 44 8
. 8
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103. Time by Sun and Star Transits. The true time at which

any heavenly body crosses the meridian is always known; in the

case of the sun the upper transit is apparent noon, the mean

time of which is determined by the equation of time (Art 96);

in the case of a star the sidereal time at upper transit is the

same as the star's right ascension; and (by Arts. 966, 99, and 100)

sidereal time, mean time and standard time are mutually

convertible. If the observer notes his own clock time when any

heavenly body crosses the meridian, the error of his timepiece

is made apparent by comparison with the corresponding known

true time. In order that the observation may be made it is

necessary to know the location of the true meridian from a pre-

vious azimuth determination. (Astronomers have other ways
of obtaining the meridian.) With the telescope in the plane of

the true meridian, and set at a suitable vertical angle, it is only

necessary to note the time when the given transit occurs.

103a. Sun Transits with Engineering Instruments. The instru-

ments used for determining time by transits of the sun may be

the ordinary engineer's transit or the altazimuth instruments of

Chapter III. A prismatic eyepiece will be required if the

meridian altitude exceeds about 60. The instrument (and

striding level, if there be one) should be in good adjustment.

The instant at which the advancing edge of the sun reaches the

meridian is noted with the telescope direct, and the instant at

which the following edge reaches the meridian is noted with the

telescope reversed, the mean of the two time readings being the

observer's time of meridian passage. When the telescope is

reversed it will be necessary to revolve the instrument on its

vertical axis, and .the telescope must be again brought into the

plane of the meridian by sighting at the meridian mark as before.

If the instrument has no striding level the plate bubble parallel

to the horizontal axis of the telescope is to be kept exactly central

while each observation is being made. If the instrument has a

striding level it must not be reversed when the telescope is

reversed, but the bubble must be kept central, as before, for

each observation. If the instrument has three leveling screws

it should be set with two screws parallel to the meridian and

the bubble kept central with the remaining screw; if there are

four leveling screws, place one pair in the meridian and hold the

bubble central with the other pair. Time determined in the
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above manner should not be in error by more than a second with

an altazimuth instrument, nor by more than a couple of seconds

with an engineer's transit.

The above method is not adapted to precise time determina-

tions, so that when the larger astronomical instruments are avail-

able the observations are usually made on the stars.

103b. Star Transits with Engineering Instruments. The
instruments used by the engineer for determining time by star

transits may be the ordinary transit or the altazimuth instru-

ments of Chapter III. The instrument (and striding level, if

there be one) should be in good adjustment. The stars have no

appreciable diameter, so that only one observation is obtained

for each star. Since the true time of each star transit will be

needed in the reductions it is desirable to tabulate these values

beforehand, in order to be ready to watch for each transit near

the proper time, as a star occupies only about a minute or two

in crossing the field of view. As previously explained (Art. 97)

the sidereal time of transit for each star is the same as its right

ascension; if the observer's timepiece records mean or standard

time it will be necessary to reduce the sidereal time of transit

accordingly, as explained in Art. 100. In order to eliminate instru-

mental errors the stars are observed in pairs, the two stars of

each pair having about the same declination; the second star

of each pair is then observed with the telescope reversed. The

instructions in the preceding article concerning the reversing and

releveling of the instrument must be strictly adhered to. Only
one result is obtained from each pair of stars, the average true

time of transit for each pair being compared with the middle

observed time for that pair to obtain the clock error for that

instant of time. Not less than three pairs of stars should be

observed and the results averaged If the clock rate is not known

the middle times for the several pairs should not differ greatly,

the average of the error determinations being considered as the

true value at the average of the middle times. If the clock rate

is known the several error determinations are first reduced to the

same instant of time before averaging.

Selection of stars. If several pairs of stars are observed it

makes no difference in what order the stars come to the meridian

so long as they are properly paired in the reductions. If the

stars are so selected that all the first stars of the several pairs
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will cross the meridian before any of the second stars, but one

reversal of the instrument will be required; this will be the case

if all the first stars have less right ascensions than any of the

second stars. In order to have ample time between observations

for releveling, etc., stars should not be selected having right

ascensions differing by less than about five minutes. Having
decided on the period of the night during which it is desired to

make the observations, the mean time for the beginning and end

of this period must be converted into approximate sidereal time,

and stars must be selected whose right ascensions lie within these

limits. The approximate sidereal time for any mean time instant

is found by adding the mean time interval from the preceding
noon to the sidereal time of Greenwich mean noon for the same
date. Stars near either pole are not suitable for time stars on

account of their apparent slow movement across the meridian;
it is not desirable to use stars whose declination is more than 60

either way from the equator. On account of the uncertain state

of the atmosphere at low altitudes stars should not be selected

which will cross the meridian less than 30 above the horizon. Thus
in 40 north latitude (see Fig. 47, page 166), the horizon will lie 50

south of the equator, and hence stars should not be taken lying
over 20 south of the equator, so that for this latitude the stars

selected should lie between 60 north declination and 20 south

declination. The altitude of any star while crossing the meridian

is readily obtained when it is remembered that the meridian

altitude of the equator equals the observer's co-latitude, and that

the star's distance from the equator is given by its declination.

A prismatic eyepiece will be required for meridian altitudes

exceeding about 60.

It is best to use the brightest stars available for the given
time and place, as it is not easy to identify or observe the fainter

stars; satisfactory results may be obtained with stars ranging
from the first (brightest) magnitude to about the fifth magnitude,

depending on the size of the instrument. A large list of stars

from which to choose, with all necessary data, will be found

in the Nautical Almanac.

103c. Star Transits with Astronomical Instruments. The
most accurate determinations of time are made by observing
star transits with large portable astronomical transits or the

still larger fixed observatory transits, in conjunction with an
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astronomical clock beating seconds or a sidereal chronometer

beating half seconds. A portable transit is illustrated in Fig. 48.

A chronograph is generally used in the observatory, and
sometimes in the field, for recording the observations. A chrono-

graph is a clock-like device for moving a sheet of paper uniformly
under a pen which automatically registers each second as indicated

by the clock or chronometer; by breaking an electric circuit

the observer causes the pen to record the star transits on the same
sheet of paper; the time of transit is then obtained very accurately

by scaling the distance from the nearest recorded second. When
the chronograph is not used the observer listens to the chronom-

eter beats and estimates the time of each transit to the

nearest tenth of a second. The details of the instruments

used, and the refinements in the methods of observation

and computation, are beyond the scope of this treatise, but

the principles involved are the same as those already given.

The accuracy attainable is to about the nearest one-hundredth

part of a second.

104. Choice of Methods. Though other methods have been

devised for determining time, those above given are the ones in

most general use. The engineer may use any of the methods from

Art. 101 to Art. 1036, inclusive. Engineers generally prefer to

work in the daytime, taking their observations on the sun. The
transit may be used, but the sextant is to be preferred. If the

transit is used the method based on the meridian passage of the

sun (Art. 103a) is likely to be the most satisfactory, while if the

sextant is used the method of equal altitudes (Arts. 102, 102a,

1026) will generally give the best results. Any of the methods

will determine the true time as closely as the engineer will need

it in any of his operations.

105. Time Determinations at Sea. There are several methods

of finding local time at sea, the method by single altitudes (Art.

101) being most commonly used. The object observed may be

the sun or one of the brighter stars. The observations are made
with the sextant, the altitudes being measured from the sea

horizon. This horizon is not the true horizon on account of the

eye of the observer being at a material height above the surface

of the water. The result of this condition is to make all measured

altitudes too large by an angle depending on the height of the

observer and known as the dip of the horizon. The correction



ASTRONOMICAL DETERMINATIONS 185

Fig. 48. Portable Transit.

From a photograph loaned by the U. S. C. and G. S.
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for dip is always subtractive, and is in addition to the corrections

required by Art. 1016. Its value is given by the formula

log D - 1.7712700 + i log h,

in which D is the dip in seconds of arc and h is the observer's

height in feet above the sea. The latitude required in the for-

mula of Art. 1016 is obtained sufncientlj'' close by dead reckoning

from the nearest observed latitude. Time at sea may be deter-

mined in this manner with a probable error running upwards
from a few seconds, depending on the circumstances surrounding
the observations.

Latitude

106. General Principles. The latitude of a point on the

surface of the earth is its angular distance from the equator in a

meridional plane. In Fig. 49 the ellipse WNES represents a

meridian section of the earth (Arts. 65, 66, 67), in which NS is

the polar axis, or minor axis of the ellipse; WE, the equatorial

diameter, or major axis of the ellipse; n, the position of the

observer; nt the tangent at n; nl, the normal at n, it being noted

that the normal at any point n does not pass through the center

c (except when n is at the poles or on the equator) ; Zn, the direc-

tion of the plumb line at n, frequently deviating a few seconds

(Art. 75) from the direction of the normal nl) Z, the zenith,

or intersection of the direction of the plumb line with the celestial

sphere (Art. 94).

Astronomical latitude is the angular distance of the zenith

from the equator, or the angle between the plumb line and the

equatorial plane. In Fig. 49 the astronomical latitude of the

point n would be shown by prolonging the line Zn to an intersec-

tion with the line WE, the intersection commonly falling slightly

to one side of the point I and making the angle a few seconds greater

or less than the angle <f>. The latitude as determined by observa-

tion is always the astronomical latitude. Latitudes obtained at

sea are of this kind.

Geodetic latitude is the angle between the normal and the

equator; in Fig. 49 the geodetic latitude of the point n is the

angle </>. The geodetic latitude can never be directly observed,

nor can the deviation of the plumb line be found by direct meas-
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urement. If, however, the latitude of the point n be found

by computation (Chapter V) from the astronomical latitudes

measured at various other triangulation stations, and these

values be averaged in with its own astronomical latitude, the

result may be assumed to be free from the effects of plumb line

deviation and to represent the true geodetic latitude. In geodetic

work geodetic latitude is always understood unless otherwise

specified.

Geocentric latitude is the angle between the equator and the

radius vector from the center of the earth; in Fig. 49 the geo-

centric latitude of the point n is the angle /?. The geocentric
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latitude can never be directly observed. It is computed from the

geodetic latitude by the formula

b2

tan 8 = -5 tan (b,

in which (Art. 69)

log ^ - 9.9970504 - 10.

At the equator the geodetic and geocentric latitudes are each

equal to zero. At the poles they are each equal to 90. At any

other point the geocentric latitude is less than the geodetic

latitude. By the calculus we have,

tan
<f> (for <j>

-
/?
= max.) = p or

<j>

= 45 05' 50".21;

tan 8 (for <f>

- 8 = max.) = -, or
/?
= 44 54 09 .79;

or a maximum difference of 11' 40".42. The popular conception

of latitude is geocentric latitude, but published latitudes are

usually astronomical latitudes or geodetic latitudes.

107. Latitude from Observations on the Sun at Apparent
Noon. Latitude sufficiently close for many purposes may be

obtained by measuring the altitude of the sun at apparent noon,

or the moment when it crosses the meridian. The local mean

time of apparent noon is found by applying to 12 o'clock (the

apparent time) the equation of time as taken from the Nautical

Almanac for the given date, interpolating for the given meridian;

the corresponding standard time may then be found by Art. 96a.

If the correct time is not known the altitude is measured

when it attains its greatest value, which soon becomes evident

to the observer who is following it up. A good observer can obtain

an observation on each limb of the sun before there is any appre-

ciable change of altitude, the mean of the readings being the

observed altitude for the center; if only one limb is observed

the reading must be reduced to the center by applying a correc-

tion for semi-diameter as found in the Nautical Almanac for the

given date, the result being the observed altitude. In either

case the observed altitude is too large on account of refraction,

and must be corrected by an amount which may be taken from
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Table VIII for the given observed altitude. Theoretically all

solar altitudes are measured too small on account of parallax

(due to the observer not being at the center of the earth), the

necessary correction being equal to 8".9 multiplied by the cosine

of the observed altitude. The correction for parallax is a useless

refinement with the engineer's transit, but may be applied, if

desired, when a sextant or altazimuth instrument is used.

The observation. Single altitudes of the sun may be measured

with a transit or with an altazimuth instrument, but a pris-

matic eyepiece will be required if the altitude exceeds about 60.

The instrument must be very carefully leveled at the moment of

taking the observation, and if two readings can be secured the

second reading should be taken on the other limb of the sun with

the telescope reversed and the instrument carefully releveled,

so as to eliminate the instrumental errors. If only one reading

is secured it should be corrected for index error if one exists. If

the altitude is not greater than about 60 an artificial horizon

may be used and the double altitude measured with either of the

above instruments or a sextant. If a transit or altazimuth

instrument is used it is not reversed on any of the observa-

tions, and it must not be releveled between the pointing to

the sun and the pointing to its reflected image. If a sextant is

used the correction for index error must be applied.

The computation. Having applied the appropriate correc-

tions to the measured altitude, as described above, the true

altitude of the sun is obtained within the capacity of the instru-

ment used. This value being subtracted from 90 gives the zenith

distance of the sun. The declination of the sun is taken from the

Nautical Almanac for the given date and meridian, and this

value is the distance of the sun from the equator. Knowing thus

the distance from the equator to the sun, and from the sun to

the zenith, an addition or subtraction (as the case requires)

gives the zenith distance of the equator, and this value (Art. 106)

is the observer's latitude. If an ordinary transit is used the

latitude thus obtained should be correct to the nearest minute.

If a sextant or an altazimuth instrument is used the result is

generally much closer to the truth. Theoretically the result

should be as accurate as the instrument will read, but there is

always a doubt as to the precise value of the refraction, and the

latitude obtained is subject to the same uncertainty.
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108. Latitude by Culmination of Circumpolar Stars. Stars

having a polar distance (90 declination) less than the observer's

latitude never set, but appear to revolve continuously around

the pole, and are hence called circumpolar stars. Such stars

cross the observer's meridian twice every day, once above the

pole (upper culmination) and once below the pole (lower culmina-

tion). By referring to Fig. 47, page 166, it will be seen that the

latitude of any place is always the same as the altitude of the

elevated pole. By observing the altitude of a close circumpolar

star at either upper or lower culmination, and combining the

result (minus correction for refraction, Table VIII) with the star's

polar distance (added for lower culmination, subtracted for

upper culmination), the altitude of the elevated pole is obtained,

and hence the observer's latitude. The polar distance must be

based on the declination for the given date as found in the

Nautical Almanac. The latitude as thus determined is much
more reliable than that obtained by solar observations.

In the northern hemisphere the best star to observe is Polaris

(a UrssB Minoris), on account of its brightness (2nd magnitude)
and its small polar distance (about 1 10' in 1911). About the

middle of the year both culminations of Polaris occur during

daylight hours, rendering it unsuitable for observation. The next

best star to observe is 51 Cephei, which also has a small polar dis-

tance (about 2 48' in 1911), but whose brightness (5th magnitude)
is not equal to that of Polaris. As these two stars differ about

five and one-half hours in right ascension, at least one of them

must culminate during the hours of darkness. The sidereal time

of upper culmination for either star is the same as its right ascen-

sion (the exact value for the given date being taken from the

Nautical Almanac), and this is converted into mean time by
Art. 100. By a study of Fig. 50, which shows the arrangement of

a number of stars in the vicinity of the north pole of the heavens,

it will not be difficult to identify Polaris and 51 Cephei. The

polar distances of these stars are so small that but little change
of altitude occurs when they are near the meridian, so that several

observations may be obtained and averaged. If the observations

are taken within five minutes each side of the meridian the error

in assuming the altitudes unchanging will not exceed 1" with

Polaris and 2".5 with 51 Cephei, and may be ignored when observ-

ing with engineering instruments. Within fifteen minutes either
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way from meridian passage the change in altitude (within 1"

error) may be found, if desired, by multiplying the square of the

time (in minutes) from culmination by 0".044 for Polaris and
0".104 for 51 Cephei. If this correction is applied it is to be added
to observations near upper culmination and subtracted from

observations near lower culmination, to obtain the corresponding

culminating altitude.

In making the observation the altitude maybe directlymeasured

with a transit or an altazimuth instrument. In order to eliminate

instrumental errors at least two readings should be averaged

together, one taken with telescope direct and one with telescope

reversed. The instrument must be releveled after reversing,

as it is necessary to have the bubbles exactly central at the moment
each reading is taken. If by any accident only one reading is

secured it must be corrected for index error, if one exists. The
two readings should be obtained as near together and as near

culmination as the skill of the observer will permit; two readings

not over three minutes each way from the meridian are easily

obtained. A better result will be obtained if four readings are

averaged together, taking one direct reading, then two reversed

readings, and then one direct reading, both bubbles being kept

exactly central while taking each reading; this program is

easily accomplished within five minutes each side of the meridian.

If an artificial horizon is available it is better to measure the double

altitude between the star and its image in the mercury, using

either of the above instruments or a sextant. Angles measured

with a sextant are always corrected for index error and sometimes

for eccentricity. If a transit or altazimuth instrument is used the

double altitude is obtained by reading on the star and then on

its image, without reversing or releveling between the pointings.

Two such double altitudes are easily obtained within three minutes

each way from the meridian, using either of these instruments

or a sextant. Latitudes obtained by the methods of this article

should theoretically be correct within the reading capacity of

the instrument, but may be further in error on account of the

uncertainties of refraction.

109. Latitude by Prime Vertical Transits. Stars whose

declination is less than the observer's latitude apparently cross

the prime vertical (true east and west vertical plane) twice dur-

ing each revolution of the earth on its axis. If the time elapsing
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between the east and west transit of any star is noted the observ-

er's latitude may be found by com-

putation. Referring to Fig. 51, P is

the elevated pole of the celestial

sphere; PZS', the observer's meridian
;

Z, the observer's zenith; SZS", the

prime vertical; S'S", the star's ap-

parent path; PS, the star's polar

distance; and PZ, the observer's co-

latitude. In the spherical triangle

PZS, right-angled at Z, the side PS
and the angle SPZ are known; the

side PS being the star's polar distance,

and the angle SPZ equal to half the

elapsed time changed to angular units by multiplying by 15.

Hence, solving for the latitude
</>,

we have

,
tan d

tan = -.
cos t

In this method the uncertainties of refraction are largely elim-

inated because the times of transit are observed instead of the

altitudes. The success of the method depends on the precision

with which the meridian is determined and the prime vertical

located therefrom, and the accuracy with which the telescope

is made to describe a vertical plane.

The method, though not much used

in the United States, is one of the

best, and with suitable instruments

and refinements will determine lati-

tude within a fraction of a second. If

a close determination of latitude has

to be made with an altazimuth instru-

ment without a micrometer eyepiece,

but which is furnished with a good

stridinglevel,thismethodwillprobably

give better results than any other.

110. Latitude with the Zenith

Telescope. This method (otherwise

known as the Harrebow-Talcott

method) is the one which the U. S. Coast and Geodetic Survey
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always uses for the precise determination of latitude, the probable
error of the results being readily kept below a tenth of a second.

Referring to Fig. 52, page 193, PEP'E' is a meridian section of the

celestial sphere; PP', the polar axis; EE', the equator; C, the

observer; Z, the zenith; S and S', two stars with nearly equal

(within about 15') but opposite meridian zenith distances, and

with a sufficient difference of right ascension to enable each one

to be observed in turn as it crosses the meridian.

Let <f>
= EZ = observer's latitude;

d = ES = declination of $ (from Nautical Almanac) ;

d'= ES' = declination of S* (from Nautical Almanac);
z = apparent zenith distance of S;
z''= apparent zenith distance of Sf

;

r = refraction correction for z (from Table VIII) ;

r' = refraction correction for z' (from Table VIII) ;

then

z +r = ZS = true zenith distance of S;

z' + r' = ZS' = true zenith distance of S'
;

whence

$ = d + z + r

_ ' -
<y + r')

2cf>= (3 + d') + iz-z') + (r-r')'

and we have for the latitude

<l>
- *[(* + P) + (*

-
z') + (r

-
r')\.

In this equation the quantities (#+ d') and (r r') are known,
so that it is only necessary to obtain ( z z') by observation to

determine the latitude. The quantity (z z') is the difference

between the zenith distances of the two stars S and S', and if

this quantity is not over about 15' it can be measured with great

accuracy by means of the zenith telescope (see Fig. 53). The
instrument illustrated has an aperture of about three inches,

a focal length of nearly four feet, and a magnifying power of 100.

The telescope being set at a proper vertical angle for a given pair

of stars is not changed thereafter, but each star is brought into

the field of view by revolving the instrument on its vertical

axis, and the difference of zenith distance is measured entirely



Fig. 53. Zenith Telescope.

From a photograph loaned by the U. S. C. and G. S.



196 GEODETIC SURVEYING

with the micrometer eyepiece. Many pairs of stars are observed,

and many refinements in observation and computation are required

in the h'ghest grade of work. For a complete discussion of the

method the reader is referred to Appendix No. 7, Report for

1897-98, U. S. Coast and Geodetic Survey. An altazimuth

instrument with a micrometer eyepiece will give very good
results by the above method, if used with proper precautions.

111. Latitude Determinations at Sea. Many methods have

been devised for determining latitude at sea. Greenwich time

may or may not be required, according to the method used,

but is generally available from the ship's chronometers. In any
case the observation consists in measuring with the sextant the

altitude of one or more of the heavenly bodies above the sea

horizon. All such altitudes are reduced to the true horizon by

applying a correction for dip, as explained in Art. 105, this cor-

rection being in addition to any others which the observation

requires to determine the true altitude. The most common
observation for latitude is for the altitude of the sun at apparent

noon, as explained in Art. 107. The meridian altitude of the pole

star or other bright star is also often observed, the result in either

case being worked out as explained for circumpolar stars in

Art. 108. The error of a latitude determination at sea may range

upwards from a fraction of a mile, depending on the circumstances

surrounding the observation.

112. Periodic Changes in Latitude. It is now known that the

earth has a slight wabbling motion with respect to the axis about

which it rotates. In consequence of this motion the north and

south poles do not occupy a fixed position on the surface of the

earth, but each one apparently revolves about a fixed mean

point in a period of about 425 days. The distance between

the actual pole and the mean point is not constant, but varies

(during a series of revolutions) between about 0".16 (16.3 ft.),

and about 0".36 (36.6 ft.). As the equator necessarily shifts

its position in accordance with the movement of the poles, it

follows that the latitude at every point on the surface of the earth

is subject to a continual oscillation about its mean value, the

successive oscillations being of different extent and ranging from

0".16 to 0".32 each way from the middle. In precise latitude

work, therefore, the date of the determination is an essential

part of the record.
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LONGTTUDE

113. General Principles. The longitude of any point on the

surface of the earth is the angular distance of the meridian of that

point from a given reference meridian, being positive when reckoned

westward and negative when reckoned eastward. The meridian

of Greenwich has been universally adopted (since 1884) as the

standard reference meridian of the world, but other meridians

(Washington, Paris, etc.) are often used for special work. Since

time is measured by the uniform angular movement of the earth

on its axis (west to east), it follows that longitude may be

expressed equally well in either angular units or time units. As

360 of arc correspond to twenty-four hours of time (mean or

sidereal, Art. 95), the change from the angular to the time system
is evidently made by dividing by 15, and vice versa; thus the

longitude of Washington west from Greenwich may be written

as 77 03' 56".7, or 5
h
08
m

15
s

.78, as preferred. At the same

absolute instant of time the true local time of any station differs

from the true local time of any other station by the angular

divergence (expressed in time units) of the meridians of these

two stations; the difference of longitude of any two stations,

therefore, is identical with the difference of local time. At the

same instant of time, the difference between the local mean time

and the sidereal time at any station is the same for all points in

the world, so that the difference of local time between any two

given stations is always numerically the same whether the com-

parison is based on local mean time or sidereal time. From the

nature of the case, it is evident that standard time (Art. 96a)

bears no relation to the longitude of a station.

Longitude as described above is geodetic longitude. Longitude
obtained from observations on heavenly bodies, or astronomical

longitude, is identical with geodetic longitude except where local

deviation of the plumb line (Art. 75) exists. The geodetic long-

itude of a point can never be directly observed, nor can the devia-

tion of the plumb line be found by direct measurement. If,

however, the longitude of any point be found by computation

(Chapter V) from the astronomical longitudes measured at

various other triangulation stations, and these values be averaged
in with its own astronomical longitude, the result may be assumed

to be free from the effects of plumb line deviation and to represent
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the true geodetic longitude. In geodetic work geodetic longitude

is always understood unless otherwise specified.

The longitude of any given point is ordinarily obtained by
finding how much it differs from that of some other point whose

longitude has already been well determined. The finding of

this difference of longitude is essentially the finding of the dif-

ference of local time between the two points, the westerly

point having the earliest time, and vice versa. The local time

is found by the methods heretofore given, and the comparison
is made as about to be explained.

114. Difference of Longitude by Special Methods. These

methods are rarely used any more, but are of considerable scientific

interest, and hence are here briefly mentioned.

By special phenomena. Certain astronomical phenomena,
such as the eclipses of Jupiter's satellites, occur at the same instant

of time as seen at any point on the earth from which they may
be visible. These eclipses usually occur several times in the course

of a month, the Washington mean time of the event being given

in the Nautical Almanac. The observer notes the true local time

at which the eclipse occurs, the error and rate of his timepiece

having been previously determined. The difference between

the Washington mean time and the local mean time of the eclipse

is the observer's longitude from Washington. Eclipses of the

moon may also be used in the same manner. Longitude obtained

by these methods is apt to be several seconds of time in error,

or a minute or more in arc.

By flash signals. Two observers, having obtained their own

local time by proper observations, may each note the reading of

their own clock at the same instant of time, this instant being

determined by an agreed signal visible to both. Such a signal

may be the flash of a heliotrope by day, or any suitable light

signal by night. The difference of local time is then the difference

of longitude. The error by this method may be kept below a

second of time by averaging the results of a number of signals.

This method usually requires one or more intermediate stations

to be established to overcome the lack of intervisibility, and is

generally an expensive one.

115. Longitude by Lunar Observations. If an observer notes

his true local time (expressed as mean time) for any particular

position of the moon, and obtains from the Nautical Almanac
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the Greenwich mean time when the moon occupied such a posi-

tion, the longitude from Greenwich is given by'the corresponding

difference of time. Many methods have been devised on this

basis, requiring laborious computations in their application, and

in many of the methods not leading to very accurate results.

Lunar methods are therefore not generally used except on long

sea voyages or long exploration trips. A few of the methods are

given below, but only in the roughest outline.

By lunar distances. The angle between a star, the center

of a planet, or the near edge of the sun, and the illuminated edge
of the moon may be measured by a sextant, and reduced to

what it would have been if it had been observed at the center of

the earth and measured to the center of the moon. The Green-

wich time of this position can be determined from the Nautical

Almanac and compared with the local time at which the observa-

tion was made. The accuracy attainable is about five seconds

of time.

By lunar culminations. The local time of meridian passage
of the moon's illuminated limb may be noted, expressed as sidereal

time and corrected for semi-diameter, giving the moon's right

ascension at the given instant, and Greenwich mean time for

this value of the right ascension be compared with the observed

local time. The accuracy attainable is about five seconds of time.

By lunar occupations. The occultation (covering) of a star

by the moon may be observed, noting the local time of immersion

(disappearance), or emersion (reappearance), or both, in which

case the apparent right ascension of the corresponding edge of

the moon at the given instant is the same as the right ascension

of the given star. When proper correction has been made for

refraction, parallax, semi-diameter, etc., the true right ascension

becomes known for the given instant, and the corresponding
Greenwich time is compared as before with the local observed time.

This method, with the exception of telegraphic methods, is one of

the best that is known for longitude work. When a number
of such determinations are averaged together, an accuracy within

a second of time is attainable.

116. Difference of Longitude by the Transportation of Chro-

nometers. When this method is used a number of chronometers

(from 5 to 50) are carried back and forth (from about 5 round trips

upwards) between the two points whose difference of longitude
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is desired. On reaching each station the traveling chronometers

are compared with the local chronometers. The errors of the

local chronometers are determined astronomically at or near

the time of comparison. The various values thus obtained for the

difference of time between the two stations are averaged together

and the result taken as the difference of longitude. Owing to

the fact that each round trip furnishes two determinations that

are oppositely affected by similar errors, and also to the refinements

of method and reduction that are used in practice, the errors

due to chronometer rates and irregularities are largely eliminated

from the average result. The accuracy attainable (in time units)

may range between a few tenths of a second and less than a single

tenth of a second, depending on the distance between stations,

the number of trips made, and the number of chronometers

transported. Longitude determinations by this method are now

rarely made, except where telegraphic connection is not available.

In order to make an accurate comparison of two mean time

chronometers each one is independently compared with the same

sidereal chronometer, and two sidereal chronometers are sim-

ilarly compared by mutual reference to a mean time chronometer.

Sidereal chronometers continually gain on mean time chronom-

eters, the beats or ticks (half seconds) gradually receding from and

approaching a coincidence that occurs about every three minutes.

When the beats exactly coincide the chronometers differ precisely

by the value in half seconds indicated by the subtraction of their

face readings. As the ear can be trained to detect a lack of coin-

cidence as small as the one-hundredth part of a second, a com-

parison can be made with this degree of precision.

117. Difference of Longitude by Telegraph. Where tele-

graphic connection can be established between two stations it

furnishes the best means of exchanging time signals, both on

account of the great accuracy attainable and the comparative

inexpensiveness. Difference of longitude obtained in this manner

can be made more accurate than is possible by any other known
method. The lines of the telegraph companies ramify in all

directions, and the temporary use of a suitable wire can usually

be obtained at reasonable cost, so that it is only necessary to

erect short connecting lines between the observing stations and the

telegraph stations. The most important applications of the

method are as outlined below.



ASTRONOMICAL DETERMINATIONS 201

By standard time signals. This method furnishes a quick

means for an approximate longitude determination. Standard

time can be obtained at any telegraph station with a probable

error of less than a second. The observer's true local mean time

is obtained by any of the simpler methods of observation. The
difference of these times is the difference of longitude between

the given standard time meridian and the meridian of the ob-

server's station.

By star signals. The difference of longitude of any two

stations is identical with the sidereal time which elapses between

the transit of any given star over the meridian of the easterly

station, and the transit of the same star over the meridian of the

westerly station; so that it is only necessary to observe how long

it takes for any star to pass between the meridians of two stations

to know their difference of longitude. In making use of this

principle a chronograph (Art. 103c) is placed at each station,

and these chronographs are connected by a telegraph line. A
break-circuit chronometer, which may be placed anywhere in

this line, records its beats on both chronographs. As the selected

star crosses the meridian of the easterly observer he records this

instant of time on both chronographs by tapping his break-

circuit signal key. When the same star crosses the meridian of the

westerly observer he likewise records this new instant of time

on both chronographs. Each chronograph, therefore, contains

a record of the time between transits, but the records are not

identical, as it takes time for the signals to pass between the

stations; in other words, each signal is recorded -a little later on

the distant chronograph than it is on the home chronograph.
The record of the easterly chronograph thus becomes too great,

and the record of the westerly one correspondingly too small;

but the mean of the two records eliminates this error and gives

(when corrected for chronometer rate) the true difference of

longitude between the stations. In actual work the transits of

many stars are observed at each station, so as to obtain an average
value for the difference of longitude. The accuracy attainable

is about 0.01 of a second of time. This method is one of the

best, and was formerly largely used by the Coast Survey. The

objection to the method is the difficulty of securing the monopoly
of the telegraph line during the long period while the observa-

tions are in progress, so that it is no longer much in use.
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By arbitrary signals. This is the standard method of the

Coast Survey at the present time, and requires the use of the

telegraph line for only a few minutes during an arbitrary period

(previously agreed upon) on each night that observations are in

progress. In this method a chronometer and chronograph are

installed at each station, and each chronometer records its beats

on the home chronograph only. Each observer makes his own
time observations, which are likewise recorded on his own chrono-

graph alone Observations at each station are taken both before

and after the exchange of signals in order to determine the cor-

responding chronometer's rate as well as its error. As far as

possible the same stars are observed at each station, in order

to avoid introducing errors of right ascension. In the most

precise work the observers exchange places on successive nights,

in order to eliminate the effects of personal equation, and numerous

other refinements are introduced. The chronograph sheet at

each station enables the true time at that station to be computed
for any instant within the range of the record, and the difference

of these true times at any one instant of time is the difference of

longitude between the stations. The whole object of the exchange
of signals, therefore, is to identify the same instant of time on

both chronograph sheets. At the agreed time for the exchange
of signals the two stations are thrown into circuit with the main

telegraph line, with connections so arranged that signals (momen-

tary breaking of circuit) sent by either station are recorded on

both chronographs. No signal, however, is recorded at exactly

the same instant at both stations, on account of the time required

for its passage between them. The difference of longitude as

based on the signals from the western station is hence too large,

and that based on the eastern station's signals correspondingly

too small. The mean of the two values is taken as the true

difference of longitude, while the difference of the two values

represents double the time of signal transmission. In the Coast

Survey program two independent sets of ten pairs of stars

each are observed on five successive nights, the observers then

exchanging places and continuing the observations in the same

manner for five more nights. Signals are exchanged once each

night at about the middle time for the work of both stations,

the western station sending thirty signals at intervals of about

two seconds, followed by thirty similar signals from the eastern
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station. These signals were formerly sent by the chronometers,

but are now sent by tapping a break-circuit signal key. The

accuracy attainable, as in the case of star signals, is about 0.01

of a second of time.

118. Longitude Determinations at Sea. Every sea-going vessel

carries one or more chronometers, the error and rate of each being

determined before leaving port, so that the Greenwich time of

any instant is always very closely known. The local time for

the ship's position having been determined for any instant

(Art. 105), and the corresponding Greenwich time being obtained

from the chronometers, it is only necessary to take the difference

of these times to have the ship's longitude from Greenwich.

The result thus obtained is expressed in time units, but is readily

converted into angular units by multiplying by 15 (Art. 113).

In case of failure of the chronometers, longitude at sea can still

be determined in a number of ways not requiring a previous

knowledge of Greenwich time, such as the method of lunar dis-

tances (Art. 115). Discussions and explanations of these methods

can be found in all works on Navigation and Nautical Astronomy.
A longitude determination at sea may be in error from a fraction

of a mile to a number of miles, depending on the surrounding
circumstances.

119. Periodic Changes in Longitude. As explained in Art. 112,

the poles of the earth are not fixed in position, but each one

apparently revolves about a mean point in a period of about 425

days, the radius-vector varying (during a series of revolutions)

between about 0".16 and 0".36. The result of this shifting of

the poles is to cause the longitude of any point to oscillate about

a mean value, the amplitude of the oscillation depending on the

location of the point. In precise longitude work, therefore, the

date of the determination is an essential part of the record.

Azimuth

120. General Principles. By the azimuth of a line (or a

direction) from a given point is meant its angular divergence from

the meridian at that point, counting clockwise from the south

continuously up to 360. From any intermediate point on a

straight line the azimuths towards the two ends always differ by
exactly 180, so that in any case it is only necessary to determine
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the azimuth in one direction. In passing along a straight line

the azimuth varies continuously from point to point, unless the

line be the equator or a meridian. The cause of this change and

the methods for computing it are explained in detail in Arts. 68

to 73, inclusive. The following articles are concerned solely

with the determination of azimuth (and hence of the meridian)

at any one given point.

Geodetic azimuth is that in which the angular divergence from

the meridian is measured in a plane which is tangent to the

spheroid at the given point. Azimuth obtained from observations

on heavenly bodies, or astronomical az muth, is identical with

geodetic azimuth except where local deviation of the plumb line

(Art. 75) exists. The geodetic azimuth of a line from a given

point can never be directly observed, nor can the deviation of

the plumb line be found by direct measurement. If, however,
the azimuth of a line from a given point be found by computa-
tion (Chapter V) from the azimuth determinations made at

various other triangulation stations, and these values be averaged
in with the observed value, the result may be assumed to be free

from the effects of plumb line deviation and to represent the true

geodetic azimuth. In geodetic work geodetic azimuth is always
understood unless otherwise specified.

121. The Azimuth Mark. This is the signal which gives the

direction of the line whose azimuth is being determined. An
azimuth mark should not be placed less than about a mile from

the observer, otherwise a change of focus will be required between

the heavenly body and the mark. Experience has shown that

refocussing during an observation is very undesirable. When
azimuth is obtained by solar observations any of the usual day-

time signals (Art. 19) may be used, being located at a special

azimuth point or a regular triangulation station as circumstances

may require. When azimuth is obtained by stellar observations

a special azimuth point is generally located one or more miles

from the instrument. The azimuth mark should be mounted

on a post or otherwise raised about five feet above the ground,

and generally consists of a bull's-eye lantern enclosed in a box

or placed behind a screen, a small circular hole being provided

for the light to pass through on its way to the observer. If the

diameter of the hole does not subtend over a second of arc (0.3

of an inch per mile) at the eye of the observer, the light will
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closely resemble a star in both apparent size and brilliancy, which

is the object sought. The face of the box or screen is often painted

with stripes or other design so that it may also be observed in the

daytime.
122. Azimuth by Sun or Star Altitudes. The altitude of any

heavenly body as seen by an observer at a given point is con-

stantly changing, each different altitude corresponding to a par-

ticular azimuth which can be computed if the latitude and longi-

tude are approximately known. For the degree of accuracy

sought by this method it is sufficient to know the latitude to the

nearest minute and the longitude within a few degrees. The
difference in azimuth of any two lines from the same point is

always exactly the same as their angular divergence. If, therefore,

the horizontal angle between the azimuth mark and the given

heavenly body is measured at the same moment that the altitude

is taken, the azimuth of the line to the azimuth mark is obtained

by simply combining the computed azimuth of the heavenly body
with this measured horizontal angle. The observation may be

made with a transit or an altazimuth instrument. The probable
error of a single determination should not exceed a minute of

arc with the ordinary engineer's transit, nor a half minute with the

larger instruments. The actual error may be larger than the

probable error on account of the uncertainties of refraction.

122a. Making the Observation. The best time for making
an observation on the sun is between about 8 and 10 o'clock in

the morning and 2 and 4 o'clock in the afternoon. The sun should

not be observed within less than two hours of the meridian

because its change in azimuth is then so much more rapid than

its change in altitude; nor when it is much more than four hours

from the meridian on account of the uncertain refraction at low

altitudes. In the latitude of New York it is not desirable to

observe the sun for azimuth in the winter time because its dis-

tance from the prime vertical during suitable hours results in such

a rapid movement in azimuth as compared with its movement
in altitude. Star observations may be made at any hour of the

night, selecting stars which are about three hours from the meridian

and near the prime vertical, and hence changing but slowly in

azimuth as compared with the change in altitude. The observa-

tions are made in sets of two, taking one reading with the tele-

scope direct and the other with the telescope reversed, the mean
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horizontal and the mean vertical angle constituting the observed

values for that set. Several independent sets should be taken and

separately reduced, the mean of the resulting azimuths being the

most probable value. The instrument should be in perfect

adjustment and be leveled up with the long bubble or the striding

level, and should not be releveled except at the beginning of each

set. The center of the sun is not directly observed, but the read-

ing is taken with the image of the sun tangent to the horizontal

and vertical hairs. A complete set is made up as follows: Sight
on the mark and read the horizontal circle; unclamp the upper
motion and bring the sun's image tangent to the horizontal and
vertical hairs in that quadrant where it appears by its own motion

to approach both hairs; note the time to the nearest minute and

read both circles; unclamp the upper motion, invert the telescope,

and bring the sun's image tangent in that quadrantwhere it appears
to recede from both hairs; note the time and read both circles;

unclamp the upper motion, sight on the mark and read the hori-

zontal circle. A star set is taken in the same manner except that

in each pointing the image of the star is bisected by both hairs. If

the instrument does not have a full vertical circle the telescope

is not inverted between the observations, but an index correction

must be applied to the observed altitudes. The values used in the

computations of the next article are those which correspond to

the center of the observed object. If for any reason only one

observation is secured on the sun, thus leaving the set incomplete,

the observed altitude is reduced to the center by applying a

correction for semi-diameter, and the observed horizontal angle

is reduced to the center by applying a correction found by divid-

ing the semi-diameter by the cosine of the altitude. The semi-

diameter is taken from the Nautical Almanac for the given

time and date, and the correction is added or subtracted

in accordance with the particular limb of the sun which was

observed.

122b. The Computation. It is best to reduce each set inde-

pendently and average the final results. The observed altitude

must first be reduced to the true altitude. The apparent altitude

of all heavenly bodies is too large on account of refraction, the

required correction being found in Table VIII. The apparent

altitude of the sun is also too small on account of parallax, the

amount being equal to 8".9 multiplied by the cosine of the



ASTRONOMICAL DETERMINATIONS 207

observed altitude, but this correction is so small it would seldom

be applied in this method.

In the polar triangle ZPS, Fig. 47, page 166, the three sides are

known. ZP, the co-latitude, is found by subtracting the observer's

latitude from 90. PS, the polar distance or co-declination, is

found by subtracting the declination of the observed body from

90. In the case of the sun the declination is constantly changing
and must be taken for the given date and hour (the time being

always approximately known) . The sun's declination for Green-

wich mean noon is given in the Nautical Almanac for every day
in the year, and can be interpolated for the Greenwich time of

the observation; the Greenwich time of the observation differs

from the observer's time by the difference in longitude in hours,

remembering that for points west of Greenwich the clock time

is earlier and vice versa. ZS, the co-altitude, is found by sub-

tracting the true (reduced) altitude of the observed body from 90.

Using the notation of Fig. 47, we have from spherical trigonometry,

sin d = cos z sin
(/> + sin z cos 0" cos A,

whence

. sin d cos z sin 6
cos A =

: : -,
sin z cos 9

which for logarithmic computation is reduced to the form

, os H* + (<f> + d)] sin H* + (0
~

d)]

^cos l[t
-

(<f>

'

+ d)\ sin \\z
-

(0
-

d)]
"

The value of A thus found is the azimuth angle (from north

branch of meridian) of the given heavenly body at the moment
of observation. If the observed body was east of the meridian

its azimuth (from the south point) equals 180 + A; if west of

the meridian, 180 A. The azimuth of the azimuth mark is

then found by combining the azimuth of the observed body with

the corresponding angle between the azimuth mark and the

observed body, the combination being made by addition or

subtraction as the case requires.

123. Azimuth from Observations on Circumpolar Stars. The

simplest and most accurate method of determining azimuth is

by suitable observations on close circumpolar stars, furnishing

any desired degree of precision up to the highest attainable. In
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northern latitudes the beet available stars are a Ursae Minoris

(2nd magnitude), o Ursse Minoris (4th magnitude), 51 Cephei

(5th magnitude), and / Ursae Minoris (6th magnitude). Of these

four a Ursae Minoris, commonly known as Po aris, is usually-

chosen by engineers on account of its brightness, the other three

being barely visible to the naked eye. The four stars named may
be identified by reference to Fig. 50, page 191.

Owing to the rotation of the earth on its axis the azimuth

of any star, as seen from a given point, is constantly changing,
but the value of the azimuth may be computed for any given
instant of time when the position of the observer is known. The
most favorable time for the observation of a close circumpolar
star is at or near elongation (greatest apparent distance east or

west of the meridian) ,
as its motion in azimuth is then reduced

to a minimum; but entirely satisfactory results may be obtained

from observations taken at any time within about two hours

either way from elongation; the only point involved is that time

must be known with increasing accuracy the greater the interval

from elongation, in order to secure the same degree of precision

in the azimuth determination. In any case the actual observation

consists in measuring the horizontal angle between an azimuth

mark and the given star, and noting the time at which the star

pointing is made. The azimuth of the mark is then obtained

by combining the measured angle (by addition or subtraction

as the case requires) with the computed azimuth of the star.

The details of the observation will depend on the instrument

available and the degree of precision desired in the result. The
instruments used may be the ordinary engineer's transit, the

larger transits equipped with striding levels, the repeating instru-

ment, or the direction instrument. Close instrumental adjust-

ments are necessary for good work. The methods ordinarily

used are the direction method, the repeating method, and the

micrometric method. Certain formulas enter more or less into

all the methods.

123a. Fundamental Formulas. The following symbols are

involved in the formulas as here given:

A = azimuth of star (at any time) from north point,

+ when east, when west;

At = azimuth of star at elongation;
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Ao = azimuth of star at mean hour angle of n pointings;

n number of pointings to star;

t hour angle of star (at any time), + when star is

west, when east, or may be counted westward up
to 24 hours or 360;

te hour angle of star at elongation;

At = interval of any one hour angle from the mean of

n given hour angles;

C = curvature correction in seconds of arc;

D = correction for diurnal aberration in seconds of arc;

De
= ditto for a close circumpolar star at elongation;

4>
=

latitude, + when north, when south;

d = declination of star, + when north, when south;

Am = azimuth of mark from north point, + to east,

to west;

Z azimuth of mark from south point;

h = mean altitude of star;

d = value of one division of bubble tube in seconds;

w, w
f

,
etc. ="

readings of west end of bubble tube when sighting

on star;

W = mean value of w, w', etc.;

e, e', etc. = readings of east end of bubble tube when sighting on

star;

E = mean value of e, e', etc.;

b = mean inclination of telescope axis in seconds when

sighting on star;

x = angle correction in seconds due to inclination of

telescope axis;

a = star's right ascension;

S sidereal time at any instant;

Se sidereal time of star's elongation.

a. Hour angle at any instant. The hour angle of a star

(in time units) at any instant of sidereal time is given by the

formula

t = S a.

The corresponding value of t in angular units is obtained

(Art. 95) by multiplying by 15. The particular unit in which t is

to be expressed is always apparent from the formula in which it

occurs. If local mean time or standard time is used it must be
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reduced to sidereal time (Art. 99) before being used in the formula

for*.

b. Hour angle at elongation. In the polar triangle ZPp,
Fig. 47, page 166, p may be taken to represent Polaris or any
other star at elongation, or greatest apparent distance from the

meridian for the observer whose zenith is at Z. In this triangle

the side PZ is the observer's co-latitude, the side Pp is the star's

co-declination, and the angle ZpP equals 90 on account of the

tangency at the point p. SolvingJx>r the angle ZPp, or the star's

hour angle at elongation, we have

tan d>
cos te

=
i jr.tan o

c. Time of elongation. Having found U from the formula

in (6), the sidereal time of elongation is given by the formulas

Se
= a + te (western elongation),

Se
= a te (eastern elongation).

The sidereal time thus obtained is changed to local mean time or

standard time by Art. 100 when so desired.

d. Azimuth at elongation. If the above triangle (b) be solved

for the angle PZp, or the star's azimuth at elongation, we have

. sin polar distance cos d
sin A e

=
.

= -r.
cos latitude cos

<fi

e. Reduction to elongation. If the angle between the azimuth

mark and a close circumpolar star is measured within about

thirty minutes either way from elongation, the measured angle

may be reduced very nearly to what it would have been if measured

at elongation by applying the following correction:

sin V

The quantity (te t) is equivalent to the sidereal time interval

from elongation, and may be substituted directly without com-

puting the hour angle represented by t. If the mean or standard
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time interval is thus used the value which the formula gives for

(A e A) must be increased by T\^ part of itself.

/. Azimuth at any hour angle. If the star is observed at any
other hour angle than that which corresponds to elongation, a polar

triangle will be formed similar to ZPp, Fig. 47, page 166, but

with all the angles oblique. In this case the azimuth A at the

given hour angle t is given by the formula,

, sin t

tan A =
: -r j jsin cp cos t cos (p tan o

cot d sec
(f>

sin t

1 cot d tan
(/>

cos t

= cot o sec d) sin t{ z ),

\l-aj
in which

a = cot d tan
</>

cos t.

g. The curvature correction. If a series of observations are

taken on a star the hour angle and corresponding azimuth must

necessarily be different for each pointing. The mean value of

such azimuths is frequently desired, and may of course be found

by computing each azimuth separately and averaging the results.

The same value, however, may be obtained much more simply

by computing the azimuth corresponding to the mean of the

several hour angles, and then applying the so-called curvature

correction to reduce this result to the mean azimuth desired.

The reason that such a correction is required is because the motion

of a star in azimuth is not uniform, but varies from zero at elonga-

tion to a maximum &i culmination. In the case of a close circum-

polar star, and a series of observations not extending over about

a half hour, the curvature correction is given by the formula

A 1^2sin2^C - tan A Q -S .

*
,n sin 1

in which At is expressed in angular value, or

(TV) 2 1

C = tan A ^ sin l"-2(Ji) 2
,
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in which At is expressed in sidereal seconds of time. If At is

expressed in mean-time seconds the value of C thus obtained

must be increased by tstt part of itself.

logpl^
sin 1"1 = 6.7367275 - 10.

The sign of the curvature correction C is known.from the fact that

the true mean azimuth always lies nearer the meridian than the

azimuth that corresponds to the mean hour angle. From the

nature of the case it is evident that the several values of At in

time units may be obtained directly from the observed times

(without changing them to hour angles) by taking the differences

between each observed time and the mean of all the observed times.

h. Correction for inclination of telescope axis. If the axis

of the telescope is not horizontal the line of sight will not describe

a vertical plane when the telescope is revolved on this axis, and

hence the measured angle between the star and the mark will be

in error a corresponding amount. The inclination of the axis

is found from the readings of the striding level. If the level is

reversed but once the usual formula is

b
=^[(w + w') -(e + e')];

but if the level is reversed more than once it is more convenient

to write

So far as the present purpose is concerned these formulas are

equally applicable whether the level is actually reversed on the

pivots, or reversed in direction because the instrument is turned

through 180. In one case the value obtained is the actual

average inclination of the axis, while in the other case it is the

net inclination. By the east or west end of the bubble tube is

meant literally the end which happens to be east or west when the

reading is taken. The correction required on account of the

inclination b, due to the altitude of the star, is

x = b tan h.
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The value of x thus obtained is to be subtracted algebraically

from the computed azimuth of the mark. Ordinarily a similar

correction for inclination due to altitude of mark is not required,

as the mark is generally nearly in the horizon of the instrument.

If, however, the angular elevation (+ altitude) or depression

( altitude) of the mark is reasonably large, the striding level

should be read when pointing to the mark and a similar correction

computed. In this case the correction is to be added algebraically

to the computed azimuth of the mark.

i. Correction for diurnal aberration. Owing to the rotation

of the earth on its axis and the aberration of light thereby caused,

the apparent position of any star is always more or less east of

its true position, the amount of the displacement depending on

the position of the observer and the position of the star. A
corresponding correction is required for all azimuths based on

the measurement of a horizontal angle between a mark and a

star, and is given by the formula

2) = 32
co8cosJ4

cos h

which for a close circumpolar star at elongation reduces to

De
= 0".32 cos ,4.

In obtaining azimuth from a north circumpolar star it is evident

that the azimuth of the mark (counting clockwise from either

the north or south point) must be increased by the amount of

the above correction.

j. Reduction of azimuth to south point. In making azimuth

determinations by observations on north circumpolar stars it is

customary to refer all results to the north point until the azimuth

of the mark is thus expressed. The azimuth of the mark from the

south point is then given by the formula

Z = 180 + Am
in which proper regard must be had to the negative sign of A m if

it is taken counter-clockwise.

123b. Approximate Determinations. It is frequently desirable

to make approximate determinations of azimuth, either because

the work in hand does not call for any greater accuracy, or as a

preliminary to the more accurate location of the meridian. Such
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determinations may be made by measuring sun or star altitudes,

as explained in Art. 122, but observations on Polaris (or other

circumpolar stars) give more reliable results without any increase

in either field or office labor. The ordinary engineer's transit

may be used for such work, and with proper care will give correct

results within the smallest reading of the instrument. Since

the observation is best made at or near elongation the time of

elongation (c, Art. 123a) is computed beforehand, so that proper

preparation may be made. Assuming the instrument to be in

good adjustment and carefully leveled, the observation consists

in reading on the mark with telescope direct, reading on the star

with telescope direct, reading on the star with telescope reversed,

and ending with a reading on the mark with telescope reversed.

The lower motion must be left clamped and all pointings made with

the upper motion alone. The instrument must not be releveled

during the set. Both plate verniers should be read at each pointing.

The four pointings should be made in close succession, but with-

out undue haste or lack of care. If the observation is being made
at elongation the first pointing to the mark is made a few minutes

before the computed time of elongation, and the two star point-

ings as near as may be to the time of elongation. If time is not

accurately known the star is followed with the telescope until

elongation is evidently reached, when the necessary observations

are quickly taken. For five minutes each side of elongation the

motion of the star in azimuth is scarcely perceptible in an engineer's

transit. If the observations are not taken at elongation time must

be accurately known and read to the nearest second at each star

pointing. The observations having been completed the mean

angle between the mark and the star is obtained from the four

readings taken, and it only remains to compute the mean azimuth

of the star to know the azimuth of the mark. If the star point-

ings were made within about ten minutes either way from elonga-

tion the azimuth of the star may be taken as equal to its azimuth

at elongation (d, Art. 123a). If the star pointings were made

within about a half hour either way from elongation the angle

between the mark and the star may be reduced to what it would

have been at elongation by use of the formula for reduction to

elongation (e, Art. 123a), the quantity (t e t) being taken as

the angular value of the time interval between the time of elonga-

tion and the average time of the star pointings. If the observa-
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tions are taken over about a half hour from elongation it is better to

compute the true azimuth of the star for the average time of the

star pointings (/, Art. 123a).

123c. The Direction Method. In this method the angle

between the mark and the star is measured with a direction

instrument (Arts. 42-47), the process being substantially the same

as there described for measuring angles between triangulation

stations. Owing to the fact that the star is in motion during the

observations, however, the angle being measured is constantly

changing, and the reductions must be correspondingly modified.

Owing to the altitude of the star serious errors are introduced

by any lack of horizontality in the telescope axis, and a cor-

responding correction must be made in accordance with the read-

ings of the striding level. If the mark is more than a few degrees

out of the horizon a similar correction will be required for the same

reason. The observations may be made at any hour angle, good

work requiring time to be known to the nearest second. A good

program for one set is to read twice on the mark with telescope

direct; then read twice on the star with telescope direct, noting

the exact time of each pointing and the reading of each end of

the striding level at each pointing; then read twice on the star

with telescope reversed, noting time and bubble readings as

before; then read twice on the mark with telescope reversed.

The striding level is left with the same ends on the same

pivots throughout the observations. The mean azimuth of the

star for the four pointings is then found by computing the

azimuth corresponding to the average time of these pointings

(/, Art. 123a), and then applying the curvature correction

(g, Art. 123a). The apparent azimuth of the mark is then found by

combining the computed star azimuth with the mean measured

angle. The true azimuth of the mark (as given by this set) is

then found by applying to the apparent azimuth the level cor-

rection and the aberration correction (h and i, Art. 123a), and

reducing the result to the south point (j, Art. 123a). By taking

a number of sets each night for several nights, and averaging

the different results, a very close determination of azimuth

may be secured. With -skilled observers the probable error of a

single set should not exceed about a half a second of arc, and this

may be reduced to a tenth of a second by averaging about twenty-

five sets.
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EXAMPLE. AZIMUTH BY DIRECTION METHOD * RECORD

Station: Mount Nebo, Utah.

Instrument: 20-in. Theodolite No. 5.

Star: Polaris, near lower culmination.

Date: July 21, 1887.

Observer: W. E.

Position X.

Object.
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AZIMUTH BY DIRECTION METHOD COMPUTATION

Mount Nebo, Utah, July, 1887.
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123d. The Repeating Method. In this method the angle
between the mark and the star may be measured with any of the

usual engineering transits or with the regular geodetic repeating
instrument (Arts. 38-41), the process being substantially the same
as there described for measuring angles between triangulation

stations. The observations and reductions are best made as

described in Arts. 40, 40a, and 40&, ignoring for the time being
the fact that the angle which is being repeated is constantly

changing in value on account of the apparent motion of the star.

Time must be correctly known and noted to the nearest second

for each star pointing, but only the total angle readings are taken,

as with terrestrial angles. The striding level (if the instrument

has one) may be kept with the same ends on the same pivots

throughout the observations, and both ends should be read imme-

diately after the 1st, 3d, 4th and 6th star pointings in each series

of six pointings. If the mark is more than a few degrees out of

the horizon similar readings of the striding level are also required

for its pointings. The observations may be made at any hour

angle, but it is preferable to work within a couple of hours of

elongation.

In making the reductions the azimuth of the mark from the

north point is deduced separately from each series of six pointings,

applying the level correction (h, Art. 123a) in each case, but

omitting the aberration correction. The two results obtained from

the two series of 6 D. and R. pointings are averaged together to

obtain the value of the determination as given by that set. Two
or more complete sets may be taken and averaged together as

desired. The true azimuth of the mark (as given by these sets)

is then found by applying the aberration correction (i, Art. 123a)

to this final mean, and reducing this result to the south point

(j, Art. 123a). In reducing each series of six pointings the accum-

ulated angle is divided by six exactly as if the star had remained

entirely stationary. The mean angle thus obtained is the same

as it would have been if the star had remained all the time at the

mean point of its six separate positions. The corresponding

azimuth of this mean point is found by computing the azimuth

for the mean of the six times at which the star pointings were

made (/, Art. 123a) and applying the curvature correction

(g, Art. 123a).

The accuracy attainable by this method depends on the char-
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acter of the instrument with which the work is done. The probable
error of the average value obtained from a complete double set

of twenty-four pointings should not exceed about five seconds

with a good engineer's transit, nor a single second with a

12-inch repeater; and these probable errors may be much further

reduced by averaging many determinations together.

AZIMUTH BY REPETITIONS COMPUTATION

Kahatchee, Ala.

Explanation.

Date
Chronometer time

Chronometer correction .

Sidereal time

Hour-angle (<)

t in arc

log sin
(J)

log cos t

log sin
<j>

cos t

sin 4> cos t

cos tan d

cos < tan d sin
<j>

cos t . . . .

log sin t

log (cos (f>
tan d sin

<f)
cos t)

log ( tan A)
A

At and
2 sin 2

\At

sinl"
-

June 6

141154m 17s 7

-31 .1

14 53 46 .6

1 21 20 .3

13 32 26 .3

203 06' 34" . 5

9.73876
9.96367 n
9 . 70243 n

- 0.5040
+ 38.7399

+ 39.2439
9.593830 n
1.593772

8.000058 n
+0 34' 22". 7

7m47 f .7

5 09
1 26
1 52

4 54

7 37

119'

52

4

6

47

114

1 2 sin 2
\At

l0g-n
S ^inT"-

log (curvature correction)
Curvature correction.

Mean azimuth of star. . . .

Angle star-mark

Level correction

Corrected angle
Azimuth of mark E. of N

343 .8

57 .3

1 . 7582

9.7583

+0.6
+ 034'22".l
72 57 50 .2

- 1 .6

48 .6

73 32 10 .7

June 6

15h llm 48s
. 2

-31 .1

15 11 17 .1

1 21 20 .3

13 49 56 .8

207 29' 12".

9.73876
9.94798 n
9.68674 n

- 0.4861

+ 38.7399

+ 39.2260
9.664211 n
1.593574
8.070637 n
40' 26". 9

7m04 s .2

30

54

26

25

6 35 .8

98'

39

7

11

38
85

280

46
1.6702

9.7408

+0.6
+ 40' 26". 3

72 51 46 .7

- 1 .8

44 .9

73 32 11 .2
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123e. The Micrometric Method. In this method the angle

between the mark and the star is measured with an eyepiece

micrometer, no use whatever being made of the horizontal-limb

graduations. Any form of transit or theodolite may be used

that contains an eyepiece micrometer arranged to measure

angles in the plane defined by the optical axis and the horizontal

axis of the telescope. An eyepiece micrometer is essentially

the same as the micrometer found on the microscopes of direc-

tion instruments and described in Art. 45. When the observing

telescope is fitted with an eyepiece micrometer the moving hairs

lie in the focal plane of the objective and pass across the images

of the objects viewed. When the angle between two objects is

small (about two minutes or less) it may be assumed with great

exactness to be proportional to the distance between the corre-

sponding images in the telescope, and this distance is measured

by the micrometer screw with great precision. In applying this

method to the determination of azimuth the mark is placed nearly

in the vertical plane through the star, and the small horizontal

angle between the mark and the star is determined from measure-

ments made entirely with the micrometer, leaving all the hori-

zontal motions of the instrument clamped in a fixed position.

The azimuth of the mark is then obtained by combining this

angle with the computed azimuth of the star.

In the eyepiece micrometer the value of the angle measured

is not given directly by the readings taken, as these indicate

only the number of revolutions made by the screw. The reading

is commonly taken to the nearest thousandth of a revolution,

the whole number of revolutions being read from the comb scale,

the tenths and hundredths from the graduations on the head,

and the thousandths by estimation. In order to convert the read-

ing into angular value it is necessary to know the angular value

of one turn of the micrometer screw. The value of one turn of

the screw is found by measuring therewith an angle whose value

is already known. The value of such an angle may be found by
measuring it directly with the horizontal circle, or by computing
it from linear measurements. The value of one turn of the screw

may also be obtained by observations on a close circumpolar star

near ulminat :

on, since the angle between any two positions of

the star is readily computed from the times of observation, and the

necessary reductions are then easily made.
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As already stated, the eyepiece micrometer measures angles

in the plane defined by the optical axis and the horizontal axis

of the telescope, and the corresponding horizontal angle must

hence be obtained by a suitable reduction for the given altitude.

To measure the horizontal angle between two objects at different

elevations, therefore, it is necessary to find the micrometer value

for the distance of each object from the line of collimation, reduce

each value to the horizontal for the corresponding altitude, and

combine the results for the complete horizontal angle. The reduc-

tion in each case is effected by multiplying the micrometer value

by the secant of the altitude. In the case of azimuth determina-

tions the reduction must necessarily be made for the star, but

need not be made for the mark unless it is several degrees out of

the horizon.

The micrometric method may be used at any hour angle,

but unless the star is near elongation it will pass out of the safe

range of the micrometer after but two or three sets of observa-

tions have been secured. If the mark is placed about one or

two minutes nearer the meridian than the star at elongation,

the observations may be carried on within an hour or more each

way from elongation, and a small error in time will have little

or no effect on the result. In Coast Survey Appendix No. 7,

Report for 1897-98, the following procedure is recommended:
" The micrometer line is placed nearly in the line of collimation of

the telescope, a pointing made upon the mark by turning the

horizontal circle, and the instrument is then clamped in azimuth.

The program is then to take five pointings upon the mark;
direct the telescope to the star; place the striding level in posi-

tion; take three pointings upon the star with chronometer times;

read and reverse the striding level; take two more pointings upon
the star, noting the times; read the striding level. This com-

pletes a half-set. The horizontal axis of the telescope is then

reversed in the wyes; the telescope pointed approximately to

the star; the striding level placed in position; three pointings

taken upon the star with observed chronometer times; the strid-

ing level is read and reversed; two more pointings are taken

upon the star, with observed times; the striding level is read; and

finally five pointings upon the mark are taken." In reducing

such a set of observations the micrometer reading for the line of

collimation is taken as the mean of all the readings on the mark,
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AZIMUTH BY MICROMETRIC METHOD COMPUTATION

CoUimatio
Mark east

Circle E.,

Circle W.,

Mei

Ma
Level corr

Mai

log cot d

log tan
<f>

log cos t

log a

log cot d

log sec $
log sin t

log 1/1 -a

log ( tan
A

log 12.67

log curvat

Curvature
Diur. aber

Mean azim

Mark west

Azimuth o
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and all micrometer readings are referred to this value. Since the

star is changing rapidly in altitude the star micrometer readings

are reduced to the horizontal for the mean altitude of each half-

set, the altitude of the star being occasionally read and inter-

polated for any desired time. The mean azimuth of the star

for each set is found by computing the azimuth corresponding

to the average time of the pointings (/, Art. 123a), and applying
the curvature correction (g, Art. 123a). The apparent azimuth

of the mark is then found by combining the computed star azimuth

with the measured angle (reduced to the horizontal). The true

azimuth of the mark (as given by this set) is finally found by apply-

ing to the apparent azimuth the level correction and the aberra-

tion correction (h and i, Art. 123a), and reducing the result to the

south point (j, Art. 123a).

The time occupied in taking a set of observations in the man-
ner above specified should not average over fifteen minutes,

so that a number of sets may be taken in a single night. By
averaging the results of a number of nights' work a very close

determination of azimuth may be secured. The method is more

accurate than the direction method or the repeating method.

With skilled observers the probable error of the mean of 25 or 30

sets should be less than a tenth of a second.

124. Azimuth Determinations at Sea. It is sometimes neces-

sary to make an azimuth determination at sea in order to test

the correctness of the ship's compasses. The method commonly

employed is to measure the altitude of the sun or one of the brighter

stars, and at the same instant take its bearing as shown by the

compass to be tested. The azimuth of the given heavenly body
is then computed from its observed altitude and the result reduced

to a bearing. The difference between the observed bearing and

the computed bearing is the error of the compass. The method

and reductions for the azimuth observation are the same as

explained in detail in Arts. 122, 122a, and 1226, except that the

observation consists in measuring the altitude above the sea

horizon by means of a sextant, and that a correction for dip

(Art. 105) must be made. The latitude and longitude of the ship's

position are always sufficiently well known for use in the reduc-

tions. The computed bearing should not be in error over a few

minutes, which is very much closer than, it is possible to take the

3ompass bearing.
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125. Periodic Changes in Azimuth. As explained in Art. 112,

the poles of the earth are not fixed in position, but each one appar-

ently revolves about a mean point in a period of about 425 days,

the radius-vector varying (during a series of revolutions) between

about 0".16 and 0".36. The result of this shifting of the poles

is to cause the azimuth of a line from a given point to oscillate

about a mean value, the amplitude of the oscillation depending
on the location of the point. In precise azimuth work, therefore,

the date of the determination is an essential part of the record.



CHAPTER VIII

GEODETIC MAP DRAWING

126. General Considerations. The object of a geodetic map or

chart is to represent on a flat surface, with as much accuracy of

position as possible, the natural and the artificial features of a given

portion of the earth's surface. It is presumed that the engineer

is familiar with the lettering of maps and the usual methods of

representing the natural or topographical features, and such mat-

ters are not here considered. The artificial features of a map
are the meridians and parallels, the triangulation system or other

plotted lines of location, and any lines which may be drawn to

determine latitude, longitude, azimuth, angles, distances, or areas.

In an absolute y perfect map the meridians and other straight

lines (in the surveying sense), would appear as straight lines; the

meridians would show a proper convergence in passing towards

the poles; the parallels of latitude would be parallel to each other

and properly spaced, and would cross all meridians at right angles;

all points would be properly plotted in latitude and longitude; and

azimuths, angles, distances and areas would everywhere scale

correctly. On account of the spheroidal shape of the earth, it

is evident that such a map is an impossibility, except for very
limited areas. Some form of distortion must necessarily exist

in any representation of a double curved surface on a flat sheet.

By selecting a type of projection depending on the use to be made
of the map, however, the distortion may be minimized in those

features where accuracy is most desired, and entirely satisfactory

maps produced. The principal types of map projection, as

explained in the following articles, are the cylindrical, the trape-

zoidal, and the conical, these terms referring to the considerations

governing the plotting of the meridians and parallels.

In the work of plane surveying the areas involved are usually

of such small extent that no appreciable error is introduced in

plotting by plane angles and straight line distances, drawing all

227
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meridians or other north and south lines perfectly straight and

parallel, and all parallels or other east and west lines also straight

and parallel and at right angles with the meridians. On account

of the larger areas involved in geodetic work it is generally

necessary to plot the meridians and parallels first (in accordance

with the selected type of projection and the scale of the map),
and then plot each fundamental point of the survey by means of

its latitude and longitude without regard to angles or distances.

The smaller details may then be plotted as in plane surveying.
In a geodetic map thus plotted the unavoidable distortion is

reduced and distributed as much as possible.

The true lengths of 1 of latitude and longitude at the latitude

are given by the formulas

1 of latitude
) ita(\

- e2)

atthelat. j 180(1
- e2 sin2 0)'

1 of longitude ) na cos

atthelat. j 180(1
- e

2 sin2 0)1'

in which formulas the letters have the significance and values of

Arts. 67 and 69. The values of one degree of latitude and longitude

are given for a number of latitudes in Table IX, and may be

interpolated for intermediate latitudes.

Since the radius of curvature of the meridian section increases

from the equator to the poles it follows that the above formula

for the length of a degree of latitude can only be correct in the

immediate vicinity of the given latitude. The true length L
of a meridian arc extending from the equator to any latitude <f>

is given by the formula

L = a{\
-

e)
2
(Mcf)

- N sin 20 + P sin 40
-

etc.),

in which

M = 1 + fe
2 +||e4 +. . .,

N =
fe

2 + Me4 +..-,
P = *e4 + .

For the length I of a meridian arc from the latitude to the lati-

tude
(j)', therefore, we have practically

I - a(l
-

e)
2
[M(0'

-
0)

-
iV(sin 20'

- sin 20)

+ P(sin 40'
- sin 40)].
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Substituting the values of a and e from Art. 67, and reducing

the formula to its simplest form, we have

I = A(<f>'
-

<f>)

- B sin (<'
-

4>) cos (<' + 0)

+ C sin 2 (<//
-

0) cos 2(0' + 0),

in which and 0' in the first term of the second member are to

be expressed in degrees and decimals, and in which

( metric, 111133.30 . ( metric, 5.0458443

( feet, 364609.84
g ==

j feet, 5.5618285

C metric, 32434.25 ( metric, 4.5110039
=

1 feet, 106411.37
g ==

( feet, 5.0269881

C metric, 34.41 = ( metric, 1.5366847
=

( feet, 112.89
g ==

j feet, 2.0526689

127. Cylindrical Projections. The distinguishing feature of

all cylindrical projections consists in the projection of the given

area on the surface of a right cylinder (of special radius) whose

axis is the same as the polar axis of the earth. The flat map
desired is then produced by the development of this cylinder.

In all forms of this projection the meridians are projected by the

meridional planes into the corresponding right line elements of

the cylinder, so that after development the meridians appear as

equidistant parallel straight lines. The parallels of latitude

are projected into the circular elements of the cylinder in a number

of different ways, but in any case, after development, appear as

parallel straight lines crossing the meridians everywhere at right

angles. The three most common types of this projection are

explained in the following articles.

127a. Simple Cylindrical Projection. In this type of pro-

jection, as illustrated in Fig. 54, page 230, the cylinder is so taken

as to intersect the spheroid at the middle latitude of the area to be

mapped, the parallels of latitude being projected into the cylinder

by lines taken normal to the surface of the spheroid. It is evident

from the figure that the parallels will not be represented by equi-

distant lines, but will separate more and more in advancing towards

the poles. This distortion in latitude is offset to a certain extent

by a similar error in longitude, caused by the lack of convergence

in the plotted meridians, so that the various topographical features

remain approximately true to shape. On account of the varying
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distortion in both latitude and longitude no single scale can be

correctly applied to all parts of such a map. For the true lengths
of one degree of latitude or longitude see Table IX or Art. 126.

The projected distance x between the meridians, per degree of

longitude, due to the middle latitude <j>', is given by the formula

X = -rrr I

COS
<f)'

180 1_(1- e2 sin2 6')*

and the projected distance y, from the equator to any parallel

</>, by the formula

, f cos <b' ae2 sin
<f)

sin2 0)*'

Any Lat.p
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paring the results given by the true formulas and the formulas

used for the projection.

127b. Rectangular Cylindrical Projection. In this type of

projection, as illustrated in Fig. 55, the cylinder is so taken as to

intersect the spheroid at the middle latitude of the area to be

mapped, and the meridians are correctly developed on the ele-

ments of the cylinder, so that in the finished map the parallels

are spaced true to scale. The error due to the lack of convergence

of the meridians still remains, so that the same scale can not be

applied to all parts of the map. The distortion in longitude is more

apparent than in the preceding projection, because no distor-

tion exists in latitude. As in the previous case the meridians

are spaced true to scale along the central parallel.

Middle Lat.-?'

Equator

X
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spacing of the meridians along the equator is true to scale in the

finished map. As the plotted meridians fail to converge, the

distance between them is too great at all other points, the extent

of the distortion becoming more and more pronounced as the

latitude increases. To offset this condition the distance between

the parallels is also distorted more and more as the latitude

increases, making the law of distortion exactly the same in both

cases. In that part of the map where the distance between the

meridians scales twice its true value, for instance, the distance

between the parallels should also scale twice its true value.

Since this distortion factor changes with the slightest change of
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whence, by integration,

, = U512925 a
[log(^|)-eI*g^=i)].

in which ?/ is the projected distance from the equator to any-

parallel of latitude
(f>, and in which the formula is adapted to the

use of common logarithms. The value of x per degree of longitude,
for the spacing of the meridians, is given by the formula

71a
X ~

180*

In making a map by this method the meridians and parallels

are spaced in accordance with the above formulas, and the fun-

damental points of the map are then plotted by latitudes and

longitudes. It is evident that such a map will be true to scale

only in the vicinity of the equator, and that different scales must
be used for every part of the map. If it is desired, however, to

have the map true to any given scale along the central parallel </>',

it is only necessary to divide the above values of x and y by the

distortion factor s' corresponding to the latitude </>'.

A rhumb line or loxodrome between any two points on a spheroid
is a spiral line which crosses all the intermediate meridians at the

same angle. Except for points very far apart such a line is not

very much longer than the corresponding great circle distance.

Great circle sailing is sometimes practised by navigators, but

ordinarily vessels follow a rhumb line, keeping the same course

for considerable distances. A rhumb line of any length or angle
will always appear in Mercator's projection as an absolutely

straight line, crossing the plotted meridians at exactly the same

angle as that at which the rhumb line crosses the real meridians.

When a ship sails from a known point in a given direction, there-

fore, its path is plotted on a Mercator chart by simply drawing a

straight line through the given point and in the given direction.

The distance traveled by the ship is plotted in accordance with the

scale suitable to the given part of the map. Similarly the proper
course to sail between any two points can be scaled directly from

the map with a protractor. It is for these reasons that this type
of projection is so valuable for nautical purposes.
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128. Trapezoidal Projection. In this type of projection,

as illustrated in Fig. 57, the meridians and parallels form a series

of trapezoids. All the meridians and parallels are drawn as

straight lines. The central meridian is first drawn and properly

graduated in degrees or minutes. The parallels of latitude are

then drawn through these points of division as parallel lines at

right angles to this meridian. Two parallels, at about one-fourth

and three-fourths the height of the map, are then properly gradu-

ated, and the corresponding points of division connected by a series

of converging straight lines to represent the meridians. For

the correct distances required in making the graduations see

1.
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while in other forms they appear as curved lines. The parallels

of latitude are always projected into the circular elements of the

cone or cones, and after development always appear as circular

arcs. The four most common types of this projection are explained

in the following articles.

129a. Simple Conic Projection. In this type of projection,

as illustrated in Fig. 58, the projection is made on a single cone

taken tangent to the spheroid at the middle latitude of the area

to be mapped. The meridians are projected into the right line

elements of the cone by the meridional planes, and appear as

straight lines after development. The meridians are correctly

developed on the elements of the cone, so that the parallels are

all spaced true to scale on the finished map, The parallels are

A
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any point H (see Fig. 59) let d equal the angular difference of

longitude subtended by the arc CH (radius
=

r) ,
and d' equal the

developed angle subtended by the same arc CH (radius =N cot. <f>).

Then, since equal lengths of arc in different circles subtend angles

inversely as the radii, we have

d' r _ N cos
<j)

giving

whence

and

d N cot
<f>

'

N cot
<j>

Sm ^

8' = dsin(;

x = AH sin d' = N cot < sin (d sin
<f>),

y =AH vers d* - 2N cot
<f>

sin2^^^Y
These values of x and y are readily computed by means of the

data given in Table IX. In this projection the coordinates of

the different arcs vary directly as their radii,

so that the coordinates of the remaining parallels

may be found by a simple proportion. As a

check on the work the meridians should be

straight and uniformly spaced.

In making a map by this method the merid-

ians and parallels are spaced in accordance with

the above rules, and the fundamental points of

the survey are then plotted by latitudes and

longitudes. In this projection the meridians and

Fig. 59. parallels intersect at the proper angle of 90, and

the parallels are properly spaced; but the spacing

of the meridians is exaggerated everywhere except along the

central parallel, and all areas are oo large. Such a map is satis-

factory up to areas measuring several hundred miles each way.

129b. Mercator's Conic Projection. In this type of pro-

jection, as illustrated in Fig. 60, the projection is made on a single

cone, taken so as to intersect the spheroid midway between the

middle parallel and the extreme parallels of the area to be mapped.

The remaining parallels may be considered as projected into the

cone so that the spacing along the line BF is exactly proportional

to the true spacing along the meridian GHK; or mathematically

BC _ CD_ _ f = chord CE
GC

~
CH

~ =

arc CE '
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After development the entire figure is then proportionately

enlarged until the spacing of the parallels is again true to scale;

following which the developed angle and its subdivisions are

correspondingly reduced in size, in order to make the projected

parallels CC" and E'E" true to the same scale. The distances

B'C = arc GC, CD' = arc CH, etc., are found from Art. 126 or

Table IX. The radius A'C is then computed from the formula

A'C _ cos
(f> (1 e2 0")*

A'C + arc CE cos c/>" (1
- e2 sin2 <)*'

The remaining radii are found from A'C by a proper combina-

tion of the known distances along the line A'F'. The parallel

A A'

Fig. 60. Mercator's Conic Projection.

E'E" is then graduated both ways from the central meridian by
means of the values found from Art. 126 or Table IX, and the

mer dians are drawn as straight lines from the point A'.

The parallels may be plotted by rectangular coordinates

when it is impracticable to use the center A', but the values given

in Table IX are not correct for this type of projection. The
individual angles at the apex A' are readily obtained from the

radius A'E' and the subdivisions along the arc E'E", and the

coordinates are then found for this arc and proportioned for the

other arcs directly as their radii.

In making a map by this method the meridians and parallels

are drawn in accordance with the above rules, and the fundamental
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points of the survey are then plotted by latitudes and longitudes.

In this projection the meridians are straight lines, the meridians

and parallels cross at the proper angle of 90, and the parallels

of latitude are properly spaced. The meridians are properly

spaced on the parallels C'C" and E'E", but are a little too widely

spaced outside of these parallels, and a little too closely spaced
within these parallels. Areas outside of these same parallels are

too large, while areas within them are too small; but the total

area is nearly correct. Mercator's conic projection is suitable

for very large areas, having been used for whole continents. It

has also been largely used for the maps in atlases and geographies.

129c. Bonne's Conic Projection. In this type of projection,

as illustrated in Fig. 61, the projection is made on a single cone
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but the same scale holds good for all the meridians and all the

parallels. Bonne's conic projection is suitable for very large

areas, having been used for whole continents. It has also been

largely used for the maps in atlases and geographies.

129d. Polyconic Projection. In this type of projection, as

illustrated in Fig. 62, a separate tangent cone is taken for each

parallel of latitude, and made tangent to the spheroid at that

parallel. Each parallel on the map results from the development

of its own special cone, appearing as the arc of a circle with a

radius equal to the corresponding tangent distance. The parallel

A

Fig. 62. Polyconic Projection.

through the point G, for instance, is drawn as a circular arc with

a radius equal to the tangent distance BG, and so on. The
central meridian is drawn as a straight line, on which all the

parallels are spaced true to scale, so that the division EF equals

the arc EF, the division FG equals the arc FG, and so on. The arcs

representing the various parallels are then drawn through these

division points with the appropriate radii, and with the centers

located on the central meridian. Each parallel as thus represented
is then graduated true to scale, and the meridians are drawn as

curved lines connecting the corresponding divisions.

In making a map by this method the meridians and parallels

are plotted in accordance with the data given in Table IX, or
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from corresponding values computed by the rules and formulas

of Arts. 126 and 129a, remembering that each parallel is here

equivalent to the central parallel of the simple conic projection.

The plotting is customarily done by rectangular coordinates,

the meridians and parallels being taken so close together that the

intersection points may be connected by straight lines. The
fundamental points of the survey are then plotted by latitudes

and longitudes.

This type of projection is suitable for very large areas. The
meridians are spaced true to scale throughout the map and cross

the parallels nearly at right angles. The parallels are spaced

true to scale only along the central meridian, and diverge more

and more from each other as the distance from the central merid-

ian increases. The whole of North America, however, may be

represented without material distortion. The U. S. Coast and

Geodetic Survey and the U. S. Geological Survey have adopted
the polyconic system of projection to the exclusion of all others.

For further information on this subject see
"
Tables for the

Projection of Maps, Based upon the Polyconic Projection of

Clarke's Spheroid of 1866, and computed from the Equator to

the Poles; Special Publication No. 5, U. S. Coast and Geodetic

Survey, U. S. Government Printing Office, 1900."

The above type of polyconic projection is sometimes called

the simple polyconic, to distinguish it from the rectangular poly-

conic, in which the scales along the parallels are so taken as to

make all the meridians and parallels cross at right angles. When
not otherwise specified the simple polyconic is in general under-

stood to be the one intended.



PART II

ADJUSTMENT OF OBSERVATIONS BY THE
METHOD OF LEAST SQUARES

CHAPTER IX

DEFINITIONS AND PRINCIPLES

130. General Considerations. In various departments of

science, such as Astronomy, Geodesy, Chemistry, Physics, etc.,

numerous values have to be determined either directly or indirectly

by some process of measurement. When any fixed magnitude,

however, is measured a number of times under the same apparent

conditions, and with equal care, the results are always found to

disagree more or less amongst themselves. With skillful observers,

and refined methods and instruments, the absolute values of

the discrepancies are decreased, but the relative disagreement
often becomes more pronounced. The conclusion is obviously

reached that all measurements are affected by certain small and

unknown errors that can neither be foreseen nor avoided. The

object of the method of Least Squares is to find the most probable
values of unknown quantities from the results of observation,

and to gage the precision of the observed and reduced values.

131. Classification of Quantities. The quantities observed

are either independent or conditioned.

An independent quantity is one whose value is independent of

the values of any of the associated quantities, or which may be

so considered during a particular db ussion. Thus in the case

of level work the elevation of any i ividual bench mark is an

independent quantity, since it bears necessary relation to the

elevation of any other bench mark. !e in the case of a triangle

241
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we may consider any two of the angles as independent quantities

in any discussion in which the remaining angle is made to depend
on these two.

A conditioned quantity (or dependent quantity) is one whose

value bears some necessary relation to one or more associated

quantities. In any case of conditioned quantities we may regard
these quantities as being mutually dependent on each other, or

any number of them as being dependent on the remaining ones.

Thus if the angles of a triangle are denoted by x, y, and z, we

may write the conditional equation

x + y + z - 180,

and regard each angle as a conditioned quantity; or we may write,

for instance,

z = 180 - x - y,

and regard z as conditioned and x and y as independent.
132. Classification of Values. In considering the value of

any quantity it is necessary to distinguish between the true value,

the observed value, and the most probable value.

The true value of a quantity is, as its name implies, that value

which is absolutely free of all error. Since (Art. 130) all measure-

ments are subject to certain unknown errors, it follows that the

true value of a quantity may never be known with absolute pre-

cision. In any case such a value would seldom be any exact

number of units, but could only be expressed as an unending
decimal.

The observed value of a quantity is technically understood to

mean the value which results from an observation when correc-

tions have been applied for all known errors. Thus in measuring
a horizontal angle with a sextant the vernier reading must be

corrected for the index error to obtain the observed value of the

angle; in measuring a base line with a steel tape the corrections

for horizontal and vertical alignment, pull, ag, temperature, and

absolute length, are understood to have been applied ;
and so on.

The most probable value of a quantity is that value which is

most likely to be the true value in view of all the measurements

on which it is based. The most probable value in any case is

not supposed to be the same as the true value, but only that value

which is more likely to be the true value than any other single

value that might be proposed.
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133. Observed Values and Weights. The observations which

are made on unknown quantities may be direct or indirect, and

in either case of equal or of unequal weight.

A direct observation is one that is made directly on the quan-

tity whose value is desired. Thus a single measurement of an

angle is a direct observation.

An indirect observation is one that is made on some function

of one or more unknown quantities. Thus the measurement
of an angle by repetition represents an indirect observation,

since some multiple of the angle is measured instead of the single

value. So also in ordinary leveling the observations are indirect,

since they represent the difference of elevation from point to

point instead of the elevations of the different points.

By the weight of an observation is meant its relative worth.

When observations are made on any magnitude with all the con-

ditions remaining the same, so that all the results obtained may
be regarded as equally reliable, the observations are said to be of

equal weight or precision, or of unit weight. When the condi-

tions vary, so that the results obtained are not regarded as equally

reliable, the observations are said to be of unequal weight or pre-

cision. It has been agreed by mathematicians that the most

probable value of a quantity that can be deduced from two obser-

vations of unit weight shall be assigned a weight of two, from three

such observations a weight of three, and so on. Hence when an
observation is made under such favorable circumstances that the

result obtained is thought to be as reliable as the most probable
value due to two observations which would be considered of unit

weight, we may arbitrarily assign a weight of two to such an

observation; and so on. As the weights applied in any set of

observations are purely relative, their meaning will not be changed
by multiplying or dividing them all by the same number. The

elementary conception of weight is therefore extended to include

decimals and fractions as well as integers, since any set of weights
could be reduced to integers by the use of a suitable factor.

134. Most Probable Values and Weights. In any set of

observations the most probable value of the unknown quantity
will evidently be some intermediate or mean value. There are

many types of mean value, but manifestly they are all subject
to the fundamental condition that in the case of equal values the

mean value must be that common value. Three of the common
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types of mean value are the arithmetic mean, the geometric mean,
and the quadratic mean. If there are n quantities whose respective

values are Mi, M2 , etc., we have,

= the arithmetic mean;n '

\/MiM2 . . . Mn = the geometric mean; ^ . . (1)

4 = the quadratic mean;
J

all of which satisfy the fundamental condition of a mean value.

In the case of direct observations of equal weight it has been

universally agreed that the arithmetic mean is the most probable

value. In accordance with this principle, and the definition of

weight as given in Art. 133, it is evident that the weight of the

arithmetic mean is equal to the number of observations. Sim-

ilarly, an observation to which a weight of two has been assigned

may be regarded as the arithmetic mean of two component obser-

vations of unit weight, and so on, provided no special assumption
is made regarding the relative values of these components.
For direct observations of unequal weight, therefore,

Let 2 = the most probable value of a given magnitude;

Mi, M2 ,
etc. = the values of the several measurements;

Pi, p2,
etc. = the respective weights of these measurements;

api, ap2,
etc. = the corresponding integral weights due to the

use of the factor a;

mi, mi", etc. = the api unit weight components of M i when con-

sidered as an arithmetic mean
w2 ',

m2", etc. = similarly for M2 ,
and so on;

then we may write as equivalent expressions

mi' + mi" . . . 2mi
Mi m

api api

whence

,, m2 + m2
"

. . . 2m2M2 = f =
-, etc;

ap2 ap2

Smi = apiMi,
Sm2

= ap2M2, etc.;
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and, since the various values of m are of unit weight,

2wi + Sm2 . . .

api + ap2 . . .

'

or

2m _ H(ap-M) _ HpM
Hap Hap Hp

' ' * * K }

from which we have the general principle :

In the case of direct observations of unequal weight the most

probable value is found by multiplying each observation by its weight

and dividing the sum of these products by the sum of the weights.

The result thus obtained is called the weighted arithrr.etic mean.

In the above discussion the value of z is found by taking the

arithmetic mean of Hap quantities whose sum is Hm, so that the

integral weight of z is Hap. Dividing by a in order to express this

result in accordance with the original scale of weights, we have

Weight of z = Hp; (3)

or, expressed in words, the weight of the weighted arithmetic

mean is equal to the sum of the individual weights.

135. True and Residual Errors. It is necessary to distin-

guish between true errors and residual errors.

A true error, as its name implies, is the amount by which any

proposed value of a quantity differs from its true value. True

errors are generally considered as positive when the proposed
value is in excess and vice versa. Since (Art. 132) the true value

of a quantity can never be known, it follows that the true error

is likewise beyond determination.

A residual error is the difference between any observed value

of a quantity and its most probable value, in the same set of

observations. The subtraction is taken algebraically in which-

ever way is most convenient in the given discussion. In the case

of indirect observations the most probable value of the observed

quantity is found by substituting the most probable values of the

individual unknowns in the given observation equation (Art. 158).

Residual errors are frequently called simply residuals.

In the case of the arithmetic mean the sum of the residual errors

is zero. This is proved as follows:
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then

Let n = the number of observations;

M\, M2,
. . . Mn = the observed values;

z = the arithmetic mean;

Vi, v2,
. . . vn = the residual errors;
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from which

Zp-z - EpM = 0;

whence

Epv =0, (5)

which was to be proved.

136. Sources of Error. The errors existing in observed values

may be due to mistakes, systematic errors, accidental errors, or

the least count of the instrument.

A mistake is, as its name implies, an error in reading or record-

ing a result, and is not supposed to have escaped detection and

correction.

A systematic error is one that follows some definite law, and is

hence free from any element of chance. Errors of this kind may
be classed as atmospheric errors, such as the effect of refraction

on a vertical angle, or the effect of temperature on a steel tape;
instrumental errors, such as those due to index errors or imperfect

adjustments; and personal errors, such as individual peculiarities

in always reading a scale a little too small, or in recording a star

transit a little too late. Systematic errors usually affect all the

observations in the same manner, and thus tend to escape detec-

tion by failing to appear as discrepancies. Such errors, however,
are in general well understood, and are supposed to be eliminated

by the method of observing or by subsequent reduction.

An accidental error is one that happens purely as a matter of

chance, and not in obedience to any fixed law. Thus, for instance,

in bisecting a target an observer will sometimes err a little to

the right, and sometimes a little to the left, without any assignable

cause; a steel tape will be slightly lengthened or shortened by a

momentary change of temperature due to a passing current of

air, and so on.

An error due to the least count of the instrument is one that is

caused by a measurement that is not capable of exact expression
in terms of the least count. Thus an angle may be read to the

nearest second by an instrument which has a least count of this

value, but the true value of the angle may differ from this reading

by some fraction of a second which can not be read.

137. Nature of Accidental Errors. Errors of this kind are

due to the limitations of the instruments used; the estimations

required in making bisections, scale readings, etc., and the con-
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stantly changing conditions during the progress of an observa-

tion. Each individual error is usually very minute, but the

possible number of such errors that may occur in any one measure-

ment is almost without limit. In general it may be said that any

single observation is affected by a very large number of such errors,

the total accidental error being due to the algebraic sum of these

small individual errors. Thus in measuring a horizontal angle

with a transit the instrument is seldom in a perfectly stable posi-

tion; the leveling is not perfect; the lines and levels of the instru-

ment are affected by the wind and varying temperatures; the

graduations are not perfect; the reading is affected by the judg-

ment of the observer; the target is bisected only by estimation;

the line of sight is subject to irregular sidewise refraction due to

changing air currents; and so on. As long as the component
errors are all accidental, however, the total error may be regarded

as a single accidental error.

138. The Laws of Chance. The errors remaining in observed

values after all possible corrections have been made are presumed

to be accidental errors, and must, therefore be assumed to have

occurred in accordance with the laws of chance. By the laws of

chance are meant those laws which determine the probability of

occurrence of events which happen by chance.

By the probability of an event is meant the relative frequency

of its occurrence. It is not only a reasonable assumption but also

a matter of common experience, that in the long run the relative

frequency with which a proposed event occurs will closely approach

the relative possibilities of the case. Thus in tossing a coin

heads may come up as one possibility out of the two possibilities

of heads or tails, so that the probability of a head coming up is

one-half; and in a very large number of trials the occurrence of

heads will closely approximate one-half the total number of trials.

Probabilities are therefore represented by fractions ranging in

value from zero to unity, in which zero represents impossibility of

occurrence, while unity represents certainty of occurrence.

The three fundamental laws of chance are those relating to

simple events, compound events, and concurrent events.

139. A Simple Event is one involving a single condition which

must be satisfied. The probability of a simple event is equal to

the relative possibility of its occurrence. Thus the probability of

drawing an ace from a pack of cards is i

1

^, since there are four
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such possibilities out of 52, and 5

4
o
=

jVj but the probability

of drawing an ace of clubs, for instance, is only 5V> since there

is only one such possibility out of 52.

140. A Compound Event is one involving two or more con-

ditions of which only one is required to be satisfied. The 'proba-

bility of a compound event is equal to the sum of the probabilities of

the component simple events. This law is evidently true, since the

number of favorable possibilities for the compound event equals

the sum of the corresponding simple possibilities, and the total

number of possibilities remains unchanged. Thus the probability

of getting either a club or a spade in a single draw from a pack
of cards is one-half, because the probability of getting a club is one-

quarter, and the probability of getting a spade is one-quarter, and

4 + 1=2; or in other words the 13 chances for getting a club

are added to the 13 chances for getting a spade, making 26 favor-

able possibilities out of a total of 52. The probability of draw-

ing either a club, spade, heart, or diamond, equals i + i + i + i,

which equals unity, since the proposed event is a certainty.

141. A Concurrent Event is one involving two or more con-

ditions, all of which are required to be satisfied together. The

probability of a concurrent event is equal to the product of the prob-

abilities of the component simple events. This law is evidently

true, since the number of favorable possibilities for the concurrent

event is equal to the product of the corresponding simple pos-

sibilities; while the total number of possibilities is equal to the

product of the corresponding totals for the component simple
events. Thus the probability of cutting an ace in a pack of cards

is jj, so that the probability of getting two aces by cutting two

packs of cards is -%$ X jj =
5

4

2

*
/.,

=
yg- X iV = iihr It is evi-

dent that the required condition will be satisfied if any one of the

four aces in one pack is matchedwith any one of the four aces in the

other pack, so that there are 4X4 favorable possibilities. Also

the cutting may result in getting any one of 52 cards in one pack

against any one of 52 cards in the other pack, so that there are

52X52 total possibilities. Multiplying the two probabilities,

therefore, gives the relative possibility and therefore the required

probability for the given concurrent event. Similarly the propo-
sition may be proved for a concurrent event involving any
number of simple events. Thus in throwing three dice the

probability of getting 3 fours, for instance, will be X|Xf =2Tff,'
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the probability of drawing a deuce from a pack of cards at

the same time that an ace is thrown with a die, will be

faX | = tV ;
and so on.

In figuring the probability of a concurrent event it is neces-

sary to guard against two possible sources of error. In the

first place the probabilities of the simple events involved in a

concurrent event may be changed by the concurrent condition.

Thus the probability of drawing a red card from a pack is ff ,

but the probability of drawing two red cards in succession from

a pack is not ffXf I, but ff Xff, since the drawing of the first

card changes the conditions under which the second card is drawn.

In the second place, the probability of a concurrent event may
be modified by the sense in which the order of simple events

may be involved. Thus in cutting two packs of cards the prob-

ability that the first pack will cut an ace and the second a king
is T3Xi1

5
= Ti5; but the probability that the first pack will cut

a king and the second an ace is also tVXtj = t7; so that the

probability of cutting an ace and a king without regard to

specific packs becomes yf-g-,
and not tt7> as might be inferred.

142. Misapplication of the Laws of Chance. The probability

of a given event is the relative frequency of its occurrence in

the long run, and not in a limited number of cases. It is not

to be expected that every two tosses of a coin will result in one

head and one tail, since other arrangements are possible, and

the laws of chance are founded on the idea that every possible

event will occur its proportionate number of times. Thus in

the case of a coin we have for all possible events in two tosses,

Probability of 2 heads = \
"

1 head and 1 tail = \
"

1 tail and 1 head = \

2 tails = i

Some one of these events must happen, so that the total prob-

ability is i+i+i+i, which equals unity, as it should in a

case of certainty. The probability of two tosses including a

head and a tail (which may occur in two ways) is \-\-\=h, so

that the proposed event is not one that occurs at every trial,

as is often inferred.

An event whose probability is extremely high will not neces-

sarily happen on a given occasion, and this failure to happen
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does not imply an error in the theory of probabilities. The

very fact that the given probability is not quite unity indicates

the chance of occasional failures. Similarly an event with a

very small probability will sometimes happen, otherwise its

probability should be precisely and not approximately zero.

The probability of a future event is not affected by the

result of events which have already taken place. Thus if a tossed

coin has resulted in heads ten times in succession it is natural

to look on a new toss as much more likely to result in tails than

in heads
;
but mature thought will show that the probabilities are

still one-half and one-half for any new toss that may be made. The

confusion in such a case comes from regarding the ten successive

heads as an abnormal occurrence, whereas, being one of the

possible occurrences, it should happen in due course along with

all other possible events. If tails were more likely to come up
than heads in any particular toss, it would imply some difference

of conditions instead of any overlapping influence. If the toss

of a coin is ever regarded as a matter of chance, it must always

be so regarded.



CHAPTER X

THE THEORY OF ERRORS

143. The Laws of Accidental Error. The mathematical

theory of errors relates entirely to those errors which are purely

accidental, and which therefore follow the laws of probability.

Mistakes or blunders, which follow no law, and systematic

errors, which follow special laws for each individual case, can

not be included in such a discussion. If a sufficient number of

observations are taken it is found by experience that the accidental

errors which occur in the results are governed by the four fol-

lowing laws :

1. Plus and minus errors of the same magnitude occur with

equal frequency.

This law is a necessary consequence of the accidental char-

acter of the errors. An excess of plus or minus errors would

indicate some cause favoring that condition, whereas only acci-

dental errors are under consideration.

2. Errors of increasing magnitude occur with decreasingfrequency .

This law is the result of experience, but for mathematical

purposes it is replaced by the equivalent statement that errors

of increasing magnitude occur with decreasing facility. For

reasons yet to appear (Art. 146) the facility of an error is rated

in units that make it proportional to the relative frequency with

which that error occurs instead of equal thereto.

3. Very large errors do not occur at all.

This law is also the result of experience, but it is not in

suitable form for mathematical expression. It is satisfactorily

replaced by the assumption that very large errors occur with

great infrequency.

4. Accidental errors are systematically modified by the cir-

cumstances of observation.

This law is a necessary consequence of the first three laws,

and emphasizes the fact that these three laws always hold good
252
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however much the absolute values of the errors may be modified

by favorable or unfavorable conditions. The chief circumstances

affecting a set of observations are the atmospheric conditions,

the skill of the observer, and the precision of the instruments.

144. Graphical Representation of the Laws of Error. The

four laws of error are graphically represented in Fig. 63, in which

the solid curve corresponds to a series of observations taken

under a certain set of conditions, and the dotted curve to a

series of observations taken under more favorable conditions.

For reasons which will appear in due course any such curve is

called a probability curve. The line XX, or axis of x, is taken

as the axis of errors, and the line AY, or axis of y, as the axis

of facility, the point A being taken as the origin of coordinates.

Thus in the case of the solid curve, if the line Aa represents any

A a d

Fig. 63. Probability Curves.

proposed error, then the ordinate ab represents the facility with

which that error occurs in the case assumed. The first law is

illustrated by making the curves symmetrical with reference to

the axis of y, so that the ordinates are equal for corresponding

plus and minus values of x. The second law is illustrated by the

decreasing ordinates as the plus and minus abscissas are increased

in length. The third law does not admit of exact representation,

since a mathematical curve can not have all its ordinates equal
to zero after passing a certain point; a satisfactory result is

reached, however, by making all ordinates after a certain point

extremely small, with the axis of x as an asymptote to the curves.

The fourth law is illustrated by means of the solid curve and the

dotted curve, both of which are consistent with the first three

laws, but which have different ordinates for the same proposed
error. Thus small errors, such as A a, occur with greater frequency

(or greater facility) in the case of the dotted curve than in the
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case of the solid curve, as shown by the ordinate ac being longer
than the ordinate ab; while large errors, such as Ad, occur with

less frequency (or less facility) in the case of the dotted curve

than in the case of the solid curve, as shown by the ordinate

de being shorter than the ordinate df.

145. The Two Types of Error. The recorded readings in

any series of observations are subject to two distinct types of

error. The first type of error includes all those errors involved

in the making of the measurement, such as those due to imper-
fect instrumental adjustments, unfavorable atmospheric conditions,

imperfect bisection of targets, imperfect estimation of scale

readings, etc. The second type of error is that involved in

the reading or recording of the result, which must be done in

terms of some definite least count which excludes all inter-

mediate values.

A given reading, therefore, does not indicate that precisely that

value has been reached in the process of measurement, but only
such a value as must be represented by that reading; so that

a given reading may be due to any one of an infinite number
of possible values lying within the limits of the least count.

Similarly, the error in the recorded reading does not indicate

that precisely that error has been made in the process of measure-

ment, but only such an error as must be represented by that

value; so that the error of the recorded reading may in fact

be due to any one of an infinite number of possible errors lying

within the limits of the least count. The first type of error

is the true type or that which corresponds to the accidental

conditions under which a series of observations are made, while

the second type is a false type or definite condition or limitation

under which the work must be done. Thus in sighting at a target

a number of times the angular errors of bisection may vary

among themselves by amounts which can only be expressed in

indefinitely small decimals of a second. If the least count

recognized in recording the scale readings is one second, however,

the recorded readings and the corresponding errors will varyamong
themselves by amounts which differ by even seconds. The

probability curve of the preceding article is based on the first

type of error only, and is therefore a mathematically con-

tinuous curve, since all values of the error are possible with this

type. In speaking of the errors of observations, however, the
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errors of the recorded values are in general understood, and these

must necessarily differ among themselves by exactly the value

of the least count.

146. The Facility of Error. If an instrument is correctly

read to any given least count, no reading can be in error by more

than plus or minus a half of this least count; or, in other words,

each reading is the central value of an infinite number of

possible values lying within the limits of the least count. If

a great many observations are taken on a given magnitude, each

particular reading will be found to repeat itself with more or

less frequency, since all values lying within a half of the least

count of that particular reading must be recorded with the

value of that reading. If the same instrument, however, carried

finer graduations, with the least count half the previous value,

each reading would represent only those values within half

the previous limits. There would then be twice as many repre-

sentative readings, with each one standing for half as many
actual values as with the coarser graduations. It is thus seen

that the relative frequency with which a given reading (and
the corresponding error) occurs, is directly proportional to the

least count of the instrument, or least count used in recording

the readings. Just as each reading is taken to represent an

infinite number of possible values within the limits of the least

count, so that reading must correspond to an infinite number of

possible errors within the same limits, each possible error having
a different facility of occurrence. Since in the long run, however,
each reading will be practically the average of all the values

that it represents, so the facility of the error due to that reading

may be taken practically as the average facility of all the corre-

sponding errors. By definition (Art. 143) the facility of a given
accidental error is proportional to the frequency of its occurrence.

It is thus seen that the relative frequency with which a given
error (representing all possible errors due to a given reading)

occurs, is proportional to the facility of that error. Since the

relative frequency with which a given error occurs is proportional

to both its facility and the least count, it is proportional to

tjheir product, and is always made equal to this product by using
a suitable scale of facility. The facility of a given error is hence

equal to the relative frequency of occurrence of that error divided

by the least count.
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147. The Probability of Error. By the probability of an

error is meant the relative frequency of its occurrence. Thus

in the measurement of an angle, if a given error occurred (on

the average) 27 times in 1000 observations, then the probability

that an additional measurement would be in error by that same

amount would be to ihr- The probability of a given error being

identical with its relative frequency of occurrence is hence (Art.

146) equal to the product of the facility of that error by the least

count. The probability of error for a certain set of conditions

is illustrated in Fig. 64. In this figure the spaces da, ae, eb, and

bf are each equal to one-half of the least count. The probability

that an error Aa will occur is hence, in accordance with the

above principles, equal to the product of am (the facility) by

c A d a e b f g

Fig. 64. The Probability of Error.

de (the least count). As the least count is always very small,

we may write without appreciable error,

Probability of error Aa =amXde = a,re& dste.

But (Art. 145) the error Aa in the recorded reading includes all

the possible errors lying between Ad and Ae, that is, within

half the least count each way from Aa. The area dste therefore

represents the probability that the actual error committed lies

between the values Ad and Ae. Similarly the area etuf represents
the probability of an actual error between the values Ae and

Af. The probability that an actual error shall lie either between
Ad and Ae or between Ae and Af (compound event, Art. 140),

or in other words between Ad and Af, is equal to the sum of the

two separate probabilities, that is, to the combined area dsuf.

Or, in general, the probability that an error shall fall between

any two values Ac and Ag, is represented by the area included

between the corresponding ordinates cr and gv. On account
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of this characteristic property the curve of facilities is commonly
called the probability curve. Strictly speaking the ordinates

limiting the area can only occur at certain equally spaced intervals

depending on the least count, but no material error is ever intro-

duced by drawing them at any points whatever.

148. The Law of the Facility of Error is that law which con-

nects all the possible errors in any set of observations with their

corresponding facilities, and is expressed analytically by the

equation of the probability curve. The law which governs the

occurrence of errors in any particular set of observations is

necessarily unknown and beyond determination, being the com-

bined result of an uncertain number of variable and unknown

causes. Fortunately, however, it is found by experience that

there is one particular form of law which (with proper constants)

very closely represents the facility of error in all classes of obser-

vations. This form of law is that which is in accordance with

the assumption that the arithmetic mean of the observed values

is the most probable value when the same magnitude has been

observed a large number of times under the same conditions.

The same form of law being accepted as satisfactory in all cases,

therefore, the law for any particular case is determined by the

substitution of the proper constants.

149. Form of the Probability Equation. If x represents any

possible error and y the facility of its occurrence, we may write

V =
<f>(x) t (6)

which is read y equals a function of x. When the form of this

function has been determined the expression will be the general

equation of the probability curve. Since the probability that

the error x (of a recorded reading) will occur is equal (Art. 147)

to its facility multiplied by the least count, we have

P = yJx =
(J)(x)Jx, (7)

in which P is the probability of the occurrence of the error x,

and Ax is the least count. If x\, X2, . . . xn are the true errors in

the observed values of any magnitude Z, and Pi, P2, . . . Pn
are the corresponding probabilities of occurrence, we thus have

Pi =
<j>(xi)Jx, P2

=
<f>(x2)Jx, etc.
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The probability P of the occurrence of this particular series

of errors, xi, x2 , etc., in a set of observations of equal weight,

being a concurrent event (Art. 141), is equal to the product
of the individual probabilities, giving

P =4>{x l )-cji {x2)...4>{xn)-{dxY; .... (8)

whence

log P =
log <f)(x{) + log <f>(x2). . . + log cf>(xn) + n log Ax. (9)

The true value of the unknown quantity Z, and the errors

X\, X2, etc., can never be known. Any assumed value of Z will

result in a particular series of values v i} v 2 , etc., for the errors

of the several observations. That value of Z will be the most

probable which produces the series of errors which has the

highest probability of occurrence. Replacing the true errors

Xi, x2 , etc., in Eq. (9) by the variable errors V\, v2 , etc., and

making the first differential coefficient equal to zero to obtain

a maximum value of P, we have

d log <f>(vi) d log 4>{v2) d log <j)(vn) n n .

dvi dv2 dvn

which may be written

'dlogj^X
AH0g^2) \ /dlogKVn) \

v
v\.dvi J \ v2dv2 j \ vndvn J

But it has already been decided (Art. 134) that the arithmetic

mean of such a series of observed values is the most probable

value of the quantity observed. The adoption of the arith-

metic mean as the most probable value, however, requires

the algebraic sum of the residuals (Art. 135) to reduce to zero;

whence

vi + v2 . . . + vn =
(12)

Since V\, v2 , etc., are the result of chance, and hence independent

of each other, it follows from Eq. (12) that the coefficients of

vi, etc., in Eq. (11) must all have the same value. Representing

this unknown value for any particular set of observations by the
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constant k, we have as the general condition which makes the

arithmetic mean the most probable value,

vdv
'

whence by transposition

d log (f>(y)
= kvdv.

Integrating this equation

log <f>{v)
= \kv

2 + log c,

in which log c represents the unknown constant of integration.

Passing to numbers, we have

<Kv) = ce
ikv

\ (13)

in which e equals the base of the Naperian system of logarithms.

It is necessary at this point to remember that the probability

of the occurrence of a given error does not involve the question

as to whether we are right or wrong in assuming that an error of

that value has occurred in a particular observation. Thus in

the preceding discussion the probabilities assigned to the assumed

values of i>i, i>2, etc., are the probabilities for true errors of these

values, regardless of whether such errors have or have not occurred

in the given case. It is of the utmost importance, therefore, to

realize that Eq. (13) is not based on the assumption that the

error v has occurred, but is a general statement of fact concern-

ing any true error whose magnitude is v. Replacing v in Eq. (13)

by x, the adopted symbol for true errors, we have

but from equation (6)

whence

<j>(x)
= ce*kx2

',

y = ce***\



260 GEODETIC SURVEYING

Since the facility y decreases as the numerical value of x increases,

it follows that \ k is essentially negative, and it is therefore

commonly replaced by h2 . Making this substitution, we have

y = ce~
hix

\ (14)

in which y equals the facility with which any error x occurs,

c and h are unknown constants depending on the circumstances

of observation, and e is the base of the Naperian system of log-

arithms. Though correct in apparent form, Eq. (14) must not

yet be regarded as the general equation of the probability curve,

since the quantities c and h appear as arbitrary constants,

whereas t wi 1 be shown in the next article that these values are

dependent on each other.

150. General Equation of the Probability Curve. The proba-

bility that an error shall fall between any two given values

(Art. 147) is equal to the area between the corresponding ordi-

nates of the probability curve. The probability that an error shall

fall between oo and + oo is therefore equal to the entire area

of the curve. But it is absolutely certain that any error which

may occur will fall between these extreme limits, and the proba-

bility of a certain event (Art. 138) is equal to unity. The entire

area of any curve represented by Eq. (14) must therefore be equal

to unity. Since all probability curves have the same total area,

it follows that any change in h will require a compensating change
in c; or, in other words, c must be a function of h. The general

expression for the area of any plane curve is

=
J ydx.

Substituting the value oi.y from Eq. (14)

A = ( ce~h2x2dx.

The probability P that an error x will fall between the limits a

and b, is therefore

r =
J

ce~hixi
dx, . . . . . (15)
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and between the limits oo and + oo
,
is

XOO

/*00

ce~h2xidx - c I e~hixidx.
"00 J 00

But this probability, being a certainty, equals unity; whence

1 =c
J

e~h2xidx,J 00

or

i r

The second member of this equation is a definite integral whose

evaluation by the methods of the calculus (for which such works

should be seen) gives

hence

and

which substituted in Eq. (15) gives for the probability P that an
error x will fall between any limits a and 6,

P =-^-f
b

e-h^dx (16)
VlCja

Also substituting the above value of c in Eq. (14) we have for the

general equation of the probability curve

^ir*1

, (17)

in which y is the facility with which any error x occurs, e

(
= 2.7182818) is the base of the Naperian system of logarithms,

and h (called the precision factor) is a constant depending on the

circumstances of observation. The constant h is the only element

J c
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in Eq. (17) which can vary with the precision of the work, and
therefore of necessity becomes the measure of that precision.

151. The Value of the Precision Factor. The general equa-
tion of the probability curve is given by Eq. (17), but the definite

equation for any particular set of observations is not known
until the corresponding value of h has been determined. The

probability that an error x will occur (Art. 149) is

P = yJx =
(j>{x)Ax.

Substituting the value of y from Eq. (17),

P - -4= r**Jx =
4>(x)Jx (18)

With an infinite number of observations any residual vx would be

infinitely close to the corresponding true error x\, and the relative

frequency with which Vi occurred would not differ appreciably

from Pi. The value of h for any particular case could thus be

found from Eq. (18) by substituting these values for P and x.

As the number of observations is always limited, however, the

best that can be done is to find the most probable value of h

for the given case. The probability that a given set of errors

has occurred is, by Eq. (8),

P =
<f>(Xl ) -4>{X2). . . 4>M ' (JX)\

But from Eqs. (6) and (17)

so that

and

L

4>{xi)
=

j= e~h
*x

**, etc.
;

V7T

h \ n

--) e-h22*\Jx)
n

,

71

log P = n log h h2Hx2 + n log Ax
^- log n\

whence by making the first derivative with respect to h equal to

zero

? - 22x2 -h = 0.
h
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Solving for h we have

h ->& (19)

in which n is the number of observations taken, and 2z2
is the

sum of the squares of the true errors which have occurred. The

true errors, however, can never be known, and formula (19) must

therefore be modified so as to give the most probable value of h

that can be determined from the residual errors. A discussion

of this condition is beyond the scope of this book, but for observa-

tions of equal (or unit) weight results in the formula

*-a3' (20)

in which n as before is the number of observations that have been

taken, and. 2y2
is the sum of the squares of the residual errors.

For observations of unequal weight (Art. 133) formula (19)

becomes

*-\fij5. (2i )

in which Spy
2

is the sum of the weighted squares of the residuals,

and h as before is the precision factor for observations of unit

weight.

For the general case of indirect observations (Art. 158) on inde-

pendent quantities, that is, with no conditional equations (Art. 131),

formula (19) becomes

*-<& (22)

in which n is the number of observation equations, q is the number

of unknown quantities, %pv
2

is the sum of the weighted squares

of the residuals, and h is the precision factor for observations

of unit weight.

For the general case of indirect observations involving con-

ditional equations, formula (19) becomes
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in which c is the number of conditional equations, n is the number

of observation equations, q is the number of unknown quantities,

Spy
2

is the sum of the weighted squares of the residuals, and h is

the precision factor for observations of unit weight. As will be

understood later (Art. 166), the number of independent unknowns

is always reduced by an amount which equals the number of

conditional equations, so that q in Eq. (22) is simply replaced by

(q
-

c) in Eq. (23).

152. Comparison of Theory aild Experience. In the Funda-

menta Astronomice Bessel gives the following comparison of theory

and experience. In a series of 470 observations by Bradley on

the right ascensions of Sirius and Altair the value of h was found

to be 1.80865, giving rise to the following table:

Numerical Errors between



THE THEORY OF ERRORS 265

In the first place, the theory of errors presupposes that a very large

number of observations have been made. It is customary, how-

ever, to apply the theory to any number of observations, however

limited. It is evident in such cases that reasonable judgment
must be used in interpreting the results obtained by the applica-

tion of the theorjr. In the second place, the theory of errors is

the theory of accidental errors. It is in general impossible to

entirely prevent systematic errors in a process of observation;
and such errors can not be discovered or eliminated by any num-
ber of observations, however great, if the circumstances of observa-

tion remain unchanged. The theory of errors, therefore, makes
no pretense of discovering the truth in any case, but only to

determine the best conclusions that can be drawn from the observa-

tions that have been made.



CHAPTER XI

MOST PROBABLE VALUES OF INDEPENDENT QUANTITIES

153. General Considerations. In accordance with the dis-

cussions of the previous chapter it is evident that the true value

of an observed quantity can never be found. Adopting any

particular value for the observed quantity is equivalent to assum-

ing that a certain series of errors has occurred in the observed

values. Manifestly the most probable value of the observed

quantity is that which corresponds to the most probable series

of errors; or, in other words, that series of errors which has the

highest probability of occurrence. It is therefore by means of

the theory of errors (Chapter X) that rules are established for

determining the most probable values of observed quantities.

154. Fundamental Principle of Least Squares. For the general

equation of the probability curve, Eq. (17), Art. 150, we have

in which y is the facility of occurrence of any error x under the

conditions represented by tie precision factor h. The probability

that any error x will occur (Art. 147) is equal to its facility multi-

plied by the least count, or

P = yJx.

Hence if *i, X2, . . . xn are the errors in the observed values

of any magnitude Z, and Pi, P2, . . . Pn are the corre-

sponding probabilities of occurrence, we have

and

yi
- e~hi

*i\ y =
-7= e~h^, etc.,

Viz Vtz

P\ = yi^x, P2 = ?/2^, etc.

266



PROBABLE VALUES OP INDEPENDENT QUANTITIES 267

The probability P of the occurrence of this particular series of

errors x if x2 , etc., in the given set of observations, being a con-

current event (Art. 141), is equal to the product of the individual

probabilities, giving

P -
(yito uJV*) u =

(-~)

n

e-*\Jx)\

This equation is true for any proposed series of errors, and

hence for that series of residual errors v
{ ,

v2 ,
. . . Vn, which

results from assigning the most probable value to the observed

quantity. In this case Sx2 becomes Hy2
,
and we have

p = /-MV*W(J*) (24)

But (Art. 153) the most probable value of the observed quantity

corresponds to that series of errors which has the highest prob-

ability of occurrence. The most probable value z of any observed

quantity Z, therefore, requires P in Eq. (24) to be a maximum,
and this in turn requires I>2 to be a minimum. We thus have the

following

Principle: In observations of equal precision the most 'probable

values of the observed quantities are those that render the sum of the

squares of the residual errors a minimum.

It is on account of this principle that the Method of Least

Squares has been so named.

155. Direct Observations of Equal Weight. A direct observa-

tion (Art. 133) is one that is made directly on the quantity whose

value is to be determined. When the given magnitude is measured

a number of times under the same conditions (as represented

by the same precision factor h in the probability curve), the results

obtained are said to be of equal weight or precision. In such a case

the most probable value of the quantity sought mu^t accord with

the principle of the previous article, that is, the sum of the squares

o
'

the residual errors must be a minimum.

Let z = the most probable value of a given magnitude;
n = the number of measurements taken;

Mi, M2 ,
. Mn

= the several measured values;

then (Art. 154)

(Mi - z)
2 + (M2

-
z)

2
. . . + (Mn

-
z)

2 = a minimum.
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Placing the first derivative equal to zero,

2(M, -
z) + 2 (M2

-
z) . . . + 2(Mn - z)

=
0;

whence

and
(Mi + M2 . . . + Mn) -nz =

0,

M l +M2 ... + Mn 2M
2 = =

; . . . (25)

or, expressed in words, in the case of direct observations of equal

weight the most probable value of the unknown quantity is equal

to the arithmetic mean of the observed values. The above

discussion, however, must not be regarded as a proof of this

principle of the arithmetic mean, since (Art. 149) this very prin-

ciple was one of the conditions under which the equation of

the probability curve was deduced. Eq. (25) therefore simply
shows that the equation of the probability curve is correct in form

and consistent with this principle.

Example. The observed values (of equal weight) of an angle A are

29 21' 59".l, 29 22' 06".4, and 29 21' 58".l. What is the most probable
value?

29 21' 59".l

29 22 06 .4

29 21 58 .1

3)88 06 03 .6

29 22 01 .2

The most probable value is therefore 29 22' 01 ".2.

156. General Principle of Least Squares. When' a given

magnitude is measured a number of times under different con-

ditions (so that the precision factor corresponding to some of the

observations is not the same for all of them), the results obtained

are said to be of unequal weight or precision. In accordance with

the sense in which weights are understood (Art. 133), an observa-

tion assigned a weight of two means it is considered as good a

determination as the arithmetic mean of two observations of

unit weight, and so on. It is immaterial whether any one of the

observed values is considered of unit weight, as this is merely a

basis of comparison.
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Let z the most probable value of a given magni-

tude;

Mi, M2, etc. = the values of the several measurements;

Pi) P2, etc. = the respective weights of these measure-

ments;

api, ap2, etc. = the corresponding integral weights due to

the use of the factor a;

>\ , mi", etc. = the api unit weight components of Mi
when considered as an arithmetical

mean;

mj, m2", etc. = similarly for M2 ,
and so on;

vi, V2, etc. = the residuals due to Mi, M2 , etc.;

then,
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whence

2(z mi)
2 = api (z Mi)

2 = api-vi
2

,

S(g
- m2)

2 = ap2 (z M2)
2 = ap2 -v 2

2
,

etc. etc.,

and substituting in Eq. (27), we have

api -v x

2 + ap2 v2
2

. . . + apn -Vn = a minimum;

or, dividing out the common factor a,

PiVi
2 + P2V2

2
. . . + pn vn

2 = a minimum. . . (28)

We thus have the following

General Principle: In observations of unequal precision the

most probable values of the observed quantities are those that render

the sum of the weighted squares of the residual errors a minimum.

157. Direct Observations of Unequal Weight. When a given

magnitude is directly measured a number of times it may be

necessary to assign different weights to the results obtained, on

account of some change in the conditions governing the measure-

ments. In such a case the most probable value of the quantity

sought must accord with the principle of the previous article,

that is, the sum of the weighted squares of the residual errors

must be a minimum.

Let z = the most probable value of a given magnitude;

Mi, M2 ,
. . Mn

= the several measured values;

Pi, V2, Vn = the corresponding weights;

then (Art. 156)

Pi(Mi
-

z)
2 + p2(M2

-
z)

2
. . . + pn(Mn

-
z)

2 = a minimum.

Placing the first derivative equal to zero,

2pi(Mi - *) + 2p2 M2
-

z) ... + 2pn(^n
-

z)
=

0;
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whence

(P! Mx + p2M2 . . . + pnMn)
-

(pi + p2 . . . + Vn) z = 0,

and

z
_ PA + p2M2 . . . +pMn _ 2pM

Pi + P2 + Pn EJT' '.
* "

or, expressed in words, in the case of direct observations of unequal

weight the most probable value of the unknown quantity is equal

to the weighted arithmetic mean of the observed values. The

above discussion, however, must not be regarded as a proof of

this principle of the weighted arithmetic mean, since Eq. (29)

is deduced from a principle based in part on the truth of Eq. (26),

which is identical with Eq. (29). As the truth of Eq. (26) is

established in Art. 156, however, Eq. (29) shows that the general

principle of least squares leads to a correct result in a case where

the answer is already known.

Example. The observed values for the length of a certain base line are

4863.241 ft. (weight 2), and 4863.182 ft. (weight 1). What is the most

probable value?

4863.241 X 2 = 9726.482

4863.182 X 1 = 4863.182

3)14589.664

4863.221

The most probable value is therefore 4863.221 ft.

158. Indirect Observations. An indirect observation is one

that is made on some function of one or more quantities, instead

of being made directly on the quantities themselves. Thus in

measuring an angle by repetition the observation is indirect, as

the angle actually read is not the angle sought, but some multiple
thereof. Similarly when angles are measured in combination

the observations are indirect, since the values of the individual

angles must be deduced from the results obtained by some pro-
cess of computation.

An observation equation is an equation expressing the function

observed and the value obtained. Thus if x, y, etc., represent
the unknown quantities whose values are to be deduced from the



272 GEODETIC SURVEYING

observation, we may have as observation equations such expres-

sions as

Qx = 185 19' 40",

or

7x + lOy
- Sz = 65.73,

according to the function observed.

In general the observation equations which occur in geodetic

work may be written in the following form :

diX + b xy + C\Z . . . '* M x (weight pi) 1

a2x + b2y + c2z . . .
= M2 (weight p2)

I

anx + bny + cnz . . .
= Mn (weight pn ) J

(30)

in which a\, a2 , b\, b2 etc., are known coefficients; x, y, etc., are

the unknown quantities; Mi, M2
, etc., are the observed values;

and pi, p2 , etc., are the respective weights of these values. If the

number of observation equations is less than the number ofunknown

quantities, the values of x, y, z, etc., can not be found, nor even

their most probable values. If the number of observation equa-
tions equals the number of unknown quantities, the equations

may be solved as simultaneous equations, and each equation will

be exactly satisfied by the values obtained for x, y, z, etc., even

though these values are not the true values sought. If the num-
ber of observation equations exceeds the number of unknown

quantities there will in general be no values of x, y, z, etc., which

will exactly satisfy all the equations, on account of the unavoidable

errors of observation. Hence if the most probable values of the

unknown quantities be substituted the equations will not be

exactly satisfied, but will reduce to small residuals vi, v2
, v%, etc.

If, therefore, x, y, z, etc., be understood to mean the most probable

values of these quantities, we will have

aix + b xy + CiZ . . . Mx
=

Vi (weight pi) 1

a2x + b2y + c2z . . . M2
= v2 (weight p2)

anx + bny + cnz . . . Mn
= vn (weight pn)

(31)
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By a consideration of these equations, together with any special

conditions which must be satisfied, rules may be established for

finding the most probable values of the unknown quantities in

all cases of indirect observations.

159. Indirect Observations of Equal Weight on Independent

Quantities. An independent quantity is one whose value is

independent of the value of any other quantity under considera-

tion. Thus in a line of levels the elevation of any particular

bench mark bears no necessary relation to the elevation of any
other bench mark; whereas in a triangle the three angles are not

independent of each other, as their sum must necessarily equal

180.

In the case of indirect observations of equal weight on inde-

pendent quantities, the most probable values of the unknown

quantities are found by a direct application of the method of

normal equations. A normal equation is an equation of condi-

tion which determines the most probable value of any one unknown

quantity corresponding to any particular set of values assigned to

the remaining unknowns. A normal equation must therefore

be specifically a normal equation in x, or in y, etc. By forming
a normal equation for each of the unknowns there will be as many
equations as unknown quantities. The solution of these equa-
tions as simultaneous will give a set of values for the unknowns

in which each value is the most probable that is consistent with

the remaining values, which can only be the case when all the

values are simultaneously the most probable values of the unknown

quantities.

To establish a rule for forming the normal equations in the

case of equal weights let us re-write Eqs. (31), omitting the

weights, thus:

a\x -f- b\y -f- c\z ... Mi =
V\

a2x -\-b2y + c2z ... M2
= v2

anx + bny + cnz . . . Mn = vn

(32)

In accordance with Art. 154 the most probable values of the

unknown quantities are those which give

vi
2 + v2

2
. . + vn

2 = a minimum.
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Since (in lorming the normal equations) the most probable value

of x is desired for any assumed set of values for the remaining

unknowns, we place the first derivative with respect to x equal
to zero; whence, omitting the common factor 2, we have

But from Eqs. (32), under the given assumption of fixed values

for all quantities excepting x, we obtain

dv\ dv2

~dx
=

ttl '

~dx
=

tt2 '
etc-

whence by substitution,

aivi + CI2V2 . . . + anvn = = normal equation in x.

In a similar manner we have

h\V\ + &2^2 + bnvn = = normal equation in y;

c\V\ 4- C2V2 ... 4- cnvn
= = normal equation in z;

etc., etc.;

and hence for forming the several normal equations in the case

of indirect observations of equal weight on independent quan-

tities, we have the following

Rule : To form the normal equation for each one of the unknown

quantities, multiply each observation equation by the algebraic

coefficient of that unknown quantity in that equation, and add the

results.

Having formed the several normal equations, their solution

as simultaneous equations gives the most probable values of the

unknown quantities.

Example 1. Given the observation equation

6x = 90 15' 30".

In applying the above rule to this case we would have to multiply the whole

equation by 6, and then divide by 36 to obtain the most probable value
of x. It is evident that we would obtain the same value of x by dividing
the original equation by 6, so that in the case of a single equation with a

single unknown quantity the most probable value of that quantity is obtained

by simply solving the equation.
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Example 2. Given the observation equations

2x = 124.72,
x =

62.31,
7x = 439.00.

Multiplying the first equation by 2, the second by 1, and the third by 7,

we have
4x = 249.44;
x = 62.31;

49x = 3073.00;

whence by addition we obtain the normal equation

54x = 3384.75,

the solution of which gives
x = 62.68,

which is hence the most probable value that can be obtained from the given
set of observations. The student is cautioned against adding up the obser-

vation equations and solving for x, as this plan docs not give the most

probable value in such cases.

Example 3. Given the observation equations

2x + y - 31.65,
x - Sy =

5.03,

x - y = 11.26.

Following the rule for normal equations, we have

4x + 2y = 63.30

x - Sy = 5.03

x - y = 11.26

6x 2y = 79.59 = normal equation in x;

and
2x + y = 31.65

- 3x + 9y = - 15.09
- x + y = - 11.26

- 2x + lly = 5.30 = normal equation in y.

It is absolutely essential in forming the normal equations to multiply by
the algebraic coefficients as illustrated above, and not simply by the numerical

value of the coefficient. Bringing the normal equations together, we have

6x - 2y =
79.59,

- 2x + \\y = 5.30.

Attention is called to the fact that the coefficients in the first row and first

column are identical in sign, value, and order, and that the same is true of

the second row and second column. The same law would hold good if there

were a third row and a third column, and so on (Art. 162); and this is a
check that must never be neglected. Solving the two normal equations as

simultaneous equations, we have

x = 14.29 and y - 3.08,

and these are hence their most probable values.
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160. Indirect Observations of Unequal Weight on Independent

Quantities. In the case of indirect observations of unequal

weight on independent quantities, the most probable values of

the unknown quantities are found by the solution of one or more

normal equations which involve the different weights in their

formation.

To establish a rule for forming the normal equations in the

case of unequal weights let us re-write Eqs. (31), thus:

aix -f- b\y + c\z . . . M\ = v\ (weight p{)

&2X + t>2y + C2Z ... M2 = V2 (weight P2)

anx + bny + cnz . . .
- Mn

= vn (weight pn) J

(33)

In accordance with Art. 156 the most probable values of the

unknown quantities are those which give

pivi
2 + P2V2

2
. . . + PnVn

2 = a minimum.

Since (in forming the normal equations, Art. 159) the most

probable value of x is desired for any assumed set of values for

the remaining unknowns, we place the first derivative with

respect to x equal to zero; whence, omitting the common
factor 2, we have

But from Eqs. (33), under the given assumption of fixed values

for all quantities excepting x, we obtain

dvi dv2_ =ai; ._ =a2 ,
etc;

whence by substitution,

(aipi)vi -f- (a2P2)v2 . . . + (anpn)vn = = normal equation in x.

In a similar manner we have

(bipi)vi + (62^2)^2 . . . + (bnPn)vn = = normal equation in y;

(cipi)vi + (02^2)^2 . + (cnpn)vn = = normal equation in z;

etc., etc.;
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and hence for forming the several normal equations in the case

of indirect observations of unequal weight on independent quan-

tities, we have the following

Rule : To form the normal equation for each one of the unknown

quantities, multiply each observation equation by the product of the

weight of that observation and the algebraic coefficient of that unknown

quantity in that equation, and add the results.

Having formed the several normal equations, their solution

as simultaneous equations gives the most probable values of the

unknown quantities.

Example 1. Given the observation equations

3x - 15 30' 34" .6 (weight 2),

5x - 25 50 55 .0 (weight 3).

Multiplying the first equation by 6 (
= 3 X 2), and the second equation by

15 (
= 5 X 3), we have

18x = 9303'27".6;
75* = 387 43 45 .0;

whence by addition we obtain the normal equation

93x = 480 47' 12".6,

the solution of which gives

x = 5 10' ll".l,

which is hence the most probable value that can be obtained from the given
set of observations.

Example 2. Given the observation equations
x + y = 10.90 (weight 3),

2x y = 1.61 (weight 1),

x + 3y = 24.49 (weight 2).

Following the rule for normal equations, we have

3x + 3y = 32.70

Ax - 2y = 3.22

2x + 6y = 48.98

9x + 7y = 84.90 = normal equation in x;
and

3x + Sy = 32.70

-2x + y = - 1.61

6x + 18y = 146.94

7x + 22i/ = 178.03 = normal equation in y.

Solving these two normal equations as simultaneous, we have

x = 4.172, and y =
6.765,

and these are hence their most probable values.
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161. Reduction of Weighted Observations to Equivalent
Observations of Unit Weight. To establish a rule for this pur-

pose let us re-write Eqs. (30), thus:

aix + b\y + c\z . . .
= Mi (weight p\),

ci2X + b2y + C2Z . . .
= M2 (weight pi) ,

anx + bny + cnz . . .
= Mn (weight pn).

Let C be such a factor as will change the first of these equations
to an equivalent equation of unit weight, so that we may write

Ca xx + Cbiy + Caz . . .
= CM X (weight 1),

CL2X + &2y + C2Z . . .
= M2 (weight P2) ,

anx + bny + cnz . . .
= Mn (weight pn) ,

in which the most probable values of x, y, z, etc., are to remain the

same as in the original equations; or, in other words, the two
sets of equations are to lead to the same normal equations. In

accordance with the rule of Art. 160, we have from the first set

of equations

Normal

equation [
=

in x

(pia\
2
x+piaibiy-\-piaiaz . . . =piOiAfi)

J
r{p2(l2

2XJrP2a2b2y-\-p2Cl2C2Z . . . =p2d2M2)
\
(34)

-{- ( etc., etc. .......) j

and from the second set of equations

Normal

equation
in x

(C
2
ai

23+C2
ai6iy+C

2
aici2 . . . =C2

aiMi)

-\-(p2d2
2
X-\-p2a2b2y-{-p2a2C2Z . . . =2>2Ct2^2)

4- ( etc., etc )

(35)

Comparing Eq. (34) with Eq. (35), term by term, we find they are

in all respects identical provided we write

C2
-pi;

whence

C = Vp^ (36)
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From the symmetry of the equations involved it is evident that

the same conclusion would result from a comparison of the nor-

mal equations in y, z, etc. Hence it is seen that an observation

equation of any given weight may be reduced to an equivalent

equation of unit weight by multiplying the given equation by the

square root of the given weight. Evidently the converse of this

proposition is also true, so that an equation of unit weight can be

raised to an equivalent equation of any given weight by dividing

the given equation by the square root of the given weight. The

general laws of weights, as given in Art. 53, are readily derived

by an application of these two principles. The new equations

formed in the manner described, and taken in conjunction with

the new weights, may be used in any computations in place of the

original equations, whenever so desired.

Example 1. Given the observation equation

3x = 8.66 (weight 4).

What is the equivalent observation equation of unit weight?
Since the square root of 4 is 2, we have

Qx = 17.32 (weight 1)

as the equivalent equation.

Example 2. Given the observation equation

3x + 6y = 11.04 (weight 1).

What is the equivalent observation equation of the weight 9?
Since the square root of 9 is 3, we have

x + 2y = 3.68 (weight 9)

as the equivalent equation.

Example 3. Given the observation equation

x + y 2z = a (weight 3) .

What is the equivalent observation equation of the weight 7?

Multiplying by V3 and dividing by V7, we have

Vt x + Vr V - 2V? z = Via (weight 7)

as the equivalent equation.
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162. Law of the Coefficients in Normal Equations. In accord-

ance with Art. 158, we may write in general for any set of

obser vations

a\x + biy +C\Z . . .
= Mi (weight p{) ,

a2x + b2y + c2z . . .
= M2 (weight p2) ,

anx + bny + cnz . . .
= Mn (weight pn).

Forming the normal equation in x in accordance with the rule of

Art. 160, the multiplying factors are piai, p2a2 , etc., giving

p\a\
2x + piaibiy + p\d\C\z . . .

= pmiMi
p2a2

2x + p2a2b2y + p2a2c2z . . .
= p2a2M2

puan
2x + pnanbny + pnancz . . .

= pnanMn

S(pa
2)x+ 2>(pab)y + ^(pac)z . . . =^(paM) = normal equation inx.

Similarly, for the normal equation in y, the multiplying factors

are pibi, p2b2 , etc., giving

S (pab) x + H (pb
2
) y + H (pbc) z . . .

= 2 (p6M) = normal equation in y .

Similarly, for the normal equation in z, the multiplying factors

are p\C\, p2c2 , etc., giving

H{pac)x+H{pbc)y-{-Yi {pc
2
)z . . .=H(pcM) = normal equation in z

;

and so on for any additional unknown quantities. Collecting

the several normal equations together, we have

2(pa
2
)x + Z(pab)y + 2(pac)z . . .

= 2(paAf);

H(pab)x + X(pb
2
)y + 2(p6c)z . . .

= 2(p6M);

2(pac)x + 2(pbc)y + H{pc
2
)z . . .

=
2(pcikf);

etc., etc.

An examination of these equations shows that the coefficients in

the first row and in the first column are identical in sign, value,

and order. The same proposition is true of the second row and

second column, the third row and third column, and so on. This

is hence the general law of the coefficients in any set of normal

equations, and furnishes a check on the work that should never

be neglected.
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Example. Let the following observation equations be given:

2x - z = 8.71 (weight 2),

x - 2y + 32 = 2.16 (weight 1),

y - 2z = 1.07 (weight 2),

x - Sy = 1.93 (weight 1).

The corresponding normal equations are

10a; 5y z = 38.93 = normal equation in x;
5x + 15y lOz = 7.97 = normal equation in y;
x \0y + 19z = 15.22 = normal equation in z;

from which we have

. ,. / First row are + 10, 5,-1.
Coefficients in

\ Firgt^^ are + ^ _
5>

_ L

~, .
,

. / Second row are 5, + 15, 10.
Coefficients in

t gecond column are _ 5; + 15j
_ 10 _

^ . . . / Third row are -
1,

-
10, + 19.

Coefficients in
^ Third column are _ ^ _

lQ> + 1Q

163. Reduced Observation Equations. Such observation equa-
tions as are likely to occur in geodetic work may be written under

the general form

ax + by + cz + etc. = M (37)

Substituting

x = X\ + Vi

y =
y\ + v2

z = Zi + v3

(38)

in which x\, y\, z\, etc., are any assumed constants, and v\, V2, V3,

etc., are new unknowns, the equation takes the reduced form

avi + bv2 + CV3 + etc. = M (axi + byi + cz\ + etc.). (39)

In this new equation it will be noticed that the first member is

identical in form with the first member of the original equation,

the only change being the substitution of the new variables for

the old ones; and that the second member is what the original

equation reduces to when the assumed constants are substituted

for the corresponding variables. The reduced observation

Eq. (39) may therefore be written out at once from the observa-
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tion Eq. (37), without going through the direct substitution of

Eqs. (38). Particular attention is called to the second member
of Eq. (39), in which it is seen that the result due in any case to

the use of the assumed values of x, y, etc., must always be sub-

tracted from the corresponding measured value, and not vice

versa, as any error in sign will render the whole computation
worthless. It is also to be noted that the original weights apply
also to the reduced observation equations, since these are simply
different expressions for the original equations.

In view of the meaning of the terms in Eqs. (38) it is evident

that the most probable value of x is that which is due to the most

probable value of v\, and correspondingly with all the other

unknowns. We may, therefore, in any case, reduce all the

original observation equations to the form of Eq. (39), determine

from these reduced equations the most probable values of v\, V2,

etc., and then by means of Eqs. (38) determine the most probable
values of x, y, z, etc. The object of this method of computation
is to save labor by keeping all the work in small numbers. This

result is accomplished by assigning to x\, y\, etc., values which

are known to be approximately equal to x, y, etc., as this will

evidently reduce the second term of equations like Eq. (39) to

values approximating zero. Approximate values of the unknowns
are always obtainable from an inspection of the observation

equations, or by obvious combinations thereof.

Example 1. Given the following observation equations:

x = 178.651,

y = 204.196,

x + y =
382.859,

2x + y = 561.522;

to find the most probable values of the unknowns by the method of reduced

observation equations.

Assuming for the most probable values

x = 178.651 4- Vl ,

y = 204.196 + v
2>

we have by substitution in the observation equations, or directly in accord-

ance with Eq. (39),

vi
= 0.000;

vt = 0.000;

Vl + Vi = 0.012;

2i>! 4- r = 0.024.
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Forming the normal equations from these reduced observation equations,

we have
6t>i + Sv2

= 0.060;

3i>! + 3^2 = 0.036;

whose solution gives

vi
= 0.008 and v2

= 0.004;

whence for the most probable values of x and y we have

x = 178.651 + 0.008 - 178.659;

y = 204.196 + 0.004 = 204.200.

These results are identical with what would have been obtained if any other

values had been used for Xi and yh or if the normal equations had been

formed directly from the original observation equations.

Example 2. Given the following observation equations:

2x + y = 116 38' 19".7 (weight 2),

x + y = 73 17 22 .1 (weight 1),

x - y = 13 24 28 .3 (weight 3),

x + 2y = 103 13 47 .7 (weight 1);

to find the most probable values of the unknowns by the method of reduced

observation equations.
It is readily seen that the first two of these equations are exactly satisfied

if we write

x = 43 20' 57".6;

y = 29 56 24 .5.

Adopting these as the approximate values we have for the most probable
values

x = 43 20' 57".6 + *;

y = 29 56 24 .5 + v2 ;

whence by substitution in the observation equations, or directly in accord-

ance with Eq. (39), we have

2vx + v2
= 0".0 (weight 2);

v\ + v2 = .0 (weight 1);

vi v2 = 4 .8 (weight 3);

Vi + 2v2
= 1 .1 (weight 1).

Forming the normal equations from these reduced observation equations,

we have
13ri + 4v2

= -
13".3;

Avi + 10i>2 = 16 .6;

whose solution gives

Vi
= - 1".75 and v2

= + 2".36;

whence for the most probable values of x and y we have

x = (43 20' 57".6) - 1".75 = 43 20' 55".85;

y = (29 56 24 .5) +2 .36 = 29 56 26 .86.

As in the previous example these results are identical with what would have

been obtained if any other values had been used for xx and yu or if the normal

equations had been formed directly from the original observation equations.



CHAPTER XII

MOST PROBABLE VALUES OF CONDITIONED AND COMPUTED
QUANTITIES

164. Conditional Equations. The methods heretofore given

determine the most probable values in all cases where the quanti-

ties observed are independent of each other. In many cases, how-

ever, certain rigorous conditions must also be satisfied, so that any

change in one quantity demands an equivalent change in one

or more other quantities. Thus in a triangle the three angles

can not have independent values, but only such values as will add

up to exactly 180. When quantities are thus dependent on each

other they are called conditioned quantities. By an equation of

condition or a conditional equation is meant an equation which

expresses a relation that must exist among dependent quantities.

Thus if x, y, and z denote the three angles of a triangle we have

the corresponding conditional equation

x + y + z = 180.

In such a case the most probable values of x, y, and z are not

those values which may be individually the most probable, but

those values which belong to the most probable set of values that

will satisfy the given conditional equation. In accordance with

the principles heretofore established that set of values is the most

probable which leads to a minimum value for the sum of the

weighted squares of the resulting residuals in the observation

equations.

In the problems which occur in geodetic work the conditional

equations may in general be expressed in the form

a\x + a%y . . . + aj,
= Ea

hx + b2y . . . + but = Eb

mix + m2y . . . + mut
= Em

(40)

284
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in which x, y, t, etc., are the most probable values of the unknown

quantities, and u is the number of such quantities. It is evident

that the number of independent conditional equations must be

less than the number of unknown quantities. For if these equa-

tions are equal in number with the unknown quantities their

solution as simultaneous equations will determine absolute values

for the unknowns, so that such quantities can not be the subject

of measurement. While if the number of these equations exceeds

the number of unknowns, such equations can not all be inde-

pendent without some of them being inconsistent. On the other

hand the total number of equations (sum of the observation and

the independent conditional equations) must exceed the number

of unknown quantities. For if the total number of equations is

equal to the number of unknown quantities, their solution as

simultaneous equations will furnish a set of values which will

exactly satisfy all the equations, without involving any question

of what values may be the most probable. While if the total

number of equations is less than the number of unknown

quantities the problem becomes indeterminate.

There are in general two methods of finding the most probable

values of the unknown quantities in cases involving conditioned

quantities. In the first method the conditional equations are

avoided (or eliminated) by impressing their significance on the

observation equations, which reduces the problem to the cases

previously given. In the second method the observation equa-
tions are eliminated by impressing their significance on the con-

ditional equations, when the solution may be effected by the

method of correlatives (Art. 167). The first method is the most

direct in elementary p oblems, but the second method greatly

reduces the work of computation in the case of complicated

problems.
165. Avoidance of Conditional Equations. In a large num-

ber of problems it is possible to avoid the use of conditional

equations by the manner in which the observation equations are

expressed. The conditions which have to be sat'sfied in any

given case are never alone sufficient to determine the values of

any of the unknown quantities, as otherwise these quantities

would not be the subject of observation. It is only after definite

values have been assigned to some of the unknown quantities

that the conditional equations limit the values of the remaining
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ones. In any problem, therefore, a certain number of values

may be regarded as independent of the conditional equations,

whence the remaining values become dependent on the independent

ones. Thus in a triangle any two of the angles may be regarded

as independent, whence the remaining one becomes dependent

on these two, since the total sum must be 180 \ In any elementary

problem it is generally self evident as to how many quantities

must be regarded as independent, and which ones may be so taken.

In such cases the conditional equations may be avoided by

writing out all of the observation equations in terms of the

independent quantities. The most probable values of these

quantities may then be found by the regular rules for independent

quantities, whence the most probable values of the remaining

quantities are determined by the surrounding conditions that

must be satisfied.

Example 1. Referring to Fig. 65, the following angular measurements

have been made:

x = 28 11' 52".2;

y - 30 42 22 .7;

z = 58 54 17 .6.

What are the most probable values of these angles?
It is evident from the figure that these angles are sub-

ject to the condition

x + y = z.

1 ig. 6o.
j^ however, we write the observation equations in the

form

x = 28 11' 52".2;

y = 30 42 22 .7;

x + y = 58 54 17 .6;

the conditional equation is avoided, since x and y are manifestly inde-

pendent angles. The second set of observation equations must lead to

exactly the same figures for the most probable values of x and y (and hence

for z) as the first set, since it is only another way of stating exactly the

same thing. Since x and y are independent angles we may write for the

most probable values

x = 28 11' 52".2 +fc;
y = 30 42 22 .7 + v2 ;

whence the reduced observation equations are

vt
= 0".0;

v2 = .0;

vi + vt = 2 .7.
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The corresponding normal equations are

2v! + v2 - 2".7;

i + 2w = 2 .7;

whose solution gives

Vi - + 0".9 and t;2
= + 0".9.

The most probable values of the given angles are therefore

x = 28 11' 53".l;

y = 30 42 23 .6;

z = 58 54 16 .7. .

Example 2. Referring to Fig. 66, the following angular measurements

have been made:
x = 80 45' 37".6 (weight 2);

y = 135 08 14 .9 (weight 1);

z = 144 06 10 .8 (weight 3).

What are the most probable values of these angles?

It is evident from the figure that these angles are

subject to the condition

X + y + z = 360.

Any two angles at a point, such as x and y, may
be regarded as independent, so that the conditional

equation is avoided by writing all the observation

equations in terms of these two quantities. Thus we
write :

x - 80 45' 37".6 (weight 2);

y = 135 08 14 .9 (weight 1);

360 -
(x + y)

= 144 06 10 .8 (weight 3) ;

Fig. 66.

whence by substituting

we have

x - 80 45' 37".6 + vh

y = 135 08 14 .9 + v2,

Vi = 0".0 (weight 2)

v2 = .0 (weight i)

vi + v2 = 3 .3 (weight 3)

from which the normal equations are

6wi +3v2
= -

9".9;

3i + 4^2
= - 9 .9;

whose solution gives

i>i
= - 0".9 and t* - - 1".8.

The most probable values of the given angles are therefore

x = 80 45' 36".7;

y = 135 08 13 .1;

z = 144 06 10 .2.
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166. Elimination of Conditional Equations. If the con-

ditional equations can not be directly avoided, as in the

preceding article, the same result may be indirectly accomplished

by algebraic elimination, as about to be explained. The number

of unknown quantities (Art. 164) necessarily exceeds the number

of independent conditional equations. The number of dependent

unknowns, however, can not exceed the number of independent

conditional equations, since any values whatever may be assigned

to the remaining unknowns and still leave the equations capable

of solution. Thus if there are five unknowns and three independent

conditional equations, any values may be assigned to any two of

the unknowns, leaving three equations with three unknowns and

hence capable of solution. The unknowns selected as arbitrary

values thus become independent quantities on which all the others

must depend, and the number of unknowns which may be thus

selected as independent quantities is evidently equal to the

difference between the total number of unknowns and the number

of independent conditional equations. If the most probable

values are assigned to the independent quantities, the most

probable values of the dependent quantities then become known

by substituting the values of the independent quantities in the

dependent equations. The general plan of procedure is as

follows :

1. Determine the number of independent unknowns by sub-

tracting the number of conditional equations from the number

of unknown quantities.

2. Select this number of unknowns as independent quantities.

3. Transpose the conditional equations so that the dependent

quantities are all on the left-hand side and the independent quan-

tities on the right-hand side.

4. Solve the conditional equations for the dependent unknowns,

which will thus express each of these dependent unknowns in

terms of the independent unknowns.

5. Substitute these values of the dependent unknowns in the

observation equations, which will then contain nothing but

independent unknowns.

6. Find the most probable values of the independent unknowns

from these modified observation equations by the regular rules

for independent quantities.

7. Substitute these values of the independent unknowns in
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the expressions for the dependent unknowns, and thus determine

the most probable values of the remaining quantities.

Example. Given the following data, to find the most probable values

of x, y, and z:

[
x - 17.82 (weight 2);

Observation equations 1 y = 15.11 (weight 4);
I z = 29.16 (weight 3).

Conditional equations f l
x
f 5y = 1

1? '22'
\ Sx + y z = 39.00.

The solution is as follows:

Number of unknown quantities = 3.

Number of conditional equations = 2.

Number of independent quantities = 1.

Let x be the independent quantity, and y and z the dependent quantities.

Transpose the conditional equations so as to leave only the dependent

quantities on the left hand side, thus:

5y = 112.00 - 2x;

y - z = 39.00 - 3x.

Solve for the dependent quantities, giving the dependent equations

y = 22.40 - 0.4a;;

z = - 16.60 + 2.6x.

Substitute in the observation equations, giving

x = 17.82 (weight 2);

22.40 - 0.4x = 15.11 (weight 4);
- 16.60 + 2.6x = 29.16 (weight 3);

whence
x = 17.82 (weight 2);

0.4z = 7.29 (weight 4);

2.6x = 45.76 (weight 3);

in which x is an independent unknown. Forming the normal equation

by multiplying the above equations respectively by 2, 1.6, and 7.8, we have

2.00x = 35.640,
0.64x - 11.664,

20.28a; - 356.928

22.92a; = 404.232;
x =

17.637;

which, substituted in the first dependent equation, gives,

y - 22.40 - 0.4(17.637) =
15.345,
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/

and substituted in the second dependent equation, gives

z = - 16.60 + 2.6(17.637) =
29.255;

so that for the most probable values of the unknown quantities, we have

x = 17.637;

y = 15.345;
z = 29.255.

As a check on the work of computation, we may substitute these values in

the conditional equations, giving

2x + by = 35.274 + 76.725 = 111.999;
3x + y - z - 52.911 + 15.345 - 29.255 = 39.001;

from which it is seen that each equation checks with the corresponding
conditional equation within 0.001, which is an entirely satisfactory check.

The essential feature of the above method is the elimination of the con-

ditional equations. In Art. 167 the same problem is worked out by elim-

inating the observation equations. The results obtained are of course

identical.

167. Method of Correlatives. The general method of correla-

tives is beyond the scope of the present volume. The case here

given is the only one that is likely to be of service to the civil

engineer. In this case the observations are made directly on

each unknown quantity, and the number of observation equations

equals the number of unknown quantities. Let u be the number

of unknown quantities, for which the observation equations may
be written

x = Mi (weight pi);

y = Mi (weight p2) ',

t = Mu (weight Vu) ',

and for which (Art. 164) the conditional equations may be written

a\x + azy . . . + aJ = Ea

b\x + b2y . . . + but = Eb

m\x + m2y . . . + mj = Er

(41)

If, as heretofore, x, y, t, etc., be understood to represent the most

probable values of the unknown quantities, and vi, v2 ,
vu , etc.,
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represent the corresponding residuals in the given equations, we

may write

x = Mi + v\ (weight pi) ]

y = M2 + v2 (weight p2 )
j

. ,^s

t = Mu + vu (weight pu) J

which, substituted in Eqs. (41), give the conditional equations

awi + a2v2 . . . + auvu = Ea HaM

bivi + 62^2 . . . + buvu = Eb
- HbM

.. . (43)

mivi + m2^2 + wMwu
= Em ^mM

As explained in Art. 164, these conditional equations must be

less in number than the number of unknown quantities. The
values of v\, v2 , etc., thus become indeterminate, and an infinite

number of sets of values will satisfy the equations. The values

in any one set (called simultaneous values) are not independent,

however, as they must be such as will satisfy the above equations.

If vi, v2 , etc., in Eqs. (43) are assumed to vary through all

possible simultaneous values due to any set of values dv\, dv2 ,

etc., and all possible sets of values dvi, dv2 , etc., are taken in turn,

the most probable set of values vi, v2 , etc., for the given set of

observations will eventually be reached. The values dv\, dv2 ,

etc., in any one set, however, can not be independent, as it is

evident that dependent quantities can not be varied indepen-

dently. Differentiating Eqs. (43), we have

;'... (44)

a\dvi + a2dv2 . . . + audvu = '

bidvi + 62^2 + budvu =

midvi + W2^2 + mudvu =

and these new equations of condition show the relations that must
exist among the quantities dv\, dv2 ,

etc. Since the number of

equations is less than the number of quantities dvi, dv2 , etc., it

follows that an infinite number of sets of simultaneous values of

dvi, dv2 , etc., is possible. In order to involve Eqs. (44) simul-
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taneously in an algebraic discussion it is necessary to replace
them by a single equivalent equation, meaning an equation so

formed that the only values which will satisfy it are those which

will individually satisfy the original equations which it replaces.

This is done by writing

ki(aidvi + 2^2 . . . + audvu)

+ k2 {bidvi + b2dv2 . . . + budvu)

+ km{m\dvi + rri2dv2 . . + mudvu)

0; (45)

in which fci, fo, etc., are independent constants which may have

any possible values assigned to them at pleasure. Since Eq. (45)

must by agreement remain true for all possible sets of values

ki, k2 , etc., its component members must individually remain

equal to zero. But these component members are identical with

the first members of the original conditional equations, so that

no set of values dv\, dv2, etc., can satisfy Eq. (45) unless it can

also satisfy each of Eqs. (44). The values in any such set are

called simultaneous values.

In order to determine the most probable values of v\, V2, etc.,

we must have (Art. 156)

PiVi
2 + P2V2

2
. + VvPu = a minimum.

In accordance with the principles of the calculus for the case of

dependent quantities the first derivative of this expression must

equal zero for every possible set of values dv\, dv2, etc. Hence,

by differentiating, and omitting the factor 2, we have

Pividvi + p2V2dv2 . . . + puvudvu = 0, . (46)

in which dv\, dv2, etc., must be simultaneous values. Since these

values are also simultaneous in Eq. (45), we may combine this

equation with Eq. (46) and write

PlVidvi + p2V2dV2 + PuA
k\(a\dv\ + a2dv2 + audvu)

+ k2(bidvi + b2dv2 . . + budvu)

. + km(m\dvi + m2dv2 . + mudvu)
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whence, by rearranging the terms, we have

\ [Pi v i (&ii + k2bi + kmmi)]dvi

+ [P2V2' (fci2 + k2b2 . ... + kmm2)]dv2

L + [puvu (kiau + k2bu . . . + kmmu)]dvu

\
= 0. (47)

Since ki, k2 , etc., are independent and arbitrary constants, it is

evident that this equation can not be true unless its component
members are each equal to zero, so that

[pivi
-

(foai + k2bi . . . + kmmi)]dvi =
0;

etc., etc.;

from which we have

Pivi = kiai + k2bi . . . + kmmi 1

p2v2 = k\a2 + k2b2 . . . + kmm2 I

(48)

PvPu = hau + k2b u . . . + kmm u j

as the general equations of condition for the most probable
values of v\, v2 ,

etc.

It is evident that Eqs. (48) can not be solved for v\, v2 , etc.,

until definite values have been assigned to k\, k2 ,
etc. In the

general discussion of the problem the values of ki, k2 , etc., have

been entirely arbitrary, since the numerical requirements of

Eqs. (43) vanished in the differentiation. In any particular case,

however, the m conditional Eqs. (43) must be numerically satisfied

in order to satisfy the rigid geometrical conditions of the case,

while the u conditional Eqs. (48) must be satisfied in order to have
the most probable values for vi, v2 ,

etc. There are thus m + u
simultaneous equations to be satisfied. But there are also m -f u
unknown quantities, since the m unknown quatities k\, k2 , etc.,

corresponding to the m conditional Eqs. (43), have been added
to the u unknown quantities v\, v2 ,

etc. In any particular case,

therefore, there is but one set of values for the m unknown quan-
tities ki, k2 , etc., and the u unknown quantities v\, v2 , etc., that

will satisfy the m + u equations consisting of Eqs. (43) and (48).

The auxiliary quantities ki, k2 , etc., are called the correlatives
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(or correlates) of the corresponding conditional Eqs. (43), and the

quantities v\, v2 , etc., are the most probable values of the residual

errors in the observation equations. Substituting in Eqs. (43)

the values of vi, tfr, etc., due to Eqs. (48), we have

JfciS- + k22- . . . + kmX =Ea
- 2aM

P P P

jfcjS + k22- ... + km ll = Eb
- HbM

P P P

. -.am . , Tnbm
ki>

in which

+ *22 . ..+fcmS =Em -
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in which x, y, t, etc., are the most probable values of the quantities

whose observed values were Mi, M2, Mu ,
etc.

Example. Given the following data, to find the most probable values of

x, y, and z-:

(x = 17.82 (weight 2);
Observation equations J y = 15.11 (weight 4);

(
z = 29.16 (weight 3).

= 112.00;
'

z = 39.00.

In this case we have

I 2x -\- 5v
Conditional equations < , ,

Ea
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essential feature of the above method is the elimination of the observation

equations. In Art. 166 the same problem is worked out by eliminating the

conditional equations. The results obtained are of course identical.

168. Most Probable Values of Computed Quantities. By a com-

puted quantity is meant a value derived from one or more observed

quantities by means of some geometric or analytic relation.

The most probable values of computed quantities are found from

the most probable values of the observed quantities by employ-

ing the same rules that are used with mathematically exact quan-

tities. Thus the most probable value of the area of a rectangle

is that which is given by the product of the most probable values

of its base and altitude; the most probable value of the circum-

ference of a circle is equal to n times the most probable value of

its diameter; and so on.



CHAPTER XIII

PROBABLE ERRORS OF OBSERVED AND COMPUTED QUANTITIES

A. Of Observed Quantities

169. General Considerations. The most probable value of

a quantity does not in itself convey any idea of the precision of

the determination, nor of the favorable or unfavorable circum-

stances surrounding the individual measurements. Any single

measurement tends to lie closer to the truth the finer the instru-

ment and the method used, the greater the skill of the observer,

the better the atmospheric conditions, etc. The accidental errors

of observation tend to be more thoroughly eliminated from the

average value of a series of measurements the greater the number

of measurements which are averaged together. Some criterion

or standard of judgment is therefore necessary as a gage of pre-

cision. Since the probability curve for any particular case shows

the facility of error in that case, and thus represents all the sur-

rounding circumstances under which the given observations

were taken, it is evident that some suitable function of the proba-

bility curve must be adopted as an indication of the precision

of the results obtained. The function which is commonly adopted
as the gage of precision is called the probable error.

170. Fundamental Meaning of the Probable Error. By the

probable error of a quantity is meant an error of such a magnitude
that errors of either greater or lesser numerical value are equally

likely to occur under the same circumstances of observation.

Or, in other words, in any extended series of observations the

probability is that the number of errors numerically greater than

the probable error will equal the number of errors numerically
less than the probable error. The probable error of a single

observation thus becomes the critical value that the numerical

error of any single observation is equally likely to exceed or fall

short of. Similarly the probable error of the arithmetic mean
297
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becomes the critical value that the numerical error of any iden-

tically obtained arithmetic mean is equally likely to exceed or

fall short of. Thus if the probable error of any angular measure-

ment is said to be five seconds, the meaning is that the probability

of the error lying between the limits of minus five seconds and plus

five seconds equals the probability of its lying outside of these

limits. The probable error is always written after a measured

quantity with the plus and minus sign. Thus if an angular

measurement is written

72 10' 15".8 1".3,

it indicates that 1".3 is the probable error of the given determina-

tion. The probable error of a quantity can not be a positive

quantity only, or a negative quantity only, but always requires

both signs. It is important to note that the probable error is an

altogether different thing from the most probable error. Since

errors of decreasing magnitude occur with increasing frequency,

the most probable error in any case is always zero.

171. Graphical Representation of the Probable Error. The

probability that an error will fall between any two given limits

(Art. 147) is equal to the area included between the corresponding

ordinates of the probability curve. The probability that an error

will fall outside of any two given limits must hence be equal to

the sum of the areas outside of these limits. If these two proba-
bilities are equal, therefore, each such probability must be

represented by one-half of the total area. The probable error

thus becomes that error (plus and minus) whose two ordinates

include one-half the area of the probability curve. Referring
to Fig. 67, the solid curve corresponds to a series of observations

taken under a certain set of conditions, and the dotted curve

to a series of observations taken under more favorable conditions.

The ordinates y\, y\, correspond to the probable error r\ of an

observation of unit weight taken under the conditions pro-

ducing the solid probability curve, and include between them-

selves one-half of the area of that curve. The ordinates y
f

, y',

correspond to the probable error r' of an observation of unit

weight taken under the conditions producing the dotted proba-

bility curve, and include between themselves one-half of the

area of the dotted curve. The area for any probability curve

(Art. 150) being always equal to unity, it follows that yi, yi,



PROBABLE ERRORS OF OBSERVED QUANTITIES 299

and y', y', include equal areas. Hence as the center ordinate at

A grows higher and higher with increasing accuracy of observation,

so also must the ordinates y\, yi, draw closer together. It is

thus seen that the probable error n grows smaller and smaller

as the accuracy of the work increases, and therefore furnishes a

satisfactory gage of precision.

Fig. 67. The Probable Error.

172. General Value of the Probable Error. The area of any

probability curve (Art. 150) equals unity. The area between

any probable error ordinates yi, y\ (Art. 171), is equal to half

the area of the corresponding probability curve. But the area

between the ordinates y\, y\ (Art. 147), is equal to the probability

that an error will fall between the values x = r\ and x = + r%.

Hence from Eq. (16) we have

h A.
-Vx'dx. (52)

Since (Art. 150) the precision of any set of observations depends

entirely on the value of h, it follows that the probable error r\

must be some function of h. The last member of Eq. (52) is not

directly integrable, so that the numerical relation of the quan-
tities h and n can only be found by an indirect method of suc-

cessive approximation which is beyond the scope of this volume.

As the result of such a discussion we have,

0.4769363
n =

h (53)

It is thus seen that for different grades of work the probable error

n varies inversely as the precision factor h.
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By more or less similar processes of reasoning it is also estab-

lished that the probable error of any quantity or observation

varies inversely as the square root of its weight. Thus if n is

the probable error of an observation of unit weight, then for the

probable error rP of any value with the weight p, we have

rP
= -> (54)

173. Direct Observations of Equal Weight. From Eq. (20)

we have

In 1
h

22v2
'

Substituting this value of h in Eq. (53) and reducing, we have

n = 0.6745J -
r (55)

in which r\ is the probable error of a single observation in the

case of direct observations of equal weight on a single unknown

quantity, and n is the number of observations.

> Since in this case (Art. 134) the weight of the arithmetic

mean is equal to the number of observations, we have (Art. 172),

'745J^
ri 2v2

-7= = 0.6745 A ,
:Vn \n(n 1)'

in which ra is the probable error of the arithmetic mean in the

case of direct observations of equal weight on a single unknown

quantity, and n is the number of observations.

Example. Direct observations on an angle A :

Observed values v v2

29 21' 59".l - 2".l 4.41

29 22 06 .4 +5 .2 27.04

29 21 58 .1 -3.1 9.61

3)88 06 03 .6 2> 2 = 41.06

z = 29 22 01 .2 n = 3

The probable error of a single observation is therefore

r,
= 0.6745yj-^- - 0.6745\/''n 1 * f- 3^
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and of the arithmetic mean,

whence we have

Most probable value of A - 29 22' 01".2 1".76.

174. Direct Observations of Unequal Weight. From Eq. (2l)

we have

\2Spv2
"

Substituting this value of h in Eq. (53) and reducing, we have

J^~v (57)

in which r\ is the probable error of an observation of unit weight

in the case of direct observations of unequal weight on a single

unknown quantity, and n is the number of observations. The
value of n thus becomes purely a standard of reference, and it is

entirely immaterial whether or not any one of the observations

has been assigned a unit weight. Having found the value of

r\ we have, from Eq. (54),

n
Vp

in which rP is the probable error of any observation whose weight
is p.

Since in the case of weighted observations (Art. 134) the weight
of the weighted arithmetic mean is equal to the sum of the indi-

vidual weights, we have (Art. 172),

*-*%- -6745>ss? <58>

in which rpn is the probable error of the weighted arithmetic mean
in the case of direct observations of unequal weight on a single

unknown quantity.
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Example. Direct base-line measurements of unequal weight:

Observed values p pM v v2 pifi

4863.241 ft. 2 9726.482 0.020 0.000400 0.000800

4863.182 ft. 1 4863.182 - 0.039 0.001521 0.001521

Sp = 3)14589.664 2pi>
2 = 0.002321

z = 4863.221 ft. n = 2.

The probable error of an observation of unit weight is therefore

r,
= 0.6745JlEL= 0.6745 \j

0002321 = 0.032 ft.;
'ft 1 '1

of an observation of the weight 2,

rk = a032 =0023
Vp V2

and of the weighted arithmetic mean,

r, 0.032 ,
rpa = J= - = - 0.019 ft.;

Vzp V3

whence we have

Most probable value = 4861.221 0.019 ft.

175. Indirect Observations on Independent Quantities. From

Eq. (22) we have

I22pv
2

'

Substituting this value of h in Eq. (53) and reducing, we have

0.6745 J P4, ...... (59)

in which n is the probable error of an observation of unit weight

in the case of indirect observations on independent quantities

(that is with no conditional equations), n is the number of observa-

tion equations, and q is the number of unknown quantities.

Having found the value of n, we have, from Art. 172,

n n n ,

rP = ]=, rx = =, ry =
-=, etc.,

Vp Vpx Vpy

in which rP is the probable error of any observation whose weight

is p, and rx is the probable error of any unknown, x, in terms of

its weight px ,
and so on.
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The weights px , pv , etc., of the unknown quantities are found

from the normal equations by means of the following

Rule: In solving the normal equations preserve the absolute

terms in literal form; then the weight of any unknown quantity is

contained in the expression for that quantity, and is the reciprocal

of the coefficient of the absolute term which belonged to the normal

equation for that unknown quanti y.

In applying the above rule no change whatever is to be made
in the original form of any normal equation until the absolute

term has been replaced by a literal term. If the normal equations

are correctly solved the coefficients in the literal expressions for

the unknown quantities will follow the same law (Art. 162) as

the coefficients of normal equations, and this check must never

be neglected.

Example. Given the following observation equations to determine the

most probable values and the probable errors of the unknown quantities:

x + y = 10.90 (weight 3);

2x y = 1.61 (weight 1);

x + Zy = 24.49 (weight 2).

Forming the normal equations, we have

9x + 7y = 84.90 = Nx
= normal equation in x;

7x + 22y = 178.03 = Ny
= normal equation in y;

whence
x = -hNx -rhNv

= 4.172, nearly;

V = ~ ThNx + t^Nv
= 6.765, nearly;

and, by the rule,

Weight of x =W = 6.773, nearly = px ;

y = iA9 = 16556 << =
Vym

Substituting in the original equations the values obtained for x and y, there

results

x + y = 10.937;

2x - y = 1.579;

x +3y = 24.467;

whence, for the residuals, we have,

e,
= 10.90 - 10.937 = - 0.037 (weight 3);

v2 = 1.61 - 1.579 = + 0.031 (weight 1);

v
3
= 24.49 - 24.467 = + 0.023 (weight 2).

We therefore have for the probable error of an observation of unit weight,

r,
=
0.6745^/^2

=
0,6745^

^6126 =
0.053;
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/

for the probable error of x,

r, 0.053
rx
- -= - -. ^ - 0.020;
Vpa V6.773

and for the probable error of y,

r, 0.053
/ = = =

.
=

0.013;V
Pj/ V16.556

whence we write

x = 4.172 0.020 and y = 6.765 0.013.

176. Indirect Observations Involving Conditional Equations.
From Eq. (23) we have

h- q + C

22pv2
'

Substituting this value of h in Eq. (53) and reducing, we have

Sp^ ,
.... (60)

in which rj is the probable error of an observation of unit weight
in the case of indirect observations involving conditional equa-

tions, n is the number of observation equations, q is the number
of unknown quantities, and c is the number of conditional equa-
tions. Having found the value of n, we have, from Art. 172,

r\ _n_ f\
tp ,

rx ,
ry 7=, etc.,

Vp Vpx Vpy

in which, as in the previous article, rp is the probable error of any
observation whose weight is p, and rx is the probable error of any
unknown, x, in terms of its weight px ,

and so on.

In order to find the value of the weights px , py , etc., the con-

ditional equations are first eliminated (Art. 166), and the normal

equations due to the resulting observation equations are then

treated by the rule of the preceding article. By repeating the

process with different sets of unknowns eliminated, the weight
of each unknown will eventually be determined.

177. Other Measures of Precision. The measures of precision

thus far introduced are the precision factor h, and the probable
error r. Two other measures of precision are sometimes used,
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and are of great theoretic value. These are known as the mean

error, and the mean absolute error.

By the mean error is meant the square root of the arithmetic

mean of the squares of the true errors.

By the mean absolute error (often called the mean of the errors)

is meant the arithmetic mean of the absolute values (numerical

values) of the true errors.

Referring to Fig. 68, the precision factor h is equal to \/x

times the central ordinate AY. Considering either half of the

Point of Inflection Point of Inflection

Fig. 68. Measures of Precision.

curve alone, the ordinate for the probable error r bisects the

included area, the ordinate for the mean absolute error f) passes

through the center of gravity, and the ordinate for the mean
error e passes through the center of gyration about the axis A Y.

The ordinate for e also passes through the point of inflection

of the curve.

The measure of precision most commonly used in practice is

the probable error r, but as the different measures bear fixed

relations to each other a knowledge of any one of them determines

the value of all the others, as shown in the following summary:

Precision factor
= h.

Probable error = r =
0.4769363

h

Mean absolute error
>?
= = 1.1829 r.

hVn

Mean error =
hV2

1.4826 r
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B. Of Computed Quantities

178. Typical Cases. When the probable error is known

for each of the quantities from which a computed quantity is

derived, the probable error of the computed quantity may also

be determined. Any problem which may arise will come under

one or more of the five following cases :

1. The computed quantity is the sum or difference of an observed

quantity and a constant.

2. The computed quantity is obtained from an observed quantity

by the use of a constant factor.

3. The computed quantity is any function of a single observed

quantity.

4. The computed quantity is the algebraic sum of two or more

independently observed quantities.

5. The computed quantity is any function of two or more inde-

pendently observed quantities.

The fifth case is general, and embraces all the other ca es.

The first four cases, however, are of such frequent occurrence that

special rules are developed for them . Any combination of the rules

is therefore admissible that does not violate their fundamental

conditions, since the first four rules are only special cases of the

fifth rule.

179. The Computed Quantity is the Sum or Difference of an

Observed Quantity and a Constant.

Let u and ru = the computed quantity and its probable error;

x and rx
= the observed quantity and its probable error;

a = a constant;

then

and

u = x a;

ru
= rx (61)

It is evidently immaterial whether x is directly observed or

is the result of computation on one or more observed quantities.

The only essential condition is satisfied if rx is the probable error

of x. If a: is a computed quantity the probable error rx may be

derived by any one of the present rules.
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Example. Referring to Fig. 69, the most probable value of the angle x is

x = 30 45' 17".22 1".63.

What is the most probable value of its supplement y, and the probable error

of this value ?

From the conditions of the problem we
have

y
y = 180 -

x;

whence

ru
= rx

= 1".63, Fig. 69.

and

y = 149 14' 42".78 1".63.

180. The Computed Quantity is Obtained from an Observed

Quantity by the Use of a Constant Factor.

Let u and ru
= the computed quantity and its probable error;

x and rx
= the observed quantity and its probable error;

a = a constant;

then

u = ax

and

ru
= arx (62)

Evidently, as in the previous case, x may be any function of one

or more observed quantities, provided that rx is its correct probable

error. The rule of this article is only true when the constant a

represents a strictly mathematical relation, such as the relation

between the diameter and the circumference of a circle. Staking

out 100 feet by marking off successively this number of single

feet is not such a case, as the total space staked out is not neces-

sarily exactly 100 times any one of the single spaces as actually

marked off. In all probability some of the feet will be too long

and others will be too short, so that (owing to this compensating

effect) the total error will be very much less than 100 times any

single error, and the probable error must be found by Art. 182.

In the case of the circle, however, the circumference is of neces-

sity exactly equal in every case to 7r times the diameter.
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Example. The radius of a circle, as measured, equals 271.16 0.04 ft.

What is the most probable value of the circumference, and the probable
error of this value?

Circumference - 271.16 X 2x = 1703.75 ft.;

ru
= rxX 2x = 0.04 X2ic = 0.25 ft.;

whence we write

Circumference = 1703.75 0.25 ft.

181. The Computed Quantity is any Function of a Single

Observed Quantity.

Let u and ru =the computed quantity and its probable error;

x and rx
= the observed quantity and its probable error;

then

u =
<f>(x);

and

r.-r,|.
....... (63)

Evidently, as in the two previous cases, x may be any function

of one or more observed quantities, provided that rx is its correct

probable error.

Example. The radius | of a circle equals 42.27 0.02 ft. What is

the most probable value and the probable error of the area?

u m xx 2 = (42.27)
2 X x = 5613.26;

du =
2-Kxdx,

= 2xx,
ax

ru
= rx

~ = rx (2%x) = 0.02 X2xX 42.27 - 5.31;
ax

whence we write

Area = 5613.26 5.31 sq.ft.

182. The Computed Quantity is the Algebraic Sum of Two or

More Independently Observed Quantities.

Let u and ru = the computed quantity and its probable

error;

x, y, etc. = the independently observed quantities;

rX} ry ,
etc. = the probable errors of x

} y, etc.; j

then

u = x y etc.;

and

ru-Vr^+ryHetc. (64)
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The observed quantities x, y, z, etc., may each be a different

function of one or more observed quantities, but the absolute

independence of x, y, z, etc., must be maintained. In other

words, x must be independent of any observed quantity involved

in y, z, etc.; y independent of any observed quantity involved

in x, z, etc.
;
and so on. Thus, for instance, we can not regard

2x as equal to x + x, and substitute in the above formula, since

x and x in the quantity 2x are not independent quantities.

Attention is also called to the fact that the signs under the

radical are always positive, whether the computed quantity is

the result of addition or subtraction or both combined.

Example 1. Referring to Fig. 70, given

x = 70 13' 27".60 2".16;

y = 40 57 19 .32 1 .07;

to find the most probable value and the probable error of z.

In this case

z = x + y - 111 10' 46".92;

whence we write

V(2.16)
2 + (1.07)

3 - 2".41;

z = 111 10' 46".92 2".41.

<> w
Fig. 70. Fig. 71.

Example 2. Referring t6 Fig. 71, given

x = 70 13' 27".60 2".16;

y = 40 57 19 .32 1 .07;

to find the most probable value and the probable error of z.

In this case

z = x - y = 29 16' 08".28;

ru
= V(2.16)

2 + (1.07)
2 = 2".41;

whence we write

z = 29 16' 08".28 2".41.
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183. The Computed Quantity is any Function of Two or More

Independently Observed Quantities.

Let u and ru
= the computed quantity and its probable error;

x, y, etc. = the independently observed quantities;

rx ,
ry ,

etc. = the probable errors of x, y, etc.;

then

u =
<f>(x, y, etc.);

and

*-V('-i)

,

+('.$)

,

+*- <*

All the remarks under the previous case apply with equal force

to the present case.

Example 1. The measured values for the two sides of a rectangle are

x = 55.28 0.03 ft.

V = 85.72 0.05 ft.

What is the most probable value of the area and its probable error?

u = xy = 55.28 X 85.72 =
4738.60;

du _ du _
dx dy

r = V(rx (/)
2 + (ryx)''

- V(0.03 X 85.72)
2 + (0.05 X 55.28)

2 - 3.78;

whence we write

Area = 4738.60 3.78 sq.ft. u

Example 2. Referring to the right-angled

triangle in Fig. 72, given

x = 38.17 0.05 ft.; Fig. 72.

y = 19.16 0.04 ft.;

to find the most probable value of the hypothenuse u and its probable error.

u = vV + y
* = V(38.17)

2 + (19.16)
2 = 42.71;

du x du y

dx Vx 2 + y
2 dV V x 2 + y'

J

(rxxY + (ryyy
x 2 + y*

r"
\ [Vx 1 + y

2
) \Vx 2 + y

2
)

"
V

/(38.17 X 0.05)
2 + (19.16 X 0.04)

2
"

\ (38.17)
2 + (19.16)

2 '
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whence we write

Hypothenuse = 42.71 0.05 ft.

Example 3. Referring to Fig. 73, in which the horizontal distance x

and the vertical angle 4> have been measured,
given

x = 489.11 0.32 ft.;

<f>
= 12 17' 1'; Fig. 73.

to find the most probable value of the elevation u and its probable error

u = x tan
<f>
= 106.49;

du xdu = tan
dx dfi cos 2 '

r =
^/(r

x tan^)
2 +

j cos 2

<f>

It is necessary at this point to remember that expressing an angle in degrees,

minutes, and seconds, is only a trigonometrical convenience, and that the

true measure of an angle is the ratio of the subtending arc to its radius.

An arc expressed in minutes must therefore be compared with a radian ex-

pressed in minutes (that is, an arc whose length equals that of the describing

radius) in order to complete its angular meaning.

1 radian = 3438', nearly. r<4 = -
,

3438

r-
^(0.32

tan . +
(JL

X
)'-

0.16;

whence we write

u = 106.49 0.16 ft.



CHAPTER XIV

APPLICATION TO ANGULAR MEASUREMENTS

184. General Considerations. In the adjustment of angular
measurements three classes of problems may arise, known as

single angle adjustment, station adjustment, and figure adjust-
ment.

By single angle adjustment is meant the determination of the

most probable value of an angle which can be obtained from the

measurements made directly upon it.

By station adjustment is meant the determination of the most

probable values of two or more angles at a single station, in order

to meet the condition of being geometrically consistent.

By figure adjustment is meant the determination of the most

probable values of the angles involved in any geometric figure,

in order to meet the condition of being geometrically consistent.

In trigonometric work of any importance each individual

angle is always measured a large number of times, and the most

probable value due to these results is considered as its measured

value. The station adjustment or figure adjustment is then

made in accordance with the conditions of the given case.

Single Angle Adjustment

185. The Case of Equal Weights. In this case (Art. 155)

the most probable value is the arithmetic mean of the individual

measurements.

Example. Three equally reliable measurements of the angle x give

29 21' 59".l, 29 22' 06".4, 29 21' 58".l. What is its most probable
value?

29 21' 59".l

29 22 06 .4

29 21 58 .1

3)88 06 03 .6

29 22' 01".2

The most probable value is therefore 29 22' 01".2.

312
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186. The Case of Unequal Weights. In this case (Art. 157)

the most probable value is the weighted arithmetic mean of the

individual measurements.

Example. Three measurements of an angle x give 38 15' 17".2 (weight 1),

38 15' 15".5 (weight 3), and 38 15' 18".0 (weight 2). What is its most

probable value?

38 15' 17".2 X 1 = 38 15' 17".2

38 15 15 .5 X 3 = 114 45 46 .5

38 15 18 .0 X 2 = 76 30 36^0

6)229_31 J9 .7

38 15' 16".6

The most probable value is therefore 38 15' 16". 6.

Station Adjustment

187. General Considerations. All cases of station adjust-

ment necessarily imply one or more conditional equations. In

the determination of the most probable values of the several

angles these equations may be avoided (Art. 165), eliminated

(Art. 166), or involved in the computa-
tion (Art. 167), as found most convenient.

The angles at a station are in general

measured under similar conditions, so

that in making the adjustment it is

customary to give to each angle a weight

equal to the number of observations (or

the sum of the weights in the case of

weighted observations) on which it de-

pends. Angles are seldom measured a

sufficient number of times to make it

justifiable to weight them inversely as

the squares of their probable errors, as would be required by
the last paragraph of Art. 172. The following cases of station

adjustment show the general principles involved:

188. Closing the Horizon with Angles of Equal Weight.

Referring to Fig. 74,

Let x, y, z, . . . w = the angles measured;

a, b, c, . . . m = their measured values;

n = the number of angles measured;
d =

(a -f- 6 -f- c . . . + m) 360 = the discrepancy to

be adjusted;

Fig. 74.
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then the observation equations are

x =
a;

y =
b;

z = c:

w = m;

and the conditional equation is

x + y + z + w = 360.

It is evident from the figure, however, that this conditional

equation may be avoided (Art. 165) by regarding all the angles

except w, for instance, as independent, and involving the required

condition by expressing this angle in terms of the others. The

observation equations thus become

x =
a;

y =
b;

z = c;

360 - (x+y + z. . .) m.

Passing to the reduced observation equations (Art. 163) by sub-

stituting for the most probable values of the unknown quantities,

we have

X
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Subtracting the second equation from the first, we have

Vi V2 =
0, or vi = V2-

Subtracting the third equation from the second, we have

V2 v3 = 0, or V2 =
v-j.

Or, in general,
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then the observation equations are

x = a (weight p\) ;

y = b (weight p2) ;

z = c (weight P3) ;

w = m (weight pn) )

and the conditional equation is

x + y + z . . . + w - 360.

It is evident that this conditional equation may be avoided, as in

Art. 188, by writing the observation equations in the form

x = a (weight p\);

y = b (weight p2) ;

z = c (weight p3) ;

360 (x-\-y-\-z...) = m (weight p r,).
'

Passing to the reduced observation equations, as before, by
substituting

x = a + Pi J

y = b + y2 ;

etc.;

we have

vi = (weight pi);

V2 (weight P2) ;

v3 = (weight p3 ) ;

vi + v2 + v3 . . .
= d (weight pn) ;

giving the normal equations

P1V1 + pn (v\ + v2 + v3 . . .)
= - pnd;

P2V2 + Ph(Vl + V2 + V3 . . .)
= - p nd',

P3V3 + pn (Vx + V2 + V3 . . .)
= - pnd.

etc., etc.



APPLICATION TO ANGULAR MEASUREMENTS 317

Subtracting the second equation from the first, the third equation
from the second, and so on, we have

P1V1 P2V2 0, or pivi =
P2V2',

P2V2 P3V3 =
0, or p2v2 = P3V3)

etc., etc.;

or, in general,

pivi = p2V2 = P3V3 = P4V4 = etc. . . . (67)

Eq. (67) shows that when angles of unequal weight are arranged
around a point so as to close the horizon, the most probable value

for each angle is found by distributing the discrepancy inversely
as the corresponding weights.

Example. Referring to Fig. 75, page 315, the following observations are

to be adjusted:

x = 50 49' 27".6 (weight 2);

y = 149 22 22 .8 (weight 1);

z = 159 48 05 .9 (weight 3).

359 59' 56".3

360 00 00 .0

d= - 03".7

In accordance with the above principle this discrepancy is to be distributed

as

111.
2

:

1
:

3'

which, cleared of fractions, equals

3:6:2.
The three corrections are thus

3.7 X tt = 1".01, 3.7 X it = 2".02, and 3.7 X tt - 0".67.

The most probable values are therefore

x = 50 49' 28".61;

y = 149 22 24 .82;
z = 159 48 06 .57.

190. Simple Summation Adjustments. Referring to Fig. 76,

page 318, let x, y, z, etc., represent a series of angles at the point C,
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and let w represent the corresponding summation angle. Then
we must have geometrically,

w = x-\-y-\-z-\- etc.

But the measured values of these angles will seldom satisfy this

conditional equation, and an adjustment becomes necessary to

remove the discrepancy. In making the

adjustment it is evidently immaterial

whether we regard w or w' as the angle

actually measured, since these values

are mutually convertible and only differ-

ent expressions for the same fundamental

idea. The adjustment may therefore be

made in any case by subtracting the

measured value of w from 360 to obtain

the apparent value of w', and then

applying the rule of Arts. 188 or 189,

as may be necessary. Since the correc-

tion to w' will have the same sign as all the remaining corrections,

it is evident that the correction to w must have the opposite

sign. We are thus led to the following conclusions :

In the case of equal weights the most probable values of the

measured angles are obtained by an equal numerical distribu-

tion of the discrepancy, with opposite signs for the summation-

angle correction and all the remaining corrections.

In the case of unequal tveights the most probable values of the

measured angles are obtained by a numerical distribution of the

discrepancy inversely proportional to the several weights, with

opposite signs for the summation-angle correction and all the

remaining corrections.

Example 1. Referring to Fig. 77, the following observations are to be

adjusted:
x - 39 12' 32".6 (weight 1);

y = 44 47 59 .3 (weight 1);

* + y = 84 00 35 .8 (weight 1).

39
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In accordance with the above principles the most probable corrections to

the measured angles are

+ 1".3, + l"-3,
-

1".3;

giving as the most probable values,

x = 39 12' 33".9;

y = 44 48 00 .6;

x + y = 84 00 34 .5.

Example 2. Referring to Fig. 77, the following observations are to be

adjusted:

x = 40 16' 23".7 (weight 2);

y = 46 36 48 .5 (weight 3) ;

x + y = 86 53 08 .0 (weight 4).

40 16' 23".7

46 36 48 .5

86 53 12 .2

86 53 08 .0

d = 04 .2

In accordance with the above principles this discrepancy is to be distributed

numerically as

ill.
2 3 4'

which, cleared of fractions, equals

6:4:3;
giving as the most probable corrections

- 4.2 X A = -
l"-94;

- 4.2 X h = -
l"-29;

+ 4.2 X A - + 0".97;

and therefore as the most probable values

x = 40 16' 21".76;

y = 46 36 47 21;
x + y = 86 53 08 .97.

191. The General Case. The cases given in Arts. 188, 189, and

190, are the only ones in which it is desirable to establish special

rules. Any case of station adjustment may be solved by writ-

ing out the observation and conditional equations and then apply-

ing the principles developed in Chapters XI and XII.
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Example 1. Referring to Fig. 78, find the most probable values of the

angles x, y, and z, from the following observations:

X m 25
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As the angles x, y, and z close the horizon they must satisfy the conditional

equation
x + y + z = 360.

Avoiding this conditional equation by subtracting all angles containing
z from 360, we have

x = 14 11' 17".l (weight 1);

y = 19 07 21 .3 (weight 2);
x + y = 33 18 43 .4 (weight 1);

x + y = 33 18 41 .8 (weight 2);
x = 14 11 20 .8 (weight 3);

in which x and y may be regarded as independent quantities.

Letting v
x and v% be the most probable corrections for x and y, and

writing the reduced observation equations in accordance with Art. 163,
we have

i
= 0".O (weight 1);

v = .0 (weight 2);

i + 02 = 5 .0 (weight 1);

0i + 02 = 3 .4 (weight 2);

0i = 3 .7 (weight 3);

from which we have the normal equations

70! + 302
= 22.9;

30i + 502 - 11.8;
whose solution gives

0i = + 3".04, 02 = + 0".53.

The most probable values of x and y are therefore

x m 14 11' 20".14;

y = 19 07 21 .83;

and hence the most probable value for z must be

z = 326 41' 18".03,

in order to make the sum total of 360.

Figure Adjustment

192. General Considerations. All cases of figure adjust-
ment necessarily imply one or more conditional equations. In

the determination of the most probable values of the several

angles these equations may be avoided (Art. 165), eliminated

(Art. 166), or involved in the computation (Art. 167), as found

most convenient. The angles in a triangulation system are in

general measured under similar conditions, so that in making the

adjustment it is customary to give to each angle a weight equal to

the number of observations (or the sum of the weights in the case

of weighted observations) on which it depends. Angles are sel-

dom measured a sufficient number of times to make it justifiable

to weight them inversely as the squares of their probable errors,
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as would be required by the last paragraph of Art. 172. In work of

moderate extent any required station adjustment may be made

prior to the figure adjustment, but in very important work it may
be desirable to make both adjustments in one operation. Except
in very important work, the triangles, quadrilaterals, or other

figures in a system may be adjusted independently. In work of

the highest importance the whole system would be adjusted in

one operation. The following cases of figure adjustment show

the general principles involved, assuming that the reduction for

spherical excess (Arts. 56, 57, 58) has already been made.

193. Triangle Adjustment with Angles of Equal Weight.

Referring to Fig. 80,

Fig. 80.

Let x, y, z = the unknown angles;

a, b, c = the measured values;

d = (a + b + c) 180 = the discrepancy to be

adjusted.

Avoiding the conditional equation (Art. 163) for the sum of the

three angles by writing the observation equations in terms of

x and y as independent quantities, we have

x =
a;

y =
b;

x + y = 180 - c.

Substituting for the most probable values

x = a + vi;

y = b + v2 ;

we have

vi =0;
v2 = 0;

vi + v2 = 180 -
(a + b + c)

= -
d;
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giving the normal equations,

2vi + V2 = d;

vi + 2v2 = d;

whence by subtraction,

vi V2 = 0, or vi = v2 -

In a similar manner it may be shown that v\ or v2 is equal to

v3 ,
or in general,

Vl = v2 = v3 .

Bat evidently,

whence,

vi + v2 + v3
= -

d;

vi - t>2 n -
q (68)

Equation (68) shows that when the measured angles of a tri-

angle are considered of equal weight, the most probable values of

these angles are found by adjusting each angle equally for one-third

of the discrepancy.

Example. The measured values (of equal weight) for the three angles
of a triangle are 92 33' 15".4, 48 11' 29".6, and 39 15' 12".3. What are

the most probable values?

Measured Values Most Probable Values

92 33' 15".4 92 33' 16".3

48 11 29 .6 48 11 30 .5

39 15 12 .3 39 15 13 .2

179 59' 57".3 180 00' 00".0
180 00 00 .0

3 )
- 02".7

- 0".9

194. Triangle Adjustment with Angles of Unequal Weight.

Referring to Fig. 80,

Let x, y, z = the unknown angles;

a,b,c = the measured values;

Pi> P2, P3 = the respective weights;
d =

{a + b + c) 180 = the discrepancy to be

adjusted.

Avoiding the conditional equation as before by making x and y
the independent quantities, we have

x = a (weight p{);

V = b (weight p2);
x + y = 180 - c (weight p3 ).
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Substituting, as before,

x = a + vi;

y = b + v2 ;

we have

vi = (weight pi);

V2 = (weight P2);

Pi + 02 = 180 -(a + 6 + c)
= -d (weight p3);

giving the normal equations

Pivi + 7)3(^1 + v2 )
=

pzd;

P2V2 + P3(vi + v2)
=

p%d;

whence, by subtraction,

P1V1 P2V2 =
0, or p\v\ =

P2V2.

In a similar manner it may be shown that pivi or P2V2 is equal to

p3v3 . Hence, in any case,

vi + v2 + v3= - d)

Pin =
P2V2 = P3V3 J

' (69)

Eqs. (69) show that when the measured angles of a triangle are

considered of unequal weight, the most probable values of these

angles are found by distributing the discrepancy inversely as the

corresponding weights.

Example. The measured values for the three angles of a triangle are
97 49' 56".8 (weight 2), 38 06' 05".0 (weight 1), and 44 04' 01".l (weight 3).
What are the most probable values?

97 49' 56".8

38 06 05 .0

44 04 01 .1

180 00' 02".9
180 00 00 .0

j:2-S=Mi

d = + 02".9

3 + 6 + 2 =
11;

+ 02.9 XA = + 00".79, + 02.9 X rr = + 01".58,

+ 02.9 X Ti = + 00".53.

The most probable values are therefore

97 49' 56".01

38 06 03 .42

44 04 00 .57

180 00' 00".00



APPLICATION TO ANGULAR MEASUREMENTS 325

195. Two Connected Triangles. A simple case of figure

adjustment is illustrated in Fig. 81. Two triangles are here

connected by the common side AB, and the eight indicated

angles are measured. It is evident from the figure that four

independent conditional equations must be satisfied by the

adjusted values of the angles, for the summation angles at A and B
must agree with their component angles, and the angles in each

of the two triangles must add up to 180. The problem may be

worked out by the methods of Arts. 165, 166, or 167. The fol-

Fig. 81. Two Connected Triangles.

lowing example is worked out by the algebraic elimination of the

conditional equations (Art. 166) in order to illustrate this method.

Example. Referring to Fig. 81, given the following observed values of

equal weight, to find the most probable values of the measured angles:

Observed Values of Angles

Ai = 65 25' 18".l; A = 141
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four because they are so easily found from the given conditional equations.

Solving for these quantities, we have

A=Ax+ A 2 ;

B = B3 + Bt ;

C = 180- (Ax + B3);

D = 180 -
(Ai + Bt).

Substituting in the observation equations and reducing, we have

Ax = 65
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and also the following side equation :

sin a sin c sin e sin g= 1,
sin b sin d sin / sin h

which may be written in the logarithmic form

2 log sin(a, c, e, g)
- S log sin(6, d, f, h)

= 0. . (71)

(72)

Fig. 82. The Geodetic Quadrilateral.

Letting Ma ,
Mb , etc., represent the measured values of the

angles a, b, etc., and h, h, h, h, represent the discrepancies in

these equations due to the errors in the measured angles, we have

2(Ma toMh)-3Q0 = h

(Ma+Mb)-(M,+Mf)~l2

(Mc+Md)-(Mg+Mh)
= l3

2 log sin (Ma ,
Mc ,
Me ,
Mg) -2 log sin (Mh ,

Md ,
Mf,
Mh)

= l4 J

The corrections va ,
vb , etc., to be added algebraically to the

measured values Ma ,
Mb , etc., must reduce these equations to

zero in order that the conditional equations (70) and (71) may be

satisfied. Therefore we must have

Va+ Vb+ Vc + Vd+ Ve+ Vf+ Vg+ Vh= -h
Va+ Vb

- Ve
~

Vf
= -l2

Vc + Vd !-
. Vg Vh= -l3

daVa dbvb+ dcvc ddVd f deve dfvf -\-dQvg dhXh= h J

\ (73

in which va ,
vb , etc., are to be expressed in seconds, and in which

da ,
db, etc., are the tabular differences for one second for the
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log sin Ma , log sin Mb ,
etc. If any angle is greater than 90 it

is evident that the corresponding tabular difference must be
considered negative, since the sine will then decrease as the angle
increases in value. The conditional Eqs. (73) being in the form

of Eqs. (43), the most probable values of va ,
vb , etc., may now

be found by the method of correlatives (Art. 167), by means of

Eqs. (49) and (50). Re-writing these equations with the symbols
used in the present article, and remembering that there are four

conditional equations and hence four correlatives required, we
have in the general case, from Eqs. (49) and (73),

,ac ,ad
+ *8S -f k4H =

V V
h

va
2

vab
k\ li h k2 lu

V V

V V V . V

k^-+k2 2- + k3Z- + k42- = -ls
V V V V

kilt + k2L h k3 2. + k4 l>

V V

and from Eqs. (50) and (73),

va = h~ + k2
Pa Pa

-h

Vb = h \- k2
Vb

vc = k Y

Vd - h

Pb

Vc

I 7 da

-kj
Vb

+ h~ + kj
Vc Vc

+ h
'Vd

k

-a
Ve Ve

vt = k x k2~

+ k

dd

%
de.

Va = ki

Vh - h

Vf

Vh

-kP-
Pf

h- + k^
Vg Vg

Vh Vh

(74)

(75)
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> (76)

in which pa represents the weight of Ma , pb the weight of Mb ,
and

so on.

In the case of equal weights we have, from Eqs. (73) and (74),

Sh + Kda+ di+ de + dg)
-

(db+ dd+df+dh)]k4 - - lt }

4k2+ (da db de+ df)kA = l2

4fc3 + (dc -dd -dg+ dh)k - - l3

[(da+ dc+de+ d )
-

(db+ dd -hdf+ dh)]ki

+ (da -db -dc + df)k2 +(dc -dd -dg+dh)k3 +'Zd2ki
= -Z4 J

and from Eqs. (75),

va
= ki + k2 + daki

vb = ki + k2
- dbk

vc = ki + k3 + dck 4

vd = ki + fa - ddk4

ve = ki k2 + dek

vf
= ki k2 d/k4

vg
= ki

-
/c 3 + dgk4

Vh = ki
- k3

- dhk4

Having found the values of va ,
vb , etc., we have in any case for

the most probable values of the angles a, b, etc.,

a = Ma + i>; e = Me + ve ;

b = Mb + vb ; f=M,+ v,',

c = Mc + vc ; g = Mg + vg ;

d = Md + vd ; h = Mh + v A .

(77)

> (78)

197. Other Cases of Figure Adjustment. There is evidently

no limit to the number of cases of figure adjustment that may be

made the subject of consideration, but few of them are likely to

be of interest to the civil engineer. Any case that may arise may
be adjusted by the method of correlatives (Art. 167), similarly to

the quadrilateral adjustment (Art. 196), provided the observa-

tion equations and conditional equations are properly expressed.

In any case the conditional equations must cover all the geo-

metrical conditions which must be satisfied, and at the same time

must be absolutely independent of each other. The number of
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independent conditional equations can always be ascertained by

subtracting the number of independent quantities from the number

of observed quantities. The number of independent quantities

is in general easily determined by an inspection of the given figure,

being that number of independent values which fixes a single

location for each angular point. A study of the following exam-

ples will illustrate the principles involved.

Example 1. Referring to Fig. 83, the base A B and the indicated angles
have been measured; determine the number and nature of the independent
conditional equations.

It is evident from the figure that it will take two angles from the fixed

points A and B to locate either C or D, and that these four angles are

independent. We may therefore select Ai, A 2 ,
Bu B2 ,

as independent

angles, and as this will fix the points C and D it will also fix the values of

the angles Ci and C2 ,
so that we can not have more than four independent

angles. In this particular case any four of the angles can be taken as the

independent ones, but this freedom of choice is not a general rule. As there

are six observations of which only four are independent, it follows (Art. 166)

that two independent conditional equations must be involved. Starting
from any known side, A B, we may in general compute any other line of a

system through two different sets of triangles, and the requirement that these

two results shall be identical will always lead to a corresponding side equa-
tion. In the present case, therefore, the two conditional equations must
consist of one angle equation and one side equation. The angle equation is

evidently,
A x + A 2 + , + B2 + C y + C2

= 180.

Taking CDasa convenient line from which to determine the side equation,
and equating its values as computed through the triangles A B D and A C D,
and through the triangles A B D and BCD, the side equation is easily

found to be,

sin Ai sin Bi sin C\ = sin A 2 sin B2 sin C2.

Fig. 83. Fig. 84.

Example 2. Referring to Fig. 84, the base A B and the indicated angles
have been measured; determine the number and nature of the independent
conditional equations.

In this case, as in the previous one, four independent angles will fix the

whole figure, so that the fact that nine angles have been measured demands
the existence of five independent conditional equations, as nine minus four



332 GEODETIC SURVEYING

equals five. In regarding any four of the angles as independent, it is evident
that no three of them must lie in any one triangle, as this would at once

destroy the independence of these three angles by setting a condition on
their sum. Since, as explained in Example 1, there must be one side equa-
tion, on account of the one known line A B, it follows that the present case

must involve four independent angle equations to make up the total of

five independent conditional equations required. An examination of the

figure, however, furnishes five angle equations, as follows:

Ai + C2 + 2
= 180

A 2 + B1 + Dz = 180
B2 + G + Di = 180

A 1 + A 2 + B1 +B2 + Ci + C2
= 180

D t + D2 + D 3
= 360

As there can be but four independent angle equations, it follows that

any one of these five must be dependent on the other four. An examination
of the equations will show at once that any one of them may be derived
from the remaining four. We may therefore choose any four of these five

equations for our four angle equations. Since the figure is identical with
the one in Example 1, our side equation as before will be,

sin A\ sin J5i sin Ci = sin A 2 sin B2 sin C2 .

Example 3. Referring to Fig. 85, the base A B and the indicated angles
have been measured, the interior station being a random point not purposely

falling on any diagonal of the figure;
determine the number and nature of the

independent conditional equations.
In this case the angles in any five of

the six triangles will fix the whole figure;
and since there can be but two indepen-
dent angles in each of the five triangles
so selected, it follows that we must have
ten independent angles. As there are

eighteen measured angles and ten inde-

pendent angles, we must have eight inde-

pendent conditional equations. As before

there must be one side equation, leaving
seven angle equations required. Eight such

equations may be formed, to meet the con-

ditions that six triangles must each contain

180, that the corner angles of the hexagon must add up to 720, and that

the central angles must add up to 360. Any seven of these eight angle

equations may be taken as the independent ones, when the requirement of

the other one will also be satisfied. For the side equation we may com-

pute any side, such as E D, by going around the figure in both directions

from AB, from which it will appear, as in the previous examples, that

the product of the sines of one set of alternate corner angles must equal
the product of the sines of the other set of alternate corner angles,

Fig. 85.



CHAPTER XV

APPLICATION TO BASE-LINE WORK

198. Unweighted Measurements. If a base line is measured

from end to end a number of times in the same manner, and

under such conditions that the different determinations of its

length may be regarded as of equal weight, then (Art. 155) the

arithmetic mean of the several results is the most probable value

of its length. The probable error of a single measurement

(Art. 173) is given by the formula

n - 0.6745J^, (79)

and the probable error of the arithmetic mean (Art. 173) of n

measurement 3 by the formula

ra = -U = 0.6745./
Sp2

(80)vn \n(w
-

1)

Example. Direct base-line measurements of equal weight:

Observed Values v 2

6717.601ft. -0.025 0.000625
6717.632 ft. +0.006 0.000036
6717 . 645 ft. + . 019 . 000361

3)20152.878 ft. 2v 2 = 0.001022

z - 6717.626 ft. n = 3

^;.001Q22 = 00152ft>

ra = ^| = 0.0088 ft.

V3
Most probable value = 6717.626 0.0088 ft.

199. Weighted Measurements. If a base line is measured

from end to end a number of times in the same manner, but under

333
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such conditions that the different determinations of its length

must be regarded as of unequal weight, then (Art. 157) the wei hted

arithmetic mean of the several results is the most probable value

of its length. The probable error of single measurement of

unit weight (Art. 174) is given by the formula

r^o^m, (SI)

the probable error of any measurement of the weight p (Art. 174)

by the formula

rp = -z= = 0.6745
Vp

Upv2

p^r^T)'
(82)

and the probable error of the weighted arithmetic mean (Art. 174)

by the formula

'pa --5= = 6745 /
^ -

V2p \2p.(n- 1)'
(S3)

Example. Direct base-line measurements of unequal weight:

Observed Values
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is measured twice with equal care it is called a duplicate line. The

rules of Art. 198 necessarily include duplicate lines, but this

case is of such frequent occurrence that special rules are found

convenient for the probable errors. Letting d represent the dis-

crepancy between the two measurements, and remembering that

the arithmetic mean is the most probable value, we have

d . d
v\
= +

2
and V2 = ~

2

Substituting these values in Eq. (79) and replacing r\ with r
t
for

the case of duplicate lines, we have for the probable error of a

single measurement of the length I,

n - 0.4769Vd2 0.4769d. . . . (84)

Substituting the same values in Eq. (80), we have for the probable

error of the arithmetic mean,

ra
= 0.3373 d; (85)

ra (approximately) = \d (86)

whence

Example. Measurement of a duplicate base line:

Observed Values

4998.693 ft. 0.4769 X 0.034 = 0.0162.

4998.659 ft. 0.3373 X 0.034 = 0.0115.

d = 0.034 ft.

Ti
= 0.0162 ft. ra = 0.0115 ft.

Most probable value = 4998.676 0.0115 ft.

201. Sectional Lines. A base line may be divided up into

two or more sections, and each section measured a number of

times as a separate line. Each section, on account of its several

measurements, will thus have a most probable length and a prob-

able error independent of any other section of the line. If

h, h, ln ,
be the most probable lengths of the several sections,

then (Art. 168) the most probable length L for the whole line, is

L - h + h . . . + k ~ SI (87)

And if fit f2, . . rn ,
be the probable errors of the several values

lit h, etc., then (Art. 182) the probable error rL for the whole

line, is

rL = Vrf + r2
2

. . . + rn
2 = V2r2

. . . . (88)
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Example. Sectional base-line measurement. Given

It
= 3816.172 0.022 ft.

k - 4122.804 0.019 ft.

k - 3641.763 0.017 ft.

L m 3816.172 + 4122.804 + 3641.763 - 11580.739 ft.

rL = V(0.022)
2 + (0.019)

2 + (0.017)
2 = 0.034 ft.

Most probable value L = 11580.739 0.034 ft.

202. General Law of the Probable Errors. In measuring a

base line bar by bar or tape-length by tape-length, the case is

essentially one of sectional measurement (Art. 201), in which
each section is measured a single time, and in which each full

section is of the same measured bar- or tape-length. If the con-

ditions remain unchanged throughout the measurement, therefore,

the probable error will be the same for each full section. As

explained in Art. 180, however, this is not a case of computed
values depending on a constant factor, so that the probable error

of the whole line will not follow the law of that article.

Let L = the total length for a line of full sections;

rL = the probable error of this line;

t = the length of the measuring instrument;
r

t
= the probable error for each length measured;

n = the number of lengths measured;

then (Art. 201)

But evidently

whence

- 4 -m (89)

Eq. (89) is derived on the assumption that only full bar- or tape-

lengths are used. The fractional lengths that occur at the ends

of a base (or elsewhere) form such a small proportion of the total

length, however, that no appreciable error can arise by assuming

Eq. (89) as generally true. A consideration of the various

methods and instruments used in measuring base lines also shows
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that in any case nothing but systematic errors could modify the

truth of this equation. We may therefore write as a

General Law : Under the same conditions of measurement the

probable error of a base line varies directly as the square root of its

length.

From the manner in which this law has been derived it is

evident that it is theoretically true whether the length assigned

to a base line is the result of a single measurement, or the average
of a number of measurements, so long as the lines being compared
have all been measured in the same way. In cases where the

given lines have been measured more than once, so that each

line has its own direct probable error, we can not expect an exact

agreement with the law. But this relation of the probable
errors is more likely than any other that can be assigned, and

hence shows the relative accuracy that may be reasonably expected
in lines of different length. The chief point of interest in the law

lies in the fact that the error in a base line is not likely to increase

any faster than the square root of its length, so that the probable
error where a line is made four times as long should not be more

than doubled, and so on.

Example. A base line measured under certain conditions has the value

7716.982 0.028 ft. What is the theoretical probable error of a base line

15693.284 ft. long, measured under the same conditions?

0.028*/
15693.284 =0>0399>
7716.982

Theoretical probable error of new line = 0.0399 ft.

203. The Law of Relative Weight. In accordance with

the law of the previous article, we may write for the probable
error of a base line of any length

rL = raVL, (90)

in which m is a coefficient depending on the conditions of measure-

ment. Also in accordance with the law of Art. 172, we may write

1

Vp
in which p is the weight assigned to the line and s is a coefficient

depending on the unit of weight and the conditions of measure-
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ment. Since the unit of weight is entirely arbitrary we may assign
that value to p which will make s equal m, and write

rL = m =. (91)
Vp

Combining Eqs. (90) and (91), we have

Vp
m\TL = m7=.;

from which

v =
Jj

; , (92)

whence we have the

General Law : Under the same conditions of measurement the

weight of a base line varies inversely as its length.

From the manner in which this law has been derived it is

evident that it is theoretically true whether the length assigned
to a base line is the result of a single measurement, or the average
of a number of measurements, provided the lines compared have

all been measured in the same way.
If two or more base lines are measured under different con-

ditions, they may be first weighted so as to offset this circum-

stance, and then weighted inversely as their lengths. The
relative weight of each line will then be the product of the weights

applied to it.

204. Probable Error of a Line of Unit Length. The probable
error of an angular measurement conveys an absolute idea of its

precision without regard to the size of the angle. The pro' able

error of a base line, however, conveys no idea of the precision

of the work unless accompanied by the length of the line. It is

therefore convenient to reduce the probable error of a base line

to its corresponding value for a similar line of unit length. A
unit of comparison is thus established for different grades or

pieces of work which is independent of the length of the bases.

Such a unit has no actual existence, but is purely a mathematical

basis of comparison.
From Eq. (89) we have

rL = -^VL.Vt
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Hence, when L equals 1, we have for r
,
the probable error of a

unit length of line,

n

whence in general

rL r VL, (93)

in which all the values refer to single measurements. From this

equation we see that the probable error of any base line is equal
to the square root of its length multiplied by the probable error

of a unit length of such a line. If r is well determined for

given instruments, conditions, and methods, Eq. (93) informs us

in advance what is a suitable probable error for a single measure-

ment, and hence (Art. 198) for the average of any number of

measurements of a line of the given length L. The base-line

party therefore knows whether its work is up to standard, or

whether additional measurements are required.

205. Determination of the Numerical Value of the Probable

Error of a Line of Unit Length. From Eq. (93) we have,

r VL;
whence

Ikr = 1Ih (94)

So that in any case where the length of a line and the correspond-

ing probable error are known, the formula determines a value

for ro. In order for the value of ro to be reliable it must be based

on many such determinations, but the expense prohibits many
measurements of a long base line. As the law is known, however,
which connects the values of the probable error for all lengths

of line, it is just as satisfactory to determine ro from much shorter

lines, which may be quickly and cheaply measured many times.

The usual plan is to measure a series of duplicate lines, so that the

probable error for a single measurement is known in each case

from the discrepancy in each pair of lines. Since all results are

reduced to the same unit length it is immaterial whether the

different duplicate lines are of equal length or not.
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In accordance with Eq. (84) we have, for any single measure-

ment of the duplicate line I,

n - 0.4769\/d2;

whence, in accordance with Eq. (94),

but, in accordance with Eq. (92), we have for any length of line I

1

p =
r>

whence

r - 0.4769^?^, (95)

when determined from a single duplicate line. If a number of

duplicate lines are measured we will have a corresponding number

of values (r )i, (7*0)2, etc., based on the discrepancies di, d2 , etc.,

of the several duplicate lines. It might at first be supposed that

the average value of these determinations of ro would best repre-

sent the result of all the measurements. What is really wanted,

however, is that value of r which gives equal recognition to the

conditions which caused its different values. A just recognition

of each value of r
, therefore, will require us to consider equal

sections of any line as having been measured respectively under

those conditions that produced the several values of r . The

probable error for the whole line is then found from the probable

errors of the different sections, and this result reduced to the

probable error of a unit length.

Let n = the number of values (r ) 1} (r )2 , etc.;

L = the length of any given line;

whence the required equal sections will be

k)
-

(k)
. etc. -k,

n/i \n/2 n

and, in accordance with Eq. (93),

r^ - (r )

i^-,
r

gj
- (rj 2

^J~
etc. J
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whence, in accordance with Eq. (88),

and, in accordance with Eq. (94),

341

(96)

but, in accordance with Eq. (95),

(r^ - 0.4769vpd?, (r ) 2
= 0.4769Vpd?, etc.;

so that

whence

2r 2 - (0.4769)
22pd2

;

ITvd2
r - 0.4769 (97)

w/ien determined from a number of duplicate lines. In using

formulas (95) and (97) it is to be remembered that d is the dis-

crepancy in any duplicate line, p is the weight (reciprocal of the

length) of that line, n is the number of duplicate lines, and r

is the probable error of a single measurement of a line of unit

length.

Example. Determination and application of the probable error of a base

line of unit length :

Duplicate Lines

512.017 ft. 1

512.011
"

J

619.184 ft

619.176
"

750.962 ft

750.971
'

619.180 ft

619.184
"

750.960 ft

750.972
'

'I

d

0.006

0.008

0.009

0.004

0.012

d2

0.000036

0.000064

0.000081

0.000016

0.000144

p

i

518

1
B 1

'J
from which we have

Zpd
2 = 0.0000004991 and n =

5;

0.0000000703

0.0000001034

0.0000001079

0.0000000258

0.0000001917

whence

r =
0.4769^

= 0.000151 ft.,
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which is therefore the probable error for a single measurement of one foot

made under the given conditions. For a single measurement of a base
line of any length L, therefore, made under these same conditions, the

probable error would be, in accordance with Eq. (93),

rL = r VL = 0.000151 VZ" ft.

Thus if L is 10,000 feet, we would have

rL = 0.000151 X Vl0000 = 0.0151 ft.

And if such a line were measured four times we should have, theoretically, for

the probable error of the average length,

ra - 0.0151 + VT- 0.0076 ft.

It thus becomes known in advance what probable error is to be expected
under the given conditions.

206. The Uncertainty of a Base Line. By the uncertainty

of a base line is meant the value obtained by dividing its probable
error by its length. In accordance with Art. 202, the probable
error of a base line varies as the square root of its length, so that

the probable error increases much more slowly than the length

of the line. On account of the greater opportunity for the

compensation of errors, therefore, long lines are relatively more

accurate than short lines. While the unit probable error r

very satisfactorily indicates the grade of accuracy, whether a

line be long or short, it does not furnish any idea of the degree of

accuracy with which the length of a given line is known. The

uncertainty of a base line, however, shows at once the precision

attained in its measurement. If r\ be the probable error of a

single measurement of a base line whose length is I, then for the

uncertainty U\ of a single measurement, we have

and for the uncertainty Ua of the arithmetic mean of n measure-

ments,

u - s - -II-
a

l Wn'

But, in accordance with Eq. (93),

rx
= r vT;
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whence

and

so that we may write,

Ul
i VJ

TT - r S/l
-

r

Iv n Vnl

u>=
r

i
=
^t (98)

and

TT. =
I Vnl

Ua =
T4=^ (99)

Example 1. Three measurements of a base line under the same con-

ditions give z = 6717.626 0.0088 ft. and n = 0.0152 ft. What is the

uncertainty of a single measurement and also of the arithmetic mean?

TT n 0.0152 1
Ui =

I 6717.626 441949'

77 = r
J: = 00088

3, _ 1 _
I 6717.626 763366"

Example 2. A base line of 10,000 ft. length is to be measured four times

under conditions which make the probable error of a unit length of line

equal 0.000316 ft. What should be the uncertainty of each measurement

and of the average of the four measurements?

TT n 0.000316 1
Ui

Ua =

Vl V10000 316456'

r 0.000316 1

Vnl V 40000 632912



CHAPTER XVI

APPLICATION TO LEVEL WORK

207. Unweighted Measurements. If the difference of ele-

vation of two stations is measured a number of times in the same

manner, over the same length of line, and under such conditions

that the different determinations may be regarded as of equal

weight, then (Art. 155) the arithmetic mean of the several results

is the most probable value of this difference of elevation. The

probable error of a single measurement (Art. 173) is given by the

formula

n = 0.6745 J^zri> ( l0 )

and the probable error of the arithmetic mean (Art. 173) of n

measurements by the formula

4.
ra = -^= 0.6745J ^

tx . . . . (101)
\/ \n(n

-
1)

Example. Difference of elevation by direct observations of equal weight :

Observed Values v r2

11.501ft. +0.009 0.000081

11.509 ft. +0.017 0.000289

11.480 ft. -0.012 0.000144

11.478 ft. -0.014 0.000196

4)45.968 ft. 2v 2 = 0.000710

a = 11.492 ft. n = 4

n - 0.6745J-K^-i 0.0104 ft.

ra = -m= 0.0052 ft.

V4

Most probable value = 11.492 0.0052 ft.

344
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208. Weighted Measurements. If the difference of eleva-

tion of two stations is measured a number of times in the same

manner, and over the same length of line, but under such condi-

tions that the different determinations must be regarded as of

unequal weight, then (Art. 157) the weighted arithmetic mean of

the several results is the most probable value of this difference of

elevation. The probable error of a single measurement of unit

weight (Art. 174) is given by the formula

sK -r,
=

0.6745^-^-j-
, (102)

the probable error of any measurement of the weight p (Art. 174)

by the formula

,,
= -^ =

0.6745/^1 (103)v p \ p(n 1)

and the probable error of the weighted arithmetic mean (Art. 174)

by the formula

-= - 0.6745J f
pV

'

VSp \ 2p(n -
1)

-?= = 0.6745A v
"*"*

1V . . . (104)

Example. Difference of elevation by direct observations of unequal

weight:

Observed Values p pM v v 2
pt>

2

17.643 ft. 1 17.643 -0.028 0.000784 0.000784

17.647 ft. 1 17.647 -0.024 0.000576 0.000576

17.679 ft. 2 35.358 +0.008 0.000064 0.000128

17.683 ft. 3 53.049 +0.012 0.000144 0.000432

2p = 7 ) 123.697 Spy
2 =0.001920

2= 17.671 n = 4

spr,
= 0.6745A /

w001920 = 0.0171 ft.

0.0171
, ftft101f+

r% = =- =. 0.0121 ft.

V2

n = ^111 = 0.0099 ft.

V3

r = ^0171 m 00064 ft

V7

Most probable value - 17.671 0.0064 ft.
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209. Duplicate Lines. In precise level work a duplicate line

of levels is understood to mean a line which is run twice over the

same route with equal care, but in opposite directions. The

object of running in opposite directions is to eliminate from the

mean result those systematic errors which are liable to occur in

leveling, due to a rising or settling of the instrument or turning

points during the progress of the work. As explained in Art. 88

the details of the work are so arranged that these errors tend to

neutralize each other to a large extent as the work progresses, so

that no material error is committed by assuming that the results

obtained are affected only by accidental errors. The most prob-
able value for the difference of elevation of any two stations,

based on a duplicate line, is equal to the average of the two results

furnished by such a line. Letting d represent the discrepancy
between the result obtained from the forward line and that

obtained from the reverse line, we thus have

d d
vi =

+"2
and v2 = -5-.

Substituting these values in Eq. (100) and replacing r\ with r
t

for the case of duplicate lines, we have for the probable error

of a single determination (forward or reverse) by a line of the

length I,

r,
= 0.4769x^2 = 0.4769J (105)

Substituting the same values in Eq. (101), we have for the

probable error of the arithmetic mean of the results obtained by
the forward and reverse lines,

whence

ra
=

0.3373<2; (106)

ra (approximately) = \d (107)

Example. Duplicate line of levels:

Observed Values

29.648 ft. 0.4769 X 0.028 = 0.0134.

29.676 ft. 0.3373 X 0.028 - 0.0094.

d = 0.028 ft.

r,
= 0.0134 ft. ra = 0.0094 ft.

Most probable value = 29.662 0.0094 ft.
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210. Sectional Lines. Every line of levels which includes

one or more intermediate bench marks may be regarded as made

up of a series of sections connecting these bench marks. In

general the work will be done by the method of duplicate leveling

(Art. 209) ,
so that a value for the difference of elevation of any two

successive bench marks (limiting a section) will be obtained from

the forward line, and another value from the reverse line. From
these two values (Art. 209) we will have a most probable value

and a probable error for any given section, which will be independ-
ent of all other sections. In whatever manner the leveling may
be done, however, the subsequent treatment of the results will be

the same, provided the determinations for each section are kept

independent. If ei, e2, . . . en ,
be the most probable values for

the difference of elevation between the successive bench marks,
then (Art. 168) the most probable difference of elevation E
between the terminal bench marks, is

E = ei + e2 . . . +e = Se. . . . (108)

And if ri, T2, . . . rn ,
be the probable errors of the several values

ei, 62, etc., then (Art. 182) the probable error rE for the total dif-

ference of elevation E, is

f
= vV + r2

2
. . . + rn

2 = \/2r2 . . . . (109))'k

Example. Level work on sectional lines. Given

ei = 9.116 db 0.008 ft.

e2 = 31.659 0.031 ft.

e3
= 22.427 0.018 ft.

E = 9.116 + 31.659 + 22.427 = 63.202 ft.

rE = V(0.008)
2 + (0.031)

2 + (0.018)
2 = =fc 0.037 ft.

Most probable value E = 63.202 0.037 ft.

211. General Law of the Probable Errors. In measuring
the difference of elevation between any two bench marks by pass-

ing (in the usual way) through a series of turning points, the case

is essentially one of sectional measurement (Art. 210), in which the

difference of elevation for each section is measured a single time,

and in which under similar conditions the average distance

between turning points may be assumed to be the same for any

length of line. Running a line of levels is thus entirely analogous
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to measuring a base line, and hence the same laws must hold good.
In accordance with Art. 202, and without further demonstration,
we may therefore write as a

General Law: Under the same conditions of measurement
the probable error of a line of levels varies as the square root of its

length.

From the considerations on which this law is based it is evident

that it is theoretically true whether the difference of elevation

assigned to the terminals of a line is the result of a single measure-

ment, a number of measurements, or a duplicate measurement, so

long as the lines being compared are all identical in these details.

Example. A line of levels 10 miles long has a probable error of 0.156 ft.

What is the theoretical value of the probable error for a line 60 miles long,
run under the same conditions?

0.156V?I = 0.156V(f= 0.382 ft.

Theoretical probable error of new line = 0.382 ft.

212. The Law of Relative Weight. As explained in the

previous article, the laws derived for base-line work are equally

applicable to level work. In accordance with Art. 203, and with-

out further demonstration, we may therefore write as a

General Law : Under the same conditions of measurement the

weight of the result due to any line of levels varies inversely as the

length of the line.

From the considerations on which this law is based it is evident

that it is theoretically true whether the difference of elevation

assigned to the terminals of the line is the result of a single meas-

urement, a number of measurements, or a duplicate measurement,
so long as the lines being compared are all identical in these

details.

If two or more level lines are run under different conditions,

they may be first weighted so as to offset this circumstance, and

then weighted inversely as their lengths. The relative weight of

each line will then be the product of the weights applied to it.

213. Probable Error of a Line of Unit Length. The probable

error corresponding to a given line of levels conveys no idea of the

precision of the work unless accompanied by the length of the line.

It is therefore convenient to reduce the probable error of a line of

levels to its corresponding value for a similar line of unit length.
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A unit of comparison is thus established for different grades or

pieces of work which is independent of the length of the lines.

Such a unit has no actual existence, but is purely a mathematical

basis of comparison.
As explained in Art. 211, the laws derived for base-line work

are equally applicable to level work. In accordance with Art. 204,

and without further demonstration, we may therefore write

rL = r VZ, (110)

in which rL is the probable error for a given line of levels of the

length L, r is the probable error for a unit length of such a line,

and in which all the values refer to single measurements. This

equation indicates that the probable error of any given line of

levels is equal to the square root of its length multiplied by the

probable error for a unit length of such a line. If r is well deter-

mined for given instruments, conditions, and methods, Eq. (110)

informs us in advance what is a suitable probable error for a

single line of levels, and hence (Art. 207) for the average result

obtained by re-running such a line any number of times. In

accordance with this article the probable error in the mean result

of a duplicate line is equal to the second member of Eq. (110)

divided by V2. In any case, therefore, the level party knows

whether its work is up to standard, or whether additional measure-

ments are required.

214. Determination of the Numerical Value of the Probable

Error of a Line of Unit Length. As explained in Art. 211, the

laws and rules for base-line work are equally applicable to level

work. The method of Art. 205 is consequently adapted to the

present case by running one or more duplicate level lines of

moderate length, and noting the length of line (one way) and the

discrepancy for each duplicate line. In accordance with Eq.(97),

and without further demonstration, we may therefore write

WSpd2
0.4769Jflff" , (Ill)

in which r is the probable error in running a single line of levels

of unit length, d is the discrepancy in any duplicate line, p is

the weight (reciprocal of the one way length) of that line, and n

is the number of duplicate lines.



350 GEODETIC SURVEYING

Example. Determination and application of the probable error of a
level line of unit length :

Difference of Elevation d

16.298 ft.
\

16.314"

16.308 ft. 1

16.296"
j

18.540 ft.
}

18.549"
j

18.552 ft 1

18.542"
J

21.663 ft.
j

21.648"
J

21.661ft.
}

21 649
"

j

21.664 ft.
\

21.650"
J

0.016

0.012

0.009

0.010

0.015

0.012

0.014

d2

0.000256

0.000144

0.000081

0.000100

0.000225

0.000144

0.000196

I

810

810

560

560

782

782

782

pd?

0.0000003160

0.0000001778

0.0000001446

0.0000001786

0.0000003085

0.0000001841

0.0000002506

from which we have

whence
2pd

2 = 0.0000015602

r =
0.4769^-

and 7;

.0000015602 = 0.000225 ft.,

which is therefore the probable error in running a single line of levels for

a distance of one foot under the given conditions. For a single line of levels

of any length L, run under the same conditions, the probable error would

be, in accordance with Eq. (110),

rL = roVL = 0.000225VZ" ft.

Thus if L is 10,000 feet, we would have

rL - 0.000225VlOOOO = 0.0225 ft.

And if such a line of levels were run four successive times we should have,
theoretically, for the probable error of the average difference of elevation,

ra = 0.0225 + VT- 0.0113 ft.

It thus becomes known in advance what probable error is to be expected
under the given conditions.

215: Multiple Lines. By a multiple line of levels is meant a

set of two or more lines connecting the same two bench marks

by routes of different length. In order to find the most probable
value for the difference of elevation between the terminals of a

multiple line, it is necessary (Art. 212) to weight each constituent

line inversely at its length. If the character of the work requires

any of the lines to be also weighted for other causes, then the
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final weight of such line must be taken as the product of its indi-

vidual weights. Having weighted the several lines as thus explained
the case becomes identical with any case of weighted measure-

ments (Art. 208) ,
and hence the probable error of a single measure-

ment of unit weight is given by the formula

/ Upv2

r1==

0.6745^^-, (112)

the probable error of any of the lines of the weight p by the

formula

rp
- ^= - 0.6745 J-y

2-^ ( 113 ^

\ p Vp(n ~
1)

and the probable error of the weighted arithmetic mean by the

formula

r^7r-67Wi|^)'- (114)

5 Miles

2>6 Miles

--3>6 Miles

Fig. 86.

Example. Three lines of levels, as shown in Fig. 86, give the following
results :

A to B, 5 mile line, + 95.659 ft.

A to B, 2\ mile line, + 95.814 ft.

A to B, 3| mile line, 4- 95.867 ft.

The elevation of A is 416.723 feet. What is the most probable value for

the elevation of B, and the probable error of this result?

M p pM
95.659 0.2 19.1318

95.814 0.4 38.3256

95.867 0.3 28.7601
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216. Level Nets. When three or more bench marks are

interconnected by level lines so as to form a combination of

closed rings, the resulting figure is called a level net. Fig. 87

represents such a level net, involving nine bench marks. The

elevation of any bench mark is necessarily independent of any
other bench mark, but the differences between the elevations of

adjacent bench marks are not independent quantities, since in

any closed circuit their algebraic sum must equal zero. In the

given figure there are evidently fifteen observation equations,

namely, the observed difference of elevation between A and B,

B and C, etc. But there are also seven closed rings, ABCD, ADA,
etc., forming seven independent condi-

tional equations. Fifteen minus seven

leaves eight, so that (Art. 166) there

can be but eight independent quanti-

ties involved in the fifteen observation

equations. The number of indepen-
dent quantities must evidently be one

less than the number of bench marks,
since one of these must be assumed as

known or fixed, and nine minus one

gives eight as before. It sometimes

happens that more than one line con-

nects the same two points, as between

A and D in the fi ure; but this fact

makes no difference in the method of

computation. Sometimes a point B
occurs on a line without being connected with any other point.

Such a point has no influence on the adjustments of any other

point, and may be included or omitted, as preferred, in making
such other adjustments. If omitted in adjusting the other

points its own most probable value can be found afterwards

by Art. 217.

There are two general methods of making the computations

for the adjustments of a level net, each of which may be modified

in a number of ways. In the first method the most probable

values are found for the several differences of elevation between

the bench marks, the most probable values for the elevations of

the different bench marks being then found by combining these

differences. In the second method the computations are arranged so
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as to lead directly to the most probable values for the elevations

of the bench marks. In any case each of the connecting lines

must be properly weighted. If the lines are all run singly they

are weighted inversely as their lengths unless some special con-

dition requires some of these weights to be modified. If all the

lines are duplicate lines, the average difference of elevation in

each case may be treated as if due to a single line, and weighted

inversely as its length. If special conditions exist the weights

must be made to correspond. The manner

in which each method is worked out is

illustrated by the following example.

Example. Referring to the level net indicated

in Fig.

results:

the field notes show the following

Ato B
BtoC
C toD
Dto E
EtoA
B to E
C toE

= +

+ 11.841 ft.

- 5.496 ft.

8.207 ft.

- 5.720 ft.

- 8.515 ft.

- 3.218 ft.

+ 2.619 ft.

The figures on the diagram are the lengths in miles

of the various lines. The arrow-heads show the

direction in which each line was run. The eleva-

tion of the point A is 610.693 ft. What are the

most probable values for the elevations of the re-

maining stations?

First method. As there are but four unknown
bench marks (B, C, D, E), there can be but four in- pIG gg

dependent unknowns in the observation equations.
As the lines AB, BC, CD, DE, may evidently be selected as the independent

unknowns, we may write for the most probable values of the corresponding
differences of elevation

A to B = + 11.841 + vi;

B to C = - 5.496 + v2 ;

C to D = + 8.207 + v3 ;

D to E = - 5.720 + v^

The conditional equations involved in the several closed circuits may then

be avoided (Art. 165) by writing all the observation equations in terms of

these quantities. Writing the reduced observation equations (Art. 163)

directly from the figure, we have, by comparison with the observed values,

(AtoB) vi
= 0.000 (weight 0.4);

(BtoC) v2 = 0.000 (weight 0.3);

(CtoD) vz = 0.000 (weight 0.4);
"

(D to E) vt = 0.000 (weight 0.3);

(E to A) -
Vi
- v2 - v3

-
Vi = + 0.317 (weight 0.2);

(B to E) v2 + v3 + Vi = - 0.209 (weight 0.5);

(C to E) + =+ 0.132 (weight 0.5).
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As an illustration of how these equations are formed let us consider the
observed line CE.

Most probable value, C to D = + 8.207 + v3 .

Most probable value, D to E = 5.720 + vt .

Hence, by addition,

Most probable value, C to E = + 2.487 + v3 + vt .

Observed value, C to E = + 2.619.

Hence this observation equation requires

vi + 4
= + 0.132.

No values of vh v2 ,
v3 ,

viy can meet the requirements of all the observation

equations, and hence to find the most probable values of Vi, vi, v3 , v^ we
form the normal equations in the usual way, giving,

O.601 + 0.2^ + 0.2y3 + 0.2t>4 = - 0.0634

0.2^ + l.O02 + 0.7t>3 + 0.7^ = - 0.1679

0.2t/i + 0.7?;2 + I.603 + 1.2^ = - 0.1019

0.2^ + O.702 + 1.2,+ 1.504 - - 0.1019

whose solution gives

Vi = - 0.0556 ft.;

02 = -0.1718 ft.:

03 = + 0.0092 ft.;

04 = +0.0123 ft.;

whence, for the most probable values, we have

A to B = + 11.7854 ft.

B to C = -
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Substituting these values in the observation equations, we have

A to B = + 11.841 + vi + 11.841

B to C = - 5.496 -vx +v2
= - 5.496

C to D = + 8.207 - v2 + v, = + 8.207

D to E = - 5.720 - v3 + vA = - 5.720

E to A = - 8.832 -Vi = - 8.515

BtoE = - 3.009 - ! + t>4
= - 3.218

C to E = + 2.487 - *;2 + i>4
= + 2.619.

Reducing and weighting inversely as the distances, we have

vi = 0.000 (weight 0.4)

-vi + v2 - 0.000 (weight 0.3)

va + v, - 0.000 (weight 0.4)
-

Vz + Vi = 0.000 (weight 0.3)
-

Vi = + 0.317 (weight 0.2)
-

t* + Vi = - 0.209 (weight 0.5)
-

t* + Vi = + 0.132 (weight 0.5).

Forming the normal equations, we have

1.2vt
- 0.3^2

- 0.5w4 - + 0.1045
- 0.3^ + 1.2^2

- 0.4;3
- 0.5^ - - 0.0660

-
0.4j>2 + 0.7i>3

- 0.3t>4 = 0.0000
- 0.5^ - 0.5t>2

- 0.3^3 + 1.5^4 = - 0.1019

whose solution gives

Vi
= vt - - 0.2182 ft.;

Vi = - 0.2059
"

= -0.0556 ft.;

v2 = - 0.2274
"

whence, for the most probable values, we have (as before)

AA = 610.693 ft.

B - 622.478"
C = 616.811

"

D = 625.027"
E = 619.319"

217. Intermediate Points. By an inter-

mediate point is meant one lying only on

a single line of levels, and hence having
no influence on the general adjustment.
Thus in Fig. 89 the bench marks A and B
are adjusted as a part of the complete level

net ABCDEFG. The point I is an inter-

mediate point, having no influence on the

general adjustment, but simply lying be-

tween the djusted bene
1

! marks A and B.

In adjusting level net it s not necessary
to separate the intermediate points from the others, as the

results will come out the same whether any or all of the inter-

mediate points are omitted or included. The work of compu-

Fig. 89.
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tation may be reduced, however, where there are many inter-

mediate points, by adjusting the main system first and the inter-

mediate points afterwards. Referring to Fig. 89, page 355,

Let / be an intermediate point lying between the adjusted

bench marks A and B;
a = the distance A to I;

b = the distance I to B;
d = the discrepancy between the line 4B as run and the

difference betwesn the adjusted values of A and B
(+ if the line as run makes B too high) ;

e = observed change in elevation from A to /;

e = observed change in elevation from I to B;
then

or

and

A+e + e' = B + d,

e = B - A - e + d;

I (observed) = A + e

I (observed) = B e

(weight &);'

= A -\- e d (weight a);

or, taking the weighted arithmetic mean,

bA + be + aA + ae ad
I (most probable) =

b + a

- (A + e) a + b)

(I. (115)

, i Miles.

As / represents any intermediate point, and a the corresponding

distance from the commencement A of the given

line, it follows from this equation that the most

probable values for any intermediate points are

arrived at by adjusting for the discrepancy d in

direct proportion to the distances from the initial

point A. This law may be otherwise expressed

by saying that the discrepancy is to be distributed

uniformly along the line on the basis of dis-

tance.
'3 Miles.

,2 Miles.

Example. In the line of levels indicated in Fig. 90 the

field notes show the following changes in elevation:

A to B = + 2.626 ft.

BtoC = -3.483"
CtoD = +6.915"
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The adjusted elevations at A and D are

A = 28.655 ft.

D = 34.317"

What are the most probable elevations of the intermediate points B and C?
28.655

+ 2.626

Discrepancy = + 0.396 ft. Total distance = 9 miles.

31.281 0.396 X I = 0.088 ft. 0.396 X f = 0.220 ft.

- 3.483

27.798

+ 6.915

34.713

34.317

Station

A
B
C
D

Apparent Elevation

28.655

31.281

27.798

34.713

Correction

0.000
- 0.088
- 0.220
- 0.396

Adjusted Elevation

28.655 ft.

31.193"
27.578"
34.317"

+ 0.396

218. Closed Circuits. By a closed circuit in level work is

meant a line of levels which returns to the initial point, or, in

other words, forms a single closed ring. The shape of such a circuit

is entirely immaterial, whether approxi-

mately circular, narrow and elongated,

or irregular in any degree. A level net

is in general a combination of closed

circuits, but these circuits can not be

adjusted separately, as they are not

independent. So also if any part of

the ring is leveled over more 1 han once

it becomes essentially a level net, and

must be adjusted accordingly. If, how-

ever, the circuit is independent of all

other work, and has been run around but once under uniform

conditions, it may be adjusted by a simpler process. Referring

to Fig. 91,

Let A, B, C, D, E be the bench marks on an independent

closed circuit;

A = the initial bench mark;
a = distance A-B-C to any point C;

b = distance C-D-E-A back to A
;

d discrepancy on arriving at A ( + if too high) ;

e = observed change in elevation from A to C;

e' = observed change in elevation from C to A
;

Fig. 91.

then

A + e + e' = A+d,
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or

and

e'= e + d;

C (observed) = A + e (weight 6) ;

C (observed) = A e
f = A -{- e d (weight a) ;

or, taking the weighted arithmetic mean,

bA + be + aA + ae ad
C (most probable) =

c* + )
-
b+r)* (116)

As C represents any point in the circuit, and a the corresponding

distance from the initial point A, it follows from this equation

that the most probable values for the elevations of any points

B, C, D, E, etc., are arrived at by adjusting the observed eleva-

tions for the discrepancy d directly as the respective distances

from the initial point. This law may be otherwise expressed by

saying that the discrepancy is to be distributed uniformly around

the circuit on the basis of distance.

Example. In the closed line of levels indicated in Fig. 91, page 357, the

field notes show the following changes in elevation:

A toB = 2.176 ft.,

B to C = + 6.481 ft.,

C to D = - 1.712 ft.,

D to E = - 4.820 ft.,

E to A = + 2.017 ft.,

Given the elevation of A as 47.913 feet, what are the adjusted elevations

around the fine?

47.913
- 2.176

distance = 3 miles,

distance = 1 mile,

distance = 2 miles,

distance = 2 miles,

distance = 3 miles.

45.737

+ 6.481

52.218
- 1.712

50.506
- 4.820

45.686

+ 2.017

47.703

47.913

Discrepancy = 0.210 ft.

0.210 X tt = 0.057 ft

0.210 X tt = 0.076 ft.

Total distance = 11 miles.

0.210 X A= 0.105 ft.

0.210X t
8t= 0.153 ft.

Station Apparent Elevation Correction Adjusted Elevation

A
B
V,

1)

E

47.913

45.737

52.218

50.506

45.686

0.000

+ 0.057

+ 0.076

+ 0.105

+ 0.153

47.913 ft.

45.794"
52.294"
50.611

"

45.839"

- 0.210
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219. Branch Lines, Circuits, and Nets. Any level line, circuit,

or net that is independent of another

system except for one common point,

is called a branch system. Thus in

Fig. 92 the dotted lines represent the

original system, ABCD a branch line,

HKLMN a branch circuit, and PRSTV
a branch net. In adjusting the main

system the results will be the same

whether any or all of the branch sys-

tems are included or omitted. If

there is much branch work, however,
the labor of computation may be re-

duced by adjusting the main system
first and the branch systems after-

wards. When the main system is

adjusted the elevations of A, H, P, etc.,

become fixed quantities which must not be disturbed in adjusting
the branch systems.

Fig. 92.
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TABLE I. CURVATURE AND REFRACTION (IN ELEVATION)'
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TABLE II LOGARITHMS OF THE PUISSANT FACTORS*
(In U. S. Legal Meters)

Lat.



TABLES 365

TABLE II.-LOGARITHMS OF THE PUISSANT FACTORS
(Continued)

Log (? = log diff. for (log AX) log diff. for (log s)

log s
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TABLE III. BAROMETRIC ELEVATIONS*

30
Containing H = 62737 log

B

B.
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TABLE III. BAROMETRIC ELEVATIONS (Continued)

30
Containing H = 62737 log .

B

B.
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TABLE III. BAROMETRIC ELEVATIONS Continued

30
Containing H = 62737 log B

B.
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TABLE V LOGARITHMS OF RADIUS OF CURVATURE

(In U. S. Legal Meters)
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TABLE VI. LOGARITHMS OF RADIUS OF CURVATURE
(In feet)

Azimuth.



TABLES

TABLE VIII. MEAN ANGULAR REFRACTION

371

Apparent
Altitude.
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TABLE IX. ELEMENTS OF MAP PROJECTIONS

Lat.
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TABLE X. CONSTANTS AND THEIR LOGARITHMS

General Constants.
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closed circuits 160, 357

duplicate lines 160, 346

general law of probable error 347

intermediate points 160, 355

law of relative weight 348

level nets 161, 352

multiple lines 160, 350

probable error of lines of unit length 348, 349

sectional lines 347

simultaneous lines 160

Light, diurnal aberration of 213

L. M. Z. problem 103

Locating a parallel of latitude 120

Locations, absolute and relative 4

Longitude 109, 197

astronomical 197

geodetic 197

periodic changes in 203

Longitude determinations 197-203

at sea 203

by lunar observations 198

lunar culminations 199

lunar distances 199

lunar occultations 199

by special methods 198

flash signals 198

special phenomena 198

by telegraph 200

arbitrary signals 202
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by telegraph (continued)

standard time signals 201

star signals 201

by transportation of chronometers 199

Loxodrome 233

Map projections 227-240

conical 234

Bonne's projection 238

Mercator's conic 236

simple conic 235

cylindrical 229

Mercator's cylindrical 231

rectangular cylindrical 231

simple cylindrical 229

polyconic 240

rectangular polyconic 241

simple polyconic 240

trapezoidal 234

Mean absolute error 305

Mean error 305

Mean of errors 305

Mean radius of the earth 44

Mean sea level 43, 125

Mean solar time 165

Measures of precision 262, 304

Mercator's projections:

conic 236

cylindrical 231

Mercurial barometer 126, 127

Meridian 167

lengths 228

line, plane, and section 167

Meridians, convergence of 88, 111

Method of least squares 241-359

Micrometer:

filar 66

microscope .
65

reading of 67

run of 68

Mistakes 247

Modulus of elasticity 39

Molitor's precise level rod 158

Most probable values of

computed qauntities 296

conditioned quantities 284-295

dependent quantities 284-295
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Most probable values of (continued)

independent quantities 266-283

observed quantities 242, 266, 295

Multiple level lines 169, 350

Nadir 167

Nautical Almanac 164

Night signals 23

Normal 110

Normal equations 273, 276

law of coefficients 280

Normal tension 40

Observation equations :

definition of 271

reduced 281

reduction to unit weight 278

Observations:

adjustment of 3, 241-359

classification of 243

Observed quantities:

most probable values of 266-295

probable errors of 297-305

Observed values, definition of 242

Ovaloid, definition of 105

Papers of U. S. Coast and Geodetic Survey 1

Parallax (in altitude) 167, 171

Parallel of latitude, location of 120

Parallels, length of one degree 228

Phase 20

Phaseless targets 20

Plane surveying, history of 1

Plumb-line deviation 124

Polar distance 167

Pole signals 20

Precise spirit leveling 125, 139-162

accuracy attainable 161

adjustment of results 160, 344-359

Coast Survey precise level 142, 153

adjustments of 155

constants of 155

use of 156

European type of precise level 141, 145

adjustments of 146, 150

constants of 146

use of 152
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Precise spirit leveling (continued)

instruments used 139, 145, 153

methods 143, 145

rods and turning points 158

sources of error 143

Primary triangles and systems 9

Prime vertical 110, 167

Prime-vertical transits 192

Probability :

equation of 257, 260

laws of chance 248

Probable error:

general value of 299

meaning of 297
Probable errors of

angle measurements 79

base-line measurements 46

computed quantities 306-311

conditioned quantities 304

dependent quantities 304

independent quantities 300-304

observed quantities 297-305

Projection of maps 227-240

See Map projections for list of types.

Puissant's solution of geodetic problem:
direct 113

inverse 118

Pull, with tapes and wires 24, 30, 38

Quadratic mean 244

Quadrilateral, geodetic 7, 90, 327

algebraic adjustment of 90-102

approximate 92

rigorous 96

least square adjustment of 327

Quantities:

classification of 241

most probable values of 266-296

computed quantities 296

observed quantities 266-296

probable errors of 297-311

computed quantities 306-311

observed quantities 297-305

Radiation, heat 47

Reading micrometers 67

Reconnoissance 10
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Reduced observation equations 281

Reduction to center 75

Reduction to mean sea level 43

Refraction:

angular 167

coefficient of 138

in elevation 12

Relative locations 4

Repeating instruments 47, 49, 52

adjustments of 59

Residual errors 245

Residuals 245

Rhumb line 233

Right ascension 167

Run of micrometer 68

Sag 24, 30, 39

Secondary triangles and systems 9

Sectional lines:

base lines 335

level lines 347

Sidereal time 165, 168

Signals at stations 18

board 20

eccentric 20, 78

heliotrope 21

night 23

phaseless 20

pole 20

Simultaneous level lines 160

Single angle adjustment 312

Solar time 165

Spherical excess 88, 89, 90

Spheroid :

Bessel's 106

Clarke's 106

definition of 105

Spirit leveling, see Precise spirit leveling.

Standardizing bars and tapes 33

Standard time 165

Station adjustment 81, 84, 312, 313-319

Stations:

elevation of 14, 17

height of 17

intervisibility of 11, 14

marks 17

selection of 10
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Stations (continued)

signals and targets 18

towers 17, 18

triangulation 5
Steel tapes 24, 30, 32

corrections required in tape measurements 24, 33-39

standardizing 33

Steel and brass wires 32

Systematic errors 247

Tables 361-373

Tangents 110, 120

Targets 18

Telegraphic determination of longitude 200

Telescope, zenith 193

Temperature corrections in base-line work 24, 31, 36

Tension, tapes and wires 40

Tertiary triangles and systems 9

Theodolite 48

Theory of errors 252-265

comparison of theory and experience 264

Theory of weights 81, 243

Thermometric base-bars 26

Tide gauges:

automatic 125

staff 126

Time 164

conversion of 165, 169, 170

general principles 164

varieties of 165

Time determinations 164-186

at sea 184

by equal altitudes of sun 176

by single altitudes of sun 171

by sun and star transits 181

choice of methods 184

Towers, station and signal 17, 18, 47

Transit, astronomical 183, 185

Triangles :

accuracy in closing '. 102

adjustment of 89, 322-326

classification of 9

computation of 102

Triangulation :

adjustments and computations 81-102, 312-332

general scheme 4

principles of 4-23
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Triangulation (continued)

stations 5, 10

systems 5-9

Trigonometrical leveling 125, 130-139

accuracy attainable 139

observations at one station 133

reciprocal observations 136

sea-horizon method 131

Tripods for

angle-measuring instruments 18

base-bars 27

leveling instruments 143

True errors 245

True values 242

Turning points 158

Uncertainty of base-line measurements 46, 342

United States Coast and Geodetic Survey 1

papers of 1

precise level 153

Values, classification of 242, 244

Variations, periodic:

in azimuth 226

in latitude 196

in longitude 203

Vertical alignment 42

Weight:
laws of 82

theory of 81, 243

Wires, steel and brass 32

Zenith 167

Zenith distance 167

Zenith telescope 193








