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PREFACE.

AvtHOUGH the modern railway system is but about fifty
years old, yet its growth has been so rapid, and the progress
in the science of railway construction so great, as to render the
earlier technical books on this subject inadequate to the needs
of the engineer of to-day.

In the course of his practical experience as a railway engi-
necr, the author was strongly impressed with the want of a
more complete hand-book for field use, and finally concluded,
at the solicitation of his friends, to undert.ake the preparation
of the present volume.

The aim in this work has been:

First—To present the general subject of railway field work
in a progressive and logical order, for the benefit of beginners,

Second—To classify the various problems presented, so that
they may be readily referred to.

Third—To embrace discussions of all the more important
practical questions while avoiding matters non-essential.

Fourth—To employ throughout the work a uniform and
systematic notation, easily understood and remembered, so
that after one perusal the formule may be intelligible at a
glance wherever referred to. '

Fifth—To express the resulting formula of every problem
in the shape best adapted to convenient numerical compu.
tation.

Siwth—To furnish a large variety of useful tables, more com-
plete and extended than any heretofore published, especially
adapted to the wants of the field engineer.

An elementary knowledge of algebra, geometry and trigono-
metry on the part of the reader has been taken for granted, as
a command of these instrumentalities is deemed essential to
the education of the civil engineer. The few references to
mechanics, analytical geometry, optics and the calculus may
be assumed correct by those not conversant with these

branches,
204830
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Many of the problems in curves are new, yet there is hardly
one that has not presented itself to the author in the course of
his practice. The investigation of the valvoid curve is original,
and though the mathematical discussion is somewhat difficult,
vet the resulting formulw, taken in connection with Table X,
are exceedingly simple and convenient for the solution of a
certain class of problems.

The treatment of compound curves is novel and exhaustive.
A few general equations are established, which, by slight
modifications, solve all the problems that can occur.

No discussion of reversed curves is given, because these are
inconsistent with good practice, except in turnouts, under
which head they are noticed.

The chapter on levelling includes a discussion of stadia.
measurements, with practical formule. The chapter on earth-
work contains a review of several methods for calculating
quantities, and states the conditions under which these suc-
ceed or fail in giving correct results. :

Among the tables, numbers 3, 5, 6, 10, 18, 19, 26 and 29
are original. The adoption of versed sines and external
secants throughout the work, wherever these would simplify
the formulee, rendered necessary the preparation of tables of
these functions. The table of logarithmic versed sines and
external secants has been computed from ten-place logarithmic
tables of sines and tangents, so that the last decimal is to he
relied on, and no pains have been spared to make the table
thoroughly accurate. ;

Tables numbers 4, 7, 8, 9, 11, 12, 13, 14 and 30 have been
recalculated, enlarged, and some of them carried to more deci-
mal places than similar tables heretofore published. The
intention has been to give one more decimal than usual, so that
in any combination of figures the result of calculatior might
be reliable to the last figure usually required. .

The tables which have been compiled and rearranged are
numbers 1, 2, 15, 16, 17, 24, 25 and 31. The tables of log.
sines and tangents here given are the only six-place tables
which give the differences correctly for seconds. The table
of logarithms of numbers is accompanied by a complete table
of proportional parts, which greatly facilitates interpolation
for the fifth and sixth figures.

In all the tables, whether new or o]d scrupulous care lla.s
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been taken to make the last figure correct, and the greatest
diligence has been exercised by various checks and compari-
sons to eliminate every error. It is, therefore, hoped and
believed that a very high degree of accuracy has been ob-
tained, and that these tables will be found to stand second to
none in this respect.

The preparation of this work has extended over several
years, as time could be spared to it from other engagements.
It is, therefore, the expression of deliberate thought, based on
experience, and as such is submitted to the judgment of
brother engineers. If it shall prove to have even partially
met the aim herein announced, and so shall serve to smooth
the way of the ambitious student, or to assist the expert in his
responsible duties, the labors of the author will not have been
in vain. ‘WM. H. SearLEs, C.E.

NEw YoRrk, March 1st, 1880
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FIELD ENGINEERING.

CHAPTER L
RECONNOISSANCE.

1. The engincering operations requisite to and preceding the

construction of a railroad are in general:
THE RECONNOISSANCE,
THE PRELIMINARY SURVEY, and
THE LoCATION.

2. The Reconnoissance is a general and somewhat hasty
examination of the country through which the proposed road
is to pass, for the purpose of noting its more prominent
features, and acquiring a general knowledge of its topography
with reference to the selection of a suitable route. The
judicious selection of a route may be a very simple or com-
plex problem, depending on the character of the topography,
and more especially on the direction of the streams and ridges
as compared with the gencral direction of the proposed road.

3. A road running along a water-course is most easily
located. In this case the choice is to be made merely between
the two banks of the stream, or between keeping one bank
continuously and making occasional crossings. When the
stream is small it will usually be found best to cross it at
intervals, the advantage of direct alignement outweighing the
cost of bridging; but when the stream is of considerable size
the solution of the problem is not so obvious, requiring patient
comparison of results in the two cases to determine whether to
cross or not, while in the case of the larger rivers crossing
may be out of the question.

‘When there is a choice of sides, both banks should be
traversed by the engineer on reconnoissance, and while exam-
ining in detail the one side he should take a general and com-
prehensive view of the other. Only thus can he gain a complete
knowledge of either side. The points to be considered are the
relative value of the property on either side, the number and
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size of tributary streams, and probable cost of crossing them,
the cost of graduation as affected by the amount and character
of the material to be removed, and the liability to land slides,
the amount and degree of curvature required, and the proba-
ble revenues which the road can command If, in respect to
these points, one bank of the stream gives the more favorable
result all the way, the question is decided at once; but in
case the greater inducements are found on either bank alter-
nately, as usually happens, the propriety of bridging the
stream, with the costs and advantages, must be considered as
an additional element in the problem.

4. When no water-course offers along which the road may
be located, the difficulties of selecting a route are increased,
and these usually become greatest when the streams are found
to run about at right angles to the direction of the road. Val-
leys and ridges are to be crossed alternately, involving the
necessity of ascending and descending grades, diverting the
road from a straight line, and increasing the distance and cur-
vature. The engineer must now seek the lowest points on the
ridges, and the highest banks at the stream crossings, in order
to reduce as much as possible the total rise and fall, but these
points must be so chosen relatively to each other as to admit
of their being connected by a grade not exceeding the maxi-
mum which may be allowable. The intervening country
between summit and stream must usually be carefully exam-
ined, even on reconnoissance, to determine where the assumed
grade will find sustaining ground at a reasonable expense for
graduation and rght of way.

In selecting stream crossings, regard should be had not only
to the helght of the bank, but also to the character of the bot-
Jtom, its suitability for foundations, and its liability to be
Ywashed by the current. The direction and force of the cur-
rent should be observed, and its behavior during freshets, and -
the extremes of high and low water ascertained, if possible.
An approximate estimate of the cost of bridging may be made.

5. The engineer should not only seek the best ground on the
route first assumed, but should have an eye to all other possi
ble routes, holding them in consideration pending his accu
mulation of evidence, and being ready, finally, to adopt that
one which promises the greatest ultimate economy. He should
be able to read the face of the country like a map, and to
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carry in his mind a continuous idea or image of any line he isex-
amining, so as to judge with tolerable accuracy of the influence
any one portion of the line may have on another as to align-
ment and grade, even though many miles apart. Inthe success-
ful prosecution of a reconnoissance he must depend mainly on
his own natural tact and a judgment matured by experience.

6. The engincer will bring to his aid in the first place the
most reliable maps, and those drawn on the largest scale. The
sectional maps of United States surveys will be found very
useful when they exist. In addition to these it is often desira-
ble to prepare a map on a scale of one or two inches to a mile,
on which will be drawn the principal features of the country
to be traversed, such as streams, roads, towns, and the princi-
palridges, if known, but leaving the further details to be filled
in by the engineer as he progresses. Such a map furnishes a cor-
rect scale for his sketches, and saves much valuable time, as he
has only to sketch what the map does not contain, and occa-
sionally to make corrections when he finds the map to be in
error. He also notes on the map the governing points of the
route, such as the best crossings of streams, ridges, or other
roads, and any point where the line will evidently be com-
pelled to pass. He may then indicate the route by a dotted
line on the map drawn through the governing points. Having
traversed the route in one direction he should retrace his steps,
verifying or correeting his observations, and making such
further notes as seem important. When in a densely wooded
country, with but few openings, it may be impossible for him
to get a commanding view from any point that will afford him
the necessary information as to the general topography. He
must then depend l:xrgély upon instrumental observations,
taking these more frequently, and noting carefully all details
likely to prove useful in future surveys.

7. The instruments required on an extended recon-
noissance are the barometer and thermometer, the hand or
Locke level, a pocket or prismatic compass, and a telescope or
strong field-glass. To these may be added a tclemeter for
measuring distances at sight, but when good maps are to be
had this instrument is seldom needed. So also some portable,
astronomical instruments are necessary in a new country, for
determining latitude and longitude, but would only be a use-
less incumbrance in a settled district.
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8. The mercurial barometer has generally been relied upon
for the determination of heights, but owing to its inconvenient
dimensions and the danger of breaking, it is now discarded by
railroad engineers in favor of the more portable aneroid
barometer, except in the case of trans-continental surveys,
and when astronomicul instruments are to be used also.

9. The best aneroids are designed to be self compen-
sating for temperature, so that with a constant atmospheric
pressure the reading shall be the same at all temperatures of the
instrument. This, however, being a very delicate adjustment,
is not always successfully made, so that each instrument is lia-
ble to have a small error due to temperature peculiar to itself.
This error will be found rarely to exceed one hundredth of an
inch, plus or minus, per change of ten degrees Fah., and is
frequently much less than this. Just what the error is in a
particular instrument may be determined by cateful compari-
son with a standard mercurial barometer at the extremes of
temperature, assuming the error found as proportional to the
difference of temperature for all intermediate degrees of heat.
The error having been determined for any aneroid, it should
be applied, with its proper sign, to every reading to obtain
the true reading.

The sizes generally used are 1% and 24 inches in diameter,
respectively, and experience seems to prove that there is no
advantage in using larger sizes, but rather the contrary.

10. The ordinary barometric formule and tables have been
prepared with reference to the mercurial barometer. In order
that they may apply to the aneroid, it is necessary that the
latter should be adjusted to read inches of mercury identically
with the mercurial column at the sea level at a temperature of
32° Fah. But as the aneroid, unlike the mercurial column,
requires no correction for latitude, nor for the variation in the
force of gravity due to elevation, that portion of the formula
which provides for such corrections, as well as that which
provides for a correction due to the temperature of the
instrument itself, may be omitted when using an aneroid.
Thus the general formula is very much simplified, and be-
comes

2= log % 60384.3 (1 4 L"‘&.%“)



RECONNOISSANCE, 5

in whieh %, and A’ are the readings of the ancroid in inches,
and ¢, and ¢ the readings of a Fahrenheit thermometer at the
lower and upper of any two stations respectively, and z is the
difference in elevation in English feet of those stations.

To facilitate the calculation of heights by this formula, we
may write

Log % 60384.8 = [log %, — log 7] 60384.3

and since only the difference of the logs. is required, this will
not be affected, if we subtract unity from each. The quan-
tities in Table XV, are prepared, therefore, by the formula

(log » — 1) 60384.3
for every 24ths of an.inch from 19 inches to 31 inches.

Table XVI. contains values of - +t L

gree of (¢, -+ ) from 20° to 200° Fah.

11. 7o find the difference in elevation of any two stations by
the tables :

Take the difference of the quantities corresponding to %, and
%' in Table XV. as an approximation, and for a correction
multiply #his difference by the coefficient corresponding to
(¢, + 19, in Table XVI., adding or subtracting the product
according to the sign of the coefticient.

for every de-

Example.—
Lower Sta. Upper Sta.
in. in,
Aneroid h, = 29.92 = 23.57
Thermometer t-= 7.6 t = 70°.4
By Table XYV. for 29.92 we have 28741
for 23.57 22485

Difference 6256
By Table XVI. for 77.6 + 70.4 = 148 we have -+ .0933
Then 6256 X .0933 = 583.6848
and 6256 + 584 = 6840 ft.= z.—Ans.

12, Certain precautions are to be observed in the use of the
anerotrd. When the index has been adjusted to a correct
reading by means of the screw at its back, it should not be
meddled with until it can again be compared with a standard
mercurial barometer, and even then some engineers prefer to
take note of its crror, if any, rather than disturb the aneroid.
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Again, since the principle of compensation supposes the
aneroid to have a uniform temperature throughout its parts, it
must be guarded against sudden changes, as otherwise the
metallic case will be considerably heated or cooled before the
change can affect the inner chamber, thus inducing very erro-
neous results. The aneroid, therefore, should seldom he taken
from its leather case, nor exposed to any radiant heat of sun
or fire, nor worn so near the person as to increase its tempera-
ture above that of the surrounding atmosphere. If removed
to an atmosphere of decidedly different temperature, time
must be allowed for the aneroid to be thoroughly permeated
by the new degree of heat. The aneroid should be held with
the face horizontal while being read; it should be handled care-
fully, and all concussions avoided, and it should be compared
with a standard as often as practicable to make sure that it
has suffered no derangement. Observing these precautions,
and having a really good aneroid, the engineer should obtain
excellent results in the estimation of heights. It has been
found that the slight error in compensation, previously alluded
to, is subject to a change during the first year or two after the
instrument is made, but subsequently it becomes quite per-
manent.

13. For the purpose of obtaining approximate elevations by
a simple inspection of the dial, the modern aneroid is provided
with a secondary scale reading hundreds of feet, which is
placed outside the scale of inches. It is divided according to
the following formula prepared by Prof. Airy:

jliuy -(-)100")

2 = 55082 }z _T_;: (1 +
in which it is evident that no correction for temperature is
required when the average temperature of the two stations is
50°. When the two scales are engraved on the same plate the
zero of the scale of feet is coincident with 31 on the scale of
inches; but in some aneroids the scales are on two concentric
plates, so that the zero of one may be made to «coincide with
any division of the other, which is in some respects an advan-
tage.

14. The theory of the barometer, asexpressed in the above
formulee, assumes the atmosphere to be at rest, and its pres-
ure affected only by temperature, whereas, in fact, the pres-
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sure at any point is liable to sudden changes due to variations
in the force of the wind, the amount of humidity, ete. The
best way to eliminate errors due to these causes is to take read-
ings simultaneously at the points the elevations of which are
to be compared. For this purpose an assistant should be
stationed at some point of known elevation contiguous to the
route to be surveyed, and provided with an aneroid similar to
that carried by the engineer. The aneroids, time-pieces, and
thermometers having been compared at this point, the assist-
ant should record the readings every ten minutes, with the
time, temperature, and state of the weather. The engineer
will thus have a standard with which to compare his own
observations. If the survey is so extended that the same con-
ditions of atmosphere are not likely to be experienced by the
two observers, the assistant should be instructed to move for-
ward to a new station at a designated time; or two assistants
may be employed, one at each of two stations between which
the engineer intends to make a reconnoissance. Even with
these precautions no attempt should be made to obtain the ele-
vation of important points during, or just before, or after a
storm of wind or rain.

15. When but one aneroid is used the observations at the
several stations should be taken as nearly together as possible
in point of time, and then repeated in inverse order, taking
the mean of the observations at each station, and repeating the
whole operation if necessary. Only approximate results can
be hoped for, however, with a single instrument, unless the
atmospheric conditions are yery favorable.

16. The Locke Level is an instrument in which the
bubble and the observed object may be secn at the same instant,
enabling the operator to keep the instrument horizontal, while
holding it in the hand, like an ordinary spy-glass. While
very portable, it enables the observer to define rapidly all visi-
ble points of the same elevation as his own, and to estimate
from these the relative heights of other points. It may be
made useful in a variety of ways which easily suggest them-
selves to the engineer in cases where no great precision 18
required, and where a more elaborate level is not at hand.

17. The Prismatic Compass is a portable instrument
with folding sights, in using which the bearing to an object
may be read at the same instant that the object is observed.
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The bearings are read upon a floating card, graduated and
numbered from zero to 360°, so that no error can be made in
substituting one guadrant for another. The instrument may be
held freely in the hand during an observation, though better
results are obtained by giving it a firm rest.
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PRELIMINARY SURVEY.

18. A preliminary survey consists in aninstrumental exam-
ination of the country along the proposed route, for the
purpose of obtaining such details of distances, elevations,
topography, etc., a8 may be necessary to prepare a map and
profile of the route, make an approximate estimate of the cost
of constructing the road, and furnish the data from which to
definitely locate the line should the route be adopted. The
survey is more or less elaborate, according to circumstances,
In case the country is new, or the reconnoissance has been
incomplete, or if several routes seem to offer almost equal
inducements, tho survey will partake somewhat of the nature
of a reconnoissance, and will be made more hastily than if but
one route is to be examined, and that, perhaps, presenting
serious engineering difficulties. The survey is made as expe-
ditiously as possible, consistent with general accuracy, but
should not usually be delayed for the sake of precision in
matters of minor detaii.

19. For preliminary survey the Corps of engineers is
organized as follows: :

A chief engineer, an assistant engineer, two chainmen, one
or two axemen, a stakeman, and a topographer, these forming
the compass (or transit) party, to which a flagman is some-
times added; a leveller and one or two rodmen, forming the
level party; and to these is sometimes added a cross-level party
of two or three assistant rodmen.

20. The chief engineer takes command of the corps,
and direets the survey. He ascertains or estimates the value
of the lands passed over, the owners’ names, and the houndary
lines crossed by the line of survey. He examines all streams,
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and estimates the size and character of the culverts and
bridges which they will require; he notices existing bridges,
and inquires concerning their liability to be carried away by
freshet; he selects suitable sites for bridges, examines the
character of the foundations, the direction of the current rela-
tively to that of the line, and considers any probable change
in the direction of the current during freshets; he inspects the
various soils, rocks, and kinds of timber as they are met with,
and takes full notes of all these and kindred items in his field
book. He not unfrequently assumes in addition the duties of
topographer. He should run his line as nearly as may be over
the ground likely to be chosen for location, so that the infor-
mation obtained may be pertinent, and so that the length of
the line, the shape of the profile, and the estimate based on
the survey may approximate to those of the proposed location.
To this end he has due regard to the levels taken, and when
they show that the line as run fails to be consistent with
allowable grades, he cither orders the corps back to some
proper point to begin a new line, or makes an offset at once
to a better position, or continues the same line with some
deflection, simply noting the position and probable elevation
of better ground, as in his judgment he thinks best. He
should at all times maintain a friendly attitude toward pro-
prietors, and by his polite bearing endeavor to secure their
cordial support of the new enterprise. If he is tolerably cer-
tain that the location will follow nearly the line of the prelim-
Inary survey, he should have with him some blank deeds of
right of way, and let these be signed by land-owners while
they are favorably disposed. When this cannot be done, a
blank form of agreement to allow the surveys and construc-
tion of the road to proceed until such time as the terms of
right of way may be agreed upon may be made very useful.
The chief also selects quarters for his men, and in case of
camping out he directs the movements of the camp equipage.

21. The assistant engineer takes the bearings of the
courses run, and makes a minute of them, with their lengths, or
the numbers of the stations where they terminate. He sees that
the axemen keep in line while clearing, and the chainmen
while measuring; he takes the bearings of the principal roads
and streams, and of property lines when met with. In an
open country he may save time by selecting some prominent



10 FIELD ENGINEERING.

distant object toward which the chainmen measure without his
assistance, while he goes forward and prepares to take the
bearing of the course beyond. In traversing a forest with not
too dense undergrowth, when the line is being run to suit the
ground according to a given grade, it is a good plan for the
assistant to go ahead of the chainmen as far as he can be seen,
select his ground, take his bearing by backsight on the last
station, and then have the chainmen measure toward him. In
this case both he and the head chainman should be provided
with a good sized red and white flag, mounted on a straight
pole, to be waved at first to call attention, and afterward held
vertically for alignement. Otherwise a flagman must be added
to the party, who will select the ground ahead, under the in-
structions of the chief, and toward whom the survey will pro-
ceed in the usual manner.

22, The head chainman dragsthe chain, and carries a
flag whichis put into line at the end of each chain length by the
assistant engineer or the rear chainman. Tt is his duty to
know that his flag is in line and that his chain is straight and
horizontal before making any measurement, and to show the
stakeman where each stake is to be driven. A stake is usually
driven at the end of each measured chain length, called a
station, though in an open and level country the stakes at the
odd stations may be omitted, in which case marking pins are
used to indicate the odd stations temporarily. In case there
is much clearing to be done the head chainman plants his flag
in line, and ranging past it, indicates to the axemen what is
to be cut, going a little in advance through the bushes so that
they may work toward him. The head chainman should be a
quick, active and strong man, with a good eye and a taste for
his work, as very much of the real progress of the survey
depends upon him.

23. The rear chainman holds his end of the chain firm.
ly at the last stake or pin by his own strength, not by means of
the stake. He keeps the tally by the pins when they are used,
and watches the numbers on the stakes to see that they are cor-
rect. The end of a course should always be chosen at the end
of a chain, if possible, and if not, then at a brass tag indicating
tens of feet, as thus the labor of plotting the map will be much
lessened. The numbering of stations is not recommenced
with each new course, but is continued from the beginning fo
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the end of the survey, through all its courses, and if one
course ends with a portion of a chain the next course begins
with the remainder of it. It is the rear chainman’s duty to
attend to this, holding the proper link at the coinpass station.
Any fraction of a chain measured on the line is called a plus,
and is counted in feet from the previous station. The length
of an offset in the line is never included in the length of the
line, but if the line should change its course by a right angle,
or more, or less, the numbering would go on as usual.

24. The axemen should be accustomed to chopping and
clearing, and are, therefore, to be selected in the country rather
than the city. They will cut out so much of the underbrush
and overhanging branches as may interfere with the sight of
the assistant or leveller; but care must be taken not to cut
unnecessarily wide, and no tree of considerable size should be
felled, except in rare instances. When running by compass, if
the assistant goes ahead of the chain, he can always select a
position so that no large tree will interfere; or, if the line must
be produced and strikesa tree, the compass may be brought up
and set close to the tree on the forward side as nearly in line as
can be estimated, the slight error in offset being neglected,
since the line will be produced parallel to itself by the needle.

25. The stakeman prepares and marks the stakes, and
drives them at the points indicated by the head chainman.
When no clearing is needed, the axemen keep him supplied
with stakes, as the rapid progress of the chain will only give
him time to drive them. The stakes should be two feet long and
pointed evenly so as to drive straight, and are blazed or faced
on two opposite sides, one of which is marked in red chalk
with the number of the station. The stake must be driven
vertically, and with the marked face to the rear, so that it may
be read by the rodman as he follows the line.

26. The topographer makes accurate sketches of all
features of the country immediately on the line, and extends
the sketches as far each side of the line as he can, in a book
prepared for the purpose. He must never sketch in advance.
of the chain, nor in advance of his own position. His work
should be done to scale as nearly as possible, using the same
scale for distances on the line and at right angles to it. The
scale adopted should never be less than that of the map to be
made from the sketches. The ruled lines of a field book are
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usually one quarter of an inch apart, so that a scale of one
line to a station equals about four hundred feet to an inch.
This is the smallest scale ever used. The scale of two lines to
a station is most convenient for general use, Four lines to a
station are needed in special cases to show details, as in pass-
ing through villages. The scale may be changed from time to
time as found necessary, but no two scales should ever be used
on the same page. The numbering of the stations up the page
indicates the scale of the sketch.

27. When the contours of the surface are required, the
topographer may join the level party in order that his esti-
mates of heights and slopes may be corrected by the instru-
ment. He should never draw a mass of contours indiscrimi-
nately, but should sketch them as they exist at a uniform ver-
tical interval. This interval may be assumed at five feet in
a gently rolling country, and at twenty feet in a mountainous
one, but an interval of ten feet will be found most convenient
generally, If the topographer accompanies the level he can
assume thie contours at the even tens of feet in clevation, and
mark them so, noting where a contour crosses the surveyed
line, and sketching its direction and shape both ways from
that point., e will estimate the rate of slope of the ground
at right angles to the line as so many feet per hundred, and
record it from time to time, noting ascent from the line on
either side by “ A,” and descent by “D.” If the slope changes
within the limit of the page, the line of change may be
sketched and the next slope recorded. When little banks or
terraces occur, or bluffs and rocks, which cannot be suf-
ficiently indicated by contours, they should be shown by
hatchings, and the height noted. Special care should be
taken to sketch roads and houses in their correct positions
and dimensions, the latter to be either measured, paced or
estimated. The dimensions should also be recorded in num-
bers. The outline of forests may be shown by a scalloped
line, and the kind of timber, and whether dense or scattered,
‘written within the inclosed space. Correct outlines are essen-
tial, but no time should be given to shading up a sketch with
conventional signs. A single sign, or the name of the thing
intended, is all sufficient. Land-owners’ and residents’ names
should be recorded whenever they can be obtained, as well as
the names of roads, streams and public buildings.
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28. The leveller takes charge of the level party and
keeps the notes of his work. He reads the rod on benches and
at turning points to hundredths of a foot and to tenths at other
points. He should direct a bench to be made at least once
every half mile, and in a very rough country every quarter of
a mile. The benches need not be far from the line, and, if
well chosen, may be used as turning points, thus saving time.
The elevation of turning points must be computed when
taken, so that the elevation of any one of them may be
instantly given when called for, and the other elevations will
be filled in as far as may be without delaying the survey. As
the levels are usually the most essential part of the survey,
much care should be taken to have the instrument well ad.
justed and truly level, and the rod held vertically and correctly
read on turning points, but the intermediate work should not
be so done as to delay the party unnecessarily. The leveller
should usé every endeavor to follow closely after the survey-
ing party, so that the chief and topographer may have the
advantage of his notes.

29. The rodman’s first duty is to hold the rod vertically,
and he must learn to do this in calm or windy weather, in level
field or on side hill. He may carry a small disk-level, which
applied to the edge of the rod will show when it is vertical.
The turning points are to be selected for firmness and definite-
ness, and so that they will afford a clear view from beyond
for a backsight. The rod is held for a reading on the ground
at every stake, the number of which is called out to the level-
ler as soon as the rodman arrives at it; the rod is also to be
held at every prominent change of slope on the line, as the
crest and foot of every bank, the rodman calling out its dis-
tance from the last stake as plus so many feet, but all gentle
undulations and minor irregularities are to be neglected. The
rod will always be read at the surface of a stream or pond,
and also at its deepest part on the line, when possible; other-
wise the depth of the water may be found by sounding, and
so recorded. Should the line run along a stream the surface
will be taken occasionally, opposite certain stations, and in
case of a canal, the elevation of surface above and below each
lock must be noted. The rodman makes inquiry for Zigh-
waler marks or seeks traces of them himself in an uninhabited
district, and holds the rod upon them that their elevation may
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be determined. The rodman carries a small. axe or hatchet
with which to make benches and to trim out any stray
branch that may intercept the leveller’s view,

30. The assistant rodmen take the slope and elevations
of the ground at right angles to the line, using vertical and hori-
zontal rods and a pocket level, or a tape line and clinometer.
The cross levels are not taken throughout the whole survey, if
at all, but only where the roughness of the country seems to
demand it. They may be extended to any distance from the
centre line required by the chief—not less, however, than fifty
feet as a rule. They may be taken at the stations only, or
oftener, if necessary, depending upon the roughness of the
surface, the object being to define accurately the contours,
and so the shape of the ground. The assistant rodmen will
also take soundings when they are needed, either on the line -
or at right angles to it.

31. In defining the duties of the members of the corps, th»
instruments used have been incidentally noticed.

32. The compass is preferable to the transit on prelimi-
nary surveys, because it can be operated more rapidly, islighter,
and usually has a better needle. It may have either plain
sights or telescope, and be mounted on tripod or jacob staff.
The simpler forms are preferred for forest work. Not unfre-
quently the engineer’s transit is employed, but using the needle,
A preliminary line should not be run by backsights and deflec-
tions, unless local attraction is found to exist to such an extent
as to destroy confidence in the ncedle; or, in special cases,
where the natural obstacles to a survey are very great. In the
latter case the survey partakes of the nature of a location, and
should be conducted with similar care and fidelity.

33. The chain is 100 feet long, and composed of 100
links. It should be of steel for lightness, durability, and greater
accuracy. Those having rings of hard steel, unbrazed, are
least apt to wear. Five marking pins are needed, each having
a piece of red flannel attached, for temporary stations, or for
keeping points temporarily while measuring by parts of a
chain up or down a slope. A pointed plumb bob, with sev-
eral yards of small cord wound on a carpenter’s spool, is use:
ful in chaining over steep declivities or bluffs.

34. The axes should be of best quality, with hand-made
handles, and not too heavy. The axe of the stakeman should
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have a fine edge for dressing and a broad head for driving
the stakes. 'When the stakes are not required to be over two
feet long, a stout dbasket, having a square, flat bottom, 26x14
inches, should be furnished the stakeman. He will then pre-
pare a basketful of stakes, ready marked, and place them in
the basket regularly, in the reverse order of their numbers, so
that they will come to hand as wanted. A smajl hand-saw
no larger than the basket, with rather coarse teeth, wide set,
will be found extremely useful in cutting stakes with square
heads and of uniform length, and much more rapidly than can
be done with an axe. 'When not in use, it is to be strapped to
the inside of the basket, to prevent its being lost by the way.
When the basket is about empty, the stakeman, with the
assistance of the axemen, can soon replenish it, and the stakes
being all numbered at once, there is less danger of a mistake
being made in the tally than when they are marked only as
wanted.

33. The level should be the regular engineer’s level, the
same as used on location.

36. The rod should be self-reading, ¢.e., to be read by the
leveller, as too much time would be consumed in the constant
adjustment of a target by the rodman. It should be as long as
can be conveniently handled in order to reduce the number of
turning points on hill sides. A very convenient rod may be
made of thoroughly seasoned clear white pine, sixteen feet
long and two inches wide, with a thickness of one inch at the
bottom, increasing to one and a quarter inches at six feet from
the bottom, and then gradually diminishing to three eighths of
an inch at the top. The rod is shod with a stout strap of steel,
extending five inches up the edges, and secured by screws.
The top is protected for a few inches by a plate of sheet brass
on the back. The face of the rod is a plain surface through-
out, and is graduated from the lower edge of the steel shoe as
zero. The divisions are fine cuts made with the point of a
knife. At the foot and half-foot points the cuts extend across
the face. For the tenths and half tenths tuey extend three
quarters of an inch from the right hand edge, terminating in a
line scribed parallel to the edge of the rod, thus forming rec-
tangular blocks half a tenth wide, every other one of which is
painted black, the body of the rod being white. The feet are
indicated by numerals painted red on the blank part of the
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face, each figure standing exactly on its foot mark, and bein
exactly one tenth high. For the figure 5 the Roman V. is sub
stituted and for 9 the Roman IX., so that in case a dumpy
level is used the 5 may not be mistaken for a 3, nor the 9 for s
6. At the half-foot points a red diamond is painted, so tha
the graduated line bisects it. No other figures nor gradua-
tions are required. With this rod the leveller can read quite
accurately to hundredths of a foot, and after some practice
can estimate the half hundredths.

37. The horizontal rod for cross-levels may be made
of white pine, ten feet long and one inch thick by three wide,
tipped with brass, painted white, and graduated to feet and
tenths. It must be a straight edge, and is levelled by a pocket
level placed upon it when needed, or by a small level embedded
bermanently in one edge. The vertical rod to be used with it
is made of pine eight feet long and one and a quarter inches
square, and graduated to feet, tenths, and half tenths. All
rods when not in use should be laid on a flat surface to pre-
vent their being sprung. Leaning them in a corner soon ruins
them for use.

38. The clinometer is any small instrument which will
easure the slope angle of the surface, The angle is always
estimated from the horizon, a vertical being 90°. The rise per
100 feet is found by multiplying the nat, tangent of the slope
angle by 100. It may often be found more easily by the
leveller reading the rod at a station and then 100 feet left or
right of the line. If surface measures are taken in connec-
tion with a slope angle they are reduced to horizontal meas-
ures by multiplying them by the cosine of the slope angle.

39, The plane-table is rarely if ever used on prelimi-
hary surveys in the United States, Occasional bearings taken
to prominent objects by the assistant engineer, or the use of a
prismatic compass by the topographer in connection with hig
sketches, is found to answer every purpose.

40. In case a survey is to be made with a tran-
8it, it is necessary to add a back flagman to the party, who will
hold his flag or rod on the point last occupied by the transit, so
that the assistant may take a backsight upon it. The direction
of & new course in each case is determined by the deflection
angle to the right or left of the preceding course produced.
The bearing of one long course near the beginning of the sur-
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vey having been carefully ascertained, the bearing of each sue-
ceeding course i8 calculated from the deflections, and entered
in a column of the field book headed Culcuiated Bearings, from
which the line is afterwards plotted. The magnetic bearing
of cach course should also be taken from the needle, and re-
corded as such, but is used only as a check on the transit
work. The deflections should be made in degrees, halves, or
quarters, if possible, to facilitate the calculation of bearings,
and to admit of using a traverse table. i

41. The attached level and vertical arc of the transit are
useful in determining approximately the grade of the line run
in advance of the level party, or in secking for one assumed
grade to which it is desired that the line shall conform. For
this purpose it is only necessary to set the vertical arc to the
angle corresponding to the grade as given in Table XIV., and
let the head chainman move about until a point on his rod at
the same height from the ground as the telescope is covered
by the horizontal cross-hair.

42, The point on the ground where a transit is set up is
marked by a good-sized plug, flat headed, and driven down
flush with the ground, with a tack set in the head to show the
exact point or centre. This is called a transit point. When
a transit point occurs at a regular stztion, the stake bearing
the number of that station is set three feet to the left of the

. line opposite the plug and facing it. When a transit point

occurs between stations the stake is driven thrce feet to the
left of it, marked with the number of the preceding station
- the distance from that station in feet.

43. As a transit is capable of giving a line with great pre-
cision, it is important that the flags used in connection with
it should be equally precise in giving points. An excellent flag
for this purpose is made of well-seasoned clear white pine ten
feet long, two and a half inches wide, and one inch thick. Itis
tapered for the last four inches to an edge at one end, the edge
being formed at the middle of the width. The tapered end is

| shod with a band of steel covering the edge of the rod, and

secured by screws, and the steel is brought to a sharp edge at
the point of the rod. The rod is then painted white and
tipped with brass at the square or upper end. A centre line
on the face is then struck from the point of the steel to the
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middle of the brass tip by means of a picce of sewing silk,
and a fine cut made with a knife and steel straight edge.
The centre line must not be scribed parallel to one edge of the
rod, as this is rarely ever straight. The face of the rod is
then divided into one-foot spaces, measured from the head of
the rod, and these are painted red on either side of the centre
line in alternate blocks. On the back of the rod at three and
a half feet from the point is placed a small ground-glass
bubble-tube, mounted very simply, and attached to the rod by
a brass plate and screws, and guarded by two blocks of wood
for protection. The centre line of the rod is made vertical by
a plumb-line while the level tube is being attached, which ever
after secures a vertical rod. If only two feet of this rod can
be seen over any obstruction, a point can be set with great
precision, provided the level tube is in adjustment. This flag
can also be used as a plumb in chaining with much more
satisfaction than a cord and weight, especially in windy
weather.,

44. A transit survey usually requires more clearing than
one made by compass. When a given course is to be produced
in a forest, some large trees will inevitably be encountered, but
the labor and delay of felling them may be avoided by the
use of auwiliary lines. These may be classified as running
parallel to the main line, at a small angle with it, or at a large
angle with it.

45. The parallel line is established by means of two
short perpendicular offsets measured with care before reach-
ing the obhstacle, and the main line is established beyond the
obstacle by means of two more equal offsets. But since short
back-sights are to be avoided, these offsets should be at least
100 feet apart, so that it may be difficult to find a parallel line
of sufficient length which does not strike some other obstacle,
or at least require considerable extra clearing.

46. The auxiliary lines making a small angle
with the main line are more convenient, not only on this

“account, but because they require a less number of transit
points. By them an isosceles triangle is formed on the ground,
having the intercepted portion of the main line as base, and the
vertex near the obstacle. The deflections at the points where
the lines leave and join the main line are similar and equal, and
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the deflection at the vertex is double in amount and opposite
in direction. No ealculation is~necessary,- for the error in
measurement due to the deviation is too small to be noticed,
and since the main line is immediately resumed, the calculated
bearings of the auxiliary lines are unnecessary. Should the
point where the second line joins the main line prove unsuit
able for a transit point, the second line may be produced to
any convenient point beyond, and so go to form an isosceles
triangle on the opposite side of the main line, the triangle
being completed by running a third line parallel to the first,
and equal to the difference of the first and second. Again,
the second line may encounter a serious obstacle before reach-
ing the main line. To avoid this a parallel to the main line
may be run from the end of the first line for a con-
venient distance, and there the second line be put in
parallel and equal to its first position, as before de- F
scribed, thus forming a trapezoid.

47. The following general solution of this
problem allows the engineer to make use of any E
number of auxihary lines, provided that none of
them make an angle of much more than one degree
with the main line, with a certainty of resuming the
main line in position and direction at the extremity
of any course desired, and without necessitating
any trigonometrical calculation. It is based on the
assumption, practically true for small angles, that
the sines are proportional to their angles, and is ex-
~ pressed by the following rule :

Call all deflections to the right plus, and all to
the left ménus,; multiply the length of each course
in feet by the algebraic sum ¢n minutes of all the
auxiliary deflections made to reach that course;
take the algebraic sum of these products, and
when the sum equals zero the extremity of the last
course will be on the main line. The deflection
required at that point to give the direction of the main line
is equal to the algebraic sum of all the preceding deﬂcctlons
but taken with the contrary sign.

Thus, if we have left the main line at A, and run by these
uotes: (Fig. 1.)

A

Fre. 1.
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Sta- Defl. Dist. Faetors, Products.
A 16 R 190 2@ 16 X 190 = + 3040
B 31'L 120 25 —15X120 = — 1800
c 18 R 175 38 4 3X1HB=+4 55
D 13'L 25 @3 —10 X 265 = ~ 2650
E 15’ R B3 4+ 65X (D

3565 — 4450
and their algebraic sum is — 883

Therefore to render the sum zero we must add 885 as the pro-

duct of the last course. But 5’ is already given as one factor,
85 AR e

so that the other factor must be §5~) = 177, which is the length

of the last course, giving some point /" on the main line. The

deflection at # from the last course to give the direction of

the main line is

16 —31 4+ 18—-13 415 =5

and changing the sign we have — 5'; that is, the deflection is
to the left.

The distance on the main line from 4 to F equals the sum
of the courses, or 927 feet, but this we have by the stations,
which have been kept by stakes in the ordinary way. All the
stakes on the auxiliary lines will be more or less off the main
line, but as these offsets are usually very small, they are con-
sidered of no consequence on a preliminary survey through a
forest. In Fig. 1 the offsets are very much magnified. The
field notes of such auxiliary courses should be kept, not as
regular notes, but on the margin or opposite page, and in such
a way that, while the line may be retraced by them on the
ground, the draughtsman may see that it is not necessary to plot
them, when a straight line ruled and measured through is suf:
ficient, It is obvious that in selecting a closing course either
the deflection may be assumed and the length calculated, or
vice versa ; but care should be taken to assume such values as
do not involve a fraction in either factor, if possible.

48. The method of passing an obstacle on the line by
auxiliary lines at a large angle with the main line will
only be resorted to when circumstances are such that the other
methods mentioned cannot be employed, as in passing a build-
ing, pond, or densely wooded swamp. In such a case we may
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turn a right angle with the transit, and measure accurately one
offset, putting a transit point at its extremity, where another
right angle will give a parallel line. If the offset prove too short
for an accurate backsight, a temporary point at a sufficient
distance may be established for that purpose on the offset line
produced before the instrument is removed from the main
line. TIf any other angle than 90° is used it should be selected,
when circumstances permit, so that the distances on the inter-
cepted part of the main line may be in some simple ratio to
the distances measured on the auxiliary line. Thus a deflection
of 60° gives a distance on the main line equal to half the
length of the auxiliary course, that is,

60° gives a ratio of + = 0.5
351 08k a5 & 0.6 nearly

450 34&' [ (X3 £ 0'7 ¢
369 52” (X3 ¢ (X4 0‘8 ¢
250 50%_/ ‘¢ € € 0.9 3

the angles being taken to the nearest half minute.

49, If it be desired that the stakes on the auxiliary line
should stand on perpendiculars through the true stations
on the main line, a certain correction must be added to each
chain length depending on the angle which the auxiliary
makes with the main line. If there is a fraction of the chain
at either end of the course, a proportional addition must be
made for this. Thus, by referring to the table of external
secants, we find that we must add a correction as follows:

9°831°...0.1 ft. per chain. | 6° 453'...0.7 ft. per chaiw,

AT A A e v°184...0.8 « ¥
4°26 ...0.3 “ X 7oUB9% R0, F O NIl
5 p0et L (ol be PRS2 R <4
Folie: ) oo Bl S e i 2 L A 87
6" Tog ot Us8 1At T IR RN IR A

These methods of suiting the angle to an even measure are
much superior to assuming an even number of degrees deflec-
tion, and then calculating the distance by trigonometry. The
last table, which may be extended indefinitely by reference to
the table of Ex. secants, is perfectly adapted to chaining by
surface measure on regular slopes when the slope angle is
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known, tne chain being lengthened by the correction corre-
sponding to the slope angle.

50. If the chain is lengthened as per above table on auxil-
iary lines, the numbering of the stakes goes on s usual, but
they should have an additional mark as X to show that they
are off the main line; and they may stand facing the true
stations which they represent, and the length of offset, if
known, may also be recorded on them. The leveller will then
understand that he is to read the rod not only at the stakes as
they stand, but also at the true stations, as nearly as may be.
The assistant engineer will always make a diagram in his
field book, showing exactly the method pursued in reference to
auxiliary lines. Having passed the obstacle, it is advisable
to reiurn to the main line by a ecourse equal in length to the
first auxiliary, and making an equal angle with the main line.
If this cannot be done from the end of the first course, a
parallel to the main line may be run any convenient distance,
and the return line then put in, forming a trapezoid.

51. When there is no obstruction to sight on the main
line, but only to measurement, a transit point should be
set in line beyond the obstacle before the transit leaves the
main line, as a check on the other operations, and the main
line should be afterward produced from this point by back-
sight on the main line, rather than by deflection from an
auxiliary line.

52. The main line should always be resumed as soon as
practicable, making the auxiliary lines the mere exception.
‘When a number of courses at a large angle are likely to be
required before the main line can again be reached, it may be
better to consider these as regular courses of the survey, and
to note them as such. The simplest method is always the dest,
because least likely to involve mistakes.

53. When the natural obstacles are so numerous
and of such magnitude as to render any continuous line of sur
vey or location extremely difficult, if not impossible, as in the
case of a bold rocky shore, all the data necessary to a location
should be gathered with precision on the preliminary survey,
the measurements and angles being taken with the greatest care,
and as many checks as possible should be introduced to verify
the work. In meanderingsuch a shore it is probable that a large
number of short courses will be used, whieh may be measured
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correctly, but there is liability to error in the angles. To
verify the latter the more conspicuous transit stations on
prominent points of the shore are selected, and these being
named by the letters of the alphabet, the deflections between
them are taken by careful observations repeated a number of
times, as for a triangulation. These points, joined by tie-
lines, then form a survey of themselves, much simpler than
the full traverse. Te obtain the length of these tie-lines, the
angles between them and the courses meeting at the same
station are measured. Then since each tie-line forms the
closing side of a field, in which all the bearings are known,
and all the distances, save one, that one may be calculated by
latitude and departures. But the angles should first be tested
for error in each complete field, and if the error be large the
angles must all be remeasured until the error is found and cor-
rected, but if very small it may be distributed among the
angles, or among those most probably inaccurate. Before cal-
culating the traverse of any of these fields, it will be advanta-
geous to assume, for an artificial meridian, a line parallel to
the average direction of the shore for several miles, and to
refer all courses to this meridian for their bearing. This
meridian is called the axis of the survey, and all bearings
referred to it are called awial bearings, as distinguished from
magnetic bearings. The magnetic bearing of the axis should
be some exact number of degrees, so as to facilitate the redue-
tion from one system to the other.

54, Inplotting the map, the axis is first laid down, and then
the lettered stations in their respective positions, after which
the meandering surveys can be filled in. The map being
drawn on a scale of one hundred feet to an inch, and the con-
tours constructed from the notes of the level and cross-level
parties, the engineer may project the location upon it with
great certainty and economy of result. But he should calcu-
late the traverse of the location as projected, and compare it
with the traverse of the preliminary, to elim'nate all errors in
drafting, before taking his notes to the field to reproduce the
location on the ground. Any point where the location crosses
the preliminary should have the same latitude and longitude
by the traverse of either line. This system, though laborious,
is the only one that will ensure a successful location under the
circumstances supposed. Advantage may sometimes be taken
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of cold weather to cross bays and inlets on the ice, but there
is great liability to error in angles taken upon the ice, due both
to its motion and to the sinking of the feet of the tripod into
the ice as soon as exposed to the rays of the sun.

CHAPTER IIIL
THEORY OoF MAXxmMUM EcoNoMy IN GRADES AND CURVES.

55. Before commencing the field work of location it de-
volves upon the engineer to decide as to which of the surveyed
routes shall be adopted as being most advantageous in all
respects, and also to establish the maximum grade in each
direction and the minimum radius of curve on that route.

The general considerations which guide the engineer in the
selection of one of several routes for location are such as were
hinted at in the chapter on reconnoissanee, but upon the com-
pletion of the preliminary surveys he has at hand a large
amount of information which enables him to consider this
important question much more in detail. Unless his instruc-
tions are explicitly to the contrary, he may assume it to be his
duty to find the best line, or that one which, for a series of
years following the completion of the road, will require the
least annual expense, including interest on first cost. 'The
finances of the company may be so limited as not to permit
the construction of the best line at once, and it may then be
the duty of the engineer to select the cheapest line, or that of
least first cost, as a temporary expedient, with the expeectation
of building the road at its best when the improved credit of
the company will permit. But generally he will be able to
build the cheaper portionsof the best line at once, only making
deviations and introduecing heavier grades at the expensive
points to avoid a cost beyond the present means at his com-
mand. The selection of the best line may be a question as
between different routes or as between different grades and
curves on the same route. We will consider the latter case
first. -

56. To solve the problem of true economy we must
determine the actual expense both of building and operating
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the line at a given maximum grade, and also what changes will
be made in these expenses by a change in that maximum. We
have then, on one hand, the annual interest upon the original
cost, and, on the other, the annual expense of operating the road. \
The best grade 7s that which will render the swm of these two a
minimum. Both forms or expense consist of two parts: one
that is affected by a change in grade, and the other that is not.
Clearly the former is the only one we have to consider in either,
since when the sum of the variable portions is & minimum, the
sum total will be a minimum also. The varying portions then
are functions of the grade, though independent of each other.
If, therefore, we let 2’ represent the maximum grade in feet
per mile, and let z represent the corresponding value of that
portion of the annual expense which varies with the grade,
and establish the relation existing between the two, we shall
have 2 = f (/). Similarly if we let y represent the interest on
so much of the first cost as is affected by grade, we shall have
y=f' (). The problem then is to find that value of 2’ whick
shall render
x + y = a minimum,

Let us now seek the complete expression represented by
Er=—rrl2) .

The elements that enter into this expression are numerous,
and will be considered in succession.

57. The traction of an engine is the force with which
it pulls a train, and is limited by the reaction of the drivers
against the rails. It depends on the weight upon each driver, the
number of drivers, and the coefficient of friction. The weight
on one driver should not exceed 12,000 Ibs., and is usually less
than this. If the exact proportions of engine that will be
used on the road are not known, the weight per driver may
be assumed at 10,000 lbs., with 4 drivers for ordinary grades
and trafiie, or at 11,000 lbs. with 6 drivers, if the grades are
steep and the tonnage large. For extraordinary grades special
engines are required, having 8 or 10 drivers. The coefficient
of friction, called also the adhesion, variés from .09 to .37,
these being the extremes on record. The lowest is due to
extremely unfavorable circumstances, as sleet and frost; the
highest doubtless to the use of sand, though not so stated in
the record. The more common range of values is from .15 to
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25. For our present purpose it will be assumed at .20, so
that if a 4-driver engine has 10,000 lbs. on each driver, its
traction is 40,000 X .20 = 80001bs. when hauling its maximum
train,

58. The expense of running an engine one mile, hauling
a train, on the proposed road, can only be estimated from the
experience on other roads similarly situated. The expense is
composed of the items of fuel, water, oil and waste, repairs
(including renewals), wages of conductor, engineer, and fire-
man, engine-house expenses, and interest on first cost of
engine and engine-stall. The range and approximate average
of these items is here given:

|
4-DrRIVER ENGINE. |4-DRIVER I6-DRIVER I 8-DRIVER
|
ITENMS. i | |
Lowest. ' Highest. || Average. Average.| Average.
Fuel.... ccooovven oo $0.050 $0.210 $0.100 $0.165 | $0.21:
AL S Yo 600000a0066600 001 .010 .004 .006 008
Oil and waste.. ..... 004 .030 .006 008 .010
Repairsand renewals .050 150 .080 104 133
Wages......oocvevnnn 050 .100 075 075 075
Engine-house .. 025 060 035 050 .060
Interest ... d 025 .038 .030 038 047
Totals... ........ 205 | 508 .330 446 546

Ir a given case the probable value of each item should be
estimated separately, and the sum taken afterwards. In the
above averages each engine is supposed to haul its maximum
train. The relative expense of the several classes of engines
has not been established conclusively.

59. The resistance offered to the motion of a railway
train is occasioned by a variety of causes, concerning which
a great deal of uncertainty exists as fo their relative effect.
An investigation which should seek to determine the exact
amount of each partial resistance, and then by a summation
derive the total, would be tedious, and, in the present state of
our knowledge, unsatisfactory. We shall therefore simply
group the resistances under three general heads, namely:

Resistance due to uniform motion on a straight, level track;

" Resistance due to grade;

Resistance due to curvature.
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60. The first of these, considered as an aggregate of
the various items of friction in engine and train, of oscillations
and impacts, and of resistance of the atmosphere, is found to
vary nearly or quite as the square of the velocity. The fric-
tion of an engine is greater in proportion to iis weight than
that of a car, owing to its many moving parts, so that the
resistance of a short train is greater in proportion to its total
weight than that of a long train. The resistance of the atmos-
phere is greater also in proportion to the weight of a short
train than of a long one. An empty train will offer more
resistance in proportion to its weight than a loaded one. A
formula which shall express the resistance of a train to uni-
form motion must include at least the velocity and the weight
of the train and engine.

The following empirical formula is based upon a careful
investigation of all such records of experiments on the subject,
several hundred in number, as have come to the author’s notice,
and is believed to give results agreeing closely with the average
experience and practice of the present day. It is designed to
give the resistance per ton for all trams, whether freight or
passenger, and at any velocity, under ordinary circumstances.
Accidental circumstances, such as the state of the weather,
and the condition of the road-bed, rails, and rolling stock, may
largely modify the resistance, hut these, of course, are not
taken account of in the formula.

Let V = velocity of train in miles per hour,

¢ K = weight of engine and tender in tons,

“ W = weight of cars in tons,

¢« T = weight of freight in tons,

¢ g = resistance to uniform motion in lbs. pcx t0Ow.
‘We then have thc formula

g—54+(006+ﬁ,_?_°%§ig,) p (h

61. The second resistance considered is that due to
gravity in grades. It varies in the exact ratio of the rise to the
length of the grade.

Let G, = rise of grade in feet per station. -

“ @, = rise of grade in feet per mile.

’

* ¢ = resistance in pounds per ton due to grade.
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Then,

R.44G,

- 100 =
@
_u

q = 2240 = Gm

5280

62. The third resistance considered is that due to
curvature of the track. This resistance is due to the friction
of the wheels upon the top of the rail, and of their flanges upon
the side of the rail. The top friction is lateral, due to the
oblique position of the wheel on the rail, and longitudinal, due
to the greater length of the outer rail, since both wheels are
rigidly attached to the axle. The flange friction is due to the
reaction of the top friction, which, combined with the parallel-
ism of the axles, throws the truck into an oblique position on
the track. A forward flange presses the outer rail, while a rear
flange is usually in contact with the inner rail. The centri-
fugal force of the car will increase the pressure on the outer
rail, unless the ties are inclined at an angle sufficient to coun-
terbalance this force. But if the ties are inclined too muth,
or the velocity is less, the pressure on the inner rail will be
increased. An uneven track will cause the truck to pursue a
zigzag course, increasing the resistance considerably.

Experiments for determining the amount of curve resistance
have been neither numerous nor very satisfactory, but the
generally accepted conclusion is that the resistance is a little
less than half a pound per ton on a one-degree curve, and that
it varies as the degree of curve. On European roads, how-
ever, it is estimated at about one pound per ton per degree of
cuive, owing largely to the form of rolling stock used.
+ 63. Let ¢’ = curve resistance in pounds per ton on any
K curve,
‘ and D = degree of curve.

Then, assuming the resistance per ton on a one-degrec curve
at 0.560, we have for any other curve

¢ = 056D ' ®
To ascertain what grade upon a straight line will offer the
same resistance as a given curve; substitute the value of ¢”
for ¢' in eq. (2) and solve for G; whence
g’s :__— (1).0.251) } @)
m = 1.oRJ



MAXIMUM ECONOMY IN GRADES, ETC. 29

For definition of degree of curve, sce Art. 84,

G4. Tt is cvident that grades and curves, by their resistances,
fix a limit to the weight of a train which a given engine can
haul over them. ;

A locomotive is usually built with such a surplus of boiler
and cylinder capacity that its power, at ordinary velocities, is
limited by the adhesion of the drivers, so that the adhesion is
the proper measure of the tractive force.

Lo find an expression for the maximum train which a given
engine can haul over a given grade and cwirve:

Let P = tractive force of engine in pounds,

“ 7' = weight of paying load in tons per maximum
train,
‘ W' = weight in tons of cars carrying the load 7',
Then for uniform motion, at a given velocity,

(E+1V’+1")(Q+9'+(1")=P ®)

Let t = average load of one car in tons
“ w = average weight of one car and load in tons.

Then W'+ T' = %T ", substituting which in ¢q. (5) we derive

=1 ((1_4_—;—)__':7 — ) ®)

In this equation ¢ = the resistance per ton due to uniform
motion, ¢’ = the resistance per ton due to the mazimum grade
opposed to the direction of the train, and ¢" = the resistance
per ton due to the sharpest curve on that grade.

For accelerated motion the reaction of inertia of the train
must be added to the above resistances. This is estimated at
1¢, in order that a train starting from rest may acquire the
requisite maximum velocity, even on a maximum grade, in a
reasonable time, say from 3 to 6 minutes. Therefore, for
accelerated motion,

it e @

Now, the values of 7 and ¢ involve each other, but if we
accent Wand 7'in eq. (1) the value of g becomes that used in
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eq. (7}, and we may eliminate ¢ between these equations, and
tlerive the value of 7"; whence

L e~ ooz v
et e FsiFonr o ®

Vil

Also, for the weight of maximum train and load,

P — .0009E°V?
’ !’ - . 9
g ¢ +q¢ +814.009V* 2 ®
which is the expression required.
When there is no curve on the maximum grade, ¢" is zero;
and when there is no grade, ¢’ is zero; hence for a straight level
track eq. (7) becomes

=430

%(P — .0009E V¥

T =—g1300v " u’

and eq. (8) (10)
LS

65. An engine-stage is a division of the road to which
an engine is limited, and over which it regularly hauls a train.
Its length varies, on existing roads, from 50 to 200 miles or
more, depending on the grades, on the length of the whole
line, and on the distance between points favorable for the loca-
tion of shops, etc. The average engine-stage on American
roads is not far from 75 miles. If there are to be several
engine-stages on the proposed line, the problem of maximum
economy of grade must be solved with reference to each of
them separately.

Let L = length of engine-stage in miles,

‘“ ¢ = expense per engine-mile in dollars,
‘“ A = average annual paying freight in tons moving in
one direction, and
@ = average annual paying freight in tons, moving in
the upposite direction; and if these are not equal, let 4 be
greater than «. Now 7' eq. (8)is the maximum train-load
which, at a velocity ¥, should be hauled up steepest grade 2/,

‘e

opposed to the direction of the tonnage 4; hence ]—/,1, == the
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namber of trains per annum; and since each train must go
2LA kFHiE

and return, .*. = the total train-mileage per annun.

If there were no return tonnage, the annual expense charge-

ALe

able to A would be ”7"“’ but since some of the cars return
loaded with the freight ¢, these are not chargeable to 4, and
must be deducted from the above expression. Hence if we
denote the annual expense of engine-mileage by @,

_@4 T a) Le an

in which the value of the maximum grade 2’ is involved in
the value of 7'".

But we may obtain an expression for z in terms of #'; for,
at any given velocity, the resistance, g,, on a level is equal to
the resistance due to a certain grade z,, the value of which is,
by eq. (2), for uniform motion,

_
14q0

So the resistance, ¢, to motion up a grade 2’ is equal to
33
the resistance due to some grade z = ;—4 ¢, the total resistance

heing that due to the combined grades z 4 z. Now, since
the gross weight of a maximum train, under a constant engine
power, is inversely as the resistances, we have, for conditions
of accelerated motion:

—T+E T—}—E:go:%z-}—z'
whence
1Tt — B+ 16 —2)

i 12
= o 2

in which 7", = maximum train-load on a Jevel line. Substi-
tuting this value of 7" in eq. (11) we have

e= bt @A —a)Le (19)

T2~ EE+E—1)

which is the complete expression for 2 = f (2') required.
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66. Could we also find a complete expression for y = ' (27},
we might then proceed to find, by analysis, that value of
2 which would render « 4+ y = a minimum. But the value
of ¥ cannot be formuiated, since it depends on the accidental
features of the country through which the line passes; il can
only be determined for any given value of 2z’ by an estimate
based on the survey. We therefore resort to a graphical
solurion.

Equation (13) is the equation of a curve in the plane ZX,
Fig. 2. If we assume several values of 2/, and calculate the
corresponding values of », we may lay these off by scale on
the axes of Z and X respectively, and so obtain several poinis

through which the curve of annual expense may be drawn,
We then make estimates of the cost of constructing the road
at the same values of 2/, and taking the annual interest of
each estimate as an ordinate y to OZ in the plane ZY, we lay
it off to scale at the proper height, thus obtaining a series of
points in the plane ZY, through which the curve of annual
interest on first cost may be drawn. If now we suppose the
plane ZY to be revolved to the left about the axis OZ until
it coincides with the plane OX, as in Fig. 2, we shall see
that the two curves are convex to 0Z and to each other. The
shortest horizontal line intercepted by them indicates the
minimum value of (z 4 ), and the point where this line cuts
the axis OZ indicates the corresponding value of 2/, which is
the one required. If tangents be drawn to the curves at the
points where the shortest horizontal line intersects them, the
tangents will be parallel to éach other. Any convenient scales
may be used to lay off the values of 2’ and @, provided that
the values of # and y be laid off to the same scale. It is well
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to reduce all the values of @ by an amount common to them
all, and the same with respect to values of y, before laying
them off to scale. This will bring the two curves nearer
together without altering their form.

67. To facilitate the calculation of 2, we give on the next

page a table of values of 7117 for several engines, using eq. (8)

for this purpose. The value of x is therefore found, eq. (i1)
or (18), by multiplying (24 — a) Le by the proper tabular
number, under conditions assumed as follows:

t = 10 tons of freight per car-load;

w = 18 tons per car and load;

¥ = 12 miles per hour.

For a 4-driver engine, # = 42 tons; P = 8100 lbs.

For a 6-driver engine, # = 49.5 P = 12600

For an 8-driver engine, £ = 59.4 ¢ P = 17280 *¢

Substituting these values in eq. (8), and making ¢" = 0,
we find the maximum loads of freight which the several
engines can haul up the grade whose resistance is ¢’. The
reciprocals of these loads are given in the table opposite the
grades noted in the first and last columns.

68. Since ¢’ is made zcro, the grades in the table are
assumed to be on straight lines. In locating a road, the
maximum grade should be reduced on a curve by the amount
of the equivalent-grade of the curve, eq. (4), so that the resist-
ance may be no greater on the curve than elsewhere. But
grades less than the maximum need not necessarily be reduced
for the curves upon them, unless the sum of the grade and the
curve-equivalent exceeds the maximum.

69. For an example, let us suppose that a certain engine-
stage is to be 80 miles long, and that an estimate of the cost of
construction has been made, based on a ruling or maximum
grade of 52.8 ft. per mile against the heavier traffic, and that
the annual interest on the estimate amounts to $168,000.

Let us further suppose that the average traflic in one direc-
tion is estimated at 375 000 tons per annum, and in the other
direction at 125 000 tons, that it is decided to use 6-driver
engines, and that the expense per engine-mile is estimated at
40 cents; hence (24 — a) Le = 20 000 000. We are now required
to find the most economical maximum grade.

We first select at least two other maximum grades,and having
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V=12 TABLE 0¥ RECIPROCALS OF T/, =10, w =18,
q. | B=4# . l E=4935 | pig ‘ E=50.4 | peo ‘ft 2
» | p=sg00 | U .P:]2600| C| B=1rs0 ) P ,xin:r
| :
4.0 | 0479844 0241385 | gomy | 0162847 211.20
8.9 | loasram | RHE I opseuzy |84 omsreso | 5397 | opsen
8.8 0603 |23 lomaray (SR | losiwms | 2451 200i64
8.7 | ‘o561 | BT op1520y |32 l 0146450 | 3335 | 79536
35| Garria 1834 b T840 Datli | 302 IS
HE LR R il vl
3| . ek - | T543 1 o196 ¢ 866 174.
32| ‘03270 16281 ggass I3 o015 47T 168006
31| ‘0311176 19983 || ‘0169836 | T4 o116 892 ’ 4653 | 16368
3.0 | .0206 224 ‘14 % | 0162 376 680 0112 339 4553 | 158.40
2.9 | logmised 12380 | 10155 596 G780 | L0107 884 130 18312
2.8 | co28061 (13508 || ousoss 0008 | Coossor 3300 147
2.7 | coesares |12 Torpsie | SH2I| loog9ens | 4263 (14256
2.6 | 0242005 1270 oigee ST looosors 400 | 1sviss
25 omoew TR0 Comoisms U Comoost GO | 1m0
2.4 | loprrees |17 | omaisy S0 looseoro | 4041 ‘ 126,72
HE R R
21 losiees 106701 ooross (59| omsars | 37 | 11088
20| omeme |22 core (22 gonms | 2T 1 105.60
19| lot64382 | 5878 || l0uo6 308 ‘g%ﬁ 20068 082 | 3830 | 10032
18| lowxame | 986 1] ooor11s 219310 loopisee | 3509 | “e5lo4
L7 | 5309 | 337\ ‘ooss039 05| loocroe9 | 3457 | some
16| ‘0136356 | 908 || looerova 19521 loosveoz | 38T | sula
13| 0127508 | g | 00628 oy | 0034239 | $303 | 7920
1.4 | 0119099 | go3g 0071 467 4;349 | 0000988 | 5o, | T3.92
18| ‘ot08e0 | 223 || ooeesis 45| oowneos | 330 | esies
1.2 | (0102865 | 9% || 0060 267 10044 517 63.36
11| ‘oo95104 | T8 ooszgro | 44571 lop41393 | 31 | sglos
1.0 | .0087 566 | 7088 o3 ass | 201 oomman | Do | Lo e
s ‘ ; 5 : ;
9| ‘oosoose | T3 Toosgr1 (47741 looassog | 3015 | 47ing
8| 0031 T3 looda 11871 lomeasr | 2062 495
G| a0 64| s 40 Cgest 280 | 3G
5| oos2o1s | S8 | loomors (333 omszes  IEL | 2640
3| oiba | 6313 | oo (3191 QRe  2ES | G
2| looae2e8 | S3% 4 Coopisso |37 Cooiserz | 287 | i0ls6
1| Joomsapo | 2281 oorrese (3588 lomzoes | 281 sle8
0.0 | .0022 620 l .0014 312 .0010 399 0.00

In this table T' = tons of freight for & maximum train of
fully loaded cars hauled up any grade 2’ at a velocity of 12
miles per hour ; the ratio of dead to payinE load being assumed
at 8t0 10. Hence gross load of train behind engine = 1§ T".
The track is assumed straight, hence ¢ = 0in eq. (8) for
this table, fs ;
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made an estimate of the cost of constructing the road upon
each, take the annual interest of each, as in the first case. Let
us suppose the two ruling grades thus selected to be 73.92 ft.
and 31.68 ft. per mile, or 1.4 ft. per station and 0.6 ft. per
station, and the interest on the estimates to be $145 596 and
$204 388 respectively, giving the following statement:

Gy, Y. 1st diff. 2d diff.
1.4 145 596 Zole
1.0 168 000 13 984
0.6 204 388 86 388

Interpolating by second differences, we have the complete
statement:

&8 ’ Y. I diff. y | diff, . ’ @ 1 x+y. l 2.
13 | lioss | #mo | ows | 158 ot
1.2 | 155050 5164 9102 124534

11 | 161088 $r o 115 620

1.0 168 000 7786 8;1)48 106 890 274 890 52.80
0.9 | 175786 e e 98 342 274128 4752
0.8 | 1844 A 53 8 908 274 414 2.2

. (]
0.6 | 204388 | 10408 8044 73716 31.68

The numbers in the fourth and fifth columns are obtained
as follows: the values assumed above give us (24 — @) Le =
$20 000 000, and this multiplied by the tabular differences in
the preceding table for a 6-driver engine, gives the numbers in
the fourth column. We now observe that the differences of
2 and of y increase in opposite directions, therefore at some
point they will be equal; and a simple inspection shows us that
this point is at or near the grade of 0.9, which is therefore
the grade required. We now multiply the tabular number for
0.9, and a 6-driver engine by %20 000 000, for the number in
the fifth column, and this added to the value of y on the
same line gives the sum of (2 -+ y) for the most economical
grade. This of course is not the total annual outlay of the
road, or engine-stage, because many items of expense which
are independent of a maximum grade have not been con-
sidered.
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If an 8-driver engine were to be used, and the expense per
engine-mile estimated at 50 cts., then (24 — @) Le = %25 000 000;
hence

Gy Y. ' diff, . , diff. «. A t x+y. l z.
11 | 161088 ) . |

6012 | 761 | on
1.0 | 168000 0 a 95 810 263 810 52.80
0.9 | 15T 786 7538 :

indicating a saving of $10 318 per annum in the case supposed
by using 8-driver engines, although on a steeper ruling grade.
On the other hand, should we adopt 4-driver engines, and esti-
mate the expense per engine-mile at 30 cents, we should find
the most economical grade to be 0.7 per station and (z -+ ¥)
= $203 280, showing a loss in this case of $19 152 per annum,
as compared with the results of 6-driver engines.

It should be remembered that the table § 67 is prepared on

the assumption that the ratio 1—2 = %(sl If cars are to be used
giving for full loads any other ratio, %, a new table may be
prepared by multiplying each tabular number by-i—g X 2;,.

The velocity adopted of 12 miles per hour is sufficient for
ordinary grades. When the maximum grade is very low, it
would be better to use 15 or 18 miles an hour in calculating
the value of 2.

70. Since @, eq. (11), varies directly as Z, it is important
that an engine-stage having heavy grades should be short. Its
length, however, must be consistent with the economical
length of the adjoining engine-stages, and with the amount of
work which an engine ought to perform daily. The most
favorable eondition for a road would be that in which all the
engine-stages were operated at equal expense. But if, to
secure this result, the engine-stage of heavy grades must be
unreasonably redueed in length, it will be better to adapt the
grades to the use of two engines per train.

7 1. The maximum grade 2/, opposed to the heavier tonnage
A, having been determined, we have now to consider what is
the limit to grades in the opposite direction. The engines are
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supposed to haul their maximum loads in moving the ton-
nage A4, and since the return tonnage, a, is less than A, the
engines, in returning, will not be worked to their full capacity
if they encounter no grades steeper than 2. We therefore
_ have a margin of power in the returning engines which may
be taken advantage of to cheapen the cost of construction, or
to shorten the line, by introducing grades, steeper than 2/,
against the lighter traffic.

The weight of a maximum train moving up the grade 2 is,
eq. (9), W'+ 71"; the weight of the train returning will be

v g e

Substituting this in place of (W' - 77), eq. (9), and solving for
¢, we find the resistance due to a maximum grade opposed to
the returning train. Whence, by eq. (2), if we let Z = the
maximum return grade, and make ¢" =0,

, 33 P— .0000E*V? 33
z=2 T — 81400079 (4

HEr ()T

Inasmuch as the value of Z varies with every change made
in #, the engineer, when estimating the cost of construction
upon the basis of any maximum grade 2/, should take care
that the return grade Z nowhere exceeds its limit as given by
the last equation (14). In the example, §69, 2’ = 47.52; hence
T = 208.87, eq. (8). Substituting these values, in eq. (14), we
find Z = 81.25, which is therefore the limit for return grades
in this case. 'With regard to curves on the maximum grade,
see §68.

72, Ifineq. (1) weletz = % ¢ be the grade per mile which
offers a resistance equal to the resistance to uniform motion
cn a level, we have

0014145
e Pl S e L) PR 15
2 12.‘3+(.01414+ P T) AR )
When ¥V = 20 this becomes

.B65TE®
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which is the grade down which a train, whose weight is (% -}
W T), if started at 20 miles an hour, will continue to move
at that speed without steam or brakes. As that speed is not
objectionable, so the grade z, which induces it is not, pro-
vided it does not exceed the values of 2 or Z respectively,
determined with reference to economy. For the extra work
done by the engine in ascending one grade z is utilized in
descending the next; and the net result is the same as though
the two were replaced by a uniform grade. The engineer
therefore is not warranted by economic considerations in
reducing undulating grades which do not exceed z to a uni
form grade, when to do this would cause any increase in the
cost of construction, unless z exceeds the grades 2 or Z of
maximum economy.

73. But when grades exceed 2, eq. (15}), the resulting
speeds of the maximum train become too great, and the neces-
sary application of the brakes absorbs a portion of the power
previously expended in gaining the summit, whicl is thus
worse than wasted, since it increases the wear and tear of
machinery and track. Therefore the engineer is justified in
spending a certain sum of money in reducing grades which
exceed z to that limit. A calculation of the loss of power due
to the use of brakes on a grade, and of the cost of that lost
power, together with the resulting wear and tear per annum,
will give the interest on the sum that may be justifiably spent
in reducing the grade from its position of cheapest construc-
tion. ‘

74. The limit z is not constant, but depends on the weight
of the maximum train, which in turn depends on 2. It will
not be the same in both directions unless 4 =a, giving 2’ = Z.
In the example §69, # = 49.5 and W' + 7' = 366.07; hence,
eq. (15}), z = 21.72 descending in the direction of the traffic 4.

Also W' +§ T' = 230.49, whence 2z = 23.34 descending in

the opposite direction. These are the limits in this case at
which undulating grades cease to be profitable.

75. We have finally to consider the method for selecting the
best line from several proposed routes. For this purpose we
determine thc most economical grade on each route thought
worthy of consideration, and calculate the interest on the
entire cost of constructing the line with that ruling grade, and
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also the annual expense of operating the line, and take the sum
of the two. That route is best in respect to which this sum is
the least.

76. The value of saving one mile in distance on any route
is found by dividing the sum of the annual operating expense
and the interest on the cost of construction by the rate of
interest, and the quotient by the length of the line in miles.

77. We have now fully discussed the theory and developed
the formul® necessary to the determination of the most
economical grades; but the value of the results in a given
case depend upon the correctness of the engineer’s estimates
which enter into the formule. These may seldom prove pre-
cisely accurate, yet, if he can bring them within definite
limits, he may determine the grades of maximum economy
within corresponding .limits. In the case of a finished road
and in full operation, however, the clements of first cost, of
traffic, and of operating expenses being known, an investiga-
tion by means of the foregoing formulse becomes a critical test
as to the economy of the location and grades; and should the
road fail to pay dividends, or be forced to charge Ligh rates
of toll, we can determine, though perhaps too late, to what
extent the location is chargeable with these results,

CHAPTER 1V.
LocATION.

78. A railroad is said to be located when its centre line is
established on the ground in the position which it is intended
finally to occupy. The location is made by an enginecr corps
similar in its organization to that employed on preliminary
surveys. The instruments used are also the same, except that
the transit is substituted for the compass, and usually the target
rod for the self-reading rod. The magietic needle is never
used upon the centre line, except as a rough check on the
transit work. It is used, however, to obtain the direction of
property lines, roads, and other topographical data.

79. The remarks upon transit work in the preceding
chapter apply to the running of straight lines on location. All

\
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field-work on location should be done with accuracy and
fidelity. No guesswork, nor rude approximations, are to be
tolerated. All transit points are made as secure and permanent
as possible, and the more iniportant ones are guarded by other
transit points set in safe positions near by, their distances and
directions from the main point being recorded.

The stakes for the stations are made neatly, and somewhat
uniform in size, and they are firmly driven. Sometimes a
small plug is driven down flush with the surface of the ground
to indicate the station point, and the stake is then set near by
as a witness.

In locating a very long tangent the greatest care is re-
quired to make it straight. If the tangent is produced from
point to point by backsights and foresights, the observation
should be repeated in every instance with reversed instrument,
to eliminate any possible lack of adjustment, and to check
any accidental error. (Indeed it is proper to observe this rule
on curves, as well as on tangents.) When some object in the
horizon can be used as a foresight, it is preferable to set the
instrument by this rather than by a backsight. For final loca-
tion, the line should be cleared to give as continuous a line of
sight as possible, but in case of an obstacle which cannot be
removed at the time, at least two independent methods of
passing it should be employed, so that there may be a check
upon the alignment beyond.

80. The leveller selects his benches far enough from the
line to prevent their being disturbed during the construection of
the road. They should be nearly at grade, as a rule, though it
is well toleave a bench near a water-coursc for reference in lay-
ing out masonry or trestle-work. The rodman holds the rod
at every station, and at every point on the centre line where
the slope changes dircction, so that these points may be accu-
rately defined on the profile. When he uses a target rod, he
sets the target as directed by the leveller, and after clamping
it, takes the reading. He reads to thousandths upon turning
points and benches, but only to tenths of a foot elsewhere, and
announces the readings to the leveller for record. He also
records the readings upon turning points and benches in his
own book as a eheck. At the close of each day the leveller
and rodman compare notes, and draw a profile of thé line sur-
veyed. (See also 8§ 28, 29, 30.)
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81. The fixing of the grade-lines upon the profile is
one of the most important operations connected with the loca-
tion. It is usually performed by the engineer in charge of
the locating party, as being most conversant with the general
character and detailed requirements of the line. The maxi-
mum gradiénts will have generally been determined in advance
from the preliminary data by the principles laid down in the
preceding chapter, but the position of each grade-line, relative
to the profile of the surface, must be left to the judgment and
skill of the engineer. In general, the grade-line is so placed
as to equalize the amounts of excavation and embankment,
but there are various exceptions to this rule. Thus, the exca-
vation may be in excess: first, when it is necessary to pass
under some other road or highway, the grade of which cannot
be changed; second, when valuable property is to be avoided,
the appropriation of which would cost more than the excava-
tion; third, when the grade is at the maximum near a sum-
mit, and cannot be raised parallel to itself without incurring
too great an expense for masonry, etc., at some other part of
the line. The embankment may be in excess, first, when the
country is flat and wet, in order to keep the road-bed well
drained; (the grade-line should be at least two feet above the
average level of the surface, or above high-water mark, if the
district is subject to overflow;) seecond, in approaching a
stream, where it is necessary to raise the grade above the
requirements of navigation; third, when the cuttings on the
line are largely in solid rock, and a cheaper madterial for
embankments may be conveniently had at other points;
Jourth, in a district subject to heavy drifts of snow, by which
deep cuts would be liable to be obstructed; fifth, in side-hill
work, where there is danger of land-slips; sizth, when it is
determined to supply the place of a portion of an embankment
by a timber trestle-work or other viaduct.

The apparent equality of cut and fill on the profile does not
represent an equality in fact, owing to the different bases and
slopes of the sections adopted, and to the various inclinations
of the natural surface transversely to the line. This is espe-
cially true in side-hill work, where there are both cut and fill
at every point, while the profile shows very little of either. In
the latter case it is an excellent plan to combine with the pro.
file of the centre line the profiles of parallel lines ten
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or twenty feet cither side of the centre, and drawn with differ-
ent colored inks, as these will indicate tolerably well the relative
amount of cut and fill required. But after the grade has been
thus chosen, the only safe method in side-hill work is to
actually compute the amounts of excavation and embankment
from cross-sections, mark the amount for each cut and fill on
the profile, and compare the results. Any changes required in
the grade or alignment may then be discovered and effected
before the work of construction has begun.

CHAPTER V.
SimpPLE CURVES.
A. Elementary Relations.

82, The centre line of a located road is composed alternately
of straight lines and curves.

The straight lines are called tangents because they are laid
exactly tangent to the curves. A tangent may be indefinitely
long, but should never, as a rule, be shorter than 200 feet

| between two curves which deflect in opposite directions, nor

shorter than 500 fect between curves which deflect in the same
direction. A curve should not be less than 200 feet long.
When a tangent is said to be straight, the méaning simply is
that it has no deflections to the right or left; for since it fol-
lows the surface of the ground, it evidently has as many
undulations as the ground. But if we conceive a vertical
plane to be passed through the line, a horizontal trace of this
plane will accurately represent the line; and so, if we con-
ceive a vertical cylinder to be passed through a curve on the
surface of the ground, a horizontal trace of that cylinder will
accurately represent the curve, since all distances and angles
are measured horizontally, whatever be the irregularities of
the surface. In all problems, therefore, relating to this sub-
ject, we may consider the ground to be an absolutely level
plain.

83. A Simple curve is a circular arc joining two tan-
gents. Tt isalways corzidered as limited by the two tangent
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points, and any part of it beyond these points is called the
curve produced. The first tangent point, or the point where
the curve begins, is called the Point of Cureve, and is indicated
by the initials P.C. The point where the curve cnds, and the
next tangent begins, is called the Point of Tangent, and is indi-
cated by the initials P.7. When accessible, these points are
always occupied by the transit in the course of the survey,
and the plug driven to fix the point is guarded, not only by
the usual stake bearing the number of the station, but also by
another bearing the proper initials, the ‘‘ degree” of the curve,
and an “R” or “L” to indicatc whether the deflection is to
the Right or Left.

84. A simple curve is designated either by the radius, R,
or the degree of curve, D,

The Degree of Curve, D, is an angle at the centre, sub-
tended by a chord of 100 feet. It is expressed by the number
of degrees and minutes in that angle, or in the arc of the
curve limited by the chord of 100
feet. Therefore D equals the num-
ber of degrees of are per slation.

The radius R and degree of
curve D) can be expressed in terms
of each other.

Let ab, Fig. 3, be a chord of
100 feet subtending an arc de-
scribed with a radius @o = R from the centre o. Then, by
definition the angle box = D). Bisect the angle boa by a line
og, and this line will also bisect the chord b and be perpen-
dicular to it; and in the right-angled triangle dgo we have

Fia. 3.

bg = ob X sin bog

1% _ Rsin4p

or

Hence, to find Radius in terms of Degree of Curve:
50

g5 = 16
sin +0) 16
and to find Degree of Curve tn terms of Radius:

sin 3D = 2% an

R
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It is the practice of English engineers to assume the radius
at some round number of feet and calculate the degree of curve,
which is therefore fractional. In America, on the contrary,
the degree of curve is assumed at some integral number of
degrees or minutes, and the radius deduced from this.

Erample.~—What is the radius of a 3” 20" curve?

50 log 1.698970
. 3D =1°40'" log sin 8.463665
Ans. R =1719.12 log 3.235305

Thus the second and third columns of Table IV. have beex
calculated.
FErample—What is the degree of curve when the radius is
600 feet?
. 50 log 1.698970 -
R =600 log 2.778151

3D = 4° 46’ 48".73 log sin 8.920819
Ans. D =9°33 37".46

Measurement of Curves. .

85. A railroad curve is always assumed to be measured with
a 100-foot chain, and as the chain is stretched straight between
stations it cannot coincide with the arc of the curve, but
forms a chord to the arc, as in Fig. 3. Consequently the
curve as measured from one tangent point to the other is an
inscribed polygon of equal sides, cach side being 100 feet.
The sum of these sides (with any fraction of a side at either
end of the curve) is called the Length of curve, L. This length
I, is evidently a little less than the length of the actual arc
between the same points, but the latter we'very seldom have
occasion to consider.

86. If the chain lengths were taken on the arc instead of as
chords of the curve, the degree of curve would be inversely
proportional to the radius, and since the arc whose length is
equal to radius contains 57.8 degrees nearly, we should have |

D2 57°.8 1000

5730
=

or
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a convenient formula, but only approximately true when D is
small, and seriously at fault when D is large; the error in-
volved being proportional to the difference in length of a
100-foot chord, and the arc which it subtends.

87. The Central Angle of a simple curve is the angle
at the centre ineluded between the radii which pass through the
tangent points (P.C.) and (P.7.). 1t is therefore equal to the
number of degrees contained in the entire are of the curve
between those points. The central angle will be designatéd
by the Greek letter A (delta).

From the definitions of the length and degree of curve we
have the proportion,

Dia i 100 : L.

Hence, to find the Length of curve in terms of the central
angle:
A
= =5 18
L =100 4 18
Frample.—What is the length of a 4° curve when the cen-
tral angle is 29°?
D=4°and A =29° { 4)2900
Ans. L =17 stations 4- 25 feet {725 feet.

To find the Central angle in terms of the length and degree
of curve:
DL
= DL 19
100 (i
Frample.—What is the central angle of a 5° curve 730 feet
long?
. e ) X 130
D=5, I, =130, e
Ans. A = 36° 30

To find the Degree of curve in terms of the length and
central angle:

—36°.5

E 20
J)._100L (20)

Heample—What is the degree of a curve 8 stations long,
and having a central angle of 26° 40'?

p 26°.666
A e b — 3,
L = 800, = 26°.666, 100 800 3°.333

Ans. D = 3° 20
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88. If two tangents, joined by a simple curve, are produced
(onc forward and the other backward) until they intersect, the
point of intersection, V' (Fig. 4),
is called the vertex, and the
exterior or deflection angle
which they make with each
D other is equal to the central

i % v angle, A
H The Tangent-distance,
G 7, is the distance from the
e \\ [T  vertex to either tangent point;
P Y thus in Fig. 4, 7’= AV =VB.
\ The Long Chord, C, is
Y4  the line AB joining the two
tangent points.
Fia. 4. The Middle-ordinate,
M, is the line G'11, joiring the
middle point of the long chord with the middle point of the
curve,

The External distance, Z, is the line HV, joining the
middle point of the curve with the vertex.

We observe that both the middle-ordinate, M, and the
external distance, %, are on the radial line joining the centre,
0, with the vertex, V, and that this line is perpendicular to
the long chord, (; also, that it bisects the central angle
AOB = A, and its supplement AVB. (Tab.1.14) We also
observe that the angle VAB= VBA =3} (Tab. L 20); and
if in the figure wé draw the two chords AH and BII, the
angle BAH equals one half the angle BOH, or BAH = ABH =
1A (Tab. 1. 18); also the angle VAH = VBH =1}A.

89. If we have laid out two tangents on the ground, inter.
secting at ¥, and have measured the angle, A, between them,
we may then assume any other one of the clements of a
siraple curve before mentioned, and calculate the rest. If
we assume D, for instance, we then find R by eq. (16) or by
Table IV.

. Then, having A and R, we may procced to calculate the
other elements as they are needed.

90. 7o find the Tangent-distance in terms of the
Radius and Central Angle:

.



SIMPLE CURVES. ; 47

In the right-angled triangle VOA, Fig. 4, we have

VA = 04 X tan' VOA
T_ = Rtan { A (21)

Otherwise, approzimately: In Table V1., opposite the central
angle, take the value of 7' for a 1° curve and divide it by the
degree of curve D). If desirable, add the correction taken
from Table V., corresponding to D.

Example.—What is the tangent distance of a 4° curve with
a central angle of 30°?

D=4 R (Table IV.) log 3.156151

A =30°, 1A =15  log tan 9.428052

Ans. T = 383.89 feet log  2.584203

Otherwise: :

By Table VI. 41535.3
Approximate ans. 383.82
Correction from Table V. .08

Ans. T= 383.90 feet.

91. To find the Long Chord C, in terms of Radius and
Central Angle:
In the right-angled triangle BOG, Fig. 4, we have

BG = BO X sin BO@
30 =Rsin A
. 0=2Rsin}a @2

or

But in cgse A can be divided by D without a remainder,
that is, if the eurve contains an exact number of stations (not
exceeding 12), we may take the long chord at once from
Table VII.

Erample—What is the long chord of a 3° 20" curve with a

~

central angle of 36° 40’ ? '

. 9 log  0.301030
D =320, R(Tab.IV.) log  3.235305
A =36° 40, 3 A =18° 20 log sin 9.497682

Ans. € = 1081.48 feet log 3.034017
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Otherwise:
A 86§

b7 Il T 11 stations
And by Table VII. ¢ = 1081.48.

. 92, To find the Middle-ordinate M, in terms of Radius
and Central Angle:

It is evident from the figure that if the radius OII were
unity, the line GH would be the nat. versed sine of the arc
BH. But the arc BH measures the angle BOH =} A, and
OH = R;

. M= Rvers }a (23)

But in case A can be divided by D without a remainder,
that is, if the curve contains an exact number of stations (not
exceeding 12), we may take the middlc-ordinate at once from
Table VIIL '

Erample.—What is the middle-ordinate of a 4° 30" curve
with a central angle of 40° 30'?

D= 430, R(Tab.IV) log 3.105022
A =40° 30/, 3A = 20° 15" log vers 8.791049

Ans. M = 78.117 1.896071

Otherwise:
: A 40.5
ﬁ = '—i—.'s = 9 stations

and by Tab. VIIL M = T8.717

93. 7o find the External Distance E in ferms of
Radius and Central Angle,

It is'evident from the figure that if the radius 04 were
unity, the portion XV of the secant line OV would be the
external secant of the arc AZI. But the arc AI{ measures the
angle AOH= 1A, and 04 =R;

‘. B= Rexsec}a (24)

Otherwise, approximately:

In Table VI., opposite the central angle, take the value of
E for a 1° curve, and divide it by the degree of curve D.
If desirable, add the proper correction corresponding to D,
taken from Table V.
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E‘xamplé.——What is the external distance % of a 7° 30" curve
when the central angle is 60° ?

D =730, R(Tab.IV.)log 2.883371

A=T60w 1a =380° logex sec 9.189492
Ans. B =118.27 feet log 2.072863

Otherwise:

By Tab. VL 7.5)886.38

Approximate ans. 118.184

Correction for D = 7° 30’ (Tab. V.) .084
Ans. B = 118.268

94. But, instead of assuming D or R, we may prefer, or may
find it necessary to assume, some other element of the curve,
the central angle belng given.

If we assume the tangent'd'istance, then:

95. 1o find the Radius and Degree of Curve in lerms
of the Tangent-distance and Central Angle.

From eq. (21), and by Table II. 40, we have

R=Tecot}a ' (25)

Otherwise, approximately.
Divide the tangent of a 1° curve found opposite the value of
. A in Table VI, by the assumed tangent distance; the
s quotient will be the degree of curve in degrees and dec1mals
§ Erample.—The exterior angle at the vertex is 54°, and the
p \ tangent distance must be about 700 feet. What shall be the
~ degree of curve?

A =04, 1A =27 log cot 0.292834
T = 700 2.845098
log R = 3.137932 ‘
Ans. By Table IV D=410+
Otherwise:
By Table VI. 700)2019.4
Ans. D = 4° 10" 15" 4.1706

But as it is difficult to lay out a curve when D is fractional,

we discard the fraction and assume 4° 10’ as the value of D.
o7
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This may require us to recalculate the value of 7', which we
do by eq. (21) and find 7' = 700.8 feet log 2.845596. If the
other elements are required, they may be calculated by eqs.
(22), (23). (24), or directly from 7"and A, as follows:

96. Tvfind the External distance E, in terms of the
Tangent-distance and Central Angle.

In Fig. 5 we have given

AOB = n and AV =T, to find
HV=FE 1In the diagram draw
the chord AH, and through X draw
a tangent line to intersect 04 pro-
duced in 7, and join VI. -

Then I is parallel to BA, and
since HI = AV =T,and Al = HV
= FE, VI is parallel to A4, and
. VI = HAB = }na. (Tab. I 18)
In the right-angled triangle VHI we have

Fia. 5.

HYV = HI X tan VIl
or E= Ttan }A (26)

Erample.—The angle at the vertex being 54° and the tan-
gent-distance 700.80 feet, how far will the curve pass from
the vertex ?

T = '700.80 (from last example) 2.845596
A =054 A =13° 30" log tan 9.380854

Ans. K =168.25 feet log 2.225950

(For the formul® by which to find the long chord and mid-
dle-ordinate in terms of the tangent-distance and central angle,
see Table III. 12 and 13.)

97. Again, it may be necessary to assume the ezfernal dis-
tance in order to determine the proper degree of curve.

To find the Radius and Degree of Curve ¢n terms of
the External distance and Central Angle:

. Byeq. (4 -
B

G 4 ks g 9
o ex sec 3 A @n
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Otherwise:

In Table VI. divide the external distance of a 1° curve,
opposite the given value of A, by the assumed external dis-
tance; the quotient is the degree of curve required.

Erample.—The angle at the vertex being 24° 80, the curve is
desired to pass at about 65 feet from the vertex. What is the
proper degree of curve ?

E =65 log 1.812913
A = 24° 30/, 1A =12° 15 log ex sec 8.867845
log R = 3.445568
Ans. By Table IV. D = 2° 08" +
Otherwise:
By Table VI. 65)133.50
Ans. D= 2° 03 14" 2°.0538

‘We may therefore assume a 2° curve, unless requlred by
the circumstances to be more exact, when we mlghﬁ use a
2° 03' curve. Assuming a 2° curve, we have by eq. (24)

E=66.75 log 1.824460

Having decided on the degree of curve, we may calculate
the remaining elements by eqgs. (21), (22), (23), which is always
the better way, but we may calculate them directly from &
and A.

98. To find the Tangent-distance in terms of the
External distance and Central Angle:

From eq. (26), and by Table IL. 40,

T'=Ecot 1A (8)

Ezxample.—The angle at the vertex is 24° 30', and the curve
passes 66.75 feet from the vertex. How far are the tangent
points from the vertex ?

E = 66.75 (from last example) log 1.824460
A =24°30", 1A =6°07 30" log cot 0.969358

Ans. T = 622.04 feet 2.793818

99. Remark—Eqs. (27) and (28) are particularly useful in
defining the curve of a railroad track where all original
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points are lost. Produce the centre lines of the tangents of
the curve to an intersection V) and there measure the angle A.
Bisect its supplement A VB, and measure the distance on the
bisecting line from V to the centre line of the track. This
will give VH= E. Then R and 7 may be calculated, and the
distance 7' laid off from ¥ on the tangents, giving the tangent
points A and B.

(For the formul®e by which to find the long chord and mid-
dle-ordinate in terms of Z and A, see Table III. 16 and 17.)

100. Again, having only the central angle given, we may
assume the long chord, or the middle-ordinate, and from either
of these and the central angle calculate the remaining ele-
ments, Or, finally, the central angle being unknown, we may
suppose any two of the linear elements given, and from these
calculate the rest. As such problems have little practical
value, their discussion is omitted. The requisite formula for
their solution are given in Table IIL., and the veritication of
them is suggested as a profitable exercise to the student.

B. Location of Curves by Deflection Angles.

101. In order that the stakes at the extremities of the
100-foot chords, by which the curve is measured, shall be set
exactly on the arc of the curve
by transit observation, it is neces-
sary at the point of curve, 4, to
deflect certain definite angles
from the tangent AV. Let us
suppose that in the curve AR,
Fig. 6, the points 4, a, b, ¢, d,
etc., indicate the proper posi-
tions of the stakes 100 feet apart,

- and that OA is the radius of the
curve. In the diagram join Oq,
Ob, etc., and also Aa, ab, be, ete.
Then, by definition, the angle A0z = D, and by Geom.
(Tab. 1. 20 and 11) the angle VAa = }D. Therefore if
we set the transit at 4, and deflect from AV the angle
1D, we shall get the direction of the chord Ae, on which by
measuring 100 feet from A we fix the stake, a, in its true
position on the curve. So again, since the angle a0b, at
the centre, = I, the angle aAb, at the circumference, = }.D.

Fie. 6.

.
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If therefore, with the transit at A4, we deflect the angle 3.0
from the chord Ae, we shall get the direction of the chord
Ab; and when the stake b is on this chord it will also be on
the curve, if & is 100 feet distant from ¢. Thus, in general,
we may fix the position of any stake on the curve, by deflect-
ing an angle 1D from the preceding stake, and at the same
time measuring a chain’s length from it,—the chain giving
the distance, while the instrument at 4 gives the direction of
the point.

1D is called the Deflection-angle of the curve; so that in
any curve, the deflection-angle is equal to one half the degree of
curve.

102, Since each additional station on the curve requires
an additional deflection-angle, the proper deflection to be made
at the tangent point from the tungent to any stake on the
curve is equal to the deflection-angle of the curve multiplied
by the number of stations in the curve up to that stake; or it
is equal to one half the angle at the centre subtended by the
included arc of the curve.

103. It may happen that all the stations of a curve are not
visible from the tangent point, A. When this is the case g
new transit-point must be prepared at some point on the
curve, by driving a plug and centre in the usual manner, and
the transit moved up to it. Let us suppose that the point d,
Fig. 6, has been selected for a transit-point, and that the
transit has been set up over it, Before the curve can be run
any farther, it is necessary to find the direction of a tangent to
the curve at the point . Forthis purpose we deflect from
chord dA an angle Adz equal to the angle VAd previously
deflected to fix the point d. (Tab.1.16.) Orwe may adopt the
following :

Rule: 7o find the direction of the tangent o a
curve at the extremity of a given chord, deflect from the chord an
angle equal to one half the angle at the centre subtended by the
ehord. (Tab. 1. 20.)

Having thus found the direction of the auxiliary fangent
2dz, we proceed to deflect from de, (3D) for the next station e,
2 (1D) for station f, 3(}D) for station g, etc., as before. When
the end of the curve is reached, a transit-point is set at the
Point of Tangent, after which it only remains to find the
direction of the tangent, by the above rule. Thus if g is to be
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the point of tangent, we obtain the direction of the tangent by
deflecting from the chord gd an angle equal to 2dy, or to
4 d0g. If this tangent VB was already established, the line
gz thus obtained should coincide with it; and if it does so,
the correctness of our work is proved.

104. The centre line is measured, and the stations num-
bered regularly and continuously through tangents and
curves from the starting point to the end of the work. It
therefore frequently happens that a curve will neither begin
nor end at an even station, but at some intermediate point, or
plus distance,

If the Point of Curve occurs a certain number of feet
beyond a station, the first chord on the curve is composed of
the remaining number of feet required to make 100.

Any chord less than 100 feet is called a subchord.

If a curve ends with a subchord, the remainder of the 100
feet must be laid off on the tangent from the Point of Tangent
to give the position of the next station, so that the stations
may everywhere be 100 feet apart.

105, The deflection to be made for a subchord i equal to one
half the arc it subtends.
Let ¢ = length of any subchord in feet. *
‘“ d = angle at centre subtended by subchord.
" Then, from eq. (22), by analogy

¢ =2 Rsin }d R9)
But by eq. (16) 2R = ﬁ%
o ANME sin 1d
.. ¢ =100 3D (30)
i ¢
LTy et .
. 8in}d = oo Sin 1D (31)

‘When D does not exceed 8° or 10°, we may assume without
serious error that the angles are to each other as their sines,
and the last two equations become

| (approx.) ¢ =100 — (32)
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[
and jd=2-GD) 33)

In curves sharper than 10° per station, the error involved in
this assumption becomes apparent and must be corrected.

106. If curves were measured on the actual arc, then
egs. (32) and (33) would be true in all cases; but since a curve
is measured by 100-ft. chords, it is evident that if a 100-ft.
chord between any two stations were replaced by two or more
subchords, these taken together would be longer than 100 feet,
since they are not in the same straight line. Let us conceive
the actual arc of one station to be divided into 100 equal
parts; since the arc is longer than the chord, each part will be
slightly longer than one foot. Now if we take an arc contain-
ing any number of these parts (less than 100), the nominal
length of the corresponding subchord in feet will equal the
number of parts, and the deflection for the subchord will be
proportional to the number of parts which the arc contains.
The deflection therefore will be exactly given by eq. (33) if in
that equation we let ¢ equal the number of parts in the are, or
the nominal length of the subchord in feet. Having thus
obtained the correct value of (}d), we may introduce it into
eq. (29) or (30), and obtain the #rue value of the subchord,
which will always be a little greater than its nominal value.

Suppose, for instance, that the arc of one station is to be
divided into four equal portions; then each subchord will be
nominally 25 feet long; and by eq. (33)

=18 (D) =1 4D) (34)

which is the correct value of the deflection, whatever be the
degree of curve. Substituting this value in eq. (29) or (30) we
obtain the frue value of the subchord, ¢, a little greater than
25; the excess is called the correction of the nominal length.
107. This correction for any given subchord bears an
almost constant ratio to the excess of are per station, what-
ever be the degree of curve. These ratios are shown in the
following table for a series of subchords, and Table VII. gives
the length of actual are per station for various degrees of
curve. Subtracting 100 we have the excess of arc per station,
and multiplying this excess by the ratio corresponding to the
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nominal length of subchord we obtain as a product the proper
cottection for the subchord.

TABLE OF THE RATIOS OF CORRECTIONS OF SUBCHORDS TO
THE EXCESS OF ARC PER STATION,

Nominal | Nominal Nominal
Length of | Ratio. || Lengthof| Ratio. Length of | Ratio.
Subchord. ’ Subchord. Subchord.
0 .000 35 307 70 .356
5 050 40 336 5 327
10 .099 | 43 .358 80 287
15 147 50 874 85 235
20 192 55 .383 90 169
P 234 60 .383 95 092
30 28 65 374 100 000

‘We observe that the largest correction is required by a sub-
chiord between 55 and 60 feet in length.

Erample.—It is proposed to run a 14° curve with a 50-ft,
chain. What correction must be added to the cl}ain?

D=1 D=1 g,a:%% X T° = 8°.5 = 8° 30
By eq. (30)

Ans. Correction = .093

Or, by Table VII, length of arc = 100.249
excess of arc = .249

and by above table, ratio for 50 feet =  .374
Ans. Correction = product =RIN=093

Example.~The P.C. of an 18° curve is fixed at 4 55 feet
beyond a station. What are the nominal and true values of
the first subchord, and what the proper deflection?

Nominal value = 100 — 55 = 45 feet

Deflection = }d = 2 X 9° =4°.05 = 4° 03’

100
atid by eq. (30)

True value = ¢ = 100 i

T e 45.148
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Or, by Table VIL, excess of are =  .412
by above table, ratio for 45 feet = .358
Correction = product = .147

Ans. True value of subchord = 45.147

Erample.—The last deflection at the end of a 40° curve is
found to be 6° 30’. 'What are the nominal and true values of
the last subehord?

Here 3d = 6° 30', and by eq. (32)

6.5

Nominal value, ¢ = 100 P = 32.5 feet
By eq. (30)
4 sin 6° 30’
True value, ¢ = 100 —; — = 33,098 feet
sin 20
Or by Table VII., excess of arc 40° = 2.060
by above table, ratio for 32.5 feet = .290
Correction = product =  .597
4

Nominal value of subchord = 82.5

True value = 33.097

108, For convenience in making defleetions, the zeros of
the instrument should always be together when the line of
collimation coincides with a tangent to the eurve. Thus, in
beginning a curve, the transit being set at the P.C. zeros
together, and line of collimation on the tangent, the read-
ing of the limb for any station on the curve has simply to be
made equal to the proper deflection from the tangent for that
station. After the transit is moved forward from the P.C.
and set at another point of the curve, the vernier is set to a
reading equal to the reading used to establish that point, but
on the opposite side of the zero of the limb, and the line of
collimation is set on the P.C. just left. Then by simply turn-
ing the zeros together again, the line of collimation will be
made to coincide with a tangent to the eurve through the new
point, and the deflections for the succeeding stations can be
read off directly, as before. Thus any number of transit
points may be used in locating a curve by finding the direc-
tion of the tangent through each by a deflection from the pre-
ceding point, until finally the P. 7. is reached, where another
deflection gives the direction of the located tangent.
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109. The assistant engineer keeps neat and systematic
field-notes of all his operations with the transit in running
curves. The numbers of the stations are written in regular
order up the first column of the left-hand page of the field-
book, using every line, or every other line, as may be pre-
ferred. The second column contains the initials of each
transit point on the same line as the number of its station, or
between lines, if the point occurs between two stations. In
the third column, and opposite the initials in the second, is
recorded the station and plus distance, if any, of each transit
point. The fourth.column contains, opposite the “ P.C.,” the
degree of curve used, and an R or L, showing whether the
curve deflects to the right or left; the fifth column contains
the readings or deflections made from a tangent to set each
station or point, written on the same line as the number of
that station or point; and the sixth column contains the cen-
tral angle of the whole curve, A, written opposite the «“ P.7.”
) The plus distances recorded in
the third column are always the
nominal lengths of subchords, but
if the true lengths have been calcu.
lated and laid off on the ground,
these should also be recorded in
parenthesis. On the right-hand
page are recorded the calculated
bearings of the tangents and their
magnetic bearings; and on the
centre line of the page, opposite
the record of each transit point, a
dot is made with a small circle
around it, to show the relative position of the several points
on the ground. Some slight topographical sketches may be
made, indicating the more prominent objects, but the full
sketches should be taken by the topographer in a separate book.

110. Since the deflections start from zero at each new
transit point, the sum of the deflections by which the transit
points are located will be equal to one half the central
angle of the curve.

111. The stations on a curve may be located by deflec-
tions only, without linear measurements. For this purpose
two transits are set at two transit points on the curve, as 4

Fia. 7.
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and B, Fig. 7, and the proper deflections for any station are
made with both instruments, the station being located by find-
ing the intersection of the two lines of collimation.

This method requires that the two transit points shall have
been previously established, that their distance from each
other shall be known, that they shall be visible from each
other, and that they shall both command a view of the stations
to be located. It is not therefore generally useful, but may
be resorted to to set stations which fall where chaining cannot
be accurately done, as in water or swamps. The chord join-
ing the two transit points becomes, in fact, a base-line, and the
deflections form a series of triangulations.

C. Location of Curves by Offsets.

112. A curve may be located by linear measurement only,
without angular deflections. There are four general methods,
viz.:

By offsets from the chords produced

By middle-ordinates,

By offsets from the tangents, and

By orainates from a long chord.

To locate a curve by offsets from the chords
produced.

When the curve begins and ends at a station.

113. Let 4, Fig.8, be the P. (. of a curve taken at a statlon,
to locate the other stations, @, b, ¢,
etc. The chords Aa, ab, be, etc.,
each equal 100 feet, and since the
angle A0a = D, the angle VAa =
$D. (Tab. 1. 20.) Taking an off-
set ax = {, perpendicular to the
tangent, we have in the right-
angled triangle Aza.

ax = Aa X sin 1D

or
t =100 sin }D  (34)
The offset ¢ is called the tangent Poc
offset, and its value is givenfor all w
degrees of curve in Tab. IV.col. 4. Fae. 8,

If the curve were produced
backward from A4, 100 feet to station z, the offset zy would
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equal ¢; and if the chord 24 were produced 100 feet from A
to o', the offset a'@ would also equal ¢. Therefore the distance
a¢' = 2t, and the angle ada’ = D. So if we produce the chord
Aa 100 feet to &', the distance b0’ = 21,

7o lay out the curve, stretch the chain from A, keeping the
forward end at a perpendicular distance, ¢, from the line of the
tangent to locate station @. Then find the point &' by stretch-
Ing the chain from a in line with @ and A4, and then stretching
the chain again from «, fix its forward end at a distance from
o' equal to 2f, This gives station 6. In the same way find
other stations.

‘When the last station, as d, of the curve is reached, produce
the curve one station farther to ¢’. Then the tangent IL:luroui_,rh
d is parallel to the chord ce”, and laying off ¢ from ¢ and ¢" per-
pendicular to this chord, the tangent ¢"¢ is found. If the work
has been correctly done the tangent ¢’¢ will coincide with the
given tangent VB.

When the curve begins or ends with « subchord.

114. Let .1, Fig. 9, be the P C. and A« the first sub.
chord = ¢, and the angle VAa = }d, and let the offset vx = ¢,
Then

ty =csin id (35)

Producing the curve backward to the nearest station 2z, we
have another subchord Az = (100 — ¢), and the angle yAz =}
(D = @), and putting the offset yz =7,

ta= (100 — ¢) sin } (D — d) (36)

Laying off the two subchords on the ground, and making
the proper offsets, ¢ and ¢, at the
same time, we fix the position of
the two stations ¢ and z on the
curve ; after which we may pro-
duce the chord za 100 feet to ¥,
and proceed as before until the
curve is finished.

If the curve ends with a sub-
chord, as dB, produce the curve
to the first station beyond B, as
¢’, then calculate the two offsets
for the two subchords Bd and Be’,
and lay them off from & and ¢
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perpendicular to the supposed direction of the tangent. If
the line d’e so obtained coincides with the given tangent, VB,
the work is correct.

115. We may find the values of ¢, and ¢, otherwise than
by the formul® above, for in Fig. 8 we have shown that the
angle ada’ = a0A, and since these triangles are isosceles,
they are similar; therefore

Fig. 8, OA : An:: Aa : od'
or R :100::100 : 2¢
5 _ (t00y
: t = @n
and similarly, Fig. 9,
62
“=3E o
Hence )
t, 1t c?: (1000
. i
Pu b= o0y (39)

Thus ¢, may be found by multiplying the square of the sub-
chord by the value of ¢ given in Tab. IV., and dividing the
product by 10000. As ¢ is always less than 100, so ¢, is always
less than ¢ .

116. In cgs. (85), (38), and (39) it is customary t0 use the
nominal values of ¢, and this can produce no errorin for ¢,
exceeding -005, when the degree of curve does not exceed ten
degrees. In the case of a very sharp curve, the formul® eqgs.
(40) and (41) are preferable.

To locate a curve by middle-ordinates.

When the curve begins and ends at o station.

117. InFig. 10, let A be the P.C. at a station, and let @ and
¢ be the next stations on the curve cither way from A. Then,
since 2y = awx = ¢, the chord za is parallel to the tangent AV,
and Ag = ¢. Hence, having any two consecutive stations on
the curve, as z and 4, we may lay off the tangent offset ¢
from A to g on the radius, and find the next station, @, 100 feet
from A on the line zg produced. Then laying off ak = ¢ on
the radius a0, a point on the line A% produced and 100 feet
from ¢ will be the next station &
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On reaching the end of the curve, the tangent is found
precisely as described in the method by chords produced, § 113.
In Fig. 10, we observe that if the radius 04 were unity, g4
would be the versed sine of the angle 204 = D. But g4 = ¢,

.*.t=Rvers D (40)

When the curve begins or ends with a subchord,
118. Let 4, Fig. 11, be the P,C,, and ¢ and z the nearess

stations. Then Ae = ¢, the first subchord, and ¢ 04 = d, and
by analogy, we have from the last equation, if ez = ¢, and
gy =1,

t, = Rversd }

t, = R vers(D—ad) @1

or eq. (39) may be used if preferred.

Having found the two stations, @ and 2, on the curve, lay
off from the forward station @, ek = ¢ on the radius, and so
tontinue the curve as described above.

‘When the end of the curve is reached, produce the curve to
the next station beyond, and find the tangent by offsets as
described in the previous method, §114.

To locate a curve by offsets from the tangents.

When the curve begins at a station.
119. Let A, Fig. 12, be the P.C. at a station. Then the
next station @ is located Dby the tangent offset ¢, taken from
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Tab. IV., or calculated by eq. (40). To calculate the distances
and offsets for the following stations, , ¢, etc., in the diagram
draw lines through the points b, ¢, etc., parallel to the tangent
AV, interseeting the radius 40 in g, ¢, etc., and draw the
lines b2/, ¢x", ete., perpendicular to the tangent.

Then
Ax' = ¢'b = 0b sin DOA
or
A2’ = R sin 2D
Az" = Rsin 3D @)
and ete. ete.
Also,
bl =g'A = Ob vers. b0A
or |
t = R vers 2D
t" = R vers 3D 43
and ete. ete.

But these calculations may be avoided, for as twice ag equals
the chord of two stations, so twice g’ equals the chord of four
stations, and twice ¢g” the chord
of six stations, etc. So also as Ag
is the middle-ordinate of two sta-
tion, Ag' is the middle-ordinate of
four, and Ag" the middle-ordinate
of six stations, etc. Hence the
rule:

The distance on the tangent from
the tangent point to the perpendicu-
lar offset for the extremity of any
are is equal to one half the long
chord for twice that arc; and the
offset from the tangent to the ex-
tremity of any arc s equal to the
middle-ordinate of twice that are.

The long chords and middle-ordinates may be taken from
"Mables VIL. and VIIL for 2, 4, 6, 8, etc., stations, when the
P.0, is at a station, or for 1, 8, 5, 7, etc., stations, when the
P.C. is at - 50, or half a station.

If the offsets from the first tangent A ¥ prove inconveniently
long, the second half of the curve may be located from the
other tangent BV, beginning at the point of tangent B, and
closing on a station located from the first tangent,

Fia. 12,
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When the curve begins with a subchord.
120, If d=the angle at centre, subtended by the first
subehord, we have for the distances on the tangent (Fig. 13)

Az = Rsind 1

Az’ = Rsin (d -+ D) (44
Az" = R sin (d + 2D)
ete. ete.
and for the offsets (Fig. 11)
t, = Rversd
t = Rvers(d-+ D) @5)
t" = R vers (d 4 2D)
ete. ete.

If the first subchord equals 50 feet (nominal), then d =3.D,
and the Tables VII. and VIII. may be used as explained

v
B e B i /
v S g
v k VRN
i KA
@ W S AN
- gl . \\ N, 3 N d
x f' N, 4 S, A
N /A e
x’ ¢ S
d > ‘\{;”\b
x ¢!
N\Y
0 A 0 a’ 1
Fia, 13, Fia. 14,

above. These tables may be used in any case, by adopting a
temporary tangent through any station, and laying off the dis-
tances on this, and making the offsets from it.

‘When a curve is located by offsets the chain shiould be car-
ried around the curve, if possible, to prove that the stations
are 100 feet apart,

To locate a curve by ordinates from a long

chord.

When the curve begins and ends at a station.

121, In Fig. 14 draw the long chord AB, joining the tan-
gent points, and from this draw ordinates to all the stations on
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the curve. We then require to know the several distances on
the long chord Aa’, a'd), b'c', ete., and the length of ordmate
at each point.

Let 0 = the long chord 428, then eq. (22)

C=2Rsin 1A

If @ is the second station and ¢ next to the last on the curve,
join a7, and let the chord a2 = (. Then since the arc A« =
ik = D, the angle at the centre subtended by C" is (A — 2D,

' =R2Rsin } (A —2D)
Again, if we join b and % the next stations and let o = C"
0"=2Rsin } (A — 4D)

and so on for other chords.
Since d¢' = ki, O = ' + 24a’

Similarly,

Thus we continue to find the distances up to the middle of
the curve, after which they repeat themselves in inverse
order.

122, When the long chord ), subtends an even number of
stations (as 10 in Fig. 14), the middle ordinate of the chord is
the ordinate of the middle station, as e. Since the chords AB
and a7 are parallel, the ordinate a'a or 77 is evidently equal to
the differcnce of the middle ordinates of these chords.

Let M, M', M", etc., be the middle-ordinates of the chords
C (', 0" etc. Then cq. (28)

M =Rversin
M' = Rvers } (o —2D)
M" = Rvers } (Ao —4D)

etc., ete.
And da=1i=M—M
Vo =hh=M—M
ete.  ete: ete.

The values of the chords and middle-ordinates may be taken
at once from Tables VII, and VIII,
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Ezxample.—1t is required to locate a 4 degree curve ot ten
stations by offsets from the long chord.
By Table VI1L.:
Diff. 14Diff.

ta. 0 = .
10)sta 980.014 1 o011 | 95.105 = Ad = i

g 0i = 789.803
2 . - :9, cpy | 194059 | 07.080=a¥ =ik
= 9Yo.
4 < i agg gy | 196:962 | 98.481=0¢ =1y
o 0“‘ 199'8% 198.904 | 99.452 =c'd = ¢f
—_= eX|
: .87 99.930 = d'¢ = f¢
0 « o —000.000 | 0087 ¢=7
From Table VIIL.:
Dift,
10 sta. M =86.402
8 « M = 55.500 30.902 =da=1%
6 « Mt = 31.308 55.094 =bb =hh
4 « M = 13.943 72.459 —dc =gyg
g « M = 3.490 82.912 =dd = ff
0 « MY = 0.000 86.402 =de

123. When the long chord C subtends an odd number of
stations, the middle ordinate will fall half-way between two
stations, and need not be laid off.

If the ordinates near the middle of the curve prove incon-
veniently long, we may subtract M — M', M'—M", etc., and so
obtain in Fig. 14 a'a, 0", ¢’c, etc. We then lay off Aa/, a'a,
ab’, b"b, be", ete., turning a right angle at every point. The
chain should be carried along the curve at the same time to
make the stations 100 feet apart.

' Hrample.—1t is required to locate a 10-degree curve of nine
stations by offsets from the long chord.

By Table VII. .

3 Diff. 14Diff.
9 sta. 811.314
7 ¢ 658.100 153.209 76.604= Ad'
5 ¢ 484.900 173.205 86.603 = o'b’
3 < 996.962 187.938 93.969 etc.
1 ¢ 100.000 196.962 98.481
0 “  0.000 £100.000 50.000
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By Table VIIL:

Dift.
9 sta, 168.029 64.279
7 ¢ 103.750 50.000
5 ¢ 53.750 34.202
3 “ 19.548 17.365
e 2.183 2.183
0 “  0.000

=a'a

=b"b

S
etc.

124. The tables can be used equally well when the curve
both begins and ends with a half station ; also to locate
half-station points throughout the curve, but in the latter case
the numbers are taken from consecutive columns of the tables

instead of from alternate col-
umns, as in the above examples,

When the curve begins or ends
with any subchord.

125. Let A, Fig. 15, be the
P.C. and Aa=c¢ the first sub-
chord, and d the angle it sub-
tends at the centre. In the dia-
gram draw the long chord AB,
and the ordinates to each sta-
tion, and through each station
draw a line parallel to AB, and
let AOB= A.

Since the angle VAB = { A and

B,
A
e \
v
"
d’ € //c
d/l
£ N
b
a
al
A4
Fia. 15.

VAa = 1d, theangle aAB =} (A — d). The deflection angle
from the subchord Aa produced to the chord ab is 4 (@4 D),
the deflection angle between any two consecutive chords of
100 feet is 3 (D -+ D)= D. Therefore the angle

bad" =3 (A —d)— 3@+ D)=1(a —2d—D)

che" = 3 (A — 20 —D) — 3 @D)=3(a —2d —3D)

cdd" =3 (A — 24 —3D) — } @D) =1 (A — 2d— 5D)

etc. etc.

ete.
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Solving the several right-angled triangles we have, Fig. 15,

Aa'=¢. cos}(A —d)
ab” =100 cos + (& —2d— D)

be" =100 cos } (A — 2d — 3D) (46)
dd" =100 cos § (A — 2d — 5D)
etc., ete.,

And also
ada=c. sin}(a —d)
"0 =100 sin4 (Ao —2d — D)

¢"c =100 sin§ (A — Rd — 31D) (€'rs)
d'c=100sin 1 (A — 2d — 5D)
ete., ete.,

When the middle point of the cturve i3 passed the minus
quantities in the parentheses become greater than A, making
the parentheses negative, and, therefore, the sines negative,
and indicating that such values as are determined by them
must be laid off foward the long chord AB.

By a proper summation of the quantities determined by eys.
(48) and (47) we obtain the distances da’, Ab', A¢), etc., and
the ordinates a'a, b'd, ¢'c, etc., and the curve may be located
accordingly. It is well to make all the necessary calculations
before beginning to lay down the lines on the ground, thus
avoiding confusion and mistakes.

Erample.—The P.C. of a 3° 20’ curve is fixed at -4 25 feet
beyond a station, and the central angle is 16° 24’ = A. It is
required to locate the curve by ordinates from the long chord.

‘We have ¢ =100—25 =75 and d =2° 30’ and D =3° 20"
Hence, eqgs. (46)

Aa'= T5cos  6° 57 == T4.449 74.449 = Ad'
ad” = 100 cos 4° 02" = 99.752 174.201 = A¥Y
be" =100 cos  0°42 =99.993 | 274.194 = A¢
d"d = 100 cos (— 2° 38') = 99.894 | 874.088 = Ad
e'e = 100 cos (— 5° 68" = 99.458 | 473.5646 = A¢’
¢B = 17 cos (— 7°55) = 16.838 | 490.384 = AB

By eqgs. (47)
ada= "5sin 6°57=. 9.075 9.075 = d'a
b =100sin 4°02' =  7.034 16.109 = b'b
¢’¢c =100sin  0°42' =  1.222 17.831 = c'ec
ed” = 100 sin (— 2°38) = — 4.594 12.787 = d'd
de” =100 sin (— 5° 58) = — 10.395 2.842 = ée

e = 17sin(—7°55)= — 2.341 0.000 «, . .
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The same formulse can be used when the curve begins at a
station by making ¢ = 100 and d = D,

126. The methods of locating curves by linecar measure-
ments do not require the use of a transit, although one may
be used to advantage for giving true lines, turhing right
angles, etc. When a transit is not used the alignments should
be made across plumb-lines suspended over the exact points
previously marked on top of the stakes. A right angle
may easily be obtained, without an instrument, by laying off
on the ground the three sides of either of the right-angled
triangles represented in the following table (or any multiples
of them), always making the dase coincide with the given line.

TABLE OF RicHT-ANGLED TRIANGLES.

Base, Hypothenuse. Perpendicular.

4 5 3
12 13 5
20 29 21
24 20 7
40 41 9
60 G 11
84 83 13

D. Obstacles to the Location of Curves.

127. To locate a curve joining two tangents when the in=
tersection V is inaccessible. Fig. 16,

From any transit point p on onc tangent run a line pq to
intersect the other tangent; measure
pg and the angles it makes with the
tangents. Then the sum of the de-
flections at p and g equals the central
angle A. Solve the triangle pgV
and find Vp. Having decided on
the radius R of the curve, calculate
the tangent distance VA by eq. (21),
and lay off from p the distance
pA = VA — Vp to locate the point Fia. 16.
of curve. The point p being as-
sumed at random, V’p may exceed VA4, in which case the differ-
ence pA is to be laid off toward V.

In case obstacles prevent the direct alignment of any line
2¢, a line of scveral courses may be substituted for it (as




70 FIELD ENGINEERING.

explained in §§ 46, 47, 48,) from which the length of pg will
be deduced. The algebraic sum of the several deflections will
equal A.

128. 7o locate a curve when the point of curve is
inaccessible. Fig. 17.

Assume any distance Ap on the curve which will reach to
an accessible point p. Then by eq. (19) the angle

D x Ap
100

Ap' = R sin pOA
P'p = Rvers pOA
Vp'= VA — Ap

Measure Vp' and p'p to locate a transit point at p; and meas.
ure an equal offset from some transit point on the tangent, as
gq. This gives a line pg’, parallel
to the tangent, from which deflect at
» an angle equal to pOA for the
direction of a tangent through the
point p.

Instead of measuring the second
offset g¢' we may deflect from pg an

angle found by tan gpg’' = %—, and so

pOA =

. obtain the line pg’ parallel to the
Fie. 17. tangent. Or we may deflect from pV

the angle found by tan p Vp' =% to obtain the line ¢'p pro-

duced, from which the tangent to the curve at p is found as
above.

Again, we may lay off from ¥V, the external distance Vi
found by eq. (24) or Tab. VI on a line bisecting the angle
AVB. This gives us , the middle point of the curve, and a
line at right angles to AV is tangent to the curve at &, from
which the curve may be located in either direction.

129. To locate a curve when both the Vertex and Point
of curve are inaccessible. Fig. 18.
From any point p on the tangent run a line pg' to the other
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tangent, and so determine pA as in § 127. Suppose the curve
produced backward to p" on the perpendicular offset pp'.
Then

sin p'04 = % and pp' = R vers p'0A

Having located the point p’, a parallel chord p'q may be
laid off, giving a point ¢ on the curve, since p'¢ =2 X pA.
At ¢ deflect from ¢p' an angle equal to p'OA for a tangent to
the curve at ¢.

If any obstacle prevents using the chord p'g, any other

Fia. 19.

chord as p's may be used, by deflecting from p'g the angle
gp's = % (¢0s) and laying off its length,

p's=2R sin (p'0A + gp's).

At s a deflection from the chord sp' of (p'0OA + gp's) will give
the tangent at s.

If obstacles prevent the use of any chord, the methods de-
scribed in §131 may be resorted to.

130. 7o pass from a curve to the forward tangent when the
Point of Tangent is inaccessible. Fig. 19.

From any transit point p on the curve, near the end of the
curve, run a chord parallel to the tangent. -~ The middle point
¢ of the chord will be on the radius through the point of tan-
gent B. At any convenient point beyond this an offset equal
to pp' = R vers pOB may be made to the iangent, and at
some other point an equal offset will fix the direction of the
tangent.
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Otherwise, if an unobstructed line pg can he found inter-
secting the tangent at a reasonable distance from B, measure
the angle ¢'pg = pgp’, and lay off the distance

Loy
P = Sin gmg

to fix the point g¢. Then
Bq=p'q— p'B=pp cot ¢pg — I sin pOB,

Otherwise; assume an arc of any number of stations from
p to ¢" on the curve produced, and take the length of chord
from Tab. VII. Lay off pg’, and from ¢" lay off ¢'¢ =R
vers ¢"OB, perpendicular to the tangent, to locate ¢. The
angle pg'q = 90° — ¢'pq’, and the distance ¢B = I sin ¢"OB.

181, 7o pass an obstacle on a curve. Fig. 20.
From any transit point A’ on the curve take the direction
of along chord which will miss the obstacle, as A'B’. The
length of this chord is 2R sin
V'A'B',V'A' being tangent to the
curve at A’ (see eq. 22), and by
measuring this distance, the point
B' on the curve is obtained. If
the angle V'A'B’ is made equal to
the deflection for an exact number
of stations, the chord may be taken
from Tab. VII
If the chord which will clear the
obstacles would be too long for con-
F1a. 20. venience, as A4'¢’, we may measure
a part of it as A'p’, and then, by an
ordinate to some station, regain the curve at p. The distance
on the curve from 4’ tp p being assumed, the distances A'p’
and p'p are calculated by the methods given in §121 to §125.
If p'p can be made a middle ordinate the work will be much
simplified. If more convenient the middle ordinate may first
be laid off from A’ to p’, and the half chord afterwards
measured from " to loeate p.
Again, we may calculate the auxiliary tangent A'V’ for
any assumed length of curve A'B’, and lay off the distance
A'V and V'B’, deflecting at V' an angle eanal to twice
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V'A'B'. But if the point V" should prove inaccessible, we
may conceive the auxiliary tangents to be revolved about the
chord A'B' as an axis, so that V' will fall at ¥’ and the
lines 4' V" and V'B' may be laid out accordingly. If these
in turn meet obstructions, we may run a curve from 4’ to B’
of same radius as the given curve, but tangent to 4'V " and
V'B'.

Again, the entire curve or any portion of it may be laid out
by offsets from the tangents, or by ordinates from a long
chord, as already explained, §119 to §126.

In case any distance on a curve must be measured by a tri-
angulation, as in crossing a stream, a long chord may be
chosen, either end of which is accessible, and the triangula-
tion is then performed with respect to this chord or a part of
it, as upon any other straight line.

SPECIAL PROBLEMS IN SIMPLE CURVES.

132, Given: a curve joining twotangents, to find the change
required in the radius R, and external distance B, for an
assumed change in the value of the tangent distance Ts Fig. 21.

Fic. 21,

Lt T=AV=VB and 7' = A'V= VB’
AN R=2A.0 SCERI= A0
€ E= VH €< El = VHI
Then 77— T'' = AA' = the given change.

By eq. (25) R =1 cot}n
R'= T cot 3A

OG=R—R'=(T— "")cot $4 “48)
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By eq. (26), similarly,
OHH'=E—-E' =(T— T')tan A 49)

Egs. (48) (49) give the changes in R and # for any change
in 7. When 7'is increased R and £ will be increased also,
and vice versa.

Erample.—A 4° curve joins two tangents, making an angle
of 38° = A, and it is necessary to shorten the last tangent dis-
tance 80 feet. What will be the change in the radius and in
the external distance?

Eq. 48) T—T1"=80 log 1.903090
+A 19° log cot 0.463028
Ans. R —R' 232.34 log. 2.366118
R 1432.69
IR = 1200.835 or about 4° 46' = D',

If the tangent distance had been increased 80 feet we should
add the above to R.

R' = 1665.03 or about 3° 26' = D'

Eq. 499 T—T'=80 log 1.903090
1A 9° 30" log tan 9.223607

Ans. E—E' 13.387 log 1.126697

133. Given: a curve joining two tangents, to find the change
required tn the radius R, and tangent distance T, for any
assumed change in the value of the external distance E. TFig. 21.

‘We suppose HH ' given to find OG and 44", °

By eq. (24 E =R exsecia
E' = R'exseciA
06 = Rwpiaslc (30)
ex sec $ A

By eq. (49) i
AA' =TT =(E—FE')cot }a (1)
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FErample.—A 4° curve joins two tangents, making an angle
of 38° = A, and it is necessary to bring the middle point of
the curve 25 feet nearer the vertex V. What changes are re-
quired in the radius and point of curve?

Eq.(00) E—E'= 25 log 1.397940
+A 19° log ex sec 8,760578
Ans, R —R' 433.87 log 2.637362
R 1432.69

R’ 998.82 or about 5°44' = D'

Eq. (01) E—E' Ph] log 1.397940
1A 9° 30 log cot 0.776393
r—1 149.39 2.174333

or the P.C. will be moved toward the vertex 149. 39 feet.
But if the point X, Fig. 21, were to be moved 25 feet
further from the vertex V, then

R' = 1866.56 or about 3° 04' = D'

and the P.C. will be moved 149 39 feet; further from the
vertex.

It is preferable to assume some radius from Table IV. near
the value of R' found as above, and from this calculaté the
value of 7" by eq. (21).

134. Given: a curve joining two tangents, to find the change
made in the tangent distance T, and external distance B, by
any assumed change in the value of the radius R. Fig. 21.

By eq. (48)

AA'=T—T'=(R—R')tan A (52)
By eq. (50) ;
HH'=FE—FE' =(R— R")ex sec A (53)

The changes calculated by eqs. (52) (53) will be added to or
subtracted from 7’ and X respectively, according as the radius
ie increuased or diminished.

135, Since for a constant value of the central angle 4,
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the homologous parts of any two curves are proportional to
each other, we may write at once

s T N 0 O R M
SR SR T s
RI F! C{l Mlj (54)
T =Tp =Ty =Tg=Ty
ete. etc. etc.

136. Qiven: a curve joining twe tangents, to change the
nosition of the Point of curve so that the curve may end
in a parallel tangent. Fig. 22.

Let AB be the given curve, AV, VB the tangents, and
V'B' the parallel tangent. Then V'V’ is the distance from
one vertex to the other; and since
there is no change in the form or
dimensions of the curve, we may
conceive it to be moved bodily,
» parallel to the line AV, until it
touches the line V'B’, when every
point of the curve will have moved
a distance equal to 7V’ Hence
i AA'=00'= BB'=VV'. There-
: , fore, run a line from B parallel to
1A > g q .

Fie, 22, AV, intersecting the new tangent in

RB', measure BB', and lay off the dis-

tance from A to find A’. _In the figure the new tangent is

taken outside the curve, and so 4' falls beyond 4, but if the

new tangent were taken inside the curve at V'B”, the new
P.C. would fall back of 4 at some point A",

If the parallel tangent is defined by a perpendicular offset
from B, as Bp; since the angle BB'p = A i

Bp

AA'= B = 1 (65)
sin A

By
B

"

137. Given: a curve joining two tangents, to find the
radius of a curve that, from the same Point of curve, will end
n ¢ parallel tangent. Fig. 23.

Let AB be the given curve, AV, VB the tangents, and
V'B' the parallel tangent; and let A0 = Rand A0’ = R'.
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Since the central angle A remains unchanged, the angle
4 A between the tangent and long chord remains unchanged;
therefore V'A B' = VAB, and the new point of tangent is on
the long chord AB produced. Find on the ground the inter-
section of V'B' with AR produced
and measure BB'. In the diagram
draw De parallel to AO, then BeB' =
A, and by eq. (22

BB' =2Be sin $ A

but
Be=00'=R'— R
Y BB’ _ :
R E S ommya ey ,
The + sign is used when B’ is be- Fia. 23.

yond B, as in the figure; but if the
parallel tangent is within the given curve it will cut the
chord in some point B’, and then the — sign must be used,
since B’ will evidently be less than R.

If the parallel tangent is defined by a perpendicular offset,

.as Bp = B'f; since BeB' = »

Bp=Bevers A =(R' — R) vers A

el Bp
Add or subtract as explained above.

If the long chord ¢ = AR is known, then the new long
chord ' = AB' or AB" = C £+ BB’, and by eq. (54)

(085572

R =R 0

(38)

138. Given: a curve joining two tangents, to change the
radius, and also the Point of curve, so ihat the new curve
may end in a parallel tangent directly opposite
the given Point of tangent. Fig. 24.

Let AB be the given curve, AV, VB the tangents, V'8’ the
parallel tangent, and B’ the given tangent point on the radius

IBRARY
b i
HNIVERSITY )
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In the diagram, produce the tangent 4V and the radius OB
to intersect at X. Then

BK = R exsec A
B'K = R' exsec A
Subtracting we have
BB' = (R — R') exsec A

I e (59
exsec A : 3

from which R’ is easily determined, as in §§132 and 133.

B!
V4
b G ,
‘B < T’K
N
0/ 4’
Al/lx
(0] -
Fia. 4, \ F1a. 25.

To find the change AA’ of the (., in the diagram draw
O'@ parallel to A’4; then

0'G = 06 tan A
AA' =R —R')tan A (60)

By substituting the value of (B — R’) from eq. (59) and ob
serving Table II. 42 we have

or

AA' = BB' X cot A (61)
Observe that eqs. (59), (60), and (61) may be derived directly
from eqs. (50), (52), and (51) respectively by writing A for }A.

139. Given: a curce Joining two tangents; to find the new
tangent points after each tangent has been moved
parallel to itself any distance in either direction. Fig. 25
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Let A and B be the given tangent points, and A’ and B’
the new tangent points required. Let the known perpendicu-
lar distances A¢=a, and Bp=15We then require the
unknown parallel distances ¢4’ = @ and pB' = .

Since the form and dimensions of the curve remain un-
changed we may conceive the curve to be moved bodily
into its nmew position on lines parallel and equal to the
line V'V’ joining the vertices. Then 4AA4'= 00' = BB' =
A

In the diagram draw VA parallel and equal to Bp = b and
V' H parallel and equal to Ag = a. Then VH = A’ = z, and
V'K=Bp=y. Since V@V' = A, we have

el By RS
sin A tan A
and since
VH=VG—-GH=x
b a
= i
sin A tan A
Similarly 62)
b @

Y=%ana sna

‘When the new tangents are outside of the given curve, the
offsets @ and b are considered positive; if either new tangent
were inside of the given curve its
offset would be considered negative.
In solving eqs. (62) if  and y are
found to be positive they are to he
laid off forwards from ¢ and p, as
in Fig, 25; if either is found to be
negative it is to be'laid off in the
opposite direction.

FErample.—A certain curve has a
central angle of 50° = A, and it is
proposed -to move the first tangent Fia. 6.
in 20 feet and the second tangent
out 12 feet. Required, the distances on the tangents from the
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Here ¢ = — 20 and b =12

+b 12 1.079181 | —a 20 . 1.301030
A B0° log sin 9.884254| A  50° log tan 0.076186
15.665 1194927 —  16.782 1.224844

z = 15.665 — (— 16.782) = -+ 32.450

45 12 1.079181 | —a 20 1.301030
A 50° - logtan 0.076186 | Ao  50° log sin 9.884254
10.069 1002995 | —  26.108 1.416776

¥ = 10,069 — (— 26.108) = + 36.177

r = — 32.450
For -} @ and — b {y: — 36.177
= — 1.120
For-}a and -+ b {y=—15.939
@=- 1.120
For—aand—_-b {y=+15.939

If we have ¢ and @ given to find b and y: Solving egs. (62)
for b and y we obtain

b=wsin A +-acos A
il PB4 1 ©3)
Y=xCcos A —asin A

In which the algebraic signs of the quant1t1es must be ob-
served as above.

140. Given: & curve jorning two tangents, to- find a hew
Radius and new position of the Point of curve, such
that the curve may end at the same point as before, but with
a given change in the direction of the forward tangent.
Fig. 27. ”

Let AB be the given curve, AV, VB the given tangents,
V'B the new tangent, and VBY' the given change in direc
tion. Let o'= a -+ VBV'.
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In the diagram draw B @ perpendicular to 4V produced;
then

BG = R vers A
= R’ vers A’
Hence
ASEYErS A
Bx vers A’ &4
and

AA'=AG — A'G=Rsin A —R'sin A" (65) |

In the figure the change in direction of tangent makes A’
greater than A; therefore V' falls beyond ¥, and A4’ beyond

< ‘1\5’

o A
Fia. 27, Fia, 28,

A; but if the change made A'less than A, then V' and A’
would fall behind ¥V and A respectively, and B’ would be
greater than K.

The same formule apply to the converse problem in which
B is taken as the point of curve, and 4 and A’ as points of
tangent.

141, Given a curve joining two tangents, to find the change
tn the Point of curve when th forward tangent takes a new
direction from the vertex V. TFig. 28,

By eq. (21) '

VA= Rtan {A, VA = Rtania’'
AA' = R (tan $A — tan 3 A’) (66)

142, Given: a curve joining two langents, to find the new
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radius, R, when the forward tangent takes a new direce
tion from the vertex, V. Yig. 29.
By egs. (21) (25)

VA= Rtan3a, R'=VAcotia'
R'= Rtan {A cot A’ 67

143. Given: a curve joining two tangents, and a given
change in the direction of the forward iangent from, the
vertex, to find the radius and point of curve of a curve
that shall pass at the same distance, VH, from th. vertex.
Fig. 30.

Let AB be the given curve, BVB’' the given change in

Fia. 29, Fia. 30.

direction of tangent, and VH' = VH. Let o' = »a 4 BVB'"
then eq. (%4)

VH=Rexsecin=VH =R'ex éec%A'

R 2‘5‘.’9&7 (68)
exsec $ A f
By eq. (28) 3
VA=VHcotin, VA = VH cotiA’
AA" = VH (cot } & — cot 3A) (69)

But in case A' = A — BVB', A4’ becomes negative and
must be laid off backward from A. :



SIMPLE CURVES. 83

Hzample.—~Given a 2° curve, A =80° and BVB' = — 10°
SUAS=N0S

R log 3.457114

3A 40° log exsec 9.484879

VH 81497 : 2.941993

LY 35° log exsec 9.343949

R’ 1° 27’ nearly 3.598044

ia 20° cot 2.74748

PN 17° 30 cot 3.17159

— 0.42411

AA = 874.97 X (— .42411) = — 371.08

and must be laid off backward from A.

144. GQiven: two indefinite tangents, a point situated be-
tween them, and the angle K, to find the radius R, and tan-
gent distance T of a curve joining the tangents which shall pass
through the given point. Fig. 31.

If the given point is on the bisecting line VO, as H, meas-
ure VH = K, and find R and 7 as in §§97, 98.

‘When the given point, as P is not on the bisecting line V0;
if a line G K is passed through P per-
pendicular to VO, it will be parallel
to any long chord, as AB, and the
angle VGK = 4A. The curve pass-
ing through P will intersect GK in
some other point P’; the line GK
is bisected by the line VO at 7, and
BT = R

If the given point P is located by a
perpendicular offset from the tangent,
as PL; in the triangle PLG, LG =
PL cot ¥a. Lay off LG, and at G deflect VGK = {4, and

. measure GP and PK. Since by Geom. (Tab. I. 24) GA? =
GP' X GP, and QP = PK;

GA= YG@P X PK (70
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Lay off @A; and 4 is the Point of curve, AV =T, and
R=AVcot}a.

If the given point were located by an offset from BV, find
B first, and make VA = BYV.

If the given point P is located by a perpendicular offset
IP from the bisecting line 1'0; produce /P to intersect the
tangent at ¢ and measure PG, Since P'G¢ = GP 4 2PI

GA = YG@P(GP -+ 2PT) (1)
whence we have the pornt of curve A, as before,

145. Given: a curve, AP, and the radial offset PP
to find a curve which shall pass through the point P, start
ing from the same point of curve A. Fig. 82.

Let b = PP’, and in the diagram draw P’'G ' parallel to the
common tangent AX, and join AP’. Then

P'G =R £ bsin A
@A =R—(R +b)cos A

., _G'A R
tan 3 A o ®+Han A —cot A (72)
R'= P'@' (R4bHsina @3)

s SIS A s sin A’

When the offset -is outward use R -} b, when it is ¢nward
use B — b.

Erample.—Given: a 3° curve of 16 stations and a radial
offset of 205 feet inward from the P.7. to find the radius of
the curve passing through the extremity of the offset.
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Here A = 3° X 16 = 48°; and b = 205.
R 3°= 1910.08

R—% 1705.08 log 3.231745
A 48 log sin 9.871073
PG’ 3.102818
R3 log 3.281051

1.50742 0.178233

A 48° cot .90040
1A' tan .60702 = 31° 15}’

2
N 62° 31 log sin 9.947995
BGE log 3.102818
R' (about 4° 01'). Ans. 3.154823

If the same offset were made outside of the curve we should
find R’ log 3.438350, or about a 2° 05" curve,.

This solution is inconveniently long for ordinary field prac-
tice. When the offset is small compared with the length of
curve, we may use the following

Approximate Rule: Divide twice the offset b by the
length of curve, look for the quotient in the table of nat.
sines, and take out the corresponding angle, which multiply by
100, and divide by the length of curve. The quotient is the
eorrection for the given degree of curve; to be subiracted when
the offset is made outward, and added when the offset is made
tnward.

This rule is expressed by the formula

100 _12b

D =D+¥ »H sin 7 — (74

Taking the same example, we have
e g ) AT
- =sin 14° 51
100

s =2 o ! s e o ppr
and correction = 14° 51’ X 1600 = F 0° 56

Hence D' = 3° 56' or 1) = 2° 04
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THE VALVOID.

146. Given: any number of circular curves of equal lengih
L, all starting from a common point of curve A, in a common
tangent AX, to find the equation of the curve joining
thewr extrematies. Fig. 33.

Let AP be any one of the given curves,

“ R=its radius 40,

‘D = its degree of curve,

“ A =its central angle AOP,
¢ O = its long chord AP.

By substituting the value of R from eq. (16) in eq. (22) we
have
sin $ A
sin 3D

¢ =100 (75)

Substituting in this the value of D from eq. (20) and letting

(theta) 68 = 3 A, (tho) p = i% and N = l‘g’—o

polar equation of the required curve

, we have for the

_ sinf

oY) 2

sin W‘
in which p is the radius-vector AP, 6 the variable angle
XAP, the unit of measure is one side of the inscribed polygon
by which the circular curve AP is measured, and ¥ the num-
ber of these sides in the length of the curve AP. By the
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conditions of the problem XV is constant, but 6 may have any
value whatever. If we let 6 vary from 0° to - 180° and from
0° to — 180° the point X will deseribe the curve XP'PA
shown in the figure, which is called the Valvoid from its re-
semblance to the shell of a bivalve. All cireular curves tan-
gent to AX at A and having a length Z = AX will terminate
in the valvoid, and the line PP’ joining the extremities of
any two of them is a chord of the valvoid.

147. To find a tangent to the valvoid at any point
P. Fig. 34. See Appendix.
Differentiating eq. (76)

ap ( ) 1 0
'dT'__p LOtB_.Z_V—COtl_\f) (¢t}
which is essentially negative, since p is a decreasing function
of 6.
Let (phi) @ = APG, the angle between the radius vector
and the normal PG.
1 6
t = = COt e —
Al P = o cot ¥ cot 6 (78)
The line PK perpendicular to PG is tangent to the valvoid
at P, and PV perpendicular to PO is tangent to the curve AP.
Then APV =60 and VPG =0 — ¢, and letting ¢ = OPK =
VPG, :
i=0—@p=}A—09 (79
Therefore, to obtain the direction of a tangent to the val-
void at any point P, deflect from

the radius PO an angle equal to Y b'e
i=(:A — @), on the side of PO &
farthest from the point ot curve 4.

The value of ¢ may be found by f NN g /
eqs. (78) (79), but we are saved et =
this somewhat tedious calculation A ’,‘»G
by the use of Table X. 1, which & 0 L
contains values of the ratio-% =1 F1e. 34.

for various values of A, and length of curve L. Multiplying
A by the proper tabulated number gives the value of ¢ = OPK

at once; or
i=GA—@ =uA (80)
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148. 7o find the radius of curvature of the valvoid
at any point P. See Appendix.
Differentiating eq. (V7) we have

9
%:,{ 1 — 3 cot§ cot - —|—N1(2cot——-+1)]

The general formula for the radius of curvature of polat
curves is

(” +d02)% -
P2 dm - Z;{;

2
Substituting in this the values of p, Z—g, and %g, and putting

1 0 ) ,
(Z_\f cot ¥ cot 6 ) = a we have after reduction,
9 i3
0y W (Binico/ e @1
2 1— L —a cot
2N P

" This formula being too complicated for convenient use in
the field, its use is avoided by referring to Table X. 2, which
contains values of the ratio % = for various values of A and
L. Multiplying the given value of L by the proper tabular
ratio, gives the value of the radius of curvature of the valvoid
for a short distance either way from the given point P; or,

r=uoL 82)

149. To find the length of arc of the valvoid corre-
sponding to & change of one degree in the value of the
angle A. TFig. 85. .

From any chord AP suppose a deflection of } degree to be
made each way to Ap' and Ap”; then the angle p’Ap" = }° =
the change in 9, and since A = 24, this makes a change of 1°
in the value of A. 'We then require to know the length of
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the arc p'p”", and we may, without sensible error, consider it
to be described by the radius of eurvature 7 = F» for the
point P, through an angle p'op”". Now

p'op" = Xop' — Xop" = (—2—,4‘ ‘P') = (3” b "’") e

L PR
3o pare

By eq. (80)
@ = —g« @—-2) and o'= %,(1 ~ 2uh

” ~
Br x
25\

Fia ,35.

and since @' is so nearly equal to @" we may assume %' =
@' =u; hence @' — @" = A—E———A—(l —2u) and p'op" =
(A"— A" A — ).

But the condition of the problem requires A’ — A" =1°,
hence p'op” = (1 — w)°.

Therefore the length of arc p'p” for a change of 1° in the

value of A is
l,=7r(1—wu) Xarcl®

or (Tab. XVIIL.) l, =71 — u).0174533
and since # = oL (Tab. X. 2),
I, =v 1 —u) L.0174533 (83)

By this formula Table X. 3 has been prepared, for various
values of A and L.

- 150. Given: two curves of the same length L but of
- different radii, starting from the same point of curve in @
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common tangent, to determine the direction and length of
@ vne joining their extremities. Fig. 36.

Let AX be the common tangent, and AP, AP’ the two
curves, to determine the direction and length of P'P".

G
Lo
2~
2
AN
I’I
i H
/ |
S A A\
K 0" 0 o

Fia. 36.

A

If we take the point P on the
arc P'P" determined by the
angle A = A—,_;:—A—
a tangent PK to the valvoid at
P, we may assume without ma-
terial error that the chord P'P”
will be parallel to PK for any
value of P’'P" not exceeding
1L, a limit not likely to be ex
ceeded in practiece.

and draw

Let O be the centre of the curve AP fixing the point P

then AOP =2 T

—, and

C OPE == o2 T4

2

PRO=g=2"TA"_ ,_A+A

2

)

Since PP’ is assumed parallel to PK,

PPO=KGO =pA"— K= A" — iigﬁa—u)

32 P'P'O =1%=

AA 4w — A1 —u")

3 (C2)

Similarly producing P"P’ to any point 7,

mpo =i = A0FN=2T0-0) g

whence also

=14 A'— A" 85y

The slight error involved in the above assumption is cor-
rected by taking out the value of = (Table X. 1) correspond-
ing to A", the less of the two given central angles; we have
therefore written » with the double accent in equations (84)

and (85).
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‘When ¢ and ¢" are positive, they will be deflected as in-
Fig. 36, on the side of the radius farthest from A ; should 2" be
negative it will of course be deflected from P’ 0" toward A.

The arc P'P" corresponds to a change of the central angle
from A" to A" ; hence

8 R N R e Y
o
P'P'=(A"— A", (86)

m which 7, is taken from Table X. 8 for L = AP, and
A AT
A — "—'—2_"'- -

As in practice, the distance P'P" is usually small compared
with Z, the arc and chord will be almost identical and no
further calculation is necessary. If P'P"is large, it will be
found that equation (86) gives the .ength of are very correctly

AN

when TGS does not exceed 20°, and the length of chord

A’+A"
2

gives a value to P'P" between that of the arc and chord.
The arc P’P" may be considered to be described by the radius

r = oL, v being taken for - ok + 5 (Table X. 2), and its total

when exceeds 60°; for intermediate mean angles it

curvature is foung »y mnltxplymg its length by the degree of
curve corresn.onding to 7 (Table IV).

Erample. Given, a 2°30' curve, and a 1° curve of 12 stations
each from the same PC, to determine the distance between
their extremities.

A= X12=30°, A" =12, A+A_21°,

A — AT =18, u' = .33446
Fq. (84). & = 2°.9737 = 2°5825"
Eq. (85).¢' ="+ A" — A" = 20°.9737. = 20°58'25"
Eq. (86). Arc P'P" = 18° X 10.425 = 187.65 ft. Ans.

Eq. (82). 7=1200 X .7479 = 897.48 ft. = (say) a 6°23' curve.

Total curvature, P'P" = 6°.883 X 1.8765 = 11°.9777.

(The distance P'P" may be found by solving the triangle
formed by itself and the long chords of the curves 4P,
AP")
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151, Given: a curve AP, to find a curve starting from the
same point A, that shall shift the station P any desired dis-
tance PP’ fo the right or left. TFig. 36. :

Before we can determine what distance PP’ is desired, we
must know (approximately) its direction. We have given,
therefore, D, L, and A to find the angle OPP’, and (after
measuring PP’) to find A’ and D'.

The sclution is necessarily somewhat approximate, yet
close enough for all practical purposes. For if the required
value of ' were obtained precisely, it would probably involve
some seconds, and would therefore be discarded in favor of
some value in even minutes.

‘When P’ is inside the given curve :

Eq. (80). i= OPK =uA. TableX. 1.
Eq. (82). r=Po =noL TableX. 2.

Let 6 (delta) = degree of curve corresponding to 7, vy
Tahle IV. ;

% OPP' =i — ]1)00’ 36 nearly.

Eq. (86). = A+= ,. Table X. 3.

Instead of taking 7, from Table X. 3 for the exact valus
of A itis well to take it for the estimated value of -—A-'g‘—é—.

Eg. (20). D= -1—270 A’

When P’ is outside of the given curve :
t=uA, r =L,

3 PP’
° D 2
180 OPP = ¢-1 100 * 36 nearly.

PP 100
A—A'—T‘-, : D-—TA

Erample. Given,a 4° curve of 800 feet, or A = 32° to find
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a curve from the same P. C. which shall shift the last station,
¢n, about 55 feet. (Fig. 36.)
7 = 32° % .3355 = 10°.736
=800 X .7450 = 596, . 6=9°36 =196

OPP' = 10°.736 — 1‘5606 x 4°.8 = 8° 06’

g ° __5_5‘ -
a’ =B e =0

D = 4—g =5°. Ans

For a 5° curve, the true distance PP’ = 55.53
&< (11 4059’ (11 [ (3 13 I)Pl — 54.60
which proves this method practically correct.

152. Given: a tangent and curve, and a straight line
intersecting them, making a given angle with the tangent at
a given point, to determine the distance on the line
from the tangent to the curve. Fig. 37.

o) T
Fia, 87.

We have 04, AG, and the angle AGP to find GP.

R
; _ 06 _ sinPGO
sin OPI = 5 sin PGO = SnAGO
sin (OPI — PG 0)

Pe= B a0
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When AGP =AGO0, eq. (24),
GP = B exsec (90° — AG0)
When AGP=90°, &8 (92), (119),
@P= R'vers POA,  sin POA = %ﬁ
When AGP' > AGO, we have
P'GO = AGP' — AGO

but the other formul® remain unchanged.

Ezample.—Let R = 955.37, AG = 350, AGP = 40°

R 955.87 log 2.980170
AG 350, log 2.544068
AGO 69° 52' 47" log tan 0.436102
AGP 40°
PGO 39° 52" 47" log sin 9.697387
AGO 69° 52" 47" log sin 9.972653
OPI 32° 02" 36" log sin 9.724734
POG 2° 09" 49" log sin 8.576953
8.879566
R log 2.980170
PG 72.40 Ans. log 1.859736

This problem may be used in passing from a tangent to a
curve when the tangent point is obstructed. The distance
AP on the curve is defined by the angle AOP, which is readily
found.

If AGP' > 2AGO the line will not cut the curve.

153. Given: a curve and o distant point % find o
tangent that shall pass through the point. Fig. 38.

‘We have the curve adg and the point P visible, but distance
unknown, to find the point of tangent B.
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Any chord, as &f, parallel to the required tangent, if pro-
duced will pass the point P at a perpendicular distance equal
to the middle ordinate of that chord. Ranging across every
two consecutive stakes on the curve we at first find the
range falling outside of the required tangent, as be@, cdH,

etc.; but finally the range falls inside, as deX. We then know z
L}

that the required point is between ¢ and e.
If the range ce falls inside the point P, a
perpendicular distance equal to the middle
ordinate of ce, the tangent point is at d.
If the perpendicular distance is greater
than this, the point B is between ¢ and d.
If less, or if the range ce falls outside of
P, the point B is between d and e. The
middle ordinate for ce (200 feet) equals the
tangent offset for 100 feet, given in Tab.
IV., and it is generally so small that it can
be estimated at P without going to lay
it off.

To find the exact point B, when it falls
between d and e, find by trial a point
on the arc c¢d in range with ¢ and a point
inside of P a perpendicular distance equal
to the middle ordinate of ez. The point B
is at the middle point of the arc ex. If
the point B is between ¢ and d, stand at ¢
and find a point z on the arc de in the same
way. B is at one half the arc ex. b

The middle ordinate of any chord ez is F1:. 38
less than M for 200 feet, and greater than m for 100 feet, If
necessary, its exact value m' can be found by

. m X ex?

™ = "10000

@D

and this equation is nearly true when ez is as great at 300 or
400 feet. That is, middle ordinates on the same curve are to
each other as the squares of their chords very nearly.

By this method the point B is found without the use of the
transit, so that the plug can be driven at B before the transit
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is brought up from the rear. It is therefore preferable to the
following solution. Fig. 39.

From any two points @ and ¢ of the curve measure the
angles to the point P, so that with the chord ac as a base,
and the measured angles, we may find ¢P by the formula

eP=ac——>x-
sin elPa

Knowing the angle ¢ that ¢ makes with a tangent at ¢, we
find the length of the chord ed by ed = 2R sin c.
By Geom. Tab. 1. 24,

PB=Pe= ¥cP X dP

whence we know ¢ce. Opposite ¢, or on the arc ¢B described
with the radius 1%, we find B.

P

]

T1a, 39, F1a. 40.

154. Giwen: two curves exterior it eack other. to
Jind the tangent points of a line tangent to both and it
length between tangent points. TFig. 40.

Let B and A be the required tangent points, Let OB = R,
and 0'A = R'.

On the vurve of greater radins R select a point H supposed
to be near the unknown tangent point B, and knowing the
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direction of the radius O, find on the other curve a point X
having a radius O'K parallel to O, and measure HA. In
the diagram draw Ob and O'a perpendicular to ZIK. Then
the angle KO'a = 90° — HK(O' = KO'A nearly, which is the
angle required. 'We have therefore to find the correction
40'A = z, and apply it to KO'a.

Aa = R' vers KO'a; Bb = R vers KO'a nearly.

Ka = R' sin KO'a; Hb = Rsin KO'a

Bb — Aa = (R—R') vers KO'a :
ab = HK 4 (R— R")sin KO'a

(R~ R')vers KO'a
HK 4 (R — R')sin KO'a

KO'A = (KO'a — 2) = HOB

2 sinz = nearly. (85)

Observe that O'a = the angle between the tangent at K or
I and the line HK ; and KO'A = the angle between the
langent at K or I and the required tangent BA.
If, instead of H and K, the points H' and K ' *had been
selected, then
Ll (R— R') vers H'0Ob
II'K'—(R— R")sinI'0Ob

II'OB= K'O'A = H'0b+ =

nearly, (88)

and

The length of B4 should be obtained by measurement, but
it may be calculated by

AB = ab — (R— R')sinz (89)
When R = R', 2 = 0, and HK is parallel 10 BA.

In case the eurves are reverse o each other. as tn
Fig. 41, ‘
(R4 R') vers KO'a
HK+4 (R+R')sin KO'a

KOA =HOB = KOa —x

sinz = nearly. (90)

If the points ' and K ' are selected, Fig. 41,

(R+ R') vers H'Ob
'K’ — (R+R') sin 1I'0b
H'OB=K'0'A=H0b+ =

sine =

nearly. (91)
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The lines HE, AB, and 00’ all intersect in a common
point 7, Fig. 41,

_HE X R
HI = RrE 92)
IB = VHI (HI-|-2R sin HOY) (93)
AB = IB R_%f“- o9

These last three equations furnish another method of
solving the same problem. They may be applied to Fig. 40
by changing the sign of R'. ‘

In Fig. 41, if R = R’, then HI = }ITK and AB = 2IB,

w\
3
o,

S

~ T [N
t
£
27 W
(.

(o)
K
b
o

Fie. 41, Fi1a. 42,

155. Given: two curves, O and O, reverse fo
each other, joined by a tangent BA', and terminating in
another tangent, B'F ; to change the position of the
Point of Tangent B of the first curve, so that the second
curve may terminate in a given parallel tangent, B'F’,
Fig. 42.

Let X be the required new position of B.

‘“ 0" be the corresponding position of O'.

S N="A'O0{BLiand AT =A%0B"

Since the radii and the connecting tangent are unchanged
in length, and all rotate together about O as a centre, 0" will
be on a circle passing through O’, described with g radiug
00', and the required angle BOX = 0'00".
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In the diagram, produce O'A’ and draw the perpendicular
0@, -and let a = the angle OO'G. Also, draw OK parallel
and O"K and O'H perpendicular to B'O’. In the triangle
00'@G we have

R ) _ R4+ R P
cot 00 G_—GO, or cota= BA? (95)
and y
cos

The angle KOO' = 00'B’' =
The angle KOO" = 00"B" = c -+ A",

KO = 00". cos(a-}+ A"), . HO = 00', cos(a 4 A".
HK = 00’ [cos (¢ + A") —cos(a 4 A')] = B'F’

cos(a-+ A") =cos(a-+ Aa') %‘Tfj, 97)

BOX = 0'00" = (@+ A') — (a4 A") (98)

If we conceive a line to be drawn through O bisecting the
arc 0'0", the angle it makes with B"0" is a mean between
B'0'0 and B"0"0 ; hence the chord 0’0", perpendicular to
this line, makes an angle with O'P perpendicular to B'0’ of

P00" = 1[(@+ &)+ (@+ A9)]
0'P =P0O" cot PO'0"
P'B" = B'F coti[(@t a)+ (@t a"] (99

and since

which gives the distance, measured on the parallel tangent,
between the old tangent point and the new.

This problem occurs in practice when both the connecting
tangent and the radius of the last curve are at their minimum
Umit, and the parallel tangent is ¢nside of the old one, as in
the figure. Should the new tangent be outside, the same for-
mulee apply, only changing the sign of B’/ in eq. (97). But
- in this last case it is usually preferable to employ problem
- §136 or §137.
~ Ezample.—A 1° 40’ curve is followed by a tangent of 200 ft.,

and that by a 4° curve of 10 stations ending in a tangent ;
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and the offset to the given parallel tangent is 80 ft. on the
inside. Required, the pasition of the new tangent points X
and B".

Here B = 3437.87, B’ = 1432.69, BA' = 200, B'F’ = 80.

Eq. (85) B 4 R' 4870.56 log 3.687579

BA 200. log 2.301030
e 2° 21 log cot 1.386549
Eq. (96) « 2° 1 log cos 9.999635
00’ 3.687944
Eq. 97) B'F' 80 1.903090
. .01641 8.215146

a -} A'42° 21 cos . 73904
a + A"40° 56’ cos .T5545

Bq. (98 BOX  1°25 ... BX=851t. Ans
Eq. (99) PO'0" 41° 38 30" cot 1.12468 X 80 = 89.97 = #'B'

156. When the tangents of a proposed road are to be in
general much longer than the curves, it is desirable to estab-
lish the tangents first in making the location, and afterwards
determine suitable curves. On the other hand, if the curves
necessarily predominate, they should be first selected and
adjusted to the ground with reference to grade and easy
alignment, and afterwards joined by tangents. In the latter
case the field work cannot be successfully accomplished
unless the location has been previously worked out upon a
correct map constructed from the preliminary surveys. The
map should show contours of the surface, and also the grade
contour, or intersection of the surface and plane of the grade.
In side-hill work the grade contour indicates approximately
the degree and position of the necessary curves. In the work
of selecting proper curves upon the map, templets or
pattern curves are almost indispensable. The templets arc
cut to form a series of curves, the radii being taken from
Table IV. to a scale corresponding to the scale of the map,
which ranges from 400 to 100 feet per inch, according to the
difficulty of the location. The templets should represent
convendent curves, or those in which the number of minutes
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per station bear a simple ratio to 100. Curves of 50’ and
multiples of 50’ are most convenient; 40’ curves and multi-
ples standing next in order, and 30" curves and multiples
next.

TABLE OF CONVENIENT CURVES.

D Ratio of Min. D Ratio of Min. D, Ratio of Min.
¢ to Feet. ¢ to Feet, - to Feet.
50/ 1:2 40 2:5 30’ 3:10
10 48' %:1 10698; 4:g 1° %: g:?o
20 30 12 20 62 1° g
30 20 2:1 2 4 8:5 20 00/ 615
4 10 5:2 g 2 2:1 2 30 3:2
o % o é
% oy 7z i a0 M3 3 2 | e1:10
6° 40/ 4:1 5° 20: 165 4° 00: 12:?
"o . ] . -] .
Ba | 31 el N3 sk B
90 10/ 1:2 7 20/ 22:5 50 30/ 33: 10
10° 00 6:1 80 00/ 24:5 6° 00’ 18:5

After drawing the curves and tangents upon the map, the
tangent points and central angles are carefully determined,
the latter being compared with the lengths of the curves ob-
tained by a pair of stepping dividers set precisely by scale to
the length of one station. Field notes are then prepared from
the map, and if the work has been well done these notes may
be followed in the field with scarcely any alterations.

No ordinary protractor will measure the angles closely
enough for this purpose ; it is better to use a radius as large
as convenient, of 50 parts. The chord of any arc drawn with
this radius equals 100 times the sine of one half the angle
subtended.

The importance of having absolutely straight-edged rulers
in such work is obvious. In case a very long line is to be
projected upon the map, it is well to use a piece of fine
sewing silk for the purpose. See §§ 53, 54.
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CHAPTER VL
CoMPoUND CURVES.

A. Theory.

157. A compound curve consists of two or more consecu-
tive circular arcs of different radii, having their centres on
the same side of the curve ; but any two consecutive arcs
must have a common tangent at their meeting point, or their
radii at this point must coincide in direction. The meeting
point is called the point of compound curve, or P.C.C.
Compound curves are employed to bring the line of the road
upon more favorable ground than could be done by the usc
of any simple curve.

‘When a compound curve of two arcs connects two tangent
lines, the tangent points are at unequal distances from the
intersection or vertex, the shorter distance being on the line
which is tangent to the arc of shorter radius.

158. Let VA, VB (Fig. 43) be any two right lines inter-
secting at ¥, and let A be the deflection angle between them.
Let A and B be the tangent points of a compound curve (VA
less than VB), and let AP, PB be the two arcs of the curve.
The centre O, of the arc AP will be found on A8, drawn per-
pendicular to V4 ; the centre O, of the arc PB will be found
on BS produced perpendicular to VB ; and the angle ASB
will evidently equal A. Join VS, and on VS as a diameter
describe a circle; it will pass through the points 4 and B,
since the angles VAS, VBS are right angles in a semicircle,
Draw the chord V@, bisecting the angle AVB, and join AQ,
BQ. Then AQ, BQ are equal, since they are chords subtend-
ing the equal angles AV(, BVQ. From @ as a centre, and
with radius @A, describe a circle; it will cut the tangent
lines at 4 and B, and also at two other points @ and Y, such
that V@ = VA, and VY= VB. Hence BG = AY, and the
parallel chords A@, BY are perpendicular to V. Join AB;
then AQB = ASB = A, since both angles are subtended by
the same chord AB. ,

In the triangle VADB, the sum of the angles at 4 and B is
equal to the exterior angle A between the tangents ; while
their difference (4 — B) is equal to the angle at the centre @
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subtended by the chord B@, which is the difterence of the
sides (VB — VA). For the angle VAB = VAG + GAB, and
the angle VBA = VBY — ABY. But VAG = VBY and
GAB = ABY, and by subtraction VAB — VBA = 2GAB =
GQB, since A is on the circumference and @ at the centre.

159. TarorEM.—The circle YAGB, whose centre s Q, 13
the locus of the point of compound curve P, whatever be the
relative lengths of the arcs AP, PB composing the curve.

Fia. 43.

On the circle YAGB, and between 4 and @, take any point
P, and on AS find a centre 0y, from which a circular arc may
be drawn cutting the circle at A and P ; also on BS produced
find a centre O, from which a circular arc may be drawn
cutting the circle at B and P. Join PQ, PO, and PO,.
Since when two circles intersect, the angles arec equal be-
tween radii drawn to the points of intersection, QPO,= QA0
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and QP0U, = QB0O,. Draw the chord @8 and it subtends the
equal angles QA0, = QBO,. Hence QPO, = QP0, and the
radius PO, coincides in direction with the radius P0,, which
is the eondition essential to a compound curve.

Now, if we imagine another point P’ to be taken on Q2 or
on QP produced, and the arcs AP’ BP’, drawn from centres
found on A8 and BS, it is evident that the equality of angles
found in respect to P could not exist in respect to 2. Hence ,
the arcs would intersectin P’ at some angle 0,70, and would
not form a compound curve. Therefore, Q. E. D.

160. TurorEM.—In any compound curve the radial lines
passing through the three tangent points A, P, and B are all
tangent to a cirecle having the point Q for its centre, and for its
diameter the difference of the sides VB and VA.

Draw the three lines QN, QL, QM perpendicular to the
radial lines BO,, I’0,, and AS respectively. Then the three
right-angled triangles BQN, PQL, and AQM are equal, since
BQ = PQ = AQ =radius of the circle AGB, and the angles
at B, P, and 4 are equal by the last theorem. Hence QM =
QL = QUN, and if a circle be described with this radius about
Q, the three lines BO,, PO,, and A0, produced will be tan-
gent to it. Draw @I perpendicular to VB; it will bisect the
chord @B in I; and QN = BI = }B@G. Hence the diameter
2QN = BG = VB — VA; which was to be proved.

Corollary 1. The compound curve intersects the circle AGB
in the point P, at an angle equal to half the difference of the
angles VAB, VBA. For QPL= QBN = BQI = {BQG. The
arc AP is exterior, and the arc PB interior to the circle
AGQB.

Cor. 2. Since both centres are on the line PL, the position
of the point P fixes the lengths of the radii of a compound
curve. As P is moved toward & both radii are increased,
until when P reaches G, 40, becomes AK, a maximum, while
BO; becomes infinite, As P moves toward A both radii are
diminished, but the least value of the are AP depends upon
the least radius allowed on the road. If in the diagram we
make A0, equal to the least radius allowed, a right line drawn
through the point O; tangent to the eircle LMN fixes the
corresponding menimum value of the arc AP, and also of
the radius BO, for given values of VA4, VB, and a. Be-
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tween these limits any desired values of the radii may be em-
ployed.

Cor. 3. In the triangle S0,0., the sum of the two central
angles AOJ’ and P0,B is equal to the exterior angle ASB =
A ; consequently, as the central angle of one arc is increased
by any change in the position of the point P, the central
angle of the other will be diminished an equal amount.

Cor. 4. Only onc value of the angle A0, P is consistent with
a given value of the radius 40,, since both depend on the
variable position of the line PL; and for the same reason only
one value of the angle BO, P is consistent with a given value
of the radius BO,. Hence only one radius or one central
angle can be assumed at pleasure, the remaining parts being
deducible therefrom in terms of the sides VA, VB, and the
angle A.

B. General Equations.

161. Let S, = the side VA, S; = theside VB
Let R, = the radius 40, R; = the radius B0,
“ y =diff. VAB — VBA, A = the sum VAB+ VBA
“ Ay, = central angle A0, P, A, = central angle BO,P.
In the triangle BQI, cot BQI = %?— But IQ = VI X
cot IQV = (S + Si)cot 3 A, and BT = §(S: — S).

cot 3y = S’ + g‘ cot 1A (100)

By Cor. 3, At ra=nA (101)

In the triangle AQM, A0, = AM — M0O,. But AM =
M¢Q) cot 3y, and MO, = M@ cot § A,
B, = 3(S: — 8y) (cot 3 —cot 3 A1)
~ Similarly, B = 3(S: — 81) (cot 7 +cot $ A2)
Subtracting,
Ry — By, = 4(S: — Si) (cot A5 +cot 3A,) (103)

} (102)
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B Rl
cot } A, = cot 3y — —%—Tgu—_-—gl)‘
From {102), 2 (104)
P R
COt%A“_%(Sg—Sl) cot iy

In the triangle ABG,

ADB sin BAG
BG = sin AGV
qr
1 H 1
38 — 8 = ¥Bsindy (105)

sin 3 A

by which we find }(S: — 8.), when, instead of the sides and
A, we have given AB, and the angles VAB and VBA.

R, - R
From (103), #(S: — S.) = m (106)
1
cot 3y =45 1(S S)—{—cot
From (102), ) (107)
cot §y = —o— 1% —5) —cot A,
1 - 1
From (100 8, + 8) = & — By cot jy (108)

_cot FA

S; and S, are found by adding and subtracting the values
found by eqgs. (106), (108).

3(S: — Sy sin §a

From (105), }4B = S

(109)

which may be used instead of (108) when the sides are not re-
quired. VAB=3}A +y)and VBA ={a —y).

162. Given: the sides VA =8, and VB = 8, and the
angle A; assuming the shorter radius R,, to find A, A,
and Rs.

Use equations (100), (104), (101), (102), and (18).

Erample.—Let VA = 1899.90, VB = 1091.12, A = 74°, and
assume R, = 955.37.
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(100) g(s, +8,) 1495.51
108, — 8,) 404.39

%A SR cot

11° 31’ 01".5 cot 4.90769

(104) Izh (Di=065)
81)

2.36249
i 0 21° 27’ cot 2.54520
1oy ia 3r
2o dAg 15° 88’ “ 8.59370
(102) Iy “ 490769
8.50139
%(Sz b . S])
Ry (D =1° 40)

m

107

log 3.174789

2.606800

0.567989
0.122886

0.690875
2.980170
2.606800

0.873370

0.929490
2.606800

3.536290

(18) .*. A, =42° 54, L, =715; A, = 31° 06', L, = 1866.

163. Given : the line AB, and the angles VAB, VBA ;
assuming the longer radius R,, to find A, A,, and R;.

Example—Let AB=2437.82, VAB =48°31', VBA =25°29/,

and assume R, = 3437.87.

(105) $AR 1218.91

v 11° 31¢ sin
ia 37° «
,}( ~-8,) 404,38
(10 ) R
8.50166
v 11° 31’ cot 4.90785
IS 15° 33 cot 3.59381
(101 1A 37°
BTN 21° 27" cot 2.54516
- 102) 3y “ 4.90785

M

38, — 8,)
)

i RS PRI ) — ()

6

log 3.085972

9.300276

2.386248
9.779463

2.606785
8.536289

0.929504

2.36269 log 0.873407

2.606785
2.980192
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164. Usually a compound curve is fitted by trial to the
shape of the ground, after which it may be desirable to
calculate the sides VA, VB, or the line AB, and the angles
VAB, VBA.

Example.—From the point of curve A, a 6° curve is run
715 feet to the P.C.(C.; thence a 1° 40" curve is run 1866 feet
to the P.7. Required, the sides VA, VB, and the line AB,
and angles VAB, VBA. Here B, = 955.87, A, = 42° 04,
R, = 3437.87, Ay =31° 06,

(106) Ry — Ry 2482.50 log 3.394889
EYN 1° 27 cot 2.54516
34 15° 33’ “ 3.59370
6.13886  <“ 0.788088
. M8 — 8) 404.39 “ 2.606801
107 R, « 2080170
2.36248  « 0.373369
1A, 21° 27 cot 2,54516
% 11° 817 017 ““ 4.90764  * 0.690873
(108) 3(S: — S1) 2.606801
“ 3.997674
EUN 37° cot “ 0.122886
3(8: + 81) 1495.51 « 3.174788
8, 1899.90
S, 1091.12
VAB 48° 31’
VBA 25° 29'
(109) 1S, — 8)) “ 9606801
ia 37° sin ¢ 9.779463
2.386264
1y 11° 81' 01°.7 sin ¢ 9.300294
1AB 1218.91 «  3.085970
AB 2437.82

165. Given : the radii R,, R, the angle A, and one side,
VA, or VB, to find the other side and the ceniral angles A,
As. :Flg 43,
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In the triangle AMQ, A0, = AM — MO, = IQ — MQ cot
MolQi or

Ry = 3(S: } 81) cot $A — 3(S; —81) cot 3 A,
whence
#Sa + Si) = $(8: —8y)cot A, tan 1 A + R, tan A

By eq. (106)

s sin 3 Ag sin $A,
3(S: — 8) = (B: — B)) TR
Substituting this above, subtracting and reducing

sin (A —

Sy = (Ry — Ry)sin $ A, i AAI)—[—R. tan £ A

But 4(A — A;) =3Az and 2sin® $ A, = vers A,, whence

— o
PRLE R — Ry) vers Aq -+ R, vers A (110)
sin A
Transposing,
* _Sisin A— R, vers A
vers Ap = BB (111)
Similarly, from the triangle BQO,
Ry = 3(S: -+ S)) cot 3 A -+ 3(S: — §y) cot $ A,
from which and eq. (106) we derive
. 2
o R, vers A — (R: — R)) vers A, a12) 4

sin A

- and

R; vers A — Sy sin A
— 3
vers A, = e 3 ] (113)
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Erample.—Given : VA = 8, = 1091.12, A = 74°, and the
radii 2, = 955.87, R, = 3437.87, to find A,, A, and S,.

111) S 1091.12 log 3.037873
A 4° sin ¢ 9.982842
1048.85 ¢ 3.020715

R, ¢ 2.980170

A 14° vers ¢° 9.859956
692.03 0 2.840126

356.82 0 2.5562449

R, — R, 2482.50 “3.894889

Ag ] 31° 06’ vers ‘¢ 9.157560

L M 12° 54’ e 9497254
(112) R; — R, ¢ 3.394889
. 663.96 ¢ 2.822143

R, ‘¢ 3.536289

A vers ‘¢ 9.859956
2490.26 ‘¢ 3.396245

1826.30 ¢ 3.261572

A sin ¢¢ 9.982842

S, ) 1899.90 “ 8.278730

166. Given : one side, and the radius and central angle of
" the adjacent are, to find the other radius and side.
From egs. (111), (113) we have

S; sin A — R, vers A
vers Ag

.Ra o R] =
(114,
R, vers A — S, sin A

Rg — R1 =
_Vers A,

by one of which the required radius may be found ; the required
side is then found by eq. (110) or (112), as in the last problem.

Ezample—Given : VA =8: =1091.12 A =14°, R, = 955.87
and A, = 42°54'; to find R, Ag=174° — 42° 54’ = 81° 06"

2
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114) &, 1001.12 log 3.037873

" }MA 4 “ sin 9.982842

1048.85 ¢ 3.020715

By 955.37 & 2.980170

A w4 vers 9.859956

692.03 2.840126

356.82 2.552445-

Ag 31°06 “ vers 9.157556

oo Ry — £, 2482.52 3 U 3.394893
s oot 3437.89

Fia. 44,

Otherwise : Fig. 44. If convenient in the field, a tan-
gent PV, may be run from the point P to intersect the
farther tangent. The distance PV, multiplied by cot $4.
will equal the radius R, by eq. (25).

167. Remarks.—If the first arc AP be produced to @,
Fig. 44, so that A0,G = A, then G is the tangent point of a
tangent parallel to VB, and by §137, the tangent point B must
be on the line PG produced. Conversely, if the point B is
assumed, and the arc AG given, the point P must be on
the line BG produced. The radius R. may be found by
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R, = zsif———f—m—, BP being measured on the ground; or by

similar triangles R, : B, :: BP : GP.
The distance VD, Fig. 43, from the vertex to the circle
AGB is expressed by the formula

VD=8, cos% (tan—g— —tan 2 Z y) - (115)

If the point P falls at D, then VD is also the distance of the
curve from the vertex mecasured on the line VQ. But when
P falls at D, the radius 0, is perpendicular t6 the line AR,
and A, = VAB, and A, = VBA. When A, is greater than
VAB, the arc AP, being exterior to the circle, cuts the line
VD; but when A, is less than VAB, the arc PB cuts the line
DQ. ‘ )
If the line O,P produced passes through V, we have

sin QVL = E:_T_gf;sin in (116)
giving Ay = A 4+ QVLand A, =34 — QVL.
When A, is greater than this, we have for the external
distance of the vertex

FEy, = R, ex sec AO\V

in which the angle A0, V is found by the formula cot AQ, V=
By , and ¥, is measured on a line VO,, makingr the angle
I
AVO, =90° — A0, V.
When A, is less than (3} A 4 @ VL), we have similar expres-
sions with respect to the arc BP and centre O,.

168. To locate a compound curve when the point of com-
pound curve 18 inaccessible. Fig. 45.

Each arc being in itself a simple curve is located as such.
When the P.C.C. is accessible, the transit is placed over it,
and the direction of the common tangent found, from which
the second arc is then located.

When the P.C.C. is not accessible, the common tangent
V1 V2 may be found by locating the points ¥; and V3, which
may be easily done, since V1A = VP = R, tan }4,, and
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VaB = V3P = Ry tan } A, from which each arc may then
be located by offsets or otherwise, as in the case of simple
curves. :

Should the points V3 ¥V, be obstructed, the common tangent
may be found by an offset G = LP from any convenient
point H, for knowing the angle HO,P, we have HG = R,
vers HO: P, and GP = R, sin HO, P.

If the entire tangent V; ¥V, is too much obstructed for use,
the parallel line HK may be employed, observing that the

>
angle PO,K is found by vers PO,K = %—, and the distance
2
LK by LK = R, sin PO, K, by which a point A on the second
arc is found having a tangent offset K[ = HG@.

Fie. 45. Fia. 46. 4

Should the line HEK be also obstructed, we may run the in-
verted curve HP' = HP and P'K = PK to find the point K
from which so much of the second arc as is accessible may be
located.

C. Special Problems tn Compound Curves.

169. Given: a compound curve erding in o tangent; to
. change the P.C.C. so that the curve may end n a given
. parallel tangent. Fig. 46.
Let APB be the given curve ending in VB,
“ V'B be the given parallel tangent,
¢ p = perpendicular distance between tangents.
It is required to change the point P, and with it the values
of A, and A, so that with the same radii R, and R, the new
curve AP B may end in the parallel tangent V'B'
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a. When the tangent V*B' is inside of VB :

Let Ay =AO0.P, A/ =A0.P', Ay=PO,B, A, =P'0,/B,
and in the diagram draw 0,G perpendicular to B0.; then
G0: = 0,0: cos A, KO = 0,0, cos A.'. Subtracting,
since 0,0, = 0,0, = (R, — R,), and KO, — GO, = GB —
KB' =p,

p=(I%h — Ry) (cos A2’ — cos Ag)
whence

[ _p ‘
cos Ay’ = . -+ cos A, aim

PO, P' =(A:— A.')and the point P is advanced,

b. When the tangent V'B' is outside of VB:

P =‘(R, — B)) (cos Az — cos Ay')
whence

COS Aqg = COS Ag — Ef—lﬂ (118)

PO,P' = (Ay' — As) and the point P is moved back and the
arc AP diminished.

Fig. 47,

In case the curve terminates with the arc of shorterx
radius, or R, follows R,. Fig. 47.
C. When V'B' is inside of VB:

P =(Rs — Ry)(cos Ay — cos A,")
whence

v ey o
€OS Ay’ = €08 A, R R 119

PO,P' = (A, — &)) and the point P is moved back.
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d. When V'B’ is outside of VB:

p = (K — R,) (cos A" —cos A))
whence ;

cos Ay =cos A + RT—I)—R— (120)
S 1

PO,P' =(A1— A,’) and the point P is advanced.
FErample.—YLet B = 220201, R, = 1432.89, A, =28° and
p = 20.07 inside of VB ; case a.

P 20.07 log 1.302547
(117) R, = Ry 859.82 7 2.934155
‘ .023356 ‘0 8.868392
Aa 28° cos .88295
N 25° < .906300
PO,P' g5

170. Given: a compound curve terminating in a tangent,
to change the P.C.C. and also the last radius, so that the
curve shall end in o parallel tangent at a point on the
same radial line as before. Fig. 48. :

Fic. 48,

Let APB b= the given curve ending in the tangent VB; let
~ V'B’ be the given parallel tangent; and let p = BB’ = HI =
 tne perpendicular distance between tangents.
It is required to change the point P to P’, and also the
- value of R, to Ry, so that the new curve may end in V'B' at
. B'inside of VB on the same radial line BO,.
In the diagram produce the arc AP to G to meet 0,@
- drawn parallel to 0,B; then PO,G = A;. Draw the chord
- PB, and it will pass through G. Lay off the distance p from
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Bon BO, to find B'; draw B'G and produce it to intersect
the arc APG in P'. Then P'isthe P.C.C. required. Join
P’ 0, and produce it to meet BO, produced in 0. Then
P'0s' = B'0y’ = Ry’ the new radius, with which describe the
arc P'B'. :

By Geom. Tab. L. 18:

PBV =} PO,B=1%0: and GB'V' =4P'0,B = {4,

0, PGP'=BGR =} r:— A))

Draw O, K perpendicular to BO,.

Then O,K = B'H=BI= 0,0;sin A, = (R, — R)) sin A,
_ar GH GI-»

tan%Az:—-ﬁ tﬂ‘n-}Ag —B .H B,H—*

tan 3A. =tan $ A, 121

AR
(R2 = Rl) sin Ay
In the triangle 0,0,0;'
§in Ag t8in Ag: 0,0 0,0, 2 (B — Ry : (B — R)

sin A
Ra’ = Rl = — 2
sin Aq

0 (R? N Rl)

and 0 sin A,

:(Ra T Rl) sin ARI + Rl (122)

If B'V' were outside of VB,

tan 1}A2' = tan %Ag + -(R;—__——gjm (123)
sin A, :
= (B - Ry o+ I (122)

When the smaller radius R, follows RB,: If the given
tangent B'V' 1s inside of BV. Fig. 49.

ot i R
tan A, = tan 1A, 4 B = Rysio o (124)
AR AR el (125)

sin Ay



?

COMPOUND CURVES. 117

If B'YV' is outside of BV :

oy = »
tan $A," = tan 14, & TR AT (126)
= By — (R — By SR Ay
R =R~ B~ R) s (125)
Fi1a. 49.
Ezxample 1.—Fig. 48,
Let R, = 2292.01 P = 20.07 inside.
“ By =1432.69 A, =28
(121) Ry — R, = 859.32 log 2.934155
Aq 28° _ log sin 9.671609
2.605764
P 20.07 1.302547
.04975 8.696783
tan 3 A, .24933
.o tan FA, .19958 11° 17

(122) A’ 22° 34’ sin 9.584058
(B: — R) . 2.934155
3.350097
Ag 28° sin 9.671609
(B, — R) 1051.25 3.021706

R, 1432.69

Ans. Ry  2483.94 .. D = 2° 18 25
POP =28"—22°84 = 5°26 .-. PP' = 135.88 ft.
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Example 2.—Fig. 49,

Let B, = 2202.01  p = 20.07 inside.
R, = 1432.69 A, = 46°

(124) Ry — R, 859.32 log 2.934155
2, 46° log sin 9.856934
2.791089
p 2007 1.302547
.03247 8.511458
tan 34, ‘42447 23°
.otan 3AY .45694 24° 333

A 49° 07 log sin 9.878547
R, — R, 2.934155
3.055608
A 46° - log sin 9.856934
817.60 2.912542

R,  2202.01

Ans. R/ = 147441 .-. D = 3°53'12"

3°.1166
55 = 124.67 ft.

POQP'= A]’—' A :3007'-'.31'CPP,=

Observe that in either figure both tangents must be on the
same side of the point &, in order to a solution.

F1a. 50.

171. Given: a compound curve ending in a langent, to
change the last radius and also the position of the P.C.C.,
80 that the curve may end in the same tangent. Tig. 50.
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1. When the curve ends with the greater radius R,.

Let APB be the compound curve in which R, B; A; and
A4 are known. ;

In the diagram draw the chord PB and produce the first
arc AP to meet it in G; draw 0, G, and produce it to meet the
tangent in K. Then by §137 O,K is parallel to 0,5, and by
eq. (67) .

= (Ra — Ry) vers A, 127

1If we assume P’ as the new P.C.C., we have A,'= P'O,'B',
and the chord P'G produced will intersect the tangent at the
new point of tangent B', and BO,’ = R,". Similar to eq. (127)
we have

= (Rn’ -— R]) vers An’

and equating the two expressions, we obtain

e (B — Ry vers A3 GK
= Sk vers Ao = hitwn Ad (188
If we assume R, we have
re e oe S GE
vers A, = By = R, Vs A = RI—T, .((129)

In the two right-angled triangles BKG and B'K@, we have

BK = GK cot A,
B'K = GK cot $ A’

and by subtraction,
BB’ = GK (cot 122" — cot $A,) (130)

in which G'K is obtained from eq. (127). -

‘When BB as given by eq. (130) is Mgatwe the point B’ falls
between B and V.

If we assume the distance BB' on the tangent, we have
from the last equation,

cot $A." = cot $A, + (131)

i
GK
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GEK being obtained from eq. (127) and R’ from eq. (128). In
eq. (131) use the - sign when B’ is beyond B as in the Fig. 50.

II. When the given curve ends with the smaller radius
R,. Fig. 51.

Fie. 51.

We have by a similar reasoning

GK = (R, — R)) vers A, (132)
R =R, — (RQ—R,)veI:s A _ R — GK : 189
vers A, vers A,

R Sy G ;
vers Ay’ = e p; Vers A= p g (184)
BB = GK (cot 1A, — cot $A,) (135)

, BB

cot 1A, =cot4A, :i:'—G,Tf (136)

using the — sign when B’ is beyond B.

Example.—Fig. 51.

Let R, = 2292.01, R, — 1432.69, A, = 46°, and let the
P.C.C. be moved back 200 feet from P to P’; hence PO,'P =
5° and A, = 51°; to find the new radius R,’ and the distance
BB
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Eq. (132) R: — R, 859.32 log 2.934155
A 46° ““ vers 9.484786
G log 2.418941
eq. (133) Ay 61° ‘" vers 9.568999
R, — Ry 707.85 2.849942
R, 2292.01
Jxhis i3, 1584.16 and D = 8° 87’
eq. (185) GK i log 2.418041
cot 34, 2.35585 . 28°
cot 34, 2,09654 25° 80'
0.25931 log 9.413819
.*. BB 68.04 1.832760

172, Given: a compound curve ending in o tangent, the last
radius being the greater, to change the last radius and
also the position of the P.C.C. so that the curve may end at the
same tangent point, but with o gwen difference in the
direction of the tangent. Fig. 52.

Fia. 52.

Let APB be the given compound curve, PO, = R, and
POQ = Rg > Rl-

Let V'Bbe the new tangent, and the angle VBV' = 1, the
given difference in direction : to find BOs' = Ry, BO,’P' =
A4 and the angle PO, P'.
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We have
BO, — 0,0, = R: - (R2 - Rx) =R
BOy — 0,0, =R, — (Ry/— R) = R,

From which we see that whatever may be the value of the
new radius, the difference of the distances from B and 0, to
the new centre is constant, and equal to R,. We therefore
conclude that the centres O, and 0, are ou an Ayperbole of
which B and O, are the foci, and R, the major axis.

This suggests an casy graphical method of solving the
problem.

Through B draw a line perpendicular to the new tangent
V' B which will give the direction of the required centre 0.,
On this line lay off BK equal to R,, and since (B, — R,) =
0,0, = K0, if we join KO, the triangle K0, 0, is isosceles;
therefore bisect KO, and erect a perpendicular from the mid-
dle point to intersect the line BK produced in 0,'. Draw 0,0,
and produce it to intersect the arc AP (produced if necessary)
in P'. Then P’ is the new P.C.C. required, and BO, =
P’'0, = Ry, the new radius.

The analytical solution 1s as follows:
Adopting the usual notation of the hyperbola

Let 20 = R, = the major axis,

“ 2 = BO, the distance between foci.

Produce the arc AP and through B draw the tangent BH,
and join HO, = R,. Then 1n the right-angled triangle BHO,

BH? = BO,* — R,? = 4¢* —4a?
Now by Anal. Geom., ¢? — a? = %
Therefore 20 — BH = the minor axis.

Draw the chord PB and produce the arc AP to cut it in G
Then by Geom. (Table 1. 24)

BH?*= PB X GB = 2R, sin $Aq X 2(R: — R)sin 3 A,

. BH =2sm$a, YR, (B: — &) 37
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Let a = the angle /0, B, then

BH il
tan @ = —pH— and B0, = s (138)

In the triangle B0,0: let 0,B0,; = (3 ; then

R, — R,

sin 8 = B0,

sin A, (139

The polar equation of the hyperbola for the branch 10,0;/,
taking the pole at B and estimating the variable angle v from
tne line BO,, is

bﬂ
= . cos0—a
When v = 8 + ¢, » = Ry, and substituting the values of
a, b, and ¢ found above, we have

BH?

B = 5 B0rcos (6 £9) = By

(140)

using (8 4 ¢) when V' falls between ¥V and A, as in the
figure, and (8 — ¢) when V' falls beyond V.
In the triangle BO, 0., the angle BO,’0, = A, and

pir s ‘#ﬁ sin (8 + 4) (141)
Dy 1
Finally
POP' = pq— (Ad £ 1) 142)

- Remark.—When V" falls between V and 4, as in Fig. 52, if
the angle ¢ be greater than the angle VBH, the curve ceases to
be a compound, and becomes reversed. Therefore VBH =
a — f is the maximum value of ¢ possible in this case. When
V' falls beyond V, the point P’ will fall between Pand A4;
and the largest possible value of i will then be that which
renders ’0,P° = A,, and makes the point P’ coincide with 4.
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Erample.—Fig. 52. Let By = 1432.69 A, = 31°
= 6° R, =2292.01 A, = 56°

187 By — B,  859.32 log 2.934155
R, 2292.01 3.360217
2) 6.294372
3.147186
EU 28° log sin 9.671609
2 0.301030
BH 3.119825
(138) R, 1432.69 8.156151
@ 42° 36' 23".7 log tan 9.963674
« 42° 36" 23".7 log cos 9.866889
Bo, 3.289262
(139) B, — R, 2.934155
9.644893
Ag 56° log sin 9.918574
A 21° 28 06".3 log sin 9.563467
(1400 pB-+¢ 27° 28 06".3 log cos 9.948053
Bo, 3.280262
1727.09 3.237315
R, 143269
294.40 X 2 = 588.80 2.769968
BH: 6.239650
R, 2949.05 3.469682
141) .- Ay = 36° 18 26"
(142) .-. PO,P' = 13° 41' 34" = 342.3 feet.

Remark—This problem may also be solved by first finding
the new sides V'A, V'B, from which and the new central
angle (Ao + ?7), and the radius R;, may be found A,’, A,', and
R, asin §162. The new sides are readily found from the
old ones by solving the triangle VBV'. If the original sides
are not given, they must be calculated as in § 164.

178. Given: a compound curve ending wm a tangent, the
last radius being the 1ess, to change the last radius and the
posttion of the P.C.C. o that the curve may end at the same
tangent point, dut with ¢ given difference in the
direction of tangent. Fig. 53. g
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Let APB be the given curve, and PO, = Rs,and PO, =
Ry, < Ry, Let V'Bbe the new tangent, and VBV’ =4, the
given angle; to find BO,’ = R,’, BO,’P' = A/, and PO, P".

‘We have

BO, + 0,0, = B, + (R: — R) = R,
BO;’ + 01’02 = R1'+(Ra t Rll) = Rg

from which we infer that the locus of the centre 0,'is an
ellipse, of which B and O, are the foci, and R, the major axis,

Fie. 53,

since the sum of the distances BO,’ and 0,0,’ is always equal
to }fz.

This suggests an easy graphical solution of the prob-
blem, as follows :

Perpendicular to V'B draw the indefinite line BK, which
will contain the required centre 0,', and lay off BK = R,.
Join KO, bisect it, and from the middle point erect a perpen-
dicular to intersect BK in 0,'. Join 0,0,’, and produce the
line to intersect the arc AP (produced if necessary) in P,
which is the new P.C.C. required. P’'0," = B0, = R, the
required radius, and P'0,'B = A, J

The analytical solution is as follows : Adopting the
usual notation of the ellipse,

let 20 = R, = the major axis,
‘“ 2¢ = B0, = the distance between foci.

At B erect BH perpendicular to BO, to intersect the arc AP
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(produced if necessary) in H, and join HO, = R,;. Then
BH? = R;* — B0, = 4a* — 4¢*

But by Anal. Geom., a? — ¢? = 3%

Hence 20 = BH = the minor axis.

In the triangle B0,0, we know BO, = R,, and 0,0, =
R; — R, and the included angle 0,0, = 180° — A,; hence
by Trig. (Tab. II. 25)

tan 3(0, 0.8 — 0,B0y) = 2—R—‘R

*tan4 A, (143)

2

The angles at B and 0O, are then found by (Tab. II. 26).
Let 8 = the angle 0,50,; then

sin Ay

B02 = (R2 .R;) Slll ﬁ (144)
The value of BH? above may be written
BH? = (R, + BOy) (R, — BO,) (145)

The polar equation of the ellipse, taking the pole at B, ano
estimating the variable angle » from the axis B0,, is
b?

a—c Co8v

When » = 8 F ¢, then » = Ry, and substituting the values
of a, b, and ¢, given above, we have

BH*

Gikes o = cos(B F 7))

(146)

using (8 — ¢) when V' falls between Vand 4, as in Fig. 53,
and (84 ¢) when V" falls beyond V.

In the triangle BO,’'O,, the angle 0,'"B0, = (3F ¢), and the
exterior angle BO,'P’' = A,’; hence

Ui hbe el Y g )
8ln A, = ml—,‘ sin (ﬁ F 71) (147)
Finally .POP' = (A1 F7)— A (148)

When V" is on AV, then PO,P'is negative, showing that
it must be laid off from P toward A4; but when V' is beyond
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V, then PO,P'is positive, and P’ will be on AP produced.
The only limits imposed on the angle ¢ are that the resulting
value of PP’ shall not exceed PA, and tnat R,’ shall not be
less than a practical minimum.

Example.—Fig. 53.

Let D, = 3° 20 R, =1719.12 A, = 23° 20
D=6 Ri= 95587 A, =48 i=1 45

The resulting values are as follows:

J4] 21°09' 32".6
B0, 1572.42 3.196567
BH? 5.683829
R/ 1273.65 8.10565% -
Ay 54° 56
PO,P’ 14° 41

P 440.5
(See also remark at end of §172.)
174. Given ¢ simple curve joining two tangents, to re-

place it by a three-centred compound curve between
the same tangent points. Fig. 54.

F1a. 54.

Let R = AO = radius of simple curve.
B=APOv—"P'0: < B rAj—=BOP!
Ry= A0,= BO;> R Ay;=AO0,P= BO,P'
A = AOB
Since A0, is made equal to BO; and VA = VB , AO,P must
equal BOsP’, and the compound curve will be symmetrical
about the bisecting line V0; and the centre 0, will be on the
line V0.
‘We have at once from the figure,
X 2ot A =0 (149)
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In the triangle 00,0, we have

0,0, : 00, :: sin AOV : sin PO,V
whence
Ry — R)sin A

_(
B — B = “singa,

(150)
which expresses the general relation between the quantities,
R and A being given.
We may now assume values for R, and R, subject to the
above conditions, viz,, B, < R and R, > R; whence
. R, — R)sin 3 A
singa, = "RT _)f;;: L] (151)
In selecting values for R, and R,, the degree of curve D,
should be but little greater than D of the simple curve, say
from 30 to 60 minutes, while ), may be taken at 1) to 1D.

KErample.—Given: R =1719.12 D =3°20 A = 40°

Let R, = 1432.69 D, = 4°
“ Ry =5729.65 D, =1°

B, — R 4010.53 log 3.603202

R, — R, 4296.96 " 3.633161

“ 9.970041

A 20° log sin 9.534052

14, 18°36' 57" ¢ ¢ 9.504093
& 87° 13’ 54"
1° 23 03"

Ag
AP = P'B 1384 ft.
Again we may assume A, and R,, whence
A= A — 24z
and

St sin §A —sin 34, s

Erample.—Given: R = 1719.12 A = 40°
Let R‘ = 1432.69 Ag = 7 B P A= 38°
Ans. R, ="7887.24 .-. D; =0°46}y AP =129.

Finally we may assume 5y and Ry, and deduce 4, and B,
from egs. (149) (150); but this is the least desirable because
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the value of R, so found will not usually give a convenient
value to the degree of curve D,.

175. To determine the distance HH' between the middle
points of a simple curve and a three-centred compound curve
joining the same tangent points AB. Fig. 54.

In the triangle 00,0,, we have

Sin Ag
sindA

HH' = 00, + 0,H' — OH

001 —= (Rn r s R])

Sln Ag

= R Bios sinia

— (R—R)) (153)

In the first example given above HH' = 14.55, and in the
second HH' = 17.05 ft.

In many instances the distance JZH' is so great as to render
this problem practically useless, unless the distance HH, is
discounted beforehand by putting the simple curve AHB a
sufficient distance inside of the proper location through the
point H'. But the problem given below is usually preferable.

176. Given, o simple curve joining two tangents to re-
place it by a three-centred compound curve which
shall pass through the same middle point H,

1. The curve flattened at the tangents. TFig. 55.

Let B = AO, the radius, and A = the eentral angle of the
simple curve AHB, and let /7 be the middle point.

Let R, = PO, = HO, Ay = PO, P’
“ By=P0,=A'0; = B'0s Ag=z POA" = P' QB

“ A’ and B’ be the new tangent points required.
‘We have at once, as in the last problem,

A+ AL = A. (154)
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Since the curve is to be symmetrical about V0, HP = HP’,
PA=P'B and AA' = BB'.

In the diagram produce the arc ZF to @, and draw 0,64
parallel to 04, and produce it to K. Then a tangent line at
G will be parallel to VA4; and by §137 the point @ will be on
the long chord HA4, and on the long chord PA'. GK is the
perpendicular distance between parallel tangents, and the
problem is similar to that given in §171; whence by eq. (57)
we have, in this case,

GK = (R, — R)vers A, = (R — R)) vers 1 A. (155)

for the general equation in which R and A are given.
Analagous to eq. (130) we have

AA' = KA’ — KA = QK cot GA'K — GK cot GAR.
v AA' = GK (cot 3 A, —cot 2A) (156)
1n which GK is obtained from (155).
We may now assume values for R, and R,, making R, < R

and B, > R, and deduce the values of A, A,, and AA'.
Solving eq. (155)

_(RB—=R)vers4a _GK
vers Ag = F ooy o g 3 167

N

Eq. (154) gives A, and eq. (156) gives 44",
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Ezxample.—Fig. 55.

131

Given: R = 764.489 D =17°30 A = 40°
Let B, = 716.779 D, =8°
“ R, =3437.870 D, =140
(155) R — R, 47.11 log 1.678609
ia 20° log vers 8.780370
GK log 0.458979
R, — R, 2721.091 ‘O 3.434743
As (say) 2° 88 log vers 7.024236
el AUP, 158.00 Ay = 34° 44
(156) +4, 43.5081 = cot 1° 19
1A 5.6713 cot 10°
37.8368 log 1.577914
GK € 0.458979
A4 108.87 ““ 2.036893
Again, we may assume A, and By < RB; whence
Ar= A —24;
and
eq. (185) GK = (R — R)) vers $A
and
GK
R, =R, | p g (158)

Eq. (156) gives 44'. !
Again, we may assume Az and the distance AA'; whence,

from eq. (156)

eq. (155)

AA
e cot fa,— cot 2 A
. GK
o e FN

eq. (158) gives R,.
Again, we may assume Ry < R and AA'; then, eq. (155)

- and eq. (156)

s

GEKE =R — R)vers + A

AL

cot 1Az = cot 1A +W

i and eq. (158) gives R,. .

(159)

(1603
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Ezample.—Fig 55.

Given: B = 764489 D =7 30 A = 40°
Let R, = 716.779 D, =8°
“ A4 = 110.
Hence by last example,
GK log 0.458979
eq. (160) 44° 110, 2.041393
38.2309 1.682414
cot A 5.6713 10°
cot 34, 43.9022 1° 18 18" log 1.642486
(158) A, (say) 2°87 log vers 7.018147
GK 0.458979
R, — B, 2750.5 8.440832
R, 38476.3 D; = 1° 39
AP 157, A1 = 34° 46

IL. The curve sharpened at the tangents. Fig. 56.

This case will only occur when, with a given external dis-
tance VI, a simple curve would absorb too much of the tan-

gents,

IsBRAR ¥
OF THE

UNIVERSITY
OF

CALIFORN,

FiG. 56.

Let AHB he the simple curve, and
“ A'PHP'B'the required compound eurve,
S Rar—wP0s = HO,; Ag = PO, P’
“ R,=P0,= A0, = B'0y; 5,=A4'0,P= P'0:;B".
We have from the figure,
2a1+ A= A (161)
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In the diagram draw O0,G parallel to OA cutting the tan-
gent at /&, and produce the arc HPto G. Draw the chords
GIH and G P, passing through 4 and A’ respectively. We
have then a discussion similar to the preceding case, and to
the problem § 171, Fig. 51, whence we derive the general
formule:

GK = (R; — R)) vers A, = (Il — R) vers 3 A (162)
AA' = GK (cot $A, — cot $A) (163)
1. Assuming B, < Rand R, > R

Das GG TRl
vers A = BB RO vers 4 A (164)

and

2. Assuming A; < 34 and B, < R
__ Rvers A — R, vers A,

By = vers 3 A — vers A, 0
3. Assuming A, < A and 44’
AA'
i cot $A, —cot 1A (166)
GK
R =R, + Vers 34 aev
QK
By =R, — m (16_8)
4. Assuming R, > R and 44’
GK = (B, — R)vers 1A
}
r AA
cot A, = cot1a + K (169)

The third assumption will usually secure most readily the
desired curve. 4.4’ should be assumed as small as the nature
of the case will allow, and A, should not be much smaller
J'than 1A,

It is evidently not necessary that the new curve should be
symmetrical; for having laid out the curve 4'PH, the simple
curve /B may then be used, or, if desirable, some compound
curve HP'B' determined by an assumed value of BB’ not
lequal to A4’

I
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These formule (154) to (169) are readily adapted to the
case of sﬁbstituting a compound for a simple curve when it
is necessary to keep one tangent point fixed, but to move the
other a certain distance in either direction on the tangent.
For if in Figs. 55, 56, we draw a tangent at Z, and make 7/
the fixed point of tangent, it is evident that the central angle
of the curve will then be AOH. The only change necessary,
therefore, to adopt the formule to this case is to write A in
place of 1 A, and to observe, instead of egs. (154) (161), that

A1t A= A
Erample.—Fig. 55.

Let R = 161008 A = 84°
Assume AA = 260. AL =38 LA =8
Eq. (166) 44" = 260. log R.414973
cot A, 2.90421 19°
cotia 2.60509 21°
-.29912 log 9.475846
N GK L 2.939127
Eq. (1679)1a 42° ““ vers 9.409688
3384.07 - 3.529439
R 1910.08
e R, 5294.15 D = say 1° 05
Eq. (168) GK log  2.939127
Ay 38° ‘“ vers 9.326314
4100.27 3.612813
R, 1193.88 D =4°48
A'P 791.67 PH = 369.23

177. Given, two curves joined by a common tangent
to replace the tangent by a curve compounded with
the given curves. Fig. 57.

Let R, = BO, the radius of one curve,

“ Rs; = AO; the radius of the other curve, > R,
‘1 = BA the common tangent,

“ Ry = PO, = P'0, the radius of connecting curve.
“ Az = PO,P’ the central angle of &

“ a= AO;P and § = BO,P.

“ = A0;0,.
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In the diagram join 0,0s and draw 0,G parallel to BA.
Then in the right-angled triangle 0,G0; we have,

3 ol @Oy CRJSAR
Bs—FR 1
010 =eoss =~ smi b

which gives the distance between the centres of the given
curves.

Fie. 57.

We shall now assume the following geometrical truths,
which may be easily demonstrated.
If two circles intersect in one point, they intersect in two
points; and the line joining the two points is the common
. chord.

The common chord is perpendicular to the line joining the
centres, and when produced it bisects the common tangents.

If a third circle is drawn touching the two circles, a tangent
to the third circle, parallel to the common tangent, will have
its tangent point on the common chord produced.

Conversely, therefore, if the tangent BA be bisected at K,
and a line, K7, drawn perpendicular to 0,05, KI will coincide
with the common chord produced, and the angle KA =

1 A0;0, =1. If on KI we assume a point I through which
it is desirable that the connecting curve should pass, then 7 is
‘the tangent point of a tangent parallel to BA; consequently
i a line through I perpendicular to BA containg the required

entre O,.
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1. Let p = HI = the perpendicular distance between the
tangents.

If in the diagram we join 74 and IB, and produce the
chords to intersect the given curves in 7> and P’, then P and
P’ are the points of compound curvature; and the lines PO,
and P'0; produced will intersect /0. in the same point O,;
and the angles P>'0. = «a and PO.I = .

In the triangle AIP the line K7 bisects the base AB, and
we have by Geom. Tab. 1. 25.

AI° 4 BI* = 2AK* 4 2KI*®
By eq. (56) Al = 2(R, — R;) sin 3«
BI = (R, — R))s8in {8

AK =3 and KI=-—2-
sin¢
3 2 ain? 2 2p’
. 4R, — Ry)*sin? Yo + 4Ry — R)?sin® 38 = 3 4 Sin’s
‘Dividing by 2 and putting vers a = 2 sin® }« and vers =
2 sin? 34 (Tab. 11. 46)

2
(Ra — Rs) vers a + (Ry — Ry)* vers § = 307 ﬁﬁﬁ
But by eq (57)
(R, — Ry) vers a = (By — Ry) vers f'=1p 1%R)
; - WP
P @R — (R + RY= 2+ g
Ry = (Bs + B) + = + 2 178)
2= B+ By 4p T sin’c :
From (172)
vers @ = P . vers B= P 174
B;— Ry’ R, - R,

and from the figure
. rs=a+f 175)

These formul®e solve the problem when p is assumed. If
desirable we may find a and f§ independently of R, for in
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the triangle AIB, [AB = {a and IBA = 3f3; and since
HK = p cot g,
AH 3 — HK l

cot ja = 5|r = > = < = COt ¢ 176)
14 HK 4 3
cot}ﬂ:—%—?:%:—%—{—com ann

IL. In case c or (3 38 assumed, we have from the last equa-
tion
4 ()

P = geoia Tootd) = Heorip—ootsy | 1™

111, In case the radius R, 18 assumed, then in the triangle
0,0,0, we know all three sides; for 0,0; = (By — Ry),

0u0s = (s 5By, 2l Qegie i e

cos ¢

By Trig. (Table II. 81.)

2(8 — O, 02) (8 == 0103)
0,05 X 0,0,

vers Ag =

in which s = % sum of the three sides.
Substituting values, and reducing, observing that,

#1_4_)(1 )_ 17 1= tan?s
b 1 cosz’+1 =sec’? — 1 = tan’¢

and that (Rs — R,) tan ¢ = /, we have

?
vers A = AT — B (B = By 179
In the same triangle.
R B g el E—p) 179y

0,04

for from the figure 0,0,0; =i — f3, and taking the value
of 0,0, from eq. (171).



138 FIELD ENGINEERING.

sin (¢ — ) = (R: — Ry) sl;m Aqsing (180)

We then find &« from eq. (175) and p from (172).

The angles « and B may be found otherwise, for by Trig
{Tab. IL. 27) we have in the triangle 0,0.0;

sin 30,050, — 050,05) = 0*0201-0?& CoRtg

or

. (90,, -G a ; ﬂ)) _ (Rs — Rllg)ac_cis]zglcos +A2

*. cos (z + ﬁ_;ﬁ) =cos¢.cos3A, (181)

which is a convenient formula when ¢ and A, are not too
a—f

5 we have

small. Having obtained

a=m+“;/" /J’=«}A=—“'2"3 (182)

For a constant value of I the less the difference of R; — R,
the greater will be the value of the angle . When R; = R,,
cot ¢ = 0 and ¢ = 90° and the tangent point I will be on a per-
pendicular to BA drawn through the middle point K; and
a = (3. On the contrary, as (Il — R,) increases, ¢ becomes
less, and the foot, , of the perpendicular HI moves toward
B, the tangent point of the curve of smaller radius R,. The
distance HK = p cot <. The connecting curve is farthest
from the tangent B4 at 1. To find the ordinate from BA to
the curve at any other point, subtract from p the tangent
offset for the length of curve from I to the ordinate in ques-
~ tion. §115, eq. (89) may be used on flat curves with tolera-
ble accuracy, even when the distance equals several hundred
feet.

IV. It is evident that in this problem R, must be greater
than either R, or R;. As the centre O;is taken nearer the
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line 0,0,, R; grows less, and is a minimum when O, falls on
the line 0,0,. In this case we have A, = 180°, and

By = ¥(Rs + By +0,0s); a minimum. (183)

This limit must be regarded in assuming the value of R;,
Since

0,0; — 0:0; = (By — B)) — (By — Bs) = (RBs — Rl)

a constant value, independent of R,, we infer that the centre
0, is always on a hyperbola of which O, and Os are the foci;
(Rs — R)) equals the diameter on the axis joining the foci;
and ! equals the diameter at right angles to it, for in the tri.
angle 0,G 0s,

1!=00;, — (R —B)* (184)
Ezrample.—Fig. 57.
Given: R, = 1432.69 R, = 1910.08 and I = 400.
Assume p= 11.4 to find Ry, cc and S,
Eq.170) Ry — B,  477.39 log 2.678873
1 400. < 2 602060
i 39° 57 84" log cot 0.076813
Eq.(173) "X 39° 57 84" ¢ sin 9.807701
: i 39° 57/ 34"  ¢¢ sin? 9.615402
P 11.4 log 1.056905
* 27.64 ¢ 1.441503
e “ 4.602060
» “ 1.056905
®  8508.77 : “ 3.545155
R+ R, 334277
2) 6879.18
R, 3430.59 (say)3437.87
Eq. (174) P 11.4 “ 1.056905
: R, — Ry 152179 “ 3.184064
D a 7°00" log vers 7.87R841
P 11.4 log 1.056905
R,— B, 2005.18 < 3.302153
B (nearly) 6° 07" log vers 7.754752

o Ag 13° 07
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Hzample.—Fig 57.

Given: R, — 1432.69, R, = 1910.08, and 7 = 400.
Assume R; = 3437.87, to find As, 8, and p.

Eq. (179) 2. log 0.301030

Ry — By 2005.18 ‘3.802153

Ry — By 1527.79 ‘¢ 3.184064

€6.787247

i 5.204120

Ag 13° 07’ 22"  log vers 8.416873

Eq. (170) By— R, 477.39 log 2.678873

4 400. ¢ 2.602060

%5 ¢ 39° 57 34" log cot 0.076813

Eq. (180) - ¢ 39° 57 34" log sin 9.807701

As 13° 07" 2" 0 ¢ 9.856099

R, — Ry 152779 log 3.184064

. log sin 2.347864

1 400. log 2.602060

5% i—f 33° 50" 39" log sin 9.745804
2% i 6° 06" 55"
Eq. (175) « 7° 00’ 27"

Eq. (172) By —Rs log 3.184064

a 7° 00" 7"  log vers 7.873309

P 11.41 1.057373

178. Given: a three-centred compound curve to replace
the middle arc by an arc of different radius.

1. When the radius of the middle arc is the greatest,
Fig. 57.

First find the length and direction of the common tangent
AB. Let A, = central angle of the middle arc, R, = its
radius, and R, and R, the radii of the other arcs. From eq.
179

1 =4VY%R, — R)) (R, ~ Ry) vers A, (185)

Then find ¢ by eq. (170), @ and S by eqs. (179)’ (175)and p by
eq. (172). 2
For the new arc we may now assume a new value for p, or
for R,, or for «. Indicating the new values by an accent, if
we assume p’ we proceed as in the last problem, using egs.
(178), etc. If we assume R,, we use eq. (179), ete. If we
assume «’, we use eq. (178). *
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I1. When the radius of the middle arc s the least of the
three. Fig. 58.

In this case the middle arc is within the other two pro-
duced; and for the same values of R,Rs; and 0,0, the locus

e L

AN ®
e ;

\
\
\
v
1
\
1
\
\
~
-
&R

Fia. 58,

of the centre 0, is the opposite branch of the hyperbola found
in §177. When the centre O, falls on the line 0,0s, A3 =
180°, and

Ry = H{(Rs + R: — 0,05), a maximum. (186)

Analogous to eq. (185), we have

l= Vg(Rl = Rz) (Rs = Rg) vers Ag (187)
which gives the length of the common tangent ¥Z.

‘We then have the values of 7 and of 0,0, by eqs. (170) (171),
and of « and $ by eqs. (181) (182), and analogous to eq. (172),

p = (B — Ry) vers a = (Ry—R,) vers 8 (188)

in which p is the perpendicular distance HTI hetween parallel
- tangents.
For the new arc we may now assume a new value for p, for
R, or for . Indicating the new values by an accent, if we
assumne p’, we have, analogous to eq. (173)
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) n
=~ ()
and from eq. (188)

I
vers o’

: sl
_‘Rz ’versﬁ_.Ra—R

If we assume R,’, we have, analogous to eq. (179),

D U
VOIS A1 = oY) (B — Ry)
and we find « and (3 by eqs. (181) (182), and p’ by eq. /188)

III. When the radius of the middle arc has an intersaedi-
ate value, compared with the other radii

i Fig. 59.
P/II °

s T
~

Fia. 59.

In this case, whatever be the value of R;, we have
0,0; + 0,0,

(Bs — R;) + (Rs — R) = (Rs — Ry)
a constant value independent of R,; hence we infer that the
locus of O, is an ellipse, of which O, and Os are the foci, and
(£s — R,) equal to the transverse axis

Let I = Q@' = the conjugate axis, and let ©+ = Q0,0, =
QQ) 03. Then Q03 = QO, = %(Rs == Rl)

Produce 0:Q to @, making QG

059, and join GO,
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Then by similar triangles G0, is perpendicular to 0,0;, and
G0, =1; and in the right-angled triangle G0s0,

sin¢ = gg: = Rg——l-ft: (192)
0,0, = (R; — By)cosi=1lcots (193)

Analogous to egs. (185) and (18'7), we have
1= V2R — R:) (Ra— Ry) vers As (194)

which may also be derived from the triangles 0:0.0s and
0,0:Q.
Let ¢ = 020301, and /3 = 020103

Then ’
sin a = gig: sin As = ,R’ _l- B o, sin Aa (195)
From the figure 8 = A3 — «@ (196)

In the diagram produce the line 050, and it will intersect
all the arcs. At the points Z and ¥, where it cuts the inner
and outer arcs, draw tangent lines perpendicular to 0s0..
Draw the radius 0,7 parallel to 0s0,, and the tangent line
IL at I.

Letq:ZYandp:ZL:HI

Then by the theory of parallel tangents, §137, the point I is
on the chord PZ produced, and it 1s also on the chord 2'Y;
and we have

p=ZL = (By — R)) vers 3. 197

g—p=LY =(R; — R;) vers @ (198)

and ¢ equals the sum of these. But ¢ = Z¥ is the shortest
distance between the inner and outer arcs, and has a constant
value independent of R,. If we assume R, = 4(R: -+ R,) the
centre 0; will be at @, and « = 8 =¢,and p = }¢. Making
these substitutions above,

g = (I’s — R,) vers ¢. (199
- Also, from the figure,
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7/

ZY = 0;Y — 0.7 — 0,0,
q= Ra = R1 - 0103. (200)
1n the triangle ZIY we have by Geom. Tab. L. 26,

or,

ZD = IV 4 ZY* — 22Y (ZY — ZL)

or
ZY? — 2ZY.ZL = IY?* — ZI*
Now,
ZI* = 4R; — Ry sin® 38 = (B, — R,)* vers 8
1Y? = 4R; — R,)’ sin? ja = 2(Rs — Ry) vers «
Hence

ZI* = By — R p and IV? = 2Ry— Ra) (g — p)

Substituting these values, and solving for p, we have

p= 9B — By — 49) — QBs — By — 49)

R R —g 0.0, 200)
Also
Bo= (B - i) —p. 22 @02)
For any other value of I2,, we have
R =8~ i) - 7 2
Hence
B =~ B=22(p - p) (209)

q

which gives the change in R, for a given change in the value
of p
Observe that as p diminishes R, increases and vice versa.
Having determined the value of R.’, we find p’ by substitut-
ing R.' forR, in eq. (201); and from eqs. (197) (198) we have

’

b © p
vers f3' = R—R (204)

- AR S p’
s = e (205)
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and the change in the points of compound curvature is found
by (8 — ') and (&' — a).

Remark.—~When Ry = }(R: + R)), Az = %, 2 minimum,
and the long chord PP’ is perpendicular to 0,0;. When R,
is greater than this, « is greater than S, and vice versa. What-
ever be the value of R,, the long chord PP’ always cuts the
line 0,0; produced in the same point S, at a distance from Z of

ZS = R, vers ¢; 4
or from O, of 0,8 = R, cos 1.

This item will be found useful in solving the problem
graphically.

Erample.

Let B, = 781.84 D, =17 20’
“ Ry =1375.40 D; =410 A, =48
“ Ry =1910.08 Dy = 3° 00’

'

Let p—p = 11.30

Eq. (194) 2 log 0.301030
Ry — Ry 534.68 € R.728094
By, — R, 593.56 ¢ R.773465
As 48° log vers 9.519657
2) 5.322246
ot { 458.27 log 2.661123
(192) R, — R, 1128.24 ‘¢ 3.052402
7 23° 57" 55" log sin 9.608721
(193) 7 23° 57 55" log c0s 9.960847
g log 3.052402
e 0,0  1030.98 log * 3.013249
195 R.— R, log 2.773465
Ag 48° log sin 9.871078
log * 2.644538
P 25° 19’ 52" log sin 9.631289

(196) B 22° 40’ 08"
(203) 0,0, log 3.013249
(200) 7 912 1.987934
0‘—33 1,025815
p—7p 11.30 log 1.053078
Ry — Ry 119.78 ¢ 2.078393

Ry 1495.18 (say) 1494 95 for 3° 50’ curve.
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(201) Ry — Ry’ — 3g  366.50 log 2.564074
== “1.025315
@ a
P 34.57 “« 1.538759
(197 Ry - R, T13.11. “« 9853157
A 17° 55" log vers 8.685602
(198) g—7p 62.69 log 1.797198
B, — R, 41513 7 2.618184
a 31° 54 log vers 9.179014
NS 49° 49’
o —a =634 .. PPP" = 218.89
B—f =445 ... PP' = 6477

The practical difficulty in changing the middle arc of thrce
centred curves lies in the difference of measurement that
ensues. Thus, in the last problem, although the total central
angle is the same, the new curve is 6.56 feet shorter than the
original, making a fractional station at ", If the change is
made during the location, it is well to re-run the last arc from
P to the tangent following, so as to eliminate the fractional
station from the curve.

Instead of the solution given above on this page we may
obtain a,” by

o R
2(Bs — BY)(R)’ — Ry)

derived from eq. (194); and then find o« by eq. (195).

Graphical Solution.—On any well drawn plan of the curves
we may try various curve templets touching the first and
third curves until we find a new middle curve to suit the re-
quired conditions.

We then take the value of its radius R, from Table IV,
subtract from R, and R, and with the differences, from the
centres O, and 0,, draw short arcs to intersect, thus locating |
0;. We then join this point with O; and O; and produce the
lines to intercept the given curves in P” and P’””. Finally |
draw the long chord P”P’”, which must‘pass through the |
point S. . The angles may then be scaled, but are better com- |
puted as before. |

vers A,/ =
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CHAPTER VIL
TURNOUTS.

179. A turnout is a curved track by which a car may
eave the main track for another. At the point where the
outer rail of the turnout crosses the rail of the main track a
frog is introduced which allows the flanges of the wheels to
pass the rails. A frog consists essentially of a solid block of
iron or steel having two straight channels crossing each other
on the upper surface, in which the flanges of
the wheels pass. The triangular portion of the
upper surface formed by the channels is called
the tongue of the frog, and the angle which the
channels make with each other is called the frog-
angle. Every railroad is provided with a set of
{rogs of different angles, from which may be 7.
selected one best adapted to any particular case. F1a. 60,

The frogs may be designated by their angles,
but it is customary to designate them by numbers expressing
the ratio of the bisecting line #C of the tongue to the base
line ab, Fig. 60. Observe that ¥ is at the intersection of the
edges produced, and not at the blunt point of the tongue.

In the triangle a FC,

} _ ——Fa;g,— = cot 3 aFb
- and if we let n = the number of the frog, and ¥ = the frog
~ angle, then

A=)

‘e

FC FC
R e S jcot 31 (208)
On some roads, however, the frogs are numbered arbitrarily,
r according to their length in feet, while on others they are
esignated by letters of the alphabet. In any case the true
umber (n) of a frog may be determined by the above for
ula.
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The first rail of the turnout is common to both tracks, and
is called the switch-rail. 1t has one end free, so as to be shift-
ed from one track to the other as required; the free end, D
(Fig. 61), is called the point of switch. The tangent point ot
the-turnout, at 4, is called the heel of switch, and the distance,
AD, is the length of switch. 'The switch-rail should be several
feet longer than 4D, and the excess Dbe spiked down in the
line of the main track back of the point A. Then if the point,
D is thrown over to meet the rail of the turnout at A, the switch
rail is sprung into an arc, which coincides with the arc of the
turnout, provided that the iength of switch 4.0 has been prop-
erly taken. The distance DX through which the point moves
is called the throw of the switch. It varies on different roads
from 44 to 6 inches, but is usually made about 5 inches, or 0.42
feet. A turnout should be a simple curve from the heel of the
switch to the point of the frog.

180. Given: a main track, straight, and a frog angle F, to

determine the distance BF, on the main track from the heel of

switch to point of frog, the radius, ¥, of the centre line of the turn-
out, the length of chord afy and the proper length of switch AD.
Fig. 61.

P
I

—

1

-t
. + I\
——————— U

1
(9] AI’ Bl a4 )
Fia. 61,

Let (' be the centre of the turnout.
¢ F = the frog angle, HFI = FCB.
¢ g = the gauge of track AB.
¢ = radius, aC = fC.
‘ DK = the throw of switch.

Then the radius of the gauge side of the outer rail is (r 4- 49),
and we have
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AB = FC. vers FCB

or,
g = (r+1g) vers ¥
whence
‘ AL
¢+ip == @07
The angle AFB = }F
and BF = ABcot AFB = g . cot } I (R08)

Again, in the triangle #'CB
BF = FC, sin FOB = (r 4 3g) sin I (209)
The chord af is evidently
af = 2r sin 1 ¥ (210)
Similar to eq. (207), we have

DK DK
vers ACD = RO = /I'_-{—-—E

But since the inside rail has the same throw, while its radius
is (r — 3g), we may, if convenient, drop the g, and hence the
length of switch is

AD = 7. sin ACD (211)

The degree of curve corresponding to 7 is found from Table
IV., or by eq. (17), and the centre line of the turnout may be
located by transit deflections from the tangent point @, using
chords of 20 or 25 feet - the correction found in §§ 106, 107;
or the deflection for a 20-foot chord may be calculated at once
by

sin (3ds0) = "17‘—0‘ (212)

- 181. Simple as these formule are, they may be rendered
~ still more convenient by introducing the number of the
i frog, n. By eq. (206) we have cot $# = 2n, which substi-
tuted in eq. (208) gives
BF = 2 ©13)
rawing the chord A/ to the outer rail,

AF = Y AB* BF! = g¥1 F dn® 214)



150 FIELD ENGINEERING.

Make BA' = ADBand join FA'; then by similar triangles,
AA'Fand AFC,

AA' : AF 2 AF : FC

whence
AF?
LU0 S
or (r+19) = 39 1 4 4%) (215)
whence r=2m*=DBF.n (216)

The chord af to the arc of the centre line is to AF as 7 is to
AF . r
” ; hence af = —————, and substituting values from
r +19) =y g
egs. (214) (215) we have
af = —2L @1n)
V14 4n?

ssuming that, for small angles, the tangent offsets vary as
e squares of their distances from the tangent point, which
will lead to no material error in this case;

AB: DK :: BF*: AD?

DK
whence AD=BFy{/ ==

AB (218)
or AD = yin’yg . DK = 42r.DK

It is not necessary to determine the degree of curve in order
to locate the turnout, for having fixed the position of BF, the
position of af is found by laying off Ba, and Ff, each equal to
1g. Whatever be the length of the chord af, found by eq.
(217) or (210), its middle ordinate is always 1g, and the ordin-
nates at the quarter points, § . g = %¢. "Thus for the stan-
dard gauge of 4.708 the middle ordinate is 1.177, and the side
ordinates 0.883.

By the preceding formule Table XI. has been calculated, |
which gives the required parts of a turnout for various frogs |
when the gauge is 4 feet 8} inches and the throw 5 inches; |
also for a gauge of 3 feet and throw of 4 inches. For any |
other throw, onty AD must be calculated. For a different ]
gauge the engineer will do well to construct a similar table, ;

|
|
{

adapted to the frugs used on the road.
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In the table the frog angle is given to seconds, in order that
the results may agree, whether found by equations in §180
or §181; but in practice the nearest minute is sufficiently
exact. The frogs most used for single turnouts are those
from No. 7 to No. 9, inclusive.

182, In case of o double turnout from the same switch,
three frogs are required, as at #, /" and F”, Fig. 62., and the

c’

switch is called a three-throw switch, because its point takes
three positions. The frogs F and F' are usually alike, and
“placed exactly opposite each other in the main track. The
‘other frog F" is placed on the centre line of the main track.
Its angle 7" and its distance from a are now to be determined

in terms of ¥, :

In the figure we have vers 7' Co = E‘f—l?f%, or
i' TS = g
F vers }1" = m’ (219)
F
The distance aF" = (r + ig) sin }F"- (220)
also alf" = r . tan 15" 221)

All the parts of the turnout required to locate the frogs ¥
d F" are calculated by the formulw in the preceding sec-
ns, or are taken from Table XI.

If we let n”" = the number of the frog ", then by eq.(206)

4P = % which substituted in eq. (221) gives

- S .

aF" = (229)

<n
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Also, in the triangle a F'"C,
aF" = V(r 4397 — r* = ¥Ygr + 19) (223)

Equating these and replacing 7 by 2gr?, we obtain

VR ' 224
" 1/2”,_,4_* @21

If we neglect the }, we have

"

(approx.) n' = =.707n (225)

aa
V2

Frample.—If = F' =6° 44, or n = n' = 85, then n” =
6.0 4 or F" = 9° 32

183. In case no frog is at hand of the angle or number given
by eq. (219) or (225), we may select one as nearly like it as pos-
sible, and locate the turnout as a compound curve, pro-
vided that /" is less than 2. Fig. 63.

Let " = 0'-"(1, andr =7 = Qf = Cf'

‘Tken analogous to the equations of §180,

' +19) = Fr;}gTﬁ (226)
. 1 . %g . _L§
T = exsec 3B ol

aF" = (" + 3g)sin §F" = ¢" tan $F"  (228)
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The length of the switch, by eq. (218), is
AD = Y2r" DK

The curvature of the rail between the frogs #" and # is
F"CF = (F — }F").

Draw the chord 7"’/ and the perpendicular #"'L; then the
angle LFF" = F — }(I' — }F") = &I -} 1F""); and since
LF" = 4,

p " b %g
. F'F = ETRTO YN (229)
LF = jg.cot 4 (F+1F") (230)
‘&F”F :

(r+149) = ST F =377 (231)

FErample.—Let F = 6° 44 F" = 10° 24’

Eq. (226) g 2.854 log 0.371806
3B 5° 19 log exs 7.616224

' 569.616 : 2.755582
“Eq. (228) 17" 5° 12" log tan 8.959075
aF"  51.839 1.714651
Eq. (229) - 3y 2.35 log 0.371806
E -+ 3F") 5°58' log sin 9.016824
3 F'F 22645 1.354982
“Eq. (231) (F—3F" 0° 46’ log sin 8.126471
Ar + 3g) 1692.432 3.228511

7 843.862

When »"” > . 707n, r will be less than »’. Should F' not
‘equal ¥, (¥ being given), then 7" and L' F" must be calculated
‘also, by substituting 7' for Fin eqs. (230) and (281). ~
?L
. 184. From the same switch in a straight track it is required

lay two turnouts on the same side. Fig. 64.
~ If we assume /" = F, and that these two frogs shall be
posite each other, we calculate all the distances of the first
irnout for the angle F (or number n) by § 180, 181, whence
have the radius » = Ca,
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Let ' = C'a, the radius of the centre line of the second
turnout. The angle ACH = F, and since /"' = F, the angle
CF'C' = F, and the triangle CF' (' is isosceles, and O'F’' =
C'C. But C'F' = ('4A = }CA.

or ' +19) = Hr + 39 (232)
W 7 =3r — 19 (233)

c - c’ B
Fie. 64,

To calculate the remaining frog at ', we have from eq.
(207)

" y
= _—_—7 234
vers T (234)
or from eq. (216)
w=4 (@35)
29
BF*" = (r' 4 1g) sin F = 2gn" (236)
5 2r'
af!' = 9l sin 4P = — (37
Y1+ 4n'?
and since AC'F' = 2F,
of =2 sin F (238)

The length of switch may be calculated by either 7 or 7,
since for 7, which is about §r, the throw of switch is doudle,
thus giving practically identical results.

If we compare the values of 7" as obtained by eqs. (234)
and (219), we shall find them almost identical for given values
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of Fand g; and since this may also be proved analytically by
assuming that vers $#” = } vers /", which is very nearly
true for ordinary values of 7, we conclude that a set of frogs
(F = F', and #") which is adapted to a double turnout in
opposite directions from a straight line (as in Fig. 62) is also
adapted to a double turnout on one side (as in Fig. 64), the
curves being simple curves in every case. But this being
true, the set is also adapted to a double turnout in opposite
direetions from any curved track the radius of which is not
less than 7 as given for ¥, since any such case is intermediate
between the two cases named. When, therefore, a certain
frog, F, is adopted for general use on any road, another frog
should also be adopted, whose angle, F ", is determined by
eq. (219), or whose number 7 is determined by eq. (225).
Thus, if # = 6°44/, or n = 84, then F" should be 9° 32, or
n" = 6.

185. In case no frog is at hand of the angle or number given
by egs. (234) (235), we may select one as near the same angle
as possible, and, calling this /", calculate the distance BF"
and the radius C"F" (Fig. 65) as for a single turnout; § 180.

¢ C'K Bl 4]
Fia. 65,

Then assuming any other frog ¥, whether equal to ¥ or not,
it is required to find the chord #"#", and the radius C'F"’ of
the arc #"F', The point /' may fall either side of the radius
CF, according to the values given to ¥” and #'.

a. In case F' falls beyond the radius OF, we will assume
first, that the entire rail from B to ¥’ is laid with the same
radius BC, and centre ¢. (This investigation also appli<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>