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PREFACE

The following pages are the outcome of the

author's own teaching. To understand the prin-

ciples set forth in them a knowledge of elementary

Plane and Spherical Geometry and Trigonometry

is all that is needed.

The author wishes to acknowledge special obli-

gations to Martin's " Navigation " and Bowditch's

" Navigator." To either of these works the present

book might serve as an introduction.

Most of the examples have been worked by means

of Bowditch's "Useful Tables/' published by the

United States Government. The corrections to Mid-

dle Latitude have been taken from the table (pages

172, 173) prepared by the author.

References to Elements of Plane and Spherical

Trigonometry by the author and to Elements of

Geometry by Phillips and Fisher are indicated by

(Trig.) and (P. and F.) respectively.
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NAVIGATION AND NAUTICAL
ASTRONOMY

CHAPTER I

PLANE SAILING— MIDDLE LATITUDE SAILING

MERCATOR's SAILING

In navigation the earth is regarded as a sphere.

Small parts of its surface (as in surveying) are con-

sidered di^ planes.

Art. 1. The axis of the earth is the diameter about

which it revolves. The extremities of this axis are

called poles, one being named the North Pole and

the other the South Pole.

2. The meridian of any point, or place, on the

earth is the great circle arc passing through the

point, or place, and through the poles of the earth.

The meridian of a point, or place, may be said to be the

intersection of a plane with the surface of the earth, the plane

being determined by the axis and the point (Phillips and

Fisher, Elements of Geometry, 526, 807).

(a) Meridians are, therefore, north and south lines.

3. The earth's equator is the circumference of the

great circle, whose plane is perpendicular to the axis.

(a) The equator is perpendicular, therefore, to the

meridians (P. and F., 887).

7



8 NAVIGATION AND

4. Parallels of latitude on the earth are circum-

ferences of small circles, whose planes are perpen-

dicular to the axis.

The planes of these parallels are parallel to each

other and to the plane of the equator (P. and F., 559).

(a) Parallels of latitude are east and loest lines.

6. The longitude of a point, or place, is the angle

between the plane of the meridian of the point, or

place, and the plane of some fixed meridian. This

angle is measured by the arc of the equator inter-

cepted between these planes, since this arc measures

the plane angle of the dihedral angle of the planes

(P. and F., 836). This arc, intercepted between the

two meridians, is spoken of as the longitude, as its

degree measure is the same as that of the dihedral

angle.

One assumed meridian from which longitude is reckoned

is the meridian of the Observatory of Greenwich, England

;

another is the meridian of the Observatory of Washington.

The French, also, have a fixed meridian from which longitude

is reckoned.

(a) Longitude is reckoned, on the arc of the equa-

tor, east and west of the assumed meridian, from 0°

to 180°.

{h) The difference of longitude of two places is the

angle between the planes of their meridians, and

is measured by the arc of the equator intercepted

between these meridians.

This arc is evidently the difference of the two

^,rcs^ which nieasure the longitudes of the two places,
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if the places are either both E. or both W. of the

assumed meridian.

(c) If we give to E. longitudes the sign + , and to

W. longitudes the sign — , the arc which measures the

difference of longitude of two places will always be

the algebraic difference of the longitudes of the places.

(d) To find, then, the difference of longitude of two

places whose longitude is given, we subtract the less

from the greater if both are E. or both are W., but add

the two if one is E. and the other W.

6. The latitude of a point, or place, is the angle

made with the plane of the equator by a line drawn

from this point, or place, to the center of the earth.

The latitude is measured by the arc of the meridian

(of the point) which subtends the angle. This sub-

tending arc is spoken of as the latitude, as^ its degree

measure is the same as that of the inclination of the

line to the plane of the equator.

Latitude is reckoned from 0° to 90°, north and

south of the equator.

7. The difference of latitude of two places is the

difference between the latitudes of the two places,

difference being understood as algebraic^ and north

latitudes having the sign + and south latitudes the

sign -.

(a) To find, then, the difference of latitude of two

places whose latitude is given, take the less from the

greater if both are N, or both are S,, but add the two

if one is N. and the other S,
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(6) The difference of latitude of two places is

measured on any arc of a meridian intercepted be-

tween the parallels of latitude of the places.

Let the figure represent a hemisphere of the earth. Let N
and S be the poles; C the center; and WDE the equator.

Suppose A and B to be two points on the surface; VAH to

be the parallel of latitude of A, and NAS to be its meridian

;

RLB to be the par-

allel of latitude, and

NBS the meridian

of B. Then it is to be

proved that the dif-

ference of latitude of

A and B is measured

by AL, HB, VR, or

any other meridian

arc intercepted be-

tween VAH and

RLB.
Let the meridian

NAS intersect the

parallel RLB in the

point X, and the equator in the point D. Also, let the

meridian NBS intersect the parallel VAH in the point H, and
'

the equator in the point G. Draw the straight lines CA, CD,

CB, and CG.

The plane of the meridian NAS is perpendicular to the

plane of the equator (Arts. 2 and 3), and is, therefore, the plane

which projects the line CA upon that plane ; CD is the inter-

section of these two planes (P. and F., 528), and contains

(as \a part of it) the projection of the line CA. The angle

ACD is, therefore, the angle made by the line AC with the

plane of the equator (P. and F., 586), and is, consequently,

the latitude of the point A (Art. 6). Also, the plane of the

meridian, NGS, is perpendicular to the plane of the equator,
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and by its intersection with that plane determines the pro-

jection of the line CB upon the plane. Therefore, BCO is

the latitude of the point B.

Now, ACDy or the latitude of Aj is measured by AD^ and

BCO is measured by BO] therefore, the difference of latitude

of A and B is measured by the difference between AD and B0\
that is, by AD - BO.

AD=^ND-NA = NO- NH= NW- NV (P. and F., 817).

Also, BO = ND-NL=NO- NB=NW- NR.

.-. AD- BO = NL - NA = NB - NH= NR- NV;
=AL=HB=VRy etc.

If the point P be taken on a parallel of latitude south of the

equator, the difference of latitude would be measured by HP or

by Aa, an arc of a meridian intercepted between the parallels.

8. It is evident that the position of any point or

place on the earth's surface is determined if the lati-

tude and longitude of the point, or place, are known.

Thus, suppose N
NWSE to represent

a hemisphere of the

earth; NWS to be

the meridian from

which longitude is

reckoned; WDE to he

the arc of the equa-

tor; RLB and VAH
to be parallels of lati-

tude ; and NDS, NBS
to be meridians.

Suppose the lati-

tude of the point to

be 30° N., and the longitude to be 40** E. If, now, RLB be

a parallel of latitude, of which the polar distance NR^ NL,
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or NB is 60^ since NW, ND, or NO is 90°, WR, DL, or OB
is 30° ; therefore, RLB is a parallel of latitude^ every pom^ of

which is 30° N. of the equator. Consequently, the point whose

latitude is given must be found somewhere on this arc RLB.
Again, if NDS be a meridian, whose plane NDS makes with

the plane WNS an angle of 40° (measured by the arc WD of

the equator), the longitude of every point on NDS is 40° E.

Therefore, the point whose longitude is given must be some-

where on the meridian NDS. Since the point is on the arc

RLB^ and at the same time on the arc NDS, it must be at

their intersection, L. Therefore, the point is determined when

its latitude and longitude are given.

It might be said that two circles intersect twice, and there-

fore that the point of the circle RLB diametrically opposite

to L would be indicated by lat. 30° N., long. 40° E. This is

evidently false, since the other half of NDS and the other

half of RLB, which, by their intersection, determine this

second point, are on the other hemisphere. The latitude of

this second point is 30° N., but its longitude is 140° W. of the

assumed meridian (Art. 5, (a)).

9. As charts of the earth's surface are constructed for the

use of navigators with meridians and parallels of latitude either

drawn on them, or indicated, if a ship's latitude and longitude

are known, the position of the ship is determined. It is im-

portant that this position should be determined from day to

day, and therefore it is important that the ship's latitude and

longitude should be known. Latitude and longitude are best

obtained by observations of the heavenly bodies. This is a

department of navigation which belongs to astronomy. It is

necessary to have other methods of determining a ship's

position when it is impossible to resort to the methods of

astronomy. These other methods are now to be considered.

10. (a) The distance sailed by a ship, in going from

one point to another, is the length of the line traversed

by the ship between the two points.



NAUTICAL ASTRONOMY 13

(h) The hearing or course of a ship, at any point, is

the angle which the line traversed by the ship (that

is, the distance) makes with the meridian passing

through that point.

If a ship cuts every meridian at the same angle, she is said

to continue on the same course.

If a ship is said to sail a given distance on a given course,

it is assumed that in that distance she continues on the same

course.

The path made by a ship continuing on the same course is

called a rhumb line, or simply a rhumb.

(c) The departure of a ship, in sailing from one

point to another, is the whole east or west distance

she makes measured from the meridian from which

she sails, and is an easting or westing according as she

sails in an easterly or westerly direction.

If the distance sailed is small, it may be considered

a straight line, and the departure might also be re-

garded as a straight line measuring the perpendicular

distance between the meridians of the two points. In

this case the meridians may be considered parallel

straight lines (as in surveying), since they are lines

on. a small portion of the earth's surface, and are

perpendicular to the same line.

If the distance is not small, it may be divided up

into such a number of small parts that each of them

may be considered as a straight line. The departure

of each of these small distances will then also be a

straight line, and the departure of the ivhole distance

will be the sum of the departures of the parts.
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(d) Difference of latitude of two points has already

been defined (Art. 7).

If a given distance sailed by a ship is small, it may
be regarded as a straight line, and then the difference

of latitude of the two extremities of the line, repre-

senting this distance, is measured by a line, which

may be also regarded as a straight line. The differ-

ence of latitude is then a northing or southing (as in

surveying).

If the distance is not small, it may be divided into

such a number of parts that each part may be small

enough to be considered a straight line. The differ-

ence of latitude of each part will then be a straight

line, and the difference of latitude of the whole dis-

tance will be the sum of the differences of latitude of

the parts.

Thus, suppose AC to be a small distance on the earth's sur-

face. Let AK and BC be meridians of the points A and C, and

-- let these lines be consid-^ ^^^ ered parallel. If CK be

yy//// ^\ a perpendicular to AK
//// I \ drawn from C, it will be

I I Ili-JiD \ ^^® departure of AG^
\ and ylif will be the dif-

\ ference of latitude of A
" "/E and 0, or the difference

^^^^^^ of latitude for the dis-

tance AC.

If the distance be a long distance, as from A to Z), then it

can be divided into such a number of short distances— as, for

instance, AC^ CE, EG, and GD— that each one of them can be

considered as a straight line. If AK, CB, EF, and GH be the
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meridians of the points A^ C, E^ and (?, and if CK be the per-

pendicular from C to AK^ EB be perpendicular to C5, OF to

EF, and DH to OH^ then the departure for ^Z> will be KC+
BE-\-FO + HDy and the difference of latitude will be AK+ CB
+ EF+OH.

11. Plane sailing is the art of determining the /
position of a ship at sea by means of a right-angled

plane triangle. Of this triangle the hypotenuse is

the distance, the base is the difference of latitude, the

perpendicular is the departure, and tlje angle between

the base and the hypotenuse is the course.

When the distance sailed is short, it is evident from the

figure that the four quantities mentioned are the parts of a

right-angled triangle

;

for then AC is the dis-

tance, AK is the differ-

ence of latitude, KC at

right angles to AK is

the departure, and CAK
is the course.

If the distance sailed

is not short,— as, for

instance, the distance

AD,— then divide it into such a number of small distances, AC,
CE, EG, and GD, that each may be considered a straight line.

Complete the figure as in the preceding article. Suppose the

ship's course to be the same in sailing from A to D, then the

angles CAK, ECB, GEF, and DGH are equal (Art. 10, (6)).

Now, take any straight line A'N,

and on it lay o^ A'C, C'E', E'G', and

G'D', equal respectively to AC, CE,

EG, and GD, and on these lines A'C,
CE', E'G', and G'D' construct right-

angled triangles A'K'C, CB'E', E'FG\
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and O'H'D' equal respectively to AKCy CBE, EFQ, and GHD,
then A'D' = AD, the distance, and

A'K' + C'B' 4- E'F' + G'H' = AK-\- CB-\rEF+GH= dif-

ference of latitude

;

K'C + BE^ -H F& H- H^D' = KG + BE + FG + HD = de-

parture.

Since the ship sails on the same course, the angles K'A'C,
B'C'E', F'E'G', and H'G'D' are all equal, and, therefore, the

lines A'K\ C'B\ E'F, G'H' bxq parallel; also, the lines K'C,
B'E\ FG', and H'D' are parallel (P. and F., 44). Produce

A'K' and D'H' to meet at R; produce C'B' and E'F to meet

D'R at S and T; and produce E'B' and G'F to meet A'R at

O and P. i? is a right angle, since it is equal to K'. A'RD'
is consequently a right-angled triangle. A'D' represents dis-

tance sailed. D'A'R represents the course. A'R represents

the distance of latitude, for

A'R = A'K'-hK'O -\-OP-\-PR = A'K'^OB'+ E'F'+ G'H'.

RD' represents the departure, for

RD'=RS + ST-{-TH'-{-H'D'=K'C'-\-B'E'+FG'-{-H'D'.

12. Any two parts of a right-angled triangle being

given, in addition to the right angle, the other parts

may be found ; therefore, of the four quantities, the

distance, the course, the departure^ and the difference

of latitude, any two being given, the other two may
be found, since these quantities may be represented

by the parts of a right-angled triangle, as has been

shown in the preceding article, and will, therefore,

have the same relation to one another as the corre-

sponding parts of the right-angled triangle.

When the distance is small, this is evident. If the distance

is great, it may be divided, as before, into such a number of
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small distances, AC, CE, EO, and GD, that each may be con-

sidered a straight line. Let the differences of latitude for these

small distances be AK,
CB, EF, and Gil, and

let the departures be

KC, BE, FG, and HD.
As the course is sup-

posed to be the same for

the whole distance AD,
the angles CAK, ECB,
GEF, and DGH are all

equal.

In
AK

the right-angled triangle AKC, ——
- = cos CAK= cos

AC
course

;

In the right-angled triangle CBE,
course

;

In the right-angled triangle EFG,
course ; and

In the right-angled triangle GHD,
course.

Therefore (P. and F., 265),

CB
CE
EF
EG
GH
GD

= cos BCE = cos

cos FEG = cos

= cosHGD = cos

(1)
AK-\-CB + EF-\-GH
AC -f CE -f EG -f GD

= cos course.

R
P
O
K
A

S T H'

^ -F"W
Now, if we construct the right-angled

triangle A'RD', as in the preceding

article, having A'D' = AD, then, as in

Art. 11, it may be shown that

A'E = AK+ CB + EF-\- GH= dif. of

latitude, and

A'U = AC+CE + EG+GD = AD = dist.

Substituting these values in (1), we have

:

AR difference of latitude

AU distance

AND NAUT. ASTR. —

2

= cos course ; or,
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(2) difference of latitude = distance x cos course.

In the same manner it can be shown

(3) departure = distance x sine of course;

(4) departure = difference of latitude x tan course

;

and that the other relations shown to hold between the parts

of a right-angled plane triangle hold between the quantities in

navigation represented by these parts.

13. If at a given time it is required to find the

position of a ship by plane sailing, the rate of speed

per hour at which she is sailing is first ascertained.

This rate, multiplied by the number of hours elapsed

since the last ascertained position, will give the dis-

tance from that position. The angle made by the

direction in which the ship is headed, and the N. and

S. line of the mariner's compass (with correction, if

necessary), will furnish the course. From these data

the difference of latitude and the departure are found

(Art. 12, (2) and (3)), and thus the position of the

ship is known.

For example, suppose the average rate of sailing is ascer-

tained to be 9 miles an hour, and that 12 hours have elapsed

since the last ascertained position, then the distance is 108.

If the course is observed to be N. 30° E., the ship's position N.

of her last position will be, in miles, 108 x cos 30°, or 93.5

miles, and her position E. will be 108 x sin 30°, or 54 miles.

14. The rate of sailing is ascertained by means of

the log.

The log, in one of its simplest forms, is a triangular piece of

wood, so weighted as to assume, when attached to its line and

placed in water, a position calculated to oppose the most resist-
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ance to force applied to the line. The line is a rope knotted at

regular intervals.

VVlieu the log is thrown overboard and the line is reeled out

by the forward motion of the ship, the number of knots passing

over a given point in a given period of time will give the rate

of sailing for that period of time. Moreover, if the interval

between the knots be the same part of a mile that the period of

time is of an hour^ the number of knots passed out daring the

period of time will give the number of miles per hour sailed by

the ship.

For instance, let the period of time be J minute or ^^^ hour,

then the interval between the knots must be y^^ mile. Sup-

pose, then, 4 such knots (counting the intervals by the knots)

should be reeled out by the forward motion of the ship during

\ minute, we should find the distance sailed per hour (that is,

the rate per hour) by the proportion

^ min. : 60 min. : : ^-fu ^li^® : x (the distance per hour).

.-. X = 2 X 60 X y4tj — ^ ™iles, the same number of miles

per hour as knots per half minute.

15. The mariner s compass consists of a circular

card attached to a magnetic needle, which generally

points N. and S.* Each quadrant of this card is

divided into eight equal parts, called points, to which

names are given as represented in the accompanying

figure.!

* The magnetic needle does not at all places on the earth's surface

point N. and S. Charts for the use of navigators, however, give the

amount of variation for places where the needle is subject to variation,

so that for such places a correction can be applied to the direction indi-

cated by the needle, so as to obtain a true N. and S. line.

I" The naming of the points in each quadrant will be seen to be not

without method. Thus, in the quadrant between N. and E., the point

midway between N. and E. takes its name from both these points , then

the point midway between N. and N.E., and the point midway between
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Also, to express courses between the points, the points are

subdivided into half points and quarter points.

The points are read (taking the quadrant between the N.

and E. points), North by East, North North East, North East

by North, North East, etc., etc.

The angle between two adjacent points is -^^°, or 11° 15'

16. Distance, departure, and difference of latitude

are all expressed in nautical miles.

E. and N.E., take their names respectively from the two points between

which each is situated, as one of these is north and the other is east

ofN.E.

The remaining points are named from the nearest main point (calling

N., E., and N.E. main points), with the addition of N. or E. as the point

to be named is north or east of this nearest point, with the word by placed

between the two. Thus, the point between N. and N.N.E. is N. hy E.

;

the point between N.N.E. and N.E. is N.E. hy N. ; the point between

N.E. and E.N.E. is N.E. hy E. ; and the point between E.N.E. and E.

is E. hy N.

The points of the Qtfeer quadrj^^ts loay be shown to be named on the

same method.
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A nautical mile is equal to a minute of an arc of

the circumference of a great circle of the earth.

As there are 69.115 common miles in a degree of such an

arc (Trig., Art. 173, Ex. 5), a nautical mile is longer than the

common statute mile.

Differences of latitude expressed in degrees and

minutes is, therefore, easily converted into miles, or,

when expressed in nautical miles, is easily changed

into degrees and minutes.

Thus, 5'' 33' difference of latitude = 333 miles ; and

656 miles difference of latitude = 10° 56'.

Ex. 1. A ship sails N.E. b- N. a distance of 70 miles. Re-

quired her departure and difference of latitude at the end of

that distance. The course is 3 points from N. toward E., and

is, therefore, 3 x (11° 15') or 33° 45'.

Ans. Dep. = 38.89 miles; dif. lat. = 58.2 miles.

Ex. 2. A ship from lat. 33° 5' N. sails S.S.W. 362 miles.

Required her departure and the latitude arrived at.

Ans. Dep. = 138.5 miles; lat. 27° 30.6' N.

Ex. 3. A ship, leaving port in lat. 42° N., sails S. 37° W. till

her departure is 62 miles. Required the distance sailed and

the latitude arrived at. Ans. Dist. = 103 miles ; lat. 40° 38' N.

Ex. 4. A ship sails S. 50° E. from lat. 7° N. to lat. 4° S.

Required her distance and departure.

Ans. Dist. = 1026.78 miles; dep. = 786.56 miles.

Ex. 6. A ship sails from the equator on a course between S.

and W. to lat. 5° 52' S , when* her departure is found to be 260

miles. Required her course and the distance sailed.

Ans. Course = S. 36° 27' W. ; dist. = 437.6 miles.

Ex. 6. A ship sails from lat. 3° 2' N. on a course between N.

and W. a distance of 382 miles, when her departure is found to

be 150 miles. Required her course and the latitude arrived at.

Ans. Course = N. 23° 1\' W. ; lat. 8° 53' N.
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17. A traverse is the path described by a ship

which changes its course from time to time.

The object of traverse sailing is to find the posi-

tion of a ship at the end of a traverse ; the distance

sailed from the position left to the position reached

;

and the course for this distance.

The method of accomplishing this object will best

be seen by means of an example.

Suppose a ship to start from A and sail to B, then

from B to C, and then from C to D. It is required

to find her position at Z);

that is, to find the difference

of latitude and the departure

made in going from A to D.

These quantities being found,

the distance AD, and the course DAk, can be

calculated.

i h fe 7?

\ m -

\
f ^^^"^^

B

V
\

__^--—-^

c

(Remark.— The distances AB^ BC, and CD are all sup-

posed, in traverse sailing, to be short distances, and therefore

are to be treated, like similar distances in plane sailing, as

straight lines.)

Through B, A, and C suppose meridians pn, Ik, and CJi, and

through B, A, C, and i> parallels of latitude Bf, me, Cp, and

Dkn to be drawn.

Ak is the difference of latitude of AD, and kD is the

departure of AD.

(1) Ak = mJi =ai-Cm = Ch-{ Cf+fm)= Cli - (Bp + eB).

Now, Ch is a north latitude, and Bp and eB are south lati-

tudes, therefore, the difference of latitude of ^D is equal to

the difference between the N. latitude of one distance of the

traverse and the sum of the S. latitudes of the other distances.
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(2) kD = nD — kn= nh + hD - Ae =pC -\- hD — Ae.

But pC and hD are west departures, and Ae is an east

departure; therefore, the departure for AD is equal to the

difference between the sum of the west departures of two

distances of the traverse and the east departure of the third

distance.

In the case given above, the number of the parts

of the traverse is only three, but if a fourth distance

on a course between N. and E. were given, a second

north latitude and a second east departure would

enter our figure, so that the difference of latitude

between the first and last position of the sliip would,

in that case, be equal to the difference hetioeen the sum

of the north latitudes and the sum of the south lati-

tudes ; and the departure, in passing directly from

the first to the last position, would be equal to the

difference hetioeen the sum of the east departures and

the sum of the loest departures. The same principle

would hold true for a traverse of any nuuiber of

distances greater than four. The proof would be

similar to that given above for a traverse of three

distances.

The principle stated may, therefore, be taken as

a general one.

Ex. 1. Suppose a ship saiHng on a traverse makes courses

and distances as follows: from A to B, E, b. S. 16 miles;

from B to C, W. b. S. 30 miles; and from C to D, N. b. W. 14

miles. Required the distance from A to D and the course

for that distance. Before solving these examples the student

is advised to plot the figures for them by means of a protractor

and a plane scale.
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Course Distance N. 8. E. W.

1

2

3

S. 78° 45' E.

S. 78° 45' W.
N. 11° 15' W.

16

30

14 13.73

3.12

5.85

15.69

29.42

2.73

Sum 13.73 8.97 15.69 32.15

8.97 15.69

dif. of lat. = 4.76 N. dep. = 16.46 W.

.-. (In the figure, page 22) Ak = 4.76, and JcD = 16.46.

Course = kAD. — = ^^^ = tan. 73° 52' 15" = tan. kAD
Ak 4.76

.-. Course = N. 73° 52' 15" W., or N. 73° 52' W., as the result

is generally given only to the nearest minute.

kD 16.46
Dist. = AD:

sin DAk sin 73° 52'
17.13 miles.

Ex. 2. A ship sails on a traverse, making the follovi^ing

courses and distances: S.E., 25 miles; E.S.E., 32 miles; E.,

17 miles; N. b. W., 63 miles. Required the distance from

her first to her last position, and the course.

Ans. Dist. = 60.94 miles ; course = N. 58° 29' E.

Ex. 3. A ship sails on a traverse, making the following

courses and distances : N^E., 25 miles ; E.S.E., 40 miles

;

E. b. N., 35 miles ; N. b. W., 33 miles. Required the course

and distance from her first position to her last position.

Ans. Course = N. 63° 16' E. ; dist. = 92.41 miles.

18. Parallel sailing is sailing on a parallel of lati-

tude. In parallel sailing, therefore, a ship sails east

or west (Art. 4, {a)). The distance is the same as

her departure, and the difference of latitude disap-

pears.

The problem in parallel sailing is to convert did-
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tance on a parallel into difference of longitude ; that

is, given a distance between two meridians measured

on a parallel of latitude, to fmd from it the distance

between the same meridians measured on the equator

(Art.5,(&)).

The method of solving this problem will be under-

stood by means of the accompanying figure, which

represents a part of the earth.

In this figure let C represent the center of the

earth; P be one of

the poles ; EF a part

of the equator, CE
and CF its radii;

AB a part of a paral-

lel of latitude inter-

cepted between two

meridians, PAE and

PBF', and let DA
and DB be the radii of this parallel.

Draw the radius AC.

AB ^AD_AD
EF EC AC

= C09 DAC = cos ACE.

But ACE is the latitude of A (Art. 6), or of the

parallel AB.

distance on parallel between two meridians

distance on equator between same meridians

= cos lat. of parallel.
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Or, expressing this in other terms,

/T N dist. on a parallel i i. r n i
(1) -T^'

—
7-^
— ——T— = cos lat. of parallel.

dih or longitude

(2) .-. dif. of longitude = d
if

on parallel

cos lat. ol parallel

= dist. on parallel x sec lat.

19. Since for a short distance departure is meas-

ured on a parallel of latitude (Art. 10, (c)), in (1) of

last article substituting departure for distance on a

parallel, we have

(1) departure = dif. of long, x cos lat. ; and

(2) dif. of long;. = ^
, — = departure x sec lat.

^ ^ ^ cos lat.
^

20. In plane sailing, when the distance sailed is

short, the departure can be converted into difference

of longitude by formula (2) of the preceding article,

or, when the difference of longitude is given, it can

be changed into departure by formula (1); in both

cases the parallel of latitude being supposed to be

known. But if the distance is not short, there is

danger of error, since the latitude varies from point

to point of the distance, and the departure is neither

the distance on a parallel through the point from

which the ship sails, nor on a parallel through the

point arrived at. This will be understood from the

figure.
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Suppose the figure to represent a part of the earth's surface,

and that AC represents the distance sailed by a ship. The
departure for that distance would be KE -\- LF -{ MG, etc.

(Art. 10, (c)), which is,

evidently, equal to neither

AD nor RC^ since, as the

meridians PE^ PF^ etc.,

meet at the pole P, the

distance between them

measured on a parallel

diminishes as we proceed ^\

from the equator. The
total departure is conse-

quently less than AD and

gi-eater than RC. It would, also, be incorrect to convert this

departure into difference of longitude by using the latitude of

RC or the latitude of AD, as we really ought to use the lati-

tude of the part departure, KE for KE, the latitude of LF
for LFj etc., and then take the sum of the diiferences of longi-

tude corresponding to these departures for the whole difference

of longitude. If this method were practicable, and we could

make the distances AE, EF, etc., small enough, we should

find the difference of longitude without appreciable error.

As this method is not practicable, two other methods are

used for changing departure into difference of longitude.

One is the method of middle latitude sailing, the other is the

method of Mercator's sailing.

21. In middle latitude sailing, departure is con-

verted into difference of longitude by using, in

Art. 19, (2), the latitude, whose parallel is midway
between the parallel of the point sailed from and

the parallel of the point arrived at.

This latitude is equal to the half sum of the lati-

tude sailed from and the latitude arrived at, if both
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latitudes are on the same side of the equator, but to

the half difference, if one is north and the other south

of the equator.

Thus, suppose /ST is the parallel midway between RG and

AD ; that is, suppose AS = SE, A and C being both north of

th3 equator. WS is the measure of the latitude of the parallel

ST (Art. 6).

^i^rjs ^ ^C^^ + ^'S) = WA+WE
z z

In a similar manner it may be shown that, in case one place

is north and the other south of the equator, the middle latitude

is half the difference of the latitudes of the two places.

The method of middle latitude sailing is not perfectly exact,

but is made nearly so by applying corrections taken from a

table prepared for that purpose.* For short distances or for

sailing near the equator it is practically correct.

22. By Art. 19,

(1) dep. = dif . of long, x cos lat.,

and (2) dif. of long. = ~— = dep. x sec lat.
cos latj.

In middle latitude sailing, for latitude we substitute

mid. lat., and (1) becomes

(a) dep. = dif. of long, x cos mid. lat.,

and (2) becomes

(6) dif. of Ions:. = ^r^— = dep. x sec mid. lat.
^ ^ ^ cos mid. lat. ^

Equations (a) and (&) can be represented in terms

of base and hypotenuse of a right-angled triangle.

* Table of Corrections to Middle Latitude, pages 172, 173.
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This triangle can be combined in one figure with the

triangle for plane sailing, as will be seen by the

accompanying diagram. ^j^

Ex. 1. From lat. 40° N. and long.

r)0° W. a vessel sails on a course

N.W. b. N. to lat. 50° 12' N. Re-

(luired distance sailed, and the r<

longitude of point of arrival.

AB = 10° 12' = 612.

Angle ^ = 33° 45'.

Angle DCB
= mid. lat. = 40° -f 50° 12'

= 45° 6' + cor * of 2' = 45° 8'.

AB 612^C=dist. =
cos^ cos 33° 45'

L. = 2.78675

L. = 9.91985

log 736.3 = 2.86690

dist. = 736.3 miles.

BC= dep. = AB tan A = 612 tan 33° 45'.

BC 612 tan 3.3° 45'CD = dif. of long. =
cos DCB cos 45° 8'

log612 = 2.78675

log tan 33° 45' = 9.82489

colog. cos 45° 8' = 0.15153

log 579.7 2.76317

dif. of long. = 579'.7 W. = 9° 39'.7 W.
long, of pt. of departure = 50° W.

long, of pt. of arrival =59°39'.7 W.

Table of Corrections to Middle Latitude, pages 172, 173.
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Ex. 2. From lat. 32° 22' N., long. 64° 38' W., a ship sails

S.W. by W. a distance of 375 miles. Required the latitude

and longitude of point of arrival.

Arts. 28° 53'.7 N. ; 70° 38'.6 W.

Ex. 3. From lat. 40° 28' N., long. 74° 1' W., a ship sails S.E.

b. S. a distance of 450 miles. Required the latitude and longi-

tude of point of arrival. Ans. 34° 13'.8 N. ; 68° 47 '.5 W.

Ex. 4. From lat. 40° 28' N., long. 74° 1' W., a ship sails S.E.

b. E. to lat. 31° 10' N. Required the distance sailed and longi-

tude of point of arrival. Ans. 1004 miles ; 56° 53 '.5 W.

Ex. 5. From lat. 32° 28' N., long. 64° 48' W., a vessel sails

on a course between S. and W. to lat. 28° 54' N., making a dis-

tance of 475 miles. Required the course and the longitude of

the point of arrival. A^ns. S. 63° 13' 22" W. ; 72° 59' W.

Ex. 6. If from lat. 46° 40' N., long. 53° 7' W., a ship sails to

lat. 32° 38' N., long. 16° 40' W., required the course and distance

sailed. A7is. S. 63° 23' E. ; 1879 miles.

23. In Mercator's sailing departure is converted

into difference of longitude by means of the principles

of Mercator's chart.

As the meridians all pass through the poles, a chart,

in order to represent correctly the earth's surface,

should make the meridian lines curved and approach-

ing one another toward either pole. The parallels of

latitude being circles smaller and smaller the nearer

they are to the poles, should, on a correct chart, be

shorter and shorter curves the farther they are from

the equator.

On Mercator's chart the equator, the meridians,

and parallels of latitude are all represented as straight

lines. Meridian lines are all drawn at right angles to
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the equator, and are, therefore, parallel to each other.

Parallels of latitude are made parallel to the equator,

and therefore, like parts of any parallel, are equal to

like parts of the equator. On Mercator's chart, there-

fore, the east and west dimensions of any part of the

earth's surface are made too large, except near the

equator. To preserve the true proportion existing

between the dimensions of any particular part of the

earth, the north and south dimensions are lengthened

in proportion to the lengthening of the east and

west dimensions. The method of accomplishing

this will be understood by means of the accompany-

ing figures.

On a globe representing the earth, the meridians

PE, PA, etc., make with the equator and with

parallels of latitude a number of quadrilaterals, all of

whose sides are curved lines.

Thus, in the figure, if the

equator, represented by WE, /vj

be supposed to be divided /K//
into a number of parts of LkY?/
10°, each equal to AE, and \ j^r
on the meridian PE, we lay p"^
off EG, GK, KM, etc., each

also equal to 10", drawing parallels of latitude through

the points of division G, K, M, etc., we should divide

the surface of the globe into several tiers of quadri-

laterals ; one tier composed of quadrilaterals each

equal to FGAE, a second tier of quadrilaterals each

equal to HFGK, a third tier of figures each equal to
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LHKM, etc. Supposing the earth to be a sphere,

on the globe representing it, AE, EG^ GK, and

KM would all be equal, as they are equal parts of

equal great circles. Also, the ratio of EG to GF
= sec 10° (Art. 18, (2)), and

GK
KH = sec 20°;

KM
ML

= sec 30^

If we desire to represent these various tiers of

quadrilaterals on Mercator's chart, with the features

of the earth which they inclose, we draw a straight

line of the same length as the curved line represent-

ing the equator on the globe; that is, we make we

equal to WE, and divide it into parts wc, cb, ha, and

ae, each equal to AE, and

at the points w, c, h, a, and

e erect perpendiculars wp,

cd, hn, etc., to represent the

meridians FW, FC, FB,
etc. The lines wp, cd, hn,

etc., being at right angles

to we, are parallel. If we
draw a series of lines par-

allel to we to represent parallels of latitude, as dm,

hk, and fg, we form tiers of rectangles ; one tier of

rectangles each equal to fgea, a second tier of rectan-

gles each equal to hkgf, and so on. By this construc-

tion fg, hk, and hn are all made equal to ae. To
make the quadrilaterals, like fgea, represent the

corresponding quadrilaterals, like FGEA, we must

f

I yr 1 vn.

7. X

f %

oJ
i

^X. i
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lengthen eg as much as we have lengthened fg.

We have made

/^ = ae = ^jE' = i^(9seclO° (Art. 18,(2)),

therefore we must make

eg =EG sec 10° (or, ae sec 10°),

^°*^"' §=!!•

Consequently, if on the line em we take a point g
so that eg = ae sec 10°, and through g draw a straight

line parallel to loae, we shall form a tier of quadri-

laterals each equal to afge, whose sides af and eg

have the same ratio to fg which AF and EG bear to

FG. In like manner, if we make gk = ae sec 20°, and

through k draw another straight line parallel to icae,

we shall form a second tier of quadrilaterals each

equal to fhkg, whose sides fh and gk have the same

ratio to hk which FH and GK bear to HK. Through

m, if A:m = a6 sec 30°, we draw another straight line

parallel to icae, making a third tier of quadrilaterals,

and so on for the rest of the chart.

If, instead of taking the parts, like ae, equal to

10° of the equator we make them 1° or 1', then the

parallels of latitude will be drawn at smaller intervals

on the meridian me.

then em = 1' (sec T + sec 2' -f sec 3').

NAV. AND NACT. ASTR. —

3
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In the same way the length of Mercator's meridian

up to 30° would equal the sum of

sec r + sec 2' + sec 3'.- + sec 29° 59' + sec 30%

or the sum of the series of secants, from sec 1', in-

creasing by intervals of V up to sec 30°.

Mercator's chart is, therefore, a chart of the earth's

surface on which the unit of the scale of representa-

tion is continually changing. ' Near the equator the

parts of the earth's surface are correctly represented.

As we go north or south to any distance from that

line, the parts of the earth are enlarged, as compared

with the parts near the equator.

As the earth is not a perfect sphere, but a spheroid

with its shorter diameter connecting the poles, the

meridians are all smaller curves than the equator, so

that in the later Mercator's charts, and in the tables

of the lengths of Mercator's meridians for different

latitudes (called Tables of Meridional Parts), this fact

is taken into account. However, with this modifica-

tion, the method of construction of a Mercator's chart

just given is substantially correct.

In Mercator's sailing the unit of measure, or the

nautical mile, is 1' of the equator. Tables of Meridi-

onal Parts accordingly give in minutes, or nautical

miles, the length of Mercator's meridian from the

equator to any point of latitude denoted by the table.

24. The path of a ship continuing on the same

course is, on Mercator's chart, a straight line, since to

continue on the same course the ship must cut each
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of the meridians at the same angle, and the meridians

are parallel straight lines.

As Mercator's meridian is longer than the true

meridian on a chart representing a curved surface,

and is continually lengthening, the number ofparts in

a certain number of degrees and minutes of the table

will generally be greater than the number of minutes

in the corresponding number of degrees and minutes

of true meridian.

Thus, for example, the number of parts of 16° of the table

of meridional parts is 966.4, while the number of minutes of

16° of true meridian is 960.

Near the equator the number of minutes of true

meridian is greater than the number of meridional

parts of the same degree measure.

Thus, 4° of true meridian = 240°, while meridional parts of

4° = 238.6.

(a) Meridional difference of latitude is the distance

on Mercator's meridian between two parallels of

latitude.

Where the latitudes of two places are given, the

meridional difference of latitude is foimd by taking the

meridional parts of the less latitude from the meridi-

onal parts of the greater, if loth are north, or both are

south latitudes ; but, by adding the meridional parts

of the two latitudes, if one is north and the other south

latitude.

The rule is the same as for finding the true difference of

latitude, except that meridional parts of latitude are used instead

of latitude.
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Ex. 1*

lat. of Newport, R.I., is 41° 29' N.

lat. of Savannah, Ga., is 32° 5' N.

dif. of lat. 9° 24'
Ex. 2.

lat. of Pato Island is 10° 38' N.

lat. of Cape St. Eoque is 5° 29' S.

dif. of lat. 16° 7'

merid. parts 2725.0

merid. parts 2022.1

merid. dif. lat. 702.9

merid. parts 637.5

merid. parts 327.3

merid. dif. lat. 964.8

If one latitude is given, and the meridional differ-

ence of latitude is found, the latitude required is

found by adding the meridional parts of the given

latitude to the meridional difference of latitude, if the

place whose latitude is required is farther from the

equator than the place whose latitude is given, and if

both places are on the same side of the equator ; but,

by subtracting the meridional difference of latitude

from the meridional parts of the given latitude if the

place whose latitude required is nearer the equator

than the place whose latitude is given ; the degrees

and minutes, answering to

the result as found in the

table of meridional parts,

will be the latitude re-

quired.

This will be evident from

the figure, in which WE repre-

sents the equator on Mercator's

chart.

If the latitude of A is given,

the meridional parts, or the dis-

tance AW, can be found from

the table. AB being the merid-

B c
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ional difference of latitude, the meridional parts of C or the dis-

tance, EC = WB =WA + AB.
If the latitude C is given, then from the table CE(=WB)

is found ; then, AW= WB^AB= CE - AB.

Ex. 1. lat. of place left is 25° 6' N. merid. parts = 1546.9

ship sails northerly till she makes merid. dif. of lat. 750.0

meridional parts of place arrived at = 2296.9

Therefore, from table, latitude arrived at is (nearly) 35° 54' N.

Ex. 2. lat. of place left is 46° 10' S. merid. parts = 3113.4

;

ship going northerly, her merid. dif. of lat. is found

to be = 825.6

merid. parts of lat. arrived at = 2287.8

Therefore, latitude arrived at is 35° 46'.4 S.

If a ship starting from one side of the equator sails

to a point on the other side, the latitude of the point

arrived at is found by subtracting the meridional parts

of the given latitude from the meridional difference of

latitude ; the result will be the meridional parts of the

required latitude.

Ex. The meridional difference of latitude is . . . 1805.8

which is made by a ship going norths starting from lat.

8°41'S merid. parts = 519.5

Therefore, latitude arrived at is 21° 6' N. Merid. parts 1286.3

It is evident, therefore, if the meridional difference

of latitude made by a ship sailing from a point on

either side of the equator toioard a point on the oppo-

site side, exceeds the meridional parts of the latitude

left, that the ship has crossed the line and has arrived

at a N. latitude, if the latitude left was S., but has

arrived at a S. latitude if the latitude left was N.



38 NAVIGATION AND

B

Thus, on the figure, WE representing the equator, a ship

sails from B toward A. BW repre-

sents the meridional parts of the

latitude left, BD is the meridional

difference of latitude,AC represents

the meridional parts of the lati-

tude arrived at.

A

/
/

E
/. AC=WD = BD-BW.

25. Comhining Mercators sailing loith plane sailing.

Let the figure represent a part of Mercator's chart,

on which WE represents the equator, and AC \^ the

lengthened distance be-

tween two points A and

C. CAB is the course

for that distance. If, from jg

C, CB be drawn perpen-

dicular to tho meridian

WB, AB will be the me-

ridional difference of lati-

tude, and BC will be the

lengthened departure (Art.

10, (c)).

Now, BC=WE- that

is, departure, on Merca-

tor's Q\i?iYt, equals difference of longitude (Art. 5, (??)).

If, in plane sailing, the same course and distance

were represented by the hypotenuse and acute angle

of a right-angled triangle, A'RD, AR would be

true difference of latitude, RD would be depar-

ture.

n c13
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DIF. LONG

Now, ABC and A'RD are similar triangles, since

the angles A' and A' are

equal, as they both repre-

sent the same course, and

the angles R and B are

right angles. Placing the

angle A upon A\ the two

triangles may be combined,

as in the figure ; then

AR RB

(1)

AB BC
dif. of lat.

that is,

dep.

merid. dif. of lat. dif. of long.

Also, BC=AB X tan J.'; that is,

(2) dif. of long. = merid. dif. of lat. x tan course.

By means of these two triangles all cases of Merca-

tor's sailing may be solved, and the position of a ship

at sea may be determined from the usual data.

The latitude of one position of the ship, either of the point

left or the point arrived at, must always be known in order to

use Meroator's sailing.

Tlie line A'C is not required in calculations. A'D represents

the tnie distance.

Ex. 1. A ship starting from lat. 37* N., long. 10** W., sails

on a course between N. and E. to lat. 41° N., making a distance

of 300 miles. Required the course and the longitude arrived at.

lat. 41° N. merid. parts = 2686.5

lat. 37° N. merid. parts = 2378.8

dif. of lat. = 4° = 240' merid, dif. of lat. = 307.7
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Taking the figure of the preceding article, A'D = 300,

A'R = 2^0, and A'B = 307.7.

^ = ?^=eosA' = cos course. BC = A'B x tan A'.
A'D 300

dif. long.= 307.7 x tan 36° 52' 12"

log 240 = 2.38021 log 307.7 = 2.48813

log 300 = 2.47712 log tan 36° 52' 12" = 9.87506

log cos 36° 52' 12" 9.90309 log 230.8 2.36319

course = N. 36° 52' E. dif. long. = 3° 50'.8 E.

long. left, 10° W.

dif. of long. 3°50'.8E.

long, arrived at = 6° 9'.2 W.

Ex. 2. A ship leaving lat. 50° 10' N., long. 60° E., sails

E, S. E. till her departure is 957 miles. Required latitude and

longitude arrived at, and the distance sailed.

^^'^
dist.* — = dif. of lat.

sin 67° 30' tan 67° 30'

log 957 = 2.98091 log 957 = 2.98091

log sin 67° 30' = 9.96562 log tan 67° 30' = 10.38278

log 1035.8 3.01529 log 396.4= 2.59813

dist. = 1035.8 miles. dif. lat. = 6° 36'.4 S.

lat. left = 50° 10' N.

lat. reached = 43° 33'.6 N.

merid. parts of 50° 10' = 3472.4

merid. parts of 43° 33'.6 = 2893.4

merid. dif. of lat. = 579

dif. long. = 579 x tan 67° 30'.

log 579 = 2.76268 dif. long. = 23° 17'.8 E.

long, tan 67° 30' = 10.38278 long, left = 60^ E.

log 1397.8 = 3.14546 long, reached = 83° 17'.8 E.

* No figure is given for this example, but the student is advised to

plot the figure for it, smd the figure for each of the examples which follow.
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Ex. 3. From a point in lat. 49° 57' N., long. 6° 14' W., a

vessel sails on a course S. 39° VV. to a point in lat. 45° 31' N.

Required the distance sailed and the longitude reached.

Ans. Dist. = 342.28 miles; long. = 10° 33'.5 W.

Ex. 4. From a point in lat. 49° 57' W., long. 5° 14' W., a

vessel goes to lat. 39° 20' N., making a \V. departure of 789

miles. Required the course sailed, the distance made, and the

longitude reached.

Ans. Course= S. 51° 5' W. ; dist. = 1014 miles ; long.= 23° 43'.8 W.

Ex. 5. From a point in lat. 14° 45' N., long. 17° 33 W., a

vessel sails S. 28° 7
J' W. to a point in long. 29° 26' W. Required

.

the latitude reached and the distance sailed.

Ans. Lat. reached = 7° 26'.5 S ; dist. = 1509.8 miles.

Ex. 6. From a point in lat. 20° 22' N., long. 45° 24' W. to a

point in lat. 40° 30' N., long. 20° 10' W., it is required to find

the course and distance.

Ans. Course = N. 47° 6^' E. ; dist. = 1774.9 miles.
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CHAPTER II

GREAT CIRCLE SAILING

26. To find the distance on the arc of a great circle

between two points on the earth, the latitude and longi-

tude of each point being given.

Suppose A and C to represent the two points. If

F represents the pole of the earth, WE a part of the

equator, PJE the me-

ridian from which
longitude is reckoned,

and FW and F£ me-

ridians through A and

C, then , WB will be

the difference of longi-

tude between A and C
;

WA will measure the

latitude of A, and ^C will measure the latitude of C.

In the spherical triangle AFC,

AF=FW- A W= 90° - lat. of A
;

PC = P^ - ^C= 90° - lat. of C;

angle AFC is measured by arc WB, or, degrees of

^PC= degrees of difference of longitude; therefore,

we have given two sides and inchided angle of a

spherical triangle to find the third side.
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27. If it is required to find the distance only, we
may proceed in the following manner:

Denote the sides opposite

A, F, and C by a, p, and
'^

c, respectively. From C
draw an arc, CD, perpen-

dicular to PA at D. Denote

the segment PD by x. Then

the segment AD will be

c-x, if D falls within the

triangle; if D falls on PA produced, AD will be

x — c.

(1) Take the case where the perpendicular falls

within the triangle. Applying Napier's Rule of the

Circular Parts to triangle CDP, we find

cosP
cot a

'

cos a

tana: =

also, cos CD =
cos a;

(a)

(&)

In the triangle CDA, from Napier*s Rule,

cosp = cos AD cos CD
cos (c -x)cosa , ,= ^^ (c)

cos a:
^

(2) If the perpendicular falls

without the triangle, then PD = x,

and equations for tan x and cos CD
remain the same; but for cos AD
we have cos (x - c), so that the

C equation for P becomes
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COS (x — c) COS a
cos p = ^ ^ (d)

To find p, therefore, it is necessary only to compute

X from equation {a), and to substitute its value in (c)

or (d).

Ex. 1. It is required to find the distance, on the arc of a

great circle, between a point in lat. 40° 28' N., long. 74° 8' W.,

and a point in lat. 55° 18' N., long. 6° 24' W. Let the first

point be represented by A and the second point by Cin a figure

similar to the first figure of the preceding article.

Then, c = P^ = 90° - 40° 28' = 49° 32',

a = PC = 90° - 55° 18' = 34° 42',

angle APC = P = TFJ5 = 74° 8' - 6° 24' = 67° 44'.

cos 67° 44' log= 9.57855

cot 34° 42' log = 10.15962

log tan 14° 42' 7" = 9.41893

c = 49° 32'

a; = 14° 42' 7"

c- a; = 34° 49' 53"

cos 34° 49' 53" cos 34° 42'
cos » =^

COS 14° 42' 7"

= cos 34° 49' 53" cos 34° 42' sec 14° 42' 7".

log cos 34° 49' 53"= 9.91425

log cos 34° 42' = 9.91495

log sec 14° 42' 7" = 10.01445

log cos 45° 45' 37" 9.84365

p = 45° 45'tt = 2745.6 nautical miles.
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Ex. 2. It is required to find the distance, on the arc of a

great circle, between a point in lat. 32° 44' N., long. 73° 26' W.,

and a point in lat. 8° 14' S., long. 14° W.

c = 90° - 32° 44' = 57° 16',

a = 90°+ 8° 14' = 98° 14',

P= 73° 26' -14° = 59° 26'.

cos 59° 26'
tan PD = tan x

cot 98° 14'

log= 9.16046

log= 9.70633

log tan 105° 52' 57^" = 10.54587

tan X = minus quantity.

.-. a; or PD is > 90°.

a; = 105° 52' 57V'
c = 57° 16'

x-c= 48°36'57f'

n^a An nr^or. COS 48° 36' 57^" cos 98° 14'
cos AU = COS t) = ^ •^

COS 105° 52' 57i"

log COS 48° 36' 57^"= 9.82027

log cos 98° 14' = 9.15596

log sec 105° 52' 57^" = 10.56278

log cos 69° 45' 37" = 9.53901

p = 69° 45fJ' = 4185.6 nautical miles.

Ex. 3. Required to find the distance, on the arc of a great

circle, between a point in lat. 41° 4' N., long. 69° 55' W., and a

point in lat. 51° 26' N., long. 9° 29' W. Ans. 2507.5 miles.

Ex. 4. Required to find the distance, on the arc of a great

circle, between a point in lat. 37° 48' N., long. 122° 28' W., and

a point in lat. 6° 9' S., 8° 11' E. Ans. 7516.3 miles.
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28. When a ship sails between two points, making

the shortest distance between these points, it sails on

the arc of a great circle.

To do this, it cannot continue on the same course,

as an arc of a great circle between two points, of

different latitudes and longitudes, does not cut the

meridians at the same angle.

Thus taking Ex. 1 of the previous article and solving by

Napier's Analogies, vre have

:

^ ^ - = 29° 43'.

c-a^ 40° 58^ =2Q°->9'- ^

2 2

tan \{C + ^) = cos 20° 29' x cot 29° 43' sec 77° 45',

and tan \{C - A) ^ sin 20° 29' cot 29° 43' cosec 77° 45'.

log cos 20° 29' = 9.97163 log sin 20° 29' = 9.54399

log cot 29° 43' = 10.24353 log cot 29° 43' = 10.24353

lo^ sec 77° 45' = 10.67330 log cosec 77° 45' = 10.01000

log tan 82° 38' 10.88846 log tan 32° 6' 10"= 9.79752

\{C-\-A)= 82° 38'

\{fi-A)= 32° 6' 10"

^= 50° 31' 50"

C= 114° 44' 10"

We see, therefore, that the distance AQ makes an angle

with the meridian PA of 50° 31' 50", and with the meridian PC^

of 114° 44' 10". Consequently, the vessel starts on a course

N. 50° 31' 50" E., and ends with a course N. Q^h'' 15' 50" E.

(the supplement of 114° 44' 10"). Between the points A and C
the course would be continually changing. In practice, the

course is altered at certain intervals, as, for instance, at points
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10° in longitude apart, for which the new course is calculated,

and the distance between the points is run by Mercator's

Sailing.

29. In great circle sailing, the arc of the circle

might lead to too high a latitude, or to some obstacle

like land or ice, which it would be necessary to avoid.

In such cases composite sailimj is adopted, or a combi-

nation of sailing on the arcs of great circles and on a

parallel of latitude.

Thus, suppose it were de-

sired to sail from A io C hy

composite sailing, and that

BD were the parallel of high-

est latitude to be reached.

The great circle starting from

A and tangent to the paral-

lel is first found ; then the

great circle through C and

tangent to BD at D is found. Since these circles are

tangent to BD, AB is perpendicular to the meridian

PB* and CD is perpendicular to the meridian PD.
We have, therefore, two right-angled spherical tri-

angles, APB and CDP, in each of which an hypote-

nuse and a side are given ; PA from the latitude of A
and PC from the latitude of C are known ; PB and

PD, since each is the complement of the latitude of the

highest parallel to be reached, are also known. Conse-

* PB is the least line which can be drawn from P to arc AB, and

therefore passes through the pole of AB. Consequently, by geometry,

PB cuts AB at right angles.
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quently, the other parts of these triangles can be com-

puted by Napier's Rule of the Circular Parts. We can

thus ascertain the courses at A and C and the angles

AFB and DFC. The angles ^P^and JDFC will give

us the difference of longitude between A and B, and

between C and D. Since the longitudes of A and C
are known, the longitudes of B and I) are also known.

By this method of sailing the vessel goes on the arc

of a great circle from A to B, on a parallel of latitude

from B to D (in the figure due E.), and then on. a

great circle from I) to C.

Ex. 1. A ship sails on a composite track from lat. 37° 15' N.,

long. 75° 10' W. to lat. 48° 23' N., long. 4° 30' W., not going north

of lat. 49° N. Required, the longitude of the point of arrival

on the parallel of 49° N., the longitude of the point of departure

from the parallel, the initial and final courses, and the total

distance sailed.

In the triangle ABP right- In the triangle PDC right-

angled at B, PA = 52° 45', angled at D, PC = 41° 37',

PB = 41°. PD = 41°.

cos APB = cot 52° 45' tan 41° cos DPC = cot 41° 37' tan 41°

log cot 52° 45' = 9.88105 log cot 41° 37' = 10.05141

log tan 41° = 9.93916 log tan 41° = 9.93916

log cos 48° 37' 21" = 9.82021 log cos 11° 53' 40" = 9.99057

. .^ sin 41° log = 9.81694
^^^

sin 52° 45' log = 9.90091

log sin 55° 30' 27" = 9.91603

• (7 = _!illil!_ log = 9.81694
^^^

sin 41° 37' log = 9.82226

log sinSr 3' = 9.99468
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co3^4^^
cos52°45^ log = 9.78197

cos 41° log = 9.87778

log cos 36° 40' 33" = 9.90419

CO, pn,, cos 41° 37' log = 9.87367

cos 41° log = 9.87778

log cos 7° 52' = 9.99589

long, of ^ = 75° 10' W. long, of C = 4° 30' W.
dif. of long. = 48° 37'.4 E. dif. of long. = 11°53'| W.

long, of 5 = 26° 32'.6 W. long, of Z> = 16° 23'.7 W.

Course at ^ = N. 55° 30' 27" E. Course at C = S. 81° 3' E.

long, of B = 26° 32'.6 W. dist. AB = 2200.55

long, of Z)= 16°23'.7 W. dist. BD= 399.5

dif. of long. = 10° 8 '.9 W. dist. CD = 472.0

= 608.9 log = 2.78455 total dist. = 3072.05 miles

log cos 49° = 9.81694

log 399.5 =2.60149

Ex. 2. A vessel sails on a composite track from a point in

lat. 46° 10' S., long. 45° E. to a point in lat. 43° 40' S., long.

71° 15' W., not going S. of parallel of 50° S. Required the

longitude of the point of arrival on the parallel of 50° S., the

longitude of the point of departure from that parallel, the initial

and final courses, and the total distance sailed.

Ans. 15° 55'.4 E., 34° 27'.9 W. ; S. 68° 8' 48" W.^ N. 62° 42' W.

;

4663.2 miles.

NAV. AND NAUT. A8TR. 4
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CHAPTER III

COURSES

The magnetic needle of the compass is supposed to

give a north and south line, but in point of fact it

rarely points north and south. It is subject to influ-

ences which deflect it from a north and south line

;

so that the north point of the magnet is sometimes

east and sometimes west of a true north and south

line. The most important deflecting influences cause

two errors, as they are called ; namely, an error of

Variation, and an error of Deviation.

The error of Variation is due to the magnetic action

of the earth. The error is greater or less, or even

nothing, according to the position of the compass at

various points on the earth's surface. Variation may
therefore be called a geographical error. It is known
and calculable, and allowance can be made for it at

any point on the earth.

Tlie error of Deviation is due to the magnetic action

of the ship and its cargo, and changes according to

the direction in which the ship is headed. Each ship

has its own error of Deviation. This error can be

known, and, to a certain extent, can be counteracted

by proper arrangements, but must always be taken

into account.
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30. The True Course of a ship is the angle between

the distance, or the line traversed by the ship, and

the meridian or true north and south line.

31. The Magnetic Course of a ship is the angle

between the distance and a north and south line, as

indicated by the magnet of a compass which is not

affected by the error of Deviation.

32. The Compass Course of a ship is the angle

between the distance and a north and south line, as

indicated by the compass of a ship.

33. For a steamship, in calm weather, or in a sail-

ing vessel with a wind directly astern, the Compass

Course, when corrected for variation and deviation,

will give the True Course ; but when the wind blows

from any direction, except from right ahead or astern,

it pushes the vessel aside from the course on which

she is headed, so that her track is not in the direction

in which she is headed, but makes an angle with that

direction. This angle is called leeway, because the push

of the wind on the vessel is to leeward.

Thus, in the figure NS is a true

meridian ; NCB is the apparent

course ; NCE is the true course ; the

wind, shown by the direction of

the arrow, diverting the vessel from

the track AB, in which she is headed,

to the true track DE, The angle

between these tracks, ECB, leeway ; is

given in points ; and is estimated by the eye.
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Although leeway is not an error of the compass,

the effect of it is the same as if it were, and allow-

ance must be made for it in order to determine the

true course of a ship.

In navigation it is important to be able to con-

vert a true course into a compass course and also

a compass course into a true course, by applying

corrections for the various errors, which have been

mentioned.

The method of doing this will be best ascertained

by applying the errors one by one.

In expressing, or converting courses, the observer

is supposed to be at the center of the compass card.

34. To convert a true course into a magnetic course,

the variation being given. "^

Both variation and deviation are given in terms

which are applied f^ the north point of the compass

needle. For instance, if the variation is given as

8° E., the north point of the needle points 8° east of

a true N. and S. line, or, looking from the center of

the compass, 8° to the right of that line.

Looking south from the center, the variation would

still be 8° to the right.

In works on Navigation it is customary to give

rules for converting courses, but it is best to draw a

diagram, which will illustrate the example given, and

after a little practice, rules can be derived by the

learner himself.

* Variation charts are published by the Government Coast Survey.
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Ex. 1. Let the true course be N.E. b. N. and

the variation be S° E. Required the magnetic

course.

Suppose the observer to be at ; the line NS =
true N. and S. line ; N^S^ = magnetic N. and S.

line.

true course==iVO^ =33° 45' to right of N.

variation=^Oi\r„= 8° to right of N.

mag. course=^^0^= 25° 45' to right of N.

or N.KE. J E., nearly.

Ex. 2. Let the true course be N.W., and the

variation be 12° W.
NS = true N. and S. line ; N^S^ = magnetic N.

and S. line.

true course= JBO-Ar =45°, or 4 pts. left of N.

variation= iV^OiV= 12°, or 1 pt., nearly, left of N.

mag. course

=

N^OB= 33°,

or 3 pts. left of N. =N.W. b. N.

iVJV,

In converting courses sometimes the work

is expressed in degrees, and sometimes to

the nearest points, half points, or quarter

points.

Ex. 3. If the course is N.W., and the variation b,

is 12° E., to obtain the magnetic course we add the

12° to the true course.

true course=^0B =45°, or 4 pts. left of N.

variation= iVOiV^=12°, or 1 pt. right of N.

mag. course=^^0B= 57°, or 5 pts. left of N.
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jj Ex. 4. Let true course be S.E. b. S. and varia-

tion be 22° E.

NS = true N. and S. line.

^m'S„ = magnetic N. and S. line.

Suppose observer to be at 0.

true course SOA = 3 pts. left of S.

= 33° 45' left of S.

variation SOS^ = 22° right of S.

magnetic course = S^^OA = 55° 45' left of S.

= nearly 5 pts. left of S.

Ex. 5. Let true course be S.E. b. S., but vari-

ation be 22° W.

true course SOA = 33° 45' left of S.

variation SOS^ = 22° left of S.

magnetic course = S^OA = 11° 45' left of S.

From these examples and by an inspec-

tion of the figures, supposing the observer

to be at center of compass, it will be seen that lohen

the true course and the variation are both to the right

or hoth to the left of either the N, or S. points, the

magnetic course is the difference of the two ; but

when one is to the right and the other to the left of

the N. or S. points, the magnetic course is the sum of

the tioo.

35. To change a magnetic course into a true course

:

if the given course and variation are hoth to the right

or hoth to the left of either N. or S. points, add the

tioo ; if one is to the right and the other to the left,

take the difference.
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This rule for changing magnetic to true courses

would naturally follow, from what has been said of

converting true courses into magnetic courses, as

the processes are reversed, and we should, therefore,

reverse the former rule. We will

illustrate by examples.

Ex. 1. Magnetic course is N.N.E. Vari-

ation is 22** E. Find true course.

mag. course = N^AB = 22° 30' right of K
variation = N^AN= 22° right of K

true course = NAB = 44° 30' right of N.

= 4 pts., nearly.

= N.E., nearly.

Ex, 2. Let the magnetic course be S.E. b.

S., and the variation be 11° W. Find true

course.

mag. course = S^AB = 33° 45' left of S.

variation = S^AS = 11° left of S.

true course = SAB = 44° 45' left of S.

= S.E., nearly.

Ex. 3. Let the magnetic course be S.W.

b. W., and the variation be 11° 15' W. Find

true course.

mag. course = S^AB = 5 pts. rights of S.

variation = S^AS = 1 pt. left of S.

true course = SAB = 4 pts. right of S.

= S.W.
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36. To convert magnetic courses into compass

courses, or compass courses into magnetic courses,

it is necessary to have a list of deviations correspond-

ing to the different directions in which the ship heads.

This is determined before the ship leaves port. De-

viation acting on the compass needle to deflect it

from a magnetic N. and S. line, tables of deviation

give the amounts of deviation E. and W. of the mag-

netic north point.

Though each ship has its ovrn Deviation Table, the

table here given will serve to illustrate the subject.

Deviation Table

I. I. n. I. n.
Direction in

Degrees
and Minutes.

Course by
Ship's

Compass.

Deviation
of the

Compass.

Course by
Ship's

Compass.

Deviation
of the

Compass.

North 3° 10' W. South 3°10'E.
ir 15' N. b. E. 2 35 E. S. b. W. 5 E.

22 30 N.N.E. 8 10 E. s.s.w. 3 W.
33 45 N.E. b. N. 13 10 E. S.W. b. s. 6 30 W.
45 N.E. 16 50 E. S.W. 9 40 W.
56 15 N.E. b. E. 19 30 E. S.W. b. W. 13 W.
67 30 E.N.E. 20 30 E. W.S.W. 16 10 W.
78 45 E. b. N. 21 5 E. W. b. S. 19 15 W.
90 East 20 20 E. West 21 10 W.
78 45 E. b. S. 19 15 E. W. b. N. 23 20 W.
67 30 E.S.E. 18 5 E. W.N.W. 24 W.
56 15 S.E. b. E. 16 30 E. N.W. b. W. 23 35 W.
45 S.E. 14 40 E. N.W. 22 W.
33 45 S.E. b. S. 12 5 E. N.W. b. N. 19 W.
22 30 S.S.E. 9 40 E. N.N.W. 14 50 W.
11 15 S. b. E. 6 E. N. b. W. 9 15 W.

South 3 10 E. North 3 10 W.
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37. To find the magnetic course, having given the

compass course and the deviation.

Ex. 1. Let the compass course be N.N.E.

By the table the deviation is 8° 10' E.

Let N^S^ be magnetic N. and S. line ; NJSe

be compass N. and S. line ; and AB be ship's

track.

com. course = N,AB = 22° 30' right of N.

deviation = iV,^^« = 8° 10' right of N.

mag. course = N^AB = 30° 40' right of N.

^ = N.N.E. } E.

Ex. 2. Let the compass course be N. 80° W.
This is 1J° W. of W. b. N. The deviation for

W. b. N. is 23° 20' W. The deviation for

N. 80° W. will be a little less. As in steering

a vessel it is impossible to hold her head to a

minute of correction, if we call the deviation

23° W. we shall not be much out of the way.
B<-

com. course = N,AB = 80° left of N.

deviation = N,AN^ = 23° left of N.

mag. course = N^AB = 103° left of N.

= 77° right of S.

mag. course = S. 77° W.

38. To find the compass course, the magnetic course

and deviation being given.

Ex. 1. Let the magnetic course be E.N.E.

magnetic course= 6 pts. right of N. or N. 67° 30' E.

deviation from page 56= 1| pts. right of N. or N. 20° 30' E.

approximate compass course =4^^ pts. right of N. or N. 47° E.
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This is only an approximate answer, as will be evident ; for

if we steer by compass N. 47° E., the deviation for that course

is nearly 17° 30'. Thus

:

compass course = 47° right of N.

deviation = 17° 30' right of N.

magnetic coarse would then = 64J° right of N.

or 3^° less than the given course.

But, if we apply to the given magnetic course the correc-

tion due to deviation for the approximate compass course, the

example will prove. Thus

:

magnetic course = 6 pts. or 67° 30' right of N.

deviation for N. 4^ E. = li pts. or 17° 30' right of N.

compass course N.E. i E. = 4^ pts. or 50° right of N.

Proof: compass course = 4^ pts. or 50° right of N.

deviation = IJ pts. or 17° 30' right of N.

magnetic course = 6 pts. or 67° 30' right of N.

Courses and deviations, when given in points, are given to

nearest points, half points, or quarter points.

Since the Deviation tables are made for angles

indicated by the compass courses, we get only an

approximate result by applying the deviation corre-

sponding to the magnetic course. Hence, to be accu-

rate, we first find this approximate compass course,

and then apply the correction, which corresponds to

this approximate course in the table, to the original

magnetic course.

We have considered the applications of variation

and deviation separately, for the sake of clearness;

but in practice^ their action on the magnet of the



NAUTICAL ASTRONOMY 59

compass is combined. We have to convert compass

courses into true courses, and also true courses into

compass courses.

In changing a compass course into a true course

the result is the same, whether we apply corrections

for variation and deviation separately, or together;

but in converting a true course into a compass course

we must apply correction for variation first, and then

correction /or deviation,

Ex. 1. Find true course; variation being 25° E.; compass

course being N.X.E. ; and deviation being taken from table on

page bQ. In figure let notation of lines be the same as in pre-

ceding figures.

compass course = N^AB = 22° 30' right of N".

variation = NAN^ = 25° right of N.

deviation = N^AN, = 8° 10' right of N.

sum = NAN, = 33° 10' right of N.

true course = NAB = Bd'' 40' right of N.

= nearly N.E. h. E.

Ex. 2. Find true course, variation being

25° W. ; compass course being S.E. b. E. ; and

deviation being taken from table.

variation = NAN^
= SAS^ = 2J pts. left of S.

deviation = S^AS^ = 1
J-

pts. right of S.

difference = SAS, = J pt. left, of S.

compass course = S^AB = 5 pts. left of S.

true course = SAB = 5| pts. left of S.

= E.S.E. J S. ^s.
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Ex. 3. Let the true course be N. 35° W. and the variation

be 10° E. Find the compass course.

true course = NAB = 35° left of N.

variation = NAN^ = 10° right of N.

magnetic course = N^AB = 45° left of N.

deviation (approximate) = 22° left of N.

approx. compass course = 23° left of N.

deviation = 14° 50' left of N.

compass course N,AB = 30° 10' left of N.

= N. 30° 10' W.

Ex. 4. Let the true course be N.E. b. E. and

the variation be 20° W. Find the compass

course. ^^^
true course = NAB = 5 pts. right of N.

variation = NAN^ = ^1 P^s- left of N.

magnetic course = N^AB = 6J 'pts. right of N.

By table, page 56

:

approximate deviation = If pts. right of N.

approx. compass course = 5 pts. right of N.

deviation = If pts. right of N.

compass course = 5 pts. right of N.

Same examples by degrees

:

true course = NAB = 56° 15' right of N.

variation = NAN^ = 20° left of N.

76° 15' right of N.

21° right of N.

magnetic course = N^AB
approximate deviation

approximate compass course = 55° 15' right of N.

deviation (to be taken from 76° 15') = 19° 30' right of N.

compass course = N^AB = 56° 45' right of N.
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Ex. 5. Find the true course; the compass course being

S.E., the variation being 28° W., leeway being 2 pts., and
the wind blowing E.N.E. ' Take deviation

from table on page 56.

compass couTse=S^B' =45° left of S.

deviation =aS,^>5«,= 14° 40' right of S.

variation= aS'„^/S' =28° left of S.

dif.= *S,^^ =13° 20' left of S.

appar. true course =aS'^^' =58° 20' left of S.

But the influence of the wind, whose direc- s Sc s^-^

tion is shown by arrow in figure, changes this

apparent true course to the leeward by two points, represented

by the angle BAB'.

Thus:

apparent true course = SAB' = 58° 20' left of S.

leeway = BAB' = 22° 30' toward S., or right of S.

true course = SAB = 35° 50' left of S., or S.E. J S.

Ex. 6. Compass course is S.W. \ S. Variation is 6° E.

;

I wind is S.S.E., and leeway If pts. Deviation being taken

from table on page 56. Find true course. Example can be

worked without figure thus

:

course by compass = 3| pts. right of S.

variation = 6° right of S. 1

deviation = 9° left of S. J

dif. = 3° left of S. = J pt. left of S.

apparent true course — S^ pts. right of S.

leeway = 1} pts. right of S.

true course = 5^ pts. right of S.

W.S.W. I S.
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The preceding examples could all have been worked

without figures, but, until the learner has become

familiar with the methods of applying the different

corrections, it is best to check the numerical work by

means of a diagram.
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CHAPTER IV

ASTRONOMICAL TERMS

39. Before giving definitions of the terms used

in Nautical Astronomy, we must first consider the

effects of the earth's revolution around the sun, as

they appear to an observer on the earth.

In the figure, let ABCD represent the orbit in

which the earth revolves about the sun, S\ and

.Stp-^^

A, B, C, and /) ^epre^^ent the positions of the earth

at the beginning of the seasons of spring, summer,

fall, and winter, respectively. If the figure repre-

sents the plane of the earth's orbit, the axis of the

earth is not at riorht anorles to that orbit, but makes

an angle with it of about 66° 33'. The plane of the

equator therefore makes an angle with it of 23° 27'.
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To the observer on the earth the heavenly bodies,

the sun included, appear to be on the interior sur-

face of a very large sphere, of which the center is

his own point of observation, or his own eye. This

imaginary interior surface of a sphere is called the

celestial concave. The poles of the heavens are the

points of the celestial concave, toward which the axis

of the earth is directed. The celestial pole ahove the

horizon is called the elevated pole.

Considering the earth as motionless, to the observer

on it, the sun appears to travel daily in the celestial

concave from east to west. If from a standpoint on

the earth we could watch the sun in the heavens

during the whole year, it would appear to describe a

circle on the celestial concave. This circle is called

the ecliptic.

The plane of the earth's equator, being supposed

produced, would cut the celestial concave in the

celestial equator

or equiiioctial.

The ecliptic and

the equinoctial

intersect in two

Dfcc^^ points, known as

the first point of

Aries and the first

point of Libra.

About March 21

the center of the

sun is at the first point of Aries, where the equinoc-

B
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tial crosses the ecliptic : and about September 23 it

is at the first point of Libra, where the equinoctial

intersects the ecliptic a second time. These points

of intersection are called equinoctial points, because,

at the seasons of the year when the sun reaches

them, the days and nights are of nearly equal

length. Thus in the figure, ABCD is the ecliptic.

AECF is the equinoctial. A is the first point of

Aries, where the sun changes its declination from

S. to N. ; C is the first point of Libra, where the sun

changes its declination from N. to S.

The equinoctial is a fixed circle on the celestial

concave, and the first point of Aries is considered

a fixed point,* as it is the point of intersection of

the ecliptic and the equinoctial. The positions of

heavenly bodies may therefore be expressed with

reference to them, just as the positions of places on

the earth's surface are expressed in latitude and lon-

gitude by reference to the equator and the meridian

of Greenwich.

40. Let the accompanying figure represent the

earth, PWP'E, surrounded by the celestial sphere,

piop'e.

If the axis of the earth, PP\ be produced to

meet the celestial concave in the points p and

p, these points are called the celestial poles, and

the line pp* is called the axis of the celestial

sphere.

First point of Aries moves yearly 50" (nearly) to westward.

NXV. AND NAUT. A8TR. 6
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The plane of the equator, WDU, produced, inter-

sects the celestial sphere in the celestial equator, wSe.

The planes of the

meridians PEP\
PDF\ intersect the

celestial sphere in

great circles, jpej)'

,

p Tp\ which are called

hour circles and also

circles of declination.

Since the earth

revolves upon its axis

once in 24 hours,
^.M^<\*4>^^^.^ every point on a ce-

lestial meridian would appear, to an observer on

the earth's surface, to move through a complete

circumference, or 360°, during that time. If, now,

the celestial n^eridians are drawn at intervals of 15°

(on the equator), there will be 24 such meridians.

Since the time in which all these meridians pass by

an observer is 24 hours, the interval of time of

passage between two successive meridians will be one

hour, since 24 of them pass by him in 24 hours.

If meiidians are drawn at intervals of 1°, the inter-

val of time of passage of two such meridians will

be — -, or 4 minutes. Thus, the passage of
15

these meridians or of points on them being measured

by time or degrees, we can convert one measure into

the other.
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The angles made by these meridians at p and jp

are called hour angles, and these angles are measured

by the arcs which they intercept on the arc of the

celestial equator wSe,

Tlie celestial horizon of any place, on the earth's

surface, is the circle made by a plane passing through

the center of the earth parallel to the plane of the

horizon at that place, and intersecting the celestial

sphere.

The celestial horizon of the point L is HSK.

If a straight line be drawn from the center, (7, to

L, and this line be produced through L to meet the

celestial sphere at Z, Z will be the zenith of L ; Zp
will measure the zenith distance of L {i.e. the dis-

tance of the zenith of the point L from the pole),

and Ze will measure the celestial latitude of L. The

zenith distance is the complement of the celestial

latitude. The degree measure of the celestial latitude

is the same as that of the terrestrial latitude, since

they both subtend the same angle at the center of

the earth. Thus, Ze and LE both subtend the angle

LCE.
Since Z is the extremity of the diameter perpen-

dicular to the plane of the horizon HSK, Z is the

pole of HSK, and therefore every point on HSK is

90'' from Z. If the line CZ be produced to meet the

surface of the celestial sphere again at n, n will be

the nadir of the observer at L.

The d^QUnation pf <v heavenly body is the arc of
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the circle of declination, intercepted between the

equinoctial and the position of the body.

Declination is measured in degrees, minutes, etc.,

N. or S. from the equinoctial, toward the pole.

Thus in the preceding figure, TR is the declination of R
and is S. declination.

The polar distance of a heavenly body is the dis-

tance of that body from the elevated pole, and is

90° q= the declination : the minus sign being taken

if the declination of the body is of the same name
with the pole, that is, both being N. or both S. ; but

the plus sign being used if the declination and the

pole are not of the same name, that is, one being N.

and the other S.

In the preceding figure, calling p the N. pole, and consider-

ing it the elevated pole, the polar distance of R is 90° + TR.

If 2^' were taken as the elevated pole, p^R would be the polar

distance and would be 90° — TR.

The altitude of a heavenly body is the angle of

elevation of the body above the plane of the horizon.

A distinction is made between an observed altitude

of a body and its true altitude.

By an ohsey^ved altitude^ in Navigation, is generally

understood the angle of elevation of a body above

the visible horizon, as represented by the horizon

line of the sea.

A true altitude is an observed altitude corrected,

so as to represent the angle of elevation of the body

above the celestial horizon.
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Circles of altitude are great circles of the celestial

sphere which pass through the zenith of the observer.

Circles of. altitude are also called vertical circles

because their planes are perpendicular or vertical to

the plane of the horizon.

The altitude of a body is measured on the arc of a

circle of altitude between the horizon circle and the

position of the body. This measure is generally used

in calculations as the altitude.

In the preceding figure, ZeKsmd ZTMsLie circles of altitude.

MT is the altitude of T.

The zenith distance of a body is its distance from

the zenith measured on a circle of altitude.

ZT is zenith distance of T and equals 90° - MT or 90°-

altitude of T.

The celestial meiidian of any place is the circle on the

celestial concave in which the plane of the terrestrial

meridian of that place produced cuts the concave.

It is the circle of altitude which passes through

the celestial poles.

In the preceding figure, if X be a place on the

earth's surface, and the plane of the meridian PLEF
be produced to cut the celestial concave in HpZeK,
HpZeK is the celestial meridian of L. It coincides

with the circle of altitude through Z.

The points in which the celestial meridian cuts

the horizon are the N. and S. points of the horizon.

H and K are the N. and S. points of the celestial horizon of

the place L, supposing P and F to be N. and S. poles.
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The prime vertical is the circle of altitude whose

plane is at right angles to the plane of the celestial

meridian. It intersects the horizon in the E. and W.
points.

If, in the preceding figure, a plane be passed through Cz at

right angles to the plane of HpZeK, the circle in which it cuts

the celestial concave will be the prime vertical.

The right ascension of a heavenly body is the arc

of the equinoctial intercepted between the first point

of Aries and the circle of declination which passes

through the center of the body.

Right ascension is measured eastward from the

first point of Aries from 0° to 360°; or, in hours,

from h. to 24 h.

Let the figure represent the celestial sphere projected on

the plane of the horizon NWE\ P will represent the N. pole;

WDE will represent the equinoc-

tial ; AC will represent the eclip-

tic ; and A, the intersection of the

ecliptic with the equinoctial, will

represent the first point of Aries.

If B represent the position of

a heavenly body, draw the arc

of a circle of declination, PB, and

produce the arc to meet the equi-

noctial at Z>. AD will represent

the right ascension of B.

41. The earth being inside the celestial concave,

the observer sees the heavenly bodies from the inside.

Astronomical diagrams are drawn on the supposition
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that the observer is on the outside of the celestial

concave, as the relations and positions of celestial

bodies can best be represented on this supposi-

tion. The representations are made on different

planes, according to the supposed different points of

view.

Thus, if the poiiit of view is directly above the

zenith, the representation of the heavenly bodies is

made on the plane of the horizon. This is a very

useful mode of representation.

If the poiiit of view is at either the U. or W. points,

the representation is made on the plane of the celestial

meridian.

If the point of vieio is directly above the celestial

pole, the representation is made on the plane of the

equinoctial or celestial equator.

If NWSE represent the

horizon, and if the point of

view is directly above the

zenith, the zenith will be

projected on the center of the

circle, and the circles of alti-

tude, passing through the

zenith, will be projected as

straight lines. If N. S, E,
W be the N., S., E., and W. points of the horizon, NS
will be the celestial meridian of the observer whose

zenith is Z. The prime vertical, or circle of altitude

at ri,o;ht angles to the celestial meridian, in the figure

will be WE.
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42. To represent, on the plane of the horizon, the

celestial pole and the celestial equator for a given

latitude. Suppose the latitude to be 42° N.

Let ZL represent 42°, and LF represent 90°. If

an arc of a great circle WLE be drawn with P as a

pole, it will pass through W, L, and E, and represent

the celestial equator, or equi-

noctial. For, since by defi-

nition, the planes of the

celestial meridian and prime

vertical are at right angles

to each other, the diameter

joining E and W lies in the

plane perpendicular to the

plane of NS. Therefore, E
and W are poles of NS. Consequently, E and W are

each at a quadrant's distance from F, for the polar

distance of a great circle is a quadrant. But PL
is a quadrant by construction. Therefore, P repre-

senting the celestial pole, WLE will represent the

equinoctial or celestial equator.

43. The azimuth of a heavenly body is the angle,

at the zenith of the observer, between the celestial

meridian and the circle of altitude passing through the

body. It is measured by an arc of the horizon between

the N. and S. points and the point in which the circle

of altitude intersects the horizon. Azimuth is meas-

ured from the N. and S. points E. and W. from 0° to

90°.
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Azimuth is sometimes called the true bearing of a

heavenly body.

To represent on the plane of the horizon the altitude^

zenith distance, and azimuth of a heavenly body.

Let NWSE represent the

plane of the horizon.

Let the azimuth be S. 50°

W., and the altitude be 30°.

Measure SA = 50° ; through

A draw the circle of altitude,

ZA. On ZA take J^^=30°
to represent the altitude. This

will give B as the place of

the heavenly body. ZB is the zenith distance. If

P be supposed to be the celestial pole, PB will

represent the jjolar distance of the body. SZB is

the azimuth, measured by arc SA.
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CHAPTER V

TIME

44. Time is measured by the intervals between the

appearances of certain celestial bodies on the meridian

of the observer.

Thus, sidereal time is measured by the successive

appearances of i\\efirst j^oint of Aries on the meridian.

The period elapsing between two successive appear-

ances of the first point of Aries on the same part of

the meridian is called a sidereal day.

The transit of any heavenly body is its passage

across the celestial meridian.

The instant when the first point of Aries, or when

any heavenly body, is on the meridian is called the

time of its transit.

As the celestial meridian passes through the zenith

and nadir, the first point of Aries is really on the

celestial meridian twice ; but a sidereal day is meas-

ured by the interval between tivo successive transits on

that part of the meridian ivhicJi contains the zenith.

Transits on this part of the meridian are called upper

transits, while transits on the part of the meridian

which contains the nadir are called loiver transits.

The terms meridian passage and culmination are

sometimes used in place of the term transit,
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Besides sidereal time, we have solar time.

Apparent solar time is measured in terms of an

ap2)are)it solar day.

An apjyarent solar day is the interval between two

successive upper transits of the center of the sun over

the meridian of the observer.

These successive returns of the real sun have not

always equal intervals between them : first, because the

sun does not move in the plane of the equinoctial, but

in the ecliptic, which is inclined at an angle of 23° 27'

to the equinoctial ; and, second, because the sun's

movement in the ecliptic is not uniform. Thus, when

the earth is nearest to the sun it moves in its orbit a

little over 61' daily, or, considering the earth as still,

the sun rnoves in the ecliptic the same amount ; but

when the earth and sun are farthest from one another,

the sun moves in the ecliptic about 57' daily, and, at

all other times, at rates varying between these two

amounts.

To secure an invariable unit of time, mean solar

time is used, measured in terms of the mea7i solar day,

which is equal in length to the average of all the

apparent solar days of the year.

3fean solar time is supposed to be regulated by the

movements of a fictitious sun, moving in the equinoc-

tial or celestial equator, at a rate which is the average

or mean rate of movement of the true sun in the

ecliptic. If the imaginary or mean sun and the true

sun ure supposed to start from the same circle of

declination, and return to the same circle at the end
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of the year, in the interval they are sometimes on the

same circle of declination, but generally on different

circles, the mean sun being sometimes ahead of the

true sun and sometimes behind it.

The equation of time is the difference between time

measured by the mean sun and time measured by the

real sun. This equation of time for every day is

always to be found in the Nautical Almanac on pages

I and II of each month.

To illustrate, by a figure, the meanings of sidereal

time, apparent solar time, m.ean solar time, and the

equation of time.

Let NWSE represent the horizon ; P the pole

;

WRE the celestial equator or equinoctial ; A the first

point of Aries; and ABQ the

ecliptic.

Let B represent the place

of the true sun on the eclip-

tic, and m the place of the

mean sun on the equinoctial.

Draw circles of declination,

PBT and Pm.
Sidereal time is represented

by the angle RPA, or by its measuring arc RA.
Apparent solar time is the angle RPB, or its meas-

uring arc RT. Mean solar time is RPm, or the arc

Rm. The equation of time is mPT, or arc mT.
• Thus we may define time by angles measured from

the celestial meridian westward.

Sidereal time is the angle at the pole of the equi-
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noctial between the meridian and a circle of declina-

tion passing through the first point of Aries.

Apparent solar time is the angle at the pole be-

tween the meridian and a circle of declination passing

through the center of the true sun.

Mean solar time is the angle at the pole between

the meridian and a circle of declination passing through

the position of the mean sun.

A sidereal clock is adjusted so as to mark 24 hours

between two successive transits of the first point of

Aries.

A mean solar clock is adjusted to mark 24 hours

between two successive transits of the mean sun.

Clocks and watches in ordinary use are adjusted

to mean solar time.

45. The daily motion of the mean sun, in the equi-

noctial, is found to be 59' 8".33. This is easily deter-

mined from the time it takes the true and the mean
suns, starting from the meridian of any point, to

return to the same meridian. This time is found

to be 365.2422 mean solar, days, during which the

mean sun travels through a complete circle, or 360°.

In one day, therefore, it would travel through 3^^",
or 59' 8".33.

46. In order to find the arc described by a merid-

ian of the earth in a mean solar day, let P and P,

represent two positions of the 'center of the earth in

its orbit, separated by an interval of time equal to a

mean solar day.
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Suppose a plane to be passed through the celestial

equator ; and that the small circles represent the

terrestrial equator of the earth

in its two positions ; and S to

be the position of the mean
sun. FA and Pj^, will be

the two projections of the

same meridian. As the fixed

stars are at such immense

distances from the earth, rays

of light from such a star,

represented by TA and T^A^

would fall in parallel lines on

the earth, in its two positions.

Thus, the meridian FA, having the light from the

star on it, in its first position, would receive the same

light in its second position F^A^, having in the

interval made a complete rotation, or having gone

through an arc of 360°.

Now if S, on the line TA, be supposed to be the

position of the mean sun, we join SF^. Since by

Art. 45 FF, is 59' S'.'SS, the angle FSF, is also

59' 8".33. Therefore the alternate angle SF,T, is

an angle of 59' 8".33, and the arc AB is an arc of

59' 8".33 ; that is, the earth in passing from F to F^

in its rotation on its axis, carries the meridian FA
past its position F^Ai to the position F^B, and,

therefore, the meridian moves through an arc of

360° 59' 8".33 in a mean solar day, or 59' 8",33 more

than in a sidereal day.
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47. In a sidereal day of 24 hours the meridian of

any place on the earth revolves through 360°. In

one hour it passes through -3^®^° = 15°
;

in one minute it passes through i|° = i° = 15';

in one second it passes through W = 15";

consequently, in passing through an arc of 59' 8".33,

it takes an amount of time equal to (|^) m. -f- (—) s.,

or equal to 3 m. 56.555 s.

In a mean solar day of 24 hours, the meridian of

any place revolves through 360"^ 59' 8".33. A day

of 24 hours of mean solar time is therefore longer

than a day of 24 hours of sidereal time by the amount

of time (sidereal) Avhich it takes the meridian to pass

through an arc of 59' 8".33 ; that is, 3 m. 56.555 s.

Therefore, 24 h. mean solar time = 24 h. 3 m. 56.555 s.

sidereal time. Thus the sidereal day is shorter than

a mean solar day.

48. To convert sidereal time into mean solar time,

and mean sola time into sidereal time.

Let >S^ = any interval of sidereal time, and J/^ = the

same interval expressed in mean solar time.

As the sidereal day is shorter than the mean solar

day, a given interval of time will have more sidereal

hours in it than solar hours, and the ratio of the

hours sidereal to the hours mean solar will be the

ratio between the number of hours, minutes, and

seconds in a sidereal day, and the 24 hours in a mean
solar day.
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Thus ^ =S, 24 h. 3 m. 56.555 s.

and ^
24 h.

24 h.

= 1.0027379,

= 0.9972697.
24 h. 3 m. 56.555 s.

/. /S, = Jf,x 1.0027379 = ir, + .0027379 i[f„

and M,= S, x 0.9972697 = aS, -.0027303/^,.

By means of these formulae the tables of the Nauti-

cal Almanac, and those in Bowditch's Tables, for

converting sidereal into mean solar time or mean
solar into sidereal time, can be computed.

49. To convert a given mean solar time into appar-

ent solar time ; and, conversely, to convert given

apparent time into mean time
;
given also the equa-

tion of time.

Ex. 1. Let mean time be 3 h. 14 m. ; and the equation of

time be 3 m. 4 s., to be subtracted. Required apparent time.

mean time = 3 h. 14 m.

equation of time = 3 m. 4 s. -r

apparent time = 3 h. 10 m. 56 s.

To illustrate this example

by a figure, suppose in addi-

tion to the given terms, the

declination of the sun is

15° N.

Let NWSE be the plane

of the horizon ; Z the zenith
;

P the pole; and WBE the

celestial equator ; AS^ the
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ecliptic ; Si the center of the true sun ; M the posi-

tion of the mean sun on the equinoctial.

Through Si draw the circle of declination PS^C

;

and draw PM to M. SiC= 15°.

Then MPB = mean time = 3 h. 14 m.

aS|PJ/= equation of time= 3 in. 4 s.

SiPB = apparent time = 3 h. 10 m. 56 s.

Ex. 2. Let apparent time be 4 h. ; and equation of time be

2 m. 56 s., to be added ; and declination of sun be 20° N. Re-

quired Mt. In figure above, SiC = 20°.

apparent time = SiPB = 4 h.

equation of time = S^PM = 2 m. 56 s.

M, = MPB = 4 h. 2 m. 56 s.

Sometimes the equation of time is additive, and

at other times subtractive. It is given for every

day of the year, on pages I and II (for the month),

in tlie Nautical Almanac, and whether additive or

subtractive.

50. Given mean time, and

the right ascension of the mean

sun, to find sidereal time at

any place ; that is, the right

ascension of the meridian of

the observer.

Let NWSE represent the

plane of the equinoctial

;

NPS the projection on it of the celestial meridian
;

A the position of the first point of Aries; and i/the

position of the mean sun. (Defs. pages 76 and 77.)

NAV. AND NAUT. A8TR. 6
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(1) St=^SPA = MPA + SPM
= right ascension of mean sun 4- mean time.

If -Ml be position of mean sun,

S, = SPA = M,PA - M,PS.

But ifiP>S'=360° (or 24 h.)- angle measured

by SANMy = 24 h. - mean time.

/. /S^ = R.A. mean sun — (24 h. — mean time), i.e.

(2) St = R.A. of mean sun + mean time — 24 h.

From equations (1) and (2) we see that sidereal

time = R.A. mean sun + mean time, but that when

the sum of R.A. mean sun and mean time is greater

than 24 h., we subtract 24 h. from that sum.

Ex. 1. Given Mt = 7h. 10 m. and R.A. mean sun = 2 1j.

38 m. 42 s. Find sidereal time.

S, = 2h. 38 m. 42 s. + 7 h. 10 m. = 9 h. 48 m. 42 s.

Ex. 2. Given mean time 10 h. 32 m. 40 s. and R.A. mean

sun = 18 h. 45 m. 35 s. Find sidereal time.

M, = 10 h. 32 m. 40 s.

R.A. mean sun = 18 h. 45 m. 35 s.

Sid. time = 29 h. 18 m. 15 s. - 24 h.

= 5 h. 18 m. 15 s.

51. To convert sidereal time into mean time ; given

the right ascension of the mean sun.

Since by the preceding article sidereal ^me = R.A.

mean sun + mean time, or = R.A. mean sun + mean

time — 24 h.
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Mean ^me = sidereal time — R.A. mean sun, or=
sidereal time — R.A. mean sun -f 24 h.

Ex. 1. Let sidereal time = 15 h. 30 m. 12 s.

and R.A. mean sun = 6 h. 24 m. 13 s.
-*-

Then mean time = 9 h. 5 m. 59 s.

Ex. 2. Let sidereal time = 4 h. 20 m. 18 s.

and R.A. mean sun = 7 h. 50 m. 10 s.

Then mean time = 20 h. 30 m. 8 s.

In this example we add 24 h. to 4 h. 20 m. 18 s. before sub-

tracting R.A. mean sun.

Thus, sidereal time 4 h. 20 m.

24 h.

18 s.

28 h. 20 m.

7 h. 50 m.

18 s.

10 s.R.A. mean sun

mean time = 20 h. 30 m. 8 s.

62. Civil time and astronomical time.

The civil clay begins at midnight and ends at mid-

night, after the lapse of 24 hours in two periods of 12

hours eacli, one period beginning at midnight, and

the other at noon.

The astronomical day begins at noon, or 12 hours

later than the civil day of the same date, and ends at

the next noon, after a lapse of 24 hours.

The two periods of the civil day are distinguished

from each other by placing, after the figures denot-

ing time between midnight and noon, the letters a.m.

(Ante Meridian) ; and, after the figures denoting the

time between noon and midnight, the letters p.m.

(Post Meridian).
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Thus it will be seen that to convert civil time into

astronomical time, the p.m. is dropped if the given

civil time is after noon; but if the time is a.m., 12

hours is added to the given civil time and the date is

changed to the preceding day.

Ex. 1. Given civil time = 3 h. 10 m. p.m., August 10.

Astronomical time = 3 h. 10 m., August 10.

Ex. 2. Given civil time = January 8, 10 h. 15 m. a.m.

Add 12 h., drop the a.m., and astronomical time = January 7,

22 h. 15 m.

Conversely, to convert astronomical time into civil

time.

If the given time is under 12 hours, put on p.m.

If the given time is over 12 hours, subtract from it

12 hours, add a.m. to the remainder, and add one day

to the date.

Thus, January 10, 4 h. 15 m. astronomical time =

January 10, 4 h. 15. m. p.m. civil time.

February 11, 17 h. 16 m. astronomical time = Feb-

ruary 12, 5 h. 15 m. a.m. civil time.

53. In every problem of Nautical Astronomy it is

necessary to find either the apparent or mean time,

at Greenwich, of the instant of taking an observa-

tion ; since the calculated positions of the heavenly

bodies are made for definite times at the meridian of

Greenwich. These positions, with the definite times

corresponding, are published in the Nautical Almanac.

54. The hour angle of the sun, at the celestial

meridian of any place, is the local time of the place.
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The hour angle of the sun, at the same instant, at

the meridian of Greenwich is the Greemoich time.

55. As the earth makes one complete rotation on

its axis in 24 hours, so that the same meridian, on its

surface, is opposite the first point of Aries, or oppo-

site the same fixed star at the beginning and end of

this period of time, and as a complete rotation is

measured by 360°, 24 hours in time corresponds to

360°, or we can say

:

24 h. = 360° and 360° = 24 h.

1 h. = 15° 15° = 1 h.

1 m. = 15' 1° = 4 m.

1 s. = 15" r = 4 s.

We can use the first table to convert time into angu-

lar measure, and the second table to convert angular

measure into time measure.

Thus3h. 10m. 30 s. = 3 x 15° = 45

+ 10 X 15' = 2° 30'

+ 30 X 15"= r 30"

= 47° 37' 30"

Again, 48° 15' 38" = 3 h. 13 m. 2^^ s.

For 48° = 3 h. 12 m.

15 X 4 s. = 1 m.

38 X ^ s. = 2y\ s.

= 3 h. 13 m. 2/5 s.
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66. In the case of a mean solar day, it was shown

in Art. 46, that the meridian of any place moved
through an arc of 360° 59' 8/'33 during 24 mean solar

hours. If we suppose 24 meridians drawn on the

earth's surface, these meridians will be each 15° apart,

and, in the rotation of the earth on its axis, will

follow each other at an hour's interval; so that we
can use the tables in the preceding article to convert

mean solar time into angular measure, or angular

measure into time measure."^

The same tables will give the relation of apparent

solar time to angular measure.

57. These facts have an

important bearing in the

determination of longitude

by means of time. This will

be understood by means of

a figure.

Let GWU be the plane

of the earth's equator, JP

the projection of the pole

on that plane, PG the pro-

jection of the meridian of

* As each meridian between two transits of the sun passes through

an arc of 360° 60' 8 "33, on first thought it might seem that in order to

make intervals correspond to hours, the space to equal one hour should

be 15° 2' +. The difficulty will be cleared by remembering that though

it is true each meridian moves in space 15° 2' + for an hour, before it

comes to the position occupied by the meridian immediately preceding it,

all the meridians here spoken of are 15° apart on the earth, corresponding

to the division of a great circle of 360° by 24.
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Greenwich, PA and FB the projections of the merid-

ians of two places, each 15° from the meridian PG.
If the sun is on the line PG produced at 12 noon,

as the direction of the arrows shows the direction of

the earth's rotation to be from W. to E., PA will

be 15"* west^ and PB 15° east of PG. Consequently,

when it is 12 noon at any place on the meridian

PG^ it will be 11 a.m. at any place on the meridian

PA^ and 1 p.m. at any place on the meridian PB
\

for there is an hour's interval of time required to

bring PA to the place oi PG and PG to the place

of PB.
Now the longitude of any place on PA is 15° W.,

and the longitude of any place on PB is 15° E. of

Greenwich

:

consequently, 1 h. = 15° dif. of longitude;

Im. = 15' dif. of longitude;

1 s. = 15" dif. of longitude;

or, 15° dif. of longitude = 1 h. dif. in time;

1° dif. of longitude = 4 m. dif. in time;

r dif. of longitude = 4 s. dif. in time

;

1" dif. of longitude = ^^ s. dif. in time.
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CHAPTER VI

THE NAUTICAL ALMANAC

68. As the calculated positions of the heavenly

bodies, recorded in the Nautical Almanac, are given

in Greenwich time, the relations established in the

preceding chapter between time and angular measure,

and between time and difference of longitude, become

important in determining the Greenivich date of any

observation.

The Greemvich date is the apparent or mean time

at Greemvich, corresponding to the time at which an

observation of a heavenly body is taken at any other

place on the earth.

Ex. 1. Given ship time June 8, 8 h. 16 m. p.m. (mean time),

and longitude 40° 18' W. Required the Greenwich date.

ship time June 8 8 h. 16 m.

long. 40° 18' W. reduced to time = 2 h. 41 m. 12 s.

Ans. Greenwich, June 8 10 h. 57 m. 12 s.

The time of an observation is always expressed as

astronomical time (Art. 52).

Ex. 2. Given ship time Jan. 18, 3 h. 20 m. a.m., and longi-

tude 43° 25' E. Required Greenwich date.

ship time = Jan. 17 15 h. 20 m.

long, in time = 2 h. 53 m. 40 s.

Ans. Greenwich, June 17 12 h. 26 m. 20 s.
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59. From the Nautical Almanac, to take the declina-

tion of the sun for any place and date, the longitude

of the place being given.

Ex. 1. Required sun's declination for Jan. 3, 1893, 8 h. 16 m.

A.M., mean time, at a place in longitude 42° 18' W.

ship, Jan. 2 20 h. 15 m.

long, in time 2 h. 49 m. 12 s.

Greenwich, Jan. 2 23 h. 4 m. 12 s. = 23.07 h.

= Jan. 3 - 0.93 h.

Jan. 3, dif. for 1 h. = 15".3 Jan. 3, sun's

.93 dec. at M.N. = 22° 46' 46" S.

459 14.2

1377 22°47'00".2S.

14".229 to be added.

In this example, the correction for 0.93 h. we add to 22° 46' 46",

because, as the declination is S. and decreasing S.j that is, tend-

ing N., it must be further S. 0.93 h. before noon than it is at

noon.

Ex. 2. In longitude 72° 54' W., on June 15, 1897, at 4.30 p.m.,

mean time, it is required to find the sun's declination.

ship, June 15 4 h. 30 m.

long. 5 h. 51 m. 36 s.

Greenwich, June 15 10 h. 21 m. 36 s. = 10.36 h.

sun's declination mean noon, June 15 = 23° 20' 33".7 N.

correction = 10.36 x 5".66=58".6+

sun's declination at time of observation = 23° 21' 32".3 N.

difference for 1 h. 15th = 5".87

difference for 1 h. 16th = 4".84

decrease 24 h. = 1".03
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decrease 5h.. = ^^x 1".03

change for 5 h. = — 0.21

hourly difference for 5 h. after noon = o".66

10.36

3396

1698
' 566

58".6376

As the difference per hour is changing, where great

accuracy is required it is customary to find the change

of difference for the hour midioay between noon and

the time of observation, and apply this change to the

hourly difference, as in this example. For ordinary

observations at sea, the hourly difference opposite the

noon nearest the time of observation is used.

Thus, O's dec. June 15 noon = 23° 20' 33".7 N.

correction 5".87x 10.36= V 0".8

O's dec. at time of obs. = 23° 21' 3r.5 N.

From these examples it is seen that, in order to

obtain from the Nautical Almanac the sun's declina-

tion for any time and place, the longitude of the place

being given, we first:

Find the Greemvich date; and, second, apply the

correction for time elapsed since noon to the declination

given opposite the nearest noon.

60. From the Nautical Almanac, tofind the equation

of time for a given date, the longitude of the place

being given.
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Ex. 1. In longitude 56** 10' W., March 3, 1897, 6 h. 15 m.

P.M., mean time, it is required to find the equation of time.

ship, March 3 6 h. 15 m.

longitude 3 h. 44 m. 40 s.

Greenwich, March 3 9 h. 59 m. 40 s. = 9.994 h.

dif. 1 h. = 0.541 s. eq. of time = 12 m. 0.75 s.

9.99 correction 5.40

4869 11 m. 55.35 s. = eq. of time.

4869

4869

5.40458 to be subtracted.

If it were required in this example to obtain ap-

parent time, we subtract the 11m. 55 s. from mean
time. Thus

:

^

March 3, 1897, 6 h. 15 m. p.m. mean time

equation of time 11m. 55 s.

March 3, 1897, 6 h. 3 m. 5 s. p.m. apparent time

Ex. 2. Given longitude 75° 18' W., Sept. 13, 1897, 6 h. 30 m.

A.M., apparent time. Required equation of time and corre-

sponding mean time.

ship, Sept. 12 18 h. 30 m.

longitude 5 h. 1 m. 12 s.

Greenwich, Sept. 12 23 h. 31 m. 12 s.

Sept. 12 23.52 h. = Sept. 13 - 0.48 h.

eq. of time, Sept. 13, apparent noon = 4 m. 16.73 s.

0.882 X 0.48 = correction -.42

eq. of time to be subtracted = 4 m. 16.31 s.

apparent time 6 h. 30 m. a.m.

Ans. Sept. 13, 1897 6 h. 25 m. 43.69 s. a.m.
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In all the foregoing examples the general method

of arriving at the required result is

:

1. Express the ship time in astronomical time.

2. Find the corresponding Greenwich date.

3. Take the required quantity opposite the nearest

Greemvich noon, and apply corrections corresponding

to the number of hours by which the given time

exceeds or falls short of this nearest noon.

61. Given mean solar time and the longitude; by

means of the Nautical Almanac, to find the corre-

sponding sidereal time (Art. 50).

Thus, Jan. 20, 1895, 3 h. 19 m. p.m., mean time, in

longitude 48° 40' W., it is required to find the sidereal

time.

ship, Jan. 20 3 h. 19 m.

longitude 3 h. 14 m. 40 s.

Greenwich, Jan. 20 6 h. 33 m. 40 s.

Jan. 20, 1895, Greenwich mean noon

:

R.A. mean sun = 19 h. 58 m. 27 s.

Table 9, Bowditch

:

correction for 6 h. 33 m. = Im. 4.56 s.

correction for 40 s. = 0.11

R.A.M.O = 19 h. 59 m. 31.67 s.

M.T. 3h. 19 m.

sidereal time = 23 h. 18 m. 31.67 s.
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62. Given apparent solar time and the longitude;

from the Nautical Ahiianac, to obtain the correspond-

ing sidereal time.

1. Convert apparent into mean time.

2. Proceed as in previous article to convert rnean

time into sidereal time.

Ex. July 15, 1895, 6 h. 14 iii. a.m., apparent time, in longi-

tude 20° 12' E., required corresponding sidereal time.

ship apparent time, July 14 18 h. 14 m.

longitude 1 h. 20 ni. 48 s.

Greenwich apparent time, July 14 16 h. 58 m. 12 s.

July 14, 16.887 h. = July 15 - 7.113 h.

July 15, noon, equation of time = 5 m. 41.34 s.

correction = 0.26 s. x 7.113 = 1.85 s.

eq. of time to be added to apparent time = 5 m. 39.49 s.

apparent time = 18 h. 14 m.

ship mean time = 18 h. 19 m. 39.49 s.

longitude = 1 h. 20 m. 48 s.

Greenwich mean time, July 14 = 16 h. 58 m. 51.49 s.

R.A.M. sun, July 14, noon = 7 h. 28 ni. 24.34 s.

correction for 16 h. 58 m. = 2 m. 47.23 s.

correction for 51.5 s. = 0.14 s.

R.A.M. 0= 7h. 31m. 11.71s.

ship mean time = 18 h. 19 m. 39.49 s.

25 h. 50 m. 51.2 s.

sidereal time = 1 h. 50 m. 51.02 s.
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CHAPTER VII

THE HOUR ANGLE

The hour aiigle of any celestial body is the angle, at

the nearer celestial pole, made hy the celestial meridian

of the place with the circle of declination which passes

through the body.

Hour angles are measured loestward from the me-

ridian from h. to 24 h.

Let the figure represent the plane of the equinoc-

tial, P the projection of the celestial pole, and PA
and FB the projections of

circles of declination, PA
being to the W. and PB to

the E. of the meridian NPS.
If C and I) represent the

positions of two heavenly

bodies, SPA, measured by

the arc SA, is the hour angle

of (7, and the salient angle

SPB, measured by the arc SWNEB, is the hour

angle of D.

If C and D represent two positions of the sun,

then SPA and SPB would be apparent solar time,

SPA and SPB would be mean solar time if A and

B represented the positions of the mean sun.
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Also if A and B represented two positions of the

first point of Aries, the angles SPA and SPB would

be sidereal time (defs. pages 76, 77).

63. Given the altitude, the decimation of a heavenly

body, and the latitude of the place of observation ; to

find the hour angle of the

body.

Let the figure represent

the plane of the horizon ; NS
the projection on it of the

meridian; and Z the projec- C\

tion of the zenith of the

observer. Let P be the ele-

vated or nearer celestial pole

;

A the position of a heavenly body ; and let WDE
be the equinoctial. Draw the circle of declination

PAB, and the circle of altitude ZAC,

Then ^(7= the altitude of A
;

AB = ihe declination of A
;

ZD = latitude of the observer.

Consequently, in the triangle APZ, in order to find

the hour angle JDPB, we have given

:

ZA = 90° -AC= 90° - altitude,

PA = 90° -^i?= 90° -declination,

and PZ = 90° - ZD = 90° - latitude
;

that is, to find P, in the triangle APZ, we have the

three sides given.
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Ex. 1. Given, in lat. 41° 24' N., the declination of Venus =
24° 19' N., and the altitude = 24° 14'. Find the hour angle.

In the figure ZA = 90° - 24° 14' = 65° 46'. PA = 90° - 24°

19' = 65° 41', PZ = 90° - 41° 24' = 48° 36'. Denoting the sides

of the triangle by a,p, and z,a = 48° 36', p = 65° 46', 2=65° 41'
j

we can solve for P by the formula,

^ sin a sin z

= Vsin {s — a.) sin (s — z) cosec a cosec z

a= 48° 36' log cosec = 10.12487

z= 65° 41' log cosec = 10.04035

p= 65° 46'

s=180° 3'

2

= 90° 1'30"

s_ a =3 41° 25' 30" log sin = 9.82062

s - 2 = 24° 20' 30" log sin = 9.61508

2)19.60092

log sin 39° 10^' = 9.80046 = log sin ^P
.-. P= 78° 20f ' = 5 h. 13 m. 21f s.

Ex. 2. In lat. 41° 23' N., the altitude of the sun was found

to be 26° 38' 44", and its declination to be 19° 20' 26" S. Re-

quired the hour angle, supposing

the sun to be east of the meridian;

that is, that the observation was

taken in the moaning.

a = PZ= 48° 37'

2 = P^ = 109°20'26"

p==ZA= 63° 21' 16"

s= 221° 18' 42"

2

= 110° 39' 21"
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s-a = 62° 2' 21"

8-z= 1° 18' 65"

8in4P=Vg
sin 62° 2' 21" X smri8'55"
sin 48° 37' x sin 109° 20' 26"

log sin 62° 2' 21"= 9.94609

log sin 1°18'55"= 8.36084

logcosec 48° 37' = 0.12476

log cosec 109° 20' 26" = 0.02523

2 )18.45692

log sin i 1 h. 17 m. 56 s. = 9.22846

= log sin ^ acute angle ZPA,

but astronomical time = salient angle ZPA.

.-. hour angle = 24 h. - 1 h. 17 m. 56 s. = 22 h. 42 m. 4 s.,

or civil apparent time = 10 h. 42 m. 4 s. a.m.

Ex. 3. Suppose in addition to the data of the preceding

example, the longitude of the place of observation was given

as 72° 56' W., and it was required to find the mean time at the

instant of the observation on Nov. 19, 1894, at 10 h. 42 m. 4 s.

apparent time.

By definition on page 77 apparent solar time is the angle, at

the pole, between the meridian and a circle of declination passing

through the center of the true sun. Consequently, the answer

in the preceding example is apparent time, and we have to

apply the equation of time for the given date.

ship, Nov. 18, 22 h. 42 m. 4 s.

long, in time = 4 h. 51 m. 44 s.

Greenwich, Nov. 19 = 3 h. 33 m. 48 s. = 3.56 h.

eq. of time, Nov. 19, Green., noon = 14 m. 26.88 s. sub.

(dif. 1 h.) 0.574 s. x 3.56 = 2.04 s.

equation of time = 14 m. 24.84 s. sub.

apparent time = 10 h. 42 m. 4 s. a.m.

mean time = 10 h. 27 m. 39.16 s. a.m.

NAV. AND NAUT. ASTR. —

7
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64. To find the time of sunrise or sunset for a

given day, at any place on the earth, the latitude and
longitude of the place, and the suns declination for the

day being given.

Let the figure represent, as in Art. 63, the projec-

tion of the celestial sphere on the plane of the horizon.

Suppose A to represent the position of the sun on

the eastern horizon when it is first visible to an

observer whose zenith is Z
;

and suppose A' to represent

the position of the sun on

the western horizon when
it is last visible to the same

observer.

NFZS being the celestial

meridian of the observer,

when the sun is on that

meridian, the time is apparent noon. The angle ZPA,
expressed in time, would give the hours, minutes,

and seconds which the sun, in its passage across the

heavens, would take to go from its position at A to

its position on the meridian. In other words, the

angle ZPA gives the hours, minutes, and seconds

of apparent time between sunrise and noon. In the

same way, the angle ZPA' gives the apparent time

between noon and sunset, or in common language,

the apparent time of sunset. 24 h. — angle ZPA
(expressed in time) would give the astronomica/ supipsir-

ent time of sunrise. 12 h. — angle ZPA (expressed

in time) would give the civil apparent time.
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In the preceding figure, the declination BA is

given as S. declination, while the elevated pole F is

supposed to be N.

The zenith distance to A^ a point on the horizon,

is 90°. But as the time of sunrise is calculated from

the instant when the wpjper rim of the sun is first

visible, and as measurements are made to the center

of the sun, 16' is added to 90°, as the center of the

sun is about that distance below the horizon. More-

over, as by refraction the sun, though helow the

horizon, is made to appear above it, 34' is added also

to 90° for refraction. Consequently, for problems in

sunrise and sunset the distances ZA and ZA' are

generally taken to be each 90° 50'.

Though the declination of the sun is continually

changing, so that the declination is not exactly the

same at sunrise and sunset, yet the change is so

small that it is assumed to be the same both at those

times and at noon. For convenience of calculation,

therefore, the declination of the sun for noon is used

in the solution of problems in sunrise and sunset.

Ex. 1. January 28, 1898, in lat. 42° 18' K, long. 72° 55|' W.,

it is required to find the apparent time of sunrise and sunset.

local time at noon = h. m. s.

long, in time = 4 h. 51 m. 43 s.

Greenwich, Jan. 28 = 4 h. 51 m. 43 s.

= 4.86 h.

declination of sun. Greenwich noon January 28 = 18°6'25".8 S.

cor. = 39".8o x 4.86 = 3' 13".7 N.

declination of sun at local apparent noon = 18° 3' 12".l S.
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hourly difference of declination of sun = 39".85 N.

4.86

23910

31880

15940

193".6710 = 3' 13".7

In preceding figure,

PZ = a = 90°-41°18' = 48° 42'

P^ = 2 = 90° + 18° 3' 12" = 108° 3' 12"

Z^=^ = 90° + 50' = 90° 50'

8 = 247° 35'

2

12"

= 123° 47' 36"

s -a = 75° 5' 36"

8 — z = 15° 44' 24"

8 -P = 32° 57' 36"

sin
-J-
P = Vsin (s — a) sin (s — z) cosec a cosec z.

log sin 75° 5' 36"= 9.98513

log sin 15° 44' 24" = 9.43341

log cosec 48° 42' = 10.12421

log cosec 108° 3' 12" = 10.02191

2)19.56466

log sin 37° 17"^ = 9.78233 = log sin ^ P
P = 74° 34'^ = 4 h. 58 m. 17^ s. = apparent time of sunset.

12 h. — 4 h. 58 m. 17| s. = 7 h. 1 m. 42^ s. = apparent time

of sunrise.

Ex. 2. In preceding example, required the mean times of

sunrise and sunset ; also eastern standard time of sunrise and

sunset.

January 28, equation of time Greenwich noon = 13 m. 13.97 s.

difference for 1 h. = 0.457 s. x 4.86 = 2.22+

local equation of time at noon = 13 m. 16.19 s.
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0.457

4.86

2742

3656

1828

2.22102

local mean time of apparent noon = 12 h. 13 m. 16.19 s.

subtract hour angle = 4 h. 58 m. 17.5 s.

local mean time of sunrise = 7 h. 14 m. 58.69 s. a.m.

local mean time of sunset = 5 h. 11 m. 33.69 s. p.m.

eastern standard time = time of meridian of 75° W.

local meridian = 72° 55
'f
W.

difference = 2°
4'J

= 8m. 17 s.

taking 8 m. 17 s. from the mean times calculated above

eastern standard time of sunrise = 7 h. 6 m. 41.69 s. a.m.

eastern standard time of sunset = 5 h. 3 m. 16.69 s. p.m.

In this example we have used the noon equation of time to

be applied to time of sunrise and sunset. A more exact calcu-

lation would apply the equation of time as derived for the

instant of apparent time of sunrise or of sunset.

For sunrise.

Greenwich, 27th 19 h. 1 m. 42J s.

longitude in time 4 h. 51 m. 43 s.

Greenwich, Jan. 27 23 h. 53 m. 25J s.

or Jan. 28-0 h. 6 m. 34.5 s. = - .011

eq. of time, Greenwich, noon 13 m. 13.97 s.

correction 0.457 s x .011 h. = 0.01

equation of time for sunrise = 13 m. 13.96 s.+

apparent time of sunrise = 7 h. 1 m. 42.5 s.

exact mean time = 7 h. 14 m. 56.46 s. a.m.
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For sunset. Jan. 28 4 h. 58 m. 17.5 s.

longitude 4 h. 51 m. 43 s.

Greenwich, Jan. 28 9h. 50 m. 0.5 s. = 9.83 h.

0.457

6881

4915

3932

correction = 4.49231 s.

eq. of time, Greenwich, noon =
correction

13 m. 13.97

4.49

s.

equation of time = 13 m. 18.46 s.

apparent time of sunset = 4h . 58 m. 17.5 s,

exact mean time = 5 h. 11 m. 35.96 s. p.m.

Since the time of sunrise and the time of sunset are generally-

calculated to the nearest minute only, the first method of apply-

ing the local noon equation of time is generally used. By com-

paring the results by the two methods it will be seen that the

difference in the answers does not much exceed two seconds.

Ex. 3. June 1, 1898, in latitude 41° 18' N., longitude 72° 55'}

W., required the eastern standard times of sunrise and sunset.

local noon Oh. m. s.

longitude 4 h. 51 m. 43 s.

Greenwich, June 1 4 h. 51 m. 43 s.

= 4.86 h.

Declination of sun.

Greenwich, noon=22° 6' 0".7 N.

correction 20".12 x 4.86= 137.8+

declination of sun= 22° 7' 38".5 K.

polar distance= 67° 52' 22"
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equation of time, Greenwich noon= 2 m. 24.55 8.—

correction 0.375 s. x 4.86 h.= 1.82-

equation of time, local noon= 2 m. 22.73 s.—

apparent noon=12 h.

mean time of apparent noon=11 h. 57 m. 37.17 s. a.m.

deduct for eastern standard time 8 m. 17 s.

eastern standard time of apparent noon=11 h. 49 m. 20.17 s. a.m.

Projecting the celestial concave on the celestial meridian.

PZ=a= 48° 42' log cosec = 10.12421

PA = z= 67° 52' 22" log cosec = 10.03322

ZA=p= 90° 50'

207° 24.' 22"
s = ^^^ ^^ -^^ = 103° 42' 11"

z

8-a= 55° O'll" log sin = 9.91338

«-.2= 35° 49' 49" log sin = 9.76744

2 )19.83825

log sin 56° 6' 33"= 9.91912^

08_

P=112°13' 6" '^

= 7 h. 28 m. 52.4 s.

eastern standard time of apparent noon=11 h. 49 m. 20.2 s.

eastern standard time of sunrise= 4 h. 20 m. 27.8 s. a.m.

eastern standard time of sunset= 7 h. 18 m. 12.6 s. p.m.

Ex. 4. Jan. 10, 1898, in latitude 39° 57' N., longitude 75° 9'

W., required mean time of sunrise and of sunset.

Ans. 7 h. 21 m. 38 s. a.m. ; 4 h. 54 m. 16 s. p.m.

Ex. 5. May 16, 1898, in latitude 42° 36' N., longitude 70° 40*

W., required eastern standard time of sunrise and of sunset.

Ans. 4 h. 18 m. 44 s. a.m. ; 6 h. 58 m. 16 s. p.m.
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65. Given a stars hour ajigle, to find mean tinie.

Let the figure represent the plane of the equi-

noctial ; P the projection of the pole on the plane

;

^
C the position of the star

;

A the position of the first

point of Aries ; and M the

position of the mean sun.

If NFS be the projection

}m of the celestial meridian, and

PCB be the projection of the

circle of declination passing

through C, SFC will be the

hour angle of the star, and SB will measure that

angle. Now SM= SB + AB - AM-, that is, mean time

= star's hour angle + R.A. of star — R.A. of mean sun.

In the case just given the star is W. of the meridian.

Suppose the star is at C\ and east of the meridian

;

that Ai is first point of Aries, and Mi is position of

mean sun; then SMi = SBi-\- A^Mi- AiB^ or (24 h.

— mean time) = (24 h. — star's hour angle) -f- R.A.

mean sun — star's R.A.

.-. mean time = star's hour angle + R.A. of

star — R.A. mean sun.

66. To find the mean time at any place, having

given the hour angle of a star ; the longitude of the

place ; the date ; and the approximate local mean

time.

By the previous article we have to add to the hour

angle the stars R.A., and from the sum subtract the
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R.A, of the mean sun for the given date and approxi-

mate time.

Ex. 1. Nov. 22, 1891, 7 h. 15 m. p.m., approximate mean
time iu long. 87° 56' W., the hour angle of Aldebaran (a Tauri),

was 18 h. 55 m. 15 s. (E. of meridian). Star's R.A.= 4 h. 29 m.

41.5 s. Required mean time at the place.

ship, Nov. 22 = 7 h. 15 m.

longitude = 5 h. 51 m. 44 s.

Greenwich, Nov. 22 = 13 h. 6 m. 44 s.

Green., Nov. 22, noon, R.A. mean sun = 16 h. 4 m. 44.5 s.

correction for 13 h. 6 m. = 2 m. 9.1 s.

correction for 44 s. = .1 s.

R.A. mean sun at time of observation = 16 h. 6 m. 53.7 s.

star's H.A. = 18 h. bb m. 15 s.

star's R.A. = 4 h. 29 m. 41.5 s.

23 h. 24 m. 56.5 s.

R.A. mean sun = 16 h. 6 m. 53.7 s.

Ans. 7 h. 18 m. 2.8 s. p.m.

Ex. 2. June 23, 1891, at 4 h. 12 m. a.m. mean time, nearly,

in long. 50° 15' \V., the hour angle of a Lyrae was 3 h. 41 m. W.
of meridian. Required mean time. Star's R.A = 18 h. 33 m.

15.8 s.

ship, June 22 = 16 h. 12 m.

longitude = 3 h. 21 m.

Greenwich, June 22 = 19 h. 33 m.

Green., June 22, noon, sid. time = 6 h. 1 m. 31.55 s.

correction for 19 h. 33 m. = 3 m. 12.69 s.

R.A. mean sun = 6 h. 4 m. 44.24 s.

star's H.A. = 3 h. 41 m.

star's R.A. = 18 h. aS m. 15.8 s.

22 h. 14 m. 15.8 s.

6 h. 4 m. 44.2 s.

June 22 16 h. 9 m. 31.6 s. ast. time

June 23 4 h. 9 m. 31.6 s. a.m. m. t.
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67. Given mean, or apparent time at place of given

longitude ; to find what star of \st or 2d magriitude

will j^cLss the meridian next after that time.

The solution of this problem is simply to find the

sidereal time corresponding to the given time, and

then, from list of fixed stars in Nautical Almanac, to

choose the star of required magnitude whose right

ascension is the next greater than the sidereal time

found.

Ex. In long. 72° 56' W., Dec. 7, 1897, at 11 h. 30 m. p.m.

mean time, what star of 1st or 2d magnitude passed the merid-

ian shortly after that time ?

ship, Dec. 7, 1897 = 11 h. 30 m.

longitude = 4 h. 51 m. 44 s.

Greenwich, Dec. 7 = 16 h. 21 m. 44 s.

Dec. 7, mean noon R.A.M. O = 17 h. 6 m. 3.95 s.

correction for 16 h. 21 m. = 2 m. 41.15 s.

correction for 44 s. = .12 s.

R.A.M. sun = 17 h. 8 m. 45.22 s.

ship, Dec. 7 = 11 h. 30 m.

= 28 h. 38 m. 45.2 s.

= 24h.

sidereal time or R.A. of meridian = 4 h. 38 m. 5.8 s.

In catalogue of fixed stars (Capella), a Aurigae has R.A.

5 h. 9 m. 4.8 s., and is, therefore, star required.

68. To find at what mean time any star will pass a

given meridian.

Let the figure represent the plane of the equinoc-

tial ; P the pole ; NFS the celestial meridian ; A the
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first point of Aries ; m the position of the mean sun

;

and B the position of the star at instant of crossing

the meridian. ;>r

Then mS
= mean iimQ = AS- Am,

or mean time

= sidereal time of star

— R.A. of mean sun

= R.A. of star

- R.A. of mean sun.

Ex. To find at what time Sirius passed the meridian in

longitude 72° m' W., Dec. 8, 1897.

R.A. of Sirius = 6 h. 40 m. 39 s.

add 24 h.

R.A. of sun (noon)

ship approximate mean time

longitude

30 h. 40 m. 39 s.

18 h. 10 m. 0.5 3.

13 h. 30 m. 38.5 s.

4 h. 51 m. 44 s.

Greenwich, Dec. 8 = 17 h. 22 m. 22.5 s.

R.A. M.S. noon = 17 h. 10 m. 0.5 s.

correction for 18 h. 22 m. = 3 m. 1.03 s.

correction for 22.5 s. = .06 s.

R.A. M. sun = 17 h. 13 m. 1.59 s. subtract

from R.A. Sirius = 30 h. 40 m. 39 s.

Arts. Dec. 8.

13 h. 27 m. 37 s. ast. time

12 h.

1 h. 27 m. 37 s. 3 a.m.

69. To find the meridian altitude of a heavenly

body for a given place, and whether it will pass N.

or S. of the zenith, the declination of the body and

the latitude of the place being given.
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Ex. 1. At a place in latitude 42° N., it is required to find

the meridian altitude of a star whose declination is 25° N.

;

also whether it passes N. or S. of

the zenith.

Let NZS represent the plane

of the celestial meridian ; P the

upper or N. pole; Z the zenith;

N and S the north and south

points of the horizon; and E the

point where the equinoctial inter-

sects the meridian. Let ^J5J=25°,

then A is the position of the

star at transit. Let Z^ = latitude 42° K
ZA=^ZE-AE = 42° - 25° = 17°.

.'. star's transit is south of zenith.

Again, altitude of star = AS = ZS-ZA== 90° - 17° = 73°.

Ex. 2. Dec. 9, 1897, at what time did a Orionis pass the

meridian of longitude 72° ^^ W. in latitude 42* 18' N. ; and

did it pass N. or S. of zenith ? Required its altitude also.

given the declination of star = 7° 23' 16" N.

R.A.ofstar=5h.49m.40s.; R.A. M.S. = 17 h. 13 m. 57 s.

R.A. of star + 24 h. = 29 h. 49 m. 40 s.

R.A. of sun (Greenwich noon) = 17 h. 13 m. 57 s.

mean time (approximately) = 12 h. 35 m. 43 s.

longitude = 4 h. 51 m. 44 s.

Greenwich mean time (approximately) = 17 h. 27 m. 27 s.

R.A. M. sun (Greenwich noon) = 17 h. 13 m. 57 s.

correction for 17 h. 27 m. = 2 m. 51.9 s.

correction for 27 s. = J_s.

R.A. M. sun = 17 h. 16 m. 49 s.

R.A. of star = 29 h. 49 m. 40 s.

star on meridian = 12 h. 32 m. 51 s.

= 32 m. 51 s. after

midnight Dec. 10
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latitude = 42'' 18' N.

declination of star = 7° 23' 16" N.
34° 54' 44" S. of zenith

90^

55° 5' 16" = altitude

Ex. 3. At what time, Dec. 10, 1897, in latitude 42° 18' N.,

longitude 72° d^' W., did rj Ursai Majoris pass the meridian ?

Was the transit N. or S. of the zenith ?

R.A. of star = 13 h. 43 m. 31 s.

declination of star = 49° 49' 2" N.

Let NPZES be the meridian; A^
P the pole ; Z the zenith ; A be

the position of star at transit.

^J5: = 49°49' 2"

ZE = 42° 18'

ZA= 7° 31' 2"

star N. of zenith

ZN=^^
altitude = AN= 82° 28' 58"

To find at what time the star passed the meridian

Dec. 10, we must begin one day hack, and take out

the R.A. of M. O for Dec. 9.

thus, R.A. of star -f 24 h. = 37 h. 43 m. 31 s.

R.A. of M. sun, Dec. 9, noon = 17 h. 13 m. 57 s.

approximate mean time = 20 h. 29 m. 34 s.

longitude = 4 h. 51 m. 44 s.

Dec. 10, Greenwich mean time = 1 h. 21 m. 18 s.

" " R.A. M. O noon = 17 h. 17 m. 54 s.

correction for 1 h. 21 m. = 13.3 s.

correction for 18 s. = .05 s .

R.A. M. O = 17 h. 18 m. 7.4 s.

R.A. star = 37 h. 43 m. 31 s.

Dec. 9 20 h. 25 m. 23.6 s. ast. time

Dec. 10 8 h. 25 m. 23.6 s. a.m.
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CHAPTER VIII

CORRECTIONS OF ALTITUDE

70. In order to obtain the tnie altitude of a heav-

enly body, a nuiriber of corrections must be applied

to the observed altitude, namely

:

Index correction, due to some error in the instru-

ment used ; and corrections for dip, refraction, semi-

diameter, and parallax, corrections required by the

fact that, to combine observations made at any place

on the earth's surface with the elements from the

Nautical Almanac, those observations must all be

reduced to a common point of observation. This

common point of observation is considered to be the

ceyiter of the earth.

The sectant is an instrument for measuring angles

in any plane. At sea it is used chiefly to measure the

altitudes of heavenly bodies.

The accompanying figure

will serve to explain the prin-

ciples of the construction of

the sextant.

AB is a circular arc a little

longer than a sixth of the

whole circumference . ENand

CM are two glasses whose
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planes are perpendicular to the plane of the arc AB.
EN is fixed in position, and its glass is silvered on

the half next to the frame of the instrument. EN
is called the horizon glass, because through it the

horizon is viewed in taking observations. CM is

called the index glass. It is entirely silvered (on one

face). By means of the index bar, CB, it is mov-

able about the point C, which is the center of the

arc AB. When the index bar is at the zero point

on the arc AB, the planes of the two glasses, EN
and CM, are parallel.

If it is required to find the altitude of any body, S,

above the horizon, the observer looks at the horizon

line through the plain part of the glass ^iV^, and

moves the instrument and the index bar till an image

of S reflected from CM upon EN appears to coincide

with a point upon the horizon.

Let K be the point of the horizon with which S
appears to coincide. Let CM' be the position of the

index glass and CD be the position of the index bar

when K and S appear in coincidence. Join SC, CN,
and KN. Produce SC and KN to meet at J.

JK will represent the plane of the horizon, and the

angle SJK will be the altitude of S.

Produce EN to meet CD (in this case) at Z>.

The arc DB measures the angle DCB, But DCB
= NDC, since ^iV^and CJ/are parallel.

When a ray of light is reflected from a plane sur-

face, the angle of incidence is equal to the angle of

reflection

:
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therefore SCH^NCD,
but SCH=M'CJ,

these being vertical angles ; therefore,

NCJ=2{NCD).

Also, since angle of incidence is equal to angle of

reflection,

ENC=DNJ, but DNJ=ENK',

therefore (1), KNC= 2 [ENC) = 2 [{NCD) + Z)],

because ENC is exterior angle of triangle NCD,

Also (2), K]SrC=NCJ+J=2(NCD)-\-J;

consequently, 2 {NCI)) + 2D = 2 [NCD) + J;

that is, D = ^J;

but as Z)= DCB, and DB measures DCB, DB meas-

ures half of J, or half the altitude of S. The whole

arc AB, however, is so graduated that each half

degree counts as a degree, and the reading of the arc

DB gives the measure of the whole angle J.

Index error. The planes of the index glass and

horizon glass should be parallel when the index bar

is at the zero point on the graduated arc AB. The

distance, either on the arc (that is, to the left of the

zero point), or off the arc (that is, to the right of

the zero point), to which the index bar must be moved

to make these planes parallel, is called the index

error. This error demands a correction for every

angle measured.
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To determine the index error for any instrument,

the simplest method is to measure at successive

instants the angle subtended by the sun near the

zero point. As the diameter of the sun is the same,

these measurements should agree if there is no error,

but if tliey do not agree, there is an error in the

instrument. This will be understood by means of

the figure.

Let A OB be a part of the arc

of the sextant having the zero

point at 0, Suppose that in

measuring the diameter of the

sun on the arc the index bar is

moved to A, and that in meas-

uring the same diameter off the arc tlie index is

moved to D. Then, denoting the measure of the

diameter by d, AD = 2 d ; consequently B, the middle

point of AD, should be the real zero point of the

graduated arc. OB would represent the error, which

is off the arc, in this case, and the correction for the

error, called index correction, must be added.

Denote OB by € ; the reading OA by r ; the read-

ing OD by / ; then

AB=BD,

or AO-^OB^OD-OB;

that is, r-\-€ = r —€;

T ^ r
therefore, c = —-

—

NAV. AND NAUT. A8TR. —

8
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If the reading A 0, on the arc, is greater than the

reading OD, off the arc,

since

r — /
€ =

2

In this case the index correction must be siibtracted.

71. The dip of the horizon is the angle of depres-

sion of the visible horizon below the horizontal plane

of the observer. This depression of the visible horizon

is due to the elevation of the eye of the observer

above the level of the sea.

Let the figure represent

a section of the earth by a

plane passed through A,

the point of observation,

and C, the center of the

earth.

The small circle, of which

BD is the diameter, would

represent the plane of the

observer's visible horizon.

If AE be the line in which

the plane ABC intersects

the horizontal plane through A^ then BAB would

be the dip, or angle of depression of the visible hori-

zon, BD, below the horizontal plane of the observer
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at A, If /S be a celestial body, the angle SAE
would be its true altitude, SAB its measured or

observed altitude. Dip must always be subtracted

from the observed altitude to obtain the true altitude,

for SAB-EAB = SAE.
AB is tangent at B. Join C and B by straight

line, CB. EA is parallel to tangent at G, and there-

fore is perpendicular to CA.

Angles EAB and ACB are complements of BAC
and therefore equal ; that is, ACB = dip.

Let AG = h and CG = B,

Then AB =VAC' - CB' = V{R + hf - R'

= V2 Rh + h\

/.tan dip = tan -a C7^ = =
BL li

^42 Rh + h^

R'

But since h is small compared with R, h^ may be

neglected, and

tan dip = V-^- nearly.

But as the dip is usually a very small angle, and

since for a very small angle the circular measure of

the angle is approximately equal to the tangent of

the angle, we can say

circular measure of dip = \^—.
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Now circular measure of dip = -~
180

where n = number of degrees in angle, n being

integral or fractional ; therefore reducing to minutes.

60 niT . /2A=4
180 X 60 ^ i?

'

or, since 60 n = dip in minutes,

... . , 10800 J 2h
~

dip m mmutes =-- ^
3^^^ ^ ^^g^

,

reducing R to feet, B, being 3960 miles.

r,.
. . , 10800 V2 ^/y-

Dip m mmutes =— V/i.
77V3960 X 5280

log 10800 = 4.03342

log V2 = 0.15051 •

colog 77 = 9.50285 - 10

colog V3960 = 8.20115 - 10

colog V5280 = 8.13868 - 10

log 1.063 = 0.02661

.*. dip in minutes = 1.063 V^.

This value of dip is diminished by refraction.

The amount by which it is diminished is variously

estimated. If we take that amount as ^, we shall ob-

tain the true value of dip ; allowing for refraction, dip

= 1.063VA - ^(1.063 VA) = .984 VA, approximately.
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72. Refraction, To understand the effect of refrac-

tion, we represent, by the figure, a great circle section

of the earth AMN, made by a plane passing through

A, the point of observa-

tion, and through the at-

mosphere surrounding the

earth.

A ray of light from a

distant object, as a star,

*S', entering the atmosphere

obliquely at d, and passing

through strata of varying

density, is bent out of its

course into a curve, defgA,

concave to the earth's

surface. The object itself

appears at A on ^aS^', which is a line tangent to the

curve defgA at A.

If we join the center C with A and produce the

line to z, z will represent the zenith of the observer.

Produce the line Sd (supposed to be a straight line

before it enters the atmosphere at d) to meet CZ at

Q. If we draw AD parallel to GS. DAB would

represent the true altitude of S-, DA and GS, repre-

senting rays of light from an object so remote as

one of the celestial bodies, may be regarded as paral-

lel straight lines.

If there were no refraction, the light w«)uld come

on the line AD. SAD is the angle of refraction.

The correction for refraction, therefore, is to be sub-
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tracted from the observed altitude to give the true

altitude, for S'AB - S'AD = DAB,
Rays of light from an object in the zenith, falling

on the strata of the atmosphere, are not refracted.

The more obliquely the light enters the atmos-

phere, the greater the refraction. Consequently,

refraction increases, the nearer the body is to the

horizon.

73. Correction for semidiameter. The positions

of heavenly bodies indicated in the Nautical Almanac

are given for their centers.

Observations of heavenly bodies of perceptible size

are generally made to the upper or lower edge of the

body, called respectively the upper or loioer limh.

If an observed altitude is one of the lower limh, the

semi-diameter expressed in minutes or seconds of the

body must be added to give the altitude of the center.

If an observation is taken of the upper limh, the

semidiameter must be suhtracted to give the true

altitude.

74. Parallax. Altitudes of celestial objects are

observed at the surface of the earth, or slightly above

it. They are taken with reference to the sensihle

horizon, that is, with a plane tangent to the earth's

surface vertically heloio the point of observation. But

to these observed altitudes w^e have to apply correc-

tions in order to obtain the altitudes of the same

bodies if the observations were made at the center of

the earth, and with reference to the rational horizon,
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that is, a plane passed through the center of the earth

parallel to the sensible horizon.

Let the figure represent a section of the earth

made by a plane passed through its center C, and

through the point of observation at A.

Produce line CA to zenith Z. Let S be position

of heavenly body. Its

altitude with reference to

the sensible horizon, repre-

sented by line AB drawn

perpendicular to AC, is

the angle SAB. Its alti-

tude with reference to

the rational horizon^

represented by line CD,

drawn parallel to AB, is

the angle SCD.
Let E be the point where AB and SC intersect.

Since AB and CD are parallel,

(1) SCD=SEB=SAB + ASC.

The angle ASC is called the parallax in altitude of

S, or simply parallax of S. To obtain the true alti-

tude of a heavenly body (in addition to the other cor-

rections to be applied to the observed altitude), from

equation (1) it is evident that parallax must be added

to the observed altitude.

Let R denote AC, the radius of the earth ; let d

denote CS, the distance of the heavenly body from
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the center of the earth. Denote observed altitude

SAB by h.

sin ASC R ^u ^ • sin parallax R= — : that IS, = —

;

^mSAC d' ' sin (90° + A) d'

or (2) sin (parallax) = — sin (90° + A) = — cos h.
Ct CL

Suppose the celestial body to be in the horizon at B
;

then nn>

sin parallax = sin ABC= —

•

In this case the parallax is called the horizontal

parallax ; that is,

(3) sin horizontal parallax= —. '

(A/

T)

Substituting in (2) this equivalent of — , we have

(4) sin parallax = sin (horizontal parallax) cos h.

Since parallax and horizontal parallax are always

small angles (except in the case of the moon), we may
substitute for the sines the measures of these angles,

at any altitude, and (4) becomes

parallax = horizontal parallax x cos h.

Both from the equation and from the figure it is

evident that parallax is greatest when the heavenly

body is in the horizon ; decreases as the altitude of the

body increases ; and vanishes at the zenith.

i
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Also, from the figure, if aS be at a very great dis-

tance from the earth, d may be so large that the ratio

— approaches ; in that case, sin parallax in (2) will
a

vanish. For the fixed stars, which are supposed to be

at such immense distances from the earth that rays

of light from them fall on any two points of the

earth in nearly parallel lines, no correction for paral-

lax is applied.

Again, the nearer S is to the earth, the greater the

value of — , and consequently the greater the parallax.
a

Of the heavenly bodies, the moon is the nearer to the

earth and has the greatest parallax.
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CHAPTER IX

LATITUDE
75. Latitude.

Let lopAe represent a great circle section of tlie

earth through the meridian of the observer at A ; and

let NFS be the celestial

meridian of the same ob-

server. wCe will then be

the projection of the ter-

restrial equator, and WCE
will be the projection of

the celestial equator, or

equinoctial on the same

plane, viz. the plane of the

terrestrial and celestial

meridians. Let p be the pole of the earth, and P
the corresponding elevated pole of the celestial con-

cave. Join CA, and produce the line to meet the

celestial concave at Z, the zenith of the observer.

Through C at right angles to CA draw NCS, which

will represent the projection of the rational horizon of

the observer. If at ^ a line be drawn tangent to the

circle 'pAe, cutting the celestial meridian at H and 0,

this line would represent the sensible ho7nzon of the

observer (Art. 74).

In consequence of the immense distances of the
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heavenly bodies on the celestial concave, and S and

// and N are supposed to coincide, and altitudes of

objects are observed with reference to HAO. Where
accuracy is required, such observations have to be

corrected so as to equal the true altitude with refer-

ence to NCS{kvi. 74).

Ae measures the latitude of A, viz. the angle ACe.

This angle is also measured by ZE. NZ = 90^ = PE.
If from these equals we take away the common part

PZ, we have PN= ZE ; or, the elevation of the nearer

celestial pole above the horizon of the observer is equal

to his latitude.

76. To find the latitude. Latitude is found hy

observing the altitude of any heavenly body while on

the meridian, the declination of the body beiiig given.

The altitude of the body

may be observed either at its
'

upper transit or at its lower,

transit, in case it moves in

a small circle on the celestial

concave, and always above

the horizon. Let WPZS
represent the celestial con-

cave projected on the merid-

ian of the observer ; P will

be the nearer (in this case N.)pole; Z the zenith;

WEC the projection of the equinoctial; NES the

projection of the horizon. ZC or PN will measure

the latitude (Art. 75).
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Suppose A to be the position of the heavenly body

on the meridian at its upper transit.

If the angle AES is observed, the arc AS, which

measures this angle, is known. CA is the declina

tion, and in this figure is a S. declination.

(a) lat. = ZC=ZS- {AS-\- AC) = 90° - (alt. + dec).

If the object observed is at B, and having a N.

declination, BS is the measure of its altitude, and

(h) lat. = ZC= 90° - {BS-BC) = 90° - (alt. - dec).

The observer is supposed to be in the N. hemisphere,

and the latitude required is a N. latitude. In this

case, therefore, it is easily seen that when the altitude

of a body is taken at its upper transit, if the latitude

required is N. and the declination is S.,

(a) lat. = the complement of the sum of the altitude

and declination ; but if the latitude required and

declination are both N.,

{h) lat. = complement of the altitude diminished by

the declination.

If the observer were in the S. hemisphere, since

CA would then be a N. declination and CB a S.

declination,

(c) lat. = 90° - (alt. + dec), if lat. is S. and dec N.

{d) lat. = 90° -(alt. -dec), if lat. is S. and dec S.

. We can bring these four cases under one rule,

viz.

:
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If latitude and declination are of the sanie najue

(either N. or S.),

{e) the lat. = 90° - (alt. - dec.)
;

but, if of different names,

(/) lat. = 90°- (alt. + dec).

Since the zenith distance of a heavenly body is the

complement of its altitude,

{g) (e) becomes lat. = (90° - alt. + dec.)

= zenith dist. + dec.

(A) (/) becomes lat. = zenith dist. — dec.

2. Considering now the case of the lower transit

of a celestial body,

Let the figure represent,

as before, the celestial merid-

ian. Let A be the position

of a heavenly body at its

lower transit, and NA the

measure of its altitude, and

WA the measure of its decli-

nation.

Then lat. = ZC = NP = NA ^ PA = alt. -h (90 -

dec.) or lat. = alt. 4- polar dist.

Ex. 1. June 10, 1895, in long. 87° 10' W., the observed

meridian altitude of the sun's lower limb was 69° 24' (zenith

N.); the index correction was -f 2' 20"; height of the eye above

the sea was 20 ft. Required the latitude.
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Local apparent time

June 10 h. m. obs. alt. = 69° 24'

longitude in time 5 h. 48 m. 40 s. in. cor. 2' 20" +

Gr. app. time 5 h. 48 m. 40 s.

= 5.81 h.

sun's dec. at app. noon 23° 1' 27" N.

cor. = 11".5 X 5.81 = 1' 6".8 +

le of obs.

5.81

= 23=•2' 33"'.8N.

11.5

2905

6391

66.815 or 1'6".8

69° 26' 20"

dip

22"-

3" +

4'23"-

ref.

par.

69° 21' 57"

19"-

69° 21'38"

sem . diam. 15' 47"+

true alt.== 69='37' 25"

dist.

90°

zen. 20° 22' 35"

dec. 23° 2' 34"

latitude 43° 25' 9"N.

90°->SC= latitude =ZC
In figure, p. 123, BS = 69° 37' 25"

BC = 23-^^ =43°25'9"N.
^C= 46° 34' 51"

Ex. 2. In long. 85° 14' W., Feb. 10, 1897, the observed

meridian altitude of the sun's upper limb was 36° 42' (zenith

N.); index correction was — 1'40"; height of eye above sea

was 16 ft. Required latitude.

local time Oh. m.

longitude in time 5 h. 40 m. 56 s.

Gr. app. time 5 h. 40 m. 56 s.

= 5.68 h.

sun's dec. at app. noon, 14° 9' 32 ".6 S.

cor. = 49".ll X 5.68 = 4' 38".9-

dec. at time of obs. = 14°4'53".7 S.

obs. alt. 36° 42'

in. cor. lUO"-
36° 40' 20"

dip 3'55"-

36° 36' 25"

ret. 1' 18"-^
par. 7"+ )

36° 35' 14"

sem. diam. 16' 14"-

true alt. 36° 19'
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In figure, p. 123,

49.11 SA = 36° 19'

5.68 C^=14° 4' 54"

39288 >SC=50°23'54" 90°

29466 true alt. 36° 19'

24555 90°- SC:=ZC= 39° 36' 6" zen. dist. 53° 41

'

278.9448 ==4'38".9. latitude = 39° 36' N. dec. 14° 4' 54"

39° 36' 6"

Ex. 3. March 22, 1898, the observed meridian altitude of

Arcturus was 66° 42' (zenith N.); index correction was 2' 20"+
;

height of eye 16 ft. Declination of star was 19° 42' 44" N.

Required latitude.

obs altitude - 66° 42'

index cor. = 2' 20"+

66° 44' 20"

dip 3' 55"-

66° 40' 25"

ref. 25"- 25"-

In figure, p. 123,*true alt. = 66° 40'

90° SB = 66° 40'

zen. dist. = 23° 20' CB = 19° 42' 44"

declination 19° 42' 44" C5 = 46°57' 16"

43° 2' 44" latitude = 90°-,SC=43° 2' 44"

latitude = 43° 3' N.

77. To find the latitude by an observation of ^r

heavenly body near the meridian, the declination and

the time of the observation being known.

Let NWSE represent the projection of the celestial

concave on the plane of the horizon ; Z will be the

* For fixed star, parallax is 0.
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zenith ; P will be the pole ; and WDE will be the

equinoctial.

Suppose A to be the posi-

tion of the object observed.

Draw the circle of altitude

ZAC, and the circle of

declination PAD. From
A draw the arc, AF, per-

pendicular to PH. NPH
will represent the meridian.

Denote the altitude of A,

AC, by a, and the declination, AD, by d. In the

figure, A is represented with N. declination. In this

case,^ PA is 90° — d. But if the object had a S.

declination, A would be below Z>, and PA would be

90° + c?. Z^ = 90°-a.

ZPA represents the time elapsed since noon.

Denote this by t. If the object observed were at A\
the time would be before noon, and the angle ZPA
would be 12 — t, if the time given were civil time, or

24 — t, if the given time were astronomical.

Let PF= X, and ZF=ij\ then PZ = x-y.

Lat. = ZH=PH- PZ = 00° - {x - y).

In right-angle triangle PAF, by Napier's rule,

cos ZPA
(1)

or.

tsinPF =

tan x =

cot PA
cos /

cot (90° - d)
cos t cot d.
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/ON A 11 COS PA COS (90° - d) sin d
(A) cos AJ^ = —— = ^ ^ = ,

cos PJ^ cos X cos X

r^jp cosZA cos (90° — a) cos a;
cos Zi^ = ——-— = 5^

:
-i

;

cos AF sin d

that is, (3) cos 2/ = sin a cos x cosec c?.

By means of (1) we obtain the value of x, and by

means of (3) we obtain y.

Then latitude = 90° -(x-?/).

As this method of obtaining latitude depends upon

the time (before or after noon), an error in time

introduces an error into the result, which is almost

unayoidable, so that the method is not very reliable,

when the object observed is far from the celestial

meridian.*

Ex. 1. July 15, 1896, in long. 73° 45' W. at 12 h. 45 m. p.m.,

mean time, the observed altitude of the sun's lower limb was
58° 42' (zenith N. of sun); index correction was +2' 20";

height of eye was 15 ft. Required the latitude.

ship time, July 15 = h, 45 m.

longitude = 4 h. 5r> m.

Greenwich, July 15, M, = 5 h. 40 m.

= 5.67 h.

equation of time = 5 m. 46.16 s.

correction (.245) x 5.67 = 1.39

5.67 5 m. 47.55 s. = equation of time

1715 45 m.

1470 39 m. 12.45 s. = time= apparent time

1225 39 m. = 9° 45'

1.38915 12.45 3. = 3' 7"

apparent time = 38 m. 12.45 s. = 9° 48' 7"

* Bowditch.

KAV. AND NAUT. ASTR.—
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observed altitude = 58° 42'

index correction = 2' 20"+

dip =

ref. 35"- ) ^
par. 4"+ )

sem. diam. =

58°' 44' 20"

3'48"-

58° 40' 32"

31"-

58° 40' 01"

15' 47"+

5S' 55' 48"

90°

zenith distance = 31° 4' 12"

declination of sun at noon, Gr. mean time = 21° 25' 17".l N.

correction = 24".33 x 5.67 = 2' 18"-

declination of sun at time of observation = 21° 22' 59" N.

90°

polar distance = 68° 37' 1"

In the preceding figure,

Z APZ = 9° 48' 7" ; PA = 68° 37' 1" ; ZA = 31° 4' 12".

tan X = cos 9° 48' 7" cot 21° 22' 59"

log cos 9° 48' 7" = 9.99362

log cot 21° 22' 59" = 10.40721

log tan 68° 19' 47" = 10.40083 x = 68° 19' 47"

cos y = sin 58° 55' 48" cos 68° 19' 47" cosec 21° 22" 59'

log sin 58° 55' 48"= 9.93275

log cos 68° 19' 47"= 9.56734

log cosec 21° 22
' 59" = 10.43818

log cos 29° 49' 51"= 9.93827 y = 29° 49' 61"
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x=PF=6S°19'47"

y = ZF = 29° 49' 51"

x-y = PZ = 38° 29' 66"

FH =90""

ZH = lat. = 51° 30' 4" N.

Ex. 2. Jan. IG, 1895, at 12 h. 42 m. 30 s. p.m., mean time,

in long. 64° 20' W,, the observed altitude of the sun's lower

limb was 17° 50' 20" (zenith K);
index correction was — 2' 10"

;

height of eye 12 ft. Required the

latitude.

ship time=0 h. 42 m. 30 s.

longitude=4 h. 17 m. 20 s.

Greenwich, Jan. 16=4 h. 59 m. 50 s.

=4.997 h.

=5 h. nearly

declination of sun Jan. 16, noon = 20° 55' 58" S.

correction = 28".68 x 5 = 2' 23"-

declination of sun at time of observation = 20° 53' 35" S.

.-. P^ = 110° 53' 35".

equation of time at noon = 9 m. 58.25 s.

correction = 0.849 x 5 = 4.25 s.

equation of time for observation = 10 m. 2.5 s.

mean time = 42 m. 30 s.

apparent time = 32 m. 27.5 s.

= 8°6'52f' =Z^PF
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observed altitude = 17° 50' 20"

index correction = 2' 10"

\r 48' 10"

dip = 3' 24"

ref. 3'- )

par. 8"+ (

17°

17°

44' 46"

2' 52"

41' 64"

sem,. diam. = 16' 18"

true altitude =:17° 58' 12"

.-. ZA =:72°• 1U8"

In triangle PAF,

tan PF == tan X = COS 8° 6' 5

cot 110° 53' 35"

log cos 8° 6' 52"! = 9.99563

log cot 110° 53' 35"= 9.58175

log tan 111° 5' 10" = 10.41388

.^ cos 110° 53' 35"
cos AF = —

cos a;

In triangle ZAF,

r^Tji cos ZA
cos ZF= cos y = -—

>

cos AP
cos 72° 1' 48" ,^, iiioKriA„

or cos w = -cos 111 o'lU"^ cos 110° 53' 35"

log cos 72° 1'48"= 9.48927

log cos 111° 5' 10"= 9.55602

log sec 110° 53' 35" = 10.44778.

log cos 71° 52' a" = 9.49307
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a;=lir 6' 10" =PF
y = 7r52' 1" = ZF

x-y= 39° 13' 9" = PZ
90° =P//

lat.= 50°4G'51"N. = Z//

In case the perpendicular

meets the meridian at F, a

point between P and Z, as in

the figure, then PZ = x + y and

Z//= lat. = 90° -{x + y). In this case PA

j\r

Jn -v^

/\' r N.

A
r \

V^ ^^
\ ^ /

(90-<?).

Ex. 3. If in long. 00° 10' W., on Jan. 3, 1895, at 5 h. 42 m.

13 s. P.M., mean time, the declination of a star was found to be

72° 12' N., and its true altitude to be oS'' 42' 40" (zenith N.),

required the latitude.

ship time, Jan. 3 = 5 h. 42 m. 13 s.

longitude = 4 h. m. 40 s.

Greenwich, Jan. 3. mean time = 9 h. 42 m. 53 s.

R.A. of mean sun 3d noon = 18 h. 51 m. 25.5 s.

Correction for 9 h. 42 m. 53 s. = 1 m. 35.7 s.

R.A. mean sun = 18 h. 53 m. 01 s.

mean time = 5 h. 42 m. 13 s.

24 h. 35 m. 14 s.

24 h.

sidereal time = h. 35 m. 14 s. == APZ.

^(7=68° 42' 40"

90°

AZ = 31° 17' 20"

cos 35 m. 14 8.
tanx =

cot 17° 48'

log tan 17° 36' 11"

^Z> = 72°12'

i'^ = 17°48'

log= 9.99485

log = 10.49341

= 9.50144
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cos y = cos 31° 17' 20" cos 17° 36' 11" sec 17° 48'

log cos 31° 17' 20" = 9.93174

log cos 17° 36' 11"= 9.97917
'

log sec 17° 48' = 10.02130

log cos 31° 11' 15" = 9.93221

PF=17°36'll" = a:

ZF= 31°ll'15" =y
PZ=48°47'26" = a; + y

90^

ZH= lat. = 41° 12' 34" N. = 90° - (x + y).

78. To find the latitude hy observing the altitude of

the Fole Star (Polaris). This method is confined to

northern latitudes.

Let the figure represent the projection of the celes-

tial concave on the celestial meridian ; P tlie N. pole
;

Z the zenith
;
QEC the pro-

jection of the equinoctial
;

NES the projection of the

horizon.

Since P(7=90° and ZN
= 90% PC=ZN. If from

these equals we take PZ,
PN=ZC, but ZC=the
latitude of the observer

;

that is, PN, the altitude of

the nearer pole above the horizon, is equal to the

latitude (a principle already shown in Art. 75).

The star called Polaris is very near the N. pole of

celestial sphere. It moves in a small circle about that

pole. The polar distance of this circle is very nearly
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1° 14' (1898). By observing its altitude, at its upper

and lower culminations, and subtracting or adding its

exact polar distance, the latitude may be obtained.

As this method is not always practicable, its altitude

is observed at any moment, and to this altitude cor-

rections are applied which are arranged in tables for

the purpose of obtaining the true latitude.

Let the figure represent the projection of the celes-

tial concave on the plane of the hormm. In order to

understand the correc-

tions required, draw i ^^—frr~~--s^

ASBS' to represent

the circle in which

Polaris moves each

24 hours (sidereal).

If, with Z as a pole

and a distance ZP we

describe a circle, cut-

ting ASBS' in the

points A and B, these

points will be the points where the altitude of Polaris

will be the same as the altitude of F. Since ZL,

ZN, and ZR each equals 90°, and ZA = ZF=ZB,
therefore AL =PN= BR. If we take any other

position of the star, as Sy on the arc ASB, its alti-

tude will evidently be greater than that of the pole

P, or if we take aS" on the arc AS'B, its altitude

will be less than that of tlie pole P.

If, with Z as a pole and polar distance ZS we de-

scribe a circle cutting thu meridian ZN in D, the
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altitude of S will be the same as that of D ; and if

with polar distance ZS' we diaw a circle cutting me-

ridian at D', the altitude of S' will be the same as

that of D\ Join FS and PS% and from S and S'

draw SC and S'C, perpendiculars to the meridian.

If we denote the hour angle of the star in any posi-

tion by t, then at position S the angle SFC will be t,

and at S' the salient an^le S'PC will be t. The tri-

angles SPC and S'PC may be considered as plane

triangles, since their sides are such small arcs. Con-

sequently,

(1) PC =PScosSPC =PScost,

and (2) PC = PS' cos SPC = PS cost.

Now, PS and PS' are the polai^ distances of the

star, and therefore are the comjjlements of its declina-

tion. As the declination is given in the Nautical

Almanac, PS and PS' are known. Denote PS and

jPaS" by^ ; then PCsLud PC from equations (1) and

(2) can both be expressed by one equation, viz.

:

PC, or PC =p cost.

In this expression attention must be paid to the sign

of cos t. From h. to 6 h. and from 18 h. to 24 h.

the sign is + ; between 6 h. and 18 h. the sign is —

.

From the fio:ure it is evident that for an observed

altitude of the star in any position on the arc A TB,

except at the points A, T, and B, the latitude,

PN^ND-DP = ND--{PC-CD)
== altitude -p cost-\- CD,
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At A and B the latitude = altitude, since by construc-

tion ZA, ZF, and ZB are equal. At 2' the latitude

= iYP = A'7'-Pr= altitude-^. ^

*

For star observed in any position on arc AKB,
except A, K, and B, latitude,

FN=NU +UP =NU + [PC + CU),

or latitude = altitude H-;9 cos t + C'U.

At K the latitude = PN=NK+ PK=^ altitude +p.

The values of p cos< and of CD^ for all positions of Polaris,

are calculated and arranged in tables. When the latitude is

desired within 2' of the true latitude, the table for p cos t is

used.* If, however, the correct latitude is required, the cor-

rections for CD must also be applied.

The method of using the table for paostj only, "is suffi-

ciently precise for nautical purposes."!

Ex. April 1, 1898, 10 p.m. (mean time) nearly, in longitude

72° 56' W., the altitude of Polaris was observed, and, corrected,

was found to be 40° 22'. Required the latitude.

local time = 10 h. m. s.

longitude = 4 h. 51 m. 44 s.

Greenwich, April 1, mean time = 14 h. 51 m. 44 s.

Greenwich, April 1, R.A. mean sun = Oh. 39m. 27.9s.

correction for 14 h. 51 m. 44 s. = 2 m. 26 s.

R.A. M. sun at time of observation = h. 41 m. 54 s.

local mean time = lOh.

local sidereal time = 10 h. 41 m. 54 s.

R.A. Polaris = 1 h. 21 m. 48 3. -

hour angle = 9 h. 20 m. 06 s.

for hour angle of 9h. 20 m.

correction from page 170 is + 56'.

9

approximate latitude = 41° 19' N.

Martin. t Bowditch.
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CHAPTER X

LONGITUDE

79. By Art. 54 the local time was defined as the

hour angle of the sun at the celestial meridian of the

place ; and the Greemvich time at the same instant

was defined as the hour angle of the sun at the me-

ridian of Greenwich, both angles being made at the

pole by the hour circle passing through the sun with

the respective meridians of the place and of Greenwich.

The difference of these angles can be expressed either

in degree measure or in time measure. Expressed in

degree measure, it is called the longitude of the place.

The longitude of a place can always be determined,

therefore, by comparing the local time with the

Greemvich time at the same instant.

All sea-going vessels are furnished with a fixed

chronometer set to Greenwich time. Its rate, or the

average amount of time which it loses or gains in a

day, is ascertained, and applied to the time indi-

cated.

The error of the clock is the amount of time by

which it is fast or sloiv, as compared with true Green-

wich time. Both the rate and error of the clock are

kept on record, and taken into account in calculating

longitude.
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The locals or ship time, is determined by observing

tlie altitude of some celestial body. When the object

observed is not on the meridian of the observer, the

latitude of the place of observation, and the declination

of the object being known, the hour angle is calculated

(Art. 63).

Observations for latitude are generally made when

the object observed is on the meridian, or near it.

Observations for longitude are preferred to be taken

at the time the object is near the prime vertical.

The latitude used in determining the hour angle

for longitude is the latitude last observed, corrected

for change due to the run of the ship in the interval

between the two observations. This change of lati-

tude is found by dead reckoning.

80. When the Greemvich time is greater than the

ship time, the longitude of the ship is West ; when the

Greenwich time is less than the slilp time, the longitude

of the ship is East. P
Let the figure represent

the earth, pwp'e, and the

celestial concave, P WP'E,
projected on the plane at

right angles to the meridian

of Greenwich. pgp' will

represent the terrestrial me-

ridian, and PGP' the celestial

meridian of Greenwich. If P

wge represent the terrestrial equatorj its plane when

/
/••/^J\\
t- f V \ A

t' Xi

%k^"•^ J
/\''' / yV

dy



140 NAVIGATION AND

produced will intersect the celestial concave in the

celestial equator, WGE.
If 6 be a place on the earth's surface west of Green-

wich, the plane of its meridian pbap produced will

intersect the celestial concave in the meridian PAP'.
If ly be a place east of Greenwich, ph'dj)' will be

its terrestrial meridian, and PA'P' its celestial

meridian.

Now, if the meridian PMP' be the meridian pass-

ing through the mean sun at M, at the time of an

observation,

GPM = Greenwich mean time, at that instant.

APM = mean tim^ at &, at that instant.

A'PM=^ mean time at h\ at that instant.

GPM-APM=GPA = gph; because GPA and

gph are two arc angles, which are each equal to the

diedral angle of the same two planes. But gph is

measured by ga, and is the longitude of h west.

Therefore, Greenwich mean time — local mean time

= longitude west.

In the same wrj, A'PM- GPM=gph' ; hut gph'

is measured by ga% and is the longitude of ¥ east.

Therefore, local mean time - Greenwich mean time

= longitude east.

Ex. 1. At 9.13 P.M. (mean time) nearly, June 24, 1898, in

longitude 16° 18' W. (by account), a ship's chronometer in-

dicated 10 h. 11 m. 3 s. (Greenwich time). On June 14, at

Greenwich mean noon, the chronometer was slow 1 m. 15.8 s.,

and its mean daily rate was 6.4 s., losing. Required the correct

Greenwich mean time, corresponding to ship time.
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ship time June 24 9 h. 13 m.

longitude 1 h. 5 m. 12 s.

Gr. June 24, M. time 10 h. 18 m. 12 s. approximately.

Interval of time between June 14 noon, and 10 h. 18 m June

24 = 10 d. 10 h. 18 m. = 10 d. 8 h. -h 2 h. + 15 m.

daily rate ...... 6.4 s.

10 d 64.00

8h. = Jd 2.13

2h. =J^d 0.53

18 m. = ji^ d 0.00

66.7

accum. rate = 1 m. 6.7 s. slow. .-. to be added,

chronometer showed 10 h. 11m. 3 s.

10 h. 12 m. 9.7 s.

original error 1 m. 15.8 s.

cor. Green, mean time = 10 h. 13 m. 25.5 s.

Ex. 2. April 19, 1898, 4 p.m. (mean time) nearly, in latitude

41° 19' N., longitude (by account) 41° 18' W., the altitude of the

sun's lower limb was 29° 48' 20", when a chronometer showed

6 h. 49 m. 49 s. The index correction was — 2' 30"; height of

eye above sea level, 25 feet. On April 10 at noon, Greenwich

mean time, the chronometer was fast 5 m. 10 s., and its daily

rate was 2.5 s., gaining. Required the longitude.

ship, April 19 4 h. m. s. eq. of time m. 67 76 s.

longitude 2 h. 45 m. 12 s. correction 3.b^ s

Green. April 19 6 h. 45 m. 12 s. eq. of time 1 m. 01.45 i.

6.75 h. 0.546 to he snb.

6.75 from ap. time.

2730

dec. of sun noon m. t. 11° 16' 44 ".2 N. 3822

correction for 6.75 h. 5' 49".3-f 3276

declination of sun 1 1° 22' 33".5 N. 3.6855
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51".75

6.75

25875

36225

31050

349.3125

5'49".3

observed altitude of sun 29° 48' 20'

I.e.

dip

ref. 1'42"-
1

par. 8"+

S. I).

2' 30"-

29° 45' 50"

4'54"-

29° 4P'56"

1'34"-

29= 39' 22"

15' 57"+

true altitude 29° 55' 19"

Interval from April 10, noon, to date of observation,

9 d. 6.75 h.

daily rate .... 2.5 s.

9

9d. . . .

Jd. . . .

Ad.. .

accum. gain

22.5

.6

1

23.2 to be subtracted.

chronometer 6 h. 49 m. 49 s.

6 h. 49 m. 26 s.

original error 5 m. 10 s.

correct Greenwich time 6 h. 44 m. 16 s.

PZ = 90° - 41° 19' = 48° 41'

P^ = 90°- 11°22'33".5

= 78° 37' 27"

^Z= 90° -29° 55' 19"

= 60° 04' 41"

a= 48° 41'

z= 78° 37' 27"

p=. 60° 04' 41"

g = 187°23' 8"

2

= 93° 41 '34"
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s-a= 45° 0'34''

s-z= 15° 04' 7"

s-p= 33°36'53"

sin ^ P= Vsin (s — a) sin (s — z) cosec a cosec 2

log sin 45° 0' 34"= 9.84956

log sin 15° 04' 7" = 9.41493

log cosec 48° 41' = 10.12432

log cosec 78° 37' 27" = 10.00862

2 )19.39743

log sin i (3 h. 59 m. 44 s. + 7 s.) = 9.69871J

53^

correction 7 s. = 18J

ship apparent time = 3 h. 59 m. 51 s.

equation of time = 1 m. 01 s.—

ship mean time = 3 h. 58 m. 50 s.

Greenwich, mean time = 6 h. 44 m. 16 s.

longitude = 2 h. 45 m. 26 s.

= 41° 21' 30" W.

Ex. 3. Feb. 13, 1898, 6.30 a.m. (mean time) nearly, in lat.

45° 16' S., and long. 28° 42' E. (by account), a chronometer

showed 4 h. 41 m. 48 s., when an observed altitude of the sun's

upper limb was 14° 18' 20". Index correction was — 1'13",

height of eye, 12 ft. Eeb. 7, at noon (G.M.T.), the chronome-

ter was slow 3 m. 6 s., and its daily rate was 1.4 s., losing.

ship time, Feb. 12 18 h. 30 m. s.

longitude 1 h. 54 m. 48 s.

Greenwich, Feb. 12 16 h. 35 m. 12 s.

16.59 h.

or Greenwich, Feb. 13 —7.41 h.
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hourly difference of declination 50".65

7.41

5065

20260

35455

375".3165, or 6' 15".3

declination of sun, Feb. 13, noon 13° 14' 45" S.

correction for — 7.41 h. = 6' 15"

declination of sun = 13° 21' S.

equation of time, Feb. 13, noon = 14 m. 24.2 s.

correction for — 7.41 h. = 0.6 s.

equation of time = 14 m. 24.8 s. to he added

to ap. t.

hourly dif. of eq. of time 0.078

7.41

. 78

312

526

.55798

Interval from Feb. 7 noon to obs. alt. of sun 14° 18' 20"

time of observation 5 d. index cor. 1' 13"-

16.59 h. 14° 17' 07"

dip ' 3' 24"
daily rate 1.4 s. 14° 13 '43"

_5_ ref. 3'46"-l or o^r,

5d 7. par. 9"+ J

^d 0.7 14° 10' 06"

I d 0.2 sem. diam. l^^Jil'

accumulated loss . . 7.9 s. true alt. of sun 13° 53' 52"

chron. showed 4 h. 41 m. 48 s.

4 h. 41 m. 56 s.

orig. error 3 m. 6 s.

cor. G.M.T. 4h.45m. 2 s.-
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a = 44° 44'

2 = 76° 39'

p = 76° 06' 8"

s = 197° 29' 8"

2

= 98° 44' 34"

s — a = 54° 0'34"

8 — Z = 22° 05' 34"

s-p = 22° 38' 26"

tan i P = Vsin (s — a) sin (s — z) cosec s cosec (s — p)

log cosec H = 10.00507

log sin (s- a) = 9.90801

log sin (s — z)= 9.57531

log cosec (s—p) = 10.41460

2 )19.90299

log tan i (6 h. 25 m. 34 s.) 9.95149^

equation of time 14 m. 25 s. 64

mean time of ship 6 h. 39 m. 59 s. 14^

Greenwich mean time 4 h. 45 m. 2 s.

longitude 1 h. 54 m. 57 s. = 28° 44' 15" E.

Ex. 4. Jan. 20, 1898, 8.30 a.m., (mean time) nearly, latitude

39° 58' N., longitude, by account, 30° 15' W., a chronometer

showed 10 h. 53 m. 9 s., when an observed altitude of the sun's

upper limb was 13° 2' 30". Index correction was — 3' 50",

height of eye was 18 ft. Jan. 12, noon, Greenwich mean time,

the chronometer was 10 m. 36 s. fast and its daily rate was

1.2 s., gaining. Required the longitude.

ship, Jan. 19 20 h. 30 m. dec. of sun Jan. 20 noon 20° 3' 9".8 S.

longitude 2 h. 1 m. correction for — 1.48 48".6

Gr. Jan. 19 22 h. 31 m. declination of sun 20°3'58".4S.

= 22.52 h. or Jan. 20 - 1.48 h.

NAV. AND XAl'T. A9TR. 10
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interval from Jan. 12 noon

to time of obs. 7 d. 22i h.

daily rate

7d.=

1.2 s.

7

= 8.4

id.== .6

id.== .4

1^4- =

accum. gain

= .1

9.5 s.

32".84

1.48

26272

13136

3284

eq. of time 11 m. 19.98 s.

correction 1.07 s.

eq. of time 11 m. 18.91 s.

48.6032 0.724 to be added to

1.48 apparent time.

5792

2896

724

1.07152

accum. gain = 9.5 s.

chron. showed 10 h. 53 m. 9. s.

10 h. 52 m. 59.5 s.

original error 10 m. 36 s.

Gr. M. time 10 h. 42 m. 23.5 s.

a= 50° 2'

2 = 110° 3' 58'/

j?= 77°25U6''

g = 237°31'44'>

2

= 118° 45' 52"

s-a= 68° 43' 52"

s-z= 8° 41' 54"

s-p= 41° 20' 06"

log tan ^ (8 h. 29 m. 52 s.

ship apparent time 8 h. 29 m. 55 s.

equation of time 11m. 19 s.

8 h. 41 m. 14 s.

obs. alt. of sun 13° 2' 30"

I.e. 3' 50"

12° 58' 40"

dip 4' 09"

12° 54' 31"

4'00"-
ref.

par.

4' 9"- 1

. 9"+i
12° 50' 31"

S.D. 16' 17"-

truealt. of sun 12° 34' 14"-

log cosec == 10.05720

log sin = 9.96936

log sin = 9.17966

log cosec = 10.18016

2 )19.38638

+ 3 s.) 9.69319

29

3 s. cor. for 10
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Greenwich mean time = 10 h. 42 m. 23.5 s.

ship mean time 8 h. 41 m. 14 s.

longitude 2 h. 01 m. 9.5 s.

longitude 30^17'22i" W.

Ex. 5. April 9, 1898, 4 p.m. (mean time) nearly, in latitude

46° 52' N., longitude (by account), 50° 35' W., a chronometer

shewed 7 h. 28 m. 4 s., when the altitude of the sun's lower

limb was 23° 58' 40". Index correction was + 2' 48" ; height

of eye above sea level, 14 ft. April 1, noon, Greenwich mean
time, the chronometer was slow 6 m. 35 s., and its daily rate

was 1.2 s., losing. Required the longitude. Ans. 50° 39' W.

Ex. 6. June 13, 1898, 6 p.m. (mean time) nearly, in latitude

42° 4' N., longitude (by account), 36° 22' W., the observed alti-

tude of sun's lower limb was 15° 7' 30", when a chronometer

showed 8 h. 16 m. 28 s. Index correction was — 3' 14" ; height

of eye, 20 ft. June 1, noon, Greenwich mean time, chronom-

eter was slow 8 m. 13 s., and its daily rate was 1.3 s., gaining.

Required the longitude. Ans. 35° 57' W.

Ex. 7. May 2, 1898, 5 p.m. (mean time) nearly, in lat. 50° 16'

N., longitude (by account) 40° 18' W., the observed altitude of

the sun's lower limb was 21° 16' 50", when a chronometer

showed 7 h. 44 m. 2 s. Index correction was 4- 1' 12"; height

of eye above sea level was 15 ft. April 25, noon, G.M.T., chro-

nometer was fast 6 m. 18 s., and daily rate was 0.6 s., losing.

Required the longitude. Ans. 40° 16' W.

Ex. 8. May 14, 1898, 6 a.m. (mean time) nearly, in lat. 44®

48' N., longitude (by account) 33° 22' W., the observed altitude

of the sun's lower limb was 13° 5' 40", when a chronometer

showed 8 h. 23 m. 28 s. Index correction was — 2' 25" ; height

of eye above sea level was 18 ft. May 6, at noon, G.M.T., the

chronometer was fast 12 m. .36 s., and its daily rate was 1.6 s.,

gaining. Required the longitude, Ans, 33° 24^' W.
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Ex. 9. Feb. 28, 1898, 8 a.m. (mean time) nearly, in lat.

46° 22' N., longitude (by account) 50° 42' W., a chronometer

showed 11 h. 30 m. 54 s., when the observed altitude of the

sun's upper limb was 14° 25' 30". Index correction was +2' 20"

;

height of eye above sea level was 20 ft. Feb. 20, noon, G.M.T.,

chronometer was slow 4 m. 30 s., and its daily rate was 0.8 s.,

gaining. Required the longitude.

Given dec. of sun, Feb. 28, Green., noon, 7° 50' 24" S.

Hourly dif. 56".79 N.

Equation of time at Green., noon, 12 m. 40.7 s. to be added

to mean time. Hourly dif. 0.479 s., decreasing from Feb. 28

to March 1. Ans. 50° 39' 15" W.
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DEFINITIONS OF TERMS USED IN

NAUTICAL ASTRONOMY

Altitude. The altitude of a heavenly body is the angle of ele-

vation of the body above the horizon, and is measured on

the circle of altitude passing through the body. This

measured distance is generally used for the altitude.

Observed Altitude. The observed altitude of a heavenly body

is the altitude of the body above the sea horizon taken

with a sextant or other instrument.

True Altitude. The true altitude of a heavenly body is its

observed altitude corrected for index error, dip, refraction,

parallax, and semi-diameter.

First Point of Aries. The first point of Aries is the point on

the celestial concave in which the ecliptic cuts the equi-

noctial, where the sun passes from the south to the north

of the equinoctial.

Axis. The axis of the celestial sphere is the diameter about

which the celestial concave appears to revolve from east to

west. It is coincident with the earth's axis produced.

Azimuth. The azimuth or true bearing of a heavenly body is

the angle at the zenith made by the celestial meridian and

the circle of altitude passing through the body.

Celestial Concave. The celestial concave is the surface of a

very large sphere of which the center is the center of the

earth.

Apparent Solar Day. An apparent solar day is the interval

of time between two successive transits of the sun over the

same celestial meridian.
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Mean Solar Day. A mean solar day is the interval of time

between two successive transits of the mean sun over the

same celestial meridian.

Sidereal Day. A sidereal day is the interval of time between

two successive transits of the first point of Aries over the

same celestial meridian.

Declination. The declination of a heavenly body is the arc of

a circle of declination between the body and the equi-

noctial, or celestial equator.

Circles of Declination. Circles of declination are great circles

of the celestial concave which pass through its poles.

Circles of declination are also called hour circles.

Angle of Depression. The angle of depression of any body

below the observer is the angle between a line drawn to it

from the observer's eye, and the horizontal plane through

the observer's eye.

Ecliptic. The ecliptic is the great circle in which the plane of

the earth's orbit cuts the celestial concave.

Angle of Elevation. The angle of elevation of any body above

the observer is the angle at the observer's eye, between

a line drawn from it to the body and a horizontal plane

through the eye.

Celestial Equator and Equinoctial. The equinoctial is the celes-

tial equator and is the great circle of the celestial con-

cave made by producing the plane of the terrestrial equator

to cut the concave.

Greenwich Date. The Greenwich date is the astronomical time

at Greenwich, when an observation is taken at any place

on the earth.

Horizon. The celestial horizon or simply the horizon at any

place is the great circle of the celestial concave, in which

a plane tangent to the earth at that place meets the con-

cave. This plane is known as the plane of the horizon.
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Rational Horizon. The rational horizon is a plane passed

through the center of the earth parallel to the sensible

horizon.

Sensible Horizon. The sensible horizon is a plane tangent to

the earth at a point vertically below the point of observa-

tion.

Visible Horizon. The visible horizon is the small circle which

bounds the vision of the observer.

Hour Angle. The hour angle of any heavenly body is the

angle at the pole between the celestial meridian of the

observer and the hour circle passing through the body.

Hour Circles. Hour circles are circles of declination.

Celestial Meridian. The celestial meridian of any place is the

great circle in which the plane of the terrestrial meridian

cuts the celestial concave.

Apparent Noon. Apparent noon is the instant when the center

of the real sun is on the celestial meridian.

Mean Noon. Mean noon is the instant when the mean sun is

on the celestial meridian.

Poles of the Heavens. The poles of the heavens are the extremi-

ties of the axis of the celestial concave.

Prime Vertical. The prime vertical is the circle of altitude,

whose plane is at right angles to the plane of the celestial

meridian.

Right Ascension. The right ascension of a heavenly body is

the arc of the equinoctial, or celestial equator, between

the first point of Aries and the circle of declination pass-

ing through the body. Right ascension is measured in

time eastward from h. to 24 h.

Apparent Time. Apparent time is the hour angle of the real

sun.

Mean Time. Mean time is the hour angle of the mean suu.
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Equation of Time. The equation of time is the difference

between apparent time and mean time.

Astronomical Time. Astronomical time is reckoned in periods

of twenty-four hours, each period beginning at noon.

Civil Time. Civil time is reckoned in two periods of twelve

hours, named a.m. and p.m. according as they come before

or after noon of the day, which, in this method of reckon-

ing time, begins at midnight.

Zenith. The zenith is the pole of the celestial horizon directly

above the observer.
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EXAMPLES

CHAPTER III

In the following examples, deviation is to be taken from

table on page 56. Find the true courses:

Ex. 1. Compass course = N. 47° E.; variation = 9° W.; lee

way = 0°. Ans. N. 56° E

Ex. 2. Compass course = E. b. N. J N. ; variation = 21° E.

leeway = 1\ pt. and wind N. Ans. S.E

Ex. 3. Compass course = S. 51° E. j variation = 18° E. ; lee

way = 0. Ans. S. 17° E

Ex. 4. Compass course = S. } W. ; variation = 21° W. ; lee-

way = 1 pt.; wind E.S.E. Ans. S. J E

Ex. 5. Compass course = W. b. S. J S.; variation = 11° W.
leeway = 1 pt. ; wind S. Ans. S.W. f W

Ex. 6. Compass course = N.N.W. J W. ; variation = 30° W.
leeway = J pt. ; wind W. Ans. W.N.W

Find the compass course :

Ex. 7. True course = N.N.E. J E.; variation being 21° E.

Ans. N. 5° E.

Ex. 8. True course = N. 62° E. ; variation being 11° W.
Ans. N. 54° E.

Ex. 9. True course = E. f S. ; variation being 12° W.
Ans. East.

Ex. 10. True course = S. b. W. \ W. ; variation being 19° E.

Ans. S. 10° E.

Ex. 11. True course = N.W. J W.; variation being 34° W.
Ans. N. 9° W.
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CHAPTERS V AND VI

Ex. 1. May 28, 1898, in long. 72° 55|' W., required mean
time of apparent noon, and declination of sun at that time.

Ans. Mean time, 11 h. 57 m. 4.15 s. a.m.; dec. of sun, 21° 32' 42" N.

Ex. 2. May 28, 1898, in long. 72° 55|' W., given mean times

10.15 A.M. and 1.45 p.m., required corresponding sidereal times.

Ans. 14 h. 39 m. 42 s. ; 6 h. 10 m. 17 s.

Ex. 3. May 27, 1898, in long. 72° 55|' W., given mean times

9.45 a.m. and 1.30 p.m., required corresponding sidereal times.

Ans. 2 h. 5 m. 41 s.; 5 h. 51 m. 18 s.

Ex. 4. May 27, 1898, in long. 72° 55|' W., required the

mean time of apparent noon; also declination of sun at that

time. Ans. 11 h. 56 m. 57 s. a.m.; 21° 23' 2" K
Ex. 5. March 15, 1898, in long. 72° 55|' W., given apparent

times, 6.30 a.m. and 5 p.m., to find corresponding mean times.

Ans. 6.39 a.m. ; 5 h. 8 m. 52 s. p.m.

Ex. 6. In long. 72° 55|' W., March 19, 1898, 10.45 a.m. mean
time, required apparent time, sidereal time, and declination of

sun. Ans. Apparent time, 10 h. 37 m. 13 s. ; sidereal time,

22 h. 33 m. 48 s. ; declination of sun, 0° 22' 10" S.

CHAPTER VII

Ex. 1. In lat. 41° 18' N., long. 72° 55|' W., May 2, 1898,

3.19 p.m. apparent time, nearly, the true altitude of the sun

was 40° 14'; required its hour angle. Ans. 3 h. 18 m. 31 s.

Ex. 2. In lat. 41° 18' N., long. 72° 55|' W., Jan. 10, 1898,

10 A.M. mean time approximately, the true altitude of sun was

20° 40' ; required mean time. Ans. 10 h. 4 m. 53 s. a.m.

Ex." 3. In lat. 41° 18' N., long. 72° 5o|' W., Jan. 10, 1898,

11 A.M. mean time approximately, the true altitude of the sun

was 24° 40' ; required mean time. Ans. 10 h. 50 m. 23 s. a.m.
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Ex. 4. April 1, 1898, at 7 p.m. mean time nearly, in long.

72° 55|' W., the hour angle of a Orionis was 1 h. 50 m. 56 s.,

W. of meridian. Required mean time.

Ans. 6 h. 59 m. 11 s. p.m.

Ex. 5. Nov. 22, 1898, 7.15 p.m. mean time nearly, in long.

87° 56' W., the hour angle of Aldebaran (a Tauri) was 18 h.

56 m. 15 s. (E. of meridian). Nov. 22, noon Greenwich R.A.

mean sun was 16 h. 5 m. 58.42 s. Ans. 7 h. 17 m. 14 s. p.m.

Ex. 6. Find at what time Procyon (a Canis Minoris) passed

the meridian of 72° 56' W., April 5, 1898.

Ans. 6 h. 36 m. 51 s. p.m.

Ex. 7. Find at what time Sirius passed the meridian 72°

55|' W., April 6, 1898. If the place is in lat. 41° 18' N.,

required also its meridian altitude at transit.

Ans. 5 h. 39 m. 45 s. p.m.; 32° 7 27".

Ex. 8. In lat. 41° 18' N., long. 72° 55|' W., April 6, 1898,

find at what time Regulus passed the meridian, and at what

altitude. Ans. 9 h. 1 m. 29 s. p.m.; 61° 9' 52".

Ex. 9. In lat. 41° 18' N., long. 72° 55|' W., April 5, 1898,

10 P.M. mean time nearly, the altitude of ft Geminorum was
48° 17', and its declination was 28° 16' 19" N. Required mean
time. Ans. 9 h. 57 m. 33 s. p.m.

CHAPTER IX

Ex. 1. In long. 72° 55|' W., April 20, 1898, the observed

meridian altitude of the sun's lower limb was 33° 22' 30"

(zenith N.); index correction was —2' 10"; height of eye above

sea level was 25 ft. Required the latitude.

Ans. 68° 11' 27" N.

Ex. 2. April 21, 1898, in long. 72°
55J' W., the observed

meridian altitude of the sun's lower limb was 56° 10' 20"

(zenith N.); index correction was -f 2' 25"; height of eye was

18 ft. Required the latitude. Ans, 45° 37' 52" N.
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Ex. 3. Jan. 2, 1898, the observed altitude of Vega (a Lyrae)

(zenith N.) was 70° 2' 30"; index correction was +2' 16";

height of eye above sea level was 14 ft. Required the latitude.

Ans. 58° 40' 34" N.

Ex. 4. April 20, 1898, the observed meridian altitude of

Arcturus was 62° 40' 30"; index correction was +3' 16";

height of eye above sea level was 20 ft. Required the latitude.

Ans. 47° 3' 50" N.

Ex. 5. March 14, 1898, at 2 a.m. (nearly), in long. 45° 40' W.,

the observed altitude of Polaris was 43° 16'; index correction

was — 2' 22"; height of eye was 18 ft. Required the latitude.

Ans. 44°22'N.

Ex. 6. April 22, 1898, at 3 a.m. (nearly), in long. 50° 10' W.,

the observed altitude of Polaris was 46° 38'; index correction

was + 1' 40"; height of eye was 13 ft. Required the latitude.

A71S. 47° 18' N.

Ex. 7. In long. 16° 16' W., June 16, 1898, 12 h. 12 ra. 26 s.

P.M. mean time, the observed altitude of the sun's upper limb

(zenith N.) was 61° 40' 10"; index correction was +2' 25";

height of eye above sea level was 17 ft. Required the latitude.

Ans. 51° 54' 34" N.
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JANUARY, 1898

At Greenwich Apparent Noon

c
o

o

1

THE SUN'S Equation of

Time,
to be

Added to

Apparent
Time

Diff

1

1

Apparent
Declination

Dlflf. for

1 hour
Seml-

diatneter

for

1 hour

Sat.

SUN.
Mon.

1

2

3

S. 22 59 1.6

22 53 40.7

22 47 52.4

+ 12.81

13.94

15.07

16 18.87

16 18.37

16 18.37

m. 8.

3 55.32
4 28.36

4 51.02

1.177

1.160

1.143

Tues.
Wed.
Thur.

4
5
6

22 41 37.1

22 84 54.8

22 27 45.7

+ 16.20

17.82

18.43

16 18.36

16 18.85

16 18.83

5 18.26

5 45.08

6 11.42

1.126

1.108

1.088

Frid.

Sat.

SUN.

7

8
9

22 20 10.2

22 12 8.3

22 3 40.3

+ 19.53

20.02

21.71

16 18.30

16 18.26

16 18.22

6 37.29
7 2.64

7 27.47

1.067

1.045

1.028

Mon.
Tues.
Wed.

10
11

12

21 54 46.4

21 45 26.9

21 35 42.0

+ 22.78

23.84

24.89

10 18.18

16 18.13

16 18.07

7 51.74

8 15.46

8 38.57

1.000

0.975
0.950

Thur.
Frid.

Sat.

13
14

15

21 25 32.0

21 14 57.1

21 3 57.7

+ 25.93
26.96

27.98

16 18.00

16 17.98

16 17.86

9 1.08

9 22.96

9 44.21

0.925

0.899
0.871

SUN.
Mon.
Tues.

16

17

18

20 52 34.1

20 40 46.5

20 28 35.3

+ 28.98

29.97

30.95

16 17.78
16 17.70

16 17.61

10 4.79

10 24.69

10 43.89

0.842

0.814

0.785

Wed.
Thur.
Frid.

19

20
21

20 16 0.9

20 3 3.6

19 49 43.7

+31.91
32.86

33.79

16 17.52

16 17.42

16 17.32

11 2.38

1120.12
1137.11

0.755
0.724

0.693

Sat.

SUN.
Mon.

22
23
24

19 36 1.6

19 21 57.8

19 7 32.6

+ 34.71

35.61

36.49

16 17.22

16 17.11

16 17.00

11 58. .36

12 8.82

12 23.47

0.661
0.628

0.595

Tues.
Wed.
Thur.

25
26
27

18 52 46.4

18 37 39.6

18 22 12.6

+37.35
38.20
39.04

16 16.89

16 16.77

16 16.65

12 37.34
12 50.37

13 2.59

0.561

0.526
0.492

Frid.

Sat.

SUN.
Mon.

28
29
30
31

18 6 25.8

17 50 19.7

17 33 64.6

17 17 10.9

+39.85
40.65
41.43
42.20

16 16.53

16 16.40

16 16.27

16 16.13

13 13.97

13 24.53

13 34.23

13 43.10

0.457
0.422

0.887
0.852

Tues. 32 S. 17 9.0 +42.95 16 15.99 13 61.12 0.318



II.

NAUTICAL ASTRONOMY

JANUARY, 1898

At Greenwich Mean Noon
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1

5
s
o

o
>>

THE SON'S Equation of

Time,
to be

Subtracted

from
Mean Time

Diff. •

for

1 liour

Sidereal

Time, or

1

Apparent
Declination

Diff. for

1 hour

Ripiit

Ascension

of

Mean San

Sat. '

/SUN.
Mon.

1

2

3

S. 22 69 2.4

22 53 41.7

22 47 53.7

+ 12.79

13.93

15.07

m. s.

3 55.24
4 23.27

4 50.92

1.170

1.100

1.143

h. m. 8.

18 44 37.92
18 48 34.48
18 52 31.04

Tubs.
Wed.
Thur.

4
6

22 41 38.5

22 34 50.4

22 27 47.7

+ 10.20

17.31

18.42

5 18.10

5 44.97

11.31

1.120

1.108

1.088

18 56 27.00
19 24.15
19 4 20.71

Frid.

Sat.

SUN.

7

8
9

22 20 12.4

22 12 10.7

22 3 43.0

+ 19.52

20.01

21.09

37.17

7 2.52

7 27.34

1.007

1.045

1.023

19 8 17.27

19 12 1.3.83

19 10 10.39

Mon.
Tues.
Wed.

10
11

12

21 54 49.4

2145 30.2

21 35 45.0

+ 22.70

23.83

24.88

7 51.01

8 15.32

8 38.43

1.000

0.975

0.950

19 20 0.95
19 24 3.50

19 28 0.06

Thur.
Frid.

Sat.

13

14

15

21 25 35.9

21 15 1.4

21 4 2.3

+ 25.92
20.95

27.97

9 0.94

9 22.82

9 44.07

0.925
0.899
0.871

19 31 £6.02

19 35 5:^.18

19 39 49.73

SUN.
Mon.
Tues.

10

17

18

20 52 39.0

20 40 51.8

20 28 40.9

+28.97
29.90

30.94

10 4.05
10 24.55
10 43.75

0.843
0.814

0.785

19 43 40.29
19 47 42.85
19 51 39.40

Wed.
Thur.
Frid.

19

21

20 10 0.8

20 3 9.8

19 49 50.3

+31.90
32.84

a3.77

11 2.24

11 19.98

1130.98^

0.755
0.724

0.093

19 55 35.96
19 59 32.52

20 3 29.08

Sat.

SUN.
Mon.

22
23
24

19 30 8.0

10 22 5.1

19 7 40.2

+34.09
35.59

30.47

11 53.23

12 8.09

12 23.35

0.001
0.028
0.595

20 7 25.03
20 11 22.19

20 15 18.75

Tues.
W^ed.
Thur.

25
20
27

18 52 54.3

18 37 47.8

18 22 21.1

+ 37.34
38.19
39.02

12 37.22
12 50.20

13 2.48

0.501

0.520
0.492

20 19 15.30
20 23 11.86

20 27 8.42

Frid.

Sat.

SUN.
Mon.

28
29
30
31

18 34.7

17 CO 28.8

17 34 4.0

17 17 20.0

+ 39.84

40.04
41.42

42.19

13 13.87

13 24.43

13 34.14

13 43.02

0.457
0.422

0.387
0.352

20 31 4.97

20 35 1.53
2<» 38 r8.09

20 42 54.64

Tues. 32 S. 17 19.0 +42.94 13 51.05 0.318 20 46 51.20



160 NAVIGATION AND

MARCH, 1898

At Greenwich Apparent Noon

THE SUN'S

Tues.
Wed.
Thur.

Frid.

Sat.

SUN.

Men.
Tues.
Wed.

Thur.
Frid.

Sat.

SUN.
Men.
Tues.

Wed.
Thur.
Frid.

Sat.

SUN.
Men.

Tues.
Wed.
Thur.

Frid.

Sat.

SUN.

Men.
Tues.
Wed.
Thur.

Frid.

Apparent
Declination

1

2

3

4

5

6

7

8

9

10
11

12

13
14

15

16

17

18

19
20
21

22
23
24

25
26
27

28
29
30
31

32

S. 7 27 25.8

7 4 33.4

6 41 35.2

6 18 31.4

5 55 22.6

5 32 8.9

5 8 50.8

4 45 28.7

4 22 2.9

3 58 33.7

335 1.5

3 11 26.7

2 47 49.6

2 24 10.5

2 29.9

1 36 48.2

1 13 5.6

49 22.7

25 39.7

S. 1 57.0

N. 21 44.8

45 25.6

1 9 4.8

1 32 42.2

1 56 17.2

2 19 49.6

2 43 18.9

3 6 44.8

3 30 7.0

3 53 25.1

4 16 38.8

N. 4 39 47.7

DiflF. for

1 hour

+ 57.05
57.30

57.54

+ 57.76

57.97

58.16

+ 58.34
58.50

58.65

+ 58.78

58.90
59.00

+ 59.09
59.16
59.22

+ 59.26
59.28

59.29

+ 59.28

59.26

59.22

+ 59.17

59.10

59.01

+ 58.91

58.79
58.65

+ 58.50
58.34

58.16
57.97

+ 57.77

Semi-

diameter

16 10..36
16 10.12

16 9.88

16 9.64

16 9.39

16 9.14

16 8.88

16 8.62

16 8.36

16 8.10

16 7.84

16 7.57

16 7.30

16 7.03

16 6.75

16 6.48

16 6.20

16 5.92

16

16

16

16

16
16

16

16

16

16
16

16
16

5.64

5.36

5.09

4.81

4.54

4.26

3.99
3.72

3.45

3.18

2.91

2.64

2..37

16 2.10

Equation of

Time,
to be

Added to

Apparent
Time

12 28.85

12 16.55

12 3.78

11 50.52

11 .36.80

11 22.65

11 8.09

10 53.11

10 37.79

10 22.14

10 6.14

9 49.86

9 33.30

9 16.48

8 59.44

8 42.19
8 24.76

8 7.13

7 49.37

7 31.46

7 13.44

6 55.32
6 37.13

6 18.85

6 0.53

5 42.19
5 23.81

5 5.44

4 47.10

4 28.78

4 10.54

3 52.37



II.

NAUTICAL ASTRONOMY

MARCH, 1898

At Greenwich Mean Noon
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^
2
^

J3

C
o

«

o

1

THE SUN'S Equation of

Time,
to be

Subtracted

from
Mean Time

Diff.

for

1 hour

Sidereal

Time, or

Right
Ascension

of

Mean Sun

1

1
Apparent
Declination

. Diff. for

1 hour

Tues.
Wed.
Thur.

1

2

3

S. 7 27 37.7

7 4 4-).2

6 4140.8

+ 57.06
5731
57.55

m. .<».

12 28.95
12 16.66
12 3.89

0.501

0.522

0.542

h. m. 8.

22 37 14.73
22 41 11.29
22 45 7.84

Frid.

Sat.

SUN.

4

5

6

6 18 42.9

5 00 33.8

5 32 20

+ 57.77

57.98

58.17

11 50.63

11 36.91

11 22.76

0.561

0.580
0.598

22 49 4.39

22 53 0.95
22 56 57.50

Mon.
Tues.
Wed.

7

8
9

5 9 1.7

4 45 3'.). 4

4 22 13.3

+ 58.35

58.51

58.66

11 8.20

10 53.23
10 37.91

0.615
0.631

0.645

23 54.05

23 4 50.61

23 8 47.16

Thur.
Frid.

Sat.

10

11

12

3 58 4.3.9

3 35 11.5

3 11 36.4

+ 58.70

58.01

59.01

10 22.25

10 6.25

9 49.97

0.659
0.672

0.684

23 12 43.71

23 16 40.27
23 20 36.82

suy.
M.m.
Tues.

13

14

15

2 47 59.0

2 24 19.7

2 38.9

+ 59.10

59.17

59.23

9 33.41

9 16.59

8 50.55

0.605
0.705

0.714

23 24 33.37

23 28 29.93

23 32 26.48

Wed.
Thur.
Fri.l.

ir»

1

7

18

1 36 56.8

1 13 14.0

49 30.8

+ 50.27

59.29

59.30

8 42.30
8 24.86
8 7.23

0.722
0.730

0.737

23 36 23.03
23 40 19.58

23 44 16.14

Sat.

SUN.
Mon.

10

20
21

25 47.4

S. 2 4.5

N. 21 37.7

+ 50.30
50.28

59.24

7 49.47

7 31.56

7 13.63

0.743
0.749
0.753

23 48 12.69

23 52 9.24

23 66 6.80

Tues.
Wed.
Thur.

22
23
24

45 18.7

1 8 58.3

1 32 35.9

+ 59.18
59. 1

1

59.02

6 65.41
6 37.21

6 18.93

0.756
0.759
0.762

2.36

3 58.90

7 55.46

Frid.

Sat.

SUN.

2o
2(J

27

156 11.3

2 19 44.0

2 43 13.0

+ 58.92
68.80

58.66

0.61

5 42.26

6 23.»8

0.761
0.765
0.766

Oil 62.01

15 48.56
19 46.12

Mon.
Tues.
Wed.
Thur.

28
29
30
31

3 6.30.9

3 30 2.4

3 5 J 20 8
4 16 34.8

+ 58.51

68.35

68.17

67.98

5 5.51

4 47.16
4 28.84

4 10.59

765
0.763
0.762

0.760

23 41.67
0^7 38.22
31 34.78
36 31.33

Frid. 32 N. 4 39 41.0 + 57.78 3 62.42 0.750 39 27.88

KAV. AND NAUT. ASTB, 11



162 NAVIGATION AND

APRIL, 1898

At Greenwich Apparent Noon

1
a
o
S

o

Q

THE SUN'S
Equation of

Time,
to be

Added to
Dlflf.

5
Apparent
Declination

Diff. for

1 hour
Semi-

diameter

Subtracted

from
Apparent
Time

for

1 hour

Frid.

Sat.

SUN-.

1

2

3

N. 4 39 47.7

5 2 51.5

5 25 49.9

+ 57.77
57.55

57.31

16 2.10

16 1.82

16 1.55

m. s.

3 52.37

3 34.29

3 16.33

0.756
0.751

0.745

Mon.
Tues.
Wed.

4
5
C

5 48 42.5

6 1129.1
6 34 9.3

+ 57.06
56.81

56.54

16 1.28

16 1.01

16 0.73

2 58.52

2 40.86
2 23.39

0.739
0.731

0.723

Thur.
Frid.

Sat.

7

8

9

6 56 42.8

7 19 9.3

7 41 28.4

+ 56.25
55.95

55.64

16 0.46

16 0.18

15 59.90

2 6.14

1 49.09
1 32.30

0.714
0.705

0.694

suy.
Mon.
Tues.

10
11

12

8 3 39.9

8 25 43.4

8 47 38.7

+ 55.31

54.97

54.62

15 59.62

15 59..34

15 59.07

1 15.79

59.56
43.64

0.682
0.069
0.656

Wed.
Thur.

13

14

15

9 9 25.2

9 31 2.8

9 52 31.0

+ 54.25

53.87

53.47

15 58.79

15 58.52

15 58.25

28.06
12.81

0.642

0.628

Frid. 2.08 0.612

Sat.

SUN-.
Mon.

16

17

18

10 13 49.5

10 34 53.

10 55 56.0

+ 53.06
52.64

52.20

15 57.98

15 57.71

15 57.44

16.60

30.71

44.44

0.596
0.580
0.563

Tues.
Wed.
Thur.

19

20
21

1116 4.3.4

11 37 19.6

11 57 44.4

+51.74
51.27

50.79

15 57.18
15 56.92

15 56.66

57.75

1 10.64

123.11

0.546
0.528
0.510

Frid.

Sat.

SUiV.

22
23
24

12 17 57.3

12 37 58.1

12 57 46.4

+ 50.29

49.77
49.24

15 56.40

15 56.15

15 55.90

135.12
1 46.70

1 57.80

0.491

0.472

0.453

Mon.
Tues.
Wed.

25
26
27

13 17 21.8

13 36 44.1

13 55 52.9

+48.70
48.15
47.58

15 55.65
15 55.41

15 55.17

2 8.45

2 18.63

2 28.33

0.434

0.414
0.394

Thur.
Frid.

Sat.

28
29
30

14 14 47.8

14 33 28.7
14 51 55.1

+ 47.00

46.40
45.79

15 54.93
15 54.70

15 54.47

2 .37.53

2 46.24

2 54.44

0.373
0.352

0.331

SUK 31 N. 15 10 6.8 + 45.18 15 54.24 3 2.13 0.310



II,

NAUTICAL ASTRONOMY

APRIL, 1898

At Greenwich Mean Noon
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S

J3

C
C

1

THE SUN'S Equation of

Time
to be

Subtracted

from

Diff.

for

1 hour

Sidereal

Time, or

i Apparent
Declination

Diff. for

1 hour

Rigiit

Ascension
of

1
Added to

Mean Time

OI

Mean Sun

Frid. 1

O 1 -

N. 4 39 44.0 + 57.78
m. s.

3 52.42 0.756
h. m. F.

39 27.88
Sat. 2 5 2 48.1 57.56 3 34.;33 0.751 43 24.44

SUN. 3 5 25 40.8 57.33 3 16.37 0.745 47 20.99

Men. 4 5 48 39.7 + 57.08 2 58.56 0.739 61 17.64
Tues. 6 6 11 26.0 66.82 2 40.89 0.731 55 14.10
Wed. 6 6 34 7.0 56.55 2 23.42 0.723 59 10.66

Tliur. 7 6 56 40.8 + 56.26 2 6.16 0.714 1 3 7.20
Frid. 8 7 19 7.6 55.96 1 49.11 0.705 1 7 3.76
Sat. 9 7 41 27.0 55.65 1 32.32 0.694 1 11 0.31

SUiV. 10 8 3 38.8 + 55.32 1 15.81 0.682 1 14 66.86
Men. 11 8 25 42.5 54.98 59.57 0.669 1 18 53.42
Tues. 12 8 47 38.0 54.63 43.65 0.656 1 22 49.97

Wed. 13 9 9 24.8 +54.26 28.07 0.642 1 26 46.62
Thur. 14

15

9 31 2.6

9 52 31.0

53.88

53.48

12.81 0.628

0.612

1 30 43.08

Frid. 2.08 1 34 39.63

Sat. 16 10 13 49.7 + 53.07 16.60 0.596 1 38 36.19

SUX. 17 10 3158.4 52.64 30.72 0.580 1 42 32.74
Men. 18 10 55 56.7 52.20 44.45 0.563 1 46 29.30

Tues. 19 11 16 44.2 + 51.75 57.76 0.646 1 60 26.86

Wed. 20 1137 20.6 51.28 1 10.65 (».528 1 64 22.40

Thur. 21 11 57 45.5 50.79 1 23.12 0.510 1 68 18.96

Frid. 22 12 17 58.6 + 50.29 1 35.13 0.491 2 2 15.61

Sat. 23 12 37 59.6 4«.78 1 46.71 0.472 2 6 12.07

s[/y. 24 12 57 48.0 49.25 1 67.82 0.453 2 10 8.62

Mon. 25 13 17 23.6 +48.71 2 8.47 0.434 2 14 6.18

Tups. 2rt 13 36 46.0 48.15 2 18.65 0.414 2 18 1.73

Wed. 27 13 55 54.9 47.58 2 28.35 0.394 2 21 68.29

Thur. 28 14 14 49.9 + 47.00 2 37.55 0.373 2 26 64.84

Frid. 29 14 33 30.9 46.41 2 46.26 0.362 2 29 61.40

Sat. 30- 14 51 57.4 45.80 2 54.46 0.331 2 33 47.96

SUN. 31 N. 15 10 9.1 + 45.18 3 2.15 0.310 2 37 44.61



164 NAVIGATION AND

MAY, 1898

At Greenwich Apparent Noon

1
a
o

o

a

THE SUN'S Equation of

Time,
to be

Subtracted

from
Apparent Time

DiflF.

for

Ihouro

1

Apparent
Declination

Diff. for

1 hour
Semi-

diameter

sun:
Mon.
Tues.

1

2

3

N. 15 10 6.8

15 28 3.4

15 45 44.7

+ 45.18
44.55

43.90

15 54.24

15 54.01

15 53.78

m. s.

3 2.13

3 9.29

3 15.93

0.310
0.288

0.265

Wed.
Thur.
Frid.

4

5

6

16 3 10.4

16 20 20.2

16 37 13.7

+ 43.24
42.57

41.89

15 53.55
15 53.32

15 53.10

3 22.03

3 27.56
3 32.54

0.242
0.219
0.195

Sat.

sun:
Mon.

7

8
9

16 53 50.8

17 10 11.0

17 26 14.2

+ 41.19
40.48

39.77

15 52.87

15 52.65

15 52.43

3 36.94

3 40.78

3 44.03

0.172
0.148

0.124

Tues.
Wed.
Thur.

10

11

12

17 42 0.0

17 57 28.2

18 12 38.3

+ 39.04

38.30
37.55

15 52.21

15 51.99

15 51.78

3 46.70
3 48.78

3 50.26

0.099

0.075
0.050

Frid.

Sat.

sun:

13

14

15

18 27 30.2

18 42 3.6

18 56 18.1

+36.78
36.00

35.21

15 51.57

15 51.37

15 51.16

3 51.16

3 51.46

3 51.15

0.025
0.000

0.025

Mon.
'J'ues.

Wed.

16

17

18

19 10 13.4

19 23 49.4

19 37 5.6

+ 34.41

33.59
32.76

15 50.96

15 50.76

15 50.57

3 50.28
3 48.82

3 46.79

0.049
0.073
0.096

Thur.
Frid.

Sat.

19

20
21

19 50 1.8

20 2 37.8

20 14 53.2

+ 31.92

31.07

30.21

15 50.38
15 50.20

15 50.02

3 44.19
3 41.05

3 37.34

0.120
0.143

0.165

SUN.
Mon.
Tues.

22
23
24

20 26 47.9
20 38 21 5

20 49 33.8

+ 29.34

28.46

27.57

15 49.85
15 49.68
15 49.52

3 33.12
3 28.38

3 23.12

0.187

0.208
0.229

Wed.
Thnr.
Frid.

25
2«
27

21 24.7

21 10 53.8

2121 1.0

+ 26.67

25.76
24.84

15 49.36
15 49.20

15 49.05

3 17.37

3 11.16

3 4.48

0.249

0.269
0.288

Sat.

sun:
Mon.
Tues.

28
29
30
31

21 30 46.0

21 40 8.6

21 49 8.8

21 57 46.2

+23.91
22.98
22.04

21.08

15 48.91

15 48.77

15 48.63
15 48.49

.2 57.34

2 49.77

2 41.77
2 33.36

0.306
0.324

0.342
0.359

Wed. 32 N. 22 6 0.7 + 20.12 15 48.36 2 24.55 0.375



NAUTICAL ASTRONOMY 165

II MAY, 1898

At Greenwich Mean Noon

1

1

pi

THE SUN'S Equation of

Time,
to be

Added
to

Mean Time

Dlff.

fur

1 hour

Sidereal

Time, or

1
'5

1

Apparent
Declination

Dlff. for

1 hour

Klght

Ascension
of

Mean Sun

SUN.
Mon.
Tues.

1

2

3

o • »

N. 15 10 9.1

15 28 5.8

15 45 47.1

+45.18
44.54

43.89

m. 8.

3 2.15

3 9.31

3 15.94

0.310
0.288

0^265

h. in. B.

2 37 44.51
2 41 41.06
2 45 37.02

Wed.
Thur.
Frid.

4
6
6

16 3 12.8

16 20 22.6

16 37 16.2

+43.24
42.57

41.89

3 22.04

3 27.57

3 32.55

0.242
0.219
0.196

2 49.34.18

2 53 20.73
2 57 27.29

Sat.

SUN.
Mon.

7

8

9

16 53 53.3

17 10 13.5

17 26 16.7

+ 41.20
40.49

39.77

3 36.95
3 40.79
3 44.04

0.172

0.148
0.124

3 1 23.84
3 5 20.40
3 9 10.96

Tues.
Wed.
Thur. 12

17 42 2.5

17 57 30.6

18 12 40.8

+39.04
38.30
37.54

3 46.71

3 48.79
3 50.26

0.099
0.075

0.050

3 13 13.51

3 17 10.07

3 21 6.02

Frid.

Sat.

SUN

13
14

15

18 27 32.6

18 42 6.9

18 66 20.4

+36.77
35.99
35.20

3 51.16

3 51.46

3 61.15

0.025
0.000
0.025

3 25 .3.18

3 v8 69.74

3 32 60.29

Mon.
Tues.
Wed.

16

17

18

19 10 15.7

19 23 51.6

19 37 7.7

+34.40
33.59

32.76

3 50.28

3 48.81

3 46.78

0.049
0.073

0.096

3 36 f2.85
3 40 49.40
3 44 45.96

Thur.
Frid.

Sat.

19

20
21

19 60 3.8

20 2 39.7

20 14 55.1

+31.92
31.07

30.21

3 44.18
3 41.04

3 37.33

0.120
0.143
0.165

3 48 42.62
3 62 39.08
3 C6 35.03

SUN.
Mon.
Tues.

22
23
24

20 26 49.6

20 38 23.2

20 49 35.4

+ 29.34
28.46

27.56

3 33.11

3 28.37

3 23.11

0.187
0.208
0.229

4 0.32.19

4 4 28.75
4 8 25.30

Wed.
Thur.
Frid.

25
20
27

21 26.2

21 10 65.2

21 21 2.3

^ 26.66
25.75
24.83

3 17.36

3 11.14

3 4.46

0.249
0.269
0.288

4 12 21.86

4 16 18.42

4 20 14.98

Sat.

SUN.
Mon.
Tues.

28
29
30
31

21 30 47.2

21 40 9.8

2149 9.8

21 67 47.1

+ 23.91

22.98

22.03

21.08

2 57.32

2 49.76
2 41.75
2 33.34

0.306
0..324

0.342

0.359

4 24 11.53

4 28 8.09

4 32 4.05

4 36 1.21

Wed. 32 N. 22 6 1.6 + 20.1^ 2 24.63 0.375 4 39 67.76
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At Greenwich Apparent Noon

z 1

o

THE SUN'S
Equation of

Time,
to be

Subtracted

from

Diff.

for

1 hour
1

Apparent
Declination

Diff. for

1 tiour

Semi-

diameter

O

1
Added to

Apparent
Time

Wed.
Thur.
Frid.

1

2

3

N. 22 6 0.7

22 13 52.2

22 21 20.4

+ 20.12
19.16

18.19

15 48.36

15 48.23
15 48.11

m. 8.

2 24.55
2 15.36

2 5.80

0.375
0.390
0.405

Sat.

SUN.
Mou.

4
5

6

22 28 25.3

22 35 e.6

22 41 24.3

+ 17.21

16.23

15.24

15 47.98
15 47.86

15 47.74

1 55.87

1 45.59

1 35.00

0.420
0.435

0.448

Tiies.

Wed.
Thur.

7

8
9

22 47 18.1

22 52 48.0

22 57 53.8

+ 14.24

13.24

12.24

15.47.62

15 47.51

15 47.40

1 24.09

1 12.88

1 1.39

0.461

0.473
0.485

Frid.

Sat.

SUN.

10

11

12

23 2 35.3

23 6 52.6

23 10 45.5

+ 11.23

10.21

9.19

15 47.29
15 47.19

15 47.09

49.62

37.63

25.41

0.495
0.504

0.513

Men.
Tues.

18

14

15

23 14 13.8

23 17 17.6

23 19 56.7

+ 8.17

7.14

6.11

15 47.00

15 46.91

15 46.82

12.98

0.38

0.521

0.528

Wed. 12.37 0.534

Thur.
Frid.

Sat.

16

17

18

23 22 11.0

23 24 0.6

23 25 25.4

+ 5.08

4.05

3.02

15 46.74

15 46.67

15 46.60

25.26
38.25

51.29

0.538
0.542

0.545

SUN.
Mon.
Tues.

19

20
21

23 26 25.4

23 27 0.6

23 27 10.9

+ 1.99

+ 0.95
- 0.09

15 46.54
15 46.48

15 46.43

1 4.39
1 17.50

1 30.61

0.546
0.546
0.545

Wed.
Thur.
Frid.

22
23
24

23 26 56.4

23 20 17.1

23 25 13.0

- 1.12

2.16

3.19

15 46.39
15 46.35
15 46.31

1 43.68

1 56.68

2 9.59

0.543
0.540
0.535

Sat.

SUN
Mon.

25
26
27

23 23 44.2

23 21 50.8

23 19 32.7

- 4.22

5.24

6.26

15 46.28
15 46.26
15 46.24

2 22.37

2 35.02

2 47.49

0.530
0.524
0.516

Tues.
Wed.
Thur.

28
29
30

23 16 50.1

23 13 43.0

23 10 11.6

- 7.28

8.30
9.32

15 46.22

15 46.21

15 46.20

2 59.80

3 11.87

3 23.72

0.507
0.498

0.488

Frid. 31 N. 23 6 15.9 -10.32 15 46.19 3 35.32 0.478
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At Greenwich Mean Noon
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1 I

1
o

1

THE SUN'S Equation of

Time,
to he

Added to

Diff.

for

1 hour

. Sidereal

Time, or

•s

Apparent
Declination

Diff. for

Ihour

Kight

1"

Subtracted

from

Mean Time

of

Mean Sun

Wed.
Thur.
Frid.

1

2

3

o • »

N. 22 6 1.6

22 18 5:^.0

22 21 21.1

+ 20.12
19.16

18.19

m. 9.

2 24.68
2 15.;m

2 5.78

0.875
0.390
0.405

h. m. n.

4 39 57.76
4 48 54.82

4 47 50.88

Sat.

SUN.
Mon.

4

5

6

22 28 25.9

22 35. 7.1

22 41 24.7

+ 17.21

10.22

15.23

1 55.86

1 45.58
1 34.99

0.420
0.485
0.448

4 51 47.44
4 55 48.99
4 69 40.56

Tues.
Wed.
Thur.

7

8
9

22 47 18.4

22 52 48.2

22 57 54.0

+ 14.24

18.24

12.28

1 24.08

1 12.87

1 1.38

0.461

0.473
0.485

6 3 37.11

6 7 38.67

5 1180.23

Frid.

Sat
SUN.

10

11

12

23 2 35.5

23 6 52.7

23 10 45.6

+ 11.22
10.21

9.19

49.61

37.62
25.40

0.495
0.504
0.513

5 15 26.78
6 19 28.-84

6 23 19.90

Mon.
Tues.

18

14

15

28 14 18.9

23 17 17.6

23 19 56.7

+ 8.17

7.14

6.11

12.98

0.88

0.521

0.528

0.534

5 27 16.46

5 31 13.02

Wed. U 12.37 5 85 9.58

Thur.
Frid.

Sat.

16

17

18

23 22 11.0

23 24 0.6

23 25 25.4

+ 5.08

4.05

3.02

25.26

88.24

51.28

0.688
0.642

0.546

6 39 6.13

5 43 2.69

6 46 69.26

SUN.
Mon.
Tues.

19
20
21

23 26 25.4

23 27 0.6

23 27 10.9

+ 1.98

+ OM
- 0.09

1 4.38

1 17.49

130.60

0.646
0.546
0.646

6 60 56.81

5 64 52.37

6 58 48.92

Wed.
Thur.
Frid.

22
28
24

23 26 66.4

28 26 17.2

28 25 13.1

- 1.12

2.15

3.18

1 48.66

1 66.66

2 9.57

0.643
0.640

0.636

6 2 45.48
6 6 42.04

6 10 38.60

Sat.

SUN.
Mon.

25
26
27

28 28 44.4

23 21 51.0

23 19 33.0

- 4.21

6.24

6.26

2 22.35

2 35.00
2 47.47

0.580
0.624
0.616

6 14 86.16
6 18 31.72

6 22 28.28

Tues.
Wed.
Thur.

28
29
80

28 16 50.5

28 13 43.5

23 10 12.1

- 7.28

8.80

9.31

2 59.77

3 11.84

3 23.69

0.607

0.498
0.488

6 26 24.8:}

6 80 21.89

6 34 17.95

Frid. 31 N. 23 16.6 -10.32 3 35.29 0.478 6 38 14.51
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FIXED STARS, 1898

Mean Places for the Beginning of 1898

Name of Star
Mag-
nitude

Right

Ascension

Annual
Variation

Declination
Annual
Variation

a Ursse Min.
{Polaris)

2
h. m. s.

1 21 43.70 + 24'832
O ' II

+ 88 45 49.1 + 18.79

a Tauri
{Aldebaran)

4 30 4.02 3.438 + 16 18 15.0 + 7.48

a Aurigae

(Capella)
5 9 9.19 4.426 +45 53 38.7 + 3.98

P Orion is

(Rigel)

6 9 38.13 2.882 - 8 19 10.5 + 4.36

a Orion is

ivar.)

5 49 38.96 3.247 + 7 23 16.6 + 0.91

a Can is Maj.

iSirius)

6 40 39.21 2.644 -16 34 34.6 - 4.74

a Canis Min.
{Procyon)

7 33 57.77 3.143 + 5 29 10.7 - 9.03

/S Geminorum
(Pollux)

7 39 4.53 3.678 + 28 16 20.9 - 8.46

a Leon is

(Begulus)
10 2 56.43 3.200 + 12 27 66.5 -17.49

a Virginis

(Spica)
1319 49.10 3.155 -10 37 44.5 -18.89

a Bootis

(^Arcturus)

14 11 0.53 2.735 + 19 42 48.1 -18.86

a Scorpii

(Antares)
16 23 9.13 3.672 -26 12 20.5 - 8.26

aLyrsB
(Vega)

18 33 29.12 2.031 + 38 41 18.8 + 3.19

a Aquilae

(Altair)
19 45 48.41 2.927 + 8 35 56.7 + 9.30
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Table for Finding the Latitude by an Observed Altitcdb of
Polaris

Reduce the observed altitude of Polaris to the true altitude.

Reduce the recorded time of observation to the local sidereal time.

less than 1 h. 21.8 m., subtract it from 1 h.

21.8 n).
;

between 1 h. 21.8 m. and 13 h. 21.8 m., sub-

tract 1 h. 21.8 m. from it;

greater than 13 h. 21.8 m., subtract it from

25 h. 21.8 m.
;

and the remainder is the hour angle of Polaris.

With this hour angle, take out the correction from Table (next page),

and add it to or subtract it from the true altitude, according to its sign.

The result is the approximate latitude of the place.

Example. — 1898, Oct. 1, at 10 h. 40 m. 30 s. p.m., mean solar time,

in longitude 29° east of Greenwich, suppose the true altitude of Polaris

to be 43° 20' ; required the latitude of the place.

h. ID. 8.

Local astronomical mean time 10 40 30

Reduction for 10 h. 40. m. 30 s +1 45

Greenwich sidereal time for mean noon, Oct. 1 . . 12 40 58

Reduction for longitude ( = 1 h. 56 m. east, or minus), — 19

Sum (having regard to signs) is equal to local sidereal

time 23 22 54

h. tn. 8.

25 21 48

23 22 54Subtract sidereal time

Remainder is equal to hour angle of Polaris . . 1 58 54

True altitude + 43 20

Correction from table (next page), -14
Approximate latitude . . . -}- 42 16
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Text-Books in Trigonometry

CROCKETT'S ELEMENTS OF PLANE AND SPHERICAL
TRIGONOMETRY AND TABLES. By C. W. Crockett,

Professor of Mathematics and Astronomy in Rensselaer

Polytechnic Institute $1.25

ELEMENTS CF TRIGONOMETRY—without Tables . . 1.00

LOGARITHMIC AND TRIGONOMETRIC TABLES . . 1.00

In this work the treatment of the subject is adapted to the need^ of

beginners while it is at the same time sufficient to meet the requirements
of advanced technical institutions and colleges.

So far as possible each article of the text is supplemented by
examples showing its applications, and a large number of practical

problems, with appropriate diagrams, is introduced to give interest to

the study and to show its value. Many of these are problems in

Surveying and applications of Spherical Trigonometry to Geode.sy and
Astronomy. In addition to the analytical proofs, used throughout the

book, geometrical proofs are employed in many cases to assist the

student to a clearer understanding of the subject.

The Logarithmic and Trigonometric Tables are printed on tinted

paper from large, clear, differentiated type to facilitate their use.

PHILLIPS AND STRONG'S ELEMENTS OF PLANE AND
SPHERICALTRIGONOMETRY AND TABLES. By Andrew
W. Phillips, Professor of Mathematics, and Wendell M.

Strong, Tutor in Mathematics, Yale University . . $1.40

ELEMENTS OF TRIGONOMETRY—without Tables . 90 cents

LOGARITHMIC AND TRIGONOMETRIC TABLES. . . $1.00

KEY TO PLANE AND SPHERICAL GEOMETRY . . . 1 25

The aim in this work has been to place the essentials of the subject

before the student in a simple and lucid form, giving especial emphasis
to the things which are of the most importance. Some of its noteworthy
features are:—graphic solution of spherical triangles; logical combination
of the ratio and line methods; simplicity and directness of treatment; use

of photo-engravings of models in the Spherical Trigonometry ; emphasis
given to the formulas essential to the solution of triangles and other

essential points ; carefully selected exercises given at frequent intervals

and a large number of miscellaneous exercises given in a separate

chapter, etc.

'I'he Tables include, besides the ordinary five-place tables, a complete
set of four-place tables, a table of Naperian logarithms, tables of the

exponential and hyperbolic functions, a table of constants, etc.

Copies of these books will be sent, prepaid^ on receipt of the price,

American Book Company
New York Cincinnati Chicago

(70)



The Cornell Mathematical Series

LUCIEN AUGUSTUS WAIT, General Editor,

Senior Professor of Mathematics in Cornell University.

AN ELEMENTARY COURSE IN ANALYTIC GEOMETRY
By J. H. Tanner, B.S., Assistant Professor of Mathematics,

Cornell University, and Joseph Allen, A.M., Instructor

in Mathematics in The College of the City of New York.

Cloth, i2mo, 400 pages $2 00

ELEMENTS OF THE DIFFERENTIAL CALCULUS
By James McMahon, A.M., Assistant Professor of Mathe-

matics, Cornell University, and Virgil Snyder, Ph.D.,

Instructor in Mathematics, Cornell University.

Cloth, i2mo, 336 pages 2.00

AN ELEMENTARY COURSE IN THE INTEGRAL CALCULUS
By Daniel Alexander Murray, Ph.D., Instructor in

Mathematics in Cornell University, Author of " Introductory

Course in Differential Equations." Cloth, i2mo, 302 pages 2.00

The Cornell Mathematical Series is designed pri-

marily to meet the needs of students in the various

departments of Mathematics in Cornell University and

other institutions in which the object and extent of

work are similar. Accordingly, many practical problems

in illustration of fundamental principles play an impor-

tant part in each book. While it has been the aim to

present each subject in a simple manner, yet thorough-

ness and rigor of treatment have been regarded as more

important than mere simplicity ; and thus it is hoped

that the series will be acceptable to general students,

and at the same time useful as an introduction to a more

advanced course for those who may wish to specialize

later in Mathematics.

Copies of these books will be sent, prepaid, on receipt of the price,

American Book Company
New York • Cincinnati • Chicago

(75)



Text-Books on Surveying

RAYMOND'S PLANE SURVEYING

By William G. Raymond, C.E., Member American Society

of Civil Engineers ; Professor of Geodesy, Road Engineer-

ing, and Topographical Drawing in Rensselaer Polytechnic

Institute $3,00

This work has been prepared as a manual for the

study and practice of surveying. The long experience of

the author as a teacher in a leading technical school and

as a practicing engineer has enabled him to make the

subject clear and comprehensible for the student and

young practitioner. It is in every respect a book of

modern methods, logical in its arrangement, concise in its

statements, and definite in its directions. In addition to

the matter usual to a full treatment of Land, Topograph-

ical, Hydrographical, and Mine Surveying, particular

attention is given to system in office work, to labor-saving

devices, the planimeter, slide rule, diagrams, etc., to co-

ordinate methods, and to clearing up the practical diffi-

culties encountered by the young surveyor. An appendix

gives a large number of original problems and illustrative

examples.
, ,

Other Text-Books on Surveying

DAVIES'S ELEMENTS OF SURVEYING (Van Amrlnge) . . $1 75

ROBINSON'S SURVEYING AND NAVIGATION (Root) . . 1.60

SCHUYLER'S SURVEYING AND NAVIGATION.... 1.20

Copies will be sent^ prepaid^ to any address on receipt of the price.

American Book Company

New York Cincinnati Chicago

(76)
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