

W. B. STOREY, Jr.

ENGINEERING LIBRARY

OF

WILLIAM B. STOREY

THE COLLEGE OF MECHANICS CLASS OF 1881

PRESENTED TO THE UNIVERSITY

OFFICERS & DIRECTORS

hes

TK4660 W52

OFFICERS

S. A. MEGEATH President

W. E. SYMONS Assistant to President

D. H. WILSON, Jr. Vice-President

L. G. SHORTHOUSE Secretary and Treasurer

22

DIRECTORS

GENERAL CHARLES MILLER

S. A. MEGEATH

D. H. WILSON, Jr.

HEN it was proposed to cross the Atlantic Ocean with a ship propelled by steam, the greatest English engineer and scientist at that time ridiculed the idea and said

it would be quite as feasible to make a trip to the moon (distance 238,840 miles), while men of prominence in the engineering profession, both in England and America, looked upon the early efforts of our pioneer marine engineers, Robert Fulton and John Fitch, as being the product of unsound minds.

For ages it was thought welding could only be accomplished by the traditional *Blacksmith*, with *Forge*, *Anvil* and *Hammer*. But in this, as in many other of the arts and sciences, there has been great strides in recent years.

Electricity is now doing for man what steam has done in the past eighty or one hundred years.

The railways spent last year for maintenance of way and equipment the

Stupendous Sum of \$951,416,485.00

Just how much of this could have been saved by the use of a first-class Electric Welding System we do not know. We do know, however, that the saving in *One Year* will more than pay for an equipment in service.

In the following pages may be found details of an Electric Welding System and Specially Prepared Metals, together with examples of possible economies from its use, that should be of interest alike to the *Workman*, *Official* or *Shareholder*.

CONTENTS

Why this Book is Published
Development of Wilson System
Superiority of Equipment and Metals
Half-tone Cuts, Blue-prints and Charts 10–20
Specifications of Equipment
Portable Equipments
Size, Weight and Use of Electrodes and Schedule of
Equipment
Floor Plans and Weights
Table of Economies and Half-tone Cuts of Repairs Made 41-46
Physical Tests of Welded Plate
Economy in Operation
A Lesson in Preparedness
Useful Information, Wiring Formula, Tables, etc
How We Have Been Received
Statistical Blank Forms
General Index

W.B. Starey

PRESENTED TO

.....

OFFICIAL TITLE ...

WITH COMPLIMENTS OF

Wilson Welder and Metals Company Incorporated

DEVELOPMENT OF THIS SYSTEM

THE Wilson System of Electric Welding was developed on a large trunk line railroad. Some years ago this road was among the first to introduce electric welding, which proved to be very economical, especially when making quick repairs. Its adoption, however, soon developed the fact that while the most expert operators secured fairly good results on some classes of work this was the exception rather than the rule. Consequently there were many failures, due to defective welds, that bore evidence of damage from excessive heat. As these conditions became more serious the railroad officers, after satisfying themselves that the heat *could not be properly controlled* by any of the electric welding systems on the market at that time, resolved to develop a Welding System that would control the heat, and eliminate the personal equation as much as possible.

After consulting various electrical engineers regarding the design and construction of a machine that would control the heat of the arc, with little or no encouragement, the problem was assigned to the Railway Company's Chief Electrical Engineer to work out.

After a long period of scientific research and experimental work a machine was produced that could be regulated at any predetermined heat and hold that heat constant (within approximately 6%) as long as the arc was maintained. In comparison with other machines then in use on the line, it was found that welds made under the same identical conditions by this machine showed far greater tensile strength and ductility. This System was then given more than one year's test on all kinds of railway maintenance work, after which able critics endorsed it as the most advanced state of the art, both as to *Economy in Operation* and *High Character of Product*.

The Wilson System

ITS SCOPE OF WORK AND POINTS OF SUPERIORITY

HE Wilson System of Electric Welding is the latest and most scientific system now on the market. Machinery from small details to massive parts is readily repaired at small cost. Cast steel, cast iron, wrought iron, brass, copper, and in fact any weldable metal, can be welded with this System.

In comparison with other systems on the market the Wilson System uses from 33 to 50% of the power required for the same operation. Also, a very material saving in labor is effected, due to the fact that the control of the energy is placed conveniently for the operator, which eliminates the necessity of having to go back and forth between the work and control board.

This is the only device which enables any number of welders to work from one large machine without one welder interfering with the work of another. The power is located at one point, where it can have proper supervision, and it can be distributed to convenient points throughout the shop, which is preferable to having a number of individual motor sets, with the consequent greater cost of operation and maintenance.

Attention is drawn to the fact that welding with the Wilson System is uniform. This superiority over other systems is due to the fact that the heat is controlled at the point of application of the metal. In welding there is a critical temperature at which steel can be worked to give the greatest tensile strength, and also ductility of metal. By raising the heat 15 or 20 amperes above this critical amperage a fracture of the weld will show segregation of carbon and slag pockets, which, of course, weakens the weld. If the amperage is decreased from the critical temperature, a fracture of the weld will show that the metal has been deposited in globules, with many voids, which proves that the weld has been made with insufficient heat. This shows that with a fluctuating amperage or voltage, it is impossible to obtain the uniformly high grade welds made by the Wilson System.

From the foregoing may be formed a general idea as to the efficiency of the Wilson System as applied to restoring broken and damaged parts of all kinds of *Machinery* and *Boilers* without regard to their form, weight, original condition or use—a field, by the way, differing widely from its value in *Manufacturing Lines*.

Specially Prepared Welding Metals

I N the earlier application of Electric Welding, attention was directed solely to developing the machines employed in the operation, and very little to the welding metal used, or how it should be used, with the result that many welds failed, due to the change in characteristics of the metal resulting from the effect of heat from the electric arc.

The Wilson System of Welding not only controls fluctuations of the heat at the arc, but also provides metals that are not adversely affected by the heat of the arc. Our specially prepared welding metal is in the form of an electrode and is composed of a homogeneous alloy combined with such excess of manganese as will compensate for losses while passing through the electric arc, thus insuring a substantial amount of manganese in the welded joint which is essential to its toughness.

We also have a manganese copper alloy welding metal electrode which is composed of iron homogeneously combined with such an excess of manganese and copper over the amount lost in the arc as will insure to the welded joint a substantially additional degree of toughness and ductility. With no other system of welding can these metals be used. Therefore, such merit as they possess is only available to those who use our equipment and metals, whose interest in the advanced state of the art we stand committed to serve. We have developed each of these metals to the highest point of efficiency through the services of some of the best metallurgists in the United States, and to insure their proper composition and uniformity, the mills maintain complete records and analysis of each heat.

These metals are patented for the joint protection of our customers and ourselves. For details see page 35.

Welding Tool or Electrode Holder with Distant Control Switch

Direct Current

Starter

No-Voltage

Release

Polyphase

Starter

No-Voltage

Release

PHOTOGRAPHS OF EQUIPMENT

AND

SPECIFICATIONS

OF

DESIGN, CONSTRUCTION AND MATERIAL

WILL BE FOUND IN PAGES 10 TO 40 INCLUSIVE

Four Arc, or 600 Ampere Capacity, Motor-Generator Set Direct Current

Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder

Wilson Welder and Metals Company Incorporated

52 Vanderbilt Avenue, New York City

CATALOGUE OF PARTS

OF

WELDING GENERATORS AND MOTORS

GENERAL DIRECTIONS FOR ORDERING REPAIR PARTS

- Always give the machine number as stamped on the name plate 1. and state whether the machine is a generator or a motor.
- 2. Give both name and number of part wanted.
- Shunt Field Coils and Series Field Coils are shipped fully insulated 3. and ready for assembly in machine.
- Armature coils for both motor and generator of 1, 2 and 4-arc sets 4. are shipped fully insulated. For 6 and 8-arc sets, separate slot boxes are used and should be separately ordered.

DIRECT CURRENT MOTORS AND GENERATORS List of Parts by Number and Name

- Field Ring. 1
- $\mathbf{2}$ Bearing Bracket.
- 3 Bearing Bracket Bolt.
- 4 Winding Guard.
- Winding Guard Bolt. $\mathbf{5}$
- 6 Bearing Bushing.
- Oil Ring. 7
- Oil Hole Cover. 8
- 9 Oil Gauge.
- Commutation Pole. 10
- Commutation Pole Bolt. 11
- 12 Pole Piece.
- Pole Piece Bolt. 13
- 14 Shunt Field Coil.
- 15 Series Field Coil.
- Commutation Pole Coil. 16
- **Commutation Pole Insulating** 17 Washers.
- 18 sulation.
- 19 Brush.
- Brush Yoke. 20
- 21 Brush Yoke Set Screw.

- Brush Holder. 22
- 23 Brush Holder Spring.
- 24 Brush Holder Insulating Washer.
- 25Brush Holder Insulating Bushing.
- 26
- Commutator. Commutator "V" Ring. 27
- 28 Commutator Shell, Back Part.
- 29 Commutator Shell, Front Part.
- Commutator Shell Nut. 30
- 31 Armature Coil.
- Armature Core. 32
- 33 Armature Clamping Plate.
- 34 Armature Shaft.
- 35 Ventilating Fan.
- 36 Base.
- Holding Down Bolts. 37
- 38 Terminal Block.
- 39 Armature Binding Wire.
- Commutator Cross Connec-40 tions.
- 41 Armature Slot Boxes.

INDUCTION MOTORS

- Stator Frame and Core. 101
- 102 Stator Coil.
- Stator Slot Wedge. 103
- Rotor Core. 104

- Rotor Bar. 105
- 106Rotor End Ring.
- 107 Rotor Shaft Key.
 - Stator Slot Box. 108

- Commutation Pole Core In-

SPECIFICATIONS FOR

Electric Arc Welding Motor-Generator Sets

CONSISTING OF

Direct Current, Compound, Interpole Generators and Squirrel Cage, Polyphase, Induction Motors

GENERAL-The machines are designed and built with special reference to the intermittent character of the load to be carried and will be so adjusted as to operate with fixed brushes at any load from no-load to maximum, and will not show any tendency to flash when maximum is suddenly removed.

The entire magnetic circuit of the generator is constructed of thin sheet steel plates, castings being used only for mechanical and not for magnetic purposes, thus providing an extremely quick recovery coefficient and permitting the operation of more than one welding circuit from the generator without interference.

The commutation will be sparkless under all conditions and changes of load within the rating of the machine and the set will operate without undue noise or vibration.

		AIA			
Rated Capacity of Generator in Welding Arcs	1	2	4	6	8
Rated Capacity of Generator in Amperes	150	300	- 600	900	1200
Rated Capacity of Motor in Horse Power	71/2	15	30	45	60
Full Load Speed	1750	1150	1150	1150	1150
Number of Poles on Motor	4	6	6	6	6
Number of Poles on Generator	4	4	4	4	4
Number of Interpoles	4	4	4	4	4
Voltage of Motor	220 or 440	220 or 440	220 or 440	220 or 440	220 or 440
Voltage of Generator	35	35	35	35	35
Temperature Rise-Duty Cycle	50°C	50°C	$50^{\circ}\mathrm{C}$	$50^{\circ}\mathrm{C}$	$50^{\circ}C$
Overall Efficiencies at Full Load					
$\frac{3}{4}$ Load					
$\frac{1}{2}$ Load					
$\frac{1}{4}$ Load					
Power Factor at Full Load					
Length of Set in Inches	4215/16	$57\frac{1}{2}$	$66^{1/2}$	745/8	827/16
Width of Set in Inches	14	181/4	213/4	28	28
Weight of Set in Pounds	1000	1600	2200	4100	4300

ELECTRIC WELDING MOTOR-GENERATOR SET

CONSTRUCTION—This Motor-Generator Set will consist of a Squirrel Cage Induction Motor and 35-Volt, Direct Current, Compound Wound, Interpole Generator, mounted on a heavy cast iron subbase and provided with self-oiling bearings lined with hard genuine babbitt.

The rotors of both machines being mounted on a single shaft of high carbon steel supported on two, three or four bearings, the bearing housing of the set will be of the demountable type so as to permit the easy removal of the rotors.

Compensators equipped with a No-Voltage release will be furnished with each set.

Machines will be of the protected type and in strict accordance with the Standardization Rules of the A I E E—Class "A" insulation being used throughout, with the exception of the commutator, which will be mica insulated.

INDUCTION MOTOR

STATOR—The stator core will be built of punchings of thin sheet steel of high magnetic quality, each sheet being varnished to reduce the core losses. The core will be rigidly held and supported by two heavy cast iron clamping rings which form the frame of the stator—all bolts holding these clamping rings together being outside of the magnetic circuit.

The windings will be of form wound coils, treated with insulating compound, taped, varnished and baked. The slots of the winding of the Six and Eight Arc Machines will be lined with insulating material of the best quality suitable for the purpose—form pressed coils being used in the smaller size machines. The windings will be securely held in place by wedges driven in between the tips of the core teeth and the terminals of the winding will be brought out so that connection to the power lines may be easily made, connectors being supplied for this purpose.

Neat and substantial guards will be bolted to the frame to protect both ends of the windings from mechanical injury.

ROTOR—The rotor core will be built of punchings of thin sheet steel of high magnetic quality, each sheet being varnished to reduce core losses. The core will be securely keyed direct to the shaft between clamp plates to prevent the bending of the end sheets. The rotor conductors will be placed in partly closed insulated slots, and securely riveted and soldered at both ends to short-circuiting rings.

VENTILATION—The periphery of the stator will be entirely exposed to the air and where necessary ducts will be provided in both the rotor and stator cores, permitting the most perfect ventilation through cores and windings.

DIRECT CURRENT GENERATOR

FIELD—The field will be of the ring type, constructed of laminated steel—no castings being included in the magnetic circuit. The pole pieces, also built of laminated steel, will be belted in place and will be so arranged that any field coil and its core may be easily removed. The field coils will be form wound, without metal spools, and thoroughly insulated.

Interpoles—one for each main pole on the machine—will be used for the purpose of securing improved commutation and fixed brushes.

ARMATURE—The armature will be of the slotted drum type, having a core of thin sheet steel of high magnetic quality—each sheet being varnished to reduce core losses. The winding will be of formed coils or rectangular bars, thoroughly insulated and securely held in place by wedges driven into grooves between the tips of the teeth, or by mica insulated band wires, and when necessary by binding wire over the outer ends of the coils.

The commutator will be built of hard drawn copper bars, thoroughly insulated with mica and rigidly held in place by heavy clamping rings.

BRUSH HOLDER—The brush holders will be of radial type, fitted with carbon brushes. These holders have no sliding contacts which carry current and the brushes are easily removable from the machine.

VENTILATION—Care will be taken to provide ample ventilation and where necessary, air ducts will be left in the cores so that free circulation through the cores and windings is obtained. A fan will also be mounted integral with the armature, providing axial ventilation.

WORKMANSHIP AND MATERIAL

The Wilson Welder and Metals Company, Inc., guarantees that all material and workmanship employed under this specification shall be strictly first class of their respective kinds and for the purposes used.

GUARANTEE

The Wilson Welder and Metals Company, Inc., guarantees that Motor-Generator Sets built under this specification shall be strictly first class in every respect both mechanically and electrically, and if after installation any part of the machine discloses weakness or unsuitability for the work for which it is intended on account of defective *design, material* or *workmanship*, then, and in that event the Wilson Welder and Metals Company, Inc., will make this good without expense to the purchaser any time inside of one year from date of installation and trial test, provided the entire equipment is operated in accordance with our instructions and advice.

	Signed
	Wilson Welder and Metals Company, Inc.
	Signed
	Purchaser
	Approved
	Wilson Welder and Metals Company, Inc.
	ApprovedPurchaser
Executed	191 .

SPECIFICATIONS FOR

Electric Arc Welding Motor-Generator Sets

CONSISTING OF

Direct Current, Compound, Interpole Generators and Interpole, Direct Current Motors

GENERAL—The machines are designed and built with special reference to the intermittent character of the load to be carried and will be so adjusted as to operate with fixed brushes at any load from no-load to maximum, and will not show any tendency to flash when maximum load is suddenly removed.

The entire magnetic circuit of the generator is constructed of thin sheet steel plates, castings being used only for mechanical and not for magnetic purposes, thus providing an extremely quick recovery coefficient and permitting the operation of more than one welding circuit from the generator without interference.

The commutation will be sparkless under all conditions and changes of load within the rating of the machine and the set will operate without undue noise or vibration.

Rated Capacity of Generator in Welding Arcs	1	2	4	6	8
Rated Capacity of Generator in Amperes	150	300	600	900	1200
Rated Capacity of Motor in Horse Power	$7\frac{1}{2}$	15	30	45	60
Full Load Speed	1720	1200	1200	1200	1200
Number of Poles on Motor.	4	4	4	4	4
Number of Poles on Generator	4	4	4	4	4
Number of Interpoles	4	4	4	4	4
Voltage of Motor	230	230	230	230	230
Voltage of Generator	35	35	35	35	35
Temperature Rise—Duty Cycle	$50^{\circ}\mathrm{C}$	$50^{\circ}\mathrm{C}$	$50^{\circ}\mathrm{C}$	50°C	50°C
Overall Efficiencies at					
Full Load					
$\frac{3}{4}$ Load					
$\frac{1}{2}$ Load					
$\frac{1}{4}$ Load					
Length of Set in Inches	$49\frac{1}{8}$	$65\frac{1}{2}$	$77\frac{1}{2}$	$79\frac{1}{8}$	88
Width of Set in Inches	14	$18\frac{1}{4}$	213/4	28	28
Weight of Set in Pounds	1100	1750	2600	4200	4450

DATA

CONSTRUCTION—The Motor-Generator Sets will consist of an Interpole, Direct Current Motor and 35-Volt, Direct Current Compound Wound, Interpole Generator, mounted on a heavy cast iron subbase and provided with self-oiling bearings lined with hard genuine babbitt.

The rotors of both machines being mounted on a single shaft of high carbon steel supported on two, three or four bearings, the bearing housings of the set will be of the demountable type so as to permit the easy removal of the rotors.

Compensators equipped with a No-Voltage release will be furnished with each set.

Machines will be of the protected type and in strict accordance with the Standardization Rules of the A I E E—Class "A" insulation being used throughout, with the exception of the commutators, which will be mica insulated.

DIRECT CURRENT GENERATOR AND MOTOR

FIELD—The fields will be of the ring type, constructed of laminated steel. The pole pieces, also built of laminated steel, will be belted in place and will be so arranged that any field coil and its core may be easily removable. The field coils will be form wound, without metal spools, and thoroughly insulated.

Both machines will be furnished with interpoles—one for each main pole on the machines—for the purpose of securing improved commutation and fixed brushes.

ARMATURE—The armatures will be of the slotted drum type, having a core of thin sheet steel of high magnetic quality—each sheet being varnished to reduce core losses. The winding will be of formed coils or rectangular bars thoroughly insulated and securely held in place by wedges driven into grooves between the tips of the teeth, or by mica insulated band wires, and when necessary by binding wire over the outer ends of the coils.

The commutators will be built of hard drum copper bars, thoroughly insulated with mica and rigidly held in place by heavy clamping rings.

BRUSH HOLDER—The brush holders will be of radial type, fitted with carbon brushes. These holders have no sliding contacts which carry current and the brushes are easily removable from the machine.

VENTILATION—Care will be taken to provide ample ventilation and where necessary, air ducts will be left in the cores so that free circulation through the cores and windings is obtained. An exhaust fan will be mounted integral with each armature providing axial ventilation.

WORKMANSHIP AND MATERIAL

The Wilson Welder and Metals Company, Inc., guarantees that all material and workmanship employed under this specification shall be strictly first class in every respect, and as a part of this specification, both physical and chemical tests of material used is appended.

GUARANTEE

The Wilson Welder and Metals Company, Inc., guarantees that Motor Generator Sets built under this specification shall be strictly first class in every respect both mechanically and electrically, and if after installation any part of the machine discloses weakness or unsuitability for the work for which it is intended on account of defective *design*, *material* or *workmanship*, then, and in that event, the manufacturers make this good without expense to the purchaser any time inside of one year from date of installation and trial test.

	Signed
	Wilson Welder and Metals Company, Inc.
	Signed
	Purchaser
	Approved
	Wilson Welder and Metals Company, Inc.
	Approved
Executed	

Constant Current Control Panel for Welding and Cutting

GENERAL DESCRIPTION—The general function of this panel is to maintain a constant flow of current between the welding tool and the material operated on, regardless of variations in the resistance of the welding circuit, due to varying lengths of arc, or other causes.

The current regulator is to consist of a carbon pile held under compression by one or more helical springs, the pull of which is opposed by a solenoid through which the current to be regulated is passed. A suitable air dash pot is to be connected to the solenoid plunger to prevent all "hunting" or chattering, due to the tendency of the plunger and connected parts to travel beyond the desired point.

The pressure of the springs is to be transmitted to the carbon discs or plates through a lever, and the springs are to be mounted on a carriage in such a manner that the point at which they act upon the lever may be changed, thereby increasing or decreasing the leverage. The position of the control solenoid with regard to the lever is to be fixed. The movement of the spring carriage described above is to be produced by a small electric motor, so wired that it may be controlled by two push buttons located at the welding tool, or near enough to the welding tool so that the welding operator can use them without changing his position.

The panel is also provided with a reactance coil of a size sufficient to materially assist the operator in maintaining an arc with a graphite pencil when the panel is used for "cutting" or burning away metal in preparing for the welding process, or other purposes.

An ammeter is provided to indicate the amount of current used in the welding process, and a double throw switch of 200 amperes capacity, for use in changing from the welding circuit to the cutting circuit.

EQUIPMENT—The equipment consists of:

- '1 Slate panel $30'' \ge 40'' \ge 1\frac{1}{2}''$ thick, mounting.
- 1 Current regulator complete with carbon pile, control solenoid, pressure springs, dash pot, carriage for moving pressure springs, and control motor to produce the change in the position of the springs when desired.
- 1 200 Ampere Ammeter.
- 1 Reactance coil of 200 amperes capacity.
- 1 200 ampere, 250 volt, double pole, double throw knife switch with fuse connections and fuses mounted on front of the board.
- 1 Electric Vehicle Association Standard 50 Ampere Type "N" Charging Receptacle.
- 1 Hand tool.
- 1 Control switch.
- 1 50 Ampere Electric Vehicle Association Standard Type "N" Plug.
- 1 150 Ampere Electric Vehicle Association Standard Type "N" Plug.

WIRING—The panel will be completely wired, in accordance with the attached blueprint.

All wiring and all material used in making the connection conform strictly to the "National Electrical Code."

REGULATION—While the welding operator maintains an arc between his welding tool and the work, the control panel must maintain the current constant within five per cent. (5%) of the mean value, regardless of the actual value of current that is flowing, provided the flow is between the limits of 80 and 175 Amperes.

RANGE OF CONTROL — The range of current is from 80 to 175 amperes.

The value of current is under the control of the welding operator wherever he may be working.

CARBON PILE—The discs or plates of the carbon pile are composed of clear homogeneous carbon, with parallel faces, and to be of uniform size and thickness.

CARBON PILE MOUNTING—The rods which support the carbon discs, and those which serve as guides on the sides of the pile, are to be covered with an insulation material presenting a smooth no-abrasive surface to the carbon discs.

SOLENOID—The control solenoid is to be insulated both between turns and between the coil and the supporting frame with asbestos insulations, or such a heat resisting insulation as will positively prevent

the coil from becoming inoperative, due to such heat as may be generated in it under the most severe conditions encountered in the use of the panel.

CONTROL MOTOR—The motor for controlling the position of the spring carriage is to be a series wound motor so wired that its entire motion in either direction may be controlled by two push buttons located at a distance.

LIMITED SWITCHES—Suitable automatic control switches, which will stop the motor, are to be provided to prevent the spring carriage from travelling too far in either direction.

WORKMANSHIP AND MATERIAL

The Wilson Welder and Metals Company, Inc., guarantees that all material and workmanship employed under this specification shall be strictly first class of their respective kinds and for the purpose used.

GUARANTEE

The Wilson Welder and Metals Company, Inc., guarantees that the Motor-Generator Sets and welding and cutting panels built under this specification shall be strictly first class in every respect both mechanically and electrically, and if after installation any part of the machine discloses weakness or unsuitability for the work for which it is intended on account of defective *design*, *material* or *workmanship*, then, and in that event, the Wilson Welder and Metals Company, Inc., will make this good without expense to the purchaser any time inside of one year from date of installation and trial test, provided the entire equipment is operated in accordance with our instructions and advice.

Signed Wilson Welder and Metals Company, Inc.
Signed
Purchaser
4
Approved
Wilson Welder and Metals Company, Inc.
Approved
Purchaser

Portable Equipments POWER AND HAND MOVED FIELD TYPE

HIS equipment is mounted on a heavy motor truck chassis with a high power internal combustion engine, which is suitable for use where it is necessary to move an equipment from place to place with its own power.

The design is considered a desirable one for the Government in connection with troop trains or Commissary Department, when at points away from railway lines. It would also be suitable around mining plants, and in connection with steamship and industrial work in cities where it is necessary to have a portable equipment.

The design is shown on page 37 and is fully described in specification, pages 33-34. This equipment complete would weigh about 8000 pounds, which includes two welding panels with a generator of sufficient capacity to supply them, and the usual amount of accessories, such as: tools, extra welding metals, etc.

HAND MOVED-SHOP TYPE

For use in railway shops, industrial concerns, or on shipboard, where it is desirable to move a welding outfit from point to point, either with a view of having the equipment more flexible, or for the purpose of favoring certain wiring plans, we have prepared a portable Shop Type equipment, shown on page 38. As will be observed from the drawing this equipment can be moved by hand from point to point, either in a shop or on board ship. The weight of the truck is about 700 pounds, and with a two-arc motor-generator set, two welding panels, and the usual amount of wiring, tools, etc., the total weight would be about 3500 pounds.

Our specifications and guarantees on pages 21 to 30 inclusive cover the welding equipment contemplated in connection with both portable sets.

THE LAST WORD IN ELECTRIC WELDING

Both in the foregoing and following pages we endeavor to present the essential facts with respect to our Electric Welding System and trust we have fully covered the ground.

The development of the Wilson System as outlined herein, represents years of research and experimental work both as to design and construction of machines, composition of metals and methods of use. We have not discontinued our efforts in any of these directions and shall not, for it is our intention to retain

THE LEADERSHIP

IN THE

ELECTRIC WELDING FIELD

We are prepared to not only furnish the very latest and best Electric Welding System on the market, but stand committed to a solution of such problems as may arise in the progress of the art, and to this end we not only solicit inquiries from ALL our patrons and friends, but extend to them our services in any matter pertaining to the

ELECTRIC WELDING ART
SPECIFICATIONS FOR

Two Ton Worm Drive Chassis, Portable Welding Outfit

"FIELD TYPE"

MOTOR-4 cylinder-4 cycle-25.6 H. P. A. L. A. M. 4 x 5 inches. Unit Power Plant. Sealed governor. Only three (3) motor gears; camshaft gear, crankshaft gear and gear for driving water pump and magneto. Water jacketed inlet manifold. Twinned exhaust manifold.

Inclosed valves oiled by breathers. Pistons removable through bottom crankcase.

Three-inch diameter crank-shaft bearings. Connecting rods $12\frac{1}{2}$ inches long.

IGNITION—High tension magneto.

LUBRICATION—Oil fed by mechanically driven pump.

FUEL CONSUMPTION—Under ordinary conditions, will travel 9 to 10 miles per gallon of gasoline. Tank holds 20 gallons. Uses approximately 1 gallon of lubricating oil for every 180 miles.

RADIATOR—"Honeycomb" type. Special mounting to withstand vibration due to solid tires. Water circulation by gear-driven pump. Belt-driven fan, mounted on roller bearings. Eccentric belt tightener.

SPEED (MAXIMUM)—High, 16 miles per hour; medium, 9.11 miles per hour; low, 4.77 miles per hour; reverse, 3.68 miles per hour.

TRANSMISSION—Integral with motor. Three speeds. Gears of best alloy nickel steel. Run on "Timken" bearings.

DIFFERENTIAL—Is in the rear axle, and is of the accepted bevel gear type. Gears are nickel steel, specially heat-treated.

CONTROL—Very simple and efficient. Emergency brake and gear shift lever on power plant in center of truck, allowing driver to manipulate them easily with right hand, while driving truck with left. CLUTCH—"Dry plate" type, six (6) plates lined on both sides with friction material, operating against six (6) plain plates. Very successful type, requiring no attention; been used four years.

BRAKES—Internal and external brake on brake drums 16³/₄ inches in diameter. The foot brake is on the outside; the emergency brake on the inside.

STEERING—Steering gear is on the left-hand side of truck; "worm, wheel and shaft" type, the final thrust to the drag link being through a special forging on a squared shaft which can be tightened.

SPRINGS—Semi-elliptic: front and rear. Front springs: 40 inches by 2½ inches—8 leaves. Rear springs: 48 inches by 3 inches—11 leaves.

AXLES—Front axle drop forged I-beam. Hubs fitted with "Timken" bearings, complete.

Rear axle—Final drive through a "worm and gear" rear axle. Full floating, wheel and spring load being taken on the casing entirely, only the drive being on the shafts which are attached to the hub of the wheel on the outside. Worm and wheel are of special composition of the well-known "David Brown" type. The drive is taken through springs, in this way, when starting under heavy load new surfaces are presented on the worm and wheel, giving the drive a flexibility, which may be compared to the action of couplers on a railroad train. The mountings of the worm and worm wheel are "Timken" bearings; the wheel bearings are also "Timken."

WHEELS—Front: Spokes 2 inches, fitted with solid rubber tires 36 inches by 4 inches single. Rear: Spokes $2\frac{1}{2}$ inches, fitted with solid rubber tires 36 inches by 4 inches dual.

WHEELBASE—144 inches and 162 inches— $58\frac{1}{2}$ inches tread. Long wheel base will turn in 29-foot radius; short wheel base will turn in 25-foot radius.

FRAME—Special pressed steel channel section of ample proportions made very strong and rigid by cross members.

FENDERS—Sheet steel.

DUST PAN—Is also sheet steel, extending from radiator to rear of transmission, completely housing all working parts.

EQUIPMENT—Open metal seat, sliding sidedoors, horn, lamps, spare parts, bumper, etc.

(INTERNATIONAL MOTOR COMPANY'S TRUCK DESIGN)

WELDING METALS

Our specially prepared metal electrodes are, unless otherwise ordered, Gage 9. 5-32, .1483 on list below.

	Si	zes of Wi	re	Weight	
FULL SIZES OF PLAIN WIRE	Steel Wire Gage No.	Com- mon Frac- tions	Deci- mally	One Mile Pounds	Pounds Per Foot
	1	9-32	. 2830 . 28125	$1128.0 \\ 1114.0$.2136 ′.211
	2	1-4	.2625 .250	$\begin{array}{c} 970.4\\880.2 \end{array}$.1838 .1667
	3		. 2437	836.4	. 1584
•	4	7-32	.2253 .21875	$714.8 \\ 673.9$.1354 .1 27 6
	5		. 2070	603.4	.1143
	6	3-16	. 1920 . 1875	$519.2 \\ 495.1$. 0983 . 0937
	7		. 1770	441.2	.0835
	8	5-32	.1620 .15625	369.6 343.8	.070 .0651
	9		.1403	309.1 are m	.0000
	10	1–8	.1350	230.7 220.0	.0480
	11		1055	156.7	.0296
	12	3–32	.09375	123.8 117.9	.0234
	14		.0800	90.13	.0170
•	15		.0720	73.01	.0138
•	16	1-16	.0625	55.0	.0104
	17		.0540	41.07	.0077
	18		.0475	31.77	.006
	19		.0410	23.67	.0044
•	20		.0348	17.05	.0032
					1

(FROM AMERICAN STEEL AND WIRE COMPANY)

We furnish the following grades:

Grade No.	Purpose Used	Tensile Strength of Welds
6	Boilers	
8	Can be Machined	40,000
9	Engine Frames, etc.	to
17	Filling Castings, etc.	60,000
20	Bronze Alloy Bells, etc.	Pounds

These metals unless otherwise arranged for, are of Gage 9, approximately 5-32 inch diameter and are shipped in coils of about 160 pounds weight. When customers order electrodes cut, straightened and boxed, or of dimensions less than .148, an extra charge is made.

No Fluxes are used with our metals.

A Complete Electric Welding Equipment of the Wilson System Consists of the Following

Included in Welder Company's Schedule of Equipment Furnished

Not Included in Welder Company's Schedule of Equipment, but Should be Provided by Purchaser Motor Generator Set.

Starting Box. Oil-immersed. No-voltage release.

Control Panel for each arc of capacity, with Angle Iron Supports and Bolts for fastening.

Ammeter on each Panel.

Plugs for attaching welding and control leads to Panel.

Electrode holder for each Panel.

One push button control to each holder. About ten feet of flexible welding cable.

Operator's Helmets or Shields. Extra piece of colored glass. Steel Brushes.

Supply of welding metals of different grades.

We furnish welding equipments of the following size and capacity:

CAPA	CITY			
Arc or Operators	Amperes	Voltage (Fixed)	Number of Panels	Prices Furnished on
1 2 4 6 8	150 300 600 900 1200	35 35 35 35 35 35	1 2 4 6 8	Request Correspondence Solicited

PATENTS

The Wilson System of Electric Welding and Specially Prepared Welding Metals is protected by United States and Foreign Patents.

222

42

123

2600

*58 88

Ò

4 ARC 6-3

43

17 6

27%

17 # 213

Results Obtained from the Use of the Wilson System

۰.

Having reviewed the development of the Wilson System of Electric Welding and Special Metals, with photographs, drawings and specifications of the equipment in the preceding pages, we now invite your attention to certain results obtained from their use both in the matter of *High Character of Finished Product* and *Economy of Operation*.

No.	Examples of Character of Work Involved and Saving Effected	Cost	Amount Saving	See Page
1	Reclamation of Pneumatic Hammer Handle	\$.76	\$3.16	42
2	Car Repair Yards and Maintenance of Way Dept.			
	Saving on three jacks	.44	3.26	43
3	Reclamation of Locomotive Bell (Bronze)	2,60	7.50	44
4	Walking Beam of Circulating Pump, U. S. S. S.			
	"Drayton"	2.25	17.50	44
5	Building up Flat Spots on Locomotive Drivers	2.00	200.00	46
6	Reclamation of Locomotive Cylinder	63.48	401.27	45
7	Saving in Expensive Tool Steels (1000 Tools)	1.360	7,360.00	42
8	Reclamation of Freight Car Knuckles. (Per year)	4.897	26,000.00	43
9	Union of Various Sections of Steel, Wrought and		,	
	Cast Iron	Samples	Samples	43
10	Variety of Operations possible at one and the same time	Multiple	Unit	46
		1		

The foregoing represent only a few of the hundreds of operations that are being daily performed by the Wilson Welder which result in great economy, both in the items of initial cost and increased earning power of equipment, due to reduced dead time while undergoing repairs.

On the next following pages will be found photographic reproductions of some of the operations mentioned.

No.1 Reclamation of Pneumatic Hammer Handle

No. 2 Cutting Tools Ready for Welding Points

No. 3 Cutting Tool Points Welded on

No. 4 Cutting Tools Ready for Use Cuts 2, 3 and 4 show the application of high grade cutting points to low carbon tools

10

Boiler Plate Welds that Never Break

Samples of Welded Cast Iron and Steel, Wrought Iron and Boiler Plate

Reclamation of Track and Shop Jacks Cost - - \$.44 Saving - \$3.26

Reclamation of Freight Car Knuckles on a Trunk Line. The saving in one year on this item alone was more than \$20,000.00.

Fractured Steam Chest and Cylinder

Repairs being made with Wilson Electric Welder

1

Damaged Parts Restored Good as New Cost, \$63.48

Saving, \$401.27

Reclamation of Fractured Cylinder and Steam Chest on Modern Pacific Type Locomotive

Building up Flat Spots on Locomotive Drivers.

Cost \$2.00; Saving \$200.00

Variety of operations at one and the same time. Four operators welding four different metals, each with a different amperage from a single Generator at the same time and without interfering with each other.

Physical Tests of Electrically Welded Joints

Wilson Electric Welding has been subjected to the severest kinds of tests. Among these are included heat treatment, vibratory tests, tortional and twisting strains of all kinds, crushing tests, tensile strength tests, etc.

The figures shown in following tables were obtained by taking a piece of rectangular boiler plate 18 by 20 inches, of known minimum tensile strength, cutting through center the long way and welding with the grade of welding wire suitable for this purpose. These plates were then cut into test pieces one and one-half inches wide and tested in the regular way in a physical testing machine.

The results shown below are the average of many hundred tests made by this company to determine the proper quality of welding wire to use for this purpose.

Test	CURRENT		AREA		Breaking	Tensile	% Elonga-
No.	Volts	Amps	Plate	Weld	Load	Strength per Sq. In. Weld	tion in 2 In.
1	35	95	. 532	. 532	28140	52900	6.25
2	35	95	.544	. 544	28250	52000	4.25
3	35	95	.546	. 546	30450	55800	7.80
4	35	95	. 558	. 558	31070	55700	7.80
5	35	95	. 555	. 555	31200	56200	6.25
6	35	95	. 566	. 566	31000	54800	6.25
7	35	95	. 578	. 578	32100	55000	6.25
8	35	95	. 585	. 585	33050	56500	7.80
9 -	35	95	. 585	. 585	30300	51800	6.25
10	35	95	. 602	. 602	30630	50900	6.25
11	35	95	. 589	. 589	32000	54300	7.80
12	35	95	. 540	. 540	31640	58600	7.80
Average	35	95	. 565	. 565	30820	54500	6.90

NOTE:-Above test pieces planed flush with sheet.

Test	CURRENT		AREA		Breaking	Tensile	% Elonga-	
No.	Volts	Amps.	Plate	Weld	Load	Strength per Sq. In. Weld	2 In.	
1	35	80	.630	.630	32490	52800	6.25	
2	35	80	. 615	.615	34000	53300	6.25	
3	35	80	. 637	.637	33200	53800	6.25	
4	35	80	.616	.616	35320	57200	6.25	
5	35	80	. 617	.617	35610	57800	9.38	
6	35	80	.616	.616	34650	52200	9.38	
7	35	80	. 622	. 622	35370	56800	7.80	
8	35	80	. 665	. 665	35230	53300	6.25	
9	35	80	. 638	. 638	35530	55600	9.38	
10	35	80	. 630	. 630	33890	53700	7.80	
11	35	80 .	. 621	. 621	34210	55100	9.38	
Average	35	80	. 628	. 628	34500	54700	7.67	

NOTE:-Above test pieces had weld planed flush with plate; test Nos. 5, 7, 8 and 9 broke outside of weld.

Test	CURRENT		AREA		Breaking	Tensile Strength per	% Elonga-	
No.	Volts	Amps.	Plate	Weld	Load	Sq. In. Weld	2 In.	
1	35	100	.517	.517	30700	59300	9.38	
2	35	100	.548	.548	30600	56000	9.38	
3	35	100	. 555	. 555	30900	55700	7.80	
4	35	100	. 556	. 556	30600	55000	9.38	
5	35	100	. 552	. 552	29000	52500	7.80	
6	35	100	.579	. 579	29200	50400	7.80	
7	35	100	.569	. 569	40000	56500	7.80	
8	35	100	. 579	.579	40000	55400	7.80	
9	35	100	. 576	.576	40200	55200	7.80	
Average	35	100	. 562	.562	35100	55200	8.53	

NOTE:-Test	piece	No. 3	B bro	ke outsid	e of	weld.
------------	-------	-------	-------	-----------	------	-------

Test	CURRENT		AREA		Breaking	Tensile Strength per	% Elonga- tion in	
No.	Volts	Amps.	Plate	Weld	Load	Load Sq. In. Weld		
1	35	90	. 610	. 610	31360	51400	7.80	
2	35	90	. 615	. 615	34840	56600	9.38	
3	35	90	. 599	. 599	34640	57800	9.38	
4	35	90	. 604	. 604	35090	58000	9.38	
5	35	90	. 611	. 611	33810	55300	10.90	
6	35	90	. 622	. 622	32680	52600	6.25	
7	35	90	. 592	. 592	33840	57200	9.38	
8	35	90	. 602	. 602	34770	57600	9.38	
9	35	90	. 598	. 598	33620	56100	7.80	
10	35	90 -	. 592	. 592	33010	55900	7.80	
11	35	90	. 585	. 585	32830	56100	10.90	
Average	35	90	. 603	. 603	33680	55800	8.94	

NOTE:—Above test pieces had weld planed flush with plate; test Nos. 2, 4, 5, 8 and 9 broke outside weld.

12

Tost	CURI	REŅT	AREA		Breaking	Tensile Strength per	% Elonga-
No.	Volts	Amps.	Plate	Weld	Load	Sq. In. Weld	2 In.
1	35	80	. 538	. 538	31540	58600	10.90
2	35	80	.545	. 545	29500	54200	10.90
3	35	80	.605	. 605	33000	54600	10.90
4	35	80	.615	.615	34440	56000	9.38
5	35	80	.584	.584	33640	57500	9.38
6	35	80	. 589	. 589	34600	58700	9.38
7	35	80	. 590	. 590	33800	57300	9.38
8	35	80	.595	. 595	33600	56500	10.90
9	35	80	.488	.488	27800	57000	9.38
verage	35	80	. 572	. 572	32400	56700	10.00

NOTE:-In above tests, Nos. 1, 3, 4 and 6 broke outside of weld.

Test	CURRENT		AREA		Breaking	Tensile Strength per	% Elonga- tion in
No.	Volts	Amps.	Plate	Weld	Load	Sq. In. Weld	2 In.
1	35	80	. 612	. 612	36100	59000	9.37
2	35	80	.585	. 585	33300	56900	6.25
3	35	80	. 605	. 605	36000	59500	7.81
4	35	80	. 589	. 589	35600	60400	7.81
5	35	80	. 605	. 605	35100	58000	7.81
6	35	80	. 598	. 598	35700	59700	9.37
7	35	80	. 597	. 597	35800	60000	6.25
8	35	80	. 582	. 582	35000	60100	7.81
9	35	80	. 600	. 600	34800	58000	7.81
10	35	80	. 588	. 588	35000	59500	6.25
11	35	80	. 580	. 580	32700	56400	6.25
Average	35	80	. 595	. 595	35000	58900	7.53

NOTE:-Above test pieces all planed down flush with plate; test Nos. 3, 4, 7, 8 and 10 broke outside weld.

The above experiments conducted on standard firebox steel demonstrate that by the use of the Wilson Electric Welding process, practically a 100 per cent. efficient seam is secured.

ECONOMY AND WHAT IT MEANS NS \$3.00 \$1.00 \$2.00 \$4.00 \$ 5.00 AND COS7 \$0.89 2 \$1.34 3 255 \$2.95 4 \$4.10 5

EXPLANATORY NOTES

- No. 1. Wilson type of machine, 35 volts, 90 amperes, positive heat control arc.
- No. 2. Variable voltage constant current machine with no resistance in circuit, 80 volts with no load and 20 to 25 volts with load, 150 amperes.
- No. 3. Constant voltage machine, fixed resistance control of current, 65 volts, 125 to 175 amperes.
- No. 4. Constant voltage machine, fixed resistance control of current, using 75 volts, 125 to 175 amperes.
- No. 5. Constant voltage machine, fixed resistance control of current, using 90 volts, 125 to 175 amperes.

The object of the development of the Wilson System of Electric Welding was primarily to overcome defective welds and secondarily to reduce cost of operation. There are still many machines of the No. 5 type in service.

In a competitive test on a trunk line railroad recently the Wilson System and Metals proved to be superior to others on the following items in welding boiler tubes.

Total amount of metal deposited		.87.22%
Net time per pound of metal applied .		.45.4 %
Kilowatts per pound of metal applied		. 49.35%
Ounces of metal per flue		.72.2 %

This is spelling E C O N O M Y with capital letters.

50

A Lesson in Preparedness

SOME COLD FACTS

THE REVENUES OF OUR RAILWAYS LAST YEAR WERE \$3,030,346,306.00
This money was earned by about 63,000 freight
and passenger locomotives, or an average per
engine per year of
Average per day
THE REVENUE FROM FREIGHT WAS
This was earned by about 34,000 locomotives, or
an average per year of
Average per day
MILEAGE OF FREIGHT LOCOMOTIVES FOR THE YEAR
WAS
(per year 20,449
AVERAGE DUR ENGINE per month 1,704
per day
per hour 2.3
From the foregoing it is clear that the average
return from a freight engine is \$170.00 per day, or
\$7.08 per hour, for 24 hours, while if we assume
they are in service 10 hours of each 24, then the
earning value per hour is
As there are hundreds of freight engines regularly
making more than 3,000 miles per month, or 100
miles per day, then the low average of 1,704 miles
per month and only 50 miles per day is the result
On a contain Trunk line it is estimated the cost to
work flues applied in the old way is about \$54.00
per engine per year while for those electrically
welded, the cost is \$15.00 for welding and nothing
for repairs. Net saving approximately \$39.00
per vear, and on 100 engines
Assuming the number of engine hours lost,
account working flues to be three, and that this
is necessary twice each month, we then have 3 x
$17.08 \times 24 = 1,229.76$ per year for one engine
and on 100 engines, loss of earning power \$122,976.00
Increased Earning
CREDIT ELECTRIC WELDING Power \$122,976.00
Saving in Repairs 3,900.00
Total

On this subject a word to the *Wise* is sufficient. The cost of repairing flues between setting and the loss of earning power of engines due to flue failures can be eliminated by the use of an Electric Welder. No other investment will yield the same returns, but there are many other operations in railway maintenance that will yield to the same treatment and with like results.

USEFUL INFORMATION

WEIGHTS AND MEASURES

LINEAR MEASURE

				In.	Ft.	Yd.	Rd.	Fur.	Mi.
12	Inches	=1	Foot						
3	Feet	=1	Yard	36	3	1			
$5\frac{1}{2}$	Yards	=1	\mathbf{Rod}	198	16.5	5.5	1		
40	Rods	=1	Furlong	7920	660	220	40	1	
8	Furlong	s == 1	\mathbf{Mile}	63360	5280	1760	320	8	1
	Squar	re M	EASURE		С	UBIC M	[easui	ЯЕ	
144	Sa Inc	hes	=1 Sq. Foot	12	728 C1	ibie Inc	hes =	1 Cu.	Ft.
9	Sq. Fee	et.	=1 Sq. Yard		27 C1	ibic Fee	t =	1 Cu.	Yd.
301/	í Sa. Va	rds	=1 Sq. Rod	. 1	28 C1	ibic Fee	et =	1 Cor	d
160	Sa. Ro	ds	=1 Acre		243/4 Cu	ibic Fee	et =	1 Per	ch
640	Sq. Ac	res	=1 Sq. Mile		/1 -				
			1						
	AVOIRD	UPOIS	S WEIGHT			TROY V	VEIGH	г	
437.	Avoird 5 Grain	UPOIS S	s Weight =1 Ounce	24	Grains	Troy V =	VEIGH	r nny We	eight
437. 16	Avoird 5 Grain Ounce	UPOIS S ES	s WEIGHT =1 Ounce =1 Pound	24 21	l Grains) Penny	Troy V = Wt. =	VEIGH = 1 Per = 1 Ou	r nny We nce	eight
$437 \\ 16 \\ 100$	Avoird 5 Grain Ounce Pounce	upois s es ds	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T	24 20 . 19	l Grains) Penny 2 Ounces	Troy V = Wt. = s =	VE1GH = 1 Per = 1 Ou = 1 Pot	r iny We nce ind	eight
$437.16 \\ 100 \\ 20$	Avoird 5 Grain Ounce Poune C. W	upois s es ds . T.	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton	24 20 . 19	Grains Penny Ounces Pound	TROY V = Wt. = s =	VEIGH = 1 Per = 1 Ou = 1 Pou = 5760	r nny We nce und Grains	eight s
437.16 100 20 2240	Avoird 5 Grain Ounce Pounc C. W. Pounc	upois s es ds . T. ds	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To	24 20 . 19	Grains Penny Ounces Pound	TROY V = Wt. = s =	VEIGH = 1 Per = 1 Ou = 1 Pot = 5760	r nny We nce und Grains	eight s
$437, \\16, \\100, \\20, \\2240$	Avoird 5 Grain Ounce Pounce C. W. Pounce	upois s es ds . T. ds	 WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To 	24 20 . 19	4 Grains 0 Penny 2 Ounces 1 Pound	TROY V = Wt. = s =	VEIGH = 1 Per = 1 Ou = 1 Pot = 5760	r nny We nce und Grains	eight s
$\begin{array}{c} 437 \\ 16 \\ 100 \\ 20 \\ 2240 \end{array}$	Avoird 5 Grain Ounce Pounce C. W. Pounce Dry	upois s es ds . T. ds z Me	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To CASURE	24 20 . 15	Grains Penny Ounces Pound L	TROY V = Wt. = s = =	VEIGH = 1 Per = 1 Ou = 1 Pou = 5760 MEASU	r nny We nce und Grains rre	eight s
437. 16 100 20 2240	Avoird 5 Grain Ounce Poune C. W. Poune Dry 2 Pin	upois s ds . T. ds z Me ts	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To CASURE = 1 Quart	24 20 . 19 . 19	Grains Penny Ounces Pound L Gills	TROY V = Wt. = = = HQUID N	VEIGH = 1 Per = 1 Ou = 1 Pou = 5760 MEASU = 1 Pin	r nny We nce ind Grains RE t	eight s
437. 16 100 20 2240	Avoird 5 Grain Ounce Pound C. W. Pound Dry 2 Pin 8 Qua	upois s ds . T. ds z Me ts arts	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To CASURE = 1 Quart = 1 Peck	24 20 . 19 n	Grains Denny Ounces Pound L Gills Pints	TROY V = Wt. = = = HQUID N = = = =	VEIGH = 1 Per = 1 Ou = 1 Pou = 5760 MEASU = 1 Pin = 1 Qua	r nny We nnce ind Grains RE t t	eight s
437. 16 100 20 2240	Avoird 5 Grain Ounce Pound C. W. Pound Dry 2 Pin 8 Qua 4 Peo	UPOIS s ds . T. ds z ME ts arts eks	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To CASURE = 1 Quart = 1 Peck = 1 Bushel	24 20 . 19 . 19	Grains Penny Ounces Pound L Gills Pints Qua:	TROY V = Wt. = s = HQUID N s = rts =	VE1GH = 1 Per = 1 Ou = 1 Por = 5760 MEASU = 1 Pin = 1 Qua = 1 Ga	r nny We nce ind Grains RE t t urt	eight s
437. 16 100 20 2240	Avoird 5 Grain Ounce Pound C. W. Pound Dry 2 Pin 8 Qua 4 Pec 0. 42 Cu.	UPOIS s ds . T. ds z ME ts arts eks . Ins.	S WEIGHT = 1 Ounce = 1 Pound = 1 C. W. T = 1 Ton = 1 Long To CASURE = 1 Quart = 1 Peck = 1 Bushel = 1 Bushel	24 20 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 19	Grains Penny Ounces Pound Gills Fints Qua U ⁴ Qua U ⁴ Gall	TROY V = Wt. = = HQUID M = = s = rts = ons =	VEIGH = 1 Per = 1 Ou = 1 Por = 5760 MEASU = 1 Pin = 1 Qua = 1 Ga = 1 Ban	r nny We nce und Grains RE t t urt Ilon rrel	eight s

ELECTRICAL UNITS

The electrical units are derived from the following mechanical units of the Metric System.

Centimeter—Unit of length. One thousand millionth part of a quadrant of the earth's circumference.

Gramme—Unit of weight. Weight of a cubic centimeter of water at temperature of 4 degrees centigrade. Second—Unit of time. The time of one swing of a pendulum making 86,400 swings in a solar day.

The unit of area is the square centimeter. The unit of volume is the cubic centimeter.

Volt—Unit of electro-motive force: Pressure of potential. Symbol E.

Ohm—Unit of resistance. Symbol R.

Megohm-1,000,000 Ohms.

Ampere-Unit of current. Symbol C.

Ampere-hours—Current in amperes by time in hours.

Watt—Unit of power. Product of 1 volt by 1 ampere. Symbol W. (746 watts equal one horse power).

Horsepower-746 watts = 33,000 lbs. one foot in one minute.

Kilowatts-1,000 watts. Symbol K.W.

Kilowatt-hours—Kilowatts by time in hours = 1.341 H.P. hours.

Farad—Unit of capacity.

Microfarad-One-millionth of a farad. Written M.F.

Coulomb—Unit of quantity. Quantity of current which impelled by one volt would pass through one ohm in one second.

Joule-Unit of work. The work done by one watt in one second.

Mils and Circular Mils—The one-thousandth part of one inch. Written .001 and usually called one mil, is taken as the unit of diameter, from which one square mil would be the unit of area. If you measure the diameter of a round wire in thousandths of an inch, or mils, by means of a micrometer, and multiply this number by itself, *i.e.*, square it, you obtain in square mils the cross sectional area of a square wire having four sides, each the same length as the diameter of the round wire that you have calipered.

Circular Mil-(Usually written C.M.) Applies to all round wires and has a value .7854 times that of the square mil.

Consequently the square of the diameter of any round wire, measured in mils, gives its cross sectional area in circular mils, without any further multiplication.

FORMULA FOR SHOP WIRING

A good formula for wiring circuits for electric equipments will be found at the bottom of wiring table, pages 54-55.

Examples of Wire Calculations

To find the size of wire required to carry 100 Amperes 500 feet with 5 volts drop:

FORMULA A

$$C.M. = \frac{\text{Feet x Amperes x 10.7}}{\text{Volts Drop}}$$

 $C.M. = \frac{500 \text{ x } 100 \text{ x } 10.7}{5} = 107.000 \text{ C.M.}$

Therefore the nearest standard wire required as per tables attached is No. 0 which is a 106.000 C.M.

FORMULA B

To find the volts drop having the distance of 1000 feet No. 0000 B. & S. gauge wire and a current of 100 Amperes.

Volts drop = $\frac{\text{Feet x 10.7 x Amperes}}{\text{C.M.}}$

Volts drop = $\frac{1000 \ge 100 \ge 10.7}{212.000} = 5$

FORMULA C

To find the current in Amperes which a No. 000 gauge wire will carry 500 feet with a 5 volt drop.

 $Amperes = \frac{C.M. \ x \ Volts \ drop}{10.7 \ x \ Feet}$

 $Amperes = \frac{168.000 \text{ x } 5}{10.7 \text{ x } 500} = 157 \text{ Amperes}$

Note.—Above formulas are correct when the return is approximately Zero resistance, such as bonded Railroad tracks, steel frame work, &c. If metallic return is to be used then double the C. M.

	Ohme non					the state of the s		And the second se			
Size of	1000 Feet	Pounds	STANDAR	D CONCENTRIC	C STRANDING	FLEXIBL	E CONCENTRIC	STRANDING	Wall		
Cable C. M.	$25^{\circ} C = 77^{\circ} F$	Peet N	No. of Wiree	Wires in Mile	0. D.	No. of	Wince in Mile	0. D.	Thickness of Insulation	Finish	Diameter
			COTT 11	WILCS III WIIIS.	'SHITAT HI	Saltw	WIFES IN MULE.	ALL MILLS.	HOTODINGUT		
16 500	.654	51.0	7	48.6	146.	19	29.5	147.	564	Tane 1	58
20 800	.519	64.3	7	54.5	164.	19	33.1	166.	3/1	Cotton &	63
26 300	.410	81.0	2	61.2	184.	19	37.2	186.	300	1 Fish Twine	65
33 100	.326	102.	2	68.8	206.	19	41.7	209.	3/0	Braid	67
41 700	. 259	129.	2	77.2	232.	19	46.9	234.	300	57	02
52 600	.205	163.	2	86.7	260.	19	52.6	263	300	22	24
66 400	.162	205.	2	97.4	909	19	50.1	906	322	, e é	01.
83 700	190	958	10	66.4	990	44	1.00	200.	7/32	**	0/.
106 000	100	306	101	H . P L	0000	20	0.14	000.	64		. 83
100 000	201.	020.	AL I	14.0	3/3.	31	53.4	374.	64	;	.87
133 000	1180.	411. *10	6T	83.7	418.	37	60.09	420.	764	55	.92
168 000	.0642	518.	19	94.0	470.	37	67.3	471.	7/64	"	76.
212 000	.0509	653.	19	105.5	528.	37	75.6	533.	7/64	77	1 03
250 000	.0431	772.	37	82.2	575.	61	64.0	576.	4/00	"	11.1
300 000	.0360	926.	37	90.0	630.	61	1 02	631	4/0	17	1 16
350 000	.0308	1080.	37	97.3	681.	61	75 7	689	4	77	1.01.1
400 000	0270	1240.	37	104 0	202	61	81.0	100	47.	W	1.4.1
450 000	0240	1390.	37	110.3	170	E1	0 28	779	782	n	1 90
200 000	0100	1540	97	116.0		10	00.3	110.	732	77	1.30
200 000	0170	1700	10	2. ULL	014.	10	0.08	810. 212.	32	. :	1.35
000 000	0610.	1040	10	90.0	555.	91	7.77	855.	9/64	3	1.42
600 000	0810.	1850.	19	99.2	893.	91	81.2	893.	964	73	1.46
650 000	.0166	2010.	61	103.2	929.	16	84.5	930.	64	11	1.49
200 000	.0154	2160.	61	107.1	964.	16	87.7	965.	964	'n	1.53
750 000	.0144	2320.	61	110.9	998.	91	90.8	. 666	6	77	1 56
800 000	.0135	2470.	61	114.5	1031.	91	93.8	1031.	6	. 13	1.59
850 000	.0127	2620.	61	118.0	1062.	16	96.6	1063	-0- 6-	11	1 63
000 006	.0120	2780.	61	121.5	1093	16	99.4	1094	-04 	n	1 66
950 000	.0114	2930.	61	124.8	1123	16	102.2	1124	1 %	ų	1 60
1 000 000	.0108	3090.	61	128.0	1152.	16	104.8	1153	9/1	11	1 70
1 100 000	.009 81	3400.	91	109.9	1209	127	93 1	1910	204	n	1 80
1 200 000	.008 99	3710.	16	114.8	1263	127	67.9	1264	5/00	'n	1 86
$1 \ 300 \ 000$.008 30	4010.	91	119.5	1315	127	101 2	1315	5/00	n	1 01
1 400 000	02 200.	4320.	91	124.0	1364	19.7	105 0	1365	5/20	17	1 06
1 500 000	.007 19	4630.	16	128.4	1412	19.7	108 7	1419	5%	n	0.01
1 600 000	006 74	4940.	127	112 2	1450	160	07 2	1460	227	"	10.0 0
1 700 000	006 34	5250	197	115 7	1504	160	6 UUL	1 KOA	222	n	60.3 01.0
1 800 000	005 99	5560	197	1 011	164.6	160	0.001	1 240	/32	77	01.5
1 000 000	005 88	5870	104	1.001	1 POD	100	2.001	1,200	32	. 77	2.14
000 000 0	00 00.	0100	121	124.0	.08C1	60T	100.U	.090.	32		2.18
z 000 000 z	82 CUU.	0180.	121	125.5	1631.	169	108.8	1632.	5,32	<i>"</i>	2 23
10.7-Resistance	of one mil foot.	-		Ľ	1. C. 11 .		:		NOTE	:-The formula is	good only where
D-Distance fro	m Generator to J	fanel.		rormu	la tor Using th	e above Wi	ring I able.		the shops	are grounded and	the resistance of
-Load factor	. Use same load	l factor as shown			IU.7 X DXA	= C. M.			the return	is practically nil.	blo the dimension
Welder-Dis	tance-Circular M	ill (Table).			>				ror c mils.	ante return uou	DIE UDE CIFCUIAL

WIRING TABLE

[GHJ	
(0 E)	
NE T	
S, 0]	
NEL	
PA	
ONIC	
VELI	
V U	
SAL	
TOR	
ERA	
GEN	
'OR-(
TOM	
EN	
TWF	
BE	
VIRI	
OF V	
SIZE	
S 5N	
OWL	
) SH(
BLE	
TA	

C

IN NUMBER, AND AT DISTANCES OF ONE HUNDRED FEET TO ONE THOUSAND FEET

INCLUSIVE, EXPRESSED IN CIRCULAR MILLS.

Number of Welders	Load Factor Per Cent.	100′	200'	300′	400'	500'	600′	,00,	800′	900/	1000′
1	100%	33,000	66,000	99,000	132,000	165,000	198,000	231,000	264,000	297,000	330,000
જ	100%	66,000	132,000	198,000	264,000	330,000	396,000	462,000	528,000	594,000	660,000
ŝ	%06	89,100	178,200	267,300	356,400	445,500	534,600	623,700	712,800	801,900	891,000
4	85%	112,200	224,400	336,600	448,800	561,000	673,200	785,400	897,600	1,009,800	1,122,000
ũ	80%	132,000	264,000	396,000	528,000	660,000	792,000	924,000	1,056,000	1,188,000	1,320,000
´9	75%	148,500	297,000	445,500	594,000	742,500	891,000	1,039,500	1,188,000	1,336,500	1,485,000
2	70%	161,700	323,400	485,100	646,800	808,500	970,200	1,131,900	1,293,600	1,455,300	1,617,000
×	70%	184,800	369,600	554,400	739,200	924,000	1,108,800	1,293,600	1,478,400	1,663,200	1,848,000

NOTE-This table is based on ground returns of negligible resistance.

USEFUL INFORMATION

SPECIFIC GRAVITY AND FUSING POINT OF METALS

	Metal	Specific Gravity	Weight per Cubic Foot	Melting Point Fahrenheit	Value per Ton
1	Aluminum	2.67	166.5	1175	\$1,000
2	Antimony	2.76	421.6	1160	852
3	Brass	8.40	523.8	1650	360
4	Bronze	8.85	552	1692	420
5	Cobalt	8.55	533.1	6000	4,000
6	Gold Pure	19.26	1201	1935	41,340
7	Copper	8.85	552	1940	480
8	Iridium	22.38	1396	4280	
9	Iron, Cast—Pig	7.21	450	22 00	19
10	Iron, Wrought—Bars	7.70	480	2900	50
11	Lead	11.38	709.7	620	120
12	Manganese	8	499	6000	120
13	Mercury	13.58	846	38	
14	Nickel	8.8	548.7	2600	900
15	Platinum	21.5	1347	3110	200,000
16	Silver	10.50	655	1800	1,330
17	Steel, O. H	7.85	489	2600	45
18	Tin	7.35	458	449	840
19	Tungsten	17.3	1078.7	5252	
20	Zinc	7	436.5	786	480

SPECIFIC GRAVITY AND WEIGHT PER CUBIC FOOT OF VARIOUS SUBSTANCES

	Substance	Specific Gravity	Wt. per Cu. Ft.	Substance	Specific Gravity	Wt. per Cu. Ft.
$ \begin{array}{c}1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ \end{array} $	Asphalt Brick	1.39 1.79 1.42 2.90 2.00 1.20 4 2.60 1.8 2.2 3.4 .88 2.5	87 112 90 180 135 75 250 165 110 140 210 56 160	21 Lignum Vitae 22 Oak Heart 23 Orange 24 Poplar 25 Pine Yellow 26 Walnut 27 Alcohol 28 Beer, Lager 29 Champagne 30 Honey 31 Human Blood 32 Petroleum 33 Linseed Oil	$\begin{array}{c} 1.333\\ 1.170\\ .705\\ .383\\ .660\\ .671\\ .792\\ 1.034\\ .997\\ 1.450\\ 1.054\\ .825\\ .940 \end{array}$	$\begin{array}{c} 83\\ 73\\ 44\\ 24\\ 41\\ 42\\ 49\\ 64\\ 62\\ 90\\ 65\\ 51\\ 59\\ \end{array}$
14 15 16 17 18 19 20	Magnesia Marble Mica Pitch Plaster Paris Slate Quartz	$\begin{array}{c} 2.4 \\ 2.7 \\ 2.8 \\ 1.15 \\ 1.70 \\ 2.79 \\ 2.64 \end{array}$	150 170 175 72 100 175 165	 34 Olive Oil 35 Whale Oil 36 Tallow, Sheep 37 Water, Dead Sea 38 Water, Distilled	.915 .932 .924 1.240 1.000	57 58 56 77 62

HIGH TEMPERATURES JUDGED BY COLORS

(Kent)

			Co	lo	rs									Centigrade	Fahrenheit
1	Red, visible in dark													400	752
2	Red, visible in twilight													474	885
3	Red, visible in daylight													525	975
4	Red, visible in sunlight													581	1070
5	Dark red													700	1292
6	Cherry red													900	1652
7	Bright cherry-red													1000	1832
8	Orange-red													1100	2012
9	Orange-vellow													1200	2192
10	Yellow-white													1300	2372
11	White welding-heat				÷		÷							1400	2552
12	Brilliant white				÷	÷						j.	Ì	1500	2732
13	Dazzling white (bluish-w	hit	te)				÷				•			1600	2912

VARIOUS TEMPERATURES OF FURNACES

(Reprint from King Optical Co.)

Process	Fahrenheit
Electric Arc	6200
Electric Arc under pressure	6450
Oxy-Hydrogen	3600
Oxy-Acetylene Welding and Cutting	4350
Thermit Welding	4500
Metal at Tuyeres (B. F.'s)	3500
Metal at Tapping	2300-2800
O. H. Furnace Flame	3400 - 3600
Bessemer Converter	3400-3600
Open Hearth in Ladle	2800-2900
Bessemer	2800-2900
Soaking Pits—Low Carbon	2500-2600
Soaking Pits—High Carbon	2200
Gas Heating Furnace	2400-2800
Large Gas Heating Furnace	2900-3200
Heat Units Petroleum, pound	20000
Heat Units Anthracite Coal, pound	15000
Heat Units Bituminous Coal, pound	14500
Heat Units Coke	13500
Heat Units Wood	8000

How We Have Been Received

The Wilson Welder and Metals Company was organized December, 1915, and at that time executed the first order which was for a single arc welder of the belted type. During the first ten (10) months of operation the results have been most flattering, constituting as they do a strong endorsement of the *Wilson System*.

Railway mileage covered by first order60Railway mileage covered by first ten months' orders57,634Mileage Increase57,574 miles

Among our list of customers will be found the largest and best railway systems in America reaching from the *Atlantic* to the *Pacific* and from *Canada* to the *Gulf of Mexico* and to these may be added *The United States Government* and the two largest *Locomotive Works* in the *World*.

THE ABLEST CRITICS HAVE SPOKEN AND WE ACCEPT THEIR VERDICT

										'		
TC.	Miles Per Ton Coal											
ST, E	Lub. per M Miles											
GE, CC	Cost Cents Reprs. Per Mile								4.			
SORIES, MILEA	Total Mileage											
ACCES	Super- heaters											
4	Brick Arch											
	Miles to Fail- ures											
	Miles to Flue Fail- ures											
JES	Flue Fail- ures. ber											
D FLI	Reprs. per Year											
VELDE	Pounds Metal Used											
N D N	Total Feet											
ND H	Cost Cents Per Foot											
RIC AI	Cost Cents Flue											
LECTI	How											
IPARISON OF E	Date Applied											
CON	Size Inches		-									
	No. Flues											
	Eng. No.											

AT	IOHS	S				R. R.			
ITEMS		ELECTR	ICAL			OTHER 1	METHOD		CLASSIFIED
	Labor	Material	Current	Total	Labor	Material	Total	Saving	SAVING
Boilers.									
Machinery									
Cars, Freight									
Cars, Passenger.									
Shon Tools									
Muscellaneous									
GRAND TOTAL									
Approved					Sig	gned.			

Signed

..191

REPORT OF WORK PERFORMED AND ECONOMIES EFFECTED IN THE....

INDEX

Title page 3 Officers and Directors 4 Why This Book is Published 5 Contents 6 Development of Wilson System 7 Superiority of Equipment and Metals 8–9 Photographs of Electrode Holder, A. C. and D. C. Starting boxes with no-voltage release 10 Announcement of Photographs and Specifications 11 Motor-Generator Sets—Four Arc A. C. and D. C. 12 Control Panel with List of Parts 13 Six Panel Installation. American Locomotive Company 14 Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder 15 Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 22 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Officers and Directors 4 Why This Book is Published 5 Contents 6 Development of Wilson System 7 Superiority of Equipment and Metals 8–9 Photographs of Electrode Holder, A. C. and D. C. Starting boxes 10 Announcement of Photographs and Specifications 11 Motor-Generator Sets—Four Arc A. C. and D. C. 12 Control Panel with List of Parts 13 Six Panel Installation. American Locomotive Company 14 Wiring Diagram of Wilson Welding Panel Control Switch, and 15 Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Why This Book is Published5Contents6Development of Wilson System7Superiority of Equipment and Metals8–9Photographs of Electrode Holder, A. C. and D. C. Starting boxes10Announcement of Photographs and Specifications11Motor-Generator Sets—Four Arc A. C. and D. C.12Control Panel with List of Parts13Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generator Four Arc Capacity17Sectional View A. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor-21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22–23
Contents6Development of Wilson System7Superiority of Equipment and Metals8–9Photographs of Electrode Holder, A. C. and D. C. Starting boxes10Announcement of Photographs and Specifications11Motor-Generator Sets—Four Arc A. C. and D. C.12Control Panel with List of Parts.13Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor:21General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor.22Induction Motor—Rotor, Ventilation22–23
Development of Wilson System7Superiority of Equipment and Metals8–9Photographs of Electrode Holder, A. C. and D. C. Starting boxes10Announcement of Photographs and Specifications11Motor-Generator Sets—Four Arc A. C. and D. C.12Control Panel with List of Parts.13Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor:21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor.22Induction Motor—Rotor, Ventilation22–23
Superiority of Equipment and Metals 8–9 Photographs of Electrode Holder, A. C. and D. C. Starting boxes with no-voltage release 10 Announcement of Photographs and Specifications 11 Motor-Generator Sets—Four Arc A. C. and D. C. 12 Control Panel with List of Parts 13 Six Panel Installation. American Locomotive Company 14 Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder 15 Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Photographs of Electrode Holder, A. C. and D. C. Starting boxes with no-voltage release
with no-voltage release10Announcement of Photographs and Specifications11Motor-Generator Sets—Four Arc A. C. and D. C.12Control Panel with List of Parts.13Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor-Generator.21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor.22Induction Motor—Rotor, Ventilation22-23
Announcement of Photographs and Specifications 11 Motor-Generator Sets—Four Arc A. C. and D. C. 12 Control Panel with List of Parts. 13 Six Panel Installation. American Locomotive Company 14 Wiring Diagram of Wilson Welding Panel Control Switch, and 15 Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Motor-Generator Sets—Four Arc A. C. and D. C. 12 Control Panel with List of Parts. 13 Six Panel Installation. American Locomotive Company 14 Wiring Diagram of Wilson Welding Panel Control Switch, and 14 Electrode Holder 15 Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Control Panel with List of Parts.13Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor: General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Six Panel Installation. American Locomotive Company14Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor: General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Wiring Diagram of Wilson Welding Panel Control Switch, and Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor: General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Electrode Holder15Catalogue of Parts of Welding Generators and Motors16Sectional View A. C. Motor-Generator Four Arc Capacity17Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor:20General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Catalogue of Parts of Welding Generators and Motors 16 Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 20 General Design and Technical Data 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22-23
Sectional View A. C. Motor-Generator Four Arc Capacity 17 Sectional View D. C. Motor-Generator Four Arc Capacity 18 Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 20 General Design and Technical Data 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22
Sectional View D. C. Motor-Generator Four Arc Capacity18Power Factor and Overall Efficiency Curves19Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor:20General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Power Factor and Overall Efficiency Curves 19 Electric Welding Cycles (Graphic Chart) 20 Specifications A. C. Motor: 20 General Design and Technical Data 21 Motor-Generator Set—Construction 22 Induction Motor—Stator, Rotor 22 Induction Motor—Rotor, Ventilation 22-23
Electric Welding Cycles (Graphic Chart)20Specifications A. C. Motor:21General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Specifications A. C. Motor:General Design and Technical DataMotor-Generator Set—ConstructionLinduction Motor—Stator, RotorLinduction Motor—Rotor, VentilationLinduction Motor—Rotor, Ventilation
General Design and Technical Data21Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Motor-Generator Set—Construction22Induction Motor—Stator, Rotor22Induction Motor—Rotor, Ventilation22-23
Induction Motor—Stator, Rotor.22Induction Motor—Rotor, Ventilation22-23
Induction Motor—Rotor, Ventilation
Direct Current Generator—Field, Armature, Brush Holder,
Workmanship and Material
Guarantee
Specifications D. C. Motor:
General Design and Technical Data
Motor-Generator Set—Construction
Direct Current Generator and Motor—Field, Armature,
Brush Holder, Ventilation
Workmanship and Material. Guarantee
General Description
Constant Current Control Panel for Welding and Cutting— Equipment, Wiring, Regulation, Range of Control, Carbon Pile, Carbon Pile Mounting, Solenoid
Constant Current Control Panel for Welding and Cutting— Solenoid, Control Motor, Limited Switches
Workmanship and Material. Guarantee
Portable Equipment—General Description

SUBJECT	PAGES
The Last Word in Electric Welding	32
Specifications Portable Welding Outfit (Field Type)	33-34
Welding Metals, Grade Sizes of Plain Wire, Purposes Used and Tensile Strength of Welds	. 35
Complete Electric Welding Equipment of the Wilson System.	
Patents	36
Portable Welding Outfit (Field Type) (Drawing)	37
Portable Welding Outfit (Shop Type) (Drawing)	38
Floor Plan D. CA. C. Motor (1-2-4 Arc Capacity)	39
Floor Plan D. CA. C. Motor (6-8 Arc Capacity).	40
Results Obtained from use of Wilson System (Table)	41
Half-tone Cuts	42 - 46
Reclamation of Pneumatic Hammer Handle and Cutting Tools	42
Boiler Plate Welds, Samples of Welded Cast Iron and Steel and Wrought Iron, Reclamation of Track and Shop Jacks	19
and Freight Car Knuckles	40
of Locomotive Bell	44
Reclamation of Large Locomotive Cylinder	45
Building up Flat Spots on Locomotive Tire Four Operators	10
or Multiple Panel Installation.	46
Physical Tests of Electrically Welded Joints	47 - 49
Economy and What it Means.	50
A Lesson in Preparedness	51
Useful Information	52 - 58
Weights and Measures. Electrical Units	52
Electrical Units. Formula for Shop Wiring.	52 - 53
Examples of Wire Calculations	54
Wiring Table	55
Table showing size of wire between motor-generators and welding panels, one to eight in number, and at distances of one hundred feet to one thousand feet inclusive, ex-	
pressed in circular mills	56
cubic foot of various substances	57
figh temperatures judged by colors, various temperatures of furnaces.	58
How We have been Received	59
Blank Form for Entering Statistical Data with Reference to Elec- tric Welded Flues, Cost, Failures, Engine Mileage, Accesso- rics, etc.	60
Work Porformed and Fannemics Effected Blank	00 61
Index	60 go
	02-03

MEMORANDUM

= 4

J. C. & W. E. Powers Print New York

UNIVERSITY OF CALIFORNIA LIBRARY, BERKELEY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

Books not returned on time are subject to a fine of 50c per volume after the third day overdue, increasing to \$1.00 per volume after the sixth day. Books not in demand may be renewed if application is made before expiration of loan period.

FEE 14 1928

INTERLIBRARY LOAN

AUG 8 - 288

UNIV. OF CALIF., BERK.

50*m*-8,'26

