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"The parent inherits a primal tendency to revert

to the fixed and rooted form, while the child is ' free-

swimming' ; it is the natural explorer. And for ages
we the parents through the teachers have been more
and more successfully trying to train and educate our
' free-swimmers ' into fixed and rooted prisoners ; thus
atrophising or mutilating their discovering and inter-

pretative powers just as onr own were injured at the
same age. Labt Welbt.

" There are several chapters in most arithmetic books
that are wholly unnecessary .... but a writer of a
school-book for elementary schools is not his own
master ; he must comply with the often unwise demand
of teachers and examiners." A. SOHNBNSOHSIN.





PREFACE.

This book is written without the least regard to any demand
but those of children and of life and mental activity generally.

In places where the author is mistaken he cannot plead that

he has been hampered by artificial considerations. His object

in writing it has been solely the earnest hope that the teaching

of this subject may improve and may become lively and

interesting. Dulness and bad teaching are synonymous terms.

A few children are born mentally deficient, but a number are

gradually made so by the efibrts made to train their growing

faculties. A subject may easily be over-taught, or taught too

exclusively and too laboriously. Teaching which is not fresh

and lively is harmful, and in this book it, is intended that the

instruction shall be interesting. Nevertheless a great deal is

purposely left to the enterprise of the student and the living

voice of the teacher, and the examples given for practice are

insufficient. The author has usually found that examples

and illustrations are likely to be most serviceable, and least

dull, when invented from time to time in illustration of the

principles which are then being expounded; but a supple-

mentary collection of exercises for practice is necessary also,

in order to consolidate the knowledge and establish the

principles as an ingrained habit. Wearisome over-practice

and iteration and needlessly long sums should be avoided;

because long sums, other than mechanical money addition,

seldom occur in practice, and especially because many kinds
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of future study, especially the great group of sciences called

Natural Philosophy, will be found to afford plenty of real

arithmetical practice; and even ordinary life affords some,

if an open mind is kept. The cumbrous system of weights

and measures still surviving in this country should not be

made use of to furnish cheap arithmetical exercises of

preposterous intricacy and uselessness. There is too much

of real interest in the world for any such waste of time

and energy.

The mathematical ignorance of the average educated person

has always been complete and shameless, and recently I have

become so impressed with the unedifying character of much of

the arithmetical teaching to which ordinary children are liable

to be exposed that I have ceased to wonder at the widespread

ignorance, and have felt impelled to try and take some step

towards suppljdng a remedy. I know that many teachers

are earnestly aiming at improvement, but they are hampered

by considerations of orthodoxy and by the requirements of

external examinations. If asked to formulate a criticism I

should say that the sums set are often too long and tedious,

the methods too remote from those actually employed by

mathematicians, the treatment altogether too abstract, didac-

tic, and un-experimental, and the subject-matter needlessly

dull and useless and wearisome.

Accordingly, in spite of much else that pressed to be done,

a book on arithmetic forced itself to the front. It is not

exactly a book for children, though I hope that elder children

will take a lively interest in it, but perhaps it may be con-

sidered most conveniently as one contiauous hint to teachers,

given in the form of instruction to youth ; and it is hoped

that teachers will not disdain to use and profit by it, even

though most of them feel that all the facts were quite well

known to them before. It is not intended to instruct them
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in subject-matter, but to assist them in method of presenta-

tion j and in this a good deal of amplification is left to be

done by the teacher. But it is of the first importance that

the teacher's own ideas should be translucently clear, and

that his or her feeling for the subject should be enthusiastic

:

there is no better recipe for effective teaching than these two

ingredients.

For supplementary hints in connexion with the teaching

of very small children, a subject which occupies the first four

chapters, a couple of little books by Mrs. Boole recently pub-

lished by the Clarendon Press may be mentioned; and as a

convenient collection of suitable examples for practice I suggest

a set by Mr. C. 0. Tuckey published by Bell and Sons. For

supplementary information on the higher parts of the work

such a book of reference as Chrystal's Algebra is probably

useful.

The author has to thank Mr. T. J. Garstang, of Bedales

School, Petersfield, Hampshire, and also Mr. Alfred Lodge,

of Charterhouse, late Professor of Pure Mathematics at

Coopers Hill, for reading the proofs and detecting errors

and making suggestions.
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CHAPTEE I.

The very beginnings.

Concerning the early treatment of number for very small

children the author is not competent to dogmatise, but he

oifers a few suggestions, the more willingly inasmuch as he

is informed by teachers that a great deal of harm can be and

often is done by bad teaching at the earliest stages, so that

subsequently a good deal has to be unlearnt. The principle

of evolution should be recollected in dealing with young

children, and the mental attitude of the savage may often be

thought of as elucidating both the strength and the weakness

of their minds.

Counting is clearly the first thing to learn ; it can be

learnt in play and at meals, and it should be learned on

separate objects, not on divided scales or any other con-

tinuous quantity. The objects to be counted should be

such as involve some childish interest, such as fruit or sweets

or counters or nuts or coins. Beans or pebbles will also do,

but they should not be dull in appearance, unattractive as

objects of property, and so not worth counting. The pips

on ordinary playing cards will also serve, and they suggest

a geometrical or regular arrangement as an easy way of

grasping a number at a glance.

Counting should begin with quite small numbers and

should not proceed beyond a dozen for some time, but there
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is no object in stopping or making any break at ten. Several

important facts (the facts only, not their symbolic expression)

can now be realised : such as that 3 + 4 = 7, that 7-4 = 3,

that two threes are 6, and that three twos are the same,

without any formal teaching beyond a judicious question or

two. The lessons, if they can be called lessons, should go

on at home before school age ; but, whether this initial train-

ing is done at school or elsewhere, formal teaching at this

stage should be eschewed, since it necessarily consists largely

in coercing the children to arrive at some fixed notion which

the teacher has preconceived in his mind—a matter usually

of small importance. . The children should form their own

notions, and be led to make small discoveries and inventions,

if they can, from the. first. Mathematics is one of the finest

materials for cheap and easy experimenting that exists. It

is partly ignorance, and partly stupidity, and partly false

tradition which has beclouded this fact, so that even influen-

tial persons occasionally speak of . mathematics as " that study

which knows .nothing of observation, nothing of induction,

nothing of experiment,"—a ghastly but prevalent error which

has ruined more teaching than perhaps any other misconcep-

tion of the kind.

As soon as small groups can be quickly counted, and

dimple addition and subtraction performed with a few readily

grasped and interesting objects—and the more instinctively

such operations can be done the better,—the time is getting

ripe for the introduction of symbols—for that arbitrary and

conventional but convenient symbolism whereby '.•'. is de-

noted by a crooked line, 5, and so on : a symbolism which the

adult is only relieved from the necessity of elaborating and feel-

ing difficult because of the extreme docility and acquisitiveness

of childhood. It has already learned 26 symbols, it will

patiently absorb nine or ten more, especially as they are soon
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found i;o be real conveniences; though if an adult wishes

to realise the genuine difficulty of the process—always a

most desirable thing to do—^he should set to work to learn

the Morse telegraphic alphabet, especially in the forms used

for cable telegraphy.

I see no reason now why ''..•'. should not be written

4 + 5 = 9, or soon afterwards why : •(:) might not be written

5-2 = 3; but let no one suppose that these steps in nomen-

clature are easy. The nomenclature introduced is just as

hard as that of trigonometry or the calculus, only adult

persons are accustomed to the one and are often unacquainted

with the other. A set of Httle ^blocks, or some simple cheap

squared paper lends itself to statements like the following

;

5= n

1 1 1 1 1

1

1

6 =
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a label with which to associate observed properties, just as

it is convenient to call a certain flower " daisy," or a certaia

star "Sirius." But to supply the label and withhold the

object, to lecture about daisies or stars or numbers before

they have been seen, is, let us politely say, unwise.

It seems to me that card games with counters may now

be introduced, to enable the children to realise that their

property may mount up beyond the smaller numbers that

would be wholesome with sweets ; and they can learn how to

group their counters into packets of six, or even into dozens,

and then they will have simply to count their packets and the

odd ones over. A child with four packets of six and three

over would have a real idea of his wealth, though " twenty-

seven " might still be a meaningless expression.

Differently coloured counters are now serviceable to replace

the packets, and thus the idea, but not the word, of diiferent

" denominations " will be imperceptibly arrived at ; and it

will be clinched by the at first unexpected discovery that

even strangers will accept one white coin as equivalent to

six much larger brown ones.

After this, some approach toward the admirable Arabic

notation, whereby value is symbolised by place or position

as well as by shape of digit, may be unobtrusively entered

on. The idea of boxes or cases, or spaces of different

value, in one of which odd counters or pennies are to be

stored, another one in which packets, or silver coins, are to

be kept ; and ultimately, but not too soon, a third one which

is to be occupied by packets of packets, or gold coins ; if ever

such wealth were attained.

While there is every advantage in thus emphasising atten-

tion to the value or place of the digit, and so to a system of

numeration, there are many reasons against concentrating

attention on the particular number " ten " prematurely : it is
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not a specially natural number, for one thing ; for another

thing it is so large that ten packets of ten are unlikely to occur,

whereas four packets of four, or six of six are quite possible.

Another reason is that it is undesirable to suggest, what habit

will subsequently only too erroneously enforce, that there is

something special and divine about the number ten, so that

the arrangement of digits 12 cannot help meaning a dozen.

This false idea, due merely to habit, will not occur to a child,

nor will he know intuitively that twelve pence make a

shilling, or twenty shillings a sovereign; indeed, strange to

say,~he is usually somewhat callous as to the importance of

this pivot of human existence ; and, though he soon gets to

like coins, he attends chiefly to their number without much

regard to their denomination, unless some are specially new

and bright.

Having got so far, the conventional symbolism, in which

practice has been quietly going on in the background during

the few more formal school quarter-hours, may be extended,

and the digit-symbols written in spaces drawn to represent

the boxes, or on paper ruled into quarter-inch squares, which

is cheaply and plentifully accessible, so that a 4 put in one

box shall signify 4 counters, while a 4 put in another box

shall signify 4 packets of say ten counters each, so that at the

end of a game 3 shall mean that the loser has no packets

and only three counters altogether, while another child may

have 3 ; that is, three complete packets and none over.

A third may have two packets and five over ; that is to say

and another, the winner at the game, may possess

or in Words, 1 packet of packets, 5 simple packets,1
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garten devices can be employed for convenience ; the

important thing is not prematurely (i.e. not until the under-

lying reality has been essentially grasped) to proceed to the

only partially expressive symbolism 25 or 152, which to

us by mere habit looks so living and significant. Let the

elementary teacher reflect that to a mathematician the symbol

I
e'" dx looks equally living and significant, and be not hasty

with the children.

At the same time there is no need for artificial delay. A
child brought along the right lines will jump forward Avithout

difficulty, will recognise the places without the boxes, will

get accustomed to the savage's mode of reckoning by tens

without being encouraged to go through the savage process

of counting on his fingers, and before long will be able

to interpret such a complicated synibolism as 50327, or

£175. 16s. lid. The last, indeed, is properly spoken of as

" compound " instead of simple, for in it " scales of notation
"

are badly mixed up. The reckoning proceeds by tens, by
dozens, and by scores, sometimes one and sometimes another,

occasionally by quarters also.

The poor child who finds himself able to master this and

the operations which arise out of it, need not be deterred by
any legitimate obstacles in mathematics until he comes to its

really higher walks, beyond simple differential equations : a

step which he will not be called upon to take at all unless he

is born to be a mathematician, in which case difficulties of any
ordinary kind will barely be felt.

The operations of addition and subtraction may now be

extended. 7 + 5 may be done into a packet of one dozen, or

into a packet of ten and two over, and denoted by 1/- or 1

2

according to which plan of grouping is adopted.

So also 8 + 7 may be called either 1/3 or 15, the former
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being the custom if they are pennies, the lattet if they are

nuts.

It is necessary to apologise to children for this heedless

complication; but they inherit some things that are good,

to make up for several things that are stupid, and therewith

they will have to be content :

—

8 + 7 + 9, if shillings, will be grouped differently again, and

be denoted by £1. 4s. j if pennies, they will be denoted thus,

2/-; if ounces, they will be written 1 lb. 8 oz.; if feet, they will

be called 8 yards ; if farthings, they will be written 6d. ; if

oranges, they will be called 2 dozen ; but if boys, they will

be written 24.

I do not recommend anyone to confuse the minds of children

by pointing out these anomalies, or by quoting a sample of

them simultaneously as above. Children will not detect their

true character, but will docilely receive them as if all this

rubbish were part of the laws of nature. This may account

for their disinclination later on to make acquaintance with any

more of those laws than they can help, but at this stage they

are docile and assimilative enough : they can at this stage be

taken advantage of with impunity. But I should very much

like to confuse the minds of some teachers, and of some school

inspectors—especially some varieties of school inspector and

university examiner—and get them into a more apologetic

and humble mood at having to insist on filling the mind of a

child with any more of these artificial insular conventions

than is absolutely necessary in the present stage of British

political and commercial wisdom.

It is undesirable to hasten forward to numbers involving

3 digits too quickly ; they can be mentioned and illustrated

when convenient, but real work should for some time be limited

to 2 figure numbers, because in these the real principles can

be recognised and grown accustomed to in the simplest way.
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The early operations in which practice can be given are

such as the following: Suppose counters are employed and

that little cases have been made which just hold six or ten

or any convenient number, suppose ten

:

Then 13 will stand for one packet of ten and three counters

over;

17 added to it will amount to two packets and ten

counters over; which the child, if encouraged by

the sight of an unused case available, may wish

to make up into 3 whole packets, and so recognise

the propriety of denoting the number by

30

Similarly 15 + 17 will make up into three packets and

2 over, which may be shown thus :

tens

1

1



1.] COUNTING. &

After a time these operations can be followed when nothing

concrete is present; but abstractions are not natural to

children, and before calling upon them to follow a difficult

conventional subtraction sum like

82

37

45

the operation of breaking up packets should be introduced

into the symbolism which is employed to faintly shadow the

concrete reality.

It is perfectly right to speak of 3 packets and 13 loose

counters, although they may be more compactly grouped as

4 packets and 3 counters. So if we have to subtract say 7

from 43 we shall first break up one of the four packets, so

as to turn 43 into 3 packets and 13, and then subtract the

7 without difficulty, leaving what is abbreviated into 36.

Hence before doing the above conventional little sum,

8 packets and 2 should be expressed as 7 packets and 12, or

From this 3 packets and 7 have to be removed,12

leaving obviously 4 packets and 5. Wherefore 82 - 37 = 45

without any argument.

The abbreviated form of the above breaking-up operation,

called borrowing, will now gradually almost suggest itself, if

many sums of the kind are given to be done. But the best

and easiest method of subtraction is the complementary

method, and if this is taught from the first, the complexity

of borrowing becomes unnecessary.

The adult cannot too clearly realise that many of the

operations to which he has grown accustomed are labour-

saving shorthand devices with the vitality and principle

abbreviated out of them; quite rightly so for practical pur-

poses but not for educational purposes. The race invented
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them at first in more elaborate shape, and gradually abbre-

viated them into their present-day form. The child will

likewise get accustomed to this form in due time, but he

should not be over-hurried into it.

After adding two numbers for some time we may proceed

to add more than two,

and find that 7 -f- 9 -H 6 = 22, etc.

;

also that 7-1-7-1-7 = 21,

and it is natural to speak of this as three sevens.

So also the fact that 54-5-(-5-}-5 = 20 will naturally be

quoted as four fives make twenty ; and thus the essential idea

of multiplication will arrive, as a shorthand and memorised

summary of the addition of a number of similar things,

without any use of the name multiplication or any feeling

of a new departure. To find the value of three seventeens,

that is, to group them into tens and ones, is a problem for

an afternoon, and- if it be done with counters in the first

instance, and ultimately with symbols, the meaning of the

operations having been realised beforehand with the counters,

so much the better.

The operation of adding or multiplying means grouping the

whole number into tens and ones, or into hundreds, tens, ones,

etc., instead of in the given groups.

A child must not be expected to be able to formulate his

conception of the operations, or to express them accurately in

words, at this stage. It is a capital exercise later, but it is

enough at first for him to realise the meaning of what he is

doing in the back of his mind. From time to time he can be

encouraged to interpret processes into words, but they must

have become familiar first. To be able to apply a rule, from a

precise statement in words of what has to be donCj is an adult

accomplishment, often not reached by adults. To dissect out

and state a rule in words, from a knowledge of what the
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operation really is, is perhaps easier, and is a desirable gift, but

it is a training in the use of language rather than in the subject

matter of the craft. It is most appropriate and valuable prac-

tice for children at the proper stage, a stage reached much

earlier with some children than with others. Children who

reach the word-expression stage late are usually called "stupid."

If this adjective implies a stigma it is usually undeserved.

There is a performance appropriate to each stage of develop-

ment, and opprobrious epithets are generally employed by

those who seek to force things several stages too soon. A
highly trained and clever dog would soon prove himself

" stupid " if tested by a formula, or by words even of only

3 letters. An adult who can hum or whistle an air may be

told that he ought to be able to sit down and write it in the

recognised musical notation. Similarly he cught to be able to

read off a piece of music handed to him. He might resent

being called stupid if he found it difficult to do these, to some,

so simple things.

" Badness " of many kinds may exist in spoiled children (and

there are several ways of spoiling them), but badness in un-

spoiled children is rare, and stupidity is almost non-existent

unless they are physiologically out of order and therefore

mentally deficient. Stupidity is however a product easily

cultivated by improper feeding, especially improper mental

feeding. The " badness " of children is largely the effort which

nature makes at self-preservation ; for inattention and laziness

are the weapons whereby an attack of mental indigestion can

be warded off.

The only fault with very young children is that they are

too good, and therefore too easily damaged. Later on, a spirit

of rebellion acts as a preservative, but it would be better to

dispense both with the rebellious spirit and with the causes

which necessitate it.
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Returning from this digression, which is either false or else

of very extensive application, to our immediate subject, viz.,

the introduction of the fundamental operations to be performed

on number,—and remember that what are called the first four

simple rules are tremendously fundamental and important,

more important than anything which follows, until involution,

evolution, and logarithms are arrived at,—we must exercise

children in Multiplication and teach them something of the

multiplication table, at first experimentally, but afterwards by

straightforward memory work, for it is one of the things with

which the memory may be rightly loaded. We can next

recognise that Division too can be unceremoniously introduced

by trying to split up numbers into equal parts. The endeavour

to share sweets or fruit or cards or counters is an obvious

beginning. Then, since children are docile, they can be asked

to split up 2 packets and 7 into three equal groups, or they

can be asked to split up 2 packets and 4 into eight equal groups,

and so on ; for no reason assigned. But it must be recognised

that the operation of division in general is rather hard, and

involves a good deal of tentative procedure or guess work.

In other words it involves the rudiments of experiment and

verification. Gradually, when the multiplication-table is fairly

known over some little range, children can be encouraged to

apply theory before practice and actually to think out the

result before trying it; but this is a lesson in deductive

reasoning, and represents the nascent beginnings of a loftier

mode of procedure than ordinary adults are accustomed to

apply to their affairs. When asked to split 28 into four equal

heaps, it is an application of pure theory to remember that 4

sevens are 28 and then to count out seven counters into each

heap at once. The empirical mode would be a method of

dealing out singly into four groups and then counting the

result. It is easily done with ordinary playing cards, but
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its value as training is much enhanced if theory is applied

first.

If for instance 30 cards were given, to be dealt to four

players, the residue that will not go round to be put in the

middle or pool, a decided effort is required for a child to

perceive that there will be two for the pool and seven for

each player : but if he could have time allowed him so to

think it out, and then to make the experiment, he would be

conscious that his powers were developing, and he would in

reality be introduced to the first beginnings di a mode of

comprehending nature such as is in the higher stages reserved

for men of science,—using the term science in its most com-

prehensive signification.

It is very often a mistake for teachers to suppose that some

things are easy and other things are hard ; it all depends on

the way they are presented and on the stage at which they

are introduced. To ascend to the first fioor of a house is

difficult if no staircase is provided, but with a proper staircase

it only needs a little patience to ascend to the roof. The

same sort of steps are met with all the way, only there are

more of them. To people who live habitually on the third

floor it is indeed sometimes easier to go on to the roof than

to descend into the basement. Educators should see that they

do not forcibly drive children in shoals up an unfinished or ill-

made stairway, which only the athletic ones can climb. It is

extremely difficult in familiar subjects not to go too fast. The

effort sometimes results in a process of going too slowly, which

is wearisome and depressing and the worse fault of the two.

Extension or Application of the idea of number to

measuring continuous quantity.

So far we have been employing number to count discrete

objects, and to perform simple operations of addition, and
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the like, among them. It is now appropriate to introduce

the idea of multiples of a unit, so that one thing can be twice

as long or twice as heavy as another, without being in another

sense "two" at all. The lines on ruled paper enable one

easily to draw across them a line twice or three times or six

times as long as another. So also letter-scales can be used to

show that a penny is twice as heavy as a half-penny, that a

half-crown weighs how many sixpences, and the like.

Given a foot-rule they can measure the size of furniture,

or of books. Given a few ounce weights they can make very

rough estimates of the weights of things that have or might

have to go by post.

It is desirable not to dwell on these things at this stage,

but simply to accustom a child to recognise a rod 6 inches

long, and such like, and to see instinctively and without

formula or' expression that number may he applied to con-

tinuous magnitude hy the device of a unit of measurement.

Adults may realise that there is a real step here, by remem-

bering that if they were set to express the strength of an

electric current, or the electric pressure on a main, or the

strength of a magnet, numerically, they would be nonplussed,

unless they knew something about the units which within a

generation or two have been introduced for the purpose,

—

the ampere, the volt, and the line of force ; so that nowadays

the British workman is able to speak familiarly of an electric

current of so many amperes—(sometimes pronounced
" hampers "). There is nothing really numerical about the

length of a table or the height of a door or the weight of

a sack or the brightness of a lamp or the warmth of a

room or the length of a day ; and its numerical expression

will depend entirely upon what conventional unit is em-
ployed, and may vary in different countries accordingly.

Do not assume therefore that a child is stupid to whom
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an application of arithmetic to weighing and measuring is

not obvious.

Introduction of the idea of fractions

In the same way the idea of fractions can naturally occur

;

a halfpenny and a half ounce and a half inch being fairly easy

examples : but not the easiest. There can be no doubt that

just as numbering ought not to begin with continuous quantity

but with discrete objects, so fractions should be first displayed

as actually cut and broken things.

The proper fractions to begin with are halves and quarters

and eighths; and apples do admirably for that. Oranges

suggest further modes of subdivision, except that the removal

of the peel may constitute an unexpressed but felt complication.

Folding of a ribbon or paper easily leads to thirds and any

other fractions wanted. Any child can be sent to cut off a

quarter of a yard, or a yard and a half, or even a foot and

three quarters, of tape. But again do not be surprised if this

last mode of specification is found occasionally puzzling : it is

of the nature of a problem, and requires time. The form of

difficulty which may properly occur to some children is " a half

of what "or " three quarters of what " : and if they bring the

foot and the 3 quarters all separate, i.e. if they cut the tape

into four pieces altogether, that is very well for a beginning.

They should not be supervised or fidgeted during the solution

of a problem. They cannot think if they are. These expres-

sions, 6 miles and a half, etc., have a conventional ring, to

which we have grown thoroughly accustomed, but they are

shorthand terms not really fully expressive : it might possibly

ambiguously suggest 9 miles.*

The measure of time in half and quarter hours may also be

*Cf. George Meredith's "Rhoda Fleming," Chap. 3.
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appealed to as illustrative of fractions ; but in this form they

are somewhat abstract. The divisions on a foot rule or metre

scale are easier, and for further progress are indeed the easiest

illustration to be borne in mind. Afterwards, the halfpenny,

the halfcrown, the halfsovereign, etc., and the other fractions

of money may be brought in, whenever they appear to be

natural.

Practical hints for teachings the simple rules.

Simultaneously with all this introduction of fresh concep-

tions, mechanical practice in operations with symbolised num-
bers can be proceeded with :—

Addition.

About addition there is little to be said : the idea of packets

must have made everything concerning the carrying-figure

easy.

The principle being understood, it is now only a question of

practice in attaining quick and sure execution, as quick and
sure as it is worth while to aim at at this stage.

Addition of money is a useful accomplishment, and since the

packets into which it is to be made up are varied, it affords

good practice, involving a certain amount of constant thought
and care. It is wrong to try to force a child to acquire the
facility of a bank clerk in adding up long columns : that will

come in due time and is quite a useful faculty : it is clearly a
thing to acquire in commercial schools, but not while still

young and receptive.

It is well to begin thus :

£ s. d.

6 . 15 . 3

5.4.9
12 . — . _
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where the packets to be carried forward are complete. Then

change the 3 into a 4 or 5 and get 1 or 2 pence over; then

change the 15 into 16 or 17 and get some shillings over, and

so on, gradually. Always begin with what illustrates the procedure

in the simplest form and gradually compUcate it.

There is one remark about addition worth making. In

adding say 43 + 8, some beginners are told to bethink them-

selves that 3 + 8 = 11, and so arrive at the digit 1 of the

result ; while others are told to think of the sum as 43 + 7 + 1,

stepping on to the intermediate stage of the complete packet

en route to 51 j

e.g. 77 + 9 = 77 + 3 + 6 = 80 + 6 = 86.

Perhaps it is permissible to introduce this aid as a temporary

measure, but ultimately addition ought to proceed by instinct

and without thought. It is a mechanical process, and a bank

clerk who stopped to think, while adding, would be liable to

make a mistake.

Subtraction.

There appears to be no doubt now but that the "shop

method " of subtraction is the handiest and quickest : it may

as well, therefore, be acquired almost from the first,

37 Three and four make seven.

1^ One and two make 3.

24 Put down the figures in black type.

Verify by adding 13 to 24. Take another example

:

It Eight and six make fourteen.

-z- Nine and one and seven make seventeen.
76

I do not think that children need find this method hard or

l..E,M, B



£
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then proceed

142
5
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If we multiply by 20, the shift takes place similarly, and

also every digit is doubled, yielding 2680.

So nowstart multiplying a number like 53 by 20,getting 1060.

Then a number with a carrying figure from the units place,

^^ 47x20.= 940;

then one involving two carryings, like

ar^Acr,^., 57x20=1140,
. and so on.

Next take multiplication by a number like 23, Let it be

realised once more that 23 is short for 20 + 3, so that it may
be felt to be natural to multiply by 20 and by 3 successively

and add the results, which is what we do. At first let it be

worked in this way ; for instance, to find

824 X 23
= 20 X 824 or 16480

and 3x824 or 2472

added together make 18952

but gradually get it abbreviated into the usual form

824
23

1648
2472

18952

without necessarily putting in the cipher after the digit 8.

There appears to be no doubt now that it is best in mul-

tiplication to begin with the most important figure, so that

sums look thus

;

173
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a trivial matter to all appearance, but helpful in later stages,

and therefore better practised from the first.

[In my opinion it is thoroughly unwise to reverse the digits,

of any factor before multiplying with them, though some
teachers of immense experience think otherwise.]

Multiplication of money, at least of English money, is

more difficult of course, because, in the specification of money,
scales of notation are so mingled; thus, depicting the com-

partments and labelling them when necessary :

£
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pounds, but multiplying by any other factor is hard, and

is probably best deferred for the present,

K multiplication of money by a number like 23 is wanted,

not only must the 23 be divided into two parts 20 + 3, and

the multiplication done separately as usual, but it is generally

needful to resolve the 20 into two parts also, say 10 + 10,

and then add the three results together.

If however multiplication by 24 were desired, it would

be possible to split it into two factors 8x3, arid to multiply

first by one and then the result by the other, without any

addition of results; but there is great danger of confusion

here, and there are plenty of what are considered and are

really "higher" parts of arithmetic which are much easier

than this. Low class or unskilled labour is not necessarily

easy : it may in some cases be terribly laborious, like un-

loading a ship. Another way of multiplying by 20 is to

split up 20 into the two factors 2x10 or 4x5 and employ

them successively. In that case the result of multiplying

by 23 is ultimately obtained by multiplying the original

sum by 2, the result by 10, the original sum by 3, and then

adding the last two results.

The fact is that with money specified in the customary

English way, the only operations that can comfortably be

performed on it are addition and subtraction, and these are

the only really frequent operations in practice.

To apply multiplication and division it is best to express

the money differently, in fact to decimalise it before commenc-

ing operations. This will be explained later (Chap. VII.),

though of course to most teachers it is a process already well

known. It ingeniously evades the difficulties caused by our

currency, and converts its treatment into almost a worthy

intellectual exercise. >
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Division.

First take simple sums to introduce the notation, such as

21

Y = 3, or 21 -=- r = 3.

21
Let it be realised also that -s- = 7, and that 3x7 = 21.

o

There are a multitude of interesting things to be learnt

before long about factors, and criteria for division, etc., btit

not yet; let the child learn how to perform the process on
numbers of which he knows no factors. But at first do not

trouble him with remainders : let him at first be given simple

sums that divide out completely.

Thug we can tackle Such sums as

71491036 .-, , 1. , , .,, 491036 ^^..^
' ^^, .„i which should be also written -—=— = 70l48<
70148 7

The treatment of remainders is for subsequent consideration i

It is Well to give the complementary sum 7 x 70148,

especially since the teacher will thus have but little trouble iii

checking results—at least until the child finds out the dodge
-—a discovery which is to be encouraged like all other

discoveries.

At good Kindergarten schools, a step beyond the first in

division is often introduced by some Such plan as the

following

:

To prove that 96 -f 4 = 24.

Take nine bundles and six sticks over, deal out into four

places, two bundles in each, place; and then deal sixteen

sticks, four into each place, giving the result 24. And so on

with other numbers.

As soon as short division is thoroughly understood, long

division may introduce itself as an assistance when more

difficult divisors are involved; for instance 988 4-19. This



24 EASY MATHEMATICS. [chap.

being difficult to do by short division, where the multiplica-

tion and subtraction have to be done in one's head, it is

permitted to write the operations down, at first both of them,

thus

:

19)988(5
95

3

Afterwards, perhaps, only the result of them, 3, which in

short division would likewise not appear, nothing but the

quotient being written in short division. Long division is

therefore not harder than short division, but easier : it is the

identical process, only written out more fully, so as to be

applicable to harder sums. It is the largeness of the figures

dealt with that makes it hard.

For long division it appears to be felt that by aid of the

shop system of subtraction there is no undue strain on the

brain by the use of the abbreviated method.

I would have it understood however that long division

sums are among the moderately hard things of life, and that

mathematicians seldom trouble themselves to do them. They
can be deferred until many other things have been done and

some familiarity with figures acquired. It is a gymnastic

exercise to perform even so simple a long division sum as the

following, and if attempted too early will involve strain.

72)5286456(73423
246
304
165
216

This is the process

:

Sevens in 52 1 guess 7 times and write 7 as the first digit in

the quotient, then 7 >< 2 = 14, to which add 4 to make 18.

Seven sevens = 49, say 50, to which add 2 to make 52

;

record only the figures here printed in black type; bring
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down the rest of the dividend 6456 or as much of it as is

wanted; only 6 is wanted so far, and we guess 3 for the

next digit in the quotient. Three times 2 and make 6,

three times 7 and 3 make 24. Bring down more of the

dividend, say 456, or at least 4, and guess 4 for the next

digit.

4x2 = 8 and six are 14.

4 X 7 = 28, say 29, and 1 are 30.

Bring down the 5, and guess 2 for the next digit of the

quotient ; twice 2 = 4 and 1 = 5, etc., and then finally bring

down 6, and it goes 3 times exactly.

If the sum is neatly done the coiTesponding places are

vertically under each other, a detail of appearance emphasised

by the presence of a decimal point.

Let the result be written

528M5, ^ ^3^^3

Do not forget to set also the complementary sum
72 X 73423.

It will be well also to set the exercise whose result is

5286456 „„
HOAOQ ~ "^' *® * separate sum.

If the connexion is automatically noticed, it is well ; it will

prepare the mind for the later-on extremely important and

constantly occurring connected relations,

if T = c, then - = 6, and he = a,he
but refrain from using this abstract language at' present;

Watch for the time when it can without strain be naturally

introduced. * It is a great help when that step is reached,

and it represents a vital stage of real mental progress. The

mind should be soaked with particular instances however

before generalisations can be usefully and permanently grasped'.
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Division of money is of course diflBcult, even when the

divisor is a small number, because of our complex system

of notation, unless the money is first expressed in decimal

form.

To divide by 23 moreover it is not correct to divide by

20 and then by 3 and add the results, as it was with mul-

tiplication. A long-division sum is necessary, and that is no

joke with money as usually specified. Division by 24 can

indeed be done in two stages, by help of its factors 3 and 8

consecutively applied, but that only masks the essential

difficulty by a device applicable only to special cases.

My object in introducing these remarks about Complex

money-sums here (and the same thing applies to weights and

measures sums) is to urge that they really belong to a later

Stage, and to beg teachers to defer them beyond the early

years at which they are too often introduced. For their

ptemature employment has often resulted in giving children

an efiectual and lifelong disgust with what they have docilely

conceived to be arithmetic ; whereas much of what they had

to do was really a mechanical and overstraining grind, having

as much relation to mathematics as carrying heavy hods of

bricks all day up a ladder has to architecture.

Origin of the symbols.

It is amusing to speculate on the probable origin of the

symbols for the digits. It appears likely that if a single

horizontal stroke meant 1, a double horizontal stroke hastily

drawn would give Z or something like a 2.

It is less easy to make a sort of 3 out of three such strokes,

but it is possible.

The symbol for four would seem to be representative of a

four-sided figure or badly drawn square, '-|- , and the figur^

8 was probably originally a pair of such squares
.
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But at this stage it appears likely that some skilled person
took pains to design digit symbols of distinctive form by
combination of a stroke and a semi-circle, making a set like

this

:

I 3. 3 y b 1 S 10 (I etc..

and that the notion of the value of " place " was a develop-

ment from the further stages of this mode of representation.*

So also it is believed that the Eoman symbol X for ten was

the result of counting by strokes and crossing off every tenth

stroke, thus

:

I I I I I I I I III I I

a practice not unknown among workmen to this day.

Two such crosses would naturally mean 20, etc., while half

a cross or V could conveniently be used to denote 5.

It has been suggested that the rounded M for 1000, CO,

sometimes inscribed CIO, if halved, would give the D for 500^

and that a square C for 100, if halved, would furnish an L for

50 ; but this may be fanciful. The symbol CGIOO was used,

it is said, for 100,000, and CCCIOOO for a million.

* The above however is not history. The real history of the symbols
is complex, and stages of it are given in Br. Isaac Taylor's learned work
on the Alphabet, especially Vol. II. pp. 263 et seq.

It appears that our digit symbols originated in India, and that several

of them, especially 7, represent a corruption of the initial letters of the

words previously employed to denote the numbers.
" They were introduced by the Arabs into Spain, from whence during

the 12tn and 13th centuries they spread over Europe, not, however,
without considerable opposition. The bankers of Florence, for example,
were forbidden, in 1299, to use them in their transactions, and the

Statutes of the University of Padua ordain that the stationer should
keep a list of the books for sale with the prices marked ' not by ciphers

but in plain letters '. . . . Their use was at first confined to mathema-
tical works, they were then employed for the paging of books, and it

was not till the 15th century that their use became general."



CHAPTEE II.

Further considerations concerning the Arabic system

of notation, and extension of it to express

fractions.

Having become acquainted with the fundamental plan of

the system of notation in use, and the mode of expressing

any whole number of things by a combination of ten digits

arranged in places of different value, not all places necessarily

occupied—that is, by means of nine significant digits and a

cipher to express emptiness in whatever place emptiness may
occur,—it is permissible to elaborate it further, with a little

repetition occasionally.

At the beginning of each chapter there is liable to be a little

repetition of something that has already been explained, but

in a slightly different form. This amount of repetition is

purposely introduced and is useful : it is intended to link the

new knowledge on with the old. A new subject should not

be introduced as if it belonged to a perfectly distinct region of

thought; its connexion with what is known should be indicated,

and sufficient of the old should be reproduced to make the

connexion secure. Repetition of a judicious kind is by nO
means a.thing to be avoided, though it is easy to overdo it;

and in every way the best kind of repetition is that which
repeats the old idea in a different form of words, or which
looks at something already known from a new aspect.

The beginnings of each new chapter should be easy, and the
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steps to higher flights should be regular and moderate, like a

staircase.

Now we know that the symbol 304 means usually that there

are 3 packets of a hundred things each

no packets of tens and

4 single things,

but the " ten-system," though customary, is not an essential

part of this plan of notation.

40 and 4/- are both constructed essentially on this plan, both

are understood to signify 4 packets and no odd units, though

the number in the packets is not the same in the two cases.

£4 . — . — signifies again 4 of another variety of packet.

Three dozen and six pennies may be written either 3/6 or

42 pence. It would have been far more convenient if the

human race had agreed to reckon everything in dozens, and so

to express this number by the digits 3 6 instead of by the

digits 4 2 ; but as they have in early semi-savage times arranged

otherwise, we must now make the best of it. The general

idea is the same, only that whereas in ordinary life things are

commonly and conveniently reckoned by dozens, it is customary

in arithmetic to reckon by packets of ten, the symbols being

called digits because they used to be reckoned by actual

fingers : which by some simple persons are so employed still.

Thus whereas 7/6 is understood to mean seven dozen and six

pence, it is customary to mean by 76, seven packets of ten and

six units over ; that is to say, if the units were pennies, the

same as 6/4. So also, instead of grouping dozens into a gross,

as in ordinary life, in arithmetic we group tens into a large

packet of ten tens, which we denote by 100. The symbol 346,

therefore signifies six single units, 4 packets of ten each, and 3

packets of a hundred each. If there are as many as ten sets

of 100, they are to be specified by 1000, and so on, as

ordinarily learnt.
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This system of notation extends as far as we like to the left

of the units place, and if six empty boxes follow the digit 1,

it means a million. But we might suppose boxes added to

the right of the units place ; can we find any use for them 1

Let us mark the unit box by a double line neariy round it, so

that in a long row
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the stop or mark or point being introduced whenever it is

necessary for clearness. Any mark will do. In foreign

countries a comma is commonly used, whereas we use a dot

placed about the middle of the figure. In early days a I

mark of this kind was used. Thus 346 [57 used to be written

where we should now write 346-57, or a Frenchman 346,57, the

digits 5 7 being partitioned off to signify that they represent

fractional parts of objects or units ; the digit 6 refers to whole

objects or units, the digit 4 to packets of ten, the digit 5

to fractions of one-tenth, and the digit 7 to one-tenth part

of tenths, that is to say, it signifies seven hundredths of

a unit.

Suppose, for instance, the unit was a bag of sovereigns, as

above specified, then the number written 346]57 or 346 157 or

346'57 would mean 346 complete bags of a hundred pounds

each, with 5 ten pound notes and 7 sovereigns loose. The

money specified would be equal in value to

3465-7 ten pound notes

or to 34657- sovereigns

or to 34-657 thousand pound notes

or to -034657 million pound notes,

the position of the figures being changed according to the

unit intended, and the dot or other mark being used to

signify where whole numbers end and fractions begin.

The position of the above numbers relative to each other

is constant, viz. the order 3, 4, 6, 5, 7 ; but their absolute

position, or position relative to the unit place, is different in

the diflferent cases, and is specified by the dot, which is cdways

and invariably placed after the units digit whenever it is

inserted at all. It is not always necessary to insert it. For

instance the number 3 might be written more completely and

equally well 3- or 3-0 or 3-000, in which ease it definitely
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signifies 3 units of something, and the would indicate the

fact that there was no fraction to be attended to. If the

dot is placed thus 30', it would mean 3 packets of ten

units; if placed thus 300-, it means three groups of ten

packets each ; and any digit placed ^after the dot thus "3 means

a fraction, viz. three-tenths of a unit. Whereas if a digit

occurs 2 places to the right of the dot, as -03, it means three

hundredths of a unit ; as for instance 3 sovereigns would be

3 hundredths or -03 of a bag in the above example, or -3 of

a ten-pound note. Similarly a florin is one-tenth of a pound

or £0-1. Again it is the hundredth, or -01, of a ten-pound

note.

This use of the dot is only a matter of nomenclature, and

its importance lies in its simplicity and convenience. It is

always possible to write '03 as ^^^ if we please, just as it

is possible to denote 1864 by MDCCCLXIV if we like; but

it is not so simple.

It may be as well to observe that although there is no

numerical difference between 6 feet and 6 "00 feet, there is a

practical and convenient difference of signification. In

practice 6 feet would mean something approximately the

height of a man, whereas 6 '00 feet would be understood to

signify either that you had measured a length accurately to

the hundredth of a foot or something like the tenth of an

inch, and found no fraction; or else that you wished some-

thing to be made to that amount of accuracy.

Another way of reading the symbol '03 is three per cent.,

or three divided by one hundred. So also five per cent, is

•05 ; twenty per cent, is '20 ; seventy-four per cent, is -74,

and so on.

In the case of twenty per cent, it may obviously be written

•2 or 3-% or ^. So also -5 being 5-tenths or 50 per cent, is the

same as ^ ; and one-half is often the neatest way of speaking
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of it and writing it. Again twenty-fiveper cent., or -25, is the

same as J, being 25-liundredths ; and "125 or 125-thousandths

is the same thing as ^. Sometimes one specification is

handiest, sometimes the other.

Unfortunately it is not very easy to denote either ^ or |- or

f in any other very convenient way on our decimal system of

notation, as it would have been if we had arranged to reckon

in dozens.

One-third of 1/6 is easy enough, being sixpence, while

two-thirds is 1/0 : but one-third of 16 is an inconvenient

number to write in the ordinary notation. It is \'-, that is

16 divided by 3, that is 5-333333... without end, as you find

by simple division.

So also f of 16 is 10-6666....

These are called repeating or circulating decimals, and

their frequent occurrence in ordinary transactions is caused

by our unfortunate custom of reckoning in tens instead of

in dozens. A simple circulating decimal may always be

interpreted as so many ninths : thus whereas -3 means 3 tenths,

-333 . . . means 3 ninths, which is the equivalent of one-third

;

-6666 ... means 6 ninths, and so on.

A third of ten is 3-333 ...

A sixth of ten is 1-666 ...

Two-thirds of ten is 6-666...

and even other fractions are not very convenient.

Thus a quarter of ten is 2-5

an eighth of ten is 1'25

a sixteenth of ten is -625

three-quarters of ten is 7-5

and the only simple things to specify are i of ten, which is

not often wanted, viz. 2, and a half of ten, which is 5.

L.E.M.
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This may be contrasted with the convenience of reckoning

in dozens

:

a third of a dozen is 4

a sixth of a dozen is 2.

two-thirds of a dozen is 8

a quarter of a dozen is 3

half a dozen is 6

three-quarters of a dozen is 9

an eighth of a dozen is IJ

a sixteenth of a dozen is f

.

Circulating decimals would not be avoided by the duo-

decimal notation, but they would be rarer, for they would

then in the simplest possi"ble cases signify fifths or sevenths

or elevenths, which are not the commonest fractions to come

across in practice.

It should be remarked that in actual practice circulating

decimals only occur in the translation of numerical fractions

;

and then the decimals always either terminate or recur : but in

real concrete measurement, or subdivision of continuous magni-

tude, circulating decimals never occur, because such a specifica-

tion would signify an infinite accuracy, which is impossible.

In all practical cases measurements can only be accurate

to a certain number of significant figures, and though it may
once in a lifetime happen that these figures are all the same

by accident—as for instance 4-4444—it cannot matter in the

end whether the last figure is 3 or 5 or even some other

digit. When the figures have expressed the actually attained

accuracy, all subsequent ones are superfluous and even mis-

leading, because they pretend to an amount of accuracy not

really attained.

For this reason the doctrine of circulating decimals belongs

rather to pure than to applied mathematics.
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In the duodecimal system the ordinary fractions would be

denoted as follows : ,

i=-3

1 _
^ —

I = •2497 or approximately '25

1 _ .0
F - •^

1 _
T —
1

i=-14
16

1

eleven

1

^ = -12497 or approximately -125

illlll

twelve

Once we have realised the advantages of what is known as

the duodecimal system, it is painful to have to return and

use the decimal notation.

Nevertheless a change from one to the other would necessi-

tate the uprooting of too deep-seated traditions. Among
other things it would alter the multiplication table, that

necessary but laborious thing to learn. In teaching children

it should be realised by the teacher that the multiplication

table is hard and tedious, and too much should not be ex-

pected of them ; but for convenience of life it is one of those

things that it is best to know thoroughly, and it is useful as

a matter of discipline. Its rational basis should be understood,

and experiment should be encouraged in the first instance to

find out what, say, four sixes or seven nines are. It is fairly

easy to see that four sixes will make two dozen, it is not so

easy to see that they will make two packets of ten and four

over, but, the fact having been ascertained, it should be learnt

that four sixes are 24, or four times six are 24—either way,

whichever happens to be asked, but not both ways at the

same time so as to spoil the rhythm.
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Similarly it can be ascertained that five sixpences amount

to half-a-crown or 2/6 ; but that five sixes are 30, that is

they just make three packets of ten.

It is a serious addition to the work of childhood in this

country that they have to learn virtually two distinct multi-

plication tables, viz. the duodecimal pence table and the

decimal or ordinary numerical table. There is plenty of

scope for discipline in these, things, and so if it is possible to

relieve the tedium in other places it is permissible.

The extent of multiplication table to be learnt is merely

a matter of convenience, and it is handy to learn beyond

12 times 12. Especially is it convenient to remember that

13x13 = 169 17x17 = 289
14x14 = 196 18x18 = 324
15x15 = 225 19x19 = 361

16 X 16 = 256 20 X 20 = 400

Also that 9 X 16 = 12 X 12 = 144 = 1 gross.

[The square numbers may with advantage be specially

emphasised ; 1, 4, 9, 16, 25, 36, and so on ; and it is easy also

as an exercise to ascertain and remember the powers of 2,

especially that 32 is the fifth power of 2 : they are

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, etc.,

the last written being the 10th power.

A few of the powers of 3 are also handy.

3, 9, 27, 81, 243, 729.

The cubes or third powers of the simple numbers are useful.

1x1x1= 1 Cube of 7 = 343
2x2x2=8 „ 8 = 512
3 X 3 X 3 = 27 „ 9 = 729

Cube of 4 = 64 „ 10 = 1000
„ 5 = 125 „ 11 = 1331
„ 6 = 216 „ 12 = 1728

All this is to be arrived at merely by simple multiplication,

and the phrase cube number need not yet be used.]



CHAPTEE III.

Further consideration of Division, and introduction of

Vulgar Fractions.

Just as Multiplication is cumulative addition, so Division

may be regarded as cumulative subtraction. Thus, for instance,

when we say that 7 will go in 56 eight times, we mean that it

can be subtracted from 56 eight times. From 59 it can like-

wise be subtracted eight times, but there will be 3 over.

This is the meaning of remainders.

To divide £748. 6s. lid. by £320. 2s. 4d. we can proceed if

we like by subtraction—^it happens indeed to be the easiest

way,—and having subtracted it twice, we find that that is all

we can do, and that there is £108. 2s. 3d. over. So we say

that the smaller sum goes twice in the bigger one, and

leaves a certain remainder.

In general however it is more customary to regard division

as the inverse of multiplication; and, so regarded, it leads

straight to fractions and to factors. Thus the fact that 3

multiplied by 4 equals 12, (3x4= 12), may be equally well

expressed by saying that 12 divided by 3 equals 4, (-^ = 4),

/I'' \
or that 12 divided by 4 equals 3, f-j- = 3 j, or that 3 and 4

are corresponding factors of 12. Similarly 2 and 6 are other

corresponding factors, since 12 -r 6 = 2 and 12-7-2 = 6.

A number like 144, or one gross, has a large number of

factors. It is a good easy problem-exercise to suggest to a
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child to find them all. They are 2, 3, 4, 6, 8, 9, 12, 16, 18,

24, 36, 48, 72. The factors of 1728 are of course still more

numerous. And even the number 60 has a fair number of

factors, viz. 2, 3, 4, 5, 6, 10, 12, 15, 20, 30. These may be

contrasted with the poor show of factors exhibited by 100,

viz. 2, 4, 5, 10, 20, 25, 50.

Children can readily be set to find the factors of numbers,

and will thus incidentally"be doing many simple division sums.

Their attention must not however be too exclusively, i.e.

for too long together, directed to integer or whole number

factors ; they must be prepared to write down the result of

division when it is not a whole number, but a fraction, or a

whole number plus a fraction. Thus i|^ for instance will be

found to be 28 and four over, the meaning of which should

be carefully explained, being first thoroughly understood and

led up to by the teacher.

To lead up to it, it may be pointed out that just as

28 oranges = 20 oranges + 8 oranges

so 28 half oranges = 20 half oranges + 8 half oranges

and 28 halves = 20 halves + 8 halves

and 28 quarters = 20 quarters + 8 quarters
;
just as much

as 28 farthings = 20 farthings + 8 farthings.

Now ^ = 14, while ^ + 1 = 10 + 4 = 14,

28 „ ,., 20 8 ^ „^=7, while :j- +j= 5 + 2 = 7,

28 _ 20 8 - - „ -

To "10^10 = 2 + -8 = 2-8,

28 _ 20 8 _ 8

5 ~ 5
"•"

5
~ ^'^5'

but it is neater to write it

25 3 ^3 ^6
= T+ 5 = ^ + 5 = ^+T0 = ^-^-
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So now the child should realise that, since 144 = 140 + 4, so

-f*^ = -i- + T'>
which indicates a division that can be done

and a division that cannot be done. The division that can be
done has the result 28 ; the division that cannot be done is

4-^5, and it must be left, either in the form of |, or in the

form ^ or -8. So the whole result is expressible as 28-8.

Accordingly a better way of saying that i|A is 28 and four

over, is to say that it equals 28 + A or 28-8.

To get it in the latter form directly and easily, the original

144 should be written 144-0, and then the sum will run

51 144-0 ., . ,,
' quite naturally.

Take another example, because the mind of a child is often

sadly fogged about this elementary and important matter.

^=104 = ^l:«§5:.= 10-333...,

a result found by simple division, a process wh*ch in this case

shows not the slightest sign of terminating but goes on for

ever.

Again \^- = 7 and 1 over, = 7 + J, or as it is usually written

7|. But in thus writing it the question should occur. How
then would one write 7 x ^ ? and why does not 7J mean seven

halves, or seven multiplied by a half, or 3^1 It is a mere

convention, and not a consistent one, that 7^ shall signify 7 + J

and not 7 x J, and some confusion is thereby caused. By no

means need the practice be altered : children must learn to

accommodate themselves to existing practice, and must begin

reform later in life if ever ; but the teacher should realise that

the simplicity of 7^ to him is only because he has got accus-

tomed to it, that it is a confusing thing in reality, and that a

child who is confused by it is likely to be the bright child and

not the dull one.
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Expression of vulgar fractions as decimals.

There is nothing new to be learnt about expressing a

vulgar fraction in the decimal notation, it is only a question

of practice. It is probable that beginners will find no diffi-

culty, but will simply divide out. If any difficulty is felt it

can be met by some such initial treatment as the following :

1 . ,, 2 3 4 5
- IS the same as - or -or - or —j,

2 4 o o lU

and each one of these may therefore be written -5, which means

5 things in the tenths place or compartment devoted to tenths.

A florin for instance is the tenth part of the value of a

sovereign, so 5 florins = J a sovereign. £7'5 means 7 pounds

+ 5 florins or £1. 10s. or £7J.

So also
1 =

i
= A =

rO'
'*"'

so to express ^ in decimals we shall have to put 2J in the

tenths place ; but it is not customary to place fractions there,

the I is best set down as 5 in the next place to the right, as

•25. In that place 5 will mean j^tl^s, and that is the same

thing as i a tenth, viz. -^Vth-

So |- of a ten pound note = £2. 10s. = £2^

= £2"5 = -25 ten pound note,

and generally i = -25.

So also I = -75, ^ = -125, etc.

The expression of any fraction as a decimal involves nothing

more than simple division ; thus f can be written ready for

operating 7
1

3-00000, and the quotient, written below, will be

•42857 etc.

In this particular instance however there happens to be no

simplification, so the operation is hardly worth performing in

that case.
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To prove that
S4:5-i2 ^ ^^.^^

work thus

:

61345-42

57-57'

To find ^Y^ ^® <io *'i^ simple division sum

8
1

3475-000

434-375"

Hence 34-75 . „,„,„ 3-475 ,oAonK j.—-— = 4-34375
;

—-— = -434375, etc.
o o

It is not really necessary to write it out in the division form :

simple division can be performed on the fraction as it stands.

In every case of writing decimal numbers one under the

other, the rule is to keep the column of decimal points

vertical ; in other words, adhere to your system as to which

is the units place, which the tens-place, and which the tenths,

etc., throughout.

Extension of the term multiplication to fractions.

The ordinary idea of multiplication involves the repetition of

the same thing several times, as three times four, or seven nines.

The adding of seven nines together is what is called multi-

plying nine by seven.

The payment of four £5 notes is not called multiplying

£5 by 4 : but if a conjuror extracted ten apples out of a hat

into which one had been put, he might be said to have

multiplied it.

So also seed com is multiplied into an ear; and thus the

notion of increase is associated with the notion of multiplying.

But it is best to dissociate the notion of increase from the

notion of technical multiplication, and to be prepared to

multiply by 1 if need be, leaving it the same as before, or even

by
J,

leaving it smaller than before. This phrase " multiply
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by a half " is not a simple and natural one : it is a permissible

extension, such as we constantly make in mathematics, when

any operation that has been found practically useful is applied

over the whole range within which it is possible, and some-

times a long way beyond where it appears possible at first sight.

Multiplication by J has some points in common with the

addition of a negative quantity ; it results in diminution, and

it is a process that would not have occurred to us to do except

as an extension of a straightforward process. To multiply by

^ and to divide by 2 is precisely the same thing. Why not

call it then dividing by 2 ? Well, we do very often, but not

always, and a beginner must be content to be told that it is

useful to extend the nomenclature of operations in this way.

We shall speak of multiplication by ^ if we choose, when we

mean division by 3. We shall occasionally speak of adding

- 4 to a number when we really mean taking 4 from it. We
shall do any of these things when we have good reason for

doing so, and not otherwise.

Suppose we say that 2| sovereigns are equivalent to 50s.,

we arrive at the result by multiplying 20 by 2^, that is first

by 2 and then by
J,

and adding the separate results. It

would be a nuisance to be obliged to say that we multiply

20 by 2 and divide 20 by 2 and add the results, though it

would be quite true.

The fact that the half of 20 is 10 may be written if we like,

thus : I X 20 = 10 ; or, of course, ?^ or 20 -f 2 = 10
;

^ of 24 = 8 may be written i x 24 = Y- = 8 ;

^ of ^ may be written
-I
x ^ = ^ ;

and that the half of the third of an apple or ribbon is a sixth

of the apple or ribbon is easily verified by experiment. An
experiment need not always be performed; after a time it

can be vividly imagined, with advantages on the side of clear-

ness of apprehension.
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The natural word to use for taldng the fraction of a thing

is the word '' of," like the half of an orange or a quarter of

a pound or one-sixth of the revenue ; and we shall gradually

find that in all arithmetical cases the word "of" has to be

interpreted as an instruction to perform the operation denoted

by X , that is to say, the operation we have been accustomed

to call multiplication.

Practical remarks on the treatment of fractions.

It so happens that the multiplication of vulgar fractions

is easier than addition and subtraction, and so it may take

precedence. One half of one quarter is one eighth : as can

be found by concrete experiment, for instance on an apple,

or by looking at the divisions on a 2-foot rule.

^"'^T — S — ^^T
1 r>f 1 _ 1

1 nf 3 — 3

T "^ s — s^ > 1 ^'^ y ~ Tsi :i °^ "S - SS-

Such a statement as the last must be, and is, led up to;

and gradually the empirical rule can be perceived, that in

multiplication of fractions the numerators must be multiplied"

for the new numerator, and the denominators must be multi-

plied for the new denominator.

[But initial difficulties and confusion must be expected

between this and the addition of fractions. Thus, for

instance

:

3 7 _ 24 + 28 _ 52

i"*"!
" 32 ~ 32'

This is set down here as a warning.

The greatest difficulty in dealing with fractions is felt as

long as they are abstract. "| of whatV is constantly or

should constantly be asked by a child. In the above two

sums the answer to this question would be different :

—
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In one it is | of a fraction, viz. | of | of a unit, such as a

foot, that has to be found. In the other it is j of one foot

which has to be added to | of another.]

It is convenient to ascertain and remember that -g- + 1-

[whereas ^ of ^ = y^J > ^^^° *^^* t + tV = i> °^ i " i^ = T-

Exercise.

Find the third plus half the third of eight. The answer is

4, but the decimal notation confuses the matter

:

^ of 8 is 2-6666... and half this is 1-333...

so the sum is 3-9999..., that is 3| or 4.

So also a third + half a third of ten would seem troublesome,

though it results simply in five. But a third + half a third of

a dozen is simple enough, being 4 + 2 = 6. And stlways

I . 1 _ 1
¥ + T — Y-

Division of fractions may be exhibited thus

:

Suppose we have to find what -g- -f f amounts to,

, • ,, seven eighths
^"'^ '' *^"^'

three fifths

seven x five fortieths 7x5 35 75
:X-

three X eight fortieths 3x8 24 8 3'

wherefore instead of dividing by f, we find we may multiply

The idea underlying the above process is that things called

eighths have to be divided by things called fifths, and that

to make it possible they must be expressed in the same

denomination, which in this case is fortieths. Thus we get

the rule, invert the divisor and multiply. Or otherwise

expressed : to divide by a number multiply by its reciprocal.

Division by ^ is the same thing as multiplication by 2. The

symbol -f J is equivalent to the symbol x 4.
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Further consideration and extension of the idea of

subtraction.

If a man gains £21. 6s. 5d. and loses £15. 4s. 4d., his nett

gain is found by subtraction, and is called the "difference," viz.

£G. 2s. Id. ; the total money which has changed hands being

the " sum," viz. £36. 10s. 9d. A loss may be called a negative

gain ; thus a gain of £10 minus £6, would mean a gain of

£10 accompanied by a loss qf £6, or a nett positive gain of

£4. This leads us to discriminate between positive and

negative quantities, and to regard subtraction as negative

addition. Subtracting a positive quantity is the same as

adding an equal negative one.

Geometrically it is sometimes convenient to discriminate

between the journey A to B, or AB, and the journey B to A,

or BA, just as a French-English dictionary is not the same as

an English-French dictionary. When expressed numerically

a length AB may be denoted by its value, say 3 inches, or

3 miles ; and the reverse journey may be denoted by - 3

inches or - 3 miles, because this when added to, or performed

subsequently to, the direct journey, will neutralise it and

leave the traveller where he started. The two opposite signs

cancel each other in this sense, and the two quantities added

together are said to amount to zero algebraically—that is

when their signs are attended to, and as regards the end
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result only ; but the traveller will himself be conscious that

although he is where he started from, he has really walked

6 miles; so that for some purposes such quantities may be

added, and they are then said to be "arithmetically" or

better " numerically " added ; for other purposes they are to

be "numerically subtracted," or, as it is called, "algebraically

added," that is with their signs attended to, and with "minus"

neutralising an equal "plus."

If a height above sea level is reckoned positive, a depth

below may be reckoned negative ; so that a well may be

spoken of either as 60 feet below or as - 60 feet above the

sea level.

The latter mode of specification sounds absurd, but one

should gradually accustom one's self to it, for practical pur-

poses later on.

If children feel a diflBculty with these negative quantities,

as they have every right to, they can be accustomed to them

gently, as a horse to a motor car. Mathematicians found

some difficulty with them once upon a time, so the difficulty

is real, though like so many others it rapidly disappears by

custom. Debts, return journeys, fall of thrown-up stones,

losings, apparent weights of balloons or of corks under water,

dates of reckoning B.C., and many other things will serve as

illustrations ; not, however, to be taken all at once.

Time is the one thing that never goes backwards; but

nevertheless intervals of time may be considered negative if

they date back to a period antecedent to the era of reckoning.

In a race, for instance, it would be an ordinary handicap

if one of the competitors was set 12 yards behind scratch, or

if he was made to start from scratch 3 seconds late. In either

case he could be said to have a negative start.

In golf handicaps it is customary to denote these positions

behind scratch as positive, because they are added to the
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score. This is because the object in golf is to get as low a

score as possible, not a high one as at cricket.

Addition and subtraction of negative quantities.

Suppose a man inherited a lot of debts, his property

would be diminished by their acquisition. The addition to

it would be negative, and would be indistinguishable from

subtraction.

A debt of £300 added to a possession of £500 would result

in nett property of £200 ; which we might express by saying

that - 3 + 5 = + 2.

Or of course the debt might exceed the possession and

leave a balance of debt. For instance -8 + 5 = - 3 ; where

the unit intended by these digits might be a hundred or a

thousand pounds. This may be taken as an illustration of the

gain of a negative quantity. Take another.

An axe-head at the bottom of a river weighs 3 lbs. Some
corks, which, when submerged, pull upwards with a force

equal to the weight of 49 ounces, are attached to the mass

of iron. Its weight is thus more than counteracted, and it is

floated upwards with a force equal to the weight of 1 ounce,

because 48 — 49 = — 1.

A raisin at the bottom of a champagne glass, or a speck 6t

grit in a soda-water bottle, can often be seen to accumulate

bubbles on itself till it floats to the surface and gets rid of

some, when it sinks again, and so on alternately.

The negative or upward weight of the corks, or of the

bubbles, counteracts and overbalances the positive weight of

the iron or of the fruit. It may be said that we have sub-

tracted more weight from it than it itself possessed, and so

left it with a negative weight—like a balloon. The weight

of a balloon is not really negative, but it superficially appears

to be ; because the surrounding air buoys it up with a force
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equal to the weight of the air it displaces, which represents a

greater weight than its own.

When we have to subtract a bigger number from a smaller,

we must not always merely say we cannot do it. It is con-

venient in subtraction sums to say so, and to " borrow " from

the digit in the next higher place (i.e. to undo one of the

available packets and bring the contents one step down), so

long as there is something there to be "borrowed," but if we

perceive that at the end of the sum there will be a manifest

deficiency we must proceed differently.

Suppose we were told to collect £8 from a man who had

only £3, we could not really do it; but we might report to

our chief, "if we do we shall leave him £5 in debt to

somebody," which could be expressed arithmetically thus

:

3 - 8 = - 5.

Suppose we were told to pull 5 feet of a gate-post out of

the ground, and when we came to try we found that it had

only 2 feet buried; we might at first say that it could not

be done ; but on second thoughts we could say that it was

hard to do, and that the only plan we could see would be to

pull it minus 3 feet out first, that is to get a mallet and drive

it 3 extra feet in, before pulling at it at all.

Suppose a stone were 30 feet above the ground, and we
were told to drop it 36 feet, that is to subtract 36 feet from

its height of 30 feet. It would not be easy to do, but it

could be done, for we might dig a hole 6 feet deep; or it

might even be sufficient if we dropped it over a pond of that

depth. In either case it would afterwards be 6 feet below

the surface of the ground, for 30 - 36 = - 6 ; it would then

be at an elevation of - 6 feet, which means the same as a

depression of 6 feet.

To speak of a depth of 6 feet as a negative height, in

ordinary conversation, would be absurd ; but to interpret aa
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arithmetical answer, which gives a height as - 6 feet, to mean
that a thing is not elevated at all but is depressed 6 feet,

would be quite right and in accordance with commonsense.
Hence the following examples are correct

:

4- 9 = - 5

17- 39 = - 22

546-827 = -281

But now here is a necessary caution. Take the last case.

We see that it is right, for if we add 281 to 546 we get 827

;

but suppose we had put it down like an ordinary subtraction

sum and noticed nothing wrong with it, it would have

looked like this

546
827 (example of the way Twt to do it).

- 319

We should have said in the old-fashioned way 7 from 6 we
cannot, so borrow 10 from the next place; 7 from 16 is 9, put

it down. Now we have either 2 from 3, or what is more

commonly said, and comes to the same thing, 3 from 4,

leaving 1, which we put down; and then we have to take

8 from 5. There is nothing more to borrow, so we must set

it down as - 3. Well that is not wrong, but it requires

interpreting, and it is not convenient. The mmus sign only

applies to the 3, which, being in the third place, means 300

;

the other figures, the 19, were positive. Hence the meaning

is -300 + 19, or in other words -281. It might be written

319, with the minus sign above and understood to apply only

to the digit 3, but it could not properly be written - 319.

The above is therefore a very troublesome way of arriving

at the result. The convenient way is not to begin performing

the impossible subtraction, but to perceive the threatening

dilemma, and invert it at once; then subtract the smaller
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number from the bigger in the ordinary way, labelling the

result however as negative. This is of course what we really

do when we say 5 - 8 = - 3. We do not begin saying " 8 from

5 we cannot, so borrow" from nowhere, for there is nowhere

to borrow from. We stop, invert the operation, and record

the result as negative ; because a-h — - (b-a).

One more case we must take however, viz. where the

quantity to be subtracted is itself negative : and its subtrac-

tion therefore represents a gain. The loss of an undesirable

burden was esteemed by Bunyan's Pilgrim to be a clear gain.

A negative subtraction is a positive addition.

6-(-3) = 9; 7-(-9) = 16.

This is sometimes expressed by saying that two minuses

make a plus. The effect of a minus is always to reverse the

sign of any quantity to which it is prefixed, so if applied to a

negative quantity it turns it into a positive quantity. It is

equivalent to more than the removal, or subtraction, of a debt,

which would be effected by an equal sum added. A loss is

more than neutralised by a negative sign, it is reversed.

Add -31 to 114, the result is 83; but subtract -31 from

114, and the result is 145.

No more words are necessary. Familiarity and practice

will come in due course as we proceed. A surviving puzzle

may occasionally be felt, and can from time to time be

removed. It is a mistake to hammer at a simple thing like

that till it becomes wearisome ; for trifling puzzles or foggi-

nesses evaporate during sleep, and in a few years have

automatically disappeared, from children properly taught.

They continue to trouble too many adults at present.
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Generalisation and extension of the ideas of multi-

plication and division to concrete quantity.

The idea of multiplication arose as a convenient summary

of a special kind of addition, viz. the addition of several

things of the same magnitude to each other. Thus four sixes

added together, if counted, make 24, and so it is summarised

and remembered as 4 sixes are 24, or 4 times 6 = 24; and 4

and 6 are called ' factors ' of 24.

Originally therefore the two factors in multiplication

signified, one of them the size of the quantity of which several

are to be added together, and the other the number of times

it was to be so added.

Thus 3x6, read 3 times 6, meant a summarised addition

sum, 6 + 6 + 6. But if read 6 times 3 it meant the addition

sum 3 + 3 + 3 + 3 + 3 + 3. That the result is the same may be

treated as a matter of experience, and may be demonstrated

by grouping, but it is not to be regarded as .,.,,.
self-evident. Nevertheless the diagram (fig. 2)

demonstrates that 3 rows of 6 each is the ••••••
same as 6 columns of 3 each. And the

counting of window panes and postage

stamps are illustrations of practically the

same thing.

Thus we get led to the area of a

Fia. 3. rectangle of length a and breadth b as

fls X 6, or briefly written ab (fig. 3).

a
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But the idea of multiplication soon generalises itself, and

the expression ab gets appUed to a number of things to which

a simple numerical idea like 3 times 6, or a times b, would

hardly apply.

It may be worth showing however that the numerical

notion will apply further than might have been anticipated,

for instance the rectangle (fig. 4) is built up of 5 equal staves

each of them say 3 inches long and an inch wide. The area

of each stave is thus 3 inches x 1 inch, or 3 square inches.

And by adding 5 of the staves together (or multiplying one

of them by 5) we get the total area.

Fig. 4. Fia. 6.

And the same area could be equally well obtained by

putting together 3 staves each of 5 square inches area (fig. 5).

The number 12 can be resolved into two factors 3 and 4, as

is shown by the annexed group which consists of 3 rows of

four dots each, or of 4 columns of 3 dots each, proving that

3 times 4 — 4 times 3.

Fio. 6. Fia. r.

A dozen can equally well be grouped as in fig. 7 : its large

number of factors confers distinction on the number 12.

The number 10 has only two factors, viz. 2 and 5, since

the name "factor" is usually limited to whole numbers. It is

possible to say that 3^ is a factor of 10, because if it be
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repeated 3 times the number ten results ; as is shown by the

following set of 3|- disks repeated 3 times, where the central

sectors have each of them an angle 120° or /-^

1^ of a revolution, and so make up a disk q
when put together. But the name " factor

"

q
is not usually applied to fractions. O O O ®

Agaia, a slab of any given area and unit Q
thickness will have a bulk which, measured O
in cubic inches, is numerically equal to its Q
area in square inches. If such a slab is mul- ^°- ^

tiplied or repeated, each slab being piled up on similar ones,

say 7 times, then 7 times its bulk will give the volume of a

rectangular block ; or the volume of a block may be said to

be obtained by multiplying its length, breadth, and height.

There is no reason to take one of these factors as numerical

more than another, and the truth is that none of them need

be numerical.

When we say volume = Ibh, or length x breadth x height,

we may and should mean by I the actual length,

by b „ „ breadth,

and by h „ „ height,

—not the number of inches or centimetres in each—and the

resulting product is then the actual volume, and not any

numerical estimate of it. [If anyone disagrees with this

they are asked to withhold their disagreement for the present.

This is one of the few things on which presently I wish to

dogmatise. See Chap. XXVI. and Appendix II.]

From this point of view the symbols of algebra are concrete

or real physical quantities, not symbols for numbers alone, and

algebra becomes more than generalised arithmetic.

In such eases however the old original definition of multipli-

cation requires generalisation, and a good deal can be written

on it ; but no difficulty arises, and the question, being inter-
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esting chiefly from the philosophic point of view, does not in

this book concern us.

We may proceed without compunction to multiply together

all sorts of incongruous things if we find any convenience in so

doing. Thus, a linear foot multiplied by a linear foot gives a

square foot,

6 feet X 3 feet gives 18 square feet,

4 feet X 3 feet x 2 feet gives 24 cubic feet.

In all these cases something real and intelligible results

;

but if we multiply square feet by square feet, nothing intelli-

gible results ; consequently such a process will never appear

in a correct end-result, though we shall find that it often

appears as a step in a process without any detriment.

Again we may multiply a weight by a length, say 3 lbs. by

7 feet, and get what is called 21 footlbs., where the unit has

a meaning which can be interpreted, viz. the work done in

raising a 3 lb. weight 7 feet high against gravity, or else the

moment of a force round an axis. But if we try to multiply

3 lbs. by 7 lbs., we should get 21 square lbs., which has no

intelligible meaning and is nonsense. There is nothing in the

symbols to tell us whether it is sense or not : operations can

be consistently performed even on meaningless symbols.

To discriminate sense from nonsense, appeal must be made

to reality and to actual life and instructed experience.

Division is merely the inverse of multiplication, and similar

considerations apply to it.

If we divide 1 by any quantity we get what is called the

reciprocal of that quantity.

Thus ^ is the reciprocal of 2. ^ is the reciprocal of 10.

-7—- is the reciprocal of a length, and could be read
O l66u

1 per yard.
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fiO--— -5- might represent the number of telegraph posts

per mile.

-J J is the reciprocal of a time, and might be read
^^ 'once every tenth of a second'; or it could be

simplified into a repetition of something ten

times a second, or 10 per second. It is what

is called a ' frequency,' and is in constant use for

vibrations.

is a slow frequency, the frequency with which

a cycle of astronomical eclipses approximately

recurs.

19 years

6000 revolutions
is a frequency of rotation, as of the fly-

5 minutes

wheel of a small engine, and may be read as

1200 revolutions per minute, or 20 revolutions

per second.

If we divide a length by a time, as for instance

° ^iles
^ ^e get a velocity; e.g. the speed of an express

1 hour i •i iiuui
tram.

is exactly the same velocity.
1 second

™"^^
or approximately -S^Ll. is a walking pace.

1 hour ' ^^ '1 second

No hesitation miist be felt at thus introducing the units

into the numerator or denominator of fractions. If they are

left out, the residue becomes a mere numerical fraction, the

ratio of two pure numbers ; whereas with the units inserted

they are real physical quantities with a concrete meaning, and

are capable of vaJ-ied numerical specification.
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Thus the velocity of sound in air at the freezing point is

1090 feet 33000 centimetres 1 mile
or 5 3 or

1 second 1 second 5 seconds

•33 kilometres 1 kilometre „„^„„ •„„+„i„
or — =— or -^

i— approximately
1 second 3 seconds

10 minutes' walk 240000 miles

3 seconds a fortnight

First idea of involution.

When a number of the same things were added together

many times, the process was specially treated and called

multiplication. When a number of the things are multiplied

together several times, the process is likewise worthy of special

treatment, and is called " involution " or the raising of a thing

to a certain " power."

The raising to a power is compressed or summarised multi-

plication. The expression 4x3 meant four added to itself

3 times (or 12), whereas 4^ is understood to mean 4 multiplied

by itself 3 times (or 64).

So 25 = 32, 63 = 216,

103 = 1000, 106 = a million,

122 _ 144^ aud can be read 12 square, for short ; though

really a square number is an absurdity. It is called " twelve

square" because if the 12 represented inches, 12^ would mean

a square foot.

If a is a length, (^ is truly a square whose side is of length

a, and a' is truly a cube whose side is of length a. So 4^ is

read " 4 square," and 6' is often read " six cube," by analogy.

It is also true that 2* = 16, but here there is no geometrical

analogy, and it is read " 2 to the fourth power '' simply, the

word " power " being often omitted in practice. Similarly a

million is "ten to the sixth" or lO^.
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A length divided by a time is a velocity (v), and a velocity

divided by a time is an acceleration (a).

V
« = -.

So in mechanics we find such an expression as

s = ia<2,

where f^ is often read as the square of the time, although

strictly speaking such an expression is nonsense. We can

have a square mile, but not a square fortnight; there is no

meaning to be attached to the term ; time cannot be multi-

plied by time with any intelligible result. Whenever such an

expression occurs, it is to be understood as an abbreviation

for something : in the above case for this

s = ^(af)t,

where the at is v, and is a real and simple physical quantity.

s is a velocity multiplied by a time, and the double

reference to time is caused by the introduction of the specially

defined quantity "acceleration,"' which is often expressed

correctly as so many feet per second per second; the two

units of time in the denominator being conveniently spoken of

as the square of the time—by analogy with geometry again

—

without thought and without practical detriment, though

confusing to anyone who seeks a real philosophic meaning in

the expression.
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Factors of simple numbers.

A CHILD should be encouraged who notices that no factor is

ever greater than half the number; for though there is nothing

in that but what is obvious, yet that is the type of noticing

which frequently leads to observations of interest. An even

number always has this largest factor, but an odd number

can never have a factor greater than a third its value ; and

frequently its largest factor is less than this. Some numbers

have no factors at all; like 7 and 11 and 13 and 29 and 131.

These are called prime numbers, and a child should make a

small list of them as an exercise. But do not attempt to

make it learn them or anything of this kind by heart. Ease

and quickness of obtaining when wanted is all that is

practically needed.

A child should be encouraged to discover criteria for the

existence of simple factors; but is hardly likely to be able

to notice the facts without aid.

Any number (written in the decimal notation) which is

divisible by 3 (i.e. which has 3 as a factor) has the sum of its

digits also divisible by 3. But this, though convenient as a

rule, is in no sense fundamental : it depends merely on our

habit of grouping in tens. In the duodecimal system every

number ending in would necessarily be divisible by 3 as well

as by 4 and by 6 ; and extremely convenient the fact would be.
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For instance, 1/- and 2/- and 4/- and 5/-, or any number of

shillings, can be divided by 3, 4, or 6; that is, can be parcelled

out exactly into a whole number of pennies.

By reason of the system of reckoning 12 pence to a

shilling, any sum of money can be subdivided into three or

six equal parts without halfpence or farthiQgs ; thus J of a

pound is 6s. 8d., two-thirds is 13s. 4d., one-sixth is 3/4, one

8th is 2/6, and one-twelfth is 1/8.

In the decimal notation a number has to end in 00 in order

to be certainly divisible, by 4 ; and in 000 in order to be

certainly divisible by 8. And the division is seldom worth

doing even then, because it hardly results in simplification.

The number 5 in the decimal system has an artificial sim-

plicity conferred upon it, but it is not often that we should

naturally group things in 5, except for the accident of our

5 fingers : and one of them is a thumb.

The advantage of working in at least two different scales

of notation is that it becomes thereby easy to discriminate

what is essential and fundamental from what is accidental

and dependent on the scale of notation employed. Thus the

curious properties of the number nine or eleven are artificial,

and in the duodecimal scale are transferred to eleven and

thirteen respectively.

The well-known criterion for divisibility by 3 or 9, viz.

whether the sum of the digits is so divisible, is accidental

again, and disappears in another scale of notation—for instance

when units are grouped in dozens instead of tens,—to give

place however to a much simpler rule.

The rule about divisibility of the sum of the digits applies

to eleven in the duodecimal scale, and indeed would always

apply to the number which is one less than the group number

artificially selected.

But the existence and identity of, pfiwe njunbets is not
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accidental at all, but fundamental, and so also is the existence

of any given numbers of factors to a number—^however it be

specified.

Thus one gross can be parcelled out into factors or equal

groups in a given number of ways, whether it be denoted by

1/0/0 or by 144 or by any other system of notation.

So also the number one-hundred has only six factors

whether it be denoted by 8/4 or by 100 (one nought nought),

and its factors are (in the duodecimal scale)

:

4/2 2/1 1/8 t 5 2,

that is these actual numbers, however they are denoted. In

the duodecimal scale it is needful to have single symbols for

ten and eleven ; and the initial letters serve the purpose.

An actual number is easily exhibited by means of counters

or coins or marbles : its expression in digits is an artificial

arrangement and is adopted simply for convenience : it is

analogous to sorting the marbles into bags of which each

must contain an equal number—whatever number may be

chosen as suitable and fixed upon for the purpose.

It may be interesting to write down the numbers in the

duodecimal scale which would be divisible by 5.

5, t, 1/3, 1/8, 2/1, 2/6, 2/e, 3/4, 3/9, 4/2, 4/7, 5/0, ...,

and the even numbers in the above are divisible also by ten.

The above numbers should be read five, ten, one and three,

one and eight, two and one, two and six, two and eleven, etc.,

meaning one dozen and three, one dozen and eight, two dozen

and six, two dozen and eleven, etc.

Numbers which have the factor 7 are

7, 1/2, 1/9, 2/4, 2/e, 3/6, 4/1, 4/8, 5/3, 5/t, 6/5, 7/0, ....

and the even ones are divisible also by fourteen.

Numbers which have the factor eleven (e) are

e, lit, 2/9, 3/8, 4/7, 5/6, 6/5, 7/4, 8/3, 9/2, t/l, ejO, ...,
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namely eleven, one and ten, two and nine, and so on : the

last one written being read eleven dozen.

Numbers divisible by thirteen (1/1) are

1/1, 2/2, 3/3, 4/4, 5/5, 6/6, 7/7, 8/8, 9/9, tjt, e/e, 1/1/0, ....

In the last two cases a law or order among the digits is

manifest, but in all four cases it may be noticed that every

digit makes its appearance in the units place, though only in

the last two cases do they appear in a simple order.

Numbers divisible by 3 are

3, 6, 9, 1/0, 1/3, 1/6, 1/9, 2/0, 2/3, 2/6, 2/9, 3/0, ....

and the even ones are divisible by 6. Every third one of the

above series, viz. those in thick type, are divisible by 9.

Numbers divisible by 4 are

4, 8, 1/0, 1/4, 1/8, 2/0, 2/4, 2/8, 3/0, 3/4, 3/8, 4/0, ....

Alternate ones are divisible by 8, and those in thick type

are divisible by sixteen.

Numbers divisible by twelve, that is arrangeable in dozens,

are of course,

1/0, 2/0, 3/0, 4/0, etc., 1/0/0, ...,

the last written being the symbol for a dozen dozen or one
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Dealings with money and with weights and measures.

In the BritisK Isles it is customary to count pennies by the

dozen, the value of which when coined in silver is called a

" shilling
"

; and shillings are counted by the score, the value

of which is called a " pound sterling," or when coined in gold

a "sovereign." Five dozen pence, or a quarter of a pound

sterling, when in a single silver piece used also to be called a

"crown." And these, together with the half-sovereign, half-

crown, half-penny, etc., are the chief names in vogue ; except

the " guinea " and the " farthing," neither of which need much
concern us. The " florin " is an attempt at a decimal coinage,

being the tenth of a pound; and the double-florin is an

attempt at an international currency or equivalence with the

dollar and the iive-franc piece.

The addition of money is a practical operation in constant

use, and plenty -of practice in addition is obtainable by its

means. No other addition sums are worth attention for their

own sake : but in addition of money it is worth while taking

pains to acquire a fairly quick and accurate style. At the

same time it is to be remembered that it is a purely mechanical

process—one that in large offices is better, more rapidly and

more accurately, performed by a machine, into which the

figures are introduced by pressing studs, and then the addition

performed instantaneously by turning a handle.
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Nothing that can be performed by turning a handle can be

considered an element in a liberal, education : it can only be a

practical and useful art. That however it is
;
partly because

a machine is seldom available, partly because it is i^ominious

to be helpless without a tool of this kind, chiefly because

addition of money is an operation which is called for by

commonplace daily life more often than any other.

Nothing much need here be said about it. The columns

of an actual account book are the best addition sums to set for

practice. Also, in writing figures down, it is well to take

care to place the unit digits under each other, leaving a place

for a left-hand digit whenever such occurs in the pence and

shillings columns, and to be equally careful to write the

pounds with the corresponding places vertical. Also to write

all figures very plainly. This last always, and for all purposes :

A good clear style of figure-writing should be cultivated.

Subtraction of money is greatly facilitated by the use of

the "shop" method : the old-fashioned process of "borrowing"

was troublesome, and moreover only enabled one row of

figures to be subtracted from one row, whereas with the shop

or complementary method any number of rows may be sub-

tracted from another row, and the process is practically only

addition. For instance suppose it is wished to subtract all

the smaller amounts from the larger in the annexed statement:

£ B. d.

341 8 7

less 19 5 9

and 14 3

and 36 17 5

271 5 2

The process is, to say, 5 and 3 and 9 make 1/5 and 2 make

1/7, put down the 2d. and carry 1/-; then 18 and and 5

make 23 and 5 make 28, put down 5/- and carry £1 ; then
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7 and 4 and 9 make 20 and 1 make 21, put down 1 and carry

2; then 5+1 + 1 = 7 and 7 make 14; and finally 1 and 2

make 3. In reading, emphasise all the black figures.

Verify by adding the four lower lines.

As to multiplication and division of money or of weights

and measures we will deal briefly with them : the old-

fashioned practice in such matters was tedious and was

pushed in childhood into needless intricacies. Dulness is

apt to line all this region, unless skill is expended on it and

due care taken, and no more practice should be enforced in

it than is required for ordinary life. Discipline and punish-

ment lessons might possibly with advantage be confined to this

region. Even for punishment it is however hardly necessary

to inflict sums dealing with acres, furlongs, poles or perches

;

or with bushels, pecks, scruples, quarters, pennyweights, and

drams. Hogsheads, kilderkins, and firkins may perhaps at

length be considered extinct, except for purposes connected

with the study of folk-lore. The're are plenty of real and

living units to be learnt in Physics : we need not ransack

old libraries and antique country customs for them. And,

though the humanity involved in and represented by old

names has been a relief to some children, during their dismal

lessons, far too much has been made of the trivial and dull

operations suggested by tables of British weights and measures.

The sooner most of them are consigned to oblivion the

better.

Beal living arithmetic is the same in any country ; and

the most important of all is that which must necessarily

be the same on any planet.

The units that are at present worthy of terrestrial attention

are the following

:

Units of length—inch, foot, yard, mile, millimetre,

centimetre, metre, kilometre.
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units of time—second, minute, hour, day, week
year,

units of area—square mile, square foot, square

centimetre, etc.

units of volume—cubic foot, cubic inch, cubic yard,

cubic centimetre, cubic metre;

occasionally also litres, gallons

and pints,

units of mass—pound, ton (ounce, grain, hundred-

weight occasionally), gramme,

kilogramme, milligramme,

units of money—pence, shillings, pounds, francs,

marks, dollars.

But conversion from one to the other of the last-mentioned

denominations should in every case be only approximata

Accurate work when wanted is done by tables, and the rate

of exchange is constantly varying.

For division of money, and of weights and measures, the

orthodox school rule is called " practice " ; and it sometimes

happens that by excessive practice children are able to do

this kind of sum much better than adults— better even

than mathematicians ; but since school time is limited, such

extravagant facility in one direction is necessarily balanced

by extreme deficiency in many others, and is therefore to be

deprecated. The world is too full of interest to make it

legitimate to exhaust the faculties of children over quite

needless arithmetical gymnastics, which confer no mathe-

matical facility, but engender dislike of the whole subject.

Modern treatment of the rule called " Practice." The
practical advantages of decimalisation.

In old days some very long sums used to be invented for

British children whereby our insular system of coinage and of
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weights and measures was pressed into the service to make

difficult exercises. The form was usually something like this

:

Find the cost of 131 tons 5 cwt. 3 qrs. 24 lbs. 5 oz. at

£4. 13s. 9Jd. a ton.

Mr. Sonnenschein led the way, I think, towards taking all

the sting out of these outrageous problems, and reducing them

to useful though unimpressive and essentially insular exercises,

by introducing the chief advantage of the decimal system into

the working, before it had been embodied by Parliament in

a legal system of weights and measures and coinage itself.

If such sums have to be done, and a moderate amount of

" practice " in that direction is quite legitimate, decimalisation

of at least one of the quantities specified, that is, expressing it

in terms of one denomination, is undoubtedly the proper

initial step to take ; and then if we are asked the cost of so

much goods at a given price, the matter becomes a mere

straightforward multiplication ; while if we are asked to find

the price of a given amount of goods which have cost so much
money, or the amount of goods which can be obtained for a

given sum of money at a given price, we have only a straight-

forward division sum to do ;—once the complication of many
denominations, that is to say the " compound " nature of the

specification, with scales of notation mixed up, is by an initial

process got rid of. It is always possible, and sometimes

advocated, to reduce everything to the lowest denomination,

e.g., in the sum above to halfpennies and ounces ; but that is

terribly long and tedious. Expression in terms of the highest

denomination is much neater. The initial process is as

follows

:

Decimalisation of money.

To express any sum of money in terms of a single unit, say

£1, which is the best unit for the purpose, it is sufficient to
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notice and remember a few simple convenient facts. They
are all painfully insular, and are not an essential part of real

arithmetic at all, but if properly and lightly treated they

afford to British children an amount of easy practice which

foreign children are destitute of. It is only when trivial facts

and insignificant sums are laboured at, till they kill all interest

of the British child in real arithmetic, that they become deadly

and deserving of the harshest epithets.

The decimalisation of money in terms of a pound is easy,

since a florin is the tenth of a sovereign ; so any number of

shillings is easily expressed in decimals of a pound.

2/- = £-1, 1/- = £'05,

3/- = £-15, 6d. = £-025,

4/- = £% 1/6 = £-075,

5/- = £-25, 2/6 = £-125,

6/- = £-3, 3/6 = £175,

7/- = £-35, 4/6 = £-225,

and so on. etc.

A penny is ^^th of a pound, but that is not specially

convenient when expressed as a decimal ; a farthing is -g^th

of a pound, and that is approximately y^nnr o'' £'001.

Since money is never needed closer than to the nearest

farthing, except in the price of cotton per lb. and a few rare

cases, the approximation of £-001, sometimes called a mil, for

1 farthing, or the writing of a farthing instead of £'001, often

suffices ; especially in interpreting results.

The following expressions are all equivalent in value :

|- a sovereign = 10/- = 5 florins = £'5.

So also are the following, each row among themselves :

£7. 10s. = £7| = £7-5 = £7 + 5 florins.

\ oi a ten-pound note = '25 ten-pound note = £2'5 = £2. 10s.

15/- = £f = £-75.
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150/- = 75 florins = .£7-5 = £7. 10s.

18/- = 9 florins = £-9.

12/- = 6 florins = £-6.

£1. 12s. = £1-6.

£4:. 18s. = £4-9.

£7. 19s. = £7-95.

All these expressions should bo read backwards as well as

forwards.

So also

£5. 2s. 6d. = £5-125.

£3. Is. 6d. = £3-075.

£3. lis. 6d. = £3-575.

£3. lis. 6^d. = £3-577, almost exactly.

Take a few examples of the interpretation of decimals of a

pound into ordinary coinage

:

£1-2 = £1. 4s.

£4-25 = £4. 5s.

£7-904 = £7. 18s. Id., the four mils being practically a

penny.

£13-127 = £13. 2s. 6Jd., the -125 being 2/6, and the 2 extra

mils |d.

£1-178 = £1. 3s. 6|d., the -15 being 3/-, -025 = 6d., and

there being 3 mils more.
£-025 = 6d.

£•026 = 6^d. almost exactly.

£-027 = 6|d. „

£-028 = 6|d.

£-029 = 7d.

£-030 = 7|d. „ „ or exactly 7ld.

We are now ready to do any number of sums like the
following

:

Find the cost of 324 horses at £17. 9s. 6d. a horse.

Now 9/6 = 8/- -1-1/6 = £-4h-£-075 = £-475,
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80 tlie answer is merely

324x^17-475 = £5561-9 = £5561. 18s.

Find the cost of 900 things at £9. 7s. 4|d. (Sonnenschein.)

Answer is £9-36875x900 = £8431-875 hy simple multiplication

= £8431. 17s. 6d.

How much a year is £31. 9s. 9d. per day?

Answer 365 x £31-4875 = £11492-9375 = £11492. 18s. 9d.

How much interest must be paid for 43 days' loan of a sum
of £543. 17s. 6d. at the rate of 3| per cent, per annum?

(Sonnenschein.)

Here £3J must be paid for each hundred pounds lent for a

year, so for 43 days only ^j^Wths of that sum has to be paid.

Now 17/6 = 8 florins + 1/6 (or, otherwise, seven-eighths of a

pound) = £-875 ; so the amount to be paid is

:

^x^x£543-875;

that is to say, - x £5-43875.

This yields £2-243 = £2. 4s. lO^d., the answer.

Typical exercises.

There are certain time-honoured exercises of a type such as

the following, in which a fair amount of practice is desirable.

[Type only here given.]

If 3 peaches cost a shilling, what will 20 cost?

If I have to pay 15 workmen at lOd. an hour for 8 hours,

how much money do I need ?

If the butcher supplies 7^ lbs. of meat for 5s., what has he

charged per pound ?
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and so on. The last being a troublesome kind of sum fre-

quently occurring to housekeepers, but usually and most easily

done by tables.*

Examples like these are quite harmless and give needful

practice, but when they become complicated a little of them is

sufficient, except for discipline, and the more concrete and

amusing they can be kept for ordinary purposes the better.

A slight further development, not quite so harmless, is of

the following type

:

Find the cost of 6 lbs. 11 oz. 9 dwt. at 17s. 8|d. per ounce.

In British schools there is far too great a tendency to limit

all exercises to pseudo-commercial matters. In real business

this kind of sum hardly occurs ; and besides, greater interest

can be obtained by opening up fresh ground for the sub-

ject matter of examples.

A few specimens may be here suggested. A great deal of

what has to be laboriously taught later as physics is nothing

but simple arithmetic, and could easily be assimilated uncon-

sciously while doing sums.

1. If the sound of thunder takes 10 seconds to reach our

ears, how far has it come 1 (See p. 56 for velocity of sound

:

it travels approximately a mile in five seconds. For more

accurate specification the temperature would have to be known.)

* Answers to these sums are as follows : Each peach costs the third

of Is., so twenty peaches will cost the third of £1, or 6s. 8d.

The 15 workmen's wages will amount to £5, since 80d. is the third

of a pound.

The price is 8d. a lb., since 7Jd. doubled three times makes 60d.

or 5s.

But it will be observed that in each case some accidentally convenient

relation is seized and utilised. That is the essence of mental arithmetic:

it is a training in quickness and ingenuity, not in mathematics ; and its

merits can be appraised accordingly.
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2. If a pistol shot is heard across an estuary 15 seconds

after the pistol was fired (which can be told by observing the

flash), how wide is the estuary 1

3. If light reaches the earth from the sun in 8 minutes,

what is its velocity? (The distance of the sun being 93

million miles.)

4. How long does it take to come from the moon 1

5. How long would it take to travel a distance equal to

seven times the circumference of the earth ?

6. If it takes 5 years to arrive from a star, how far off is

that star 1

7. If a locomotive could be run 60 miles an hour day and

night, how long would it take to go round the earth ?

8. How long to reach the sun ? etc.*

Answers should be given in weeks or years or whatever

unit is appropriate and most suggestive. This is a good rule

always, and is the real use of units to which people are accus-

tomed. Conversion of miles into inches is tedious and use-

less : but stating a big result in miles, a small result in

inches, and a moderate result in feet or yards, is right and

illuminating.

Answers :

1. 2 miles.

2. About 3 miles.

3. 93 million miles -^ 8 minutes

93000
. -^—-i^ thousand miles per second
8x60 ^

; -tj^ = nearly 194 thousand miles per second.

4. About a second and a half.

5. About 1 second.

6. 5 X 365J X 86400 x 194,000 miles.

7. Nearly 17 days.

8. About 180 years.
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9. If a pistol shot fired in a valley, at a spot which is

distant from the summit of a mountain by an amount which is

represented by a length of 4 inches on an ordnance map of

scale 1 inch to the mile, is heard on that mountain top 25

seconds after the flash, how high is the mountain above the

valley ? (Ans. : 3 miles.)

This is perhaps hard: it can be done by drawing and

measuring, after it has been perceived that the sound has

travelled 5 miles in a straight line.

10. If a motor car is travelling 21 miles an hour, how long

will it take to go 100 yards 1

Ans. : 9 "74 or 9| seconds.

11. If the estimate of time were f second out, what error

would be made in reckoning the speed from the measured

distance ?

Ans. : f sec. is /^th of -^/ sec, so the error in estimate of

speed would be about

f1^ miles an hour, or about 7^ per cent.

12. If a volunteer corps of 84 members shoots 160 rounds a

day each for 5 weeks, and if each bullet weighs f of an ounce,

what weight of lead will they have expended 1

13. If each bullet needed one halfpennyworth of powder to

propel it, and if lead cost 17/- a cwt., what would be the cost,

in powder and shot, for a regiment of 12 such corps, in the

course of 5 weeks'?

14. If an iron rod expands J per cent, of its length when
warmed 200 degrees, what allowance must be made for the

expansion of a bridge girder, | mile long, between a winter

temperature of - 40° and a summer temperature of 110° ?

15. With the above data how much will an iron rod a foot

long expand if warmed one degree 1

16. If a snail crawl half an inch each minute, how far will

it go in 3 hours 1



VII.] PROBLEMS. 73

17. If sound goes a mile in 5 seconds, how long would it

take to go a foot 1

18. If sound reverberated between two walls 10 feet apart,

how many excursions to and fro will it make per second 1

19. If light takes 8 minutes to travel 93 million miles, how
long would it take to go one yard? How many kilometres

would it travel per second? How many centimetres per

second ?
*

* Answers to the above :

12. 84 X 160 X 35 X J ounces = about 10 tons.

13. In shot, about £170 ; since a shilling per cwt. is a pound per ton.

In powder, 84 x 160 x 35 x J pence = 7 x 80 x 35 shillings = 28 x 35

pounds per corps.

14. The range of temperature is 150°; for this range iron expands |

of i per cent, of its length ; that is,

3 ., 9x1760. , 990 ,„„„., . i ie • i, .

r6"ir80o
"•''" = lelTioo

*^^* = 800 = ^'23'^ **"* ""^ '""'^'^'y ^^ ""'^''-

15. 2^*'' °^ i V^^ cent, of its length ; which is
g o o o o

^^ °^ * ^°°^'

or •0000125 expansion per unit length per degree ; which is about the

right value for iron.

17. 1 second -^ 1056, or about the thousandth of a second.

18. In each excursion to and fro it will have to travel 20 feet ; but it

can travel 1056 feet in a second, therefore it has time to make 52'8

excursions per second. If the walls were only 2 feet apart instead of

ten, the rate of reverberation would be 5 times as rapid, and would

correspond to the note /k i
— This therefore is the musical notefe

heard if a short sharp noise, like a blow or clap, be made between two

walls two feet apart.

19. To travel 1 mile, light would take 8 minutes 4- 93 million ; there-

fore to travel 1 yard it would take l/1760th part of this.

Ans. : -— = = _—- millionths of a second.
93x1760 31x110 341

Light travels 300,000 kilometres per second or 3 x 10'° centimetres

per second ; as nearly as experiment at present enables' us to say.
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20. If you buy a large number of oranges at three a penny,

and an equal number at two a penny, and then sell them all at

five for twopence, how much have you lost on the transaction?

(Ans. : a penny for every 5 dozen sold.

The buying price per couple is ^d. + ^d.

;

2
the selling price per couple is —d.

So the loss per couple is| + J-y = |--f = ^d.)

There are many ways of doing this problem, and it should

not be left till it is fully realised. Other problems depend

on the same principle, which is an important one. For

instance

:

21. An oarsman rows a boat a certain distance up a river and

back, and then across the river, or on a lake, the same distance

and back. Which will be the quickest to and fro journey?

22. If a steamer travels down a river at a rate of 19 miles

per hour, and up the same river with the same engine-exertion

at 7 miles an hour, what is the speed of the river ? How long

would the steamer take to go a journey of 65 miles and back ?

(Ans. : The speed of the boat in stagnant water is the

half-sum, viz. 13, the speed of the river is the the half-

difference, viz. 6 miles per hour. The journey of 130 miles

would take ten hours in stagnant water, but up and down
the river it will take nearly thirteen hours.)

The general principle is that whereas (1 -i- a;) -f- (1 - a;) = 2,

1 1

1+x 1 -X
does not equal 2

but does equal s, which is greater than 2; though not

much greater when z is small. This applies to (20) (21) and (22).

23. If a couple of travellers sharing expenses are found to

be out of pocket in the course of the day, A, £2. 4s. 6d., and
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B, £\. 3s. 4d,, what sum must be transferred from one to the

other to equalise matters "i

(Ans. : Half the diflference, viz. 10s. 7d. ; and the cost to

each has been half the sum, viz. £1. 13s. lid.)

24. If three travellers on a tour have expended when
they return

^ £17 . 4 . 6

B J4 . 3 . 2

C £7.5.4
how can they best arrange to share expenses equally 1

{Ans. Find the mean expenditure by adding the items

together and dividing by 3; and then take the difference

between this mean and the expenditure of each. B and G
will then have to pay their respective differences to A. Their

two deficiencies from the mean, added together, should equal

A's excess expenditure over the mean ; if this is not the case

a mistake has been made.)

The same rule would apply to any number of travellers.

Observe how it works for the couple of last question.

These exercises do not contain examples of so many quarts,

pecks, pennyweights, and drams. Such sums have no business

to occur. If artificial complexities of that sort are set, any

way of dealing with them will do : the simplest way is the

best way.

If a pupil is constrained to bethink himself of how the

teacher intends him to do a sum, it destroys originality. His

effort should always be devoted to find the best and simplest

way. This a teacher can help him to find, but a self-found

way is more wholesome in many respects than a coerced way,

even though the latter is neater. Originality should always

be respected : it is rather rare. Perhaps docility is made too

much of, and budding shoots of originality are frozen.
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Binary scale.

Although the natural method of dealing with multiples of

a unit is to employ the same system of notation as is in vogue

in arithmetic, and although therefore it is natural to specify

large numbers of things by powers of ten, there is a natural

tendency also to deal with fractions on a different basis, viz.

to proceed by powers of ^. We see this on a foot rule, where

the inches are first halved, then quartered, then divided into

eighths, then into sixteenths, and sometimes even into thirty-

second parts of an inch.

The same method of dealing with fractions is found in

prices, as for instance of cotton, or any commodity which

requires a penny to be subdivided. Below the halfpenny and

the farthing we iind the eighth, sixteenth, thirty-second, and

sixty-fourth of a penny in use for quotations; and these

ungainly figures are, or used to be, even telegraphed and

automatically printed on tape. So also a carpenter will

understand a specification in sixteenths of an inch, while a

decimal subdivision would puzzle him.

A thousandth of an inch is sometimes used however in

fine metal fitting work, and the thickness of a rod wanted

may be specified to a fitter as the thousandth of an inch

greater than 2^-^ inch.

These peculiarities are insular and not to be encouraged,

having originated in laziness and ignorance ; but they are

not nearly so bad as the weights and measures which people

who ought to know better still require that children shall

be taught.

It is quite possible to word arithmetic itself on the binary

scale, counting in pairs only ; thus 10 (read one nought) may
be understood to mean 1 pair; 100 may mean 1 pair of pairs

(or 4), 1000 on the same plan will mean 2x2x2 or eight,

and so on. And on this scale "1 would mean J,
'01 a quarter.
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•001 an eighth ; so that one and a quarter plus an eighth

would be written 1"011.

The natural tendency to this kind of subdivision is apparent

in coins, even in countries with a decimal currency. For

instance in America you find the half and the quarter dollar,

beside the dime and the cent. In France you find the double

franc, franc, half-franc, and quarter-franc. So in Germany we
have as a drink-measure the halb-liter and viertel-Uter. And
in England we have half-sovereigns, half-crowns, also three-

penny bits, sixpences, shillings, florins, and double florins,

each double the preceding; the double florin being roughly

equivalent to a dollar or to a five-franc piece.

So also the commonest gold piece in France is the Napoleon

or 20-frano piece; not the ten-franc, or the hundred-franc

piece, though they both exist.

This natural tendency is the chief difficulty in introducing

a purely decimal coinage ; another is the convenience of the

penny and the shilling. If a decimal system is to be intro-

duced, one or other of these coins must give way. If the

shilling gives way, we can have an approximation to the franc,

and much inconvenience or grumbling in connexion with cab

fares, etc. If the penny gives way, and is made the tenth

of a shilling, we approach closely to the German system;

and many commodities used by poor people will automatically

rise in price.

In Austria an attempt is being made to replace the gulden

and kreutner by their respective halves, called krone and heller,

which correspond approximately with the franc and centime

;

but the older denominations persist, and it is quite likely that

the two will co-exist and be convenient.

It may be asked " why mention these things in a book of

this kind "
1 And the answer is because children can take an

intelligent interest in them, and because it is instructive for
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them to realise that our present coinage is not a heaven-sent

institution, but is susceptible of change,—change too in which,

when adult, some of them can take their part, either in pro-

moting or opposing. There is therefore a reality about these

things, and arithmetical ideas can inculcate themselves in

connexion with them without labour.

Decimal system of weights and measures.

Although the present division of money is so deep-rooted

that decimal coinage is difficult of introduction, and although

the decimal system in arithmetic is not the best that could

have been devised
;
yet its advantages over most other systems

are so enormous that in connexion with weights and measures

it undoubtedly ought speedily to be introduced.

The first and easiest place to introduce it is in connexion

with weights. No one really wants to reckon in ounces and

pennyweights and grains and scruples and drachms. Ounces

used to be perpetuated and popularised by the Post Office

regulations; but now that a quarter of a pound will go

for a penny, and, under certain restrictions, an eighth of a

pound for a halfpenny, the necessity for ounces has really

disappeared. It would be quite easy to make the halfpenny

postal regulations refer to a tenth of a pound instead of

an eighth, and to construct ten-pound weights, hundred-

pound weights, and their convenient doubles and halves and

quarters.

There is however this fundamental question to be considered

:

shall the British pound be adhered to, or shall we adopt the

unit of our neighbours and employ the kilo (short for kilo-

gramme) or the demi-kilo ?

The kilo is too big for many ordinary purposes. In France

small marketing is still done by the demi-kilo, because it

represents a reasonable and commonly-needed amount of stuff.
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It is altogether handier than the kilo. A demi-kilo might be

introduced, and ivith us might still be called a pound, or, for

a time, an " imperial pound," though its value would have to

be increased by ten per cent, above our present pound. The

kilo is approximately 2-2 lbs., so the new pound or demi-kilo

would be one and a tenth old pounds. The gramme would be

•002 new pound.

The disadvantages of any change are obvious. The advan-

tage would be that we should then be using practically the

same unit as our neighbours.

All other denominations could be swept away ; except, for

occasional rough use, the ounce and the ton, which continue

uHeful ; for the ton would be 2000 of the new pounds, and

would correspond exactly with the French tonne ; and the

ounce, slightly changed, would be ^-^ of the new pound, or it

might be changed so as to be one-tenth of it. The grain or

Y^^ part of the old pound might easily give place to a new

grain y^^jy^ part of the new one.

These handy names are useful for common purposes and for

speech. All accurate specifications should be made in terms

of the pound, and of that alone. Thus 1 "4903 lbs. would be

a specification accurate to the nearest grain of a weighing of

something like a pound and a half.

3"014 tons would be a statement, intended to be accurate to

the nearest pound, of the weighing of a 3-ton mass.

Let me emphasise what may be regarded as one of the

special advantages of this simple and easily introduced change.

Children could then be practised in weighing at once : to the

vast advantage of their education. At present an apothecary's

scales are an abomination, and no child can weigh satisfactorily

with the weights of a letter balance, which are all in the binary

scale ; though, as aforesaid, these serve as an introduction to

ideas of weighing, etc., in quite early stages. Letter weights go
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down too rapidly ; there are not enough subdivisions ; and the

result cannot easily and quickly be specified, except as an

awkward series of vulgar fractions, or else in the binary scale

of arithmetical notation.

The only way in which school weighings can be satisfactorily

done now is by the use of grammes and kilogrammes : and

there is a foreign feel about these things ; which those who
learn chemistry indeed get over, but which gives it a flavour

distinct from ordinary life.

What we want is that children shall weigh and measure all

sorts of things, and do a large part of their arithmetic in

terms of their own weighings and measurings : thus making

it real and concrete and if possible interesting.

Weighings of plants and of growing seeds, of rusting iron

and of burning candles, of dissolving salts and of evaporating

liquids, can all be made interesting and instructive.

Weighings in air and water, and finding thereby the specific

gravity or the volume of irregular solids, can easily be over-

done and made tedious, but, short of this, such operations are

quite instructive.

Gauging and measuring of regular solids is an equally in-

structive way of arriving at their specific gravity, or, as it may
be more scientifically called, "density." The approximate

relative densities of such things as stone, lead, iron, gold,

copper, platinum, cork, air, referred to water, are worth

remembering : stone say 2-5, lead 11, iron 7, gold 19, copper 8,

platinum 21, cork i air ^^.

Decimal measures.—Continued.

The introduction into commerce of "the decimal system"

is a more difficult matter however. The admirable duo-

decimal division of the foot into inches (like that of the

shilling into pence) stands in the way. The foot and the
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inch and the yard seem ingrained in the British character,

and will give place to the metre and the centimetre only

with difficulty.

The fact is that the introducers of the "metre" made a great

mistake by not adopting the yard or the foot or some other

existing unit as its value : they would also have been wise

if they had adopted the pound as their kilogramme, and left

the dimensions of the earth alone. It is the magnitude of

the human body which really and scientifically specifies and

confers any meaning on absolute size : our bodily dimensions

and time relations must be the basis of all our measures and

ideas of absolute magnitude. To abandon the human body

and to attend to the dimensions of the earth was essentially

unscientific or unphilosophical : it has all the marks of faddism

and self-opinionatedness. However these unwisdoms of sections

of the human race we have to put up with, and at any rate

the French evolved a better system on the whole than that

which had come down to us by inheritance and tradition from

uncivilised times.

If we were at liberty to adopt the foot as our standard, and

to call its decimal subdivisions inches, or if a new foot were

made ten inches long, the change would not be so very

difficult. If it had been extensively customary to divide the

inch too into twelfths (called lines) the change would be

harder ; but divisions of the inch in the binary scale have been

customary, and these are not really convenient ; a decimal

system is better than that ; and foot rules decimally divided

and subdivided could easily be supplied and used.

But then, as in the case of our present pound, we should be

using an insular measure different from all the rest of Europe,

and amid the stress of industrial and engineering competition

this is a serious handicap.-

A metre scale is a rather unwieldy thing: a half-metre
L.E.M. F
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scale is handier for many purposes, and might be made like

a folding two-foot rule.

There is no help for it : we must get used to metres and

centimetres, and the sooner we begin the better.

Angles and Time.

There are two things which have not yet been subdivided

decimally with any considerable consensus of agreement : they

are Angles and Time.

The division of the right angle into 90 equal parts is

convenient. The subdivision of the degree into sixtieths

and again into sixtieths (called respectively partes minutae and

partes minutae secundae, now abbreviated into "minutes" and

"seconds") is peculiar and sometimes troublesome but not

exactly inconvenient, though a decimal subdivision of the

degree would be simpler.

As to time, the fundamental unit is the day or period of

the earth's rotation (this being the most uniformly moving

thing we know). Its subdivisions (into 24 parts, and then

into sixtieths, etc.) are curious, but too deep-rooted for

anyone to attempt to alter; and fortunately they are the

same in all countries.* Legitimate practice in dealing with

different denominations can therefore be afforded to children

by our large admixture of universally understood measures of

time ; including weeks, months of different kinds, years of

different kinds, apd centuries. All other weight and measure

complications, especially those of a merely insular and boorish

character, should forthwith cease to be instilled into children.

Further exercises.

It is worth noticing and remembering that a kilometre = 10*

centimetres.

*A third subdivision, ^he sixtieth part of a secoud, is sometimes
known as a " trice."



m.] MEASURES. 83

It is also ten minutes' walk, or very roughly two-thirds of

a mile.

A cubic metre is a million cubic centimetres.

A cubic kilometre is a trillion cubic millimetres ; meaning

by "trillion" a million million million, after the English

custom. (But the French use the term " billion " to signify a

thousand million ; and a million million they accordingly call

a trillion ; while the above number would by them be desig-

nated a quintillion : in any case it is 1 followed by eighteen

ciphers).

A cubic centimetre is 1000 cubic millimetres, and is y^Vtr o^

a litre.

A gallon of cold water weighs 10 lbs., by definition of a

gallon ; a pint therefore weighs a pound and a quarter.

A cubic metre of water is a tonne, and very approximately,

though accidentally, equals an English ton also.

A cubic centimetre of water, at its temperature of maximum

density, weighs a gramme exactly, from the definition of a

gramme.

The speed of an express train, 60 miles an hour, is only 15

times a walking pace.

The speed of a bullet, say 1800 feet a second, is twenty

times that of a train.

The speed of sound is comparable with that of bullets.

The speed of light is a million times the speed of sound in

air.

Four miles an hour is 2 yards a second, approximately,

or accurately 60 miles an hour is 88 feet a second.

It is an instructive exercise to let a boy find out the

sizes and distances of the planets of the solar system, and cal-

culate a numerical model illustrating them on any convenient

scale.
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I have myself found a local topographical scale the most

convenient : one on which the earth was about the size of a

football, and the sun the size of some public building a mile

or two distant. The other planets distribute themselves

about the town and county; some of them extending into

more distant counties.

It is instructive to try to place the nearest fixed star in

such a scale, and to find that it will not come on to the earth

at all.

The price of a railway ticket to the nearest fixed star, at

Id. per hundred miles, can also be calculated; and found to

approach or exceed the National debt.

The earth takes a year to go round the sun in a circle of

93 million miles radius : how fast does it go ?

(Ans. : About 19 miles a second.)

Light goes 10000 times as fast as this.

How fast would a train have to run on the equator if it

were to keep up with the apparent motion of the sun, so that

it should continue the same time of day 1

(Ans. : About 1000 miles an hour.)

How far from the North Pole could the same thing be

accomplished by a man walking 4 miles an hour ?

(Ans. : About 30 miles away.)

If a man walked 30 miles South from the North Pole, and

then walked 40 miles due West, how far, and in what direc-

tion, would he have to go to get back to the Pole ?

(Ans. : 30 miles due North.)

What is the density of a rectangular block whose height is

5 inches, length 11 inches, breadth 8 inches, and weight

82| lbs. ?

(Ans. : 3 ounces per cubic inch.)
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Directly the elements of mechanics and of heat and of

chemistry have been begun, any number of useful and fairiy

interesting examples can be constructed. They afford

practice in arithmetic of the best and most useful kind;

quick and ingenious computation being what is wanted,

not laborious dwelling upon long artificial sums. Long sums

are never done in adult practice : there are always grown-up

methods of avoiding them.

It is cruel to subject children to any such disciplinary

process, as part of what might be their happy and stimulating

education. Before they have been' subjected to it they are

often eager to have lessons; but experience of the average

lesson, as often administered, soon kills off any enthusiasm,

and instils the fatal habits of listlessness and inattention

which check the sap of intellectual growth for a long time.

If the teacher of arithmetic knows arithmetic and nothing

else, he is not fit to teach it. His mind should be alive with

concrete and living examples ; and it is well to utilise actual

measurings, weighings, surveyings, laboratory-experiments,

and the like, to furnish other opportunities for arithmetical

exercises.

Arithmetical exercise can be obtained unconsciously, as

bodily exercise is obtained by playing an outdoor game.

The mechanical drill or constitutional-walk form of exercise

has its place doubtless, but its place among children is limited.

There used to be too much of it, and too little spontaneity

of bodily exercise, in girls' schools. Now the spontaneity and

freshness is permitted to the body, but too often denied to

the mind.

The same kind of reform is called for in both cases. The

object of this book is to assist in hastening this vital reform.
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Simple proportion.

Any number of sums are of the following character

:

If 3 sheep cost £20, what will 100 cost ?

Now the so-called "rule of three" method of dealing with

sums of this kind, though permissible, is not really a good

method, because it leads to nothing beyond, and employs an

antiquated system of notation.

The answer is one hundred thirds of twenty pounds

= i§Sx£20 = ^-P- = £666-6 = £666| = £666. 13s. 4d.

If the answer is not obvious, it can be arrived at by the

intermediate step of considering one sheep, which will cost

the third of £20, namely, £6. 13s. 4d.*

And so a hundred sheep will cost 600 pounds, 1300

shillings, and 400 pence.

The 1300 shillings reduce to 65 pounds, since 100 shillings

is five pounds; and the 400 pence make £1. 13s. 4d., since

240 pence is a pound, and so 400 pence is thirty shillings

and 40 pence (or 3s. 4d.) over.

This is not an orthodox way of doing the sum, but it is

just as good as any other, and it is one that a boy might

* [It would not come out even so well as this but for the fortunate

duodecimal division of the shilling into pence, so that one-third of a

pound, viz. 6a. 8d., and two-thirds, viz. 13s. 4d., can be exactly

specified without fractions. These amounts are worth remembering as

one-third and two-thirds of a sovereign.]
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scheme for himself. There would be no need to snub him
for it. Everything which is troublesome about such a sum

results from the miserable property of the number ten, that

it is not divisible by 3.

If we had set the following very similar question

:

If 3 sheep cost £24, what would 100 cost ?

An infant could answer £800, doing it in its head. But it

would clearly do it by the same process, viz. the process of

considering the price per single sheep, and that is therefore

the natural and simplest method.

To summarise : The childish method is the method by

units, and may be written out at length ; the adult method is

the method by ratio ; what place is there for the rule of

three 1 The rule of three with its symbols : : : :

is reserved for antiquated school instruction.

Observe, there is no harm in writing a ratio as 2 : 3 or a : 6,

and occasionally it may be convenient to do so, though 2-^3,

2
or a -r J is precisely the same thing, and usually the form - or

o

=-, or a/b, is in every way better. So the symbol : : is needless,

because replaced by =. The fact is that : connotes the

theoretical idea of ratio, while -f indicates the practical

operation of division, which is the actual means of working

a ratio out. The vulgar-fraction form may be used instead

of either of these signs and is usually best. The division

may or may not be actually performed, as we please.

I feel inclined to illustrate good and bad methods at this

stage a little further, by taking a few more very simple

examples. For instance

:

If twenty dogs pulling egually at a sledge exert a hori-

zontal force of 1 cwt., what force do any three of them

exert?
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Adult method

:

Aths of 1 owt. = ^^"^^''°- = 16-8 lbs.

Good diildlsh metbod :

20 dogs pull 112 lbs.

10 dogs pull 56 „

1 dog pulls 5 '6 „

3 dogs pull 3 X 5-6= 16-8 lbs.

If it be asked why not stop at ^ths of a owt. and give the

answer as -15 owt., I reply, no reason against it at all; but

children should be accustomed to realise forces and other

things, in actual homely units that they can feel and appre-

ciate ; and a cwt. is too big for them.

Mechanical method

:

20 : 3 : : 112 : the answer.

Rule. Multiply the means and divide by one extreme and you get

the other extreme.
.". the answer is, etc.

British Method

:

There is indeed a barbarous way of complicating the sum, which

is typical of much that goes on in these islands at inferior schools :

lbs. oz. drachms

20 1 336 . .

16 . 12 . 12|
which is done thus

:

Twenty into 336 goes 16 and 16 over, that is 16 lbs. over, which

equals 256 ounces. Twenty into this goes 12 times and 16 over, that

is 16 ounces or 256 drachms ; into which twenty again goes 12 times

and ^jths over, which last equals "sths, that is -j-ths of a drachm.

So the answer is 16 lbs. 12 oz. 12-5 drachms.

On this one has to remark that since the unfortunate ^ has

to appear (as it happens) sooner or later, why should it not

appear at first? Why is fths of a drachm easier to understand

than fths of a pound? The fact is that it is not easier to

understand, and by children is not understood : the " 4 over
"

which remains at the end is a continual puzzle to them.
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They have been so accustomed to getting rid of fractions by
reducing to a lower denomination, that at the end, when
lower denominations unaccountably fail them, they are non-

plussed. Quite rightly so ; the fault is not with the children.

Whenever an attentive child finds a persistent difficulty,

teachers should be sure that there is something wrong with

their mode of presenting it, probably with their own compre-

hension of it. Nothing is difficult when properly put. The
whole art of teaching should be so to lead on that everything

arrives naturally and easily and happily, like fruit and flowers

out of seeds.

Another British method. Usually however the sum is not recorded

so briefly as this, but is written out in what is known as the long-

division plan ; and it is perhaps the safest mode of getting the right

answer if the answer is required to be thus barbarously specified, for

it certainly shirks nothing. This is the way of it :

To divide 336 lbs. av. into 20 equal parts

lbs. oz. dr.

2,0)33,6(16 . 12 . 12|
20

136
120

16
16*

96
16

256 oz.

240

16

JI6*

96
16

256 dr.

240

16 remainder, and -j-g- = -5 dr.

* If any mathematician glances through this book, as I hope he may,

he will require at these stages to be reminded if British, to be informed
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This may look like a parody, but it is soberly the way in

which innumerable children have been taught in the past to

do such a sum. And the fact that they, have been so taught

can easily be tested by setting it to people who were children

a few years ago.

Another method. If the factor plan of division is adopted

there is great danger of confusion and error about the carrying

figure. For instance, in dividing 336 lbs. into 20 equal parts,

a child as sometimes now taught will proceed thus :

2 [336 lbs.

1 1 16,8

16 and 8 over.

8 what over ? They are apt to take it as 8 lbs. over, and so

interpret it as 128 ounces, and proceed to divide these again

by 20 by the same process

2
1
128

10
I

64

6 and 4 over

apt to be called 4 ounces over, which are interpreted as 64

drachms, and so on.

if Foreign, that in these islands a drachm is defined to be the sixteenth

of an ounce, and that an ounce avoirdupois is one sixteenth of an

avoirdupois pound ; moreover that a drachm is the lowest recognised

denomination of avoirdupois weight : after that fractions are permitted.

Pennyweights and grains belong to a system of measures to which the

name of " Troy " is (for some to me unknown reason, perhaps from

Troyes in France) prefixed. There is a " Troy pound " and a, " Troy

ounce," for "metallurgical" use, but they differ from their "grocery"

cousins which are explicitly asserted "to have some weight." Then
between grains and Troy ounces there are other denominations used by
"apothecaries," called scruples and drams. This dram is not the same
as the grocery drachm. There appears however to be only one kind of

"grain," and 7000 of these make 1 lb. avoirdupois, while 5760 of them
make 1 lb. Troy.
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This is quite wrong. The 8 over in the first little sum was

really 8 double-pounds, and so the second little sum is all

wrong. If it had been right, the 4 over could not have been

4 ounces, but 4 double-ounces ; but what needless trouble and

risk of error is introduced by having to perceive this !

Again let many children be asked to divide £336 by 25,

they will few of them have been taught to proceed thus

:

?^Y-=3-36x4 = £13-44

= £13. 8-8s.

= £13. 8b. 9-6d. or about 9Jd.

but they will proceed, either by long division on much the

same lines a^ in the last example, which is long to write, or

else by short division, dividing by 5 twice over, which is not

too long to write,

£, s. d.

5 1 336 . .

5167

13 . 8 . 9|

short to write, but rather hard to do. Such trivial sums

should not call for so much brain power as is involved in

various and complicated carryings.

Money sums however are the best examples of the kind.

If it was 336 tons that had to be divided into 25 equal parts,

grown people would be satisfied to say that each part must be

13 "44 tons; but at some schools it would have to be done

thus,—if not by a still longer process equally liable to acci-

dental error

:

tons. cwt. qrs. lbs. ozb. dr.

5
I
336 . . . . .

5| 67.4.0.0.0.0
13 . 8 . 3 . 5 . 9 . 9| Ans.
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Breakdown of simple proportion or "rule of three."

Simple proportion, or the rule of three, is by some teachers

regarded as a kind of fetish ; moreover its extreme simplicity

makes it g, rather favourite rule with children and they will

naturally do many exercises in it. Not always, it is to be

hoped, by the same mechanical method.

But there is all the more necessity for bringing home to

them the fact (strange if it is unknown to any teacher), that

it does not always work. For instance :

A stone dropped down an empty well 16 feet deep reaches

the bottom in one second. How deep will a well be if a

stone takes two seconds to reach the bottom 1

The answer expected is of course 32 feet; but it is not

right. The correct answer is 64 feet.
,

If a stone drops 16 feet in one second, how far will it drop

in \ second 1 (Ans. : 1 2 inches.)

Again, if a stone dropped over a cliflf descends 64 feet in

2 seconds, how far will it drop in the next second 1

(Ans.: 80 feet.)

A steamer is propelled at the rate of 8 knots by its engines

exerting themselves at the rate of 1000 horse power. What
power would drive it at 12 knots?

Probably no one would expect the answer 1500 to this ; for

on that principle 10000 horse power would propel it at

80 knots.

An initial velocity of 1600 feet a second will carry a rifle

bullet 3 miles. What velocity would carry it 6 miles 'i

An ounce weight drops 4 feet in half a second. How far

will a pound weight drop in the same time ?

(Ans. : By experiment, 4 feet likewise. A most important

fact, discovered by Galileo, and illustrated from the tower of

Pisa.)
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Let it not be dogmatised on, but illustrated by dropping

things together ; and if it appears puzzling, so much the better.

Ignoring or eliminating the resistance of the air everything

falls at the same pace. The air has very slight influence

on the drop of smooth spheres through a moderate height.

Cotton^ wool and feathers and bits of paper will drop more
slowly, but the reason is obvious : a bullet will drop more
slowly in treacle than in air. That is because the air resistance

is small : it is not zero, and if a bullet and a pea were dropped

from too great a height, air friction would begin perceptibly

to retard the lighter body. So it is that big rain-drops fall

quicker than little ones ; and these small drops quicker than

mist and cloud globules. So also does heavy fine powder,

even gold powder, fall slowly in water, not because it is

buoyed up, but because it is resisted. Eemove the air, and in

a vacuum a coin and a feather will fall at the same rate. The

statement does not explain the fact. The full explanation of

the fact is not even yet known. But a very great deal more

is known about the whole subject than is or can be here

expressed. That is characteristic of elementary books through-

out, and the object of the learners should be to get through

all this easy stuff, and get on into more exciting matters

beyond : matters which the majority of the human race never

have the least knowledge of, because their early education

has been neglected.

A balloon 18 feet in diameter can carry a load equal to one

man. What load can a similar balloon carry which is 36 feet

in diameter. (Simplest rough answer, 8 men.)

A rope stretches half an inch when loaded with an extra

hundredweight.

How much would it stretch if loaded with an extra ton 1
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A half crown is ten times the value of a threepenny bit.

How many threepenny bits can lie flat on a half-crown

without overlapping the edge ? (Ans. : By experiment, one.)

A boy slides 20 yards with an initial run of 10 feet. What

initial run would enable him to slide half a mile ?

If 2 peacocks can waken one man, how many can waken

six?

If a diamond is worth ten thousand pounds, what would

950 similar diamonds be worth 1

If a camel can stand a load of 5 cwt. for 6 hours, for how
long could he stand a load of ten tons ?

These things cannot be done by simple proportion. They

require something more to be known before they can be done

at all ; and accordingly it would appear as if generations of

teachers had discreetly shied at them all, indiscriminately,

and had excluded them from arithmetical consideration

altogether. It is just as if in geometry, finding straight lines

simpler than curves, they had agreed to found all their

examples upon straight lines.
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Simplification of fractions.

VuLGAK fractions are much harder to deal with than

decimals ; but as sometimes several have to be added together

it is desirable to know how to do it. Besides, the exercise so

aiforded is of a right and wholesome kind.

Consider t^e following addition : ^ + i- Small children can

see (by experiment on an apple) that the result is f , and they

can also be taught to regard it as f + 1^=
f, which should be

read in words—two quarters added to one quarter make

three quarters.

Thus, it can be realised that when the denominators are all

the same, addition of fractions becomes simple addition of the

numerators.

For just as 5 oranges + 6 oranges =11 oranges, so

6 I 6 _ 11
TT + TT — TT>

reading " seventeenths " instead of " oranges."

When denominations differ, therefore, the first thing to do

is to make them the same.

Thus, for instance, 3 apples + 4 oranges, is an addition which

can only be performed by finding some denomination which

includes both, say " pieces of fruit."

So also 7 horses + 3 pigs =10 quadrupeds. 5 copies

of Bobinson Crusoe + 3 copies of Ivanhoe = 8 prize-books,

perhaps.
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Reduction to the same denomination cannot always be

done, when denominations are anything whatever, except by

using the vague term "objects" or "things"; but with

numerical denominators it can always be done, and the method

of doing it has to be learnt. f+ xj = xi' ^^^ ^^^^ ^^^^i ^^^

easy examples, i + xa = |- is a slightly harder one.

It is done by saying xt+ iV = t^ = i-

So also I + ^ =
f, being equal to |.

A harder example is |^ +
-f,

which can be written

21 1 10 _ 31 _ Kl
-6" + -? g '^e-

In the decimal notation this would appear thus :

3-5+ 1-666,.. = 5-1666....

A still harder example can be worked out thus :

5.-I-6 _ 8.3 i40 _ ipS _ 117

though the final step is one that need not always be made.

Now it is evident, or at least it will gradually be found true,

that in a mechanical process of this kind there is always some

simple rule by which the result can be obtained without thought.

What is that rule ? If the child can find it out for himself, by

experimenting on lots of pairs of fractions, so much the better.

A week is none too much to give him to try, for if he finds it

out himself he will never forget it.

The rule is : cross-multiply for the numerators, and multiply

the denominators.

11^ 6+2 _ 8 2
2'*'6 12 ~ 12~3"

1 1^6_+a
a, b ah

'

3 4^ 27+ 28 _55
7 9~ 63 ~63'

a c _ ad+bc
6 d~ bd '

but it would be a pity to spoil this by premature telling.
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The fact that the sum of two teciprocals is the sum of

the numbers divided by their product, is worth illustfatirlg

fully and remembering: remembering, that is, by growing
thoroughly accustomed to it, not exactly learning by heart.

There is hardly any need to learn easy things like that by
heart: nevertheless it is a very permissible operation, whenever
the fact to be learnt is really worth knowing.

.^ Bum
product'H=
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there is nothing the matter with it. You might, instead,

proceed thus

:

1 1 1 _ 18^27 _6.-^l-IZ
3'^2"'"9 ~ W^54'^5i ~ 54 ~ 18'

and that is equally a correct method.

But neither of these plans is quite the grown-up plan. Let

a better plan be found j but first let the above plans be

formulated and expressed. Is it not plain that the numerator

of each particular fraction is found by multiplying two of

the denominators together, while the common denominator of

all the fractions is found by multiplying all the denominators

together 1 Apply this rule :

1 11 _ 20 + 24 + 30 _ 7£ _ 37
6'^5 4~ 120 "120" 60'

For instance, a sixth of an hour + a fifth of an hour + a

quarter of an hour = 37 minutes, a minute being the sixtieth

of an hour. Now a sixth of an hour is ten minutes, a fifth is

12 minutes, and a quarter of an hour is 15 minutes: conse-

quently the neatest way of doing the sum would be

1 1 1 _ 10 + 12 + 15 _ 37
6"'"5"*"4~

60 ~60'

Another example, ^ +^ + 1 = ^^^^^,*^ ^
12 60 3 720x3

but here wery term in numerator and denominator can be

divided by 3 and by 12, so that the above may be written

L +L+l = 5±.l+20 ^ 26 - 13 ^ ^ ^
12^60 3 60 60 30

And it would have been neater to write it so at first—neater

but not essential, and sometimes not even the most rapid

plan.

To illustrate the above example :

Jo th of a day is 2 hours.

g'jjth of a day is 24 minutes.

^rd of a day is 8 liours.
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Consequently the sum of these fractions of a day is 10 hours and
24 minutes,

which is 10|^ of an hour [ = IOtV = 10-4 hours] or |j +^ of a day,

which again may be written If+ sTr = f^ = ^ths = -043, as before.

The form of the general rule, then, is given by

111 _ bc + ca + ab
.

a b c abc '

but in practice it is possible to abbreviate this in some cases,

Vhen one of the denominators contains the others as factors,

or when some simple relation of the kind exists between them.

This is what was made use of in the early simple cases,

such as iV + /j; we did not proceed to write and

then simplify it, but we wrote at once ^ +^ = ^^^ ; that is

to say we perceived that 24 would do for the new denomin-

ator, and we adjusted the numerators accordingly.

Perhaps we had better display this algebraically. Let each

denominator contain a common factor, say n, so that the

reciprocals to be added are H -7 H—, then if we applied the^ na nb nc ^'^

11 I, ij -i
'nJ'bc + n'ea + n^ab

, ^ ^,mere general rule we should write 3-7 , but the

repetition of the powers of n is manifestly needless, since they

cancel out ; and it is much neater to write for the new

denominator an expression which contains the common factor

, , , bc + ca + ab
n only once, thus : j

The denominator so obtained is called the least common
multiple of the three denominators ; and it is frequently, in

examination papers, denoted by the letters L.Cm:. It is not

an important idea at all. Sums can be done quite well

without it, but its introduction affords some scope for neat-

ness and ingenuity. Easy processes can be given for finding
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it, but they are hardly worth giving, as in real practice they

are seldom used : they are of most educational service if

employed as an exercise for the student's invention. They

will be dealt with sufficiently in the next chapter.

Now take a numerical example :

Add together k + i + ¥ + rw+ W2-

Here 32 is evidently the l.c.m. of the denominators, since it

contains all the others as factors. So that will serve as the simplest

common or combined denominator. The first numerator accordingly

will be 16, the second 8, the third 4 but taken 5 times and therefore

20, the next 2 taken 3 times, and the last 1 taken 'J times.

Consequently the sum is written as follows :

115 3 7 _ 16 + 8 + 20+ 6 + 7 _ 57
2"'"4'*"8"^16'^32~

.32
~ 32'

Take another example of addition :

11 1 1 _ 72+9 + 56 + 8 _ US
7 56 + 9 63

~
504 "504

Here 7 is plainly a factor of both the lafger denominators, and 8 and

9 are the other factors, so the least common denominator will only

contain 7 ard 9 once, and will equal 7x8x9 = 504, and this being the

smallest common multiple possible, no further simplification can be

effected ; beyond of course expressing the result as a decimal if we so

choose. To express it as a decimal we must effect the division

indicated ; the result happens to equal '2877 almost exactly.

It is worth noticing that the series of powers of 7}, viz.

:

* + i + l + TV + -5V + tnr+-
add up very nearly to 1 ; and the more nearly the more

terms of the series are taken.

It can be shown, not by trial indeed, but by simple reason-

ing, that if an infinite sequence of this series are added

together the result is exactly 1. Thus the first term con-

stitutes half of the whole quantity, say a loaf, the second

term added to it gives us three quarters, the third term gives

us |-th more, and we only need another eighth to get the
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whole. The next term gives us half of the deficiency, and

now we need the other sixteenth to make the whole. We
do not get it however : we get half of it in the next term,

and thus still fall short, but this time only by ^\ ; and so at

the end of the above series, as far as written, our deficiency

is 77th. Each term therefore itself indicates the outstanding

deficiency, and as the terms get rapidly smaller and smaller,

so does the deficiency below 1 get rapidly diminished till

it is imperceptible. (Compare p. 325.)

It is convenient to plot these fractions as lengths (setting

them up at equal distances along a horizontal line), say half a

foot, then a quarter, then an eighth, and so on. Then joining

their tops we get a curve which has the remarkable property

of always approaching a straight line, but never actually

meeting or coinciding with it, or at least not meeting it till

infinity ; when at length it h^ become quite straight.

\

T'S' i
64

Pia 9.

There are many curves with such a property, but fig. 9 may
be the first a child has met. He can of course continue the

curve in the other direction—the direction of whole numbers,

or powers of two, and observe how rapidly it tilts upwards

;

but there is no straight line in this direction to which it tends

to approach ; this end proceeds to infinity both upwards and

sideways, not only upwards, though it proceeds far more

rapidly in the vertical direction than in the horizontal ; and

this end of it never becomes straight.
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Greatest Common Measure and Least Common
Multiple.

Another name of slight importance, which is usually paired

off with Least Common Multiple (page 99), is Greatest

Common Measure or Highest Common Factor : often denoted

by G.C.M. or by H.C.F.

The two numbers 24 and 16 have several factors common

to both of them, for instance 8 ; and this as it happens is the

greatest common factor, the others which they possess in

common being 4 and 2.

The numbers 20 and 35 have 5 as the largest factor common

to both of them. The numbers 72 and 84 have 12 ; while 72

and 96 have 24 as their G.C.M.

The numbers 23 and 38 have no factor, above unity,

common to both. In fact 23 has no factor at all.

The word "common" so used does not mean "ordinary,"

as children sometimes think, nor does it mean vulgar, but it

has the signification which it possesses in "common friend,"

or in vulgar phrase "mutual friend," or when people are said

to own property "in common."

To find common factors of two numbers, one way is to

arrange all the factors of each in two rows one under the

other and see how many correspond. Inspection will then

readily show which pair is the biggest.
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Suppose the two numbers given were 40 and 60 ; the

following are the factors of 60,

2, 3, 4, 5, 6, 10, 12, 15, 20, 30,

and the following are the factors of 40,

2, 4, 5, 8, 10, 20.

Of these, the 2, 4, 5, 10, 20 are common to both, and 20 is

the largest of them.

In old-fashioned language, factors were called "measures,"

and the largest common factor was called the "greatest

common measure," and abbreviated into g.C.m.

What is the use of if? Very little; but the meaning is

perfectly simple and should be understood. It can be utilised

for finding the Least Common Multiple of a set of numbers,

that is to say the smallest number which contains them all

as factors ; for the G.C.M. represents what may be struck out,

once at least and sometimes more than once, from the product

of a set of numbers, in order to leave behind the smallest

number which they are able to divide without a remainder.

Thus take the numbers 40 and 60, their product is 2400,

and of course they will both divide that ; but their g.C.m., 20,

may be cancelled out of it, leaving 120; and both 40 and 60

will divide that too. It is the least number which they can

both divide exactly, i.e. it is the least number of which they

are both factors, it is in fact their least common multiple.

Example.—Of the numbers 12, 20, 24 what is the g.C.m.

and L.C.M. ? Of these, 1 2 need not be attended to in finding

the largest common factor, because it is itself a factor of 24.

Of the numbers 20 and 24, 4 is a common factor ; so divide

all by that, and we get left with 3, 5, 6.

No factor will divide all these, so 4 was the G.C.M. of the

original numbers.'

Their least common multiple is not 3 x 5 x 6 = 90, because

that would have omitted the factor 4 which they possess in
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common. The common factor need not be repeated more than

once, (for if it is, though you get a common multiple, you do

not get the least common multiple), but it must not be omitted

altogether, or you will not get a common multiple at all,

The L.C.M. accordingly is 3 x 5 x 6 x 4 = 360, and of that it

will be found that the given numbers 12, 20, 24, are factors.

The product of those numbers is 5760, and put pf that the

G.C.M. 4 can be struck twice before arriving £|,t the L,C,M.

Anyone therefore can invent a rule for finding the L.C.M.

of a set of numbers; it is, find their G.C.M. apd divide or

cancel it out pf all the nvimbers but one, tl^eg multiply the

quotients together.

But a rule for finding the G.C.m, is by no means so easy to

invent : it is an ingenious process, and the whole subject is

essentially a little, bit of rudimentary pure mathematics; it

has no practical importance pr application except wheri dealing

with the properties of numbers.

The proof of the rule is an interesting and easy exercise in

the application of reason and commonsense to arithmetic, but

perhaps it is better deferred,

Rule for finding G.C.M.

The rule depends on the dgpioristration that any factor of

two numbers is likewise necessarily a factor of the remainder

left when one is divided by the other.

Thus consider the two numbers 40 and 24. Divide one

by the other, we get 1 and 16 over. The above sentence in

black type assumes or asserts that every factor of 40 and 24

must also be a factor of 16. In this case, as a matter of fact,

40 = 24 + 16

and it is manifest that a number which divides 24 and does

not divide 16 cannot divide 40.

Well that is the whole idea,
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If we were told to find the G.C.M. of 40 and 24, we could

by thi^ means reduce the problem to finding the G.C.M. of 24

and 16. And then, repeating thg division process, we should

observe that 24=16 + 8,

so that the problem becomes reduced still further into finding

the G.C.M. of 16 and 8. There is no question but that this is

8;—as indeed we might have guessed at first if our object

had been attainment of a result, instead of explication of a

process—and the way to clinch that is to perform the division

again and to find that there is now no remainder at all.

The matter can. be gtated algebraically, but beginners can

skip the algebra and come to the " illustration " which follows.

Algebraic proof of the process for finding G.C.M.

To find a common factor of two numbers P and Q, of

which P is the bigger,

let X be one common factor,

P
then — and - will be the complementary factors.

,' X X '
'

r ^

An extreme case is wben P is divisible by Q without a

remainder, in that case x = Q. Supppsje however that when

P is divided by Q the rem9,inder is R,

Q)P(n

2Q
B

so that P = nQ + R; then if ^ is a factor of Q it must be one

of P also (because P equals a multiple of Q plus B), so try

if i? is a factor of Q.

If it is, it is the common factor required ; but if not, work

out a division again, and let the remainder be <S^,

B)Q{m
mB

so that Q = mB + S.



106 EASY MATHEMATICS. [chap.

Then it S is a factor of M it must be one of Q too, and so also

of P, and in that case S will be the common factor required.

But if not, we must repeat the process and see what the

remainder is when B is divided by S. Call it 1\

S)B{1
IS

so thatiJ = Z^+r.
^

Now once more if 2' is a factor of S it is necessarily a factor

of R, and therefore of Q, and therefore also of P, and so T
is the common factor required.

If not, the process must go on until there is no further

remainder; and then the last remainder (or divisor) is a

common factor of the two original numbers P and Q. Let us

assume that T divides S without a remainder, then T is the

common factor of all the numbers P, Q, R, S, T.

It is likewise the largest common factor which exists. Why?
because it has to be a factor not only of P and Q but also of

R, of S, and of T; and certainly T is the largest factor of T,

therefore it is likewise the largest common factor of the others.

Statement in another form.

The whole process can be written thus :

To find the G.C.M. of P and Q, work successive division

sums thus

:

P R
Q = " +

a'

Q ,

s
l = '" + 5'

s- '+<§'

p 1 1 1

or 7; = m -f sTT-g = TOH r— = m + -

Q ^QR '"^
I '"^ 1 '

R/i>
, 1

^^S/T
the process terminating only when S/T is an integer.
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The r is a factor of all the numbers P, Q, R, S, T; and
since it must satisfy this condition if it is to be a factor of

P and Q at all, it is necessarily the greatest common factor

of P and Q, and indeed of the others too.

Or the whole process may be written (as usually performed)

in one sum thus

:

Q)P(n
nQ

R)Q{m
mB
^)R(l

IS

T)S(k
JcT

Then the last remainder (or divisor) T is the g.c.m. of P
and Q.

Illustration (modified from Kirkman and Field).

Let the two numbers be 492 and 228. Go through a

process of successive divisions.

228)492(2
456

36)228(6
216

12)36(3
36

Hence 12 is the G.C.M. of the two original numbers, and it

likewise is a factor of the intermediate divisor, viz'. 36.

The argument runs as follows :

The common factor of 492 and 228 must also be a factor

of the remainder when 492 is divided by 228, for in fact

492 = (2 X 228) + 36,
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so that) anything which divides 228 and fails to divide 36

cannot possibly divide 492.

Hence the problem reduces itself to finding the common

factor of 228 and 36.

But now 228 = (6 x 36) + 12,

hence the factor required must likewise divide 12, as well as

36. The numbers 2, 3, 4, 6, 12 all satisfy that condition, and

hence all these are factors of both the original numbers, but

of them 12 is the biggest.

Therefore 12 is the G.C.M. of the two given numbers 492

and 228. (Verify this by actual division. The quotients

are 41<and 19, and neither of these have any factors at all.)



CHAPTER XI.

Easy mode of treating problems which require a
little thought.

Many of the problems set for purposes of arithmetic are

best done in the first instance by rudimentary algebra, that is

by the introduction of a symbol for the unknown quantity,

so that it can be tangibly dealt with. This introduction and

manipulation of a symbol for an unknown quantity need not

be discouraged, even from the first. It confers both power

and clearness. Many arithmetical sums are needlessly hard

because x is forbidden. There is a certain amount of sense in

the artificial restriction, but in complicated sums and in physics

the symbolic treatment of unknown quantities is essential,

and the sooner children are accustomed to it the better.

The introduction of a symbol for an unknown quantity is a

device to enable a sum to be clearly and formally stated.

After the sum has been solved by this aid, it is well to try

and express it so that it can be grasped and understood

without such assistance. The fear of those who object to %

in arithmetic is that this final step may be omitted. The grasp

is clearer when an auxiliary symbol can be dispensed with; but

that is not possible always at first. The a; is to be thought of

as a kind of crutch : but sometimes it is like a leaping-pole

and enables heights to be surmounted which without it would

be impossible.
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Example.—How soon after twelve o'clock will the hour and

minute hand of a clock again be superposed ?

It is plain that it is soon after 1 o'clock, and that it is an

amount which has been traversed by the hour hand while the

minute hand, travelling twelve times as quickly, has gone

that same distance and 5 minutes more ; but it is not easy to

think out the required fraction in one's head, though ex-

ceptional children can do it.

But let it be postulated as n minutes after 1 ; the hour hand

travels, starting from mark I, a distance n, while the minute

hand, starting from mark XII five minutes further back, has

to travel 5 + w in order to catch it up ; so the relative speeds

of the two hands are as (to + 5) : n, and are also as 12 : 1

;

wherefore

or

or

m + 5
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The constant occurrence of 11 in such sums shows that 11

must have a decipherable meaning : it means the excess pace,

or relative velocity, of the quick hand over the slow. And
when this has been perceived, the easiest way to do such

sums in the head is self-suggested, viz. to treat it as a case of

relative velocities, with the hour hand stationary, and simply

ask how soon the minute hand will move to where the hour

hand was, if it (the minute hand) went at -J4*'l's of its real

speed.

The interval between mtccessive overlaps is therefore always

^fths of an hour, or 65-j^ minutes.

Exercise.—The hands make a straight line at 6 o'clock,

when will they be at right angles ? Ans. : One has to gain

relatively 15 minutes on the other, and since its relative

speed is \^tha of an hour per hour, the time required is

15 X if minutes, that is to say 1^*1- minutes more than a

quarter of an hour.

Pains should always be taken to express an answer com-

pletely and intelligibly. If any joy is taken in work, it

should be decorated and embroidered, so to speak, not left

with a minimum of bare necessity.

Moreover, never let it be taught (as Todhunter taught)

that the x or other symbol so employed is always necessarily

only a pure number. When we say " let x be the velocity of

the train," or "the weight of the balloon," etc., we should

mean that x is to stand for the actual velocity, the actual

weight: however they be numerically specified. (Appendix II.)

Some teachers of importance will demur to this. I assert

with absolute conviction that it is the right plan, and will

justify it hereafter. But it is a matter for adults to consider,

and is only incidentally mentioned here.

The dislike felt by teachers of arithmetic to the intro-

duction of X prematurely, is because there is a tendency
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thereafter to do arithmetical problems so easily that their

features are not grasped, and so some useful perceptions are

missed. If this were a neeessary consequence it would be

a valid argument against the introduction of an algebraic

symbol, but it is not a necessary consequence.

For instance, in examples about the supply of a cistern by

pipes, or the work of men per day, it is admittedly desirable

to realise that we are here often dealing with the reciprocals

of the specified quantities ; and this may be masked by the

use of algebra, possibly, but it need not. I suggest that

algebra is the right way of discovering the fact, but that after

its discovery the fact itself may be properly dwelt On, and

thereafter directly applied. Thefe is indeed too much ten-

dency to hurry away from an example when its mere

"answer" has been obtained, without staying to extract its

nutriment and learn all that it can teach : sometimes without

even trying whether the answer found will really fit or

satisfy the data in question. That is altogether bad. The

full discussion of a sum, in all its bearings, after the answer

is known, is often the most interesting and instructive part

of the process.

Children should always be encouraged to do this, and to

invent fresh ways of putting things, or detect or devise a

generalisation of their own for any suitable special case. Here

is afibrded a first scope for easy kinds of originality of a

valuable kind.

Girls especially would find the benefit of being encouraged

to seek the general under the mask of the special. It seems

to fail to come to them naturally.

Illustrative Examples, showing the advantage of intro-

ducing symbols for unknown quantities.

Three pipes supply a cistern which can hold 144 gallons.
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One supplies a gallon a minute, another 2 gallons, and the

third 3 gallons per minute. How soon will the cistern he full 1

Let t be the number of minutes before the cistern is full

after the pipes are all turned on simultaneously; then in t

minutes the first pipe will have supplied t gallons, the second

2t gallons, and so on,

hence t + 2t + 3t = lU.
So t = 24.

This is easy enough, but I think even this is made easier

by the introduction of a symbol for the unknown quantity.

Take however the following variation of the same problem

:

A cistern is to be filled by three pipes labelled A, B, and C;

Pipe A alone would fill the cistern in 2 hours 24 minutes.

Pipe B alone in 1 hour 12 minutes.

Pipe C alone in 48 minutes.

How soon would they all three fill it ?

This form of statement evidently makes the problem harder,

and it is clearly desirable to simplify it by ascertaining the

rate of supply of each pipe. This can be done at once if we

say, let n be the number of gallons corresponding to the

contents of the cistern, for then the data give jis that

Pipe A supplies at the rate of n gallons in 144 minutes

or -^ gallons per minute,

B supplies at the rate ^ gallons per minute,

and C supplies at the rate -^ gallons per minute.
4o

So the set of pipes together supply, at the combined rate,

n n n _ n

T44''"72"''48'^ ?

that is to say, n gallons in the unknown time t, which time is

the thing to be found.

L.KM. H
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We now see that the contents of the cistern is immaterial,

when the data are thus specified, for n cancels out of the

equation, and leaves us with the relation

t 48
"^72"'" 144'

We have thus discovered the mode of dealing with problems

of this kind, viz. to take the reciprocals of the times given.

In other words, to say that the rate of supply is inversely as

the time taken, or that it is proportional to the reciprocal of

that time ; and hence, writing the combined rate as the sum

of the rates, we get the equation directly as last written.

Now it is true that a mathematician would, have seen this

at once, and written the equation as above without appearing

to think about it; but a child cannot be expected to think

out such a relation, at least not for a long time, unless he is

encouraged to consider, either tacitly or explicitly, the

contents of the cistern ; when it at once becomes, not exactly

easy but, possible.

The above equation may be called "the solution" of the

problem, so far as it involves reasoning or thought; the

subsequent afithmetical working necessary to obtain a

numerical result is comparatively mechanical, but it should

not be omitted.

JL 1 1_ ^ 3 + 2 + 1 ^ _6 ]_

48 "^72 "''144 144 144 24"

This is the reciprocal of the time ; and thus the time required

for the conjoint filling is 24 minutes, as we found in the first

or easy mode of statement, where the rates were explicitly

specified among the data.

Another ciuestion of tbe same kind : If A can build a wall

in 30 days, Bin 40 days, and C in 50 days, how soon can

they all build it, if they can all work together without

interfering with each other ^
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Answer in x days, where

30"'"40"''50 x'

because, during each day, A does ^th of the wall, B does

•j^th, and C does -^th ; so the three together do, each day,

what is represented by these fractions added together. Hence

the number of days will be the reciprocal of the sum of these

fractions.

It is probably undesirable to assist a beginner to so easy a

solution of this class of problem prematurely, or until he has

been afforded an opportunity of expending some thought

upon it ; for it is difficult to get a good grip of a thing which

is too smooth and slippery.



CHAPTER XII.

Involution and evolution and beginning- of indices.

Because 6x6= 36, which may be called 6^ (six square),

and 6x6x6= 216, and may be called 6' (six cube),

6x6x6x6 = 1296 = 6*, (six to the fourth power),

and so on,

it is customary to call 6 the square root of 36

;

it is also the cube root of 216,

the fourth root of 1296,

and so on

;

and the process of finding, or extracting, the root of any

number is called evolution,—though the name is of small

importance.

The idea of roots and powers however is of great importance

and it is necessary to know how to find them.

The square root of 49 is 7 ; as we know from the multipli-

cation table. So also we know in the same way, that is by

direct experiment, that the square root of 64 is 8 ; because

this is only another way of saying that 8 square, 8^, or 8 x 8,

equals 64.

The statement that 9^ = 81 is identical, in everything except

in form, with the statement that the square root of 81 is 9.

The square root of 100 is 10,

that of 144 is 12,

and of 400 is 20.
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A notation or mode of writing is necessary for roots, to

avoid having constantly to write words, and for compactness

;

just as 3 is handier to deal with than "three," though it

means the same thing.

The notation employed in involution or raising to powers

we have already stated (p. 56), viz. little figures or indices

placed after the main figure, as for instance 4^= 16, the index

denoting how many fours are to be multiplied together.

So 6' means that three sixes are to be multiplied together

;

and that is all that the index shows.

95 means that five nines are to be multiplied together ; and
the result is a big number, which a child may at once be set to

calculate. He might also calculate such numbers as 2% 3^, 4*,

55, ..., 99, 1010.

Moreover, he should at once write down the values of the

following:
102, 10M0M0M06

and perceive that in each case the number of ciphers following

the one is indicated by the index. So he can write down in

full 10^^ without consideration, and can be told that the short

form is a compact and handy and universally adopted method

of expressing large numbers.

From all this, if a sharp child were asked to invent a

notation for roots, he might perhaps, though it is much to

expect if really ignorant of the convention, but he might

suggest that since 4^ = 16, perhaps 16^ = 4; or perhaps

he might suggest 16"^ as a suitable notation. In either

case he should be much encouraged.

Of the two notations, thus suggested, the first is correct

and is employed. The second is employed for something

also, but for something totally diiferent from a root, viz. a

reciprocal.

Let us get used to the notation for roots by fractional
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indices, and at the same time justify it as a consistent and

convenient method.

First of all it must be admitted as not easy to put into

words. The index 2 signifies that the number is to be raised

to the second power, or multiplied by itself, so that

42 = 4x4 = 16;

hence we might say that 16* means that the number is to be

raised to the half power, or multiplied,—^how t It is hardly

an interpretable phrase ; so we must proceed more gradually.

First of all, it is simple to suppose that if'the index is unity

it should be understood to leave the figure unaltered, so that

41 = 4 and I61 = 16;

therefore we may write indices on both sides, thus, 1 6^ = 4^

;

let us next suppose that we may halve the index on each side

getting 16^ = 4^, and read this, root 16 equals 4. We might

halve the indices again, and get 16* = 4*; which equals the

square root of four, or 2 ; so that we may surmise that the

fourth root of 16 is 2 ; and verify it thus,

2x2x2x2 = 16.

Similarly, 27 = 3\

27* = 31,

which agrees with the fact that the cube root of 27 is 3,

(27 = 3 X 3 X 3).

Again, 81* = 9,

81* = 9* = 3.

All that we have here assumed (and it is a large assumption)

is that in an equation involving terms with indices, if we
perform an operation on the indices—provided we perform

the same operation on both sides,—the equality remains

undisturbed.

This is an assumption, a guess, an expectation, to be justified

or contradicted experimentally by results. We shall find that
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its truth depends entirely on tEe kind of operation so per-

formed. We happen to have hit first upon trying multipli-

cation and division as applied to indices, and that seems to

work correctly. But we shall try other operations shortly

and will find them fail.

Those who imagine or assert that experiment has no place

in mathematics do not know anything about mathematics.

Sometimes results are arrived at by theory, sometimes by

experiment, sometimes by a mixture of the two ;—either

theory first and confirmation by experiment, or experiment

first and justification by theory : just as in Physics or any

other developed science.

Let us now press our assumption to extremes and experi-

ment on it in various ways so as to see whither it will lead us.

Start with any equation, such as

42 = 161.

Double each index, and we get

4* = 162 = 256.

So the fourth root of 256 is given as 4, and the eighth root

will accordingly be 2, or 256 is asserted to be the eighth

power of two; which is the fact: eight twos multiplied

together do yield 256.

Treble the index, and it becomes

46 = 163 = 256 X 16 = 4096,

or conversely, 4096^ = 4.

Hence the sixth root of 4096 is given as 4, and

4096^^ = 4* = 2,

that is, its twelfth root is 2. Again fact agrees with theory.

2 multiplied by itself 12 times does equal 4096.

Hence it appears that the operation of multiplying indices

by any the same factor on each side of an equation may be

trusted to give true results.
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So also division of indices by any the same number may be

trusted too ; thus starting as before with

161 = 42^

quarter each index 16i = 4^ = 2,

halve each again 16a = 4* = 25.

How are we to calculate 2* 1 That is not an easy matter

:

we will leave it unvalued for a time and merely call it the

square root of 2. It is often denoted by a sort of badly-

written long-tailed ^ in front of the digit, thus, ^2 or ^2.

Try again, 27 = S^,

27* = 3,

27i = 3*,

there is the same difficulty about interpreting 3*; no whole

number will serve. We can call it the square root of 3, or

briefly " root 3," and can denote it by writing ^3 as before.

^16 means the same as 16^, namely 4 ; and ^^4 = 4* = 2

;

but whereas the fractional index contains an important and

valuable idea, which remains to be developed, the symbol J
is nothing but shorthand for the word "root," and is itself

trivial and inexpressive, though quite harmless and of constant

service.

What we have learnt from the above examples resulting in

J2 and ^3 is that when employing fractional indices we can

arrive at something, easy of interpretation indeed, but not

easy of numerical evaluation ; there is no need to mistrust the

result but only to wait till more light can fall upon it.

Now try some other operations applied to indices, we shall

find that wariness is necessary, and that mere guesses and

surmises as to what it is permissible to do to equations are

not worth much. Everything must be tested. Suppose we
try squaring them on both sides as thus : Starting with

42 = 161,
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squaring indices would give us

4* ^ 161,

since the square, or any other power, of 1 is 1,

1x1x1x1 = 1.

The result, that 16 is both the square and the fourth power

of 4, is false and absurd : and hence the sham equation is

erased.

So we learn that whereas multiplication of indices by any

factor is an operation that can be trusted to give true results,

and division of indices by a factor can probably be trusted

too, since one operation is the inverse of the other, yet that

involution is not an operation that can legitimately be per-

formed upon indices, but only upon the numbers themselves.

Suppose we try addition, equal additions to the indices on

each side ; add 1 for instance, we get 4' ^ 16^, which is a

falsehood if the equality sign is left unerased.

It is time we began to consider what operations are really

legitimate and what are not ; and gradually in both cases we

must proceed to ask. Why 1



CHAPTER XIII.

Equations (treated by the method of very elementary experiment).

It is therefore convenient at this stage to introduce the idea

of an expressed equality, which is called an equation, and to

consider what are the operations to which an equation can be

subjected without destroying the equality.

It is customary to postpone this subject to Algebra, but we do

not wish to perpetuate any sharp distinction between algebra

and arithmetic, and it is useful to begin experimenting with

equations while still they are expressed in terms familiar to

beginners.

Typical equations are of many kinds, of which we may
now consider the following

:

The addition kind, 3 + 2 = 5.

The subtraction kind, 3-2 = 1.

The multiplication kind, 3x2 ^ 6.

The division kind, 3 -f- 2 = 1-5.

The involution kind, 3^ = 9.

The evolution kind, 9* = 3.

There are plenty of others, but these will do to begin with.

Every equation has two sides, called respectively the left-hand

side and the right-hand side ; the symbol = is the barrier.

It is not an impassable barrier, but terms get reversed when

they are taken across it ; positive becomes negative, and vice

versa. In order to find out what may be done to equations

we can experiment.
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Take any of these equations and try experiments on it.

For instance, add something to or subtract something from

each side. So long as we add the same thing to each side no

harm is done : the equality persists. For instance, start with

the first two of the above equations and modify them by

addition or subtraction in various ways :

—

3 + 2 + 7 = 5 + 7 = 12;

3-2-1 = 1-1=0;
3 + 2-6 = 5-6 1,

3-2 + a = l+a,

x + 3-2-a = x-a + 1,

3-2 + 2 = 1+2 = 3,

3 + 2 + i = 5J.

So far everything is very simple and safe.

Not only may we add the same thing to each side, but we

may add equal things to each side (which may be regarded as

an illustration of the axiom, that if equals be added to equals

the wholes are equal).

Thus 3 + 2 = 5,

1

and also 7 + 6 = 13. J

So 3 + 2 + 7 + 6 = 5 + 13 = 18.

Or again, 3-2 = 1,\

and 32 = 9.)

So 3-2 + 32 = 1+9 = 10.

Also take the following

:

3-2=1, 1

and 5-6 = -l;j
.-. 3-2 + 5-6 = 1-1=0.

But take an equation of the multiplication kind,

3x2 = 6,

a little caution is necessary in adding anything to the left-

hand side. —
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We might have (3 x 2) + 1 = 6 + 1 = 7,

or we might have 3 x (2 + 1) = 3 x 3 = 9.

If we only write 3x2 + 1, without brackets, it is ambiguous

;

for the value depends on whether the addition or the multi-

plication is performed first : that is, on whether the 2 is

grouped along with the 3 or with the 1, but the brackets

enable us to indicate the grouping clearly.

Take another example,

7 X 8 = 56,

(7 X 8) - 4 = 52,

although 7 X (8 - 4) = 28

;

but the last is quite a different equation, and is not deduced

by simple subtraction of 4 from both sides.

About the other forms of equations there is no difficulty

;

we will just write them, with something either added to or

subtracted from each side :

1-1 = 1-5-1 = -5 = ^,

32-1 = 9-1 = 8,

9^ + 2 = 3 + 2 = 5.

Incidentally we here observe the advantage of the fractional

notation over the -r notation. If we had written 3 -^ 2 - 1 we

should have had to avoid ambiguity by the use of brackets, as

was necessary in multiplication ; but f - 1 is unambiguous.

Unity is subtracted from the whole fraction, not from either

numerator or denominator. If unity were subtracted from

the numerator it would not be right,

i^^ 1-5-1 = -5;

nor will it do to subtract from the denominator, nor from both.

So much at present for addition and subtraction ; now try

multiplication and division : start with

3 + 2 = 5:
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double each term, 6 + 4 = 10

;

treble each term, 9 + 6 = 15

;

halve each of these terms,

H + 3 = 7i.
So here we are safe.

Proceed now to the factor or multiplication form of equation

:

3x2 = 6j

double each digit, 6x4 ^^ 12,

and we get wrong.

We learn that we must not double each factor in a product,

though we must double each term of a sum ; hence the expres-

sion 3 + 2 is commonly spoken of as containing two terms, but

3 X 2 is spoken of as a single term.

To double the single term it is sufficient to double one of its

factors j so if we write

6x2 = 12

we get right again.

Similarly we must halve one of the factors only,

Hx2 = 3,

or else 3x1 = 3.

Now attend to the quotient form,

double every digit, f ^ 3,

and we get wrong.

Double the denominator only,

1^3,
it is still "wrong.

Double the numerator only, f = 3,

and we get right.

So in multiplication and division of a quotient by a whole

number, the factor has to be applied to the numerator

only.
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Take another example, ^ = 4,

6 _ 4 _ 9

8 _ 4 _ 1

-2/= 4x2 = 8.

Finally, take the involution form,

32 = 9.

What are we now to double if we want to double both

sides? 62 = 18 is wrong,

3* = 18 is also wrong.

We cannot do it quite so simply ; so we must write merely

2 X 32 = 18,

which leaves the step really undone and only indicated.

But take another example,

3 X 32 = 27.

This could be written 3*.

Again, 3^ x 3^ = 27 x 9 = 243 = S^,

and a rule of extraordinary interest and usefulness is suggested.

Think it over, we shall return to it in Chapter XVI.

Further consideration of what can be done to equa-

tions.

A sentence like the following

:

" If both sides of an equation be treated alike, the equality

will persist," might easily be considered axiomatic ; but so

much caution is required before we can be sure that both

sides have been really treated alike, that it is highly dangerous

to employ such an axiom. We have already come across

some oases of the danger, but the subject is very important

and will bear fuller treatment.

The general doctrine may be laid down that before we
understand properly what can be done, or what it is per-

missible to do, in any subject whatever, we should take pains
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to ascertain also what cannot be done under the same circum-

stances, i.e. what it is not possible to do without error.

This latter part should not be too long dwelt upon, because

error is most simply excluded by attention to and familiarity

with the correct processes, so that presently all others instinc-

tively feel wrong ; but once at least we should examine the

whole matter, and learn, if we can, why one set of things are

wrong and another set right. This remark applies also to

other things than arithmetic.

An equation consists of two sides, and each side consists of

terms. Frequently the right hand side is zero, especially in

algebra and in higher mathematics. Sometimes, instead of

being zero, it is some constant or other independent quantity,

and is called " the absolute term," because it is undetermined

by anything on the left hand side : to which however it is

equated.

An ecLuation is the most serious and important thing in

mathematics. The assertion that two quantities or two sets

of quantities are equal to each other, whether it is meant

that they are always equal, or only that they are equal

under certain circumstances which have to be specified, is a

very definite assertion and may carry with it extraordinary

and at first unsuspected consequences.

The equations we are now using as illustrations are by no

means of this high character ; they are usually mere identities,

and depend on the truism that a combination of things grouped

or expressed in one way are unchanged in number when

grouped or expressed in another way.* But although it may

* We call this a truism ; but it is a dangerous term to employ, and

when we come to Chemistry we must be on our guard against assuming

that the voluine of H2 + O is equal to that of HjjO, under the same

external circumstances. It is true of weights (as nearly as we can teU)

but it is not even approximately true of volumes,
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be some time before they realise the vast importance attaching

to equations, children will take it on trust that they are now

entering the central arcana of the subject, and will be willing

to give the needful attention to the processes which have

constantly to be employed. An initial account of them is

given in the following chapter, parts of which may be read

before the whole of the following introductory matter.

When a number of quantities are multiplied together, they

are held to constitute one term. Whenever the sign + or -

intervenes, it interrupts the term, and each such sign has a

term on either side of it.

Thus a + b, 70-6, are each two terms ; but ab, and 70 x 6,

and abc, and 10^, and 5aJ2, and are all single terms.

What about such an expression as

5ab-x
ahx

'

where there is one (or more than one) addition or sub-

traction sign in the numerator?

Answer : So long as it is kept all together it can be called

one term, but it can easily be split into two, viz.

5_ j_
X ab'

and for some purposes its terms ca;n be considered plural

without re-writing.

The long line of division in the original expression however

may be held to weld the whole into one term ; and brackets

have the same effect. Thus,

(a + b), (70-6), 5{a + b)x, J (ax -by)

are all single terms once more ; until the brackets are

removed. And removal of brackets is an operation to be

performed cautiously. Rubbing them out is not a legitimate

way of removing them.
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For instance, 3(7-4) = 9

;

but 37-4, and 3x7- 4, and 3-7 - 4

are all different.

Again, J(16 + 9).= 5,

but ^16 + ^9 = 7,

and ^16+ 9 = 13,

while 16+^9 = 19;

the three are entirely distinct statements from the first, and

are not deducible from it.

So we learn that the right removal of brackets is a matter

to be studied.

When we assert that the same operation can properiy.be

applied to each side of an equation then, we must be careful to

interpret it always as an operation applied to the whole side^

and not to any part of it. We may not tamper with one

term and leave the others alone, nor must we tamper with a

part of a term only. Nor must we repeat the operation for

each of the factor components of a single term.

This must be illustrated

:

Given that a + b = c,

it is correct to say that

2a + 26 = 2c,

or that 2(a + 6)= 2c;

but given that o x 6 = c,

it is not correct to say that

2a X 26 = 2c.

For here the term db is one, and it only needs doubling once.

Given that a^ = ^,

it is true that 5a^ = 56», (1)

but it is not true that (5a)2 = (56)», (2)

for that would mean 25*2 = 1256*,

which, subject to the given data, is absurd, unless a and I are

both zero.
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In reading the two lines labelled (1) and (2) it is customary

to read them carefully in order to discriminate what otherwise

would sound quite similar. The former of the two lines is

read < five a-square = five 6-cube
"

;

the latter of the two lines is read

" five a, squared = five b, cubed "

;

and these are quite different. They cannot under any circum-

stances be both true (unless indeed a and b are both zero).

They are therefore called " inconsistent " equations

(like X = y, and x = 2y, which cannot both be true).

To illustrate the inconsistency, take an example

:

82 = 48, both being 64,

and so also 5 x 8^ = 5 x 4', both being 320,

but (5 X 8)2 ^ (5 X 4)3, the one being 1600

and the other 8000.

Eead the sign ^ as " does not equal.

"

Given again that a^ = b%

it does not follow that a^ = b\

although we have done the same thing, that is added 1, to the

index on each side.

Nor would it be true to say that

a* = J9,

although we have now squared the index on each side.

But it does turn out true that if we double or treble the

index, the equality persists : given that a^ = 6*

it is true that a* = ¥
and that a^ = b^,

so that it appears as if it were permissible to multiply the

index on each side by any the same factor. We must examine
this later, but at present we will merely verify the truth of

these last assertions by an arithmetical example

:
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For instance 8^ = 4s,

whereas 8^ ^ 4*,

one being 512, and the other 256

;

but 8* = 4«,

both being (64)2 or 4096.

Likewise 8^ = 4',

both being (64)s or 262,144.

Now take a slightly more general type of equation.

(ixi = hy,

it follows that (aa;)3 = (Jy)«,

but it is by no means necessary that osk* shall equal h'f.

For instance, 7x4 = 14x2,
and (7x4)8 = (14x2)8;

but 7x48 5^14x28,

for one equals 448, and the other equals 112.

Take, as given, the equation cih = xy, and let us multiply,

add, and divide on both sides, so as to illustrate legitimate

and .illegitimate operations; the pupil being left to devise

numerical illustrations and tests for himself.

First multiply or divide by any quantity whatever, say c.

abc = cxy;

or, assuming another quantity a = c, we may write it

ale = xyz.

So also ^^ = ^,
c z

ay.h-TC = xx.y-TZ = y^x-i-z,

1,,. a, b y X 1, ^

-{ab) = -xo = ax- = a;x- = yx- = -{xy). •

c c c z z z

Next add or subtract something to or from each side.

ab + c = xy+ e,

ah — b = xy-b'\ xy-y,

ab-x = xy-x,

ab-xy = xy- xy — 0.
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This last is worth attention. The result has been to

transfer a term from one side of the equation to the other,

its sign being changed in the process. This is important and

demands further illustration.

Let a; = 6.

We can equally well write it, by subtracting 6 from both

sides, a; - 6 = 0,

and the 6 has been transferred, with change of sign.

Or let X = y-

Subtract y from both sides,

then x-y — 0.

Again let x = -
y,

then add y to both sides and we get

x+ y = 0.

Or let ax+ hy = -c,

add c to both sides, ax + by + e = 0.

This kind of simple operation has constantly to be per-

formed.

One more illustration therefore:
'

Let ax + by = cx + dy.

We can subtract the right hand side from both sides; in

other words, transfer it to the left, with change of sign;

getting ax+ by- ex -dy = 0,

which is more neatly written

(a-c)x + (b-d)y = 0;

or again, (a - c)x = {d - b)y.

Here the last mode of expression is deserving of attention.

We will arrive at it more directly.

To this end start again with

ax + by = csc + dy;

transfer by to the right, and ex to the left ; thus we get

ax -ex = dy~by,
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or what is the same thing,

(a-c)x = {d-b)y.

Divide each side by the product (a-c)(d-b) and the

equation becomes

. (a - c)x (d - h)y

(a-c)(d-b) ~ {a-c){d-V)

In each of these terms there is a common factor in

numerator and denominator, so we can cancel them, and are

left with ^ = -i^.
d-o a-c

Or we might have divided otherwise, and arrived at any of

the following

:
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Among things that can legitimately be done to equations

are certain operations which are by no means obvious, and

demand attention.

Suppose we are told that

^=^ (1)
y b

We are not allowed to say -^— = —^ ; but we are entitled

to say that ^

y ~ b
'

^ '

because this is equivalent to subtracting unity from both

sides, i.e. is equivalent to

y

So also we might have truly written

~^~b' ^'

But from the truth of these two operations it follows that

we might also have written

x + y a + b
^ '

For this would be obtained if we had divided each side of

equation (2) by the corresponding side of equation (3) ; for if

equals be divided by equals the quotients are equal.

Let us illustrate this important result arithmetically.

14 49
Start with — = —, which can be easily proved true, and

may be taken as corresponding to (1).

Then it follows that

14-6 49-21 . ., J 8 28 ,. ,—^— = —n^— ; m other words ^ = jj:,-; which

corresponds to the form numbered (2)

;
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also, like (3), that l^ =1^ i.e. that ^ = ^

;

^d.like(4).thatJi±| = ||±||.o.thatf.|

Or each member of any of them may be inverted : for

instance the last

:

8 _ 28

20 ~ 70'

Starting once more with
X _a

we might equally well write it

a'b • ^^>

for this is the result of multipljdng both sides by ^ ; so there-

fore it is true to say that

'-^'^ w
md i±a_r^b ,,

a

also that ^^ =^ (8)

and that is really, though by no means obviously, the same

thing as equation (4-).

Illustrate this too, numerically, with the same numbers as

before

:

14 6 j ^ /c\
-rR = TTc corresponds to (5)
49 21

- —^ = - jTY corresponds to (6)

where the minus signs may equally well be omitted or can-

celled by multiplying each side by - 1

;

35 15
and H^ = H5 corresponds to (8)

DO 27
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or again any of them may be inverted, e.g.:

49 21 .

n = ¥ '''

Now let us apply the so-called involutional operations to

both sides of an equation; and ascertain what we may do and

what we may not do.

Begin with ah = xy.

Square both sides, {aVf = {xyf.

Square each factor, aW = ay-
Square one of them only, and we get wrong,

Take the square root of- both sides,

>Jiah) = ^{%y),

also of each factor, ^Oi.Jh = Jxjy,

or what is the same thing,

a'o xy .

So far we are all right except in the one marked instance :

as can be tested by giving suitable numerical values to the

four symbols.

But now take an equation with more than one term on a

side, say x + y = c.

Square both sides (»+ yY = c^.

Square each term, x^ + y^ ^ c^,

and we.get wrong.

This is a mistake constantly being made by beginners, and

it must be further emphasised. As an example,

4 + 5 = 9,

(4 + 5)2 = 92 = 81,

but 42 + 52 = 16 + 25 = 41 ^ 92.

The following fallacy may serve as an illustration :

725 = 7(16 + 9), .-. 5=V16+V9 = V.
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Observe that these numerical instances, if they lead to

error, show quite decidedly that the operation tested is wrong.

They do not prove with equal validity that it is right,

if they turn out correctly: certainly a singh instance of correct-

ness is insufficient. They render its rightness probable, but

the rationale of it has to be further investigated. A single

instance of real error however is sufficient to invalidate any

operation under test.

Exercises.—Test the correctness of the following horizontally

juxtaposed statements

:

2x3 = 6.

22 X 32 = 62.

5 X 6 = 30.

52 X 62 = 302.

23 X 68 = 123.

4x9 = 36.

4* X 9* = 36* = 6.

9 X 144 = 1296.

^9x^144 = 7(1296). V9+V144 = 15.

27 X 216 = 5832. 27 + 216 = 243.

27^ X 216* = 5832i 27* + 216* = 9.

or 3 X 6 = 18.

But now it must be admitted that this experimental mode
of treatment may not be considered the best mode of beginning

the experience of equations ; and it is certainly not the most

conducive to rapid progress; it may be better therefore t6

apply treatment like that of the present chapter at a rather

later stage and to use it as a cautionary and salutary exercise.

The importance of the subject is so great that it can hardly

be over-emphasised, nor is one mode of approach sufficient.

In the next chapter a somewhat more orthodox and quite

eflFective mode of procedure is adopted.

2 + 3 =



CHAPTER XIV.

Another treatment of Equations.

Equations may be classified in various ways: there are such

things as diflferential equations, there are quadratic equations

and equations of the fifth degree, etc., but for the present we

will classify them under three simple heads :

—

1st. Statements of specific or particular fact, such as

:

3 + 4 = 7,

or 9,7(144) = 108

;

these involve only definition and re-grouping.

2nd. Statements of general or universal truth, such as :

n^-1 = {n+l){n-\)

log a' = a; log a

;

these are called identities, and are frequently denoted by a

triple sign of equality = , for instance a + b = b + a, whenever it

is desired to emphasise their distinction from the third class.

3rd. Equations proper, or statements of condition or in-

formation such as

:

17a; = 34,

or 5x^ = 40 ;

statements which are not by any means generally true, but

are only satisfied by some implicit datum, such as, in the

above instances, z = 2.

4th. There is also, from this point of view, a fourth class of
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equations, expressive of a relation between two quantities,

™chas 3x + iy=l2,
or x^ + y^ = 25;

which are satisfied not by all possible values of x and y, as

an identity is satisfied, but by an exclusive and definite

though infinite series of values.

The first is satisfied, on a certain geometrical convention, by
all the points which lie on a specific straight line, the second

by all the points which lie on a definite circle.

If the equations are given simultaneously, they are satisfied

together by two and only two points, viz. the points where

the straight line cuts the circle.

With this fourth class we have nothing to do just yet : it

opens up a large and exhilarating subject.

"With the first kind of equation we have constantly had to

do already : all purely arithmetical equations are necessarily of

this kind.

The second kind is constantly encountered throughout

algebra and trigonometry; identities represent the skeleton

or framework of mathematical science, all its universal and

undeniable truths can be thus expressed.

The third kind of equation, or equation proper,—equations

which have a definite solution, equations which convey specific

information about an unknown quantity, and express it in

terms of numbers or known quantities of some kind—those

are the equations with which we deal in this chapter, and

that is the kind which gives immediate practical assistance

towards the solving of problems.

The process of " solving " an equation is simply the act of

reducing it to its simplest possible form. Written in any

form the equation conveys the same information, but in some

forms it is not easy to read ; the solving of it is analogous to
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the interpretation of a hieroglyph or the translation of an

unknown phrase.

For instance the following equations

7a;-2j = ^a;+ 30

13a! = 65

x= 5.

all express the same fact and convey the same information

concerning x, but the last obviously conveys it in simplest

form, and it is called the " solution " of the first, the second

being an intermediate step.

The two sides of an equation may be likened to the two

pans of a balance, containing equal weights of different

materials or of the same material differently grouped. It

is permissible to take from or to add equal quantities to

both pans, the balance or equality being still preserved ; but

a weight must not be taken out of one pan and added to the

other, unless its force be reversed in direction and made to

act upwards instead of downwards; which can be actually

managed by hanging it to a string over a fixed pulley, the

other end of the string being attached to the pan.

This fact is most simply expressed by saying that if any

term or quantity is transferred from one side of an equation

to the other, it must be reversed in sign, if the equality is still

to persist, i.e. if the equation is to remain true.

This is a simple but important matter of constant practical

use, and it requires illustration

:

Let the equation be given

x-2 = 3.

We can transfer - 2 to the other side of the equation, where

it will become +2, giving us a; = 3 + 2 or in other words

X = 5. (We may consider that we have added 2 to each side.)

The value 5 obviously satisfies the equation in its original

form, because it is true that 5 — 2 = 3 ; and the substitution
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of the found value in the original equation and then seeing if

it fits or holds good, is called ' verifying ' the solution.

Take another case

:

3x^ + 11 = 4a;2-8.

Getting the unknown quantities on one side, and the known
on the other, it becomes

3a;2-4a;2 = -8-17;
if we like we may now reverse the sign of every term, which

will give us

4a!2-3a;2 ^17 + 8

or x^ = 25

or X = 5.

Thus all the equations we have written recently happen to

be expressive of the same fact : namely that the particular x

denoted by them is merely the number 5. Substituting this

number in the above equation, it becomes

3x25 + 17 = 4x25-8
or 75 + 17 = 100-8

which we perceive to be an arithmetical identity, since both

sides 5= 92,

thus the solution is verified, or the value a; = 5 is proved to

satisfy the given equation.

We do not know for certain that it is the only value that

will satisfy it, but at any rate it is one solution. It so

happens that the equation last written will also be satisfied

by the solution x = -5; and this is characteristic of square

or quadratic equations in general, that there are two answers

instead of only one.

An equation of the third degree, that is an equation

involving 3^, will in general have three answers ; and so on.

Take one more quite simple example, for practice

:

given 7a;-12 = 5a;+ 6, to find a;.
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Subtract 5x from both sides, or, what is equivalent, transfer

5x over to the other side with change of sign,

we get 2a;-12 = 6.

Now add 12 to both sides, or, what is the same thing, transfer

- 12 over to the other side, and it becomes

2a; = 6 + 12 = 18;

wherefore a; = 9 is the solution.

Try it in the original equation in order to verify it and we
get 63-12 = 45 + 6,

which is an arithmetical identity.

As to algebraic identities, it is probably needful to remind

young beginners occasionally even of such simple facts as

these : at the same time making mysterious hints that there

are possible interpretations, to be met with hereafter, wherein

even these simple statements lack generality and are open to

reconsideration, a + b = b + a,

and ab = ba;

and they should be frequently reminded of such useful

identities as (a+ bf ^ a^ + 2ab + b%

(a-by = a2-2fflS + 62,

(a + b){a-b) = a^-b\

Oral questions should be asked at odd times concerning

equivalent expressions for such things as

{p + qf, {x-bf, {x + y){x-y),

(a! + l)(a;-l), {n+\f, {n-\f,

{l + af, {\-af, (a; + 3)2,

(a; - 5)2, (3 + J2f, (7 + \xf, etc., etc.,

since a pupil's knowledge of such fundamental things should

be ready for immediate application—like a well constructed

machine.

We have not yet taken an example of an equation involving

x^ as well as x, because they are not quite so easy to solve

;
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but a parenthetical remark may be introduced even at this

stage. We know that quantities of different kinds do not

occur in one expression; in other words, that all the terms

of an expression must refer to the same sort of thing, if they

are to be dealt with together or equated to any one value.

Nevertheless an expression like x^ + 5x^ + 2x + Q is common,
and X may be a length ; which looks as if we could add to-

gether a volume, an area, a length, and a pure number.

Not so, really, however : see Appendix.

The equation (a; -3) (a; -4) = 0,

written out, becomes a;^ - 7a; + 12 = 0,

or x^ = 7a; -12.

We may guess at numbers which will satisfy this equation,

and we have been told there must be two, because it is a

quadratic : it contains x\ By trial and error it will be found

that the number 3 and the number 4 will both satisfy it ; for

insertion of the first gives the identity 9 = 21-12, and inser-

tion of the second gives the identity 16 = 28-12; but no

other number whatever, when substituted, will result in an

identity, that is to say no other number will satisfy the

equation ; the equation has two, and only two, solutions, or,'

as they are often called, "roots."

Looking at the factor form of the equation with which we
started, (a; -3) (a; -4) = 0,

it is obvious that either 3 or 4 will satisfy it; because the value

3 makes the first factor zero, and the value 4 makes the second

factor zero. It is not necessary that both factors shall be zero

—either will do—hence the useful answer is not necessarily

both 3 and 4, but either 3 or 4, or possibly both.

The factor form of writing the equation, therefore, contains

the solution in so obvious a manner, that it is sometimes

spoken of as " the solution " ; and if an equation like

3a;2 + 7a;-31 = 11 -8a;



144 EASY MATHEMATICS. [chap.

were, by any process of manipiilation, reduced to the form

(x-2){x+1) =

it would be considered solved ; because it is then obvious that

the values + 2 and - 7, that is to say either x = 2 or a; = - 7,

or both, satisfy the equation. Inserting them successively,

for the purpose of verification, we get for the value x = 2

12 + 14-31 = 11-16
which is an identity

;

and for the value x = -7

147-49-31 = 11+56

which is another identity.

In collecting the terms of the given equation the two x

terms can be put together, making 15a;, and the two absolute

terms can be put together, making 42, but neither of these

pairs can be merged in the other, nor in the term 3x^ ; there

are essentially three distinct kinds of terms in the equation,

and they must be kept distinct.

Introduction to Quadratics.

. When beginning quadratic equations, it is a good plan

to give them first of a kind that can easily be resolved into

simple factors, so as to remove the appearance of difficulty,

and yet to suggest a real method of solution.

For instance, k^ - 7a!+ 12 =
has roots 3 and 4, for these numbers add together to 7 and

multiply together to 12. So the expression on the left hand

side can be resolved into factors as

(a!-3)(a;-4)

and the equation can be re-written

(a;-3)(a;-4) = 0.

Again x^-5x+6 =
is plainly satisfied by the values a; = 3 and a; = 2.
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Once more, a!^ - 1 la; + 30 =
has the roots 5 and 6, and is equivalent to

(a;-5)(a;-6) = 0.

If we had chosen the equation

a!2+lla; + 30 =0
the roots would have been - 5 and - 6, and the equation

written in the factor form would have been

(a! + 5)(a! + 6) = 0.

And so on, according to innumerable examples given in every

text book of algebra.

When a quadratic expression equated to is solved, it is

always really resolved into two factors, for it is always

virtually expressed in the form

(x-a){x-b) = 0,

where a and b are the two numbers which satisfy the equa-

tion, its two " roots " as they are called ; a term which is thus

used in a new sense, having no reference to square or cube

root.

Multiplying out the above expression, it takes the form

x^-{a + b)x+ ab =
so that the coefficient of the middle term is the sum of the

roots, and the absolute term is their product; provided that

the coefficient of the quadratic term is unity, and the sign of

the middle term is negative.

The process of solving the equation is the same as that of

resolving the above expression into factors, and one way of

achieving it is to think of two numbers which add together

into the middle term and multiply together into the absolute

term, provided the coefficient of the quadratic term is unity.

Suppose, for instance, the equation given were a general

quadratic in x,

Jx^ +Bx+C = 0.

Ii.E.M. K
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Divide everything by A in order to reduce the coefficient of

the quadratic term to unity, getting

Here we know that the sum of the roots of the equation must

be equal to the ratio - BfA and that the product of the roots

must be equal to the ratio OjA. (See also Appendix III.)

In the above cases it was easy to guess the roots, but it is

by no means always easy. A process must be used for find-

ing them, and as far as possible the pupil should be left to

find it out: with guidance, but no more actual telling than

may be found necessary. But time and perseverance will be

required. If the child has no head for it the attempt may be

useless, and should not be persisted in unduly; nor should any

disgrace attach to failure; success is a triumph rather than

otherwise.

If the equation a;^ + 10a; = 24 is given, it happens to be

rather obvious that 12 and 2 must be the numbers concerned,

if the signs are properly attended to ; but the rule for finding

them in general will have to be evolved from a consideration

of the chief quadratic identity,

Suggest a trial of this to the pupil, and if necessary suggest

trying the value 5 for the auxiliary and gratuitously intro-

duced symbol a, because that will give

a;2-(-10a! + 25,

which imitates the only hard part, the left-hand side, of the

given equation; for a little complication of the easy, the

numerical, part on the right-hand side, does not matter. Sq

we might write the given equation now if we like,

,a;2 + 10a;-H25 = 24 + 25 = 49;
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but directly we have done that, the equation is practically

solved, for it is plainly equivalent to

(3; + 5)? = 72,

and therefore to a: + 5 = + 7

;

that is to say x = either 2 or - 12, as the case may be ; for

either will satisfy or solve the equation.

Wherefore the given equation, with the roots wrapped up

9? + l0x-2^ = 0,

may likewise be written (a: - 2) (a; + 12) = 0,

with the roots visible.

Another example or two to clinch the matter

:

let it be given that x^-^\^x = 15,

here if we try to throw the left-hand side into the form

(x-i-g)\ tbe auxiliary number a is given by

2a =; 14, so a2 = 49

.

and the equation becomes

a;2-i-14a; + 49 = 15 + 49 = 64,

or (a;"+7)2 = 82;

whence x = - 7 ± 8,

wherefore x = either 1 or - 15.

One more plainly numerical example

:

a;2-6a;= 20,

here a is manifestly 3, and the equation becomes

a;2-6a; + 9 = 29,

or (a!-3)2 = 29;

wherefore a; = 3±^(29)
and it can only be carried further by extracting the numerical

and incommensurable root.

Now a slightly more general touch :

given x^-l2x = n.

To reduce this to the form (x - 6)*, we must add 36 to each

side, getting a;^ - 1 2a; + 36 = w + 36

whence the solution is (a; - 6) = ± sj{n + 36)
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Finally let the given equation be

a;^ - 2ax = n^.

Complete the square on the left hand side,

x^-2ax + (^ = n^-va?

it becomes {x - of = n'^ + a?

or X = a±J{n^ + aP);

which is essentially a general result.

The form of this result is easy to remember, and it is

really general ; for if the quadratic equation had been given

in the manifestly general form

Ax^ +Bx+0 = 0,

where the coefficients A, B, C, stand for any known quantities

of any kind whatever, it can be reduced to the above form by
first dividing by A, and then instituting comparisons between

it and the above ; for we then see that correspondence requires

the following identities

:

»^ =
--J and 2a = --j,

so that a" = -p-jj

;

iA^

wherefore the solution of the general quadratic is

B .( B^ C\h
'"" ~'iA-\iA^~A)

But this should not be given to pupils for a long time yet,

and perhaps we have already been attracted a little further

than in the present book is legitimate. The pupil should by
no means be thus hurried. A month's practice at the numerical

and factor forms of expression may be desirable before passing

to even slightly more general forms.
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Extraction of Simple Roots.

The last arithmetical lines of Chapter XIII. practically

asserted that 18 = 5832*; and it can easily be verified by
multiplication that

18x18x18 = 5832

or that 18 is the cube root of 5832.

Here then is a method, automatically suggested, for finding

cube and other roots:—Analyse the number into factors

whose roots are known, as 5832 was analysed into 27 and

216, at the end of the chapter referred to. It cannot always

or often be done, but whenever it can it is quite the best way.

But to be able to apply this method we must cultivate an

eye for factors, and we must also recognise or know by heart

a certain collection of cube and square numbers.

Thus 1728 = 12 X 12 X 12

or the cube root of 1728 is 12.

This is easy to remember because it represents the number

of cubic inches in a cubic foot. In a country with a purely

decimal system of measures, this fact would not be known

with the same ease. They would know well however that

1000 = 10x10x10
or that the cube root of a thousand is ten ; and so do we.

We may also know that 729 has 9 as its cube root, since it

evidently equals 81 x 9, that is 9^ x 9 or 9^. The cube root of

343 is 7.
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The square root of 10,000 is 100, and the square root of

this is 10 ; but what its cube root is is not so easy to say.

The cube root of 1000 is 10 j but what its square root is

is not so easy to say.

The fifth root of 32 is 2, but neither its square root nor

cube root is simple.

It is valuable to remember thoroughly that 2 is the cube

root of 8.

The square root of a million is 1000,

the cube root of a million is 100

;

the sixth root of a million is 10.

But there is no need to trouble about remembering any

more than a few ordinarily occurring square roots and cube

roots ; for the sixth and higher roots are seldom wanted, and

they can usually be derived from square and cube roots.

A number like 64 can resolve itself into 8x8
or into 4x16.

Its cube root is therefore easily stated as 2x2, viz. 4, and

its square root as 2 x 4, viz. 8.

144 again = 12x12 and also = 9x16,

and either pair of factors gives its square root but not its cube

root.

Surds.

Now let us proceed to ask what is the root of a number
like 12 [where the word "root" is used alone, square root is

understood]. We can resolve it into factors and find the

root of each

12 = 4x3,

so 712 = 74x^3 = 2x^3.
So the result inay be stated that

JU = 2J3.
Similarly ^8 = 272.
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Again, let us find the cube root of say 24.

24 = 8 X 3 and 4/8 = 2;

so 24i, which is often written 4^24, = 2^/3.

Note the following

:

^32 = 716^2 = 4^2,

_ ^64 _ 8

o
Thus it would appear that 4^2 must equal -j-. If we

multiply or divide each of these numbers by ^^2 we can easily

verify this asserted quality. For multiplication by ^2 makes

them both 8 ; division by J2 makes them both 4.

Verify the following statements

:

4/56 = 2^7.

V20 = 2^5.

718 = 372.

V27 = 373.

772 = 3^8 = 6^2.

J50 = 5^2.

7(200) = 1072.

V216 = 6^6.

V(360) = 6V10.

V(810) = VIO.

V(490) = 7^10.

7(125) = 575.

7(1000) - 10710.

7(1728) = 12712.

7343 = 777.

7512 = 878 = I672.

The last five are all cube numbers, and their value suggests a

rule for expressing the square roots of any cube number ; e.g,

727 = 373, or 7»i3 = n^n.
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N.B.—The best way of interpreting the word "verify" at

the head of the above set of examples, or in any similar place,

is for the pupil to take the left-hand expression, and try as an

exercise, independently, to simplify or otherwise express it,

and see if he can reduce it to the form given on the right-

hand side. He will thus perceive that numbers which have

two factors can have the expression for their roots put into

another form, which is often a more simple form; and that

a large number of roots could be found numerically if the

roots of a few prime numbers were known.

The number ten, as usual, has an unfortunate disability, in

that neither of its factors is a perfect square, as one of the

factors of 12 is. All we can do with ;^10 therefore is to

say that it equals Ji Jb, which is of extremely 'little use.

It is better kept as ;^10 and considered to be one of the

things to be found. Since the sq. root of 9 is 3, while 4 is

the sq. root of 16, the pupil may make a guess and try

whether 3"1 approximates to the sq. root of 10 or not. He
can easily do this by multiplying 3'1 by itself. By this

means he can gradually correct its value. He can in a

similar way make guesses also at ;^20 and ^30 and ^^50. Let

him try.

No simplification, by resolution into factors, can be made
with any such numbers as

>/2, V3. n/5. n/7, s/ll, n/13, J\1, ^19, s/23,

and so on; that is, no simplification of this kind can be

applied to any root of any prime number, naturally.

The roots of even numbers may always have a J2, exhibited:

;^6 may be written J5 J2,

^10 „ „ J5J2,

V14 „ „ ^/7^2,

but it is seldom useful to express them in this way.
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Let us see if we must draw a distinction between {J9Y and

^(9^), that is between the cube of root nine and the root of

nine cubed. Now
(^9)8 = 38 = 27,

while ^(98) = V(729) = 9^9 = 27 likewise.

So they turn out to be the same.

The cube of a root appears to be equal to the root of a cube.

That is curious, and may well be unexpected. It is not the

sort of thing at all safe to assume. Plausible assumptions

are always to be mistrusted and critically examined ; occasion-

ally, as in this instance, they turn out true.

Let us consider the fact more generally, and see whether it

is always true that

The other and more expressive notation for roots will here

come to our aid.

ij{n^) may be written (n^)^,

and (Jn)^ may be written (n*)8,

so it looks as if both could be written as w* or n^i, or, more

properly, m^+*.

This last is a thing we have not yet learnt how to interpret.

We may assume however, as an experimental fact, that

n/w = s/»v»* = '*«y™»

hence the interpretation njn, that is nxn^, suggests itself

for m^i or m^ +^ ; and it is the right interpretation.

Here again (as on page 126) we have arrived at a striking

circumstance about indices, which is now well worthy of

examination.



CHAPTER XVI.

Further consideration of indices.

There are two things to which, we might now appropriately

turn our attention: one is the numerical calculation of all

manner of roots, for instance, ^2, ^^3, ^10, 4/2, \/3, etc., ^2,

;^100, and so on; evidently a large subject, since we may
require to find any root of any number; the other is the

discussion of that curious property of indices, which has been

dimly suggested by certain of the examples chosen, viz. the

suggestion that

and that (a;")*" = (k™)" ^ a;"".

Of these two directions along which we could now continue

the discussion, the latter is undoubtedly the easier, and so we

will proceed this way first; and incidentally we shall find

ourselves led to a very practical and grown-up way of dealing

with the former more difficult line of advance.

What we found experimentally (on page 126) was that

3x32 = 27 = 33;

also that 3^ x 3^ = 9 x 27 = 243 = 3\

And so we might have taken other instances

:

2^x24 = 4x16 = 64 = 2*,

2 X 28 = 2 X 32 = 26,

2» X 23 = 8 X 8 = 2«,

2 X 22 X 2» = 2 X 4 X 8 = 2«.
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What does all this look like 1

Manifestly it looks as if to effect a product among the

powers of a given number, we must add the indices of the

several powers. It looks like

23 X 2* = 2\
23 X 28 = 2",

63 X 62 = 66,

2i X 22 = 2* = (V2)s = 7(2») = J32 = 4J2,
2* X 2* = 2** = 2^ = J(29) = {J2f,

= V(512) = J{2 X 256) = 16^2.

Now when the indices are whole numbers it is very easy to

see the reason of this simple rule. What does 2* mean 1 It

means that four factors each of them 2 are to be multiplied

together. The index is only an indication of how many times

the similar multiplication is to be performed.

2* means simply 2x2x2x2; the number of multiplication

signs being one less than the index, i.e. one less than the

number of factors of course. Similarly 2* is merely an

abbreviation for 2 x 2 x 2. Hence

2*x23 = 2x2x2x2x2x2x2,
that is seven 2's are to be multiplied together; and so it is

naturally indicated by 2^.

The index counts the number of similar factors; hence

when the factors are increased in number the index shows

the simple increase; but the effect of the continued multi-

plication on the resulting number may be prodigious.

The anecdote about the nails in the horse's shoes here

appropriately comes in

:

A man, who objected to the price asked for a horse, was

offered the horse as a free gift, thrown into the bargain, if he

would buy merely the nails in its shoes, of which there were

6 in each foot ; at the price of a farthing for the first nail,
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2 farthings for the second, 4 farthings for the third, 8 for the

fourth, and so on. The offer being accepted, he had to pay

£17,476 5s. 3|d. for the nails; and he did not consider the

horse cheap.

The number of farthings in this sum is very great, but it is

simply one less than 2^*.

If a beginner wishes to verify the above by multiplying 2

by itself 23 times, he can easily do it, though it will take a

little time; and he can then reduce the result to poimds

shillings and pence, as he has been no doubt so well taught

how to do. It is not a grown-up way of ascertaining 2^*, but

it serves. (Reference to pp. 166 and 259 may be convenient.)

If he is properly sceptical about the magnitude and correct-

ness of the above sum, he should do it. It is good practice in

easy multiplication ; and sums which are set by the pupil to

himself are likely to secure greater attention from him than

those enforced from outside. It is probably desirable that

children should often set sums as well as work at them. I

would even sometimes encourage them to set examination

papers. It is a good way of getting behind the scenes.

As regards the verification of aT'xa" = a"*" therefore, the

idea is very simple, so long as m and n are whole numbers

;

because it is a mere matter of counting the number of similar

factors.

When we say that five sixes multiplied together equal 7776,

we are employing the number five in this very way. The

expression 6^ does not mean five sixes added together, or 30

;

but it means five sixes multiplied together, yielding a much
larger result.

So also six tens multiplied together make a million, whereas

added they only make 60. In fact, as we said before, page 56

and Chap. XII., while multiplication is abbreviated addition,

involution is abbreviated multiplication.
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Fractional indices.

When the indices m and n are fractions, the idea they express

is not so simple, and the above relation a" x a" = a"*" is not

so easily justified; but we may be willing to accept it by
analogy and see how it works.

If asked wherein the proof consists for fractional indices,

we must answer in "consistency," constant coherence and

agreement with results so obtained, and in corresponding

convenience of manipulation.

At one time 2^ and such like were called irrational quan-

tities because it was difficult to attach a commonsense signifi-

cance to "2 multiplied by itself half a time"; and it is

certainly not to be interpreted as half 2 multiplied by itself,

for that would be unity.

There is nothing irrational about this quantity however

:

it has a value approximately r4142 ... though it will hereafter

be found that it will not express itself exactly by a finite

series of digits in any system of notation whatever.

It may rightly be styled "incommensurable" therefore,

but it is in no sense irrational.

"Irrational" however was a term at one time applied to

any power of a number whose index was not a positive integer.

The thing has to be mentioned, for historical reasons, but

the term "irrational" should now cease to be used. The term
" surd," being meaningless, may be employed if we like, but it

is never really wanted : it only serves as a heading to a

chapter to indicate its contents.

Negative indices.

But let us go on and ask how shall we interpret the ex-

pression if one of the indices be not fractional but negative ?

For instance, how shall we interpret

3-2, or 2-8,
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Suppose for instance we had

a" X a'",

we should naturally say that the result must be a""".

Very well, let m = 2 and m = 3,

then a^ x a~' = a~^.

What does a~^ mean ?

How can we multiply a number by itself a negative number

of times 1 At first the term " irrational " was applied to such

quantities as these : but a consistent interpretation was soon

found for them. If addition of indices means multiplication,

it is natural that subtraction of indices shall mean division.

Make the hypothesis therefore that a™"" can be interpreted

as a" -T a", and let us see how that works.

Suppose we had 2^ -f 2^, it could be written out in full

,

2x2x2x2x2
2x2x2 '

and the result after cancelling would be 2 x 2,

that is 22 = 26-3.

The whole thing is therefore quite simple.

Take other examples

:

S''-" = 1 = 3,

a'-* = i; = a^
a*

x' or
'

7x7*^4-2+1 ^ i^ ^ 7s ^ 343^
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T 170-2 _ ^ _ ±_na
72 - 49 ' .

7«
Ija-a ^ '_ = \r •

This last is a most interesting and useful result.

If the index is zero, the quantity, whatever it may be, is

reduced to unity ; for

a"-™ = ^ = 1 •

it equals 1 whatever a may be.

a* = 1 is the brief summary of this important consequence

of our notation. The index would have been hard to

interpret, just as fractional and negative indices were hard to

interpret, but fortunately it thus interprets itself.

A negative sign applied to an index tiu-ns out therefore to

have the effect of giving the reciprocal of the quantity;

for since

we have only to take the case where m is zero, in order to get

Hence

a;"-"
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Hence while 2* means ^2, we thus find that 2"^ means |

;

or, in general, i , _, 1
x~" = -z and a; 1 = —

a:" z

Take the last simple and useful mode of expression. To

verify it, simply multiply both sides by x, thus

a;-i X a;+i = a;-i+i = af> = -=l
X

1 nv
Similarly a;"^ = ^ =

(j)
= (<^-%

And this suggests powers of powers; like (10^)^, that is the

square of a thousand, which is a million, 1 followed by 6 ciphers,

or 106.

So also (10*)^ = 10^^ = a billion; the indices being in this

case multiplied to give the result.

'So now we leave addition and subtraction among indices,

which merely meant multiplication and division among the

quantities themselves, and begin to study multiplication among

indices.

Consider for instance what the meaning should be of 4^**^

;

it equals 4« = (i^y = (i^f = 4096,

So multiplication among indices means involution among

the quantities themselves.

So also division among indices will signify evolution among

quantities, thus

7* = (73)* = (liy,

a;? = (a™)" = ^a*" = (a^)*" = (^x)'",

the order of the factors (which in this ease are m and -

)

being indifferent.
"''
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If it were worth while we might proceed further, and con-

sider what would be the meaning of the process " involution
"

applied to indices; how would that affect the quantities

themselves 1 What for instance is the meaning of 2^ ? but it

is a mere curiosity and is hardly worth while. Suffice it to

say that the numbers so reached become rapidly prodigious.

lO^* is a number with ten ciphers after the 1, or ten thousand

million ; but lO^" possesses a hundred cyphers, and represents

a number far greater than that of all the atoms of matter in

the whole solar system—earth, sun, and all the planets,—^not-

withstanding the fact that a speck containing a million-million

atotns is only visible in a high power microscope.
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Introduction to Logarithms.

The equation y = x", that is, the n^ power of x, may be

equally expressed as a; = y«, that is, the n"" root of y ; this is

not an inverse expression, but the same in inverse form.

So also the equation xy = \, which represents a multiplication

sum, can also be written y=''l/x, which represents a division

sum; and x^^ — c* can appear as c = ±xy, the double sign

representing an ambiguity or double solution, because either

+ c or -c would when squared give the right result.

If y is the m*" power of x, it is easy to say that x is the «.*''

root oi y; we can also say that n is the index or exponent of

X which yields the value y ; but how are we to express the

relation that n bears to y1

It is a thing we have not yet come across.

It is called a logarithm; it involves a reference to both

X and y; it is called the logarithm of y to the base x.

Let us understand this matter.

Write down 100 = 10^,

2 is called the logarithm of a hundred to the base ten.

Conversely 10 = 100* so ^ might be called the logarithm

of ten to the base a hundred.

Write down „_ _„
25 = o',

2 is the logarithm of 25 to the base 5,
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The logarithm of a nmuber is defined as the index of the

power to which the base must be raised in order to equal

the given number.

Thus if we are told that 3 is the logarithm of a thousand to

the base ten, it is another mode of stating that 10^ = 1000.

So 3 is the logarithm of 8 to the base 2,

2 is the logarithm of 49 to the base 7,

5 is the logarithm of 32 to the base 2,

3 is the logarithm of 216 to the base 6,

4 is the logarithm of 81 to the base 3,

and so on.

It looks a cumbrous and roundabout mode of expressing

what is more neatly expressed by the index notation, but it is

an exceedingly practical and convenient mode of statement all

the same, and is a great help in practical computation.

What is the logarithm of 343 to the base 7 ? Answer, 3.

What is the logarithm of a million to the base 101 Answer, 6.

What is the logarithm of 64 1 It is 6 to the base 2, and 2 to

the base 8.

What is it to the base 10? Answer, something less than 2

and more than 1.

What is the logarithm of 10 to the base 10, or of any

number to its own base ? Answer, unity, for a = a}.

What is the logarithm of unity itself 1

The answer is 0, to any base, because 1 = a°.

What is the logarithm of a fraction, say J, to the base 2 1

Answer, a negative quantity, in this instance -2, because

i = 2-2.

So also - 2 is the logarithm of ^ot *o *^® ^*^® ^^> because

j^ = 10-2. A.nd the fact that ^r^ = 10-« can be expressed

by saying that - 6 is the log of a millionth to the base 10.

It appears therefore that the logarithms of reciprocals or of

numbers less than 1 are negative, the log of 1 itself being 0.
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This is satisfactory. Everything greater than 1 has a positive

logarithm, everything less than 1 has a negative logarithm
j

provided always that the base itself is greater than one.

The further a number is removed from 1 both ways, whether

in the direction of greatness or of smallness, the larger

numerically is the logarithm ; but it is positive bigness in the

one case, negative bigness in the other. It is natural there-

fore that the logarithm of 1, to any base, should be zero.

Mathematicians know how to calculate the log of any

number, no matter how complicated, and they have recorded

the results in a book called a table of logarithms; just as

grammarians and scholars know how to translate any foreign

word, and have recorded the results in books called dic-

tionaries. A Table of Logarithms is to be used like a

dictionary. It can be readily used, and is used every day,

by those who would find it difficult to construct it. It should

puzzle children sometimes how the meaning of words in dead

foreign languages were ascertained; they mostly take it for

granted and do not think about it. So also, for a time, and

until they make some approach to becoming budding mathe-

maticians, they need not learn how to compute a table of

logarithms; but they must imbibe a clear idea as to their

meaning. They must also, and that is an easier matter still,

learn their practical use, and be aUe to use a table as they

have learnt how to use a dictionary.
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Logarithms.

When we express a number thus

:

64 = 82,

1000 = 103

32
f=.

25,

or, in general, n = a',

we are said to express it " exponentially," that is, by means

of the index or " exponent " of the power to which a certain

other number called a base is to be raised in order to be equal

to the given number.

In the above equation n stands for the number, a for the

base, and x for the index or exponent of that base.

The question naturally arises, what relation does x bear to

n, for it manifestly depends upon both n and a1 If the base

has been . specified and kept constant, then x will vary only

as n varies. It is plain that x will increase as n increases, but

not nearly so fast.

Take a few examples, and first take the number 2 as base

:

2 = 21,

4 = 22,

8 = 23,

16 = 2*,

32 = 2«

64 = 2%
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1024 = 2i»,

16,777,216 = 22*.

Here the index runs up slowly, 1, 2, 3, 4, etc., according to

what are called the " natural numbers "
; whereas the number

on the left-hand side runs up very quickly. The index is said

to progress " arithmetically," that is, by equal additions ; the

number on the other hand is said to progress " geometrically
"

(a curious use of the word), that is, by equal multiplications.

There is evidently some law connecting the index and the

number, when a base is given; and the following nomenclature

is adopted

:

5 is called the logarithm of 32 to the base 2

;

3 is the logarithm of 8 to the base 2

;

4 is the log of 16 to base 2

;

6 = log 64 (base 2),

which is usually abbreviated still further

:

6 = logj 64

;

10 = log2 1024,

the base being indicated as a small suffix to the word log.

Make now a more complete table ; first of powers ;

1 = 2°,

2 = 2\

4 = 22

8 = 23

16 = 24.

32 = 26,

1

1
T
1 _ 0-3
T - ^ >

1

1 1 _ 0-5
ST - ^ '

2-1,

2-2,

2-4,

1024 = 2", TTSTT

and then of the corresponding logarithms :
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From the above table it follows that (with the base 2)

logl =0,
log2 = l, log|= -1,

log4 = 2, log^= -2,

logs = 3, logi= -3,

logl6 = 4, log^= -4,

log32 = 5, log^= -5.

It would be a good thing to plot both these tables on

squared paper, representing for the first the indices 1, 2, 3, 4

as horizontal distances, and the numbers 2, 4, 8, 16 as vertical

distances; and for the second measuring distances to repre-

sent the 2, 4, 8, 16 numbers horizontally, and the logarithm

numbers 1, 2, 3, 4 vertically.

The first is called an exponential curve, or curve of exponents

or indices ; the second is called a logarithmic curve, or curve of

logarithms. The two curves turn out to be identically the same,

only diiferently regarded,—to make their identity apparent,

the paper can be turned round and looked through at the light.

If drawn on the same sort of squared paper the curves

will fit. They may either of them be said to represent the

relation between Geometrical and Arithmetical progression

:

in one direction distances proceed arithmetically, or by equal

differences ; in the other geometrically, or by equal factors.

These curves will do for any base, if their scak is suitably

interpreted. The divisions we have labelled 2, 4, 8, etc., may

equally well be considered to represent 3, 9, 27, etc., or

a, a\ a^, etc., or 10, 100, 1000, etc.

That is the advantage of a curve. Once drawn, it represents

to the eye a general kind of relationship ; and nothing but an

interpretation of its scale is necessary to make it fit any

required instance of that relationship. The shape of the above

suggested curve is drawn on pages 101 and 179.
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Verify the following statements :

3 = log 27 to the base 3,

4 = lOgg 81,

6 = logs 729,

2 = log4 16,

4 = log^ 256,

5 = log, 1024,

2 = logs 36,

3 = loge216,

3 = logy 343,

3 = logs 729,

2 = log, 81,

but 9 4f logj 81,

2 = logi, 144.

3 = logi2 1728.

This last seems a curious and roundabout way of expressing

the fact that 12 x 12 x 12 = 1728, and if it did not turn out

practically very convenient there would be no justification for

introducing such a complication as the logarithmic notation

instead of the index notation; but it is constantly to be

noticed, when a new notation has been introduced into mathe-

matics, that it confers on us an extraordinary power of

progress, and enables difficulties further on to be dealt with

which were before intractable.

Any complication which is of no use—or let us say of no

obvious and well-known use—anything which should not be

familiar to every educated person—is not treated of in this

book* the justification of any notation is that though for the

expression of simple and already well-known facts it may look

cumbrous and inexpressive, yet when we want to express

harder and at present unknown ideas it becomes helpful and

luminous.
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Common practical base.

The case when the logarithmic base is the same as the

base adopted for our system of numerical notation, is worth

special attention, because it is the one most frequently used

in practice. What the base for numerical notation may be, is,

as we know, a pure convention ; and, as we have explained, it

is perhaps an unfortunate but now irremediable convention

that the base of notation is ten. It does not follow that the

logarithmic base must also be ten : it is perhaps possible to

find a natural base, involving no convention. If so, such a

base would of course be important and interesting; but

meanwhile we will take ten as the base also of a practical

system of logarithms.

Let us first make a table of powers of ten.

1 = 100,

10 = 101, ^ = 10-1,

100 = 102,
_i_^ = 10-2,

1000 = 103,
_^i^ = 10-8,

1,000,000 = 10«, ,.000.000 = 10

Whence it follows that (with base 10)

log 1 = 0,

log 10 = 1

log 100 = 2,

log 1000 = 3

log 1,000,000 = 6

logxir = log"l 1>

log TUT = log -01 = -2,

logTTrVTr = log-001 = - 3,

logi:oo^:ooo = log -000001= -6,

Hence (with base 10) the logarithms of numbers between

10 and 100 lie between 1 and 2, that is to say consist of 1

and a fraction: the log of 11 will be 1 and a small fraction,
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the log of 99 vill he 1 and a large fraction—very near to 2 in

fact. Consequently with all double-digit numbers the char-

acteristic property of the logarithm is that it begins with 1.

All numbers which consist of three figures lie between 100

and 1000, and these have the characteristic 2 ; that is to say

they all consist of 2 + a fraction. This is true even of such a

number as 999-99, provided the 9's are not repeated for ever;

because although the log of such a number is very nearly 3,

it is not quite 3 until 1000 is reached.

A number consisting of five digits will have a log whose

characteristic is 4, and so on ; the characteristic is always

equal to the number of digits on the left of the unit digit,

which is taken as a zero of reckoning. Thus the characteristic

of the log of any of the following numbers (1200, 1728, 5760,

9898, 1431-8, 1696-25) is 3.

The logarithm of every fraction between and "1 will be a

negative fraction : it will not be quite equal to - 1, but it may
be put equal to - 1 plus a positive fraction.

The logarithm of every number between '1 and "01 will lie

between - 1 and - 2, and therefore may be expressed either

as — 1 minus a fraction, or as - 2 plus a fraction ; and the

latter is the usual plan.

The rule for the characteristic therefore is to count always

to the first, i.e. the most important significant figure, starting

from the units place as zero. On this method of expression

it is easy to write down the characteristic of the logarithm of

any number at sight.

The best plan is to employ the term " order," connoting by

the order of the number the index of the power to which the

base say ten must be raised in order to give a number with

that number of digits. E.g. the order of 100 is 2, because it

equals 10^, and all the numbers 121, 256, 780, 900 may be

technically designated as of the same "order"; because,
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though greater than lO^, they are less than 10^; and the

amount by -which they exceed 10^ is sho-wn by the fractional

part of the logarithm, not by its integer part or characteristic.

But 1000 is of the order 3, and so likewise is 1728, etc.

17 is of the order 1, and so is 14-58,

4 is of the order 0, and so is 4-6,

•3 is of the order - 1, and so are -35 and -78,

-02 and -035 and -016 are of the order - 2.

Accepting this nomenclature, -which is useful in quite rudi-

mentary arithmetic, e.g. in long division and the like, we are

able to say simply that the characteristic of a logarithm is the
" order " of its number.

Let there be no confusion between the table on page 169

and the one on page 167 to base 2, They involve diiFerent

bases ; and though the base is not expressed every time, but

only in the heading, that is merely because of the needless

trouble of frequently printing or writing suffixes, like this

:

3 = logs 8 = logs 216= logio 1000.

Examples.

The characteristic of the logarithm of the following numbers

(also called the " order " of the number itself) is as here given:

The logarithm, to base 10, of each of the numbers

5, 8-7, 1-23, 9-99, 1-111 has the characteristic ;

and this is the " order " of each number.

Of each of the numbers

of

17,
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Examples for Practice.

Write down the characteristic of the logarithm of each of

the following numbers, (in other words express the " order '' of

each number)

:

56,
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a number which cannot be represented as any simple power
of any integer, say for instance the number 30 ; and ask what
will the logarithm of 30 be to the base 10.

First of all we see that it must be between 1 and 2, because

1 is the logarithm of 10, while 2 is the logarithm of 100; and
the logarithm increases with the number, but arithmetically

instead of geometrically. So as 30 lies roughly half way
geometrically between 10 and 100, it may be expected that

its logarithm will be somewhere about halfway arithmetically

between 1 and 2. It will be 1 + a fraction ; and what that

fraction is can be approximated to more or less closely by
examining and measuring the logarithmic curve which we
ought to have carefully drawn, as indicated on p. 179, and

specially labelled so as to suit the base 10. Measuring that

curve for the logarithm of 30, it suggests a value something

like 1| or lb. This would be the result to "two significant

figures,'' but if the curve has been carefully drawn, it might

give us 3-figure accuracy, that is, would enable us to express

the result correctly to 3 significant figures ; in that case we

might estimate log 30 to be about 1 "48.

The number which really lies geometrically half-way

between 10 and 100 would be V(IOOO), since 10:v/l000 =

n/IOOO : 100; and ;^(1000) is accordingly called the geometrical

mean of ten and 100. Hence the logarithm of \/l000 is

exactly 1-5 or 1^. Similarly the logarithm of ^10 is -5 or |.

It is a curious thing that though we do not yet know how to

calculate the root of 10, we know its logarithm; and this

suggests—what frequently happens—^that the logarithm of

the result of an arithmetical operation is easier to perceive

than the result itself.

We can examine the curve again, to see if it will show

us what number has a logarithm exactly '5 ; we shall see

that it indicates something like 3-1 or 3-2, and if it were
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drawn carefully it might indicate 3-16. This is one of the

values that we ought already to have arrived at by trial and

error, as recommended on p. 152 ; taking different numbers

between 3'1 and 3*2 and squaring them, to see how nearly

the square would approach 10.

No number that we can select will, when squared, exactly

equal ten. It has no square root that can be expressed

numerically with exactness. Nor has any number except the

square numbers, 1, 4, 9, 16, 25, etc. These numbers, i.e. the

group ordinarily denoted by these symbols, are square

numbers in any system of notation, their square roots can be

numerically expressed precisely ;* and for no other numbers

can the same be done, however many fractions or combina-

tions of fractions, or however many decimal places, are

employed. Nor can it be done in any other system of

notation. In other words,

V2, s/3, v/5, n/T, n/IOOO, etc., etc.,

are all incommensurable.

But their logarithms are easily expressed, to any base

whatever, in terms of the logarithm of the number itself to

the same base. Thus

log J2 = i log 2,

log V3 = I log 3,

log V5 = ^ log 5,

logV10 = iloglO.

* Caution.—It is not intended, and it is not true, that the above digits

express square numbers when interpreted in accordance with any scale

of notation ; for instance, the amount of money represented by 2/5 is

not a square number of pennies, but the number we are accustomed

to designate by 25 is a square number, and 25 coins can be easily

arranged to form a square.
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Hence to the base 10,

log^/10 = |logl0 = 0-5,

logVlOO = JloglOO = l-0,

logVlOOO = J log 1000 = 1-5,

log Vl0000 = J log 10000 = 2-0,

logVlOOOOO = i log 100000 = 2-5.

Similarly we may guess that

log ^10 = i log 10 = -3333...,

and so we may refer to the curve and see what number has

the logarithm ^, for that will be the cube root of ten. We
find that it is 2-1544347, or approximately 2-14; and if we
multiply this by itself three times, 2"14x2-14x2*14, we shall

get a niunber not far ofif ten—a trifle greater than ten.

Similarly 21 -4 will be approximately the cube root of ten

thousand, and 214 of ten miUion.

No exact numerical specification of the cube roots of any

number can be given, except of the cube numbers, that is,

those numbers which, given in the form say of marbles, can

be built up to represent cubes ; namely such numbers as

1, 8, 27, 64, 125, and so on.

For the cube root of any other number, if it could be

expressed, would be a fraction ; and a fraction multiplied by

itself necessarily remains a fraction; it can never yield an

integer. You cannot fractionate a fraction into a whole.

This remark is further developed in Chapter XX.

We now know how to find the logarithm, to the base ten,

of any power of ten, whether integral, negative, or fractional.

Examples

:

log 10* = 3, log 10-8 = _ 3, log 10* = i

;

log 10* = 4, log 10-* 4, log 10* = J

;

so generally logjQlO* = x,

and this may be easily generalised so as to apply to any base.
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For log a' = a; log a,

but we know that log (base) = 1,

so we see that the logarithm of any power of the base is equal

to the index or exponent of the power, or

log (base)* = x.

We have thus arrived at the original definition of a

logarithm from which we started,—having reasoned "in a

circle."

The advantage of reasoning in a circle is that we thereby

check and verify to some extent the intermediate steps, for if

any of them had been inconsistent we could not have worked

round to our starting point; unless indeed we had happened

to make a pair of errors which cancelled each other : a thing

which is sometimes done—especially when the conclusion is

consciously in our minds. Working round a circle of reasoning

is in that case no adequate check. It is not possible to get

round by any odd number of errors, but with an even number

of errors it is possible though not very probable ; unless

indeed we know our destination too well beforehand.

The real test of truth is that it shall turn out to be

consistent with everything else which we know to be true.

No one chain of reasoning, however apparently cogent, is to

be absolutely trusted,—for there is always the danger of

oversight due to defective knowledge. Complete consistency

is the ultimate test of truth ; and convergence of a number of

definite lines of reasoning is an admirable practical test.



CHAPTER XIX.

Further details about logarithms.

Involution and evolution become easy directly we employ

logarithms

:

To obtain any root, say the r*" root, of any number

:

Find the logarithm of the given number to any base,

calculate -th of this logarithm, then find the number which

has this value for its logarithm to the same base; that

number is the r**" root of the given number.

Or put it thus : utilising the logarithmic curve, page 179.

Take a length on the horizontal line as representing the

given number; find its logarithm, as the vertical distance to

the curve at this point ; calculate -th of this length, and find
r

on the curve a point whose vertical height is equal to it;

then the foot of the perpendicular from this point marks out

on the horizontal line a length which represents the rth root

of the given number, on the same scale as the number itself

was represented. Thus, for instance, |^rd of the height of the

curve at division 8, projected back horizontally, should meet

the curve above the division 2 ; because 2 is the cube root of 8.

You see it is worth while to draw the curve neatly and

carefully, so that fairly correct measurements may be made

upon it. Besides, accurate drawing is a useful art, and it

takes a little time to employ drawing instruments accurately

so as to make no blots or smudges, and to get all lines

uniformly thick and accurately passing through the points

I.,B!.M, M
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intended. It is an art worthy of cultivation for future use.

Much information can be gained from such curves, not only

in science but even in business and in politics.

It may be said that by this process of drawing and

measuring, a logarithm or a root can after all only be attained

approximately. Yes, but the same is true of any process,

so far as accurate expression is concerned. A logarithm or

a root in general requires an infinite series of digits to express

it ; all finite expression is approximate.

I do not however say that a mathematician would calculate

logarithms or roots by such a curve: he would know plenty of

other contrivances for such things, and perhaps we may know
some of them later on ; but he would not despise the curve

method, at least in more really difficult investigations. He
would use it frequently. But for mere logarithms he would

use a table, somewhat as indicated in Chapters XXIX. and XXX.
Now let us see if we can calculate a few other logarithms.

We can obtain any we want from the curve, but if we could

obtain a few once for all, and label them, and then be able

to express the logarithms of other numbers in terms of these,

it might save us time and trouble ; and besides it is a de-

sirable and useful thing to be able to do.

We have managed to find the logarithm of any power of

ten (p. 175), let us see if we can manage the logarithm of any

product containing ten as one of its factors.

We have indeed already tried one of them, viz. 30 (see

p. 173) ; let us try another, say 50, likewise to the base 10.

We want to find to what power 10 must be raised in order

to equal 50.

Let X be the power, then

50 = lO"'

is an equation from which we have to find x.

This is only another mode of stating that x = logjQ 50.
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But now resolve 50 into two factors, and write

5 X 10 = 10^

10*
then 5=i^=10'-^;

hence a; - 1 = log 5,

or a; = 1 +log5 = 1-7 about (by the curve).

Thus log 50 = log 5 + log 10,

which is a special case of a general assertion that

log nm = log n + log m.
Examine this

:

Let n = a", so that x = log n,

and let m = a", so that y = logwi

;

then nm = aV = a'*"

;

.'. lognm = x + y = log n + log m.

Hence by using logarithms, multiplication is turned back

into addition, just as involution was turned back into multi-

plication. So also division is turned into subtraction, just as

evolution was turned into division.

The fundamental relations are as follows ; and although we

have stated them several times before, they are supremely

important and will bear repetition.

Let
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Likewise log to"" = -mlogn,

logw™ = logVm = -log«.

Apply these ideas. We can write at once that to the base 10

log 5000 = log 5 + log 1000 = 3 + log 5,

log 500 = log 5 + log 100= 2 + log 5,

log 50 = log 5 + log 10= l+log5,

log 5 = log 5 + log 1 = + log5,

log j^^ = log "5 = log 5 -log 10 = -l+log5,

log -05 = log 5 - log 100 = - 2 + log 5,

log -005 = log 5 -log 1000 = -3+log5.

If. we know log 5 therefore we should know the logarithm

of five times any power of ten, or even of five times any root

of ten ; for

log 5^10 = Iog5 + ^logl0 = -5 + log 5.

log 571000 = log 5 + J log 1000 = 1-5 + log 5,

log :^ = log5-^loglO =--5+log5,

log 5^10 = Iog5 + Jlogl0 = -S + logS;

but this is perhaps hardly worth stating.

How are we to find log 5? We can, if we choose, express

it by means of log 2, thus :

log5 = logY = Iogl0-log2 = 1 -log2,

or log 2+log 5=1.
Similarly log 20 + log 50 = 3,

log 20 + log 5 = 2.

So also log 2 + log 6 = log 12,

log 3+ log 4 = log 12,

log 7 + log 9 = log 63,

log 8+ log 8 = log 64,

log 9+ log 9 = log 81,

log 17 + log 13 = log 221,
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log 6 - log 2 = log 3,

log 9 - log 3 = log 3,

log 4 -log 3 = log 1-3,

log 5 -log 2 = log 1-5,

log 5 -log 3 = log 1-6,

log 7 -log 5 = log i-4,

log 9 + log 16 = log 144,

2 log 12 = log 144,

3 log 12 = log 1728,

Jlogl2 = log712 = log2v'3 = log2 + logJ3
= log2 + ilog3,

i log 16 =log4,

Jlog 8 = log 2,

^ log 49 = log 7,

I log 25 = log 5,

Jlog72 = ^log(36x2) = log6 + Jlog2
= Jlog( 9x8) = log3 + log2V2

= log 3 + log 2 + 1 log 2.

This might have been set as an exercise. Prove that

J log 72 = log 3 + 1-5 log 2.

One way to prove it would be to double both sides,

log 72 = 2log3 + 31og2

^ log 32 + log 28

= log9+log8
= log (9x8)
= log 72. Q.E.D.

Exercises.—Verify, by means of the curve in this chapter,

the following approximate statements,

log 2 = -3, log 4 = -6, logs = -9,

^10 = 3-16..., ^10 = 2-15...,

711-6 = 3-4..., 4/115 = 4-86...,

J7 = 2-6..., JSil = 29-0.



CHAPTER XX.

On incommensurables and on discontinuity.

By this time it should have struck pupils with any budding

aptitude for science, and for such alone is this particular

chapter written, that it is strange and rather uncanny, un-

expected and perhaps rather disappointing, that magnitudes

should exist which cannot be expressed exactly by any finite

configuration of numbers : not only that they should exist,

but that they should be common. Draw two lines at right

angles from a common point, each an inch long; then join

their free ends, and measure the length of the joining line

(which is often called the hypotenuse of the right-angled

isosceles triangle that has been constructed) : that is one of

the quantities that cannot be expressed numerically in frac-

tions of an inch, i.e. in terms of the sides. Its value can be

approximated to and expressed, say in decimal fractions of an

inch, to any degree of accuracy we please; but the more

carefully it is measured the more figures after the decimal

point will make their appearance : the decimal is one that

never stops and never recurs. An infinite number of digits

are necessary for theoretical precision, though practically six

of them would represent more accuracy than is attainable by

the most careful and grown-up measurement. It is therefore

incommensurable, and can only be expressed exactly by another

incommensurable quantity, viz. in this case the square root
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of 2. The length is ^2 times an inch, or about 1-4142 ...

inches. Draw a square upon it and it will be found to be

two square inches in area. That is just the fact which (when

proved) enables us to assert that each of its sides is of length

^^2 ; since that is the meaning of the phrase " square root."

It may be proved by the annexed figure

:

Fro. 11.

Where the shaded area ABC is an isosceles right-angled

triangle, the area of which is repeated several times in the

figure; four times inside a square drawn on the hypotenuse

AB, and twice inside a square drawn on one of the sides AG.

Wherefore the square on AB is twice the square on AG.

Observe however that there is nothing necessarily incom-

mensurable about a hypotenuse itself : it is only incommen-

surable when the sides are given. It is easy to draw a

hypotenuse of any specified length, say 1J inches long, and to

complete an isosceles right-angled triangle ; but now it is the

sides that will be incommensurable. The real incommensura-

bility is not a length, but a ratio, that is a number from

which dimensions have cancelled out. No length is incom-

mensurable, but it may be inexpressible in terms of an

arbitrarily chosen imit, i.e. it may be incommensurable with

the unit selected, and the chances are infinity to one that any

length pitched upon at random will be in this predicament.

It will not be precisely expressible in feet or metres, nor even

in fractions of them, though it can be expressed with any

degree of accuracy required.
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The hypotenuse of most right-angled triangles will be

incommensurable with both the sides, but there are a few

remarkable exceptions; one in especial, known to the ancients,

viz. the one where the sides are in the ratio of three to four.

If such a triangle be drawn, with the sides respectively three

inches and four inches long, the hypotenuse will be found to

be five inches long ; the more accurately it is measured the

nearer it approaches to 5. It can indeed be shown theoreti-

cally, it is shown in Euclid I. 47, that it equals 5 exactly : a

surprising and interesting fact.

With an isosceles right-angled triangle however, no such

simple relation holds r the hypotenuse is J2 one of the sides,

and J-2 is incommensurable; for, as we have previously

suspected and may now see, every root, whether square or

cube or fourth or any other root, of every whole number, is

incommensurable, unless the number be one of the few and

special series of squares or cubes or higher powers. Cf. j). 175.

To prove this we have only to observe that

:

The square or any higher power of a fraction can never be

other than a fraction ; for you cannot fractionate a fraction

into a whole.

The square of a fraction cannot be an integer. Hence

no integer can have a fraction as its square root.* Yet every

integer must have a square root of some kind, that is a

quantity which, squared or multiplied by itself, will equal the

given number; but this quantity, though it may be readily

exhibited geometrically and otherwise, can never be exhibited

as a fraction, i.e. it cannot be expressed numerically by any

means, either in vulgar fractions or in decimals or in duo-

decimals or in any system of numerical notation; in other

words, every root of every integer except unity is incom-

mensurable (incommensurable, that is, with unity or any

* Attend here. It is easy to miss the meaning.
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other integer), except of those few integers which are built

up by repeating some one and the same integer as a factor

;

for instance the following set

:

4 = 2x2
8 = 2x2x2
9 = 3x3
16 = 4x4
25 = 5 X 5

27 = 3 X 3 X 3

32 = 2x2x2x2x2
36 = 6 X 6

49 = 7 X 7

and so on ;

which class of numbers are therefore conspicuous among the

others and are called square and cube numbers, etc. Every

root of every other number is incommensurable, and most

roots of these are too.

Not roots alone but many other kinds of natural number are

incommensurable : circumference of circle to diameter, natural

base of logarithms, etc., etc. ; everything in fact not already

based upon or compounded of number, like multiples, etc.

Incommensurable quantities are therefore by far the com-

monest, infinitely more common in fact, as we shall find, than

the others :
" the others " being the whole numbers and

terminable fractions to which attention in arithmetic is

specially directed, which stand out therefore like islands in

the midst of an incommensurable sea; or, more accurately,

like lines in the midst of a continuous spectrum.

What is the meaning of this ? The meaning of it involves

the difference between continuity and discontinuity. There

is something essentially jerky and discontinuous about number.

Numerical expression is more like a staircase than a slope : it

necessarily proceeds by steps : it is discontinuous.
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A row of palings is discontinuous : they can be counted,

and might be labelled each with its appropriate number.

Milestones are also discontinuous, but the road is continuous.

The divisions on a clock face are discontinuous and are

numbered, and, oddly enough, the motion of the hands is

discontinuous too (though it need not theoretically have been

so, and is not so in clocks arranged to drive telescopes). The

hands of an ordinary clock proceed by jerks caused by the

alternate release of a pair of pallets by a tooth wheel—an

ingenious device called the escapement, because the teeth are

only allowed to escape one at a time; and so the wheels

revolve and the hands move discontinuously, a little bit for

every beat of the pendulum, which is the real timekeeper.

The properties of a pendulum as a timekeeper were discovered

by Galileo ; an escapement of a primitive kind, and a driviag

weight, were added to it by Huyghens, so that it became a

clock.

Telegraph posts are discontinuous, but telegraph wires are

continuous. They are discontinuous laterally so as to keep

the electricity from escaping, but they are continuous longi-

tudinally so that it may flow along to a destination.

But, now, are we so sure about even their longitudinal

continuity ? The pebbles of a beach are discontinuous, plainly

enough ; the sand looks a continuous stretch ; but examine it

more closely, it consists of grains ; examine it under the

microscope, and there are all sorts of interesting fragments to

be found in it : it is not continuous at all. The sea looks

continuous, and if you examine that under the microscope it

will look continuous still. Is it really continuous ? or would

it, too, appear granular if high enough magnifying power were

available? The magnifying power nece^ssary would, indeed,

be impossibly high, but Natural Philosophers have shown

good reason for believing that it, too, is really discontinuous,
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that it consists of detached atoms, though they are terribly

small, and the interspaces between them perhaps equally

small, or even smaller. But even so, are they really dis-

continuous 1 Is there nothing in the spaces between them,

or is there some really continuous medium connecting

theml

The questions are now becoming hard. Quite rightly so ; a

subject is not exhausted till the questions have become too

hard for present answer.

There are several curious kinds of subterranean or masked

continuity possible, which may be noted for future reference.

Look at a map of the world ; the land, or at least its islands,

are after a fashion discontinuous, the ocean is continuous ; but

the land is continuous too, underneath, in a dimension not

represented on the map, but recognisable if we attend to

thickness and not only to length and breadth.

Human beings are discontinuous : each appears complete

and isolated in our three-dimensional world. If we could

perceive a fourth dimension, should we detect any kind of

continuity among them t

The questions have now become too hard altogether; we

have left science and involved ourselves in speculation. It is

time to return. A momentary jump into the air is invigorat-

ing, but it is unsupporting, and we speedily fall back to earth.

But how, it may be asked, does this discontinuity apply to

number's The natural numbers, 1, 2, 3, etc., are discontinuous

enough, but there are fractions to fill up the interstices ; how

do we know that they are not really connected by these frac-

tions, and so made continuous again 1 Well, that is just the

point that deserves explanation.

Look at the divisions on a foot rule ; they represent lengths

expressed numerically in terms of an arbitrary length taken as
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a unit : they represent, that is to say, fractions of an inch

;

they are the terminals of lengths which are numerically

expressed; and between them lie the unmarked terminals

of lengths which cannot be so expressed. But surely the

subdivision can be carried further; why stop at sixteenths

or thirty seconds 1 Why proceed by constant halving at all 1

Why not divide originally into tenths and then into hun-

dredths, and those into thousandths, and so on? Why not

indeed ? Let it be done. It may be thought that if we go on

dividing like this we shall use up all the interspaces and have

nothing left but numerically expressible magnitudes. Not so,

that is just a mistake ; the interspaces will always be infinitely

greater than the divisions. For the interspaces have all the

time had evident breadth, indeed they together make up the

whole rule ; the divisions do not make it up, do not make any

of it, however numerous they are. For how wide are the

divisions? Those we make, look, when examined under the

microscope, like broad black grooves. But we do not wish to

make them look thus. We should be- better pleased with our

handiwork if they looked like very fine lines of unmagnifiable

breadth. They ought to be really lines—length without

breadth ; the breadth is an accident, a clumsiness, an unavoid-

able mechanical defect. They are intended to be mere

divisions, subdividing the length but not consuming any of

it. All the length lies between them ; no matter how close

they are they have consumed none of it ; the interspaces are

infinitely more extensive than the barriers which partition

them off from one another ; they are like a row of compart-

ments with infinitely thin walls.

Now all the incommensurables lie in the interspaces ; the

Compartments are full of them, and they are thus infinitely

more numerous than the numerically expressible magnitudes.

Take any point of the scale at random : that point will cer-
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tainly lie in an interspace : it will not lie on a division, for the

chances are infinity to 1 against it.

Let a stone—a meteor—drop from the sky on to the earth.

What are the chances that it will hit a ship or a man ? Very
small indeed, for all the ships are but a small fraction of the

area of the whole earth ; still they are a finite portion of it.

They have some size, and so the chances are not infinitesimal

;

one of them might get struck, though it is unlikely. But the

divisions of the scale, considered as mathematically narrow,

simply could not get hit accidentally by a mathematical point

descending on to the scale. Of course if a needle point is

used it may hit one, just as if a finger-tip is used it will hit

several j but that is mere mechanical clumsiness again.

If the position is not yet quite clear and credible, consider

a region of the scale quite close to one of the divisions already

there, and ask how soon, if we go on subdividing, another

division will come close up against the first, and so encroach

upon and obliterate the space between them. The answer is

never. Let the division be decimal, for instance, and consider

any one division, say 5. As the dividing operation proceeds,

what is the division nearest to it !

At first 4 of course,

then 4-9,

then 4-99,

then 4-999,

and so on.

But not till the subdivision has been carried to infinity, and

an infinite number of 9's supplied after the decimal point, will

the space between be obliterated and the division 5 be touched.

Up to that infinite limit it will have remained isolated, stand-

ing like an island of number in the midst of a blank of

incommensurableness. And the same will be true of every

other division.
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Whenever, then, a commensurable number is really associ-

ated with any natural phenomenon, there is necessarily a

noteworthy circumstance involved in the fact, and it means

something quite definite and ultimately ascertainable.

For instance

:

The ratio between the velocity of light and the inverted

square root of the electric and magnetic constants was found

by Clerk Maxwell to be 1 ; and a new volume of physios was

by that discovery opened.

Dalton found that chemical combination occurred between

quantities of different substances specified by certain whole or

fractional numbers ; and the atomic theory of matter sprang

into substantial though at first infantile existence.

The atomic weights are turning out to be all expressible

numerically in terms of some one fundamental unit; and

strong light is thrown upon the constitution of matter thereby.

Numerical relations have been sought and found among the

lines in the spectrum of a substance ; and a theory of atomic

vibration is shadowed forth.

Electricity was found by Faraday to be numerically con-

nected with quantity of matter; and the atom of electricity

began its hesitating but now brilliant career.

On the surface of nature at first we see discontinuity, objects

detached and countable. Then we realise the air and other

media, and so emphasise continuity^ and flowing quantities.

Then we detect atoms and numerical properties, and discon-

tinuity once more makes its appearance. Then we invent the

ether and are impressed with continuity again. But this is

not likely to be the end ; and what the ultimate end will be,

or whether there is an ultimate end, are questions, once more,

which are getting too hard.



CHAPTEK XXI.

Concrete Arithmetic.

It is highly desirable that arithmetical practice should he

gained in connexion with laboratory work, for then the

sums acquire a reality, and interest is preserved. It is

absolutely essential that all concrete subject-matter be based

upon first-hand experience, for unless that can be appealed to,

abstractions have no basis, but are floating unsupported in

air. It far too frequently happens that a child, constrained

to do sums expressed in terms of weights, has never weighed

a thing in its life. It is the same mistake as is made when

a child is drilled in the formal grammar of a language about

which it knows absolutely nothing. In every case concrete

experience should be the first thing provided, and abstractions

may follow. The teacher is apt not to realise this, because

grown persons have necessarily acquired some iirst-hand

experience in the ordinary course of life; but a teacher who

is really educated all round and has a living acquaintance

with a great number of subjects should be able to enliven a

lesson into something quite exciting, if only he or she can

cultivate the patience necessary to allow time for the indi-

viduals of a class to attain some first-hand experience for

themselves.
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This is the real object of school laboratory work, and the

mathematical teacher should seek to keep in touch with, and

to be aware of, what the pupils are doing under other

teachers, so as to illuminate his abstractions with concrete

instances and examples. By far the best kind of examples

are not those contained in books, but those which arise

naturally or are invented by a stimulating teacher in the

course of his exposition, or as a result of actual manipulation

on the part of the taught.

The result of a laboratory measurement is always an incom-

mensurable number ; for the mere counting of a number of

distinct objects is not to be called a laboratory measurement.

No measurement of length, for instance, could ever be

expressed as a whole number of inches, nor yet as a whole

number plus a definite fraction of an inch. No measurement

that ever was made could be expressed by either a termi-

nating or a recurring decimal, nor by a vulgar fraction;

for any of these modes of specification would imply infinite

accuracy.

Suppose that an astronomical measurement is expressible

by the number 17"4673, it is absolutely certain that 3 cannot

be the last digit of the series if it is to be expressive of

absolute fact. It may be that the next is 0, and perhaps the

next also, but unless you can guarantee that all the digits

to infinity are 0, the only reason for stopping at 3 (and it

is a good reason) is that we can measure no more.

So a decimal expressing the result of measurement cannot

terminate, neither can it recur. For, suppose the result,

as nearly as we could get it, were 4'6666, how do we know

that the next digit is going to be 6, and the next and the

next also ? We cannot know it.

If it did recur it would be the vulgar fraction 4|; hence,

this also is strictly an impossibly accurate result of measure-^
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mcnt. The same with every vulgar fraction: it may be an

approximate result, but no more.

The phrase a quarter, or a half, or seven-eighths, is

appropriate therefore to rough specifications of approximate

magnitude, but is inappropriate to precise specification of

anything beyond counting of objects and fractions of an object.

Measurements should be expressed in decimal notation, and

the number of significant figures given should be characteristic

of the order of accuracy of the work.

The meaning of significant figures and practical

accuracy.

Eough workshop measurements are accurate, let us say, to

3 significant figures. Students' measurements in Physics,

which are naturally more difficult than those of the workshop,

if of the schoolboy kind, do well if they are accurate to two

significant figures. For instance, if the latent heat of melting

ice came out 79 or 80, it is quite as good as can be expected.

A great deal of trouble is necessary to get a third figure right,

for of course it means just ten times the accuracy. A good

student would however try to get the third figure right, a,nd

might succeed, if it were not too complicated a measurement.

The Demonstrator, and senior students who give some mouths

to the work, would aim at 4 figure accuracy, and, if they

attained it, would do well. A few exceptionally skilled

experimenters with a genius for the work, devoting a year to

a research, might attain 5 figure accuracy, but such accuracy

as this is generally limited to the astronomical observatory,

where the measurements are fairly simple and the theory of

the errors to which instruments are necessarily liable has been

studied for centuries. In taking the mean of a number of

astronomical observations, even 6 figure accuracy is attainable,

but beyond this it is extremely difficult to go.



196 EASY MATHEMATICS. [chap.

The fundamental measurements that have to be made are

the following

:

length

time

angle

mass

and of these, oddly enough, length is by far the hardest to do

accurately, though the easiest to do approximately.

Time is measured with considerable accuracy, even by a pocket

watch. Suppose the watch were uncertain by 3 seconds a day,

it would not be bad. If it lost or gained regularly it would

be a perfect time keeper, for a regular loss can be estimated

and allowed for ; but that is not feasible except in elaborate

chronometers carefully preserved. What is meant by the

above is that having allowed for any known regular loss, it

may lose or gain 3 seconds a day irregularly, so that to be

quite safe we might consider it uncertain to the amount of

plus or minus 3 seconds, or 6 seconds altogether. There are

86,400 seconds in a day, so the outstanding possible error

would be 6 parts in 86,400, or 1 part in 14,400, or 7 parts in

a hundred thousand, or '007 per cent., and it would therefore

be liable to cause a bad error in the fifth significant figure—an

error which even slightly affects the fourth. Still for a cheap

watch that is good performance, and means long hereditary

skill on the part of makers of watches.

You could not hope to measure a mile with the same

accuracy as you can measure the length of a day.

Angles are not very difiicult to measure, because a number

of disturbing causes have no eflfect on the divisions of a cirela.

If the weather gets warmer or colder, your yard and other

measures change, and clock-pendulums and watch hair-springe

change tooj but though a circle expands and its divisisins

grow wider with heating, their number is not affected ;, tshfis
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expanded circle is still divided into 360 equal parts or

degrees. There is something essentially numerical about the

divisions of a circle ; and measurement of angle is subject to

fewer disturbing causes than measurement of length.

But the really easy thing to determine accurately is mass or

weight. For it never changes whatever you do to it. The

weight of a piece of matter is constant, whether it be hot or

cold, or whether it be evaporated to a gas, or dissolved in a

liquid, or whether it be molten, or boiled, or vaporised, or

chemically decomposed, or burnt up, or subjected to any other

operation. So far as is known, its weight continues absolutely

unchanged ; although in' combustion it appears to increase in

weight, because it combines with other things. Moreover the

balance is an easy and an accurate instrument. Even a

beginner can weigh on a reasonably delicate balance to 4

significant figures, that is, he could weigh ten grammes to the

nearest milligramme. He could hardly do better than that.

It is possible, however, with elaborate care to weigh to 6

significant figures, i.e. to weigh 10 grammes to the hundredth

of a milligramme ; but it needs a good balance and precaution

against currents of air, dust, warmth of observer's body, acci-

dental electrification, in some cases, and other disturbing

causes. These things do not really disturb either the weights

or the thing weighed, but they disturb the balance.

However, this is a digression, so as to make clear what

is meant by a reasonable number of significant figures. We
see that the number that is properly to: be recorded will de-

pend upon circumstances, that every additional figure expressed

is a claim to greater accuracy, and that it is always better to

aim at too many than too few ; but we should cultivate an

instinct for knowing when we have recorded as many as the

experiment, or the observation, or the circumstances will

justify.
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Practical manipulation of fractions when decimally

expressed.

Since the results of all actual measurements yield incom-

mensurable numbers, it is desirable to be able to deal with

them freely. The present chapter will be considered very

elementary, but it is inserted thus apparently out of place in

order to emphasise the desirability of reintroducing familiar

matter with variations, and also, more particularly, to uphold

the doctrine that the other things treated are equally easy

:

ease is only a matter of use and custom.

In the easy manipulation of fractions there is much to be

learnt, and considerable practice is necessary to attain facility.

It is not worth while to exaggerate this practice, because the

resulting art is not an accomplishment capable of giving plea-

sure to other people, like some other arts which can be

attained by practice ; nevertheless, some practice in arith-

metic is essential, and on this part of the subject some of the

time which has been saved from hogsheads and drachms

can be usefully and interestingly expended.

First of all, we may notice that the manipulation of frac-

tions is much simplified when they are stated in the ordinary

arithmetical notation, utilising the same system as is em-

ployed for whole numbers. The ease conferred is similar to

that gained by abolishing strange denominations of every kind.

Thus it is simpler to deal with 17 "34 cwts. than it is to deal
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with it when expressed as 17 cwts. 1 quarter, 10 pounds, 1

ounce, i^^ drachms, which is the way that helpless children

are constrained to deal with it.

So also it is simpler to deal with a fraction when expressed

as 4'4 inches, than when expressed as 25 " mils " more than

4 inches and 3 eighths, or 4 + |+iff^ inches, which is, how-

ever, the way the British workman seems to prefer to have

it expressed—to the detriment of international engineering

operations.

In other words, it is always simpler to express a thing

numerically in a single denomination than to employ a multi-

tude of denominations or denominators.

Even such a thing as 1 -h |- -I- J -H ^ 4- xV is more simply

expressed as 1 -9.375, though still better as 2 - Jj, or ^. Sim-

plicity is attained by use of a single denominator, whether

sixteenths or tenths, or whatever it may be. It is the admix-

ture of denominations or denominators that is troublesome.

So also the manipulation of fractions when expressed

decimally is as easy as the manipulation of whole numbers.

Care has to be taken about the position of the digits in either

case, and the explicit writing of the decimal point almost makes

the matter easier. The essential rule is, keep the decimal

points under one another, and they will then keep the

places of the digits right.

Thus, add together

4-375-1- -025 -f- 53-1.

The sum is written 4-375

025
53-1

57-500

and the result is verbally expressed as 57|.

For just as various denominations, inches, weeks,

months, ounces, tons, gallons, are handy in speech and for
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realising and speaking of magnitudes after they have been

calculated, so vulgar fractions are often handy enough to

express a result at the end. When they are complicated,

however, they should only be used to quickly express approxi-

mate results. For instance, 5-12 inches might be spoken of

as about 5|-th inches. So also 35'9 inches might be spoken of

as about a yard. And the number 14 '34 might be spoken

of as about 14|-. For instance, if it expressed a length in

feet, the length should be called 14 feet 4 inches if we were

speaking to a carpenter. And similarly 5 "67 feet would

be approximately 5| feet, or 5 feet 8 inches.

In subtraction just the same rule holds : keep the decimal

points vertical. E.g. to subtract 15-43 from 304,

write it 304-00

15-43

288-57

and there is nothing more to be said.

In countries with decimal coinage, this is all the arith-

metic that book-keeping clerks have to employ. Although

they may use the terms dollars, and quarters, and dimes, and

cents in ordinary speech, they do not express a sum of money
after our fashion, as

Dollars. Quarters. Cents.

17 3 18

but they express it simply as 17-93 dollars.

So, also, if another amount of 3 dollars, 2 quarters, and

17 cents has to be added, it is never expressed in that way,

but as 3-67 dollars
;

17-93

3-67

the addition is then quite easy, viz. 21-60 dollars. All addi-

tion becomes simple addition; and compound addition no

more exists.

To express the resulting amount in the form given by com-
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pound addition (which try), viz. as 21 dollars, 2 quarters, and

10 cents would be unnatural ; but it might, of course, be

spoken of as 21 dollars and 60 cents, for that etymologically

means precisely the same as 21 and 60 hundredths, i.e. 21-60.

The use of variegated and picturesque units, like weeks, and

fortnights, and centuries, and acres, and hundredweights, and

quarts, is to relieve the monotony of conversation; they should

not be introduced into the workings of arithmetic. The end

result can be interpreted into them, for vivid realisation, as occa-

sion arises, and the instructed person should always be able to

speak to the uninstructed person in his own language. For

an instructed youth to expect workmen and others, who have

not had his advantages, to appreciate his scholastic mode of

expression, is barbarous, and shows a pitiful lack of sense on

his part.

So long as popular units exist they should be employed in the

proper place : they are part of folk lore, and are often inter-

esting enough ; it is only when they are allowed to get out of

their proper place and spoil the lives of children that they are

to be condemned. In arithmetic proper they are out of place.

Now take multiplication. It is a little more troublesome,

of course, but not much.

Keep the points vertical, as before ; in other words, keep

the digits expressive of the same denomination under each

other, i.e. the units under the units, the tenths under the

tenths, etc. ; then the denomination of the answer looks after

itself without any trouble.

For instance, multiply 30"57 by 4"3. Write it thus:

30-57

4-3

122-28

9-171

131-451
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I need not have written the last figure of the result, for

most purposes ; for since the data are only given to two places

of decimals, an appearance of three decimal places in the result

may give a notion of spurious and deceptive accuracy, and so is

often better eschewed.

But this idea of approximate accuracy does not apply to

results in pure mathematics, such as the properties of numbers,

and things like that : it is the results of practical measurement

that are not wanted to impossible accuracy, just as the price of

a ship, or a railway, or a war, is not wanted closer than the

nearest penny, if indeed so close.

I may say, however, that when we are dealing with the

results of practical measurement, it is the number of significant

figures in the whole specification, rather than the number of

decimal places, which is the thing to be attended to. In the

above sum the data involved four significant figures, and so a

sixth significant figure in the result would be without meaning,

and ought not to be written.

Now take a further example in multiplication : suppose

we had 5"4306 grammes to multiply by 70'2 : the whole sum
would stand thus

:

5 '4:306 grammes
70-2

380-142

1-08612

381-22812 grammes

The weighing was only given to 5 figure accuracy, so any-

thing more is delusive in the result. Six figures may perhaps

be permitted, that is as far as 381-228, but the last two figures

after this, the 12, which are really -00012, have no useful

meaning, and need never have been written. And even the

8 is quite uncertain, so that the way to state the result with

the same accuracy as the data is 381-23 grammes. Three being
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put as the last digit instead of two, because the next digit,

viz. 8, carries it more than half way to the higher figure.

We observe then that when we multiply by a figure in the

units place, we place the digits of the product under the cor-

responding digits of the multiplicand. When we multiply by

a figure in the ten's place, we shift each digit one place to the

left. If we multiplied by a figure in the hundred's place we
should shift them two places to the left. Whereas when we
multiply by a digit in the tenth's place, that is one place to the

right of the decimal point, we shift the resulting figures of the

product one place to the right, instead of writing them im-

mediately under the corresponding digits of the multiplicand.

The rule about division is similar. Let us divide 470-82 by
5'7. Write it in its first stage

:

5-7) 470-82 (8
456-

Now, here 8x5-7 = 45-6, whereas in order to perform the

subtraction we really require 456, else the decimal points

would not be in the right position : hence the 8 is not

really 8, but 80 ; that is it is not in the units' place, but in the

ten's place, and so the decimal point is to be placed after the

next digit.

Performing the subtraction indicated above, we see that the

next digit of the quotient is a 2, and so the sum goes on

without any further trouble or attention :

5-7) 470-82 (82-6
456-

14-8

11-4

3-42

3-42

And there happens to be no remainder. But, if there were, it
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would give no trouble ; we should not take it up and express

it as a vulgar fraction, but should continue the sum in the

same way as before, bringing down ciphers as long as we chose,

that is until we had got the quotient to the required degree of

accuracy.

Dealing with fractions then in the decimal notation is just

as easy as dealing with whole numbers in the same notation.

The process is just the same, only we must be careful to put

the decimal point in the right place. So, however, we must

with whole numbers, only we do not have to actually write a

decimal point in their case (except in the quotient perhaps)

;

but we always have to be careful to interpret the quotient as

meaning hundreds or thousands, or whatever it is, correctly,

and that is essentialy the same thing as attending to the

position of the decimal point.

For instance, divide 729 by 14.

14) 729- (52-07143

70

29-

28^

1-00

•98

•020

014

60
56

_40

The last figure in the quotient is not exactly 3, but that is the

nearest, and it is quite time to stop, as we have already reached

the extravagant accuracy of seven significant figures. If we
wanted to go on, however, there is not the slightest difficulty.

We simply go on till the remainder is negligible, not because

it is itself numerically small, but because it occurs so many
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decimal places away from the left hand significant figure that

only an utterly insignificant fraction is left. For instance, in

the above sum, the last remainder which is indicated, as giving

the quotient 3 in the fifth decimal place of the quotient, is

really -00040, and the multiplication of the divisor by 3 would
give -00042, which leaves a remainder of - 2 in the fifth

decimal place, to be divided by 14; with a result wholly

trifling.

In the above sum the decimal points and a few preceding

ciphers are indicated to show where they really occur, and to

show how they might be indicated all the way along, if we
chose; but there is no real need to indicate them anywhere

except in the quotient. At the same time it sometimes helps

to keep us right and clear to put all the points into the

process, where they ought by rights to be, and always to see

that they keep strictly vertical.

"Order" of Numbers.

As has been said before, in another connexion, p. 171, an

extremely useful idea is the "order" of a number, that

is to say the index of its order of magnitude : in other words,

the power of 10 which it represents. This can be definitely

specified by the distance of its highest significant figure to the

left or the right of the unit's place : distances to the left being

called positive, to the right negative ; the unit's place itself

being characterised by the order 0, and everything being

reckoned from that as the zero position.

For instance, any single digit, like 6, would be of the order

0; 26 would be of the order 1 ; 526 of the order 2; 8526 of the

order 3, and so on ; the order being given by the position of

the highest significant figure, and by nothing else. Thus

8526-79 would still be of the order 3; so would 8000, or 7000,

or 1000.
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26'79 is of the order 1.

6 '7 9 is of the order 0.

•79 is of the order - 1.

•09 is of the order - 2.

What, then, is the order of -00058 ? Here the highest sig-

nificant figure is 5, and its position is 4 places to the right

of the unit's place ; hence the order of this number is - 4. So

also the numbers -0001 and '0009578 are of the minus-fourth

order; but 1'0009 is of the order again, and 27^0009 is of

the order 1.

In the example "00058 it is right to say that the digit 5

is of the order - 4, the digit 8 of the order - 5 ; and it is

right to say that the number 58, which it contains, is also of

the order - 5. Again, in the number 525, we may say that

the 52 which it contains is of the order 1, that is to say,

that it occurs one place to the left of the unit's place.

It is often in practice convenient thus to attend to the order

of particular digits, or pair of digits.

The rule for multiplication and division can now be given

thus :

For multiplication of two numbers, take the highest signifi-

cant figure of each, multiply them together, and give the

resulting product a position representing the sum of the

orders of the two digits taken. For instance, multiply 36 by

745. You take the two highest digits, 3 and 7, the sum of

whose orders is 1-1-2 = 3. The product, which is 21, has to be

placed so that it shall have the order 3, that is to say, the

unit's figure of the 21 is to be 3 places to the left of the unit's

place.

Or take this example :—Multiply 081 by "742. We say 8

times 7 is 56, and this is to have the order compounded

of - 2 and - 1, that is to say - 3. Hence the 56 is to be placed

so that its unit's digit is 3 places to the right of the unit's
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place ; or in other words, there will be one between the 5

and the decimal point.

The rule for division is to be stated similarly :

—

Take the first significant figure of the divisor, and the first

one or two of the dividend : enough, that is, to be able to

effect a division. Then the resulting quotient will have the

order of this part of the dividend minus the order of the

figure taken in the divisor.

For instance, if we had to divide 81 by 742, there would be

no difficulty. We should take the 7 from the divisor, which

is of the order 2, and 8 from the dividend of the order 1 ; and

the quotient, has an order equal to the difference of the two

orders, viz. - 1.

But if, on the other hand, we had to divide 742 by 81, we
should take 8 from the divisor, where it is of order 1 ; but it

would be useless to take 7 from the dividend : we must take

74, its place being also of the order 1 ; so that the resulting

quotient will be of the order 0.

These matters are not particularly easy, they can be much
simplified by employing powers of 10, as we will soon show;

but meanwhile we will do sums of this kind on commonsense

principles, as follows : Divide '742 by "OSl. A simple and

favourite way of doing such sums, is to get rid of the

decimals as much as we please by shifting the decimal point

in both equally, that is, multiplying them both by the same

power of ten, so that it would be transformed into 742 -f 81

simply. The answer comes out about 9'1605.

One more example. Take the inverse of this sum.

•742 ) -081 ( -1

•0742

Here the first product 742 is required shifted one place to the

right in order to come under the proper digits of the dividend,
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so the quotient must be not unity, but one tenth, or "1. That

once determined, the rest is quite ordinary.

742) -0810 (-109164
•0742

6800
6678

1220
742

4780
4452

3280

Now, here it must be admitted that people clever at arith-

metic do not write long division sums in so full and lengthy a

manner. They do both the multiplication and the subtraction

in their head, and write down the remainder only ; so that

the sum just done would look like this when people have done

it by aid of the " shop " method of subtraction :

•742) -0810 (-109164

6800
1220
4780
328

I can do it this way if I am put to it, but it seems to me a

needless tax upon the brain, at least when grown up ; and I

am more likely to make mistakes and am less able to check

them when made. Consequently for myself, I prefer the

longer method, for it is the same sum in reality, the only

difference is in the amount of it recorded on paper. I suppose

that very clever people indeed would record nothing of it

except the quotient : all the rest they would do in their head,

as if it were a short division sum, or would even perceive, in-

tuitively as it were, that -. =-109164. Boys have been
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known to be able to do things like this, and they are called

calculating boys. They are, however, rather rare. Never-

theless, people when young are much cleverer at learning

things than old folk, so perhaps they will get used to the

abbreviated method of recording, if they begin young enough,

and may like it better than the other. It is, I believe,

found so.

One other point, however, I must not forget to mention

here, and that is that if I had a sum like -742 -=- -081 to do,

742
I should first write it thus : -^, and then proceed to look for

factors. If they do not occur easily, it is not worth while to

spend time in hunting for them ; still less is it worth while

to go through the farce of finding G.C.M. or H.O.F., or what-

ever it is called: one might as well be doing the long

division sum as that. And then I should proceed to look

out logarithms, and so turn it into simple subtraction. In the

particular instance I have chosen, however, it is hardly worth

while taking even this trouble, for directly you write 81, you

see that you can divide by 9 in two stages ; and although this

might be found a little unsafe in old-fashioned times, when

one had remainders to express as vulgar fractions, now that

we know how never to be troubled with remainders, we

proceed to divide numerator and denominator by 9 twice

over, as follows

:

^ = ^^^"" =9-16049382716,
oi y

that is, for all practical purposes, 9-1605, as we found before

(p. 207) by long division.



CHAPTER XXIII.

Dealings with very large or very small numbers.

But there is a mode of dealing with all these sums which is

of great simplicity and service, and is more particularly useful

when the figures to be dealt with are nowhere near the region

of unity. In ordinary life we usually have to deal with a

moderate number of things, or a few simple fractions of things

;

we seldom have to deal with billions or trillions, or with

billionths or trillionths ; but in science there is no restriction

of this kind : we may have quantities of every order of magni-

tude to deal with. The human body is our natural standard

of size, and on it our measuring units are or ought to be

based. Everything much bigger than our body requires a

large number to express it ; so also anything incomparably

smaller requires a very minute fraction to express it. We
must be prepared to deal easily and familiarly with very large

and very small numbers, and we need never, suppose that a

large number requires a great number of significant figures to

express it ; for by that means it would not be of any different

size, it would only be expressed with preposterous accuracy.

A number like 17,199,658 is for most purposes quite suffi-

ciently expressed as 17-2 millions or 17,200,000.

So also our lifetime constitutes a natural human standard of

time, and our walking and other movements are standards of

velocity ; but, to express the facts of nature in general, these



CHAP, xxin.] OHDER OF MAGNITUPE. 211

magnitudes may have to bo multiplied or subdivided to almost

any extent. The distance of the fixed stars, and the velocity

of light, and the age of the earth, are examples of one kind of

magnitude. The size of atoms and the duration of their

collisions lie towards the other end of the scale.

In many cases the precise numerical specification is of less

importance than is the order of magnitude ; sometimes because

it is not accurately known, sometimes because it may be

variable within certain limits. The "order of magnitude"

may roughly be said to be given by the number of digits

involved in its specification ; in other words, by the power of

ten concerned, without much regard to the particular figures

that precede that power. Thus, for instance, in 3 x 10^" it is

the index ten which gives the order of magnitude; the numbers

4 X 1010 and 5 x IQio and even 8 x IQi" or 1 x lO" are of the

same " order," viz. ' ten.'

So also the numbers 30 and 70 are of the same order of

magnitude, viz. ' one,' though one of the two numbers is more

than double the other.

The closeness of specification required depends upon the

subject matter and the object for which it is wanted. Occasion-

ally, though not often, it would be possible to consider ten and

a thousand as practically, though not technically, of the same

order of magnitude : they would be roughly alike as compared

with either a billion or a billionth.

Now let us take some examples of the index method of

dealing with figures. Take first mere numbers of different

orders of magnitude. For instance, divide, multiply, add, and

subtract the following pair of numbers in every way :

a = 17,400,000, J = -0015;

which may be called 17 '4 millions, and 1*5 thousandths, or

17-4 X 10^ and 1*5 x 10-^ respectively.
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First we notice that when numbers differ greatly in magni-

tude, addition and subtraction are operations that are useless;

a + b and a-b are to all intents and purposes the same as a in

the above case ; the larger magnitude dominates the smaller, so

far as addition or subtraction is concerned. A million plus or

minus three is practically the same as a million. So no finite

quantity added to infinity makes the smallest difference to it.

This is a frequently useful fact : small quantities can be neg-

lected when added to or subtracted from large ones.

1+2=1, when 2 is small enough.

a^-x^ = a\ when x is small compared with a,

which may happen either when a is very big or when x is

very small, or even when both are big or both small so

long as a is much bigger than x ; in other words, so long as

the ratio - is small. The term "small," so used, signifies small

compared with the other quantities concerned in the expression;

or sometimes, as in this case of the ratio, small compared with

unity.

But when we proceed to multiplication or to division, we find

a very different state of things ; there is then no domination

of a big quantity over a small one ; the bigness may be

exaggerated, or it may be partially destroyed, by the influence

of the small one.

Take the example suggested above :

a6 = 17-4 X 106 X 1-5 ^ 10-3 = 26-1 x 103 = 26100 (1)

1= 17-4 X 106-;- (1-5 X io-3) = | x 17-4 x 109 = 11-6 x 10» (2)

b 1-5x10-3 10-9 10-1"i^xiu _ iu .IV = 862x10-10 C3\
a 17-4x106 11-6 1-16 »''- ^ ^" (•*)

These results are numbered (1) (2) (3) for reference. The

three results are of different orders of magnitude. The

middle result is about half a million times the first ; it is so

much greater because a number has been divided by the small
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quantity b instead of being multiplied by it. The ratio between
results (1) and (2) is therefore exactly equal to b\ that is

(1-5)2 ^ 10-6 or 2-25 x 10-« or -00000225.

The first result is more than a hundred billion times the

third ; the ratio between them being a\ that is

(17-4)2 X 1012 = 302-76 x 10i2 = 3 x lOi* approximately,

an enormous number, but not bigger than what we have
frequently to deal with in physics. The particles in a candle

flame are quivering with about this number of vibrations per

second, otherwise we should not be able to see the light.

Everything self-luminous must be quivering at this or at a

somewhat greater rate, consequently such rates of vibration

are quite common.

The result (2) compared with result (3) shows a still greater

difference in order of magnitude. To express the ratio,

11-2
which is tq^x lO^^, a number of 21 digits is required, viz,

the number l-3xl02o, more accurately 1-2993x1020, a

number which is of the same order of magnitude as the

number of atoms in a drop of water.

Now take another example. If light travels a distance

equal to seven and a half times round the world in a second,

how long does it take to come from the sun, a distance of 93

million miles'? How long does it take to travel 1 foot, or

say 30 centimetres. And how long to travel from molecule

to molecule in glass, supposing that they are the ten millionth

of a millimetre apart ?

The circumference of the earth is just 40 million metres,

by the definition of a metre. It therefore equals 4 x 10'

centimetres. 7| times this equals 3 x lO^" centimetres ; and

this distance traversed per second gives the velocity of light.

A mile is about 1 -6 kilometres, so the distance of the sun is

93 X I "6 = 149 million kilometres, as nearly as it is at present
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known; in other words it is 149 x 10* x 10^ centimetres =;

r49 X lO^' centimetres. Hence the time required by light for

its journey from the sun is

1-49x10" centimetres 1490 ,.„ ,—-—=—s— = 497 seconds,
„ ,.„ centimetres 3
3 X lO^" ,-—

second,

or about 8 minutes and a quarter.

This begins to illustrate the right method of dealing with

units. We shall have occasion to illustrate and emphasise it

later at much greater length ;*but it will be seen already

that the "centimetres" in numerator and denominator cancel

out, and that the " seconds " in a denominator of the denomi-

nator come up to the top, and gives us the units of the answer.

If this is not clear, never mind, we shall return to it and to

much more like it. We might have written the whole working

thus:

93 million miles _ 93 miles

7 '5 X 40 million metres per second 300 metres per second

= •31 X 1600 seconds = 496 seconds

= 8J minutes approximately,

and that is really the best and safest way to do it. We have

here put the actual data into the fraction, and then cancelled

out the " millions "
; next expressed numerically the ratio of

miles to metres, which is 1600, since 1'6 kilometre is a mile;

and then we bring the " per second " out of the denominator,

and call it ' seconds " in the numerator.

In so far as the two answers are not identical to the nearest

second, that is simply because of the approximate working,

which is justified by reason of the uncertainty of the data.

If the result were expressed as 496-666 seconds it would be

merely dishonest. The velocity of light and the distance of

the sun are both quantities which have had to be experi-

mentally determined, and neither is known with more than
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three figure accuracy. In fact, the latter is not known quite

so closely as this. Moreover, it is at best only an average value:

the sun is not always at the same distance from the earth,

since the earth's orbit is not circular ; the distance we have

chosen is an approximation to the mean or average distance.

Now take the latter parts of the question, viz. the time

required by light to travel a foot, or say 30 centimetres ; and

the time required to travel a molecular distance of the ten

millionth of a millimetre, or 10~* centimetre.

These are quite easily ascertained, since the velocity is

given as 3 X 10^" centimetres per second. To travel 30 centi-

30
metres light takes ^

—

ycm second, that is lO""" second, which

means the thousand millionth part of a second.
10-8

To travel from molecule to molecule, it takes s—fmo^i 10" i^,

or say the third part of the trillionth of a second. Here

the digit 3 is quite unimportant. The order of magni-

tude is all that is of any use, and that is the trillionth or

10 "18 of a second. Molecular magnitudes are not known more

accurately than that. It may be considered remarkable that

they have been measured at all. The way they are obtained,

a way necessarily indirect, can only be understood later.

"With attention to these early stages, this and much else can

presently be understood by everybody: At present, grown

people are ignorant of all these things, because they have not

prepared their minds.

Now take a more childish example, akin to the horseshoe

nails, page 155, and perhaps equally sui-prising.

A country the size of England was being besieged by a

hostile fleet, and its inhabitants were in danger of starvation

because they did not grow their own corn. Under these

circumstances tho captain of a merchant steamer craved



216 EASY MATHEMATICS. [chap.

permission from the enemy to run the blockade with a chess

board full of wheat for his starving wife and family, the board

to contain a single grain of wheat on the first square, two

grains on the next, four on the next, and so on.

But when the enemy's admiral had had the necessary

calculation made, by a Japanese sailor who happened to be on

board, and was informed that the corn thus to be passed

through his lines was sufficient not only to feed but to

smother every living soul in the country, in fact to cover

the whole land with a layer of grain more than a dozen yards

thick, he declined to grant the request unless the whole

supply were delivered at one operation.

To do the sum, proceed as follows :—The number of grains

is 2^*, or, strictly speaking, one grain less than this number.

A mode of arriving at this, if it is not obvious, will be given

below, but it could be reasoned out by an intelligent beginner.

Call the number 71.

then log m= 64 log 2,

and log 2, either from the curve (p. 179) or from a table of

logs, is approximately -3, more accurately "30103
;

hence logm = 19-266.

n is therefore a number with twenty digits of "order" 19

;

in other words, it is approximately eighteen trillion; more
accurately it is r845 x lO^^.

This number is not so great as the number of atoms in a

drop of water, but it is a large number. To see what it

means : buy half a pound of wheat as imported, without its

husk, etc.—it costs only a penny—and devise a plan of practi-

cally counting the grains in say a cubic inch, without actually

counting so many individually. This should not be beyond a

youth's ingenuity.

I find that on the average a grain is ^ inch long and ^ of an

inch broad. So if they were regularly arranged, in what is



XXIII.] GRAINS OF WHEAT PROBLEM. 217

called square order, there would be 28 of theni lying in a

square inch; and if piled up an inch high, also in regular order,

there would be 7 x 28 = 196 in the cubic inch so constructed.

An allowance for irregularity should doubtless be made,

but it is uncertain ; it is not even quite clear whether more or

fewer could be got into a given space by a higgledy piggledy

arrangement than regular packing in artificially square order.

It will be near enough if we take it as about the same, and so

estimate 200 grains of wheat to the cubic inch.

We are now prepared to go on with the sum set. The area

of a country the size of England is given in the geography

books, or the Penny Cyclopaedia, as 50,000 square miles. A
mile is 1760 x 36 inches = 6'336 x lO* inches, so a square mile

is the square of this, viz. 40-145 x 10^ square inches, of which

the first two digits are sufiicient for our purpose.

Hence the area of a country as big as England is 5 x 10* x

40 X 10* = 2 X 10^* square inches. Now the number of grains

which are to be distributed over this area is given by our

previous working as l'845xl0i^, and we have ascertained

that, roughly speaking, 200 of the grains will occupy a cubic

inch. Hence the number of cubic inches which have to be

provided to hold all the corn, is the 200th part of 1-845 x 10^',

that is to say, 922x10^'^; or just less than the tenth of a

trillion cubic inches. To provide this capacity on the surface

of the country, the grain would have to be spread all over it

in a uniform layer, of thickness

•922 X 10''^ cubic inches ... ,„, ,. . i
-yr^^ :—=-—= -461 X 10^ Imear inches.

2x lO^* square mches

In other words, the corn would flood the whole country

to a depth of 461 inches, or 38-4 feet, which is as high

as an ordinary house. All cottages would therefore be

completely submerged by the chess board full of grain

distributed uniformly over the face of the country.
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Perhaps, however, our initial step, that the number of

grains is precisely 2"* - 1, was not obvious. It can easily be

seen thus. The number on any square will be one grain more

than all those on the preceding squares added together.

Thus, for instance, the number on the third square is 4, and

the two previous squares contain one grain and two grains

respectively, or 3 grains together ; which is one less than the

number on the next. The number on the next following

square is 8, and the three previous squares together hold 7, or

again one grain less, and so on. Hence the number on the

tenth square would be the number on the nine previous

squares added together, plus one. The number on the tenth

square is 2^, so the number on the 9 previous squares added

together will be 2* - 1. The number on the sixth square is

2^ = 32, hence the number on the five previous squares added

together will be 31 ; and so it is, viz. 1+2 + 4 + 8 + 16, which

equals 31. Compare page 323.

Now the total number of squares in a chess board is 8^, or

64 ; the number of grains on a 65th square, if there were one,

would be 2^*, hence the number on the 64 previous squares

added together (which is just what we want) is 2"* - 1.

This peculiar result of continued doubling, that the product

each time just exceeds the sum of all the preceding products,

has suggested a plan of what is called " breaking the bank," at

a place where you stake on one of two events, either of which

is equally probable, say red or black, and win back double

your stake if you win, that is receive your stake and another

added to it by the " bank.'' The simplest rule for " breaking

the bank " is simply this : Begin small, and double your stake

every time you lose ; whenever you win, begin again.

If it were feasible to continue this process you could never

really lose, because your stake would always just exceed the

sum of your previous losses, so that whenever you won you
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would get them all back plus 1 counter more. Winning would

be slow but sure. To work the process you must be prepared,

however, with a considerable number of counters to stake

with, if you happen to lose many times in succession. And as

a matter of fact every ' bank ' protects itself against so simple

an arithmetical device by declining to receive more than a

certain maximum stake. If therefore you have staked the

maximum and lost, you have no way of getting your losses

recouped ; and so it is universally conceded, even by gamblers,

that there are more profitable, as well as more useful, ways

of earning a living.

The operation of constant doubling is a particular case of

what is generally called geometrical progression, and it

is remarkable how rapidly we can thus reach enormous

magnitudes.

Of course, if instead of doubling we treble or quadruple

each time, the large result will be reached still sooner, but, as

a matter of fact, any constant factor greater than 1, repeated

often enough, will grow to any magnitude ; whereas any

constant factor less than 1 repeated often enough will obliterate

or reduce to insignificance any initial magnitude.

Take an example. Let the factor be I'l, that is one and a

tenth. Multiply it by itself 20 times, so that the result is

(I'l)^", whose value can be found by logarithms easily enough,

thus

:

Call it X, then log a;= 20 log 1 -1 = 20 x -0414 = -828,

soa;=6'6; showing that the initial rate of increase is slow.

Look, for instance, at the geometrical progression or compound-

interest curve on page 357, which is the same as the

exponential curve on page 101 taken backwards, and note

that it begins slowly. But continue the process until we have

reached (l-l)!"", whose logarithm will be 100 x "0414, or 4'14,

and already the result is 13,800. To get really large numbers
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with such a factor as l-l, we should therefore have to repeat

the operation very often indeed.

So also to reduce to insignificance by means of such a factor

as '9, we should have to repeat the multiplication very often :

for let (-D)!"" = X

then logo; =100 log -9 = 100 logy^^

= 100 (log 9 - log 10) = 100 log 9 - 100

= 95-42-100 = -4-58 = -5+ -42 =5-42,

wherefore a; =-0000263,

a number which is of the " order " - 5.

Illustrations of excessively rapid multiplication by geometri-

cal progression occur in Natural History, where certain

organisms are known to increase at a prodigious rate, this rate

of increase being the cause of plagues, like a plague of

locusts,' or blight, or like certain kinds of disease. For sup-

pose a parent insect laid and hatched a thousand eggs

(which is indeed a very moderate number), and suppose each

of these also hatched a thousand, and suppose each genera-

tion only required a month to come to maturity, and lived for

a year ; the number of descendants in the course of twelve

months would be a thousand raised to the twelfth power,

that is to say a number of the "order" 36, or 1 followed

by 36 ciphers, or a trillion-trillion.

Some diseases are caused by the fission or splitting up

of cells into two or more, which rapidly grow and split up

again. In such case the rapidity of increase can be still more

prodigious, because the time which need elapse between

the splitting and the re-splitting of cells may be short.

It does not follow that these geometrical-progression rates

of increase apply without qualification to every kind of

population, nor to one whose needs are in excess of available

supply. For some actual facts, however, see Appendix IV.
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Dealings with Vulgar Fractions.

Having now exhibited the easy mode of dealing with frac-

tions, we must proceed to the more diflScult method where the

division operation has not been performed, but is only indi-

cated : the same sort of indication as has been used in algebra.

For instance, to divide a by 6 you cannot really do it in

algebra, you can only indicate it, as a -f 6 or t. So also in

arithmetic if one has to divide 3 by 4, we can, if we choose,

do it, and write -75 simply, but for many homely purposes it

is sufficient to indicate it only, and leave it in the form of

3 -f 4 or f. Fractions left like this are not so easy to deal

with, but they usually apply to such simple magnitudes that

they are simple enough. For anything complicated, however,

they are unsuitable, and they must be simplified ; moreover,

as we have seen in Chapter XXI. on concrete arithmetic, they

seldom occur in practical measurements; nevertheless we

must learn to perform the fundamental operations upon

vulgar fractions without having necessarily to reduce them

first to a simpler form. One way of dealing with mixed

units, such as cwts., quarters, and lbs., or pounds, shillings,

and pence, is to reduce them all to some one denomina-

tion; but it would be rather stupid if we did not know

how to treat them in any other way. So also one way
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of treating collections of vulgar fractions is to reduce them

all to some one denomination, or to decimals ; but we ought

to learn how to manage them without .this preliminary

operation.

So we will proceed to illustrate by example some simplifying

processes, first reminding ourselves of the fundamental opera-

tions of addition, subtraction, multiplication, division, involu-

tion, and evolution, applied to vulgar fractions.

No further explanation is needed beyond what has gone

before. Chaps. III., IX., etc. For addition, make a common
denominator and cross multiply.

X y bz + ay
- + T = -

a b ab '

or another example
z x + ay

a •' a

For subtraction, the same.

z y_bz-ay^
a b~ ab '

c a; ., T X- ay
or it given --y,\t equals ^.

For multiplication, multiply numerators together and

denominators together.

a b ab'

or, in the common case when one denominator only appears,

X nx

a a

For division, invert the divisor, and multiply

X y_x b _bx
a ' b a y ay'

nr XX
a na
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For involution, operate similarly on both numerator and

denominator. /x\

For evolution, just the same ; only we may write m as — if

it is a fraction, if we like,
]

x\m ^ 'V^

Numerical Verifications.

The simplest fractions of all, to deal with, are those which

are not really fractions, but integers in disguise, like ^- or -^/-,

and these serve for testing any operation easily and quickly.

If these two are added, for instance, the result according to

e above ruh
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Of course, in practice we should get rid of such pretence or

imitation fractions, by expressing them as whole numbers at

once, before beginning operations on them. But we may often

have fractions not unlike them ; composed, that is to say, of a

whole number and a proper fraction in addition. Those

fractions, larger than unity, are sometimes called "improper

fractions,'' and when expressed as an integer + a fraction, they

are called "mixed numbers"; but these terms are hardly ever

used out of the schoolroom.

A pretended fraction like -\p cannot be concretely exhibited

to small children unless there are several things to be cut up.

With several apples we can do it ; for if we cut them all up

into thirds, and then pick out 12 of the thirds, we shall find

that we can build up with them 4 apples.

So also ^^- would give us 4 apples and J of another ; and we

could not exhibit it properly unless we had 5 apiples to start

with.

These fractions are called improper fractions because they

are not fractions of one thing, but fractions of a lot of things.

To exhibit a proper fraction like f is easy, for we have only

to cut an apple into half quarters and then remove five of

these, leaving fths of the apple behind.

It is from this point of view that vulgar fractions are simpler

than decimals. There is always some good reason why a

popularly employed nomenclature has been hit upon. For

these simple things it is excellent : it is only when we come to

complicated things that we find it rather difficult. In practice,

however, difficult sums never occur in this form, and there is

no reason for wasting the time and brains of children in

simplifying unwieldy artificial complications ; for these things

may give them much trouble when young, whereas later, if

they ever learn mathematics, they will experience none at all,

even if they come across the most complicated of them.
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Simplification of fractional expressions.

We will attend now to certain simple operations which
constantly occur in practice ; it is easy to get accustomed to

them and to take an interest in them, as in any natural

exercise of intelligence. First of all we will take " cancelling,"

that is, striking out of common factors, a process in which
useful ingenuity can be trained. Examples are better than

precept, so try the following : Simplify

36 X 108 X -91

17-28 X 65 x8-r

Here we see at a glance that a lot of factors can be struck

out, because

36 = 3x12, 108 = 9x12, 91=7x13,

though that last is not so likely to be known, unless an

extended multiplication-table has-been learnt—a very useful

accomplishment ; moreover

1728 = 123, 65 = 5x13, and 81=92.

As to the position of the decimal point, that is a matter

that gives no trouble at all. The decimal point must always

occur somewhere ; it is understood and not written at the end

of integers, but it is there all the time ; and its influence can

be attended to after the cancelling has been done. Of course

we might shift it equally to the right in both numerator and
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denominator, and so get rid of its explicit appearance, and

we shall do this ultimately, but we will not do that at present

since we want to use it as an example ; we will cancel factors

as they stand, and leave the decimal points unchanged in

position till the end ; and the result, written down in practice

in a few seconds without all this talk, is

3x9x-07 _ 3x-07 _-07_ 7

•12x5x8-l"'6x-9 "•18~18'

This will not simplify further, because 7 is a prime number

and does not go into 18.

It would be very seldom useful to write the result as

J_ 1

2f.
°^ 2-5714...'

but it would often be useful to write it as

3'5— = -3888 ... or approximately -4.

Take another example : one less likely to occur however,

one of a double fraction.

yXjj-Xj-jy-
8 ., 21 •

Here we may cancel out factors among the numerator frac-

tions, and likewise among the denominator fractions; but

we must not cancel a factor in the upper numerator against a

factor in the lower denominator. 119 contains the factor

17, and also the factor 7, being equal to 7 x 17 ; and obviously

543 contains the factor 3, since its digits divide by 3. 100,

as usual, is useless for factor purposes.

So we re-write the fraction (with needless elaboration)

1 4 181 4x181
l'*9'' 1

~9~
1 X '

*"'1~'
1 ^ 100 100
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the middle line being drawn rather longer and stronger than

the other two, so as to show that the upper of the two

fractions is to be divided by the lower.

We have now to multiply the extremes and divide by the

means, a convenient rule to remember, giving us

400x181
63

But a rule of this kind should never be given, it should be

ascertained and, if possible, invented by the pupil. To invent

a handy rule involves a little bit of original thought, and the

opportunity for exercising that vital power should never be

lost.

Hence we should not at fast make the above convenient

short cut, but proceed thus

:

rru- 4x181 7
This means

--9--^T00'

and is an example of division of fractions, so invert the

second number and multiply

724 100 72400

9 "* 7 ~ 63 •

To express this in decimals we might proceed thus, for

although 9 is not a factor of the numerator it will be approxi-

mately one, and can at any rate be divided out, leaving

?5^ = 1 1 49-206349206349 ....

Digression on recurring decimals.—No importance attaches

to the notation of the superposed dot or dots for circulating or

recurring decimals. Children may write as many of the recur-

ring places as it amuses them to write. In practice, the result

would not usually be wanted beyond the first -2, which is nearly

equivalent to six figure accuracy, since the next figure is a 0.

The interpretation of recurring decimals as vulgar fractions.
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with a certain number of nines and noughts in the denomi-

nator, is of no practical moment. It should be reserved for

the more intelligent and irrepressible children, and by them it

might be found out, with great advantage. Children who

delight in finding out such things are on the way to acquire

some of the powers and tastes of the pure mathematician.

The simplest case may, however, be known, and perhaps

this amount of hint would be necessary even to sharp boys.

A recurring decimal is a geometrical progression, with fractional

common ratio, and extending to infinity.

Thus the commonest of all

3 or -3333

3 3 3
™6ans -— +—— 4-

10 ' 100 ' 1000
' '

the common ratio being y^th.

Hence its sum, by the rule for G.P. [see Chap. XXXV.] is

ffi _ -3 31
l-r~l-TV~9~3"

The precise value of the answer on p. 227 expressed as a

vulgar fraction, though never really wanted, is well known by
everybody (needlessly well known for so trivial and useless a

thing) to be 1 14920 e s*
9_ (^^^ ^^ digresdm.)

The fact that Z equals %
bx

as is proved by writing it

a
_
h _a y

x' y X h'

is worth remembering : most easily remembered as worded in

the rule, multiply the extremes for the new numerator and
the means for the new denominator.
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The y may be called a double denominator, and we observe

that it comes up into the ultimate numerator.

The rule for cancelling may also be similarly illustrated

:

na a

y my

the n's and the m's cancel out.

But in such a fraction as this

ra

X

T
ry

the r's, so far from cancelling, appear in the result twice over,

that is, squared ; for it equals

r^ay

bx
'

The rule for cancelling in the case of double fractions there-

fore is : cancel common factors from alternate members in the

double fraction, then deal with the extremes and means to

attain the simplified result.

It may be preferred, and it may be safer, to perform the

latter operation first, and so keep all the cancelling for an

expression in simple fractional form ; but either is a correct

procedure.
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Cancelling among units.

It is not only numbers that can so be cancelled : we may
and often do, have fractions composed of concrete or physical

quantities—quantities with length, and breadth, and thickness,

and weight, and velocity, and other things. It will be found

that cancelling can conveniently go on among these also.

Suppose we had the following ratio to interpret:

330 yards x 16 square yards x 77 lbs.

4 inches x J mUe x -14 ton x 5 minutes'

an experienced eye would see at once that the result was a

velocity, i.e. that it could be expressed as so many miles an

hour, or feet per second. And the working is on the following

lines, though again the actual operation is much speedier than

is the explanation of it :

—

First we have the ratio of yards to inches, which is 36, and

this is most conveniently and safely recorded by erasing the

word "yard" and replacing it by " 36 inches."

Next in the numerator we have square yards, and in the

denominator we have a linear mile, which is 1760 linear

yards, and that value is therefore conveniently substituted for

"mile."

Then we have the ratio of tons to pounds, which is 2240

;

and we get left with one of the " yard " factors of the square

yards uncancelled in the numerator, and with "minutes"
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uncancelled in the denominator. The result, before any cancel-

ling is done, will be the following

:

330 X 36 inches x 16 yards x yards x 77 lbs.

4 inches x ^ x 1760 yards x -U x 2240 lbs. x 5 minutes'

Now we can strike out a number of units common to both
numerator and denominator, and can at the same time do
some numerical cancelling, of which we will indicate the

steps sufficiently, noting that 11 is a factor of 1760, because

the sums of its alternate digits are equal.

30x9x32x11 yards

160 X -02 X 2240 x 5 minutes'

Now, we see that 16 will cancel out with 32, and of

course the ciphers can go from the 30 and the 160.

So we get it thus

27x2x11 yards

•02 X 2240 X 5 minutes'

So many yards by so many minutes ; in other words, a

velocity of so many yards per minute. How many ]

27 X 11 297 J

•1x1120 ^112 ^ P®^ mmute.

Here, perhaps, it is simplest to resort to long division, since

no more factors are obvious : so we might leave the answer as

2 •6518. yards per minute, which is a sort of racing snail's

pace ; or we might reduce it to other units. This last is a

thing which often has to be done, and so no opportunity for

showing the right way to do it must be lost at this early

stage.

This is the easiest and only safe way

:

297 yards _ 297 x 3 feet _ 297 ^ ,

112 minutes ~ 112 x 60 seconds ~ 2240
^^®* ^"^ ^®''°°'^'
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or again
miles

297 yards _297 Itw 297 x 60 miles

112 minutes" 112 ^'"112x1760 hours
60

27x3 81 ., ,

= 56iri6 = 896""^*"'P"'"^°"'"-

It may be said that simple reductions like that can easily be

done without writing them down fully. So they can, but

they can easily be done wrong. Change of units is a subject

extraordinarily easy to make a slip in, especially by multiplying

where one ought to divide. It is at best a mechanical process,

and it should be done mechanically; that is by a straight-

forward method which involves no delicate thought, and affords

no loopholes for mistakes to creep in.

To check the above result, we can recollect that 4 miles an

hour is about 2 paces or 6 feet per second ; so that the ratio of

the above two specifications for the same thing should be

roughly as 3 to 2. And so it is ; for the first is very roughly

4- foot per second, while the second is roughly -^ mile per

hour; and the ratio of 7 to 11 is not very difierent from that

of 6*7 to 10, which is frds.

This rough-and-ready checking, in terms of anything that

comes handy, and with quite rough approximation to the

figures, is very useful, and, in real practice, wise ; else we exhibit

the ridiculous result of academic correctness in minutiae, and

commercially hopeless error in the order of magnitnde ; so

that, for instance, a quantity pretending to be accurate to four

or five significant figures may be all the time a thousand

times too great or too small.

This is the kind of thing that always moves the practical

man to legitimate and sarcastic mirth, because he could get

nearer than that by his own untutored instinct and common-
sense. People who have been elaborately tutored, but have
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not taken care for themselves of their own birthright of

oommonsense, are denominated "prigs," and their existence

tends to bring education into contempt.

We must take another example of this cancelling of units,

and we will take an instance of the occurrence of a double

denominator in them. Suppose the following given

:

15 cwt. X (32 feet)^

1080 grammes x 400 centimetres per second x J yard"

Here the experienced eye will see that the result must be a

Ume, for every kind of unit will cancel out except the "per

second " in the denominator. This is what I call a double

denominator, for the per alone would put it in a denominator

;

so the result is that it comes up into the ultimate numerator.

To work the sum, proceed thus (with full elaboration

shown, because it is an illustration)

:

15 X 112 lbs. X 32x32 X (feet)^

-inon 4 metres , _ , ,'

1080 grammes x =- x 1*5 feet° second

1120 lbs. x8x32 feet

lAon 1 metre'
1080 grammes x r° second

18 454 grammes X 256 feet ,

TV ^ a oo J .^
seconds

17 grammes x 3-28 feet

18 X 454 X 256

17 X 3-28

To work this out, either a slide-rule or logarithm-table would

be advantageous. Suppose we take this as an opportunity for

utilising a table of four-figure logarithms, and see what we get.

log 18 = 1-2553 log 17 = 1-2304

log 454 = 2-6571 log 3-28= -5159

log 256 = 2-4082

6-3206 1-7463
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Subtracting, we get 4-5743,

which is the logarithm of 37530 to four significant figures

;

and 37,530 seconds is therefore the answer.

This is equal to 10 hours 25| minutes; and so the com-

plicated expression, involving many kinds of units, with

which we started, represents really nothing more elaborate

than the length of a working day.

These examples are rather dull and artificial ; but to take

a real example, which would lead to this kind of concrete

result, would assume some knowledge of mechanics or physics.

Suffice it to say that plenty of quite similar examples will

occur when we get to real subjects like those, and, meanwhile,

all that we can show is that they involve no difficulty

of dealing with and interpreting. No admixture of units

involves anything the least difficult : it only wants disen-

tangling; and, in order to disentangle it securely and

easily, the best pla,n is not to be afraid of writing out the

thing at length, with all the factors present—both the

numerical and the concrete units, or standards—and so

gradually boil it down by a mechanical process involving

no troublesome thought.

Whenever Aought is necessary, it is to be exercised vigor-

ously, but it should not be wasted over simple mechanical

operations. Take thought once for all, learn good methods,

and so economise thought in future. This is, indeed, the

principle of any mathematical machine. Machines can be

constructed, and are used, for performing really intricate

mathematical operations; for analysing out the harmonic

constituents of a tidal or other irregularly periodic curve, for

instance. To devise such a machine required thought, and

indeed genius, of the highest order : to work it, requires

nothing beyond what an intelligent office boy can learn.
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Cancelling in Equations.

One more detail concerning cancelling may here be

mentioned. It relates to cancelling on either side of an

equation. One side of an equation may be considered as

divided by the other, and the result equated to unity, so that

the rules for cancelling are easily deduced.

S or instance m — = -f

,

a

the n's may be cancelled, for it is equivalent to

nx

1=1.

nxh , 5a; 1 ,

or — = l,or— =1, or oa;= ay;
nya 'ay

as might have been seen at once by cross multiplying.

Suppose, for instance, that it had been written thus :

nx ny
, — u,

a

it would have been the same thing ; and the left hand of this

equation might be reduced to a common denominator, with

the subtraction performed as far as possible, by writing

hn!c—nay _^
ab
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How comes it that this is the same thing as bx^ay]

Because it may be written

^{bx-ay) = 0,

and, in order that this may be true, one of the two factors

must vanish, that is, must itself equal 0. For you cannot get

zero by multiplying two finite quantities together. Hence

either -r must equal 0, which is in some cases possible,

but is clearly not here intended ; or else bx -ay= 0. And the

latter cannot happen unless ay and bx are equal.

So we get this simple rule, that when an expression is

equated to any factor can be struck out, without having

to be accounted for, provided always that that factor is not- itself

zero.

This last is a most tremendously important proviso, and its

neglect may land you in the utmost absurdity. If we strike

out a factor zero, from an expression equated to zero, we may
be striking out the very and only factor which made it zero

;

the factor left behind may have any value whatever: the

equation declines to tell us for certain what that value is,

and we must not proceed to work on the assumption that it

does. Similarly, if a zero factor is cancelled on either side

of an equation, we can make no deduction concerning the

equality or otherwise of the residual factors.

Caution.

This inequality of zeros is a matter of great importance, and

I must proceed to illustrate it even at this stage, though we
shall find plenty of instances later on.

Suppose an expression like this were given, from which to

find X. iej(n^-i)(x^ + ¥)
3Sr "'
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we should be quite safe in striking out 16 and likewise ^ (viz.

the 3 in the denominator), for these numerical factors are

certainly not zero, so we should get left with

Now, if we strike out the factor J{n^ - 4) and the factor

-, we shall be left with the impossible result x^ + V^^Q.

Why impossible t Because it means that

and the square of a real number, whether that number be

positive or negative, cannot possibly be negative; for two

similar signs multiplied together give a positive sign always

;

-3x -3=+9 just as much as 3 x 3 does.

What the equation suggests is that, under the circumstances,

n must equal 2. It is the (n. - 2) component of the (m^ - 4)

factor, and not the factor containing x, which is responsible

for the zero value of the whole ; and the equation tells us,

therefore, nothing at all about the value of x.

I do not say that that is all that can be deduced from the

equation, but that is all that lies on the surface.

To clinch the danger of striking out a factor, without at the

same time recollecting the possibility that it may be itself the

essentially zero factor, the following absurdity may be given.

To " prove " algebraically that 2 = 1.

Let a; = 1, so that a; - 1 = 0,

then z^ = 1, and a^— 1 = 0.

So a;^ - 1 = a: - 1, since both equal zero,

wherefore (a; + 1) (a; - 1) = (a; - 1).

Cancel out the factor (a; - 1) from both sides, and we get left

a!+l = l;

but we knew all the time that a;=l, therefore the left-hand

side is 2, and so 2 = 1.
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Instead of going through the above farce, it would be

briefer to say 2x0 = 0;

divide both sides by 0, hence

2 = 1;

or instead of 2 you may put any quantity you .please.

It is a point that may possibly require emphasis, so we will

put it still more evidently

:

It is undeniable that 7 x is 0,

and also that 6 >; is 0,

if then it be argued that .'. 7x0 = 6x0,

and that the factor may be cancelled out, it seems to follow

that 7 = 6.

It is unsafe then to press the axiom that things which are

equal to the same thing are equal to one another, to cover the

case when " the same thing " is zero.

It is a question whether we have a right to say that 7x0 =
6 X at all, although they are both zero. It rather depends

on what we mean by 0. It is certainly untrue to say that § = ^
always, because clearly any numbers might be substituted

for the 7 and the 6. Do not, however, assume that § is

gibberish. A meaning can be found for everything if you

are patient and persevering. At any rate, we have no right

to cancel out the zero factor which alone is responsible for the

pretended equality 6x0 = 7x0. Of course the expres-

sion does not in practice occur in this crude form, but it

occurs in some masked form, such as

18(a;2-4) = 39 (a; -2),

whence, cancelling out the common factor 3 (x- 2), we get

6 (:!; + 2) = 13, orx= ^;
which may, however, be quite false, and is not at all a necessary

consequence of the equation from which it is supposed to

be deduced ; it is a possible consequence, or " solution," but
«= 2 is another, and may be the only real one.
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Further Cautions.

Before leaving the subject of "cancelling," it may b§ well

to append a caution concerning a small point which does

sometimes give trouble to a beginner. The fractions so far

chosen for simplification had both numerator and denominator

composed of factors; in other words, numerator and denomi-

nator was each really a single " term " : they were not

composed of a number of terms united by the sign + or -

.

Compound fractions of this latter kind are more troublesome.

In arithmetic they do not often present themselves in this

form for simplification, because when they occur, the addition

or subtraction can be so easily performed that naturally it is

done before any process of simplification is thought of. But,

in algebra, addition and subtraction are operations that cannot

be done, they are only indicated. Indeed that is one of the

chief advantages of algebra, that the operations to be per-

formed are preserved intact and evident, and are not masked

by the poor achievement of performance.

Suppose then we had ——

;

,

the whole thing is full of factors, but we may not cancel any.

If only the + were replaced by x we could cancel everything,

and leave nothing but unity; but as it is, the fraction is

already in its simplest form, unless indeed we choose to split

it up into two fractions.
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Why may we not cancel anything? Because a factor, in

order to be cancelled, must apply to the whole denominator

and to the whole numerator. In the above, there is no factor

which applies to the whole of the numerator. So there we are

stopped. Let us however resolve it into two fractions

Sw 8a!

+ 1
24r!a; 24na;'

and from each of these cancelling is easy, yielding

1 + 1.
8a; 3w

This form may be preferable to the first given form, or it may
not. It depends on what we want to do with it.

Suppose however we take another example, very like the

first, but upside down,

im + 9y"

Still no factors can be cancelled, for there is no factor common
to the two terms of the denominator ; but now we cannot even

separate it into two fractions. The attempt is often made by

beginners ; they try to write it

4m + % -yy+ im,

a splendid simplification certainly, but bearing no resemblance

whatever to the originally given fraction of which it is

supposed by the mistaken beginner to be a counterpart.

The mistake is so often made that it is worth numerical

illustration.

Emmple (i). ^1^1. Example (ii) ^**
144 s- ^ , 24 + 7

The first can be split into two fractions

24 J7__l 7
144'*' 144 "6"^ 144'
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The second can not be split up at all. It could be written,

if it were worth while,

6 ;; 6

l+/i 1^2916"

Of course both, being arithmetical, can be written

lii
^^^

"sT
''®®p®<'*i^®iy.

and that is just why these forms do not occur in arithmetic as

they do constantly in algebra.

Is no cancelling ever to be done when a numerator or

denominator contains more than one term? Certainly there

is, if each term has a common factor. For instance,

na + nb 21+51
IST °^ '^y TOTT-

If the + were replaced by x the n^ would cancel out alto-

gether ; but as it is, only one n cancels out, and the result is

a + b
J.

7 + 17

mab 357

I have found beginners who thought that if they used the

factor in the denominator to cancel one of the terms in the

numerator, they could not use it likewise to cancel the other

term; who would wish therefore to divide the 1071 by 9

instead of by 3, and to write it 119 in the result, because a 3

has been cancelled out of each term in the numerator, and

therefore it looks as if a 9 should be cancelled fjoin. the

denominator. But there is every difference between striking

out a factor from each of two terms, and striking it out from

each of two fadms. The mistake arises in fact from a

momentary confusion between + and x

.

,„, ,, . . rmc+ my
When the expression is 5—^,

the result is -

—

—

;

mz
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but if the expression had been

mxy.my
rrfiz

'

the result would be —— :

z

but just as the former expression with the + sign would

hardly occur as such in arithmetic, so the latter with the

X sign would hardly occur as such in algebra ; it would be

•

,

rrfixu
written —

^

m'z

and no shadow of doubt could arise. The doubt seems to

occur only when there are several terms.

Take the case of more than one term in both numerator

and denominator, like

a + h

x + y

Can we split this up into two fractions 1 Certainly, but not

ah
into - + -

;

X y

the two fractions into which it splits up are

a h

x + y a; + y'

the whole denominator occurring in both.

Cautions of a slightly more advanced character.

There is another mistake often made by beginners later on

;

and we may as well mention it here, along with the other

cautions. When we have a simple factor applied to two terms,

like n{a + b),

we may take away the brackets and apply it tP each term,

getting the equivalent form

na + nb.
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But although this is legitimate with a factor, it is not legiti-

mate with everything that can occur outside a bracket,—not

legitimate with a symbol of operation for instance j neither

is it legitimate with a square root or a logarithm.

Thus: n{a+h) = 7ha-\-nb,

but J{a + h)\Ja + Jh,

and log (a+ 6)H log a+ log J.

The sign ^ is to be read " is not equal to " or " does not

equal."

The two root expressions are quite different, and each is

already in its simplest form. To illustrate numerically

:

,7(4 + 9)^2 + 3,

for ,yi3, so far from being 5, is something between 3 and 4

;

because 3^ = 9 and 4^= 16, so ^^13 lies between them, and as a

matter of fact is 3-6055513...

.

(Never imagine from the accidental repetition of some

figure, like the 5 in this number, that it is going to "recur."

A root cannot possibly be a recurring decimal, for, if it could,

it would be a fraction, and therefore commensurable ; and a

root is always incommensurable, except when it is an integer.

See Chapter XX.).

So again of course {a + 5)^ ^a? + b%

and (x-y)^^a^- y^.

As to log a + log 6, so far from equalling log (a+ h), we know
that it equals log {a x h), that is log ah.

So also a'^-'Ha'+ a",

but, instead, a"*"= a' x a".

Ja + Jh is by no means equal to J{ab), although log a + log 4

does equal log ab ; nor does cos x + cos y equal either cos xy or

cos (x+ y); they are all different. So we learn to be cautious

with symbols of operation and not to treat them as factors

nor to treat them all alike. We have to be very cautious

about the removal of brackets in their case, and must always
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be sure that we understand the meaning and value of the

symbol outside them. Some operations can be treated in this

way, and some cannot ; and we must learn to discriminate.

Before long we shall find that a highly important operator,

denoted by t-, can be treated in this way ; so that

d , s d, d
j-(u + v) = ~ru + -j-v.
dx^ ' dm dx

And another operation denoted by idx can likewise be so

treated, so that

i{u + v)dx= ludx+ Ivdx;

but these things have to be proved, they must never be

assumed ; and the time for discussing them is not yet.

We may notice however that the familiar symbol of opera-

tion X is one that can be treated in this way

7x(4 + 6) = (7x4) + (7x6),

whereas the symbol -f cajinot be so treated

7-f(4 + 6)H(7-f4) + (7H-6).

Nor can the symbol + be so treated. Anything which can be

so treated is said to be subject to " the distributive law," that

is it may, and indeed must, be distributed among all the terms.

There is another law, spoken of as the " commutative law,''

which is sometimes applicable and sometimes not ; that is to

say it applies to some things and not to others. It applies

when the order can be inverted ; for instance,

axb has the same value as 6 x cs

.

3 times 4 gives the same number, though it does not

suggest the same grouping, as 4 times 3.

Similarly a + b is the same as b + a,

but a - J is not the same as b-a;
it is numerically equal but is opposite in sign : an important

distinction.
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Nor is a-rb the same as h-i-a, not even numerically equal.

It is not opposite, but "reciprocal."

Again there is a permutative law

:

e X a6 is the same as a x c6 or bxac,

so also x+ y + s= y + x + « etc.;

and under certain circumstances, though not invariably,

but ajh is not the same as J{ab), nor the same as bja ; the

three things are in fact equal to J(a^b), J(ab), and s/i"''^)

respectively.

The expression nloga; is not the same as log no;, it equals

log(a^).



CHAPTER XXIX.

ILLUSTRATION OF THE PRACTICAL USE OP
LOGARITHMS.

(i). How to look out a logarithm.

Below is given the simplest table of logarithms that can be

used. You can buy four-figure logarithms conveniently printed

on a card, and perhaps you may prefer to use them at once,

because four-figure logarithms are accurate enough for many
practical purposes, and are handy in actual work. But to ex-

plain the method of using a table and the principle of it, without

niceties and details, the annexed table will serve quite well.

You will find this table repeated at the end of the book,

folded in such a way that it is easy to refer to.

Table of 3-figure Logarithms.
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The triple digits -which occur throughout this table are the

decimal parts of the logarithms of the numbers on the left and

above. The decimal point is not printed, but it is always to

be understood, and on taking out the triple figures a decimal

point must always be written in front of them.

Now let us use the table to find a few logarithms. The

most obvious record in the table is that

logl =0, log 1-1 = -041, log 1-2 = '079,

log 1-3 = -114, etc. log 1-9 = -279,

log 2 =-301, logs ==:477, log 4 =-602,

and so on.

Next we have, by the use of the top row of figures combined

with the left-hand column,

log 2-1 = -322, log 2-2 = -342, log 2-3 = -362, etc.

log 3-1 = -491, log 3-2 =-505, etc.

log 4-1 = -613, etc.

and so on.

For all these figures there is nothing more to do than just

extract the logarithms from the table as they stand.

But now suppose we wanted the logarithm of 20 or 30.

We know that log 30 = log 10 + log 3 = 1 + log 3, hence look

out log 3, and write log 30 = 1-477.

Similarly log 20 = 1-301,

log 70 = 1 -845, and so on.

So all we have to do in that case is to prefix a 1 to the

decimal point.

If we wanted the logarithm of 11 or 12 or 13 it would be

just the same, we must prefix a 1 to the decimal point, so that

log 11 = 1-041, log 12 = 1-079, log 13 = 1-114.

Similarly

log21 = 1-322, log22 = l-342, log 31 = 1-491, etc.

1 is called the " characteristic " of any number of "order" 1.
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Further if we want the logs of 100 or 200 or 300, we must

prefix a 2 to the decimal point because

log 300 = log 100 + log 3 = 2 + log 3 = 2-477.

Similarly log 110 = 2-041, logl20 = 2-079,

log 210 = 2-322, log 220 = 2-342,

log 310 = 2-491, log 320 = 2-505.

So the logarithm of any number consisting of two signifi-

cant figures can be readily obtained from the table, and the

" characteristic " or integer part of the logarithm is given by

the "order" of the number. "Characteristic" and "order"

are in fact two names for the same thing, except that the first

is appropriate to a logarithm, and the second is applied to

the original number.

The logarithm of every number with only two significant

figures is therefore directly contained in the little table printed

above, no matter how big the number may be. For instance,

log 98,000,000 = 7-991.

But suppose the number had 3 significant figures. What is

the logarithm of 215 for instance? Well, it will lie approxi-

mately half-way between log 210 and log 220. Not exactly

half-way because the number grows in G.p. while the logarithm

grows in A.P., but half-way is near enough for most practical

purposes. So we can see that approximately log 215 = 2-332,

because that is half-way between 2-322 and 2-342.

But suppose the number whose log was wanted did not lie

half-way between others, but only one-tenth of the way;

suppose for instance log 211 was wanted, we should have to

take one-tenth of the difference between 322 and 342, which

difference, being 20, the tenth of it is 2 ; and this would have

to be added on, as representing one-tenth of the interval.

So log 211 would equal 2-324.
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We can in fact make an extension of the table for any third

significant figure in the number whose log is required, thus,

log 210 = 2-322, log 211 = 2-324,

log 212 = 2-326, log 213 = 2-328,

log 214 =2-330, and so on, up to

log 220 = 2-342.

Take a few more illustrations of this.

Wanted log 2-35.

From the table, log 2-30 = -362 and log 2-40 =-380,

so log 2-35 = -371.

Wanted log 3-41.

log 3-40 =-532, log 3-50 = 544,

so log 3-41 = -533 approximately.

Similarly log 3-42 =-534 approximately.

Wanted log 5-63.

log 5-6 = -748, log 5-7 = -756,

.-. log 5-63 = -750,

being three tenths of the interval added on to the smaller one.

Wanted log 5-67. We might add on seven tenths of the

interval to the smaller one, or, rather better, subtract three

tenths of the interval from the bigger one, getting

log 5-67 = -754.

But the table contains more than I have at present described

and used. The first half of the table gives the logarithms of

numbers near to unity, so we can get out logarithms of 1 -01

or 1-02 etc. up to 1*99, the numbers being expressed to 3

significant figures and all the logarithms recorded. It is a

help to have this given, as a sort of extra, because for these

small numbers the logarithms change so rapidly that the jump

is too great for easy and safe treatment by attending to the

difierenoes, and when we come to look out anti-logs (see next

page) they will fall in gaps of too large size.
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Using this part of the table we see that

log 1 -01 = -004, log 1 -02 = -009,

log 1-11 = -045, log 1-25 = -097,

log 1-53 =185, log 1-99 = -299.

And consequently

log 10-2 =1-009, log 102- =2009,

login- =2-045, log 125- =2-097,

log 12-5 = 1-097, log 19-9 = 1-299,

log 199- =2-299, log 1990- =3-299.

The characteristic of the logarithm is always the " order

"

of the number.

(ii). How to look out the number which has a given

logarithm.

To look out the number which possesses a given log we
have only to use the table backwards. It is quite simple and

obvious in idea, the only trouble is that we shall not usually

find the given logarithm actually in the table. If it is an

extensive table we are more likely to find it, and that saves

thought, but involves the turning over of many pages ; with a

little compressed table like the one given, we are not likely to

find a number exactly entered, and a trifle of thought is

necessary. That is no defect however for our present purpose,

which is not immediately to facilitate practice, but to furnish

instruction which shall facilitate practice by and bye.

The phrase " number which possesses the logarithm " so and

so, is rather long and unwieldy, and it is commonly shortened

into anti-log.

Thus log 2 = -301, or 2 is the anti-log of -301.

Given then the following logarithm, -380, what is its anti-log ?

Referring to the table, we see that it is 2-4.

Given -663, the anti-log is 4-6, and so on.

But suppose the given logarithm had been 1 -380, what then 1
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We should look in the table for the decimal part only, for it

is only the decimal part which is ever there recorded. The

prefix 1 before the decimal point tells us the power of ten in

the result, shows in fact that the result lies between ten and a

hundred. The antilog is therefore not now 2-4 but 24-

So also the antilog of 1-663 is 46- not 4-6.

The antilog of 2-663 is 460-,

of 3-663 is 4600-,

and so on. It is safer to actually write the decimal points at

the end of whole numbers in this sort of case.

The integer part of the logarithm, often called its " charac-

teristic," has simply the effect of determining the order of

magnitude of the result (p. 171). Surely however a most

important effect, and one not to be slurred over.

Examples.

What is the antilog of 1-672 1 Answer 47-.

What is the antilog of 1-301 1 Answer 20-.

What is the antilog of 2-041 1 Answer 110-.

What is the antilog of 3-699 1 Answer 5000-.

Employing the upper part of the table we see that

log 1-18 =-072,

log 101 =1-004,

log 1010 = 3-004,

log 10-9 =1-037,

log 1-34= -127,

log 1-01= -004

log 101 =2-004,

log 1-09= -037,

log 109 =2-037.

Likewise the antilog of -111 is 1-29

1-111 is 12-9

2-111 is 129-

•097 is 1-25.

1-097 is 12-5,

•196 is 1-57.

2^196 is 157-.
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So far the logarithms have been found in the table, because

we chose numbers of only two significant figures. The ease

when a logarithm does not occur exactly in the table causes

no difficulty, it only gives a little more trouble.

What is the antilog of -389 ? Answer 2-45 ; because it lies

about half-way between -380 and -398, so the answer lies

half-way between 2-4 and 2*5.

What is the antilog of 2-389 ? Answer 245.

What is the antilog of 1-675 "i Answer 47-3.

Why? because the given log lies one-third of the way be-

tween 672 and 681 ; so its antilog will lie about one-third of

the way between 47 and 48. As to the position of its decimal

point, that is determined by the "characteristic" or integer

part of the given logarithm, which was unity.

Logarithms of fractions.

So far all the antilogs have turned out greater than 1,

because all the logarithms chosen have been positive. The

characteristics have all been either 1 or 2 or 3 or ; for the

logarithm -672 has the characteristic 0. It might be, and

often is, written 0-672.

But now suppose it had a negative characteristic ; for

instance 1-6 7 2, where the minus sign is placed above the 1

instead of in front of it, in order that it may not be applied to

the whole number, but only to the 1 ; which is a conventional

but convenient mode of representing an important distinction.

The meaning, written out fully, is - 1 -(- -672.

Naturally this might be written, if we liked, - -328, but if

we did that we should want another table full of negative

numbers wherein to look out the logarithms of fractions. By
the above device we can use the same table all the time, and

only adjust the position of the decimal point in accordance

with the characteristic, so that it fixes the " order " as usual.
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For instance,

antilog of -672 from the table is 4-7,

so antilog of 1-672 will be -47,

and antilog of 2-672 will be -047,

antilog of 3-672 will be -0047,

the negative characteristic indicating the position of the

highest significant figure counting from the units' place.

The antilog of 1-672 is of course 47-

of 2-672 470-

and of 3-672 4700-

and so on ; the positive characteristic counting the number of

places to the left of the units' place.

(iii). How to do Multiplication and Division with

Logs.

We know that log aJ = log a + log 6,

and that log - = log b - log c.

c

So we know that log— = log a+ log b - log c,

c

and likewise log -j = log a + log b - log c - log d - log e

= (log a + log b) - (log c + logd + log e).

In other words, whenever we have a fraction consisting of a

number of factors in numerator and denominator, we must

look out the logarithm of each factor. All those in the

numerator, arrange in one column, and add ; all those in the

denominator, arrange in another column, and add ; then

subtract one addition from the other so as to get the logarithm

of the quotient. We have then only to refer to the table to

find the number which possesses this logarithm, and the

quotient is found.
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For instance, take this fraction

6-7 X 43 X 170

74x3-2xl-3'

Look out the logs of the factors as stated

:

log 6-7= -826 log 74- =1-869

log 43- =1-634 log 3-2= -505

log 170- = 2-230 log 1-3= -114

add 4-690 add 2-488

subtract 2-488

2-202

2-202 is therefore the log of the resulting quotient. Referring

to the table, we find that the number possessing this log is

159-2. Hence that is the answer.

It may be asked, why do it this way when we could easily

do it by simple multiplication and division ?

Reply : Very little, if any, advantage in such a simple case

as that. No advantage at all if you can easily see factors

which may be struck out.

But people who often have to do such sums get rather tired

of frequent multiplication and division, and they usually prefer

logarithms as a quicker and surer way. It becomes quicker

and surer with practice. Engineers usually employ what is

really the same process, but they have their table of logarithms

constructed in wood; and instead of looking out the logarithms,

they slide a slip along this rule, till a mark on it points

to the number printed where its logarithm ought to be,

and so attain the result in an ingenious manner, without

actually recording or thinking of any logarithm at all. They

shift the pointers, of which there are a pair, alternately to one

factor after another, taking numerator and denominator factors

alternately, and then at the end they read off the result as

indicated by one of the pointers.
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The instrument is called a "slide-rule"; it is in fact a

mechanical table of logarithms arranged ingeniously for quick

and practical use, and it gives you about 3-figure accuracy if

it is of a simple and well made pocket kind. More elaborate

and larger instruments can give 5-figure accuracy. The in-

genuity belongs to the devising and making of the rule : the

use of it is quite simple, but it has to be learnt. It should not

be learnt as a substitute for other methods, but as a supplement.

Pupils are not recommended to learn the slide-rule till they

can use a numerical table of logarithms. Nor are they recom-

mended to use logarithms till they can multiply and divide

with facility. In other words, these aids to rapidity should

be kept in their proper place,—not to make people helpless

without them, but to assist people who can work quite well

without them to obtain results more quickly and with less

labour.

Another example. Find the value of

27-1 X -16 X -089

•00055 X 3430
"

Look out logs and record them as below

:

log 27-1 =1 -433 log -00055 = 4-740

log -16 =1-204 log 3430- = 3-535

log -089 = 2-949 0-275

T-586

subtract 0-275

1-311

Antilog of this is -205, which is therefore the result, and may

be recorded as equal to the above fraction to something like

3-figure accuracy. This should be checked by actual multi-

plication. Indeed for some time, and especially when there

are negative characteristics, it is safest to check over the

result by other means than the mere logarithms. It is the
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order of magnitude that runs great risk of going wrong : the

actual digits can easily be got right.

A few more examples for practice :

What is the log of -05 ?

And what is the antilog of T-89 ?

The log of 5 in the table is -699,

so the log of -05 is 2-699.

The antilog of "89 estimated from the table is about 7'77,

so the antilog of T-89 is -777.

What is the antilog of -049 ?

We find this number in the upper part of the table, and

the antilog required is 1'12.

What is the antilog of 2-049 1 Answer 112.

„ „ T-049'! Answer -112.

„ 2-049? Answer -0112.

What is the antilog of -023 1 It does not occur even in the

upper part of the table, but it lies half-way between two

numbers which we find there ; so we estimate the antilog

as 1-055.

The antilog of 3-023 = 1055-

ofT023= -1055.

This is the use of the upper part of the table, as previously

half explained, that it gives us the logarithms of numbers only

slightly greater than 1 in greater profusion; and it is just

here that profusion is necessary, for in other parts of the

table logarithms lie much closer together in value than they

do here. Consequently what would naturally be the first row

of the table is spread out into nine rows, the first row itself

becoming thereby a column, reaching from 1 to 2, and giving

all the tenths of this interval.

If a beginner likes to think out the reason and meaning of

the difierent closeness of distribution in various parts of a
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logarithm table, he should by all means do so, but he need
not be made to do it. The reasonableness of it can be put
thus:

All the 900 integers between 100 and 1000 have logarithms

lying between 2 and 3 : this unit difference of logarithms is

therefore spread over all that range; while the same loga-

rithmic interval, viz. that between and 1, has to be squeezed

between the numbers 1 and 10, covering only nine oonseoutive

integers.

The logarithmic interval between 1 and 2 has to serve for

the 90 whole numbers between 10 and 100, while the same

logarithmic interval, viz. between 3 and 4, is all that can be

allowed to cover the 9000 numbers between 1000 and 10000.

Hence manifestly the logarithms of integers between 1 and

10 must be few, and the intervals between must be great,

though they may be conveniently filled up with the logarithms

of intervening fractions; but the logarithms of integers

between 1000 and 10000 are close together, their value

increasing only slightly for each addition of unity to the

number. In other words, the logs of integers take 9000 steps

to go from 3 to 4 ; they only take 9 steps to go from to 1.

The one is a trip, the other is a straddle.

I1.E.M. R



CHAPTER XXX.

IIow to find powers and roots by logarithms.

The finding of any power, or any root, is now an extremely

simple operation.

We know that log a;"= m log a, and this holds whether n be

ran integer or any fraction.
;

In other words, as said before,

loga;^=21oga;,

log a^ = 3 log X,

log 7a;= log a;^= I log «,

t
• log7a;= loga;^ = ^loga;,

and so on. Hence the method suggests itself, and we need

Jnly proceed to examples.. '

To find the value of ',ij2, the logarithm of it will be half the

logarithm of 2, and that we look for in the table, and find to

be •301, so half of it is "1505. This we do not find exactly in

the table, but we see that it is the logarithm of a number

lying between 1'41 and 1'42, and we estimate the number as

being 1-414. This is of course only an approximation,

because no arithmetical specification of it can be anything

but approximate. If calculated more elaborately, it comes

out 1 '4142136... , but it can neither stop nor circulate.

Similarly ^3 = 1732 approximately,

or more nearly 1-7320508...,

again without either recurrence or termination.
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Now take a case of a power. Suppose we want to calculate

the 2^* involved in an example on page 156. Its logarithm

will be 24 log 2 = 24 X -301 =7-224 and we have only to look

out the number which has this logarithm, that is look for the

antilog of 7-224. We shall find 225 in the table (p. 246), and

that is really better than 224, because when we multiply a

number by so big a factor as 24 there must probably be some

carried forward figure to be attended to. Anyway we find

that -225 is the logarithm of 1-68. This is not the result, of

coiu"se, since we have not yet attended to the characteristic,

which is 7. The characteristic is indeed, in these big numbers,

usually the most important thing to notice. The charac-

teristic 7 shows that the number is of the order seven, i.e. that

it lies between 10^ and 10* ; in other words, that it requires

eight digits to express it, and so it is approximately

16,800,000,

that is sixteen million eight hundred thousand, so far as we

can express it with 3-figure accuracy. There are eight digits

in this result, but only three of them are "significant,"' the

others are mere ciphers to indicate the order of magnitude.

The neatest way of recording such a result is therefore

1-68 xlO^

and the characteristic of the logarithm will always give us the

index of the power of ten when the number is so written.

For instance, antilog 1 9 -330 = 2 -1 4 x 1
Qi',

antilog 6-552 = 3 56 x IQ-s,

antilog 2-950 ?= 8-92 x lO'^ = 0892.

The operation of finding a root will look thus :

To find the fifth root of 1930.

log 1930 = 3-286,

I log 1930 = 0-657 ^ log of ,4-54. .

.

wherefore 4-54... = 4/(1930).
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Observe that when dividing a logarithm the characteristic

is to be included in it and divided with the rest of it. It is

only in dealings with the " table " that the characteristic does

not appear. It should however always be supplied and should

not be forgotten or ignored.

Thus if we had wanted the fifth root of 193 or of 19-3 or

of 1-93 we should have obtained a totally different number:

not the same number with the decimal point shifted, but a

different number altogether. For instance,

log 193 = 2-286,

i log 193= -457 = log of 2-865.

log 19-3 = 1-286,

|logl9-3= -257 = logof 1-81.

log 1-93 = 0-286,

^ log 1-93= O57 = logof 1-14.

But now suppose we required the root of a fraction, i.e. of

something whose logarithm was negative. We must think

how to proceed in that case. Suppose for instance we want

the fifth root of -193,

log -193 = 1-286,

that is to say a negative part and a positive part ; it means

- 1 + -286.

In order to divide this by 5 conveniently, it is best to increase

both the negative and the positive parts by any convenient

equal amounts : in this case the convenient amount is 4.

Add - 4 to the negative part, and add +4 to the positive part:

the value will thereby be unaltered, but it will be written as

-5 + 4-286

and now it is quite easy to divide by 5, yielding

-1 + -857 or T-857,

which is the log of -72. Wherefore

•72=»/-193.
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The root is bigger than the number. That is universal with

roots of proper fractions. When we square a fraction we
diminish it ; when we square-root a fraction, consequently, we
increase it. Think it out; it is all in accordance with common-

sense.

But we must take another example;

Let us find the square root of -0054.

log -0054 ^3-732

= -4 + 1-732,

I log -0054= -2 -J- -866

= 2-866 = logof -0735,

wherefore -0735 = ^-0054.

We might have made an approximate guess at this, because

^0049 could have been written down as "07 by inspection,

and so ;^-0054 will be a little bigger ; how much bigger it is

not so easy to guess.

But suppose we had wanted ^'QM, we should have found

nothing like a 7 in the root. Let us do it

:

log -054 = 2-732,

J log -054 =1-366 = log of ;232.

So -232 =J-OM, whereas -0735 = ;7-0054,

-0232 = ^00054, -735 =^-54,

2-32 =V5-4, 7-35 =^54,
23-2 =^540, 73-5 =^5400.

A little easy repetition on this point may be useful so as to

emphasise it.

^49 =7, and ^100= 10;

so ^4900 =70,

and ^490000=700;
also ^^-49 = -7,

7-0049 =-07,

^^-000049 = -007;
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biit if instead of two ciphers we had suffixed or prefixed only

one cipher, We should have had quite different results, and not

so easy to ascertain, viz. the following i

^4-9 = 2'214,

Ji9Q = 22-14,

^49000 =221^4,

V-049 = -2214,

v'-00049= -02214.

Exercises.

^407 = 7-41

because log 407 = 2 -6 1 0,

and one-third of it is -870 = log of 7"41.

Similarly work out the following

:

y-407 = -741,

^407000- =74-1,

4/-000407= -0741,

so that whereas for square roots the noughts can he added in

pairs to leave the digits unaltered, for cube roots the ciphers

must be added in triplets if they are to make no change in the

digits. This is an immediate consequence of the fact that

4/1000=10.

The last case, for instance, works out thus

:

log -000407 = 4-61 = - 6 + 2-61,

of which one-third is 2-870 = log of -0741.

, The simplest way of dealing with these things however is

to express them in powers of ten.

Thus -000407 = 407 xlO-«,

so its cube root is

4/407 X 10-2 = 7-41 -= 100 = -0741.

But now suppose the digits had not been added in triplets.

Find cube root of 40-7.

log 40-7= 1-61,
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a third of that is -SS?, which is the logarithm of 3'44... which

is therefore the root required.

Again, to find ^4-07.

log 4-07 = -61,

one-third is 2033 and the number corresponding to this log is

nearly 1'6.
'

So (4070)* = 16 nearly; more accurately 15-966...

Also ('00407)*= -16.

Find the cube root of -0078.

We may write it as '7'8 x 10~*,

and so express its cube root as

1-98 X 10-1 = -198.

Find the cube root of -000000081.

Express it as 81 x lO'^.

Its cube root is 4-33 x lO-^ = 00433.

Roots of negative nnmbers.

Perhaps it is not likely to occur often in elementary practice,

but it is worth noticing that the cube root of a negative

number is by no means impossible. What, for instance, is the

cube root of - 8 ; that is, what number multiplied twice by

itself will make -81 The answer is - 2, for

-2x-2=+4 and -l-4x-2=-8.
So ^-27= -9, V-1728=-12, andsoon.

Also ^ - 407 = - 7-41, see above.

The square root of a negative number has no simple meaning.

If we tried to find the square root of - 9 or - 25 we could "noli

do it, for - 3 X - 3 = + 9 and - 5 x - 5 = + 25. Hence nega-

tive numbers have no square roots, but they have cube roots;

Having no square roots of course they cannot have fourth

roots, for a fourth root is simply the square root of a square

root. But they have fifth roots and seventh roots and any

odd numbered roots, because an odd number of minus signs
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multiplied together make minus. Negative numbers have no

even roots.

This is not all that can be said concerning the roots of

negative numbers, by any means : Pure mathematicians know

a great deal more than that about them ; and later, children

who like the subject may learn some of it, but not yet. In

order however to prepare them for a convenient way of

dealing with the matter, I will point out that any negative

number can be said to have - 1 as a factor ; for instance,

- 8= 8x -1,

-16 = 16x -1,

- 27 = 27 X - 1, and so on.

Hence any root of any negative number is equal to the same

root of the same positive number multiplied by the appropriate

root of - 1. For instance,

y-8 = ^8xy-l = 24/-l,

y-27=^27x4/-l = 34/-l,

^-32 = 24/-l, and so on.

[^member that J{xy) = JxJy or that (a6)" = a"6".]

But the same method may be extended to even roots, thus

V-16 =V16xV-l = V-l.
V-9 = 3^-l,

4/- 81 = 34/- 1,

^-64 = 2 4/-I, and so on.

It is true that we do not yet know what to make of J- 1

or i/- 1 or 4/- 1 ; it is an impossible or imaginary quantity •

but though we think that we do know what to make of {/- 1

or 4/- li viz. although we know that they = - 1, do not let

us be too sure that we know all about even these. It is at

any rate true that -Ix -Ix -1= -1, and that is all that

need now concern us ; but it is not, strange to say, the whole

truth concerning even the odd roots of minus one.



CHAPTER XXXI.

Greometrical Illustration of Powers and Roots.

Geometrical illustration, or illustration of number by

simple diagrams, cannot be pressed very far with advantage for

elementary purposes. But for simple things the illustrations

are so vivid and useful and interesting that they should

often be employed, and especially be set as exercises so as

to infuse life and interest into what, might otherwise be dull.

The simplest illustration of all relates to the squares or

cubes of integers. That the square of 3 is 9 is illustrated in

the most conspicuous manner by the diagram.

Fia. 12.

So also that the square of 4 is 16, and the square of 5 is 25.

That the cube of 2 is 8 is illustrated thus,

but the best plan of dealing with solids is

to use cubical wooden blocks and build

them up.

8 blocks will build a cube whose side is 2

27 „ „ „ 3

64 „ „ „ 4

and so on.
Fia. 13.
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The same blocks laid flat on the table will serve con-

veniently for squares and rectangles and commensurable areas

generally. They will also serve to outline commensurable

triangles : with conspicuous advantage in some cases.

By this kind of practice a reality about square and cube

numbers is attained which can be got in no other way.

Naturally also the area of any rectangle can be thus

illustrated as the product of length and breadth ; and the

volume of rectangular solids as the product of length, breadth,

and height.

If we try to illustrate fourth or higher powers in this way
we shall find ourselves helpless. Space is only of 3 dimensions.

There are length and breadth and thickness, and no more.

Some have tried to imagine what a fourth dimension would

be like, but for the present we will be content with an actually

experienced and familiar three dimensions.

So much for powers ; now what about roots 1

The few commensurable roots that exist must all be whole

numbers, and they will be represented, so far as square and

cube roots are concerned, by the length of the sides or edges

of the squares or cubes which have so far been drawn or built

up. Thus, for instance, the square root of 16 is 4, and the

cube root of 27 is 3. But this fact, which is experimentally

obvious in the commensurable case, where the square or the

cube can be built of blocks, is true also in the general case.

The length of a side of a square is the square root of its area

always, and the length of the edge of a cube is the cube root of

its volume always. This represents the geometrical

notion of a root so far as geometry can illustrate it.

"We will now proceed a little further.

Suppose we take a square and draw a diagonal
^'°- ^*- across it, what is the length of that diagonal 1 It

is evidently greater than a side, and not so great as two sides.
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FlQ. 15.

If We measure it carefully we shall find it rather less than

a side and a half. It will be about one and two-fifths or 1"4

times a side.

Now construct a square on the diagonal, i.e. a fresh square

with the old diagonal for one of its sides. We may not know
how to do it accurately on blank paper, but it is quite easy

to do if we use paper ruled faintly in squares, such as can

easily be obtained in copy-books. Or the

figure may be constructed by folding over

the tongue of a sort of square envelope.

In any case it is quite easy to see that

the square on the hypothenuse is twice

the area of the square on either side of

the isosceles rt.-angled triangle. For

produce the sides along the dotted lines.

The larger square is thereby cut up into four parts each of

which is half of the smaller square : see fig. 15. Therefore

the areas of the squares are as 2 to 1.

But the side of a square is the square root of its area, hence

a side of the new square is J2 times a side of

the old one. In other words, the diagonal of a

square is ^2 times the length

of one of the sides.

Or, expressing it otherwise,

the hypothenuse of an isosceles right-angled

triangle is J2 times either of the sides.

If we were to draw a square on one of

the sides and a square on the hypothenuse,

the two squares would be as 2 to 1.

(The area of the triangle itself is evi-

dently Y on the same scale.)

Drawn thus, we might not see how tb

prove it, but drawn as in the previous figure the proof is
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obvious. To be sure that there is no mistiness about it, a

beginner should write the proof out for himself, expressing it

as well as he possibly can. The inventing and writing out of

proofs is good exercise, and to do it really well demands some

thought and a little skill. The skill so cultivated is of a

useful kind in life.

An example is necessary; but the danger of an example

is that it is apt to become stereotyped. It may be varied

in innumerable ways, and a way invented by the pupil ia

better than one which he has to learn. If there are actual

errors in his proof they can be pointed out, but defect of

taste and style, though much to be deprecated in adult

persons, must be eliminated gradually from a beginner. He
cannot be expected to concoct a proof in finished style from

the first.

Something like the following would be good enough :

—

To prove that the square on the hypothehuse of an isosceles

right-angled triangle is double of the square on either of the

sides.

Construction.—Draw the triangle ABC with right-angle Sit C,

so that AC, BC are the equal sides, and AB the hypothenuse.

P g Now draw a square on AC, a,nA draw

it so that the equal sides of the triangle

shall serve as two of the equal sides of

the square. That is draw the square

ACBD.
Next draw a square on AB, and draw

it so that C lies in the middle of it,

which is best done by producing AC &n

equal length to E, and producing BC
an equal length to F, and then joining up so as to make the

square ABEF, which,-being a quadrilateral figure with equal

diagonals at right angles to each other, must be a square.
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Proof.—The square so constructed contains the area of the

original triangle four times, while the former square contains

it only twice. Therefore the square on the hypothenuse is

double the square on one of the equal sides of an isosceles

right-angled triangle, q.e.d.

Beginners can and should realise the fact, immediately and
without words, by having given to them small triangles in

wood, and by then piecing them together so as to make the

above figure. In a short time, left to themselves, the realisa-

tion becomes vivid.

Now proceed to a right-angled triangle with unequal sides.

Suppose as a special case the hypothenuse is double one of

the sides. It is not difficult to devise a way
of drawing this figure if we use a pair of

compasses.

For let AB be one of the sides. Double

it and you get AC. With centre A and
radius AC mark off a circle. This gives the

length of the hypothenuse.

At B draw a line perpendicular to AB
till it meets the circle at D; then join A and D. The triangle

ABD is the triangle required, viz. a right-angled triangle with

its hypothenuse double one of the sides.

If we were to draw a square oa AD and another on AB,
the area of the one square would be quadruple that of the

other; because the sides are as 2 to 1, therefore the squares of

the sides will be as 4 to 1.

What about a square drawn on BD'\ If drawn and

measured it will be found to be about f of the big square.

It can be shown by geometry that its area is exactly three

quarters of the big one. In other words, that the middle

sized square and the small one added together exactly equal

the big square in area. This is a most curious and important
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fact : about as important as anything we have come across, if

it applies, as it does, to all plane right-angled triangles without

exception. But they must be plane triangles ; i.e. the sides

must be straight.

We are not yet supposed to know how to prove it. We
can verify it approximately by drawing the squares carefully

and cutting them out in .wood or cardboard or sheet lead,

and then weighing them. The two smaller squares will be

found just to balance the big one, if they are cut out neatly

and if the sheet was uniform in thickness and material. This

is not a proof that they are mathematically equal, but it is a

verification that they are approximately equal, equal "within

the limits of error of experiment."

That is a kind of equality by no means to be despised. In

some difiScult cases it is all the equality that can be ascertained.

In the present case it is by no means all; but no proof of

exact equality can be obtained by empirical or experimental

processes, no matter how carefully they are carrried out.

Exactness is a prerogative of mathematical reasoning, that is

reasoning on pure abstractions from which all flaws and imper-

fections and approximations are by hypothesis eliminated.

The fact that the squares on the sides of any right-angled

triangle are together equal to the square on the hypothenuse,

was known to the ancients. It was called the theorem of

Pythagoras ; and a classical proof, a fine example of ingenious

reasoning, is given as the 47th proposition of the collection of

geometrical propositions made by the Greek Geometer Euclid

in his first book. Translations of that ancient treatise are

sometimes still learnt by schoolboys in this country, and may

.

be considered a part of classical education. It is an antiquated

and slow way of learning geometry however, and in fact can

hardiy .be intended seriously for that purpose. Nevertheless

it is "^delightful literary, work and pleasant for reference.
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People who are not acquainted with it are hardly educated in

the usual English sense.

Many proofs can be given of any proposition, and the fact

itself is of more importance than any one proof of it.

That does not for a moment mean that proofs can be dis-

pensed with, for without a proof we should not really know
the fact. We could know it approximately but not rigorously

and exactly; and it should be always a joy to feel that a

theorem or a statement can be made without limitation or

approximation. Such statements are the only ones that can

be pressed into extreme cases, with perfect confidence that

whenever applicable, that is whenever the postulated data are

satisfied, they will be always precisely true.

What we are doing at present however does not necessarily

demand extreme accuracy. We have been finding roots, which

we can only do approximately, and we now want to illustrate

them. It will sufl&ce for our present purpose if we assume

Pythagoras's theorem as experimentally verifiable with suffi-

cient accuracy for our present purpose, and proceed to use it.

The most remarkable of all right-angled triangles is the

one whose sides are all commensurable, namely 3, 4 and 5.

The square of 5 is equal to the sum of the squares of 4 and 3.

25 = 16 + 9. See fig. 20.

Of course the sides might equally

well be 6, 8, and 10

;

also 9, 12, and 15

;

12, 16, and 20

;

and so on.

Also they could be 1*5, 2, 2*5

;

•75, 1, 1-25;

and so on.

So long as the proportion holds, the absolute length of the

sides is only a matter of " scale."

3

Fio. 20.
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There is no other commensurably-sided right-angled triangle

until we come to the one with sides 5, 12, 13 ; and the next

one has sides 8, 15, 17. [See Appendix.]

Triangles with commensurable sides can be outlined by

children by surrounding them with square blocks or slabs;

and it is especially instructive to outline right-angled triangles

in this way, because then the squares on the three sides can,

after suggestion, be completed, and the number of blocks in

each counted : when it will be perceived that

9 -f 16 = 25, 144 -I- 25 = 169, 225 + 64 = 289

;

a fact which ought to arouse some curiosity, since it

represents the first inkling of one of the most simple

fundamental and universal truths in existence.

What we have learnt by assuming Pythagoras's proposition,

so far, enables us to say that in a right-angled triangle with

the hypothenuse double the base the vertical side is ^3 times

the base. For the squares on each are as 1:3:4; therefore

the sides are as ^1 : ^3 : ^4, that is as 1 : ^3 : 2.

If the hypothenuse is treble the base, the squares will be

as 9 to 1, and so the square on the vertical

side will be represented by 8 on the same

scale, and the vertical side itself will be ^8,
which equals 2;^2.

This should be examined and verified.

It will be easy for a beginner to devise a

verification of it. For instance, thus

:

Draw any vertical AB. Draw half a

square on it, as shown, ADB.
Take half one of these sides, and lay it off horizontally, BC.

Then, this being called 1, BD ov AD will be 2, and AB
will be 2;^2 or ^8 ; and so therefore AC should equal 3 on

the same scale, because 8-1-1 = 3^. See il AC does measure 3.
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Further geometrical methods of finding square roots.

Let us now attend a little more carefully to the important

statement that the square root of the area of a square is the

length of one of the sides. We have seen that it is true

numerically, now see if it is true and sensible physically. The
point to attend to is that the square of a length is an area,

and the square root of an area is a length, not proportional- to

a length or numerically represented by a length, but actually

and physically a length.

>2 = a.

a being a length, a^ is an area, and Jii^ is therefore a length

again. But there is no reason why the area need be square.

Suppose it were oblong, and given as axh; if J{ah) = a-,

X would still be a length. What length 1

Answer. The length whose square is equal to the product

ah, the geometric mean of the two lengths a and h ; for if

Jab = c,

ah = c^,

and so - = =- or a : c = c : 6,
c

or the three quantities a, c, h are in geometrical progression,

for they differ by a constant factor, viz.

r= - = -
a c

They might be written -, c, cr.

The term c is the mean of the other two terms in the G.P.,

so it is called their geometric mean.

Can it be found geometrically 1 It can, and this is another

most interesting proposition known to the ancients and

recorded by Euclid. It is called the 14th proposition of his

second book. Though perhaps not easy to prove, it is

extremely easy to state. We will state it now S^nd prove it

I,,B,M. S
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Fio. 22,

later. The statement without a proof is a poor thing, but the

statement as a prelude to the proof—

a

statement which shall provide a niche

for the proof in the mind of a beginner

and cause him to welcome it when it

comes—is an excellent thing.

Construction for finding the geo-

metric mean of two lengths.

Lay off the lengths end to end as

AB + BC.

Draw a circle on the combined lengths as diameter, and

erect a perpendicular at the junction-point B till it meets the

circle in D ; then BD is the geometric mean of AB and BO.

The figure shall be repeated below, with the lengths labelled,

and the rectangle ah shown, (Fig, 23).

"Geometric mean" is an arithmetical

or algebraical sort of term. What will

it mean geometrically 1 It will mean

that the square on BD has to equal

in area the so-called rectangle AB.
BO, which means the real rectangle

AB . BE. That is to say the square

on the length Jab has to equal the area aJ.

That is precisely what remains to be proved.

Q If c^ = ab

then c is the geometric mean of a and b,

a c
or - = T-

c b

The only practical difficulty is how to find

the length c, and that is overcome in a very

simple manner by the circle in the above

construction.

If any one has got as far as the 35th proposition of Euclid'?

Fia. 23.

Fio. 24.
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Fra. 25.

third book, they can devise a proof of this curious and very

important property of the circle for themselves ; in fact the

figure annexed suggests it at once, as soon

as we know that the rectangles contained

by the segments of two chords are equal.

Given this simple and beautiful con-

struction, we can at once find a length

numerically representing the square root

of any given number n ; for we can take

the two initially given lengths as n and

1 respectively, so that their product is n, and the geometric

mean will then represent the square root of n, because it

will be equal to J(n x 1). (Fig. 26).

For instance to construct ^4.

Take a line 5 inches long as the dia-

meter of the circle, mark off 4 inches

and draw a perpendicular to meet the

circle; this will be ^4, and if measured

will be found to equal 2 inches,

To find ^5 geometrically.

Draw a circle of radius 3 inches, so that its diameter is

6 inches. At the first inch draw a perpendicular and measure

its length. That will be the root of 5.

It should equal 2*236 inches if carefully

drawn and measured.

For the root of 7 the same construc-

tion exactly is to be carried out, only

the circle will be 4 inches in radius.

For the root of 2 the circle will be

1"5 inches radius, or 3 inches diameter.

And for the root of any number whatever, n, the radius of

Fio. 26.

Pio. 27.

the circle will be
n + l
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For roots of large numbers, this method will not be con-

venient, but for roots of fractions not too far removed from

unity it serves well.

For instance, to find the root of 3-6. Take a circle of

2 -3 inches radius, and make the construction, erecting a

perpendicular to the diameter at the end of the first inch.

Its length gives the root, and should equal 1;9 inches.

To find the root of -75.

Take a circle | x 1-75 = •87-5 inch radius, and at the first

inch of it erect the perpendicular.

Its length will be greater than '75, as necessary for the

root of a proper fraction, and it should equal '866.

This particular result could however have been still more

easily calculated, or at least expressed in terms of ^3; for

•75 =
f.

so ^-75 = i^= W3 = ix 1-732... = -866....

It must be understood then that a geometrical construction

in these cases, though it may be regarded as a simple method

of arriving at the result, is more particularly an illustration of

a result otherwise arrived at. This is however not always

the case, and sometimes by construction results can be found

which it would be extremely difficult to get in any other way.

Engineers and building constructors know this well : and

graphical methods are in constant practical use.



CHAPTER XXXII.

Arithmetical method of finding Square Roots.

We now know three methods of finding a square root.

1. The factor method, when it is applicable, which it seldom

is; whenever it is easily applicable it should be used. Often

it becomes a matter of guessing and trial and error, with

the error gradually corrected or diminished.

2. The logarithm method, which is the real practical plan,

and is frequently done with a slide rule.

3. The graphical method.

4. There is however another, an arithmetical method, which

is usually learnt, though seldom really employed. It is an

ingenious plan and is not at all bad for finding square

roots. For cube roots it gets complicated, and for higher

roots like fifth and seventh it would be altogether too

difficult for anyone but a mathematician, and he would

never think of employing it.

To find a really high root, for instance a 9th root, the

logarithm method is the only reasonable one; though we

might take the cube root twice over. A sixth root is the

square root of a cube root. An eighth root is the result of a

square root operation three times repeated. An eleventh root

I could only do by logarithms, and with them it is so easy
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that nothing better is needed Let us see, for instance, what

is the eleventh root of 2,

'

^^^^^
'

= -0273664 ... = log of 1-06503 ...

,

which is therefore the root required.

[If any part of such an answer as the above pretended to

" circulate," we should know that the recurrence was spurious,

and only due to the fact that not enough digits in log 2 had

been taken into account. Eoughly speaking we may say

that all numbers are incommensurable, except those specially

selected to be otherwise.]

Why then learn any arithmetical method for finding square

roots, other than the logarithm method 1

Answer. Because we might not have a table of logarithms

handy, and because it is ignominious to be dependent on

material tools except in operations which are complicated.

To find a cube root by direct process is rather complicated,

and I do not recommend its being learnt except by enthusiasts

:

and they will forget it again. But the rule for square root

is fairly easy and often useful. It will however be the

hardest thing we have attempted yet; and the proof will be

deferred to the next chapter. It is not usually considered

hard, but all the things before this have been easier in

reality, though people often shy at them. I hope they will

do so no longer.

To find the square root of 256 by direct arithmetic. Set

it down like a long division sum, but with the digits marked

out in pairs, by dots or commas or other marks, as shown,

beginning with the units place, then work as follows

:

1 ) 256 ( 16

1

26 ) 156
156
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First guess the square root of 2, or the integer smaller.

It is 1, so put it in two places, and multiply and subtract as'

in long division. Then double the 1, and place it on the left

as 2, and see how many times it will go into something less

than 15 ; guess 6.

Set down 6 in two places as shown,, multiply and subtract,

and there is no remainder. The sum comes to an end : the

root is 16.

If we had guessed 7 instead of 6, as might seem natural,

the product treated as above would have been 189, and been

too big.

If we had been given the number 2560, it would have been

dotted off in pairs as follows

:

2566,

and the result would have been quite different. We should

now have to guess the root, not of 2,, but of 25, which is very

easily done. The process would then have looked like

this

:

5 ) 2560 ( 50-6

25

1006 y~^000
6036

-36

so that 50-6 is approximately the square root of 2560.

The small remainder shows that the result is not quite

accurate, and its negative value shows that the result is

slightly in excess.

(Observe that ciphers, like the other figures, are always

brought down in pairs. If it were a cube root we were finding

they would be brought down in triplets.)

It is natural to put 6 in the second stage,' after the 0, as we

have done above, because it is very nearly right. It is a little

too big however, and if we wanted to work the root out
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further, we should put 5 and be sure that the next figure

M'ould be 9.

A more exact result is 50'5964426....

To find the square root of 6241.

Set it down, and again partition off the figures in pairs, be-

ginning with the units place, by dots or other marks, as shown

7 ) 624i ( 79

49

149 ) 1341
1341

Guess the root of 62 or the next lower integer; guess 7.

Set it down in 2 places, multiply, and subtract. Double 7,

and see how many times it will go in 134; guess 9 times.

Set down 9 in 2 places, multiply as shown, and subtract.

There is no remainder : the root required is 79 exactly.

We might have guessed this. Looking at the number we
see that the root will be less than 80, for 80^ = 6400. But

it will not be much less than 80, because a moderate

difference in a square is but a small difference in the root.

So we might try 78. Multiplying out, we should find

78 X 78 = 6084, which is about as much too small as the other

was too big. Hence we know that it is either 79 or something

very near to 79.

Take another instance of guessing : choosing a number quite

at random, say ^(596). We know that

242 = 4 X 122 = 4 X 144 = 575^

while 252 = 625. So here again the number lies about half

way between 24 and 25, but a little nearer the smaller of the

two ; and we might see how 24'4 would answer.

Multipljring 24-4 x 24"4 we should get 595-36, which is very

close. As a matter of fact,

V(596) = 24-4131112...
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which you can proceed to ascertain by the arithmetical process

worked out at length, as thus :

44

596
I

4

196
176

24-41311123

484 2000
1936

4881

48823

488261

4882621

6400
4881

151900
146469

543100
488261

5483900
4882621

48826221

488262222

60127900
48826221

1130167900
976524444

153643456

We see that the next digit will be 3, and have placed it

in position, but we consider that as we have now obtained

ten significant figures, we have gone far enough, especially

as we know that there can be no end.

If we have to find the square root of a decimal, we can mark

it off into pairs, as before, always beginning with the units

place. Thus it "8534 is marked oflf properly for the purpose

of extracting its square root, which is plainly 4 decimal

something.

So also 6'060576 is properly marked off, and its root is "024.

The marking off in pairs is manifestly connected with the

fact that ^100 = 10. It is to get the power of ten in the



282 EASY MATHEMATICS. [chap, xxxir.

answer right. The number of dots gives the number of figures

in the answer, if the units place is included in it. To find a

cube root, the dots would be placed on every third digit,

but always beginning witii the units place, because any root

of 1 is 1.

There is not much more than this to be learnt about this

ingenious and practical process, until we are able to prove it

and see the reason of the successive steps : this will be fully

attended to in the next chapter, pages 296 to 299. There are

however a great number of far more important things, and I

only place this brief record of the process here, because

I by no means wish to extrude it; moreover it is an in-

teresting thing to prove. It is essentially a limited process,

however, since, for any useful purpose, it only applies to

square roots ; though a complication of it, on the same principle,

will apply to cube, and even to higher, roots. At the same

time it is undeniable that square roots and cube roots occur

much more frequently than do others, just as second and

third powers do; partly because they cover the actual

dimensions of our space.



CHAPTER XXXIII.

Simple Algebraic Aids to Arithmetic, etc.

A VERY little knowledge of algebra enables us to make
better estimates, and to approximate as closely as we please,

both to powers and to roots ; and it is worth while to show

this now : this chapter being chiefly one for exercise and

practice. It may be regarded as a chapter of miscellaneous

worked out examples, rather than as a progressive chapter;

though it contains the proof or explanation of the ordinary

square root rule.

First of all consider the multiplication of two binomials, that

is two factors each coasisting of two terms, say (a + b){c + d).

Every term will have to be multiplied by every other, for it

means a(c+ d) + b(c+ d), that is ac + ad + bc + bd.

So for instance (3 + ^2) (4 + ^^3)

will equal (3 x 4) + 3^3 + 4^2 + J2 J3

Or take this example,

y2 + 2){J3-3)
multiplied out it becomes ^^6 + 2;^3 - 3^2 - 6.

But take a more easily verifiable example, say

(17-5)(13-10)
= 221-170-65 + 50

= 271 - 235 = 36

;

rather an absurd way to do such simple arithmetic as 12x3,
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Very well, now take the case of (a + Vf.

It means (a + J) (a + 6).

And this multiplied out equals d^ + (d) + ha + h^

;

but ab + ba = 2ab,

so ia+b)' = a!>+2ab+b!'.

Similarly (a-b)« = aa-2ab+b».

Now let us use these results to obtain powers and to ap-

proximate to roots. Suppose we want 103^, work it out thus:

(103)2 = (100 + 3)2

= 1002 + 6x100 + 32

= 10,000 + 600 + 9

= 10609.

Again, to find (998)2; ^rftg jt ag (1000 - 2)2

= (1000)2-4000 + 4

= one million less 3996

= 996004.

Similarly: (125)2 = (120 + 5)2 = 14400 + 1200 + 25

= 15625

or (125)2 = (130-5)2 = 16900-1300 + 25

= 15625.

(79-2)2 = (80 - -8)2 = 6400 - 1-6 x 80 + -64

= 6400-64-128

= 6272-64.

(5-11)2 = (5 + -11)2 = 25 + 1-1 + -0121

= 26-1121.

(39)2 = (40 - 1)2 = 1600 -80 + 1

= 1521.

A further algebraical aid is often of great use, especially in

preparing for logarithmic calculations.

The value of {a + h)(a - b) when multiplied out is

a^-ab + ba-b^;
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the two middle terms destroy each other, and so only a* - V^

is left.

This is a most useful fact to remember,

a«-b» = (a+b)(a-b).
For instance 9^ - 4^ = (9 + 4)(9 - 4) = 13x5 = 65,

(17-31)2 -(2-69)2 = 20x14-62 = 292-4,

(-019)2- (-008)2 ^ -027 X -Oil = 2-97x10-*,

(1-05)2 -(-95)2 = 2x-l = -2.

The fact is so important that it is worth learning in words.

The difference of two squares is equal to the product of

sum and difference.

Expressed thus it suggests a geometrical way of putting it

:

Let AB and AC \>6 any two given „ p
lengths.

Erect a square on each, viz. the square

AD and the square AE, drawing them

so that they are superposed.

The difference of the two squares is

shown by the irregular six-sided rect-

angular figure with what is called a
" re-entrant " angle at E.

We have to show that this area is

equal to that of a rectangle bounded by

lengths representing the sum and the difference respectively

of the two given lengths.

To construct such a rectangle in a convenient position,

produce CE both ways to F and G, making CG = CA. Then

FG is equal to the sum of the two given lengths, viz. AB + AC;
and GH, which is the same as CB, is equal to their difference.

Therefore the area of the rectangle GHDF exhibits the

product of the sum and difference. Hence we have to show

that this rectangle is equal to the area of the irregular figure

CELKDBC, the difference of the two squares,

C!

Gi-
Fia. 80.
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Now the two areas have a great part common, viz. the

rectangle BF; so we have only to show that the residues LF
and GB are equal.

By producing LE to M, another rectangle EB is constructed

equal to GB ; and this rectangle is plainly equal to LF, because

the height and base of the one correspond to the base and

height of the other.

The proof is therefore completely indicated. It has been

rather long and not particularly neat, but it is such a proof as

could be invented by an industrious beginner for himself.

The proposition is really an ancient one, and is established

with due ceremony in Euclid Book II., Propositions 5 and 6.

We observe from this example that a geometrical proof is

or may be hard, while an algebraic proof of the same thing is

absurdly easy : so it often is, though not always. As usual

there are plenty of ways of proving a proposition ; the pro-

position itself is more important than any one proof of it.

The geometrical illustration has been introduced here to em-

phasise the extreme importance and usefulness of the fact that

Now let us proceed to show how it is employed for adapting

things to logarithmic calculation.

Suppose we had to find the value of the following

:

(8-131)2 -(4-026)2.

We might look out the logarithm of each, double it, find the

antilog of each, and then subtract them.

But on the other hand we might first throw it into the form

12-157x4-105,

look out the logarithms of these two numbers, add them,

and find the antilog of the sum. And this is a shorter process

than the preceding.

In general, sums and differences are awkward for logarithmic

Calculation, while products and quotients are convenient,
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Take another example of finding the value of a difference of

two squares

:

(15) "(35) ^ (15 + 35) (15 "35)

"105 '^'lOS"

40

(105)2"

And it is easy to look out the necessary logarithms :

log 40 = 1-6021 ; log 105 = 2-0212.

2 log 105 = 4-0424

difference 3-5597 = log of -003625.

•003625 is therefore the result.

We might indeed have done the above differently, because

we happen to see a common factor in the given expressions,

and can take it outside brackets, thus,

7-3 7+3
{^'-m'-mi^'-m-i25" 21 21

40 160

25 X (21)2 44100'

log 16 = 1-2041

log 4410 = 3-6444

difference 3-5597 = log of -003625 as before.

This therefore serves as a check, and is itself instructive.

Sums of this kind, given as exercises, will call out nascent

ingenuity and will furnish much better and more real

arithmetical practice than, a quantity of routine examples

without much variety.

In so far as the actual arithmetical operations to be

performed are usually simple and short, that is a peculiarity

eharMteristic of nearly all the real sums that have to be
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done in practice; always excepting the long and intricate

operations occasionally undertaken for special purposes by

pure mathematicians—a matter with which children have

nothing whatever to do.

Sometimes the converse use of the proposition

ffi2_62 = {a + b){a-b)

is convenient. For instance, suppose we had to find the value of

It would be very clumsy to interpret it arithmetically thus

:

(1-732 + l-4U2)(l-732- 1-4142)

= 3-1462x0-3178,

whose logarithm is -4977

plus T-5022

equals "1-9999

which is the log of something extremely near to unity, and

perhaps unity itself if we had taken more places in the

logarithms.

I say this would be an extremely clumsy way.

The neat and direct way is to write the product as the

diflference of the two squares, thus :

U3 + J2)U3-J2) = (73)2 -(72)=! = 3-2=1,
which shows that it is unity exactly.

Take other examples of (« + b){a-h) = a^-b^:

(JU-J8)(JU+J8) = 14-8 = 6.

(^/7-^/3)(^/7 + 73)= 7-3 = 4.

{J5 + 1){J5-1)= 5-1 =4.

(757-1) (757 + 1) = 57-1 = 56.

(1+717)(1-717) = 1-17 = -16.

(73T4T59 + l)(73a4T59-l) = 2-14159.
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{1 + (-0012)^} {1- (-0012)*} = 1--0012 = -9988.

{^'"^^'-^3)='-'^ = It

This last might have been done thus

:

3 + 1 3-1 _

8

^/3 v'3 3'

(6 + V20)(6-V20) = 36-20 = 16.

(n/5-2)(75 + 2) = 5-4 = 1.

Ux + Jy)(Jx-Jy) =x-y.

(m + ^n){m-Jn) = m^-n.

fa "N /« _ £\ _ ^* _ £^

tx
a\ (x_ _ a\ _x^_a? a^-a^

Ja^ Jx)\Ja Ji)
~ a

(30 + iVa:)(30-^» = 900-^.

_ 576 - a!^"

~ 36k«

{ab-Jab){ab + Jab) = aW-ab.

{^a+^b)C^a-l/b) = a*-6^-

{a'+ b){a'-b),^ai^-b\

(a"+ »-")(«"- a-") = »**-«-="

= a?"(l - a-*").

L.E.1V1.
^

a; oa;
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(or + a") {or - a") = ar-aJ^

{a Jx + h Jy){a Jx -h Jy) = a^x-hh

(l+o")(l-fls") = l-«^.

(4^. +^)(4>-^,)=16.-H =

*-!

16a;° - 9

X

0+V^6)0-V^*)
1--

^ (4a; + 3) (4a! -3)
X

1

(l+\^[ogM)(l -s/Iogm) = 1-logm.

(^/^73^+ ^/73"y)(^/^7V-^/^y) = l-732/--73y = y.

{J{l+m).u-Jm.u){J{\+'m).u-\-Jm.u) = m".

{JcC + b + Jb) {Ja + b - Jh) = a.

b _ a

a + 6 a + 6'

If we have now driven home the important fact^that

{a, + b){a-b) = a^-¥ ...:......'. (1)

suflSciently, we will proceed to illustrate geometrically those

other equally important truths, viz. that

{a+ bf = a2 + 2a6 + J2, , (2)

{a-if = a2_2a6 + 62, ...;...; (3)

or, expressed in words^ the square ofa binomial is the sum of the

squares of its terms plus twice their product.

Or expressed geometrically. (2) The

square on a line made up of two parts is the

sum of the squares on the, parts plus twice

the rectangle contained by the. p^rts.

The annexed figure makes this obvious.

For the base of the big square is made up

of two parts labelled a and b.
.'

And we see that, it i^ built up of the square on a, plus a

ab



D a



292 EASY MATHEMATICS. [chap.

in those days,—because algebra was not then invented.

Children need not be dosed with too much of this rather con-

fusing and nearly useless kind of geometry at the present time.

Illustrations.

Let us write down some illustrations of the use of these

results in simplifying algebraic expressions, and in finding

roots. Write the results compactly thus,

(a ±6)2 = a2±2aJ + 62,

and then illustrate them

:

{x^ - y^f = x + y- 2jxy.

{&+xy = 36 + 12a; + !B2.

{x-iy = x^-2z+l.

("I)
1\2 1

:+ X^

(5-^2)2 = 25-10^2 + 2 = 27-14-142...

= 12-858....

(1-^3)3 = 4-2^/3 = 2(2-V3) = -536....

Notice that although ^3 is greater than 1 the squared

difference cannot help being positive.

(~ + J3f = ^ + 2 + 3 = 5-3.

(121)2 = (120)2 + 240 + 1 = 14641.

(119)2 = (120)2-240 + 1 =^ 14161.

(1-5)2 = (1 + 1)2= 1 + 1 + 1 = 2-25.

(1-3)2^(1 + 1)2^1+1+1
= 1-6 + -1 = 1-7.
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Problems.

1. If any diagram has all its linear dimensions increased

by one-sixth, by how much is the whole area of the figure

increased ?

The answer liable to be given is one thirty-sixth, but it is

not right. The right answer is ||ths, or a little more than

one-third of the original area. The first answer attends only

to the little corner squares and neglects the two strips, for

(a + bY-a^ = b^ + 2ab;

the 2ab being much bigger than b^.

The simplest solution is to say that in the linear dimensions

throughout, 6 has become 7, hence, in the area, 36 has become

49 ; wherefore the superficial increase is 13 of the same parts,

that is 13/36ths of the original.

2. If a block is reduced in the ratio of 3 : 2 linear, that is if

its length, breadth, and thickness are all made two-thirds of

what they were, the shape being preserved, what change has

been made in the surface or superficial area and in the volume

or cubical contents 1

Answer. The linear dimensions being reduced by one-third,

or from 3 to 2, the superficial are reduced by five-ninths, or

from 9 to 4 ; and the cubical are reduced by nineteen twenty-

sevenths, or from 27 to 8. In other words the surface is less

than half what it was, and the volume is less than a third

what it was.

3. If every linear foot becomes 13 inches, every square foot

becomes 169 square inches, and every cubic foot becomes 2197

cubic inches. So, while the linear increase is yVth of the

original, the superficial increase is y^/^ths, or a little more

than ^th of the original area ; the volume increase is ^^-gths,

or distinctly more than Jth of the original volume.

4. If one per cent, is docked oif linear dimensions, about



294 EASY MATHEMATICS. [chap.

two per cent, are thereby taken from area, and about three

per cent, from bulk.

Now use the same eiiuatioii to find soLuare roots.

Suppose we want the square root of 50. We see instantly

that it is a little more than 7, let us call it 7 + x, then write

50 = {7 + xy = 49 + Ua; + a;2,

or, subtracting 49 from both sides (i.e. transferring 49 over to

the left with change of sign),

1 = Ux + x%

wherefore x = ^^ is a first approximation, for the x^ is a very

small number, almost negligible, x is really a trifle less

than
Y^j-,

though not so much less as -^j would be, for its defect

is ^j of x^, which is approximately ^/^^ only.. It is impossible

to express the root accurately, and the result obtained by
neglecting x^ is usually a quite sufiiciently close approximation.

So the root is 7 + jj = 7-0714. The error is in the last

place ; the 4 is too big, it ought to be a 1.

So also to guess the root of 143

Write it 12 -a;.

143 = (12-a;)2 = 144-24a; + a;2,

neglect x\ and x = ^ = "0417,

so approximately ^143 = 12 --0417 = 11-9583.

Its real value is 11-9582607 ....

What is the square" root of 99 1

99 = (10-a;)2 = 100 -20a; + a;2,

so a; = ^ = -05

and 799 = 9-95....

What is the root of 395 1

Let it be 20 - x.

395 = 400 - iOx+ x^

or a; = ^ = 1 = -125,

so ^395 = 19-875 ....
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What is the square root of 1,000,015 ?

that is of lO^ + lS.

Call it 103+ a;;

then lO^+lS = (\0^ + xf = 108 + 2000a; + a;^
-

15
whence

=« =
2000 = '^^^'

and so the required root is 1000"0075.

- In such a case the extra quantity is extremely small, and

we see that in the root it is just half the value of the corre-

sponding quantity in the given square.

This is a handy approximation which may be generalised

and recollected. It is an immediate consequence of neglecting

x^ and writing (1 4-a;)^ = 1 + 2a; approximately when x is small.

. So . >/l + 2a; = 1 + a; approximately.

For instance ^(I'OOS) will equal 1-004
;

and ^(100-084) = 10^1 "00084 =£5= 10 x 1-00042

= 10-0042

;

or the equation may be written

;^(l+a;) = 1 + |a; approximately.

The following relation,

^(10" + a;):Q=10^" + 10"*".^a;,

when X is moderately small, is a general result ; but for

memory it is best to make the first term unity ; and so in the

numerical example just above, the factor 100 was first taken

outside the root, where of course its value is 10. If the factor

had been 1000 instead of 100, that is, if there had been an

odd number of ciphers in it, this could not have been done so

easily : we should then have had a JIO to deal with, and that

would destroy the advantage of the process.

The process applies most obviously to numbers which can be

separated into two very unequal portions, one of which has a

known square root. If they are not very unequal, the neglect
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of x^ becomes of more consequence, and tte same sort of

process must be continued further, before the square of an

outstanding error is neglected.

Suppose for instance we wanted the square root of 72 ; we

could write it as (8 + xf or we could write it as (9 - y)^,

sothat 72 =U + Ux + x%

or 72 = 81- 182/ + y2,

whence approximately x = ^^ = ^, and we should be

neglecting I;
O'" y = TF ^^^ ^s should be neglecting a trifle less.

So the answer would be roughly 8'5,* but this would be a

little too big, and the process must be continued, by successive

approximations, beyond 8'4, iii such a case; the process

develops, in fact, into the ordinary arithmetical method of

finding a square root, as described but not explained in the

last chapter. We can now explain it, for it all depends on

what we have just been doing ; it involves an ultimate ignoring

of an x% but it carries the process of surmising the root to any

desired degree of approximation, before the inevitable out-

standing error is considered so minute that its square may
safely be neglected.

To illustrate the process arithmetically, and at the same

time display its rationale algebraically, take any simple

number at random, say for instance 33, call it N, and proceed

to approximate to its square root.

(1) First guess the nearest lower integer root, namely 5,

call it a in general, and write x for the unknown necessary

complement to be found, so that

*In the particular example chosen it happens to be very easy to

calculate the square root, because the 'factor method' would apply.

Beginners may be reminded always to keep an eye open for the simple

and satisfactory factor-method, such as this

:

72 = 9 X 8,

so V72 = 3x^/8 = 3x2^2 = 6^/2= 8-48528 ...

.
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N = {a+xf = a^ + '2,m + x\
or 33 = (5 + xf = 25 + IQa; +x\
Yvim this we deduce that the deficiency N~a^ = x(2a + x),

or that 8 = x(\.0 + x).

This gives ns our first approximation to the required com-
plement, or error in our rough estimate of the root, namely

Q
a! =

2Q ,
or sa,y -7 as the first digit of it.

(2) Thus we can now make a closer guess at the root,

namely 5-7, and start afresh for a second approximation, x,

writing 33 = (5-7 +af)^ = 32-49 + 11 -isf + a;'^,

so the second deficiency is -bl = a;' (11 -4 + a;'),

which gives, as the second outstanding error,

•51

^ ~
1 1 .4. . v = '^^ ^^ ^^^ ^^®* "Jigi* of *^3,t.

(3) Our approximation to the root has now become 5'74,

and we start off" a third time to write

33 = (5-74 + a/7 = 32-9476 + ll-48:B" + a;"2,

whence the third deficiency '0524 = a!"(ll-48 + a/'), which gives

us !e" = -004 as the next digit of the rapidly diminishing

outstanding error.

(4) The approximaition is now getting closer, being 5-744,

and so we start again, saying

33 = (5-744 + a;"7,

whence the fourth deficaency comes out

006464 = a;"'(ll-488+a;"'),

yielding as'" = -0005 ... as the error still remaining.

(5) We have now arrived at ^^33 = 5-7445 ... , and we can

continue the process as long as we like ; but, at this (or at any

other) stage, we can take refuge in simple division, to get at

once a still closer approximation. For hitherto we have not

neglected the square of cmy small quantity : everything so far
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has been exact ; but sooner or later exactness will have to bo

abandoned, because we know that a number really has no

exact numerical root. It was considered too inaccurate to

neglect the square of x, but we might perhaps have neglected

the square of a;', or at least of of. We did not neglect even

this however, but we are now going to neglect the square of

x'" ; so after reckoning the present deficiency, -0007 1975,

instead of saying
^^^^ _ -00071975
^ ~ 11 -4890 + a;'""

which would be continuing the process, we will say simply

"" _ '00071975
'^ ~ 11-4890"'

very nearly, and divide straight out, getting -00006265 as thfe

result. Wherefore finally the approximation at which we
have arrived is ^33 = 5-74456265 ....

If the process thus elaborated be compared with the

operation as ordinarily performed, a little thought will make
everything clear without more words.

The only thing that can require explanation is the actual

mode of reckoning the successive outstanding deficiencies, viz.

:

N-a^; N-{a + xf; N-{a+x+ x'f; andiV- (a + »;+ »' + a;")2.

The original number N is not in practice thus manifestly

reverted to for the purpose of getting these values—which in

the above numerical example are successively

8; -51; -0524; and 006464,—

but exactly the same result is obtained by the successive

subtractions as ordinarily performed : the value of an ex-

pression like (iV-a^) -a;(2a + a;) being practically employed,

each time, instead of the equivalent N-{a + xY, because

(having already found N- a?) it is quicker to reckon.

The well known ordinary process is here exhibited for the

same number, in order that it may be compared with the
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above fully explained treatment. To find the square root of

33, write

33-
1

5-7445

25-

10-7

11-44

11-484

11-4885

11-4890

8-00

7-49

•5100

•4576

•052400
045936

00646400
•00574425

•00071975

and the outstanding error in the root is very closely indeed

equal to the residual deficiency divided by twice the root

so far found, that is to say, -00071975 -r 11-4890, or 00006265.

The advantage of the approximation we noted on p. 295,

J(l+y)^l + y...,

is so great that even when the first number is conspicuously

not unity, it is often convenient to make it so by division.

For instance to find ^85, it equals ;,y(81 + 4)

= 9V(l-f#T)=^*9(l.+ A) = 9 + 1 = 9-2.

And so with some of the other examples, they too may be

done this way. We will therefore repeat them.

^50 = V(49 + l) = 7N/r+?ir^7(l+^)
= 7x1-0102 = 7^0714.

In this case the approximate value -0102 is obtained thus.

98 is two per cent, less than 100, so ^^ is two per cent, greater

than -01.

7143 = 7(144-1) = 127(1-1^)^12(1-^1^) = 12 -^V

^At this stage the second term is halved and the root sign dropped.
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= 10^(1 -T^^)- 10 (1-^^^) = 10 --05 = 9-95.

V375 = J{m - 5) = 20^(1 - «V) ==^ 20(1 - ^U)
= 20-^ = 20- -125 = 19-875.

Perhaps decimals might be preferred throughout. Some-

times they would be handier, sometimes not.

^^396 = ^(400 - 4) = 207(1 - -01) =q= 20(1 - -005)

= 20--1 = 19-900.

The result of this convenient approximation is always to give

slightly too big a value for the root, and this whether terms

under the root are separated by a negative or a positive sign.

Thus for instance the approximation to JlQl namely 10-050,

and to ^^99 namely 9-950 are both of them a trifle too big.

The error itself can be estimated by a further stage of

approximation, and so gradually we can get as nearly accurate

as we please, but we leave it there for the present.

The error in either case is about -000125, so the digits as

they stand above are fairly near the truth.

Cubes and Cube Root.

Now let us see what we can get of the same kind to help us

in other cases. Suppose we cube a binomial, what shall we get ?

First notice that

(a + b){c + d)(e+f) = (a + b){ce+ ef-{-de+df)

= ace + aef+ ade + adf

+ bee + bcf+ bde + bdf,

eight terms altogether.

So take the three factors all alike.

(a + by = (a + b){a + b)(a + b)

= aaa + aab + aba + abb

+ baa + bab + bba + bbb

= a^+a% + a% + ab^

= a^ + 3a^ + 3ab^ + b^
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Not a very simple expression at first sight, but quite simple
when you get accustomed to it, and very easy to remember
and write down.

Notice first that every term is of the same "dimension,"
that is to say it involves three letters multiplied together,

no more and no less. There is no term involving only a\
nor only ¥, nor a alone, nor is there anything like a*. The
expression is a cube, and every term is of the nature of a cube.

If a and h were lengths, the cube is a volume, and every term
is necessarily a volume. You cannot with any sense add an

area like a^ to a volume like a^, but you can add a volume like

a% or like db^ to another volume like a?, and you can add each

more than once, in fact 3 times if you choose.

Notice next that the power of a decreases by one each term,

and the power of h increases. "We might, if we liked, introduce

the index 0, because we know that

a" = 1 =^ 60.

So the more fully written expression

aSJo + Sa^fii + SaiJ^ + aW
would represent, with needless explicitness, the truth that the

sum of the indices of each term is 3.

As to the big 3's prefixed to the two middle terms, they are

styled coefficients, or numerical factors ; we have seen exactly

how they arise, simply because we had to add three equal

terms. They take the place of the 2 in the middle term when

we were squaring a binomial.

We illustrated the square of a binomial by fig. 31,—where

the a^ and the b^ and the two rectangles each equal to ah

are obvious, and plainly make up the (a + Vf.

So also we can geometrically illustrate the cube of a

binomial ; taking a cube whose every edge is divided into any

two parts, respectively a and h, we get a figure like 33, which

is more easily realised when built up or sawn out of wood.
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Such of the portions as are visible are labelled with their

respective volumes. There is first a big cube a^, then there

are three slabs each of area a^ and thickness 6, but one of them

in the figure is invisible at the back; there are 3 rods or

prisms each of the length a and sectional area b^ ; and lastly

there is a little cube b^ diagonally opposite the big one ; and

these make up the 8 pieces, out of which the whole cube has

been built up, (a + b)^.

This then is a solid figure illustrating the cube of a bi-

nomial in the same sort of way that Euclid II. 4 illustrates

the square of the same quantity.

Suppose we wished to illustrate the fourth power of a

binomial by geometry. We could not possibly do it in any

natural fashion, for we have already exhausted all the dimen-

sions of space. Hence geometrical propositions on involution

are not only complicated and wordy, but are feeble and limited.

Algebra is not limited at all; we can raise a binomial

to the fourth, fifth, fifteenth, or any other power that we
please, and presently we will do it. But first we will take

a few examples and applications of what we have learnt

about the cube or third power.
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First a mere numerical illustration or verification :

(5 + 2)3 =. 53 +(3x25x2) + (3x5x4) + 23

= 125+ 150 + 60 +8
= 343.

Then take a case where the first term is unity :

{i+xf = l+3a;+3a;2 + a;3,

and then one with the second term negative :

{l-xf = l-3a; + 3a;2-a;3.

Notice in this case that , the signs in the expansion are

alternate, because the powers of (-x) are alternately odd

and even : the odd will all be negative, and the even will be

positive. The general case, with the negative sign to the

second member of the binomial, ought also to be recorded :

(a - bf = ffiS - 3a% + Sab^ - b^,

(x-lf = x^-3x^ + 3x-l,

but this is just the same as (1 - a;)^ with the sign of every

term reversed.

It is worth obtaining the general result for the third power

of a±b in anothfir way, by help of what we know about its

second power.
(ft+J)3 = (a±6)(a2±2a6 + J2)

f=. tt5±3a26-+3a62+63.

Observe that the alternative sign affects only alternate

terms, viz. those which involve the odd powers of the possibly

negative quantity i.' Among its even powers there is never

any variety.

Another special case is

1\3 3 1^^
a;3 + 3a; + - +4

x 3?
(»3'

=

This 7is rather a curious case, considered from the point

of view of. the 'dimensions' of each term, x^ looks like a

volume, and would be a volume if x were a length, and
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3x would be merely treble that length ; then come reciprocals.

How can this be possible ? Answer :—It is never possible to

have diiferent dimensions in different terms of an expression.

It is quite easy and common to have factors of different

dimensions, as components of a single term, united by the

sign X , but different terms united by the sign + or - are

always of the same dimensions.

Apply that to the case of (a' + -) and we see that x^

cannot possibly be a volume, nor can a; be a length, if 1 is

a pure number. It can in that case only be of the same

dimension as its reciprocal.

Length and volume are all very well as illustrations, but

it would be a great mistake to suppose that algebraic sym-

bols can express nothing else. The terms "square" and

"cube'' suggest geometrical signification, and that doubtless

was their original meaning, but now they have been so

generalised that the original geometrical signification is

almost forgotten. Cube is still used merely as short for

"third power," and square is short for "second power," but

the things that we raise to powers may be anything whatever

that we find convenient. ' Often they are mere numbers,

like a number of oranges. If we speak of 3' oranges meaning

27 oranges, it may be a pedantic mode of statement, but it

is not incorrect. Even if we spoke of a cube of 3 oranges,

or 3 oranges cubed, we might possibly be understood, aa

meaning a cubical box full of oranges with 3 in each edge,

9 in each face, and 27 in the box.

But this expression would not bear close examination,

unless we put it in brackets, thus, (cube of 3) oranges, and

then it does express more than merely 27. For 27 might

be lying about anyhow, but (cube of 3) signifies that they

are packed in a certain compact arrangement..
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Why is cube of (3 oranges) wrong? Because that would

mean S^xoranges^j and the latter factor has no meaning.

Cube of (3 feet) is perfectly right, for that means

33 X feet3 = 27 cubic feet.

You can have a cubic foot, but you cannot have a cubic

orange ; or rather perhaps you cannot have anything linear or

superficial in oranges, as you can with feet or metres or inches.

Eeturning to the expression x + - then, what can x mean 1

Only a thing whose dimensions are the same as its reciprocal,

that is to say, a thing which has no " dimension," not a con-

crete thing at all, but an abstract number, a number of things

abstracted from " things " altogether and contemplated alone.

That is what we mean by an "abstract number" or "pure

number." It is the simplest kind of " abstraction " there is,

and the first we arrive at ; later we shall employ plenty more.

If 71 is a pure number, like 2,

- is likewise a pure number like „

n^ is also a pure number, and n^, and any power.

Jn or any root is also a pure number.

So is log n.

We cannot assert that a" is a pure number for certain,

because it depends entirely on what a is.

a might be a length, in which case a^ would be an area, and

a^ be a volume, a* would in that case have no assignable

physical meaning, but it would certainly not be a pure

number.

There is therefore no difficulty about an expression like

\ xj X a?

every term must be a pure number.

T. U! *T U
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This is not necessary with the next example, because there

all the terms in the expansion have the same dimensions;

provided always that a and b are quantities of similar kind.

(a2 - J2)3 = a6 - 3a*62 + Sa^fi* - h\

In the next case, however, a must be a pure number,

because of the term unity. If 1 means 1 something, the

something cubed can go outside the brackets : it must apply

equally to both a!^ and 1.

{a^-\f = a«-3ft* + 3a2-l.

(1-^2)8= 1-3^2 + (3x2)- (72)3

= 1+6-3^2-2^2
= 7-572 = 7-7-071 = --071.

(7-1)3 = 73 + -3 X 72 + 21 X -01 + -001

= 343 + 3x4-9 + -211

= 357-911.

(57)8 = (50 + 7)3 = 125000 + (21x2500) + (150x49)

+ 343 = 185193;

but in this case it would be easier to do it by simple

multiplication, 57x57x57, or perhaps by logarithms. The

worst of logarithms for finding a positive integer power is

that they only give it approximately, unless you take a

considerable number of places ; and an integer power never is

approximate, it can always be numerically expressed, because

we start with a number and only multiply it by itself.

By " integer power " or " integral power " I do not mean a

power of an integer, I mean any number raised to a power

whose index is a whole number and not a fraction. If the

index is fractional it represents a root. The case is entirely

different with a root, for then we are endeavouring to find

something which multiplied by itself will produce a given

number : and the result is usually incommensurable.
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But for integer indices, whether positive or negative, we
can always get an exact result by straightforward multiplication

;

for instance 2^*, or 2-^, or (1-2)8.

(1-2)8 = J + (3 X -2) X (3 X -04) + 008

= 1 + -6 + -12 + -008

= 1-728,

which is a familiar number—expressing the thousandth part

of a cubic foot, if 1 -2 means the tenth of a foot in inches.

Now find a cube root or two by the approximation method,

choosing numbers which are not very different from a perfect

cube.

Say we want the cube root of 65, call it i + x.

65 = {i + xy = U + iSx+Ux^ + x^;

So the first approximation to x is ^\.

This however is a trifle too big, because 12a;^ has been

neglected. So we might call it -^ or even -jVi ** * shot,

and say that the answer is 4-02 As to neglecting x^ it

is of slight consequence. This process, elaborated, is the basis

of the arithmetical cube-root rule.

Take only one more example of finding cube roots, because

they are usually done most easily by logarithms.

To find ^341.

341 = (7-a;)3 = 343- 3 x 49x + 21a;2-a;3;

2
.'. approximately x = =—j^, or, as this is a trifle too small,

2 1
say ~—— = =- = -0139. So approximately

4,/34T = 7- -0139 = 69861,

which is still a trifle too small in the last place. The digit

1 ought to be a 3 or a 4.
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As an exercise it would be desirable to establish a method

akin to the square root approximation, like this,

(341)* = (343 -2f =7(1-^^)*

= 'i{^- TWS'd) approximately

= 7 X y^It j which equals -2 per cent, less than 7,

= 6'986 roughly

;

or generally, when x is a small quantity,

^0-±x) = l±lx approximately

;

which is equivalent to neglecting squares and cubes and all

higher powers of x.

Approximations.

The fact that the square of a small quantity is very small,

and the cube of it extremely small, is easy enough to under-

stand ; and since it is extremely useful in application, it should

be thoroughly understood and remembered. Let the small

quantity be 1 per cent., for instance, or -01 or -j^. Its square

is xTJoinTJ °"^ ten-thousandth ; and its cube is a millionth

;

If then we have to find (I'Ol)', it will

= 1 + -03 + -0009 + -000001

= 1 030901,

of which the first significant digit of the decimal is decidedly

the most important, the second is sometimes worth attention,

denoting a value about ^\rd of the previous one, and the last

is utterly trivial, except for exact mathematical purposes.

A cube of a foot and one inch (or 13 inches cubed),

(13 inches)^ is decidedly bigger than a cubic foot; but never-

theless a cubic inch is almost negligible in comparison with a

cubic foot
:

it is only the yAf*^ P^'** o^ i*-

Let us examine this, because beginners often make mistakes

here.



xxxiii.] INCREASES IN BULK AND AREA. 309

(1 foot + 1 inch)3 they incline to write down as a cubic foot

plus a cubic inch : which is just the mistake of thinking that

(a + 6)» equals a^ + lfl; in other words it is the mistake of

altogether ignoring 3a% + 3ab\ three slabs and three rods, and
attending only to the little insignificant corner cube of the

small quantity b (supposing J to be a small quantity) in fig. 33.

The true value is

(1 foot + 1 inch)3 = (1 foot)3 + 3(feet)2x 1 inch

+ 3 feet X (inch)2 + (1 inch)^

= 1 cubic foot

+ 3 slabs a foot square and an inch thick

+ 3 rods a foot long and a square inch section

+ a cubic inch.

The last term is the most trivial of the eight terms, and the

3 slabs are the most important after the cubic foot itself.

Translating to inches, we see that

(13inches)3 = 1728 + (3 x 144) + (3 x 12) + 1

= 2197 cubic inches,

which is otherwise very easily arrived at.

If instead of a foot and an inch we had taken a yard and an

inch, the smallness of everything except the slabs would have

been accentuated ; and if we take a metre and a millimetre we

shall see it still more forcibly

:

(1 metre + 1 millimetre)^ = 1 cubic metre + 3 slabs a metre

square and a millimetre thick

+ 3 lines a metre long and a

square millimetre cross section

+ a millimetre cube

;

or expressing it all in cubic centimetres

= 1 million c.c. + three hundred thousand c.c. + three c.c.

+ a thousandth of a c.c.

= 1,300,003-001 c.c.
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When things expand by heat, the expansion is usually very

small ; the increase of bulk is not so small as the increase of

length however. If the edge of a cube expands 1 per cent,

the volume of it expands just about 3 per cent., and the area

of one of its faces about 2 per cent. This follows from what

we have been saying. Compare page 293, No. 4.

It is sometimes expressed by saying that the proportional

superficial expansion is twice the linear, while the cubical

expansion is three times the linear. We will employ the

subject of expansion to furnish us with a few interesting

arithmetical examples of an easy and uncommercial kind in a

future chapter, but first we will do some algebraic expansions.



CHAPTER XXXIV.

To find any power of a Binomial.

Suppose we have to find (a + 6)*, we have only to multiply

a + 6 by itself four times, and write down the result. We
might write it thus

(a + by (a + by
= (a2 + 2ab + b^) {a? + 2a6 + b^)

= a* + 2a%+ a%^

+ 2a% + ia?¥ + 2ab^

+ aW + 2ab^ + b^

= a" + 4:a% + 6aW + iab^ + ¥

Now here we see the same sort of law as was observed in

the expansion of (a + 6)^ ; the indices of a decrease regularly,

and those of b increase regularly, so that every term is of the

fourth degree. The numerical coefficients follow a less

obvious law. Let us write them down for the cases that we
know.

for (a + b) 1 1

„ {a + by 1 2 1

„ (a + by 13 3 1

.„ {a + by 14 6 4 1

The law is fairly plain, and we might guess the coefficients

for the next sets :

(a + by 15 10 10 5 1

(a + by 1 6 15 20 15 6 1
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and then we can verify them, by direct multiplication, thus

{a + hf = (a + 6)3 (a + 6)2

= a^ + 5a*6 + \0a%'^ + \OaP¥ + 5a¥ + 6«,

{a^hf = {a + hf{a + hf
= a8 + 6a«6 + 15a*62+20a363 + 15a26*+6aJs + J''.

A guessing process like the above, which is subsequently

verified and obviously extensible to the case of any positive

integer as index, is a method of frequent and considerable use

in order to first ascertain a rule or law or method of pro-

cedure ; but one should not rest satisfied without perceiving

the rationale of it, and so to say " proving " it or reasoning it

out ; otherwise it remains what is called an " empirical" law,

meaning a law ascertained by experiment and observation

without a full knowledge of the reason. Some laws have to

remain of this character, when the subject matter is difficult

or obscure; but that is not the case with little calculations

like the present : the reasonableness of the result can always

be made out, and it is a most wholesome exercise. In the

present instance the method of expanding any binomial as an

empirical process seems to have occurred to Isaac Newton

while still quite young ; and the reasoned proof of this process

is what we now know as " the binomial theorem."

We will not go into this fully just at present, nor at all

more fully than is needed for practical purposes, but for a

positive integer the empirical process itself is easy and worth

while for anybody to know.

First write down what we have observed, for any positive

integer index n, concerning (a + 6)" :

—

We know that the powers of a will begin with a", and

decrease by one each time down to a" or unity.

The powers of h will begin with 6", or unity, and climb

by one each time up to J" ; so that as regards the algebraic

part of the expansion, the terms will be
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a", a"-'6, a''-W, a""'*', a^jn-^ ab'-', h",

the sum of the indices of a and h always adding up to n,

which may be called the " order " or " degree " of the whole.

Now what about the numerical coefficients ? We can obtain

them as follows. Take the coefficient of any term, multiply it

by the index of a in that term, and divide by the number
of terms preceding the next term, the result will give the

coefficient for that next term. This is what we have ascer-

tained empirically, though we did not word or express it

before, but it is what we did or might have done ; because,

take the case of {a + 6)*,

the first term is o',

BO the coefficient of the next term is 5, giving

a^ + 5a*b.

Now take the 5 and the 4, multiply them together, and

divide by 2; we get 10, which is the coefficient of the next

term, cairying us as far as three terms,

a^ + 5a*b + l0a%l

Then take the 10 and the 3, multiply them, and divide by

the number of terms ; thus we get the next coefficient, viz. 10,

a^ + 5a*b + 10a%^ + l0aW.

Now take the 10 and the 2, multiply them, and divide by 4,

and we get the coefficient of the next term, viz. 5.

Then take 5 and 1, multiply, and divide by 5, and we get

the coefficient of the last term, viz. 1, giving the whole ex-

pansion, with six terms in all,

»» + 5a*6 + 1OaW + 1 Oa^fes + Qab* + js.

In the last term the index of a is zero, hence a does not

appear, because a* = 1 ; and if we apply the rule further it

will give us zero as a factor of the next and of every succeeding

term ; which therefore all vanish, so the series terminates.
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Try this rule also for (a + 6)" and (a + 6)^ getting the result

in the latter case,

a? + 7a66 + 1\a^}fi + 35a*&3 + SSa^J^ + =i\a%^ + 7a6« + V,

and then apply it to (a + 6)",

» 11 n(w-l) „ 0,0 n(n-l.)(%-2) „_,,,
a" + na"^6 +-^^—•' a""6^ + -^—=^^^ '- a" '6^

2.3.4

Now this is a most interesting example of a very important

algebraic thing called a ' series.' It appears to go on for ever,

but, as we have seen, it does not go on very long when m is a

positive integer, for sooner or later there will come the index

n-n, whose value is ; and as this quantity n-n will enter

as a factor into every subsequent coefficient, they all vanish,

and the term with index applied to a is the last term.

Thus for (a + hj' there were six terms in the series, and no

more. For (a + 6)* there were seven terms, and no more ; and

for (a + 6)" there will be n + 1 terms, and no more, provided n

is a positive integer. All subsequent terms are zero, because

they all contain the factor n-n. But if the index m is a

fraction, or if it has a negative value, even a negative integer

value, the cause of stoppage will no longer occur; for,

naturally, a numher-of-terms can never be a fraction or negative.

There will therefore never be an index n-n; there will be

n - 7, m - 8, ?i - 9, etc., but none of these can possibly be zero

unless n itself is a positive integer.

Consequently in these cases the series does not stop, but

goes on for ever, extending to infinity. It may happen

however that its later terms become insignificantly small, and

that all after a certain number can be neglected for practical

purposes. This a point to which attention must be specially

directed, because it is exceedingly useful in practice.
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Notice that we have not yet established or proved the above

series for the expansion or power of a binomial, even for the

case of « a positive integer. We will defer the proof for the

present : so far we have only arrived at it by experiment.

The proof is not difficult for n a positive integer, but it will

come better later. Mathematicians know how to prove it for

a fractional and a negative index, that is for the case of an

infinite series, which however is exactly of the same algebraic

form as the one we have written.

The method of experiment and observation is quite a good

practical method, only it might in some cases lead us wrong

unless it can be checked over and reasoned out by some more

intellectual process.

For the present we will accept the series and study it.

Notice first the denominators of the several terms. They consist

of a series of consecutive natural numbers 1.2.3.4.5, etc.,

multiplied together. This sort of product often occurs, and it

is convenient to have a symbol for it. [5 is the way it is

written, 5 ! is the way it is printed, and it is called " factorial

5." They all mean the same thing, viz. 1x2x3x4x5, that

is to say 120.

So 4 ! has the value 24, since it means 1x2x3x4

\1
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\n
They might be denoted by .

—
; for

n.n-l .n-2 .n-3 ...n-r+l
(n-r)\

So the successive numerators are as follows :

|w \n \n \n

[« \n-l !«,- 2
J,

etc.,

being 1, n, n(n-l), n{n-l)(n-2), etc., respectively.

Hence any of the coefficients may be written in this form

\n-r \r

while as to the ab part corresponding to this general coefficient

it will be a-'b'.

Hence the whole series may be neatly written as the sum

of a number of terms all of this kind, for every value of r from

to w; and such a summation is usually expressed by the

capital letter sigma ; hence

(a + 6)"=^g/ ^•,
,

a"-fe-),

which means that you write down all the terms of this form

in regular order from r = up to r = n, and then add them

together. Try to do this, for different values of n, for instance

3 or 4 or 5 or 6, and see that you get the series already obtained.

The only thing that requires explanation, until we come to

fractional and negative indices, is how to interpret " factorial

nought.'' To common sense such an expression sounds meaning-

less ; and to understand it fully, together with the factorials of

negative and fractional numbers, a good deal of mathematics

must be conquered. It is easy however to show that
1

must

be interpreted as unity, that is to say that
1
1 and [0_are alike

equal to 1.
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Proof. \n_= w |«- 1 ; but in the special case when n =\
n and _n_are the same thing ; hence in that case \n- 1 is unity,

but it is also factorial nought.

Exercise.—Make a table of binomial coefficients up to say

the index 12 as the finish. For answer, see p. 334.

A special case of frequent occurrence is when one of the

terms of the binomial is unity, as for instance (1 +a;)".

Consider this case. Any binomial can be thrown into this

form by an obvious process, as follows :

(as + 6)" = a"^l +^y = ffl"(l +«;)",

where a" is a factor taken outside brackets, and the ratio hja

is treated as a single quantity, a pure number, and called x.

Observe that a and h might be anything, so long as they

are the same thing, but that x must be a number, in order

that it may be added to 1 ; and being a ratio of similar

quantities, it is a number. The most important case, with

fractional and negative indices, is when a; is a small number,

for then the series, or expansion in powers of x, will rapidly

diminish, and all beyond a few terms can be neglected. The

meaning of this will become clearer soon.

First apply the ordinary rule for the expansion, observing

that 1"~\ 1""^, etc., need not be written, because they are all

mere unity factors. We have nothing therefore to write but the

successive binomial coefficients and the ascending powers of x.

(l+x)" = l+nx+—2]

—

'^ +
13

^ + •••
'

a very useful expansion ; and if x is really small, so that x^ may

be neglected, it gives us this extremely handy approximation,

(l+x)"jisl+nx when x is very small.

As a matter of fact we have used this already for extracting

approximate roots (p. 308), arriving at it by a diflferent process.
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Thus to find J{1 +x) when x is small we have only to put

_ 1— ^

J{l+x) = (1 +x)^£=l +ix approximately.

E.g. x/(l'01) = 1'005 approximately.

^(1-008) = 1-004

^100-6 = 10^(1 + -006) ^ 10 X 1-003 - 10-03.

So also for cube or other roots.

^(l+x) = (l+x)^^l+^,

»/1003 = lOyi-003 = 10(1-003)^=2^10x1-001 = 10-01.

»/33 = 2'/(l+^) = 2(1+^V)*-=2(1+^)
= 2 +^ = 2-0125.

Or take an example of a negative index.

But this case of a negative index will bear examining jjiore

fully.

Let us write n = -m, and then interpret the general

expression for the special case of a negative index. Observe

that it is no new expansion, only the old one re-written with

the sign of the index changed, but it looks different

:

J :

_ m(l+m)(2 + TO)^_(„+3|^3

\1

_ 1 mb m.m+l.b^ m(m-hl)(Tn + 2) ^^ ^^^

the terms having alternate signs.

(a -6)"™ would be similar but have all the terms positive.
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Hence also

(l±a;) '" = l+ma;+—r^ x^+ --rj a^+ + etc.,

where it will be observed that with the + sign on the left,

the terms on the right are alternately + and -
; but with

thft - sign on the left they are all + on the right.

The series is infinite, but if x is small a few terms practically

suffice.

Examples.

Take some examples or special cases

:

^-p^ = (1+0,)- = 1-.+ j^..-^_.3+...

= l-X + X^-X^ + X^-3^+...,

of which only a few terms are important if x is small, e.g.

p^ = (l-Ol)-i = 1 - -01 + -0001 - -000001 + .

= -990099... =& -9901,

(l+x)-^ = l-2x + 3x^-ix^ + 5x^-....
(l+x)'

J{l+x) = (l+x)^ = l+ix +i^ij^x^

+ ^ '^
+-

Jl-x= l-lx-^x^-^^x^-jl^X'-...,

+- \T--

= l-lx + ^x^-^x-^+...,

^
=' l+|a!+|a;2 + T^9;»+....

^/(l-a;)
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A curious case is afforded when both terms of the binomial

are unity, like (1 + 1)". "When the index n is not a positive

integer the series is divergent and useless; but when » is a

positive integer it is simple enough, for the sum is finite. It

is a mere curiosity, but we may as well find a power in

this way.

For instance to find 2^,

,, ,„ , , 5.4 5.4.3 5.4.3.2 |5
(1 + 1)= = 1 +5+^ +^^+-^+^

= 1 + 5 + 10 + 10 + 5 + 1 = 32,

Similarly 26 = 1+6 + 15 + 20 + 15 + 6 + 1 = 64.

This set of numbers, as tabulated in their early stages on

pages 311 and 334, are called the binomial coefficients; and

you observe that each set of them adds up to a power of 2.

We had not noticed this before.

Now what is the good of an expansion generally ? Is it of

any practical use? Well it is, but it is the first few terms

which are the most useful. The expansion of some power of

(1 + x) is specially useful when x is very small, for then

J{\+x)^l+\x,
^{\-x)^l-\x.

This approximation is said to be correct to the first order of

small quantities, or to be an approximation of the first order.

To be correct to the second order of small quantities we
must introduce the terms involving x^, and so on.

When X is only moderately small, third and even fourth

terms may have to be employed, and the more terms intro-

duced the more accurate will the result be.
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If X is greater than 1, the series becomes hopeless, but if x
is only slightly less than 1, it can always be approximated to

sufficiently, by taking enough terms, though it is not then
really useful.

The series is said to be convergent or converging when x is

less than 1. A converging series is one whose terms con-

tinually decrease in such a way that the sum of an infinite

number of them is finite.

For instance, l+|- + l-i-i+^+...is a converging series,

and its value, to an infinite number of terms, is 2

;

but 1 + 1+1 + ^+1+ ...

happens not to be convergent, for though the terms keep on

diminishing, they do not diminish with sufficient rapidity to

be able to stop at any point and say 'we will neglect the rest.'

Those which we neglected would in fact amount to more than

those we took into account, for the sum of an infinite number
of terms of such a series is infinite. It is not a convergent

series at all, although each term is smaller than the preceding

one. A curious case.

The first is called a geometrical progression, the second is

called a harmonic progression, because it gives the series of

the harmonics or simplest overtones in music. The time of

vibration of the fundamental note being called 1, a trained ear

can hear, when a string is struck or plucked or bowed, or

when an open organ pipe is blown, other superposed notes,

with their times of vibration ^, ^, \, etc., of the first ; and

these superposed or secondary tones are called harmonics. So

the series is called a harmonic series.

An arithmetical series is one whose terms proceed by simple

addition. In a harmonic series it is the denominators or

reciprocals of the terms which proceed in this way. For-

tunately we seldom or never want to sum a harmonic series.

Ij.b.m. X



CHAPTER XXXV.

Progressions.

We have now, in the last chapter, arrived at an example of

a series or progression. The subject of 'series' is immense

and endless, but there are a few simple ones which are excep-

tionally easy to deal with.

Of these, three are commqnly treated quite early, viz. the

three called Arithmetical, Geometric, Harmonic, respectively.

In an arithmetical series the terms proceed by a common
difference.

In a geometric series the terms proceed by a common factor.

In a harmonic series the reciprocals proceed by a common
difference.

Thus 1, 2, 3, 4, 5, ... is the simplest example of an a.p.

1, 2, 4, 8, 16, ... „ „ „ G.p.11111 TI T,
^' "Sf ^> T> T' • » >i i> il.Jr".

But the common difference may be negeitive, or the common
factor less than 1, so tha,t

7, 6, 5, 4, 3, 2, 1, 0, - 1, - 2, . . . is an example of a.p.

Till n -D

1111—11 TIT.
T> 5) ^> ^> ^> ~ T' ••• >) I) "-J^-

Also 1, 1-25, 1-5, 1-75, 2 ... is an A.P.

1000, 100, 10, 1, -1, -01, ... is a g.p.

Trir + Tr + i+ 1 + 6 + 36 + 216 ... is also a g.p.

- 1, - 1-6, - 5, 5, 1-6, 1, -714285, -5, -45 is an H.p.
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The latter is perhaps too much disguised for a beginner, but

if the terms be written as vulgar fractions it is plain enough ;

the denominators are in A.p. with common difference 2, for it

is the same as

5
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Of the three progressions we have mentioned, G.P. is

certainly the most commonly occurring and the most useful.

Let us take it first.

Let the common factor be called r, and the first term a, so

that the terms run thus

a + ar + ar^ + ar^+ ...

,

r being any number whole or fractional.

If r, when interpreted arithmetically, is a negative quantity

the terms will have alternately opposite signs, and the result

will be a combination of alternate addition and subtraction;

which however can conveniently be called the algebraic sum,

meaning the sum when written algebraically with sign implied

but unexpressed, but of course subtracting from the series

those terms with negative signs when arithmetical interpre-

tation is entered upon.

One sees at once that since the second term is

ar

and the third ar\

the fourth ar%

the nth term must be ar"~^.

The sum of the first n terms will therefore be

Now this is a thing we have already come across ; it was

when r was small, that is to say

lA Li

= l+r + r^ + r'...-,

but r must be less than 1, or the series will not converge;

every term will get bigger than the preceding one if r is

greaiter than 1, and there would be no meaning except infinity

in an infinite number of such terms. But the expansion is
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only true for an infinite number of terms; consequently it

is only serviceable when r is less than 1.

However, that is a very important case : the most important

case. Let us apply that to a few examples before we go further.

Find the sum l + i + i+|.....

Here a = 1 and r = ^,

the sum then will be 1 x (
J

= -

—

^ = 2, which we already

knew, (pp.321 and lOO.r'^ '^

This series can be well illustrated by cutting up an apple or

a loaf of bread ; for if such an object be taken and first a half

cut ofi^, then a quarter, then an eighth,, then a sixteenth, and

so on, all the cutting can be performed on a single object, and

however long the cutting be continued the single unit will

not be exhausted : and yet if the cutting be continued ad

infinitwn the apple will be all exactly used up. In other

words, although the sum of any finite number of terms of

the series |, \, |, etc., is less than unity, the sum of the

infinite series of these fractions is exactly one whole, no more

and no less, that is to say

| + t + ¥ + tV+-«'^««/- =. 1-

As another example take

1 + -1 + -01 + -001 + ...;

•* T
1 1 10, -.

It equals ^—^ = _ = -^ = M,

as is otherwise obvious by simple addition of the terms.

Again 12 + 4 + 1 + 1 +^+ ^+....

The sum equals -—j- = -2- = 12 x ^ = 18.

Another way of putting it is to say that

3^9^27^'" 1-^ 2
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The series 10 + 9 + 8-1 + 7-29 + ..., to infinity, is a G.P. that

does not decrease very fast, but it converges nevertheless, and

the value towards which it converges, constantly approaching

though never actually reaching, is as usual, that is 100

;

the sum to infinity = = g- = -^—^ = 100 exactly.

In general, so long as r is less than 1, it matters not how
little less, the series will converge, and we can find the sum of

an infinite number of terms. Suppose the common ratio were

999 for instance, and the first term were 1, the sum to

infinity would be g^g-, that is to say 1000. If the first

term of this series had been anything else than 1, say 56 for

instance, the sum would have been merely 56000. Or if the

first term had been 4*35782, or any number you please,

the sum would have been 4357 '82, if the common factor were

•999 as supposed.

The first term therefore causes no difficulty, it is the com-

mon ratio or factor that requires attention when a finite

number of terms -is wanted; and a finite number of terms

always is required whenever the common factor is greater

than 1, and often is when it is less.

How are we to find the sum of n terms then ?

It can be done by a contrivance :

Write down the series, and then write it down again with

every term multiplied byt, and then subtract the two series,

thus

:

Call S the sum of n consecutive terms of the series.

S = l+r + r2 + r3-i-. ..»•"-!;

.'. rS = r + 7-2 + r3+ ... r"-i + r".

Now subtract

S-rS = 1 ^ r", because all the other terms go out

;
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1 — r" r" - 1
therefore S = -^ , or ——

,

1 -r r-1
which is the same thing.

If the first term is a, then the above expression has to be

multiplied by a ; so that in general, whatever r may be, the

sum of n terms of a geometrical progression is
" ';

'

S = a—=-.

r-1
If n should be oo there is no finite meaning in the series

unless r is less than 1 ; in that case r" = 0, because higher

powers of a proper fraction keep on diminishing, so an infinite

power must disappear altogether ; we then get the case which

we already know, viz.

Examples.

Apply this to the sum of 24 horse-shoe nails with one

farthing for the first, and with common factor 2. (p. 156.)

2?* - 1
A%s. : The price is a -=—=- = 2^* - 1 farthings.

Find the sum of- six terms of the series

100 + 200 + 400 + etc.

2«-l
A%s. : It equals 100 x -.—^ = 6300.

Find the sum of 1 + 3 + 9 + 27 + etc. to six terms.

A rvu
36-1 728 „„.

Ans.: ihe sum = -^—=- = -5- = 3d4.

Find the value of 64+ 16-+4 + 1 +|-+ tV + tt-

Ans. : This is a G.P. of seven terms with common ratio ^

and first term 64.

So s = 64lf^ = |x64x(l-^^)
• 256

~ 3
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1 — r"
The numerator of the fraction , in a case of many

1 -r
terms with a fractional ratio, is of small significance : it is

nearly unity.

Algebraic Digression.

The result we have arrived at, as the sum of a G.P., may be

regarded as an expansion for an algebraical division.

1 -r"
-= = l+r + r^ + r^+ ...

.

1 -r
This might be generalised hypothetically thus,

x-y " "

which could be verified by direct di^dsion, or more easily

by multiplication, and could be led up to experimentally thus

:

= a;^ + a;y + «/2,

and so on.

If we try the positive sign between the terms on the left,

the matter is a little more troublesome.

Try it first in the denominator only

:

^ = x-y,
x+ y

"'

~ will not go without a remainder,
x + y

^

a^ — y^-^ =3?-x^y + xy'^-y\

^ will not go again,

and so on.

a;2.
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Now try the positive sign in numerator only:

i- will not go, i.e. will have a remainder

;

x-y
'1*3 _L njo^ will not go either.
x-y ^

Now try positive signs in both numerator and denominator

:

— will not go,
x + y

x^ + y^

"x +f
— will not

x + y

afi + y^

go,

= a;* - x^y +ay - xy^ + y*.
x + y

So it makes all the difference whether the indices are even

or odd. All the above can easily be verified by direct

operation ; and the reason of the failure to divide out, when

they do fail, will also be manifest on trial. The reason is that

the last term, the y^ or y*, etc., would have the wrong sign.

To sum up what we have observed

:

x" - y" is divisible hy x-y whatever n is,

and likewise by a; + y when n is even.

x" + y" is divisible by a; + ?/ when n is odd,

but is not divisible by x-y, whatever n is ; understanding

by " divisible," divisible without a remainder, that is, that the

denominator is a factor of the numerator ; and understanding

by n always a positive integer.

Another way of putting it is as follows

:

x-y and x + y are both factors of x" -y" ii n is even,

x-y only is a factor of a;" - y" if m is odd,

x+ y only is a factor of x" + y" if m is odd,

neither is a factor of x" + y" ii n is even.
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Or thus, which forms an easy way of remembering the facts

:

a? + y^ is divisible \)j x + y,

x^ -y^ is divisible hj x-y,

a;2 _ yi jg divisiblc by both,

a.2 ^ yi jg divisible by neither.

General expression for any odd number.

It is handy to be able to discriminate between an odd and

an even number algebraically.

It is done thus :

2n is always even, if n is an integer.

2n ± 1 is always odd, again if n is an integer.

The mth odd number is 2w - 1 (hence this is commonly the

expression used for an odd number)

;

e.g. 5. is the third odd number and is equal to (2 x 3) - 1

;

11 is the sixth odd number and is equal to (2 x 6) - 1

;

and so on.

The hundredth odd number is therefore 199 and the 365th

is 729.

Arithmetical Progression.

Now take some examples of A.p.

An interesting case is to find the sum of the first n

consecutive odd numbers added together, that is to find the

value of

1+3+5 + .. . + (2m-l).

This sum might be found by experiment, thus :

1 + 3 = 4 = 22,

1+3 + 5= 9 = 32,

1 + 3 + 5 + 7 = 16 = 42.

So the sum of the first four odd numbers is 42 and of the

first five will be found to be 52 = 25.
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powerful and effective. Algebra enables us to reason things

out; and the customary method for the sum of an A. p. is

as follows :

Let the general arithmetical progression be the following,

to n terms,

a, a + b, a + 2b, a + 3b ...a + (n-l)b;

write it again, but backwards,

a + {n-l)b, a + {n-2)b, a + {n-3)b, , a.

Now add the two series together, term by term, as they

stand one under the other ; and the result will be 2a+(n-l)b

every time.

Hence, since there are n terms, the result of the double

series added together, if S is the sum of a single series, will be

2S = n{2a+{n-l)b};
.'. S = na + ^n{n-l)b.

This is the general result for an A.P.

For example, to test it by special cases :

In the case of the first n natural numbers a = b — 1, and so

S = n + \n{n-\)
= \n{n+\),

as we have already found by experiment.

In the case of the first n odd numbers, a is 1 and 6 = 2;

S = n + n{n- I) = n^,

as we also found experimentally.

It is very instructive and pleasing to see how a general

formula thus gives special cases, and it is one of the verifications

by which a general formula should always be tested.

The following is interesting for practice

:

1 = F
3 + 5 =23

7 + 9 + 11 =33
13 + 15 + 17 + 19 = 43

etc. ..
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Other Series.

The number of series or progressions that can be dealt with

is enormous, is indeed infinite; and is too large a subject for us

to enter upon in this book. Suffice it to say that many others

occur in practice besides the simple ones which are best known.

This series, for instance,

12 + 22 + 32 + 42

is neither a geometric nor an arithmetic nor a harmonic

progression. Something like it occurs in the overtone fre-

quencies of vibration of plates and bars.

Manifestly we might have

P, 32, 52, ...,

or 1% 23, 43, 83,

and so on ; any number of such series could be invented.

There is one simple series that we came across recently

on page 331, the difference of whose terms was constantly

and steadily increasing : the series 1, 3, 6, 10, 15, etc.

If we started with this series and took the diflferences we

should get an a.p. series, and this is a process we might

continue ; thus

:

Start with this,

1 3 6 10 15 21 28....

Take differences,

12 3 4 5 6 7 ...anA.P.

Take second differences,111111 a series of constants.

Take third differences,

a series of zeros.

Suppose we start with a different series, say the natural

series of square numbers,

0, 1, 4, 9, 16, 25,

the differences of these will give the series of odd numbers;

while the second differences would be constant.
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If we took any geometrical series the differences would be

the same series again, multiplied by a factor, the factor being

one less than the common ratio.

Hence the differences of the powers of 2, viz. 1, 2, 4, 8, 16, 32,

would be the same series over again.

The binomial coefficients can be obtained by interjecting a

single 1 into the middle of a row of noughts and then adding

adjacent terms to make a term of the next series, as thus,00000100000000 11 00000012100013 3 1014 6 4 10
1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 118 28 56 70 56 28 8 1

19 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

The simplest illustration of an arithmetical progression is

the natural series of numbers—the ordinary counting of a

child. The most important instance of an arithmetical

progression that occurs in nature is afforded by time. It is

true that it progresses continuously and not by jerks, but the

motion of a clock hand is a jerky motion, and the succession

of days, weeks, and years divide the continuum into units for

measuring purposes, and represent a perfectly uniform and

inexorable constant rate of progress.

A set of numbers are said to be in geometrical progression

when their logarithms are in arithmetical progression. The
notes of a piano are in this predicament, when estimated by

their vibration frequencies. The chromatic scale, on a tempered
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instrument like a piano, proceeds by equal musical intervals,

but these intervals are characterised by equal ratios of

vibration frequency, every octave having double the vibration

rate of its predecessor ; in other words the factor 2 carries us

over the interval of an octave, the factor f gives successive

fifths, and so on ; so that the same musical interval, in

different parts of the register, is characterised by a constant

difference of logarithm.

A set of numbers are said to be in harmonic progression

when their reciprocals are in arithmetical progression.

The series of square numbers have their roots proceeding

in A.P. ; another series we have encountered has consecutive

differences in A. P. ; another series might have successive ratios

in A.p. ; and so on.

Geometrical Illustrations.

The heights of a row of palings may be used to illustrate the

three best known modes of progression, if their tops all reach

a sloping straight line. If they are spaced simply at equal

intervals, they of course form an A.p. ; if they are spaced so

that lines drawn from the foot of each to the top of the next

are all parallel, they will form a g.p. ; but if spaced so that a line

from the foot of each to the top of the next-but-one bisects the

intermediate one, they form an H.P. The three figures annexed

illustrate this

Arithmetical
• Fio. 35.

Concerning fig. 35 there is nothing to be said but what is

obvious.
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Concerning fig. 36 it can be pointed out that the triangles

formed are all similar, that the lengths of the slant lines are

in G.P. as well as the vertical lines : and so are the areas of the

Geometrical
Fio. 36.

triangles. They may be said to illustrate the successive heights

attained by a bouncing ball : which heights are also in G.P.

Fig. 37 is the most notable; it may be regarded as the

perspective view of a series of equal rectangles or parallelo-

grams—the perspective view in fact of a uniform fence. Hence

it is useful in drawing metrical perspective figures.

Proofs.—The proof that fig. 36 represents a geometrical pro-

gression is almost obvious, since by construction the triangles

are similar, their sides being parallel ; hence

Xi = ^ = etc.

Vi h Vi «2 .„

The fact that fig. 37 gives a harmonic progression can be

established thus

:

Let a, b, c be three verticals erected so that a line from the

foot of a to the top of c, or from the foot of c to the top of a,

bisects the intermediate height b, which therefore divides the
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base in some ratio m : n, then it can be shown that h is the

harmonic mean of a and c ; for by similar triangles

\h _ n
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Successive sides of the spiral are in G.P., and so are the

distances of successive vertices from the centre.

To convert fig. 35 or

fig. 41 into the repre-

sentation of a G.P. as

it stands, the roof must

be made of a logarith-

mic or exponential

curve instead of a

straight line.

Thus fig. 9 and

fig. 47 already repre-

sent a G.P.; each verti-

cal height is the Geo-

metric Mean of any

pair of heights equi-

distant on either side

of it.

The 'amplitudes' of

the swings of a dying-

out pendulum consti-

tuteaG.p.: the 'periods'

of successive swings

constitute an a.p.

See (fig. 40.)

The temperatures of

a cooling body, read

every minute, consti-

tute an approximate
G.P., and if plotted would give a logarithmic curve : looking

like fig. 9 or fig. 78, or the dotted line in fig. 40, or part of

the figure on page 17?.
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Means.

A THING of some interest and use is the mean or average of

a set or a pair of terms in a progression. In an A.P. the mean
can be found by adding and halving the two extreme terms.

Thus for instance in the progression

7 9 11 13 15

1 1 is the mean term, and it can be found as the half sum of 9

and 13, or the half sum of 7 and 15.

The arithmetic mean of a and c

is ^(a + c); for calling this 6, it

makes h-a = c-h, that is, it gives

a common difference in the pro-

gression a,h,c; and it is illustrated

by the figure, where b is the mean

height of the trapezium shown, whose area is therefore h

times the base.

1 and 7 is

and 100 is

and 9 is

6 and 16 is

- 1 and + 1 is

- 6 and + 8 is

The arithmetic mean of

of

of

of

of

of

of

of

of

because 51

4

50

11

1

- 3 and + 9 is +3
- 9 and + 3 is - 3

12 and 90 is 51

12 = 39, and 90 - 51 = 39 ; or because

51 = 6 + 45,
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In general then the arithmetic mean is the half sum, the

sum being understood as the algebraic sum, paying attention

to sign.

The geometric mean of two terms is the square root of their

product, because this would give a common ratio; thus if

three terms a, b, e are in G.P., b must equal J{ac), because

J{ac) .a = c: J{ac) = \ \~), the common ratio
;

equal to ^/-•

In the progression a, ar, wfi the middle term is plainly the

square root of the product of the end terms.

The Greometric Mean is also called a " mean proportional."

To illustrate a geometric mean it is customary to use either

a right-angled triangle or a circle. Thus if the two lengths

whose geometric mean is required are OA and GB, any circle

drawn through A and B has the property that its tangent

drawn from G is equal to the geometric mean required

;

for by Euclid III. 36, OF^ = OA.CB; hence incidentally

we arrive at the proposition that

all the circles that can be drawn

through the two points A and B
can be cut at right angles by a

certain circle drawn round C as

centre; because the length CP is

constant. If only the points A and

B had been initially given, then a

number of such points G could be found, each with its ap-

propriate length of radius, by drawing a tangent, or a series

of tangents, to any one of the circles.

If a right-angled triangle ABG be drawn, and a per-

pendicular be let fall from the right angle C on to the opposite
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Fig. 43.

side, the length of this perpendicular is a mean proportional

between the segments of the base :

CD = sJAD . DB, since -rrfj = -"off

Similarly ^C is a mean proportional between AB and AD,
and BC „ „ „ „ BA and BD.
The same thing is true for

a semicircle, since the angle

in a semicircle is a right angle.

EucHd III. 31.

Hence an easy construction

for finding the Geometric

Mean of two lengths is to

place them end to end, as

AD, DB, construct a semicircle on the whole length AB thus

compounded, and erect a perpendicular DC at the junction

point of the two lengths. This is the G.M. required. (Cf. p. 274.)

Or if the two given lengths had been AB and AD, then the

distance AC would be their G.M.

The harmonic mean of two terms

is such that it would be the arithmetic

mean of the two terms inverted.

For instance, \, \, \ are in H.P.,

and \ is the harmonic mean be-

tween \ and \.

Let a, b, c be in harmonic progression, then -^ j-^
- are in

Fio. u.

arithmetical progression, and j
1/1

2U +
lY'

a' b'

wherefore b =
2ac

a + c

The harmonic mean can therefore be described as twice the

product divided by the sum.



342 EASY MATHEMATICS. [chap.

Geometrically it could be represented by setting up the two

given numbers as parallel measured lengths, like a and c, and

joining their ends both direct

and crosswise.

Then the parallel drawn

through the crossing point is

the harmonic mean of a and c.

It is represented by a dotted

line in the figure.

The proof of this construction is given above in connexion

with figs. 37 and 38.

If the two outer lines of the figure are continued till they

meet, the fourth position thus determined forms a h.p. with

the three positions determined by the crossings depicted in the

figure ; and they are familiar in elementary geometrical

optics.

Fia. 45.

Examples.

The student should cover up the right-hand column and

reckon the entries in it. They are all intended to be done in

the head.

ometric mean of
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the G.M. of
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Illustrations.—The harmonic mean of J and ^ must be f

;

and twice the product by the sum of the two numbers is

120 5"

2x|;

T+ TT

1 1

J =IS —
10

The harmonic mean of 4 and 6 is

2x4x6 _ £8 ^
4 + 6 10

The harmonic mean of 1 and 99 = 2x99
100

1-98.

The harmonic mean of and 1 is 0.

The harmonic mean of 17 and 13 is

34 x 1 3 _ 442

30 ' ~ 30
14-73.

The harmonic mean of - 2 and + 6 = 4x6 24

6-2
of -2 and +2 = -oo.

of - 5 and - 7 =

+ 4
6.

of - 1 and - 9 =

-12

18

-10

_ p;5

-1-8.

of 1 and 00 = 2.

The geometric mean of 5 and 20 is ^5 x 20 = 10, the common

ratio being 2.

1 and 16 is 4.

2 and 32 is 8.

4 and 9 is 6.

8 and 2 is 4.

8 and - 2 is - 4.

„ „ of - 8 and + 2 is imaginary.

„ „ of - 1 and - 9 is - 3.

„ „ of a and b is J{ah).

Comparing the three means of the same two quantities a and h,

The geometric mean of

of

of

of

of
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the arithmetic mean is ^(a + h) and is the biggest of the three,

the geometric mean is ^/a6,

the harmonic mean is t and is the smallest of the three.
a + o

The H.M. may be considered as '
, that is the ratio of

•' A.M. '

the square of the G.M. to the a.m. ; or it is equal to the G.M.

multiplied by the proper fraction G.M./a.M.

Examples.

Take any two numbers, say 4 and 9 :

the arithmetic mean is 6'5,

the geometric mean is 6*0,

the harmonic mean is ||- = 5-53846

Let the two numbers be 1 and 25 :

the A.M. is 13,

the G.M. is 5,

the H.M. is|f = 1-923... .

Let the two numbers be 49 and 36 :

the A.M. is 42-5,

the G.M. is 42-0,

. (4:2V 42
theH.M.is^^.^2:gx42,

which is necessarily less than the G.M.

Let the two numbers be and 4 :

the A.M. is 2,

the G.M. is 0,

the H.M. is 0,

but not the same 0, it is half the G.M squared.

Let the two numbers be 6 and - 6

;

the A.M. is :

the G.M. is imaginary,

the H.M. is - 00 .
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Let the two numbers be - 3 and - 6 :

the A.M. is - 4'5,

the G.M. is - 372 = - 4-2426,

the H.M. is - 4-0.

In some cases the order of numerical magnitude is inverted
;

but, when compared with positive, the smallest negative

quantity is represented by the largest number. If heights of

mountains were reckoned from sky instead of from earth, as

by dropping a plummet from a balloon, the lowest mountain

would need the longest plumb-line to reach it. The lowest

parts of the solid earth are beneath the sea and require a long

sounding line to reach them.

The A.M. is of course always half way between the two

numbers.

The G.M. is nearer to the smaller one, and ultimately

coincident with the smaller one when the other is infinitely

bigger.

The H.M. is less than the G.M. in the ratio of " ' : or
A.M*

H.M. X A.M. = G.M. 2, or the G.M. is a mean proportional between

the other two.

Mean or Average of a Number of Terms.

In taking a mean of terms there is no need whatever that

those terms should form any sort of progression or ordered

series. Hitherto we have only taken the mean of two terms,

and two terms cannot possibly determine any kind of pro-

gression, any more than two points can determine a curve.

But we can reckon the arithmetical or the geometrical mean of

any number of terms as follows :

Suppose we want the mean of a set of observations of

temperature, taken at every hour of the day, so as to determine

the mean temperature during the day of 12 hours, say from
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8 a.m. to 8 p.m. Let the thermometer readings be the

following—there will be 13 readings, because of the beginning

and end points of time between which the twelve hours lie

:

Add them up and divide by the number of

them, that is by 13. This is the mean or

average of the readings, and is found to be

67 •58. It is apparently a summer day with a

warm and probably cloudy morning giving place

to a clearer sky and cooler evening.

If the temperature readings were plotted and

joined, the result would be a curve (fig. 46)

;

and the average height of this curve would be

the mean temperature.

The average height must be approximately

67'58; but when the curve is drawn by a

recording thermometer, so as to give the

temperature not only at every hour, but at every instant, a

more exact determination of the average can be made.

60-5

65
67-2

67-3

71-25

75-0

79-0

77-0

74-6

70-3

62-4

55 3

537
13

I

878-5

67-58

The average or mean height of such a curve is the height of

a rectangle with the same base which shall equal the curve in

area, as shown in the figure by the dotted line.

One way of finding out the area of such a curve, and in

that way of obtaining its mean height, is to cut the above figure

out in cardboard or tfnfoil or sheet lead, and then weigh it

;
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weighing at the same time a rectangle or square of known

dimensions cut out of the same sheet.

Thus suppose the curve carefully drawn on such a uniform

sheet, on a scale which gave 1 horizontal centimetre to each

hour and 1 vertical millimetre to each degree, and that the

figure bounded as above was carefully cut out and found to

weigh 4'98 grammes; while a rectangle of the same base 12

centimetres, and height 7 centimetres, was found to weigh

5 '16 grammes.

We should know that the area of the curve-bounded figure

was =-Y^x 7 X 12 sq. centimetres, and that its average height

was X 70 millimetres.
O'Id

This process would give the average height, and therefore

the number of degrees in the average temperature, as 67'56
;

and, if carefully carried out, it should be more correct than

merely averaging numerical readings taken each hour, for it

averages the temperature recorded from instant to instant.

To follow a process of this kind profitably, the best plan is

actually to do it, and then the method of working will

naturally occur to you with a little thought; and a good

result can be obtained with some handicraft skill. It is a

practical method of experimentally performing the operation

known as integrating; it is integration between definite

limits, or the finding of a definite integral of a function

represented by a curve.

Weighted Mean.

Generally the word " mean " implies the simple arithmetic

mean, and the mean of several numbers, say Wj, n^ and n^, is

Wi+Wg + Wg^
^jj.pj^ jg ^j^gjj written n anfl read "n bar."
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The average of a^, a^...a„ is a = -(«j + a2+ ... +a„) ; but

sometimes we have to do with a weighted mean. One case is

when a series of observations of the same thing are taken
under different circumstances, and some of the circumstances

are more favourable than others; for instance if the height

of a flagstaff were being measured by the length of its shadow,

at noon on successive days at the time of the summer solstice,

and suppose the record of the shadow measurements was
entered thus

:

15-46 feet day fair observer W. Smith.

15-30 „ cloudy „ „
15-47 „ day bright observer E. Jones.

15-50 „ weather hazy ,, „
25-6 „ day bright observer J. Williams,

and the most probable result were required.

First of all the last observation would have to be thrown

aside altogether, because Williams has evidently made a

mistake in the very first significant figure, and although his

observation may be correct in the last" figure and almost

certainly means 15-6, it is hardly safe to begin doctoring

results ; it is safer to reject any that thus show obvious signs

of carelessness.

The other observations may have different weights attached

to them, and to know how to attach weights satisfactorily

needs considerable experience, and experience too with these

same observers, because it may happen that Jones is known to

be a more trustworthy and exact observer than Smith ; each

person has what is called a " personal equation," some always

tend to read slightly too large, others slightly too small, while

others cannot be trusted to more than say three significant

figures.

Let us suppose that an experienced person decides to attach
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the weight 3 to the first observation, the weight 1 to the

second because of the clouds, the weight 6 to the next because

Jones is a good observer, and the weight 2 to the next

because of the haze, the weighted mean of the set of obser-

vations would be obtained as follows, attending only to the

decimal places because the 15 is common to all

:

(3 X -46) + (1 + -30) + (6 X -47) + (2 x -50)

3+1+6+2

1-38 + -30 + 2-82 + 1-00 5-50 ._e„= ^ = TF - '^^^"^^

wherefore the result as thus determined would be given as

15-458, or say 15"46 feet to four significant figures : some

probable error affecting the last place.

General Average.

An average in general may be better expressed thus :

Let jij observations give a result x-^

let M, ,, ,, ,, Xo

"6 " " " '*6>

then the total number of observations is «,j + »!,2+ ••'*6' ^^'^

the appropriate weighted mean or average of the whole

number of observations,

W1 + W2+ •.«6

commonly written as ^ = y. ,

the 2 being read " sum."

This is a most important and commonly occurring form of

average, or arithmetic mean, of any number of like and unlike

quantities.
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Geometric Mean of several Numbers.

To find the G.M. of two quantities we multiply them

together and extract the square root. Similarly to find the

G.M. of three quantities we should multiply them together and

extract the cube root; and to find the G.M. of say six

quantities, multiply them all and extract the sixth root. But

this would have to be done by logarithms ; so the process is

better put into logarithmic form from the first.

To find the geometric mean of n quantities

Ojag...a„.

Find the arithmetic mean of their lo^rithrhs :

log* = -(logai + logaji+ ... 16ga„),

the resulting a as thus calculated from its logarithm will be

the G.M. required.

Example.—To find the g.m. of

92, 100, 121, and 89;

look out their logarithms, add, and divide by foiu",

1-9638

2-0000

2-0828

1-9494

4
I

7-9960

1-9990 = log of 99-8

Therefore the g.m. required is 998.

The A.M. would have been 100-5.

As to the H.M. of more than two quantities I do not re-

member that it is often required : it can be got by taking the

arithmetic mean of the reciprocal of the given set of BUIubers

p,nd theii the reciprocal of that.



CHAPTER XXXVII.

Examples of the practical occurrence of Progressions

in Nature or Art.

In illustrating a subject by examples there is a great

advantage in selecting natural examples in place of artificial

ones. Natural examples may not be quite so easy as

artificial ones, but they are vastly better worth studying.

Artificial examples are often easy and handy for practice,

and many of them can be done in a short time, but a real

or naturally occurring example will take you into the essence

of the. subject and is worth dwelling on long and steadily.

Every such example is more than an example : it opens a

chapter, and sometimes needs a treatise.

The chief instance of the natural occurrence of a geometrical

progression is in the theory of " leaks ''—a leak of steam out

of a boiler, or of compressed air or water out of a reservoir,

of heat out of a cooling body, of electricity- out of a charged

conductor; these and many other instances are all subject

to the same mathematical law—the law of a decreasing

geometric progression. See Chapters XL. to XLII.

A commercial example of the occurrence of G.p. is the

institution known as compound interest, when money in-

vested in some business undertaking is allowed to supply the

necessities and the supplementary accessories of effective
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human labour ; on the strength of which, under good manage-

ment, the sum invested increases in value at an ascertainable

or arbitrarily specified rate, and may accumulate until it

becomes a very large fortune.

Let us take this case first, for it may perhaps seem simpler

than an example froi»J*hysics.

Interest.

Suppose £1000, invested in machinery and wages, enables

a workman to produce fifty pounds worth of goods every

year more than need be expended on advertising the goods,

carrying them to their destination, feeding and clothing the

workman, patching up his shed and repairing the machinery

;

it is called capital, and is said to increase at the rate of

5 per cent, per annum, the increase being called interest.

If the fifty pounds is taken away and otherwise utilised,

so that the original capital of £1000 remains what it was,

without increase or diminution as the years go by, it is called

simple interest, and is an example of arithmetical progression.

But if the fifty pounds is invested in improved machinery

and in extra assistance, in such a way that it too brings, in a

profit at the same rate ; and if this is steadily done each year

as interest accumulates, so that it is always added to the

capital, which thus goes on increasing; it is called compound

interest, and is governed by the law of geometrical pro-

gression.

Every year the capital is increased in the ratio of y§4' °'^

every pound at the beginning of the year becomes a guinea

at the end of it. If this is supposed to go steadily on, what

will be the result after say 15 years'

The result will be that the original capital has been

increased f^ths in one year, and this new capital has been

increased f^ths in the second year, or the original capital

L.E.M. z
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fjxfj in two years. In three years the original ci

will have increased in the ratio (-^ j, and in 15 years l-^j .

Now n +i ) could be found by the binomial theorem if

we liked : and we know that as a first approximation it will

bel+l|.

Introducing the second order approximation

, w.n- 1 „
l+nx +—nj— x\

11

we shall find its value to this order of approximation as

15 15x14 _1_ _
•, 7^ 7x15

20"'' 2 '.400
~

400

which equals approximately 2 ; that is to say the capital in

15 years will be by this operation a little more than doubled,

and will have become rather more than £2000.

Now a quantity which is frequently doubled becomes, as

we know, extraordinarily large after the operation has been

repeated several times. If it doubles every 15 years, in 60

years it will have become £16000, and in a century and a half

it will have to be multiplied by 2^'^, viz. 1024 ; that is to say

the capital will have swelled to more than a million.

A " penny " put out to 5 per cent, compound interest in the

time of Csesar would now theoretically far exceed all the

material wealth of the world in value.

But though an approximate calculation of compound interest

is instructive, there is no need to make it approximate, we can

calculate it exactly if we choose. We have only to raise the

ratio of the G.P., viz. 1-05 or 1-J^, to the 18th power in

order to find the value after 1 5 years.
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This we should naturally do by logarithms,

log 1-05 = -0211893,

15 X log 1-05 = -3178365 = log of 2-078914.

So the original capital of £1000 becomes increased to

£2078. 18s. 3d. in fifteen years, at five per cent, per annum
compound interest.

Suppose we wished to find at what rate of compound
interest a sum of money would exactly double itself in any

given time, say for instance in 12 years, we should have to

proceed thus:

Let X be the rate of interest,

then (1 +a;p has to equal 2,

wherefore 1 + a; = '4/2.

We must use logarithms to find the twelfth root of 2.

log 2 = -301030,

,3^ log 2 = -025086 = log of 1-05945,

which equals \+x, wherefore z = -05945,

or the rate of interest must be 5-945, or nearly six, per cent.,

in order that doubling may occur every dozen years.

Let us see at what rate doubling will occur in thirty years.

^log2 = -0100343

= log of 1-0241,

or a little more than 2-4 per cent., about £2. 8s. 2d. added to

every hundred pounds per year.

Any rate of interest will double property if suffioient time

be allowed to it ; but if we wanted to double capital every

six years, we should need a high rate of interest

:

(l+a;)«= 2,

^log2 = -050172 = log of 1-12247,

indicating about 12J per cent.

Approximately therefore the doubling time and the rate

of interest vary inversely. If one is increased, the other can
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be decreased in roughly something like the same proportion,

especially when the rate is small.

That is apparent at once if we expand by the binomial and

put it to double itself in n years

;

(1 + a;)" = \+nx approximately = 2, say,

wherefore nx = \ approximately,

or n and a; vary inversely as one another, to a first approxi-

mation. (See Chap. XXXIX.)
But then this first approximation is exactly simple interest,

it ignores the x^ and x^ and higher terms ; and it is just in

the presence of those terms that the virtue of compound

interest consists.

If X is added to each pound every year, but the interest is

not allowed to become part of the capital, so as to increase, the

amount becomes at the end of n years simply (1 +nx) times its

original value. Thus at 5 per cent, simple interest, so that

X = -05, £1000 in 1 year will become 1-05 times £1000,

or £1050. In three years it will be £1150, and in 20 years it

will be multiplied by 1 + (20 x -05) = 2 ; that is to say it will be

just exactly doubled in twenty years.

So whereas compound interest at 5 per cent, doubles an

amount in about 15 years, simple interest does the same

thing in 20 years ; and the interest could have been drawn and

otherwise utilised all the time.

At 10 per cent, simple interest a sum would be doubled in

ten years, and at 1 per cent, simple interest a sum would

be doubled in a century ; whereas at 1 per cent, compound
interest, in a century, it would have increased in the pro-

portion (l-Ol)"" = 2-705, that is would have considerably

more than doubled, though it would not have trebled.

The advantage of compound interest over simple interest tells

more at high rates, for then the higher powers in the expansion

become important; and therein lies the difierence It is in-
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structive to plot the two things. Simple interest increase would

be represented by a straight line law, compound interest by an

exponential curve, the two starting off together, but ultimately

separating with greater and greater rapidity as time passes.

Con SI

Sim,

dii
iefes^

tere:

7 8 9
Time

FiQ. 47.

10 11 13 to. 15

One is an A. P., the other a G.p. ; one is a straight line law,

the other a compound interest law. One proceeds by constant

increment, the other by constant factor. (See pages 404, etc.)

As an example consider interest at the rate of ten per cent,

per annum, and tabulate the value of ,£1000 after successive

years on the two systems.
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The rate of interest plotted in fig. 47 is arbitrary, and

depends upon the original sum or 'principal'; this would

appear below the base line, and the diagram represents only

its growth. The curve on page 179 is really the same curve,

but to get the right aspect it must be looked at through the

paper ; and the scale of plotting is unsuitable.

The right hand column of the above tabulated numbers

contains the factors by which the original sum must be

multiplied to give the amount at compound interest. It is

hoped that the binomial coefi&cients will be recognised.

It may be noticed that during the length of an active life-

time the diiference between simple and compound interest is

not extravagant, even at so high a rate as ten per cent ; but

that if a sum is locked up during a long minority, or if

otherwise the interest be left to accumulate for a long time

without being contemporaneously expended, the growth by

compound interest becomes enormous.

The operation of a " sinking fund " for the annihilation of

great debts can thus be illustrated. But it is not to be

supposed that interest accumulates, without effort, auto-

matically. It is the result of human skill, brains, labour,

and management.



PAET II.

MISCELLANEOUS APPLICATIONS AND
INTRODUCTIONS.





CHAPTER XXXVIII.

Illustrations of important principles by means of

expansion by heat.

EVEKYONE has seen a telegraph wire by the side of a

railway and observed the peculiar effect of its sag, as the

train passes along, when such a wire is near the window; it

seems to be moving up and down. A wire or rope or chain

stretched between two posts cannot be perfectly straight, but

sags, something like the top of a lawn tennis net.

In hot weather the sag of a given span of wire is greater,

in cold weather it is less; because the material expands by

heat and contracts by cold. Suppose the length of a wire on

a certain span is I during a night of light frost, then by noon,

when the sun has been up some time, it will have increased to

I' : the increase of length being I' -I.

This notation for the same kind of quantity under different

circumstances, by means of the same letter with a dash affixed

to it, is in constant use, and must be grown accustomed to

;

the new length should be read "Z-dash"; the increase should

be treated as a single quantity and should be read "^dash

minus I." And here it is desirable to remark that all mathe-

matics is intended to be read, and that it is good and necessary

practice to read it.

Algebra is a language—a very expressive language; and

although it appeals primarily to the eye, it should be made to
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appeal to both eye and ear, that is it should always be " read,'

if only to oneself. It is a great mistake to treat it as a silent

language and only to look at it, beginners must learn to read

it ; and it would be well now to turn back and read aloud all

the equations and other algebraical expressions we have

employed so far. It cannot be done properly without a good

deal of practice. Everything written on a blackboard by a

teacher should be spoken also.

Now consider what the increase in length depends on. In

the first place it depends on the original length of the wire.

No one would expect a wire a few inches long to elongate as

much as one a few hundred yards long. It is only common

sense to realise that every yard of the wire will elongate an

equal amount under the same conditions, and that therefore

20 yards will lengthen 20 times as much as one yard ; so l' -I

is proportional to I. Next it will depend on the change of

temperature, which we may treat as a single quantity and call

T' - T, where T was the original temperature and T' the new

temperature.

We have no guarantee that the lengthening is proportional

to the rise of temperature, but it is a natural assumption to

begin with, and will have to be corrected if necessary later.

We can assume that it expands twice as much for two degrees'

rise as it does for one degree, and ten times as much for ten

degrees' rise. There are only a few substances for which this

is really and precisely true, but, for all, it is a rough approxi-

mation to the truth, and will do for the present.

Lastly, the lengthening will depend on the material of which

the wire is composed. If it were a copper wire it would be

found to expand more than if it were of iron Every material

has its own "expansibility," by which is meant the rate of

expansion, or increase per unit length per degree rise of

temperature.



xxxvni.] EXPANSION BY HEAT. 363

If we denoted the " expansibility " of the material by k, we
should be able to express in one line all we have so far said,

thus: I' -I = U{T'-T) {{)

for this asserts that the lengthening is dependent on and

proportional to three factors, viz. (i) ar constant representing

the properties erf the material, (ii) the length of the piece

of that material which is under consideration, and (iii) the

rise of temperature or the warming to which it has been

subjected.

Of the three factors, h may be styled a " constant " to be

determined by experiment in the laboratory, a thing depending

on the properties of a material, and beyond our control, except

in so far as we can select the material ; Hs an arbitrary con-

stant entirely in our control, depending only on what we
choose to attend to. We might observe the lengthening of

the whole of a span of wire, or of any portion of it, or we might

select spans of different length, or we might cut off a bit and

attend only to that. T' -T represents the change or variation

of a variable quantity, in this case temperature; it is some-

times called the independent variable, for its changes go on

independently of any of the other things we have considered,

and the change of length is dependent on it. One could hardly

make the converse statement and say that change of tempera-

ture was caused by change of length, even though the length

was that of a thermometer column (though it might be rash

to stigmatise even this statement as absurd under all circum-

stances : there are things which get warm when and by reason

of being stretched), but it is extremely natural to say that

the change of length is caused by change of temperature

;

so the cause is called the independent, and the effect the

dependent, variable. By some people the names " principal

"

and " subordinate " variables are preferred to " independent

"

and "dependent."
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A change of temperature might be caused out of doors by

the appearance and disappearance of the sun, or by a change

of wind ; in a laboratory it could be caused by the application

and removal of flame, or of an electric current, or of some

other means of heating. Anyway it is to be observed by

a thermometer of some kind, and T' -T may be considered

as being measured by the rise of the thermometer.

V — l\& the change of the dependent or subordinate variable;

and its dependence might be conveniently indicated by putting

the two variables on one side of the above equation, and the

constants on the other, as for instance :

f^=hl. (2)

To emphasise the fact that the two terms T' -T represent a

thing which is really one quantity viz. a warming, a difference

of temperature, it is convenient to have a single symbol for it;

and the symbol usually chosen is an abbreviation for difference

of temperature, namely &T or dT ; meaning

diff. of temp. = T -T,

or diff. T ^ T'- T, or simply iT = T - T.

This mode of expression is very handy and extraordinarily

convenient. It can be applied of course to all kinds of

quantities, so Z'-Z may be written "diff. length," or dl;

wherefore our two above numbered forms of a proportionality

statement become abbreviated into

dl=^hldT (1)

dl
dT

and |^ = H (2)

respectively.

These equations are labelled like the previous ones because

they say precisely the same thing as the others did, and in

the same way. It is generally understood that the symbol d
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is used for a difference only when it is an infinitesimal

diiference. For finite differences delta I is used, or simply I' - 1.

Form (1) gives explicitly the change of length in terms of the

original length and the change of temperature ; form (2) gives

the ratio of the changes of the two variables in terms of the

constants—viz. the expansion-property of the material, and

the length selected for observation.

Another way of writing the equation is often useful, in

which the expansion per unit length is explicitly attended to

:

that is the lengthening by heat of any one yard or foot or

metre of the wire, without regarding the whole wire. To get

this we have only to divide the length out, and so get

j^kdT, (3)

a quantity which is often technically referred to as " the ex-

pansion " ; it is defined as the ratio dl/l, and it is equal to the

expansibility multiplied by the rise of temperature.

Let no beginner suppose that these various forms of the

equation are different. They are all essentially the same, but

they emphasise features differently; just as in any language

a sentence may be recast so as to say the same thing with

various emphases. Never forget to regard algebra as a

language, in which statements of singular definiteness and

precision can be compactly made.

Now suppose the temperature fell instead of rose : the ex-

pression T' -T would be negative, and we might sometimes

choose to denote the fall of the temperature by T- T'. At

the same time most substances contract with cold, and so

I'-l would also be negative, and the contraction could be

written I -I' or -dl; but usually dl and dT would not have

the negative sign actually prefixed to them, it would be

sufficient to say that dT and usually dl are both negative, for

the case of a fall of temperature.
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Now let us begin again, and look at the matter afresh and

in a still simpler manner. Take a rod of length 1, that is to

say 1 foot or one metre or one inch in length, at a temperature

T, and warm it one degree. Its length will now be increased

by an amount we will call h, meaning k feet or metres or

inches, according to our choice of unit length.

Warm it 2 degrees and its increase of length will be 2A,

and so on, as shown thus :

its length being 1 at temperature T,

its length is 1+Z; ,, „ T+1
1 + 2A „ „ r+2,

,, „ 1 + 3« „ „ i +3,

i+«* „ „ r+TO.

This temperature T-^nvr^ will call T so that n = T'-T.

If the original rod had been originally of length I instead of

length 1 and had been all of it treated alike, every unit would

have expanded by the same amount, so the final length would

in that case be /(I +nk), which we may call V.

Hence I' = l(l+nk)

or I' -I = Ink

= U{T'-T),

thus arriving at the same result as before, which we will now
write in any one of four equivalent ways, e.g.

dl = kUT, (1)

S = ^^' <2)

j = kdT, (3)

i-^ = * w
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The last may be taken as a definition of the expansibility h,

and shows the principle of what we must do in the laboratory

in order to measure it.

We must take a rod or wire or something convenient of

the given material, and measure either its whole length I,

or a length I between two marks or scratches on it ; then we
must subject it to a measured rise of temperature, and observe

the increase in length of the chosen portion carefully, with

a microscope or micrometer by preference.

Then it is best to cool it down again and see that the rod

recovers its original length; and then the warming can be

repeated, and the increase in length observed again, and so

on several times, to avoid accidental errors and to get the

true reading as nearly as we can.

Thus the three required quantities dl, dT, and I, are all

measured; and, dividing dl by I and by dT, we get the

expansibility of the material as a result.

These are not laboratory instructions, and accordingly little

or nothing shall here be said about the practical mode of over-

coming difficulties. Suffice it to say that the readiest mode of

securing measurable differences of temperature, is by making

use of properties of substances designated by such phrases as

boiling oil, molten lead, melting ice, boiling water, condensing

steam, and the like ; and that the chief precautions needed, in

order to measure with precision the expanded length, are

those which shall guard the measuring scale, or standard of

length, from being likewise affected by the high temperature

of the rod to which it has in some sort to be applied.

With this hint the somewhat elaborate arrangements de-

picted in text books of Physics can be appreciated.

This matter has been gone into at some length, because

it is typical : it is always worth while to master a type, and

nothing is gained by haste.
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Examples.

A bar of iron 10 yards long expands "444 inch when taken

out of ice and put into steam or boiling water ; what is its

expansibility? i.e. what is the increase per unit length per

degree for iron; meaning by a degree Centigrade the hun-

dredth part of the interval between freezing and boiling

water, and by a degree Fahrenheit the 180th part of that

same interval.

Answer. -^——— = -0000123 per degree Centigrade,

or -00000683 per degree Fahrenheit.

The numerical result is worth remembering as specified in

the Centigrade scale of thermometry, which is the most used

for scientific purposes. Observe that there are 4 ciphers

before the significant figures, which happen to be the first

three natural numbers, and so are quite easy to remember ; the

amount is about IJ in a hundred thousand, or about 12 parts

in a million : meaning that iron expands this fraction of its

length for each Centigrade degree rise.

Brass would give a number about 18 instead of 12; and

zinc, which is one of the most expansible metals, would expand

nearly 25 parts, or just double as much as iron. Platinum how-

ever, and glass, would have been found to expand only about

8 or 9 parts in a million, per unit length per degree Centigrade.

If a material expanded 1 per cent, of its length for a rise

of 100°, its expansibility would be -0001. If it expanded ^
per cent, for a rise of 250°, its expansibility would be -00002,

which lies between that of brass and that of zinc.

Cubical Expansion.

It would be a mistake to suppose that a rod increases in

only length when heated : it swells in every direction, just
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as if it were slightly magnified. Its increase in length is

most noticeable, because that was originally its greatest

dimension, but its increase in thickness is proportionately as

much. Thus if a bar were a yard long and an inch thick it

would expand in length 36 times its increase in thickness,

but its proportional expansion, its y, would be the same in

every direction.

Consider an iron plate 10 metres long, 1 metre broad, and

1 millimetre thick, and let it be warmed 406 degrees. Its

linear expansion is

406 X -0000123 = -00500,

or five parts in a thousand (or the half of 1 per cent.).

So its increase in length is 5 centimetres

;

its increase in breadth is 5 millimetres

;

its increase in thickness is '005 millimetre,

or 5 millionths of a metre,

or 5 mikrons,

a mikron (sometimes spelt micron) being a convenient unit

for microscopic work, and being sometimes imconveniently

denoted in biological books by the symbol /*. Units m
slamlards should be expressed in words; symbols are never

used for them by mathematicians.

What is the increase in area and in bulk of such a plate

when so heated ?

The first thing to learn is that we must not take the

increases and multiply them together. (Cf. p. 293.)

The increase in area is not 5 centimetres x 5 millimetres.

The increase in volume is not 5 centimetres x 5 millimetres

X 5 mikrons.

But the new area is 1005 x 100-5 sq. centimetres, whence th3

increase in area is 1002-5 sq. centimetres,

J,.B.M. 2a
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The new volume is 1005 x 100-5 x -1005 cubic centimetres

= 103 X 102 X 10-1 X (1-005)3

= 10* X 1-015075

= 10150-75 CO.

The old volume was lO^xlO^xlO'^ = 10* c.c, so the

increase in volume is 150-75 c.c.

But, as usual, there is a quicker and better mode of making

the numerical calculation, by first treating it algebraically.

Let I' = l{\+M)hQ the new length,

V = h{\+kt) the new breadth,

and «' = z{}.+U) the new thickness,

where t stands for the rise of temperature T - T.

Then the new volume is

I'h'z' = lbz{\+Uf;

that is, calling the old volume F'and the new volume V,

V = V{\+Uf

but, since M is a small quantity, this is, to a first approxi-

mation, V' = F{l+3kt),

ovV'-V= 3kFt = 3JcF{T' - T),

or -j=- = 3kV, or -^ = 3kt;

a result which can be expressed by saying that the cubical

expansibility, viz. 3k, is three times the linear expansibility.

Similarly the coefiicient of superficial expansion is twice

the linear.

This is equivalent to neglecting squares and cubes of small

quantities; and for most purposes that can safely be done

in cases of solid expansion. Hence to do the above sum,

very approximately, all that is necessary, after observing th^t
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the linear proportional increase is '005, is to say :—The

original area = 10 square metres, so the increase of area is

2 X '005 X 10 square metres

= 0"1 sq. metre = 1000 sq. centimetres approximately.

The original volume is

10 metres x 1 metre x "001 metre = -01 cubic metre

= 10,000 c.c.

so the increase of volume is 3 x '005 x 10,000 c.c.

= 150 c.c. approximately



CHAPTER XXXIX.

Further Illustrations of Proportionality or Variation.

One of the most important things to understand, in order

to be able to apply elementary mathematics to simple

engineering facts, is the law of simple proportion. Two

quantities are said to be proportional, or to vary as each other,

if they are both doubled when one is doubled and if they

vanish together.

Thus for instance the stretch of an elastic and the force of its

pull are proportional. For first of all they vanish together : if

the elastic is not pulled it is not stretched. Secondly, if it has

been stretched with a certain pull, and you double the pull,

the stretch also will be found to be doubled. You can try this

by hanging up an elastic or a spiral spring and loading it with

different weights. As the weight increases, the stretch

increases, and in a simply-proportional manner. This is

the principle of a spring balance.

Take all the load off, and the pointer returns to zero,

indicating no stretch. Observe, it is not the length of the

elastic that is proportional, for that does not become zero, nor

is it doubled when the load is doubled, but it is the stretch or

increase of length that is proportional to the load. Suppose

however there had been some irremovable load on all the time,

as indeed there is, for the spring or elastic itself has a trifle of

weight of its own, how do we allow for that 1 Answer : by
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always attending to the variable part of the load only, just as

we attend to the variable part of the length only. The " load
"

must really signify the. load added or subtracted ; and the

stretch corresponding thereto signifies the increase, or it may
be the decrease, of length which accompanies that variation of

load ; so that instead of saying the length I varies as w the

load, which is not true, we ought to say, change of length

varies as change of load, or dl varies as dw, which is quite

true ] unless indeed the spring is overloaded and permanently

strained or injured so that it cannot recover; or, in other

words, unless it is not perfectly elastic. So long as it is

perfectly elastic, the law of simple proportion holds ; and the

test of whether it is perfectly elastic or not is to see if it can

completely recover when the load is removed.

Some substances stand a great deal of loading, such as steel

;

some stand only a little without giving way, like glass or

copper ; and some stand hardly any, or none, like lead or

straw or dough.

There are two methods of giving way, one by breaking, like

glass, the other by permanently bending, like lead. There is

plenty to be learnt about all these things, but the time for

learning them will come later. All that we have to note at

present is that the law of proportion is not to be expected to be

verified when the substance experiences a permanent set, or

deformation of any kind, from which it cannot recover ; and of

course not when it is broken.

The law holds "within the limits of elasticity," and it is

known as "Hooke's law,'' because that great and ingenious

man Robert Hooke experimented on it and emphasised its

simplicity and convenience more than two centuries ago.

You may think that it is so simple as hot to be much of a law

of nature ; but you will find that all the most fundamental laws

are simple. Simplicity and importance may quite well go
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together, though there is perhaps no necessary connexion

between them.

Now take another example of simple proportion. Let a

balloon ascend at a perfectly steady pace from the ground.

Its height is proportional to the time which has elapsed since

it started. In one second it went up let us say a yard. In a

minute it will go up 60 yards, and in an hour 3600 yards,

provided the same upward speed was all the time maintained.

If it went sometimes faster and sometimes slower, the simple

proportionality would not hold. The height and the time

vanish together, for we began to reckon time at the instant it

was let go, and we were careful to measure height always to

that same point of the balloon which touched the earth at the

moment of letting go.

But now take an example where simple proportion does not

hold between two connected variable quantities.

1
6

5



XXXIX.] STRAIGHT LINE LAW. 375

For first of all they do not vanish together: the child had some

length when he was born; and next, they are not doubled

together. A child has not twice the height at 6 that he

had at 3.

If we were to plot age and height together, it would be

instructive, and the result might be something like fig. 48,

where age is plotted horizontally and height vertically.

The point is called the origin, and represents the epoch

of birth. If the curve passed through this point 0, zero

initial length would be signified ; so the curve does not pass

through it, but starts above it at the infant's length at birth

:

say fourteen inches

Such a curve is not simple proportion at all. It is easy

enough to understand, but the law represented by the curve is

not a simple one.

Simple proportion would be represented, on the same plan,

by a straight line through the origin ; as for instance if the

stretch and the load of an elastic thread or spiral spring were

plotted : they vanish together. (Fig. 49.)

But suppose the two quantities did not vanish together, we

might still have them plotted as a straight line. For instance,
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the length of a rod at different temperatures (or the total

length of a piece of elastic under different loads)

:

Temperature

Fia. 60.

and this, though it is not exactly simple proportion, is the

next thing to it, and is sometimes called "a straight line

law." (Fig. 50.)

It can be made simple proportion by deducting a constant,

by deducting the original length for instance, V -I = kit,

whereas if the length I had not been deducted it would have

been expressed by V = 1 + IM,

and this is characteristic of a

straight line law.

In general a straight line law is

represented by

y = a + bx,

whereas simple proportion would be

y = bx

without the constant a.

So by subtracting the constant a

a straight line law can always be

expressed as simple proportion. So it can if we attend to

changes only. For let y become i/, and x become x', while a

and h remain constant all the time, we should have

FiQ. 61.
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y = a + lx,

tj = a + hx',

y'-y = b{x'-x),

or dy = idx,

dy ,

and the a has disappeared. The two differences, dy and dx, are

simply proportional; for they increase together in a constant

ratio, and they vanish together : one cannot become zero

without the other.

The weight of a boy is not represented by a straight line,

even if his weight at birth is deducted. His law of growth is

not a straight line law but a more complicated law : it could

be plotted as a curve, from successive observations.

Any law can be expressed by a curve ; thus we might have

a parabolic law, meaning that the curve of plotting is a para-

bola as nearly as can be told.

A parabolic law is expressible in algebra thus,

y = a + bx + cz%

and it would be instructive for children to plot the curve

represented by this equation, and see what it looks like. To

carry out the plotting we must be told the values which are

to be attributed to a, b, and c, and can arrange the scale to suit.

Thus let a = 4, & = 1, and c = J.

Make a table of corresponding successive values of x and y.

When X = 0, y = 0,, or in this case 4

;

X = \, y = a + b + G, or in this case b\

;

X = 1,
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Plot this, and it looks somewhat thus ;

ac-

ts-

3 4
Fio. 52.

But we need not necessarily limit ourselves to the positive

side of the vertical axis ; we might ascertain and plot values of

y when x is negative, otherwise the curve is incomplete. You

could hardly tell it was a parabola from its appearance so far.

When X =
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every value on this side being equal to a certain value for

another x on the other side. The whole curve is symmetrical

about a vertical axis through a; = - 2.

The dotted line is called the axis of the parabola. (Fig. 53.)

Another example of what may be a straight-line-law is the

slope or gradient of a railway. At a certain place it may be

said to rise 1 in 30, for instance ; meaning that if you go

30 feet along the railway you have ascended 1 vertical foot ; if

you go 30 yards you have ascended I vertical yard, and so on.

A uniform gradient is naturally plotted by a straight line,

and if the vertical height is called y while the horizontal

distance is called x, the gradient is approximately denoted by

dx
Not exactly, because the denominator is usually measured

along the sloping railway, and not horizontally.
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Either way of measuring the gradient is a good method;

and sometimes one is used, sometimes the other. If the

slant distance is called ds, the two chief ways of measuring

slope are -^ and --|^,. respectively.
CtX Ct/S

Except when the slope is steep, the difference between these

two methods of measuring it

is not marked :—the connexion

between the two methods is

easily shown by a diagram.

A considerable but feasible

slope for an ordinary railway

would be a gradient of 1 in 30, that is to say -^ = —

.

CtS o\J

Often it is not more than 1 in 100. The actual gradient

is frequently written up on low posts by the side of the

line.

But take the case, impossible for a practical

railway, where the slope is 45°, which would

be a steep mountain side, dy and dx are in

that case equal, and ds = J2 ^ither of them,

dy , , dy I
so :r- = 1> whereas -f = —p,-

dx ' ds iJ2

Take the case of a precipice or a steeple, almost

jy vertical, so that dx is extremely small.

dy and ds are now nearly equal and dx is nearly

; in the limit quite zero.

• So approximately, for an angle nearly 90°,

dx
Pio. 66.

dy

ds
= 1 and -T- = n =

dx

or at any rate a very great number j in the limit quite

infinite.
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Take the case of that famous right-angled triangle with
commensurable sides, and express the slope of its hypothenuse

:

-^ = ? ^ _ 3

~dx
~ 4' ds~ 5'

dy

dx
Fia. 58.

and of course always d^ = do^ + (

dy _ dy
so that -4-

dy

dx

J{dx^ + df) U^/dyY

-i

It is often convenient to measure slope in yet another way,

viz. by the angle of slope, which we denote by a or 5 ; then the

ratio of the height to the slant length, -r-, is called the sine of

the angle, and is written sine 9 or sin 6, while the ratio of the

height to the base, -/, is called the tangent of 6, and is written

tan 6. So we see from the above that an angle whose sine

is I, or '6, has a tangent whose value is f or '75
;

also that the sine of 45° is -j-,

while the tangent of 45° is 1,

and that sin 90° = 1, while tan 90° = oo. (Cf. fig. 56.)

On the other hand, when the slope is very slight, the

sine and tangent are about equal, and it does not much

matter which measure of the slope we employ. (Cf. fig. 54.)
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Ultimately when the slope vanishes they also vanish, and

vanish on terms of equality, so that sin = tan = 0.

Here is a case where two things vanish together but are by

no means proportional ; they are approximately proportional,

or indeed equal, for small angles, but the tangent increases

faster than the sine ; and as the angle grows, it increases very

much faster ; so that, by the time the sine has reached unity,

the tangent has gone, with a rush, to infinity.

Plotting th.em they would look thus

:

where one curve represents the sines,

and the other the tangents, of angles

from 0° to 90°

Fio. 69.

It may be worth showing, even at this stage, what suggested

curious nanies. The name " tangent " especially sounds
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curious when applied to a ratio. The idea arose from drawing

a circle round an angle and seeing all the different ways in

which it might be measured.

In this figure the angle is at C, and

AD is a, bit of a circle with centre C.

This figure long ago suggested a bow
and arrow, hence EB was called the

sagitta, and ABD was called the arc : the

string AED is called the chord, and half

of it under certain restrictions is called

the sine, presumably because the point E
of the string is pulled to the breast before

releasing the bow. The tangent can then

be measured as part of a line drawn through B, touching the

circle, when the circle is drawn of unit radius.

Let CA or CB equal 1 on any arbitrary scale; then C or

ACB is the angle, a,

AE is its sine,

AB is its arc,

EB is its sagitta,

and BF is its tangent,

always provided CA or CB are equal to

1, that is taking the radius of the circle

as unity.

The size of the circle is quite arbitrary

:

any length whatever may be chosen as a

unit of measurement.

But it is desirable to bear in mind

that angles are not measured by length

but by ratio; and accordingly the state-

ment that

, arc AB
angle

Pio. 61.

radius AG'
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or intercepted part of arc -f radius, is a better statement than

^ angle = arc when radius = 1.

And to say that

, intercepted perpendicular AE
sin angle = ^r—- — -777,° radius AC

is better than saying that it equals AE when AC equals 1.

So also

, ^ intercepted portion of tangent FB
tangent of C =

^^^^
=

-y^,
•

It may be worth while also to state here that the length of

that boundary line of the angle which cuts the circle and is

produced to meet the tangent, viz. CF, is called the " secant

"

when the circle is of unit radius ; or in general, dividing by

the radius, q^
secant of angle C, or sec C, = y^^.

These different fractions or ratios are all measures of the

angle : they are quite independent of the size of the circle

or of any linear dimension whatever. They indicate angular

magnitude alone.

In any right-angled triangle, if the length of the hypothenuse

is called r, and the angle at the base be called 0, then the

length of the base is, by definition of cosine, equal to rcos6;

that is to say, it is the length r multiplied by a proper fraction,

which fraction is called the cosine of the angle 6.

The base may be thought of as the projection of r on to a

direction inclined at the angle ^ to it ; the shadow as it were
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of a slant rod of length r thrown by vertical rays of light on a

horizontal ground (fig. 64).

If the projection were made in a direction at right angles to

the first, then the projection is r sin d, provided 6 still means
the same angle as before. So that the sides in any right-angled

Fio. 69.

triangle are related as in the diagram (iig. 62); and it is

obvious, by definition of the tangent ratio, that

sin ^ , a
7, = tan tf.

cos t*

It also follows, by Euc. I. 47, that

or that (sin 6f + (cos Of = 1,

a fundamental identity.

One peculiarity of angular magnitude is that it is un-

magnifiable. Look at an angle through a magnifying glass,

and though its sides lengthen, the angle continues constant.

A right-angle, for instance the corner of a book, continues a

right-angle, and 45° continues 45°. A degree is always the

360th part of a circle, however big the circle ; a quarter of

a revolution, or a right angle, is always 90° ; and so on. The

size of the divisions of a circle change when it is magnified,

but their number remains constant.

Number is another thing which is unmagnifiable. Magnify

3 oranges, the oranges look bigger, but they still look 3.

So when a plate expands with heat, if it is uniform, any
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angles it may have remain constant. If there were a hole

in the plate, the hole would expand just as if it had been

filled with solid ; its boundary line might have been drawn

with ink on a similar solid plate. Everything expands

with heat as if it were looked at through a weak mag-

nifying glass. So a hollow space is not encroached upon

by expanding walls, but is enlarged as if it were full of

substance. A hollow bulb, for instance, has a greater capacity

when heated than it had before. It may not necessarily hold

more fluid, not more weight or mass of fluid, for the fluid

might expand still faster- than the solid, but it holds a greater

volume. A thermometer bulb containing mercury is in this

predicament ; and what we observe, when the thermometer

rises, is the apparent expansion of the whole bulb-full of

mercury swelling in the only direction open to it, viz. in the

narrow stem. It is called "apparent" expansion because it

represents what is visible, viz. the excess of the expansion

of the mercury over that of the vessel which contains it.

If the vessel expanded more than the liquid, the rise in the

stem, indicating the apparent expansion, would be negative;

but this is hardly a possible case in practice, for all liquids

expand more than any solid Nevertheless the true or

absolute expansion of a liquid is always greater than it

appears to be, unless we could observe it in a vessel which

did not expand with heat.

Let V be the volume of the vessel, and a the expansibility

of its material, that is to say its increase in bulk per unit

original bulk per degree rise of temperature, then the total

swelling for any rise of temperature T' -T is

1/-V = av{T'-T),

or dv = avdT,

or — = adl ;
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or, in words, the proportional expansion equals the change

of temperature multiplied by the expansibility. If we assume

simple proportionality between change of volume and change

of temperature, it is the same thing as assuming that a is a

constant ; and in that case the expansion is said to vary with

the temperature.

The term " varies with " or " varies as " is a technical term,

and is understood to mean "is proportional to." The latter

is really the better expression, for in common language two
things can vary or change together without being pro-

portional, like the age of a child and its weight, or the

amount of sunshine and the cheapness of corn, or the height

of a look-out man on board ship and the distance of his

horizon, or the amount of oil consumed in a lamp and the

brightness of the consequent light.

But the term "varies as" or "varies with" is understood

to indicate more than merely changing together: it means

that they vary in a simply proportional manner, so that

if one is doubled or trebled or increased 1 per cent.,

the other is doubled or trebled or increased 1 per cent,

too.

When y varies as x, in the technical sense, it can be written

y ^ x; where oc is a mere symbol, not much used, to denote

" varies as."

Or it may be written y::x, and read y is proportional to x

;

or it may be written, the ratio y -.x is constant; or y-i-x or

* is constant, equal to 6 say ; or y = Ix.

This last is the simplest and most satisfactory mode of

stating simple proportionality, h being understood to be a

constant, that is something not at all dependent on the value

of X and y, which are the variables.

A straight line law is slightly more general than this:
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it includes the main idea of proportionality, but it exempts

from the necessity of vanishing together

;

y = a + hx

is the typical straight line law.

Either can be expressed as

dy = hdx,

ov -^ = I,
ax

for when we attend to variations, the constant term a has

no influence, and so disappears. The constant factor 6, which

is only part of a term, by no means disappears ; h represents

the rate of increase of y with respect to x ; for instance it

represents the slope of the line, being the change of elevation

per unit step along the base; it is in fact the 'tangent' of

the slope.

The next more general law is the parabolic law.

y = a + bx + cx^, (68 i.)

or it might be y = a-bx + cx\ (66.)

or y = a + bx-cx\ (68 ii.)

or y = a-bx-cx^ (68 iii.)

all of them parabolic, with different appearances.

The slope of such a curve is of course not constant.

To find an expression for the slope, we must take two

points near together and compare the vertical with the

horizontal step, that is find the dy corresponding to a given

small dx. To do this we let x change to a/ and y to y', and

then write the relation once again for the changed values

y' = a + h! + cal^,

and now subtract the old value from the new, so as to get the,

difference, y' -y =' (a-a) + b(af -x) + c (x'^ - x^)

= {b + c{x! + x)}{x'-x);

. diff. y 1 / , X

dm. x ^ '
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Now if the step is made quite small, the x and x' are

extremely nearly equal, so that it matters little whether we

Fro. 66.

write x! + x or 2a; or 2»' ; and in the limit when the step is

infinitesimal they become actually equal, and then

-^ = b+ 2cx,
ax

and this is the gradient of the curve at any point. It is not

constant, but it follows a

straight line law.

The rate of change of

the angle of slope may
be called the curvature.

When the slope is constant,

as in a straight line, the

curvature is nothing, but

when the slope changes, as in the last case, the curvature can

be measured as the rate of change of the angle of slope per

unit step along the curve. Suppose the gradient or angle of

Fio. 67.
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slope at any point is denoted in angular measure by 4>, then the

curvature could be defined as -^, and that is its usual measure.
as

Another method of measuring it, which seems simpler but

is not so satisfactory, is to indicate the slope by the tangent of

the angle <^, that is by the gradient ^, which we may denote

by a single letter
ff,

and then to denote the curvature by the

rate of change of gradient per horizontal step, that is by ^•

On this plan the value of the gradient for the above

parabola is g = b + 2cx,

and the rate of change of gradient is

because if % changes to d, g changes to 51' = 6 + 2c2;', and when

you come to reckon the difference ratio, the 6's go out

:

3/ — JC SO — £C

It is not customary or necessary thus to introduce a new

d^
symbol g\ it is neater to express -^ as -j— , that is to say as

^: and this it is which is equal to 2c.
ai^

So, in the original parabolic expression

y = a + bx+ cx\

the meaning of the constant c is half the rate of change of

gradient, which is a principal term in the curvature; the

meaning of the constant b is the slope, or gradient itself,

especially the slope at the place where x is 0, that is to say

where it cuts the axis of y ; and the meaning of a is the height

at which the curve cuts the axis of y, that is to say the inter-

cept on that axis. Compare the equations on page 388 with

the curves drawn.
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Observe, with regard to slope, that when the curve slopes

upward where it cuts the vertical axis, as in fig. 68 i. or ii., the

coefficient b, which measures the slope there, is positive; but

when it slopes downward as in fig. 68 iii. the term involving b is

negative. If the curve cut the vertical axis without slope, or

horizontally, the term involving b would disappear, and in

such a case the parabola would be represented hy y = a + cx^

(fig. 69).

Pro. 69.

If the curve cut off no length on the axis of y, that would

be indicated by the non-existence of the constant a, so that

that parabola would be written y = cx^ (fig. 70),

Pro. ro.

and this is the simplest expression for a parabola possible.
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Observe that it is the same curve all the time ; it is only

shifted with respect to the axes by the different values which
can be attributed to the constants.

c is the curvature term, and when c is positive it curves

upwards, like 68 i. ; when c is negative it curves downwards,
like 68 ii. or iii.

y = -cx^ would be like this (fig. 71)

:

Pro. 71.

If we want the parabola to look like this (fig. 72) :

we have only to turn it through a right-angle, that is to say,

interchange the axes of x and y, and write

X = a/,
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or if we wrote x = -cy^ it would look like this

:

[chap.

Pio. 73.

If we wrote x = a + cy^ it would become like this :

Pio. 74.

where the z intercept is o.
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If we wrote x = a + by + ci^ it would slope up where it outs

the axis.

Pio. 76.

If we had x = a-by + cy^ it would slope down at the foot,

like this

:

Pig. 76.
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Hz = -a + ci/^ the curve would cut the x axis on the left

:

Fio. 77.
*

If we introduce a term containing x^ as well as a term

containing y^, and if necessary a term xy, we can tilt the

parabola in any desired direction and place it anywhere in the

plane : though in these cases there is a risk that it may cease

to be a parabola; and if we introduced a term x^ or y' its

parabolic character is bound to be spoilt; just as the

introduction of either x^ or y^ destroyed the straightness of the

line y = a + bx.

The next step towards algebraic complexity is what is called

the cubic parabola y = a + bx + cx^ + da?,

where again the coefficients or constants, a, b, c, d, may be any

of them positive or any of them negative.

The beginner can plot this and see what it looks like,

—

proceeding after the same fashion as before ; that is attributing

any arbitrary value, positive or negative, to the four constants'

abed, and then reckoning the value of y for different values of x ;

afterwards plotting them to any convenient scale—remem-
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bering that the horizontal scale and the vertical scale need not

necessarily be the same, but may be chosen independently, to

suit the convenience of the draughtsman.

Inverse Variation.

It frequently happens that two quantities are connected in

such a way that one increases when the other decreases. For

instance, the plentifulness of a commodity, say corn, and its

price. In a year of good harvest the price of wheat drops.

During a famine the price rises. It might happen that the

total money to be obtained, for the produce of a certain farm

acreage, was constant, whether the crop was plentiful or sparse.

Such a simple relation as that is not likely to hold exactly; but

if it did, the two quantities—the price and the supply—would

be said to vary inversely as one another, that is to vary in

inverse simple proportion, so that their product remained

constant ; whereas if they varied in direct simple proportion

it would be their ratio which remained constant.

It does not follow that this law of simple inverse variation

holds because one quantity decreases and the other increases
j

all manner of complicated relations may hold between such

quantities ; the law of inverse proportion is the simplest

possible, and there are a great many cases where it holds,

or holds very approximately.

Take a piece of india-rubber cord or tubing, and pull it out

longitudinally ; as the length increases, the sectional area

diminishes, and it is a matter of measurement to ascertain

what relation holds between these two things.

If the tube were filled with water and were then pulled out,

the behaviour of the water would furnish a test of how the

sectional area varied with the length. If the water continued

to fill, or to stand at the same level in, the tube (which

might terminate at one end in a piece of glass tubing.
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for convenience of observation, and be closed with a solid

plug at the other), that would mean that the sectional area

and the length varied inversely as one another; in other

words that their product was constant; for the product of

length and sectional area is the volume, and it is the volume

which the water measures. Try the experiment. As a matter

of fact the water will be found to sink a little as the tube is

stretched, showing that the volume increases slightly : the

law of simple inverse proportion does not hold in this case.

Consider another case then. Take a vessel of variable

capacity, for instance a cylinder and piston ; or a tube open at

one end, which can be plunged mouth downward under a

liquid, like a long diving bell, and can be lowered or raised so

that the air in it shall be compressed or expanded at pleasure.

If a pressure gauge is attached, it will be possible to read

how the pressure increases as the volume diminishes ; and it

will be found that the two vary inversely as one another,

provided one is careful to take the whole dry-air pressure and

the whole volume into account. The product of pressure and

volume will be found experimentally constant ; because if one

is halved, the other will be doubled ; if one is trebled, the

other becomes one-third of its original value; and so on, a law

which is written

:

1

^*?

or » « -, or pv = constant.

P
These are all statements of the same fact

; p standing for

the presstu-e, and v for the volume of a given quantity of dry air

at constant temperature. If the vessel leaks, so that the

actual amount of air under observation changes, the law will

not apply. Nor vdW it hold if the temperature is allowed to

change. For if air is warmed it expands, that is, it increases
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in volume or in pressure or in both together ; and there is no

necessity at all for the pressure to decrease as the volume

increases unless the temperature is maintained constant.

Hence a complete statement is that pv — constant if T is

constant ; or, if we choose so to express it, po = const, pro-

vided dT = 0, i.e. provided the difference of T is zero, which

is only another way of saying " if T is constant."

Suppose, subject to dT = 0, the pressure was increased by

a small amount dp, and the volume thereby decreased a small

amount - dv, we should have the new product of pressure and

volume expressed thus

:

p'lf = (p + dp)(v + dv),

and this product must equal the old product, pv, because of

the law that the product of pressure and volume is constant

;

so, multiplying out, we get

pv +p dv + vdp + dpdv = po.

Wherefore, ignoring the second-order small quantity dpdv,

we have vdp+pdv =

dv dv
or -^ =

p V

as another statement of the law of inverse variation.

Summary.
DiKECT VAKIATION

y = fa,

or dy = hdx,

dy J y
or -f = k = -,

dx X

or xdy-ydx = 0,

dy dx
f.

or — = 0.
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Inverse Variation.

xy = I,

or xdy + ydx = 0,

dy _ y _ _!i
dz~ X ~

x^'

dy dx .
or -i+— = 0.

y X

So that ii -r- - +-, that is if the ratio of diflferences is
dx X

numerically the same as the ratio of the quantities themselves,

it is a ease of simple proportion; but two distinct cases are

given by the alternative sign :

if the sign is + it is direct proportion

;

if the sign is - it is inverse proportion.
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Pumps and Leaks.

When you pump water out of a reservoir, taking a barrel

full of water out at each stroke, the quantity of water

remaining decreases in an arithmetical progression, of which

the first term was the contents of the well, and the com-

mon difference is the contents of the pump barrel. If one

were called F, the other v (read big F and little v), the

level in the well would fall after successive strokes in the

following series

:

K> \' ^2' • ^^«i

where h^ is the height of the water before pumping began', and

h„ is the height after n strokes of the pump,

such that ^ = Jl = _A_ = _A^ = ...,r F-v F-2v F-3v

a mode of writing which is called a continued proportion.

The quantity of water remaining in the well descends in a

decreasing Arithmetical Progression,

F, F-v, F-2v, etc. ... F-nv,

and the well is empty when nv = F; or the number of strokes

required to empty it is the ratio of the capacities concerned, F/v.

The height or level of the water in the well goes in the

same sort of progression, and h„ is zero after F/v strokes.

L.E.M. 2c
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But now consider an air pump instead of a water pump.

The peculiarity of air or any other gas is that it always fills

the vessel which contains it, and does not accumulate in one

part as a liquid does. A bottle may be said to be " full " of air,

whether it contains much or little, in the sense that all parts

are equally full. It is always full in this sense, and it can

never be full in any other sense; because however much air

is in, some more can always be pumped in : the only limit is

the bursting and destruction of the bottle. Or, if it were

made of porous material, it could be said to be as full as it

would hold when the rate of leak was equal to the rate at

which air was being pumped in; but even that could be

exceeded by beginning to pump a little faster.

With a liquid, on the other hand, a bottle may be properly

said to be " half-full " ; it can also be completely full, for you

cannot pump more than a certain quantity into a closed vessel.

If it is an open vessel the rate of leak at a certain definite

point becomes suddenly equal to the rate of supply, and the

vessel overflows ; which is a good practical method for main-

taining a constant level.

There is no such easy method for providing a constant air

or gas or steam pressure, though something of the kind is

attempted by means of a leak so adjusted as to suddenly

change from near zero to something considerable, at a certain

critical pressure,^-such an arrangement being called a " safety-

valve.'' Locomotive boilers are usually filled with steam to

this pressure before a train starts on a long journey, and any

excess steam which the furnace generates blows off noisily in

a visible cloud.

If you were to pump air into a closed chamber, a barrel full

of atmospheric air would be injected at every stroke, and the

pressure would rise in an increasing arithmetical progression,
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^0 being the initial pressure before pumping, and p„ the

pressure after n strokes,

such that a = JJL_ = P2^ = = _f^,

the pressure being proportional to, and a measure of, the extra

quantity of air injected. But if a pump is used to eject the

air, that is to say, to draw out from a closed chamber a barrel

full of air at every stroke, the law of decreasing pressure is

different : it then forms a geometrical progression.

For the same quantity of air is not removed each time.

The same volume is removed, but it is removed from air of

gradually diminishing density. The air keeps on getting

rarefied, and this rarefied air it is which has to supply the

pump barrel ; so that during every direct stroke the air which

at first occupied F expands to occupy F + v, and then the

excess is ejected into the atmosphere at the return stroke of

the pump, ready for the expanding operation to begin again.

Thus, assuming the temperature to remain constant, we

have the pressure diminished at every stroke in the constant

ratio r=^— ; and the series jIq, p-^, p^ p„ is a decreasing

geometric progression with the common ratio FjiF+v).

So that p^ = Y^^Vi,-

_ F •_ / r Y
Pi - V+v^^~ \F+v)^'>'

F / F y

etc.,

the ratio of the pressure at beginning and end of any stroke

being constant, viz.

^ = -jr^v' = ? '^^
'

^"'^ P" = -^<^^"

Hence the operation of an ordinary exhausting air pump is
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governed by the law of a decreasing geometrical progression

;

and an infinite number of strokes would be necessary completely

to empty the vessel, that is to reduce the pressure to zero.

Leaks and Compound Interest.

Now suppose instead of being pumped out the vessel were

full of compressed air and were to leak; or suppose there

were a cistern full of water with a crack in the bottom of

it ; the pressure in the one case and the level in the other

would fall according to a certain law. If the leakage rate

were constant, that is to say if the same amount of material

escaped every second, the law would be a decreasing A.P.;

but that is never the case in fact. The size and circumstance

of the leak-orifice being constant, the amount of matter which

escapes through it depends on the force with which it is

urged, that is to say on the pressure behind it. A high

pressure reservoir, or a tall full cistern, would leak fast, the

air or water rushing out of the leak with violence; whereas

towards the end, when the vessel was nearly empty, the rush

would have degenerated into a mere dribble or ooze, unless of

course it had worn the hole larger—which we will not suppose

to be the case. With a constant sized orifice the rate of leak

is therefore proportional to that which causes the leak, viz.

the pressure ; and so the pressure keeps on falling, at a rate

depending on itself : a curious and important, because, in one

form or another, a frequent case.

When you come to think, it is just the compound-interest

ease, but inverted. Capital increases at a rate proportional to

itself : when small it grows slowly, that is by small additions,

when large it grows quickly. If we call the capital at any

moment x, its rate of growth will be -j-, since dx means an
at

increase of capital, and dt the time during which this increase
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occurs. In the case of capital the increase is somewhat
discontinuous

: the interest is added every year, or it may be
every month, or perhaps every day, but not every instant.

Let us assume that it is continuous however, so that it

increases from moment to moment at the rate — : this rate of
dt

increase will be proportional to x itself, and of course to the

percentage which is granted.

Suppose for instance it was 5 per cent., or -05, the law of

increase would be dx „,
^,= -05x;

the interest, dx, is proportional to the rate, -05, to the capital

on which it is paid, x, and to the time during which it has

accumulated, dt; or dx = -OSxdt.

If it were 4 per cent., or 3 per cent , or 2J per cent., of

course we should substitute -04, or -03, or '025, for the -05

numerical coefficient.

So with the leak, we have similarly to express that - dx, the

loss of pressure, is proportional to the pressure, and to the

time, and to a leak-aperture constant which we will call k ; so

dx = - kxdt

;

for to express that it is a loss and not a gain, a decrease not an

increase, we must apply to it a negative sign. The x might be

pressure, or it might be level or "head,"—the two are

proportional in the case of water ; but level has no meaning in

the case of gas, so we will take " pressure " as the more

general term, and, denoting it by p instead of x, write the

law of leak, in the simplest possible case of a constant orifice, as

^- -to-

the rate of fall of pressure is proportional to the pressure from

instant to instant, diminishes as it diminishes, and does not

reach zero till the pressure reaches zero. The pressure in fact
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as a geometric progression. But it is a geometric

progression with one curious feature about it, it is continuous,

not discontinuous like numbers ; it does not go in steps or jumps,

like compound interest added every year or every day, but it

is like compound interest added or rather subtracted every

instant, with complete continuity, according to a smooth curve,

the logarithmic or G.p. curve, see page 357 or 101 or 179.

Cooling.

The cooling of a hot body under simplest conditions follows

just the same law ; the rate of fall of temperature is propor-

tional to the actual excess of temperature above surrounding

objects. If we denote this temperature by 6 and time by t,

expresses the simplest possible law of cooling as the heat

escapes or leaks from the body into surrounding air or space.

It is instructive to put a thermometer into a flask or pan of

very hot water, and read the thermometer from time to time

;

at first every half-minute, or oftener, then every minute, and

then as it cools more and more slowly, it will suflfice to read it

every five minutes ; finally plotting the result thus

:

Atmospheric

Temperature

Fia. 78.



XL.] LEAKS. 407

By choosing different vessels, say one black and one- bright,

or by choosing similar vessels and filling them with different

liquids, one water and another turpentine say, many instructive

observations can be made ; but a discussion of these would

carry us too far at present.

The curve of cooling is identical with the curve of leaking

;

and the curve of leaking might be plotted by reading a

pressure gauge, or by reading the level of a leaking water-

reservoir, from time to time. And both are curves of de-

creasing G.P. or are logarithmic curves.

Electric Leakage.

Experiments in electricity are more difficult, but if it were

possible to read satisfactorily by means of an electrometer the

potential of an electrified body or Leyden jar or condenser

which was steadily leaking, it would be found to obey the

same law.

Continuously decreasing G.P.

Now see how to express a quantity which decreases geo-

metrically with perfect continuity, and not by steps, as time

goes on. Notice that time is a continuous progression ; there

is no means of hurrying it ; one day is like another, and they

follow on with absolute regularity. Time is an inexorable

arithmetical progression, an increasing one if you think of

your birth, a decreasing one if you attend to the other end of

your life. Whatever can be varied, time cannot : at least not

by us.

Now when a vessel is leaking, the pressure is to be multi-

plied by a constant factor, some proper fraction, at each

successive equal interval of time.

So p^ at the start, when time is 0, or say at 12 o'clock noon,

becomes let us suppose ^Po = Pi ^^^^ *^® ^*P^® °* ^ ^°™' °^
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at 1 p.m. If so, then in another hour it will have fallen to ^p^,

or what is the same thing \p^ ; in yet another hour, that is at

3 o'clock, it will be ^p^, and in n hours it will be — ^'o J
hence

it will have fallen continuously down the decreasing geo-

metrical-progression-curve depicted on page 101.

But why should we suppose it halved in each unit of time %

We can be more general than that, and say that it is reduced

to -^0 (read, ' one ?-th of ^-nought ') after the lapse of one hour,

where r is some number greater than unity ; then in another

hour the pressure will have become -p^ or what ,is the same

thing ^i?o-

So the pressure at 2 p.m. is p^ = r'-pg,

at 3 p.m. ^3 = r-3^0,

and at n hours after noon p„ = r'^pg.

Or we might say that, at any time t after the start, the

pressure is
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of the cooling body), and any other circumstance which can

affect the rate of leak, other than pressure (or temperature) and

time. And the log of r is the diminution of the log of the

pressure, during any lapse of time, divided by the time which

has elapsed. It is the ratio of the logarithmic diminution, or

decrement, to the time ; it is the decrement of the logarithm

of the pressure per unit time, and is technically known as

the "logarithmic decrement" of the pressure (or of the

temperature in the case of a cooling body, or of the potential

in the case of an electric leak, or of the level in the case of a

leaking cistern).

To measure logr, all we have to do is to read the

pressure (or temperature, etc.) at any one instant, and then

read it again some time later, observing the interval of

time.

Let the two readings be denoted by p^ and p„, and let the

intervening time be n seconds, then

^ogj'o - logj^n

n

is the logarithmic decrement per second, and is a measure of

the constant we have called log r.

Thus the law which was at first expressed in differential

form as -^ = -kp or — = - hdt,
dt ^ p

can also be expressed in integral form as

P = M'' o'" logi'o -logp = tlogr;

and it now becomes necessary to ascertain and express the

relation between the two constants h and r, which evidently

refer to the same sort of thing, viz, the fixed circumstances

of the leak.

Now remembering what we know of exponentials, let us see

if we can puzzle out the connexion between these constants.
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The law that we have written expresses the fact that

pressure decreases geometrically as time increases arithmeti-

cally : a constant factor is characteristic of one progression,

while a constant difference characterises the other.

We know that if p^ is the pressure at the era of reckoning,

that is at the instant from which time is to be reckoned, then

at any time t the pressure is jj = Pi^r'^j and at any other

dp and

time f the pressure is^ = Po^~'\ therefore
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The physical meaning of ft is —\dp

the physical meaning of log r is

pdt'

logff - logy'

t

Summary.
These two

things turn

out to be

mathemati-

cally the

same thing.

But when logr is thus written, what base is intended for

the logarithm'! There is nothing to say that the base is 10,

and indeed no explicit assertion has been made about any

base whatever : all that has been asserted is that p is to be a

quantity whose rate of change is proportional to itself, or

equal to itself when multiplied by the constant k or log ir.

There is evidently something here worth investigation from

the purely mathematical poiht of view. It is a definite

mathematical question to put "What is that quantity whose

rate of change shall be proportional to itself ? how is such a

quantity to be expressed in general?" To investigate this

question, we can study the rates of variation of various

algebraic expressions.
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Differentiation.

Take the area of a square, and ask how it varies with the

side which contains it, when the square slightly expands. We
already know, but we will go through the process, especially

for a very small or infinitesimal increment of the side. Let

the side be x, and the area of the square be called y, so that

y = x% then when the square is warmed a little, x increases by

the amount dx, and y increases by the amount dy, such that

y + dy = (x + dx)^

= x^ + 2xdx + {dxy.

Now let dx be so small that the square of dx may be utterly

neglected in comparison with dx itself. In the limit suppose

dx actually infinitesimal, so that (dxY, being dx x dx, is again

or still further infinitesimal, even in comparison with dx ; then

y + dy = x^ + 2xdx;

but y = 7?, therefore, subtracting, there remains dy = 2xdx,

^^=2x;
dx

whence the rate of change of area of an expanding square, per

unit expansion of edge, is twice the length of one of the sides :

a very elementary statement, but not obvious. It is of course

a general analytic or algebraic result, and in no way depends

upon any geometrical meaning attached to y^. The geometrical
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square is only a special case, and it is convenient as an

illustration; but it would be equally true for any other

variation of one quantity as the square of another; for

instance, the relation between the velocity of a falling body
and the height it has fallen, so well known in mechanics, is

written •<? = 2gh, and this we can re-write in differential form

d{v^) = 2vdv = 2gdh,

ah If

which gives us the extra speed gained for each additional foot

or centimetre or other small unit of height.

Suppose for instance the height already fallen were 100 feet:

a dropped stone would have acquired a speed of 80 feet a

second. By the time it has dropped a foot more, the above

equation asserts that its speed will have increased by the

amount I4 = f = '^ ^®®* V^^ s®*'-

We might also get the above relation thus

:

«2 = 2gh,

v'^ = 2g{h+\);

.-. v'^ -v^ = 2g,

or V -V = -r^—d:^^=-;
V +v 2v V

but in this case there is an approximation, because 1 foot

added to 100 is by no means infinitesimal though it is

moderately small. Consequently a sort of average or mean has

to be taken between v and v, which in the limit would be

ultimately equal.

The expression dy = 2xdx we long ago illustrated by the

two strips, each equal to xdx in area, which went to form the

increase of surface in a square plate x^ expanded by heat

(page 369) ; the little corner bit {dxf being ignored, because

when the strips themselves are infinitesimal, the infinitesimal
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bit of each at the ends is nought in comparison, or is said to be

an infinitesimal of the second order.

Similarly we may deal with the expansion or variation

of a cubical block of side x.

Denote its volume by y = x%

then when it expands infinitesimally

y+ dij = (x + dx)^

= a? + Zx^dx + infinitely smaller quantities

;

.'. dy = 3x^dz,

dx

or the rate of expansion of a cubical volume, per unit increase

of a side, is three times the area of one of its faces.

Observe that the rate of increase of an area is a length,

while that of a volume is an area ; but that is because the

rate of increase is taken per unit of length. If it were taken

per unit of time or of temperature, and if, as before, we write

y = x^, we could say that

dy _ dx

dt
- ^"^ dV

or the rate of variation of the volume with respect to any

outside or independent variable, such as temperature, \-j-\

{i.e. the cubical expansion per degree), is greater than the

rate at which each edge expands for the same variable, (-=-)

(the linear expansion per degree), in the ratio of three times

the area of one of its faces.

Stated thus it is perhaps hardly geometrically evident,

nor need it be made so. What is geometrically capable of

illustration is the fact that

dy or d{x^) = 3x^dx.
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Other expressions of the same kind of fact are best

treated as mere analytic or algebraic statements, without any

necessary geometrical signification.

So we learn that to get the small change of any quantity

we have only to attend to the early terms of a binomial

expansion : two only, if the change is infinitesimal.

. For instance, to find d{x% that is to express it in terms

of dx, we let x increase by dx, and then expand and neglect

all beyond the first power of dx ; thus

(a; + dxY = 3i^ + iiJ(?dx-\- higher powers ;

but x-^dx = ai, and d (a;*) means x'^ - x*,

therefore d{x:^) = ix^dx.

Similarly d{x^) = Sa^dx,

d{x^) = Qx^dXi and so on, until

d(a;i2) = I2x^}dx,

and dx" = nx''-''dx.

So also with fractional indices :

For instance, to find djx. Expand, and ignore all higher

powers of the infinitesimal quantity dx.

I^x+ dx)^ = x^ + ^x'^dx + higher powers,

but (x + dxf = ^x',

, _ij dx
so djx = J^-Jx = \x ^dx = g-^.

,i_ J. , ^r^ f\Again {x + dxf = a;' + fa;

therefore d J^ = dx^ = %x^dx = |> .
dx.

Or take negative indices

:

To find d(^ or dx''^; expand again.

(a; + &)-i = x-^-x-Hx,
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but (x + dx)'''- = -;,

\X,/ X X
rff±)=A-± = -a;-2rfa: =

-J.

And in general, whatever n may be,

dx" = nx»->dx,

a perfectly general result, worth thoroughly learning and

applying to special cases.

Even in the case when w = it holds good ; for then it says

that dx^ = 0,

which we know is true, because a;" = 1 = constant, and so its

differences or variations must be zero.

If w = 1 it gives dx = I . dx, which is a mere identity.

If m = 2, it gives dx^ = 2xdx

;

if w = 3, „ da? = 3x^dx,

which we separately verified ; and so on.

Examples.
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-(^{a + bx+ cx^ + x») = b + 2cx + 3x^; ^(A+Bx") = n£x"-^;

^{A+Bx + Cx^ + Dx^ + Ex*+ ..+Zx'')

= B + 2Gx + 3Dx^ + iE3^+...+nZx''~^;

W x^' dx\x) x^'

—(-\ = - 1 • L(^\ - ^
dxW) 3?' dx\xy ~

a^'

—{-\ =. -- ^[4_ n\ - ^
dx\x) x^' dx\x^^) ~ ~^^'

d(a\ a drA r, ^\ A ^,

mWx) = -W' diKx+^ + ^V = -^2 + ^'

d /A B ^ J. „ „\ 2A B ^ „„sW +i + ^+^'^ + ^^V
= -y-^2 + ^+2fe;

dx^=^x-^dx; y^-YJx'
d

I I \ «. d , , . ^ b

dx-^ - - ^x~"^dx -(^ - _ .i_ .

""^ " ^'^ "^ ' dx\]x)- 2(»3'

d / , , I c\ a c 1/ c\-^ajx + b + -j-^) = 2>-2(;^B =
2j-x('-x)'

~{a + bxf = ^(a+2abx+ b^x^) = 2ab + 2b^x = 2b{a + bx);

^P + bxf= ^(^^+2ab + b^xA = -^+2b^x
dx\x / axVa;'* / op

L. E. M. 2d



418



CHAPTER XLII.

A Peculiar Series.

We are now able to write down a set of algebraic terms,

each of whicli shall be the differential-coefficient of the one

following it

:

Of this we might make a regular series, for just as ^x^

differentiated gives x, so ^x^ differentiated would give x^, and
0*3 ^ 0*4

-—= would give ^x^. So also -—-—- differentiated would give

-—-, and so on ; hence the series

x^ x^ sc^ x^
l+'' + 2!-^3! + 4!-*-5! + -

is a series which, when differentiated, gives as result

a;2 J.3 j4

the very same series,—provided both extend to infinity:

a very curious case, the rate of variation of the series is

equal to itself. (Of. p. 411.)

Such a series must therefore be appropriate for use in the

theory of leaks, that is for dealing with a quantity whose

rate of change is proportional to or equal to itself. We can

guess therefore that such a series must, when plotted, give

a curve of the nature of the exponential or logarithmic or

L.B.M, 2d 3
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geometrical-progression or compound-interest curve. If we

call its value y, it satisfies the equation
-f

= y (cf- page 405).

It is a notable series. It is plainly convergent if x is less

than 1 ; but it is convergent even when x is equal to 1 or

greater than 1, because the denominators increase so fast;

they increase so fast indeed that a moderate number of terms

are generally sufficient to evaluate it fairly. The powers of x

grow fast in size when x is greater than 1, but the factorials

of the corresponding index-number grow still faster, and so

must ultimately get bigger ; for x stays as a constant factor

while being raised to any power, while in 'factorials' the

factor keeps on increasing. See page 315.

Let us try what the value of this series is when a; = 1

;

1 + 1 -t- y'+ S- + ^t + TTiT + T2 T7 + TTrVff + • • • •

Greater than 2 and apparently less than 3, because

1 + 1-1- J-l-|--l-|+iJ5^-t-... would equal 3.

With patience its value can be reckoned to any desired

degree of accuracy, and it comes out

2-71828...,

a remarkable number, usually called e.

So now we can reckon what the series is when x has any

other value than unity. If we try it arithmetically for a; = 2

we shall get

1 4- 9: 4. 4 J. 8 1 16 1 32 1 64 i

where we observe that though at first the numerators are

bigger than the denominators, afterwards, in spite of the well-

known rapid increase of the powers of 2, the factorials in the

denominators soon overpower them ; for 21^ = 4096, whereas

1

12 = 479,001,600, and is thus a hundred thousand times as

great.

To get a good value for this last serie? wq must take a fair
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number of terms, ten or a dozen, into account ; and if we do
we find the result

7-389...

,

which is e^.

Similarly if we put a; = 3 we shall get 20-09...

,

which is e'
;

whereas if we put x = \we get 1-6467...

,

which is ^e.

Thus we suspect that the series

x^ y?
^+" +

[2
+
[3
+ -

is in fact e* ; which is true, and it is called the exponential

series accordingly.

It has the singular and very useful property that its rate of

change is equal to itself, that is to say that

*• = '

as we have already proved by differentiating each term of its

series separately and observing that the series is unchanged by

the process, being simply repeated over again.

Natural base of log^arithms.

We can now apply this to logarithms :

Let y = e',

so that logy = a; loge, or log.y = x;

we have just learnt that in this case

dx y'

wherefore d log, y = dx = —
That is to say, the rate of change of the logarithm of a

variable number is equal to the rate of change of the number
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itself divided by that number ;
provided the base of logarithms

is e.

If we take any other base than e we shall not get quite so

neat a result.

For let u = 7", where r is any number whatever,

then logu = a; logr (or log,M = z),

and so — = dx.losr;

wherefore d log,M = cfec = -^—,°' M log r

which only reduces to the above simple form when r = e;

otherwise it requires the natural logarithm of r to appear.

For instance, suppose we put u -^ lO^sisosoa^ as a re-

presentation of r', and change the index by a small amount,

say to 2-9180408; then, by referring to an ordinary seven-

figure table of logarithms, we shall see that the corresponding

change in the number u is "02

since u = 828-00 and «' = 828-02.

Now our assertion is that the change in the logarithm

{x' -X or dx, viz. -0000105) would have been equal to the

change in the number (m' - m or du) divided by the number
-02

(m or «'), that is to say would be practically equal to ---, if the
828

base had been e ; but since the base is 10 this result has to be

divided by the further fixed quantity—the natural logarithm

of our artificial base 10 (which is a number approximately

equal to 2-3), in order to give the right result.

And it will be found accordingly that

'02
pr^r^j—fT-s = -0000105, almost exactly :

828 X 2-3 ' '

which illustrates the last algebraic line above.



XLir.] BASE OF LOGARITHMS. 423

Let us illustrate the occurrence of this natural logarithm of

10 by another numerical example, and at the same time make
an estimate of its value.

Suppose we put lO^ to represent r', and then allow the index
X to increase somewhat, say to 201 ; what will be the corre-

sponding change in r*^

We might write u = lO^oo, u' = lO^oi

;

.1,. du u'-u 102"i-102
so that — = -—- = — iiL = i noi _ i /i

^

MM 102 ^" ^ {!)

But in general when m = r*, -j. = r'logr, wherefore

^ = (?a;.logr=-011oglO; (2)

and from these two expressions for the same thing we can

approximately evaluate the natural log 10. For equating (1)

and (2), we get

lO*"! -

1

log 10 =
.Q^

= 100 X (lO'Oi - 1)

= 100f~/10 - 1) = 100(1-0232 - 1) = 2-32,

the last digit being affected by an -error caused by the increase

in X not being infinitesimal.

This 2 3... is approximately the logarithm of 10 to a certain

base which has not been artificially specified, and which there-

fore must have entered automatically and "naturally" without

convention or artifice. What is that base 1

It is a number such that if raised to the 2-3... power it will

equal 10. Call it n, then

2'3...1ogi(,» = logiolO = 1,

or logioTO = 2^^.^ -434...,

wherefore n — 2-717...

;

which plainly points to e, with a deficiency of one part in two

thousand, or a twentieth of one per cent., due to approximations.
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Clearly therefore there is something peculiar about e as the

base of an exponential system : it is simpler than any other,

and it occurs automatically or naturally, unless we force some

other base in ; for when one finds that

whereas t- = e*.
dx

it becomes apparent that the base here automatically indicated

is such as to make log« = 1.

The fact is that logr, wherever it naturally occurs, means

log^r, and not a logarithm to any base at random. There

appears therefore to be a natural base for logarithms ; in this

respect difiFering entirely from the base or radix of the scales of

notation in ordinary counting. Ten, or twelve, or any number,

might be used for that—it was a pure convention ; but though,

as soon as we have adopted ten as the numeration base, ten

becomes specially convenient for practical calculations by aid

of logarithms also, yet ten is-not the natural base of logarithms;

nor is it the simplest base for an exponent. That property

specifically belongs to the incommensurable number called e.

The expansion of any exponential, such as r", is now easily

managed in terms of e; for r may be expressed as e*, whence
r' = e** ; and we already know that

,*.= ! +&,+_.+ _+....

But since r = e* it follows that h = log/, hence the above

expansion may also be written as

^1,1 .
(iKlogr)"

r* = l+zlogr + N

I
'
+...,

where the logarithms are all to the base e.
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For the special case when x is infinitesimal, say dt,

that gives us r^ = l+dt. log r,

wherefore ?•" - 1 = dt. log r,

which justifies a step assumed above (page 410) ; where,

however, it happened that the dt had a negative sign.

The whole theory of leaks or cooling is now quite easy, after

this incursion into the elements of pure mathematics : for

given that any quantity p (say pressure or temperature or

potential) changes at a rate proportional to itself, we can

write down instantly the following equivalent expressions

{t meaning time)

:

dp

di
-hp.

^= -Ut,
P

dlogp = -kdt,

logp'- logp = lc(t-f),

logp + kt = constant = log^^,

logf-= -kt,
Pa

p =i?o«''"-

All these are different modes of expressing the same

physical fact : the law of a cooling body, or a leaking reser-

voir, or any other of the many oases where rate of change

of a quantity is proportional to the quantity itself ; and the

last gives explicitly the value of that quantity at any

instant, in terms of the initial value, the logarithmic decre-

ment, and the time.

And this must be regarded as typical of the way in which

general facts in Physics are simplified, summarised, and com-

pactly treated, by aid of more or less easy mathematics.
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So ends the present book, but in a subject like this there

can be no termination; every avenue leads out into infinity

and must be left with its end open. In no science are there

any real boundaries. In an advanced book a subjective

boundary may be reached, viz. the boundary of our present

knowledge ; but in an elementary book like the present that

is immensely far away, and the only terminus that can here

be reached is a terminus of print and paper.



APPENDIX.

I. Note on the Pythagorean Numbers (Euc. I. 47).

See Chapter XXXI.

By the Pythagorean numbers I mean simply those triplets of

integers which serve to express the relative lengths of the sides of

commensurate right-angled triangles : numbers therefore which
satisfy the conditions of Euclid I. 47, that any two of them are

greater than the third, and that the sum of the squares of two of

them equals the square of the third.

The only numbers mentioned in the text, page 272 are :

3, 4, 5 ; 5, 12, 13 ; and 8, 15, 17 ;

but there are innumerable others.

The subject is of no practical importance, and is only mentioned
here as an example of an easy kind of investigation in pure

mathematics which an enthusiastic and advanced pupil might be
encouraged to undertake, and which might lead him to take some
interest in less simple parts of the theory of numbers. The result

of the investigation, in this case, might be worded thus :

In general the sides and hypothenuse of a right-angled triangle

are incommensurable, but an infinit.e number of such triangles

exist in which the three sides may be represented by integers.

These are of some interest, and the simplest of them, when the

sides are in the ratio of the numbers 3, 4, 5, is frequently used by
surveyors.

A formula from which all such sides may be calculated is the
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meaning that ab and ^{a^-h") represent the sides containing the

right angle, and that ^{a^+b^ represents the hypothenuse.

To get a number of these triangles rapidly, without repetition

of shape, i.e. without obtaining mere multiples of other sets,

it is sufficient to choose as the auxiliary integers a and b any odd

numbers which are prime to each other. The reason for choosing

the auxiliary integers, a, b, as odd numbers prime to each other, is

simply that if they contained a common factor the triplets obtained

from them would be merely a multiple set representing the same

shape as a simpler set ; whereas if one was even while the other

was odd, then a^-b' would be odd, and ^(a^-b^ would not be an

integer ; or if everything were doubled it would be merely

repeating the sides of some previous shape in another order.

Excluding multiple sets, one of the sides and the hypothenuse

are always represented by an odd number, and the other side by

an even number.

It is easy to prove that one of the sides containing the right angle

must always be a multiple of 4, that one of them (it may be the

same) must be a multiple of 3, and that one of the three sides (again

it may be the same) must be a multiple of 5 :

One of the two sides must be a multiple of 3.

Of course a, or 6, may itself be a multiple of 3, thus satisfying

the condition for the side ab. If neither of them is, then ab is not

a multiple of 3, but in that case their squares must be of the form

3«i+ l, 3to+ 1 [or rather of the form Qm+ 1, 6n+ l, since they are

odd numbers], and so the other side, viz. ^(a^-6^) is then of the

form 3(m — n).

One of the two sides must be a multiple of 4.

Taking a = 2m+ 1,

b = 2m+1,

i{a'-b^) =-2(m-n)(m+n + l),

and either m- .^or m+n+1 must be an even number, since their

difference is an odd number.

One of the three sides must be a multiple of 5.

If a or 6 is a multiple of 5, one of the sides, viz. the odd side,

is the required multiple. If not, its square must be of the form
40m+ 9 or 40m + 1. If the squares of both have the same remainder.
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the even side is a multiple of 5. If one has remainder 9 and the

other 1, the hypothenuse is a multiple of 5, of the form 20«i+5.

So if neither a or 6 is a multiple of either 3 or 5 it follows that

the number representing the even side has all three of the factors,

3, 4, 5 ; i.e. that it is a multiple of 60.

Moreover it can be shown that the hypothenuse is always itself

the sum of two square numbers, one odd and one even, and that the

odd side is the difference of those same squares. Thus, writing the

odd side as

(2ot+ 1)(2»+1) = (m+ re+ l)2-(m-9i)2,

the even side is %{m-n){m-\-n+ \),

and the hypothenuse is (m - w)''+ (m

+

m.+ 1
)''.

The following is a table of the Pythagorean triplets, with the

mode of obtaining them displayed.

Auxiliary pair
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Auxiliary pair
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to a pioneer paper read by him before the Association for the
Improvement of Geometrical Teaching, in January, 1888.
The subject was subsequently and independently developed by

Mr. W. Williams of South Kensington, now of Swansea; and,
whether it has received full recognition or not, it has undoubtedly
justified itself in the eyes of all who have put it to the test of
practical experience. Tte whole subject is too large for this place,

but a few elementary remarks are appropriate :

Quantities of different kinds do not occur in one expression

;

in other words, the terms of an expression must all refer to the
same sort of things, if they are to be dealt with together or
equated to any one thing. Nevertheless an expression like

is common, and a; may be a length ; whiah looks as if we could add
together a volume, an area, a length, and a pure number. Not so,

really, however ; suppressed or implicit or unexpressed or masked
dimensions must in that case exist in the numerical coefficients;

the coefficient 5 must implicitly or tacitly refer to a length, 2 to an

area, and 6 to a volume, if ^ is a length ; and thus all the terms are

really of the same kind. So they always will be in every real

problem.

When an equation contains terms of essentially difierent kind, it

must really consist of two or more equations packed together into

the apparent form of one. Thus ,J(
— l) isa, quantity of essentially

different kind from 1 or (y^+l) ; the former being imaginary, the

latter real. Hence if ever they occur together in an equation, as

for instance in such an equation between complex quantities as

aV(+l)+6V(-l) = c^(+l)+d^(-l),

or what is the same thing (writing ;^( - 1) as i, for short, and V(+ 1)

as an unexpressed unity factor)

a+ bi = c+di,

it must be regarded as a double equation, unless some of the

quantities a, b, c, d are themselves complex ; for it can only be

interpreted and satisfied by the two separate equations

a = c and b = d.

In other words it is really two equations packed together for

brevity into a single statement,
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For if either of these conditions is not satisfied, if for instance b

is less than d, it is impossible to fill up the deficit by any increase

in the value of a, since that refers to a quantity of totally different

kind. A deficiency of oxygen in the atmosphere cannot be com-

pensated by a surplus of gold in a bank ; nor can deficiency of

beauty be effectively counterbalanced by excess of size.

The group met with in a German philosophical treatise (according

to a writer in the Hihbert Jowmal), as representing the class which

does not " count " for moral and intellectual purposes,

" cows, women, sheep. Christians, dogs,

Englishmen, and other democrats,"

cannot be regarded as classified according to a satisfactory system,

any more than can the somewhat similar group of tax-payers which

is at present disfranchised by Act of Parliament.

So that any conclusions, inferences, or results due to the

aggregation of such individuals in a community must be separable

into a series of independent conclusions, inferences, or results, except

in so far as some of these things are themselves complex, partaking

more or less of each other's characteristics.

Sometimes we have equations among integers or other commen-

surable numbers, with incommensurables likewise involved, such as

m-f-wV2 = .»+y\/2.

If now TO, n, X, y are all to be considered integers or any vulgar

fractions or terminating or recurring decimals, i.e. unless some of

the quantities m,, n, x, y are in whole or in part themselves surds,

it must follow from the above statement that

X = m and y = n,

otherwise the equation cannot be satisfied.

Again suppose x means a distance measured horizontally, and y
a distance measured vertically, and the equation given is

ax+by = cx+dy
;

it consists of two distinct and independent equations, unless a, b,

c, d are themselves directional quantities and not mere numbers
;

in that case, however, i.e. in case a, c are vertical lengths and 6, d
are horizontal lengths, the equation is quite homogeneous and

satisfactory, and denotes certain relations among rectangular areas.

Or a, c may be reciprocals of horizontal lengths, and b, d re-

ciprocals of vertical lengths ; and so on. But if a, b, c, d are mere
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numbers, we are bound as before to equate the coefiacients, that is

to say to admit that a = c and 6 = rf ; for no amount of horizontal
travel is equivalent to a rise, nor can horizontal dimension make
up for a deficiency in height.

In any single equation therefore, like v^ — 2gh for instance, where
one side is plainly the square of a velocity, the other side must
also be really, though not obviously, the square of a velocity.

And since g is an acceleration and A is a height, those who
know any mechanics will realise that the necessary condition is

thoroughly satisfied.

But when g is interpreted as 32 or 981, the fact is masked, as

facts often are ma^iked by the incomplete method of arithmetical

or numerical specification. If 32 or 981 is regarded as a pure
number, which is all of g that it is customary actually to express in

writing, then the equation becomes an absurdity, since it appears

to assert that a velocity multiplied by itself results in a certain

multiple of an elevation.

But when it is remembered that the 32 means really 32 feet per

second per second, everything is perfectly right ; for, the height

being expressed in feet, the right-hand side of the above equation

is so many square feet per second per second, or square feet

divided by square seconds, which is the square of a velocity, in

perfect agreement with the left-hand side.

So also in the equation to a parabola, y = a+ bx+cx^, the

convention is that y is a vertical height, and ifi the square of a

horizontal length ; but, since all the terms must really be alike in

kind, it follows that a must be a vertical height (and it is : viz. the

intercept on the vertical axis), that b must be a ratio of vertical to

horizontal (and it is the tangent of an angle accordingly, namely

the value of -^ at the place where the curve cuts the axis of v)

:

dx
and further that c must be a sort of curvature, a quantity in-

volving a vertical direction once in the numerator and a horizontal

dimension twice in the denominator. It is in fact half -^^ ; it
\axy

represents the rate at which the tangent to the curve swings round

as the ordinate travels uniformly along the axis of x ; and this

rate, when measured by changes in the tangent of the angle of

slope, is constant. Compare Chapter XXXIX.
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But 1/ = xis also a possible equation, and looks as if a vertical

height could be equivalent to a horizontal length. But it is only

an appearance, due to suppressed quantities. The coefficient 1,

not written, is really the tangent of an angle of 45°, and involves

the ratio of vertical to horizontal required to restore the balance

and common sense.

So also when y = a^ there is an unwritten unity coefficient which

is not a pure number, but an actual quantity, the ratio y : a?, which

the equation asserts has in this case the magnitude 1.

Or when a: = 6, if a? is a length, it follows that the 6 is a numeri-

cal abbreviation for 6 feet or 6 centimetres or 6 miles, measured in

the same direction as x. See Article in " School World " for July,

1904.

It is frequently best to express these units fully, and not to get

too exclusively into the habit of writing a length as 50 without

saying whether inches or centiinetres is intended, or an age as 15

without saying years or months, or a price as 42 without saying

shillings or pounds, or whether it is per hundredweight or per ton

(compare pages 232, 4). For though these and other less customary
abbreviations are permissible among experts, beginners who get too

used to them are apt to degenerate into slovenly incompleteness

and inaccuracy, and to suffer by finding difficulties hereafter where
none exist.

III. Note on Factorisation (see Chapter XIV.).

A quadratic expression ax^-Vhx-'t-c can be resolved into factors if

the middle term hx can be separated into two parts such that when
multiplied together the product is acx^.

Thus take Zx^-\-\Qx+n,

and write it Sa;^+ 7a;+ 3a;+ 7 ;

it becomes at once (3a;+ 7) (a;+ 1 ).

Again take 5a;2^ 27a7+28,
and write it , 5a;2+ 7a;+20a;+28 ;

it becomes (5a;+ 7) (a;+ 4).

When a quadratic expression is thus written in four terms, such
that the product of the means is equal to the product of the

extremes, the four terms are necessarily proportional ; and if such
proportionality does not hold, you cannot factorise.
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WLen they are proportional, as in the above case, and their sum
equated to zero, (5.^:2+ 7^) and (20a;+ 28) must have a common
factor

;
so also must (5^2+20^) and (7x+ 28) have another common

factor. •

If we write such four proportional terms with the common factors
displayed, they must have the form

ac+ad+bc+ bd;
which terms geometrically represent themselves thus :

a h

ac
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Population table of England and Wales for last century.
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