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PRETFTACK.

Tue following work is designed principally for the use
of those who desire to pursue the study of Astronomy as a
branch of liberal education. To facilitate its use by stu-
dents of different grades, the subject-matter is divided into
two classes, distinguished by the size of the type, and the
volume is thus made to contain two courses.

The portions in large type form a complete course for
the use of those who desire only such a general knowledge
of the subject as can be acquired without the application
of advanced mathematics. It is believed that this course
can be mastered by persons having at command only those
geometrical ideas which are familiar to most intelligent
students in our advanced schools; though sometimes, es-
pecially in the earlier chapters, a knowledge of elementary
trigonometry and physics will be found conducive to a
full understanding of a few details.

The portions in small type comprise additions for the
use of those stndents who either desire a more detailed
and precise knowledge of the subject, or who intend to
make astronomy a special stndy. In this, as in the ele-
mentary course, the rule has been never to use more ad-
vanced mathematical methods than are necessary to the
development of the subject, but in some cases a knowl-
edge of Analytic Geometry, in others of the Differential
Calculus, and in others of Elementary Mechanics, is neces-
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ASTRONOMY.

INTRODUCTION.

AsrroNomy (awoTrp—a star, and vduos—a law) is the
science which has to do with the heavenly bodies, their
appearances, their nature, and the laws governing their
real and their apparent motions.

In approaching the study of this, the most ancient of the
sciences depending upon observation, it must be borne in
mind that its progress is most intimately connected with
that of the race, it having always been the basis of geog-
raphy and navigation, and the soul of chronology. Some
of the chief advances and discoveries in abstract mathe-
matics have been made in its service, and the methods
both of observation and analysis once peculiar to its prac-
tice now furnish the firm bases upon which rest that great
group of exact sciences which we call physics.

It is more important to the student that he should be-
come penetrated with the spirit of the methods/of astron-
omy than that he should recollect its minutise, and it is
most important that the knowledge which he may gain
from this or other books should be referred by him to its
true sources. For example, it will often be necessary to
speak of certain planes or circles, the ecliptic, the equa-
tor, the meridian, ete., and of the relation of the appa-
rent positions of stars and planets to them ; but his labor
will be useless if it has not succeeded in giving him a
precise notion of these circles and planes as they exist in
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the sky, and not merely in the figures of his text-book.
Above all, the study of this science, in which not a single
step could have been taken without careful and painstak-
ing observation of the heavens, should lead its student
himself to attentively regard the phenomena daily and
hourly presented to him by the heavens.

Does the sun set daily in the same point of the hori-
zon ? Does a change of his own station affect this and
other aspects of the sky? At what time does the full
moon rise? Which way are the horns of the young
moon pointed ? These and a thousand other questions
are already answered by the observant eyes of the an-
cients, who discovered not only the existence, but the
motions, of the various planets, and gave special names to
no less than fourscore stars. The modern pupil is more
richly equipped for observation than the ancient phlloso-
pher. 1f one could have put a mere opera-glass in the
hands of Hrpparcuus the world need not have waited two
thousand years to know the nature of that early mystery,
the Milky Way, nor would it have required a GALILEO to
discover the phases of Venus and the spots on the sun.

From the earliest times the science has steadily progress-
ed by means of faithful observation and sound reasoning
upon the data which observation gives. The advances in
our special knowledge of this science have made it con-
venient to regard it as divided into certain portions, which
it is often convenient to consider separately, although the
boundaries cannot be precisely fixed.

Spherical and Practical Astronomy.—First in logical
order we have the instruments and methods by which the
positions of the heavenly bodies are determined from obser-
vation, and by which geographical positions are also fixed.
The branch which treats of these is called spherical and
practical astronomy. Spherical astronomy provides the
mathematical theory, and practical astronomy (which is
almost as much an art as a science) treats of the applica-
tion of this theory.
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Theoretical Astronomy deals with the laws of motion of
the celestial bodies as determined by repeated observations
of their positions, and by the laws according to which they
ought to move under the influence of their mutual gravi-
tation. The purely mathematical part of the science, by
which the laws of the celestial motions are deduced from
the theory of gravitation alone, is also called Celestial
Mechanices, a term first applied by La Prace in the title of
his great work Mécanique Céleste.

Cosmical Physics.—A third branch which has received
its greatest developments in quite recent times may be
called Cosmical Physics. Physical astronomy might be
a better appellation, were it not sometimes applied to
celestial mechanics. This branch treats of the physical
constitution and aspects of the heavenly bodies as investi-
gated with the telescope, the spectroscope, ete.

‘We thus have three great branches which run into each
other by insensible gradations, but under which a large
part of the astronomical research of the present day may
be included. In a work like the present, however, it
will not be advisable to follow strictly this order of sub-
jects ; we shall rather strive to present the whole subject
in the order in which it can best be understood. This
order will be somewhat like that in which the knowl-
edge has been actually acquired by the astronomers of
different ages.

Owing to the frequency with which we have to use
terms expressing angular measure, or referring to circles
on a sphere, it may be admissible, at the outset, to give
an idea of these terms, and to recapitulate some prop-
erties of the sphere.

Angular Measures.—The unit of angular measure most
used for considerable angles, is the degree, 360 of which
extend round the circle. The reader knows that it is 90°
from the horizon to the zenith, and that two objects 180°
apart are diametrically opposite. An idea of distances ot
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a few degrees may be obtained by looking at the two stars
which form the pointers in the constellation Ursa Major
(the Dipper), soon to be described. These stars are 5°
apart. The angular diameters of the sun and moon are
each a little more than half a degree, or 30'.

An object subtending an angle of only one minute ap-
pears as a point rather than a disk, but is still plainly vis-
ible to the ordinary eye. HEermmorrz finds that if two
minute points are nearer together than about 1’ 12", no
eye can any longer distinguish them as two. If the ob-
jects are not plainly visible—if they are small stars, for
instance, they may have to be separated 3’, 5’, or even
10, to be seen as separate objects. Near the star a Lyrw
are a pair of stars 3}’ apart, which can be separated only
by very good eyes.

If the object be not a point, but a long line, it may be
seen by a good eye when its breadth snbtends an angle of
only a fraction of a minute ; the limit probably ranges
from 10" to 15”.

If the object be much brighter than the background on
which it is seen, there is no limit below which it is neces-
sarily invisible. Its visibility then depends solely on the
quantity of light which it sends to the eye. It is not
likely that the brightest stars subtend an angle of 1} of
a second.

So long as the angle subtended by an object is small, we
may regard it as varying directly as the linear magnitude
of the body, and inversely as its distance from the ob-
gerver. A line seen perpendicularly subtends an angle
of 1° when it is a little less than 60 times its length dis-
tant from the observer (more exactly when it is 573
lengths distant); an angle of 1’ when it is 8438 lengths
distant, and of 17 when it is 206265 lengths distant.
These numbers are obtained by dividing the number of
degrees, minutes, and seconds, respectively, in the cir-
cumference, by 2 x 3-14159265, the ratio of the circum-
ference of a circle to the radins.
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Great Circles of the Sphere.—In Fig. 1 let the outline
represent that of a sphere, around which are deseribed
the two great circles A £ B Fand C £ D F. These cir-
cles are the lines in which two planes passing through the
centre O of the sphere intersect the latter. We may con-
sider them as representing the planes.

The points 2 and 7, each of which is 90° distant
from every point of the circle A & B Fare called the

F16. 1.—SECTIONS OF A SPHERE BY PLANES,

poles of that.circle. The poles are the points in which a
line passing through the centre O perpendicular to the
plane of the circle meets the sphere. They may be con-
sidered as representing this line.

The angle B D, or A O, equal to the greatest distance
of the two circles, is the same as the angle which the
planes of the circles make with each other. The dis-
tance between the poles 2 @ or P’ ' is equal to the same
angle. There are therefore three equivalent representa-
tives for what may be considered the same element;
namely : (1) the inclination of the planes of two circles ;
(2) the angle between their poles; and (3) the greatest
angles, A C or B D, between the circles on the celestial
sphere.



SYMBOLS AND ABBREVIATIONS,

S8IGNS OF THE PLANETS, ETC,

@ The Sun. & Mars.

® The Moon. 2 Jupiter.

¥ Mercury. % Saturn,

¢ Venus. ® Uranus.
®or § The Earth. ¥ Neptune,

The asteroids are distinguished by a circle inclosing a number, which
number indicates the order of discovery, or by their names, or by both,

as ; Hecate

SIGNS OF THE ZODIAC.

S 1. ¥ Aries. 7. o Libra.
Aut
bsliml?sg g2. g Taurus. :ig:‘:n g 8. m Scorpius.
E05% (8. 1 Gemini. ¢ 9. ¢ Sagittarius,
Sniimer 4. © Cancer. Winter glO. N3 (,aprlcf)rnus.
P . § Leo. signs 11. 2 Aquarius.
808 6. m Virgo. © (12, 3 Pisces.
ASPECTS.

& Conjunction, or having the same longitude or right ascension.
o Quadrature, or differing 90° in £ 4 N
& Opposition, or differing 180° in

“ [ “
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MISCELLANEOUS SYMBOLS,

Ascending node.
Descending node.
. North. 8. South.
. Bast. 'W. West.
Degrees.
Minutes of arc.
Seconds of arc,
Hours.
Minutes of time.
Seconds of time.
L, Mean longitude of a body.
¢, Mean anomaly.
J, True anomaly.
n, Mean sidereal motion in a unit
of time,
7, Radius vector.
¢, Angle of eccentricity.
w, Longitude of perihelion (also
parallax).

o 5 E 2

R.A. or a, Right ascension.

'| Dee. or 4, Declination.

¢, True zenith distance.

¢, Apparent zenith distance.

A Distance from the earth.

1, Heliocentric longitude.

b, Heliocentric latitude.

A, Geocentric longitude.

B, Geocentric latitude.

6 or £, Longitude of ascending
node.

7, Inclination of orbit to the eclip-
tic.

w, Angular distance from perihe.
lion to node.

u, Distance from node, or argu-
ment for latitude.

a, Altitude.

A, Azimuth.

p, Earth’s Equatorial radius.

The Greek alphabet is here inserted to aid those who are not already
familiar with it in reading the parts of the text in which its letters

oceur :

Letters. Names.
Aa Alpha
BR6 Beta
ey it Gamma
Al Delta
E ¢ Epsilon
ZniGd Ztta

H 9 Eta
690 Thata
1. 15ta
K« Kappa
A2 Lambda
Mu Mu

Letters. Names.
Nv Nu
O %5 Xi
Oo Omicron
Naonx Pi
Ppo Rho
205 Sigma
T 77 Tau
Ty Upsilon
L) Phi
Xx Chi
Y Psi
Qo Omega



THE METRIC SYSTEM.

THE metric system of weights and measures being employed in
this volume, the following relations between the units of this system
most used and those of our ordinary one will be found convenient for
reference :

MEASURES OF LENGTH.
1 kilometre = 1000 metres 0-62137 mile.

1 metre = the unit = 39-37 inches.
1 millimetre = 15y of a metre = 0-03937 inch.

MEASURES OF WEIGHT.

1 millier or tonnean = 1,000,000 grammes — 2204.6 pounds.

1 kilogramme = 1000 grammes =  2-2046 pounds.
1 gramme = the unit = 15-432 grains.

1 milligramme = 1oup of a gramme =  0.01543 grain.

The following rough approximations may be memorized :

The kilometre is a little more than {5 of a mile, but less than § of
a mile,

The mile is 1,% kilometres.

The kilogramme is 2} pounds.

The pound is less than half a kilogramme.



CHAPTER T.

THE RELATION OF THE EARTH TO THE
HEAVENS.

§ 1. THE EARTH.

In considering the relation of the earth to the heavens,
we necessarily begin with the earth itself ; not simply
because we now know it to be one of the heavenly bodies,
but because it is from its surface that all observations of
the heavens have to be made.

A consideration of well-known facts will show that this
earth upon which we live is, at least approximately, a
globe whose dimensions are gigantic
when compared to our ordinary and
daily ideas of size. Its shape is in
several ways known to be nearly
that of a sphere.

I. Tt has been repeatedly circum-
navigated in various directions.

II. Portions of its surface, visi-
ble from elevated positions in the
midst of extensive plains or at sea,
appear to be bounded by circles. Fie. 2.

This appearance at all points of the Tiustrating the fact that the

‘. 5 portions of the earth visible

surface of a body is a geometrical from elevated positions, S, &,

A 8, ete., are bounded by circles.
attribute of a globular form only.

II1. Further than this we know that careful measure-
ments of portions of the globe by the various national
geodetic surveys have agreed with this general conclusion.
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More precise reasons will be apparent later, but these will
be sufficient to base our general considerations npon. Of
the size of the earth we may form a rough idea by the
time required to travel completely around it, whieh is
now about three months.

We find next that this globe is eompletely isolated
in space. It neither rests on any thing else, nor is it in
eontaet with any surrounding body. The most obvious
proof of this which presents itself is, that mankind have
visited nearly every part of its surface without finding
any such conneetion, and that the heavenly bodies seem
to perform complete circuits around it and under it with-
out meeting with any obstacles. The sun which rose to-
day is the same body as the setting sun of yesterday, but
it has been seen to move (apparently) about the earth
from east to west during the day, and it regularly reap-
pears each morning. Moreover, if attentively watched,
it will be found to rise and set at different parts of the
horizon of any place at different times of the year, which
negatives the ancient belief that its nocturnal journey was
made through a huge subterranean tunnel.

§ 2. THE DIURNAL MOTION AND THE CELESTIAL
SPHERE.

Passing now from the earth to the heavens, and viewing
the sun by day, or the stars by night, the first phenomenon
whieh claims our attention is that of the diurnal motion.

We must here caution the reader to carefully distin-
guish between apparent and real motions. For example,
when the phenomena of the diurnal motion are set forth
as real visible motions, he must be prepared to learn sub-
sequently that this appearance, which is obvious to all, is
yet a consequence of a 7eal motion only to be detected by
reason. We shall first deseribe the diurnal motion as it
appears, and show that all the appearances to a spectator
at any one place may be represented by supposing the
carth to remain fixed in space, and the whole concave of
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the neavens to turn about it, and finally it will be shown
that we have reason to believe that the solid earth itself
is in constant rotation while the heavens remain immov-
able, presenting different portions in turn to the observer.

The motion in question is most obvious in the case of the
sun, which appears to make a daily circunit in the heavens,
rising in the east, passing over toward the south, setting in
the west, and moving around under the earth until it
reaches the eastern horizon again. Observations of the stars
made through any one evening show that they also appear
to perform a similar circuit. Whatever stars we see near
the eastern horizon will be found constantly rising higher,
and moving toward the south, while those in the west
will be constantly setting. If we watch a star which is
rising at the same point of the horizon where the sun
rises, we shall find it to pursue nearly the same course in
the heavens through the night that the sun follows
through the day. Continued observations will show,
however, that there are some stars which do not set at all—
namely, those in the north. Instead of rising and setting,
they appear to perform a daily revolution around a point
in the heavens which in our latitudes is nearly half way
between the zenith and the northern horizon. This cen-
tral point is called the pole of the heavens. Near it is
sitnated Polaris, or the pole star. It may be recog-
nized by the Pointers, two stars in the constellation
Ursa Major, familiarly known as Zhe Dipper. These
stars are shown in Fig. 3. If we watch any star be-
tween the pole and the north horizon, we shall find
that instead of moving from east to west, as the stars
generally appear to move, it really appears to move
toward the east ; but instead of continuing its motion and
setting in the east, we shall find that it gradually curves
its course upward. If we could follow it for twenty-four
hours we should see it move upwards in the north-east, and
then pass over toward the west between the zenith and
the pole, then sink down in the north-west ; and on the
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following night curve its course once more toward the
east. The arc which it appears to describe is a perfect
circle, having the pole in its centre. The farther from
the pole we go, the larger the circle which each star seems
to describe ; and when we get to a distance equal to that
between the pole and the horizon, each star in its appa-
rent passage below the pole just grazes the horizon.

P
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F1G. 3.—THE APPARENT DIURNAL MOTION.

As a result of this apparent motion, each individual
constellation changes its configuration with respect to the
horizon, that part which is highest when the constellation
is above the pole being lowest when below it. This is
shown in Figure 4, which represents a supposed constel-
lation at five different times of the night.

Going farther still from the pole, the stars will dip be-
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low the horizon during a portion of their course, and the
fraction of the circle which is below the pole will be con-
tinnally increasing. Looking yet farther south we shall
find one half of the circle to be above and one half below
the horizon. Farther yet, we shall find the stars describing
shorter ares while above the horizon, and therefore longer
ones below it. Near the south horizon, each star rises
for only a short time a little to the east of south, and soon
sets a little to the west of it.

S,

Vasmmann 4
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If we carefully study this motion, we shall find that it
does not arise from each star pursuing an independent
course, for not only do all the stars perform this ap-
parent revolution in the very same time, but they also
preserve unchanged their relative distances from each
other, with the exception of five, called planets or wan-
dering stars. 'The thousands of others which are visible
to the naked eye preserve their relative positions with
such exactness that the ordinary observer could perceive
no change even after the lapse of centuries. This fact
naturally suggested to the ancients the idea that there
must be some material connection between the stars. An
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apparent explanation, both of this and of the phenomena
of the diurnal motion, was offered by the conception of
the- celestial sphere. The salient phenomena of the
heavens, from whatever point of the earth’s surface they
might be viewed, were represented by supposing that the
globe of the earth was situated centrally within an im-
mensely larger hollow sphere of the heavens. The vis-
ible portion, or upper half of this hollow sphere, as seen
from any point, constituted the celestial vault, and the
whole sphere, with the stars which studded it, was called
the firmament. The stars were set in its interior surface,
or the firmament might be supposed to be of a perfectly
transparent erystal, and the stars might be situated in any
portion of its thickness. About one half of the sphere
could be seen from any point of the earth’s surface, the
view of the other half being necessarily cut off by the
carth itself. This sphere was conceived to make a diurnal
revolution around an axis, necessarily a purely mathemat-
ical line, passing centrally through it and through the
carth. The ends of this axis were the poles. The situa-
tion of the north end, or north pole, was visible in north-
ern latitudes, while the south pole was invisible, being
below the horizon. A navigator sailing south would so
change his horizon, owing to the sphericity of the earth,
that the location of the north pole would sink out of sight,
while that of the south pole would come into view.

It was clearly seen, even by the ancients, that the diur-
nal motion could be as well represented by supposing the
celestial sphere to be at rest, and the earth to revolve
around this axis, as by supposing the sphere to revolve.
This doctrine of the earth’s rotation was maintained by
several of the ancient astronomers, notably by Arisrar-
cuus and Tivocmaris. The opposite view, however, was
maintained by Proremy, who could not conceive that the
earth could be endowed with such a rapid rotation with-
out disturbing the motion of bodies at its surface. We
now know that Pronemy was wrong, and his opponents
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right.  Still, so far as the apparent diurnal motion is con-
cerned, it is indifferent whether we conceive the earth or
the heavens to be in motion. Sometimes the one concep-
tion, and sometimes the other, will make the phenomena
the more clear. As a matter of fact, astronomers speak
of the sun rising and setting, just as others do, although
it is in reality the earth which turns. This is a form of
language which, being designed only to represent the ap-
pearances, need not lead us into error.

The celestial sphere which we have described has long
ceased to figure in astronomy as a reality. Wenow know
that the celestial spaces are practically perfectly void ;
that some of the heavenly bodies, which appear to be on
the surface of the celestial sphere at equal distances from
the earth as a centre, are thousands, or even millions of
times farther from the earth than others ; that there is no
material connection between them, and that the celestial
sphere itself is only a result of optical perspective. But
the language and the conception are still retained, because
they afford the most clear and definite method of repre-
senting the directions of the heavenly bodies from the
observer, wherever he may be situated. In this respect
it serves the same purpose that the geometric sphere
does in spherical trigonometry. The student of this sci-
ence knows that there is really no need of supposing a
sphere or a spherical triangle, because every spherical arc
is only the representative of an angle between two lines
which emanate from the centre, one to each end of the
are, while the angles of the triangle are only those of the
planes containing the three lines which are drawn to
each angle from the centre. Spherical trigonometry is,
therefore, in reality, only the trigonometry oi solid
angles ; and the purpose of the sphere is only to afford a
convenient method of conceiving of such angles. In the
same way, although the celestial sphere has no real ex-
istence, yet by conceiving of it as a reality, and supposing
certain lines of reference drawn upon it, we are enabled to
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form an idea of the relative directions of the heavenly
bodies. We may conceive of it in two ways : firstly, as
having an infinite radius, in which case the centre of the
earth, or any point of its surface, may equally be supposed
to be in the centre of the celestial sphere ; or, secondly, we
may suppose it to be finite, the observer carrying the cen-

F16. 5.—STARS SEEN ON THE CELESTIAL SPUERE.

tre with him wherever he goes. The first assumption will
probably be the one which it is best to adopt. The object
attained by each mode of representation is that of having
the observer always in the centre of the supposed sphere.
Fig. 5 will give the reader an idea of its application. Ile
is supposed to be stationed in the centre, O, and to have
around him the bodies p ¢ »s?, etec. The sphere itself
being supposed at an immense distanee, outside of all
these bodies, we may suppose lines to be drawn from
each of them directly away from the eentre until they
reach the sphere. The points /> Q 228 7, ete., in whiech
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these lines intersect the sphere, will represent the appa-
rent positions of the heavenly bodies as seen by the ob-
server at Q. If several of them, as those marked £ ¢ ¢,
are in the same direction from the observer, they will ap-
pear to be projected on the same point of the sphere.
Thus positions on the sphere represent simply the diree-
tions in which the bodies are seen, but have no direct re-
lations to the distance.

It was seen by the ancients that the earth was only a
point in comparison with the apparent sphere of the fixed
stars. This was shown by the uniformity of the diurnal
motion ; if the earth had any sensible magnitude in com-
parison with the sphere of the heavens, the sun, or a star,
would seem to be nearer to the observer when it passed
the meridian, or any point near his zenith, than it would
when it was below the horizon, or nearly under his feet,
by a quantity equal to the diameter of the earth. Being
nearer to him, it would seem to move more rapidly when
above the horizon than when below, and its apparent angular
dimensions would be greater in the zenith than in the
horizon. As a matter of fact, however, the most refined
observations do not show the slightest variation from
perfect uniformity, no matter what the point at which
the observer may stand. Therefore, observers all over
the earth are apparently equally near the stars at every
point of their apparent diurnal paths; whence their
distance must be so great that in proportion to them the
diameter of the earth entirely vanishes. This argument
holds equally true whether we suppose the earth or the
heavens to revolve, because the observer, carried around
by the rotating earth, will be brought nearer to those
stars which are over his head, and carried farther from
them when he is on the opposite side of the circle in
which he moves.

Suppose the earth to be at 0, and the celestial sphere of the fixed

stars to be represented in the figure by the circle ¥ Z @ S n, etc.
Suppose N E S W to represent the plane of the horizon of some
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observer on the earth’s surface. ‘He will then sce every thing above
this plane, and nothing below it.
If ¥ E 8 is his eastern horizon,
stars will appear to rise at various
points, ¢, E, d, a, etc., and will
appear to describe circles until
they attain their highest points
jl at 2, @, ¢, b, ctc., sinking into
the western horizon at &, W, £, e,
etc. These are facts of observa-
tion. The common azis of these
circles is P p, and stars about P
(the pole) never set. The appa-
rent diurnal arc 7 m, for instance,
represents the apparent orbit of
a circumpolar star.

Fic. 6.

§ 3. CORRESPONDENCE OF THE TERRESTRIAL
AND CELESTIAL SPHERES.

We have said that the direction of a heavenly body
from an observer, or, which is the same thing, its ap-
parent position, is defined by the point of the celestial
sphere on which it seems to be. This point is that in
which the straight line drawn from the observer to the
body, and eontinued forward indefinitely, meets the celes-
tial sphere. Its position is fixed by reference to certain
fundamental circles supposed to be drawn on the sphere,
on the same plan by which longitude and latitude on the
earth are fixed. The system of thus defining terrestrial
positions by reference to the earth’s equator, and to some
prime meridian from which we reckon the longitudes, is one
with which the reader may be supposed familiar. We shall
therefore commence with those circles of the celestial
sphere which correspond to the meridians, parallels, ete.,
on the earth.

First, we remark that if we consider the earth to be at
rest for a moment, every point on its surface is at the end
of a radins which, if extended, would touch a correspond-
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ing point upon the celestial sphere. This point is called
the zenith of the point on the earth. In other words,
the zenith is defined by a line passing through the centre
of the earth to the observer, and continuing directly up-
ward until it meets the celestial sphere. To the observer
this line necessarily appears vertical, because, wherever he
may be, he understands by a vertical line one passing from
where he stands toward the centre of the earth. As the
earth revolves, the direction of this line in relation to any
fixed diameter of the celestial sphere necessarily varies,
and therefore the point in which it cuts the celestial sphere
or the zenith of the observer varies also in space. Let us
suppose first that the observer is on the earth’s equator.
Then he will see both the north and the south pole in the
horizon directly opposite each other. Looking upward he
will see his zenith half way between the poles. Then, as
the earth revolves on its axis, his zenith will describe a
great circle around the celestial sphere, every point of
which will be equally distant from the two poles. If we
imagine an infinitely long pencil reaching from any point
of the earth’s equator vertically up to the stars, we may
conceive that its point marks out an equator among them.
A complete revolution of the earth brings it back to the
place from which it started, and thus completes the circle.
The imaginary eircle thus described in the heavens is
called the celestial equator. The relation which it bears
to the terrestrial equator is that every point of it is above a
corresponding point of the latter. The two equators lie
in the same plane, passing through the centre of the
earth, which plane is called the plane of the equator, and
belongs to both the celestial and terrestrial spheres.

Now suppose that the observer passes from the equator
to 45° of north latitude. His horizon having changed by
45°, the north pole will now be 45° above the horizon,
and 45° from the zenith. Then, by the revolution of the
earth, his zenith will describe a circle on the celestial
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sphere which will be everywhere 45° distant from the
celestial equator. This circle will thus correspond to the
parallel of 45° north upon the earth. If he goes to lati-
tude 60° north, he will see the poleat an elevation of 60°,
and his zenith will in the same way describe a circle which
will be everywhere 60° from the celestial equator, and 30°
from the pole. If he passes to the pole, the latter will
be directly over his head, and his zenith will not move at

FI6. 7.—TERRESTRIAL AND CELESTIAL SPHERES,

all. The celestial pole is simply the point in which the
earth’s axis of rotation, if continued out in a straight line
of infinite length, would meet the celestial sphere. We
thus have a series of circles on the celestial sphere corre-
sponding to the parallels of latitude upon the carth.
Unfortunately the celestial element corresponding to
latitude on the earth is not called by that name, but by
that of declination. The declination of a star is its
distance north or south from the celestial equator, pre-
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eiscly as latitude on the earth is distance from the earth’s
equator,

Let L be a place on the earth, P B p @, Pp being the earth’s axis,
and ¥ @ its equator. Z is the
zenith and H R the horizon of L.
L 0 Q is the latitude of L accord-
ing to ordinary geographical de-
finitions : 7.e., it 1s its angular dis-
tance from the equator.

Prolong O P indefinitely to P,
and draw L P’ parallel to it. To
an observer at L the elevated pole
of the heavens will be seen along
the line L P’ because at an in-
finite distance the distance P P”
will appear like a point. H L Z=
POQ and ZLP'=Z 0P, hence
P'L H=L0Q—that is, the eleva-
tion of the pole above the celestial
horizon is equal to the latitude of the
place. Referring to Fig. 9, it can at
once be seen that the latitude of a
place on the earth’s surface is equal Fie. 8.
to the declination of the zenith of that
place, since the declination of the zenith is equal to the altitude of
the elevated pole.

We have next to consider the correspondence between
the celestial and terrestrial meridians. A terrestrial me-
ridian is an imaginary line drawn along the earth’s surface
in a north and south direction from one pole to the other.
These meridians diverge from one pole in every direc-
tion, and meet at the other pole. Sometimes they are
called by the names of places they pass through, as the
meridian of Greenwich, or the meridian of Washington.
Each meridian may be considered as the intersection with
the earth’s surface of a plane passing through the axis of
the earth, and therefore through both poles. Such a
plane will cut the earth into two equal hemispheres, and
will of course be vertical with the earth’s surface along
every part of its line of intersection. This plane is called
the plane of the meridian ; and by continuing it out to
the celestial sphere, we should have a celestial meridian
corresponding to each terrestrial one, precisely as we have
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circles of declination corresponding to parallels of latitude
on the earth. But owing to the rotation of the earth, the
circle in which the plane of the meridian of any place in-
tersects the celestial sphere will be continually moving
among the stars, so that there is no such permanent cor-
respondence as in the case of the declinations. This
does not prevent us from conceiving imaginary meridians
passing from one pole of the heavens to the other pre-
cisely as the meridians on the earth do, only these me-
ridians will be apparently in motion, owing to the rotation
of the earth. We may, in fact, conceive of two sets of
meridians—one really at rest among the stars, but appa-
rently moving from east to west around the pole as the
stars do, and the other the terrestrial meridians continued
to the celestial sphere, apparently at rest, but really in
motion from west to east. The relations of these me-
ridians will be best understood when we explain the in-
struments and methods by which they are fixed, and by
which the positions of the stars in the heavens are deter-
mined. At present we will confine ourselves to the con-
sideration of the celestial meridians.

The reader will understand that these meridians pass
from one pole of the celestial sphere to the other, pre-
cisely as on the globe terrestrial meridians pass from one
pole to the other, and that being fixed among the stars,
they appear to turn around the pole as the stars appear to
do. As on the earth differences of longitude between
different places are fixed by the differences between the
meridians of the two places, so in the heavens what cor-
responds to longitude is fixed by the difference between
the celestial meridians. This co-ordinate is, however, in
the heavens not called longitude, but 7ight ascension.
Let the student very thoroughly impress upon his mind
this term—right ascension—which is longitude on the
celestial sphere, and also the term we have before spoken
of —declination—which is latitude on the celestial sphere.

In order to fix the right ascension of a heavenly body,
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we must have a first meridian to count from, precisely as
on the earth we count longitudes from the meridian of
Greenwich or of Washington. - It-is indifferent what me-
ridian we take as the first one ; but it is customary to
adopt the meridian of the vernal equinox. What the ver-
nal equinox is will be described hereafter: for our pres-
ent purposes, nothing more is necessary than to under-
stand that a certain meridian is arbitrarily taken. If now
we wish to fix the right ascension of a star, we have only
to imagine a meridian passing through it, and to deter-
mine the angle which this meridian makes with the meri-
dian of the vernal equinox, as measured from west to east
on the equator. That angle will be the right ascension of
a star. As already indicated, the declination of a star
will be its angular distance from the equator measured on
this meridian. Thus, the right ascension and declination
of a star fix its apparent position on the celestial sphere,
precisely as latitude and longitude fix the position of a
point on the surface of the earth.

To give precision to the ideas, we present a brief con-
densation of this subject, with additional definitions.

Let P Z R N represent the celestial sphere of an ob-
server in the northern hemisphere, O being the position
of the earth. 2 p is the awisof the celestial sphere, or
the line about which the apparent diurnal orbits of the
stars and the actual revolution of the earth are performed.

The zenith, Z, is the point immediately above, the
nadir n,the point immediately below the observer.
The direction Zn is defined in practice by the position
freely assumed by the plumb line.

The celestial horizon is the plane perpendicular to the
line joining the zenith and nadir N ES W, or it is the
terrestrial horizon continued till it meets the celestial sphere.

The celestial horizon intersects the earth in the rational
horizon, which passes through the earth’s centre, and
which is so called in distinetion to the sensible horizon,
which is the plane tangent to the earth’s surface at any
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point. But, since the earth itself is considered as but a

. point in comparison with the celestial sphere, the rational
and sensible horizons are considered as one and the same
circle on this sphere.

The celestial polés are the extremities of the awis of the
celestial sphere P p, the north pole being that one which
is above the horizon in the latitude of New York, in the
northern hemisphere.

The circles apparently described by the stars in their
diurnal orbits are called parallels of declination, K IV ;

F16. 9.—CIRCLES OF THE SPHERE.

that one whose plane passes through the centre of the
sphere being the celestial equator, or the equinoctial,
CWD.

The celestial equator is then that parallel of declination
which is a great circle of the celestial sphere.

The figure illustrates the phenomena which appear in
the heavens to an observer upon the earth. The stars
which lie in the equator have their diurnal paths bisected
by the horizon, and are as long above the horizon as below
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it ; those whose distances from the pole (polar-distances)
are greater than 90° will be a shorter time above the ho-
rizon ; those whose polar-distances are less than 90° a
longer time.

The circle V & drawn around the pole 7 as a centre
s0 as to graze the horizon is called the circle of perpetual
apparition, because stars situated within it never set.
The corresponding circle S22 round the south pole is
called the circle of perpetual disappearance, because stars
within it never rise above our horizon.

The great circle passing through the zenith and the
pole is the celestial meridian, N P Z S. The meridian
intersects the horizon in the meridian line, and the points
&V and § are the north and south points.

The prime vertical, E ZW, is perpendicular to the mer:-
dian line and to the korizon : its extremities in the hori-
zon are the east and west points.

The meridian plane is perpendicular to the equator and
to the Aorizon, and therefore to their intersection. Hence
this intersection is the east and west line, which is thus
determined by the intersection of the planes of the equator
and of the Aorizon.

The altitude of a heavenly body is its apparent distance
above the horizon, expressed in degrees, minutes, and
seconds of are. In the zenith the altitude is 90°, which
is the greatest possible altitude.

If A be any heavenly body, the angle Z /> A which the
circle 2 A drawn from the pole to the body makes with
the meridian is called the Zour angle of the body. The
hour angle is the angle through which the earth has ro-
tated on its axis since the body was on the meridian. It
is so called because it measures the time which has
elapsed since the passage of the body over the meri-
dian.

That diameter of the earth which is coincident with the
constant direction of the axis of the celestial sphere is its
axis, and intersects the earth in its north and south poles.
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*

§ 4. THE DIURNAL MOTION IN DIFFERENT LATI-
TUDES.

As we have seen, the celestial horizon of an observer
will change its place on the celestial sphere as the observer
travels from place to place on the surface of the earth.
If he moves directly toward the north his zenith will ap-
proach the north pole, but as the zenith is not a visible
point, the motion will be naturally attributed to the pole,
which will seem to approach the point overhead. The
new apparent position of the pole will change the aspect
of the observer’s sky, as the higher the pole appears above
the horizon the greater the circle of perpetual apparition,
and therefore the greater the number of stars, which
never set.

Fi16. 10.—THE PARALLEL SPHERE.

If the observer is at the north pole his zenith and the
pole itself will coincide : half of the stars only will be vis-
ible, and these will never rise or set, but appear to move
around in circles parallel to the horizon. The horizon
and equator will coincide. The meridian will be indeter-
minate since Z and 2> coincide ; there will be no east and
west line, and no direction but south. The sphere in this
case is called a parallel sphere.
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If instead of travelling to the north the observer should
go toward the equator, the north pole would seem to ap-
proach his horizon. When he reached the equator both
poles would be in the horizon, one north and the other
south. All the stars in succession would then be visible,
and each would be an equal time above and below the
horizon.

Fi16. 11 —THE RIGHT SPHERE.

The sphere in this case is called a right sphere, because
the diurnal motion is at right angles to the horizon. If now
the observer travels southward from the equator, the south
pole will become elevated above his horizon, and in the
southern hemisphere appearances will be reproduced
which we have already described for the northern, except
that the direction of the motion will, in one respect, be
different. The heavenly bodies will still rise in the east
and set in the west, but those near the equator will pass
north of the zenith instead of south of it, as in our lati-
tudes. The sun, instead of moving from left to right,
there moves from right to left. The bounding line be-
tween the two directions of motion is the equator, where
the sun culminates north of -the zenith from March till
September, and south of it from September till March.

If the observer travels west or east of his first sta-
tion, his zenith will still remain at the same angular
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distance from the north pole as before, and as the phe-
nomena caused by the earth’s diurnal motion at any
place depend only upon the altitude of the elevated pole
at that place, these will not be changed except as to the
times of their occurrence. A star which appears to pass
through the zenith of his first station will also appear to
pass through the zenith of the second (since each star re-
mains at a constant angular distance from the pole), but
later in time, since it has to pass through the zenith of
every place between the two stations. The horizons of
the two stations will intercept different portions of the
celestial sphere at any one instant, but the earth’s rotation
will present the same portions successively, and in the
same order, at both.

§ 5. RELATION OF TIME TO THE SPHERE.

As in daily life we measure time by the revolution of
the hands of a elock, so, in astronomy, we measure it by
the rotation of the earth, or the apparent revolution of
the celestial sphere. Since the sphere seems to perform
one revolution, or 360° in 24 hours, it follows that it
moves through 15° in one hour, 1° in 4 minutes, 15" in
one minute of time, and 15” in one second of time.

The hour angle of a heavenly body counted toward the
west (see definition, p. 25) being the angle through which
the sphere has revolved since the passage of the body over
the meridian, it follows that the time which has elapsed
since that passage may be found by dividing the hour
angle, expressed in degrees, minutes, and seconds of arc,
by 15, when the result will be the required interval ex-
pressed in hours, minutes, and seconds of time. If we
know the time at which the body passed the meridian,
and add this interval to it, we shall have the time corre-
sponding to the hour angle. If we call it noon when
the sun passes the meridian, the hour angle of the sun
at any moment, divided by 15, gives the time since noon.
Mean solar time is our ordinary time measured by the
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sun, after allowing for certain inequalities hereafter de-
scribed. '

Here, however, an important remark is to be made.
Really the earth does not revolve on its axis in 24 of the
hours used in ordinary life, but in about 4 minutes less than
24 hours (more exactly in 23 hours 56 minutes 4.09 seconds. )
If we note the exact time at which a star crosses the meri-
dian, or rises or sets, or disappears behind a chimney or other
terrestrial object on one night, we shall find it to do the
same thing 3 minutes 56 seconds earlier on the night follow-
ing, an acceleration which, continued every day, amounts to
a whole day in a year. The theory of this acceleration
will be explained hereafter as arising from the annual revo-
Iution of the earth around the sun; at present we are
concerned only with the fact. Asa consequence of this
fact, the starry sphere seems to revolve rather more than
15° in an hour, and the relation between the time and the
arc through which the earth really turns, or the sphere
seems to turn, becomes complex. To avoid this complex-
ity, astronomers introduce a modified measure of time,
known as sidereal time.

Sidereal Time.—The sidereal day is measured, not by
the interval between two transits of the sun over the meri-
dian, but by that between two transits of the same star.
This day is supposed to commence at the moment of tran-
sitof the vernal equinox, or the meridian from which right
ascensions are reckoned (a point among the stars to be here-
after defined), and is about 8 minutes 56 seconds shorter
than the solar or common day. Itis, however, divided into
24 sidereal hours, and the sidereal hour i3 subdivided into
sidereal minutes and seconds exactly like the common
hours. A simple calculation will show that the sidereal
hour is nearly 10 seconds shorter than the solar hour, and,
in general, cach unit of sidereal time is 35557 part short-
er than the corresponding unit of solar time. A sidereal
clock is so constructed as to gain on the common clock at
this rate—that is, it gains about one second in six minutes,
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ten seconds in an hour, 3 minutes 56 seconds in a day,
two hours in a month, and 24 hours, or one day, in a year.
The hours of the sidereal day are counted forward from 0
to 24, instead of being divided into two groups of 12 each,
as in our civil reckoning of time. The face of the sidereal
clock is divided into 24 hours, and the hour hand
makes one revolution in this period instead of two. The
minutes and seconds are each counted forward from 0 to
60, as in the common clock. The hands are set so as to
mark 0" 0™ 0° at the moment when the vernal equinox
passes the meridian of the observer. Thus, the sidereal
time at any moment is simply the interval in hours, min-
utes, and seconds which has elapsed since the vernal equi-
nox was on the meridian. By multiplying this time by
15, we have the number of degrees, minutes, and seconds
through which the earth has turned since the transit of
the vernal equinox.

The sidereal time of our common noon is given in the
astronomical ephemeris for every day of the year. It can
be found within ten or twelve minutes at any time by re-
membering that on March 22d it is sidereal 0 hours about
noon, on April 22d it is about 2 hours sidereal time at
noon, and so on through the year. Thus, by adding two
hours for each month, and 4 minutes for each day after
the 22d day last preceding, we have the sidereal time at
the noon we require. Adding to it the number of hours
since noon, and one minute more for ever fourth of a day
on account of the constant gain of the clock, we have the
sidereal time at any moment.

Erample.—Find thesidereal time on July 4th, 1881, at
4 o’clock .M. We have:

h
June 22d, 3 months after March 22d ; tobe X 2, 6 0
July 3d, 12 days after June 22d; x 4, 0 48
4 A.M., 16 hours after noon, nearly £ of a day, 16 3

This result is within a minute of the truth,
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The reader now understands that a sidereal clock is one
which keeps time, not by the apparent diurnal motion of
the sun, but by that of the stars. Consequently, the as-
tronomer, by looking at his clock, always knows the
positions of the stars relatively to his meridian. We have
now to show how he finds the right ascension of the stars
by his sidereal clock. This is done by means of the meri-
dian transit instrument, of which we shall here explain the
first principles of construction, reserving a full description
for the chapter on instruments. It consists essentially of
a small telescope turning on an axis, which is fixed in an
east and west line. With the axis thus fixed, the tele-
scope can turn only in the plane of the meridian. When
the observer looks into it, he will see the apparent
diurnal motion of any star at which it may point, and this
motion will be magnified in the ratio of the magnifying
power of the telescope. With a high power it will there-
fore appear very rapid. When the star is exactly on the
meridian it will appear in the middle of the field of view
of the telescope, and, by means of apparatus to be here-
after described, the moment of crossing can be deter-
mined within a small fraction of a second.

Suppose now that the observer has his clock so set that
it marks O hours O minutes 0 seconds at the moment
that the vernal equinox crosses his meridian, and so regu-
lated that when the equinox again reaches the meridian on
the day following the hour hand will have made one revo-
lution through the 24 hours, and come back to 0 hours
again. Then, to find the right ascension of any star or
other heavenly body, he watches when it is about to reach
the meridian ; then directs the transit instrument at the
point where it is about to cross, and notes the exact time,
in hours, minutes, and seconds, at which the star crosses
the middle of the field of his transit. ~Multiplying this
time by 15, he has the right ascension of the star in de-
grees, minutes, and seconds. In order to avoid the trouble
of this multiplication, it is now customary to express the
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L d
right ascensions of the heavenly bodies, not in degrees,
but in time. The circle is divided into 24 hours, like
the day, and these hours are divided into minutes and
seconds in the usual way. Then the right ascension of
a star is the same as the sidereal time at which it passes
the meridian.

The relation of arc to time, as angular measures, can be
readily remembered by noting that a minute or a second
of time is fifteen times as great as the corresponding de-
nomination in are, while the hour is 15 times the degree.
The minute and second of time are denoted by the initial
letter of their names. So we have :

b =150 Ree=—g
IS ==1:57 17 =4
1o =15¢ 1"=0°.0666.

Relation of Time and Longitude.—Considering our civil
time as depending on the sun, it will be seen that it is
noon at any and every place on the earth when the sun
crosses the meridian of that place, or, to speak with more
precision, when the meridian of the places passes under
the sun. In the lapse of 24 hours, the rotation of the
earth on its axis brings all its meridians under the sun in
succession, or, which is the same thing, thesun appears to
pass in succession all the meridians of the earth. Hence,
noon continually travels westward at the rate of 15° in an
hour, making the circuit of the earth in 24 hours. The
difference between the time of day, or local time as it is
called, at any two places, will be in proportion to the differ-
ence of longitude, amounting to one hour for every 15
degrees of longitude, four minutes for every degree, and
so on.  Vice versa, if at the same real moment of time
we can determine the local times at two different places,
the difference of these times, multiplied by 15, will give
the difference of longitude.
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The longitudes of places are determined astronomically
on this principle. Astronomers are, however, in the
habit of expressing the longitude of places on the earth
like the right ascensions of the heavenly bodies, not in
degrees, but in hours. For instance, instead of saying
that Washington is 77° 3’ west of Greenwich, we com-
monly say that it is 5 hours 8 minutes 12 seconds west,
meaning that when it is noon at Washington it is 5 hours
8 minutes 12 seconds after noon at Greenwich. This
course is adopted to prevent the trouble and confusion
which might arise from constantly having to change hours
into degrees, and the reverse.

A question frequently asked in this connection is,
Where does the day change ? It is, we will suppose, Sun-
day noon at Washington. That noon travels all the way
round the earth, and when it gets back to Washington
again it is Monday. Where or when did it change from
Sunday to Monday ? We answer, wherever people choose
to make the change. Navigators make the change
occur in longitude 180° from Greenwich. As this meri-
dian lies in the Pacific Ocean, and scarcely meets any land
through its course, it is very convenient for this purpose.
If its use were universal, the day in question would be
Sunday to all the inhabitants east of this line, and Mon-
day to every one west of it. But in practice there have
been some deviations. As a general rule, on those islands
of the Pacific which are settled by men travelling east,
the day would at first be called Monday, even though
they might cross the meridian of 180°. Indeed the Rus-
sian settlers carried their count into Alaska, so that when
our people took possession of that territory they found
that the inhabitants called the day Monday when they
themselves called it Sunday. These deviations have, how-
ever, almost entirely disappeared, and with few exceptions
the day is changed by common consent in longitude 180°
from Greenwich.
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§ 6. DETERMINATIONS OF TERRESTRIAL LONGI-
TUDES.

We have remarked that, owing to the rotation of the earth, -
there is no such fixed correspondence between meridians on
the earth and among the stars as there is between latitude on
the earth and declination in the heavens. The observer
can always determine his latitude by finding the declination
of his zenith, but he cannot find his longitude from the
right ascension of his zenith with the same facility, be-
cause that right ascension is constantly changing. To deter-
mine the longitude of a place, the element of time as mea-
sured by the diurnal motion of the earth necessarily comes
in. Let us once more consider the plane of the meridian
of a place extended out to the celestial sphere so as to
mark out on the latter the celestial meridian of the place.
Consider two such places, Washington and San Francisco
for example ; then there will be two such celestial meri-
dians cutting the celestial sphere so as to make an angle of
about forty-five degrees with each other in this case. Let
the observer imagine himself at San Franeisco. Then he
may conceive the meridian of Washington to be visible
on the celestial sphere, and to extend from the pole over
toward his'south-east horizon so as to pass at a distance of
about forty-five degrees east of his own meridian. It
would appear to him to be at rest, although really both
his own meridian and that of Washington are moving in
consequence of the earth’s rotation. ~Apparently the stars
in their course will first pass the meridian of Washington,
and about three hours later will pass his own meridian.
Now it is evident that if he can determine the interval
which the star requires to pass from the meridian of Wash-
ington to that of his own place, he will at once have the
difference of longitude of the two places by simply turn-
ing the interval in time into degrees at the rate of fifteen
degrees to each hour.

Essentially the same idea may perhaps be more readily
grasped by considering the star as apparently passing over
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the successive terrestrial meridians on the surface of the
earth, the earth being now supposed for a moment to be
at rest. If we imagine a straight line drawn from the
centre of the earth to a star, this line will in the course of
twenty-four sidereal hours apparently make a complete
revolution, passing in succession the meridians of all the
places on the earth at the rate of fifteen degrees in an hour
of sidereal time. If, then, Washington and San Francisco
are forty-five degrees apart, any one star, no matter what
its declination, will require three sidereal hours to pass
from the meridian of Washington to that of San Francisco,
and the sun will require three solar hours for the same
passage.

Whichever idea we adopt, the result will be the same :
difference of longitude is measured by the time required
for a star to apparently pass from the meridian of one
place to that of another. There is yet another way of
defining what is in effect the same thing. The sidereal
time of any place at any instant being the same with the
right ascension of its meridian at that instant, it follows
that at any instant the sidereal times of the two places will
differ by the amount of the difference of longitude. For
instance : suppose that a star in 0 hours right ascension is
crossing the meridian of Washington. Then it is 0 hours
of local sidereal time at Washington. Three hours later
the star will have reached the meridian of San Franeisco.
Then it will be 0 hours local sidereal time at San Fran-
cisco. Hence the difference of longitude of two places is
measured by the difference of their sidereal times at the
same instant of absolute time. Instead of sidereal times,
we may equally well take mean times as measured by the
sun. It being noon when the sun crosses the meridian of
any place, and the sun requiring three hours to pass from
the meridian of Washington to that of San Francisco, it
follows that when it is noon at San Franecisco it is three
o’clock in the afternoon at Washington. *

* The difference of longitude thus depends upon the angular dis-
tunce of terrestrial meridians, and not upon the motion of a celestial body,
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The whole problem of the determination of terrestrial
longitudes is thus reduced to one of these two : either
to find the moment of Greenwich or Washington time
corresponding to some moment of time at the place
which is to be determined, or to find the time required
for the sun or a star to move from the meridian of Green-
wich or Washington to that of the place. If it were
possible to fire a gun every day at Washington noon
which could be heard in an instant all over the earth,
then observers everywhere, with instruments to deter-
mine their local time by the sun or by the stars, would be
able at once to fix their longitudes by noting the hour,
minute, and second of local time at which the gun was
heard. As a matter of fact, the time of Washington noon
is daily sent by telegraph to many telegraph stations, and
an observer at any such station who knows his local time
can get a very close value of his longitude by observing the
local time of the arrival of this signal. Human ingenuity
has for several centuries been exercised in the effort to in-
_ vent some practical way of accomplishing the equivalent
of such a signal which could be used anywhere on the
earth. The British Government long had a standing offer
of a reward of ten thousand pounds to any person who
would discover a practical method of determining the lon-
gitude at sea with the necessary accuracy. This reward
was at length divided between a mathematician who con-
structed improved tables of the moon’s motion and a
mechanician who invented an improved chronometer.
Before the invention of the telegraph the motion of the
moon and the transportation of chronometers afforded
almost the only practicable and widely extended methods
of solving the problem in question. The invention of
the telegraph offered a third, far more perfect in its appli-

and hence the longitude of a place is the same whether expressed as a
difference of two sidereal times or of two solar times. The longitude
of Washington west from Greenwich is 5" 8™ or 77°, and this is, in fact,
the ratio of the angular distance of the meridian of Washington from
that of Greenwich to 360° or 24». Tt is thus plain that the longitude is
the difference of the simultaneous local times, whether solar or sidereal.
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cation, but necessarily limited to places in telegraphic
communication with each other.

Longitude by Motion of the Moon.—When we de-
seribe the motion of the moon, we shall see that it moves
eastward among the stars at the rate of about thirteen de-
grees per day, more or less. In other words, its right as-
cension is constantly increasing at the rate of a degree in
something less than two hours. If, then, its right ascension
can be predicted in advance for each hour of Greenwich
or Washington time, an observer at any point of the
earth, by noting the local time at his station, when the
moon has any given right ascension, can thence determine
the corresponding moment of Greenwich time ; and hence,
from the difference of the local times, the longitude of his -
place. The moon will thus serve the purpose of a sort of
clock running on Greenwich time, upon the face of which
any observer with the proper appliances can read the
Greenwich hour. This method of determining longitudes
has its difficulties and drawbacks. The motion of the
moon is so slow that a very small change in its right ascen-
sion will produce a comparatively large one in the Green-
wich time deduced from it—about 27 times as great an
error in the deduced longitudes as exists in the determi-
nation of the moon’s right ascension. With such instru-
ments as an observer can easily carry from place to place,
it is hardly possible to determine the moon’s right ascen-
sion within five seconds of arc; and an error of this
amount will produce an error of nine seconds in the
Greenwich time, and hence of two miles or more in his
deduced longitude. Besides, the mathematical processes
of deducing from an observed right-ascension of the moon
the corresponding Greenwich time are, under ordinary
cireumstances, too troublesome and laborious to make this
method of value to the navigator.

Transportation of Chronometers.—The transportation
of chronometers affords a simple and convenient method
of obtaining the time of the standard meridian at any
moment. The observer sets his chronometer as nearly as
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possible on Greenwich or Washington time, and deter-
mines its correction and rafe. This he can do at any sta-
tion of which the longitude is correctly known, and at
which the local time can be determined. Then, wherever
he travels, he can read the time of his standard meridian
from the face of his chronometer at any moment, and
compare it with the local time determined with his transit
instrument or sextant. The principal error to which this
method is subject arises from the necessary uncertainty in
the rate of even the best chronometers. This is the
method almost universally used at sea where the object is
simply to get an approximate knowledge of the ship’s

position.
"~ The accuracy can, however, be increased by carrying a
large number of chronpmeters, or by repeating the de-
termination a number of times, and this method is often
employed for fixing the longitudes of seaports, ete.
Between the years 1848 and 1855, great numbers of chro-
nometers were transported on the Cunard steamers plying
between Boston and Liverpool, to determine the difference
of longitude between Greenwich and the Cambridge Ob-
servatory, Massachusetts. At Liverpool the chronometers
were carefully compared with Greenwich time at a local
observatory—that is, the astronomer at Liverpool found
the error of the chronometer on its arrival in the ship,
and then again when the ship was about to sail. When
the chronometer reached Boston, in like manner its error
on Cambridge time was determined, and the determination
was repeated when the ship was about to return. Having
a number of such determinations made alternately on the
two sides of the Atlantic, the rates of the chronometers
could be determined for each double voyage, and thus the
error on Greenwich time could be calculated for the mo-
ment of each Cambridge comparison, and the moment of
Cambridge time for each Greenwich comparison.

Longitude by the Electric Telegraph.—As soon as the
electric telegraph was introduced it was seen by American
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astronomers that we here had a method of determining
longitudes which for rapidity and convenience would
supersede all others. The first application of this method
was made in 1844 between Washington and Baltimore,
under the direction of the late Admiral Charles Wilkes,
U. S. N. During the next two years the method was intro-
duced into the Coast Survey, and the difference of longitude
between New York, Philadelphia, and Washington was
thus determined, and since that time this method has had
wide extension not onlyinthe United States, but between
America and Europe, in Europe itself, in the East and West
Indies, and South America. The prineciple of the method
is extremely simple. Each place, of which the difference of
time (or longitude) is to be determined, is furnished with a
transit instrument, a clock and a chronograph ; instruments
described in the next chapter. Each clock is placed in
galvanic communication not only with its own chronograph,
but if necessary is so connected with the telegraph wires
that it can record its own beat upon a chronograph at the
other station. The observer, looking into the telescope
and noting the crossing of the stars over the meridian,
can, by his signals, record the instant of transit both on his
own chronograph and on that of the other station. The
plan of making a determination between Philadelphia and
Washington, for instance, was essentially this: When
some previously selected star reached the meridian at Phil-
adelphia, the observer pointed his transit upon it, and as
it crossed the wires, recorded the signal of time not only
on his own chronograph, but on that at Washington.
About eight minutes afterward the star reached the
meridian at Washington, and there the observer recorded
its transit both on his own chronograph and on that at
Philadelphia. The interval between the transit over the
two places, as measured by either sidereal clock, at once
gave the difference of longitude. If the record was in-
stantaneous at the two stations, this interval ought to be
the same, whether read off the Philadelphia or the Wash-
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ington chronograph. It was. found, however, that there
was a difference of a small fraction of a second, arising
from the fact that electricity required an interval of time,
minute but yet appreciable, to pass between the two
cities. The Philadelphia record was a little too late in
being recorded at Washington, and the Washington one a
little too late in being recorded at Philadelphia. We
may illustrate this by an example as follows :

Suppose E to be a station one degree of longitude east
of another station, W ; and that at each station there is a
clock exactly regulated to the time of its own place, in
which case the clock at E will be of course four minutes
fast of the clock at W ; let us also suppose that a signal
takes a quarter of a second to pass from one station to the
other :

Then if the observer at E sends a signal to W at exactly

nioonHby st clock . & 5% T L TR o K T L e 12% 0™ 000
It will be received at Wat ............ ...l 11 56m 0°.25
Showing an apparent difference of time of...... 3m 5975

Then if the observer at W sends a signal at noon by his
GLOCKI N R S S B R P AT I TP S 128 0™ 02,00
It will be received at Eat ..........cooiiiiiii.l, 12h 4™ 04,25
Showing an apparent difference of time of...... 4m 02,25

One half the sum of these differences is four minutes,
which is exactly the difference of time, or one degree of
longitude ; and one half their difference is twenty-five
hundredths of a second, the time taken by the electrie im-
pulse to traverse the wire and telegraph instruments.

This is technically called the ‘‘wave and armature
time.”’

We have seen that if a signal could be made at Wash-
ington noon, and observed by an observer anywhere sit-
uated who knew the local time of his station, his longi-
tude would thus become known. This principle is often
employed in methods of determining longitude other than
those named. For example, the instant of the beginning
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and ending of an eclipse of the sun (by the moon) is a
perfectly definite phenomenon. If this is observed by
two observers, and these instants noted by each in the
local time of his station, then the difference of these
local times (subject to small corrections, due to parallax,
etc.) will be the difference of longitude of the two sta-
tions. L

The satellites of Jupiter suffer eclipses frequently, and
the Greenwich and Washington times of these phenomena
are computed and set down in the Nautical Almanae. Ob-
servations of these at any station will also give the differ-
ence of longitude between this station and Greenwich or
Washington.  As, however, they require a larger tele-
scope and a higher magnifying power than can be used at
sea, this method is not a practical one for navigators.

§ 7. MATHEMATICAL THEORY OF THE CELESTIAL
SPHERE.

In this explanation of the mathematical theory of the relations of
the heavenly bodies to circles on the sphere, an acquaintance with
spherical trigonometry on the part of the reader is necessarily pre-
supposed. The general method by which the position of a point on
the sphere is referred to fixed points or circles is as follows:

A fundamental great circle £ V @, Fig. 12 is taken as a basis,
and the first co-ordinate * of the body is its angular distance from
this circle. When the earth’s equator is taken as the fundamental
circle, this distance is on the earth’s surface called Latitude ; on the
celestial sphere the corresponding distance is called Declination. If
the horizon is taken as the fundamental circle the distance is called
Altitude. - Altitude is therefore angular distance above the horizon.
To distinguish between distances on opposite sides of the circle, dis-
tances on one side are regarded as algebraically positive quantities,
and on the other side as negative. In the case of the equator the
north side, and in that of the horizon the upper side, are considered
positive. Hence, if a body is below the horizon its altitude is nega-
tive, and the latitude of a city south of the earth’s equator is, in
astronomical language, considered as negative.

Instead of the co-ordinate we have described, another called zenith
or polar distance is frequently employed. The fundamental circle is

* The co-ordinates of a body are those measures, whether of angles or lines, which
define its position. For instance, the geographical co-ordinates of a city are its
latitude and longitude. To fix a position on a sphere or other surface, two co-ordi-
nates are necessary, while in space three are required.
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everywhere 90° from its positive pole, P. Hence, if 4 is the position
of a star or other point on the
sphere, and we put

d, its declination or altitude,
=A%

P, its polar or zenith distance
=P A, we shall have

é 4+ p=90°
or,

If the star is south of the
fundamental circle, at B for ex-
ample, d being negative p will ex-
ceed 90°, This quantity p may
range from zero at the one pole

Fia. 12. to 180° at the other, and will al-

ways be algebraically positive.

It is on this account to be preferred to 4, though less frequently
used.

Il. The second co-ordinate required to fix a position on the celes-
tial or terrestrial sphere is longitude. right ascension, or azimuth, ac-
cording to the fundamental plane adopted. It is expressed by the
position of the great circle or meridian P 4 a P’ which passes
through the position from one pole to the other, at right angles to
the fundamental circle. An arbitrary point, ¥ for instance, is chosen
on this latter circle, and the longitude is the angle Va, from this
point to the intersection of the meridian or vertical circle passing
through the object. We may also consider it as the angle V' P A
which the circle passing through the object makes with the circle
PV, because this angle is equal
to Va. The angle is commonly
counted from ¥ toward the right,
and from 0° round to 360°, so as
to avoid using negative angles,
If the observer is stationed in
the centre of the sphere, with his
head toward the positive pole P,
the positive direction should be
from right to left around the
sphere. 'When the horizon is
tuken as the fundamental circle
or plane, this secondary co-ordi-
nate is called the azimuth, and
should be counted from the south =
point toward east, or from the Fia. 18,
north point toward west, but is
commonly counted the other way. It may be defined as the angular
distance of the vertical circle passing through the object from the
south point of the horizon,
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The kour angle of a star is measured by the interval which has
elapsed, or the angle through which the earth has revolved on its
axis, since the star crossed the meridian. In Fig. 13 Z being the
zenith and P the pole, the angle Z P S is the hour angle of the star
8. This angle is measured at the pole. If we put

7, the sidereal time,

@, the right ascension of the object, we shall have

Hour angle, h = 7 — a.

It will be negative before the object has passed the meridian, and
positive afterward. It differs from right ascension only in. the point
from which it is reckoned, and the direction which is considered
positive. The right ascension is measured toward the east from a
point (the vernal equinox) which is fixed among the stars, while the
hour angle is measured toward the west from the meridian of the
observer, which meridian is constantly in motion, owing to the
earth’s rotation.

~We have next to show the trigonometrical relations which subsist
between the hour angle, declination, altitude, and azimuth. Let

Fig. 14 be a view of the celestial hemisphere which is above the
horizon, as seen from the east. We then have:

H E R W, the horizon.

P, the pole.

Z, the zenith of the observer, -

H M Z P R, the meridian of the observer.

P R, the latitude of the observer, which call ¢.
Z P, = 90° — ¢, the co-latitude.

P 8, the north polar distance of the star = 90" — declination.
T 8, its altitude, which call a.

Z 8, its zenith distance = 90° — a.

M Z 8, its azimuth, = 180" — angle § Z P.

Z P 8, its hour angle, which call 4.

The spherical triangle Z I’ S, of which the angles are formed by
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-
the zenith, the pole, and the star, is the fundamental triangle of our
problem. The latter, as commonly solved, may be put into two forms.

I. Given the latitude of the place, the declination or polar dis-
tance of the star, and its hour angle, to find its altitude and azimuth.

We have, by spherical trigonometry, considering the angles and
sides of the triangle Z P 8 -

cos Z S =cos PZcos PS+ sin P Zsin P S cos P.
sin Z S cos Z=sin P Z cos P8 —cos P Zsin P Scos P.
sin Z 8 sin Z = sin P 8 sin P.

By the above definitions,

Z 8 = 90° — a, (a being the altitude of the star).

PZ=90° — ¢, (¢ being the latitude of the place).

P8 =90° — 4, (Jbeing the declination of the star, + when north).
P = h, the hour angle.
Z =180° — 2, (z being the azimuth).

Making these substitutions, the cquation becomes:

sine@ = sin ¢ sin § 4 cos ¢ cos J cos A.
COS @ COS 2 = — ¢os ¢ 8in 0 4 sin ¢ cos d cos A.
cosasin 2=  cos dsinh,

From these equations sin @ and cos @ may be obtained separately,
and, if the computation is correct, they will give the same value of a.
If the altitude only is wanted, it may be obtained from the first
equation alone, which may be transformed in various ways, explained
in works on trigonometry.

II. Given the latitude of the place, the Qeclination of a star, and
its altitude above the horizon, to find its hour angle and (if its right
ascension is known) the sidereal time when it had the given altitude.

We find from _the first of the above equations,
oy sin @ — sin ¢ sin 4,

cos ¢ cos ¢
Or we may use:
sin’th = 3 cos (¢ — J) — sina
i cos ¢ cos 0

Having thus found %, we have
Sidereal time = % + «,

« being the star’s right ascension, and the hour angle A being changed
into time by dividing by 15.

III. An interesting form of this last problem arises when we sup-
pose @ = o, which is the same thing as supposing the star to be in
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the horizon, and therefore to be rising or setting. The value of %
will then be the hour angle at which it rises or sets; or being
changed to time by dividing by 15, it will be the interval of sidereal
time between its rising and its passage over the meridian, or be-
tween this passage and its setting. This interval is called the semi-
diurnal are, and by doubling it
we have the time between the
rising and setting of the star or
other object. Putting @ = 0 in
the preceding expression for cos
h we find for the semi-diurnal
arc A,

sin ¢ sin &

COS = — =—
cos ¢ cos d

= — tan ¢ tan ¢,

and the arc during which the
star is above the horizon is 2 .

From this formula may be
deduced at once many of the

results given in the preceding pyy 15 ypppn AND LowER DIUR-
sections. NAL ARCS,

(1). At the poles ¢ = 90°,
tan ¢ = infinity, and therefore cos A = infinity. But the cosine of
an angle can never be greater than unity ; there is therefore no value
of A which fulfils the condition. Hence, a star at the pole can
neither rise nor set.

(2). At the earth’s equator ¢ = 0°, tan ¢ = 0, whence cos & = 0,
h = 90°, and 2 A = 180°, whatever be 4. This being a semicircum-
ferenceall the heavenly bodies are half the time above the horizon to
an observer on the equator. v

(8). If 6 = 0° (that is, if the star is on the celestial equator), then
tand = 0, and cos 2 = 0,4 = 90°, 2 » = 180°, so that all stars on
the equator are half the time above the horizon, whatever be the lati-
tude of the observer. Here we except the pole, where, in this case,
tan ¢ tan d = o« x 0, an indeterminate quantity. In fact, a star on
the celestial equator will, at the pole of the earth, seem to move round
in the horizon.

(4). The above value of cos & may be expressed in the form:

tan & tan ¢ ;
cot ¢~  tan (90° — ¢)

This shows that when d lies outside the limits + (90° — ¢) and
— (90° — ¢), cos & will lie without the limits — 1 and + 1, and
there will be no value of % to correspond. Hence, in this case, the
stars neither rise nor set. These limits correspond to those of per-
petual apparition and perpetual disappearance.

(5). In the northern hemisphere ¢ and tan. ¢ are positive. Then,
when 4 is positive, cos % is negative, and & > 90°, 2 4 > 180", With
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-
negative d, cos & is positive, A < 90°, 2 h <180°. Hence, in north-
ern latitudes, a northern star is more than half of the time above the
horizon, and a southern star less. In the southern hemisphere, ¢ and
tan ¢ are negative, and the case is reversed.

(6). If, in the preceding case, the declination of a body is supposed
constant and north, then the greater we make ¢ the greater the nega-
tive value of cos A and the greater % itself will be. Considering, in
succession, the cases of north and south declination and north and
south latitude, we readily see that the farther we go to the north on
the earth, the longer bodies of north declination remain above the
horizon, and the more quickly those of south declination set. In the
southern hemisphere the reverse is true. Thus, in the month of
June, when the sun is north of the equator, the days are shortest
near the south pole, and continually increase in length as we go north.

ExAMPLES.

(1). On April 9, 1879, at Washington, the altitude of Rigel above
the west horizon was observed to be 12° 25’. Its position was:
Right ascension = 5" 8™ 44°.27 = a.
Declination = — 8° 20 36" = 4.
The latitude of Washington is + 38° 53’ 39" = ¢.
What was the hour angle of the star, and the sidereal time of ob-
servation ?

lgsine =  9.332478
lgsing =  9.797879
lg sin 6 = — 9.161681
— lgsingsind = 8-959560
— singsind = 0-091109
sine =  0-215020
sin@ — sin ¢ sin §d = 0-306129
Igcos 9 =  9-891151
Ig cos 6 = 9-995379
Igcos pcosd =  9-886530
lg (sina — sin ¢ sind, =  9-485905
Igcos h =  9-599375
h 66° 34" 33"
h + 15 4h 26™ 18:.20

a Bb 8™ 44527
sidereal time gh 5™ 2047
(2). Had the star been observed at the same altitude in the east,

what would have been the sidereal time?
Ans. o« — h = 0P 42m 262.07.

[
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(3). At what sidereal time does Rigel rise, and at what sidereal
time does it set in the latitude of Washington ?

— tg 9 = — 9-906728
tg d = — 9-166301
cos b = — 9.073029
= 88" 122 19"
h = 156 =  5hgom49:27
e = 5 8m44:97

rises 23" 35" 55°.00
sets 10" 41™ 33:.54

(4). What is the greatest altitude of Rigel above the horizon of
Washington, and what is its greatest depression below it? Ans.
Altitude=42° 45 45" ; depression=59" 26" 57". :

(5). What is the greatest altitude of a star on the equator in the
meridian of Washington ? Ans. 51° 6” 21".

(6). The declination of the pointer in the Great Bear which is
nearest the pole is 62 30’ N., at what altitude does it pass above
the pole at Washington, and at what altitude does it pass below it ?
Ans. 66° 23’ 39" above the pole, and 11° 23’ 39" when below it.

(7). If the declination of a star is 50° N., what length of sidereal
time is it above the horizon of Washington and what length below it
during its apparent diurnal circuit? Ans. Above, 21° 52%; below,
2h 8m,

8 8. DETERMINATION OF LATITUDES ON THE
EARTH BY ASTRONOMICAL OBSERVATIONS.

Latitude from circumpolar stars.—In Fig. 16 let Z represent the
zenith of the place of observation, P the pole, and H PZ E the me-
ridian, the observer being at the
centre of the sphere. Suppose
Sand 8 to be the two points
at which a circumpolar star
crosses the meridian in the de-
scription of its apparent diurnal
orbit. Then, since P is midway
between S and S,

Z8+Z8
SEES —ZP= 90—y,
or,

s By by

1f, then, we can measure the dis-
tances Z and 7', we have
4
e Fie. 16.
2
which serves to determine ¢. The distances Zand Z' can be meas-

¢ = 90° —
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ured by the meridian circle or the *sextant—both of which instru-
ments are described in the next chapter—and the latitude is then
known. Zand Z' must be freed from the effects of refraction. In
this method no previous knowledge of the star’s declination is re-
quired, provided it remains constant between the upper and lower
transit, which is the case for fixed stars.
Latitude by Circum-zenith Observations.—If two stars
S and &, whose declinations 6 and ¢’ are known, cross the meridian,
one north and the other south of the zenith, at zenith distances Z S
and Z &, which call Z and Z’, and
if we have measured Z and Z', we
can from such measures find the
latitude ; for ¢ =d 4+ Zand ¢ =
' — 7', whence
o=14[(8+ ) + (Z— 2]
It will be noted that in this meth-
od the latitude depends simply
upon the mean of two declinations
which can be determined before-
hand. and only requires the differ-
Fia. 17. ence of zenith distances to be ac-
curately measured, while the ab-
solute values of these are unknown. In this consists its capital ad-
vantage. This is the method invented by Capt. AxprEw TaLcorr,
U.S.A., and now universally adopted in America in field astronomy,
in the practice of the Coast Survey, etc.
Latitude by a Single Altitude of a Star.—In the triangle
Z P 8 (Fig. 14) the sides are ZP =90 —¢; PS= 90°—d; ZS=
Z=90°— a; ZPS ="h=the hour angle. If we can measure at
any known sidereal time 0 the altitude @ of the star S, and if we
further know the right ascension, , and the declination, d, of the
body (to be derived from the Nautical Almanac or a catalogue of
stars), then we have from the triangle

sin ¢ = sin @ sin ¢ 4 cos @ cos d cos A ;
or, since

t=0— a; sin ¢ = sin @ sin 6 + cos @ cos d cos (0 — @),

from which we can obtain 6. It is to be noted that in a place whose
latitude (¢) is known, this observation will determine 6, the side-
real time, as explained in the last section; if the sun is observed,
t is simply the solar time.

Latitude by a Meridian Altitude.—If the altitude of the
body is observed on the meridian and south of the zenith, the equa-
tion above becomes, since £ = 0 in this case,

sin ¢ = sin @ sin ¢ + cos a cos 4,
or,
sin ¢ =cos (@ —d) .. ¢ =90° — a 4 ¢,

which is evidently the simplest method of obtaining ¢ from a meas-
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ured altitude of a body of known declination. The last method is
that commonly used at sea, the altitude being measured by the sex-
tant. The student can deduce the formula for a northern altitude.

§ 9. PARALLAX AND SEMIDIAMETER.

An observation of the apparent position of a heavenly
body can give only the direction in which it lies from the
station occupied by the observer without any direct indi-
cation of the distance. It is evident that two observers
stationed in different parts of the earth will not see such
a body in the same direction. In Fig. 18, let 8’ be a sta-

F1a. 18.—PARALLAX.

tion on the earth, P a planet, Z’ the zenith of &', and the
outer arc a part of the celestial sphere. An observation
of the apparent right ascension and declination of /> taken
from the station & will give us an apparent position /.
A similar observation at &” will give an apparent position
P’ while if seen from the centre of the earth the appar-
ent position would be 2, The angles /P P, and
P P P, which represent the differences of direction, are
called parallaxes. It is clear that the parallax of a body
depends upon its distance from the earth, being greater
the nearer it is to the earth.

The word parallaz having several distinet applications,
we shall give them in order, commencing with the most
general signification.
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(1.) Initsmost general accéptation, parallax is the differ-
ence between the directions of a body as seen from two
different standpoints. This difference is evidently equal
to the angle made between two lines, one drawn from each
point of observation to the body. Thus in Fig. 18 the
difference between the direction of the body 2 as seen
from C and from &' is equal to the angle ' P P, and this
again is equal to its opposite angle & 2 €. - This angle is,
however, the angle between the two points € and & as
seen from />: we may therefore refer this most general
definition of parallax to the body itself, and define parallax
as the angle subtended by the line between two statlons as
seen from a heavenly body.

(2.) In a more restricted sense, one of the two stations is
supposed to be some centre of position from which we
imagine the body to be viewed, and the parallax is the
difference between the direction of the body from this
centre and its direction from some other point. Thus
the parallax of which we have just spoken is the differ-
ence between the direction of the body as seen from the
centre of the earth €' and from a point on its surface as S,
If the observer at any station on the earth determines
the exact‘direction of a body, the parallax of which we
speak is the correction to be applied to that direction in
order to reduce it to what it would have been had the ob-
servation been made at the centre of the earth. Obser-
vations made at different points on the earth’s surface are
compared by reducing them all to the centre of the earth.

‘We may also suppose the point (' to be the sun and the
circle 8" §” to be the earth’s orbit around it. The paral-
lax will then be the difference between the directions of
the body as seen from the earth and from the sun. This
is termed the annual parallaz, because, owing to the an-
nual revolution of the earth, it goes through its period
in a year, always supposing the body observed to be at
rest,

(8.) A yet more restricted parallax is the Aorizontal
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parallax of a heavenly body. The parallax first deseribed
in the last paragraph varies with the position of the ob-
server on the surface of the carth, and has its greatest
value when the body is seen in the horizon of the ob-
server, as may be seen by an inspection of Fig. 19, in
which the angle ¢ P 8 attains its maximum when the line
P S is tangent to the earth’s surface, in which case £
will appear in the horizon of the observer at S.

Fi6. 19.—HORIZONTAL PARALLAX.

The horizontal parallax depends upon the distance of a
body in the following manner : In the triangle ¢ 2’8,
right-angled at §, we have

C8=CPsin CPS

If, then, we put

0, the radius of the earth C§'y

7, the distance of the body P from the centre of the
earth ;

@, the angle § 2 C, or the horizontal parallax,

we shall have,
P

sin 7

p=rsinz; r=

Since the earth is not perfectly spherical, the quantity o
is not absolutely constant for all parts of the earth, and its
greatest value is usnally taken as that to which the hori-
zontal value shall be referred. This greatest value is, as
we shall hereafter see, the radius of the equator, and the
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corresponding value of the parallax is therefore called the
equatorial horizontal parallax.

When the distance » of the body is known, the equa-
torial horizontal parallax can be found by the first of the
above equations ; when the parallax can be observed, the
distance 7 is found from the second equation. How this
is done will be described in treating the subject of celes-
tial measurement.

It is easily seen that the equatorial horizontal parallax,
or the angle ' P8, is the same as the angular semi-
diameter of the earth seen from the object 2. In fact,
if we draw the line 2§ tangent to the earth at &, the
angle § P 8 will be the apparent angular diameter of the
earth as seen from 72, and will also be double the angle
O P 8S. The apparent semi-diameter of a heavenly body
is therefore given by the same formule as the parallax,
its own radius being substituted for that of the earth. If
we put,

p, the radius of the body in linear measure ;

7, the distance of its centre from the observer, expressed
in the same measure ;

s, its angular semi-diameter, as seen by the observer ;

we shall have,

sin ¢ = B
If we measure the semi-diameter s, and know the dis-
tance, 7, the radius of the body will be
p =7rsins.

Generally the angular semi-diameters of the heavenly
bodies are so small that they may be considered the same
as their sines. We may therefore say that the apparent
angular diameter of a heavenly body varies inversely as
its distance.



CHAPTER 1II.

ASTRONOMICAL INSTRUMENTS.
§ 1. THE REFRACTING TELESCOPE.

In explaining the theory and use of the refracting tele-
scope, we shall assume that the reader is acquainted with
the fundamental principles of the refraction and disper-
sion of light, so that the simple enumeration of them
will recall them to his mind. These principles, so far
as we have occasion to refer to them, are, that when
a ray of light passing through a vacuum enters a trans-
parent medium, it is refracted or bent from its course
in a direction toward a line perpendicular to the sur-
face at the point where the ray enters; that this bend-
ing follows a certain law known as the law of sines;
that when a pencil of rays emanating from a luminous
point falls necarly perpendicularly upon a convex lens,
the rays, after passing throungh it, all converge toward a
point on the other side called a focus ; that light is com-
pounded of rays of various degrees of refrangibility, so
that, when thus refracted, the component rays pursue
slightly different courses, and in passing through a lens
come to slightly different foci; and finally, that the ap-
parent angular magnitude subtended by an object when
viewed from any point is inversely proportional to its
distance. ¥

* More exactly, in the case of a globe, the sine of the angle is in-
versely as the distance of the object, as shown on the preceding page.
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We shall first describe the telescope in its simplest
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Fi6. 20.—ACTION OF OBJECTIVE IN FORMING AN IMAGE OF A DISTANT OBJECT,

form, showing the principles upon which
its action depends, leaving out of considera-
tion the defects of aberration which require
special devices in order to avoid them. In
the simplest form in which we can conceive
of a telescope, it consists of two lenses of
unequal focal lengths. The purpose of one
of these lenses (called the objective, or object
glass) is to bring the rays of light from a
distant object at which the telescope is
pointed, to a focus and there to form an
image of the object. The purpose of the
other lens (called the eye-piece) is to view
this object, or, more precisely, to form an-
other enlarged image of it on the retina of
the eye.

The figure gives a representation of the
course of one pencil of the rays which go to
form the image A ' of an object Z BB after
passing through the objective O 0'. The
pencil chosen is that composed of all the
rays emanating from / which can possibly
fall on the objective O O’. All these are,
by the action of the objective, concentrated
at the point /. In the same way each point
of the image out of the optical axis 4 /5
emits an oblique pencil of diverging rays
which are made to converge to some point
of the image by the lens. The image of
the point B of the object is the point A4 of
the image. We must conceive the image of
any object in the focus of any lens (or
mirror) to be formed by separate bundles
of rays as in the figure. The image thus
formed becomes, in its turn, an object to

be viewed by the eye-piece. ~After the rays meet to form
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the image of an object, as at 7, they continue on their
course, diverging from [/’ as if the latter were a material
object reflecting the light. There is, however, this excep-
tion : that the rays, instead of diverging in every direction,
only form a small cone having its vertex at /’, and having
its angle equal to 01" 0’. The reason of this is that
only those rays which pass through the objective can form
the image, and they must continue on their course in
straight lines after forming the image. This image can
now be viewed by a lens, or even by the unassisted eye, if
the observer places himself behind it in the direction 4,
so that the pencil of raysshall enter his eye. For the pres-
ent we may consider the eye-piece as a simple lens of
short focus like a common hand-magnifier, a more com-
plete description being given later.

Magnifying Power.—To understand the manner in
which the telescope magnifies, we remark that if an eye at
the object-glass could view the image, it would appear of
the same size as the actual object, the image and the object
subtending the same angle, but lying in opposite direc-
tions. This angular magnitude being the same, whatever
the focal distance at which the image is formed, it follows
that the size of the image varies directly as the focal length
of the object-glass. But when we view an object with a
lens of small focal distance, its apparent magnitude is the
same as if it were seen at that focal distance. Consequently
the apparent angular magnitude will be inversely as the
focal distance of the lens. Hence the focal image as
seen with the eye-piece will appear larger than it would
when viewed from the objective, in the ratio of the focal
distance of the objective to that of the eye-piece. But we
have said that, seen through the objective, the image and
the real object subtend the same angle. Ilence the angu-
lar magnifying power is equal to the focal distance of the
objective, divided by that of the eye-piece. If we simply
turn the telescope end for end, the objective becomes the
eye-piece and the latter the objective. The ratio is in-
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verted, and the object is diminished in size in the same
ratio that it is increased when viewed in the ordinary
way. If we should form a telescope of two lenses of
equal focal length, by placing them at double their focal
distance, it would not magnify at all.

The image formed by a convex lemns, being upside
down, and appearing in the same position when viewed
with the eye-piece, it follows that the telescope, when
constructed in the simplest manner, shows all objects in-
verted, or upside down, and right side left. This is the
case with all refracting telescopes made for astronomical
uses.

Light-gathering Power.—It is not merely by magnify-
ing that the telescope assists the vision, but also by in-
creasing the quantity of light which reaches the eye from
the object at which we look. Indeed, should we view an
object through an instrument which magnified, but did
not increase the amount of light received by the eye, it is
evident that the brillianecy would be diminished in propor-
tion as the surface of the object was enlarged, since a con-
stant amount of light would be spread over an increased
surface ; and thus, unless the light were faint, the object
might become so darkened as to be less plainly seen than
with the naked eye. How the telescope increases the
quantity of light will be seen by considering that when the
unaided eye looks at any object, the retina can only re-
ceive s0 many rays as fall upon the pupil of the eye. By
the use of the telescope, it is evident that as many rays
can be brought to the retina as fall on the entire object-
glass. The pupil of the human eye, in its normal state,
has a diameter of about one fifth of an inch ; and by the
use of the telescope it is virtually increased in surface in
the ratio of the square of the diameter of the objective to
the square of one fifth of an inch. Thus, with a two-inch
aperture to our telescope, the number of rays collected is
one hundred times as great as the number collected with
the naked eye.



POWER OF TELESCOPE. 57

With a 5-ineh ob]eet glass, the ratio is 625 to 1
« 10 ¢ 1% % % 2,500 to 1
13 15 ¢ 143 [ 13 §¢ 5,625 tO.l
90 ¢ ¢ c< % ¢ 10,000 to 1
98 « 1% ¢« 14 < 16,900 to 1

When a minute objeet, like a star, is viewed, it is
necessary that a certain number of rays should fall on the
retina in order that the star may be visible at all. It is
therefore plain that the use of the telescope enables an
observer to see much fainter stars than he ecould detect
with the naked eye, and also to see faint objects much
better than by unaided vision alone. Thus, with a 26-
inech telescope we may see stars so minute that it would
require many thousands to be visible to the unaided eye.

An important remark is, however, to be made here.
Inspecting Fig. 20 we see that the cone of rays passing
through the objeet-glass converges to a focus, then diverges
at the same angle in order to pass through the eye-piece.
After this passage the rays emerge from the eye-piece
parallel, as shown in Fig. 22. It is evident that the
diameter of this eylinder of parallel rays, or ¢ emergent
pencil,” as it is ealled, is less than the diameter of the
objeet-glass, in the same ratio that the focal length of the
eye-piece is less than that of the object-glass. For the
eentral ray / /' is the common axis of two cones, A /" and
O I' 0’y having the same angle, and equal in length to
the respective foeal distances of the glasses. But this
ratio is also the magnifying power. Hence the diameter
of the emergent pencil of rays is found by dividing the
diameter of the object-glass by the magmfymtr power.
Now it is clear that if the magnifying power is so small
that this emergent pencil is larger than the pupil of the
eye, all the light which falls on the object-glass cannot
enter the pupil. This will be the case whenever the
magnifying power is less than five for every inch of
aperture of the glass. If, for example, the observer should
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look through a twelve-inch telescope with an eye-piece
so large that the magnifying power was only 30, the
emergent pencil would be two fifths of an inch in diam-
eter, and only so much of the light could enter the pupil
as fell on the central six inches of the object-glass.
Practically, therefore, the observer would only be using a
six-inch telescope, all the light which fell outside of the
six-inch circle being lost. In order, therefore, that he
may get the advantage of all his object-glass, he must use
a magnifying power at least five times the diameter of his
objective in inches.

When the magnifying power is carried beyond this
limit, the action of a telescope will depend partly on the
nature of the object one is looking at. Viewing a star,
the increase of power will give no increase of light, and
therefore no increase in the apparent brightness of the
star. If one is looking at an object having a sensible.
surface, as the moon, or a planet, the light coming
from a given portion of the surface will be spread over a
larger portion of the retina, as the magnifying power
is increased. All magnifying must then be gained at
the expense of the apparent illumination of the surface.
‘Whether this loss of illumination is important or not will
depend entirely on how much light is to spare. In a
general way we may say that the moon and all the plan-
ets nearer than Saturn are so brilliantly illuminated by
the sun that the magnifying power can be carried many
times above the limit without any loss in the distinetness
of vision,

The Telescope in Measurement.—A telescope is gen-
erally thought of only as an instrument to assist the eye
by its magnifying and light-gathering power in the man-
ner we have described. But it has a very important
additional function in astronomical measurements by en-
abling the astronomer to point at a celestial object with a
certainty and accuracy otherwise unattainable. This func-
tion of the telescope was not recognized for more than
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half a century after its invention, and after a long and
rather acrimonious contest between two schools of astron-
omers. Until the middle of the seventeenth century,
when an astronomer wished to determine the altitude of a
celestial object, or to measure the angular distance be-
tween two stars, he was obliged to point his quadrant or
other measuring instrument at the object by means of
‘ pinnules.”” These served the same purpose as the sights
on a rifle. In using them, however, a difficulty arose.
It was impossible for the observer to have distinet vision
both of the object and of the pinnules at the same time,
because when the eye was focused on either pinnule, or
on the object, it was necessarily out of focus for the
others. The only way to diminish this difficulty was to
lengthen the arm on which the pinnules were fastened so
that the latter should be as far apart as possible. Thus
Tycro Brang, before the year 1600, had measuring in-
struments very much larger than any in use at the pres-
ent time. But this plan only diminished the difficulty and
could not entirely obviate it, because to be manageable
the instrument must not be very large.

About 1670 the English and French astronomers found
that by simply inserting fine threads or wires exactly in
the focus of the telescope, and then pointing it at the ob-
ject, the image of that object formed in the focus could be
made to coincide with the threads, so that the observer
could see the two exactly superimposed upon each other.
‘When thus brought into coincidence, it was known that
the point of the object on which the wires were set was in
a straight line passing through the wires, and through the
centre of the object-glass. So exactly could such a point-
ing be made, that if the telescope did not magnify at all
(the eye-piece and object-glass being of equal focal length),
a very important advance would still be made in the ac-
curacy of astronomical measurements. This line, passing
centrally through the telescope, we call the line of col-
Uimation of the telescope, A B in Fig. 20. If we have
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any way of determining it we'at once realize the idea ex-
pressed in the opening chapter of this book, of a pencil ex-
tended in a definite direction from the earth to the heav-
ens. If the observer simply sets his telescope in a fixed
position, looks through it and notices what stars pass along
the threads in the eye-piece, he knows that those stars all
lie in the line of collimation of his telescope at that instant.
By the diurnal motion, a pencil-mark, as it were, is thus
being made in the heavens, the direction of which can be
determined with far greater precision than by any meas-
urements with the unaided eye. The direction of this line
of collimation can be determined by methods which we
need not now describe in detail.

The Achromatic Telescope.—The simple form of tele-
scope which we have described is rather a geomectrical
conception than an actnal instrument. Only the earli-
est instruments of this class were made with so few as two
lenses. GALILEO’s telescope was not made in the form
which we have deseribed, for instead of two convex lenses
having a common focus, the eye-piece was concave, and
was placed at the proper distance inside of the focus of the
objective. This form of instrument is still nsed in opera-
glasses, but is objectionable in large instruments, owing to
the smallness of the field of view. The use of two con-
vex lenses was, we believe, first proposed by KepLEr.
Although telescopes of this simple form were wonderful
instruments in their day, yet they would not now be re-
garded as serving any of the purposes of such an instru-
ment, owing to the aberrations with which a single lens is
affected. ~'We know that when ordinary light passes
through a simple lens it is partially decomposed, the differ-
ent rays coming to a focus at different distances. The
focus for red rays is most distant from the object-glass,
and that for violet rays the nearest to it. Thus arises
the chromatic aberration of a lens. DBut this is not all.
Even if the light is but of a single degree of refrangi-
bility, if the surfaces of our lens are spherical, the rays
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which pass near the edge will come to a shorter focus
than those which pass near the centre. Thus arises
spherical aberration. This aberration might be avoided
if lenses could be ground with a proper gradation of
curvature from the centre to the circumference. Prac-
tically, however, this is impossible ; the deviation from
uniform sphericity, which an optician can produce, is too
small to neutralize the defect.

Of these two defects, the chromatic aberration is much
the more serious ; and no way of avoiding it was known
until the latter part of the last century. The fact had,
indeed, been recognized by mathematicians and physicists,
that if two glasses could be found having very different
ratios of refractive to dispersive powers,* the defeet could
be cured by combining lenses made of these different
kinds of glass. Bnt this idea was not realized until the
time of DorrLonp, an English optician who lived during
the last century. This artist found that a concave lens of
flint glass could be combined with a convex lens of crown of
double the curvature in such a manner that the dispersive
powers of the two lenses should neutralize each other, being
equal and acting in opposite di-
rections. But the crown glass
having the greater refractive
power, owing to its greater cur-
vature, the rays would be brought
to a focus without dispersion.
Such is the construction of the Frc. 21.—sEcTION OF OBIECT-
achromatic objective. As now W il
made, the outer or crown glass lens is double convex ; the
inner or flint one is generally nearly plano-concave.
Fig. 21 shows the section of such an objective as inade
by Arvan Crark & Soxs, the inner curves of the crown
and flint being nearly equal.

* By the r¢fractive power of a glass is meant its power of bending the
rays out of their course, so as to bring them to a focus. By its disper-
sive power is meant its power of separating the colors so as to form a
spectrum, or to produce chromatic aberration.
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A great advantage of the dchromatic objective is that it
may be made to correct the spherical as well as the chro-
matic aberration.” This is effected by giving the proper
curvature to the various surfaces, and by making such
slight deviations from perfect sphericity that rays passing
through all parts of the glass shall come to the same focus.

The Secondary Spectrum.—It is now known that the
chromatic aberration of an objective cannot be perfectly
corrected with any combination of ‘glasses yet discovered.
In the best telescopes the brightest rays of the speectrum,
which are the yellow and green ones, are all brought to
the same focus, but the red and blue ones reach a focus
a little farther from the objective, and the violet ones a
focus still farther. Hence, if we look at a bright star
through a large telescope, it will be seen surrounded by a
blue or violet light. If we push the eye-piece in a little
the enlarged image of the star will be yellow in the centre
and purple around the border. This separation of colors
by a pair of lenses is called a secondary spectrum.

Eye-Pioce.—In the skeleton form of telescope before
described the eye-piece as well as the objective was con-
sidered as consisting of but a single lens. But with such
an eye-pieee vision is imperfect, except in the centre of
the field, from the fact that the image does not throw
rays in every direction, but only in straight lines away
from the objective. Hence, the rays from near the edges
of the focal image fall on or near the edge of the eye-
piece, whence arises distortion of the image formed on
the retina, and loss of light. To remedy this difficulty a
lens is inserted at or very near the place where the focal
image is formed, for the purpose of throwing the different
pencils of rays which emanate from the several parts of
the image toward the axis of the telescope, so that they
shall all pass nearly through the centre of the eye lens pro-
per. These two lenses are together called the eye-piece.

There are some small differences of detail in the con-
struction of eye-pieces, but the general principle is the
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same in all. The two recognized classes are the posi-
tive and negative, the former being, those in which the
image is formed before the light reaches the field lens ; the
negative those in which it is formed between the lenses.

The figure shows the positive eye-piece drawn accurately to scale.
O Iis one of the converging pencils from the object-glass which
forms one point (F) of the focal image I a. This image is viewed
by the field lens F of the eye-piece as a real object, and the shaded
pencil between # and X shows the course of these rays after de-
viation by 7. If there were no eye-lens B an eye properly placed
beyond F would see an image at I'a’. The eye-lens  receives the
pencil of rays, and deviates it to the observer’s eye placed at such a
point that the whole incident pencil will pass through the pupil
and fall on the retina, and thus be effective. As we saw in the

Fi1c. 22.—SECTION OF A POSITIVE EYE-PIECH.

figure of the refracting tclescope, every point of the object produces
a pencil similar to O 7, and the whole surfaces of the lenses #
and & are covered with rays. All of these pencils passing through
the pupil go to make up the retinal image. This image is referred
by the mind to the distance of distinct vision (about ten inches),
and the image A I’ represents the dimension of the final im?ge

is

relative to the image @ I as formed by the objective and 5

evidently the magnifying power of this particular eye-piece used
in combination with this particular objective.

More Exact Theory of the Objective.—For the benefit of the
reader who wishes a more precisc knowledge of the optical princi-
ples on which the action of the objective or other system of lenses
depends, we present the following geometrical theory of the sub-
ject. This theory is not rigidly exact, but is sufficiently so for all
ordinary computations of the focal lengths and sizes of image in
the usual combinations of lenses.
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Centres of Convergence and Divergence.—Suppose 4 B, Fig.
23, to be a lens or combination of lenses on which the light falls from
the left hand and passes through to the right. Suppose rays parallel
to R P to fall on every part.of the first surface of the glass. After
passing through it they are all supposed to converge nearly or ex-
actly to the same point R’. Among all these rays there is one, and
one only, the course of which, after emerging from the glass at @,
will be parallel to its original direction RP. Let B P @ R’ be this
central ray, which will be completely determined by the direction
from which it comes. Next, let us take a ray coming from another
direction as 8 P. Among all the rays parallel to S P, let us take
that one which, after emerging from the glass at 7}, moves in a line
parallel to its original direction. Continuing the process, let us
suppose isolated fays coming from all parts of a distant object sub-
ject to the single condition that the course of each, after passing
through the glass or system of glasses, shall be parallel to its original
course. These rays we may call central rays. They have this re-
markable property, pointed out by Gauss: that they all converge

Fia. 23.

toward a single point, P, in coming to the glass, and diverge from
another point, /7, after passing through the last lens. These points
were termed by Gauss ‘‘ Hauptpunkte,’ or principal points. But
they will probably be better understood if we call the first one the
centre of convergence, and the second the centre of divergence.
It must not be understood that the central rays necessarily pass
through these centres. If one of them lies outside the first or last
refracting surface, then the central rays must actually pass through
it. But if they lie between the surfaces, they will be fixed by the
continuation of the straight line in which the rays move, the latter
being refracted out of their course by passing through the surface,
and thus avoiding the points in question. If the lens or system of
lenses be turned around, or if the light passes through them in an
opposite direction, the centre of convergence in the first case be-
comes the centre of divergence in the second, and vice versa. The
necessity of this will be clearly seen by reflecting that a return ray
of light will always keep on the course of the original ray in the
opposite direction.
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The figure represents a plano-convex lens with light falling on
the convex side. In this case the centre of convergence will be
on the convex surface, and that of divergence inside the glass
about one third or two fifths of the way from the convex to the
plane surface, the positions varying with the refractive index of the
glass. In adouble convex lens, both points will lie inside the glass,
while if a glass is concave on one side and convex on the other,
one of the points will be outside the glass on the eoncave side. It
must be remembered that the positions of these centres of conver-
gence and divergence depend solely on the form and size of the
lenses and their refractive indices, and do not refer in any way to
the distances of the objects whose images they form.

The principal properties of a lens or objective, by which the size
of images are determined, are as follows : Since the angle S’ P R’
made by the diverging rays is equal to R P .S, made by the con-
verging ones, it follows, that if a lens form the image of an object,
the size of the image will be to that of the object as their respec-
tive distances from the centres of convergence and divergence. In
other words, the object seen from the centre of convergence P will
be of the same angular magnitude as the image seen from the
centre of divergence .

By conjugate foci of alens or system of lenses we mean a pair of
points such that if rays diverge from the one, they will converge to
the other. Hence if an object is in one of a pair of such foci, the
image will be formed in the other.

By the refractive power of a lens or combination of lenses, we
mean its influence in refracting parallel rays to a focus which we
may measure by the reciprocal of its focal distance or 1 + f. Thus,
the power of a piece of plain glass is 0, because it cannot bring
rays to a focus at all. The power of a convex lens is positive, while
that of a concave lens is negative. In the latter case, it will be
remembered by the student of optics that the virtual focus is on
the same side of the lens from which the rays proceed. It 1s to
be noted that when we speak of the focal distance of a lens, we
mean the distance from the centre of divergence to the focus for
parallel rays. In astronomical language this focus is called the
stellar focus, being that for celestial objects, all of which we may
regard as infinitely distant. If, now, we put

P, the power of the lens ;

J, its stellar focal distance ;

S, the distance of an object from the centre of convergence ;

J''; the distance of its image from the centre of divergence; then
the equation which determines s will be

ol i
f+j"_f —P)
or,
o
U = P

From these equations may be found the focal length, having the
distance at which the image of an object is formed, or vice versa.
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§ 2. REFLECTING TELESCOPES.

As we have seen, the most essential part of a refracting
telescope is the objective, which brings all the incident
rays from an object to one focus, forming there an image
of that object. In reflecting telescopes (reflectors) the
objective is a mirror of speculum metal or silvered glass
ground tq the shape of a paraboloid. The figure shows
the action of such a mirror on a bundle of parallel rays,
which, after impinging on it, are brought by reflection to
one focus /. The image formed at this focus may be
viewed with an eye-piece, as in the case of the refracting
telescope.

The eye-pieces used with such a mirror are of the kinds
already described. In the figure the eye-piece would

F16. 24.—~CONCAVE MIRROR FORMING AN IMAGE.

have to be placed to the right of the point %) and the
observer’s head would thus interfere with the incident
light. Various devices have been proposed to remedy this
inconvenience, of which we will describe the two most
common. :

The Newtonian Telescope.—In this form the rays of
light reflected from the mirror are made to fall on a small
plane mirror placed diagonally just before they reach the
principal focus. The rays are thus reflected out laterally
through an opening in the telescope tube, and are there
brought to a focus, and the image formed at the point
marked by a heavy white line in Fig. 25, instead of at
the point inside the telescope marked by a dotted line.
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This focal image is then examined by means of an or-
dinary eye-piece, the head of the observer being outside
of the telescope tube.

This device is the invention of Sir Isaac Newron.

F1a. 25. Fra. 26.
NEWTONIAN TELESCOPE. CASSEGRAINIAN TELESCOPE.

The Cassegrainian Telescope.—In this form a second-
ary convex mirror is placed in the tube of the telescope
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about three fourths of the W'amy from the large specuium
to the focus. The rays, after being reflected from the
large speculum, fall on this mirror before reaching the
focus, and are reflected back again to the speculum ; an
opening is made in the centre of the latter to let the rays
pass through. The position and curvature of the secondary
mirror are adjusted so that the focus shall be formed just
after passing through the opening in the speculum.

In this telescope the observer stands behind or under
the speculum, and, with the eye-piece, looks through the
opening in the centre, in the direction of the object.
This form of reflector is much more convenient in use
than the Newtonian, in using which the observer has to
be near the top of the tube.

This form was devised by CasseGrAIN in 1672.

The advantages of reflectors are found in their cheap-
ness, and in the fact that, supposing the mirrors perfect in
figure, all the rays of the spectrum are brought to one
focus. Thus the reflector is snitable for spectroscopic or
photographic researches without any change from its or-
dinary form. This is not true of the refractor, since the
rays by which we now photograph (the blue and violet
rays) are, in that instrument, owing to the secondary
spectrum, brought to a focus slightly different from that
of the yellow and adjacent rays by mcans of which we
see.

Reflectors have been made as large as six feet in aper-
ture, the greatest being that of Lord Rossk, but those
which have been most successful have hardly ever been
larger than two or three feet. The smallest satellite of
Saturn (Mimas) was discovered by Sir WirLiam HerscHEL
with a four-foot speculum, but all the other satellites dis-
covered by him were seen with mirrors of about eighteen
inches in aperture. With these the vast majority of his
faint nebule were also discovered.

The satellites of Neptune and Uranus were discovered
by LasseLL with a two-foot speculum, and much of the
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work of Lord Rosse has been done with his three-foot
wirror, instead of his celebrated six-foot one.

From the time of Newroxn till quite recently it was
usual to make the large mirror or objective out of specu-
lum metal, a brilliant alloy liable to tarnish. When the
mirror was once tarnished through exposure to the
weather, it could be renewed only by a process of polish-
ing almost equivalent to figuring and polishing the mirror
anew. Consequently, in such a speculum, after the cor-
rect form and polish were attained, there was great diffi-
culty in preserving them. In recent years this difficulty
has been largely overcome in two ways: first, by im-
provements in the composition of the alloy, by which its
liability to tarnish under exposure is greatly diminished,
and, secondly, by a plan proposed by Fovcavrr, which
consists in making, once for all, a mirror of glass which
will always retain its good figure, and depositing upon it a
thin film of silver which may be removed and restored
with little labor as often as it becomes tarnished.

In this way, one important defect in the reflector has
been avoided. Another great defect has been less success-
fully treated. It is not a process of exceeding difficulty
to give to the reflecting surface of either metal or glass
the correct parabolic shape by which the incident rays are
brought accurately to one focus. But to maintain this
shape constantly when the mirror is mounted in a tube,
and when this tube is directed in succession to various
parts of the sky, is a mechanical problem of extreme diffi-
culty. However the mirror may be supported, all the
unsupported points tend by their weight to sag away from
the proper position. When the mirror is pointed near
the horizon, this effect of flexure is quite different from
what it is when pointed near the zenith.

As long as the mirror is small (not greater than eight to
twelve inches in diameter), it is found easy to support it
so that these variations in the strains of flexure have little
practical effect. As we increase its diameter up to 48 or
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L
72 inches, the effect of flexure rapidly increases, and
special devices have to be used to counterbalance the
injury done to the shape of the mirror.

§ 3. CHRONOMETERS AND CLOCKS.

In Chapter I., § 5, we described how the right aseen.
sions of the heavenly bodies are measured by the times
of their transits over the meridian, this quantity increas-
ing by a minute of arc in four seconds of time. In order
to determine it with all required accuracy, it is necessary
that the time-pieces with which it is measured shall go
with the greatest possible precision. There is no great
difficulty in making astronomical measures to a second
of arc, and a star, by its diurnal motion, passes over this
space in one fifteenth of a second of time. It is there-
fore desirable that the astronomical clock shall not vary
from a uniform rate more than a few hundredths of a
second in the course of a day. It is not, however,
necessary that it should be perfectly correct ; it may go
too fast or too slow without detracting from its char-
acter for accuracy, if the intervals of time which it
tells off-—hours, minutes, or seconds—are always of ex-
actly the same length, or, in other words, if it gains or
loses exactly the same amount every hour and every day.

The time-pieces used in astronomical observation are
the chronometer and the clock.

The chronometer is merely a very perfect time-piece
with a balance-wheel so constructed that changes of tem-
perature have the least possible effect upon the time of its
oscillation. Such a balance is called a compensation bal-
ance.

The ordinary house clock goes faster in cold than in
warm weather, because the pendulum rod shortens under
the influence of cold. This effect is such that the clock
will gain about one second a day for every fall of 3° Cent.
(5°.4 Fahr.) in the temperature, supposing the pendulum
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rod to be of iron. Such changes of rate would be entirely
inadmissible in a clock used for astronomical purposes.
The astronomical clock is therefore provided with a com-
pensation pendulum, by which the disturbing effects of
changes of temperature are avoided.

There are two forms now in use, the Harrison (grid-
aron) and the mercurial. In the gridiron pendulum the
rod is composed in part of a number

of parallel bars of steel and brass, AZ
so connected together that while the B T
expansion of the steel bars produced o

by an increase of temperature tends T

to depress the bob of the pendulum, 1
the greater expansion of the brass bars
tends to raise it. When the total
lengths of the steel and brass bars
have been properly adjusted a nearly
perfect compensation occurs, and the

centre of oscillation remains at a con-

stant distance from the point of sus-

pension. The rate of the clock, so

far as it depends on the length of the
pendulum, will therefore be constant.

In the mercurial pendulum the

weight which forms the bob is a
cylindric glass vessel nearly filled

with mercury. With an increase of temperature the steel
suspension rod lengthens, thus throwing the centre of
oscillation away from the point of suspension; at the
same time the expanding mercury rises in the cylinder,
and tends therefore to raise the centre of oscillation.
When the length of the rod and the dimensions of the
cylinder of mereury are properly proportioned, the centre
of oscillation is kept at a constant distance from the point
of suspension. Other methods of making this compensa-
tion have been used, but these are the two in most gen-
eral nse for astronomical clocks.

Fi1a. 27.—GRIDIRON
PENDULUM.
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The correction of a chronometer (or clock) is the quantity of time
(expressed in hours, minutes, seconds, and decimals of a second)
which it is necessary to add algebraically to the indication of the
hands, in order that the sum may be the correct time. Thus, if at
sidereal 0", May 18, at New York, a sidereal clock or chronometer
indicates 23" 58" 20°-7, its correction is 4+ 1™ 39*-3; if at 0" (sidereal
noon), of May 17, its correction was 4 1™ 38¢.8, its daily rate or the
change of its correction in a sidereal day is + 1%-0: in other words,
this clock is losing 1° daily.

For clock slow the sign of the correction is +;

(9 3 fast “ X3 [ 6 “ is .
b}

13 43 yna: [ " 13 4 3
arming rate is —;
[ ol gbﬂing 13 [0 [ L [ is l j

A clock or chronometer may be well compensated for temperature,
and yet its 7ate may be gaining or losing on the time it is intended
to keep: it is not even necessary that the rate should be small (ex-
cept that a small rate is practically convenient), provided only that
it is constant. It is continually necessary to compute the clock cor-
rection at a given time from its known correction at some other time,
and its known rate. If for some definite instant we denote the time
as shown by the clock (technically ‘‘ the clock-face’) by 7| the true
time by 7" and the clock correction by A 7, we have

T =T4 AT, and
AT =T — T.

In all observatories and at sea observations are made daily to de-
termine A 7. At the instant of the observation the time 7' is noted
by the clock; from the data of the observation the time 7” is com-
puted. If these agree, the clock is correct. If they differ, A 7'is
found from the above equations.

If by observation we have found

A To = the clock correction at a clock-time T,
A T = the clock correction at a clock-time 7,
dT = the clock rate in a unit of time,

we have
AT= AT+ 6T(T — Tv)

where 7' — T\, must be expressed in days, hours, etc., according as
4T is the rate in one day, one hour, etc.

When, therefore, the clock correction A T’ and rate 67 have been
determined for a certain instant, 7%, we can deduce the true time
from the clock-face 7 at any other instant by the equation 7" = 7'
4+ ATy + 6T (T — To). If the clock correction has been deter-
mined at two different times, 7% and 7' to be A 7%, and A 7', the rate
is inferred from the equation

AT— AT,

0T =" ot
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These equations apply only so long as we can regard the rate as
constant. As observations can be made only in clear weather, it is
plain that during periods of overcast sky we must depend on these
equations for our knowledge of 7"—iz.c., the true time at a clock-
time 7.

The intervals between the determination of the clock correction
should be small, since even with the best clocks and chronometers
toc much dependence must not be placed upon the rate. The follow-
ing example from CHAUVENET'S Astronomy will illustrate the practi-
cal processes:

¢ Bzample—At sidereal noon, May 5, the correction of a sidereal
clock 1s—16™ 475.0 ; at sidereal noon, May 12, it is — 16™ 13:-50;
what is the sidereal time on May 25, when the clock-face is 11" 13™
12¢-6, supposing the rate to be uniform ?

May 5, correction = — 16™ 47:.30
“ 12, &« = —16m13-.50
7 days’ rate = + 33:.50

T = + 4°.829.

Taking then as our starting-point 7 = May 12, 0%, we have for the
interval to 7= May 25, 11* 13= 12¢.6, 7' — 7\, = 134 11b 13 12*.6
=134.467. Hence we have

ATo=— 16m 1850
ST (P—To) =+ 1™ 508
\ AT= - 15" 8-47

\ T=1]" 13~ 12:-60
v = 102 58 4°.13

But in this example the rate is obtained for one true sidereal day,
while the unit of the interval 1382.467 is a sidereal day as shown by
the clock. The proper interval with which to compute the rate in
this case is 13¢ 10® 58= 4¢.18 = 13¢.457, with which we find

ATo= — 16 13*-50
4T % 13.457 = + 1m 4:.98
AT =— 15m 8.52

LR TS )
77 = 10" 58" 4°-08

This repetition will be rendered unnecessary by always giving the rate
in a unit of the clock. Thus, suppose that on June 3, at 4" 11 12°-35
by the clock, we have found the correction + 2™ 10*.14; and on
June 4, at 144 17= 49+, 82 we have found the correction + 2™ 19*.89;
the rate in one hour of the clock will be

+ 975

0T = =504

= + 0:-2858."
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§ 4. THE TRANSIT INSTRUMENT.

The meridian transit instrument, or briefly the ‘¢ tran-
sit,”” is used to observe the transits of the heavenly bodies,
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Fi16. 28.—A TRANSIT INSTRUMENT.

and from the times of these transits as read from the
clock to determine either the corrections of the clock or
the right ascension of the observed body, as explained in
Chapter 1., § 5.
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It has two general forms, one (Fig. 28) for use in fixed
observatories and one (Fig. 29) for use in the field.

It consists essentially of a telescope 7' 7 (Fig. 28)
mounted on an axis V' V at right angles to it.
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Fi6c. 29. —PORTABLE TRANSIT INSTRUMENT.

The ends of this axis terminate in accurately cylindrical
steel pivots which rest in metallic bearings V V, in shape
like the letter Y, and henee called the Ys.



76 ASTRONOMY.
L4

These are fastened to two pillars of stone, brick, or
iron. Two counterpoises W W are connected with the
axis as in the plate, so as to take a large portion of the
weight of the axis and telescope from the Ys, and thus to
diminish the friction upon these and to render the rota-
tion about V' ¥ more easy and regular. In the ordinary
use of the transit, the line V' V is placed accurately level
and perpendicular to the meridian, or in the east and west
line. To effect this ‘‘ adjustment,’’ there are two sets of
adjusting screws, by which the endsof ¥ ¥V inthe Ys may
be moved either up and down or north and south. The
plate gives the form of transit used in permanent observa-
tories, and shows the observing chair C, the reversing car-
riage [2, and the level Z. The arms of the latter have
Y’s, which can be placed over the pivots V' V.

The line of collimation of the transit telescope is the
line drawn through the centre of the objective perpendie-
ular to the rotation axis V V.

The reticle is a network of fine spider lines placed in
the focus of the objective.

In Fig. 80 the circle represents the field of view of a
transit as seen through the eye-piece. The seven ver-
tical lines, I, II, III, IV, V, VI,
VII, are seven fine spider lines
tightly stretched across a metal plate
or diaphragm, and so adjusted as to
be perpendicular to the direction of
a star’s apparent diurnal motion.
This metal plate can be moved right
and left by five screws. The hori-
zontal wires, guide-wires, a and b,
mark the centre of the field. The
field is illuminated at night by a lamp at the end of the
axis which shines through the hollow interior of the lat-
ter, and causes the field to appear bright. The wires are
dark against a bright ground. The line of sight is a line
joining the centre of the objective and the central one, IV,
of the seven vertical wires.

Fi1e. 30.
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The whole transit is in adjustment when, first, the axis
V'V is horizontal ; second, when it lies east and west ;
and third, when the line of sight and the line of collima-
tion coincide. 'When these conditions are fulfilled the
line of sight intersects the celestial sphere in the meridian
of the place, and when 7" 7’ is rotated about V V the line
of sight marks out the meridian on the sphere.

In practice the three adjustments are not exactly made, sinceit is
impossible to effect them with mathematical precision. The errors
of each of them are first made as small as is convenient, and are then
determined and allowed for.

To find the error of level, we place on the pivots a fine level (shown
in position in the figure of the portable transit), and determine how
much higher one pivot is than the other in terms of the divisions
marked on the level tube. Such a level is shown in Fig. 4 of plate
85, page 86. The value of one of these divisions in seconds of arc
can be determined by knowing the length I of the whole level and
the number n of divisions through which the bubble will run when
one end i8 raised one hundredth of an inch,

If 7 is the length of the level in inches or the radius of the circle
in which either end of the level moves when it is raised, then as
the radius of any circle is equal to 57°-296, 3437’75 or 206,264" -8,
we have in this particular circle one inch = 206,264".-8 =« I;
0.01 inch = 206,264-8 =- 100 = a certain are in seconds, say a”.
That is, » divisions = &'/, or one division d = a” -+ n.

The error of collimation can be found by pointing the telescope
at a distant mark whose image is brought to the middle wire. The
telescope (with the axis) is then lifted bodily from the Ys and re-
placed so that the axis ¥V Visreversed end forend. The telescope is
again pointed to the distant mark. If this is still on the middle
thread the line of sight and the line of collimation coincide. If not,
the reticle must be moved bodily west or east until these conditions
are fulfilled after repeated reversals.

To find the error of azimuth or the departure of the direction of
V'V from an east and west line, we must observe the transits of
two stars of different declinations d and J, and right ascensions a
and a’. Suppose the clock to be running correctly—that is, with no
rate—and the sidereal times of transit of the two stars over the mid-
dle thread tobe 6 and . If 6 — 0/ = a — «, then the middle wire
is in the meridian and the azimuth is zero. For if the azimuth
was not zero, but the west end of the axis was too far south, for
example, the line of sight would fall east of the meridian for a
south star, and further and further cast the further south the star
was. Hence if the two stars have widely different declinations ¢
and ¢, then the star furthest south would come proportionately
sooner to the middle wire than the other, and 0 — ¢’ would be
different from a —a’. The amount of this difference gives a
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means of deducing the deviation of 4 A from an east and west
tine. In a similar way the effect of a given error of level on the
time of the transit of a star of declination d is found.

Methods of Observing with the Transit Instrument.—
‘We have so far assumed that the time of a star’s transit
over the middle thread was known, or ecould be noted.
It is necessary to speak more in detail of how it is noted.

When the telescope is pointed to any star the earth’s
diurnal motion will carry the image of the star slowly
across the field of view of the telescope (which is kept
fixed), as before explained. As it crosses each of the
threads, the time at which it is exactly on the thread is
noted from the clock, which must be near the transit.

The mean of these times gives the time at which this
star was on the middle thread, the threads being at equal
intervals ; or on the *‘mean thread,”’ if, as is the case in
practice, they are at unequal intervals.

1f it were possible for an astronomer to note the exact
instant of the transit of a star over a thread, it is plain
that one thread would be sufficient ; but, as all estima-
tions of this time are, from the very nature of the case,
but approximations, several threads are inserted in order
that the accidental errors of estimations may be eliminated
as far as possible. Five, or at most seven, threads are
sufficient for this purpose. In the
figure of the reticle of a transit instru-
ment the star (the planet Venus in this
case) may enter on the right hand in the
figure, and may be supposed to cross
each of the wires, the time of its tran-
sit over each of them, or over a suffi-
¢ient number, being noted.  The
method of noting this time may be best
understood by referring to the next figure. Suppose that
the line in the middle of Fig. 32 is one of the transit-
threads, and that the star is passing from the right hand
of the figure toward the left ; if it is on this wire at an

Fia. 31.
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exact second by the clock (which is always near the ob-
server, beating seconds audibly), this second must be writ-
ten down as the time of the transit over this thread. As
a rule, however, the transit cannot occur on the exact
beat of the clock, but at the seventeenth second (for exam-
ple) the star may be on the right of the wire, say at a;
while at the eighteenth second
it will have passed this wire and
may be at b. If the distance of
@ from the wire is six tenths of
the distance @b, then the time
of transit is to be recorded as —
howrs — minutes (to be taken Fro, 32

from the clock-face), and seven- Tyt

teen and six tenths seconds; and in this way the transit
over each wire is observed. This is the method of ¢ eye-
and-ear’’ observation, the basis of such work as we have
described, and it is so called from the part which both the
eyeand the ear play in the appreciation of intervals of time.
The ear catches the beat of the clock, the eye fixes the place
of the star at @ ; at the next beat of the clock, the eye fixes
the star at b, and subdivides the space @ b into tenths, at
the same time appreciating the ratio which the distance
from the thread to @ bears to the distance @ . This is
recorded as above. This method, which is still used in
many observatories, was introduced by the celebrated
BrapLey, astronomer royal of England in 1750, and per-
fected by MaskELYNE, his successor. A practiced observer
can note the time within a tenth of a second in three cases
out of four.

There is yet another method now in common use,
which it is necessary to understand. This is called the
American or chronographic method, and consists, in the
present practice, in the use of a sheet of a paper wound
about and fastened to a horizontal cylindrical ~barrel,
which is cansed to revolve by machinery once in one min-
ute of time. A pen of glass which will make a continu-
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ous line is allowed to rest on the paper, and to this pen a
continuous motion of translation in the direction of the
length of the cylinderis given. Now, if the pen is allow-
ed to mark, it is evident that it will trace on the paper an
endless spiral line. An electric eurrent is caused to run
through the observing clock, through a key which is held
in the observer’s hand and through an electro-magnet
connected with the pen.

A simple device enables the clock every second to give
a slight lateral motion to the pen, which lasts about a
thirtieth of a second. Thus every second is automatically
marked by the clock on the chronograph paper. The ob-
server also has the power to make a signal by his key
(easily distingnished from the clock-signal by its different
length), which is likewise permanently registered on the
sheet. In this way, after the chronograph is in motion,
the observer has merely to notice the instant at which the
star is on the thread, and to press the key at that moment.
At any subsequent time, he must mark some hour, min-
ute, and second, taken from the clock, on the sheet at its
appropriate place, and the translation of the spaces on
the sheet into times may be done at leisure.

§ 5. GRADUATED CIRCLES.

Nearly every datum in practical astronomy depends
either directly or indireetly upon the measure of an angle.
To make the necessary measures, it is customary to em-
ploy what are called graduated or divided circles. These
are made of metal, as light and yet as rigid as possible,
and they have at their cireumferences a narrow flat band
of silver, gold, or platinum on which fine radial lines
called ¢ divisions’” are cut by a ‘‘ dividing engine’’ at
regular and equal intervals. These intervals may be
of 10, 5, or 2, aceording to the size of the circle
and the degree of accuracy desired. The narrow band
is called the divided limb, and the cirele is said to be di-
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vided to 10’, 5’; 2". The separate divisions are numbered
consecutively from 0° to 8360° or from 0°to 90°, ete. The
graduated circle has an axis at its centre, and to this may
be attached the telescope by which to view the points
whose angular distance is to be determined.

To this centre is also attached an arm which revolves
with it, and by its motion past a certain number of divi-
sions on the circle, determines the angle through which the
centre has been rotated. This arm is called the index
arm, and it usually carries a wernier on its extremity,
by means of which the spaces on
the graduated circle are subdivided.
The reading of the circle when the
index arm is in any position is the
number of degrees, minutes, and
seconds which correspond to that po-
sition ; when the index arm is in an-
other position there is a different
reading, and the differences of the two i 5.
readings §*'—§', §'—§", §'—§° are the angles through
which the index arm has turned.

The process of measuring the angle between the objects
by means of a divided circle consists then of pointing the
telescope at the first object and reading the position of the
index arm, and then turning the telescope (the index
arm turning with it) until it points at the second object,
and again reading the position of the index arm. The
difference of these readings is the angle sought.

To facilitate the determination of the exact reading of
the circle, we have to employ special devices, as the
vernier and the reading microscope.

The Vernier.—In Fig. 34, M N is a portion of the
divided limb of a graduated circle; €D is the index arm
which revolves with the telescope about the centre of the
circle. The end @b of C' D is also a part of a circle con-
centrie with 4/ &V, and it is divided into n parts or divi-
sions. The length of these n parts is so chosen that it is
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the same as that of (n—1) parts on the divided limb M &
or the reverse.

The first stroke @ is the zero of the vernier, and the
reading is always determined by the position of this zero
or pointer. If this has revolved past exactly twenty di-
visions of the circle, then the angle to be measured is
20 X d, d being the value of one division on the limb
(& M) in are.

F16. 84.—THE VERNIER.

Call the angular value of one division on the vernier d';
T 1
(n—1)d=n-d,ord = n_n_l dyand d—d'= ;d ;

d — d' is called the least count of the vernier which is one
n'* part of a circle division.

If the zero @ does not fall exactly on a division on the
circle, but is at some other point (as in the figure), for ex-
ample between two divisions whose numbers are /” and
(P + 1), the whole reading of the circle in this position is
P x d + the fraction of a division from 2> to a.

If the m* division of the vernier is in the prolongation
of a division on the limb, then this fraction Pa is m
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(@ —d) = %-d. In the figure » =10, and as the 4th

division is almost exactly in coincidence, m =4, so that
4

the whole reading of the circle is 7 X d + T0° d. Ifdis

10, for example, and if the division 2 is numbered 297°
40’ then this reading would be 297° 44/, the least count
being 1’, and so in other cases. If the zero had started from
the reading 280° 20’, it must have moved past 17° 24/,
and this is the angle which has been measured.

§ 6. THE MERIDIAN CIRCLE.

The meridian circle is a combination of the transit in-
strument with a graduated circle fastened to its axis and
moving with it. The meridian circle made by RersoLp
for the United States Naval Academy at Annapolis is
shown in the figure. It has two circles, ¢ ¢ and ¢’ ¢, finely
divided on their sides. The graduation of each circle is
viewed by four microscopes, two of which, 22 2, are
shown in the cut. The microscopes are 90° apart. The
cut shows also the hanging level L L, by which the
error of level of the axis 4 4 is found.

The instrument can be used as a transit to determine
right ascensions, as before described. It can be also used
to measure declinations in the following way. If the tele-
scope is pointed to the nadir, a certain division of the cir-
cles, as &V, is under the first microscope. If it is pointed
to the pole, the reading will change by the angular distance
between the nadir and the pole, or by 90° 4 ¢, ¢ being
the latitude of the place (supposed to be known). The
polar reading 7 is thus known when the nadir reading
N is found. If the telescope is then pointed to various
stars of unknown polar distances, p’, p”’, p’”, ete., as they
successively cross the meridian, and if the circle readings
for these stars are ', P, P, ete., it follows that
pl — PI_P ; -p/l — P/l bl P ; plll e P’// aad [)’ etC.
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To determine the readings P, P, P’, etc., we use the micro-
scopes R, R, etc. The observer, after having set the telescope so
that one of the stars shall cross the field of view exactly at its cen-
tre (which may be here marked by a single horizontal thread in
‘the reticle), goes to each of the microscopes in succession and
places his eye at A (see Fig. 1, page 86). He sees in the field of the
microscope the image of the divisions of the graduated scale (Fig. 2)
formed at D (Fig. 1), the common focus of the lenses 4 and C.
Just at that focus is placed a notched scale (Fig.2) and two
crossed spider lines. These lines are fixed to a sliding frame a g,
which can be moved by turning the graduated head #. This head
is divided usually into sixty parts, each of which is 1” of arc on
the circle, one whole revolution of the head serving to move the
sliding frame @ @, and its crossed wires through 60 or 1’ on the
graduated circle. The notched scale is not movable, but serves to
count the number of complete revolutions made by the screw, there
being one notch for each revolution. The index ¢ (Fig. ?) is fixed,
and serves to count the number of parts of # which are carried past
it by the revolution of this head.

If on setting the crossed threads at the centre of the motion of
F, and looking into the microscope, a division on the circle coin-
cides with the cross, the reading of the circle Pis the exact num-
ber of degrees and minutes corresponding to that particular divi-
sion on the divided circle.

Usually, however, the cross has been apparently carried past one
of the exact divisions of the circle by a certain quantity, which is
now to be measured and added to the reading corresponding to
this adjacent division. This measure can be made by turning the
screw back say four revolutions (measured on the notched scale)
plus 37-3 parts (measured by the index ¢). If the division of the
circle in question was 179° 50', for example, the complete reading
would be 1n this case 179° 50’ + 4’ 37”-3 or 179° 54’ 37”-3. Such
a reading is made by each microscope, and the mean of the min-
utes and seconds from all four taken as the circle reading.

We now know how to obtain the readings of our circle when
directed to any point. We require some zero of reference, as
the nadir reading (), the polar reading (P), the equator reading,
(Q), or the zenith reading (Z). Any one of these being known, the
circle readings for any stars as P, P, P""’, etc., can be turned into
polar distances p/, p”, p”, etc.

The nadir reading (%) is the zero commonly employed. It can
be determined by pointing the telescope vertically downward at
a basin of mercury placed immediately beneath the instrument, and
turning the whole instrument about the axis until the middle wire
of the reticle seen directly exactly coincides with the image of
this wire seen by reflection from the surface of the quicksilver.
When this is the case, the telescope is vertical, as can be easily
seen, and the nadir recading may be found from the circles.
The meridian circle thus serves to determine both the right ascen-
sion and declination of a given star at the same culmination. Zone
observations are made with it by clamping the telescope in one



86 ASTRONOMY.
-

s

Fg.2.

2o

3o

AR TITRIIITTIF

5
£

TITTTTITTTITTTTITE]

20

Yig.4

F1¢. 36.—READING MICROSCOPE, MICROMETER AND LEVEL.



THE EQUATORIAL. 87

direction, and observing successively the stars which pass through
its field of view. It is by this rapid method of observing that the
largest catalogues of stars have been formed.

§ 7. THE EQUATORIAL.

To complete the enumeration and deseription of the
principal instruments of astronomy, we require an account
of the equatorial. This term, properly speaking, refers
to a form of mounting, but it is commonly used to in-
clude both mounting and telescope. In this class of
instruments the object to be attained is in general the
easy finding and following of any celestial object whose
apparent place in the heavens is known by its right as-
cension and declination. The equatorial mounting con-
sists essentially of a pair of awes at right angles to each
other. One of these § IV (the polar awis) is directed to-
ward the elevated pole of the heavens, and it therefore
makes an angle with the horizon equal to the latitude of
the place (p. 21). This axis can be turned about its own
axial line. On one extremity it carries another axis Z D
(the declination awis), which is fixed at right angles to it,
but which can again be rotated about <¢s axial line.

To this last axis a telescope is attached, which may
either be a reflector or a refractor. It is plain that such a
telescope may be directed to any point of the heavens ;
for we can rotate the declination axis until the telescope
points to any given polar distance or declination. Then,
keeping the telescope fixed in respect to the declination
axis, we can rotate the whole instrument as one mass
about the polar axis until the telescope points to any por-
tion of the parallel of declination defined by the given
right ascension or hour-angle. Fig. 87 is an equatorial of
six-inch aperture which can be moved from place to place.

If we point such a telescope to a star when it is rising
(doing this by rotating the telescope first about its decli-
nation axis, and then about the polar axis), and fix the
telescope in this position, we can, by simply rotating the



88 ASTRONOMY.
-

F16. 87.—EQUATORIAL TELESCOPE POINTED TOWARD THE POLE.



THE MICROMETER. 89

whole apparatus on the polar axis, cause the telescope to
trace out on the celestial sphere the apparent diurnal path
which this star will appear to follow from rising to set-
ting. In such telescopes a driving-clock is so arranged
that it can turn the telescope round the polar axis at the
same rate at which the earth itself turns about its own axis
of rotation, but in a contrary direction. Hence such a
telescope once pointed at a star will continue to point at it
as long as the driving-clock is in operation, thus enabling
the astronomer to observe it at his leisure.

F16. 38.—MEASUREMENT OF POSITION-ANGLE.

Every equatorial telescope intended for making exact measures
has a filar micrometer, which is precisely the same in principle as
the reading microscope in Fig. 2, page 86, except that its two wires
are parallel.

A figure of this instrument is given in Fig. 8, page 86. One of
the wires is fixed and the other is movable by the screw. To
measure the distance apart, of two objects 4 and B, wire 1 (the
fixed wire) is placed on 4 and wire 2 (movable by the screw) is
placed on B. The number of revolutions and parts of a revolution
of the screw is noted, say 107-267 ; then wires 1 and 2 are placed
in coincidence, and this zero-reading noted, say 57-143. The dis-
tance 4 Bis equal to 5-124. Placing wires 1 and 2 a known num-
ber of revolutions apart, we may observe the transits of a star in the
equator over them ; and from the interval of time required for this
star to move over say fifty revolutions, the value of one revolution
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L d
is known, and can always be used to turn distances measured in
revolutions to distances in time or arc.

By the filar micrometer we can determine the distance apart in
seconds of arc of any two stars A and B. To completely fix the
relative position of A and B, we require not only this distance, but
also the angle which the line A B makes with some fixed direction
in space. We assume as the fixed direction that of the meridian
passing through A. Suppose in Fig. 38 A4 and B to be two
stars visible in the field of the equatorial. The clock-work
is detached, and by the diurnal motion of the earth the two
stars will cross the field slowly in the direction of the parallel of
declination passing through 4, or in the direction of the arrow in
the figure from E. to W., east to west. The filar micrometer is con-
structed so that it can be rotated bodily about the axis of the tele-
scope, and a graduated circle measures the amount of this rotation.
The micrometer is then rotated until the star A4 will pass along
one of its wires. This wire marks the direction of the parallel.
The wire perpendicular to this is then in the meridian of the star.

The position angle of B with respect to A is then the angle which
A B makes with the meridian A & passing through A toward the
north. It is zero when B is north of 4, 90° when B is east, 180
when B is south, and 270° when B is west of A. Knowing p, the
position angle (I A B in the figure), and s (4 B) the distance of B,
we can find the difference of right ascension (A a), and the differ-
ence of declination (Ad) of B from A by the formule,

Aa =sgsin p; Ad = s cos p.

Conversely knowing Aa and Ad, we can deduce s and p from
these formule. The angle p is measured while the clock-work
keeps the star A4 in the centre of the field.

§ 8. THE ZENITH TELESCOPE.

The accompanying figure gives a view of the zenith telescope in
the form in which it is used by the United States Coast Survey. It
consists of a vertical pillar which supports two Ys. In these
rests the horizontal axis of the instrument which carries the tele-
scope at one end, and a counterpoise at the other. The whole in-
strument can revolve 180° in azimuth about this pillar. The tele-
scope has a micrometer at its eye-end, and it also carries a divided
circle provided with a fine level. A second level is provided,
whose use is to make the rotation axis horizontal. The peculiar
features of the zenith telescope are the divided circle and its at-
tached level. The level is, as shown in the cut, in the plane of
motion of the telescope (usually the plane of the meridian), and it
can be independently rotated on the axis of the divided circle, and
set by means of it to any angle with the optical axis of the telescope.
The circle is divided from zero (0%) at its lowest point to 90° in
each direction, and is firmly attached to the telescope tube, and
moves with it.

By setting the vernier or index-arm of the circle to any degree
and minute as ¢, and clamping it there (the level moving with it),
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and then rotating the telescope and the whole system about the
horizontal axis until the bubble of the level is in the centre of the
level-tube, the axis of the telescopes will be directed to the zenith
distance @. The filar micrometer is so adjusted that a motion of its
screw measures differences of zenith distance. The use of the ze-
nith telescope is for determining the latitude by Tavrcorr’s
method. The theory of this operation has been already given on
page 48. A description of the actual process of observation will
illustrate the excellences of this method.

Two stars, A and B, are selected beforehand (from Star Cata-
logues), which culminate, 4 south of the zenith of the place of ob-
servation, B north of it. They are chosen at nearly equal zenith dis-
tances ¢* and ¢% and so that £*—¢® is less than the breadth of the
field of view. Their right ascensions are also chosen so as to be about
the same. The circle is then set to the mean zenith distance of the
two stars, and the telescope is pointed so that the bubble is nearly in
the middle of the level. Suppose the right ascension of A is the
smaller, it will then culminate first. The telescope is then turned
to the south. As A passes near the centre of the field its distance
from the centre is measured by the micrometer. The level and
micrometer are read, the whole instrument is revolved 180°, and
star B is observed in the same way.

By these operations we have determined the difference of the
zenith distances of two stars whose declinations d+ and d® are
known. But ¢ being the latitude,

¢=0* + & and ¢ = &® — #°, whence

=3+ +3(¢ —&).
The first term of this is known ; the second is measured ; so that
each pair of stars so observed gives a value of the latitude which
depends on the measure of a very small arc with the micrometer,

and as this arc can be measured with great precision, the exactness
of the determination of the latitude is equally great.

§ 9. THE SEXTANT.

The sextant is a portable instrument by which the altitudes
of celestial bodies or the angular distances between them may
be measurcd. It is used chiefly by navigators for determining the
latitude and the local time of the position of the ship. Knowing
the local time, and comparing it with a chronometer regulated on
Greenwich time, the longitude becomes known and the ship’s place
is fixed.

It consists of the arc of a divided circle usually 60° in extent,
whence the name. This arc is in fact divided into 120 equal parts,
each marked as a degree, and these are again divided into smaller
spaces, so that by means of the vernier at the end of the index-arm
M 8 an arc of 10” (usually) may be read.

The index-arm M 8 carries the indez-glass M, which is a silvered
plane mirror set perpendicular to the plane of the divided arc. The
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horizon-glass m is also a plane mirror fixed perpendicular to the
plane of the divided circle.

This last glass is fixed in position, while the first revolves with
the index-arm. The horizon-glass is divided into two parts, of
which the lower one is silvered, the upper half being transparent.
E is a telescope of low power pointed toward the horizon-glass.
By it any object to which it is directed can be seen through the un-
silvered half of the horizon-glass. Any other object in the same
plane can be brought into the same field by rotating the index-arm

R
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F16. 40.—THE SEXTANT.

(and the index-glass with it), so that a beam of light from this
second object shall strike the index-glass at the proper angle, there
to be reflected to the horizon-glass, and again reflected down the
telescope E. Thus the imnages of any two objects in the plane of
the sextant may be brought together in the telescope by viewing
one directly, and the other by reflection.

The principle upon which the sextant depends is the following,
which is proved in optical works. The angle between the first and
the last direction of a ray which has suffered two reflections in the same
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plane is equal to twice the angle which the two reflecting surfaces make
with each other.

In the figure 8§ A is the ray incident upon 4, and this ray is by
reflection brought to the direction B E. The theorem declares
that the angle B E § iz equal to twice D C B, or twice the angle of

Fre. 41.

the mirrors, since B ¢ and D C are perpendicular to Band A. To
measure the altitude of a star (or the sun) at sea, the sextant is held
in the hand, and the telescope is pointed to the sea-horizon, which
appears like a definite line. The index-arm is then moved until
the reflected image of the sun or of the star coincides with the

Fi1c. 42. —ARTIFICIAL HORIZON.

image of the sea-horizon seen directly. When this occurs the time
is to be noted from a chronometer. If a star is observed, the read-
ing of the divided limb gives the altitude directly ; if it is the
sun or moon which has been observed, the lower limb of these is
brought to coincide with the horizon, and the altitude of the centre
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is found by applying the semi-diameter as found in the Nautical
Almanac to the observed altitude of the limb.

The angular distance apart of a star and the moon can be meas-
ured by pointing the telescope at the star, revolving the whole sex-
tant about the sight-line of the telescope until the plane of the di-
vided arc passes through both star and moon, and then by moving
the index-arm until the reflected moon is just in contact with the
star’s image seen directly.

On shore the horizon is broken up by buildings, trees, etc., and
the observer is therefore obliged to have recourse to an artificial
horizon, which consists usually of the reflecting surface of some
liquid, as mercury, contained in a small vessel A, whose upper
surface is necessarily parallel to the horizon D 4 C. A ray of light
S A, froma star at S, incident on the mercury at 4, will be reflected
in the direction A K, making the angle 84 ¢ = C A8 (4 8 be-
ing K A produced), and the retlected image of the star will appear
to an eye at ¥ as far below the horizon as the real star is above it.
With a sextant whose index and horizon-glasses are at T and H, the
angle 8 ¥ S may be measured ; but SES =S A8 — A S E,
and if 4 F is exceedingly small as compared with 4 8, as it is for
all celestial bodies, the angle 4 S ¥ may be neglected, and S E §
will equal 8 4 &, or double the altitude of the object : hence one
half the reading of the instrument will give the apparent altitude.



CHAPTER III.
MOTION OF THE EARTH.

§ 1. ANCIENT IDEAS OF THE PLANETS.

It was observed by the ancients that while the great
mass of the stars maintained their positions relatively to
each other not only during each diurnal revolution, but
month after month and year after year, there were visi-
ble to them seven heavenly bodies which changed their
positions relatively to the stars and to each other. These
they called planets or wandering stars. Still calling the
apparent crystalline vault in which the stars seem to
be set the celestial sphere, and imagining it as at rest,
it was found that the seven planets performed a very
slow revolution around the sphere from west to east,
in periods ranging from one month in the case of the
moon, to thirty years in that of Saturn. It was evident
that these bodies could not be considered as set in the
same solid sphere with the stars, because they could not
then change their positions among the stars. Various
ways of accounting for their motions were therefore pro-
posed. One of the earliest conceptions is associated with
the name of Pyruacoras. He is said to have taught that
each of the seven planets had its own sphere inside of and
concentric with that of the fixed stars, and that these
seven hollow spheres each performed its own revolution,
independently of the others. Thisidea of a number of con-
centric solid spheres was, however, apparently given up
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without any one having taken the trouble to refute it by
argument. Although at first sight plausible enough, a
close examination would show it to be entirely inconsis-
tent with the observed facts. The idea of the fixed stars
being set in a solid sphere was, indeed, in seemingly
perfect accord with their diurnal revolution as observed
by the naked eye. But it was not so with the planets.
The latter, after continued observation, were found to
move sometimes backward and sometimes forward ; and
it was quite evident that at certain periods they were
nearer the earth than at other periods. These motions
were entirely inconsistent with the theory that they were
fixed in solid spheres. Still the old language continued in
use—the word sphere meaning, not a solid body, but the
space or region within which the planet moved.

These several conceptions, as well as those which fol-
lowed, were all steps toward the truth. The planets were
rightly considered as bodies nearer to us than the fixed
stars. It was also rightly judged that those which moved
most slowly were the most distant, and thus their order of
distance from the earth was correctly given, except in the
case of Mercury and Venus.

We now know that these seven planets, together with
the earth, and a number of other bodies which the tele-
secope has made known to us, form a family or system by
themselves, the dimensions of which, although inconceiv-
ably greater than any which we have to deal with at the
surface of the earth, are quite insignificant when com-
pared with the distance which separates us from the fixed
stars. The sun being the great central body of this sys-
tem, it is called the Solar System. It is to the motions of
its several bodies and the consequences which flow from
them that the attention of the reader is directed in the
following chapters. 'We premise that there are now known
to be eight large planets, of which the earth is the third
in the order of distance from the sun, and that these
bodies all perform a regular revolution around the sun.
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Mercury, the nearest, performs its revolution in three
months ; Neptune, the farthest, in 164 years.

First in importance to us, among the heavenly bodies
which we see from the earth, stands the sun, the supporter
of life and motion upon the earth. At first sight it might
seem curious that the sun and seeming stars like Mars
and Saturn should have been classified together as planets
by the ancients, while the fixed stars were considered as
forming another class.  That the ancients were acute
enough to do this tends to impress us with a favorable
sense of the scientific character of their intellect. To any
but the most careful theorists and observers, the star-like
planets, if we may call them so, would never have seemed
to belong in the same class with the sun, but rather in
that of the stars ; especially when it was found that they
were never visible at the same time with the sun. But
before the times of which we have any historic record,
there were men who saw that, in a motion from west to
east among the fixed stars, these several bodies showed a
common character, which was more essential in a theory
of the universe than were their immense differences of
aspect and«lustre, striking though these might be.

It must, however, be remembered that we no longer
consider the sun as a planet. We have modified the an-
cient system by making the sun and the earth change
places, so that the latter is now regarded as one of the eight
large planets, while the former has taken the place of the
earth as the central body of the system. In consequence
of the revolution of the planets round the sun, each of
them seems to perform a corresponding cirenit in the
heavens around the celestial sphere, when viewed from
any other planet or from the earth.

§ 2. ANNUAL REVOLUTION OF THE EARTH.

To an observer on the earth, the sun seems to perform an
annual revolution among the stars, a fact which has been
known from the earliest ages. We now know that this
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is due to the annual revolution of the earth round the
sun. It is to the nature and effects of this annual revolu-
tion of the earth that the attention of the reader is now
directed. Our first lesson is to show the relations between
it and the corresponding apparent revolution of the sun,
which is its counterpart.

In Fig. 43, let S represent the sun, 4 B C D the orbit
of the earth around it, and £ % @ I the sphere of the

F1G. 43.—-REVOLUTION OF THE EARTH.

fixed stars. This sphere, being supposed infinitely dis-
tant, must be considered as infinitely larger than the circle
A B CD. Suppose now that 1, 2, 3, 4, 5, 6 are a
number of consecutive positions of the earth. The line
18 drawn from the sun to the earth in the first position is
called the radius vector of the earth. Suppose this line
extended infinitely so as to meet the celestial sphere in
the point 1’. It is evident that to an observer on the
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earth at 1 the sun will appear projected on the sphere
in the direction of 1. When the earth reaches 2, it
will appear in the direction of 2’, and so on. In other
words, as the earth revolves‘around the sun, the latter
will seem to perform a revolution among the fixed stars,
which are immensely more distant than itself.

It is also evident that the point in which the earth would
be projected, if viewed from the sun, is always exactly
opposite that in which the sun appears as projected from
the earth. Moreover, if the earth moves more rapidly in
some points of its orbit than in others, it is evident that
the sun will also appear to move more rapidly among the
stars, and that the two motions must always accurately
correspond to each other.

The radius vector of the earth in its annual course de-
scribes a plane, which in the fignre may be represented by
that of the paper. This plane continued to infinity in
every direction will eut the celestial sphere in a great cir-
cle ; and it is evident that the sun will always appear to
move in this circle. The plane and the circle are indiffer-
ently termed the ecliptic. The plane of the ecliptic is
generally taken as the fundamental one, to which the po-
sitions of all the bodies in the solar system are referred.
By the fundamental principles of spherical trigonometry, it
divides the celestial sphere into two equal parts. In think-
ing of the celestial motions, it is convenient to conceive of
this plane as horizontal. Then if we draw a vertical line
passing through the sun at right angles to it, or perpen-
dicular to the plane of the paper on which the figure is
represented, the point at which this line intersects the
celestial sphere will be the pole of the ecliptic. This
point is situated in the constellation Draco, and has an ex-
tremely slow motion of about half a second a year, owing
to a change in the position of the ecliptic to be hereafter
described. :

Let us now study the apparent annual revolution of the
sun produced in the way just mentioned. One result of
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this motion is probably familiar to every reader, in the
different constellations which are seen at different times of
the year. Let us take, for example, the bright star Alde-
baran, which, on a winter evening, we may see north-
west of Orion. Near the end of February this star crosses
the meridian about six o’clock in the evening, and sets
about midnight. 1f we watch it night after night through
the months of March and April, we shall find that it is far-
ther and farther toward the west on each successive even-
ing at the same hour. By the end of April we shall bare-
ly be able to see it about the close of the evening twilight.
At the end of May it will be so close to the sun as to be
entirely invisible. This shows that during the months we
have been watching it, the sun has been approaching the
star from the west. If in July we wateh the eastern
horizon in the early morning, we shall see this star rising
before the sun. The sun has therefore passed by the
star, and is now east of it. At the end of November we
will find it rising at sunset and setting at sunrise. The
sun is thereforc directly opposite the star. During the
winter months it approaches it again from the west, and
passes it about the end of May, as before. Any other
star south of the zenith shows a similar change, since the
relative positions of the stars do not vary.

§ 3. THE SUN’S APPARENT PATH.

It is evident that if the apparent path of the sun lay in
the equator, it would, during the entire year, rise exactly
in the east and set in the west, and would always cross
the meridian at the same altitude. The days would
always be twelve hours long, for the same reason that a
star in the equator is always twelve hours above the hori-
zon and twelve hours below it. But we know that this
is not the case, the sun being sometimes north of the
equator and sometimes south of it, and therefore having
a motion in deelination. To understand this motion,
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suppose that on March 19th, 1879, the sun had been
observed with a meridian eirele and a sidereal clock at the
moment of transit over the meridian of Washington. Its
position would have been found to be this :

Right Ascension, 23" 55™ 23* ; Declination, 0° 30" south.

Had the observation been repeated on the 20th and
following days, the results would have been :

Marech 20, R. Ascen. 23" 59 2¢; Dec. 0° 6’ South.
21, £ or 2m 40%; ¢ 0° 17 North.
99,  « O 6m19°;  0° 41’ North.

A.

F16. 44.—THE SUN CROSSING THE EQUATOR.

If we lay these positions down on a chart, we shall find
them to be as in Fig. 44, the centre of the sun being
south of the equator in the first two positions, and north
of it in the last two. Joining the successive positions by
a line, we shall have a small portion of the apparent path
of the sun on the celestial sphere, or, in other words, a
small part of the ecliptic.

It is clear from the observations and the figure that the
sun crossed the equator between six and seven o’clock on
the afternoon of March 20th, and therefore that the equa-
tor and ecliptic intersect at the point where the sun was at
that hour. This point is called the vernal equinowx, the
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first word indicating the season, while the second
expresses the equality of the
nights and days which occurs \acp el Epnce
when the sun is on the equator.
1t will be remembered that this
equinox is the point from which
right ascensions are counted in
the heavens in the same way
that longitudes on the earth are
counted from Greenwich or
Washington. The sidereal
clock is therefore so set that
the hands shall read 0 hours
0 minutes O seconds at the
moment when the vernal equi-
nox crosses the meridian.

Continuing our observations
of the sun’s apparent course for
six months from March 20th
till September 23d, we should
find it to be as in Fig. 45. It
will be seen that Fig. 44 cor-
responds to the right-hand end
of 45, but is on a much larger
scale. The sun, moving along
the great circle of the ecliptic,
will reach its greatest northern
declination about dJune 21st.
This point is indicated on the
figure as 90° from the vernal
equinox, and is called the sum-
mer solstice.  The sun’s right
ascension is then six hours, and
its declination 23%° north.

The course of the sun now Vernol Equinos
inclines toward the south, and
it again crosses the equator about September 22d at
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a point diametrically opposite the vernal equinox. In
virtue of the theorem of spherical trigonometry that all
great circles intersect each other in two opposite points,
the ecliptic and equator intersect at the two opposite equi-
noxes. The equinox which the sun crosses on September
22d is called the autumnal equinow.

During the six months from September to March the
gun’s course is a counterpart of that from March to Sep-
tember, except that it lies south of the equator. It at-
tains its greatest south declination about December 22d,
in right ascension 18 hours, and south declination 233°.
This point is called the winter solstice. It then begins to
incline its course toward the north, reaching the vernal
equinox again on March 20th, 1880.

The two equinoxes and the two solstices may be re-
garded as the four cardinal points of the sun’s apparent
annual circuit around the heavens. Its passage through
these points is determined by measuring its altitude or
declination from day to day with a meridian circle. Since
in our latitude greater altitudes correspond to greater
declinations, it follows that the summer solstice occurs on
the day when the altitude of the sun is greatest, and the
winter solstice on that when it is least. The mean of
these altitudes is that of the equator, and may therefore
be found by subtracting the latitude of the place from
90°. The time when the sun reaches this altitude going
north marks the vernal equinox, and that when it reaches
it going south marks the autumnal equinox.

These passages of the sun through the cardinal points
have been the subjects of astronomical observation from
the earliest ages on account of their relations to the change
of the seasons. An ingenious method of finding the time
when the sun reached the equinoxes was used by the as-
tronomers of Alexandria about the beginning of our era.
In the great Alexandrian Museum, a large ring or wheel
was set up parallel to the plane of the equator—in other
words, it was so fixed that a star at the pole would shine
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perpendicularly on the wheel. Evidently its plane if
extended must have passed through the east and west
points of the horizon, while its inclination to the vertical
was equal to the latitude of the place, which was not far
from 30°. When the sun reached the equator going north
or south, and shone upon this wheel, its lower edge would
be exactly covered by the shadow of the upper edge ;
whereas in any other position the sun would shine upon
the lower inner edge. Thus the time at which the sun
reached the equinox could be determined, at least to a
fraction of a day. By the more exact methods of modern
times, it can be determined within less than a minute.

It will be seen that this method of determining the an-
nual apparent course of the sun by its declination or alti-
tude is entirely independent of its relation to the fixed
stars; and it could be equally well applied if no stars
were ever visible. There are, therefore, two entirely dis-
tinet ways of finding when the sun or the earth has com-
pleted its apparent circuit around the celestial sphere ;
the one by the transit instrument and sidereal clock, which
show when the sunreturns to the same position among
the stars, the other by the measurement of altitude, which
shows when it returns to the same equinox. By the for-
mer method, already described, we conclude that it has
completed an annual circuit when it returns to the same
star ; by the latter when it returns to the same equinox.
These two methods will give slightly different results for
the length of the year, for a reason to be hereafter
described.

The Zodiac and its Divisions.—The zodiac is a belt
in the heavens, commonly considered as extending some 8°
on each side of the ecliptic, and therefore about 16° wide.
The planets known to the ancients are always seen within
this belt. At a very early age the zodiac was mapped out
into twelve signs known as the signs of the zodiac, the
names of which have been handed down to the present
time. Each of these signs was supposed to be the seat of
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a constellation after which it was called. Commencing
at the vernal equinox, the first thirty degrees through
which the sun passed, or the region among the stars in
which it was found during the month following, was
called the sign Aries. The next thirty degrees was called
Zaurus. The names of all the twelve signs in their
proper order, with the approximate time of the sun’s en-
tering upon each, are as follow :

Aries, the Ram, March 20.
Tawrus, the Bull, April 20.
Gemini, the Twins, May 20.
Cancer, the Crab, June 21.

Leo, the Lion, July 22.
Virgo, the Virgin, August 22.
Libra, the Balance, September 22.
Scorpius, the Scorpion, October 23.
Sagittarius, the Archer, November 23.
Capricornus, the Goat, December 21.
Aquarius, the Water-bearer,  January 20.
Pisces, the Fishes, February 19.

Each of these signs coincides roughly with a constella-
tion in the heavens ; and thus there are twelve constella-
tions called by the names of these signs, but the signs and
the constellations no longer correspond. Although the sun
now crosses the equator and enters the sign Aries on the
20th of March, he does not reach the constellation Aries
until nearly a month later. This arises from the preces-
sion of the equinoxes, to be explained hereafter.

§ 4. OBLIQUITY OF THE ECLIPTIC.

We have already stated that when the sun is at the
summer solstice, it is about 234° north of the equator,
and when at the winter solstice, about 234° south. This
shows that the ecliptic and equator make an angle
of about 23}° with each other. This angle is called
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the obliquity of the ecliptic, and its determination is
very simple. It is only necessary to find by repeated
observation the sun’s greatest north declination at the
summer solstice, and its greatest south declination at
the winter solstice. Either of these declinations, which
must be equal if the observations are accurately made,
will give the obliquity of the ecliptic. It has been con-
tinually diminishing from the earliest ages at a rate of
about half a second a year, or, more exactly,about forty-
seven seconds in a century. This diminution is due to
the gravitating forces of the planets, and will continue for
several thousand years to come. It will not, however, go
on indefinitely, but the obliquity will only oscillate be-
tween comparatively narrow limits.

The relation of the obliquity of the ecliptic to the sea-
sons is quite obvious. 'When the sun is north of the equa-
tor, it culminates at a higher altitude in the northern hem-
isphere, and more than half of its apparent dinrnal course
is above the horizon, as explained in the chapter on the
celestial sphere. Hence we have the heats of summer.
In the southern hemisphere, of course, the case is re-
versed : when the sun is in north declination, less than
half of his diurnal course is above the horizon in that hem-
isphere. Therefore this situation of the sun corresponds
to summer in the northern hemisphere, and winter in the
southern one. In exactly the same way, when the sun is
far south of the equator, the days areshorter in the north-
ern hemisphere and longer in the southern hemisphere.
It is therefore winter in the former and summer in the
latter. If the equator and the ecliptic coincided—that
is, if the sun moved along the equator—there would
be no such thing as a difference of seasons, because the
sun would always rise exactly in the east and set exactly
in the west, and always culminate at the same altitude.
The days would always be twelve hours long the world
over. This is the case with the planet Jupiter.

In the preceding paragraphs, we have explained the
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apparent annual circuit of the sun relative to the equator,
and shown how the seasons depend upon this circuit. In
order that the student may clearly grasp the entire subject,
it is necessary to show the relation of these apparent move-
ments to the actnal movement of the earth around the
sun.

To understand the relation of the equator to the eclip-
tic, we must remember that the celestial pole and the
celestial equator have really no reference whatever to the
heavens, but depend solely on the direction of the earth’s
axis of rotation. The pole of the heavens is nothing
more than that point of the celestial sphere toward which
the carth’s axis points. If the direction of this axis
changes, the position of the celestial pole among the stars
will change also; though to an observer on the earth,
unconscious of the change, it would seem as if the starry
sphere moved while the pole remained at rest. Again, the
celestial equator being merely the great circle in which the
plane of the earth’s equator, extended ount to infinity in
every direction, cuts the celestial sphere, any change in
the direction of the pole of the earth necessarily changes
the position of the equator among the stars. Now the
positions of the celestial pole and the celestial equator
among the stars seem to remain unchanged throughout
the year. (There is, indeed, a minute change, but it does
not affect our present reasoning.) This shows that, as
the earth revolves around the sun, its axis is constantly
directed toward nearly the same point of the celestial
sphere.

§ 5. THE SEASONS.

The conclusions to which we are thus led respecting
the real revolution of the earth are shown in Fig. 46.
Here § represents the sun, with the orbit of the earth
surrounding it, but viewed nearly edgeways so as to be
much foreshortened. A B CD are the four cardinal
positions of the earth which correspond to the cardinal
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points of the apparent path of the sun already described.
In each figure of the earth V.§ is the axis, V being its
north and § its south pole. Since this axis points in the

F1a. 46.—CAUSES OF THE SEASONS.

same direction relative to the stars during an entire year,
it follows that the different lines V' § are all parallel.
Again, since the equator does not coincide with the ecliptic,
these lines are not perpendicular to the ecliptic, but are
inclined from this perpendicular by 23%°.

Now, consider the earth as at 4 ; here it is seen that the
sun shines more on the southern hemisphere than on the
northern ; a region of 2334° around the north pole is in
darkness, while in the corresponding region around the
south pole the sunshinesall day. The five circles at right
angles to the earth’s axis are the parallels of latitude around
which each region on the surface of the earth is carried by
the diurnal rotation of the latter on its axis. It will be seen
that in the northern hemisphere less than half of these are
illuminated by the sun, and in the southern hemisphere
more than half. This corresponds to our winter solstice.

When the earth reaches B, its axis VS is at right an-
gles to the line drawn to the sun, so that the latter shines
perpendicularly on the equator, the plane of which passes
through it. The diurnal circles on the earth are one half
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illuminated and one half in darkness. This position cor-
responds to the vernal equinox.

At O the case is exactly the reverse of that at A, the
sun shining more on the northern hemisphere than on the
southern one. North of the equator more than half the
diurnal cireles are in the illuminated hemisphere, and south
of it less. Here then we have winter in the southern and
summer in the northern hemisphere. The sun is above a
region 233° north of the equator, so that this position cor-

responds to our summer solstice.
At D the earth’s axis is once more at right angles to a
line drawn to the sun. The latter therefore shines upon
the equator, and we have the antumnal equinox.

In whatever position we suppose the earth, the line S,
continued indefinitely, meets the celestial sphere at its
north pole, while the middle or equatorial circle of the
earth, continued indefinitely in every direction, marks out
the celestial equator in the heavens. At first sight it- might
seem that, owing to the motion of the earth through so
vast a circuit, the positions of the celestial pole and equa-
tor must change in consequence of this motion. We might
say that, in reality, the pole of the earth describes a circle in
the celestial sphere of the same size as the earth’s orbit.
But this sphere being infinitely distant, the circle thus de-
scribed appears to us as a point, and thus the pole of the
heavens seems to preserve its position among the stars
through the whole course of the year. Again, we may
suppose the equator to have a slight annual motion among
the stars from the same cause. But for the same reason
this motion is nothing when seen from the earth. On the
other hand, the slightest change in the direction of the
axis S V will change the apparent position of the pole
among the stars by an angle equal to that change of direc-
tion. We may thus consider the position of the celestial
pole as independent of the position of the earth in its
orbit, and dependent entirely on the direction in which
the axis of the earth points.
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If this axis were perpendicular to the plane of the eclip-
tic, it is evident that the sun would always lie in the plane
of the equator, and there would be no change of seasons
except such slight ones as might result from the small
differences in the distance of the earth at different seasons.

§ 6. CELESTIAL LATITUDE AND LONGITUDE.

Besides the circles of reference described in the first
chapter, still another system is used in which the ecliptic
is taken as the fundamental plane. Since the motion of
the earth around the sun takes place, by definition, in the
plane of the ecliptic, and the motions of the planets very
near that plane, it is frequently more convenient to refer
the positions of the planets to the plane of the ecliptic than
to that of the equator. The co-ordinates of a heavenly
body thus referred are called its celestial lafitude and
longitude. To show the relation of these co-ordinates to
right ascension and declination, we give a figure showing
both co-ordinates at the same time, as marked on the
celestial sphere. This figure is supposed to be the celes-
tial sphere, having the solar system in its centre. The
direction 2 @ is that of the axis of the earth ; //is the
ecliptic, or the great circle in which the plane of the
carth’s orbit intersects the celestial sphere. The point in
which these two circles cross is marked 0", and is the ver-
nal equinox from which the right ascension and the longi-
tude are both counted.

The horizontal and vertical circles show how right ascen-
sion and declination are counted in the manner described in
Chapter I.  As the right ascension is counted all the way
around the equator from 0" to 24", so longitude is counted
along the ecliptic from the point 0", orthe vernal equinox,
toward o/ in degrees. The whole circuit measuring 360°,
this distance will carry us all the way round. Thusif a
body lies in the ecliptic, its longitude is simply the number
of degrees from the vernal equinox to its position, meas-
ured in the direction from 7 toward JJ. If it does not lie
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in the ecliptic ; if, for instance, it is at the point B, we
let fall a perpendicular BJ from the body upon the
ecliptic. The length of this perpendicular, measured in
degrees, is called the latitude of the body, which may be
north or south, while the distance of the foot of the per-
pendicular from the vernal equinox is called its longitude.

In astronomy it is usual to represent the positions of the
bodies of the solar system, relatively to the sun, by their
longitudes and latitudes, because in the ecliptic we have a

F16. 47.—CIRCLES OF THE SPHERE.

plane more nearly fixed than that of the equator. On the
other hand, it is more convenient to represent the position
of all the heavenly bodies as seen from the earth by their
right ascensions and declinations, because we cannot meas-
ure their longitudes and latitudes directly, but can only
observe right ascension and declination. If we wish to
determine the Iongitude and latitude of a body as seen
from the centre of the earth, we have to first find its right
ascension and declination by observation, and then change
these quantities to longitude and latitude by trigonometri-
cal formulze.



CHAPTER 1V.

THE PLANETARY MOTIONS.

§ 1. APPARENT AND REAL MOTIONS OF THE
PLANETS.

Definitions.—The solar system, as we now know it, com-
prises so vast a number of bodies of various orders of mag-
nitude and distance, and subjected to so many seemingly
complex motions, that we must consider its parts sepa-
rately. Our attention will therefore, in the present chap-
ter, be particularly directed to the motions of the great
planets, which we may consider as forming, in some sort,
the fundamental bodies of the system. These bodies
may, with respect to their apparent motions, be divided
into three classes.

Speaking, for the present, of the sun as a planet, the
first class comprises the sun and moon. We have seen
that if, upon a star chart, we mark down the positions of
the sun day by day, they will all fall into a regular circle
which marks out the ecliptic. The monthly course of the
moon is found to be of the same nature, although its
motion is by no means uniform in a month, yet it is
always toward the east, and always along or very near a
certain great circle.

The second class comprises Venus and Mercury. The
peculiarity exhibited by the apparent motion of these
bodies is, that it is an oscillating one on each side of the
sun. If we watch for the appearance of one of these
planets after sunset from evening to evening, we shall find
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it to appear above the western horizon. Night after night
it will be farther and farther from the sun until it attains
a certain maximum distance ; then it will appear to return
to the sun again, and for a while to be lost in its rays.
A few days later it will reappear to the west of the sun,
and thereafter be visible in the eastern horizon before
sunrise. In the case of Mercury, the time required for
one complete oscillation back and forth is about four
months ; and in the case of Venus more than a year and
a half. '

The third class comprises Mars, Jupiter, and Saturn as
well as a great number of planets not visible to the naked
eye. - The general or average motion of these planets is
toward the east, a complete revolution in the celestial
sphere being performed in times ranging from two years
in the case of Mars to 164 years in that of Neptune.
But, instead of moving uniformly forward, they seem to
have a swinging motion ; first, they move forward or
toward the east through a pretty long are, then backward
or westward through a short one, then forward through
a longer one, ete. It is only by the excess of the longer
arcs over the shorter ones that the circuit of the heavens
is made.

The general motion of the sun, moon, and planets
among the stars being toward the east, the motion in this
direction is called direct; whereas the occasional short
motions toward the west are called retrograde. During
the periods between direct and retrograde motion, the
planets will for a short time appear stationary.

The planets Venus and Mercury are said to be at great-
est elongation when at their greatest angular distance from
the sun. The elongation which occurs with the planet
east of the sun, and therefore visible in the western hori-
zon after sunset, is called the eastern elongation, the other
the western one.

A planet is said to be in conjunction with the sun when
it is in the same direction, or when, as it seems to pass by
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the sun, it approaches nearest to it. It is said to be in
opposition to the sun when exactly in the opposite direc-
tion—rising when the sun sets, and vice versa. If, when
a planet is in conjunction, it is between the earth and the
sun, the conjunction is said to be an ¢nferior one ; if be-
yond the sun, it is said to be superior.

Arrangements and Motions of the Planets.—We now
know that the sun is the real centre of the solar system,
and that the planets proper all revolve around it as the
centre of motion. The order of the five innermost large
planets, or the relative positions of their orbits, are shown
in Fig. 48. These orbits are all nearly, but not exactly,
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F16. 48.—ORBITS OF THE PLANETS.

in the same plane. The planets Mercury and Venus
which, as seen from the earth, never appear to recede very
far from the sun, are in reality those which revolve inside
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the orbit of the earth. The planets of the third class,
which perform their circuits at all distances from the sun,
are what we now call the superior planets, and are more
distant from the sun than the earthis. Of these, the or-
bits of Mars, Jupiter, and a swarm of telescopic planets
are shown in the figure ; next outside of Jupiter comes
Saturn, the farthest planet readily visible to the maked
eye, and then Uranus and Neptune, telescopic planets.
On the scale of Fig. 48 the orbit of Neptune would be
more than two feet in diameter. Finally, the moon is a
small planet revolving around the earth as its eentre, and
carried with the latter as it moves around the sun.

Inferior planets are those whose orbits lie inside that
of the earth, as Mercury and Venus.

Superior planets are those whose orbits lie outside that
of the earth, as Mars, Jupiter, Saturn, ete.

The farther a planet is situated from thesun, the slower
is its orbital motion. Therefore, as we go from the sun,
the periods of revolution are longer, for the double reason
that the planet has a larger orbit to describe and moves
more slowly in its orbit. It isto this slower motion of the
outer planets that the occasional apparent retrograde motion
of the planets is due, as may be seen by studying Fig. 49.
‘We first remark that the apparent direction of a planet,
as seen from the earth, is determined by the line joining
the earth and planet. Supposing this line to be eontinued
cnward to infinity, so as to intersect the celestial sphere,
the apparent motion of the planet will be defined by the
motion of the point in which the line intersects the sphere.
If this motion is toward the ecast, it will be direct ; if
toward the west, retrograde.

Let us first take the case of an inferior planct. Sup-
pose I I K L M N to be suecessive positions of the earth
in its orbit, and 4 B C D E F to be eorresponding posi-
tions of Venus or Mercury. It must be remembered that
when we speak of east and west in this conneetion, we do
not mean an absolute direction in space, but a direction
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around the sphere. In the fignre we are supposed to look
down upon the planetary orbits from the north, and a
direction west is, then, that in which the hands of a watch
move, while east is in the opposite direction. When the
earth is at A the planet is seen at 4. The line 7 4
being supposed tangent to the orbit of the planet, it is
evident from geometrical considerations that this is the
greatest angle which the planet can ever make with the
sun as seen from the earth. This, therefore, corresponds
to the greatest eastern elongation.

Fia. 49.

When the earth has reached 7 the planet is at 73, and is
therefore near the direction /7 . The line has turned in a
direction opposite that of the hands of a wateh, and cuts
the celestial sphere at a point farther east than the line
I74 did. Henee the motion of the planet during this
period has been direet ; but the direction of the sun hav-
ing changed also in consequence of the advance of the
earth, the angular distance between the sun and the planet
is less than before.

While the earth is passing from 7 to X, the planet
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passes from B to €. The distance B O exceeds 7 K, be-
cause the planet moves faster than the earth. The line
joining the earth and planet, therefore, cuts the celestial
sphere at a point farther west than it did before, and
therefore the direction of the apparent motion is retro-
grade. At Cthe planet is in inferior conjunction. The
retrograde motion still continues until the earth reaches Z,
and the planet J), when it becomes stationary. After-
ward it is direct until the two bodies again come into the
relative positions -7 B.

Let us next suppose that the inner orbit 4 B CD EF
represents that of the earth, and the outer one that of a
superior planet, Mars for instance. We may consider
O @ P R to be the celestial sphere, only it should be infi-
nitely distant. While the earth is moving from A4 to 2 the
planet moves from 77 to 7. This motion is direct, the di-
rection O @ P I being from west to east. While the earth
is moving from B to D, the planet is moving from [/ to
L ; the former motion being the more rapid, the earth
now passes by the planet as it were, and the line conjoin-
ing them turns in the same direction as the hands of a
watch. Therefore, during this time the planet seems to
describe the are 2 @ in the celestial sphere in the direction
opposite to its actual orbital motion. The lines Z D and
M E are supposed to be parallel. The planet is then really
stationary, even though as drawn it would seem to have a
forward motion, owing to the distance of these two lines,
yet, on the infinite sphere, this distance appears as a
point. From the point M the motion is direct until the
two bodies once more reach the relative positions B 1.
When the planet is at A and the earth at C, the former is
in opposition. Hence the retrograde motion of the supe-
rior planets always takes place near opposition.

Theory of Epicycles.—The ancient astronomers repre-
sented this oscillating motion of the planets in a way which
was in a certain sense correct. The only error they made
was, in attributing the oscillation to a motion of the planet
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instead of a motion of the carth around the sun, which
really causes it. But their theory was, notwithstanding,
the means of leading CorErnicus and others to the percep-
tion of the true nature of the motion. We allude to the
celebrated theory of epicycles, by which the planetary
motions were always represented before the time of CorEr-
nicus.  Complicated though these motions were, it was
seen by the ancient astronomers that they could be repre-
sented by a combination of two motions. First, a small
circle or epicycle was supposed to move around the earth
with a regular, thongh not uniform, forward motion, and
then the planet was supposed to move around the circum-
ference of this circle. The relation of this theory to the
true one was this. The regular forward motion of the
epicycle represents the real motion of the planet around
the sun, while the motion of the planet around the eir-
cumference of the epicycle is an apparent one arising
from the revolution of the earth around the sun. To ex-
plain this we must understand some of the laws of relative
motion. :
It is familiarly known that if an observer in unconscious
motion looks upon an object at rest, the object will ap-
pear to him to move in a direction opposite that in
which he moves. As a result of this law, if the observer
is unconsciously describing a circle, an object at rest will
appear to him to describe a circle of equal size. This is
ghown by the following figure. Let § represent the sun,
and A B O D E F the orbit of the earth. Let us suppose
the observer on the earth carried around in this orbit, but
imagining himself at rest at S, the centre of motion.
Suppose he keeps observing the direction and distance of
the planet 7, which for the present we suppose to be at
rest, since it is only the apparent motion that we shall
have to consider. When the observer is at A he really
sees the planet in a direction and distance 4 2°, but
imagining himself at § he thinks he sees the planet at
the point ¢ determined by drawing a line S@ parallel and
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equal to A P. As he passes from 4 to B the planet
will seem to him to move in the opposite direction from
A to b, the point & being deter-
mined by drawing &8 equal and
parallel to B 2. As he recedes
from the planet through the are
B CD, the planet seems to re-
cede from him through bed ;
and while he moves from left to
right through D% the planet
seems to move from right to left
through D E. Finally, as he ap-
proaches the planet through the
arc £ F A the planet seems to
approach him through EF A,
and when he returns to 4 the
planet will appear at A4, as in the
beginning. Thus the planet,
though really at rest, will seem
to him to move over the circle
abedef corresponding to that
in which the observer himself is
carried around the sun.

The planet being really in motion, it is evident that
the combined effect of the real motion of the planet and
the apparent motion around the circle abedef will be
represented by carrying the centre of this circle /> along
the true orbit of the planet. The motion of the earth
being more rapid than that of an outer planet, it follows
that the apparent motion of the planet through a & is more
rapid than the real motion of 7> along the orbit. Hence
in this part of the orbit the movement of the planet will be
retrograde. In every other part it will be direct, because
the progressive motion of /> will at least overcome, some-
times be added to, the apparent motion around the circle.

In the ancient astronomy the apparent small circle
abedef was called the epicycle.

Fie. 50.
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In the case of the inner planets Mercury and Venus
the relation of the epicycle to the true orbit is reversed.
Here the epicyclic motion is that of the planet around
its real orbit—that is, the true orbit of the planet around
the sun was itself taken for the epicycle, while the
forward motion was really due to the apparent revolu-
tion of the sun produced by the annual motion of the
earth.

In the preceding descriptions of the planetary motions
we have spoken of them all as eircular. But it was found
by IHiprarcnus * that none of the planetary motions were
really uniform. Studying the motion of the sun in order
to determine the length of the year, he observed the times
of its passage through the equinoxes and solstices with all
the aceuracy which his instruments permitted. He found
that it was several days longer in passing through one half
of its course than through the other. This was apparently
incompatible with the favorite theory of the ancients that
all the ecelestial motions were cireular and uniform. It
was, however, aecounted for by supposing that the earth
was not in the centre of the eircle around whieh the sun
moved, but a little to one side. Thus arose the cele-
brated theory of the eccentric. Careful observations of
the planets showed that they also had similar inequalities
of motion. The centre of the epicyele around which the
real planet was earried was found to move more rapidly
in one part of the orbit, and more slowly in the opposite
part. Thus the eircles in which the planets were sup-
posed to move were not truly eentred upon the earth.
They were therefore ealled eccentrics.

This theory aceounted in a rough way for the observed
inequalities. It is evident that if the earth was supposed
to be displaced toward one side of the orbit of the planet,

* HIpPARCHUS was one of the most celebrated astronomers of anti-
quity, being frequently spoken of as the father of the science. Ie is
supposed to have made most of his observations at Rhodes, and flour-
ished about one hundred and fifty years before the Christian era.
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the latter would seem to move more rapidly when nearest
the earth than when farther from it. It was not until the
time of KErLer that the eceentric was shown to be in-
capable of accounting for the real motion ; and it is his
discoveries which we are next to describe.

§ 2, KEPLER’S LAWS OF PLANETARY MOTION.

The direction of the sun, or its longitude, can be deter-
mined from day to day by direct observation. If we
could also observe its distance on each day, we should, by
laying down the distances and directions on a large piece
of paper, through a whole year, be able to trace the curve
which the earth describes in its annual course, this course
being, as already shown, the counterpart of the apparent
one of the sun. A rough determination of the rela-
tive distances of the sun at different times of the year may
be made by measuring the sun’s apparent angular diame-
ter, because this diameter varies inversely as the distance
of the object observed. Such measures would show that
the diameter was at a maximum of 32’ 36” on January 1st,
and at a minimum of 31’ 32" on July 1st of every year.
The difference, 64”, is, in round numbers, 5 the mean
diameter—that is, the earth is nearer the sun on January
1st than on July 1st by about 4. We may consider it
as ' greater than the mean on the one date, and ¢ less
on the other. This is therefore the actnal displacement
of the sun from the centre of the earth’s orbit.

Again, observations of the apparent daily motion of
the sun among the stars, corresponding to the real daily
motion of the earth round the sun, show this motion to be
least about July 1st, when it amounts to 57" 12" = 3432”,
and greatest about January 1st, when it amounts to
61’ 11”7 = 3671". The difference, 239", is, in round num-
bers, {4 the mean motion, so that the range of variation
is, in proportion to the mean, double what it is in the case
of the distances. If the actual velocity of the earth in its
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orbit were uniform, the apparent angular motion round
the sun would be inversely as its distance from the sun.
Actually, however, the angular motion, as given above, is
inversely as the square of the distance from the sun, be-
cause (1 -+ %)’ =1 75 very nearly. The actual ve-
locity of the earth is therefore greater the nearer it is to
the sun.

On the ancient theory of the eccentric circle, as pro-
pounded by Hrpparcuus, the actual motion of the earth
was supposed to be uniform, and it was necessary to sup-
pose the displacement of the sun (or, on the ancient theo-
ry, of the earth) from the centre to be {% its mean distance,
in order to account for the observed changes in the motion
in longitude. 'We now know that, in round numbers, one
half the inequality of the apparent motion of the sun in
longitude arises from the variations in the distance of the
earth from it, and one half from the earth’s actually mov-
ing with a greater velocity as it comes nearer the sun. By
attributing the whole inequality to a variation of distance,
the ancient astronomers made the eccentricity of the or-
bit—that is, the distance of the sun from the geometrical
centre of the orbit (or, as they supposed, the distance of
the earth from the centre of the sun’s orbit)-—twice as
great as it really was.

An immediate consequence of these facts of observa-
tion is KxprLER’s second law of planetary motion, that the
radit vectores drawn from the sun to a planet revolving
round it, sweep over equal areas in equal times. Sup-
pose, in Fig. 51, that S represents the position of the sun,
and that the earth, or a planet, in a unit of time, say a
day or a week, moves from £, to . At another part
of its orbit it moves from 2P to 2, in the same time,
and at a third part from 2, to P, Then the areas
SP, P, SPP, SP P, will all be equal. A little
geometrical consideration will, in fact, make it clear that
the areas of the triangles are equal when the angles at §
are inversely as the square of the radii vectores, 8.2, ete.,
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since the expression for the area of a triangle in which the
angle at & is very small is  angle § X 8§ /. %

F16. 61.—LAW OF AREAS.

In the time of KEpLER the means of measuring the
sun’s angular diameter were so imperfect that the preced-
ing method of determining the path of the earth around
the sun could not be applied. It was by a study of the
motions of the planet Mars, as observed by Tycro Brank,
that KerLER was led to his celebrated laws of planetary
motion.« Ile found that no possible motion of Mars in a
truly circular orbit, however eccentric, would represent the
observations. After long and laborious caleulations, and
the trial and rejection of a great number of hypotheses,
he was led to the conclusion that the planet #ars moved
in an ellipse, having the sun in one focus. As the analo-
gies of nature led to the inference that all the planets,
the earth included, moved in curves of the same eclass,
and according to the same law, he was led to enunciate
the first two of his celebrated laws of planetary motion,
which were as follow :

* More exactly if we consider the arc P’ as a straight line, the
area of the triangle P P, S will be equal to 1S Px 8P, xsin angle S.
But in considering only very small angles we may suppose § P= 8 P,
and the sine of the angle S equal to the angle itself. This supposition
will give the area mentioned above.
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L Each planet moves around the sunin an ellipse, hav-
ing the sun in one of its foci.

II. The radius wector joining each planet with the
sun, moves over equal areas in equal times.

To these he afterward added another showing the rela-
tion between the times of revolution of the separate
planets.

1II. The square of the time of revolution of each
planet is proportional to the cube of its mean distance
from the sun.

These three laws comprise a complete theory of plan-
etary motion, so far as the main features of the motion are
concerned. There are, indeed, small variations from
these laws of KrpLER, but the laws are so nearly correct
that they are always employed by astronomers as the basis
of their theories.

Mathematical Theory of the Elliptic Motion.— The
laws of KrprLER lead to problems of such mathematical
elegance that we give a brief synopsis of the most impor-
tant elements of the theory. A knowledge of the ele-
ments of analytic geometry is necessary to understand it.

Let us put :

@, the semi-major axis of the ellipse in which the planet moves.
In the figure, if C is the centre of the el-
lipse, and § the focus in which the sun is
situated, thena =4 0 = O .

¢, the eccentricity of the ellipse = gg
a

=, the longitude of the perihelion, rep-
resented by the angle = S E, £ being the
direction of the vernal equinox from
which longitudes are counted.

n, the mean angular motion® of the
planet round the sun in a unit of time,
The actual motion being variable, the -
mean motion is found by dividing the Fia. 52.
circumference = 360° by the time of revolution.

T, the time of revolution.

7, the distance of the planet from the sun, or its radius vector, a
variable quantity.

L The first remark we have to make is that the ellipticities of the




126 ASTRONOMY.

planetary orbits—that is, the proportions in which the orbits are flat-
tened—is much less than their eccentricities. By the properties of
the ellipse we have :

8 B = semi-major axis = a,
B C = semi-minor axis = a ¥'1 — ¢’,
or, B0 =a (1 — }e¢*) nearly, when ¢ is very small.

The most eccentric of the orbits of the eight major planets is that
of Mercury, for which ¢ = 0.2. Hence for Mercury

BC=a(l— )

very nearly, so that flattening of the orbit is only about 4 or .02
of the major axis.

The next most eccentric orbit is that of Mars for which ¢ = .093 ;
B C =a (1—.0043), so that the flattening of the orbit is only
about 3.

We see from this that the hypothesis of the eccentric circle makes
a very close approximation to the true form of the planetary orbits.
It is only necessary to suppose the sun removed from the centre of
the orbit by a quantity equal to the product of the eccentricity into
the radius of the orbit to have a nearly true representation of the
orbit and of the position of the sun.

II. The least distance of the planet from the sun is

Sr=a(l —9),
and the greatest distance is
AS=a(l+é).

III. The angular velocity of the planct around the sun at any
point of the orbit, which we may call S, is, by the second law of
KEPLER :

(%

8’

S

<

C being a constant to be determined. To determine it we remark
that § is the angle through which the planet moves in a unit of
time. If we suppose this unit to be very small, the quantity S #* is
double the area of the very small triangle swept over by the radius
vector during such unit. This area is called the areolar velocity of
the planet, and is a constant, by KePLER’s second law. Therefore,
in the last equation, O = S * represents the double of the areolar
velocity of the planet. When the planet completes an entire revo-
lution, the radius vector has swept over the whole area of the

ellipse which is = @* ¥ 1 — & * The time required to do this be-

* In this formula 7 represents the ratio of the circumference of the
circle to its diameter.
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ing called 7, the area swept over with the areolar velocity }C is
also $C 7. Therefore

30T =na*¥1—¢;

2wat V1 —é
0._—1,_———.

The quantity 2 = here represents 360°, or the whole circumference,
which, being divided by 7, the time of describing it will give the
mean angular velocity of the planet around the sun which we have
called n. Therefore

_2x
n=
and
C=a"n¥1—¢.

This value of C being substituted in the expression for .S, we have

S a*n 1:} =i
1V. By KepLer’s third law 7% is proportioned to «®; that is,
2

% is a constant for all the planets. The numerical value of this

constant will depend upon the quantities which we adopt as the units
of time and distance. If we take the year as the unit of time and
the mean distance of the earth from the sun as that of distance, 7'

and e for the earth will both be unity, and the ratio % will there-
fore be unity for all the planets. Therefore

= e 3,

Therefore if we square the period of revolution of any planet in years,
and exiract the cube root of the square, we shall have its mean distance
Jrom the sun in units of the earth’s distance.

It is thus that the mean distances of the planets are determined
in practice, because, by a long series of observations, the times of
revolution of the planets have been determined with very great pre-
cision. :

V. To find the position of a planet we must know the epoch at
which it passed its perihelion, or some equivalent quantity. To
find its position at any other time let 7 be the time which has elapsed
since passing the perihelion. Then, by the law of areas, if I’ be the
position of the planet at this time we shall have

Area of sector PSS«
. .

Area of whole ellipse T
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The times r and T being both given, the problem is reduced to
that of cutting a given area of the ellipse by a line drawn from the
focus to some point of its circumference to be found. This is
known as KEPLER'S problem, and may be solved by analytic geom-

Fye. 63.

etry as follows: Let A Bbe the major axis of the ellipse, P the
position of the planet, and S that of the focus in which the sun is
situated. On A Bas a diameter describe a circle, and through P
draw the right line 2’ P D perpendicular to 4 B.

The area of the elliptic sector S P B, over which the radius vector
of the planet has swept since the planet passed the perihelion at B,
is equal to'the sector ¢ P B minus the triangle 0 P 8. Since an
ellipse is formed from a circle by shortening all the ordinates in
the same ratio (namely, the ratio of the minor axis  to the major
axis a), it follows that the elliptic sector C P B may be formed
from the circular sector C 7 B by shortening all the ordinates in
the ratio of D Pto D I*, or of @ to b. Hence,

Area OPRB:area CPPB=b:a.
But area O I B = angle P” C B x } a? taking the unit radius

as the unit of angular measure. 1Ilence, putting » for the angle
P’ C B we have

Area oPp=" area OP' B=1}abu (2).
a

Again, the area of the triangle O P S is equal to § base 'S x al-
titude P.D. Also PD = Z P D, and P D= C P sin u = asinu.

W herefore,
PD=bsinu (3).
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By the first principles of conic sections, ¢ S, the base of the
triangle, is equal to @ ¢. Hence

Area OPS = Jabesinu,
and, from (2) and (3),
Area SPB=1}ab (v — esin u).

Substituting in equation (1) this value of the sector area, and
m a b for the arca of the ellipse, we have

u—esinu 7
27 T
or,

w—esinu=2mr—
=27

From this equation the unknown angle % is to be found. The
equation being a transcendental one, this cannot be done directly,
but it may be rapidly done by suceessive approximation, or the
value of » may be developed in an infinite series.

Next we wish to express the position of the planet, which is given
by its radius veetor S P and the angle B S P which this radius
vector makes with the major axis of the orbit. Let us put

7, the radius vector SP,
J, the angle B S P, called the true anomaly.

Then
rsin f = P.D =1bsinu (Equation 3),

rcos f=8SD=CD— C8=CP cosu—ae=a(cosu—e),
from which 7 and f can both be determined. By taking the square
root of the sums of the squares, they give, by suitable reduction and
putting b* = a* (1 — €7),
r=a (1 — ecos u),

and, by dividing the first by the second,
bsinu  V1—é'sinu

tanf = =
s a (cosu — e) cosu — e

Putting, as before, 7 for the longitude of the perihelion, the true
longitude of the planet in its orbit will be f 4 . 3
VI. To find the position of the planet relatively to the ecliptic,
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the inclination of the orbit to the ecliptic has to be taken into ac-
count, The orbits of the several large planets do not lie in the
same plane, but are inclined to each other, and to the ecliptic, by
various small angles. A table giving the values of these angles
will be given hereafter, from which it will be seen that the orbit of
Mercury has the greatest inclination, amounting to 7°, and that of
Uranus the least, being only 46”. The reduction of the position of
the planet to the ecliptic is a problem of spherical trigonometry,
the solution of which need not be discussed here.



CHAPTER V.

UNIVERSAL GRAVITATION.
§ 1. NEWTON’S LAWS OF MOTION.

THE establishment of the theory of universal gravitation
furnishes one of the best examples of scientific method
which is to be found. We shall describe its leading
features, less for the purpose of making known to the
reader the technical nature of the process than for illus-
trating the true theory of scientific investigation, and
showing that such investigation has for its object the dis-
covery of what we may call generalized facts. The real
test of progress is found in our constantly increased
ability to foresee either the course of nature or the effects
of any accidental or artificial combination of causes. So
long as prediction is not possible, the desires of the inves-
tigator remain unsatisfied. When certainty of prediction
is once attained, and the laws on which the prediction is
founded are stated in their simplest form, the work of
science is complete.

The whole process of scientific generalization consists in
grouping facts, new and old, under such general laws that
they are seen to be the result of those laws, combined with
those relations in space and time which we may suppose to
exist among the material objects investigated. It is essen-
tial to such generalization that a single law shall suffice for
grouping and predicting several distinct facts. A law
invented simply to account for an isolated fact, however
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general, cannot be regarded in &cience as a law of nature.
It may, indeed, be true, but its truth cannot be proved
until it is shown that several distinet facts can be accounted
for by it better than by any other law. The reader will
call to mind the old fable which represented the earth as
supported on the back of a tortoise, but totally forgot that
the support of the tortoise needed to be accounted for as
much as that of the earth.

To the pre-Newtonian astronomers, the phenomena of the
geometrical laws of planetary motion, which we have just
described, formed a group of facts having no connection
with any thing on the earth. The epicycles of Hipparcrnus
and ProLEmY were a truly scientific conception, in that they
explained the seemingly erratic motions of the planets by
a single simple law. In the heliocentric theory of Corrxr-
Nicus this law was still further simplified by dispensing in
great part with the epicycle, and replacing the latter by a
motion of the earth around the sun, of the same nature
with the motions of the planets. But Corrrxicus had no
way of accounting for, or even of describing with rigor-
ous accuracy, the small deviations in the motions of the
planets around the sun. In this respect he made no real
advance upon the ideas of the ancients.

Keprer, in his discoveries, made a great advance
in representing the motions of all the planets by a
single set of simple and easily understood geometrical
laws. Had the planets followed his laws exactly, the
theory of planetary motion would have been substantially
complete.  Still, further progress was desired for two
reasons. In the first place, the laws of Keprer did not
perfectly represent all the planetary motions. When ob-
servations of the greatest accuracy were made, it was found
that the planets deviated by small amounts from the ellipse
of KerLER. Some small emendations to the motions com-
puted on the elliptic theory were therefore necessary.
Had this requirement been fulfilled, still another step
would have been desirable—namely, that of connecting the
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motions of the planets with motion upon the earth, and
reducing them to the same laws.

Notwithstanding the great step which KepLEr made in
describing the celestial motions, he unveiled none of the
- great mystery in which they were enshrouded. This mys-
tery was then, to all appearance, impenetrable, because
not the slightest likeness could be perceived between the
celestial motions and motions on the surface of the earth.
The difficulty was recognized by the older philosophers in
the division of motions into ‘‘forced”” and ‘¢ natural.”
The latter, they conceived, went on perpetually from the
very nature of things, while the former always tended to
cease. S0 when KerLER said that observation showed the
law of planetary motion to be that around the eircum-
ference of an ellipse, as asserted in his law, he said all that
it seemed possible to learn, supposing the statement per-
fectly exact. And it was all that eould be learned from the
mere study of the planetary motions. In order to connect
these motions with those on the earth, the next step was to
study the laws of force and motion here around us. Sin-
gular though it may appear, the ideas of the ancients on
this subject were far more erroneous than their concep-
tions of the motions of the planets. We might almost say
that before the time of GarmLro scarcely a single correet
idea of the laws of motion was generally entertained by
men of learning. There were, indeed, one or two who in
this respect were far ahead of their age. ILroNxarRDO DA
Vixcr, the celebrated painter, was noted in this respeet.
But the correct ideas entertained by him did not seem to
make any headway in the world until the early part of
the seventeenth century. Among those who, before the
time of NEwron, prepared the way for the theory in
question, GaviLeo, Huyenexs, and Hooxkk are entitled to
especial mention. As, however, we eannot develop the
history of this subject, we must pass at once to the gen-
eral laws of motion laid down by Nrwrox. These were
three in number. '
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Law First : Hvery body preserves its state of rest or of
uniform motion in a right line, unless it is compelled to
change that state by forces impressed thereon.

It was formerly supposed that a body acted on by no
force tended to come to rest. Here lay one of the great- -
est difficulties which the predecessors of Newron found,
in accounting for the motion of the planets. The idea
that the sun in some way caused these motions was enter-
tained from the earliest times. Even Proremy had a
vague idea of a force which was always directed toward
the centre of the earth, or, which was to him the same
thing, toward the centre of the universe, and which not
only caused heavy bodies to fall, but bound the whole uni-
verse together. KEpPLER, again, distinctly affirms the ex-
istence of a gravitating force by which the sun acts on the
planets ; but he supposed that the sun must also exercise
an impulsive forward force to keep the planets in motion.
The reason of this incorrect idea was, of course, that all
bodies in motion on the surface of the earth had practically
come to rest. But what was not clearly seen before the
time of NEwToN, or at least before GALILEO, was, that this
arose from. the inevitable resisting forces which act upon
all moving bodies around us.

Law Second : Zhe alteration of motion is ever propor-
tional to the moving force impressed, and is made in the
direction of the right line in which that force acts.

The first law might be considered as a particular case of
this second one arising when the force is supposed to van-
ish. The accuracy of both laws can be proved only by
very carefully conducted experiments. They are now
considered as mathematically proved.

Law Third : 70 every action there is always opposed an
equal reaction ; or the mutual actions of two bodies upon
each other are always equal, and in opposite directions.

That is, if a body 4 acts in any way upon a body B,
B will exert a force exactly equal on 4 in the opposite
direction.
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These laws once established, it became possible to calcu-
late the motion of any body or system of bodies when once
the forces which act on them were known, and, vice versa,
to define what forces were requisite to produce any given
motion. The question which presented itself to the mind
of Newron and his contemporaries was this : Under what
law of force will planets move round the sun in accord-
ance with KepLER’s laws ?

The laws of central forces had been discovered by Huy-
GHENS some time before NEwToN commenced his re-
searches, and there was one result of them which, taken in
connection with KepLer’s third law of motion, was so
obvious that no mathematician could have had much diffi-
culty in perceiving it. Supposing a body to move around
in a circle, and putting 2 the radius of the circle, 7’ the
period of revolution, Huvenexns showed that the centrifugal
force of the body, or, which is the same thing, the attract-
ive force toward the centre which would keep it in the

circle, was proportional to But by KerLer’s third

]_ﬁ'
law 7' is proportional to Z2°. Therefore this centripetal
force is proportional to %, that is, to —}? Thus it fol-

lowed immediately from KrprLer’s third law, that the
central force which would keep the planets in their or-
bits was inversely as the square of the distance from the
sun, supposing each orbit to be circular. The first law of
motion once completely understood, it was evident that
the planet needed no force impelling it forward to keep
up its motion, but that, once started, it would keep on
forever.

The next step was to solve the problem, what law of
force will make a planet describe an ellipse around the
sun, having the latter in one of its foci? Or, supposing
a planet to move round the sun, the latter attracting it
with a force inversely as the square of the distance ; what
will be the form of the orbit of the planet if it is not cir-
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cular ? A solution of either of these problems was beyond
the power of mathematicians before the time of Newrox ;
and it thus remained uncertain whether the planets mov-
ing under the influence of the sun’s gravitation would or
would not describe ellipses. Unable, at first, to reach a
satisfactory solution, NEwron attacked the problem in
another direction, starting from the gravitation, not of
the sun, but of the earth, as explained in the following
section.

§ 2. GRAVITATION IN THE HEAVENS.

The reader is probably familiar with the story of New-
tox and the falling apple. Although it has no authorita-
tive foundation, it is strikingly illustrative of the method
by which NewTon first reached a solution of the problem.
The course of reasoning by which he ascended from grav-
itation on the earth to the celestial motions was as follows :
We see that there is a force acting all over the earth by
which all bodies are drawn toward its centre. This force
is familiar to every one from his infancy, and is properly
called gravitation. It extends without sensible diminution
to the tops not only of the highest buildings, but of the
highest mountains. How much higher does it extend ?
Why should it not extend to the moon? If it does, the
moon would tend to drop toward the earth, just as a stone
thrown from the hand drops. As the moon moves round
the earth in her monthly course, there must be some force
drawing her toward the earth ; else, by the first law of
motion, she would fly entirely away in a straight line. Why
should not the force which makes the apple fall be the
same force which keeps her in her orbit ? To answer this
question, it was not only necessary to calculate the intensity
of the force which would keep the moon herself in her
orbit, but to compare it with the intensity of gravity at the
earth’s surface. It had long been known that the distance
of the moon was about sixty radii of the earth. If this
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force diminished as the inverse square of the distance,
then, at the moon, it would be only 54 as great as at
the surface of the earth. On the earth a hody falls six-
teen feet in a second. If, then, the theory of gravitation
were correct, the moon ought to fall toward the earth
35 of this amount, or about {4 of an inch in a second.
The moon being in motion, if we imagine it moving in a
straight line at the beginning of any second, it ought to
be drawn away fromn that line {5 of an inch at the end of
the second. When the calculation was made with the
correct distance of the moon, it was found to agree ex-
actly with this result of theory. Thus it was shown that
the force which holds the moon in her orbit is the same
which makes the stone fall, only diminished as the inverse
square of the distance from the centre of the earth.*

As it appeared that the central forces, both toward the
sun and toward the earth, varied inversely as the squares
of the distances, NEwrox proceeded to attack the mathe-
matical problems involved in a more systematic way than
any of his predecessors had done. KrrrLEr’s second law
showed that the line drawn from the planet to the sun
will describe equal areas in equal times. Newrox showed
that this could not be true, unless the force which held
the planet was directed toward the sun. We have already
stated that the third law showed that the force was in-
versely as the square of the distance, and thus agreed ex-
actly with the theory of gravitation. It only remained to

*1t is a remarkable fact in the history of science that NEwToN
would have reached this result twenty years sooner than he did, had
he not been misled by adopting an erroneous value of the earth’s diame-
ter. His first attempt to compute the earth’s gravitation at the distance
of the moon was madein 1665, when he was only twenty-three years of
age. At that time he supposed that a degree on the earth’s surface was
sixty statute miles, and was in consequence led to erroneous results by
supposing the earth to be smaller and the moon nearer than they really
were. He therefore did not make public his ideas ; but twenty years
later he learned from the measures of PicaArp in France what the true
diameter of the earth was, when he repeated his calculation with
cntire success.
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consider the results of the first law, that of the elliptic
motion. After long and laborious efforts, Newron was
enabled to demonstrate rigorously that this law also re-
sulted from the law of the inverse square, and could result
from no other. Thus all mystery disappeared from the
celestial motions ; and planets were shown to be simply
heavy bodies moving according to the same laws that were
acting here around us, only under very different eireum-
stances. All three of KrrLEr’s laws were embraced in
the single law of gravitation toward the sun. The sun
attracts the planets as the earth attracts bodies here
around us. :

Mutual Action of the Planets.—It remained to extend
and prove the theory by considering the attractions of the
planets themselves. By Newrton’s third law of motion,
each planet must attract the sun with a force equal to that
which the sun exerts upon the planet. The moon also
must attract the earth as much as the earth attracts the
moon. Such being the case, it must be highly probable
that the planets attract each other. If so, KerLer’s laws
can only be an approximation to the truth. The sun,
being immensely more massive than any of the planets,
overpowers their attraction upon each other, and makes
the law of elliptic motion very nearly true. But still the
comparatively small attraction of the planets must cause
some deviations. Now, deviations from the pure elliptic
motion were known to exist in the case of several of the
planets, notably in that of the moon, which, if gravitation
were universal, must move under the influence of the com-
bined attraction of the earth and of the sun. Nrwron,
therefore, attacked the complicated problem of the deter-
mination of the motion of the moon under the combined
action of these two forces. He showed in a general way
that its deviations would be of the same nature as those
shown by observation. But the complete solution of the
problem, which required the answer to be expressed in
numbers, was beyond his power.
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Gravitation Resides in each Particle of Matter.—Still
another question arose. Were these mutually attractive
forces resident in the eentres of the several bodies attracted,
or in each particle of the matter composing them ¢ Nuw-
ton showed that the latter must be the case, because the
smallest bodies, as well as the largest, tended to fall
toward the earth, thus showing an equal gravitation in
every separate part. The question then arose: what
would be the action of the earth upon a body if the
body was attracted—not toward the centre of the earth
alone, but toward every particle of matter in the earth?
It was shown by a quite simple mathematical demonstra-
tion that if a planet were on the surface of the earth or
outside of it, it would be attracted with the same force as
if the whole mass of the earth were concentrated in its
eentre. Putting together the various results thus arrived
at, NEwtox was able to formulate his great law of uni-
versal gravitation in these comprehensive words : “‘ Avery
particle of matter in the universe attracts every other
particle with a force directly as the masses of the two
particles, and inversely as the square of the distance
which separates them.”

To show the nature of the attractive forces among
these various particles, let us represent by m and ' the
masses of two attracting bodies. We may conceive the
body m to be composed of 7 particles, and the other
body to be composed of m/ particles. TLet us conceive that
each particle of the one body attracts each particle of the

other with a force %, Then every particle of m will be

attracted by each of the =/ particles of the other, and
therefore the total attractive force on each of these m par-

/
ticles will be 7% Each of the m particles being equally

subject to this attraction, the total attractive force between
mm'

the two bodies will be ——. When a given force acts
A
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upon a body, it will produce less motion the larger the
body is, the accelerating force being proportional to the
total attracting force divided by the mass of the body
moved. Therefore the accelerating force which acts on the
body 7/, and which determines the amount of motion, will

m : :
be 79 and conversely the accelerating force acting on the

/

body 7z will be represented by the fraction %

§ 3. PROBLEMS OF GRAVITATION.

The problem solved by Newrox, considered in its great-
est generality, was this : Two bodies of which the masses
are given are projected into space, in certain directions, and
with certain velocities. What will be their motion under
the influence of their mutual gravitation? If their rela-
tive motion does not exceed a certain definite amount, they
will each revolve around their common centre of gravity
in an ellipse, as in the case of planetary motions. If, how-
ever, the relative velocity exceeds a certain limit, the two
bodies will separate forever, each describing around the
common centre of gravity a curve having infinite branches.
These curves are found to be parabolas in the case where
the velocity is exactly at the limit, and hyperbolas when
the velocity exceeds it. Whatever curves may be de-
scribed, the common centre of gravity of the two bodies
will be in the focus of the curve. Thus, when restricted
to two bodies, the problem admits of a perfectly rigorous
mathematical solution.

Having succeeded in solving the problem of planetary
motion for the case of two bodies, NEwrox and his con-
temporaries very naturally desired to effect a similar solu-
tion for the case of three bodies. The problem of motion
in our solar system is that of the mutual action of a great
number of bodies ; and having succeeded in the case of
two bodies, it was necessary next to try that of three.
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Thus arose the celebrated problem of three bodies. It is
found that no rigorous and general solution of this problem
is possible. The curves described by the several bodies
would, in general, be so complex as to defy mathematical
definition. But in the special case of motions in the solar
system, the problem admits of being solved by approxima-
tion with any required degree of accuracy. The princi-
ples involved in this system of approximation may be com-
pared to those involved in extracting the square root of
any number which is not an exact square ; 2 for instance.
The square root of 2 cannot be exactly expressed either
by a decimal or vulgar fraction ; but by increasing the
number of figures it can be expressed to any required limit
of approximation. Thus, the vulgar fractions §, 13, 5§77,
etc., are fractions which approach more and more to the
required quantity ; and by using larger numbers the errors
of such fraction may be made as small as we please. So, in
using decimals, we diminish the error by one tenth for eve-
ry decimal we add, but never reduce it to zero. A process
of the same nature, but immensely more complicated, has
to be nused in computing the motions of the planets from
their mutnal gravitation. The possibility of such an ap-
proximation arises from the fact that the planetary orbits
are nearly circular, and that their masses are very small
compared with that of the sun. The first approximation
is that of motion in an ellipse. In this way the motion of
a planet through several revolutions can nearly always be
predicted within a small fraction of a degree, though it
may wander widely in the course of eenturies. Then sup-
pose each planet to move in a known ellipse ; their mutual
attraction at cach point of their respective orbits can be
expressed by algebraic formulee. In constructing these
formula, the orbits are first supposed to be cireular ; and
afterward account is taken by several successive steps of
the eccentricity. Having thus found approximately their
action on each other, the deviations from the pure elliptic
motion produced by this action may be approximately cal-



142 ASTRONOMY.

culated. This being done, the motions will be more exact-
ly determined, and the mutual action can be more exactly
caleulated. Thus, the process can be carried on step by
step to any degree of precision ; but an enormous amount
of calculation is necessary to satisfy the requirements of
modern times with respect to precision.* Asa general
rule, every successive step in the approximation is much
more laborious than all the preceding ones.

To understand the principle of astronomical investiga-
tion into the motion of the planets, the distinetion be-
tween observed and theoretical motions must be borne in
mind. When the astronomer with his meridian cirele de-
termines the position of a planet on the celestial sphere,
that position is an observed one. When he caleulates it, for
the same instant, from theory, or from tables founded on
the theory, the result will be a calculated or theoretical
position. The two are to be regarded as separate, no mat-
ter if they should be exactly the same in reality, because
they have an entirely different origin. DBut it must be re-
membered that no position can be calculated from theory
alone independent of observation, because all sound theory
requires some data to start with, which observation alone
can furnish.” In the case of planetary motions, these data
are the elements of the planetary orbit already deseribed,
or, which amounts to the same thing, the velocity and di-
rection of the motion of the planet as well as its mass at
some given time. If these quantities were once given
with mathematical preeision, it would be possible, from the
theory of gravitation alone, without recourse to observa-
tion, to predict the motions of the planets day by day
and generation after generation with any required degree
of precision, always supposing that they are subjected to no
influence except their mutual gravitation according to the
law of Newron. But it is impossible to determine the
elements or the velocities without recourse to observation ;

* In the works of the great mathematicians on this subject, algebraic
formule extending through many pages are sometimes given.
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and however correctly they may seemingly be determined
for the time being, subsequent observations always show
them to have been more or less in error. The reader
must understand that no astronomieal observation ean be
mathematically exact. Both the instruments and the
observer are subjected to influences which prevent more
than an approximation being attained from any one
observation. The great art of the astronomer consists in
so treating and combining his observations as to eliminate
their errors, and give a result as near the truth as possible.

‘When, by thus combining his observations, the astrono-
mer has obtained the elements of the planet’s motion which
he considers to be near the truth, he ealeulates from them
a series of positions of the planet from day to day in the
future, to be compared with subsequent observations. If
he desires his work to be more permanent in its nature,
he may construet tables by which the position can be de-
termined at any future time. IHaving thus a series of the-
oretical or ealculated places of the planet, he, or others,
will compare his predictions with observation, and from
the differences deduce corrections to his elements. We
may say in a rough way that if a planet has been observed
through a certain number of years, it is possible to caleulate
its place for an equal number of years in advance with
some approach to precision. Accurate observations are
commonly supposed to commence with Braprey, Astron-
omer Royal of England in 1750. A eentury and a quarter
having elapsed since that time, it is now possible to con-
struct tables of the planets, which we may expect to be
tolerably accurate, until the year 2000. But thisis a
possibility rather than a reality. The amount of calcu-
lation required for such work is so immense as to be en-
tirely beyond the power of any one person, and hence it is
only when a mathematician is able to command the ser-
vices of others, or when several mathematicians in some
way combine for an object, that the best astronomical
tables can hereafter be eonstructed.
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§ 4. RESULTS OF GRAVITATION.

From what we have said, it will be seen that the problem
of the motions of the planets under the influence of grav-
itation has called forth all the skill of the mathematicians
who have attacked it. They actually find themselves able
to reach a solution, which, so far as the mathematics of the
subject are concerned, may be true for many centuries, but
not a solution which shall be true for all time. Among
those who have brought the solution so near to perfec-
tion, LA Prace is entitled to the first rank, although there
are others, especially LA GranaE, who are fully worthy to
be named along with him. It will be of interest to state
the general results reached by these and other mathema-
ticians.

We call to mind that but for the attraction of the
planets upon each other, every planet would move around
the sun in an invariable ellipse, according to KerLEr’s
laws. The deviations from this elliptic motion produced
by their mutual attraction are called periurbations. When
they were investigated, it was found that they were of two
classes, which were denominated respectively periodic
perturbations and secular variations.

The periodic perturbations consist of oscillations depend-
ent upon the mutual positions of the planets, and there-
fore of comparatively short period. Whenever, after a
number of revolutions, two planets return to the same
position in their orbits, the periodic perturbations are of
the same amount so far as these two planets are concerned.
They may therefore be algebraically expressed as depend-
ent upon the longitude of the two planets, the disturbing
one and the disturbed one. For instance, the perturba-
tions of the earth produced by the action of Mercury
depend on the longitude of the earth and on that of Mer-
cury. Those produced by the attraction of Venus de-
pend upon the longitude of the earth and on that of
Venus, and so on.
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The secular perturbations, or secular variations as they
are commonly called, consist of slow changes in the forms
and positions of the several orbits. It is found that the
perihelia of all the orbits are slowly changing their ap-
parent directions from the sun ; that the eccentricities of
some are increasing and of others diminishing ; and that
the positions of the orbits are also changing.

One of the first questions which arose in reference to
these secular variations was, will they go on indefinitely ?
If they should, they would evidently end in the subversion
of the solar system and the destruction of all life upon the
earth. The orbits of the earth and planets would, in the
course of ages, become so eccentric, that, approaching
near the sun at one time and receding far away from it at
another, the variations of temperature would be destruc-
tive to life. This problem was first solved by La GrANGE.
He showed that the changes could not go on forever, but
that each eccentricity would always be confined between
two quite narrow limits. His results may be expressed
by a very simple geometrical construction. - Let S repre-
sent the sun situated in the focus of the ellipse in which

Fra. 54.

the planet moves, and let C be the centre of the ellipse.
Let a straight line S B emanate from the sun to 25,
another line pass from B to D), andso on ; the number of
these lines being equal to that of the planets, and the last
one terminating in O, the centre of the ellipse. Then the
line § B will be moving around the sun with a very slow
motion ; B D will move around B with a slow motion
somewhat different, and so each one will revolve in the
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same manner until we reach the line which carries on its
end the centre of the ellipse. These motions are so slow
that some of them require tens of thousands, and others
hundreds of thousands of years to perform the revolution.
By the combined motion of them all, the centre of the
ellipse describes a somewhat irregular curve. It is evi-
dent, however, that the distance of the centre from the
sun can never be greater than the sum of these revolving
lines. Now this distance shows the eccentricity of the
ellipse, which is equal to half the difference between the
greatest and least distances of the planet from the sun.
The perihelion being in the direction €S, on the opposite
side of the sun from O, it is evident that the motion of
O will carry the perihelion with it. It is found in this
way that the eccentricity of the earth’s orbit has been
diminishing for about eighteen thousand years, and will
continue to diminish for twenty-five thousand years to
come, when it will be more nearly circular than any orbit
of our system now is. But before becoming quite circu-
lar, the eccentricity will begin to increase again, and so go
on oscillating indefinitely.

Secular Acceleration of the Moon.— Another remark-
able result reached by mathematical research is that of the
acceleration of the moon’s motion. More than a century
ago it was found, by comparing the ancient and modern
observations of the moon, that the latter moved around the
earth at a slightly greater rate than she did in ancient
times. The existence of this acceleration was a source of
great perplexity to L.a Granee and La Prace, because
they thought that they had demonstrated mathematically
that the attraction could not have accelerated or retarded
the mean motion of the moon. But on continuing his in-
vestigation, La Prace found that there was one cause
which he omitted to take account of—namely, the secular
diminution in the eccentricity of the earth’s orbit, of
which we have just spoken. He found that this change
in the eccentricity would slightly alter the action of the
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sun upon the moon, and that this alteration of action
would be such that so long as the eccentricity grew
smaller, the motion of the moon would continue to be ac-
celerated. Computing the moon’s acceleration, he found it
to be equal to ten seconds into the square of the number
of centuries, the law being the same as that for the motion
of a falling body. That is, while in one century she would
be ten seconds ahead of the place she would have oceupied
had her mean motion been uniform, she would, in two
centuries, be forty seconds ahead, in three centuries ninety
seconds, and so on ; and during the two thousani years
which have elapsed since the observations of Hiprarcnus,
the acceleration would be more than a degree. - It has re-
cently been found that La PrLace’s caleulation was not com-
plete, and that with the more exact methods of recent times
the real acceleration computed from the theory of gravita-
tion is only about six seconds. The observations of ancient
eclipses, however, compared with our modern tables, show
an acceleration greater than this ; but owing to the rude
and doubtful character of nearly all the ancient data, there
is some doubt about the exact amount. From the most
celebrated total eclipses of the sun, an acceleration of about
twelve seconds is deduced, while the observations of
Proremy and the Arabian astronomers indicate only eight
or nine seconds. There is thus an apparent discrepancy
between theory and observation, the latter giving a larger
value to the acceleration. ~This difference is now accounted
for by supposing that the motion of the earth on its axis
is retarded—that is, that the day is gradually growing
longer. From the modern theory of friction, it is found
that the motion of the ocean under the influence of the
moon’s attraction which causes the tides, must be accom-
panied with some friction, and that this friction must re-
tard the earth’s rotation. There is, however, no way of
determining the amount of this retardation unless we
assume that it causes the observed discrepancy between
the theoretical and observed accelerations of the moon.
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How this effect is produced will be seen by reflecting that
if the day is continually growing longer without our know-
ing it, our observations of the moon, which we may suppose
to be made at noon, for example, will be constantly made a
little later, because the interval from one noon to another
will be continually growing a little longer. The moon con-
tinually moving forward, the observation will place her fur-
ther and further ahead than she would have been observed
had there been no retardation of the time of noon. If in
the course of ages our noon-dials get to be an hour too
late, we should find the moon ahead of her calculated place
by one hour’s motion, or about a degree. The present
theory of acceleration is, thercfore, that the moon is really
accelerated about six seconds in a century, and that the
motion of the earth on its axis is gradually diminishing
at such a rate as to produce an apparent additional ac-
eeleration which may range from two to six seconds.

§ 5. REMARKS ON THE THEORY OF GRAVITA-
TION.

The real nature of the great discovery of Nrwrox is so
frequently misunderstood that a little attention may be
given to its elucidation. ~Gravitation is frequently spoken
of as if it were a theory of NEwron’s, and very generally
received by astronomers, but still liable to be ultimately
rejected as a great many other theories have been. Not
infrequently people of greater or less intelligence are
found making great efforts to prove it erroneous. Every
prominent scientific institution in the world frequently
receives essays having this object in view. Now, the fact
is that Newron did not discover any new force, but only
showed that the motions of the heavens could be accounted
for by a force which we all know to exist. Gravitation
(Latin gravitas—weight, heaviness) is, properly speaking,
the force which makes all bodies here at the surface of the
earth tend to fall downward ; and if any one wishes to



REALITY OF GRAVITATION. 149

subvert the theory of gravitation, he must begin by prov-
ing that this force does not exist. This no one would
think of doing. What Newron did was to show that
this force, which, before his time, had been recognized
only as acting on the surface of the earth, really extended
to the heavens, and that it resided not only in the earth
itself, but in the heavenly bodies also, and in each particle
of matter, however situated. To put the matter in a terse
form, what Newron discovered was not grawitation, but
the universality of gravitation.

It may be inquired, is the induction which supposes
gravitation universal so complete as to be entirely beyond
doubt ¢ We reply that within the solar system it certainly
is. The laws of motion as established by observation and
experiment at the surface of the earth must be considered
as mathematically certain. Now, it is an observed fact
that the planets in their motions deviate from straight
lines in a certain way. By the first law of motion, such
deviation can be produced only by a force ; and the direc-
tion and intensity of this force admit of being calculated
once that the motion is determined. When thus calculated,
it is found to be exactly represented by one great force
constantly directed toward the sun, and smaller subsidiary
forces directed toward the several planets. Therefore,
no fact in nature is more firmly established than is that of
universal gravitation, as laid down by NEwron, at least
within the solar system.

We shall find, in describing double stars, that gravita-
tion is also found to act between the components of a great
number of such stars. Tt is certain, therefore, that at
least some stars gravitate toward each other, as the bodies
of the solar system do ; but the distance which separates
most of the stars from each other and from our sun is so
immense that no evidence of gravitation between them
has yet been given by observation. Still, that they do
gravitate according to Nuwron’s law can hardly be seri-
ously doubted by any one who understands the subject.
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The reader may now be supposed to see the absurdity of
supposing that the theory of gravitation can ever be sub-
verted. It is not, however, absurd to suppose that it may
yet be shown to be the result of some more general law.
Attempts to do this are made from time to time by men
of a philosophic spirit ; but thus far no theory of the sub-
ject having the slightest probability in its favor has been
propounded.

Perhaps one of the most celebrated of these theories is
that of GeorcE Lewis Le Sacr, a Swiss physicist of the
last century. He supposed an infinite number of ultra-
mundane corpuscles, of transcendent minuteness and veloe-
ity, traversing space in straight lines in all directions. A
smgle body placed in the midst of such an ocean of mov-
ing corpuscles would remain at rest, since it would be equal-
ly impelled in every direction. But two bodies would ad-
vance toward each other, because cach of them would
screen the other from these corpuscles moving in the
straight line joining their centres, and there would be a
slight excess of corpuscles acting on that side of each
body which was turned away from the other.*

One of the commonest conceptions to account for grav-
itation is that of a fluid, or ether, extending through all
space, which is supposed to be animated by certain vibra-
tions, and forms a vehicle, as it were, for the transmission
of gravitation. This and all other theories of the kind
are subject to the fatal objection of proposing complicated
systems to account for the most simple and elementary
facts. If, indeed, such systems were otherwise known to
exist, and if it could be shown that they really would
produce the effect of gravitation, they would be entitled
to reception. But since they have been imagined only to
account for gravitation itself, and since there is no proof
of their cxistence except that of accounting for it, they

* Reference may be made to an article on the Kinetic theories of
gravitation by William B. Taylor, in the Smithsonian Report 1‘01
1876.
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are not entitled to any weight whatever. In the present
state of science, we are justified in regarding gravitation as
an ultimate principle of matter, incapable of alteration by
any transformation to which matter can be subjected.
The most careful experiments show that no chemical pro-
cess to which matter can be subjected either increases or
diminishes its gravitating principles in the slightest degree.
We cannot therefore see how this principle can ever be
referred to any more general cause.



CHAPTER VL
THE MOTIONS AND ATTRACTION OF THE MOON.

Eacn of the planets, except Mercury and Venus, is at-
tended by one or more satellites, or moons as they are some-
times familiarly called. These objects revolve around their
several planets in nearly circular orbits, accompanying them
in their revolutions around the sun. Their distances from
their planets are very small compared with the distances
of the latter from each other and from the sun. Their
magnitudes also are very small compared with those of the
planets around which they revolve. Where there are
several satellites revolving around a planet, the whole of
these bodies forms a small system similar to the solar sys-
tem in arrangement. Considering each system by itself,
the satellitcs revolve around their central planets or
¢ primaries,’’ in nearly circular orbits, much as the planets
revolve around the sun. But each system is carried around
the sun without any serious derangement of the motion
of its several bodies among themselves.

Our earth has a single satellite accompanying it in this
way, the familiar moon. It revolves around the earth in
a little less than a month. The nature, causes and con-
sequences of this motion form the subject of the present
chapter.

§ 1. THE MOON’S MOTIONS AND PHASES.

That the moon performs a monthly circuit in the heav-
ens is a fact with which we are all familiar from child-
hood. At certain times we see her newly emerged from
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the sun’s rays in the western twilight, and then we eall
Ler the new moon. On each succeeding evening, we see
her further to the east, so that in two weeks she is oppo-
site the sun, rising in the east as he sets in the west.
Continuing her course two weeks more, she has approached
the sun on the other side, or from the west, and is once
more lost in his rays. At the end of twenty-nine or thirty
days, we see her again emerging as new moon, and her cir-
cuit is complete. It is, however, to be remembered
that the sun has been apparently moving toward the east
among the stars during the whole month, so that during
the interval from one new moon to the next the moon has
to make a complete circuit relatively to the stars, and
move forward some 30° further to overtake the sun. The
revolution of the moon among the stars is performed in
about 27% days,* so that if we observe when the moon is
very near some star, we shall find her in the same position
relative to the star at the end of this interval.

The motion of the moon in this cirenit differs from the
apparent motions of the planets in being always forward.
‘We have seen that the planets, though, on the whole, mov-
ing directly, or toward the east, are affected with an ap-
parent retrograde motion at certain intervals, owing to the
motion of the earth around the sun. DBut the earth is the
real centre of the moon’s motion, and carries the moon
along with it in its annual revolution around the sun. To
form a correct idea of the real motion of these three
bodies, we must imagine the earth performing its circunit
around the sun in one year, and carrying with it the moon,
which makes a revolution around it in 27 days, at a distance
only about ;34 that of the sun.

In Fig. 55 suppose § to represent the sun, the large
circle to represent the orbit of the earth around it, Z' to
be some position of the earth, and the dotted cirele to rep-
resent the orbit of the moon around the earth. We must

* More exactly, 27¢ 32166.
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imagine the latter to carry this circle with it in its an-

nual course around the sun.
is at % the moon is at M.

Suppose that when the earth
Then if the earth move to

£, in 27} days, the moon
will have made a complete
revolution relative to the
stars—that is, it will be at
M., the line £, M, being par-
allel to £ M. But new
moon will not have arrived
again because the sun is not
in the same direction as be-
fore. The moon must move
through the additional arc
M, E M, and a little more,
owing to the continual ad-
vance of the earth, before it
will again be new moon.

Phases of the Moon.—The moon being a non-luminous
body shines ouly by reflecting the light falling on her
from some other body. The principal source of light is
the sun. Since the moon is spherical in shape, the sun
can illuminate one half her surface. The appearance of
the moon varies according to the amount of her illuni-
nated hemisphere which is turned toward the earth, as
can be seen by studying Iig. 56. Here the central
globe is the earth ; the cirele around it represents the orbit
of the moon. The rays of the sun fall on both earth and
moon from the right, the distance of the sun being, on the
scale of the figure, some 30 feet. Eight positions of the
moon are shown around the orbit at A, %, C, ete., and
the right-hand hemisphere of the moon is illuminated in
each position. Outside these eight positions are eight
others showing how the moon looks as seen from the earth
in each position.

At A it is ‘““new moon,” the moon being nearly
between the earth and the sun. Its dark hemisphere

Fie. 55.
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is then turned toward the earth, so that it is entirely
invisible.

At Z'the observer on the earth sees about a fourth of
the illuminated hemisphere, which looks like a crescent,
as shown in the outside figure. In this position a great
deal of light is reflected from the earth to the moon, ren-
dering the dark part of the latter visible by a gray light.

F1a. 56.

This appearance is sometimes called the ‘“old moon in
the new moon’s arms.”’

At C the moon is said to be in her ¢ first quarter,’’ and
one half her illuminated hemisphere is visible.

At @ three fourths of the illuminated hemisphere is
visible, and at /3 the whole of it. The latter position, when
the moon is opposite the sun, is called ¢ full moon.”

After this, at A, D, F, the same appearances are re-
peated in the reversed order, the position 2 being called
the ““last quarter.”’
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The four principal phases of the moon are, ¢“ New
moon,’’ ‘“ First quarter,”” ‘‘ Full moon,”’ ¢ Last quarter,”’
which oceur in regular and unending succession, at inter-
vals of between 7 and 8 days.

§2., THE SUN’S DISTURBING FORCE.

The distances of the sun and planets being so immensely
great compared with that of the moon, their attraction
upon the earth and the moon is at all times very nearly
equal. Now it is an elementary principle of mechanics
that if two bodies are acted upon by equal and parallel
forces, no matter how great these forces may be, the
bodies will move relatively to each other as if those forces
did not act at all, though of course the absolute motion of
cach will be different from what it otherwise would be.
If we calculate the absolute attraction of the sun upon the
moon, we shall find it to be about twice as great as that of
the earth, because, although it is situated at 400 times the
distance, its mass is about 330,000 times as great as that of
the earth, and if we divide this mass by the square of the
distance 400 we have 2 as the quotient.

To those mnacquainted with mechanics, the difficulty
often suggests itself that the sun ought to draw the moon
away from the earth entirely. But we are to remember
that the sun attracts the earth in the same way that it at-
tracts the moon, so that the difference between the sun’s
attraction on the moon and on the earth is only a small
fraction of the attraction between the earth and the moon.*

Asa consequence of these forces, the moon moves around
the earth nearly as if neither of them were attracted by

* In this comparison of the attractive forces of the sun upon the
moon and upon the earth, the reader will remember that we are speak-
ing not of the absolute force, but of what is called the accelerating force,
which is properly the ratio of the absolute force to the mass of the
body attracted. The earth having 80 times the mass of the moon, the
sun must of course attract it with 80 times the absolute force in order
to produce the same motion, or the same accelerating force.
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the sun—that is, nearly in an ellipse, having the earth in
its focus. But there is always a small difference between
the attractive forces of the sun upon the moon and upon the
earth, and this difference constitutes a disturbing force
which makes the moon deviate from the elliptic orbit
which it would otherwise describe, and, in fact, keeps the
ellipse which it approximately describes in a state of con-
stant change.

A more precise idea of the manner in which the sun disturbs the
motion of the moon around the earth may be gathered from
Fig. 57. Here S represents the sun, and the circle ¥ @ M N repre-
sents the orbit of the moon. First suppose the moon at &, the posi-
tion corresponding to new moon. Then the moon, being nearer to
the sun than the earth is, will be attracted more powerfully by it
than the earth is. It will therefore be drawn away from the earth,
or the action of the sun will tend to separate the two bodies.

Fic. 57.

Next suppose the moon at F the position corresponding to full
moon. Here the action of the sun upon the earth will be more
powerful than upon the moon, and the earth will in consequence be
drawn away from the moon. In this position also the effect of the
disturbing force is to separate the two bodies. If, on the other
hand, the moon is near the first quarter or near @, the sun will exert
a nearly equal attraction on both bodies ; and ince the lines of at-
traction £ S and @ S then converge toward &8, it follows that there
will be a tendency to bring the two bodies together. The same
will evidently be true at the third quarter. Hence the influence of
the disturbing force changes back and forth twice in the course of
each lunar month.

The disturbing force in question may be constructed for any po-
sition of the moon in its orbit in the following way, which is be-
lieved to be due to Mr. R. A. Procror : Let M be the position of
the moon ; let us represent the sun’s attraction upon it by the line
M 8, and let us investigate what line will represent the sun’s attrac-
tion upon the carth on the same scale. From A drop the perpen-
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dicular M P upon the line ¥ § joining the sun to the earth. This
attraction being inversely as the square of the distance, we shall
have,

Attraction on earth S
Attraction on moon ~ S E¥
We have taken the line § M itself to répresent the attraction on
the moon, so that we have

Attraction on moon = S M.
Multiplying the two equations member by member, we find,

t SM:
Attraction on earth = S M x SE"

The line S M is nearly equal to S P, so that we may take for an
approximation to the required line,

SYR% SyP2 il
E ol W PN NUPR AL iy FORJRTE Wl
8P x SE I X(SI’+PE)" SP x VIRX
1+ 55)

PE
=8P — 2~‘§-]-)+ etc.),

the last equation being obtained by the binomial theorm. But
2

the fraction Sp s so small, being less than ;15, that its powers

above the first will be small enough to be neglected. So we shall
have for the required line,

SP—2EP.

If, therefore, we take the point A so that P 4 shall be equal to 2
E P, the attraction of the sun upon the earth will on the same scale be
represented by the line A 8. The disturbing force which we seek
is represented by the difference between the attraction of the sun
upon the earth and that of the same body upon the moon. If then
we suppose the force 4 S to be applied to the moon in the opposite
direction, the resultant of the two forces M Sand 8§ A will repre-
sent the disturbing force required. By the law of the composition
of forces, this resultant is represented by the line M 4.

We are thus enabled to construct this force in a very simple man-
ner, when the moon is in any given position. When the moon is
at N, the line IV A4 will be equal to 2 Z M ; the disturbing force
will therefore be represented by twice the distance of the moon.
On the other hand, when the moon is at @ the three points £ ¥V
and A will all coincide. Hence the disturbing force which tends
to bring the moon toward the earth will be represented by the line
@ E ; hence the force which tends to draw the moon away from the
earth at new and full moon is twice as great as that which draws
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the bodies together at the quarters. Consequently, upon the whole,
the tendency of the sun’s attraction is to diminish the attraction of
the earth upon the moon.

§ 3. MOTION OF THE MOON’S NODES.

Among the changes which the sun’s attraction produces
in the moon’s orbit, that which interests us most is the
constant variation in the plane of the orbit. This plane
is indicated by the path which the moon seems to describe
in its cirenit around the celestial sphere. Simple naked
eye estimates of the moon’s position, continued during a
month, would show that her path was always quite near
the ecliptic, because it would be evideut to the eye that,
like the sun, she was much farther north while passing
from the vernal to the autumnal equinox than while de-
seribing the other half of her circuit from the autumnal
to the vernal equinox. It would be seen that, like the
sun, she was farthest north in about six hours of right as-
cension, and farthest south when in about eighteen hours
of right ascension.

To map out the path with greater precision, we have to
observe the position of the moon from night to night with
a meridian circle. We thus lay down her course among
the stars in the same manner that we have formerly shown
it possible to lay down the sun’s path, or the ecliptic. It
is thus found that the path of the moon may be considered
as a great circle, making an angle of 5° with the ecliptic,
and crossing the ecliptic at this small angle at two oppo-
site points of the heavens. These points are called the
moon’s nodes. The point at which she passes from the
south to the north of the ecliptic is called the ascending
node; that in which she passes from the north to the
south is the descending node. To illustrate the motion of
the moon near the node, the dotted line @ @ may be taken
as showing the path of the moon, while the circles show
her position at successive intervals of one hour as she is ap-
proaching her ascending node. Position number 9 is exactly
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FiG. 58.—MOTION OF THE MOON’S NODE.

at the node. 1f we
continue following her
course in this way for
a week, we should find
that she had moved
about 90°, and attained
her greatest north lati-
tude at 5° from the
ecliptic. At the end
of another week, we
should find that she
had returned to the
eeliptic and crossed it
at her descending node.
At the end of the third
week very nearly, we
should find that she had
made three fourths the
circuit of the heavens,
and was now in her
greatest south latitude,
being 5° south of the
ecliptic. At the end
of six or seven days
more, we should again
find her crossing the
ecliptic at her ascend-
ing node as before. We
may thus conceive of
four eardinal points of
the moon’s orbit, 90°
apart, marked by the
two nodes and the two
points of greatest north
and south latitude.
Motion of the Nodes.
—A remarkable prop-
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erty of these points is that they are not fixed, but are con-
stantly moving. The general motion is a little irregular,
but, leaving out small irregularities, it is constantly toward
the west. Thus returning to our watch of the course of
the moon, we should find that, at her next return to the
ascending node, she would not describe the line ¢« as
before, but the line 54 about one fourth of a diameter
north of it. She would therefore reach the ecliptic more
than 13° west of the preceding point of crossing, and her
other cardinal points would be found 14° farther west as
she went around.  On her next return she would deseribe
the line ¢ ¢, then the line d d, ete., indefinitely, each line
being farther toward the west. The figure shows the
paths in five consecutive returns to the node.

A lapse of nine years will bring the descending node
around to the place which was before occupied by the
ascending node, and thus we shall have the moon crossing
at a small inclination toward the south, as shown in the
figure.

A complete revolution of the nodes takes place in 18-6
years. After the lapse of this period, the motion is re-
peated in the same manner.

One consequence of this motion is that the moon, after
leaving a node, reaches the same node again sooner than
she completes her true circuit in the heavens. How mueh
sooner is readily computed from the fact that the retro-
grade motion of the node amounts to 1° 26" 31" during
the period that the moon is returning to it. It takes the
moon about two hours and a half (more exactly 0%.10944)
to move through this distance ; consequently, comparing
with the sidereal period already given, we find that the
return of the moon to her node takes place in 27¢.32166
— 0410944 = 272,.21222. This time will be inportant to
us in considering the recurrence of eclipses.

In Fig. 59 is illustrated the effect of these changes in
the position of the moon’s orbit upon her motion rela-
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Fic. 59.

A the autumnal equinox, sitnated
180° apart. In March, 1876,
the moon’s ascending node cor-
responded with the vernal equi-
nox, and her descending node
with the auntumnal one. Conse-
quently she was 5° north of the
ecliptic when in six hours of
right ascension or near the mid-
dle of the figure. Since the
ecliptic is 233° north of the
equator at this point, the moon at-
tained a maximum declination of
283° ; she therefore passed nearer
the zenith when in six hours
of right ascension than at any
other time during the eighteen
years’ period. In the language
of the almanac, ¢‘ the moon ran
high.”” Of course when at her
greatest distance south of the
equator, in the other half of her
orbit, she attained a correspond-
ing south declination, and cul-
minated at a lower altitude than
she had for cighteen years. In
1885 the nodes will change places,
and the orbit will deviate from
the equator less than at any other
time during the eighteen years.
In 1880 the descending node will
be in six hours of right ascension,
and the greatest angular distance
of the moon from the equat(n

will be nearly equal to that of the sun.
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§ 4. MOTION OF THE PERIGEE.

If the sun exerted no disturbing force on the moon, the
latter would move round the earth in an ellipse according
to KepLER’s laws. But the difference of the sun’s attrac-
tion on the earth and on the moon, though only a small
fraction of the earth’s attractive force on the moon, is yet
so great as to produce deviations from the elliptic motion
very much greater than occur in the motions of the planets.
It also produces rapid changes in the elliptic orbit. The
most remarkable of these changes are the progressive
motion of the nodes just described and a corresponding
motion of the perigee. Referring to Fig. 52, which illus-
trated the elliptic orbit of a planet, let us suppose it to
represent the orbit of the moon. & will then represent
the earth instead of the sun, and #z will be the lunar per-
igee, or the point of the orbit nearest the earth. DBut,
instead of remaining nearly fixed, as do the orbits of the
planets, the lunar orbit itself may be considered as making
a revolution round the earth in about nine years, in the
same direction as the moon itself. Hence if we note the
longitude of the moon’s perigee at any time, and again
two or three years later, we shall find the two positions
quite different. If we wait four years and a half, we shall
find the perigee in directly the opposite point of the
heavens.

The eccentricity of the moon’s orbit is about 0.055, and
in consequence the moon is about 6° ahead of its mean
place when 90° past the perigee, and about the same dis-
tance behind when half way from apogee to perigee.

The disturbing action of the sun produces a great num-
ber of other inequalities, of which the largest are the
evection and the variation. The former is more than a
degree, and the latter not much less. The formule by
which they are expressed belong to Celestial Mechanies,
and the reader who desires to study them is referred to
works on that subjeet.
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§ 5. ROTATION OF THE MOON.

The moon rotates on her axis in the same time and in
the same direction in which she revolves around the earth.
In consequence she always presents very nearly the same
face to the earth.® There is indeed a small oscillation
called the libration of the moon, arising from the fact that
her rotation on her axis is uniform, while her revolution
around the earth is not uniform. In consequence of
this we sometimes sec a little of her farther hemisphere
first on one side and then on the other, but the greater
part of this hemisphere is forever hidden from human
sight.

The axis of rotation of the moon is inclined to the
ecliptic about 1° 29’. It is remarkable that this axis
changes its direction in a way corresponding exactly to
the motion of the nodes of the moon’s orbit. Let us sup-
pose a line passing through the centre of the carth per-
pendicular to the plane of the moon’s orbit. In conse-
quence of the inclination of the orbit to the ecliptie, this
line will paoint 5° from the pole of the ecliptic. Then,
suppose another line parallel to the moon’s axis of rota-
tion. This line will intersect the celestial sphere 1° 29
from the pole of the ecliptic, and on the opposite side
from the pole of the moon’s orbit, so that it will be 64°
from the latter. As one pole revolves around the
pole of the ecliptic in 18.6 years, the other will do the
same, always keeping the same position relative to the
first.

* This conclusion is often a pons asinorum to some who conceive
that, if the same face of the moon is always presented to the carth, she
cannot rotate at all. The difficulty arises from a misunderstanding of
the difference between a relative and an absolute rotation. It is true
that she does not rotate relatively to the line drawn from the earth to
her centre, but she must rotate relative to a fixed line, or a line drawn
to a fixed star.
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§ 6. THE TIDES.

The ebb and flow of the tides are produced by the un-
equal attraction of the sun and moon on different parts of
the earth, arising from the fact that, owing to the magni-
tude of the earth, some parts of it are nearer these attracting
bodies than others, and are therefore more strongly at-
tracted. To understand the nature of the tide-produecing
force, we must recall the principle of mechanics already
cited, that if two neighboring bodies are acted on by
equal and parallel accelerating forces, their motion rel-
ative to each other will not be altered, because both will
move equally under the influence of the forces. When
the forces are slightly different, either in magnitude or
direction or both, the relative motion of the two bodies
will depend on this difference alone. Since the sun and
moon attract those parts of the earth which are nearest
them more powerfully than those which are remote, there
arises an inequality which produces a motion in the
waters of the ocean. As the earth revolves on its axis,
different parts of it are brought in in suceession under the
moon. Thus a motion is produced in the ocean which
goes through its rise and fall aceording to the apparent
position of the moon. This is called the #idal wave.

The tide-producing force of the sun and moon is so nearly like
the disturbing force of the sun upon the motion of the moon around
the earth that nearly the same explanation will apply to both. Let
us then refer again to Fig. 57, and suppose E to represent the
centre of the earth, the circle ' Q IV its circumference, M a par-
ticle of water on the earth’s surface, and S either the sun or the
moon.

The entire earth being rigid, each part of it will move under the
influence of the moon’s attraction as if the whole were concen-
trated at its centre. But the attraction of the moon upon the
particle M, being different from its mean attraction on the earth, will
tend to make it move differently from the earth. The force which
causes this difference of motion, as already explained, will be repre-
sented by the line M 4. It is true that this same disturbing force is
acting upon that portion of the solid earth at 3 as well as upon the
water. But the earth cannot yield on account of its rigidity ; the
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water therefore tends to flow along the earth’s surface from M
toward N. There is therefore a residual force tending to make the
water higher at 2V than at M.

If we suppose the particle M to be near F, then the point 4 will
be to the left of 7. The water will therefore be drawn in an oppo-
site direction or toward F. There will therefore also be a force
tending to make the water accumulate around F. As the disturb-
ing force of the sun tends to cause the earth and moon to separate
both at new and full moon, so the tidal force of the sun and
moon upon the earth tends to make the waters accumulate both at
M and F. More exactly, the force in question tends to draw the
earth out into the form of a prolate ellipsoid, having its longest
axis in the direction of the attracting body. As the earth rotates
on its axis, each particle of the ocean is, in the course of a day,
brought in to the four positions IV @ F R, or into some positions
corresponding to these. Thus, the tlde-producmg force changes
back and forth twice in the course of a lunar day. (By a lunar day
we mean the interval between two successive passages of the moon
across the meridian, which is, on the average, about 24" 48=.) If the
waters could yield immediately to this force, we should always have
high tide at # and IV and low tides at @ and R. But there are two
causes which prevent this,

1. Owing to the inertia of the water, the force must act some
time before the full amount of motion is produced, and this motion,
once attained, will continue after the force has ceased to act.
Again, the waters will continue to accumulate as long as there is
any motion in the required direction. The result of this would be
high tides at @ and R and low tides at # and X, if the ocean
covered the earth and were perfectly free to move. That is, high
tides would then be six hours after the moon crossed the meridian.

2. The principal cause, however, which interferes with the
regularity of the motion is the obstruction of islands and continents
to the free motion of the water. These deflect the tidal wave from
its course in so many different ways, that it is hardly possible to
trace the relation between the attraction of the moon and the mo-
tion of the tide ; the time of high and low tide must therefore be
found by observmg at each point along the coast. By comparing
these times through a series of years, a very accurate idea of the
motion of the tidal wave can be obtained.

Such observations have been made over our Atlantic and Pacific
coasts by the Coast Survey and over most of the coasts of Europe,
by the countries occupying them. Unfortunately the tides cannot
be observed away from the land, and hence little is known of the
course of the tidal wave over the occan.

We have remarked that both the sun and moon exert a
tide-producing force. That of the sun is about %; of that
of the moon. At new and full moon the two forces are
united, and the actual forece is equal to their sum. At
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first and last quarter, when the two bodies are 90° apart,
they act in opposite directions, the sun tending to produce
a high tide where the moon tends to produce a low one,
and vice versa. The result of this is that near the time of
new and full moon we have what are known as the spring
tides, and near the quarters what are called neap tides. If
the tides were always proportional to the foree which pro-
duces them, the spring tides would be highest at full
moon, but the tidal wave tends to go on for some time
after the force which produces it ceases. Ilence the high-
est spring tides are not reached until two or three days after
new and full moon. Again, owing to the effect of frie-
tion, the neap tides continue to be less and less for two or
three days after the first and last quarters, when the grad-
ually increasing force again has time to make itself felt.

The theory of the tides offers very complicated prob-
lems, which have taxed the powers of mathematicians for
several generations. These problems are in their elements
less simple than those presented by the motions of the
planets, owing to the number of disturbing cireumstances
which enter into them. The various depths of the ocean
at different points, the friction of the water, its momen-
tum when it is once in motion, the effect of the coast-lines,
have all to be taken into account. These quantities are
so far from being exactly known that the theory of the
tides can be expressed only by some general principles
which do not suffice to enable us to predict them for any
given place. From observation, however, it is easy to
construct tables showing exactly what tides correspond to
given positions of the sun and moon at any port where the
observations are made. With such tables the ebb and flow
are predicted for the benefit of all who are interested, but
the results may be a little uncertain on account of the
effect of the winds upon the motion of the water.



CHAPTER VIIL
ECLIPSES OF THE SUN AND MOON.

Ecuipses are a class of phenomena arising from the
shadow of one body being cast upon another, and thus
wholly or partially obscuringit. In an eclipse of the sun,
the shadow of the moon sweeps over the earth, and the
sun is wholly or partially obscured to observers on that
part of the earth where the shadow falls. Inan eclipse of
the moon, the latter enters the shadow of the earth, and is
wholly or partially obscured in consequence of being de-
prived of some or all its borrowed light. The satellites
of other planets are from time to time eclipsed in the
same way by entering the shadows of their primaries ;
among these the satellites of Jupiter are objects whose
eclipses may be observed with great regularity.

§ 1. THE EARTH’S SHADOW AND PENUMBRA.

In Fig. 60 let § represent the sun and % the earth.
Draw straight lines, D B Vand D’ V'V, each tangent
to the sun and the earth. The two bodies being supposed
spherical, these lines will be the intersections of a cone
with the plane of the paper, and may be taken to repre-
sent that cone. It is evident that the cone 3 V' B’ will
be the outline of the shadow of the earth, and that within
this cone no direct sunlight can penetrate. It is therefore
called the earth’s shadow cone.

Let us also draw the lines D' B P and D B’ P’ to rep-
resent the other cone tangent to the sun and earth. It is
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then evident that within the region VB2 P and VB P’
the light of the sun will be partially but not entirely cut
off.

F16. 60.—FORM OF SHADOW.

Dimensions of Shadow. —Let us investigate the distance £ V from
the centre of the earth to the vertex of the shadow. The triangles
V E Band V S D are similar, having a right angle at Band at D.
Hence, ]

VE: EB=VS:SD=ES:(SD— EB).

So if we put

I =7V E, the length of the shadow measured from the centre of
the earth.

r = IS, the radius vector of the earth,

=8 D, the radius of the sun,

p= K DB, the radius of the earth,

&, the angular semi-diameter of the sun as seen from the earth,

w, the horizontal parallax of the sun,

we have
ESxEDB _ rp

b GDNB B
But by the theory of parallaxes (Chapter L, § 7),
p=rsinw
R=rsin 8
Hence,

A e OISR ES
sin S—sin 7’

The mean value of the sun’s angular semi-diameter, from which
the real value never differs by more than the sixticth part, is found
by observations to be about 16’ 0" = 960", while the mean valuc of =
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is about 8"-8. We find sin S—sin » = 0-00461, and ———— — =
sin 8 — sin 7

.soher = 217. We therefore conclude that the mean length of
the earth’s shadow is 217 times the earth’s radius; in round
numbers 1,380,000 kilometres, or 800,000 miles, the mean radius
of the earth being 6370 kilometres. It will be seen from the figure
that it varies directly as the distance of the earth from the
sun ; it is therefore about one sixtieth less than the mean in Decem-
ber, and one sixtieth greater in June. :

The radius of the shadow diminishes uniformly with the distance
as we go outward from the earth. At any distance z from the

earth’s centre it will be equal to { 1 — ;)p, for this formula gives
the radius p when z = 0, and the diameter zero when z=1 as it
should. *

§ 2. ECLIPSES OF THE MOON.

The mean distance of the moon from the earth is about
60 radii of the latter, while, as we have just seen, the
length £ V of the earth’s shadow is 217 radii of the earth.
Hence when the moon passes through the shadow she does
so at a point less than three tenths of the way from
F to V.” The radius of the shadow here will be 247580
of the radius Z B of the earth, a quantity which we read-
ily find to be about 4600 kilometres. The radius of the
moon being 1736 kilometres, it will be entirely enveloped
by the shadow when it passes through it within 2864
kilometres of the axis £ V of the shadow. If its least dis-
tance from the axis exceed this amount, a portion of the
lunar globe will be outside the limits B V of the shadow
cone, and will therefore receive a portion of the direct
light of the sun. If the least distance of the centre of the
moon from the axis of the shadow is greater than the
sum of the radii of the moon and the shadow—that is,
greater than 6336 kilometres—the moon will not enter the

* Tt will be noted that this expression is not, rigorously speaking, the
semi-diameter of the shadow, but the shortest distance from a point on
its central line to its conical surface. This distance is measured in a
direction Z B perpendicular to D B, whereas the diameter would be

perpendicular to the axis S X, and its half length would be a little
greater than # B.
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shadow at all, and there will be no eclipse proper, though
the brilliancy of the moon must be diminished wherever
she is within the penumbral region.

When an eclipse of the moon ocenrs, the phases are laid
down in the almanac in the following manner : Supposing
the moon to be moving aronnd the earth from below up-
ward, its advancing edge first meets the boundary B’ /7
of the penumbra. The time of this occurrence is given in
the almanae as that of ‘“ moon entering penumnbra.” A
small portion of the sunlight is then cut off from the ad-
vaneing edge of the moon, and this amount constantly in-
creases until the edge reaches the boundary 5’ V of the
shadow. It is curious, however, that the eye can scarcely
deteet any diminution in the brillianey of the moon until
she has almost touched the boundary of the shadow. The
observer must not therefore expect to detect the coming
eclipse until very nearly the time given in the almanac as
that of ‘“ moon entering shadow.”” As this happens, the
advancing portion of the lunar disk will be entirely lost to
view, as if it were cut off by a rather ill-defined line. It
takes the moon about an hour to move over a distance
equal to her own diameter, so that if the eclipse is nearly
central the whole moon will be immersed in the shadow
about an hour after she first strikes it. This is the time of
beginning of total eclipse. So long as only a moderate
portion of the moon’s disk is in the shadow, that portion
will be entirely invisible, but if the eclipse becomes total
the whole disk of the moon will nearly always be plainly
visible, shining with a red coppery light. This is owing to
the refraction of the sun’s rays by the lower strata of the
earth’s atmosphere. 'We shall see hereafter that if a ray of
light D B passes from the sun to the earth, so as just to
graze the latter, it is bent by refraction more than a de-
gree out of its course, so that at the distance of the moon
the whole shadow is filled with this refracted light. An
observer on the moon would, during a total eclipse of the
latter, see the earth surrounded by a ring of light, and this
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ring would appear red, owing to the absorption of the blue
and green rays by the earth’s atmosphere, just as the sun
seems red when setting.

The moon may remain enveloped in the shadow of the
earth during a period ranging from a few minutes to nearly
two hours, according to the distance at which she passes
from the axis of the shadow and the velocity of her angu-
lar motion. When she leaves the shadow, the phases
which we have described oceur in reverse order.

It very often happens that the moon passes through the
penumbra of the earth without tonching the shadow at all.
No notice is taken of these passages in our almanacs, be-
canse, as already stated, the diminution of light is scarcely
perceptible unless the moon at least grazes the edge of the
shadow.

§ 3. ECLIPSES OF THE SUN.

In Fig. 57 we may suppose B K B’ to represent the
moon as well as the earth. The geometrical theory of the
shadow will remain the same, thcugh the length of the
shadow wilk be much less. We may regard the mean
semi-diameter of the sun as seen from the moon, and its
mean parallax, as being the same for the moon as for the
earth. Therefore in the formula which gives the length
of the moon’s shadow the denominator will retain the
same value, whilein the numerator we must substitute the
radius of the moon for that of the earth. The radius of
the moon is about 1736 kilometres, or 1080 miles. Multi-
plying this by 217, as before, we find the mean length of
the moon’s shadow to be 377,000 kilometres, or 235,000
miles. This is very nearly the same with the dlstance of
the moon from the earth when she is in conjunetion with
the sun. We therefore conclude that when the moon
passes between the earth and the sun, the former will be
very near the vertex V of the shadow. As a matter of
fact, an observer on the earth’s surface will sometimes pass
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through the region ¢ V (), and sometimes on the other
side of V.

Now, in Fig. 60, still supposing B £ B’ to be the
moon, let us draw the lines D B’ I’ and 1’ B I tan-
gent to both the moon and the sun, but crossing each other
between these bodies at . It is evident that outside the
space [> B B I’ an observer will sec the whole sun, no
part of the moon being projected upon it ; while within
this space the sun will be more or less obscured. The
whole obscured space may be divided into three regions, in
each of which the character of the phenomenon is differ-
ent from what it is in the others.

Firstly, we have the region B V' L’ forming the shadow
cone proper. Here the sunlight is entirely cut off by the
moon, and darkness is therefore complete, except so far as
light may enter by refraction or reflection. To an observer
at ¥ the moon would exactly cover the sun, the two
bodies being apparently tangent to each other all around.

Secondly, we have the conical region to the right of V
between the lines B Vand B’ V continued. In this
region the moon is seen wholly projected upon the sun,
the visible portion of the latter presenting the form of a
ring of light around the moon. This ring of light will be
wider in proportion to the apparent diameter of the sun,
the farther out we go, because the moon will appear
smaller than the sun, and its angular diameter will dimin-
ish in a more rapid ratio than that of the sun. This
region is that of annular eclipse, because the sun will pre-
sent the appearance of an annulus or ring of light around
the moon.

Thirdly, we have the region 2> B V and /' B’ V, which
we notice is connected, extending around the interior cone.
An observer here would see the moon partly projected
upon the sun, and therefore a certain part of the sun’s
light would be cut off. Along the inner boundary 2 V
and ' V' the obscuration of the sun will be complete,
but the amount of sunlight will gradually increase out to
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the outer boundary B P ' 1 " where the whole sun is
visible. This region of partial obscuration is called the
penumbra.

To show more elearly the phenomena of solar eclipse,
we present another figure representing the penumbra of

F16. 61.—FIGURE OF SHADOW FOR ANNULAR ECLIPSE.

the moon thrown upon the earth.* The outer of the two
circles S represents the limb of the sun. The exterior tan-
gents which mark the boundary of the shadow eross each
other at V before reaching the earth. The earth being
a little beyond the vertex of the shadow, there can be no
total eclipse. In this case an observer in the penumbral
region, C'O or D O, will see the moon partly projeeted on
the sun, while if he ehance to be sitnated at O he will see
an annular eclipse. To show how this is, we draw dotted
lines from O tangent to the moon. The angle between
these lines represents the apparent diameter of the moon
as seen from the earth. Continuing them to the sun, they
show the apparent diameter of the moon as projected upon
the sun. It will be seen that in the case supposed, when

* Tt will be noted that all the figures of eclipses are necessarily drawn
very much out of proportion. Really the sun is 400 times the distance
of the moon, which again is-60 times the radius of the earth. DBut it
would be entirely impossible to draw a figure of this proportion; we
are therefore obliged to represent the earth as larger than the sun, and
the moon as nearly half way between the earth and sun.
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the vertex of the shadow is between the earth and moon,
the latter will necessarily appear smaller than the sun, and
the observer will see a portion of the solar disk on all
sides of the moon, as shown in Fig. 62.

If the moon were a little nearer the earth than it is rep-
resented in the figure, its shadow would reach the earth

F1a. 62.—DARK BODY OF MOON PROJECTED ON SUN DURING AN
ANNULAR ECLIPSE,

in the neighborhood of 0. We should then have a total
eclipse at each point of the earth on which it fell. It will
be seen, however, that a total or annular eclipse of the sun
is visible only on a very small portion of the earth’s sur-
face, beeause the distance of the moon changes so little
that the earth can never be far from the vertex V of the
shadow. As the moon moves around the earth from west
to east, its shadow, whether the eclipse be total or annu-
lar, moves in the same direction. The diameter of the
shadow at the surface of the earth ranges from zero to 150
miles. It therefore sweeps along a belt of the earth’s sur-
face of that breadth, in the same direction in which the
earth is rotating. The velocity of the moon relative to
the earth being 3400 kilometres per hour, the shadow
would pass along with this velocity if the earth did not ro-
tate, but owing to the earth’s rotation the velocity relative
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to points on its surface may range from 2000 to 3400
kilometres (1200 to 2100 miles).

The reader will readily understand that in order to sce
a total eclipse an observer inust station himself before-
hand at some point of the earth’s surface over which the
shadow is to pass. These points are generally calculated
some years in advance, in the astronomical ephemerides,
with as much precision as_the tables of the celestial mo-
tions admit of. :

It will be seen that a partial eclipse of the sun may be
visible from a much larger portion of the earth’s surface
than a total or annular one. The space €D (Fig. 61) over
which the penumbra extends is generally of about one half
the diameter of the earth. Roughly speaking, a partial
eclipse of the sun may sweep over a portion of the earth’s
surface ranging from zero to perhaps one fifth or one sixth
of the whole.

There are really more eclipses of the sun than of the
moon. A year never passes without at least two of the
former, and sometimes five or six, while there are rarely
more than two eclipses of the moon, and in many years
noneat all. DBut at any one place more eclipses of the moon
will be seen than of the sun. The reason of this is that
an eclipse of the moon is visible over the entire hemi-
sphere of the earth on which the mnoon is shining, and as it
lasts several hours, observers who are not in this hemi-
sphere at the beginning of the eclipse may, by the earth’s ro-
tation, be brought into it before it ends. Thus the eclipse
will be seen over more than half the earth’s surface. But,
as we have just seen, cach eclipse of the sun ean be seen
over only so small a fraction of the earth’s surface as to
more than compensate for the greater absolute frequency
of solar eclipses.

It will be seen that in order to have either a total or an-
nular eclipse visible upon the earth, the line joining the
centres of the sun and moon, being continued, must
strike the earth. To an observer on this line, the centres
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of the two bodies will seem to coincide. An eclipse in
which this oecurs is called a central one, whether it be
total or annular. The accompanying figure will perhaps
aid in giving a elear idea of the phenomena of eclipses of
both sun and moon.

F1c. 63.—COMPARISON OF SHADOW AND PENUMBRA OF EARTH AND
MOON. A 1S THE POSITION OF THE MOON DURING A SOLAR, B DUR-
ING A LUNAR ECLIPSE.

§ 4. THE RECURRENCE OF ECLIPSES.

If the orbit of the moon around the carth were in or
near the same plane with that of the latter around the sun
—that is, in or near the plane of the ecliptic—it will be
readily seen that there would be an eclipse of the sun at
every new moon, and an eclipse of the moon at every
full moon. But owing to the inelmation of the moon’s
orbit, described in the last chapter, the shadow and
penumbra of the moon commonly pass above or below the
earth at the time of new moon, while the moon, at her
full, ecommonly passes above or below the shadow of the
earth. It is only when at the moment of new or full moon
the moon is near its node that an eclipse can occur.

The question now arises, how near must the moon be to
its node in order that an eclipse may occur ? It is found
by a trigonometrical computation that if, at the moment
of new moon, the moon is more than 18°.6 from its
node, no eclipse of the sun is possible, while if it is less
than 13°.7 an eclipse is certain. Between these limits an
eclipse may oceur or fail according to the respective dis-
tances of the sun and moon from the earth. Ilalf way be-
tween these limits, or say 16° from the node, it is an even
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chance that an eclipse will oceur ; toward the lower limit
(18°.7) the .chances increase to certainty; toward the
upper one (18°.6) they diminish to zero. The correspond-
ing limits for an eclipse of the moon are 9° and 12}°—that
is, if at the moment of full moon the distance of the
moon from her node is greater than 124° no eclipse can
oceur, while if the distance is less than 9° an eclipse is cer-
tain. We may put the mean limit at 11°. Sinee, in the
long run, new and full moon will occur equally at all dis-
tances from the node, there will be, on the average, sixteen
eclipses of the sun to eleven of the moon, or nearly fifty per
cent more.

B

Fig. 64.—Illustrating lunar eclipse at different distances from the node. The dark
circles are the earth’s shadow, the centre of which is always in the ecliptic 4 B. The
moon’s orbit 18 represented by €' D. At G the eclipse is central and total, at # it is
partial, and at ¥ there is barely an eclipse,

As an illustration of these computationg, let usinvestigate the lim-
its within which a central eclipse of the sun, total or annular, can
occur. To allow of such an eclipse, 1t is evident, from an inspec-
tion of - Fig. 61 or 63 that the actual distance of the moon from
the plane of the ecliptic must be less than the earth’s radius,
because the line joining the centres of the sun and earth always lies
in this plane. This distance must, therefore, be less than 6370 kilo-
metres. The mean distance of the moon being 384,000 kilometres,
the sine of the latitude at this limitis 543235, and the latitude itself
is 57. 'The formula for the latitude is, by spherical trigonometry,

sin latitude = sin ¢ sin «,
i being the inclination of the moon’'s orbit (5° 8'), and u the distance
of the moon from the node. The value of sin 7 is not far from 4,
while, in a rough calculation, we may suppose the comparatively
small angles % and the latitude to be the same as their sines. We
may, therefore, suppose

u =11 latitude = 10}°.
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We therefore conclude that if, at the moment of new moon, the
distance of the moon from the node is less than 10}° there will be
a central eclipse of the sun, and if greater than this there will not be
such an eclipse. The eclipse limit may range half a degree or more
on each side of this mean value, owing to the varying distance of
the moon from the earth. Inside of 10° a central eclipse may be re-
garded as certain, and outside of 11° as impossible.

If the direction of the moon’s nodes from the centre of
the earth were invariable, eclipses could occur only at the
two opposite months of the year when the sun had nearly
the same longitude as one node. For instance, if the lon-
gitudes of the two opposite nodes were respectively 54°
and 234°, then, since the' sun must be within 12° of the
node to allow of an eclipse of the moon, its longitude
would have to be either between 42° and 66°, or between
222° and 246°. DBut the sun is within the first of these re-
gions only in the month of May, and within the second only
during the month of November. Hence lunar eclipses
could then occur only during the months of May and No-
vember, and the same would hold true of central eclipses
of the sun. Small partial eclipses of the latter might be
seen occasionally a day or two from the beginnings or ends
of the above months, but they would be very small and
quite rare. Now, the nodes of the moon’s orbit were act-
ually in the above directions in the year 1873. Hence
during that year eclipses occurred only in May and No-
vember. We may call these months the seasons of eclipses
for 1873.

But it was explained in the last chapter that there is a
retrograde motion of the moon’s nodes amounting to 194°
in a year. The nodes thus move back to meet the sun in
its annual revolution, and this meeting occurs about 20 days
earlier every year than it did the year before. The re-
sult is that the scason of eclipses is constantly shifting, so
that each season ranges throughout the whole year in 18.6
years. For instance, the scason corresponding to that of
November, 1873, had moved back to July and August in
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1878, and will occur in May, 1882, while that of May,
1873, will be shifting back to November in 1882.

It may be interesting to illustrate this by giving the
days in which the sun is in conjunction with the nodes of
the moon’s orbit during several years.

Ascending Node. Descending Node.
1879. January 24. 1879. July 17.
1880. January 6. 1880. June 27.
1880. December 18. 1881. June 8.
1881. November 30. 1882. May 20.
1882. November 12. 1883. May 1.
1883. October 25. 1884. April 12.
1884. October 8. 1885. March 25.

During these years, eclipses of the moon can oceur only
within 11 or 12 days of these dates, and eclipses of the
sun only within 15 or 16 days.

In consequence of the motion of the moon’s node, three
varying angles come into play in considering the occur-
rence of an eclipse, the longitude of the node, that of the
sun, and that of the moon. We may, however, simplify
the matter by referring the directions of the sun and
moon, not to any fixed line, but to the node—that is, we
may count the longitudes of these bodies from the node
instead of from the vernal equinox. We have seen in the
last chapter that one revolution of the moon relatively to
the node is accomplished, on the average, in 27.21222
days. TIf we caleulate the time required for the sun to re-
turn to the node, we shall find it to be 346-6201 days.

Now, let us suppose the sun and moon to start out
together from a node. At the end of 346-6201 days the
sun, having apparently performed nearly an entire rev-
olution around the celestial sphere, will again be at the
same node, which has moved back to meet it. But the
moon will not be there. It will, during the interval, have
passed the node 12 times, and the 13th passage will not
occur for a week. The same thing will be true for
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18 successive returns of the sun to the node; we shall
not find the moon there at the same time with the sun ;
she will always have passed a little sooner or a little later.
But at the 19th return of the sun and the 242d of the
moon, the two bedies will be in conjunction within half
a degree of the node. We find from the preceding
periods that

242 returns of the moon to the node require 6585 - 357 days.
19 143 (%1 sun 113 Y3 %3 6585.780 (€3

The two bodies will therefore pass the node within 10
hours of cach other. This conjunction of the sun and
moon will be the 223d new moon after that from which
we started. Now, one lunation (that is, the interval
between two consecutive new moons) is, in the mean,
29-530588 days ; 223 lunations therefore require 6585-32
days. The new moon, therefore, occurs a little before the
bodies reach the node, the distance from the latter being
that over which the moon moves in 0¢.036, or the sun in
02.459. We readily find this distance to be 28’ of are,
somewhat less than the apparent semidiameter of either
body. This would be the smallest distance from either
node at which any new moon would occur during the
whole period. The next nearest approaches would have
occurred at the 35th and 47th Ilunations respectively.
The 35th new moon would have occurred about 6° before
the two bodies arrived at the node from which we started,
and the 47th about 13° past the opposite node. No other
new moon would occur so near a node before the 223d
one, which, as we have just seen, would occur 0° 28
west of the node. This period of 223 new moons, or 18
years 11 days, was called the Suros by the ancient astron-
omers.

It will be scen that in the preceding calculations we have assumed
‘the sun and moon to move uniformly, so that the successive new
moon’s occurred at equal intervals of 29-530588 days, and at equal

angular distances around the ecliptic. In fact, however, the month-
ly inequalities in the motion of the moon cause deviations from her
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mean motion which amount to six degrees in either direction, while
the annual inequality in the motion of the sun in longitude is nearly
two degrees. Consequently, our conclusions respecting the point at
which new moon occurs may be astray by eight degrees, owing to
these inequalities.

But there is a remarkable feature connected with the Saros which
greatly reduces these inequalities. It is that this period of 6585}
days corresponds very nearly to an integral number of revolutions
both of the earth round the sun, and of the lunar perigee around
the earth. Hence the inequalities both of the moon and of the
sun will be nearly the same at the beginning and the end of a Saros.
In fact, 6585} days is about 18 years and 11 days, in which time
the earth will have made 18 revolutions, and about 11° on the
19th revolution. The longitude of the sun will therefore be about
11° greater than at the beginning of the period. Again, in the
same period the moon’s perigee will have made two revolutions,
and will have advanced 13° 38’ on the third revolution. The sun
and moon being 11° further advanced in longitude, the conjunction
will fall at the same distance from the lunar perigee within two or
three degrees. Without going through the details of the calcula-
tion, we may say as the result of this remarkable coincidence that
the time of the 223d lunation will not generally be accelerated or
retarded more than half an hour, though those of the intermediate
lunations will sometimes deviate more than half a day. Also that
the distance west of the node at which the new moon occurs will
not generally differ from its mean value, 28’ by more than 20'.

In the preceding explanation, we have supposed the sun
and moon tosstart out together from one of the nodes of
the moon’s orbit. It is evident, however, that we might
have supposed them to start from any given distance east
or west of the node, and should then at the end of the 223d
lunation find them together again at nearly that distance
from the node. For instance, on the 5th day of May,
1864, at seven o’clock in the evening, Washington time,
new moon occurred with the sun and moon 2° 25" west of
the descending node of the moon’s orbit. Counting for-
ward 223 lunations, we arrive at the 16th day of May,
1882, when we find the new moon to occur 3° 20" west of
the same node. Since the character of the eclipse depends
principally upon the relative position of the sun, the moon,
and the node, the result to which we are led may be stated-
as follows :

Let us note the time of the middle of any eclipse,



RECURRENCE OF ECLIPSES. 183

whether of the sun or of the moon. Then let us go for-
ward 6585 days, 7 hours, 42 minutes, and we shall find
another eclipse very similar to the first. Reduced to years,
the interval will be 18 years and 10 or 11 days, according
as a 29th day of February intervenes four or five times
during the interval. This being true of every eclipse, it
follows that if we record all the eclipses which occur dur-
ing a period of 18 years, we shall find a new set to begin
over again. If the period were an integral number of
days, each eclipse of the new set would be visible in the
sae regions of the earth as the old one, but since there is
a fraction of nearly 8 hours over the round number of
days, the earth will be one third of a revolution further
advanced before any eclipse of the new set begins. Each
eclipse of the new set will therefore occur about one third
of the way round the world, or 120° in longitude west of
the region in which the old one occurred. The recur-
rence will not take place near the same region until the end
of three periods, or 54 years; and then, since there is a
slight deviation in the series, owing to each new or full
moon occeurring a little further west from the node, the
fourth eclipse, thongh near the same region, will not
necessarily be similar in all its particulars. For example,
if it be a total eclipse of the sun, the path of the shadow
may be a thousand miles distant from the path of 54 years
previously.

As a recent example of the Saros, we may cite some
total eclipses of the sun well known in recent times; for
instance :

1842, July Sth, 1" A.m., total eclipse observed in
Europe ;

1860, July 18th, 9" a.m., total eclipse in America and
Spain ;

1878, July 29th, 4" p.»., one visible in Texas, Col-
orado, and on the coast of Alaska.

A yct more remarkable series of total eclipses of the
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sun are those of the years 1850, 1868, 1886, ete., the dates
and regions being :

1850, August Tth, 4" p.x., in the Pacitic Ocean ;

1868, August 17th, 12" r.y., in India ;

1886, August 29th, 8" A.m., in the Central Atlantic
Ocean and Southern Africa ;

1904, September 9th, noon, in South America.

This series is remarkable for the long duration of total-
ity, amounting to some six minutes.

Let us now consider a series of eclipses recurring at reg-
ular intervals of 18 years and 11 days. Since every suc-
cessive recurrence of such an eclipse throws the conjunc-
tion 28" further toward the west of the node, the conjune-
tion must, in process of time, take place so far back from
the node that no eclipse will occur, and the series will end.
For the same reason there must be a commencement to
the series, the first eclipse being east of the node. A new
eclipse thus entering will at first be a very small one, but
will be larger at every recurrence in each Saros. If it is
an eclipse of the moon, it will be total from its 13th until
its 36th recurrence. There will then be about 13 partial
cclipses, each of which will be smaller than the last, when
they will fail entirely, the conjunction taking place so far
from the node that the moon does not touch the earth’s
shadow. The whole interval of time over which a series
of lunar eclipses thus extend will be about 48 periods, or
865 years. ;

When a series of solar eclipses begins, the penumbra of
the first will just graze the earth not far from one of the
poles. There will then be, on the average, 11 or 12 partial
eclipses of the sun, each larger than the preceding one,
occurring at regular intervals of one Saros. Then the
central line, whether it be that of a total or annular
eclipse, will begin to touch the earth, and we shall have a
series of "40 or 50 central eclipses. The central line will
strike near one pole in the first part of the series ; in the
equatorial regions about the middle of the series, and will
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leave the earth by the other pole at the end. Ten or
twelve partial eclipses will follow, and this particular se-
ries will cease. The whole number in the series will aver-
age between 60 and 70, occupying a few centuries over a
thousand years.

§ 5. CHARACTERS OF ECLIPSES.

We have scen that the possibility of a total eclipse of the sun
arises from the occasional very slight excess of the apparent angular
diameter of the moon over that of the sun. This excess is so slight
that such an eclipse can never last more than a few minutes. It
may be of interest to point out the circumstances which favor a
long duration of totality. These are :

(1) That the moon should be as near as possible to the earth, or,
technically speaking, in perigee, because its angular diameter as
seen from the carth will then be greatest.

(2) That the sun should be near its greatest distance from the
carth, or in apogee, because then its angular diameter will be the
least. It is now in this position about the end of June ; hence the
most favorable time for a total eclipse of very long duration is in
the summer months. Since the moon must be in perigee and also
between the earth and sun, it follows that the longitude of the
rerigee must be nearly that of the sun. The longitude of the sun
at the end of June being 100°, this is the most favorable longi-
tude of the moon’s perigee.

(3) The moon must be very near the node in order that the cen-
tre of the shadow may fall near the equator. The reason of this con-
dition is, that the duration of a total eclipse may be considerably
increased by the rotation of the earth on its axis. We have seen
that the shadow sweeps over the earth from west toward east with a
velocity of about 3400 kilometres per hour. Since the earth rotates in
the same direction, the velocity relative to the observer on the earth’s
surface will be diminished by a quantity depending on this velocity
of rotation, and thereforc greater, the greater the velocity. The
velocity of rotation 18 greatest at the earth’s equator, where it
amounts to 1660 kilometres per hour, or nearly half the velocity of
the moon’s shadow. Hence the duration of a total eclipse may, with-
in the tropics, be nearly doubled by the earth’s rotation. When all
the favorable circumstances combine in the way we have just de-
scribed, the duration of a total eclipse within the tropics will be
about seven minutes and a half. In our latitude the maximum du-
ration will be somewhat less, or not far from six minutes, but it is
only on very rare occasions, hardly once in many centuries, that all
these favorable conditions can be expected to concur.

Of late years, solar eelipses have derived an inereased in-
terest from the fact that during the few minutes which
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they last they afford unique opportunities for investigating
the matter which lies in the immediate neighborhood of
the sun. Under ordinary circumstances, this matter is
rendered entirely invisible by the effulgence of the solar
rays which illuminate our atmosphere ; but when a body so
distant as the moon is interposed between the observer and
the sun, the rays of the latter are cut off from a region a
hundred miles or more in extent. Thus an amount of
darkness in the air is secured which is impossible under
any other circumstances when the sun is far above the
horizon. Still this darkness is by no means complete, because
the sunlight is reflected from the region on which the sun
is shining. An idea of the amount of darkness may be
gained by considering that the face of a watch can be read
during an eclipse if the observer is careful to shade his
eyes from the direct sunlight during the few minutes be-
fore the sun is entirely covered ; that stars of the first
magnitude can be seen if one knows where to look for
them ; and that all the prominent features of the land-
scape remain plainly visible. An account of the investi-
gations made during solar eclipses belongs to the physical
constitution of the sun, and will therefore be given in a
subsequent chapter.

Occultation of Stars by the Moon.—A phenomenon
which, geometrically considered, is analogous to an eclipse
of the sun is the occultation of a star by the moon.
Since all the bodies of the solar system are nearer than the
fixed stars, it is evident that they must from time to time
pass between us and the stars. The planets are, however,
so small that such a passage is of very rare occurrence,
and when it does happen the star is generally so faint
that it is rendered invisible by the superior light of the
planet before the latter touches it. There are not more
than one or two instances recorded in astronomy of a well-
authenticated observation of an actual occultation of a star
by the opaque body of a planet, although there are several
cases in which a planet has been known to pass over a star.
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But the moon is so large and her angular motion so rapid,
that she passes over some star visible to the naked eye
every few days. Such phenomena are termed occultations
of stars by the moon. It must not, however, be supposed
that they can be observed by the naked eye. In general,
the moon is so bright that only stars of the first magnitude
can be seen in actual contact with her limb, and even then
the contact must be with the unilluminated limb. DBut
with the aid of a telescope, and the predictions given in
the Ephemeris, two or three of these occultations can be
observed during nearly every lunation.



CHAPTER VIIL
THE EARTH.

Oug object in the present chapter is to trace the effects
of terrestrial gravitation and to study the changes to
which it is subject in various places. Since every part
of the earth attracts every other part as well as every
object upon its surface, it follows that the ecarth and
all the objects that we consider terrestrial form a sort
of system by themselves, the parts of which are tirmly
bound together by their mutual attraction. This attrac-
tion is so strong that it is found impossible to project
any object from the surface of the earth into the celestial
spaces. Every particle of matter now belonging to the
earth must, so far as we can see, remain upon it forever.

§ 1. MASS AND DENSITY OF THE EARTH.

We begin by some definitions and some principles re-
specting attraction, masses, weight, ete.

The mass of a body may be defined as the quantity of
matter which it contains.

There are two ways to measure this quantity of mat-
ter: (1) By the attraction or weight of the body—this
weight being, in fact, the mutual force of attraction be-
tween the body and the earth ; (2) By the inertia of the
body, or the amount of force which we must apply to it in
order to make it move with a definite velocity. Mathe-
matically, there is no reason why these two methods should
give the same result, but by experiment it is found that
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the attraction of all bodies is proportional to their inertia.
In other words, all bodies, whatever their chemical consti-
tution, fall exactly the same number of feet in one second
under the influence of gravity, supposing them in a vacu-
um and at the same place on the earth’s surface. Although
the mass of a body is most conveniently determined by its
weight, yet mass and weight must not be confounded.

The weight of a body is the apparent force with which
it is attracted toward the centre of the earth. As we
shall see hereafter, this foree is not the samein all parts of
the earth, nor at different heights above the earth’s sur-
face. It is therefore a variable quantity, depending upon
the position of the body, while the mass of the body is re-
garded as something inherent in it, which remains constant
wherever the body may be taken, even if it is carried
through the celestial spaces, where its weight would be
. reduced to almost nothing.

The unit of mass which we may adopt is arbitrary ; in
faet, in different cases different units will be more con-
venient. Generally the most convenient unit is the weight
of a body at some fixed place on the earth’s surface—the
city of Washington, for example. Suppose we take such
a portion of the earth as will weigh one kilogram in Wash-
ington, we may then consider the mass of that particular
lot of earth or rock as a kilogram, no matter to what part
of the universe we take it. Suppose also that we could
bring all the matter composing the earth to the city of
Washington, one kilogram at a time, for the purpose of
weighing it, returning cach kilogram to its place in the
earth immediately after weighing, so that there should be
no disturbance of the earth itself. The sum total of the
weights thus found would be the mass of the earth, and
would be a perfectly definite quantity, admitting of being
expressed in kilograms or pounds. We can readily cal-
culate the mass of a volume of water equal to that of the
carth because we know the magnitude of the earth in
litres, and the mass of one litre of water. Dividing this
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into the mass of the earth, supposing ourselves able to de--
termine this mass, and we shall have the specitic gravity,
or what is more properly called the density of the earth.

‘What we have supposed for the earth we may imagine
for any heavenly body—namely, that it is brought to the
city of Washington in small pieces, and there weighed one
piece at a time. Thus the total mass of the earth or any
heavenly body is a perfectly defined and determined
quantity.

It may be remarked in this connection that our units of
weight, the pound, the kilogram, etc., are praetieally units
of mass rather than of weight. If we should weigh out
a pound of tea in the latitude of Washington, and then
take it to the equator, it would really be less heavy at the
equator than in Washington ; but if we take a pound
weight with us, that also would be lighter at the equator,
so that the two would still balance each other, and the tea
would be still considered as weighing one pound. Since
things are actually weighed in this way by weights which
weigh one unit at some definite place, say Washington,
and which are carried all over the world without being
changed, it follows that a body which has any given
weight in one place will, as measured in this way, have
the same apparent weight in any other place, although its
real weight will vary. DBut if a spring balance or any
other instrument for determining actual weights were
adopted, then we should find that the weight of the same
body varied as we took it from one part of the earth to
another. Sinee, however, we do not use this sort of an
instrument in weighing, but pieces of metal which are
carried about without change, it follows that what we call
units of weight are properly units of mass.

Density of the Earth.—We see that all bodies around
us tend to fall toward the eentre of the earth. Aeccording
to the law of gravitation, this tendeney is not simply a
single force direeted toward the centre of the earth, but
is the resultant of an infinity of separate forces arising from
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the attractions of all the separate parts which compose the
earth. The question may arise, how do we know that each
particle of the earth attracts a stone which falls, and that
the whole attraction does not reside in the centre ? The
proofs of this are numerous, and consist rather in the
exactitude with which the theory represents a great mass
of disconnected phenomena than in any one principle ad-
mitting of demonstration. Perhaps, however, the most
conclusive proof is fonnd in the observed fact that masses
of matter at the surface of the earth do really attract each
other as required by the law of Newron. It is found, for
example, that isolated mountains attract a plumb-line in
their neighborhood. The celebrated experiment of Cav-
ENDIsIE was devised for the purpose of measuring the at-
traction of globes of lead. The objeet of measuring this
attraction, however, was not to prove that gravitation re-
sided in the smallest masses of matter, because there was
no doubt of that, but to determine the mean density of the
earth, from which its total mass may be derived by simply
multiplying the density by the volume.

1t is noteworthy that though astronomy affords us the
means of determining with great precision the relative
masses of the earth, the moon, and all the planets, it does
not enable us to determine the absolute mass of any hea-
venly body in units of the weights we use on the earth.
‘We know, for instanee, from astronomical research, that
the sun has about 328,000 times the mass of the earth,
and the moon only ¢ of this mass, but to know the abso-
lute mass of either of them we must know how many
kilograms of matter the earth contains. To determine
this, we must know the mean density of the earth, and this
is something about which direct observation ean give us no
information, because we cannot penetrate more than an
insignificant distance into the earth’s interior. The only
way to determine the density of the earth is to find how
much matter it must contain in order to attract bodies on
its surface with a force equal to their observed weight—
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that is, with such intensity that at the equator a body shall
fall nearly ten metres in one second. To find this we
must know the relation between the mass of a body and
its attractive force. This relation can be found only by
measuring the attraction of a body of known mass. An
attempt to do this was made by Maskerv~E, Astronomer
Royal of England, toward the close of the last century,
the attracting object he sclected being Mount Schehallien
in Scotland. The specific gravity of the rocks composing
this mountain was well enough known to give at least an
approximate result. The density of the earth thus found
was 4-71. That is, the earth has 4.71 times the mass of
an equal volume of water. This result is, however, un-
certain, owing to the necessary uncertainty respecting the
density of the mountain and the rocks below it.

The Cavenpisu experiment for determining the attrac-
tion of a pair of massive balls affords a mueh more perfect
method of determining this important element. The
most careful experiments by this method were made by
Bamy of England about the year 1845. The essential
parts of the apparatus which he used are as follows :

A long tarrow table 7'bears two massive spheres of lead
W W, one at cach end. This table admits of being
turned around on a pivot in a horizontal direction.
Above it is suspended a balance—that is, a very light deal
rod e with a weight at each end suspended horizontally
by a fine silver wire or fibre of silk /' /&. The weights to
be attracted are attached to ecach end of the deal rod. The
right-hand one is visible, while the other is hidden be-
hind the left-hand weight W. In this position it will be
seen that the attraction of the weights W tends to turn
the balance in a direction opposite that of the hands of a
wateh. The fact is, the balance begins to turn in this di-
rection, and being carried by its own momentum beyond
the point of equilibrium, comes to rest by a twist of the
thread. It is then carried part of the way back to its
original position, and thus makes several vibrations which
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require several minutes. At length it comes to rest in a
position somewhat different from its original one. This
position and the times of vibration are all carefully noted.
Then the table 7’ is turned nearly end for end, so that one
weight W shall be between the observer and the right-
hand ball, while the other weight is beyond the left-hand
ball, and the observation is repeated. A series of observa-
tions made in this way include attractions in alternate di-

K

E

w =l w

Fia. 65.

rections, giving a result from which aceidental errors will
be very nearly eliminated.

A third method of determining the density of the earth
is founded on observations of the ehange in the intensity
of gravity as we descend below the surface into deep
mines. The principles on which this method rests will be
explained presently. The most careful application of it
was made by Professor Airy in the Harton Colliery, Eng-
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land. The results of this and the other methods are as
follows :

Cavexpisa and Hurron, from the attraction of balls, 5.32

Ruren, * e o8 5-58
Bay, o ¥ “ - 5.86
MaskELYNE, from the attraction of Schehallien. . .... 4.71
Airy, from gravity in the Iarton Colliery......... 6-56

Of these different results, that of BarLy is probably the
best, and the most probable mean density of the earth is
about 5% times that of water. This is more than double
the mean specific gravity of the materials which compose
the surface of the earth ; it follows, therefore, that the in-
ner portions of the earth are much more dense than its
outer portions.

§ 2. LAWS OF TERRESTRIAL GRAVITATION.

The earth being very nearly spherical, certain theorems
respecting the attraction of spheres may be applied to it.
The fundamental theorems may be regarded as those
which give the attraction of a spherical shell of matter.
The demonstl ation of these theorems requires the use of
the Integral Calculus, and will be omitted here, only the
conditions and the results being stated. Let us then im-
agine a hollow shell of matter, of which the internal and
external surfaces are both spheres, attracting any other
masses of matter, a small particle we may suppose. This
particle will be attracted by every particle of the shell
with a force inversely as the square of its distance from it.
The total attraction of the shell will be the resultant of
this infinity of separate attractive forces. Determining
this resultant by the Integral Calculus, it is found that :

Theorem I.—If the particle be outside the shell, it wall
be attracted as if the whole mass of the shell were con-

- centrated in its centre.
Theorem I1.—If the particle be inside the shell, the op-
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posite attractions in every direction will neutralize each
other, no matter whereabouts in the interior the particle
may be, and the resultant attraction of the shell will there-
Jore be zero.

To apply this to the attraction of a solid sphere, let us
first suppose a body either outside the sphere or on its sur-
face. If we conceive the sphere as made up of a great
number of spherical shells, the attracted point will be ex-
ternal to all of them. Since each shell attracts as if its
whole mass were in the centre, it
follows that the whole sphere at-
tracts a body upon the outside of
its surface as if its entire nass
were concentrated at its centre.

Let us now suppose the attract-
ed particle inside the sphere, as
at P, Fig. 66, and imagine a
spherical surface /> @ concentric
with the sphere and passing :
through the attracted particle. T
All that portion of the sphere lying outside this spherical
surface will be a spherical shell having the particle inside
of it, and will therefore exert no attraction whatever on
the particle. That portion inside the surface will con-
stitute a sphere with the particle on its surface, and will
therefore attract as if all this portion were concentrated
in the centre. To find what this attraction will be, let us
first suppose the whole sphere of equal density. Let us
put

a, the radius of the entire sphere.

r, the distance 72 ( of the particle from the centre.
The total volume of matter inside the sphere 7> @ will

then be, by geometry, %7:‘7". Dividing by the square of

the distance r, we see that the attraction will be repre-
sented by

TP,

8
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®
that is, inside the sphere the attraction will be directly as
the distance of the particle from the centre. If the par-
ticle is at the surface we have » = «, and the attraction is

g e
Outside the surface the whole volume of the sphere % Ta
will attract the particle, and the attraction will be

4 N

o B

3 7

If we put » = @ in this formula, we shall have the same
result as before for the surface attraction.

Let us next suppose that the density of the sphere va-
ries from its centre to its surface, but in such a way as to
be equal at equal distances from the centre. We may
then conceive of it as formed of an infinity of concentric
spherical shells, each homogeneous in density, but not of
‘the same density with the others. Theorems I. and II.
will then still apply, but their result will not be the same
as in the case of a homogeneous sphere for a particle in-
side the sphere. Referring to Fig. 66, let us put

D, the mean density of the shell outside the particle 2.
D', the mean density of the portion /2 ¢ inside of 2.
We shall then have:

Volume of the shell, %w(a’ — 7).
Volume of the inner sphere, % e,
4
Mass of the shell =vol. x D = & n D(a' — 7).

&Gt
Mass of the inner sphere = vol. x D' = 3 n D',
Mass of whole sphere = sum of masses of shell and inner

sp'here = %7! (D @+ D — D) 7").
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Attraction of the whole sphere upon a point at its sur-
Mass 4 ) g
face = —— =77 (Da+(]) — D) a_’)'
Attraction of the inner sphere (the same as that of the
M‘ISS
whole shell) upon a point at > = —5— n D r.

If, as in the case of the earth, the density contmua,lly in-
creases toward the centre, the value of 7 will increase
also as 7 diminishes, so that gravity will diminish less
rapidly than in the case of a homogeneous sphere, and
may, in fact, actually increase. To show this, let us sub-
tract the attraction at / from that at the surface. The
difference will give :

S8 20 4 ’ I .
Diminution at 2 = F (Da+(D — D)? Ly 7').

Now, let us suppose » a very little less than @, and put
r=a —d,

d will then be the depth of the particle below the surface.
Cubing this value of », neglecting the higher powers of
d, and dividing by @, we find,

7,,8

——,:(1—3(1.
@

Substituting in the above equation, the diminution of grav-
ity at > becomes,

(3D —2D)d.

We see that if 3D < 22, that is, if the density at the
surface is less than % of the mean density of the whole in-
ner mass, this quantity will become negative, showing that
the force of gravity will be less at the surface than at a
small depth in the interior. DBut it must ultimately
diminish, because it is necessarily zero at the centre.
It was on this principle that Professor Airy determined
the density of the earth by comparing the vibrations
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of a pendulum at the bottom of the Harton Colliery, and
at the surface of the earth in the neighborhood. At the
bottom of the mine the pendulum gained about 2°.5 per
day, showing the force of gravity to be greater than at the
surface.

§ 8. FIGURE AND MAGNITUDE OF THE EARTH.

If the earth were fluid and did not rotate on its axis, it
would assume the form of a perfect sphere. The opinion
is entertained that the earth was once in a molten state,
and that this is the origin of its present nearly spherical
form. If we give such a sphere a rotation upon its axis,
the centrifugal force at the equator acts in a direction op-
posed to gravity, and thus tends to enlarge the circle of
the equator. It is found by mathematical analysis that
the form of such a revolving fluid sphere, supposing it to
be perfectly homogeneous, will be an oblate ellipsoid—that
is, all the meridians will be equal and similar ellipses, hav-
ing their major axes in the equator of the sphere and their
minor axes coincident with the axis of rotation. Our earth,
however, is not wholly fluid, and the solidity of its conti-
nents prevents its assuming the form it would take if the
ocean covered its entire surface. When we speak of the fig-
ure of the earth, we mean, not the outline of the solid and
liquid portions respectively, but the figure which it would
assume if its entire surface were an ocean. Let us imagine
canals dug down to the ocean level in every direction
through the continents, and the water of the ocean to be
admitted into them. Then the curved surface touching
the water in all these canals, and coincident with the sur-
face of the ocean, is that of the ideal earth considered by
astronomers. By the figure of the earth is meant the
figure of this liquid surface, without reference to the in-
equalities of the solid surface.

We cannot say that this ideal earth is a perfect ellipsoid,
because we know that the interior is not homogeneous,
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but all the geodetic measures heretofore made are so nearly
represented by the hypothesis of an ellipsoid that the lat-
ter is considered as a very close approximation to the true
tigure. The deviations hitherto noticed are of so irregu-
{lar a character that they have not yet been reduced to any
certain law. The largest which have been observed seem
to be due to the attraction of mountains, or to inequalities
of density beneath the surface.

Method of Triangulation.—Since it is practically im-
possible to measure around or through the earth, the mag-
nitude as well as the form of our planet has to be found
by combining measurements on its surface with astronom-
ical observations. Even a measurement on the earth’s
surface made in the usual way of surveyors would be im-
practicable, owing to the intervention of mountains, rivers,
forests, and other natural obstacles. The method of tri-
angulation is therefore universally adopted for measure-
ments extending over large areas. A triangulation is ex-
ecuted in the following way : Two points, @ and b, a few

F16. 67.—A PART OF THE FRENCH TRIANGULATION NEAR PARIS,

miles apart, are selected as the extremities of a base-line.
They must be so chosen that their distance apart ean be
aceurately measured by rods; the intervening ground
should therefore be as level and free from obstruction as
possible.  Ome or more elevated points, £ 7, ete., must
be visible from one or both ends of the base-line. By
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means of a theodolite and by observation of the pole-star,
the directions of these points relative to the meridian are
accurately observed from each end of the base, as is also
the direction @b of the base-line itself. Suppose F to
be a point visible from each end of the base, then in the
triangle @ b # we have the length @ b determined by actual
measurement, and the angles at ¢ and 4 determined by ob-
servations. "With these data the lengths of the sides a 2"
and b F'are determined by a simple trigonometrical com-
putation.

The observer then transports his instruments to %, and
determines in succession the direction of the elevated
points or hills D £ G Il J, ete. He next goes in succes-
sion to each of these hills, and determines the direction of
all the others which are visible from it. Thus a network
of triangles is formed, of which all the angles are observed
with the theodolite, while the sides are successively caleu-
lated trigonometrically from the first base. For instance,
we have just shown how the side @ /" is calculated ; this
forms a base for the triangle £/ /'@, the two remaining
sides of which are computed. The side ZZ forms the
base of the triangle G £ F, the sides of which are caleu-
lated, ete. In this operation more angles are observed
than are theoretically.necessary to calculate the triangles.
This surplus of data serves to insure the detection of any
errors in the measures, and to test their accuracy by the
agreement of their results. Accnmulating errors are fur-
ther guarded against by measuring additional sides from
time to time as opportunity offers.

Chains of triangles have thus been measured in Russia
from the Danube to the Arectic Ocean, in England and
France from the Hebrides to Algiers, in this country down
nearly our entire Atlantic coast and along the great lakes,
and through short distances in many other countries.
An east and west line is now being run by the Coast Sur-
vey from the Atlantic to the Pacific Ocean. Indeed it
may be expected that a network of triangles will be grad-
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ually extended over the surface of every civilized country,
in order to construct perfect maps of it.

Suppose that we take two stations sitnated north
and south of each other, determine the latitude of each,
and measure the distance between them. It is evident that
by dividing the distance in kilometres by the difference of
latitude in degrees, we shall have the length of one degree
of latitude. Then if the earth were a sphere, we should
at once have its circumference by multiplying the length
of one degree by 360. It is thus found, in a rough way,
that the length of a degree is a little more than 111 kilo-
metres, or between 69 and 70 English statute miles. Its
eircumference is therefore about 40,000 kilometres, and
its diameter between 12,000 and 13,000.*

Owing to the ellipticity of the earth, the lengtk of one
degree varies with the latitude and the direction in which
it is measured. The next step in the order of accuracy is
to find the magnitude and the form of the earth from
measures of long ares of latitude (and sometimes of longi-
tude) made in different regions, especially near the equa-
tor and in high latitudes. But we shall still find that dif-
ferent combinations of measures give slightly different re-
sults, both for the magnitude and the ellipticity, owing
to the irregularities in the direction of attraction which we
have already deseribed. The problem is therefore to find
what ellipsoid will satisfy the measures with the least sum
total of error. New and more accurate solutions will be
reached from time to time as geodetic measures are extend-
ed over a wider area. The following are among the most
recent results hitherto reached: Listinaé of Gottingen
in 1878 found the earth’s polar semidiameter,6355 - 270 kilo-

* When the metric system was originally designed by the French, it
was intended that the kilometre should be 14355 of the distance from
the pole of the earth to the equator. This would make a degree of the
meridian equal, on the average, to 111} kilometres. But, owing to the
practical difficulties of measuring a meridian of the earth, the corre-
spondence with the metre actually adopted is not exact.
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*
metres ; earth’s equatorial semidiameter, 6377-377 kilo-
metres ; earth’s eompression, 55— of the equatorial di-
ameter ; earth’s eccentricity of meridian, 0.-08319. An-
other result is that of Captain Crarke of England, who
found : Polar semidiameter, 6356-456 * kilometres ; equa-
torial semidiameter, 6378-191 kilometres.

It was once supposed that the measures were slightly bet-
ter represented by supposing the earth to be an ellipsoid
with three unequal axes, the equator itself being an ellipse
of which the longest diameter was 500 metres, or about
one third of a mile, longer than the shortest. This result
was probably due to irregularitics of gravity in those parts
of the continents over which the geodetic measures have
extended and is now abandoned.

Geographic and Geocentric Latitudes.—An obvious re-
sult of the ellipticity of the earth is that the plumb-line

Fie. 68.

does not point toward the earth’s centre. Let TFig. 68
represent a meridional section of the earth, V8§ being the
axis of rotation, £ ¢ the plane of the equator, and O the
position of the observer. The line /7 22, tangent to the

* (aptain Clarke’s results are given in feet, the polar radius being
20,854,895 feet. In changing to metres, the logarithm of the factor has
been taken as 9.4840071.
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earth at (), will then represent the horizon of the observer,
while the line Z V', perpendicular to 71 12, and therefore
normal to the earth at ¢, will be vertical as determined
by the plumb-line. The angle O V' @, or Z O ¢’, which
the observer’s zenith makes with the equator, will then be
his astronomical or geographical latitude. This is the lat-
itude which in practice we nearly always have to use, be-
cause we are obliged to determine latitude by astronomical
observation, and not by measurement from the equator.
We cannot determine the direction of the true centre €' of
the earth by direct observation of any kind, but only that
of the plumb-line, or of the perpendicular to a fluid sur-
face. Z O ' is therefore the astronomical latitude. If,
however, we conceive the line €' Oz drawn from the cen-
tre of the earth through O, z will be the observer’s geo-
centric zenith, while the angle O O @ will be his geocen-
tric latitude. 1t will be observed that it is the geocentric
and not the geographic latitude which gives the true posi-
tion of the observer relative to the earth’s centre. The
difference hetween the two latitudes is the angle 0 O V'
or Z O z; this is called the angle of the vertical. It is zero
at the poles and at the equator, becanse here the normals
pass through the centre of the ellipse, and it attains its
maximum of 11’ 30” at latitude 45°. It will be seen that
the geocentric latitude is always less than the geographiec.
In north latitudes the geocentrie zenith is south of the ap-
parent zenith and in southern latitudes north of it, being
nearer the equator in each case.

§ 4. CHANGE OF GRAVITY WITH THE LATI-
TUDE.

If the earth were a perfect sphere, and did not rotate on its axis, the
intensity of gravity would be the same over its entire surface. There
is a slight variation from two causes, namely, (1) The elliptic form
of our globe, and (2) the centrifugal force generated by its rotation
on its axis. Strictly speaking, the latter is not a change in the
real force of gravity, or of the earth’s attraction, but only an
apparent force of another kind acting in opposition to gravity.
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The intensity of gravity is measured by the distance which a
heavy body in a vacuum will fallin a unit of time, say one second.
Either 10 metres or 32 feet may be regarded as a rough approxima-
tion to its value. There are, however, so many practical difficul-
ties in the way of measuring with precision the distance a body
falls in one second, that the force of gravity is, in practice, deter-
mined indirectly by finding the length of the second’s pendulum.
It is shown in mechanics that if a pendulum of length L vibrates
in a time 7, a heavy body will in this time 7 fall through the
space =n* L, = being the ratio of the circumference of a circle to its
diameter. (m=38-14159 ... n*=9-869604.) Therefore, to find the
force of gravity we have only to determine the length of the
second’s pendulum, and multiply it by this factor.

The determination of the mean attractive force of the earth is
important in order that we may compute its action on the moon
and other heavenly bodies, while the variations of this attraction
afford us data for judging of the variations of density in the earth’s
interior. Scientific expeditions have therefore taken pains to
determine the length of the second’s pendulum at numerous points
on the globe. To do this, it i3 not necessary that they should
actually measure the length of the pendulum at all the places they
visit. They have only to carry some one pendulum of a very solid
construction to each point of observation, and observe how many
vibrations it makes in a day. They know that the force of gravity
is proportional to the squarc of the number of vibrations. Before
and after the voyage, they count the vibrations at some standard
point—London for instance. Thus, by simply squaring the number
of vibrations and comparing the squares, they have the ratio
which gravity at various points of the earth’s surface bears to
gravity at London. Tt is then only necessary to determine the
absolute intensity of gravity at London to infer it at all the
other points for which the ratio is known. From a great number
of observations of this kind, it is found that the length of the
second’s pendulum in latitude ¢ may be nearly represented by the
equation, .

L =0™-99099 (1 + 0-00520 sin®¢).

From this, the force of gravity is found by multiplying by
n? = 9.8696, giving the result :

g’ = 97807 (1 + 0-00520 sin? ).

These formul® show that the apparent force of gravity increases
by a little more than 5} of its whole amount from the equator to
the poles. We can readily calculate how much of the diminution
at the equator is due to the centrifugal force of the earth’s rotation.
By the formul® of mechanics, the centrifugal force is given by the
equation,

_ 4"

f_ 73'1



TERRESTRIAL GRAVITY. 205

T being the time of one revolution, and  the radius of the circle of
rotation. Supposing the earth a sphere, which will cause no
important error in our present calculation, the distance of a point
on the earth’s surface in latitude ¢ from the axis of rotation of the
earth is,

7= A co8 ¢,

a being the earth’s radius. The centrifugal force in latitude ¢ is
therefore

But this force does not act in the direction normal to the earth’s
surface, but perpendicular to the axis of the earth, which direction
makes the angle ¢ with the normal. We may therefore resolve the
force into two components, one, f sin ¢, along the earth’s surface
toward the equator, the other, 1 cos ¢, downward toward its centre.
The first component makes the earth a prolate ellipsoid, as already
shown, while the second acts in opposition to gravity. The cen-
trifugal force, therefore, diminishes gravity by the amount,

477 a cos® ¢

fc°5¢=——T—2—.

T, the sidereal day, is 86,164 seconds of mean time, while @, for
the equator, is 6,377,377 metres. Substituting in this expression,
the centrifugal force becomes

Jcos ¢ = 0™.03391 cos? ¢ = 0™-03391 (1 — sin?¢),

or at the equator a little more than ,§; the force of gravity. The
expression for the apparent force of gravity given by observation,
which we have already found, may be put in the form,

¢ = 9m.7807 + 0™.05087 sin® ¢,

This is the true force of gravity diminished by the centrifugal
force ; therefore, to find that true force we must add the centri-
fugal force to it, giving the result :

g = 9m.8146 4 O™.01696 sin® ¢
= 9m.8146 (1 + 0-001728 sin® ¢),

for the real attraction of the spheroidal earth upon a body on its
surface in latitude ¢.

It will be interesting to compare this result with the attraction
of a spheroid having the same ellipticity as the earth. It is found
by integration that if ¢, supposed small, be the eccentricity of a
homogeneous oblate ellipsoid, and g, its attraction upon a body
on its equator, its attraction at latitude ¢ will be given by the
equation,

2
g=g 1+ ie—o—sin’s&)-
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In the case of the earth, ¢ = 0-0817 ; -t ¢* = 0-000667 : so that
the expression for gravity would be,

g = go (1 + 0-000667 sin ¢).

We see that the factor of sin® ¢, which expresses the ratio in
which gravity at the poles exceeds that at the equator, has less than
half the value (-001780), which we have found from observation.
This difference arises from the fact that the earth is not homogene-
ous, but increases in density from the surface toward the centre.
To see how this result follows, let us first inquire how the earth
would attract bodies where its surface now is if its whole mass
were concentrated in its centre. The distance of the equatdr
from the centre is to that of the poles from the centre as 1 .o

¥1 — ¢*. Thercfore, in the case supposed, attraction at the equat-r
would be to attraction at the poles as1—¢? to 1. The ratio of i -
crease of attraction at the poles is therefore in this extreme case
about ten times what it is for the homogencous ellipsoid. We cox-
clude, therefore, that the more nearly the earth approaches tl.is
extrcme case—that is, the more it increases in density toward the
centre—the greater will be the difference of attraction at the pdles
and the equator. L '

§ 6. MOTION OF THE EARTH’S AXIS, OR PRE-
' CESSION OF THE EQUINOXES.

Sidereal and Equinoctial Year.—In describing the ap-
parent motion of the sun, two ways were shown of find-
ing the time of its apparent revolution around the sphere
—in other words, of fixing the length of a year. One of
these methods consists in finding theinterval between suc-
cessive passages through the equinoxes, or, which is the
same thing, across the plane of the equator, and the other
by finding when it returns to the same position among
the stars. Two thousand years ago, Hirrarcuus found,
by comparing his own observations with those made two
centuries before by Tmocmaris, that these two methods
of fixing the length of the year did not give the same
result. 1t had previously been considered that the length
of a year was about 365} days, and in attempting to correct
this period by comparing his observed times of the sun’s
passing the equinox with those of Tmocmaris, Hirpaxk-
cuus found that it required a diminution of seven or eight
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/
minutes. He therefore concluded that the true length of
the equinoctial year was 365 days, 5 hours, and about 53
minutes. When, however, he considered the return, not
to the equinox, but to the same position relative to the
bright star Spica Virginis, he found that it took some
minutes more than 365% days to complete the revolution.
Thus there are two years to be distinguished, the ¢ropical
or equinoctial year and the sidereal year. The first is
neasured by the time of the earth’s return to the equinox ;

he second by its return to the same position relative to the
stars. Although the sidereal year is the correct astronom-
ftal period of one revolution of the earth around the sun,
set the equinoctial year is the one to be used in civil life,
ecause it is upon that year that the change of seasons
depends.  Modern determinations show the respective
lengths of the two years to be :

Sidereal year,  365? 6" 9™ 9° = 365%.25636.
Equinoctial year, 365% 5" 48™ 46° = 365%.24220.

1t is evident from this difference between the two years
tmt the position of the equninox among the stars must be
changing, and must move toward the west, because the
cqmnoctlal year i- the shorter. This motion is called the
precession of the equinowes, and amounts to about 50"
per year. The equinox being simply the point in which
the equator and the ecliptic intersect, it is evident that it
can change only through a change in one or both of these
circles. Hipparcaus found that the change was in the
equator, and not in the ecliptic, because the declinations of
the stars changed, while their latitudes did not.* Since

* To describe the theory of the ancient astronomers with perfect
correctness, we ought to say that they considered the planes both of the
equator and ecliptic to be invariable and the motion of precession to
be due to a slow revolution of the whole celestial sphere around the
pole of the ecliptic as an axis. This would produce a change in the
position of the stars relative to the equator, but not relative to the
“ecliptic. -



208 ASTRONOMY.

the equator is defined as a circle everywhere 90° distant
from the pole, and since it is moving among the stars, it
follows that the pole must also be moving among the stars,
But the pole is nothing more than the point in which the
earth’s axis of rotation intersects the celestial sphere : it
must be remembered too that the position of this pole’:
the celestial sphere depends solely upon the direction ot
the earth’s axis, and is not changed by the motion of the
earth around the sun, because the sphere is considered to
be of infinite radius. Hence precession shows that the
direction of the earth’s axis is continually changing.
Careful observations from the time of Hirrarcmus until
now show that the change in question consists in a slow
revolution of the pole of the earth around the pole of the
ecliptic as projected on the celestial sphere. The rate of
motion is such that the revolution will be completed in
between 25,000 and 26,000 years. At the end of this
period the equinox and solstices will have made a com-
plete revolution in the heavens.

The nature of this motion will be seen more clearly by referring
to Fig. 46, p. 109. We have there represented the earth in four
positions during its annual revolution. We have represented the axis
as inclining to the right in each of these positions, and have de-
scribed it as remaining parallel to itself during an entire revolution.
The phenomena of precession show that this is not absolutely true,
but that, in reality, the direction of the axis is slowly changing.
This change is such that, after the lapse of some 6400 years, the
north pole of the earth, as represented in the figure, will not in-
cline to the right, but toward the observer, the amount of the in-
clination remaining nearly the same. The result will evidently be
a shifting of the seasons. At D we shall have the winter solstice,
because the north pole will be inclined toward the observer and
therefore from the sun, while at .4 we shall have the vernal equinox
instead of the winter solstice, and so on.

In 6400 years more the north pole will be inclined toward the
left, and the seasons will be reversed. Another interval of the
same length, and the north pole will be inclined from the observer,
the seasons being shifted through another quadrant. Finally, at
the end of about 25,800 years, the axis will have resumed its original
direction.

Precession thus arises from a motion of the earth alone, and
not of the heavenly bodies. Although the direction of the earth’s
axis changes, yet the position of this axis relative to the crust of the
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earth remains invariable. Some have supposed that precession
would result in a change in the position of the north pole on the
surface of the earth, so that the northern regions would be covered
by the ocean as a result of the different direction in which the
ocean would be carried by the centrifugal force of the earth’s rota-
tion. This, however, is a mistake. It has been shown by a mathe-
matical investigation that the position of the poles, and therefore
2" the equator, on the surface of the earth, cannot change except
rom some variation in the arrangement of the earth’s interior.
Scientific investigation has yet shown nothing to indicate any prob-
ability of such a change.

The motion of precession is not uniform, but is subject to several
inequalities which are called Nutation. These can best be vnder-
stood in connection with the forces which produce precession.

Cause of Precession, ete.—Sir Isaac NEwToN showed that pre-
cession was due to an inequality in the attraction of the sun and
moon produced by the spheroidal figure of the earth. If the earth
were a perfect homogeneous sphere, the direction of its axis would

Fie. 69.

never change in consequence of the attraction of another body.
But the excess of matter around the equatorial regions of the earth
is attracted by the sun and moon in such a way as to cause a turn-
ing foree which tends to change the direction of the axis of rota-
tion. To show the mode of action of this force, let us consider the
earth as a sphere encircled by a large ring of matter extending
around its equator, as in Fig. 69. Suppose a distant attracting body
situated in the direction C'¢, so that the lines in which the parts of
the ring are attracted are Aa, BY, C¢, etc., which will be nearly
parallel. The attractive force will gradually diminish from A to
B, owing to the greater distance of the latter from the attracting
body. Let us put :

7, the distance of the centre C from the attracting body,

p, the radius 4 € = B C of the equatorial ring, multiplied by the
cosine of the angle A C'¢, so that the distance of 4 from the attract-
ing centre is 7—p, and that of Bis r4p,

m, the mass of the attracting body ;
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-
The accelerative attraction exerted at the three points A, €, B will
then be S
m o om m
r—p*" P+

’
The radius p being very small compared with 7, we may develop the

denominators of the first and third fractions in powers of L
7

by the binomial theorem, and neglect all powers after the first,
The attractions will then be approximately :
m 2mp_ m_m 2mp

-3 Niie B =g =% .
r? I e r 8

m

; on account
7

2 5
The forces —L?ﬁ will be very small compared with
r
of the smallness of p.
The principal force :-’—: will cause all parts of the body to fall

equally toward the attracting centre, and will therefore cause no
rotation in the body and no change in the direction of the axis ¥V 8.
Supposing the body to revolve around the centre in an orbit, we
may conceive this attraction to be counterbalanced by the so-called
centrifugal force.*

Subtracting this uniform principal force, there is left a force %W—I—p
acting on A in the direction A4 «, and an equal force acting on 5 in
the opposite direction b B. It is evident that these two forces tend
to make the earth rotate around an axis passing through € in such
a direction as to make the line ¢ 4 m coincide with € ¢, and that,
if no cause modified the action of these forces, the earth would os-
cillate back and forth on that axis.

* We may here mention a very common misapprehension respecting
what is sometimes called centrifugal force, and is supposed to be a
force tending to make a body fly away from the centre. It is some-
times said that the body will fly from the centre when the centrifugal
force exceeds the centripetal, and toward it in the opposite case. This is
a mistake. such a force as this having no existence. The so-called
centrifugal force is not properly a centrifugal force at all, but only the
reaction of the whirling body against the centripetal force, which, by the
third law of motion, is equal and opposite to that force. When a stone
is whirled in a sling the tension on the string is simply the force neces-
sary to make the stone constantly deviate from the straight line in
which it tends to move, and is the same as the resistance which the
stone offers to this deviation in consequence of its inertia. ~ So, in the
case of the planets, the centrifugal force is only the resistance offered
by the inertia of the planet to the sun’s attraction. If the sling should
break, or if the sun should cease to attract the planet, the centripetal
and centrifugal forces would both cease instantly, and the stone or
planet would, in accordance with the first law of motion, tly forward
in the straight line in which it was moving at the moment.
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But a modifying cause is found in the rotation of the earth on its
own axis, which prevents any change in the angle m Cc, but
causes a very slow revolution of the axis N & around the perpen-
dicular line C E, which motion is that of precession.*

Nutation.—It will be seen that, under the influence of the grav-
itation of the sun and moon, precession cannot be uniform. At the
time of the equinoxes the equator A B of the earth passes through
the sun, and the latter lies in the line B ' A m, so that the small
precessional force tending to displace the equator must then vanish.
This force increases on both sides of the equinox, and attains a
maximum at the solstices when the angle m C¢ is 234°. Hence the
precession produced by the sun takes place by semi-annual steps.
One of these steps, however, is a little longer than the other,
because the earth is nearer the sun in December than in June.

Again, we have seen that the inclination of the moon’s orbit to

_ the equator ranges from 183° to 28)° in a period of 18.6 years.
Since the precessional force depends on this inclination, the
amount of precession due to the action of the moon has a period
equal to one revolution of the moon’s node, or 186 years. These
inequalities in the motion of precession are termed nutation.

Changes in the Right Ascensions and Declinations of
the Stars.—Since the declination of a heavenly body is its an-
gular distance from the celestial equator, it is evident that any
change in the position of the equator must change the declinations
of the fixed stars. Moreover, since right ascensions are counted
from the position of the vernal equinox, the change in the position
of this equinox produced by precession and nutation must change
the right ascensions of the stars. The motion of the equator may
be represented by supposing it to turn slowly around an axis lying
in its plane, and pointing to 6® and 18" of right ascension. All
that section of the equator lying within 6" of the vernal equinox
(see Fig. 45, page 103) is moving toward the south (downward in
the figure), while the opposite section, from 6" to 18" right ascen-
sion, is moving north. The amount of this motion is 20" annually.
It is evident that this motion will cause both equinoxes to shift
toward the right, and the geometrical student will be able to see
that the amount of the shift will be : ;

* The reason of this seeming paradox is that the rotative forces acting
on Aand B are as it were distributed by the diurnal rotation around
N 8. Suppose, forexample, that 4 receives a downward and B an up-
ward impulse, so that they begin to move in these directions. At the
end of twelve hours A has moved around to B, so that its downward
motion now tends to increase the angle m C' ¢, and the upward motion of
B has the same effect. If we suppose a series of impulses, a diminution
of the inclination will be produced during the first 12 hours, but after
that the effect of each impulse will be counterbalanced by that of 12
hours before. so that no further diminution will take place; but
every impulse will produce a sudden permanent change in the direction
of the axis VS, the end N moving toward and S from the observer.

This same law of rotation is exemplified in the gyroscope and the
child’s top, each of which are kept erect by the rotation, though grav-
ity tends to make them fall.
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On the equator, 20" cot w;

On the ecliptic, 20" cosec o ;

w being the obliquity of the ecliptic (23° 27}4). In consequence,
the right +scensions of stars near the equator are constantly increas-
ing by about 46" or arc, or 3°.07 of time annually. Away from
the equator the increase will vary in amount, because, owing to the
motion of the pole of the earth, the point in which the equator is
intersected by the great circle passing through the pole and the
star will vary as well as the equinox, it being remembered that the
right ascension of the star is the distance of this point of intersec-
tion from the equinox.

The adept in spherical trigonometry will find it an improving
exercise to work out the formule for the annual change in the right
ascension and declination of the stars, arising from the motion of
the equator, and consequently of the equinox, He will find the
result to be as follows : Put

ny the annual angular motion of the equator (20”-06),

o, its obliquity (23° 27'-5),

a 4, the right ascension and declination of the star;

Then we shall find :

Annual change in R. A. =ncoto + n sin a tan d.

Annual change in Dec. = n cos a.
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CHAPTER IX.

CELESTIAL MEASUREMENTS OF MASS AND
DISTANCE.

¢ 1. THE CELESTIAL SCALE OF MEASUREMENT.

Tur units of length and mass employed by astronomers
are neeessarily different from those used in daily life.
For instance, the distances and magnitudes of the heavenly
bodies are never reckoned in miles or other terrestrial
measures for astronomical purposes; when so expressed
it is only for the purpose of making the subject clearer to
the general reader. The units of weight or mass are also,
of necessity, astronomical and not terrestrial. The mass
of a body may be expressed in terms of that of the sun
or of the earth, but never in kilograms or tons, unless in
popular language. There are two reasons for this eourse.
One is that in most cases celestial distances have first to
be determined in terms of some celestial unit—the earth’s
distance from the sun, for instance—and it is mnore con-
venient to retain this unit than to adopt a new one. The
other is that the values of celestial distances in terms of
ordinary terrestrial units are for the most part extremely
uncertain, while the corresponding values in astronomical
units are known with great accuraey.

An extreme instance of this is afforded by the dimen-
sions of the solar system. By a long and continued series
of astronomieal observations, investigated by means of
KepLer’s laws and the theory of gravitation, it is possible
to determine the forms of the planetary orbits, their
positions, and their dimensions in terms of the earth’s
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mean distance from the sun as the unit of measure, with
great precision. It will be remembered that Kerrir’s
third law enables us to determine the mean distance of’a
planet from the sun when we know its period of revolu-
tion. Now, all the major planets, as far out as Saturn,
have been observed through so many revolutions that their
periodic times can be determined with great exactness—in
fact within a fraction of a millionth part of their whoic
amount. The more recently discovered planets, Uranus
and Neptune, will, in the course of time, have their
periods determined with equal precision. Then, if we
square the periods expressed in years and decimals of a
year, and extract the cube root of this square, we have the
mean distance of the planet with the same order of pre-
cision. This distance is to be corrected slightly in conse-
quence of the attractions of the planets on each other, but
these corrections also are known with great exactness.
Again, the eccentricities of the orbits are exactly deter-
mined by careful observations of the positions of the plan-
cts during successive revolutions. Thus we are enabled to
make a map of the planetary orbits which shall be so ex-
act that the error would entirely elude the most caretul
serutiny, though the map itself should be many yards in
extent.

On the scale of this same map we could lay down the
magnitudes of the planets with as much precision as our
instruments can measure their angular semi-diameters.
Thus we know that the mean diameter of the sun, as seen
from the earth, is 32, hence we deduce from formule
given in connection with parallax (Chapter L., § 9), that
the diameter of the sun is - 0093083 of the distance of the
sun from the earth. We can therefore, on our supposed
map of the solar system, lay down the sun in its true size,
according to the scale of the map, from data given directly
by observation. In the same way we can do this for each
of the planets, the earth and moon excepted. There is
no immediate and direct way of finding how large the

Y5
o3
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carth or moon would look from a planet, hence the ex-
ception.

But without further special research into this subject,
we shall know nothing about the scale of our map. It is
clear that in order to fix the distances or the magnitudes
of the planets according to any terrestrial standard, we
must know this scale. Of course if we can learn either
the distance or magnitude of any one of the planets laid
down on the map, in miles or in semi-diameters of the
earth, we shall be able at once to find the scale. But this
process is so difficult that the general custom of astrono-
mers is not to attempt to use an exact scale, but to emp]oy
the mean distance of the sun from the earth as the nnit in
celestial measurements. Thus, in astronomical language,
we say that the distance of Mercury from the sun is
0.387, that of Venus 0.723, that of Mars 1.-523, that
of Saturn 9-539, and so on. But this gives us no in-
formation respecting the distances and magnitudes in terms
of terrestrial measures. The unknown quantities of our
map are the magnitude of the earth on the scale of the
map, and its distance from the sun in terrestrial units of
length. Could we only take np a point of observation
from the sun or a planet, and determine exaectly the angu-
lar magnitude of the earth as seen from that point, we
should be able to lay down the earth of our map in its cor-
rect size. Then since we already know the size of the
earth in terrestrial units, we should be able to find the
seale of our map, and thence the dimensions of the whole
system in terms of those units.

It will be seen that what the astronomer really wants is
not so much the dimensions of the solar system in miles as
to express the size of the earth in celestial measures.
These, however, amount to the same thing, because hav-
ing one, the other can be readily deduced from the known
magnitude of the earth in terrestrial measures.

The magnitude of the earth is not the only unknown
quantity on onr map. From KrpLer’s laws we can de-
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termine nothing respecting the distance of the moon from
the earth, because unless a change is made in the units of
time and space, they apply only to bodies moving around
the sun. We must therefore determine the distance of
the moon as well as that of the sun to be able to complete
our map on a known scale of measurement,

§ 2. MEASURES OF THE SOLAR PARALLAX.

The problem of distances in the solar system is reduced
by the preceding considerations to measuring the distances
of the sun and moon in terms of the earth’s radins. The
most direct method of doing this is by determining their
respective parallaxes, which we have shown to be the same
as the earth’s angnlar semi-diameter as seen from them.
In the case of the sun, the required parallax can he de-
termined as readily by measuring the parallaxes of any
of the planets as by measuring that of the san, because
any one measured distance on the map will give us the
scale of our map. Now, the planets Venus and Mars oc-
casionally come much nearer the carth than the sun ever
does, and their parallaxes also admit of more exact meas-
nrement. The parallax of the sun is therefore determined
not by observations on the sun itself, but on these two
nlanets. Three methods of finding the sun’s parallax in

ris way have been applied. They are :

(1.) Observations of Venus in transit across the sun,

(2.) Observations of the declination of Mars from
widely separated stations on the earth’s surface.

(8.) Observations of the right ascension of Mars, near
the times of its rising and setting, at a single station.

Solar Parallax from Transits of Venus.— The general
principles of the method of determining the parallax of a
planet by simultaneous observations at distant stations
will be seen by referring to Fig. 18, p. 49. If two ob-
servers, sitnated at & and &”, make a simultancous ob-
servation of the direction of the body 2, it is evident
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that the solution of a plane triangle will give the distance
of P’ from each station. In practice, however, it would
be impracticable to make simultaneous observations at
distant stations, and as the planet is continually in motion,
the problem is a much more complex one than that of
simply solving a triangle. The actual solution is effected
by a process which is algebraic rather than geometrical,
but we may briefly deseribe the geometrical nature of the
problem.

Considering the problem as a geometrical one, it is evi-
dent that, owing to the parallax of Venus being nearly four
times as great as that of the sun, its path across the sun’s
disk will be different when viewed from different points of
the earth’s surface. The further south we go, the further
north the planet will seem to be on the sun’s disk. The
change will be determined by the difference between the
parallax of Venus and that of the sun, and this makes the
geometrical explanation less simple than in the case of a
determination into which only one parallax enters. It
will be suflicient if the reader sees that when we know the
relation between the two parallaxes—when, for instance,
we know that the parallax of Venus is 3-78 times that of
the sun—the observed displacement of Venwus on the sun’s
disk will give us both parallaxes. The ¢ relative paral-
lax,”’ as it is called, will be 2.78 times the sun’s parallax;’
and it is on this alone that the displacement depends.

The algebraic process, which is that actually employed in the
solution of astronomical problems of this class, is as follows :

Each observer is supposed to know his longitude and lati-
tude, and to have made one or more observations of the angular
distance of the centre of the planet from the centre of the sun.

To work up the observations, the investigator must have an
ephemeris of Venus and of the sun—that is, a table giving
the right ascension and declination of each body from hour to hour
as calculated from the best astronomical data. The cphemeris can
never be considered absolutely correct, but its error may be as-
sumed as constant for an entire day or more. By means of it, the
right ascension and declination of the planet and of the sun, as seen
from the centre of the earth, may be computed at any time.

Each observer reduces the moments of his observations to Green-
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wich mean time, or the mean time of any other meridian. Let
those mean times for the observer 8, be called 7), 73, 7%, ete.
Suppose that at these mean times he has observed the distances of
the centre of Venus from that of the sun to be D,, D,, D, etc.
The corresponding geocentric distances are then computed fron
the ephemeris for these same times, 73, 7%, T, etc. If the ephem-
eris and the observations were perfectly correct, and if there were
no parallax, these calculated distances would come out the same as
the observed ones. But this is never the case. It is therefore
necessary to calculate what effect a change in the right ascension,
declination, and parallax of the sun and Venus will have upon the
calculated distance. In this operation these changes are considered
as infinitely small, and the process used is that of differentiation.
Let us put :

a, 6, m, the right ascension, declination, and parallax of Venus.

a', &, =', the same quantities for the sun.

Aa, Ad, Aa, Ad, the corrections necessary to the values of the
quantities : a, ¢, a’, and d in the ephemeris,

dy, da, ds, ete., the calculated geocentric distances of Venus from
the sun’s centre,

Then, the corrected calculated distances, which we shall call
D'\, Dy, D', ete., will be expressed in equations of the form :

dit+mAa 4 a A + 0, A8 +VA 0 +ean+cin’ =D
da+ A+ as A+ 0,00 + 02 A8 + eam +can’ =D,

In these equations d,, d,, etc., and the coeflicients, a1, ai, a4, ete.,
to ¢'s, are all known quantities, being the direct results of calcula-
tion, while A @, Aa, Aé, and A are unknown corrections to the
ephemeris, and = and =’ are the parallaxes of Venus and the sun,
also unknown. 7, D, etc., are therefore also to be regarded as
unknown,

But when all corrections are allowed for, these corrected calcu-
lated distances D'y, DV, etc., ought to be the same as the observed
distances D',, IV, etc., which are known quantities, being the direct
result of observations. So if we put D, for D', etc., and transpose
d, to the other side of the equation, and perform the same process
on the other equations, we shall have :

GMAXF WA+ A+ VWA +antchin' =D —ds
G AC +a s A+ by Ab 4 VoA & + eam + 2’ = Dy — d,, ete.

These equations admit of being much simplified. If we suppose
the right ascensions of the sun and Venus changed by the same amount
—that is, if we suppose Aa’ = Ag, it is evident that their distances
will remain substantially unaltered. In order that this may be true
in the equations, we must have

ay = — [l/",
because the real change will be, in the case supposed,

amAa+ta)Aa=(a +ai)Da=0. P
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In the same way, we must have very nearly,
Il'1=—bxi ¢y = — c.

Then if we substitute these values of the accented coefficients, the
first equation will be :

@(Aa— Aa) +0(Ad—Ad) +ea(r—n) =D —di.
If we put for brevity,
z=A8a—Aa; y=Ad—AJ,
the equations will become :

mwet+bhy+ar—n)y=D—d
T4+ by +e(x —n)=D,—ds.

The parallaxes of the sun and Venus, =” and =, are inversely as the
distances of the respective bodies from the earth. During the tran-
sit of December, 1874, these distances were :

Distance of sun, 0-9847,
ke “  Venus, 0-2644.

So, if we put m, for the parallax at distance 1, we shall have :

To

Actual llax of th /= =1.0155 mo.
ctual parallax of the sun, =’ =o—0r o
g
Actual parallax of Venus, == 0.2(‘;44 = 3.71822 mo ;

whence
T — 7 = 2.7667 m,.

Substituting this value in our equations, they will become :

a, T+ bly + 2‘76670| To =D| '—'dl
as e + bz:l/ + 2‘766702 7'l'o=.D2 —dg, ete.

All the corresponding equations being formed in this way, from
the observations at the various stations, their solution will give the
values of the three unknown quantities, z, ¥, and mo. The value of
ma will be the parallax corresponding to the astronomical unit—
that is, the angular semi-diameter of the earth seen at the mean
distance from the sun.

‘When many observations are made, we have more equations than
there are unknown quantities to be determined. If all the equations
were mathematically correct, we should not need them all, and could
reject any of the surplus ones without affecting the result. But
since each equation is necessarily affected with errors of observa-
tion, the problem presented to us is to obtain the most probable
values of the unknown quantities from the combination of all the
equations. These values are those which render the sum of the

‘quares of the outstanding errors of observations (or, rather, of



220 ASTRONOMY.

the outstanding differences between the observed quantities and
the computed quantities) a minimum. For instance, suppose that
we substitute in the equation

G4y +2:767¢ 7= D, —d,

any assumed values of @, y, and m.. In general the equation will
not be satisfied, but there will remain a small difference between
the two members, which we may call 4,. Let us call A, the differ-
ence obtained in the same way from the second equation, As from
the third, and so on, and let us put 8 for the sum of the squares of
these quantities, so that

S= A% 4 A% 4 A% + etc.

Then, for each system of values of #, %, and m, which we choose to
assume, there will be a corresponding value of S, and the most
probable system of values will be that which makes S the least.

The method by which this result. is reached is called the method
of least squares, and is developed in works on astronomical compu-
tations.

Measurements of the Parallax of Mars.—This parallax may
be determined from observations in two ways. In that usually
adopted there are two obscrvers or sets of observers, one in the
northern and the other in the southern hemisphere, each of whom
determines the declination of the planet from day to day at the
moment of transit over his meridian. These declinations will be
different by the whole amount of parallactic difference between the
two stations, or by the angle &’ P 8" in Fig. 18, p. 49. The observa-
tions are continued through the period when Marsis nearest the carth,
generally about a couple of months. Any opposition of the planct
may be chosen for this purpose, but the most favorable ones are
those when the planet is nearest its perihelion. Should the planet
be exactly at its perihelion at the time of opposition, its distance
from the earth would be only about 037, while at aphelion it would
be 0.68. This great difference is owing to the considerable eccen-
tricity of the orbit of Mars, as can be seen by studying Fig. 48,
p- 115, which gives a plan of most of the orbits of the larger planets.
The favorable oppositions occur at intervals of 15 or 17 years. One
was that of 1862, which gave alinost the first conclusive evidence that
the old parallax of the sun found by ENckE was too small. This
parallax was 8"+577, and the corresponding distance of the sun was
95% millions of miles. The observations of 1862 scemed to show
that this parallax must be increased by about one thirtieth part, and
the distance diminished in about the same ratio. But the most recent
results make it probable that the change should not be quite so
great as this.

An extremely favorable opposition, in respect of distance, was that
of September 5th, 1877, which occurred 15 days after Mars passed
its perihelion. On September 3d its distance from the earth was
only 0-377—Iless than it had been at any time since August, 1845.
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Parallax of Mars in Right Ascension.—Another method
of measuring the parallax of Mars is founded on principles entirely
different from those we have hitherto considered. In the latter,
observations have to be made by two observers in opposite hemi-
spheres of the earth. But an observer at any point on the earth’s
surface is carried around on a circle of latitude every day by the
diurnal motion of the earth. In consequence of this motion, there
must be a corresponding apparent motion of each of the planets in
an opposite direction. In other words, the parallax of the planct
must be different at different times of the day. This diurnal
change in the direction of the planet admits of being measured in
the following way ; The effect of parallax is always to make a
heavenly body appear nearer the horizon than it would appear as seen
from the centre of the earth. This will be obvious if we reflect
that an observer moving rapidly from the centre of the earth to its
circumference, and keeping his eye fixed upon a planet, would see
the planet appear to move in an opposite direction—that is, down-
ward relative to the point of the earth’s surface which he aimed at.
Hence a planet rising in the east will rise later in consequence of
parallax, and will set carlier. Of course the rising and setting
cannot be observed with sufficient accuracy for the purpose of
parallax, but, since a fixed star has no parallax, the position of
the planet relative to the stars in its neighborhood will change
during the interval between the rising and setting of the pianet.
The observer therefore determines the positon of Mars relative
to the stars surrounding him shortly after he rises and again
shortly before he sets. The observations are repeated night
after night as often as possible. Between each pair of east and
west observations the planet will of course change its position
among the stars in consequence of the orbital motions of the
earth and planet, but these motions can be calculated and allowed
for, and the changes still outstanding will then be due to parallax.

The most favorable regions for an observer to determine the par-
allax in this way are those near the earth’s equator, because he is
there carried around on the largest circle. If he is nearer the poles
than the equator, the circle will be so small that the parallax will be
hardly worth determining, while at the poles there will be no par-
allactic change at all of the kind just described.

Applications of this method have not been very numecrous,
although it was suggested by FLAMSTEED nearly two centuries ago. -
The latest and most successful trial of it was made by Mr. Davip GrLL
of England during the opposition of Mars in 1877 above described.
The point of observation chosen by him was the island of Ascen-
sion, west of Africa and near the equator. His measures indicate
a considerable reduction in the recently received values of the solar
parallax, and an increase in the distance of the sun, making the
latter come somewhat nearer to the old value.

Accuracy of the Determinations of Solar Parallax.-———
The parallax of Mars at opposition is rarely more than
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20", and the relative parallax'of Venus and the sun at the
time of the transit is less than 24”. These quantities are
so small as to almost elude very precise measurement ; it
is hardly possible by any one set of measures of parallax
to determine the latter without an uncertainty of 53 of its
whole amount. In the distance of the sun this corre-
sponds to an uncertainty of nearly half a million of miles.
Astronomers have therefore sought for other methods of
determining the sun’s distance. Although some of these
may be a little more certain than measures of parallax, there
is none by which the distance of the sun can be determined
with any approximation to the accuracy which character-
izes other celestial measures.

Other Methods of Determining Solar Parallax.— A
very interesting and probably the most accurate method
of measuring the sun’s distance is by using light as a mes-
senger between the sun and the earth. 'We shall hereafter
see, in the chapter on aberration, that the time required for
light to pass from the sun to the earth is known with con-
siderable exactness, being very nearly 498 seconds. If
then we can determine experimentally how many miles or
kilometres light moves in a second, we shall at once have
the distance of the sun by multiplying that quantity by
498. DBut the velocity of light is about 300,000 kilometres
per second. This distance would reach about eight times
around the earth. It is rarely possible that two points on
the earth’s surface more than a hundred kilometres apart
are visible from each other, and distinet vision at distances
. of more than twenty Llloxnetres is rare. Ience to deter-
mine experimentally the time required for light to pass
between two terrestrial stations requires the measurement of
an interval of time, which even under the most favorable
cases can be only a fraction of a thousandth of a second.
Methods of doing it, however, have been devised and ex-
ecuted by the French physicists, Fizrav, Foveauvrr, and
Cornvu, and quite recently by Ensign MicneLson at the
U. S. Naval Academy, Annapolis. From the experiments
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of the latter, which are probably the most accurate, the
velocity of light would seem to be about 299,900 kilome-
tres per second. Multiplying this by 498, we obtain 149, -
350,000 kilometres for the distance of the sun. The time
required for light to pass from the sun to the earth is still
uncertain by nearly a second, but this value of the sun’s
distance is probably the best yet obtained. The corre-
sponding value of the sun’s parallax is 8”-81.

Yet other methods of determining the sun’s distance
are given by the theory of gravitation. The best known
of these depends upon the determination of the parallactic
inequality of the moon. It is found by mathematical in-
vestigation that the motion of the moon is subjected to
several inequalities, having the sun’s horizontal parallax
as a factor. In consequence of the largest of these in-
equalities, the moon is about two minutes behind its mean
place near the first quarter, and as far in advance at the
last quarter. If the position of the moon could be deter-
mined by observation with the same exactness that the po-
sition of a star or planet can, this would probably afford
the most accurate method of determining the solar par-
allax, But an observation of the moon has to be made,
not upon its centre, but upon its limb or circumnference.
Only the limb nearest the sun is visible, the other one
being unilluminated, and thus the illuminated limb on
which the observation is to be made is different at the first
and third quarter. These conditions induce an uncertain-
ty in the comparison of observations made at the two
quarters which cannot be entirely overcome, and therefore
leave a doubt respecting the correctness of the result.

Brief History of Determinations of the Solar Parallax.
—The distance of the sun must at all times have been one
of the most interesting scientific problems presented to the
human mind. The first known attempt to effect a solu-
tion of the problem was made by Aristarcuus, who flour-
ished in the third century before Curist. It was founded
on the principle that the time of the moon’s first quarter



224 ASTRONOMY.

will vary with the ratio between the distance of the moon
and sun, whieh may be shown as follows. In TFig. 68
let Z'represent the earth, / the moon, and § the sun.
Since the sun always illuminates one half of the lunar
globe, it is evident that when one half of the moon’s disk
appears illuminated, the triangle £ M S must be right-
angled at /. The angle # £ § can be determined by
measurement, being equal to the angular distance between
the sun and the moon. Having two of the angles, the
third can be determined, because the sum of the three
must make two right angles. Thenee we shall have the
ratio between M, the distance of the moon, and £'S,
the distanee of the sun, by a trigonometrical computation.

Fia. 70.

Then knowing the distance of the moon, which ean be
determined with comparative ease, we have the distance of
the sun by multiplying by this ratio. ARrisTarcuvs con-
cluded, from his supposed measures, that the angle M £'S
was three dqgt;ees less than a right angle. We should
then have ——: = sin 3° = 4y very nearly. It would

EM

follow from this that the sun was 19 times the distance
of the moon. We now know that this result is entirely
wrong, and that it is impossible to determine the time
when the moon is exactly half illuminated with any ap-
proach to the accuracy necessary in the solution of the
problem. In fact, the greatest angular distance of the



SOLAR PARALLAX. 225

earth and moon, as seen from the sun—that is, the angle
E 8 M—is only about one quarter the angular diameter of
the moon as seen from the earth.

The second attempt to determine the distance of the
sun is mentioned by ProLemy, though HrrrarcHus may be
the real inventor of it. It is founded on a somewhat com-
plex geometrical construction of a total eclipse of the
moon. It is only necessary to state the result, which
was, that the sun was situated at the distance of 1210 radii
of the earth. This result, like the former, was due only
to errors of observation. So far as all the methods known
at the time could show, the real distance of the sun ap-
peared to be infinite, nevertheless Proremy’s result was
received without question for fourteen centuries.

When the telescope was invented, and more accurate
observations became possible, it was found that the sun’s
distance must be greater and its parallax smaller than
ProLemy had supposed, but it was still impossible to give
any measure of the parallax. All that could be said was
that it was less than the smallest quantity that could be de-
cided on by measurement. The first approximation to the
true value was made by Horrox of England, and after-
ward by Huvenrexs of Holland. It was not founded on
any attempt to measure the parallax directly, but on an
estimate of the probable magnitude of the earth on the
seale of the solar system. The magnitude of the planets
on this seale being known by measurement of their appar-
ent angular diameters as seen from the earth, the solar
parallax may be found when we know the ratio between
the diameter of the earth and that of any planet whose
angular diameter has been measured. Now, it was sup-
posed by the two astronomers we have mentioned that
the earth was probably of the same order of magnitude
with the other planets.

Horrox had a theory, which we now know to be erro-
neous, that the diameters of the planets were proportional
to their distances from the sun—in other words, that all
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the planets would appear of the same diameter when seen
from the sun. This diameter he estimated at 28”7, from
which it followed that the solar parallax was 14”. Huveuens
assumed that the actual magnitude of the earth was mid-
way between those of the two planets Venus and Mars on
each side of it ; he thus obtained a result remarkably near
the truth. It is true that in reality the earth is a little
larger than either Venus or Mars, but the imperfect tel-
escopes of that time showed the planets larger than they
really were, so that the mean diameter of the enlarged
planets, as seen in the telescope of HuyenENs, was such as
to correspond very nearly to the diameter of the earth.

The first really successful measure of the parallax
of a planet was made upon Mars during the opposition of
1672, by the first of the two methods already described.
An expedition was sent to the colony of Cayenne to ob-
serve the declination of the planet from night to night,
while corresponding observations were made at the Paris
Observatory. From a discussion of these observations,
Cassint obtained a solar parallax of 9”.5, which is within
a second of the truth. The next steps forward were made
by the transits of Venusin 1761 and 1769. The leading
civilized nations caused observations on these transits to be
made at various points on the globe. The method used
was very simple, consisting in the determination of the
times at which Venus entered upon the sun’s disk and left
it again. The absolute times of ingress and egress, as seen
from different points of the globe, might differ by 20
minutes or more on account of parallax. The results,
however, were found to be discordant. It was not until
more than half a eentury had elapsed that the observations
were all carefully calculated by Excke of Germany, who
concluded that the parallax of the sun was 8”-857, and the
distance 95 millions of miles.

In 1854 it began to be suspected that Excke’s value of
the parallax was much too small, and great labor was now
devoted to a solution of the problem. Haxsex, from the
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parallactic inequality of the moon, first found the parallax
of the sun to be 8”-97, a quantity which he afterward re-
duced to 8”-916. This result seemed to be confirmed by
other observations, especially those of Mars during the
opposition of 1862. It was therefore concluded that the
sun’s parallax was probably between 8”-90 and 9”-00.
Subsequent researches have, however, been diminishing
this value. In 1867, from a discussion on all the data
which were considered of value, it was concluded by one
of the writers that the most probable parallax was 8”.848.
The measures of the velocity of light made by MicneLson
in 1878 reduce this value to 8”-81, and it is now doubtful
whether the true value is any larger than this.

The observations of the transit of Venws in 1874 have
not been completely discussed at the time of writing these
pages. When this is done some further light may be
thrown upon the question. It is, however, to the deter- -
mination of the velocity of light that we are to look for
the best result. All we can say at present is that the so-
lar parallax is probably between 8”.79 and 8”.83, or, if
outside these limits, that it can be very little outside.

§ 3. RELATIVE MASSES OF THE SUN AND
PLANETS.

In estimating celestial masses as well as distances, it is necessary
to use what we may call celestial units—that is, to take the mass of
some celestial body as a unit, instead of any multiple of the pound
or kilogram. The reason of this is that the ratios among the
masses of the planetary system, or, which is the same thing, the
mass of each body in terms of that of some one body as the unit,
can be determined independently of the mass of any one of them.
To express a mass in kilograms or other terrestrial units, it is neces-
sary to find the mass of the earth in such units, as already explained.
This, however, is not necessary for astronomical purposes, where only
the relative masses of the several planets are required. In estimat-
ing the masses of the individual planets, that of the sun is generally
taken as a unit. The planetary masses will then all be very small
fractions.

Masses of the Earth and Sun.—We shall first consider the
mass of the earth because it 1s connected by a very curious relation
with the parallax of the sun. Knowing the latter, we ean determine
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the mass of the sun relative to theyearth, which is the same thing
as determining the astronomical mass of the earth, that of the sun
being unity. This may be clearly seen by reflecting that when we
know the radius of the earth’s orbit we can determine how far the
earth moves aside from a straight line in one second in consequence
of the attraction of the sun. This motion measures the attractive
force of the sun at the distance of the earth. Comparing it with
the attractive force of the earth, and making allowance for the
difference of distances from centres of the two bodies, we deter-
mine the ratio between their masses.

The calculation in question is made in the most simple and ele-
mentary manner as follows. Let us put :

n, the ratio of the circumference of a circle to its diameter (r =
3.14159 ...)

7, the mean radius of the earth, or the radius of a sphere having
the same volume as the earth.

a, the mean distance of the earth from the sun.

¢, the force of gravity on the earth’s surface ata point where the
radius is /—that is, the distance which a body will fall in one
second.

g, the sun’s attractive force at the distance a.

7, the number of seconds in a sidereal year.

M, the mass of the sun.

m, the mass of the earth.

P, the sun’s mean horizontal parallax.

The force of gravity of the sun, ¢', may be considered as equal to
the so-called centrifugal force of the earth, or to the distance which
the earth falls toward the sun in one second. By the formula for
centrifugal force given in Chapter VIIL., p. 204, we have,

, 47%a
TogEn
and by the law of gravitation,
R e M 4
g = P
whence
M 4rxa
F=T
and
4 a®
M= —

We have, in the same way, for the earth,

A

g:

U

Y
)

whence
m= g’
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Therefore, for the ratio of the masses of the earth and sun, we have:

o LT SO e ) A L N L

WEIT AT YR @.
By the formule for parallax in Chapter I., § 8, we have:
3 a® 1
n=wasind .-, e~

Therefore
Y e St 1
R e ) e s ).
T IO T oy SUOS2 @)

The quantities 7, 7and g may be regarded as all known with great
exactness. We see that the mass of the earth, that of the sun being
unity, is propoertional to the cube of the solar parallax.

From data already given, we have:

7T = 365 days, 6 hours, 9™ 9¢; in seconds, 7'= 31 538 149,
Mean radius of the earth in metres,* . . 7= 6 370 008,
Force of gravity in metres, . A b = 9.8202,

while log 7® = 1.59636. Substituting these numbers in the formulw,
it may be put in the form,

% = [7-58984] sin® P,

where the quantity in brackets is the logarithm of the factor.

It will be convenient to make two changes in the parallax 2. This
angle is so exceedingly small that we may regard it as equal to its
sine. To express it in seconds we must multiply it by the number
of seconds in the unit radius—that is, by 206265". This will make
P (in seconds) =206265" sin . Again, the standard to which par-
allaxes are referred is always the earth’s equatorial radius, which is
greater than » by about 315 of its whole amount. 8o, if we put 2~
for the equatorial horizontal parallax, expressed in seconds, we shall
have,

P’ = (1 + 5}5) 206265" sin P = [5-31492] sin P,
whence, for sin I’ in terms of P,

p R
sinP = __—— .

[5-31492]

* The mean radius of the earth is not the mean of the polar and
equatorial radii, but one third the sum of the polar radius and twice
the equatorial one, because we can draw three such radii, ecach mak-
ing a right angle with the other two.

+ A number enclosed in brackets is frequently used to signify the
logarithm of a coefficient or divisor to be used.
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If we substitute this value in the expression for the quotient of
the masses, it may be put into eithef of the forms:

M _ [8-35493)
P S

P’ =[2.78498] (.’;.[)*

The first formula gives the ratio of the masses when the solar par-
allax is known ; thesecond, the parallax when the ratio of the masses
is known. The following table shows, for different values of the
solar parallax, the corresponding ratio of the masses, and distance of
the sun in terrestrial measures :

DISTANCE OF THE SUN.
. SoLAR M
ANATLAX, m In equatorial o .

r radil of the | % Tpfions of | T HEn e
8".75 337992 23573 93-421 L 150-343
8"-76 336835 23546 93-314 150-172
8". 77 335684 23519 93-208 150-001
8".78 334538 23492 93-102 149-830
8".79 333398 23466 92-996 149-660
8".80 332262 23439 92-890 148-490
8".81 331132 23413 92-785 149-320
8".82 330007 23386 92680 149-151
8".83 328887 23360 92.575 148-982
8".84 327773 23333 92-470 148-814
8".85 326664 23307 92 -366 148-646

We have said that the solar parallax is probably contained between
the limits 8".79 and 8".83. It is certainly hardly more than one or
two hundredths of a second without them. So, if we wish to express
the constants relating to the sun in round numbers, we may say that—

Its mass is 830,000 times that of the earth.

Its distance in miles is 93 millions, or perhaps a little less.

Its distance in kilometres is probably between 149 and 150 mil-
lions.

Density of the Sun.—A remarkable result of the preceding
investigation is that the density of the sun, relative to that of the
earth, can be determined independently of the mass or distance of
the sun by measuring its apparent angular diameter, and the force
of gravity at the earth’s surface. Let us put

D, the density of the sun.

d, that of the earth.

s, the sun’s angular semi-diameter, as seen from the earth. Then,
continuing the notation already given, we shall have:
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Linear radius of the sun = a sins.
Volume of the sun = %32 a*sin®s
(from the formula for the volume of a sphere).

4
Mass of the sun, M = -g a® Dsin®s,

4n
Mass of the earth, m = 3 *d.

Substituting these values of M and m in the equation (@), and
dividing out the common factors, it will become

It F5%
7 Sin S—T”g’

from which we find, for the ratio of the density of the carth to that
of the sun,

d g¢gT*
D= gatp sin® s,

This equation solves the problem. But the solution may be trans-
formed in expression. We know from the law of falling bodies that
a heavy body will, in the time ¢, fall through the distance } 39t
Hence the factor ¢ " is double the distance which a body would fall
in a sidereal year, if the force of gravity could act upon it continu-
ously with the same intensity as at the surface of the earth. Hence

2
ar will be the number of radii of the earth through which the

body will fall in a sidereal year. If we put # for this number, the
preceding equation will become,
d Fsin®s

DT " 2a?

‘We therefore have this rule for finding the density of the carth
relative to that of the sun:

Find how many radii of the earth a heavy body would fall through
in a sidereal year in virtue of the force of gravity at the earth’s sur-
Jace. Multiply this number by the cube of the sine of the sun’s angular
semi-diameter, as seen from the earth, and divide by the numerical
Jactor 2 n* = 19.7892. The quotient will be the ratio of the density
of the earth to that of the sun.

From the numerical data already given, we find :

Density of earth, that of sun being unity,

a
— = 3-9208.
D 08,
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Density of the sup, that of the earth being unity,

D
— = 0:25505. B
a

These relations do not give us the actual density of either body.
We have said that the mean density of the earth is about 5%, that of
water being unity. The sun is therefore about 40 or 50 per cent
denser than water.

Masses of the Planets.—If we knew how far a body would
fall in one second at the surface of any other planet than the earth,
we could determine its mass in much the same way as we have de-
termined that of the earth. Now if the planet has a satellite re-
volving around it, we can make this determination—not indeed
directly on the surface of the planet, but at the distance of the sat-
ellite, which will equally give us the required datum. Indeed by
observing the periodic time of a satellite, and the angle subtended by
the major axis of its orbit around the planet, we have a more direct
datum for determining the mass of the planet than we actually have
for determining that of the earth. (Of course we here refer to the
masses of the planets relative to that of the sun as unity.) In fact
could an astronomer only station himself on the planet Venus and
make a series of observations of the angular distance of the moon
from the earth, he could determine the mass of the earth, and
thence the solar parallax, with far greater precision than we are like-
ly to know it for centuries to come. Let us again consider the
equation for M found on page 228 :

s
Gt
Tﬂ

Here @ and 7 may mean the mean distance and periodic time of
3

any planet, the quotient —;—5 being a constant by KerPLER’s third

law. In the same equation we may suppose ¢ the mean distance of

a satellite from its primary, and 7’ its time of revolution, and M will

then represent the mass of the planet. We shall have therefore for

the mass of the planet,
4 'H', a’i

¥, iR

a’ being the mean distance of the satellite from the planet, and 7"’
its time of revolution. Therefore, for the mass of the planet rel
ative to that of the sun we have :

m alﬂ T2
pI i
Let us suppose a to be the mean distance of the planet from the

sun, in which case 7 must represent its time of revolution. Then,
if we put s for the angle subtended by the radius of the orbit of the
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satellite, as seen from the sun, we shall have, assuming the orbit
to be seen edgewise,
o o
Sins = —.
a

If the orbit is scen in a direction perpendicular to its plane, we
should have to put tang s for sin sin this formula, but the angle
¢ is so small that the sine and tangent are almost the same. If we
put 7 for the ratio of the time of revolution of the planet to that of
the satellite, it will be equivalent to supposing

T

T=?F"

The equation for the mass of the planet‘ will then become
% =ha sints;

which is the simplest form of the usnal formula for deducing the
mass of a planet from the motion of its satellite. It is true that we
cannot observe s direetly, since we cannot place ourselves on the
sun, but if we observe the angle s from the earth we can always
reduce it to the sun, because we know the proportion between the
distances of the planet from the earth and from the sun.

All the large planets outside the earth have satellites ; we can
therefore determine their masses in this simple way. The earth
having also a satellite, its mass could be determined in the same
way but for the circumstance already mentioned that we cannot .
determine the distance of the moon in planetary units, as we can
the distance of the satellites of the other planets from their pri-
maries.

The planets Mercury and Venus have no satellites. It is therefore
necessary to determine their masses by their influence in altering
the elliptic motions of the other planets round the sun. The altera-
tions thus produced are for the most part so small that their deter-
mination is a practical problem of some difficulty. Thus the action
of Mercury on the neighboring planet Venus rarely changes the po-
sition of the latter by more than one or two seconds of arc, unless
we compare observations more than a century apart. But regular
and accurate observations of Venus were rarely made until after the
beginning of this century. The mass of Venus is best determined
by the influence of the planet in changing the position of the plane
of the earth’s orbit. Altogether, the determination of the masses
of Mercury and Venus presents onc of the most complicated prob-
lems with which the mathematical astronomer has to deal.



CHAPTER X.
THE REFRACTION AND ABERRATION OF LIGHT.

§ 1. ATMOSPHERIC REFRACTION.

Wuen we refer to the place of a planet or star, we
usually mean its Zrue place—i.c., its direction from
an observer situated at the centre of the earth, consid-
ered as a geometrical point. We have shown in the sec-
tion on parallax how observations which are necessarily
taken at the surface of the earth are reduced to what they
would have been if the observer were situated at the
earth’s centre. In this, however, we have supposed the
star to appear to be projected on the celestial sphere in
the prolongation of the line joining the observer and the
star. The ray from the star is considered as if it suffered
no deflection in passing through the stellar spaces and
through the earth’s atmosphere. But from the principles
of physics, we know that such a luminous ray passing from
an empty space (as the stellar spaces are), and through an
atmosphere, must suffer a refraction, as every ray of light
is known to do in passing from a rare into a denser
medium. As we see the star in the direction which its
light beam has when it enters the eye—that is, as we pro-
ject the star on the celestial sphere by prolonging this
light beam backward into space—there must be an appar-
ent displacement of the star from refraction, and it is
this which we are to consider.

We may recall a few definitions from physics. The
ray which leaves the star and impinges on the outer sur-
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face of the earth’s atmosphere is called the <ncident ray ;
after its deflection by the atmosphere it is called the 7e-
Jracted ray. The difference between these directions is
called the astronomical refraction. If a normal is drawn
(perpendicular) to the surface of the refracting medium at
the point where the incident ray meets it, the acute angle
between the incident ray and the normal is called the
angle of incidence, and the acute angle between the nor-
mal and the refracted ray is called the angle of refraction.
The refraction itself is the difference of these angles.
The normal and both incident and refracted rays are in
the same vertical plane. In
Fig. 69 S 4 is the ray incident
upon the surface B A4 of the re-
fracting medium B’ B A4 N,
A C is the refracted ray, M NV
the normal, S A M and C AN
the angles of incidence and re-
fraction respectively. Produce
(¢ 4 backward in the direction
A8 : §AS is the refraction.
An observer at € will see the
star Sas if it were at 8. 4§
is the apparent direction of the ray from the star S, and
§' is the apparent place of the star as affected by refrac-
tion.

This supposes the space above B B’ in the figure to be
entirely empty spaces, and the earth’s atmosphere, equally
dense throughout, to fill the space below 2 /3. In fact, how-
ever, the earth’s atmosphere is most dense at the surface of
the carth, and gradually diminishes in density to its exterior
boundary. Therefore, if we wish to represent the facts as
they are, we must suppose the atmosphere to be divided
into a great number of parallel layers of air, and by as-
suming an infinite number of these we may also assume that
throughout each of them the air is equally dense. Ienee
the preceding figure will only represent the refraction at

F1G. 71.—REFRACTION.
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a single one of these layers., It follows fromn this that the
path of a ray of light through the atmosphere is not a
straight line like A C, but a curve. We may suppose
this curve to be represented in Iig. 70, where the num-
ber of layers has been taken very small to avoid confusing
the drawing.

Let C be the centre and A4 a point of the surface of the
earth ; let § be a star, and §¢ a ray from the star
which is refracted at the various layers into which we sup-
pose the atmosphere to be divided, and which finally

FIG. 72.—REFRACTION OF LAYERS OF AIR.

enters the eye of an observer at 4 in the apparent direc-
tion 4 . He will then sce the star in the direction &'
instead of that of .8, and § 4 &', the refraction, will
throw the star nearer to the zenith Z.

The angle 8 A Z is the apparent zenith distance of S';
the true zenith distance of 8 is Z A S, and this may be
assumed to coincide with Se, as for all heavenly bodies
except the moon it practically does. The line Se pro-
longed will meet the line 4 Z in a point above 4, sup-
pose at &',
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Law of Refraction.—A consideration of the physical condi-
tions involved has led to the following form for the refraction in
zenith distance (A (),

(a9 = Atan(¥ —(AQ),

“in which ¢’ is the apparent zenith distance of the star, and 4 is a
constant to be determined by observation. A is found to be about
57", so that we may write (A ) = 57" tan {’ approximately.

This expression gives what is called the mean refraction—that is,
the refraction corresponding to a mean state of the barometer and
thermometer. It is clear that changes in the temperature and pres-
sure will affect the density of the air, and hence its refractive power.
The tables of the mean refraction made by BEssEL, based on a more
accurate formula than the one above, are now usually used, and these
are accompanied by auxiliary tables giving the small corrections for
the state of the meteorological instruments.

Let us consider some of the consequences of refraction, and for
our purpose we may take the formula (A ) =57 tan {, as it
very nearly represents the facts. At {' =0 (4{) =0, or at the
apparent zenith there is no refraction. This we should have antici-
pated as the incident ray in itself normal to the refracting surface.

The following extract from a refraction table gives the amount of
refraction at various zenith distances :

b (ag) ¢ (ag)

0° 0 0" 708 2 39"
10° 0 10" 80° 5 20"
20° o 33 85° 10 0"
45° 0 58 88° 18 0’
50° 1Y« 008 89° 24 25"
60° 1" 40" 90° 3¢ 30"

Quantity and Effects of Refraction.—At 45° the refrac-
tion is about 1', and at 90° it is 34’ 30"—that is, bodies at
the zenith distances of 45° and 90° appear elevated above
their true places by 1’ and 343’ respectively. If the sun
has just risen—that is, if its lower limb is just in apparent
contact with the horizon, it is, in fact, entirely below the
true horizon, for the refraction (35°) has clevated its cen-
tre by more than its whole apparent diameter (32").

The moon is full when it is exactly opposite the sun,
and therefore were there no atmosphere, moon-rise of a
full moon and sunset would be simultancous. In faet,
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both bodies being elevated by refraction, we see the full
moon risen before the sun has set. On April 20th, 1837,
the full moon rose eclipsed before the sun had set.

We see from the table that the refraction varies com-
paratively little between 0° and 60° of zenith distance, but
that beyond 80° or 85° its variation is quite rapid.

The refraction on the two limbs of the sun or moon will
then be different, and of course greater on the lower limb.
This will apparently be lifted up toward the upper limb
more than the upper limb is lifted away from it, and
hence the sun and moon appear oval in shape when near
the horizon. For example, if the zenith distance of the
sun’s lower limb is 85°, that of the upper will be about
84° 28’, and the refractions from the tables for these two
zenith distances differ by 1’ ; therefore, the sun will ap-
pear oval in shape, with axes of 32’ and 381’ approxi-
mately.

Determination of Refraction.—If we know the law according
to which refraction varies—thatis, if we have an accurate formula
which will give (A¢) in terms of ¢, we can determine the absolute
refraction for any one point, and from the law deduce it for any
other points. Thus knowing the horizontal refraction, or the re-
fraction in the horizon, we can determine the refraction at other
known zenith distances.

‘We know the time of (theoretical or true) sunrise and sunset by
the formula of § 7, p. 44, and we may observe the time of apparent
rising and setting of the sun (or a star). The difference of these
times gives a means of determining the effect of refraction.

Or, in the observations for latitude by the method of § 8, p. 47, we
can measure the apparent polar distances of a circumpolar star at
its upper and lower culmination. Its polar distances above and
below pole should be equal ; if there were no refraction they would
be so, but they really differ by a quantity which it is easy to see is
the difference of the refractions at lower and upper culminations.
By choosing suitable circumpolar stars at various polar distances,

this difference may be determined for all polar distances, and there-
fore at all zenith distances.

§ 2. ABERRATION AND THE MOTION OF LIGHT.

Besides refraction, there is another cause which prevents
our seeing the celestial bodies exactly in the true direction
in which they lie from us—namely, the progressive mo-
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tion of light. 'We now know that we sce objects only
by the light which emanates from them and reaches our
eyes, and we also know that this light requires time to
pass over the space which separates us from the object.
After the ray of light once leaves the object, the latter
may move away, or even be blotted out of existence, but
the ray of light will continue on its course. Consequent-
ly when we look at a star, we do not see the star that now
is, but the star that was several years ago. If it should be
annihilated, we should still see it during the years which
would be required for the last ray of light emitted by it to
reach us. The velocity of light is so great that in all ob-
servations of terrestrial objects, our vision may be regarded
as instantaneous. But in celestial observations the time
required for the light to reach us is quite appreciable and
measurable.

The discovery of the propagation of light is among the
most remarkable of those made by modern science. The
fact that light requires time to travel was first learned by
the observations of the satellites of Jupiter. Owing to
the great magnitude of this planet, it casts a much longer
and larger shadow than our earth does, and its inner sat-
ellite is therefore eclipsed at every revolution. These
eclipses can be observed from the earth, the satellite van-
ishing from view as it enters the shadow, and suddenly
reappearing when it leaves it again. The accuracy with
which the times of this disappearance and reappearance
could be observed, and the consequent value of such ob-
servations for the determination of longitudes, led the
astronomers of the seventeenth century to make a careful
study of the motions of these bodies. It was, however,
neeessary to make tables by which the times of the eclipses
could be predicted. It was found by RoemEr that these
times depended on the distance of Jupiter from the earth.
If he made his tables agree with observations when the
earth was nearest Jupiter, it was found that as the earth
receded from Jupiter in its annual course around the sun,
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the eclipses were constantly seen later, until, when at its
greatest distance, the times appeared to be 22 minutes late.
Rormer saw that it was in the highest degree improbable
that the actual motions of the satellites should be affected
with any such inequality ; he therefore propounded the
bold theory that it took #ime for light to come from Ju-
piter to the carth, The extreme differences in the times
of the eclipse being 22 minutes, he assigned this as the time
required for light to cross the orbit of the earth, and so
concluded that it came from the sun to the earth in 11
minutes. We now know that this estimate was too great,
and that the true time for this passage is about 8 minutes
and 18 seconds.

Discovery of Aberration.—At first this theory of Roz-
MER was not fully accepted by his contemporaries. But
in the year 1729 the celebrated BrapLry, afterward As-
tronomer Royal of England, discovered a phenomenon of
an entirely different character, which confirmed the theory.
He was then engaged in making observations on the star
y Draconis in order to determine its parallax. The effect
of parallax would have been to make the declination
greatest in June and least in December, while in Mareh
and September the star would oceupy an intermediate or
mean position. DBut the result was entirely different.
The declinations of June and December were the same,
showing no effect of parallax ; but instead of remaining
constant the rest of the year, the declination was some 40
seconds greater in September than in March, when the
effect of parallax would be the same. This showed that
the direction of the star appeared different, not according
to the position of the earth, but according to the direction
of its motion around the sun, the star being apparently
displaced in this direetion.

It has been said that the explanation of this singnlar
anomaly was first suggested to Braprey while sailing on
the Thames. He noticed that when his boat moved rapid-
ly at right angles to the true direction of the wind, the
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apparent direction of the wind changed toward the point
whither the boat was going. 'When the boat sailed in an
opposite direction, the apparent direction of the wind sud-
denly changed in a corresponding way. Here was a phe-
nomenon very analogous to that which he had observed in
the stars, the direction from which the wind appeared to
come corresponding to the direction in which the light
reached the eye. This direction changed with the mno-
tion of the observer according to the same law in the two
cases. He now saw that the apparent displacement of the
star was due to the motion of the rays of light combined
with that of the earth in its orbit, the apparent direction
of the star depending, not upon the absolute direction
from which the ray comes, but upon the relation of this
direction to the motion of the observer.

To show how this is, let 4 B be the optical axis of a
telescope, and § a star from which emanates a ray mov-
ing in the true direction § 4 B’
Perhaps the reader will have a clearer
conception of the subject if he imag-
ines A4 B to be a rod which an ob-
server at &3 seeks to point at the star
S. It is evident that he will point
this rod in such a way that the ray
of light shall run accurately along its
length. Suppose now that the ob-
server is moving from B toward B’
with such a velocity that he moves
from B to B* during the time re-
quired for a ray of light to move from
4 to B’. Suppose also that the ray of light S A reaches
A at the same time that the end of his rod does. Then
it is clear that while the rod is moving from the position
A B tothe position A’ B’, the ray of light will move from
4 to B, and will therefore run accurately along the length
of the rod. For instance, if 5 is one third of the way
from B to B’, then the light, at the instant of the rod tak-

Fre. 73.
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ing the position & @, will bg one third of the way from 4
to B’, and will therefore be accurately on the rod. Con-
sequently, to the observer, the rod will appear to be point-
ed at the star. In reality, however, the pointing will not
be in the true direction of the star, but will deviate from
it by an angle of which the tangent is the ratio of the
velocity with which the observer is carried along to the
velocity of light. This presupposes that the motion of the
observer is at right angles to that of a ray of light. If
this is not his direction, we must resolve his velocity into
two components, one at right angles to the ray and one
parallel to it. The latter will not affect the apparent di-
rection of the star, which will therefore depend entirely
upon the former.

Effocts of Aberration.—The apparent displacement of
the heavenly bodies thus produced is called the aberration
of light. Its effect is to cause each of the fixed stars to
ascribe an apparent annual oscillation in a very small or-
bit. The nature of the displacement may be conceived
of in the following way : Suppose the.earth at any moment,
in the course of its annual revolution, to be moving to-
ward a point of the celestial sphere, which we may call 2.
Then a star lying in the direction /2 or in the opposite di-
rection will suffer no displacement whatever. A star- ly-
ing in any other direction will be displaced in the direc-
tion of the point /” by an angle proportional to the sine of
its angular distance from 2. At 90° from /> the dis-
placement will be a maximum, and its angular amount
will be such that its tangent will be equal to the ratio of
the velocity of the earth to that of light. If 4 be the
¢“ aberration’> of the star, and 2 §its angular distance
from the point /2, we shall have,

tan 4 =:—j-,sinPS,

v and v being the respective velocities of light and of the
earth.
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Now, if the star lies near the pole of the ecliptic, its di-
rection will always be nearly at right angles to the direc-
tion in which the earth is moving. A little consideration
will show that it will seem to deseribe a circle in conse-
quence of aberration. If, however, it lies in the plane of
the earth’s orbit, then the various points toward which
the earth moves in the course of the year all lying in the
ecliptic, and the star being in this same plane, the appar-
ent motion will be an oscillation back and forth in this
plane, and in all other positions the apparent motion will
be in an ellipse more and more flattened as we approach
the ecliptic.

Velocity of Light.—The amount of aberration can be
determined in two ways. If we know the time which
light requires to come from the sun to the earth, a simple
calculation will enable us to determine the ratio between
this velocity and that of the earthin its orbit. For in-
stance, suppose the time to be 498 seconds ; then light
will cross the orbit of the earth in 996 seconds. The cir-
cumference of the earth being found by multiplying its
diameter by 3-1416, we thus find that, on the supposition
we have made, light would move around the circumfer-
ence of the earth’s orbit in 52 minutes and 8 seconds.
But the carth makes this same circuit in 365} days, and
the ratio of these two quantities is 10090. The maximum
displacement of the star by aberration will therefore be the
angle of which the tangent is 14lgg, and this angle we
find by trigonometrical calculation to be 20”-44.

This calculation presnpposes that we know how long
light requires to come from the sun. This is not known
with great accuracy owing to the unavoidable errors with
which the observations of Jupiter’s satellites are affected.
It is therefore more usual to reverse the process and de-
termine the displacement of the stars by direct observa-
tion, and then, by a caleulation the reverse of that we
have just made, to determine the time required by light
to reach us from the sun. Many painstaking determina-
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tions of this quantity have been made since the time of
BrapLEy, and as the result of them we may say that the
value of the ‘‘ constant of aberration,” as it is called, is
certainly between 20”.4and 20”.5 ; the chancesare that it
does not deviate from 20”.44 by more than two or three
hundredths of a second.

It will be noticed that by determining the constant of
aberration, or by observing the eclipses of the satellites of
 Jupiter, we may infer the time required for light to pass
from the sun to the earth. But we cannot thus determine
the velocity of light unless we know how far the sun is.
The connection between this velocity and the distance of
the sun is such that knowing one we can infer the other.
Let us assume, for instance, that the time required for
light to reach us from the sun is 498 seconds, a time which
is probably accurate within a single second. Then know-
ing the distance of the sun, we may obtain the velocity of
light by dividing it by 498. But, on the other hand, if we
can determine how many miles light moves in a second, we
can thence infer the distance of the sun by multiplying it
by the same factor. During the last century the distance
of the sun was found to be certainly between 90 and 100
millions of miles. It was therefore correctly concluded
that the velocity of light was something less than 200,000
miles per second, and probably between 180,000 and
200,000. This velocity has since been determined more
exactly by the direct measurements at the surface of the
earth already mentioned.



CHAPTER XI.
CHRONOLOGY.
§ 1. ASTRONOMICAL MEASURERS OF TIME.

Tue most intimate relation of astronomy to the daily
life of mankind has always arisen from its affording the
only reliable and accurate measure of long intervals of time.
The fundamental units of time in all ages have been the
day, the month, and the year, the first being measured by
the revolution of the earth on its axis, the second, prim-
itively, by that of the moon around the earth, and the third
by that of the earth round the sun. Ilad the natural month
consisted of an exact entire number of days, and the year
of an exact entire number of months, there would have .
been no history of the calendar to write. There being no
such exact relations, innumerable devices have been tried
for smoothing off the difficulties thus arising, the mere
description of which would fill a volume. We shall en-
deavor to give the reader an idea of the general character
of these devices, including those from which our own cal-
endar originated, without wearying him by the introduc-
tion of tedious details.

Of the three units of time just mentioned, the most nat-
ural and striking is the shortest—namely, the day. Mark-
ing as it does the regular alternations of wakefulness and
rest for both man and animals, no astronomical observa-
tions were necessary to its recognition. It is so nearly
uniform in length that the most refined astronomical obser-
vations of modern times have never certainly indicated
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any change. This uniformity, and its entire freedom from
all ambiguity of meaning, have always made the day a
common fundamental unit of astronomers. Except for
the inconvenience of keeping count of the great number
of days between remote epochs, no greater unit would
ever have been necessary, and we might all date our let-
ters by the number of days after Curisr, or after a sup-
posed epoch of creation.

The difficulty of remembering great numbers is such
that a longer unit is absolutely necessary, even in keeping
the reckoning of time for a single generation. Such a
unit is the year. The regular changes of seasons in all ex-
tra-tropical latitudes renders this unit second only to the
day in the prominence with which it must have struck the
minds of primitive man. These changes are, however, so
slow and ill-marked in their progress, that it would have
been scarcely possible to make an accurate determination
of the length of the year from the observation of the sea-
sons. IHere astronomical observations came to the aid of
our progenitors, and, before the beginning of extant his-
tory, it was known that the alternation of seasons was due
to the varying declination of the sun, as the latter seemed
to perform its annual course among the stars in the
‘“ oblique circle’’ or ecliptic. The common people, who did
not understand the theory of the sun’s motion, knew that
certain seasons were marked by the position of certain
bright stars relatively to the sun—that is, by those stars
rising or setting in the morning or evening twilight.
Thus arose two methods of measuring the length of the
year—the one by the time when the sun crossed the equi-
noxes or solstices, the other when it seemed to pass a cer-
tain point among the stars. As we have already explain-
ed, these years were slightly different, owing to the pre-
cession of the equinoxes, the first or equinoctial year being
a little less and the second or sidereal year a little greater
than 365} days.

The number of days in a year is too great to admit of
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their being easily remembered without any break ; an in-
termediate period is therefore necessary. Such a period
is measured by the revolution of the moon around the
earth, or, more exactly, by the recurrence of new moon,
which takes place, on the average, at the end of nearly
294 days. The nearest round number to this is 30 days,
and 12 periods of 30 days each only lack 5} days of being
a year. It has therefore been common to consider a year
as made up of 12 months, the lack of exact correspondence
being filled by various alterations of the length of the
month or of the year, or by adding surplus days to each
year.

The true lengths of the day, the month, and the year
having no common divisor, a difficulty arises in attempting
to make months or days into years, or days into months,
owing to the fractions which will always be left over. At
the same time, some rule bearing on the subject is necessary
in order that people may be able to remember the year,
month, and day. Such rules are found by choosing some
eycle or period which is very nearly an exact number of
two units, of months and of days for example, and by di-
viding this cyele up as evenly as possible. The principle .
on which this is done can be seen at once by an example,
for which we shall choose the lunar month. The true
length of this month is 29-5305884 days. We sece that
two of these months is only a little over 59 days ; so, if
we take a cycle of 59 days, and divide it into two months,
the one of 80 and the other of 29 days, we shall have a
first approximation to a true average month. But our
cyele will be too short by 0¢-061, the excess of two months
over 59 days, and this error will be added at the end of :
every cycle, and thus go on increasing as long as the cycle
is used without change. At the end of 16 cycles, or of
32 lunar months, the accumulated error will amount to
one day. At the end of this time, if not sooner, we
should have to add a day to one of the months.

Seeing that we shall ultimately be wrong if we have a
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two-month eycle, we seek for a more exact one. Each
month of 30 days isnearly 0¢.47 too long, and each month
of 29 days is rather more than 0%.53 too short. So in the
long run the months of 30 days ought to be more numer-
ous than those of 29 days in the ratio that 53 bears to
47, or, more exactly, in the ratio that - 5305884 bears to
-4694116. A close approximation will be had by having
the long months one eighth more numerous than the short
ones, the numbers in question being nearly in the ratio of
9:8. Bo, if we take a cycle of 17 months, 9 long and 8
short ones, we find that 9 x 30+ 8 x 29 = 502 days for
the assumed length of our cycle, whereas the true length
of 17 months is very near 502?.0200. The error will
therefore be -02 of a day for every cycle, and will not
amount to a day till the end of 50 cycles, or nearly 70
years.

A still nearer approach will be found by taking a cycle
of 49 months, 26 to be long and 23 short ones. These
49 months will be composed of 26 x 30+ 23 x 29 =
1447 days, whereas 49 true lunar months will comprise
1446.998832 days. Each cycle will therefore be too long
by only -001168 of a day, and the error would not amount
to a day till the end of 84 cyecles, or more than 3000 years.

Although these cyeles are so near the truth, they could
not be used with convenience because they would begin
at different times of the year. The problem is therefore
to find a cycle which shall comprise an entire number of
years. We shall see hereafter what solutions of this
problem were actually found.

§ 2. FORMATION OF CALENDARS.

The months now or heretofore in use among the peoples
of the globe may for the most part be divided into two
classes :

(1.) The lunar month pure and simple, or the mean
interval between successive new moons,
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(2.) An approximation to the twelfth part of a year,
without respect to the motion of the moon.

The Lunar Month.—The mean interval between con-
secutive new moons being nearly 293 days, it was common
in the use of the pure lunar month to have months of 29 and
30 days alternately. This supposed period, however, as just
shown, will fall short by a day in about 2} years. This de-
fect was remedied by introducing cycles containing rather
more months of 30 than of 29 days, the small excess of
long months being spread uniformly through the cycle.
Thus the Greeks had a cycle of 235 months (to be soon
described more fully), of which 125 were full or long
months, and 110 were short or deficient ones. We see
that the length of this cycle was 6940 days (125 x 30 +
110 x 29), whereas the length of 235 true lunar months
is 235 x 29-53088 = 6939.688 days. The cycle was there-
fore too long by less than one third of a day, and the error
of count would amount to only one day in more than 70
years. The Mohammedans, again, took a cycle of 360
months, which they divided into 169 short and 191 long
ones. The length of this cycle was 10631 days, while the
true length of 360 lunar months is 10631.012 days. The
count would therefore not be a day in error until the end of
about 80 cycles, or nearly 23 centuries. This month there-
fore follows the moon closely enough for all practical pur-

oses.

: Months other than Lunar.—The complications of the
system just described, and the consequent difficulty of
making the calendar month represent the course of the
moon, are so great that the pure lunar month was gen-
erally abandoned, except among people whose religion re-
quired important ceremonies at the time of new moon.
In cases of such abandonment, the year has been usually
divided into 12 months of slightly different lengths. The
ancient Egyptians, however, had 12 months of 30 days
each, to which they added 5 supplementary days at the
close of each year.
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Kinds of Year.—As we find two different systems of
months to have been used, so we may divide the calendar
years into three classes—namely :

(1.) The lunar year, of 12 lunar months.

(2.) The solar year.

(3.) The combined luni-solar year.

The Lunar Year.—We have already called attention to
the fact that the time of recurrence of the year is not well
marked except by astronomical phenomena which the
casual observer would hardly remark. But the time of
new moon, or of beginning of the month, is always well
marked. Consequently, it was very natural for people to
begin by considering the year as made up of twelve luna-
tions, the error of eleven days being unnoticeable in a
single year, unless careful astronomical observations were
made. Even when this error was fully recognized, it might
be considered better to use the regular year of 12 lunar
months than to use one of an irregular or varying number
of months. Such a year is the religious one of the Mo-
hammedans to this day. The excess of 11 days will
amount to a whole year in 33 years, 32 solar years being
nearly equal to 83 lunar years. In this period therefore
each season will have coursed through all times of the
year. The lunar year has therefore been called the
““ wandering year.”’

The Solar Year.—In forming this year, the attempt to
measure the year by revolutions of the moon is entirely
abandoned, and its length is made to depend entirely on
the change of the seasons. The solar year thus indicated
is that most used in both ancient and modern times. Its
length has been known to be nearly 365} days from the
times of the earliest astronomers, and the system adopted
in our calendar of having three years of 365 days each, fol-
lowed by one of 366 days, has been employed in China
from the remotest historic times. This year of 365} days
is now called by us the Julian Year, after JuLivs Csar,
from whom we obtained it.
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The Luni-Solar Year.—If the lunar months must, in
some way, be made up into solar years of the proper av-
erage length, then these years must be of unequal length,
some having twelve months and others thirteen. Thus, a
period or cycle of eight years might be made up of 99
lunar months, 5 of the years having 12 months each, and
3 of them 13 months each. Such a period would comprise
2923% days, so that the average length of the year would
be 365 days 104 hours. Thisis too great by about 4 hours
42 minutes. This very plan was proposed in ancient
Greece, but it was superseded by the discovery of the
Metonic Cycle, which figures in our church calendar to
this day. A luni-solar year of this general character was
also used by the Jews.

The Metonic Cycle.—The preliminary considerations we
have set forth will now enable us to understand the origin
of onur own calendar. We begin with the Metonic Cycle
of the ancient Greeks, which still regulates some religious
festivals, although it has disappeared from our ecivil reck-
oning of time. The necessity of employing lunar months
caused the Greeks great difficulty in regulating their cal-
endar so as to accord with their rules for religious feasts,.
until a solution of the problem was found by Merox, about
433 B.c. The great discovery of MErox was that a period
or cycle of 6940 days could be divided up into 235 lunar
months, and also into 19 solar years. Of these months,
125 were to be of 30 days each, and 110 of 29 days each,
which would, in all, make up the required 6940 days. To
see how nearly this rule represents the actual motions of
the sun and moon, we remark that :

Days. Hours, Min.
235 lunations require 6939 16 31
19 Julian years 6939 18 0

19 truesolar years require 6939 . S {1

We see that though the cycle of 6940 days is a few hours
too long, yet, if we take 235 true lunar months, we find
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their whole duration to be a little less than 19 Julian years of
365} days each, and a little rhore than 19 true solar years.

The problem now was to take these 235 months and divide
them up into 19 years, of which 12 should have 12 months
each, and 7 should have 13 months each. Thelong years,
or those of 13 months, were probably those corresponding
to the numbers 3, 5, 8, 11, 13, 16, and 19, while the first,
second, fourth, sixth, etc., were short years. In general,
the months had 29 and 30 days alternately, but it was
necessary to substitute a long month for a short one every
two or three years, so that in the cycle there should be
125 long and 110 short months.

Golden Number.—This is simply the number of the
year in the Metonic Cycle, and is said to owe its appella-
tion to the enthusiasm of the Greeks over MEeron’s dis-
covery, the authorities having ordered the division and
numbering of the years in the new calendar to be in-
sceribed on public monuments in letters of gold. The rule
for finding the golden number is to divide the nunber of
the year by 19, and add 1 to the remainder. From 1881
to 1899 it may be found by simply subtracting 1880 from
the year. It is employed in our church calendar for find-
ing the time of Easter Sunday.

Period of Callypus.—We have seen that the cycle of
6940 days is a few hours too long either for 235 lunar
months or for 19 solar years. Carnypus therefore sought
to improve it by taking one day off of every fourth cycle,
so that the four cycles should have 27759 days, which
were to be divided into 940 months and into 76 years.
These years would then be Julian years, while the recur-
rence of new moon would only be six hours in error at the
end of the 76 years. Had he taken a day from every
third eycle, and from some year and month of that cycle,
he would have been yet nearer the truth.

The Mohammedan Calendar.-—Among the most remark-
able calendars which have remained in use to the present
time is that of the Mohammedans. The year is composed
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of 12 lunar months, and therefore, as already mentioned,
does not correspond to the course of the seasons. As with
other systems, the problem is to find such a cycle that an
entire number of these lunar years shall correspond to an
integral number of days. Multiplying the length of the
lunar month by 12, we find the true length of the lunar
year to be 354.36706 days. The fraction of a day being
not far from one third, a three-year cycle, comprising two
years of 354 and one of 355 days, would be a first approx-
imation to three lunar years, but would still be one tenth
of a day too short. In ten such cycles or thirty years,
this deficiency would amount to an entire day, and by add-
ing the day at the end of each tenth three-year cycle,
a very near approach to the true motion of the moon
will be obtained. This thirty-year cycle will consist of
10631 days, while the true length of 360 lunar months is
10631-0116 days. The error will not amount to a day until
the end of 87 cycles, or 2610 years, so that this system is
accurate enough for all practical purposes. The common
Mohammedan year of 354 days.is composed of months
containing alternately 30 and 29 days, the first having
30 and the last 29. In the years of 355 days the alter--
nation is the same, except that one day is added to the last
month of the year.

The old custom was to take for the first day of the
month that following the evening on which the new moon
could first be seen in the west. It is said that before the
exact arrangement of the Mohammedan calendar had been
completed, the rule was that the visibility of the crescent
moon should be certified by the testimony of two wit-
nesses. The time of new moon given in our modern
almanacs is that when the moon passes nearly between us
and the sun, and is therefore entirely invisible. The moon
is generally one or two days old before it can be seenin the
evening, and, in consequence, the lunar month of the Mo-
hammedans and of others commences about two days after
the actual almanac time of new moon.
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The civil calendar now in use throughout Christendom
had its origin among the Rdmans, and its foundation was
laid by Jurivs Czsar. Before his time, Rome can hardly be
said to have had a chronological system, the length of the
year not being prescribed by any invariable rule, and be-
ing therefore changed from time to time to suit the caprice
or to compass the ends of the rulers. Instances of this
tampering disposition are familiar to the historical student.
It is said, for instance, that the Gauls having to pay a
certain monthly tribute to the Romans, one of the govern-
ors ordered the year to be divided into 14 months, in
order that the pay days might recur more rapidly. To
remedy this, Casar called in the aid of SosicENES, an as-
tronomer of the Alexandrian school, and by them it was
arranged that the year should consist of 365 days, with the
addition of one day to every fourth year. The old Roman
months were afterward adjusted to the Julian year in
such a way as to give rise to the somewhat irregular
arrangement of months which we now have.

Old and New Styles.—The mean length of the Julian
year is 3654 days, about 11} minutes greater than that of
the true equinoctial year, which measures the recurrence
of the seasons. This difference is of little practical im-
portance, as it only amounts to a weck in a thousand years,
and a change of this amount in that period is productive
of no inconvenience. But, desirous to have the year as
correct as possible, two changes were introduced into the
calendar by Pope Grecory XIII. with this object. They
were as follows :

1. The day following October 4, 1582, was called the
15th instead of the 5th, thus advancing the count 10 days.

2. The closing year of each century, 1600, 1700, cte.,
instead of being always a leap year, as in the Julian
calendar, is such only when the number of the century is
divisible by 4. Thus while 1600 remained a leap year, as
before, 1700, 1800, and 1900 were to be common years.

This change in the calendar was speedily adopted by all
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Catholic countries, and more slowly by Protestant ones,
England holding out until 1752. In Russia it has never
been adopted at all, the Julian calendar being still con-
tinued without change. The Russian reckoning is there-
fore 12 days behind ours, the ten days dropped in 1582
being increased by the days dropped from the years 1700
and 1800 in the new reckoning. This modified calendar
is called the Gregorian Calendar, or New Style, while the
old system is called the Julian Calendar, or Old Style.

1t is to be remarked that the practice of commencing
the year on January 1st was not universal until eompara-
tively recent times. During the first sixteen centuries of
the Julian calendar there was such an absence of definite
rules on this subject, and such a variety of practice on the
part of different powers, that the simple enumeration of
the times chosen by various governments and pontiffs for
the eommencement of the year would make a tedious
chapter. The most common times of commencing were,
perhaps, March 1st and March 22d, the latter being the
time of the vernal equinox. DBut January 1st gradually
made its way, and became universal after its adoption by
England in 1752.

Solar Cycle and Dominical Letter.—In our church cal-
endars January 1st is marked by the letter A, January 2d
by B, and so on to G, when the seven letters begin over
again, and are repeated through the year in the same
order. Each letter there indicates the same day of the
week throughout each separate year, A indicating the day
on which January 1st falls, B the day following, and so
on. An exception occursin leap years, when February
29th and March 1st are marked by the same letter, so that
a change occurs at the beginning of March. The letter
correspondmg to Sunday on this scheme is called the Do-
minical or Sunday letter, and, when we once know what
letter it is, all the Sundays of the year are indicated by
that letter, and hence all the other days of the week by
their letters. In leap years there will be two Dominical
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letters, that for the last ten months of the year being the
one next preceding the letfer for January and February.
In the Julian calendar the Dominical letter must always
recur at the end of 28 years (besides three recurrences at
unequal intervals in the mean time). This period is called
the solar cycle, and determines the days of the week on
which the days of the month fall during each year.

Since any day of the year occurs one day earlier in the
week than it did the year before, or two days earlier when
a 29th of February has intervened, the Dominical letters
recur in the order G, F, E, D, C, B, A, G, ete. A
similar fact may be expressed by saying that any day of
the year occurs one day later in the week for every year
that has elapsed, and, in addition, one day later for every
29th of February that has intervened. This fact will make
it easy to calculate the day of the week on which any his-
torical event happened from the day corresponding in any
past or future year. Let us take the following example :

On what day of the week was WasmNeTox born, the
date being 1732, February 22d, knowing that February
22d, 1879, fell on Saturday. The interval is 147 years:
dividing by 4 we have a quotient of 36 and a remainder
of 3, showing that, had every fourth year in the interval
been a leap year, there were either 36 or 37 leap years.
As a February 29th followed only a week after the date,
the number must be 37 ;* but as 1800 was dropped from
the list of leap years, the number was really only 36.
Then 147 + 36 = 183 days advanced in the week. Di-
viding by 7, because the same day of the week recurs
after seven days, we find a remainder of 1. So February
22d, 1879, is one day further advanced than was February
22d, 1732 ; so the former being Saturday, W asmineTOoN
was born on Friday.

* Perhaps the most convenient way of deciding whether the remainder
does or does not indicate an additional leap year is to subtract it from the
last date, and see whether a February 29th then intervenes. Subtract-
ing 3 years from February 22d, 1879, we have February 22d, 1876,
and a 20th occurs between the two dates, only a week after the first.
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§ 3. DIVISION OF THE DAY.

The division of the day into hours was, in ancient and
medisval times, effected in a way very different from that
which we practice. Artificial time-keepers not being in
general use, the two fundamental moments were sunrise
and sunset, which marked the day as distinct from the
night. The first subdivision of this interval was marked
by the instant of noon, when the sun was on the meridian.
The day was thus subdivided into two parts. The night
was similarly divided by the times of rising and culmina-
tion of the various constellations. Euvrmemrs (480-407
B.c.) makes the chorus in fhesus ask :

‘“ CHORUS.—Whose is the guard? Who takes my turn? The first
signs are setting, and the seven Pleiades are in the sky, and the Eagle glides
midway through heaven. Awake! Why do you delay? Awake from
your beds to watch ! See ye not the brilliancy of the moon? Morn,
morn indeed is approaching, and kither is one of the forerunning stars.”
—The Tragedies of Euripides. Literally Translated by T. A. Buckley.
London : H. G. Bohn. 1854. YVol. 2, p. 322.

The interval between sunrise and sunset was divided
into twelve equal parts called hours, and as this interval
varied with the season, the length of the hour varied also.
The night, whether long or short, was divided into hours
of the same character, only, when the night hours were
long, those of the day were short, and vice versa. These
variable hours were called temporary hours. At the time
of the equinoxes, both the day and the night hours were
of the same length with those we use—namely, the twenty-
fourth part of the day ; these were therefore called eguz-
noctial hours.

The use of these temporary hours was intimately as-
sociated with the time of beginning of the day. Instead
of commencing the civil day at midnight, as we do, it was
customary to commence it at sunset. The Jewish Sabbath,
for instance, commenced as soon as the sun set on Friday,
and ended when it set on Saturday. This made a more
distinetive division of the astronomical day than that
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which we employ, and led naturally to considering the
day and the night as two diStinct periods, each to be di-
vided into 12 hours.

So long as temporary hours were nsed, the beginning of
the day and the beginning of the night, or, as we should
call it, six o’clock in the morning and six o’clock in the
evening, were marked by the rising and setting of the sun ;
but when equinoctial hours were introduced, neither sun-
rise nor sunset could be taken to count from, becaunse both
varied too much in the course of the year. It therefore
became customary to count from noon, or the time at
which the sun passed the meridian. The old custom of
dividing the day and the night each into 12 parts was con-
tinned, the first 12 being reckoned from midnight to
noon, and the second from noon to midnight. The day
was made to commence at midnight rather than at noon
for obvious reasons of convenience, although noon was of
course the point at which the time had to be determined.

Equation of Time.—To any one who studied the annual
motion of the sun, it must have been quite evident that
the intervals between its successive passages over the
meridian, or between one noon and the next, could not
be the same throughout the year, because the apparent
motion of the sun in right ascension is not constant. It
will be remembered that the apparent revolution of the
starry sphere, or, which is the same thing, the diurnal
revolution of the earth upon its axis, may be regarded
as absolutely constant for all practical purposes. This rev-
olution is measured around in right ascension as explained
in the opening chapter of this work. If the sunincreased
its right ascension by the same amount every day, it would
pass the meridian 3’ 56” later every day, as measured by
sidereal time, and hence the intervals between successive
passages would be equal. But the motion of the sun in
right ascension is unequal from two causes: (1) the un-
equal motion of the earth in its annual revolution around
it, arising from the eccentricity of the orbit, and (2) the
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obliquity of the ecliptic. How the first cause produces an
inequality is obvious, and its approximate amount is readily
computed. We have seen that the angular velocity of a
planet around the sun 1s inversely as the square of its ra-
dius vector. Taking the distance of the earth from the sun
as unity, and putting ¢ for the eccentricity of its orbit, its
greatest distance about the end of June is 1+ ¢ = 1-0168,
and its least distance about the end of December is
1—0-0168. Thesquares of these quantities are 1-034 and
1—-034 very nearly ; therefore the motion is about one
thirtieth greater than the mean in December and one
thirtieth less in June. The mean motion is 3™ 56° ; the
actual motion therefore varies from 3™ 48° to 4™ 4°.

The effect of the obliquity of the ecliptic is still greater.
When the sun is near the equinox, its motion along the
ecliptic makes an angle of 234° with the parallels of dec-
lination.  Since its motion in right ascension is reckoned
along the parallel of declination, we see that it is equal to
the motion in longitude multiplied by the cosine of 234°.
This cosine is less than unity by about -07 ; therefore
at the times of the equinox the mean motion is diminished
by this fraction, or by 20 seconds. Therefore the days.
are then 20 seconds shorter than they would be were there
no obliquity. At the solstices the opposite effect is pro-
duced. Here the different meridians of right ascension
are nearer together than they are at the equator in the
proportion of the cosine of 234° to unity ; therefore, when
the sun moves through one degree along the ecliptic, it
changes its right ascension by 1.08° ; here, therefore, the
days are about 19 seconds longer than they would be if the

obliquity of the ecliptic was zero.

We thus have to recognize two slightly different kinds
of days: solar days and mean days. A solar day is the
interval of time between two successive transits of the sun
over the same meridian, while a mean day is the mean of
all the solar days in a year. If we had two clocks, the
one going with perfeet uniformity, but regulated so as to
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keep as near the sun as possible, and the other changing
its rate so as to always follow the sun, the latter would gain
or lose on the former by amounts sometimes rising to 22
seconds in a day. The accumulation of these variations
through a period of several months would lead to such
deviations that the sun-clock would be 14 minutes slower
than the other during the first half of Febrnary, and 16
minutes faster during the first week in November. The
time-keepers formerly used were so imperfect that these
inequalities in the solar day were nearly lost in the neces-
sary irregularities of the rate of the clock. All clocks
were therefore set by the sun as often as was found neces-
sary or convenient. But during the last century it was
found by astronomers that the use of units of time vary-
ing in this way led to much inconvenience ; they there-
fore substituted mean time for solar or apparent time.

Mean time is so measured that the hours and days shall
always be of the same length, and shall, on the average, be
as much behind the sun as ahead of it. We may imagine
a fictitious or mean sun moving along the equator at the
rate of 3™ 56° in right ascension every day. Mean time
will then be measured by the passage of this fictitious sun
across the meridian. Apparent time was used in ordinary
life after it was given up by astronomers, because it was
very easy to set a clock from time to time as the sun
passed a noon-mark. But when the clock was so far im-
proved that it kept much better time than the sun did, it
was found troublesome to keep putting it backward and
forward, so as to agree with the sun. Thus mean time
was gradually introduced for all the purposes of ordinary
life except in very remote country districts, where the
farmers may find it more troublesome to allow for an equa-
tion of time than to set their clocks by the sun every few
days.

The common household almanac should give the equa-
tion of time, or the mean time at which the sun passes the
meridian, on each day of the year. Then, if any one wishes
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to set his clock, he knows the moment of the sun passing
the meridian, or being at some noon-mark, and sets his
time-piece accordingly. For all purposes where accurate
time is required, recourse must be had to astroramical ob-
servation. It is now customary to send time-signals every
day at noon, or some other hour agreed upon, from obser-
vatories along the principal lines of telegraph. Thus at
the present time the moment of Washington noon is sig-
nalled to New York, and over the principal lines of rail-
way to the South and West. Each person within reach of
a telegraph-office can then determine his local time by cor-
recting these signals for the difference of longitude.

§ 4. REMARKS ON IMPROVING THE CALENDAR.

It is an interesting question whether our calendar, this
product of the growth of ages, which we have so rapidly
described, would admit of decided improvement if we
were free to make a new one with the improved materials
of modern science. This question is not to be hastily an-
swered in the affirmative. Two small improvements are
undoubtedly practicable : (1) a more regular division of
the 365 days among the months, giving February 30 days,
and so having months of 30 and 31 days only ; (2) putting
the additional day of leap year at the end of the year in-
stead of at the end of February. The smallest change
from our present system would be made by taking the two
additional days for February, the one from the end of
July, and the other from the end of December, leaving
the last with 80 days in common years and 31 in leap
years. 'When we consider more radical changes than this,
we find advantages set off by disadvantages. For in-
stance, it would on some accounts be very convenient to
divide the year into 13 months of 4 weeks each, the last
month having one or two extra days. The months would
then begin on the same day of the week through each
year, and would admit of a much more convenient subdi-
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vision into halves and quarters than they do now. But the
year would not admit of such a subdivision without divid-
ing the months also, and it is possible that this inconven-
ience would balance the conveniences of the plan.

An actual attempt in modern times to form an entirely
new calendar is of snflicient historic interest to be men-
tioned in this connection. We refer to the so-called Repub-
lican Calendar of revolutionary ¥rance. The year some-
times had 365 and sometimes 366 days, but instead of
having the leap years at defined intervals, one was inserted
whenever it might be necessary to make the autumnal
equinox fall on the first day of the year. The division of
the year was effected after the plan of the ancient Egyp-
tians, there being 12 months of 30 days each, followed by
5 or 6 supplementary days to complete the year, which
were kept as feast-days.* The sixth day of course occur-
red only in the leap years, or Franciads asthey were call-
ed. It was called the Day of the Revolution, and was set
apart for a quadrennial oath to remain free or die.

No attempt was made to fit the new calendar to the old
one, or to render the change natural or convenient. The
year began with the autumnal equinox, or September 22d
of the Gregorian calendar ; entirely new names were
given to the months ; the week was abolished, and in lien
of it the month was divided into three decades, the last or
tenth day of each decade being a holiday set apart for the
adoration of some sentiment. Even the division of the day
into 24 hours was done away with, and a division into
ten hours was substituted.

The Republican Calendar was formed in 1793, the year
1 commencing on September 22d, 1792, and it was
abolished on January 1st, 1806, after 13 years of con-
fusion.

* They received the nickname of sans-culotfides, from the opponents
of the new state of things.
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§ 5. THE ASTRONOMICAL EPHEMERIS, OR NAU-
TICAL ALMANAC.

The Astronomucal Ephemeris, or, as it is more com-
monly called, the Nautical Almanac, is a work in which
celestial phenomena and the positions of the heavenly
bodies are computedin advance. Theneed of such a work
must have been felt by navigators and astronomers from
the time that astronomical predictions became sufficiently
accurate to enable them to determine their position on the
surface of the earth. At first works of this class were pre-
pared and published by individual astronomers who had
the taste and leisure for this kind of labor. MAaNFREDI,
of Bonn, published Kphemerides in two volumes, which
gave the principal aspects of the heavens, the positions of
the stars, planets, ete., from 1715 nntil 1725. This work
included maps of the civilized world, showing the paths of
the principal eclipses during this interval.

The usefulness of such a work, especially to the naviga-
tor, depends upon its regular appearance on a uniform plan
and upon the fulness and accuracy of its data ; it was there-
fore necessary that its issue should be taken up as a gov- -
ernment work. Of works of this class still issued the
earliest was the Connaissance des Temps of France, the
first volume of which was published by Picarp in 1679,
and which has been continned without interruption until
the present time. The publication of the British Nautical
Almanac was commenced in the year 1767 on the repre-
sentations of the Astronomer Royal showing that such a
work would enable the navigator to determine his longi-
tude within one degree by observations of the moon. An
astronomical or nautical almanac is now published annually
by each of the governments of Germany, Spain, Portugal,
France, Great Britain, and the United States. They have
gradually increased in size and extent with the advancing
wants of the astronomer until those of Great Britain and
this country have become octavo volumes of between 500
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and 600 pages. These two are published three years or
more beforehand, in order that navigators going on long
voyages may supply themselves in advance. The Ameri-
can Ephemeris and Nautical Almanac has been regular-
ly published since 1855, the first volume being for that
year. It is designed for the use of navigators the world
over, and the greater part of it is especially arranged for
the use of astronomers in the United States.

The immediate object of publications of this class is to
enable the wayfarer and traveller upon land and the voy-
ager upon the ocean to determine their positions by obser-
vations of the heavenly bodies. Astronomical instruments
and methods of calculation have been brought to such a
degree of perfection that an astronomer, armed with a nau-
tical almanac, a chronometer regulated to Greenwich or
Washington time, a catalogue of stars, and the necessary
instruments of observation, can determine his position at
any point on the earth’s surface within a hundred yards
by a single night’s observations. If his chronometer is
not so regulated, he can still determine his latitude, but not
his longitude. He could, however, obtain a rough idea
of the latter by observations upon the planets, and come
within a very few miles of it by a single observation on
the moon.

The Ephemeris furnishes the fundamental data from
which all our household almanacs are calculated.

The principal quantities given in the American Ephemeris for
each year are as follows :

The positions of the sun and the principal large planets for Green-
wich noon of every day in each year.

The right ascension and declination of the moon’s centre for
every hour in the year.

The distance of the moon from certain bright stars and planets
for every third hour of the year.

The right ascensions and declinations of upward of two hundred
of the brighter fixed stars, corrected for precession, nutation, and
aberration, for every ten days.

The positions of the principal planets at every visible transit over
the meridian of Washington. 3

Complete elements of all the eclipses of the sun and moon, with
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maps showing the passage of the moon’s shadow or penumbra over
those regions of the earth where the eclipses will be visible, and
tables whereby the phases of the eclipses can be accurately com-
puted for any place.

Tables for predicting the occultations of stars by the moon.

Eclipses of Jupiter's satellites and miscellaneous phenomena.

To give the reader a still further idea of the Ephemeris, we pre-
sent a small portion of one of its pages for the year 1882:

FEBRUARY, 1882—AT GREENWICH MEAN NooN.

® THE SUN’S Equation 8
Dav ofl 54 of timeto | ™ |Sidereal time
’:ﬁeo 55 ! ud be sul')l- § or right aif;-
o| Apparent | Diff. iff. tracte ? | cension o
week. | 2| right ascen- | for 1 Apparent de-| f5r |from mean| & | mean sun,
=] slon. hour.| B. | hour.| time. a

H. M. 8. 8. LY ' < M. 8. H M. 8.
Wed. 121 0 13-04{10-175(S 17 2 22-4/142-82| 13 51-34 |0-318[20 46 21.70
Thur, 221 4 16-84{10-141| 16 45 5-4/ 43.57| 13 0-284120 50 18-26
Frid. 321 8 19-82[10-107} 16 27 30-9| 44-30[ 14 5-01 [0-250[20 54 14-81
Sat. 4 |21 12 21.98/10-073[ 16 9 39-2+44.99 14 10.61 [0-216{20 58 11-37
Sun, 521 16 23.83!10-040f 15 51 30-8/ 45-69] 14 15-41 [0-183121 2 7 92
Mon. 6 |21 20 23-88/10-007] 15 383 6-1| 46-36/ 14 19-40 [0-150(21 6 448
Tues. 7121 24 23-63) 9-974| 15 14 25.4/-H47.03) 14 22.60 |0-117[21 10 1-03
Wed. 8 121 28 22-60| 9-941 14 53 29.-1| 47-66 14 25-01 10-084/21 13 57.59
Thur, 9 121 32 20-79) 9909, 14 36 17.7, 48-28) 14 26-65 [0-052(21 17 54-14
Frid. {10 [21 36 18.21| 9-877| 14 16 51.6| 48.88| 14 27-51 |0-020!21 21 50-70
Sat. 11 |21 40 14-88) 9-846] 13 57 11.2| 49.47( 14 27.63 0-011|21 47-25
Sun. 12 |21 44 10-80 9-815 13 37 16-9] 50.03{ 14 26-99 0-042i2l 29 43.81
Mon, | 13 [21 48 5.98( 9-784| 13 17 9-1/450.-59| 14 25-63 |0-073(21 383 40-35
Tues., | 14 121 52 0-43| 9-753| 12 56 48-3| 51.12 14 23.52 |0-104/21 37 86-91
Wed. | 15 21 55 54.16| 9-723| 12 36 14.9] 51.65) 14 20-70 |0-134/21 41 33.46
Thur, | 16 21 59 47-17| 9-693] 12 15 29-31-52.14| 14 17-15 |0-164/21 45 30-02
Frid. 17 ‘22 3 39-47| 9-664] 11 54 32.1 52.62| 14 12.90 [0-193(21 49 26-57
Sat. 18 ‘22 7 31-07) 9-635 11 33 23.6| 53-07 14 7-94 |0-222(21 53 23-13

Of the same general nature with the Ephemeris are catalogues of
the fixed stars. The object of such a catalogue is to give the right
ascension and declination of a number of stars for some epoch, the
beginning of the year 1875 for instance, with the data by which the
position of a star can be found at any other epoch. Such cata-
logues are, however, imperfect owing to the constant small changes
in the positions of the stars and the errors and imperfections of the
older observations. In consequence of these imperfections, a consid-
erable part of the work of the astronomer engaged in accurate de-
terminations of geographical positions consist in finding the most
accurate positions of the stars which he makes use of.






PART 1L
THE SOLAR SYSTEM IN DETAIL.

CHAPTER 1.
STRUCTURE OF THE SOLAR SYSTEM.

TrE solar system, as it is known to us through the dis-
coveries of Copernicus, KepLEr, NEwTON and their sue-
cessors, consists of the sun as a central body, around which
revolve the major and minor planets, with their satellites,
a few periodic comets, and an unknown number of meteor
swarms. These are permanent members of the system.
At times other comets appear, and move usnally in par-
abolas through the system, around the sun, and away from
it into space again, thus visiting the system without be-
ing permanent members of it.

The bodies of the system may be classified as follows :

1. The central body—the Sun.

2. The four inner plancts— Mercury, Venus, the Earth,
Mars.

3. A group of small planets, sometimes called Asteroids,
revolving outside of the orbit of Mars.

4. A group of four outer planets— Jupiter, Saturn,
Uranus, and Neptune.

5. The satellites, or secondary bodies, revolving about
the planets, their primaries.

6. A number of comets and meteor swarms revolving
in very eccentric orbits about the Sun.
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The eight planets of Ggoups 2 and 4 are sometimes
classed together as the major planets, to distinguish them
from the two hundred or more minor plancts of Group 3.
The formal definitions of the various classes, laid down
by Sir WitLian Herscner in 1802, are worthy of repe-
tition :

Planets are celestial bodies of a certain very consider-
able size.

They move in not very eccentric ellipses about the
sun. _

The planes of their orbits do not deviate many degrees
from the plane of the earth’s orbit.

Their motion about the sun is direct.

They may have satellites or rings.

They have atmospheres of considerable extent, which,
however, bears hardly any sensible proportion to their
diameters.

Their orbits are at eertain considerable distances from
each other.

Asteroids, now more generally known as small or
minor planets, are celestial bodies which move about the
sun in orbits, either of little or of eonsiderable eccen-
tricity, the planes of which orbits may be inclined to the
ecliptic in any angle whatsoever. They may or may not
have considerable atmospheres.

Comets are celestial bodies, generally of a very small
mass, though how far this may be limited is yet un-
known.

They move in very cecentric ellipses or in parabolic
ares about the sun.

The planes of their motion admit of the greatest variety
in their situation.

The direction of their motion is also totally undeter-
mined.

They have atmospheres of very great extent, which
show themselves in various forms as tails, coma, haziness,
cte.
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Relative Sizes of the Planets.—The comparative sizes of
the major planets, as they would appear to an observer
situated at an equal distance from all of them, is given in
the following figure.

F16. 74.—RELATIVE SIZES OF THE PLANETS.

The relative apparent magnitudes of the sun, as seen
from the various planets, is shown in the next figure.

Flora and Mnemosyne are two of the asteroids.

A curious relation between the distances of the planets,
known as Bopr’s law, deserves mention. If to the num-
bers,

0, 3, 6, 12, 24, 48, 96, 192, 384,
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each of which (the second excepted) is twice the preced-
ing, we add 4, we obtain tHe series,

4, 7, 10, 16, 28, 52, 100, 196, 388.

These last numbers represent approximately the dis-

F16. 75.—APPARENT MAGNITUDES OF THE SUN AS SEEN FROM DIF-
FERENT PLANETS.

tances of the planets from the sun (except for Neptune,
which was not discovered when the so-called law was an-
nounced).

This is shown in the following table :
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. Actual
PLANETS. Distance. Bode’s Law,

3.9 4-0

72 7-0

10-0 10-0

15.2 16-0

-7 28-0

52-0 52-0

95-4 100.0

[URaming:, o . dades DNEISs o o e s b 191.8 196-0
INeptumne .-~ I U sl R s . 300-4 388-0

It will be observed that Neptune does not fall within
this ingenious scheme. Ceres is one of the minor planets.

The relative brightness of the sun and the various
planets has been measured by ZOLLNER, and the results
are given below. The eolumn per cent shows the per-
centage of error indicated in the separate results :

SUN AND Ratio : 1to Percent, of Error.
Mooml;, . . RNt o o st 618,000 1-6
(ATSL AT o PR s e 6,994,000,000 5.8
Japiter s Gmus A iiea. 5,472,000,000 5.7
Saturn (ball alone) ........ 130,980,000,000 5.0
T Pt e o T e s o 8,486,000,000,000 6-0
INeptume: . shoxh s vtk e 79,620,000,000,000 5.5

The differences in the density, size, mass and distance
of the several planets, and in the amount of solar light
and heat which they receive, are immense. The distance
of Neptune is eighty times that of Mercury, and it re-
ceives only g1 as much light and heat from the sun.
The density of the earth is about six times that of water,
while Saturn’s mean density is less than that of water.

The mass of the sun is far greater than that of any
single planet in the system, or indeed than the combined
mass of all of them. In general, it is a remarkable faet
that the mass of any given planet exceeds the sum of the
masses of all the planets of less mass than itself. This is
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shown in the following table, where the masses of the plan-
ets are taken as fractions of the sun’s mass, which we here
express as 1,000,000,000 :

B g g "

8 “ ] 4 5 B g 3 PLANETS.

S ) B O e R B g

= = > = 5} Z @ = @

200 | 324 | 2,353 | 3,060 | 44,250 ‘ 51,600 | 285,580,| 954,305 1,000,000,000] Masses.
Tl:; q\xfm:fsof Mercury is less than the mass} 200 < 394
The sum of masses of Mercury and Mars o) ‘

is less than the mass of Venus: } s  gat
Mercury + Mars + Venus < Earth : 2,877 < 3,060
Mex::sry 4 Mars + Venus + Earth < Ura- %_ 5937 < 44250
Me;cl;lsry<+Nl\§;:sl;: Venus + Earth 4 Ura- } 50,187 < 51,600
Mercury + Mars + Venus +4 Earth + Ura- %
nus + Neptune < Saturn : } 101,787 < 285,580
Mercury 4+ Mars + Venus + Earth 4 Ura- v
nus + Neptune 4 Saturn < Jupiter : } 387,867 < 954,305

Cor;ll?;ﬁeg] ;:l?)?stl?: Sallllni;:he planets is less } 1,341,672 < 1,000,000,000
The total mass of the small planets, like their number,
is unknown, but it is probably less than one thousandth
that of our earth, and would hardly increase the sum total
of the above masses-of the solar system by more than one
or two units. The sun’s mass is thus over 700 times that
of all the other bodies, and hence the fact of its central
position in the solar system is explained. In fact, the
centre of gravity of the whole solar system is very little
outside the body of the sun, and will be inside of it when
Jupiter and Saturn are in opposite directions from it.
Planetary Aspects.—The motions of the planets about
the sun have been explained in Chapter IV. From what
is there said it appears that the best time to see one of the
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outer planets will be when it is in opposition—that is, when
its geocentric longitude or its right ascension differs 180°
or 12! from that of the sun. At such a time the planet
will rise at sunset and culminate at midnight. During the
three months following opposition, the planet will rise from
three to six minutes earlier every day, so that, knowing
when a planet is in opposition, it is easy to find it at any
other time. For example, a month after opposition the

oYL of Jupiye,,

Fia. 76.

planet will be two to three hours high about sunset, and
will culminate about nine or ten o’clock. Of course the
inner planets never come into opposition, and hence are
best seen about the times of their greatest elongations.

The above figure gives a rough plan of part of the
solar system as it would appear to a spectator immediately
above or below the plane of the ecliptic.
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It is drawn approximately to scale, the mean distance of
the earth (= 1) being half aninch. The mean distance of
Saturn would be 4-77 inches, of Uranus 9°59 inches, of
Neptune 15-03 inches.  On the same scale the distance of

the nearest fixed star would be 103,133 inches, or over one
and one half miles.

The arrangement of the planets and satellites is then—

The Inner Group. Asteroids. The Outer Group.
Vo= 5 200 minor planets, { GUPIET 1§ RO0NS
Earth .and Moon. and probably Uranus and 4 moons:
Mars and 2 moons. A EaOLC: Neptune and 1 moon.

To avoid repetitions, the elements of the major planets
and other data arc collected into the two following tables,
to which reference may be made by the student. The
units in terms of which the various quantities are given
are those familiar to us, as miles, days, ete., yet some of
the distances, etc., are so immensely greater than any
known to our daily experience that we must have recourse
to illustrations to obtain any idea of them at all. For ex-
ample, the distance of the sun is said to be 92§ million
miles. It is of importance that some idea should be had
of this distance, as it is the unit, in terms of which not
only the distances in the solar system are expressed, but
which serves as a basis for measures in the stellar universe.
Thus when we say that the distance of the stars is over
200,000 times the mean distance of the sun, it becomes
necessary to see if some conception can be obtained of one
factor in this. Of the abstract number, 92,500,000, we
have no conception. Itis far too great for us to have
counted. We have never taken in at one view, even
a million similar discrete objects. To count from 1 to
200 requires, with very rapid counting, 60 seconds. Sup-
pose this kept up for a day without intermission ; at the
end we should have counted 288,000, which is about 14
‘of 92,500,000. Hence over 10 months’ uninterrupted
counting by night and day would be required simply to
enumerate the number, and long before the expiration of
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the task all ¢dea of it would have vanished. We may take
other and perhaps more striking examples. We know,
for instance, that the time of the fastest express-trains be-
tween New York and Chicago, which average 40 miles per
hour, is about a day. Suppose such a train to start for
the sun and to continue running at this rapid rate. It
would take 363 years for the journey. Three hundred
and sixty-three years ago there was not a European settle-
ment in America.

A cannon-ball moving continuously across the interven-
ing space at its highest speed would require about nine
years to reach the sun. The report of the cannon, if it
could be conveyed to the sun with the velocity of sound in
air, would arrive there five years after the projectile.
Such a distance is entirely inconceivable, and yet it is
only a small fraction of those with which astronomy has to
deal, even in our own system. The distance of Neptune
is 30 times as great.

If we examine the dimensions of the various orbs, we meet
almost equally inconceivable numbers. The diameter
of the sun is 860,000 miles ; its radiusis but 430,000, and
yet this is nearly twice the mean distance of the moon-
from the earth. Try to conceive, in looking at the moon
in a clear sky, that if the centre of the sun could be
placed at the centre of the earth, the moon would be far
within the sun’s surface. Or again, conceive of the force
of gravity at the surface of the various bodies of the sys-
tem. At the sun it is nearly 28 times that known to us.
A pendulum beating seconds here would, if transported
to the sun, vibrate with a motion more rapid than that of
a watch-balance. The musecles of the strongest man would
not support him erect on the surface of the sun: even
lying down he would erush himself to death under his
own weight of two tons. We may by these illustrations
get some rough idea of the meaning of the numbers in
these tables, and of the incapability of our limited ideas to
comprehend the true dimensions of even the solar system.
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CHAPTER IL
THE SUN.

§ 1. GENERAL SUMMARY.

To the student of the present time, armed with the
powerful means of research devised by modern science,
the sun presents phenomena of a very varied and complex
character. To enable the nature of these phenomena to be
clearly understood, we preface our account of the physical
constitution of the sun by a brief summary of the main
features seen in connection with that body.

Photosphere.—To the simple vision the sun presents
the aspect of a brilliant sphere. The visible shining swr-
Jace of this sphere is called the plhotosphere, to distinguish
it from the body of the sun as a whole. 'The apparently
flat surface presented by a view of the photosphere is called
the sun’s disk.

Spots.—When the photosphere is examined with a tele-
scope, small dark patches of varied and irregular outline
are frequently found upon it. These are called the solar
8pots.

Rotation.—When the spots are observed from day to
day, they are found to move over thesun’s disk in such a
way as to show that the sun rotates on its axis in a period
of 25 or 26 days. The sun, therefore, has awis, poles, and
equator, like the earth, the axis being the line around
which it rotates.

Faculee.—Groups of minute specks brighter than the
general surface of the sun are often seen in the neighbor-
hood of spots or elsewhere. They are called facule.
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Chromosphere, or Sierra.—The solar photosphere is
covered by a layer of glowing vapors and gases of very ir-
regular depth. At the bottom lie the vapors of many
metals, iron, ete., volatilized by the fervent heat which
reigns there, while the upper portions are composed prin-
cipally of hydrogen gas. This vaporous atmosphere is
commonly called the chromosphere, sometimes the sierra.
It is entirely invisible to direct vision, whether with the
telescope or naked eye, except for a few seconds about
the beginning or end of a total eclipse, but it may be seen
on any clear day through the spectroscope.

Prominences, Protuberances, or Red Flames.—The
gases of the chromosphere are frequently thrown up in
irregular masses to vast heights above the photosphere, it
may be 500,000, 100,000, or even 200,000 kilometres.
Like the chromosphere, these masses have to be studied
with the spectroscope, and can never be directly seen ex-
cept when the sunlight is cut off by the intervention of the
moon during a total eclipse. They are then seen as rose-
colored flames, or piles of bright red clouds of irregular
and fantastic shapes. They are now usually called ‘¢ prom-
inences’’ by the English, and ‘¢ protuberances” by
French writers.

Corona.—During total eclipses the sun is seen to be en-
veloped by a mass of soft white light, much fainter than
the chromosphere, and extending out on all sides far be-
yond the highest prominences. It is brightest around the
edge of the sun, and fades off toward its outer boundary,
by insensible gradations. This halo of light is ecalled the
corona, and is a very striking object during a total eclipse.

§ 2. THE PHOTOSPHERE.

Aspect and Structure of the Photosphere.—The disk
of the sun is circular in shape, no matter what side of the
sun’s globe is turned toward us, whence it follows that the
sun itself is a sphere. The aspect of the disk, when
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viewed with the naked eye, or with a telescope of
low power, is that of a uniform bright, shining surface,
hence called the photosphere. With a telescope of
higher power the photosphere is seen to be diversified
with groups of spots, and under good conditions the
whole mass has a mottled or curdled appearance. This
mottling is caused by the presence of cloud-like forms,
whose outlines though faint are yet distinguishable.
The background is also covered with small white dots
or forms still smaller than the clouds. These are the
‘“rice-grains,”” so called. The clouds themselves are
composed of small, intensely bright bodies, irregularly
distributed, of tolerably definite shapes, which seem to be
suspended in or superposed on a darker medium or back-
ground. The spaces between the bright dots vary in
diameter from 2" to 4" (about 1400 to 2800 kilome-
tres). The rice-grains themselves have been seen to
be composed of smaller granules, sometimes not more
than 07.3 (135 miles) in diameter, clustered together.
Thus there have been seen at least three orders of
aggregation in the brighter parts of the photosphere :
the larger cloud-like forms ; the rice grains; and, small-
est of all, the granules. These forms have been studied
with the telescope by Seconr, Huecins, and LancLEy,
and their relations tolerably well made out.

In the Annuaire of the Bureau of Longitudes for 1878 (p 689),
M. JANSSEN gives an account of his recent discovery of the reticulated
arrangement of the solar photosphere.  The paper is accompanied
by a photograph of the appearances described, which is enlarged
threefold. Photographs less than four inches in diameter cannot
satisfactorily show such details. As the granulations of the solar
surface are, in general, not greatly larger than 1 or 2”, the photo-
graphicirradiation, which is sometimes 20" or more, may completely
obscure their characteristics. This difficulty M. JaNssEN has over-
come by enlarging the image and shortening the time of expos-
ure. In this way the irradiation is diminished, because as the di-
ameters increase, the linear dimensions of the details are increased,
and ‘‘ the imperfections of the sensitive plate have less relative im-
portance.’’
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Again, M. JaxssEN has noted that in short exposures the photo-
graphic spectrum is almost monochromatic.

In this way it differs greatly from the visible spectrum, and to
the advantage of the former for this special purpose. The diameter
of the solar photograms have since 1874 been successively increased
to 12, 15, 20, and 30 centimetres. The exposure is made equal all
over the surface. In summer this exposure for the largest photo-

F16. T7.—RETICULATED ARRANGEMENT OF THE PHOTOSPHERE.

grams is less than 0:0005. The development of such pictures is
very slow.

These photograms, on examination, show that the solar surface is
covered with a fine granulation. The forms and the dimensions of
the elementary surfaces are very various. They vary in size from
03 or 0”4 to 3" or 4” (200 to 3000 kilometres). Their forms
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are generally circles or ellipses, but these curves are sometimes
greatly altered. This granulation is apparently spread equally all
over the disk. The brilliancy of the points is very variable, and
they appear to be situated at different depths below the photo-
sphere : the most luminous particles, those to which the solar light
is chiefly due, occupy only a small fraction of the solar surface.
The most remarkable feature, however, is ‘‘ the reticulated ar-
rangement of the parts of the photosphere.” ¢‘The photograms
show that the constitution of the photosphere is not uniform
throughout, but that it is divided in a series of regions more or
less distant from each other, and having each a special constitution.
These regions have, in general, rounded contours, but these are
often almost rectilinear, thus forming polygons. The dimensions
of these figures are very variable; some are even 1’ in diameter
(over 25,000 miles).”” ¢ Between these figures the grains are
sharply defined, but in their interior they are almost effaced and
run together as if by some force.’” These phenomena can be best
understood by a reference to the figure of M. JANsSEN (p. 281).

Light and Heat from the Photosphere.—The photo-
sphere is not equally bright all over the apparent disk.
This is at once evident to the eye in observing the sun with
a telescope. The centre of the disk is most brilliant, and
the edges or lembs are shaded off so as to forcibly suggest
the idea of an absorptive atmosphere, which, in fact, is the
cause of this appearance.

Such absorption occurs not only for the rays by which
we sec the sun, the so-called wisual rays, but for those
which have the most powerful effect in decomposing the
salts of silver, the so-called chemical rays, by which the
ordinary photograph is taken.

The amount of heat received from different portions of
the sun’s disk is also variable, according to the part of
the apparent disk examined. This is what we should ex-
pect. Thatis, if the intensity of any one of these radiations
(as felt at the earth) varies from centre to circumference,
that of every other should also vary, since they are all
modifications of the same primitive motion of the sun’s
constituent particles. DBut the constitution of the sun’s
atmosphere is such that the law of variation for the three
classes is different. The intensity of the radiation in the
sun itself and inside of the absorptive atmosphere is prob-
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ably nearly constant. The ray which leaves the centre of
the sun’s disk in passing to the earth, passes through the
smallest possible thickness of the solar atmosphere, while
the rays from points of the sun’s body which appear to
us near the limbs pass, on the contrary, through the maxi-
mum thickness of atmosphere, and are thus longest sub-
jected to its absorptive action.

This is plainly a rational explanation, since the part of
the sun which is seen by us as the limb varies with the
position of the carth in its orbit and with the position of
the sun’s surface in its rotation, and has itself no physical
peculiarity. The various absorptions of different classes
of rays correspond to this supposition, the more refrangi-
ble rays suffering most absorption, as they must do, being
composed of waves of shorter wave length.

The following table gives the observed ratios of the amount of
heat, light, and chemical action at the centre of the sun and at
various distances from the centre toward the limb. The first
column of the table gives the apparent distances from the centre
of the disk, the sun’s radius being 1:00. The second column gives
the percentage of heat-rays received by an observer on the earth
from points at these various distances. That is, for every 100 heat-
rays reaching the earth from the sun’s centre, 95 reach us from a
point half way from the centre to the limb, and so on. .

Analogous data are given for the light-rays and the chemical
rays. The data in regard to heat are due to Professor LANGLEY ;
those in regard to light and chemical action to Professor PIcKERING
and Dr. VoGEL respectively.

st&);cfn ;:nom Heat Rays. Light Rays. Chemical Rays,
0-00 100 100 100
0-25.. 99 97 98
0-50 95 91 90
0-75 86 79 66
0-85 69 48
0-95 55 25
0-96 62 23
0-98 50 E il 18
1-00 g 37 13

For two equal apparent surfaces, 4 near the sun’s centre and B
near the limb, we may say that the rays from the two surfaces when
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received at the earth have vapp:oximately the following relative
effects :

A has twice as much effect on a thermometer as B (heat);

A has three times as much illuminating effect as B (light);

A has seven times as much effect in decomposing the photo-
graphic salts of silver as B (actinic effect). ‘

It is to be carefully borne in mind that the above numbers refer
to variations of the sun’s rays received from different equal surfaces
A and B, in their effect upon certain arbitrary terrestrial standards of
measure. If, for example, the decomposition of other salts than
those employed for ordinary photographic work be taken as stand-
ards, then the numbers will be altered, and so on. We are simply
measuring the power of solar rays selected from different parts of
the sun’s apparent disk, and hence exposed to different conditions
of absorption in his atmosphere, to do work of a certain selected
kind, as to raise the temperature of a thermometer, to affect the
human retina, or to decompose certain salts of silver.

In this the absorption of the earth’s atmosphere is rendered con-
stant for each kind of experiment. This atmosphere has, however,
a very strong absorptive effect. We know that we can look at the
setting or rising sun, which sends its light rays through great
depths of the earth’s atmosphere, but not upon the sun at noon-
day. The temperature is lower at sunrise or at sunset than at noon,
and the absorption of chemical rays is so marked that a photograph
of the solar spectrum which can be taken in three seconds at noon
requires six hundred seconds about sunset—that is, two hundred
times as long (DRAPER).

Amount of Heat Emitted by the Sun.—Owing to the
absorption of the solar atmosphere, it follows that we re-
ceive only a portion—perhaps a very small portion — of
the rays emitted by the sun’s photosphere.

If the sun had no absorptive atmosphere, it would seem
to us hotter, brighter, and more blue in color.

Exact notions as to how great this absorption is are hard
to gain, but it may be said roughly that the best authori-
ties agree that although it is quite possible that the sun’s
atmosphere absorbs half the emitted rays, it probably does
not absorb four fifths of them.

It is a curious, and as yet we believe unexplained fact,
that the absorption of the solar atmosphere does not affect
the darkness of the Fraunhofer lines. They seem equally
black at the centre and edge of the sun.* The amount

* Prof. Youxa has spoken of a slight observable difference.
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of this absorption is a practical question to us on the earth.
So long as the central body of the sun continues to emit
the same quantity of rays, it is plain that the thickness of
the solar atmosphere determines the number of such rays
reaching the earth. If in former times this atmosphere
was much thicker, then less heat would have reached the
earth. Professor LaneLEY suggests that the glacial epoch
may be explained in this way. If the central body of the
sun has likewise had different emissive powers at different
times, this again would produce a variation in the tempera-
ture of the earth.

Amount of Heat Radiated.—There is at present no way
of determining accurately either the absolute amount of
heat emitted from the central body or the amount of this
heat stopped by the solar atmosphere itself. All that can
be done is to measure (and that only roughly) the amount
of heat really received by the earth, without attempting to
define accurately the circumstances which this radiation
has undergone before reaching the earth.

The difficulties in the way of determining how much
heat reaches the earth in any definite time, as a year, are
twofold. First, wemust be able to distinguish between.
the heat as received by a thermometric apparatus from
the sun itself and that from cxternal objects, as our own
atmosphere, adjacent buildings, etc.; and, second, we
must be able to allow for the absorption of the earth’s
atmosphere.

PourLrer has experimented upon this question, making
allowance for the time that the sun is below the horizon
of any place, and for the fact that the solar rays do not in
general strike perpendicularly but obliquely upon any
given part of the earth’s surface. His conclusions may
be stated as follows: if our own atmosphere were re-
moved, the solar rays would have energy enough to melt
a layer of ice 9 centimetres thick over the whole earth
daily, or a layer of about 32 metres thick in a year.

Of the total amount of heat radiated by the sun, the
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earth receives but an insignificant share. = The sun is
capable of heating the entire surface of a sphere whose ra-
diuns is the earth’s mean distance to the same degree that
the earth is now heated. The surface of such a sphere is
2,170,000,000 times greater than the angular dimensions
of the earth as seen from the sun, and hence the earth re-
ceives less than one two billionth part of the solar radia-
tion. The rest of the solar rays are, co far as we know,
lost in space.

It is found, from direct measures, that a sun-spot gives less heat,
area for area, than the unspotted photosphere, and it is an interest-
ing question how much the climate of the earth can be affected by
this difference.

Professor LANGLEY, of Pittsburgh, has made measurements of the
direct effect of sun-spots on terrestrial temperature. The observa-
tions consisted in measuring the relative amounts of umbral, penum-
bral, and photospheric radiation. The relative umbral, penumbral,
and photospheric areas were deduced from the Kew observations of
spots ; and from a consideration of these data, and confining the
question strictly to changes of terrestrial temperature due to this
cause alone, LANGLEY deduces the result that ‘‘ sun-spots do ex-
ercise a direct effect on terrestrial temperature by decreasing the
mean temperature of the earth at their maximum.”” This change
is, however, very small, as ‘‘ it is represented by a change in the
mean temperature of our globe in eleven years not greater than
0-3° C., and not less than 0-5° C.”’ It is not intended to show that
the earth is, on the whole, cooler in maximum sun-spot years, but
that, as far as this cause goes, it tends to make the earth cooler by
this minute amount. What other causes may co-exist with the
maximum spot-frequency are not considered.

Solar Temperature.—From the amount of heat actunally
radiated by the sun, attempts have been made to determine
the actual temperature of the solar surface. The esti-
mates reached by various authorities differ widely, as the
laws which govern the absorption within the solar en-
velope are almost unknown. Some such law of absorp-
tion has to be supposed in any such investigation, and the
estimates have differed widely according to the adapted
law.

Secont estimates this temperature as about 6,100,000° C.
Other estimates are far lower, but, according to all sound
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philosophy, the temperature must far exceed any ter-
restrial temperature. There can be no doubt that if the
temperature of the earth’s surface were suddenly raised to
that of the sun, no single chemical element would remain
in its present condition. The most refractory materials
would be at once volatilized.

‘We may concentrate the heat received upon several square feet
(the surface of a huge burning-lens or mirror, for instance),
examine its effects at the focus, and, making allowance for the con-
densation by the lens, see what is the minimum possible tempera-
ture of the sun. The temperature at the focus of the lens cannot
be higher than that of the source of heat in the sun ; we can only
concentrate the heat received on the surface of the lens to one
point and examine its effects. 1f a lens three feet in diameter be
used, the most refractory materials, as fire-clay, platinum, the dia-
mond, are at once melted or volatilized. The effect of the lens is
plainly the same as if the earth were brought closer to the sun, in
the ratio of the diameter of the focal image to that of the lens. In
the case of the lens of three feet, allowing for the absorption, etc.,
this distance is yet greater than that of the moon from the east,
so that it appears that any comet or planet so close as this to the
sun, if composed of materials similar to those in the earth, must
be vaporized.

If we calculate at what rate the temperature of the sun would be
lowered annually by the radiation from its surface, we shall find it
to be 1}° Centigrade yearly if its specific heat is that of water,
and between 3° and 6° per annum if its specific heat is the same as .
that of the various constituents of the ecarth itself. It would there-
fore cool down in a few thousand years by an appreciable amount.

§ 3. SUN-SPOTS AND FACULZ.

A very cursory examination of the sun’s disk with a
small telescope will generally show one or more dark spots
upon the photosphere. These are of various sizes, from
minute blaeck dots 1” or 2” in diameter (1000 kilometres
or less) to large spots several minutes of arc in extent.

Solar spots generally have a dark eentral nwucleus or
umbra, surronnded by a border or penumbra of grayish
tint, intermediate in shade between the eentral blackness
and the bright photosphere. By inereasing the power of
the telescope, the spots are seen tobe of very eomplex
forms. The wmbra is often extremely irregular in shape,
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and is sometimes crossed by bridges or ligaments of shining
matter. The penumbra”is composed of filaments of
brighter and darker light, which are arranged in strie.
The appearances of the separate filaments are as if they
were directed downward toward the interior of the spot
in an oblique direction. The general aspect of a spot un-
der considerable magnifying power is shown in Fig. 78.
The first printed account of solar spots was given by
Fasrrrivs in 1611, and GariLeo in the same year (May,
1611) also described them. They were also attentively

F16. 78.—UMBRA AND PENUMBRA OF SUN-SPOT.

studied by the Jesuit Scuriner, who supposed them to be
small planets projected against the solar disk. This idea
was disproved by GavriLeo, whose observations showed
them to belong to the sun itself, and to move uniformly
across the solar disk from east to west. A spot just visible
at the east limb of the sun on any one day travelled slowly
across the disk for 12 or 14 days, when it reached the west
limb, behind which it disappeared. After about the same
period, it reappeared at the eastern limb, unless, as is often
the case, it had in the mean time vanished.
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The spots are not permanent in their nature, but are
formed somewhere on the sun, and disappear after lasting
a few days, weeks, or months. But so long as they last
they move regularly from east to west on the sun’s appar-
ent disk, making one complete rotation in about 25 days.
This period of 25 days is therefore approximately the rota-
tion period of the sun itself.

Spotted Region.—It is found that the spots are chiefly con-
fined to two zones, one in each hemisphere, extending from about
10° to 35° or 40° of heliographic latitude. In the polar regions,
spots are scarcely ever seen, and on the solar equator they are much

Fi1e. 79.—PHOTOGRAPH OF THE SUN.

more rare than in latitudes 10° north or south. Connected with
the spots, but lying on or above the solar surface, are facule, mot-
tlings of light brighter than the general surface of the sun. The
formation of a sun-spot is said to be often presaged by the ap-
pearance of facul@ near the point where the spot is to form.

Solar Rotation.—To obtain the exact period of rotation, the
spots must be carefully fixed in position by micrometric measures
from day to day, the times of the measures being noted. Better
still, daily photographs may be made and afterward measured.
This has been done by several observers, and the remarkable result
reached that the spots do not all rotate exactly in the same period,
but that this time, as determined from any spot, depends upon the
heliographic latitude of the spot, or its angular distance from the
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solar equator. A series of obsgrvations made by Mr. CARRINGTON
of England (by the eye) give the following values of the rotation
times 7, for spots in different heliographic latitudes L :

Pl 0 5° 10° 15° 20°
T = 25-187 days  25-222 25-327 25-500 95-739
L= 95° 30° 35° 40° 45°

T = 26-040 26-398 26-804 27.952 27.730

The period of rotation seems also to vary somewhat in different
years even for spots in the same heliographic latitude, so that we
really cannot assign any one definite rotation time to the sun, as
we can to the earth or the moon.

¢‘ The probability is that the sun, not being solid, has really no one
period of rotation, but different portions of its surface and of its in-
ternal mass move at different rates, and to some extent independent-
ly of each other, though approximately in one plane inclined about
7° to the ecliptic, and around a common axis. The individual
spots drift in latitude as well as in longitude, and, on the whole, it
appears that spots within 15° or 20° of the solar ejuator on either
side move toward the equator, while beyond this limit they move
away from it.”’ (Youne.)

Solar Axis and Equator.—The spots must revolve with the
surface of the sun about his axis, and the directions of their motions
must be approximately parallel to his equator. Fig. 80 shows
the appearances as actually observed, the dotted lines representing
the apparent paths of the spots across the sun’s disk at different
times of the year. In Junec and December these paths, to an ob-
server on the earth, scem to be right lines, and hence at these times
the observer must be in the plane of the solar equator. At other
times the paths are ellipses, and in March and September the
planes of these ellipses are most oblique, showing the spectator to
be then furthest from the plane of the solar equator. The incli-
nation of the solar equator to the ecliptic is, as already stated, about
7° 9, and the axis of rotation is of course perpendicular to it.

Nature of the Spots.—The sun-spots are really depres-
sions in the photosphere, as was first pointed out by Ax-
prEw Wirsox of Glasgow. When a spot is seen at the
edge of the disk, it appears as a noteh in the Jimb, and is
elliptical in shape. As the rotation carries it further and
further on to the disk, it becomes more and more nearly
circular in shape, and after passing the centre of the disk
the appearances take place in reverse order.

These observations were explained by WiLsox, and more fully by

Sir WiLniam HERscHEL, by supposing the sun to consist of an in-
terior dark cool mass, surrounded by two layers of clouds. The
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outer layer, which forms the visible photosphere, was supposed
extremely brilliant. The inner layer, which could not be seen
except when a cavity existed in the photosphere, was supposed
to be dark. The appearance of the edges of a spot, which has
been described as the penumbra, was supposed to arise from
those dark clouds. The spots themselves are, according to this
view, nothing but openings through both of the atmospheres, the
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F16. 80.—APPARENT PATH OF SOLAR SPOT AT DIFFERENT SEASONS.

nucleus of the spot being simply the black surface of the inner
sphere of the sun itself.

This theory, which the figure on the next page exemplifies,
accounts for the facts asthey were known to Herscuer. But when
it is confronted with the questions of the cause of the sun’s heat
and of the method by which this heat has been maintained con-
stant in amount for centuries, it breaks down completely. The
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conclusions of WiLson and HER§CHEL, that the spots are depressions
in the sun’s surface, are undoubted. But the existence of a cool cen-
tral and solid nucleus to the sun is now known to be impossible.
The apparently black centres of the spots are so mostly by contrast.
If they were seen against a perfectly black background, they would
appear very bright, as has been proved by the photometric measures
of Professor LANGLEY. And a cool solid nucleus beneath such an
atmosphere as HERscHEL supposed would soon become gaseous by
the conduction and radiation of the heat of the photosphere. The
supply of solar heat, which has been very nearly constant during
the historic period, would in a sun so constituted have sensibly
diminished in a few hundred years. For these and other reasons,
the hypothesis of HErscHEL must be modified, save as to the fact
that the spots are really cavities in the photosphere.

F1o. 81.—APPEARANCE OF A S8POT NEAR THE LIME AND NEAR THE
CENTRE OF THE SUN,

Number and Periodicity of Solar Spots.—The number
of solar spots which come into view varies from year to
year. Although at first sight this might seem to be what
we call a purely accidental circumstance, like the occur-
rence of cloudy and clear years on the earth, yet the series
of observations of sun-spots by Hofrath Scuwase of
Dessau (see the table), continued by him for forty years,
established the fact that this number varied periodically.
This had indeed been previously suspected by Horrrsow,
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but it was independently suggested and completely proved

by ScHWABE.
TABLE OF SCHWABE’S RESULTS,.

Mean lz.iurqal
ria/
YEAR. ObDay s of Days of 10 | New Groups. D\ercalinatl,io;ln‘%f
servation, Spots. the Magnetic

Needle.
277 22 118 9.75
273 2 161 11-33
282 0 225 11-38
244 0 199 14.74
217 1 190 12.13
239 3 149 12.22
270 49 S | e
247 139 S ok T
213 120 (o)) L pimonl K i L
244 18 173 9.57
200 0 T4 12-34
168 0 333 12-27
202 0 282 12.74
205 0 162 11.03
263 3 152 9-91
283 15 102 782
307 64 68 7.08
312 149 34 7-15
321 111 52 6-61
332 29 114 8-13
314 ¥ 157 8-81
276 0 27 9-55
278 0 330 11-15
285 0 238 10-64
308 2 186 10-44
308 0 151 8-32
337 2 125 © 8-09
299 3 91 7-09
334 65 67 6-81
313 146 79 6-41
321 193 34 5-98
324 52 98 6-95
335 0 188 741
343 0 205 10-37
332 0 211 10-05
322 0 204 9-17
317 3 160 8-59
330 2 124 8-84
326 4 130 8-02
307 25 93 8-14
349 76 45 7-65
316 195 25 7-09
301 23 101 8:15
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The periodicity of the spots is evident from the table.
It will appear in a more striking way from the following
summary :

From 1828 to 1831, sun without spots on only.... 1 day.
In 1833, ¢ o o ..., 139 days.
From 1836 to 1840, “ % G Ao SRt
In 1843, 2 “ “ i o o
From 1847 to 1851, * i o) 3665 ey
In 1856, A % & oy 188 ety
From 1858 to 1861, * L ¢ .... no day.
In 1867, 4 & B .o.. 195 days.

Every 11 years there is a minimum number of spots,
and about 5 years after each minimum there is a maxi-
mum. If instead of merely counting the number of spots,
measurements are made on solar photograms, as they
are called, of the extent of spotted area, the period comes
‘out with greater distinctness. This periodicity of the
area of the solar spots appears to be connected with mag-
netic phenomena on the earth’s surface, and with the num-
ber of auroras visible. It has been supposed to be con-
nected also with variations of temperature, of rainfall,
and with other meteorological phenomena such as the mon-
soons of the Indian Ocean, ete. The cause of this period-
icity is as yet unknown. Carrizeron, De rA Rug,
Lorwy, and StewArT have given reasons which go to show
that there is a connection between the spotted area and the
configurations of the planets, particularly of Jupiter,
Venus, and Mercury. ZOLLNER says that the cause lies
within the sun itself, and assimilates it to the periodic
action of a geyser, which seems to be & priori probable.
Since, however, the periodic variations of the spots cor-
respond to the magnetic variation, as exhibited in the last
column of the table of ScuwaBE’s results, it appears that
there may be some connection of an unknown nature
between the sun and the earth at least. DBut at present
we can only state our limited knowledge and wait for
further information.
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Dr. Worr (Direetor of the Zurich Observatory) has col-
lected all the available observations of the solar spots, and
it is found that since 1610 we have a tolerably complete
record of these appearanees. The number and character
of the spots are now noted every day by observers in many
quarters of the civilized world. This long series of obser-
vations has served as a basis to determine each epoch of
maximum and minimum which has oecurred sinee 1610,
and from thence to determine the length of each single
period.

The following table gives Dr. WorLr’s results :

TABLE GIVING THE TiMES or MAXIMUM AND MINIMUM SuN-SpoT
FREQUENCY, ACCORDING TO WOLF.

FiRrsT SERIES. SECOND SERIES.
Minima. Diff. | Maxima. | Diff, Minima. Diff. | Maxima, | Diff.
A.D. 1610-8 1615-5 1745-0 1750-3

8.2 10-5 10-2 11-2
1619.0 1626-0 1755-2 1761-5

15.0 13-5 11.3 8.2
1634-0 16395 1766-5 1769-7

11.0 9.5 9-0 ’ 8.7
1645-0 1649-0 17755 1778-4

10-0 11-0 9-2 9.7
1655-0 1660-0 1784-7 1788.1)

11.0 15-0 13-6 16-1
1666-0 1675-0 1798-3 1804-2

13-5 10-0 12-3 12-2
1679-5 1685-0 1810-6 1816-4

10-0 8.0 127 13-5
1689-5 1693-0 1823-3 1829-9

8-5 12-5 10-6 7.8
16980 1705-5 1833-9 1837-2

14.0 12.7 | 0.6 10-9
1712.0 1718.2 1843-5 1848-1

11.5 9-3 12-5 12-0
1723-5 17275 1856-0 1860-1

10-5 11-2 11.2 10-5
1734-0 1738.7 1867-2 1870-1

11-20+2-11 years, | 11-20+2-06 ys.|| 11-11+1-54 ys. |10-94+2-52 ys.

+0-64 +0-63 +0-47 +0-76
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From the first series of earlier observations, the period
comes out from observed ginima, 11-20 years, with a
variation of two years ; from observed maxima the period
is 1120 years, with variation of three years—that is, this
series shows the period to vary between 13.3 and 9.1
years. If we suppose these errors to arise only from errors
of observation, and not to be real changes of the period
itself, the mean period is 11.20 4+ 0.64.

The results from the second series are also given at
the foot of the table. From a combination of the two, it
follows that the mean period is 11.111 + 0-307 years,
with an oscillation of + 2.030 years.

These results are formulated by Dr. Worr as follows :
The frequency of solar spots has continued to change
periodically since their discovery in1610 ; the mean length
of the period is 11} years, and the separate periods may
differ from this mean period by as much as 2.03 years.

A general relation between the frequency of the spots and the
variation of the magnetic needle is shown by the numbers which
have been given in the table of ScHwABE’S results. This relation
has been most closely studied by Worr. He denotes by ¢ the
number of groups of spots seen on any day on the sun, counting
cach isolated spot as a group ; by f is denoted the number of spots
in each group (fy is then proportional to the spotted area); by % a
coeflicient depending upon the size of the telescope used for obser-
vation, and by 7 the daily relative number so called ; then he sup-
poses

r=Fk(f+10-9).

From the daily relative numbers are formed the mean monthly
and the mean annual relative numbers 7. Then, according to
Wovr, if » is the mean annual variation of the magnetic needle at
any place, two constants for that place, « and 3, can be found, so
that the following formula is true for all years :

© =taatden
Thus for Munich the formula becomes,
v =627 + 0'-051 »;
and for Prague,

2 =580 + 0'-045 », and 8o on.
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MuNICcH, PRAGUE.
YEAR.
Observeq. Computed. a Observed, | Computed. A
’ ’ 4 7
1870.... .| 12.27 12.77 | —0.50 11-41 12.10 — 0-69
11576 LR 11.70 11.56 |+ 0.-14| 11.60 10-89 + 0-71
LS T 10-96 11-13 | — 0-17| 10.-70 10-46 + 0-24
08355 o l 9.12 9.-5¢4 | —0-42 9:05 8.87 + 0-18

The above comparison bears out the conclusion that the
magnetie variations are subjected to the same perturba-
tions as the development of the solar spots, and it may
be said that the changes in the frequency of solar spots
and the like changes of magnetic variations show that
these two phenomena are dependent the one on the other,
or rather upon the same cosmical cause. What this cause
is remains as yet unknown.

§ 4. THE SUN’S CHROMOSPHERE AND CORONA.

Phenomena of Total Eclipses.—The beginning of a
total solar eelipse is an insignificant phenomenon. It is
marked simply by the small black notch made in the lu-
minous disk of the sun by the advancing edge or limb of
the moon. This always occurs on the western half of the
sun, as the moon moves from west to east in its orbit. An
hour or more must elapse before the moon has advanced
sufticiently far in its orbit to cover the sun’s disk. During
this time the disk of the sun is gradually hidden until it
becomes a thin cresecent. To the general spectator there
is little to notice during the first two thirds of this period
from the beginning of the eclipse, unless it be perhaps the
altered shapes of the images formed by small holes or
apertures. Under ordinary circumstances, the image of
the sun, made by the solar rays which pass through a small
lLiole—in a card, for example —are circular in shape, like the
shape of the sun itself. When the sun is crescent, the
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image of the sun formed by such rays is also crescent,
and, under favorable circumstances, as in a thick forest
where the interstices of the leaves allow such images to be
formed, the effect is quite striking. The reason for this
phenomenon is obvious.

The actual amount of the sun’s light may be diminished
to two thirds or three fourths of its ordinary amount with-
out its being strikingly perceptible to the eye. What is
first noticed is the change which takes place in the color
of the surrounding landscape, which begins to wear a rud-
dy aspeet. This grows more and more pronounced, and
gives to the adjacent country that weird effeet which lends
so much to the impressiveness of a total eclipse. The rea-
son for the change of color is simple. We have already
said that the sun’s atmosphere absorbs a large proportion
of the bluer rays, and as this absorption is dependent on
the thickness of the solar atmosphere through which the
rays must pass, it is plain that just before the sun is total-
ly covered the rays by which we see it will be redder than
ordinary sunlight, as they are those which come from
points near the sun’s limb, where they have to pass through
the greatest thickness of the sun’s atmosphere.

The color of the light becomes more and more lurid up
to the moment when the sun has nearly disappeared. If
the spectator is upon the top of a high mountain, he can
then begin to see the moon’s shadow rushing toward him
at the rate of a mile in about two seconds. Just as the
shadow reaches him there is a sudden increase of darkness
—the brighter stars begin to shine in the dark lurid sky,
the thin crescent of the sun breaks up into small points or
dots of light, which suddenly disappear, and the moon it-
self, an intensely black ball, appears to hang isolated in the
heavens.

An instant afterward, the coronais seen surrounding the -
black disk of the moon with a soft effulgence quite differ-
ent from any other light known to us. Near the moon’s
limb it is intensely bright, and to the naked eye uniform
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in structure ; 5" or 10" from the limb this inner corona
has a boundary more or less defined, and from this extend
streamers and wings of fainter and more nebulous light.
These are of various shapes, sizes, and brilliancy. No
two solar eclipses yet observed have been alike in this re-
spect.

These wings seem to vary from time to time, though at
nearly every eclipse the same phenomena are described by
observers situated at different points along the line of
totality, That is, these appearances, though changeable,
do not change in the time the moon’s shadow requires to
pass from Vancouver’s Island to Texas, for example, which
is some fifty minutes.

Superposed upon these wings may be seen (sometimes
with the naked eye) the red flames or protuberances which
were first discovered during a solar eclipse. These need
not be more closely described here, as they can now be
studied at any time by aid of the spectroscope.

The total phase lasts for a few minutes (never more than
six or seven), and during this time, as the eye becomes more
and more accustomed to the faint light, the outer corona is
seen to stretch further and further away from the sun’s
limb. At the eclipse of 1878, July 29th, it was seen by
Professor LaxeLEY, and by one of the writers, to extend
more than 6° (about 9,000,000 miles) from the sun’s limb.
Just before the end of the total phase there is a sudden
increase of the brightness of the sky, due to the increased
illumination of the earth’s atmosphere near the observer,
and in a moment more the sun’s rays are again visible,
seemingly as bright as ever. From the end of totality till
the last contact the phenomena of the first half of the
eclipse are repeated in inverse order.

Telescopic Aspect of the Corona.— Such are the ap-
pearances to the naked eye. The corona, as seen through
a telescope, is, however, of a very complicated structure.
The inner corona is usually composed of bright strise or fil-
aments separated by darker bands, and some of these lat-
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ter are sometimes seen to be almost totally black. The
appearances are extremely irregular, but they are often as
if the inner corona were made up of brushes of light on a
darker background. The direction of these brushes is
often radial to the sun, especially about the poles, but
where the outer corona joins on to the inner these brushes
are sometimes bent over so as to join, as it were, the
boundaries of the outer light.

The great difficulties in the way of studying the corona
have been due to the short time at the disposal of the ob-
server, and to the great differences which cven the best
draughtsmen will make in their rapid sketches of so com-
plicated a phenomenon. The figure of the inner eorona
on the next page is a copy of one of the best drawings made
of the eclipse of 1869, and is inserted chiefly to show the
nature of the only drawings possible in the limited time.
The numbers refer to the red prominences around the limb.
The radial structure of the corona and its different exten-
sion and nature at different points are also indicated in the
drawing.

The figure on page 302, is acopy of a crayon drawing made in 1878.
The best evidence which we can gain of the details of the corona
comes, however, from a series of photographs taken during the whole
of totality. A photograph with a short exposure gives the details
of the inner corona well, but is not affected by the fainter outlying
parts. One of longer exposure shows details further away from
the sun’s limb, while those near it are lost in a glare of light, being
over-exposed, and so on. In this way a series of photographs
gives us the means of building up, as it were, the whole corona
from its brightest parts near the sun’s limb out to the faintest por-
tions which will impress themselves on a photographic plate.

The corona and red prominences are solar appendages.
It was formerly doubtful whether the corona was an
atmosphere belonging to the sun or to the moon. At the
eclipse of 1860 it was proved by measurements that the
red prominences belonged to the sun and not to the moon,
since the moon gradumally covered them by its motion,
they remaining attached to the sun. The corona has also
since been shown to be a solar appendage.
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The eclipse of 1851 was total in Sweden and neigh-
boring parts, and was very carefully observed. Similar
prominences were seen about the sun’s limb, and one of
s0 bizarre a form as to show that it could by no possibility
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F16. 82.—DRAWING OF THE CORONA MADE DURING THE ECLIPSE OF
ATGUST 7, 1869.

be a mountain or solid mass, since if such had been the
case it would inevitably have overturned. It was there-
fore a gaseous or cloud-like appendage belonging to the
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F16. 83.—SUN’S CORONA DURING THE ECLIPSE OF JULY 29, 1878.
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sun. There were others of various and perhaps varying
shapes, and the bases of these were connected by a low
band of serrated rose-colored light. One of these protu-
berances was shown to be entirely above the sun, as if
floating within its atmosphere. Around the whole disk
of the sun a ring of similar nature to the prominences
exists, which is brighter than the corona, and seems to
form a base for the protuberances themselves; this is
the sierra. Some of the red flames were of enormous
height ; one of at least 80,000 miles.

Fig. 84.—FORMS OF THE SOLAR PROMINENCES AS SEEN WITH THE
SPECTROSCOPE.

Gaseous Nature of the Prominences.—The next eclipse
(1868, July) was total in India, and was observed by many
skilled astronomers. A discovery of M. Janssen’s* will
make this eclipse forever memorable. He was provided
with a spectroscope, and by it observed the prominences.
One prominence in particular was of vast size, and when
the spectroscope was turned upon it, its spectrumn was dis-
continuous, showing the bright lines of hydrogen gas.

* Now Director of the Solar Observatory of Meudon, near Paris.
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The brightness of the spectrum was so marked that
Janssen determined to keep his spectroscope fixed npon it
even after the reappearance of sunlight, to see how long it
could be followed. It was found that its spectrum could
still be seen after the return of complete sunlight ; and not
only on that day, but on subsequent days, similar phenom-
ena could be observed.

One great difficulty was conquered in an instant. The
red flames which formerly were only to be seen for a few
moments during the comparatively rare occurrences of
total eclipses, and whose observation demanded long and
expensive journeys to distant parts of the world, could
now be regularly observed with all the facilities offered by
a fixed observatory.

This great step in advance was independently made by
Mr. LookYER,* and his discovery was derived from pure
theory, unaided by the eclipse itself. By this method
the prominences have been carefully mapped day by
day all around the sun, and it has been proved that
around this body there is a vast atmosphere of hydrogen
gas—the chromosphere or sierra. From out of this the
prominences are projected sometimes to heights of 100,000
kilometres or more.

It will be necessary to recall the main facts of observation which are
fundamental in the use of the spectroscope. When a brilliant point is
examined with the speetroscope, it is spread out by the prism into a
band—the spectrum. Using two prisms, the spectrum becomes longer,
but the light of the surface, being spread over a greater area, is en-
feebled. Three, four, or more prisms spread out the spectrum propor-
tionally more. If the speetrum is of an incandescent solid or liquid, it
isalways continuous, and it can be enfeebled to any degree; so-that
an%" part of it can be made as feeble as desired.

his method is precisely similar in principle to the use of the telescope
in viewing stars in the daytime. The telescope lessens the brilliancy
of the sky, while the disk of the star is kept of the same intensity,
as it is a point in itself. It thus becomes visible. If it is a glowing gas,
its spectrum will consist of a definite number of lines, say three—A, B,
C, for example. Now suppose the spectrum of this gas to be superposed
on the continuous speetrum of the sun ; by using only one prism, the

* Mr. J. NorMAN LockYEer, F.R.S., of London, now attached to
the Science and Art Department of the South Kensington Museum.
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solar spectrum is short and brilliant, and every part of it may be more
brilliant than the line spectrum of the gas. By increasing the disper-
sion (the number of prisms), the solar spectrum is proportionately en-
feebled. If the ratio of the light of the bodies themselves, the sun and
the gas, is not too great, the continuous spectrum may be so enfeebled
that the line spectrum will be visible when superposed upon it, and
the spectrum of the gas may then be seen even in the presence of true
sunlight. Such was the process imagined and successfully carried out
by Mr. LocKYER, and such is in essence the method of viewing the
prominences to-day adopted.

The Coronal Spectrum.—In 1869 (August 7th) a total solar
eclipse was visible in the United States. It was probably observed
by more astronomers than any preceding eclipse. Two American
astronomers, Professor YouNe, of Dartmouth College, and Professor
HarkxEss, of the Naval Observatory, especially observed the spec-
trum of the corona. This spectrum was found to consist of one
faint greenish line crossing a faint continuous spectrum. The
place of this line in the maps of the solar spectrum published by
Kircunorr was occupied by a line which he had attributed to the
iron spectrum, and which had been numbered 1474 in his list, so
that it is now spoken of as 1474 K. This line is probably due to
some gas which must be present in large and possibly variable
quantities in the corona, and which is not known to us on the earth,
in this form at least. It is probably a gas even lighter than hydro-
gen, as the existence of this line has been traced 10’ or 20’ from
the sun’s limb nearly all around the disk.

In the eclipse of July 29th, 1878, which was total in Colorado
and Texas, the continuous spectrum of the corona was found to be
crossed by the dark lines of the solar spectrum, showing that the
coronal light was composed in part of reflected sunlight.

§ 5. SOURCES OF THE SUN’S HEAT.

Theories of the Sun’s Constitution. — No considerable
fraction of the heat radiated from the sun returns to it
from the celestial spaces, since if it did the earth would
intercept some of the returning rays, and the temperature
of night would be more like that of noonday. But we
know the sun is daily radiating into space 2,170,000,000
times as much heat as is daily received by the earth, and
it follows that unless the supply of heat is infinite (which
we cannot believe), this enormous daily radiation must in
time exhaust the supply. When the supply is exhausted,
or even seriously trenched upon, the result to the inhab-
itants of the earth will be fatal. A slow diminution of
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the daily supply of heat wonld produce a slow change of
climates fromn hotter toward colder. The serious results
of a fall of 50° in the mean annual temperature of the
earth will be evident when we remember that such a fall
would change the climate of France to that of Spitzber-
gen. The temperature of the sun cannot be kept up by
the mere combustion of its materials. If the sun were
solid carbon, and if a constant and adequate supply of
oxygen were also present, it has been shown that, at the
present rate of radiation, the heat arising from the com-
bustion of the mass would not last more than 5000 years.

An explanation of the solar heat and light has been
suggested, which depends upon the fact that great amounts
of heat and light are produced by the collision of two
rapidly moving heavy bodies, or even by the passage of
a heavy body like a meteorite through the earth’s atmos-
phere. In fact, if we had a certain mass available with
which to produce heat in the sun, andif this mass were of
the best possible materials to produce heat by burning,
it can be shown that, by burning it at the surface of the
sun, we should produce vastly less heat than if we simply
allowed it to fall into the sun. In the last case, if it fell
from the earth’s distance, it would give 6000 times more
heat than by its burning.

The least velocity with which a body from space could
fall upon the sun’s surface is in the neighborhood of 280
miles in a second of time, and the velocity may be as great
as 350 miles. ¥rom these facts, the meteoric theory of
solar heat originated. It is in effect that the heat of the
sun is kept up by the impact of meteors upon its surface.

No doubt immense numbers of meteorites fall into the
sun daily and hourly, and to each one of them a certain
considerable portion of heat is due. It is found that, to
account for the present amount of radiation, meteorites
equal in mass to the whole earth would have to fall into
the sun every century. It is extremely improbable that a
mass one tenth as large as this is added to the sun in this
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way per century, if for no other reason because the earth
itself and every planet would receive far more than its
present share of meteorites, and would itself become quite
hot from this cause alone.

There is still another way of accounting for the sun’s
constant supply of energy, and this has the advantage of
appealing to no canse outside of the sun itself in the ex-
planation. It is by supposing the heat, light, etc., to be
generated by a constant and gradual contraction of the
dimensions of the solar sphere. As the globe cools by
radiation into space, it must contract. Inso contracting its
ultimate constituent parts are drawn nearer together by
their mutual attraction, whereby a form of energy is de-
veloped which can be transformed into heat, light, elec-
tricity, or other physical forces.

This theory is in complete agreement with the known
laws of force. It also admits of precise comparison with
facts, since the laws of heat enable us, from the known
amount of heat radiated, to infer the exact amount of con-
traction in inches which the linear dimensions of the sun
must undergo in order that this snpply of heat may be
kept unchanged, as it is practically found to be. With
the present size of the sun, it is found that it is only
necessary to suppose that its diameter is diminishing at the
rate of about 220 feet per year, or 4 miles per century,
in order that the supply of heat radiated shall be constant.
It is plain that such a change as this may be taking place,
since we possess no instruments sufficiently delicate to
have detected a change of even ten times this amount
since the invention of the telescope.

It may seem a paradoxical conclusion that the cooling
of a body may cause it to become hotter. This indeed is
true only when we suppose the interior to be gaseous, and
not solid or lignid. It is, however, proved by theory that
this law holds for gaseous masses.

If a spherical mass of gas be condensed to one half the primitive
diameter, the central attraction upon any part of its mass will be in-
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creased fourfold, while the surface subjected to this attraction will
be reduced to one fourth. Heyce the pressure per unit of surface
will be augmented sixteen times, while the density will be increased
but eight times. If the elastic and the gravitating forces were in
equilibrium in the original condition of the mass, the temperature
must be doubled in order that they may still be in equilibrium when
the diameter is reduced to one half.

If, however, the primitive body is originally solid or liquid, or if,
in the course of time, it becomes so, then this law ceases to hold, and
radiation of heat produces a lowering of the temperature of the
body, which progressively continues until it is finally reduced to the
temperature of surrounding space.

We cannot say whether the sun has yet begun to liquefy
in his interior parts, and hence it is impossible to prediet
at present the duration of his constant radiation. Theory
shows us that after about 5,000,000 years, the sun radiating
heat as at present, and still remaining gaseous, will be re-
duced to one half of its present volume. It seems prob-
able that somewhere about this time the solidification
will have begun, and it is roughly estimated, from this
line of argument, that the present conditions of heat radi-
ation cannot last greatly over 10,000,000 ycars.

The future of the sun (and hence of the earth) cannot,
as we see, be traced with great exactitude. The past can
be more closely followed if we assume (which is tolerably
safe) that the sun up to the present has been a gaseous, and
not a solid or liquid mass. Four hundred years ago,
then, the sun was about 100 miles greater in diameter
than now ; and if we suppose this process of contrac-
tion to have regularly gone on at the same rate (an
uncertain supposition), we can fix a date when the sun
filled any given space, out even to the orbit of Nep-
tune—that is, to the time when the solar system consisted
of but one body, and that a gaseous or nebulous one.
It will subsequently be seen that the ideas here reached
@ posteriori have a striking analogy to the @ priori ideas
of Kanr and La Prace.

It is not to be taken for granted, however, that the
amount of heat to be derived from the contraction of the
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sun’s dimensions is infinite, no matter how large the prim-
itive dimensions may have been. A body falling from
any distance to the sun ean only have a certain finite veloe-
ity depending on this distanee and the mass of the sun
itself, which, even if the fall be from an infinite distance,
eannot exceed, for the sun, 350 miles per second. In
the same way the amount of heat generated by the con-
traction of the sun’s volume from any size to any other is
finite, and not infinite.

It has been shown that if the sun has always been
radiating heat at its present rate, and if it had originally
filled all spaee, it has required 18,000,000 years to contract
to its present volume. Inother words, assuming the pres-
ent rate of radiation, and taking the most favorable ecase,
the age of the sun does not exceed 18,000,000 years. The
earth, is of course, less aged. The supposition lying at the
base of this estimate is that the radiation of the sun has
been constant throughout the whole period.  This is quite
unlikely, and any changes in this datum affect greatly the
final number of years which we have assigned. While
this number may be greatly in error, yet the method of
obtaining it seems, in the present state of scicnee, to be-
satisfactory, and the main conelusion remains that the past
of the sun is finite, and that in all probability its future is
a limited one. The exaet number of eenturies that it is to
last are of no moment even were the data at hand to ob-
tain them : the essential point is, that, so far as we ean’
see, the sun, and incidentally the solar system, has a finite
past and a limited future, and thaty like other natural ob-
jects, it passes through its regular stages of birth, vigor,
deeay, and death, in one order of progress.



CHAPTER IIL
THE INFERIOR PLANETS.

§ 1. MOTIONS AND ASPECTS.

Tug inferior planets are those whose orbits lie between
the sun and the orbit of the earth. Commencing with the
more distant ones, they comprise Venws, Mercury, and, in
the opinion of some astronomers, a planet called Vulcan,
or a group of planets, inside the orbit of Mercury. The
planets Mercury and Venushave so much in common that
a large part of what we have to say of one can be applied
to the other with but little modification.

The real and apparent motions of these planets have
already been briefly described in Part I., Chapter IV. 1t
will be remembered that,in accordance with KrrLrr’s
third law, their periods of revolution around the sun are
less than that of the earth. Consequently they overtake
the latter between successive inferior conjunetions.

The interval between these conjunctions is ahout four
months in the case of Mercury, and between nineteen and
twenty months in that of Venus. At the end of this
period each repeats the same series of motions relative to
the sun. What these motions are can be readily seen by
studying Fig. 84. In the first place, suppose the earth,
at any point, 7%, of its orbit, and if we draw a line, %' Z
or £' M, from Z, tangent to the orbit of either of these
planets, it is evident that the angle which this line makes
with that drawn to the sun is the greatest elongation of
the planet from the sun. The orbits being eccentrie, this
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clongation varies with the position of the earth. In the
case of Mercury it ranges from 16° to 29°, while in t]xe
case of Venus, the orblt of Whlch is nearly circular,
varies very little from
ovvitof Eapy, 45°.  These planets,
therefore, seem to have
an oscillating motion,
first swinging toward the
east of the sun, and then
toward the west of it, as
already explained in Part
I, Chapter IV. Since,
owing to the annual revo-
lution of the earth, the
sun has a constant east-
ward motion among the
stars, these planets must
have, on the whole, a corresponding though intermittent
motion in the same direction. Therefore the ancient
astronomers supposed their period of revolution to be one
year, the same as that of the sun.

If, again, we draw a line Z'S C from the earth through .
the sun, it is evident that the first point Z, in which this
line euts the orbit of the planet, or the point of inferior
conjunction, will (leaving eccentricity out of the question)
be the least distance of the planet from the earth, while the
second point (), or the point of
superior conjunction, on the op-
posite side of the sun, will be
the greatest distance. Owing to
the difference of these distances,
the apparent magnitude of these o e
planets, as seen from the earth, " 1iprs or THE DISK OF
is subject to great variations. MERCURY.

Fig. 85 shows these variations in the case of Mercury,
A representing its apparent magnitude when at its greatest
distance, /2 when at its mean distance, and ' when at its

Fie. 84.




312 ASTRONOMY.

least distance. In the case of Venus (Fig. 86) the varia-
tions are much greater thafi in that of Mercury, the great-
est distance, 1.72, being more than six times the least
distance, which is only 0.28. The variations of apparent
magnitude are therefore great in the same proportion.

In thus representing the apparent angular magnitude
of these planets, we suppose their whole disks to be visible,
as they would be if they shone by their own light. But
since they can be seen only by the reflected light of the
sun, only those portions of the disk can be seen which are
at the same time visible from the sun and from the earth.
A very little consideration will show that the proportion
of the disk which can be seen constantly diminishes as the
planet approaches the earth, and looks larger.

F16. 86.—APPARENT MAGNITUDES OF DISK OF VENUS.

When the planet is at its greatest distance, or in superior
conjunction (C, Fig. 84), its whole illuminated hemisphere
can be seen from the earth. As it moves around and ap-
proaches the earth, the illuminated hemisphere is gradually
turned from us. At the point of greatest elongation, M
or L, one half the hemisphere is visible, and the planet
has the form of the moon at first or second quarter. As
it approaches inferior conjunction, the apparent visible disk
assumes the form of a crescent, which becomes thinner
and thinner as the planet approaches the sun.

Fig. 87 shows the apparent disk of Mercury at various
times during its synodie revolution. The planet will ap-
pear brightest when this disk has the greatest surface.
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This occurs about half way between greatest elongation
and inferior conjunction.

In consequence of the changes in the brilliancy of these
planets produced by the variations of distance, and those
produced by the variations in the proportion of illuminated
disk visible from the earth, partially compensating each
other, their actual brilliancy is not subject to such great
variations as might have been expected. Asa general rule,
Mercury shines with a light exceeding that of a star of
the first magnitude. But owing to its proximity to the
sun, it can never be seen by the naked eye except in the
west a short time-after sunset, and in the east a little be-
fore sunrise. It is then of necessity near the horizon, and

F16. 87.—APPEARANCE OF MERCURY AT DIFFERENT POINTS OF ITS
ORBIT.

therefore does not seem so bright as if it were at a greater
altitude. In our latitudes we might almost say that it is
never visible except in the morning or evening twilight.
In higher latitudes, or in regions where the air is less
transparent, it is scarcely ever visible without a telescope.
It is said that Corernicus died without ever obtaining a
view of the planet Mercury.

On the other hand, the planet Venus is, next to the sun
and moon, the most brilliant object in the heavens. It is
so much brighter than any fixed star that there can seldom
be any diffieulty in identifying it. The unpractised ob-
server might under some circumstances find a difficulty in
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distinguishing between Venus and Jupiter, but the differ-
ent motions of the two planets will enable him to distin-
guish them if they are watched from night to night dur-
ing several weeks.

§ 2. ASPECT AND ROTATION OF MERCURY.

The various phases of Mercury, as dependent upon its
various positions relative to the sun, have already been
shown. If the planet were an opaque sphere, without in-
equalities and without an atmosphere, the apparent disk
would always be bounded by a circle on one side and an
ellipse on the other, as represented in the figure.
‘Whether any variation from this simple and perfect form
has ever been detected is an open question, the balance of
evidence being very strongly in the negative. Sinee no
spots are visible upon it, it would follow that unless vari-
ations of form due to inequalities on its surface, such as
mountains, can be detected, it is impossible to determine
whether the planet rotates on its axis. The only evidence
in favor of such rotation is that of ScurorEr, the celebrated
astronomer of Lilienthal, who made the telescopic study
of the moon and planets his principal work. Abount the
beginning of the present eentury he noticed that at certain
times the south horn of the crescent of Mercury seemed
to be blunted. Attributing this appearance to the shadow
of a lofty mountain, he concluded that the planet Mercury
revolved on its axis in a little more than 24 hours. DBut
this planet has since been studied with instruments much
more powerful than those of ScuroTER, and no confirma-
tion of his results has been obtained. 'We must therefore
conclude that the period of rotation of Mercury on its
axis is entirely unknown.

Respecting an atmosphere of Mercury, the evidence is
also conflicting. The spectrum of this planet has been
studied by Dr. VoeeL, now astronomer at the Physical
Observatory of Potsdam, who finds that its principal lines
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coincide with those of the sun. Of course we should
expect this because the planet shines by reflected solar
light. But he also finds that certain lines are seen in the
spectrum of Mercury which we know to be due to the ab-
sorption of the earth’s atmosphere, and which appear
more dense than they should from the simple passage
through our atmosphere. This would seem to show that
Mercury has an envelope of gaseous matter somewhat like
our own. On the other hand, Dr. ZsLLNER, of Leipsic,
by measuring the amount of light reflected by the planet
at various times, concludes that Mercury, like our moon,
is devoid of any atmosphere sufficient to reflect the light
of the sun. We may therefore regard it as doubtful
whether any evidence of an atmosphere of Mercury can
be obtained, and it is certain that we know nothing defi-
nite respecting its physical constitution.

§ 3. THE ASPECT AND SUPPOSED ROTATION OF
VENTUS.

As Venus sometimes comes nearer the earth than any
other primary planet, astronomers have examined its sur-
face with great interest ever since the invention of the
telescope. But no conclusive evidence respecting the ro-
tation of the planet and no proof of any changes or any
inequalities on its surface have ever been obtained. The
observations are either very discordant, or so difficult
and unreliable that we may readily suppose the ob-
servers to have been misled as to what they saw. In 1767
Cassint thought he saw a bright spot on Venus during
several successive evenings, and concluded, from his sup-
posed observation that the planet revolved on its axis in a
little more than 23 hours. The subject was next taken up
by Brancuiny, an Italian astronomer, who supposed that
he saw a number of dark regions on the planet. These he
considered to be seas or oceans, and he went so far as to
give them names. Watching them from night to night,
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he concluded that the time of rotation of Venus was more
than 24 days. Again, ScHRrOTER thought that, when Ve-
nus was a crescent, one of its sharp points was blunted
at certain intervals, as in the case of Mercury. He formed
the same theory of the cause of this appearance —namely,
that it was due to the shadow of a high mountain. He con-
cluded that the time of rotation found by CassiNt was near-
ly correct. Finally, in 1842, De Vico, of Rome, thought
he could see the same dark regions or oceans on the planet
which had been seen by Brancnint. He concluded that the
true time of rotation was 23" 21™ 22°. This result has gone
into many of our text-books as conclusive, but it is contra-
dicted by the investigation of many excellent observers
with much better instruments. HErscHEL was never able to
see any permanent markingson Venus. If he ever caught
a glimpse of spots, they were so transient that he could
gather no evidence respecting the rotation of the planet.
He therefore concluded that if they really existed, they
were due entirely to clouds floating in an atmosphere, and
that no time of rotation could be deduced by observing
them. This view of HerscukL, so far as concerns the
aspect of the planet, is confirmed by a study with the most
powerful telescopes in recent times. With the great
Washington telescope, no permanent dark spots and no
regular blunting of either horn has ever been observed.

It may seem curious that skilled observers could have
been deceived as to what they saw ; but we must remem-
ber that there are many celestial phenomena which are ex-
tremely difficult to make out. By looking at a drawing
of a planet or nebula, and seeing how plain every thing
seems in the picture, we may be entirely deceived as to the
actual aspect with a telescope. Under the circumstances, if
the observer has any preconceived theory, it is very easy
for him to think he sees every thing in accordance with
that theory. Now, there are at all times great differences
in the brilliancy of the different parts of the disk of Venus.
1t is brightest near the round edge which is turned
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toward the sun. Over asmall space the brightness is such
that some recent observers have formed a theory that the
sun’s light is reflected as from a mirror. On the other
hand, near the boundary between light and darkness, the
surface is much darker. Moreover, owing to the undu-
lations of our atmosphere, the aspect of any planet so small
and bright as Venus is constantly changing. The only
way to reach any certain conclusion respecting its ap-
pearance is to take an average, as it were, of the appear-
ances as modified by the undulations. In taking this aver-
age, it is very easy to imagine variations of light and dark-
ness which have noreal existence ; it is not, therefore, sur-
prising that one astronomer shounld follow in the footsteps
of another in seeing imaginary markings.

Atmosphere of Venus.~——The evidence of an atmosphere
of Venus is perhaps more conclusive than in the case of
any other planet. When Venus is observed very near
its inferior conjunction, and when it therefore presents the
view of a very thin crescent, it is found that this crescent
extends over more than 180°. This would be evidently
impossible unless the sun illuminated more than one half
the planet.  One of the most fortunate observers of this
phenomenon was Professor C. S. Lyuax, of Yale College,
who observed Venws in December, 1866. The inferior
conjunction of the planet occurred near the ascending
node, so that its angular distance from the sun was less
than it had been at any former time during the present cen-
tury. Professor Lyman saw the disk, not as a thin cres-
cent, but as an entire and extremely fine circle of light.
We therefore conclude that Venus has an atmosphere
which exercises so powerful a refraction upon the light of
the sun that the latter illuminates several degrees more
than one half the globe. A phenomenon which must be
attributed to the same cause has several times been ob-
served during transits of Venus. During the transit of
December 8th, 1874, most of the observers who enjoyed
a fine steady atmosphere saw that when Venus was par-
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tially projected on the sun, the outline of that part of its
disk outside the sun could be distinguished by a delicate
line of light. A similar appearance was noticed by Davip
Rrrrennousk, of Philadelphia, on June 3d, 1769. From
these several observations, it would seem that the refractive
power of the atmosphere of Venus is greater than that of
the earth. Attempts have been made to determine its ex-
act amount, but they are too uncertain to be worthy of
quotation.

§ 4. TRANSITS OF MERCURY AND VENUS.

When Mercury or Venus passes between the earth and
sun, so as to appear projected on the sun’s disk, the phe-
nomenon is called a ¢ransit. If these planets moved around
the sun in the plane of " the ecliptie, it is evident that
there would be a transit at every inferior conjunction. But
since their orbits are in reality inclined to the ecliptic,
transits can oceur only when the inferior conjunction takes
place near the node. In order that there may be a transit,
the latitude of the planet, as seen from the earth, must
be less than the angular semi-diameter of the sun—that is,
less than 16°.%

The longitude of the descending node of Mercury at the
present time is 227°, and therefore that of the ascending
node 47°. The earth has these longitudes on May 7th and
November 9th. Since a transit can occur only within a
few degrees of a node, Mercury can transit only within a
few days of these epochs.

The longitude of the descending node of Venus is now

* The mathematical student, knowing that the inclination of the orbit
of Mercury is7° 0" and that of Venus 3°24', will find it an interesting
problem to calculate the limits of distance from the node within which in-
ferior conjunction must take place in order that a transit may occur.
Frowm the geocentric latitude 16’ the heliocentric latitude may be found
by multiplying by the distance from the earth and dividing by that from
the sun. He will find these limits to be a little greater for Mercury
than for Venus, notwithstanding its greater inclination, and to be only
a few degrees in either case.
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about 256°, and therefore that of the ascending node is
76°. The earth has these longitudes on June 6th and De-
cember Tth of each year. Transits of Venus can there-
fore occur only within two or three days of these times.

Recurrence of Transits of Mercury.—The transits of Mer-
cury and Venus recur in cycles which resemble the eighteen-
year cycle of eclipses, but in which the precision of the recurrence
is less striking. From the mean motions of Mercury and the earth
already given, we find that the mean synodic period of Mercury is,
in decimals of a Julian year, 0v-317256. Three synodic periods are
therefore some eighteen days less than a year. If, then, we suppose
an inferior conjunction of Mercury to occur exactly at a node, the
third conjunction following will take place about eighteen days
before the earth again reaches the node, and therefore about 18°
from the node, since the earth moves nearly 1° in a day. This is
far outside the limit of a transit ; we must, therefore, wait until
another conjunction occurs near the same place. To find when
this will be, the successive vulgar fractions which converge toward
the value of the above period may be found by the method of con-
tinued fractions. The first five of these fractions are :

il e R
Here the denominators are numbers of synodic periods, while the

numerators are the approximate corresponding number of years.
By actual multiplication we find :

3 Periods = 0v-951768 = 1y —.048232. Error = — 17°
7 ([ = 6-027864 = 6 +-027864. SIS RS 108
A4 e = 6-979632 = 7 —-020368. % - 7
5 B = 13.007496 = 13 4 -007496. RO
145 « = 46-002120 = 46 + -002120. “ =+ 0°.76

In this table the errors show the number of degrees from the
node at which the inferior conjunction will occur at the end of one
year, six years, seven years, etc. They are found by multiplying
the fraction by which the intervals exceed or fall short of an entire
number of years by 360°. It will be seen that the 19th, 22d, 41st,
and 145th conjunctions occur nearer and nearer the node or, sup-
posing that we do not start from a node, nearer and nearer the point
of the orbits from which we do start. It follows that the recur-
rence of a transit of Mercury at the same node is possible at the
end of 7 years, probable at the end of 18 years, and almost certain
at the end of 46 years. The latter is the cycle which it would be
most convenient to take as that in which all the transits would
recur, but it would still not be so exact as the eclipse cycle of 18
years 11 days.
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The following table shows the dates of occurrence of transits of
Mercury during the present century. They are separated into May
transits, which occur near the“*descending node, and November
ones, which occur near the ascending node. November transits are
the most numerous, because Mercury is then nearer the sun, and
the transit limits are wider.

1799, May 6. 1802, Nov, 9.
1832, May 5. 1815, Nov. 11.
1845, May 8. 1822, Nov. 5.
1878, May 6. 1835, Nov. 7.
1891, May 9. 1848, Nov. 10.
1861, Nov. 12.
1868, Nov. 5.
1881, Nov. 7.
1894, Nov. 10.

It will be seen that in a cycle of 46 years-there are two May tran-
sits and four November ones, so that the latter are twice as nu-
merous as the former. These numbers may, however, change slightly
at some future time through the failure of a recurrence, or the en-
trance of a new transit into the series. Thus, in the May series, it
is doubtful whether there will be an actual transit 46 years after
1891—that is, in 1937—or whether Mercury will only pass very near
the limb of the sun. On the other hand, Mercury passed within a few
minutes of the sun’s limb on May 3d, 1865, and it will probably
graze the limb 46 years later—that is, on May 4th or 5th, 1911,

Recurrence of Transits of Venus.—For many centuries
past and to come, transits of Venus occur in a cycle more exact than
those of Mercury. It happens that eight times the mean motion of
Venus is very nearly the same as thirteen times the mean motion
of the earth ; in other words, Venus
makes 13 revolutions around the
sun in nearly the same time that
the earth makes 8 revolutions—
that is, in eight years. During
this period there will be 5 inferior
conjunctions of Venus, because the
latter has made 5 revolutions more
than the earth. Consequently, if
we wait eight years from an inferior
conjunction of Venus, we shall, at
the end of that time, have another
inferior conjunction, the fifth in
regular order, at nearly the same
point of the two orbits. It will,
therefore, occur at the same time
of the year, and in nearly the same
position relative to the node of Venus. In Fig. 88 let S represent
the sun, and the circle drawn around it the orbit of the earth.

F16. 88.—CONJUNCTIONS OF
VENUS.
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Suppose also that at the moment of the inferior conjunction of
Venus, we draw a straight line S1 through Venus to the earth at 1.
‘We shall then have to wait about 12 years for another inferior con-
junction, during which time the earth will have made one revolu-
tion and # of another, and Venus 2} revolutions. The straight line
drawn through the point of inferior conjunction will then be S 2.
The third conjunction will in the same way take place in the posi-
tion S 3, which is 1¢ revolutions further advanced ; the fourth in
the position S 4, and the fifth in the position §5. If the corre-
spondence of the motions were exact, the sixth conjunction, at the
end of 8 years (5 x 13 = 8), would again take place in the original
position S 1, and all subsequent ones would follow in the same
order. All inferior conjunctions would then take place at one of
these five points, and no transit would ever be possible unless one
of these points should chance to be very near the line of nodes.

In fact, however, the correspondence is not perfectly exact, but,
at the end of 8 years, the sixth conjunction will take place not
exactly along the line §1, but a little beforethe two bodies reach
this line. The actual angle between the line S1 and that of the
sixth conjunction will be about 2° 22/, the point shifting back to-
ward the direction S4. Of course, each following conjunction will
take place at the same distance back from that of eight years before,
leaving out small changes due to the eccentricities of the orbits and
the variations of their elements. 1t follows then that if we suppose
the five lines of conjunction to have a retrograde motion in a
direction the opposite of that of the arrow, amounting to 2° 22/ in
eight years, all the inferior conjunctions will take place along these
five lines. The distance apart of the lines being 72° and the
motion about 18’ per year, the intervals between the passages of
the several conjunction lines over the line of nodes will be about
240 years. Really, the exact time is 243 years. 4

Suppose, now, that a conjunction should take place exactly at a
node, then the fifth following conjunction would take place
2° 22’ before reaching the node. The limits within which a transit
can occur are, however, only 1° 46’ on each side of the node ; con-
sequently, there would be no further transit at that node until the
next following conjunction point reached it, which would happen at
the end of 243 years. If, however, the conjunction should take place
between 0° 36" and 1° 46’ after reaching the node, there would be a
transit, and the fifth following conjunction would also occur within
the limit on the other side of the node, so that we should have two
transits eight years apart. We may, therefore, have either one
transit or two according to the distance from the node at which the
first transit occurs. ‘We thus have at any one node either a single
transit, or a pair of transits eight years apart, in a cycle of 243 years.
At the middle of this eycle the node will be half way between two
of the conjunction points—the points 1and 3, for instance ; but it is
evident that in this case the opposite node will coincide with the
conjunction point 2, since there is an odd number of such points.
It follows, therefore, that about the middle of the interval between
two consecutive sets of transits at one node we shall have a transit
or a pair of transits at the opposite node.
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The carth passes through the line of the descending node of the
orbit of Venus early in June of eagh year, and through the ascending
node early in December. It follows, therefore, that the series will
be a transit or a pair of transits in June ; then an interval of about 120
years, to be followed by a transit or a pair of transits in December,
and so on. Owing to the eccentricity of the orbits, the intervals
will not be exactly equal, the motions of the several conjunction
points not being uniform, nor their distance exactly 72°. The
dates and intervals of the transits for three cycles nearest to the
present time are as follows :

Intervals.
1518, June 2. 1761, June 5. 2004, June 8. 8 years.
1526, June 1. 1769, June 3. 2012, June 6. 105¢ «
1631, Dec. 7. 1874, Dec. 9. 2117, Dec. 11. B SN
1639, Dec. 4. 1882, Dec. 6. 2125, Dec. 8. 121 «

The 243-year cycle is so exact that the actual deviations from it
are due almost entirely to the secular variation of the orbits of
Venus and the Earth. Moreover, the conjunction of December 8th,
1874, took place 1° 25’ past the ascending node, so that the con-
junction of 1882 takes place about 1° 4’ before reaching the node.
Owing to the near approach of the period to exactness, several pairs’
of transits near this node have taken place in the past, at equal in-
tervals of 243 years, and will be repeated for three or four cycles in
the future.

Nearly the same remark applies to those which take place at the
descending node, where pairs of transits eight years apart will
occur for about three cycles in the future. Owing, however, to
secular variations of the orbit, the conjunction point for the second
June transit of each pair and the first December transit will, after
perhaps a thousand years, take place so far from the node that the
planet will not quite touch the sun, and then during a period of
many centuries there will only be one transit at each node in
every 243 years, instead of two, as at present.

§ 6. SUPPOSED INTRAMERCURIAL PLANETS.

Some astronomers are of opinion that there is a small
planet or a group of planets revolving around the sun
inside the orbit of Mercury. To this supposed planet the
name Vulcan has been given ; but astronomers generally
discredit the existence of such a planet of considerable
size, because the evidence in its favor is not regarded as
conclusive.
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The evidence in favor of the existence of such planets may be
divided into three classes, as follows, which will be considered in
their order :

(1) A motion of the perihelion of the orbit of Mercury, supposed
to be due to the attraction of such a planet or group of planets.

(2) Transits of dark bodies across the disk of the sun which have
been supposed to be seen by various observers during the past cen-
tury.

(3) The observation of certain unidentified objects by Professor
WartsoN and Mr. Lewis Swirt during the total eclipse of the sun,
July 29th, 1878.

(1) In 1858, Le VERRIER made a careful collection of all the obser-
vations on the transits of Mercury which had beenrecorded since the
invention of the telescope. The result of that investigation was
that the observed times of transit could not be reconciled with the
calculated motion of the planet, as due to the gravitation of the
other bodies of the solar system. He found, however, that if, in
addition to the changes of the orbit due to the attraction of the
other planets, he supposed a motion of the perihelion amounting to
36" in a century, the observations could all be satisfied. Such
a motion might be produced by the attraction of an unknown
planet inside the orbit of Mercury. Since, however, a single
planet, in order to produce this effect, would have to be of consid-
erable size, and since no such object had ever been observed during
a total eclipse of the sun, he concluded that there was probably a
group of planets much too small to be separately distinguished.
So far as the discrepancy between theory and observation is con-
cerned, these results of Le VERRIER’S have been completely con-
firmed by the mathematical researches of Mr. G. W. Hirr, and by
observations of transits since LE VERRIER’S calculations were com-
pleted. Indeed, the result of these researches and observations is-
that the motion of the perihelion is even greater than that found
by LE VERRIER, the surplus motion being more than 40” in a cen-
tury. There is no known way of accounting for this motion in
accordance with well-established laws, except by supposing matter
of some sort to be revolving around the sun in the supposed posi-
tion. At the same time it is always possible that the effect may
be produced by some unknown cause.*

(2) Astronomical records contain upward of twenty instances
in which dark bodies have been supposed to be seen in transit
across the disk of the sun. If we suppose these observations to be
all perfectly correct, the existence of a great number of considerable
planets within the orbit of Mercury would be placed beyond doubt.
But a critical analysis shows that these observations, considered as a
class, are not entitled to the slightest credence. In the first place,

* An electro-dynamic theory of attraction has been within the past
twenty years suggested by several German physicists, which involves
a small variation from the ordinary theory of gravitation. It has been
shown that, by supposing this theory true, the motion of the perihelion
of Mercury could be accounted for by the attraction of the sun.
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scarcely any of them were made by experienced observers with
powerful instruments. It is very easy for an unpractised observer
to mistake a round solar spot for & planet in transit. It may there-
fore be supposed that in many cases the observer saw nothing but
a spot on the sun. In fact, the very last instance of the kind on
record was an observation by WEBER at Peckeloh, on April 4th,
1876. He published an account of his observation, which he sup-
posed was that of a planet, but when the publication reached other
observers, who had been examining the sun at the same time, it
was shown conclusively that what he saw was nothing more than
an unusually round solar spot. Again, in most of the cases referred
to, the object seen was described as of such magnitude that it
could not fail to have been noticed during total eclipses if it had
any real existence. It is also to be noted that if such planets ex-
isted they would frequently pass over the disk of the sun. Dur-
ing the past fifty years the sun has been observed almost every
day with the greatest assiduity by eminent observers, armed with
powerful instruments, who have made the study of the sun’s sur-
face and spots the principal work of their lives. None of these
observers has everrecorded the transit of an unknown planet. This
evidence, though negative in form, is, under the circumstances, con-
clusive against the existence of such a planet of such magnitude
as to be visible in transit with ordinary instruments.

(3) The observations of Professor WarsoN during the totai
eclipse above mentioned seem to afford the strongest evidence yet
obtained in favor of the real existence of the planet. His mode of
proceeding was briefly this: Sweeping to the west of the sun
during the eclipse, he saw two objects in positions where, suppos-
ing the pointing of his telescope accurately known, no fixed star
existed. There is, however, a pair of known stars, one of which is
about a degree distant from one of the unknown objects, and the
other about the same distance and direction from the second. It
is considered by some that Professor WatsoN’s supposed planets
may have been this pair of stars. Still, if Professor WaTson’s
planets were capable of producing the motion of the perihelion of
Mercury already referred to, we should regard their existence as
placed beyond reasonable doubt. But his observations and the.
theoretical results of L VERRIER do not in any manner strengthen
each other, because, if we suppose the observed perturbations in
the orbit of Mercury to be due to planets so small as those seen by
‘Warsoxn, the number of these planets must be many thousands.
Now, it is very certain that there are not thousands of planets
there brighter than the sixth magnitude, because they would have
been seen by other telescopes engaged in the same search. The
smaller we suppose the individual planets, the more numerous they
must be, and, finally, if we consider them as individually invisible,
they will probably be numbered by tens of thousands. The smaller
and more numerous they are, supposing their combined mass the
same, the greater the sum total of light they would reflect. Ata
certain point the amount of light would become so considerable
that the group would appear as a cloud-like mass. Now, there is
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a phenomenon known as the zodiacal light, which is probably caused
by matter either in a gaseous state or composed of small particles re-
volving around the sun at various distances from it. This light
can be seen rising like a pillar from the western horizon on any
very clear night in the winter or spring, Of its nature scarcely
any thing is yet known. The spectroscopic observations of Pro-
fessor WriGHT, of Yale College, seem to indicate that it is seen by
reflected sunlight. Very different views, however, have obtained
respecting its constitution, and even its position, some having held
that it is a ring surrounding the earth. We can therefore merely
suggest the possibility that the observed motion of the perihelion
of Mercury is produced by the attraction of this mass.



CHAPTER IV.
THE MOON.

Ix Chapter VII. of the preceding part we have de-
scribed the motions of the moon and its relation to the
earth. We shall now explain its physical constitution as
revealed by the telescope.

When it became clearly understood that the earth and
moon were to be regarded as bodies of one class, and that
the old notion of an impassable gulf between the character
of bodies celestial and bodies terrestrial was unfounded,
the question whether the moon was like the earth in all its
details became one of great interest. The point of most
especial interest was whether the moon could, like the
earth, be peopled by intelligent inhabitants. Accordingly,
when the telescope was invented by GaLiLeo, one of the
first objects examined was the moon. With every im-
provement of the instrument, the examination became
more thorough, so that the moon has been an object of
careful study by the physical astronomer.

The immediate successors of GAriLEo thought that they
perceived the surface of the moon, like that of our globe,
to be diversified with land and water. Certain regions ap-
peared dark and, for the most part, smooth, while others
were bright and evidently broken up into hills and valleys.
The former regions were supposed to be oceans, and re-
ceived names to correspond with this idea. These names
continue to the present day, although we now know that
there are no oceans there.

With every improvement in the means of research, it

-
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has become more and more evident that the surface of the
moon is totally unlike that. of our earth. There are no
oceans, seas, rivers, air, clouds, or vapor. We can hardly
suppose that animal or vegetable life exists under such
circumstances, the fundamental conditions of such ex-
istence on our earth being entirely wanting. We might
almost as well suppose a piece of granite or lava to be the
abode of life as the surface of the moon to be such.
Before proceeding with a description of the lunar sur-
face, as made known to us by the telescopes of the present
time, it will be well to give some estimates of the visi-
bility of objects on the moon by means of our instruments.
Speaking in a rough way, we may say that the length of
one mile on the moon would, as seen from the earth, sub-
tend an angle of 1” of arc. More exactly, the angle sub-
tended would range between 0”-8 and 0”-9, according to
the varying distance of the moon. In order that an ob-
ject may be plainly visible to the naked eye, it must sub-
tend an angle of nearly 1. Consequently, a magnifying
power of 60 is required to render a round object one mile
in diameter on the surface of the moon plainly visible.
Starting from this fact, we may readily form the follow-
ing table, showing the diameters of the smallest objects
that can be seen with different magnifying powers, always
assuming that vision with these powers is perfect :

Power 60 ; diameter of object 1 mile.
Power 150 ; diameter 2000 feet.
Power 500 ; diameter 600 feet.

Power 1000 ; diameter 300 feet.

Power 2000 ; diameter 150 feet.

If telescopic power could be increased indefinitely, there
would of course be no limit to the minuteness of an ob-
ject visible on the moon’s surface. DBut the necessary
imperfections of all telescopes are such that only in extra-
ordinary cases can any thing be gained by increasing the
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magnifying power beyond 1000. The influence of warm
and cold currents in our atrgosphere is such as will for-
ever prevent the advantageous use of high magnifying
powers. After a certain limit we see nothing more by
increasing the power, vision becoming indistinct in pro-
portion as the power is increased. It may be doubted
whether the moon was ever seen through a telescope to so
good advantage as she would be seen with a magnifying
power of 500, unaccompanied by any drawback from at-
mospheric vibrations or imperfection of the telescope.
In other words, it is hardly likely that an object less than
600 feet in extent could ever be seen on the moon by any
telescope whatever, unless it were possible to mount the
instrument above the atmosphere of the carth. It is there-
fore only the great features on the surface of the moon,
and not the minute ones, which can be made out with the
telescope.

Character of the Moon’s Surface.—The most striking
point of difference between the earth and moon is seen in
the total absence from the latter of any thing that looks
like an undulating surface. - No formations similar to our
valleys and mountain-chains have been detected. The
lowest surface of the moon which can be seen with the
telescope appears to be nearly smooth and flat, or, to
speak more exactly, spherical (because the moon is a
sphere).  This surface has different shades of color in
different regions. Some portions are of a bright, silvery
tint, while others have a dark gray appearance. These dif-
ferences of tint seem to arise from differences of material.

Upon this surface as a foundation are built numerous
formations of various sizes, but all of a very simple char-
acter. Their general form can be made out by the aid of
Fig. 89, and their dimensions by the scale of miles at
the bottom of it. The largest and most prominent
features are known as craters. They have a typical form
consisting of a round or oval rugged wall rising from the
plane in the manner of a circular fortification. These
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walls are frequently from three to six thousand metres in
height, very rough and broken. In their interior we see

Fic. 89.—ASPECT OF THE MOON'S SURFACE.

the plane surface of the moon already described. It is,
however, generally covered with fragments or broken up
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by small inequalities so as not to be easily made out. In
the centre of the craters we frequently find a conical for-
mation rising up to a considerable height, and much larger
than the inequalities just described. In the craters we
have a vague resemblance to voleanic formations upon the
earth, the principal difference being that their magnitude
is very much greater than any thing known here. The
diameter of the larger ones ranges from 50 to 200 kilo-
metres, while the smallest are so minute as to be hardly
visible with the telescope.

When the moon is only a few days old, the sun’s rays
strike very obliquely upon the lunar mountains, and they
cast long shadows. From the known position of the sun,
moon, and earth, and from the measured length of these
shadows, the heights of the mountains can be calculated.
It is thus found that some of the mountains near the south
pole rise to a height of 8000 or 9000 metres (from 25,000
to 30,000 feet) above the general surface of the moon.
Heights of from 3000 to 7000 metres are very common
over almost the whole lunar surface.

Next to the so-called eraters visible on the lunar disk,
the most curious features are certain long bright streaks,
which the Germans call 7ills or furrows. These extend
in long radiations over certain of the craters, and have the
appearance of cracks in the lunar surface which have been
subsequently filled by a brilliant white material. Na-
sMyrH and CarpeNTER have described some experiments
designed to produce this appearance artificially. They
took hollow glass globes, filled them with water, and heat-
ed them until the surface was cracked. The cracks gen-
erated at the weakest point of the surface radiate from the
point in a manner strikingly similar in appearance to the
rills on the moon. It would, however, be premature to
conclude that the latter were actually produced in this
way.

The question of the origin of the lunar features has a
bearing on theories of terrestrial geology as well as upon
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various questions respecting the past history of the moon
itself. It has been considered in this aspect by various
geologists.

Lunar Atmosphere.—The question whether the moon
has an atmosphere has been much discussed. The only
conclusion which has yet been reached is that no positive
evidence of an atmosphere has ever been obtained, and
that if one exists it is certainly several hundred times rarer
than the atmosphere of our earth. The most delicate
method of detecting such an appendage would be by its
refracting the light of a star seen through it. As the
moon advances in her monthly course around the earth, she
frequently appears to pass over bright stars. These phe-
nomena are called occultations. Just before the limb of
the moon appears to reach the star, the latter will be seen
through the moon’s atmosphere, if there is one, and will
be displaced in a direction from the moon’s centre. But
the most careful observations have failed to show the
slightest evidence of any such displacement. Hence the
most delicate test for a lunar atmosphere gives no evi-
dence whatever that it exists.

The spectra of stars when about to be occulted have
also been examined in order to see whether any absorption
lines which might be produced by the lunar atmosphere
became visible. The evidence in this direction has also
been negative. Moreover, the spectrum of the moon itself
does not seem to differ in the slightest from that of the
sun. We conclude therefore that if there is a lunar at-
mosphere, it is too rare to exert any sensible absorption
upon the rays of light.

Light and Heat of the Moon.—Many attempts have
been made to measure the ratio of the light of the full
moon and that of the sun. The results have been very
discordant, but all have agreed in showing that the sun
emits several hundred thousand times as much light as the
full moon, The last and most careful determination is



332 ASTRONOMY.

that of ZoLLNER, who finds the sun to be 618,000 times as
bright as the full noon.

The moon must reflect the heat as well as the light of
the sun, and must also radiate a small amount of its own
heat. But the quantities thus reflected and radiated are so
minute that they have defied detection except with the
most delicate instruments of research now known. By col-
lecting the moon’s rays in the focus of one of his large re-
flecting telescopes, Lord Rosse was able to show that a
certain amount of heat is actually received from the
moon, and that this amount varies with the moon’s phase,
as it should do. He also sought to learn how much of
the moon’s heat was reflected and how much radiated.
This he did by ascertaining its capacity for passing
through glass. It is well known to students of physics
that a very much larger portion of the heat radiated by
the sun or other extremely hot bodies will pass through
glass than of heat radiated by a cooler body. Experiments
show that about 86 per cent of the sun’s heat will pass
through ordinary optical glass. If the heat of the moon
were entirely reflected sun heat, it would possess the same
property, and the same proportion would pass through
glass. But the experiments of Lord Rosse have shown
that instead of 86 per cent, only 12 per cent passed through
the glass. As a general result of all his researches, it may
be supposed that about six sevenths of the heat given out
by the moon is radiated and one seventh reflected.

Is there any change on the surface of the Moonp—
When the surface of the moon was first found to be cov-
cred by craters having the appearance of volcanoes at the
surface of the earth, it was very naturally thought that
these supposed volcanoes might be still in activity, and ex-
hibit themselves to our telescopes by their flames. Sir
Wirriam HEersonr supposed that he saw several such vol-
canoes, and, on his anthority, they were long believed to
exist. Subsequent observations have shown that this was
a mistaken opinion, though a very natural one under the
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circumstances. If we look at the moon with a telescope
when she is three or four days old, we shall see the darker
portion of her surface, which is not reached by the sun’s
rays, to be faintly illuminated by light reflected from the
earth. This appearance may always be seen at the right
time with the naked eye. If the telescope has an aperture
of five inches or upward, and the magnifying power does
not exceed ten to the inch, we shall generally see one or
more spots on this dark hemisphere of the moon so much
brighter than the rest of the surface that they may well
suggest the idea of being self-luminous. It is, however,
known that these are only spots possessing the power of
reflecting back an unusually large portion of the earth’s
light. Not the slightest sound evidence of any incandes-
cent eruption at the moon’s surface has ever been found.

Several instances of supposed changes on the moon’s
surface have heen described in recent times. A few years
ago a spot known as Linnwus, near the centre of the
moon’s visible disk, was found to present an appearance
entirely different from its representation on the map of
Beer and MaepLEr, made forty years before. More
recently KrLEiN, of Cologne, supposed himself to have dis-
covered a yet more decided change in another feature of
the moon’s surface.

The question whether these changes are proven is one
on which the opinions of astronomers differ. The difficul-
ty of reaching a certain conclusion arises from the fact that
each feature necessarily varies in appearance, owing to the
different ways in which the sun’s light falls upon it.
Sometimes the changes are very difficult to account for,
even when it is certain that they do not arise from any
change on the moon itself. Hence while some regard the
apparent changes as real, others regard them as due only
to differences in the mode of illumination.



CHAPTER V.
THE PLANET MARS.
§ 1. DESCRIPTION OF THE PLANET.

Mars is the next planet beyond the earth in the order
of distance from the sun, being about half as far again as
the earth. It has a decided red color, by which it may
be readily distinguished from all the other planets.
Owing to the considerable eccentricity of its orbit, its
distance, both from the sun and from the earth, varies in a
larger proportion than does that of the other outer planets.

At the most favorable oppositions, its distance from the
earth is about 0-38 of the astronomical unit, or, in round
numbers, 57,000,000 kilometres (35,000,000 of miles).
This is greater than the least distance of Venus, but we
can nevertheless obtain a better view of Mars under these
circumstances than of Venws, because when the latter is
nearest to us its dark hemisphere is turned toward us,
while in the case of Mars and of the outer planets the
hemisphere turned toward us at opposition is fully illu-
minated by the sun.

The period of revolution of Mars around the sun is a
little less than two years, or, more exactly, 687 days. The
successive oppositions occur at intervals of two years and
one or two months, the earth having made during this
interval a little more than two revolutions around the sun,
and the planet Mars a little more than one. The dates
of several past and future oppositions are shown in the
following table :
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TSI R AR AR ) Tl T e March 20th.
T R s 1 e w4 e April 27th.

W57 1855 CRUSan® ooy o o June 20th.

R it e et e s September 5th.
AT oo s oo Wi Ty Ao November 12th.
o O A iy MY UG oap o (Sl December 26th.
188 s i S S January 31st.

) HOoNOIE o ey LT SR St ol March 6th.

Owing to the unequal motion of the planet, arising from
the eccentricity of its orbit, the intervals between suc-
cessive oppositions vary from two years and one month to
two years and two and a half months.

About August 26th of each year the earth is in the same
direction from the sun as the perihelion of the orbit of
Mars. Hence if an opposition occurs about that time,
Mars will be very near its perihelion, and at the least
possible distance from the earth. At the opposite season
of the year, near the end of February, the earth is on
the line drawn from the sun to the aphelion of the orbit
Mars. The least favorable oppositions are therefore
those which ocenr in Febrnary. The distance of Mars is .
then about 0.65 of the astronomical unit.

The favorable oppositions occur at intervals of 15 or
17 years, the period being that required for the successive
increments of one or two months between the times of the
year at which successive oppositions occur to make up an
entire year. This will be readily seen from the preceding
table of the times of opposition, which shows how the op-
positions ranged through the entire year between 1871
and 1886. The opposition of 1877 was remarkably fa:
vorable. The next most favorable opposition will occur
in 1892.

Mars necessarily exhibits phases, but they are not so
well marked as in the case of Venus, because the hemi-
sphere which it presents to the observer on the earth is
always more than half illuminated. The greatest phase
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occurs when its direction is 90° from that of the sun, and
even then six sevenths of it§ disk is illuminated, like that
of the moon, three days before or after full moon. The
phases of Mars were observed by GarLo in 1610, who,
however, could not describe them with entire certainty.
Rotation of Mars.—The early telescopic observers
noticed that the disk of Mars did not appear uniform in
color and brightness, but had a variegated aspect. In
1666 the celebrated Dr. Roserr Hooxke found that the
markings on Mars were permanent and moved around in
such a way as to show that the planet revolved on its axis.
The markings given in his drawing can be traced at the
present day, and are made use of to determine the exact
period of rotation of the planet. Drawings made by
HuverEens about the same time have been used in the
same way. So well is the rotation fixed by them that the
astronomer can now determine the exact number of times
the planet has rotated on its axis since these old drawings
were made. The period has been found by Mr. Procror
to be 24t 3™ 22°.7, a result which appears certain to one
or two tenths of a second. It is therefore less than an
hour greater than the period of rotation of the earth.
Surface of Mars.—The most interesting result of these
markings on Mars is the probability that its surface is di-
versified by land and water, covered by an atmosphere,
and altogether very similar to the surface of the earth.
Some portions of the surface are of a decided red color,
and thus give rise to the well-known fiery aspect of the
planet. Other parts are of a greenish hue, and are there-
fore supposed to be seas. The most striking features are
two brilliant white regions, one lying around each pole of the
planét. It has been supposed that this appearance is due
to immense masses of snow and ice surrounding the poles.
If this were so, it would indicate that the processes of evap-
oration, cloud formation, and condensation of vapor into
rain and snow go on at the surface of Mars as at the sur-
face of the earth. A certain amount of color is given to
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this theory by supposed changes in the magnitude of
these ice-caps. But the problem of establishing such
changes is one of extreme difficulty. The only way in
which an adequate idea of this difficulty can be formed is
by the reader himself looking at Mars through a telescope.

If he will then note how hard it is to make out the
different shades of light and darkness on the planet, and

F16. 90.—TELESCOPIC VIEW OF MARS.

how they must vary in aspect under different conditions
of clearness in our own atmosphere, he will readily per-
ceive that much evidence is necessary to establish great
changes. All we can say, therefore, is that the formation
of the ice-caps in winter and their melting in summer has
some evidence in its favor, but is not yet completely
proven.
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§ 2. SATELI:ITES OF MARS.

Until the year 1877, Mars was supposed to have no sat-
ellites, none having ever been scen in the most powerful
telescopes. DBut in Aungust of that year, Professor Havy,
of the Naval Observatory, instituted a systematic search
with the great equatorial, which resulted in the discovery
of two such objects. We have already described the op-
position of 1877 as an extremely favorable one ; otherwise
it would have been hardly possible to detect these bodies.
They had never before heen seen, partly on account of
their extreme minuteness, which rendered them invisible
except with powerful instruments and at the most favor-
able times, and partly on account of the fact, already al-
Inded to, that the favorable oppositions occur only at inter-
vals of 15 or 17 years. There are only a few weeks dur-
ing each of these intervals when it is practicable to distin-
guish them.

These satellites are by far the smallest celestial bodies
known. It is of course impossible to measure their diam-
eters, as they appear in the telescope only as points of
light. A very careful estimate of the amount of light
which they reflect was made by Professor E. C. Picker-
NG, Director of the Harvard College Observatory, who
caleulated how large they ought to be to reflect this light.
He thus found that the outer satellite was probably about
six miles and the inner one about seven miles in diameter,
supposing them to reflect the solar rays precisely as Mars
does. The outer one was seen with the telescope at a dis-
tance from the earth of 7,000,000 times this diameter.
The proportion would be that of a ball two inches in di-
ameter viewed at a distance equal to that between the
cities of Boston and New York. Suchafeat of telescopic
seeing is well fitted to give an idea of the power of modern
optical instruments.

Professor Havr found that the outer satellite, which
he called Deimos, revolves around the planet in 30" 16™,
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and the inner one, called hobos, in T 38™. The latter is
only 5800 miles from the centre of Mars, and less than
4000 miles from its surface. It would therefore be almost
possible with one of our telescopes on the surface of Mars
to see an object the size of a large animal on the satellite.

This short distance and rapid revolution make the inner
satellite of Mars one of the most interesting bodies with
which we are acquainted. It performs a revolution in its
orbit in less than half the time that Mars revolves on its
axis. In consequence, to the inhabitants of Mars, it
would seem to rise in the west and set in the east. It will
be remembered that the revolution of the moon around
the earth and of the earth on its axis are both from west
to east ; but the latter revolution being the more rapid, the
apparent diurnal motion of the moon is from east to west.
In the case of the inner satellite of Mars, however, this
is reversed, and it therefore appears to move in the actnal
direction of its orbital motion. The rapidity of its phases
is also equally remarkable. It is less than two hours from
new moon to first quarter, and so on. Thus the inhabit-
ants of Mars may see their inner moon pass through all
its phases in a single night.



CHAPTER VI
THE MINOR PLANETS.

Wiuen the solar system was first mapped out in its true
proportions by Corernicus and KepLER, only six primary
planets were known — namely, Mercury, Venus, the
FEarth, Mars, Jupiter, and Saturn. These succeeded
cach other according to a nearly regular law, as we have
shown in Chapter I., except that between Mars and Jupi-
ter a gap was left, where an additional planet might be
inserted, and the order of distance be thus made complete.
It was therefore supposed by the astronomers of the seven-
teenth and eighteenth centuries that a planet might be
found in this region. A search for this objeet was insti-
tuted toward the end of the last century, but before it
had made much progress a planet in the place of the one
so long expeeted was found by Piazzi, of Palermo. The
diseovery was made on the first day of the present century,
1801, January 1st.

In the ecourse of the following seven years the astronom-
ical world was surprised by the discovery of three other
planets, all in the same region, though not revolving in
the same orbits. Seeing four small planets where one
large one ought to be, OLBERs was led to his celebrated
hypothesis that these bodies were the fragments of a large
planet which had been broken to pieces by the action of
some unknown force.

A generation of astronomers now passed away without
the discovery of more than these four. But in December,
1845, Hwnokw, of Dreisen, being engaged in mapping
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down the stars near the ecliptic, found a fifth planet of
the group. In 1847 three more were discovered, and
discoveries have since been made at a rate which thus far
shows no signs of diminution. The number has now
reached 200, and the discovery of additional ones seems to
be going on as fast as ever. The frequent announcements
of the discovery of planets which appear in the public
prints all refer to bodies of this group.

The minor planets are distinguished from the major
ones by many characteristics. ~Among these we may
mention their great number, which exceeds that of all the
other known bodies of the solar system ; their small size ;
their positions, all being situated between the orbits of
Mars and Jupiter; the great eccentricities and inclina-
tions of their orbits.

Number of Small Planets.—It would be interesting to
know how many of these planets there are in all, but it is
as yet impossible even to guess at the number. As
already stated, fully 200 are now known, and the number
of new ones found every year ranges from 7 or 8 to 10 or
12. If ten additional ones are found every year during
the remainder of the century, 400 will then have been
discovered.

The discovery of these bodies is a very difticult work,
requiring great practice and skill on the part of the as-
tronomer. The difficulty is that of distinguishing them
amongst the hundreds of thousands of telescopic stars
which are scattered in the heavens. A minor planet
presents no sensible disk, and therefore looks exactly like
a small star. It can be detected only by its motion among
the surrounding stars, which is so slow that hours or even
days must elapse before it can be noticed.

Magnitudes.—In consequence of the minor planets hav-
ing no visible disks in the most powerful telescopes, it is im-
possible to make any precise measurement of their diam-
eters. These can, however, be estimated by the amount
of light which the planet reflects. Supposing the propor-
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tion of light reflected about the same as in the case of the
larger planets, it is estimated that the diameters of the
three or four largest, which are those first diseovered,
range between 300 and 600 kilometres, while the smallest
are probably from 20 to 50 kilometres in diameter. The
average diameter of all that are known is perhaps less than
150 kilometres—that is, scarcely more than one hundredth
that of the earth. The volumes of solid bodies vary as the
cubes of their diameters ; it might therefore take a million
of these planets to make one of the size of the earth.

Form of Orbits.—The orbits of the minor planets are much
more eccentric than those of the larger ones ; their distance from
the sun therefore varies very widely. The most eccentric orbit yet
known is that of Aethra, which was discovered by Professor WaT-
soN in 1873. Its least distance from the sun is 1:61, a very little
further than Mars, while at aphelion it is 3:59, or more than twice
as far. Two or three others are twice as far from the sun at aphe-
lion as at perihelion, while nearly all are so eccentric that if the
orbits were drawn to a scale, the eye would readily perceive that the
sun was not in their centres. The largest inclination of all is that
of Pallas, which is one of the original four, having been discovered
by OLBERs in 1802. The inclination to the ecliptic is 34°, or more
than one third of a right angle. Five or six others have inclinations
exceeding 20°; they therefore range entirely outside the zodiac, and
in fact sometimes culminate to the north of our zenith.

Origin of the Minor Planets.—The question of the origin of
these bodies was long one of great interest. The features which we
have described associate themselves very naturally with the cele-
brated hypothesis of OLBERs, that we here have the fragments of a
single large planet which in the beginning revolved in its proper
place between the orbits of Mars and Jupiter. OLBERs himself sug-
gested a test of his theory. If these bodies were really formed by
an explosion of the large one, the separate orbits of the fragments
would all pass through the point where the explosion occurred. A
common point of intersection was therefore long looked for ; but
although two or three of the first four did pass pretty near each
other, the required point could not be found for all four.

It was then suggested that the secular changes in the orbits pro-
duced by the action of the other planets would in time change the
positions of all the orbits in such a way that they would no longer
have any common intersection. The secular variations of their orbits
were therefore computed, to see if there was any sign of the required
intersection in past ages, but none could be found. No support
has been given to OLBERS’ hypothesis by subsequent investigations,
and it is no longer considered by astronomers to have any founda-
tion. So far as can be judged, these bodies have been revolving
around the sun as separate planets ever since the solar system itself
was formed.



CHAPTER VII.
JUPITER AND HIS SATELLITES.
§ 1. THE PLANET JUPITER.

Jupiter is much the largest planet in the system. His
mean distance is nearly 800,000,000 kilometres (480,000, -
000 miles). His diameter is 140,000 kilometres, corre-
sponding to a mean apparent diameter, as seen from the
sun of 36”.5. Ilis linear diameter is about 4, his surface
is 145, and his volume 55 that of the sun. His mass is
1o'rs> and his density is thus nearly the same as the sun’s—
viz., 0. 24 of the earth’s. He rotates on his axis in 9* 55™ 20°,

He is attended by four satellites, which were disecovered
by GaLiLeo on January 7th, 1610. He named them in
honor of the Mepicis, the Medicean stars. These satellites
were independently discovered on January 16th, 1610, by
Hagrior, of England, who observed them through several
subsequent years. Smon Marrus also appears to have
early observed them, and the honor of their discovery is
claimed for him. They are now known as Satellites I,
11, 111, and IV, I being the nearest.

The surface of Jupiter has been carefully studied with
the telescope, particularly within the past 20 years. Al-
though further from us than Mars, the details of his disk
are much easier to recognize. The most characteristic
features are given in the drawings appended. These feat-
ures are, firstly, the dark bands of the equatorial regions,
and, secondly, the clond-like forms spread over nearly the
whole surface. At the limb all these details become indis-
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tinet, and finally vanish, thus indicating a highly absorptive
atmosphere. The light from the centre of the disk is twice
as bright as that from the poles (Araco). The bands can
be seen with instruments no more powerful than those
used by GariLro, yet he makes no mention of them, al-
though they were seen by Zuccui, Fonrana, and others be-
fore 1633. Huveuens (1659) describes the Dbands as
brighter than the rest of the disk—a unique observation,
on whiech we must look with some distrust, as since 1660
they have constantly been secen darker than the rest of the
planet.

The eolor of the bands is frequently deseribed as a brick-
red, but one of the authors has made careful studies in

Fia. 91.—TELESCOPIC VIEW OF JUPITER AND HIS SATELLITES.

color of this planet, and finds the prevailing tint to be a
salmon color, exactly similar to the color of Mars. The
position of the bands varies in latitude, and the shapes of
the limiting curves also change from day to day ; but in
the main they remain as permanent features of the region
to which they belong. Two such bands are usually vis-
ible, but often more are seen. For example, Cassini
(1690, December 16th) saw six parallel bands extending
completely around the planet. Hgerscuer, in the year
1793, attributed the aspects of the bands to zones of the
planet’s atmosphere more tranquil and less filled with
clouds than the remaining portions, so as to permit the
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true surface of the planet to be seen through these zones,
while the prevailing clouds in the other regions give
a brighter tint to these latter. The color of the bands
seems to vary from time to time, and their bordering
lines sometimes alter with such rapidity as to show that
these borders are formed of something like clouds.

The clouds themselves can easily be seen at times, and
they have every variety of shape, sometimes appearing as

F1a. 92.—TELESCOPIC VIEW OF JUPITER, WITH A SATELLITE AND
ITS SHADOW SEEN ON IT.

brilliant circular white masses, but oftener they are similar
in form to a series of white cumulous clouds such as are
frequently scen piled up near the horizon on a summer’s
day. The bands themselves seem frequently to be veiled
over with something like the thin cirrus clouds of our
atmosphere. On one occasion an annulus of white cloud
was seen on one of the dark bands for many days, retain-
ing its shape through the whole period.
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Such clouds can be tolerably accurately observed, and
may be used to determine the rotation time of the planet.
These observations show that the clouds have often a
motion of their own, which is also evident from other con-
siderations.

The following results of observation, of spots sitnated in
various regions of the planet will illustrate this :

k., m. s
CARBINE: L MoREise 1665, rotation time — 9 56 00
HERSCHEL, .. ... 1778, o e =955 4
HERSCHEL ......... 1779, - “« =9 50 48
SCHROETER......... 1785, = “ =9 56 56
BEER & MADLER.... 1835, % “ =9 55 26
TATIIRN) hee olais®s ' o oa7s o' 70 1835, e ¢ =9 55 L8
SCHMIDT. .. .cov0vns 1862, Ee - =905 RP

§ 2. THE SATELLITES OF JUPITER.

Motions of the Satellites.— The four satellites move
about Jupiter from west to east in nearly circular orbits.
‘When one of these satellites passes between the sun and
Jupiter, it casts a shadow upon Jupiter’s disk (see Fig. 92)
precisely as the shadow of our moon is thrown upon the
earth in a solar eclipse. If the satellite passes through
Jupiter’s own shadow in its revolution, an eclipse of this
satellite takes place. If it passes between the earth and
Jupiter, it is projected npon Jupiter’s disk, and we have a
transit ; if Jupiter is between the earth and the satellite,
an occultation of the latter occurs. All these phenomena
can be seen from the earth with a common telescope, and
the times of observation are all found predicted in the
Nautical Almanac. Inthis way we are sure that the black
spots which we see moving across the disk of Jupiter are
really the shadows of the satellites themselves, and not phe-
nomena to be otherwise explained. These shadows being
seen black upon Jupiter’s surface, show that this planet
shines by reflecting the light of the sun.
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Telescopic Appearance of the Satellites.—Under ordi-
nary circumstances, the satellites of Jupiter are seen to
have disks—that is, not to be mere points of light. Un-
der very favorable conditions, markings have beeen seen
on these disks, and it is very curious that the anomalous
appearances given in Fig. 93 (by Dr. Hasrines) have been
seen at various times by other good observers, as SeccH,
Dawss, and Ruruerrurp. Satellite I1I, which is much
the largest, has decided markings on its face; IV some-
times appears, as in the figure, to have its circular outline

114 1\ b
F16. 93.—TELESCOPIC APPEARANCE OF JUPITER'S SATELLITES,

cut off by right lines, and satellite I sometimes appears
gibbous. The opportunities for observing these appear-
ances are so rare that nothing is known beyond the bare
faet of their existence, and no plausible explanation of the
figure shown in IV has been given.

Phenomena of the Satellites.—The phenomena of the satel-
lites are illustrated in Fig. 94. Here S represents the sun, 4 7'
the orbit of the earth (the earth itself being at T), the outer circle
the orbit of Jupiter, and the four small circles upon the latter four
different positions of the orbit of a satellite. In the centre of each
of the satellite orbits will be seen a small white circle designed to
represent the planet Jupiter itself. The dotted lines drawn from
each edge of the sun to the corresponding edges of the planet and
continued until they meet in a point show the outlines of the
shadow of Jupiter.

Let us first consider the position of Jupiter marked J to the left
of the figure, it being then in opposition to the sun. The observer
on the carth at 7' could not then see an object anywhere in the
shadow of Jupiter because the latter is entirely behind the planet.
Hence, as the satellite moves around, he will see it disappear behind
the right-hand limb of the planet and reappear from the left-hand
limb.  Such a phenomenon is called an occultation, and is desig-
nated as disappearance or reappearance, according to the phase.

It may be remarked, however, that the inclination of the outer
satellite to the orbit of Jupiter is so great that it sometimes passes
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entircly above or below the planet, and therefore is not occulted
at all.

Let us next consider Jupiter in, the position J" near the bottom of
the figure, the shadow, as before, pointing from the planet directly
away from the sun. If the shadow were a visible object, the ob-
server on the earth at 7 could see it projected out on the right of
the planet, because he is not in the line between Jupiter and the sun.
Hence as a satellite moves around and enters the shadow, he will see
it disappear from sight, owing to the sunlight being cut off ; this

wilevs oy, °
‘,,-—\ S Orbity,

Fi16. 94.—PHENOMENA OF JUPITER’S SATELLITES,

is called an eclipse disappearance. 1If the satellite is one of the two
outer ones, he will be able to see it rcappear again after it comes
out of the shadow before it is occulted behind the planet.

Soon afterward the occultation will occur, and it will afterward
reappear on the left. In the case of the inner or first satellite, how-
ever, the point of emergence from the shadow is hidden behind the
planet,consequently the observer, after it once disappears in the shad-
ow, will not see it reappear until it emerges from behind the planet.

If the planet is in the position J*, the satellite will be occulted
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behind the planet where it reaches the first dotted line. If it is the in-
ner satellite, it will not be seen to reappear on the other side of the
planet, because when it reaches the second dotted line it has entered
the shadow. After a while, however, it will reappear from the
shadow some little distance to the left of the planet ; this phe-
nomenon is called an eclipse reappearance. In the case of the outer
satellites, it may sometimes happen that they are visible for a short
time after they emerge from behind the disk and before they enter
the shadow.

These different appearances are, for convenience, represented in
the figure as corresponding to different positions of Jupiter in his
orbit, the earth having the same position in all ; but since Jupiler
revolves around the sun only once in twelve years, the changes of
relative position really correspond to different positions of the earth
in its orbit during the course of the year.

The satellites completely disappear from telescopic view when
they enter the shadow of the planet. This seems to show that
neither planet nor satellite is self-luminous to any great extent. If the
satellite were self-luminous, it would be seen by its own light, and
if the planet were luminous the satellite might be seen by the re-
flected light of the planet.

The motions of these objeets are connected by two curious and
important relations discovered by La Pracg, and expressed as fol-
lows:

1. The mean motion of the first satellite added to twice the mean
motion of the third is exactly equal to three times the mean motion of
the second.

II. If to the mean longitude of the first satellite we add twice the
mean longitude of the third, and subtract three times the mean longitude
of the second, the difference is always 180°.

The first of these relations is shown in the following table of the
mean daily motions of the satellites:

Satellite I in one day moves................ 203°-4890
£ 11 “ TAEC IR P SR L SRS 101°-3748
N0 < - A e e o T i L 20 L1
L el G g R S e 21°.5711

Motion of Satellite I...................c... 203°-4890

Twice that of Satellite III.................. 100°-6354

Siamas S0 sderal gy o R SRR % 304°-1244

Three times motion of Satellite I1I........ . 804°.1244

Observations showed that this condition was fulfilled as exactly
as possible, but the discovery of LA PLAcE consisted in showing that
if the approximate coincidence of the mean motions was once es-
tablished, they could never deviate from exact coincidence with
the law. The case is analegous to that of the moon, which always
presents the same face to us and which always will since the rela-
tion being once approximately true, it will become exact and ever
remain so.
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The discovery of the gradual propagation of light by means of
these satellites has already been described, and it has also been ex-
plained that they are of use insthe rough determination of longi-
tudes. To facilitate their observation, the Nautical Almanac gives
complete ephemerides of their phenomena. A specimen of a por-
tion of such an ephemeris for 1865, March 7th, 8th, and 9th, is
added. The times are Washington mean times. The letter W in-
dicates that the phenomenon is visible in Washington.

1865—MARCH.

d. h. m 8
I Eclipse Disapp. 7 18 27 38:5
I. Occult, Reapp. 7 21 56
IIL Shadow Ingress 8 7 27
111 Shadow Egress 8 9 58
111, Transit Ingress 8 12 381
II. Eclipse Disapp. 8§ 13 1 22.%
I1I. Transit Egress W, 8 15 6
I1. Eeclipee Reapp. W. 8 15 24 11-1
11, Occult. Disapp. W. 8 15 27
i Shadow Ingress W. 8 15 43
I Transit Ingress W, 8 16 58
I Shadow Egress 8 17 b7
11, Occult, Reapp. 8 17 59
I Transit Egress 8 19 13
1 Eclipse Disapp. 9 12 55 59-4
I Occult. Reapp. W. 9 16 25

Suppose an observer near New York City to have determined his
local time accurately. Thisis about 13 faster than Washington
time. On 1865, March 8th, he would look for the reappearance of
II at about 15" 84m of his local time. Suppose he observed it
at 15% 36m 22:*7 of his time: then his meridian is 12= 11::6
east of Washington. The difficulty of observing these eclipses with
accuracy, and the fact that the aperture of the telescope employed
has an important effect on the appearances seen, have kept this
method from a wide utility, which it at first seemed to promise.

The apparent diameters of these satellites have been measured by
StrUVE, SEccHI, and others, and the best results are :

L 100 0% YRI5 TV Sl a]

Their masses (Jupiter=1) are :

1, 0:000017 ; II, 0 000023 ; III, 0:000088 ; IV, 0-000043.

The third satellite is thus the largest, and it has about the den-
sity of the planet. The true diameters vary from 2200 to 3700
miles. The volume of II is about that of our moon ; III approaches
our earth in size.

Variations in the light of these bodies have constantly been
noticed which have been supposed to be due to the fact that they
turned on their axes once in a revolution, and thus presented various
faces to us. The recent accurate photometric meuasures of ENGEL-
MANN show that this hypothesis will not account for all the changes
observed, some of which appear to be quite sudden.
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ELEMENTS OF THE SATELLITES OF

JUPITER.

Mean Distance from

Jupiter,
. i Paris Mean Ti f
5] Mass. Mean Daily i om_mnw s nmmqmam.%wnqﬂw g
<] (Jupiter = 1.) | Tropical Motion, Interval between Eclipses. Mean Conjunction In Arc
B L at In Miles.
g Distance
wn = 5-20078.
v d. h. m, 8 d. h. m. s v
L.....| -000016877 |203-488993385 | 1 18 28 385-9453875 = -1-7698605Jan. 1, 6 16 45-1) 111.82 260,000
IL.....| -000023227 |101-374762063 | 3 13 17 53-735233 = 8-5540942\Jan.2, 17 8 2.7/ 177.81 414,000
IIL.....| -000088437 | 50-317646432| 7 3 59 85-854197= 7-1663872/Jan. 3, 20 27 5-3| 283-63 661,000
IV.... .} 000042475 | 21-571109430/16 18 5 6-928330 = 16-7535524Jan. 0, 15 6 387.3| 498-85 | 1,162,000




CHAPTER VIIL
SATURN AND ITS SYSTEM.

§ 1. GENERAL DESCRIPTION.

Saturn is the most distant of the major planets known
to the ancients. It revolves around the sun in 293 years,
at a mean distance of nearly 1,500,000,000 kilometres
(890,000,000 miles). The angular diameter of the ball of
the planet is about 16”-2, corresponding to a true diam-
eter of about 110,000 kllometres (70,500 miles). Its diam-
eter is therefore nearly nine times and its volume about
700 times that of the earth. It is remarkable for its small
density, which, so far as known, is less than that of any
other heavenly body, and even less than that of water.
Consequently, it cannot be composed of rocks, like those
which form our earth. Itrevolves on its axis, according
to the recent observations of Professor Harr, in 10" 14™
24%, or less than half a day.

Satm'n is perhaps the most remarkable planet in the so-
lar system, being itself the centre of a system of its own,
altogether unlike any thing else in the heavens. Its most
noteworthy feature is seen in a pair of rings which sur-
round it at a considerable distance from the planet itself.
Outside of these rings revolve no less than eight satellites,
or twice the greatest number known to surround any
other planet. The planet, rings, and satellites are alto-
gether called the Sauturnian system. The general appear-
ance of this system, as seen in a small telescope, is shown
in Fig. 95.
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To the naked eye, Saturn is of a dull yellowish color,
shining with about the brilliancy of a star of the first mag-
nitude. It varies in brightness, however, with the way
in which its ring is seen, being brighter the wider the ring
appears. It comes into opposition at intervals of one ycar
and from twelve to fourteen days. The following are the
times of some of these oppositions, by studying which one
will be enabled to recognize the planet :

F1G6. 95.—TELESCOPIC VIEW OF THE SATURNIAN SYSTEM.

IESRY RIS =2 W e L October 5th.
ISB0/ . (T b e October 18th.
SIS S st sl ] v October 31st.
ESSRERLIL] 4975 I November 14th.
TEs{H3 5 o ods WD TOSERRRIRE bl November 28th.
PSSRSO REY, 3407, o IS December 11th.

T)uring these years it will be best seen in the auntunn
and winter.
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‘When viewed with a telescope, the physical appearance
of the ball of Satwrn is quite similar to that of Jupiter,
having light and dark belts parallel to the direction of its
rotation. But these cloud-like belts are very difficult to
see, and so indistinct that it is not easy to determine the
time of rotation from them. This has been done by ob-
serving the revolution of bright or dark spots which appear
on the planet on very rare occasions.

§ 2. THE RINGS OF SATURN.

The rings are the most remarkable and characteristic
feature of the Saturnian system. Fig. 96 gives two views
of the ball and rings. The upper one shows one of their
aspects as actually presented in the telescope, and the
lower one shows what the appearance would be if the
planet were viewed from a direction at right angles to the
plane of the ring (which it never can be from the earth).

The first telescopic observers of Saturn were unable to
see the rings in their trne form, and were greatly per-
plexed to account for the appearance which the planet
presented. GariLeo described the planet as ¢ tri-corpo-
rate,”’ the two ends of the ring having, in his imperfect
telescope, the appearance of a pair of small planets at-
tached to the central one. ‘‘ On each side of old Saturn
were servitors who aided him on his way.”” This sup-
posed discovery was announced to his friend KrpLEr in
the following logogriph :

smaismrmilmepoelalevmibonenogtteviras, which, being
transposed, becomes—

¢ Altissimam planetam tergeminam obsevavi’’ (I have
observed the most distant planet to be triform).

The phenomenon constantly remained a mystery to its
first observer. 1In 1610 he had seen the planet accompa-
nied, as he supposed, by two lateral stars; in 1612 the
latter had vanished, and the central body alone remained.
After that GaLiLro ceased to observe Saturn.
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FIa. 96.—RINGS OF SATURN.
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The appearances of the ring were also incomprehensible
to Hevevius, Gassexpi, and others. It was not until
1655 (after seven years of observation) that the celebrated
Huvenens discovered the true explanation of the remark-
able and recurring series of phenomena present by the tri-
corporate planet.

He announced his conclusions in the following logo-

gliph —
0000 pp q rrs ttttt uuuun, » which, when arranged, read—

““ Annulo cingitur, tenui, plano, nusquam coherente,
ad eclipticam inelinato’’ (it is girdled by a thin plane ring,
nowhere touching, inclined to the ecliptic).

This description is complete and accurate.

In 1665 it was found by Barr, of England, that what
Iluveuess had seen as a single ring was really two. A
division extended all the way around near the outer edge.
This division is shown in the figures.

In 1850 the Messrs. Bonp, of Cambridge, found that there
was a third ring, of a dusky and nebulous aspect, inside
the other two, or rather attached to the inner edge of the
inner ring. It is therefore known as Bond’s dusky ring.
It had not been before fully deseribed owing to its dark-
ness of color, which made it a difficult object to see except
with a good telescope. It isnot separated from the bright
ring, but seems as if attached to it. The latter shades off
toward its inner edge, which merges gradually into the
dusky ring so as to make it difficult to decide preeisely
where it ends and the dusky ring begins. The latter ex-
tends about one half way from the inner edge of the
bright ring to the ball of the planet.

Aspect of the Rings.—As Saturn revolves around the
sun, the plane of the rings remains parallel to itself. That
is, if we consider a straight line passing through the centre
of the planet, perpendicular to the plane of the ring, as
the axis of the latter, this axis will always point in the
same direction. In this respect, the motion is similar to
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that of the earth around the sun. The ring of Saturn is
inclined about 27° to the plane of its orbit.  Conse-
quently, as the planet revolves around the sun, there is a
change in the direction in which the sun shines upon it
similar to that which produces the change of seasons upon
the earth, as shown in Fig. 46, page 109.

The corresponding changes for Saturn are shown in
Fig. 97. During each revolution of Saturn the plane

F16. 97.—DIFFERENT ASPECTS OF THE RING OF SATURN AS SEEN
FROM THE EARTH.

of the ring passes through the sun twice. This occurred
in the years 1862 and 1878, at two opposite points of the
orbit, as shown in the figure. At two other points, mid-
way between these, the sun shines upon the plane of the
ring at its greatest inclination, about 27°.  Since the earth
is little more than one tenth as far from the sun as Sat-
urn is, an observer always sees Safurn nearly, but not
quite, as if he were upon thesun. Ience at certain times
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the rings of Saturn are seen edgeways, while at other
times they are at an inclination of 27°, the aspect depend-
ing upon the position of the planet in its orbit. The fol-
lowing are the times of some of the phases :

1878, Febrnary Tth.— The edge of the ring was turned
toward the sun. It could then be seen only as a thin
line of light.

1885.—The planet having moved forward 90°, the south
side of the rings may be seen at an inclination of 27°.

1891, December.—The planet having moved 90° fur-
ther, the edge of the ring is again turned toward the sun.

1899.—The north side of the ring is inclined toward the
sun, and is seen at its greatest inclination.

The rings are extremely thin in proportion to their ex-
tent. Their form is much the same as if they were cut
out of large sheets of thin paper. Consequently, when
their edges are turned toward the earth, they appear as a
thin line of light, which can be seen only with powerful
telescopes. 'With such telescopes, the planet appears as if
it were pierced through by a piece of very fine wire, the
ends of which project on each side more than the diam-
eter of the planet. It has frequently been remarked that
this appearance is seen on one side of the planet, when no
trace of the ring can be seen on the other.

There is sometimes a period of a few weeks during
which the plane of the ring, extended outward, passes be-
tween the sun and the earth. That is, the sun shines on
one side of the ring, while the other or dark side is turned
toward the earth. In this case, it seems to be established
that only the edge of the ring is visible. If this be so,
the substance of the rings cannot be transparent to the
sun’s rays, clse it would be seen by the light which passes
through it.

Possible Changes in the Rings.—In 1851 OrTo STRUVE pro-
" pounded a noteworthy theory of changes going on in the rings of
Saturn. From all the descriptions, figures, and measures given by
the older astronomers, it appeared that two hundred years ago the
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space between the planet and the inner ring was at least equal to
the combined breadth of the two rings. At present this distance
is less than one half of this breadth. Hence STRUVE concluded that
the inner ring was widening on the inside, so that its edge had been
approaching the planet at the rate of about 1”:3 in a century. The
space between the planet and the inner edge of the bright ring is
now about 4", so that if STRUVE’s theory were true, the inner edge
of the ring would actually reach the planet about the year 2200.
Notwithstanding the amount of evidence which STRUVE cited in
favor of his theory, astronomers generally are incredulous respecting
the reality of so extraordinary a change. The measures necessary
to settle the question are so difficult and the change is so slow that
some time must elapse before the theory can be established, even if
it is true. 'The measures of KA1ser render this doubtful.

Shadow of Planet and Ring.—With any good telescope it is
easy to observe both the shadow of the ring upon the ball of Saturn
and that of the ball upon the ring. The form which the shadows
present often appears different from that which the shadow ought
to have according to the geometrical conditions. These differences
probably arise from irradiation and other optical illusions.

Constitution of the Rings of Saturn.—The nature of these
objects has been a subject both of wonder and of investigation by
mathematicians and astronomers ever since they were discovered.
They were at first supposed to be solid bodies ; indeed, from their
appearance it was difficult to conceive of them as anything else.
The question then arose : What keeps them from falling on the
planet ¢ It was shown by LA Prace that a homogeneous and solid
ring surrounding the planet could not remain in a state of equili-
brinm, but must be precipitated upon the central ball by the small-
est disturbing force. HERscHEL having thought that he saw cer-
tain irregularities in the figure of the ring, LA PLAcE concluded that
the object could be kept in equilibrium by them. He simply as-
sumed this, but did not attempt to prove it.

About 1850 the investigation was again begun by Professors Boxp
and Prirce, of Cambridge. The former supposed that the rings
could not be solid at all, because they had sometimes shown signs of
being temporarily broken up into a large number of concentric
rings. Although this was probably an optical illusion, he concluded
that the rings must be liquid. Professor PEIRCE took up the prob-
lem where LA Prack had left it, and showed that even anirregular
solid ring would not be in equilibrium about Saturn. He therefore
adopted the view of Boxnp, that the rings were fluid ; but finding
that even a fluid ring would be unstable without a support, he sup-
posed that such a support might be furnished by the satellites.
This view has also been abandoned.

It is now established beyond reasonable doubt that the rings do
not form a continuous mass, but are really a countless multitude of
small separate particles, each of which revolves on its own account.
These satellites are individually far too small to be seen in any tele-
scope, but so numerous that when viewed from the distance of the
earth they appear as a continuous mass, like particles of dust float-
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ing in a sunbeam. This theory was first propounded by Cassint,
of Paris, in 1715. It had been forgotten for a century or more,
when it was revived by Professbr CLERk MAXWELL in 1856. The
latter published a profound mathematical discussion of the whole
question, in which he shows that this hypothesis and this alone
would account for the appearances presented by the rings.
KAsER’s measures of the dimensions of the Saturnian system are :

BALL OF SATURN.

Equatorialidiameterss, T St S e Drnian Sl A O 17-274
Polar R S, S e e ok v o VSt T 15-"392
RINGS,

Majoriaxis of -outeriring: L. & BI85 S e it 2 39-7471

e B ithesgreat divisions Wi les s AT 34-"227
Sl tet athelinneredge of ring sl SRe i LY 27-"859
Width: ofithe:ring:l g o ol e It s Bes- e 5806
Dark space between ball and ring................... 57292

§ 3. SATELLITES OF SATURN.

Outside the rings of Suturn revolve its eight satellites,
the order and discovery of which are shown in the following
table :

Distance
No. NAME. from Discoverer, Date of Discovery.
Planet,
1 Mimas. 3.3 Herschel, 1789, September 17.
2 Enceladus, 4.3 Herschel. 1789, August 28.
8 Tethys, 5-3 Cassini. 1684, March.
4 Dione. 6-8 Cassini. 1684, March.
5 Rhea. 9.5 Cassini. 1672, December 23.
6 Titan, 20-7 Huyghens. | 1655, March 25.
7 Hyperion. 26-8 Bond. 1848, September 16.
8 Japetus. 64.4 Cassini. 1671, October.

The distances from the planet are given in radii of the
latter. The satellites Mimas and Hyperion are visible
only in the most powerful telescopes. The brightest of
all is Z%tan, which can be seen in a telescope of the small-
est ordinary size. Japetus has the remarkable peculiarity
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of appearing nearly as bright as Z%¢an when seen west of
the planet, and so faint as to be visible only in large tel-
eseopes when on the other side. This appearance is ex-
plained by supposing that, like our moon, it always pre-
sents the same face to the planet, and that one side of it is
black and the otherside white. When west of the planet,
the bright side is turned toward the earth and the satellite is
visible. On the other side of the planet, the dark side is
turned toward us, and it is nearly invisible. Most of the
remaining five satellites can be ordinarily seen with tele-
scopes of moderate power.

The elements of all the satellites are shown in the fol-
lowing table :

. Mean oi ina- |{Longitnde

SATELLITE. Mean Daily | Distance Longitade Eccen- 1{,’2&% gof
LGl e Periat. | Y. | Holtptic. | Nede
1 . o ’ o ’ [ 7 o 7

Mimas... .. 381-953 P 2 ? 28 00 | 168 00
Enceladus.| 262-721 | ...... 9 ? 28 00 | 168 00
Tethys....| 190-69773 42.70 ? ? 28 10 | 167 38
Diane.....| 131-534930 | 54.60 ? ? 28 10 | 167 38
Rhea......| 79-690216 | 76.-12 ? ? 28 11 | 166 34
Titan......[ 22-577033 | 176-75 | 257.16 <0286 | 27 34 [ 167 56 .
Hyperion..| 16-914 214-22 | 40-00 <125 |28 00 | 168 00
Japetus. .. 4.538036 | 514-64 | 351-25 <0282 | 18 44 | 142 53




CHAPTER +IX.
THE PLANET URANUS.

Uranus was discovered on March 13th, 1781, by Sir
Wirriam HerscHEL (then an amateur observer) with a
ten-foot reflector made by himself. He was examining a
portion of the sky near H Geminorum, when one of the
stars in the field of view attracted his notice by its pecn-
liar appearance. On further scrutiny, it proved to have a
planetary disk, and a motion of over 2” per hour. Hger-
sCHEL at first supposed it to be a comet in a distant part
of its orbit, and under this impression parabolic orbits
were computed for it by various mathematicians. None
of these, however, satisfied subsequent observations,
and it was finally announced by Lexer. and La Prace
that the new body was a planet revolving in a nearly
circular orbit. We can scarcely comprehend now the
enthusiasm with which this discovery was received. No
new body (save comets) had been added to the solar system
since the discovery of the third satellite of Saturn in 1684,
and all the major planets of the heavens had been known
for thousands of years.

HErscuEL suggested, as a name for the planet, Geor-
gium Sidus, and even after 1800 it was known in the Eng-
lish Nautical Almanac as the Georgian Planet. Laraxpe
suggested [erschel as its designation, but this was judged
too personal, and finally the name Uranus was adopted.
Its symbol was for a time written I, in recognition of the
name proposed by LALANDE.

Uranus revolves about the sun in 84 years. Itsappar-
ent diameter as seen from the earth varies little, being
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about 3”.9. Its true diameter is about 50,000 kilometres,
and its figure is, so far as we yet know, exactly spherical.

In physical appearance it is a small greenish disk with-
out markings. It is possible that the centre of the disk is
slightly brighter than the edges. At its nearest approach
to the earth, it shines as a star of the sixth magnitude,
and is just visible to an acute eye when the attention is
directed to its place. In small telescopes with low pow-
ers, its appearance is not mnarkedly different from that of
stars of about its own brilliancy.

It is customary to speak of Herscuer’s discovery of
Uranus as an accident ; but this is not entirely just, as
all conditions for the detection of such an object, if it ex-
isted, were fulfilled. At the same time the early identifi-
cation of it as a planet was more easy than it would have
been eleven days earlier, when, as Arago points out, the
planet was stationary.

Sir Wirriam Herscuer suspected that Uranus was ac-
companied by six satellites.

Of the existence of two of these satellites there has
never been any doubt, as they were steadily observed by
HerscneL from 1787 until 1810, and by Sir Jonx Hzr-.
scHEL during the years 1828 to 1832, as well as by other
later observers. None of the other four satellites de-
scribed by HEerscurr have ever been seen by other ob-
servers, and he was undoubtedly mistaken in supposing
them to exist. Two additional ones were discovered by
Lasserw in 1847, and are, with the satellites of Mars, the
faintest objects in the solar system. Neither of them is
identical with any of the missing ones of HErscurrL, As
Sir WiLLiam Herscnrrn had suspected six satellites, the
following names for the true satellites are generally adopt-

ed to avoid confusion :
DAYS.

A P R s o S e A AP s i Period = 2-520383
I 771 177077 - w i S R e s ¢ — 4.144181
III, Zdtania, Herscuer’s (I1)....... ¢ = 8.705897

IV, Oberon, Herscner’s (IV.)......0 ¢ 13.463269
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It is an interesting question whether the observations
which Herscurr assigned to his supposititious satellite I
may not be composed of observations sometimes of Ariel,
sometimes of Umbriel. In fact, out of nine supposed
observations of I, one case alone was noted by HzerscneL
in which his positions were entirely trustworthy, and on
this night Umbriel was in the position of his supposed
satellite I.

It is likely that A#éel varies in brightness on different
sides of the planet, and the samme phenomenon has also
been suspected for Z%tania.

The most remarkable feature of the satellites of Uranus is that
their orbits are nearly perpendicular to the ecliptic instead of
having a small inclination to that plane, like those of all the orbits
of both planets and satellites previously known. To form a correct
idea of the position of the orbits, we must imagine them tipped over
until their north pole is nearly 8° below the ecliptic, instead of 90°
above it. The pole of the orbit which should be considered as the
north one is that from which, if an observer look down upon a re-
volving body, the latter would seem to turn in a direction opposite
that of the hands of a watch. When the orbit is tipped over more
than a right angle, the motion from a point in the direction of the
north pole of the eeliptic will seem to be the reverse of this ; it is
therefore sometimes considered to be retrograde. This term is fre-
quently applied to the motion of the satellites of Uranus, but is
rather misleading, since the motion, being nearly perpendicular to
the ecliptic, is not exactly expressed by the term.

The four satellites move in the same plane, so far as the most re-
fined observations have ever shown. This fact renders it highly
probable that the planet Uranus revolves on its axis in the same
plane with the orbits of the satellites, and is therefore an oblate
spheroid like the earth. This conclusion is founded on the consid-
eration that if the planes of the satellites were not kept together by
some cause, they would gradually deviate from each other owing to
the attractive force of the sun upon the planet. The different satel-
lites would deviate by different amounts, and it would be extremely
improbable that all the orbits would at any time be found in the
same plane. Since we see them in the same plane, we conclude that
some force keeps them there, and the oblateness of the planet would
cause such a foree.



CHAPTER X.
THE PLANET NEPTUNE.

Arrer the planet Uranus had been observed for some
thirty years, tables of its motion were prepared by
Bouvarp. He had as data available for this purpose not
only the observations since 1781, but also observations
made by Le I\IONNIER, Framsreep, and others, extending
back as far as 1695, in which the pla,net was observed for
a fixed star and so recorded in their books. As one of
the chief difficulties in the way of obtaining a theory of
the planet’s motion was the short period of time during
which it had been regularly observed, it was to be sup-
posed that these ancient observations would materially aid
in obtaining exact accordance between the theory and ob-
servation. DBut it was found that, after allowing for all
perturbations produced by the known planets, the ancient
and modern observations, though undoubtedly referring to
the same object, were yet not to be reconciled with each
other, but differed systematically. Bouvarp was forced
to omit the older observations in his tables, which were
published in 1820, and to found his theory upon the
modern observations alone. By so doing, he obtained a
good agreement between theory and the observations of
the few years immediately succeeding 1820.

Bouvarnp seems to have formulated the idea that a possi-
ble cause for the discrepancies noted might be the exist-
ence of an unknown planet, but the meagre data at his
disposal forced him to leave the subject untouched. In
1830 it was found that the tables which represented the
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motion of the planet well in 1820-25 were 20" in error, in
1840 the error was 90”7, and 4n 1845 it was over 120",
These progressive and systematic changes attracted the
attention of astronomers to the subject of the theory of
the motion of Uranus. The actual discrepancy (120”) in
1845 was not a quantity large in itself. Two stars of the
magnitude of Uranus, and separated by only 120", would
be seen as one to the unaided eye. It was on account of
its systematic and progressive increase that suspicion was
excited. Several astronomers attacked the problem in vari-
ous ways. The elder Struve, at Pulkova, prosecuted a
search for a new planet along with his double star obser-
vations ; BesseL, at Koenigsberg, set a student of his own,
FLEMiNG, at a new comparison of observation with theo-
ry, in order to furnish data for a new determination ;
ARaco, then Director of the Observatory at Paris, sug-
gested this subject in 1845 as an interesting field of re-
search to Lk VErrier, then a rising mathematician
‘and astronomer. Mr. J. C. Apawms, a student in Cam-
bridge University, England, had become aware of the
problems presented by the anomalies in the motion of
Uranus, and had attacked this question as early as 1843.
In October, 1845, Apams communicated to the Astrono-
mer Royal of England elements of a new planet so situated
as to produce the perturbations of the motion of Uranus
which had actually been observed. Such a prediction
from an entirely unknown student, as Apams then was,
did not carry entire conviction with it. = A series of acci-
dents prevented the unknown planet being looked for by
one of the largest telescopes in England, and so the mat-
ter apparently dropped. It may be noted, however, that
we now know Apawms’ elements of the new planet to have
been so near the truth that if it had been really looked for
by the powerful telescope which afterward discovered its
satellite, it could scarcely have failed of detection.
Besser’s pupil FLeming died before his work was done,
and BgrsseL’s researches were temporarily brought to
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an end. STtrRUVE’s search was unsuccessful. Only Lr
VErrier continued his investigations, and in the most
thorough manner. He fitst computed anew the pertur-
bations of Uranus produced by the action of Jupiter and
Saturn. Then he examined the nature of the irregulari-
ties observed. These showed that if they were caused by
an unknown planet, it could not be between Saturn and
Uranus, or else Saturn would have been more affected
than was the case.

The new planet was outside of Uranus if it existed at
all, and as a rough guide Bopr’s law was invoked, which
indicated a distance about twice that of Uranus. In the
summer of 1846, Le Verrier obtained complete elements
of anew planet, which would account for the observed
irregularities in the motion of Uranus, and these were
published in France. They were very similar to those of
Apams, which had been communicated to Professor CrAx-
r1s, the Director of the Observatory of Cambridge.

A search was immediately begun by Cuarris for such
an object, and as no star-maps were at hand for this region
of the sky, he began mapping the surrounding stars. In
so doing the new planet was actually observed, both on
August 4th and 12th, 1846, but the observations remain-
ing unreduced, and so the planetary nature of the object
was not recognized.

In September of the same year, Lt VErriER wrote to
Dr. GaALLE, then Assistant at the Observatory of Berlin,
asking him to search for the new planet, and directing
him to the place where it should be found. By the aid
of an excellent star chart of this region, which had just
been completed by Dr. Bremixer, the planet was found
September 23d, 1846.

The strict rights of discovery lay with Le VERRIER,
but the common consent of mankind has always credited
Apawms with an equal share in the honor attached to this
most brilliant achievement. Indeed, it was only by the
most unfortunate succession of accidents that the discovery
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did not attach to Apams’ researches. One thing must in
fairness be said, and that is ,that the results of Lr VEr-
RIER, which were reached after a most thorough investi-
gation of the whole ground, were announced with an en-
tire confidence, which, perhaps, waslacking in the other
case.

This brilliant discovery created more enthusiasm than
even the discovery of Uranus, as it was by an exercise of
far higher qualities that it was achieved. It appeared to
savor of the marvellous that a mathematician could say

Fre. 98.

to a working astronomer that by pointing his telescope to
a certain small area, within it should be found a new
major planet. Yet so it was.

The general nature of the disturbing force which re-
vealed the new planet may be seen by Fig. 98, which
shows the orbits of the two planets, and their respective
motions between 1781 and 1840. The inner orbit is that
of Uranus, the outer one that of Neptune. The arrows
passing from the former to the latter show the directions
of the attractive force of Neptune. It will be seen that
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the two planets were in conjunction in the year 1822.
Since that time Uranus has, by its more rapid motion,
passed more than 90° beyond Neptune, and will continue
to increase its distance from the latter until the begin-
ning of the next century.

Our knowledge regarding Neptune is mostly confined
to a few numbers representing the elements of its motion.
Its mean distance is more than 4,000,000,000 kilometres
(2,775,000,000 miles) ; its periodic time is 164.78 years ;
its apparent .diameter is 2.6 seconds, corresponding to a
true diameter of 55,000 kilometres. Gravity at its surface
is about nine tenths of the corresponding terrestrial surface
gravity. Of its rotation and physical condition nothing
is known. Its color is a pale greenish blue. It is attend-
ed by one satellite, the elements of whose orbit are given
herewith. It was discovered by Mr. LasseLL, of Eng-
land, in 1847. It is about as faint as the two outer satel-
lites of Uranus, and requires a telescope of twelve inches
aperture or upward to be well seen.

ELEMENTS OF THE SATELLITE OF NEPTUNE, FROM WASHINGTON

OBSERVATIONS.
NEeany Daily Moo s s e o 5 ek o o s, - 61°.25679
12Ty ol B0l e e S I e e B e B st S S 51.87690
Distance (log. a = 1:47814).....c.civiiiiiniiiiieenns 16".275
Inclination of Orbit to Eeliptic..........c...ccivnaiine. 145° 7
Longitude o Node (18BN i b A M it st ferteoieie P tor iz s hessnr 184° 30’
Increase, in: 100 Y ears ot d & RTmEt, s 5t omorvei! o S 4 oo s acoros 1° 24

The great inclination of the orbit shows that it is turned nearly
upside down ; the direction of motion is therefore retrogade.



CHAPTER XI.

THE PHYSICAL CONSTITUTION OF THE
PLANETS.

Ir is remarkable that the eight large planets of the solar
system, considered with respect to their physical constitu-
tion as revealed by the telescope and the spectroscope,
may be divided into four pairs, the planets of each pair
having a great similarity, and being quite different from
the adjoining pair. Among the most complete and sys-
tematic studies of the spectra of all the planets are those
made by Mr. Huvccixs, of London, and Dr. Vocew, of
Berlin. In what we have to say of the results of spectro-
scopy, we shall depend entirely upon the reports of these
observers.

Mercury and Venus.—Passing outward from the sun,
the first pair we encounter will be Mercury and Venus.
The most remarkable feature of these two planets is a neg-
ative rather than a positive one, being the entire absence
of any certain evidence of change on their surfaces. We
have already shown that Venws has a considerable atmos-
phere, while there is no evidence of any such atmosphere
around Mercury. They have therefore not been proved
alike in this respect, yet, on the other hand, they have not
been proved different. In every other respect than this,
the similarity appears perfect. No permanent markings
have ever been certainly seen on the disk of either. If,
as is possible, the atmosphere of both planets is filled with
clouds and vapor, no change, no openings, and no for-
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mations among these cloud masses are visible from the
earth. Whenever either of these planets is in a certain
position relative to the earth and the sun, it seemingly
presents the same appearance, and not the slightest
change occurs in that appearance from the rotation of the
planet on its axis, which every analogy of the solar sys-
tem leads us to believe must take place.

When studied with the spectroscope, the spectra of
Mercury and Venus do not differ strikingly from that of
the sun. This would seem to indicate that the atmos-
pheres of these planets do not exert any decided absorption
upon the rays of light which pass through them ; or, at
least, they ahsorb only the same rays which are absorbed
by the atmosphere of the sun and by that of the earth.
The one point of difference which Dr. VoeerL brings out
is, that the lines of the spectrum produced by the absorp-
tion of our own atmosphere appear darker in the spectrum
of Venus. If this were so, it would indicate that the at-
mosphere of Venus is similar in constitution to that of
our earth, because it absorbs the same rays. But the
means of measuring the darkness of the lines are as yet
so imperfect that it is impossible to speak with certainty
on a point like this. Dr. Voeer thinks that the light
from Venus is for the most part reflected from clouds in
the higher region of the planet’s atmosphere, and there-
fore reaches us without passing through a great depth of
that atmosphere.

The Earth and Mars.—These planets are distinguished
from all the others in that their visible surfaces are marked
by permanent features, which show them to be solid, and
which can be seen from the other heavenly bodies. It is
true that we cannot study the earth from any other body,
but we can form a very correct idea how it would look if
seen in this way (from the moon, for instance). Wherever
the atmosphere was clear, the outlines of the continents
and oceans would be visible, while they would be invisible
where the air was cloudy.
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Now, so far as we can judge from observations made
at so great a distance, nevgr much less than forty mil-
lions of miles, the planet Mars presents to our tele-
scopes very much the same general appearance that the
earth would if observed from an equally great distance.
The only exception is that the visible surface of Mars is
seemingly much less obscured by clouds than that of the
earth would be. In other words, that planet has a more
sunny sky than ours. Itis, of course, impossible to say
what conditions we might find could we take a much
closer view of Mars : all we can assert is, that so far as
we can judge from this distance, its surface is like that of
the earth.

This supposed similarity is strengthened by the spectro-
scopic observations. The lines of the spectrum due to
aqueous vapor in our atmosphere are found by Dr. VogrL
to be so much stronger in Mars as to indicate an absorp-
tion by such vapor in its atmosphere. Dr. Huaeins had
previously made a more decisive observation, having
found a well-marked line to which there is no correspond-
ing strong line in the solar spectrum. This would indi-
cate that the atmosphere of Mars contains some element
not found in our own, but the observations are too diffi-
cult to allow of any well-established theory being yet
built npon them.

Jupiter and Saturn.—The next pair of planets are
Jupiter and Saturn. Their peculiarity is that no solid
crust or surface is visible from without. In this respect
they differ from the earth and Mars, and resemble Mer-
cury and Venus. But they differ from the latter in the
very important point that constant changes can be seen
going on at their surfaces.  The nature of these changes
has been discussed so fully in treating of these planets in-
dividually, that we need not go into it more fully at pres-
ent. It is suflicient to say that the preponderance of evi-
dence is in favor of the view that these planets have no
solid crusts whatever, but consist of masses of molten
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matter, surrounded by envelopes of vapor constantly rising
from the interior.

The view that the greater part of the apparent volume of
these planets is made of a seething mass of vaporis further
strengthened by their very small specific gravity. This
can be accounted for by supposing that the liquid interior
is nothing more than a comparatively small central core,
and that the greater part of the bulk of each planet is
composed of vapor of small density.

That the visible surfaces of Jupiter and Saturn are cov-
ered by some kind of an atmosphere follows not only from
the motion of the cloud forms seen there, but from the
spectroscopic observations of Huveeins in 1864. He
found visible absorption-bands near the red end of the
spectrum of each of these planets. VoceL found a com-
plete similarity between the spectra of the two planets,
the most marked feature being a dark band in the red.
‘What is worthy of remark, though not at all surprising, is
that this band is not found in the spectrum of Saturn’s
rings. This is what we should expect, as it is hardly pos-
sible that these rings should have any atmosphere, owing
to their very small mass. An atmosphere on bodies of so
slight an attractive power would expand away by its own
elasticity and be all attracted around the planet.

Uranus and Neptune.—These planets have a strikingly
similar aspect when seen through a telescope. They
differ from Jupiter and Saturn in that no changes or va-
riations of color or aspect can be made out upon their sur-
faces ; and from the earth and Mars in the absence of any
permanent features. Telescopically, therefore, we might
classify them with Mercury and Venus, but the spectro-
scope reveals a constitution entirely different from that of
any other planets. The most marked features of their
spectra are very dark bands, evidently produced by the
absorption of dense atmospheres. Owing to the extreme
faintness of the light which reaches us from these distant
bodies, the regular lines of the solar spectrum are entirely
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invisible in their spectra, yet these dark bands which are
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to them have been seen by Hueains, Seccui,

Voexr, and perhaps others.
This classification of the
eight planets into pairs is ren-
dered yet more striking by
the fact that it applies to
what we have been able to
discover respecting the rota-
tions of these bodies. The
rotation of the inner pair,
Mercury and Venus, has
cluded detection, mnotwith-
standing their comparative
proximity to us. The next
pair, the earth and Mars,
have perfectly definite times
of rotation, because their
outer surfaces consist of solid
crusts, every part of which
must rotate in the same time.
The next pair, Jupiter and
Saturn, have well-established
times of rotation, but these
times are not perfectly defi-
nite, because the surfaces of
these planets are not solid,
and different portions of their
mass may rotate in slightly
different times. Jupiter and

F16. 99.—sPECTRUM OF URANUS.  Sytyrp have also in common
a very rapid rate of rotation. Finally, the outer pair, Ura-
nus and Neptune, seem to be surrounded by atmospheres of
such density that no evidence of rotation can be gathered.
Thus it seems that of the eight planets, only the central
four have yet certainly indicated a rotation on their axes.



CHAPTER XIIL
METEORS.

§ 1. PHENOMENA AND CAUSES OF METEORS.

Durine the present century, evidence has been collected
that countless masses of matter, far too small to be seen
with the most powerful telescopes, are moving through
the planetary spaces. This evidence is afforded by the
phenomena of ‘“aerolites,”” ‘‘meteors,’” and ¢ shooting
stars.””  Although these several phenomena have been ob-
served and noted from time to time since the earliest his-
toric era, it is only recently that a complete explanation
has been reached. :

Aerolites.—Reports of the falling of large masses of
stone or iron to the earth have been familiar to antiqua-
rian students for many centuries. Araco has collected
several hundred of these reports. In oneinstance a monk
was killed by the fall of one of these bodies. One or two
other cases of death from this cause are supposed to have
occurred. Notwithstanding the number of instances on
record, aerolites fall at such wide intervals as to be ob-
served by very few people, consequently doubt was fre-
quently cast upon the correctness of the mnarratives. - The
problem where such a body could come from, or how it
could get into the atmosphere to fall down again, formerly
seemed so nearly incapable of solution that it required
some credulity to admit the facts. When the evidence
became so strong as to be indisputable, theories of their
origin began to be propounded. One theory quite fashion-
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able in the early part of this century was that they were
thrown from volecanoes jn the moon. This theory,
though the subject of mathematical investigation by La
Prack and others, is now no longer thought of.

The proof that aerolites did really fall to the ground
first became conclusive by the fall being connected with
other more familiar phenomena. Nearly every one who
is at all observant of the heavens is familiar with boledes,
or fire-balls—brilliant objects having the appearance of
rockets, which are occasionally seen moving with great ve-
locity through the upper regions of the atmosphere.
Scarcely a year passes in which such a body of extraordi-
nary brilliancy is not seen. Generally these bodies, bright
though they may be, vanish without leaving any trace, or
making themselves evident to any sense but that of sight.
But on rare occasions their ap<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>