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PUBLISHER’S NOTE TO STUDENTS’ EDITION

THE publication in soft cover form of this text in the great
tradition of Scottish mathematical teaching has been made
practicable by arrangement with the representatives of the
Author’s estate. It is hoped thus to enable a wider circle of
students to own their own copy of a work which was the mature
fruit of a lifetime’s teaching, which sets out elegantly a great
wealth of argument and example, and which could hardly be
produced in modern conditions at any price within the indivi-
dual’s purse.

It provides all that is required in applications of the Calculus
to physical problems and undoubtedly owes its long popularity
to the fact that it has sufficient rigour for the needs of the serious
student without going too deeply into abstract theory.

Professor George Gibson wrote the book after his resignation
from the Chair of Mathematics at Glasgow in 1927; he completed
it in 1929 but it was still passing through the press at the time
of his death in April 1930. It is proper here to record what the
book owes to the late Professor T. M. MacRobert, M.A., D.Sc.,
LLD., who having helped the Author in many ways during its
preparation, then assumed the arduous task of reviewing the
final proofs, in which he was assisted by Dr. Richard A. Robb,
Mr. George Brown and Dr. James Hyslop.
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PREFACE TO STUDENTS’ EDITION

THE first edition of Professor Gibson’s Elementary Treatise on
the Calculus was published in 1901. Pressure of work made it
impossible for him to proceed, till after his resignation in 1927,
with the preparation of a projected treatise dealing with more
advanced aspects of the subject. The book was completed by
the summer of 1929, and was passing through the press at the
time of his death on 1st April, 1930.

The first eight chapters are devoted mainly to the Differential
Calculus, and the remaining seven to Riemann’s theory of
integration. The treatise begins with Dedekind’s theory of
irrational numbers ; then follow discussions of bounded sets,
sequences, limits, and differentiation of functions of one vari-
able and of functions of several variables. Chapter V deals
with existence theorems for implicit functions and with the
theory of Jacobians. Three further chapters contain accounts
of infinite series, complex functions of a real variable, Lagrange’s
expansion, maxima and minima, infinite products, and Gamma
Functions.

The integration of bounded functions forms the subject of
Chapter IX ; next come expositions of curvilinear integrals,
multiple integrals, and surface integrals. In Chapter XII
improper integrals, that is, integrals in which the intergrand is
not bounded or the range of integration is not finite, are intro-
duced ; and the two succeeding chapters are concerned with
improper double integrals. The book closes with a chapter on
the applications of the theory to the integration of series and
to the Gamma Function. Throughout the work numerous
examples have been provided.

vii
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CHAPTER 1

REAL NUMBERS. SECTIONS

1. The Continuous Variable. In §9 of the Elementary
T'reatise on the Calculus a continuously varying number z is
represented as the abscissa of a point P on an axis, and the
assumption is made (§ 4) that, when an origin O and a unit
segment OU have been chosen, there is a one-to-one corre-
spondence between the numbers z and the points P. In § 148
the existence of a limit is discussed on the same assumption.
Now the correspondence between numbers and points obviously
fails if number is restricted to mean rational number, that is,
positive or negative integer, or zero, or fraction (the quotient of
an integer by an integer) ; for example, if OP is equal to the
diagonal of a square of side OU there is no rational number that
corresponds to P since the diagonal and the side of a square are
incommensurable. It is customary to say that the abscissa
of Pis 1-41 or 1-414 or 1-4142, ... approximately ; in other words,
in order to make the one-to-one correspondence complete, it
is assumed that there ¢s a number corresponding to P, denoted
by /2, and called an irrational number, and that 1-41, 1-414,
1-4142, ... are rational approximations to it.

The theory of irrational numbers is very much harder than
that of rational numbers, and in books on elementary algebra
the definition of an irrational number and the discussion of
the laws of operation of such numbers are necessarily rather
sketchy. It is desirable, however, that the advanced student
should face the difficulties and see that a purely arithmetical
theory of irrational numbers can be constructed ; it will be
found that the conception of the continuity of the straight line
can be stated in such a way that the correspondence between

“ number ”’ and ¢ point *’ can be re-established.
E
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Definitions of the irrational number have been given by
Dedekind, Weierstrass, G. Cantor and Méray, and it is on one
or other of these definitions that the treatment is now usually
based. Of English textbooks to which the student may be
referred for a discussion of the modern conception of number
the most important is Hobson’s Theory of Functions of a Real
Variable. Good but less elaborate discussions will be found in
Chrystal’s Algebra, Part I1I, (2nd Ed.), pp. 97-109, Hardy’s
Pure Mathematics and Bromwich’s Infinite Series (Appendix
I). The sketch that follows is intended to call attention
merely to the more important parts of the theory ; as Chrystal
remarks (l.c. p. 98), ‘ the initial difficulties of the theory lie
not in framing definitions, but in seeing where new definitions
and where demonstrations are really necessary.” The dis-
cussion now to be given is based on Dedekind’s exposition in
his tract Stetigkeit und Irrationale Zahlen.

2. Continuity of a Straight Line. Dedekind’s definition of
the irrational number will probably, at a first approach, seem
rather strange to the student, and it may be helpful to sketch
the geometric considerations that suggested his definition.
The problem before him was that of finding a mathematical
test of continuity such as would form the basis of mathematical
deductions, and these geometric considerations may be stated
briefly in the following way.

The following relations hold for points on a straight line :

(1) If A lies to the left of B and B to the left of C, then 4
lies to the left of C and B lies between 4 and C.

(2) If 4 and B are two different points on the line, there is
an unlimited number of points between them.

(3) If 4 is a given point on the line it divides all the points
of the line into two classes—the left or lower class (L say) and
the right or upper class (U say). The class L contains all
points to the left of 4 and the class U all points to the right
of 4, while the point A itself may be assigned either to L or
to U.

This division of the points of the line is called a ‘ section,”
and A is said to generate the section ; the section is considered
to be the same whether A is assigned to L orto U.

Now Dedekind considers that the characteristic property of
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continuity may be expressed by the converse of (3), and he
states it in the form : If all the points of a straight line are
divided into two classes, L and U, so that every point in L lies
to the left of every point in U then there is one and only one
point that generates the section.

This statement is to be taken as an Axiom ; it seems to be
consistent with  common sense’’ conceptions of the con-
tinuity of the straight line and, when the irrational number has
been defined in the purely arithmetical manner proposed by
Dedekind, the expression # . OU for the length of a segment OP
in terms of a standard unit segment OU is recovered.

The definition of the irrational number presupposes the
knowledge of the rational numbers, and the student is advised
to make a careful study of the early chapters of Chrystal’s
Algebra so that he may appreciate the gradual extension of
the meaning of “ number ”’ and of the laws of operation on
numbers. There may, for example, be three things in a group ;
the ¢ natural ”’ number 3 which specifies this characteristic of
the group is not a number in the same sense as the ¢ positive
number 3 although the same symbol is used for both and the
word ¢ number ”’ is applied to both. The justification of the
extension of the word ¢ number ” to positive, zero, negative
or fractional numbers lies in the fact that the laws of operation
on these numbers are consistent with those applicable to natural
numbers and a similar justification holds in regard to ¢ irra-
tional ’ numbers.

Though no appeal is made to geometry the parallelism
between the geometrical statements (1), (2) and (3) of this
article and the corresponding arithmetical statements in the
next article should be noted.

3. The Ralional Number. In thisarticle the word ¢ number
means ‘ rational number,” and it is supposed that the laws
of operation on such numbers are known ; the expression
‘ rational number ’ will only be employed when it seems to be
desirable to emphasize the restriction.

The following relations hold for rational numbers :

(1) If a<b and b< ¢ then a <c¢ and b is said to lie between
a and ¢. Further, if @ and b are two numbers one and only one
of the following alternatives is true : a>b, or a<b, or a=b.
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The system of rational numbers is therefore an ordered
system ; that is, just as a set®* of points on a straight line,
counted say from left to right, has a definite order, and, of any
pair of different points, one always precedes, or lies to the left of,
the other so, of any pair of different rational numbers, one
always precedes, or is less than, the other while the numbers
in any set of rational numbers have inter se a definite order,
namely the order of magnitude.

The system of rational numbers will be denoted by E.

(2) If @ and b are two different numbers, there is an unlimited
number of numbers between them ; in other words, if k£ is any
positive integer, no matter how large, there are more than
k numbers between a and b.

For if a <b all the numbers

a+b—a, a+2(b—a), a+3(b—a)’ . a+(n—1)(b—a)’
n n n n

where 7 is any integer greater than (& +1), lie between @ and b.

This property of the system R of rational numbers is ex-
pressed by saying that R is ¢ dense ” or  compact.”

(3) If a is any number it separates all the numbers in R
into two classes, a lower class L and an upper class U ; the
class L contains all numbers less than a and the class U all
numbers greater than a, while a itself may be assigned either
to L or to U.

If a is assigned to L it is the greatest number in L, and
then U has no least number ; if a is assigned to U it is the least
number in U and then L has no greatest number. There
cannot be both a greatest number a in L and a least number b
in U because a and b would be different and all numbers
between a and b would escape classification.

This separation of the numbers in R into two classes is called
a section of R, and the number a is said to generate the section ;
a is either the greatest number in L or the least number in U.

The question at once arises: if all the numbers in E are
separated into two classes L and U so that every number in L
is less than every number in U, is there always a number in B
that generates the section ? Certainly not, as the following
simple example shows.

* The word “ set’’ means here simply ¢ finite number.
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It is easily proved * that there is no positive (rational)
number whose square is 2, and therefore every positive number
z is such that either x2< 2 or 22>2. Now form two classes
L and U of the numbers in R by assigning to L all the negative
numbers, zero and the positive numbers whose square is less
than 2, and to U all the other numbers in R, that is, all the
positive numbers whose square is greater than 2. It will be
shown that in this case L contains no greatest number and
U no least.

Suppose a positive and a? < 2 so that (2 —a?) is positive ; a
greater number, a + say, can be found whose square is also
less than 2. To see this, choose A so that 0 <k < 1; then

(@ +h)2< 2 if 2ah +h%< 2 - a?, a positive number.

But 2ah +h%< 2ah +h since 0<h<1 so that (a+h)? will
be less than 2 if (2a +1)% is less than (2 —a?). It is possible
to choose % so that (2a +1)k will be less than (2-a?); for
example, (2a¢ +1)k is less than (2-a?) if A=(2-a?)/(2a +2).
It now follows that, whatever positive number be taken in L,
there is always a greater number (in fact, an unlimited number
of greater numbers) in L whose square is less than 2 so that
L contains no greatest number. .

In a similar way it may be shown that if @ is positive and
a’>2 a positive number % may be found such that a -k is
positive and (a — k)2 >2; U therefore contains no least number.

The numbers in R have therefore been separated into two
classes L and U such that every number in R occurs either in
L or in U, and every number in L is less than every number
in U, but there is in L no greatest number and in U no least
go that the section is not generated by a number in E. The
student will easily construct other examples of sections of R
that are not generated by numbers in R. (See Exercises I.)

When a section is generated by a number in B that number
may be said to correspond to the section, but when the section
is not generated by a number in R there is no number
with which to put the section in correspondence; in the
geometrical analogue of § 2 there is, on the assumption of
Dedekind’s Axiom, always one and only one point that

* See Exercises I, 1, 2.
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generates a section. The arithmetical problem is now to
extend the number system so that every section of the number
system shall be generated by a number in the system ; the
extension leads to the system of Real Numbers.

4. Real Numbers. The definition of the real number is as
follows, it being understood that both of the classes L and U
exist.

DEriniTioN. If by any method all the rational numbers
are separated into two classes L and U such that every number
in L isless than every number in U, the section so determined is
said to define a real number.

The symbol (L, U) may be used to denote either the real
number or the section ; this double use of the symbol causes
no confusion. :

If there is a greatest number in L or a least in U then (L, U)
corresponds to the rational number which generates the section
and is called a real rational number. If L has no greatest
number and U no least then (L, U) does not correspond to any
rational number ; in this case (L, U) is called a real irrational
number.

In regard to the terminology the following remarks of
Hobson may be quoted (Functions of a Real Variable, 1st Ed.,
p- 29):

“ The rational numbers are frequently regarded as identical
with the real numbers to which they correspond, and are
denoted by the same symbols. In the development of Analysis,
this identity leads to no difficulties ; but in the fundamental
theory of the aggregate of real numbers, a conceptual distinction
between rational numbers and the real numbers to which they
correspond must be made, in order to obviate logical difficulties,
and especially with a view to coordinating Cantor’s theory with
that of Dedekind. Those real numbers which do not corre-
spond to rational numbers are called irrational numbers ; and
those real numbers which correspond to rational numbers are
usually spoken of as themselves rational numbers.”

5. Properties of the Real Number. To save tedious repetitions,
let the lower classes of sections be denoted by capital letters
4, B, 0, ..., and the corresponding upper classes by the
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corresponding accented letters A’, B’, C’,.... A typical
(rational) number of 4, B, C ... will be denoted by a, b, ¢, ...
and a typical number of 4', B, ', ... by a’,b’, ¢/, .... When
(4, A’) is rational the generating number may be considered
to belong either to 4 or to 4’, and the rational number that
generates the section will be indicated by the suffix 0 attached
to the typical letter. We adopt the convention that the
generating number is to be the greatest number in the lower
class ; thusif (4, 4"), (B, B'), (C, C’) are rational real numbers
the generating numbers of the sections are a,, by, ¢, respectively.
(See Note, below.)

The real numbers (4, 4'), (B, B'), (C, C’) ... whether rational
or irrational will often be denoted by the corresponding Greek
letters o, B, v, ...

As yet the real number is little more than a name, and
properties will now be assigned to it by means of definitions,
the properties of rational numbers being assumed.

Posttive NUMBER. NEGATIVE NUMBER. ZERO.

The number (4, 4’) or o is defined to be positive if A contains
a positive number, negative if A’ contains a negative number.
If all the numbers in 4 are negative and all those in 4’ positive,
the section defines the number zero.

It may be noted that if 4 contains one positive number, % say,
it contains an unlimited number of positive numbers; for
k/2, k[3, ... are positive and being less than k are all in 4.

EqQuaLiTy.

The number o or (4, 4’) is defined to be equal to the number
B or (B, B'), and B to be equal to o, if the numbers in 4 are
the same as those in B or—what amounts to the same thing—
if the numbers in 4’ are the same as those in B’. In symbols :

(X.=ﬂ, /3=OL.

Note. When the real number is rational the number that generates
the section has been chosen to be the greatest number in the lower class,
but this, of course, is merely a convention. If g, is the greatest number
in A and bj the least number in B’ the sections (4, 4’) and (B, B’) will
give the same real rational number if @, and b are equal ; the numbers
defined by the sections must therefore be equal even though the class 4
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contains one number that is not in B (and B’ one that is not in A4’).
To justify the convention it will be sufficient to show that if there is
only one number in A, say a,, that is not in B, then a, is at once the
greatest number in 4 and the least in B’ because when this is the case
the sections (4, 4’) and (B, B’) define the same real number.

Now since a, is not in B it must be in B’; let a, be denoted by bf
when considered as a number in B’. But a, is the only number of 4
that lies in B’ and therefore every other number in A4 lies in B and so
is less than b;, that is, less than a,. Hence @, is the greatest number
in 4.

Again, every number less than b| is less than @, and, as has been seen,
lies in B so that b| is the least number in B’. Since a, =b] the sections
(4, A’) and (B, B’) are generated by the same number and therefore
define the same real number.

Thus, when the class B’ contains a least number it may be transferred
to the class B, which will then have a greatest number ; this transference
is always supposed to be made.

If there were two numbers in A that were not in B then there would
be (§ 3, (2)) an unlimited number of such numbers and the sections
(4, A’) and (B, B’) would be quite different.

INEQUALITY.

If . and B are not equal o is defined to be greater than g
and g less than o when A4 contains all the numbers in B and
more (see above Note). In symbols: o> g, f<c.

It may be observed that if « and f are real rational numbers
o> B or a.<f according as ay,>b, or ay<b,, where a, and b,
are the rational numbers that generate the sections (4, 4')
and (B, B’). (Compare Ex. 2 below.)

Further, it follows readily from the definitions that if o > g
and B>y then o >y. (Compare § 3, (1).)

Next suppose o. > . Let a be any rational number that is
not in B and is therefore in B’. By convention, B’ contains
no least number and therefore there is an unlimited number of
numbers in B’ less than a ; all these numbers are in 4, so that,
if 7 is any one of them and p the corresponding real number,
a>p> p. Hence, between any two different real numbers lies
an unlimited number of real rational numbers. (Compare § 3, (2).)

TuroreM. If d, is any given arbitrarily small positive
rational number it is always possible to find rational numbers,
x and ', in the lower and upper classes respectively of a section
(4, 4’) suck that ' —x < d,.
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Consider the arithmetical progression
a,a+d,a+2d, ...,a+nd . cccooeiiiiiiiininn, i)

where a is any number in 4 and d is a positive rational number
less than d,. It is possible * to take n so large that nd shall
be greater than a’-a, where a’ is any number in A4’, and
therefore so that a +nd shall be greater than a’ and therefore
be in A’. Let a +pd be the last number of the progression (i)
that isin A ; thena +(p +1)d is in A’ so that if x=a +pd and
#'=a+ (p +1)d we have ' —z=d <d,, and the numbers z and
' satisfy the conditions of the theorem.

Ex.1. Show that o.> 0 if « is positive and 0> e if o is negative.

Ex. 2. If (4, A’) is the real number determined by assigning (as
in § 3) to the upper class A’ every rational number whose square is
greater than 2 and to the lower class 4 all the other rational numbers,
explain the meaning of the inequalities

141 <(4, 47)<1-42.

Here 1:41 and 1-42 are real rational numbers, determined by sections
whose generating numbers are the rational numbers 1-41 and 1-42
respectively. The class A contains the rational numbers 1-414,
1-4142, ... and therefore the real number 1-41 is less than the real
number (4, A’). Similarly the real number (4, 4°) is seen to be less
than the real number 1-42.

A real number can only be compared, as respects the properties of
« greater ’ and ‘ less,” with other real numbers. It may, however,
be observed that the real rational number corresponds to the rational
number in such a way that in inequalities like that given above we may
simply take the rational numbers in the respective classes and re-name
them, calling them real rational numbers, and then the comparison
becomes valid. The farther we proceed the more evident it will
become that the real rational number has no properties that are distinct
from those of the corresponding rational number (compare the quotation
from Hobson in § 4). See the Note on Terminology in § 7.

6. Laws of Operation. There is no question of *“ proving the
laws ’ ; the problem is to prescribe laws of operation that will
be consistent with those that hold for rational numbers. The
notation of § 5 is retained.

* The assumption that, if @ and b are any two positive numbers and a less
than b, an integer n can always be found such that na is greater than b, is
ususally called the Aziom of Archimedes (sometimes, perhaps more appro-
priately, the Aziom of Eudoxus, See Heath's Euclid (2nd Ed.), vol, iii.
Pp. 15, 16.).
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Addition. Let a,a’ and b, b’ be typical numbers in the
classes 4, A’ and B, B’ respectively, andleta +b=c¢,a’ +b'=¢’;
then c<¢’. Now form the classes C and €’ by assigning to C
and C’ all numbers of the type ¢ and ¢’ respectively.

If . and B are both rational a, and b, are the greatest numbers
in 4 and B respectively ; hence c,, where c,=a, +b,, is the
greatest number in C so that (C, C’) is a section generated by
the rational number ¢,. But ¢, is the sum of a, and b, and
therefore, if the real number (C, C") is defined to be the sum of
the real numbers (4, A’) and (B, B’), the law of addition will
be consistent with the corresponding law for rational numbers.
If then the classes C and C’ define one, and only one, number in
all cases, the number (C, C’) or y will be defined to be the sum
of (4, A’) or o and (B, B’) or f. In symbols

(4, 4") +(B, B)=(C, ") or . + =1y

1t will now be proved that the classes C and C’ always
define one, and only one, real number. In all cases ¢<c¢’ and
there cannot be more than one rational number that does not
occur either in C or in C’. For if there were two, say z and y
where x <y, then ¢’ —c¢ could not be less than y —2. But, by
the theorem of § 5, the numbers @, a’ and b, b’ can be chosen
in their respective classes so that a’—a<id, b’ -b<}d, and
therefore so that ¢’ — ¢, which is equal to (a’ —a) +(b’ —b), shall
be less than d where d is arbitrarily small. Now d, and there-
fore ¢’ —c, may be taken to be less than y —z; hence there
cannot be more than one rational number that does not occur
either in C or in C’. If there is none, (C, C’) is a definite
irrational number ; if there is one, assign it to ¢ and then
(C, C’) is a definite real rational number.

Subtraction. If — A denotes the class of numbers obtained
by changing the sign of every number in the class 4, the number
(-A4’, —A)is defined to be the negative of (4, 4’); that is,

(-4, —4)=-(4, 4).

The operation of subtracting g from o is defined by the

equation

a=f=o+(-p),

and is therefore reducible to addition.
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Absolute Value of a Number. The absolute or numerical
value of o is o if o is positive, —o if « is negative and zero if
o is zero. The absolute value is denoted by | |.

Ez. 1. Prove that & —a.=0.

Ez. 2. Prove that f—a= —(ax - §).

Ez.3. Provethat |axf|=|c| + |8 |but_z_| lel - | B |l, and
distinguish the cases in which the sign = must be taken.

Multiplication. Suppose first that o and f are both positive
and take (4, 4’) and (B, B’) to be sections of the positive
rational numbers ; the conditions that in general determine a
number will obviously, when all the positive rational numbers
alone are taken, determine a positive number.

Let ab=c and a’b’ =¢' ; then c<¢’. Form the classes C and
(', as in defining addition ; it is easy to prove as before that
these classes determine one and only one real number. When
o. and B are rational a, and b, are the greatest numbers in A4
and B respectively and agb,=c, so that the definition of
multiplication, when o and g are positive, will be

(4, A") x (B, B')=(C, C') or af=1.

To extend the definition to negative numbers assume the
« rule of signs ”’ as part of the definition so that we have, o and
being positive,

(~a)x f=—(x )= x(=p); (-a)x (=)= +(xx f).

Division. This operation is reduced to multiplication by
first defining the reciprocal 1/a. of the positive number .

Let o be determined by the classes 4 and A’ of the positive
rational numbers (zero excluded) and let 1/4 and 1/4’ denote
the classes which contain the reciprocals of all the numbers in
A and A’ respectively. It is easy to prove that

(1/4’, 1]4) x (4, 4")=1,
and the number (1/A4’, 1/A) is defined to be the reciprocal
of (4, A’), that is,
(1/4’, 1/4) =1 when (4, 4')=a.>0,

If o is negative, o= —a’ where o’ is positive, 1/ is defined
to be —-1/o’, that is, 1Ja.= — 1/( — ) when o is negative.
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The division of 8 by o is now defined to be the multiplication
of 8 by the reciprocal of « ; in symbols:

)

Note. Division by zero is expressly excluded in the above
definition.

The fundamental laws of operation have now been stated.
A full treatment would go on to show that the associative,
commutative and distributive laws of operation persist when
the laws are defined as above, but in this sketch there is no
room for the discussion and reference may be made to Chrystal’s
Algebra or Hobson’s Theory of Functions. We may take one
example to indicate the method when the real number is
defined as in § 4.

To prove that o +f = f +a note that the typical number a +b
in the lower class that defines « + g is equal to the typical
number b +a in the lower class that defines g +«, since the
commutative law holds for rational numbers. The lower
classes are therefore the same for f+a as for a +f, and
similarly the upper classes are also the same. Hence the two
numbers o + 8 and § +a are equal.

The student should prove the following cases in the same
way.

Ex. 4. off=fo.

Ex. 5. (af)xy=afy=«x(fy).

Ez. 6. (w+pf)xy=ay+fy=y(a+p).
Br.7. aax0=0xa0=0, wx1l=1xa=a.

Ex.8. |aBl=|a]| x|B]

7. Sections of the Real Numbers. The relations (1) and (2)
stated for rational numbers in § 3 are true also for real numbers
as follows from the definitions and developments stated in § 5.
Hence the system of real numbers, which will be called the
system S to distinguish it from the system R of rational
numbers, is like R an ordered system. Further, like R, the
system § is dense since it contains R. On the other hand,
S possesses a property that is absent from R ; namely, while
there are sections of R that are not generated by a number
in R, every section of S is generated by a number in S. By a
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section of § is meant a separation of all the numbers in § into
two classes, a lower class L and an upper class U, such that
(i) both classes exist, (i) every number in S appears either in
L orin U, and (iii) every number in L is less than every number
in U. That every section of S is generated by a number in 8
may be proved in the following way.

Take any section (L, U) of S. Let L, and U, contain all the
rational numbers in R that correspond to real rational numbers
in L and U respectively ; then (L, U,) is clearly a section of
the system R and therefore defines a real number, that is, a
number in §. If « is this number it must belong either to the
class L or to the class U since L and U together contain all the
numbersin 8. Suppose « to belong to U and let § be any other
number in U. By § 5 there are real rational numbers between
o and B and, since these numbers correspond to numbers in
U,, they are all greater than o so that B is greater than o.
Hence o is the least number in U.

In the same way it may be shown that if « belongs to L it is
the greatest number in L. Thus in every section (L, U) of S
either L has a greatest number or U has a least; it is not
possible that there should be both a greatest number in L and a
least in U, because all numbers between them would escape
classification.

Hence every section of § is generated by a number in §;
this property marks the essential distinction between the
systems R and S and gives the character of continuity to the
system of real numbers (see § 9).

Note on Terminology. Up to this point the distinction -
between the real rational number and the rational number of
the system R—which may ‘be called for convenience the
« ordinary ”’ rational number—has been preserved. The
adherence to the distinction in the further development would,
however, occasion intolerable prolixity and therefore the real
numbers that correspond to the ordinary rational numbers
will be called rational numbers, unless there be some special
reason for emphasizing the distinction.

Even in the use of the ordinary rational numbers, as remarked
in § 2, there is this use of the same term to indicate numbers
that are conceptually distinct. Thus the numbers 2 and 2/1
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are both said to be equal to “two,” but the fraction 2/1 is
taken to be equivalent to the integer 2 as a convention or
definition ; the natural number 2 is not a quotient and would
not be considered as a quotient except for reasons based on the
development of the theory of fractions.

Again, there is no means of distinguishing whether symbols
such as 1, 2, 1/2, -7, ... represent ordinary or real rational
numbers but the context in which they appear will usually
enable one to decide. If irrational numbers are associated
with them the symbols must be interpreted in the sense of real
rational numbers (see § 5, Ex. 2); if no irrational number is
associated with them it does not matter which meaning is
taken. But, as remarked in connection with Ex. 2 of § 5, any
change needed amounts in actual work to a simple re-naming
of the numbers since the real rational number always corre-
sponds to an ordinary rational number, and the order of
magnitude is the same for both, so that no confusion can
oceur. :

The distinction of terminology between ordinary and real
rational numbers will therefore, as a rule, be dropped. Further,
any letter may be used to represent a real number, whether
rational or irrational ; the special use of Greek letters as
denoting real numbers will therefore not be maintained.

Hz. 1. If the symbol 4/2 denotes the number (4, 4’) defined in § 5,
Ex. 2, prove that (4/2)?, that is, (/2) (1/2) is equal to 2.

If a and a’ are typical numbers in 4 and A4’ then the classes of which

a? and a'? are typical numbers determine a number, b say ; b is greater
than every a?, less than every a’? and is therefore equal to 2.

Ex. 2. If 4/3 denotes the number (4, 4’) when 8 takes the place
of 2 in § 5, Ex. 2, prove that (4/2)(+/3)=+/6 where 6 takes the place
of 2in § 5, Ex. 2.

8. Decimal Representation. Let . be a real number gene-
rating a section (L, U) of the system § of real numbers and,
for definiteness, suppose o to be positive.

If a, is the greatest integer in L, then a, +1 will be a number
in U ; a, may be zero. Thus we may write :

Ay = < aqy+1.
Next, form the arithmetical progression, with difference 1/10,

2 9
@y Qg+ 15, Bg+ 105 -+ 5 Qg+ 1% T+ 1.
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Of these eleven numbers one, which may be called a, +a,/10
where a, is one of the numbers 0, 1, ..., 9, is the greatest in L,
and then a,+(a; +1)/10 is the lea,st in U Hence

@y +04/10 £ x < a, + (@, +1)/10.
' Similarly, forming an arithmetical progression with a, +a,/10
as its first term and with 1/102 as common difference, we see that
@y +a,/10 +ay/102 < a < gy +a,/10 + (@, + 1)/102

where a, is one of the numbers 0, 1, ..., 9.
Proceeding in this way we find, in general, that
a, +1
Go T3 Higat e FIGnS % <At TG e T gw
|
or, say, On = <, FIgr T O e 1

where each of the numbers a,, @,, ..., @, has one of the
values 0, 1, ..., 9, and g, —p,=1/10".
There are two cases to be considered.
(i) For n > p we mayhavea,=0. In thiscase o is arational
number
a=ay. a0y ... G,
in the usual decimal notation.
(ii) The set of numbers a,, @,, ... may be unlimited, and
o will, in the usual terminology, be represented by an infinite
decimal
=0y . Bylglg «ee  sevsenrenssassases (2)
If the decimal * repeats >’ or  circulates ”’ o will be rational ;
otherwise o is irrational. (See Chrystal’s Algebra, Part II,
2nd Ed., Chap. 25, §33.)
Cor. In the same way it may be proved that, if b is any
positive integer not less than 2
So<a,+1fbr=0,
where Op=Cq +°bl+gg+ +b”

and ¢, is an integer (or zero) while each of the numbers
€3 Ca, -+ » Cy has one of the values 0, 1,..., (b-1).

Approximations. The numbers g, and ¢, may, if o> g,, be
called rational approximations, in defect and in excess
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respectively, to the  number o, the absolute error in each
approximation being less than 1/10", \

Between g, and « there is, if &> p,, an unlimited number
of real numbers, as also between o and g,; if z is any real
number between g, and «, and 2’ any real number between
o and g;, then

¥ -r<p, -0, thatis, 2’ —~x< %;‘

Since n may be taken so large that 1/10" is less than ¢, where
¢ is any arbitrarily small positive number, the following theorem
is proved :

THEOREM. It is always possible to find real numbers x and z’
in the lower and upper classes respectively that define the real
number o so that ' —x << e, where & is any arbitrarily small
positive number.

9. Correspondence of Number and Point. Suppose that, as
in Analytical Geometry, O is the origin and OV the positive
unit segment on an axis X'0X.

Let the points O and V correspond to the numbers 0 and 1
respectively.

If z is a positive rational number, say x =m/n where m and n
are positive integers, take a point P on the same side of O as V
such that the segment OP is m times the nth part of OV ; let
the point P correspond to z. If z is negative (= —m/[n), take
P’ on the opposite side of O from V so that the segment OP’
is of the same length as OP ; let the point P’ correspond to z.
In the usual language of Analytical Geometry « is the abscissa
of P. In this way the rational numbers are put into corre-
spondence with points on the axis X'OX ; for convenience let
points which correspond to rational numbers be called ¢ rational
points.”

If z is an irrational number, suppose it to be determined by
a section (L, U) of the rational numbers and let 4 and 4’ be
typical rational points corresponding to the typical numbers
a and a’ in L and U respectively. Now form a section of the
points on the axis X’OX by assigning to the lower (or left)
class L, all points that correspond to rational points 4 or that
lie to the left of any point A, and to the upper (or right) class U,
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all points that correspond to rational points 4’ or that lie to
the right of any point 4’.

In the class L, there is no point that lies furthest to the right
since the class L contains no greatest number, and, similarly,
since the class U contains no least number, there is no point
in the class U, that lies furthest to the left. We now assume
Dedekind’s Axiom (§ 2) that there is one (and only one)
point P on the axis X'OX that generates the section (Z,, U,)
and we make P to correspond to z, so that x is the abscissa
of P.

The correspondence between numbers and points on a line,
assumed in § 4 of the Elementary T'reatise, is therefore proved
in so far as ¢ proof ”’ is possible. It is perhaps better simply
to say that the system S of the real numbers forms a continuum
or a continuous system of numbers, because every section of S
is generated by a number in 8, and that the continuity of the
straight line is represented by the correspondence between the
numbers in S and the points of the line : to rational numbers
correspond rational points and to irrational numbers correspond
irrational points.

The following definitions of terms that constantly occur may
be given here.

Continuous Variable. The number z is said to vary con-
tinuously as it changes from the value a to the value b if, as it
increases from a to b when a < b or as it decreases from a to b
when a > b, it takes every real value between a and b.

Interval. Thesystem of numbers = such that a <x<b is said
to form a closed interval (a, b) ; the system of numbers z such
that a<ax<b is said to form an open interval (a, b). The
interval (a, b) is said to be ““ open at b if a<x < b and ¢ open
ata” if a<<x<b.

The number ¢ is said to be  within the interval (a, b) * or
“ interior to the interval (a, b) >’ if there are numbers z’, " such
that a< 2’ <&<2" <b.

10. Roots. Indices. An important theorem will now be
proved.

TaEOREM. If a is any positive real number and n a positive
integer the equation " =a has one, and only one, positive root.
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That there cannot be more than one positive root follows

from the fact that if 2 and y are positive

o -yt =(@ —y) (@ 2"ty + L 2yt YY),
and the product on the right cannot be zero unless =y, since
all the terms zn-1, 2"-2y, ... are positive. Thus z* and y»
cannot both be equal to a if z and y are two different positive
numbers.

To prove that there is one root form a section of the positive
rational numbers. (In the terminology the distinction between
real rational number and ¢ ordinary ”’ rational number is
dropped ; see Note in § 7.) To the lower class L assign the
rational number c¢ if ¢*<a, and to the upper class U assign the
rational number d if d*>a. All the rational numbers are
therefore classified and every number in the lower class is less
than every number in the upper. The section therefore
defines a real positive number, b say.

That b" =a follows at once from the definition of multiplica-
tion. The typical numbers in the lower and upper classes that
define the product b” are ¢ and d”, and it is merely a repetition
of the process in § 6 to show that the section determined by
the classes of which ¢* and d» are typical numbers defines a
real number. b" is the one number which is less than every
number d* and greater than or equal to any number c¢” so that
b® and a are the same number.

This positive number b is the unique nth root of a and is
denoted by the symbol %/a.

Cor. 1. If n is even, there is a second root but it is negative,
namely —b.

Cor. 2. If n is odd and a negative, say a= —a’ where a’ is
positive, there is one negative root, namely, —%/a’.

In textbooks of algebra it is shown that when a is a posmve
real number the root Z/a may be denoted by the symbol al/»,
and this index notation is then extended so that the symbol a*
has a definite meaning when z is any rational number. The
complete symbol a= is called a power ; a is the base and x the
index or exponent of the power. It has to be specially noted
that the base a and the power a® are both positive so that a*
is single-valued. For example, 4% means +2 and not -2
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even though the square of -2 is 4. Although a root such as
7(—8) is a real number the notation (—8)5 will not be used
to indicate the root until the theory of the complex number is
considered. With the conventions stated the power a® is well
defined when x is any rational number.

When the Theorem of this article has been proved the various
laws of operation with rational indices, as developed for example
in Chrystal’s Algebra, are readily established, and it will be
assumed that the student is familiar with them.

11. Inequalities. Some inequalities are frequently needed
at later stages, and it seems to be desirable to state them here
for reference.* They are based on the identity, n» being a
positive integer,

" -yt =(x —y)(@ T+ a2y + .y ynl). L (4)

It follows at once from (A4) that if  and y are positive and n
a positive integer

"> = <y" according as > = <Y. ..ceuunnnn. (1)
Next, the identity (4) shows that if x>y >0,
n@—-y)rri>at —yn>a@-y)y* Ll cooeeeieenn. (2)

The inequalities (2) are very important ; when » is not a
positive integer the set requires a double statement which takes
the following form :

If £ >y > 0 and m a rational number

m>1
or m<<O0,

m@-—y)xml<am-—yr<mx-y)y™!, 0<m<l1....... (4)
The proof of (3) and (4) is a little tedious. In (2)let y=1,2>1,and

the first of the inequalities gives 2™ — 1 < n(x — 1)2"~1 and this inequality
may be put in the forms

(n-1)@"-1)>n(z"1-1), (a®~-1)/n>(x"1-1)/(n-1).
In the second formputn - 1,7 -2, ..., p + 1 successively in place of n;
it follows that, p being a positive integer,

m(@—y)ant >am -y > m(s - )y

@ -1)n>@?-1)/p, n >P=1. ccveeiriiiiiniennnns i)

Now in (i) let 22 =a > 1, nfp=m >1; this gives
a® ~1>m@-1), a>1, m>1 .....ccceiiinannnnn. (if)

while if 2" =a > 1, p/n =m <1, we find from (i) that
am-l<m(a-1), a>1, 0<m<l....c.ocvvrrenenn. (iii)

*On the subject of this article the student should consult Chrystal’s
Algebra, Part IT (2nd Ed.), Chapter XXIV.
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Next, in the second of the inequalities (2) let # =1 so that 0<y<1.
The inequality 1 —y">n(1 -y)y™ ! may be put in the form
(I-ygM)n<(1-yg*h)/(n-1),
and therefore, n, p being positive integers,

(L=y®)/n<(l1 -yP)/p, n>PZL. covvniininniennnnns (iv)
Now let y? =b< 1, n/p=m > 1, and (iv) gives )
1-bm<m(l-b), b<l, m>1, ..cocvvirvrinnnnnn.. )

while if y* =b<1, p/n =m <1, formula (iv) gives
1-">m(1-0), b<l, O<m<l. .....vvvvernnnnnn. (vi)

Put «/y for a in (ii) and y/z for b in (v) ; these substitutions give the
inequalities (3) for the case m >1 while the same substitutions in (iii)
and (vi) give the inequalities (4).

Finally, if m> 0 put a for z, 1 for ¥ and m +1 for m in formula (3)
which has been established for these values ; then

a™l_1<(m+1)(a-1)a™ gives a=™ ~1> -m(a -1)
a™tl_1>(m+1)(a-1) gives a™" -1< —m(a - 1)a=m1,
so that if z/y is now put for a the formula (3) for the case m <0 is
established.

From (8) another formula may be deduced. Suppose a >0,
b>0, m= —u(u>0) and r a positive integer. In the first of
the inequalities (3) let x=a+rb, y=a +(r—1)b, and in the
second x=a +(r +1)b, y=a +rb ; then

1 1 > ub
[@+(r-1)b]* (a+7b)*" (a+rb)*+!
1 1

>(a,+7’b)"—[a+(7'+1)b]“' uo.....(5)

If a > b > 0 the formula (5) holds when r=0.

The following particular cases of the formulae (3) and (4)
may be noted: Ifa>1,

a™>1 or am™ <1 according as m >0 or m << 0. ........(6)
Further, since av —a®=a%(av-* - 1), it follows that if a > 1,
av>a® or a¥ << a® according as y >x or y << . ...... «o(7)

Hence when 2 increases, taking rational values alone, the
function a® steadily increases ; or, as x varies through rational
values from - N to -+ N, where N is a large positive number, a*
steadily increases from the small number a-¥ (or 1/a¥) to the
large number a?,
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Again, the following simple particular cases of (3) and (4)
may be stated.
If A>0, (1+h)»>14mh when m>1; (1+h)"<1+mh
when 0 <<m <1, coeveviiniiiiiiiiiiinaens (8)

and if 0<h<<land 0<mh<1
(1-k)™>1-mh>0whenm>1; (1-k)"<1-mh
when 0 <m<<1l. ooviviiiiiiiiniiiniiinas 9)
The following inequalities are important in connection with
the exponential function.
In (3)let x=1+1/n,y=1,&~y=1/n, m=n/p, where n and p
are positive rational numbers and n>p ; then

n

(1 +%>§> 145;
P
and (1 +%)”>(1 +}9)’, RSP0, ceereerreennennn(10)

Next,in (3)letx=1,y=1-1/n, x —y=1/n, where m, n, p are
as before except that p>1; then

1o1-(-Y e (13203
and therefore (1 —;ll>_n<(l ~%>_p, n>p>Loiiii, (11)

From (10) it follows that (1 + 1/z)* steadily increases as z
increases through positive rational values, and from (11) that
(1 —1/2)* steadily decreases as z increases through positive
rational values.

Again, in (11) let p=2 and for » put » +1 ; then

ST RTINS
( ‘n—+’i> <4 ifn>1 e ..(11a)
1 —(n+l)_< 1>n+l ( 1>n.
But (1 —m> = 1+’I_‘l, >{1 +7—’/ ’
1\" .
so that (1 +ﬁ) <4ifn>1, ciiiiiiiiiiienn eeeso(10a)

and (1 ‘%71;1?«)—(&” (1) =n(14n) <5 i a1 ..(12)
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EXERCISES 1.

1. If d is a positive integer but not the square of an integer show
that d is not the square of a rational fraction.

[The following solution is given by Dedekind (Stetigkeit u.s.w.,
pp. 13, 14).

If possible suppose d to be the square of a rational fraction t/u in its
lowest terms (all numbers positive) ; then (2 —du?=0. There is always
an integer A such that Au<¢<(i+1)u and therefore ¢ — Au(=u’ say)
is a positive integer less than w. Let ¢'=du — A¢; then ¢ is also a
positive integer (du? — Atu=t® — Mu=tu’). Now

~du’? =(A% ~d)(t® —du?) =0,
and therefore d=(t'/u’)®. But %’ <wu so that ¢/u is not in its lowest
terms ; the hypothesis made is thus untenable.]

2. If d is defined as in Ex. 1 let y =z(2? +3d)/(32% +d), where x is a

positive rational number and show that
_ 2x(d —=?) 2 _ (x?-d)®
y-r="gayd * ¥ 1 (mmrap

Deduce that the section of the (positive) rational numbers, determined
by assigning to the upper class all rational numbers whose square is
greater than d and to the lower class all the other rational numbers,
is not generated by a rational number.

3. Show that the formula for the nth root of d, corresponding to that
of Ex. 2 for the square root, is
_x{(n - 1)a" +(n+1)d}
T (n+ )+ (n-1)d
Apply the formula to calculate approximations to %/d.
[Prove that z"—d has the same siga as -y and that the product
(z" - d)(y™ —d) is positive.]

4. If y=(Ax +d)/(z + A) where x, A, d are positive rational numbers

(d not a perfect square), prove that
_d -t 2 g (A% —d)(x?-
y-e=gog Vod=Tmiagr

Hence show that if a/b is a rational approximation to 4/d, and 4 the
integer next greater than ./d, a better approximation is given by
(Aa +bd)/(a + Ab), and the two approximations are either both greater or
both less than ./d.

5. Let a and d be two positive integers, the second not being a perfect
square, and let (a +.d)*=4,, + B,,‘\/d where A4, and B, are positive
integers ; show that

Ap=ad,+dB,, B, =aB,+4,
A,2-dB,%=(a? -d)".
By taking 4, =a, B, =1, show that the fractions 4,/B,, forn =2, 3, ...




1.] EXERCISES I 23

give approximations to yd of increasing accuracy. The value 4,/B,
is that given by Ex. 2. (a==, 4,/B;=y.)
6. Let a be a rational approximation to yd and let
_ d _ d _ d ) .
a, .—i(a +E>’ a, —é(a +a—1>’ a,,-%(a,,_l +m H
prove that a,, a,, ... are approximations to »/d of increasing accuracy,
the approximations being in excess. Show that

a, —Nd_ (al - 4d)2"—1
a, +vd  \a; +yd ’

7. Prove that, if ¢ is an approximation to R/a in excess, ¢; where
1 a
[ =ﬁ [(n -1)e +E;;—l])

is a closer approximation, also in excess.
Show that a still closer approximation, also in excess, is ¢, where
n-1
2c

€y =0 — (c—cy)t

[Let @ =c™ — k, where k is positive and small, 0< k< ¢"; then

1
Ma=2/(c* —k)=c(1 - k[c")n.
Expand by the Binomial Theorem. To find ¢, reject all powers of &
above the first and put (c® —~a) in place of k. To find ¢, reject all
powers of k above the second, and so on for closer approximations.

In calculating Z/a by this method we may begin by taking ¢ to be
the integer next greater than %/a. As a rule c, gives a sufficiently
close approximation for ordinary needs, but of course the process can
be repeated.]

8. If a, a,, ..., a, and by, b,, ..., b, are two sets of » numbers which
may be either positive or negative, prove that
Za,b,)? =(Za,?)(Zbs®) — Z(abs —ash,)?,

where r and s take the values 1, 2, ..., n.

Deduce that )
(Za;b,)2=(Za,®)(Zbs?).

The equation is usually referred to as Lagrange's Identity and the
inequality as Schwarz’s Inequality.
9. From the inequality on p. 173 of the Elementary Treatise,

g
P <(Z_’x_+_q1/> , >0, >0, z
v<(p+q y +Y
where p, ¢ are any positive rational numbers, deduce the inequalities
(10) and (11) of § 11.

[z=1+1/p, y=1 gives (10) and 2 =1, y =1 - 1/g(g > 1) gives (11).]
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10. Prove from the inequality in Ex. 9 that, if p and ¢ are any positive
rational numbers (¢ > 1),

?
(1+5)<(1-9) -
r q
[Let 2=1+1/p and y=1-1/g. This result gives the additional

information that every value of (1 +1/p)? is less than every value of
(1 - 1/g)~9, g being greater than unity so that 1 — 1/g may be positive.]



cm. 1. § 12]

CHAPTER 1II

SETS. SEQUENCES. LIMITING POINTS. LIMITS

12, Sets. Seguences. In §9 it has been shown that there
is such a correspondence between the real numbers and the
points on a directed line or axis that to each number corresponds
a point and to each point corresponds a number—in other
words, the correspondence is * one-to-one.” This corre-
spondence frequently enables us to simplify theorems by using
the language of geometry, and the words ‘ number ™ and
“point ’ are often used as interchangeable; care must,
however, be taken against the surreptitious substitution of
geometrical for arithmetical conceptions in any demonstration.

A part of the system of real numbers or of points on a line
is often called a set or aggregate of numbers or of points, and
the numbers or points are spoken of as the ¢ elements ’ of the
set or aggregate. The set is said to be ¢nfinite if the number of
elements in it is not limited, and finite if that number is finite.
As finite sets are of little importance for our purposes, the
word * set *’ will be understood to mean * infinite set ** unless
distinctly specified to be a ‘ finite set.”

A sequence is a particular case of a set. If to the integers
1,2, ..., n, ... there correspond definite numbers a,, a,, ...,
a,, ..., the set a,, a,, ..., a,, ... is called a sequence; the
element a,, corresponding to 0, is frequently taken as the first
element of the sequence. Thus in a sequence the elements are
arranged in a definite order while in a set the order of the
elements is indifferent.

To indicate a set or aggregate one may use a letter, S say,
and specify the nature of the elements: for example, ¢ the
set § of all rational numbers ** or * the set S of all rational

numbers in the interval (0, 1).”
25
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The sequence a,, a,, ..., @,, ... may be, and indeed is
usually, denoted by enclosing the general element a, in a
parenthesis, thus (a,); it is to be gathered from the context
or from an explicit statement whether the first element of
the sequence is a, or a, or some other element.

A set of numbers is said to be bounded above if there is a
number K greater than every number of the set, bounded
below if there is a number % less than every number of the set
and simply bounded if both K and % exist.

The special numbers called ¢ the upper bound ” and “ the
lower bound *’ of a set are defined in the next article.

13. The Upper and Lower Bounds. In the rest of our work
there will be frequent use of “ an arbitrarily small positive
number >’ ; the letter ¢ will be reserved to indicate such a
number so that it will be freely used in this meaning without
further explanation, though of course occasions will arise
when it may seem proper to state the meaning explicitly.
When the symbol is used in any other sense an explicit state-
ment of the meaning will be given if that meaning is not clear
from the context.

Note 1. It may be noted in passing that if ¢ and b are
constants such that |a —b | <e we must have a=b; the proof
of this assertion is “ obvious.”

Two theorems of fundamental importance will now be
proved.

THEOREM 1. If a set S is bounded above there is a number H
which has the following properties : (i) no number of the set is
greater than H, and (ii) at least one number of the set is greater
than H — ¢.

This number H is called the upper bound of the set S.

Since the set S is bounded above there is a number K greater
than every number of the set. Two cases are possible.

(1) The set may contain one number, a say, that is greater
than all the other numbers of the set. In this case a=H,
because no number in 8 is greater than a, while a itself is greater
than a —¢.

(2) No number of the set is greater than all the rest. In this
case a section of the real numbers may be formed as follows:
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Let = be any real number. If there is a number in S which is
equal to or greater than z assign z to the lower class L, but
if x is greater than every number in § assign = to the upper
class U. Obviously both classes exist, since K and every
number greater than K belongs to U while the numbers in §
belong to L; further, every number in L is less than every
number in U, and every real number occurs either in L or in U.
Therefore the section (L, U) determines a number and this
number is H, as may be shown in the following way.

By the construction of the section every number greater
than H is in U and is also greater than every number in
8, so that no number in § is greater than H. On the other
hand, there is always a number in L, and therefore in S,
which is greater than H —¢, because every number in L is
equal to or less than some number in S.

Note 2. When the set S has no greatest number there is not
only one but an unlimited number of the numbers of § between
H -¢ and H because, if there were only a finite number, one
of them would be the greatest of the set—contrary to the
hypothesis that S contains no greatest number.

In the same way the following theorem is proved.

TaeoreM II. If a set S is bounded below there is a number b
which has the following properties : (i) no number of the set is
less than h and (ii) at least one number of the set is less than
h+e.

This number 4 is called the lower bound of the set S. If S
contains no least number there is an unlimited number of the
numbers in S between % and A +e.

If the set S is bounded (that is, bounded both above and
below) both numbers H and % exist.

If a set S is not bounded above there is a number in the set
greater than K, no matter how large the positive number K
may be; in this case (by a stretch of language) the set is
said to have + oo as its upper bound. In the same way if
a set is not bounded below there is a number in the set less
than — K, no matter how large the positive number K may
be, and in this case the set is said to have — o as its lower
bound.
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14. Limits, Notation. In the ZElementary T'reatise, §41,
two definitions of a limit are given, and the distinction between
« limit ** and * value ”’ is pointed out ; there seems to be no
necessity for repeating the definitions here, but the student
would do well to read the more important articles in Chapters
IV and V and the earlier pages of Chapter XVII of the
Treatise, as a knowledge of the working rules of limits is now
assumed.

We shall now, however, use the symbol — to indicate that
a variable tends to a limit; the symbol is due to the late
Dr. Leathem, and is a very valuable improvement in notation.
Thus, for example, we now write

£s1r;x:1 instead of A‘su;le’

z—0 =0
. sinx . . sinz
or lim =1 instead of lim =1.
z—0 z z=0 -

Again, when it is said that *“ the sequence (a,) tends to the
limit I,” what is meant is that * the variable a, tends to the
limit I when # tends to infinity ”’ ; in symbols

a,—1 when n— « , or, £a,,=l.
Nn—>w0

The sequence is understood to be an infinite sequence so
that the explicit statement that n tends to infinity is hardly
necessary ; compare the corresponding expressions for series.

Null Sequence. When the sequence (a,) tends to zero the
sequence is frequently called a Null Sequence.

Finally, when it is said that a variable tends to a limit it is
always to be understood that the limit is a finite number unless
it is expressly stated or clearly implied that the variable tends
to+o orto —w. See E.T.*8§§ 40, 41.

15. Monotonic Functions. If f(z) is a single-valued function
of z such that f(x;) = f(x,) when x, > , the function f(x) is said
to be (E.T. p. 451) a monotonic increasing function of z, while
if f(z,)<f(z,) when z,>2, the function f(z) is said to be a
monotonic decreasing function of z. When the sign = is

* The letters ° E.T." indicate that the reference is to the Elementary
Treatise.
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excluded f(x) may be called * a strictly increasing ” or *“ a
strictly decreasing ”’ function of x. (It is merely a con-
vention, but a convenient one, to use the words ¢ increasing "’
and ‘ decreasing ” instead of the more accurate descriptions
“not decreasing ’ and ‘ not increasing ’’ respectively.) A
sequence (a,) is an increasing sequence if a,,,=a,, and a
decreasing if @, ,<a,.

The two following theorems, which are expressed in terms
of sequences (a,), apply to monotonic functions f(x), it being
understood that f(z) is defined for an infinite set of values of
x and that « tends to infinity ; the reasoning is the same in
both cases.

THEOREM I. A monotonic, increasing sequence (a,) tends to
+ if the sequence is not bounded, but if the sequence is bounded
above, say a,<<k for every value of n, the sequence tends to a
limitl, and 1< k.

If the sequence is not bounded above then, however large
the positive number K may be, it is always possible to find an
integer m such that a,> K if n>m (or a value x, of x such
that f(x) > K if x> =z,). This is the condition that a, tend to
+w when n->o (or that f(z) — +w when z— +w).

Suppose now that (a,) is bounded above, and let H be the
upper bound of the sequence (or of the set of values of f(z)).
By the properties of the upper bound (§ 13) a,<H for every
value of n (f(x)<H for every value of z) and, given ¢, there is
a value, n, say, such that a, >H —¢ (a value z, such that
f(xg)>H —¢). Hence, since a,=a,, if n>ny (f(z)=f(x,) if
x> x,), we have

H-¢e<a,sHif n>ny (H-e<f(x)<H if > 2z,),

and this is the condition that a,—H (or that f(x)—~H). Further,
H cannot exceed k so that I=H < k.

Cor. If f(x) is monotonic and increases as z tends to a
monotonically, f(x) either tends to « or tends to a limit

Let x=a+(1/y) or a — (1/y) according as x tends to a through
values greater than a or through values less than a«; then
z—>a when y—w .

In the same way the next theorem is proved.
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TueoreM II. A monotonic, decreasing sequence (a,) tends to
— o if the sequence s not bounded but, if the sequence is bounded
below, say a, >k for every value of n, the sequence tends to a
Umitl, and = k.

Cor. If f(x) is monotonic and decreases as = tends to a
monotonically, f(x) either tends to — o or tends to a limit.

11 1
Ezx. 1. a”—§-§ . T-d;i.
Here we may take k =1/3 and obviously a,,—~1/3. (There is no value
of n for which e, =1/3.)

1 1 1 1
Ezx. 2. a”—n+l+n+2+n+3+"'+§7b'
1 n
Here a, < aritRElT to n terms or @, < —7< 1, so that we

may take k=1. Further,
S SR SIS S 1
nH TR T2 4+1 20 +2 n+l1 (2n+1)(2n+2)
so that (a,) is an increasing sequence. The sequence therefore has &
limit which is a positive number not greater than 1.

>0,

Ex. 3. If pis a fixed (positive) integer and a,, equal to the sum
1 . r .1t . .1
n+l n+2 n+3 7 n+pn’
show that the sequence (a,) tends to a limit.

Ex. 4. Ifa, =(1 +%>m and b, =(1 —%)w show that the sequences

(an) and (b,,) tend each to a limit and that the limit is the same for both.

From the inequalities (10) and (11) of § 11 the sequences (a,,) and (b,)
are respectively increasing and decreasing; by the inequality (10a),
@, < 4 so that (a,,) tends to a limit, s say. Further

1
b" =Qy_3 (l +;;_—l)’

80 that b,, tends to the same limit as a,,. It is better, however, to apply
the result of Exercises I, 10, from which it appears that b, > a,, so that
the sequence (b,,) is bounded below and therefore tends to a limit. The
inequality (12) of § 11 then shows the two limits to be the same; or
use E.T. p. 95 (iii).

Ex.5. Suppose a>b>0 and let a,=%(a+b) and b, =s(ab). If
a, and b, are determined by the equations

8y =3(ap_y +by1)s by =V (Cp_1bpy), =2, 3, 4, ...

show that (i) (a,) i8 a decreasing sequence, (ii) (b,) is an increasing
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sequence, (iii) each sequence tends to a limit and (iv) the limit is the
same for each.

Here Ap_y ~CQp = %(an—l - bn—l)’ bn - bn—l =( ‘\/an-—l - ‘\/bn—l W bn-l and
the results (i) and (ii) are easily proved by induction.

Again a, -b, =}(va,_; — vb,_1)?>0 so that a,>b,. Now (b,)
is an increasing sequence and therefore a, >b; the sequence (a,)
therefore tends to a limit «. Similarly b,< a and the sequence (b,)
tends to a limit B. The equation a, =}(a,_, +b,_,) shows that «.=f.

The common limit « is called by Gauss the Arithmetico-geometric
Mean of the numbers a and b, and is frequently denoted by M (a, b).

Ez. 6. If a>b>0, a,=4%(a+b), b,=2ab/(a+b) and a,, b, are
determined by the equations
Gy =3(@p_y +by_y)s by =2a, b, 1/(@y 3 +b,_1), n=2,3, 4, ...
show that the sequences (a,) and (b,) have a common limit—called the

Arithmetico-harmonic Mean of a and b.
Show that this mean is equal to y/(ab).

16. Sequence of Intervals. A useful method of determining
a number depends on the construction of two monotonic
sequences, one (a,) an increasing and the other (b,) a decreasing
sequence ; when @, and b, are represented as points on a
directed line, say the z-axis of Coordinate Geometry, the seg-
ment I, of the line which represents the interval (a,, b,) may,
subject to certain conditions, be made to contract as n tends
to infinity so as to determine a point.

The sequence (a,, b,) of intervals defines a number when
the following conditions are satisfied :

(i) (a,) is an increasing and (b,) a decreasing sequence of
real numbers ;

(ii) a, <, for every value of = ;

(iii) given an arbitrarily small positive number &, there is
an integer m such that b, —a, <z if n = m.

That these conditions define a number is clear ; for by (i) and
(ii) the sequences (a,) and (b,) have limits, @ and b say, while
b-a=/(b,-a,)=0, by (iii), so that b=a. This number « is
the number defined by the sequence (a,, b,).

In the geometrical interpretation every point a, is to the left
of every point b,; the point a is either inside each of the
intervals I, or else, after a certain stage, at one end of

each interval I,, and, as » tends to infinity, the interval I,
G.A.C, (o]
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contracts, the end-points a, and b, tending from opposite
sides to a.

It may happen that a, =a if n > p, or again that b, =a if n> ¢; in
these cases a is an end-point of each interval I, when » is greater than
p or q respectively.

The number a will be said to be common to each interval
(@n, b,), it being understood that each interval is closed.

For purposes of reference this method of determining a
number may, for want of a better name, be called the method
of the decreasing interval.

17. Limiting Points or Points of Condensation. Let S be an
. infinite set of numbers, or of points corresponding to them on
a directed line.

DeriniTiON. If there is a point & such that the interval
(& — ¢, & +¢) contains an infinite number of points of the set, &
is called a limiting point, or a point of condensation, of the set.
As a number, ¢ is a limiting number of the set.

& may be but is not necessarily a point of the set as the
following examples show.

Ex. 1. 8 consists of all the rational numbers z such that 0 =z =1.

Every irrational number in the interval (0, 1) corresponds to a
limiting point—or, as it may be stated, every irrational point in (0, 1)
is a limiting point ; but S contains no irrational points.

Ex. 2. 8 consists of all the points in the open interval (0, 1).

The points 0 and 1 are limiting points but do not belong to S.

Ex. 3. 8 consists of all the points in the closed interval (0, 1).
Every point of the interval is a limiting point.

Ezx. 4. 8 consists of all the positive or negative integers.
There are in this case no limiting numbers ; it is, however, sometimes
said that +o and — o are limiting numbers of this set.

TaeoreM I. Every infinite bounded set has at least one limat-
ing point. (The Bolzano-Weierstrass Theorem.)

Apply the method of the decreasing interval. Since the set
is bounded there is a number a less than every number in the
set and a number b greater than every number in the set ; let
all the numbers be represented on an axis.

Bisect the interval (a, b). In one or, it may be, in both of
the half-intervals there will be an infinite number of points of
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the set ; if there be an infinite number in both select the half-
interval on the right, that is, the interval [$(a +b), b]. Denote
the ends of the half-interval selected by a, and b, where a; <b,.
If the right half-interval has been selected a,=%(z +b) and
b,=b, but if the left half-interval has been chosen a,=a and
by=%(a +b). In both cases a<a;, b=by, b -0, =1(b-a).

Next bisect the interval (a;, b;) and proceed exactly as in
the preceding case. One at least of the new half-intervals
contains an infinite number of points of the set, but if both
half-intervals contain an infinite number select the half-interval
on the right and call it (a,, b;). We now have

asa;<a, b=b=by; bz_“2=%(b1”a1):2lg(b—a)~

Proceeding in this way we find an increasing sequence (@)
and a decreasing sequence (b,) where a, <b,, (b, — a,)=(b-a)/2"
and each interval (a,, b,) contains an infinite number of points
of the set. Further, since (b —a)/2" may be made arbitrarily
small the sequence of intervals determines a point £.

Hence within the interval (& — ¢, & +¢), where ¢ has the usual
meaning, there lies an infinite number of points of the set, and
therefore £ is a limiting point of the set.

Thus the set has at least one limiting point ; but there may
be more because, each time an interval is bisected, it is possible
that both halves may contain an infinite number of points of
the set. When an interval occurs which contains an infinite
number of points of the set, that interval, by the theorem
just proved, has at least one limiting point of the set.

The point & determined by the construction first given is,
if there be more limiting points than one, that which lies furthest
to the right ; £ is the greatest of the limiting numbers of the set
and will be denoted by G. The characteristic property of &,
as appears from the method by which it is determined, is that
the interval (@ — &, G +¢) contains an infinite number of points
of the set but that only a finite number (and there may be none)
of the points of the set lies to the right of G +e.

The number G is called the greatest of the limiting numbers
of the set or, simply, the greatest of the limits of the set.

When there are more limiting points than one of the set it
may be seen that, if in the construction the left half-interval is
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always selected instead of the right half, there is a limiting
point g such that the interval (g - ¢, g +¢) contains an infinite
number of points of the set, but that only a finite number (and
there may be none) of the points lies to the left of g —&. The
number g is the least of the limits of the set.

THEOREM II. If the set is bounded and has no greatest number
the upper bound H is a limiting number of the set and H=G@,
while if the set has no least number the lower bound h is a limiting
number of the set, and h=g.

If the set has no greatest number then the interval (H — ¢, H)
contains an infinite number of elements of the set so that H is
a limiting number. Again no number in the set is greater than
H so that H=G. Similarly for the lower bound.

The greatest and the least of the limits are often called the
Maximum Limit and the Minimum Limit respectively of the
set. Other names are limes superior (or upper limit) and limes
wnferior (or lower limit).

When the set is denoted by S the following notations are
used : \
G=Im S or @=lim. sup. 8 ; g=lim § or g=lim. inf. 8.

When 8 is a sequence (a,) the notations are

G:m a’nzl—ﬁi_l a,; gz_liin a’nz_lin_l Ay,
Nn—>w0 n—>»xC
the indication “ n—>w ” being omitted when no ambiguity
arises.

The notation lim is sometimes used when it is a matter of
indifference whether the maximum or the minimum limit is
taken. For example, the inequalities

a<lim a, <b,
imply that a <g and G <<b.

Note on Sequences selected from Sets. If ¢ is a limiting point of a
set S that lies in an interval (a, ¢), where a <¢, a monotonic, increasing
sequence (x,) can be selected from S such that (x,) tends to ¢. This
statement seems to be *‘ obvious,” but a formal proof may be given.

If z,, where z,>a, is any point of the set and a, =(x, +¢)/2, infinitely
many points of § lie in (a,, ¢) and, if x, is any one of these points,
x>z, and ¢ —xy<(c ~a)/2. Again, if a, =(x, +¢)/2, let =3 be one of the
infinitely many points of S in (a,, ¢) ; then z;>z, and ¢ —z; <(c —a)/22.
Next, let a; =(x; +¢)/2 and a point x, may be chosen from the points
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of 8 in (a; ¢) such that x;>2, and ¢ —2,<(c —a)/2. In this way a
monotonic, increasing sequence (x,) is obtained and (z,)-c, since
¢ ~x,<(c—a)/2"l, Clearly the sequence may be chosen in infinitely
many ways.

Similarly, if ¢ is a limiting point of a set S’ that lies in (¢, b), where
¢ <b, a monotonie, decreasing sequence (x,,) can be selected (in infinitely
many ways) from S’ such that (z,) tends to c.

If ¢ is a limiting point for both of the sets .S and 8’ let x5, , ==,
and s, =2, ; then the sequence («,) tends to ¢, so that from the set S”,
consisting of the sets .S and S” and lying in the interval (a, b), a sequence
(«n)—of course, not monotonic—has been selected which tends to c,
where a <c <b and ¢ is a limiting point of S”.

18. Limits of Indetermination. The maximum limit ¢ and
the minimum limit ¢ of a bounded sequence (a,) are sometimes
called respectively the upper limit of indetermination and the
lower limit of indetermination of the function a, for n tending
to o .

Every element a, of the sequence (a,) lies between H and &,
the upper and lower bounds of the sequence but, when the
question of a limit for a, arises, the only values of a, that are of
importance are those corresponding to large values of », and
it is on these large values that the limit depends. Now, when
¢ is given, there is only a finite number of values a, that are
greater than G + ¢ while there is an infinite number greater than
G — ¢ ; so also there is only a finite number of values of a, less
than g — & but an infinite number less than g +e. By §17,
Theorem II, G =H provided (a,) has no greatest number, and
g =h provided (a,) has no least.

Next let f(x) be a bounded, single-valued function of =z,

defined for an infinite set of values (not necessarily all values)
of z in an interval (£ — ¢, £ +¢), £ being a limiting point of the
set of values . Since f(x) is bounded the set of values of f(x)
is a bounded set and has therefore a maximum limit @ and a
minimum limit g. ‘
- Now let ¢ tend to zero. It is easy to prove, if it be not
considered to be obvious, that as & tends to zero G cannot
increase and g cannot decrease, so that G and g are bounded
monotonic functions of ¢, say G(¢) and g(¢). It follows there-
fore from § 15 that G(¢) and g(z) tend to limits, G, and g, say,
when ¢ tends to zero.
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These two numbers G, and g, are called respectively the
upper and the lower limit of indetermination of f(x) for x tending
to &.

If the interval for which f(x) is defined is (&, & +¢) then z can
only tend to & through values greater than & or—in the usual
notation—a tends to &£ +0. As before @ and g tend to limits,
@, and ¢, say, when z—& +0; G, and ¢, are called the right-
hand upper and lower limits of indetermination of f(x) for x
tending to & +0.

Similarly if the interval is (£ -¢, £), so that = tends to &
through values less than & (z—¢ —0), there are left-hand upper
and lower limits of indetermination of f(z) for z tending to
£—0; these may be denoted by G; and g; respectively.

In all these cases it must be remembered (i) that there is no
sense in speaking of a limit for x tending to £ unless § is a
limiting point of the values of x for which the function is
defined, and (ii) that the limits G, and g, depend on values of
f() for values of z such that 0 < | & —x | < J where ¢ is positive
and arbitrarily small.

Again the difference @ —¢ is never negative; when &—0,
then @G, g— g,, and therefore

0=Gy—go= G g.

The conditions that (a,) should tend to a limit when n—o
and that f(z) should tend to a limit when x—¢ may be readily
derived from the above statements about the limits of in-
determination. The conditions in these cases are, however,
of so fundamental a character that they will be considered in
detail in §§ 19 and 21.

19. Existence of a Limit. Seguence. We shall now prove
Cauchy’s Test for the existence of a limit of the sequence (,)
(B.T. p. 378, Th. III); the general case for the limit of a
function of z is considered in § 21.

THEOREM. The necessary and sufficient condition that the
sequence (a,) tend to a limit, 1 say, is that, given an arbitrarily
small positive number &, there shall be an integer m such that
|GBpyp = B | < & if 0= m, whatever value the integer p may take.

(i) The condition is necessary. For if a,— ! there is, by the
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definition of a limit, an integer m such that |l -a, | < }e if
n=m. But

| Apyp — Oy |=| (an-w_l) +(l—a,,) Iél l'“w&-p ‘ +| l_an l
and therefore

| @pip —an | < }&+3e, that is, | @y, —a, | <eif n=m,
so that the condition is necessary.

(ii) The condition is sufficient. For, if the condition is

satisfied there is an integer m such that if n=m

| Gpip — O, | <&, OF, Gy — < Ap,<a,+e& p=1,2,3, ...
and therefore the sequence (a,), where u take the values, m +1,
m +2, m +3, ..., is bounded and has a maximum limit G and a
minimum limit g. In other words, if n = m,

a,-e=g=G=a,+s,

so that 0=G-g=2e

Hence, since ¢ is arbitrarily small, G =g, and there is only one
limiting point in the sequence. The sequence (a,) therefore
tends to a limit ; the limit is 7, where I =G =g.

The student should prove that the other method, specified in
the enunciation of Theorem III (E.7T. p. 378), of stating the
condition is equivalent to the above.

20. Examples. The following examples contain some inter-
esting theorems in limits ; others will be found in the Exercises
at the end of the chapter. In some cases a knowledge of the
chief theorems in the convergence of series is assumed.

Ez.1. If a, and b, tend to zero when n—>c and if further (b,) is &
monotonic decreasing sequence so that b,>b,,;>0 (at least for suffi-
ciently large values of n), then

Q. Ay —Cqpy
b, —£bn "bn+l’
. n—>w0 n—o
provided that the second limit exists, whether that limit is a finite
number ! or infinite.

(i) Suppose that (@, —a,4,)/(b, —byy,) tends to a finite limit I. In

this case there is an integer m such that if n=m
[-I =% oo or l-e<ZnT0nM o7,

n ~ Ynti n n+1
or, since b, - b,,,4 is positive, (m may be taken large enough to make each
b,, positive)
(T —e€)(b, =b,41) <Bp = Cpyy < +€)(by =Dpiy).  coorverinnnn, (a)
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In (a) put n+1, n+2, ..., 2 +p ~1 in turn for n and add ; then for
every integer p
(I =€)(by —bpip) <@y —=8pip < +€)(by ~bpyp); n=m.
Now let p tend to « ; then a,, ,—>0, b, ,—0, and therefore
(l~edp=a,=(l+e)b,, nz=m,
or, dividing by the positive number b,,
l -—ssa—”sl+e, or |1-In
= b” E—14
Hence a,/b,— ! when n—>o.

(ii) Suppose that (a, -a,,;)/(b, —b,,;) tends to o. In this case
there is an integer m such that, given any positive number K, if nz=m,

(@y —8pi1)/(by =b,y) > K, or, a, ~a, ., >K(b, -b,,,),
since (b, —b,,) is positive. Proceeding as in case (i) we find that

=& n=m.
n

Ay —~pyp > K (b, ~byyp), 0y = Kby, nzm
and therefore a,/b, =K if n=m. Hence a,/b,—~» when n-—>w since
K is any positive number.

Ez. 2. 1£b,,;>b,andif b,~»o when n—>w, then
% _ [ %nt1 —Gn
& e
n—>wo n—w
provided that the second limit exists, whether that limit is a finite
number ! or infinite.
(i) Suppose the limit of (a,,,, —a,)/(b, 4 — b,,) to be the finite number I.
As in the proof of Ex. 1 we find, since b, ;> b,,, that
(T —€)(bpyp —bp) < pip —8n < (L +&)(byyp —by) if n=m,
or, writing a,,, b,, in place of a,,, 5, b, ,, and a,,, b,, in place of a,,, b,
(I-€)(b, ~bp)<a, —a,<(+e)b, —by,) if n>m.

Now divide by the positive number b, and then add a,,/b, to each
member of these inequalities ; this gives, if n >m,

) riesgrs(ee) (1-32)+ 5
(l-s)(l 3, +E<bn< l+e)(1 5, +b,,'

Let the numbers a,,, b,, be kept fixed and let n, which is greater than
m, tend to infinity ; since b, tends to infinity with n it is therefore
possible to choose N so that

. l-2e<ay,fb,<l+2¢ if n=N,
and therefore a,,/b,, tends to ! when n—+w.

(ii) Suppose that (a,.; —a,)/(by.1 —b,) tends to o ; then, as before,
we can find m so that, whatever positive number K may be, if n >m,

a b\ . am
an ~am > K(by ~by) or 32 >x(1 -ﬁ)+.5r-.

Keeping a,, and b,, fixed, we can choose N so that a,/b, shall be
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greater than K —¢ if n >N. Hence a,/b,—>o when n—w since K is
any positive number.

Compare E.T. p. 420, paragraphs I and II, with the theorems of
Ex. 1 and Ex. 2.

Ex.3. Prove the following theorems, usually called Cauchy’s
First and Second Theorems.

First Theorem. If a,+a,+...+a,=8,, and if a,~1 when n —»w
so does 8,/n, where 8,/n is the Arithmetic Mean of the numbers
By, Ggs oev s Oye

Second Theorem. If a,, a, ... a, are all positive and if a,/a, , tends
to a limit, » say, when n—w , then Y/a, also tends to r when n—»w.

The First Theorem is a particular case of Ex. 2; in that example
let a, =8, b, =n, and we get the First Theorem.

Next write a,, in the form

a, =21 % % 9 .
"l a ey gy’
log (a,/1) +log (ay/a,) +... +1log (a,,/a,,__l).
n

therefore log (%/a,)=

Now a,/a,_,—r and therefore, since logz is a continuous function
of z, log (a,/a,_,)—~>log r. By the First Theorem the fraction to which
log (%/a,) is equal tends to log r so that %/a,, tends to r.

It should be observed that s,/n may tend to a limit though s,, does not.
For example, let a, =( -~ 1)""1; s, does not tend to a limit but the mean
8,/n tends to zero.

Ez. 4. If the sequences (a,) and (b,) tend to a and b respectively
then the sequence (c,), where

¢ =7_ll (@b +Ggbp_y +sby_y + ... +8yby)
tends to ab.
Let a,=a +d, ; then

Ca =0 £ (b +bp g +ere +by)+ 2 (diby +daby +oos +yby).

By Cauchy’s First Theorem (b, +b,_; +... +b;)/n tends to b. Next
each of the numbers b, is finite, say | b, | <B, while d,— 0; therefore

|+]dy | +...+]|dy |
n t

2 (1 +dsbyoy + ... +dby) | < B | d,

and, again by the First Theorem, this expression tends to zero so that
(c,) tends to abd.

21, ‘Existence of a Limit. Function of x. We now take the
general case of Cauchy’s Test for the Existence of a Limit ; the
theorem of § 19 is limited to the case of a sequence.

Let f(x) be a bounded, single-valued function of z, defined
for an infinite set of values of z in an interval (@, b) ; it is to be
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understood that in the following discussion the values assigned
to z are those values in (a, b)—admissible values they may be
called—for which f(x) is defined. Since these admissible values
form an infinite set there is at least one limiting point £ of the
set. The theorem to be proved is as follows :

THEOREM. The necessary and sufficient condition that f(x)
tend to a limit, | say, when x tends to & is that, given an
arbitrarily small positive number ¢, there shall be a positive
number n such that | f(x') —f(x") | < e, when =’ and z” are any
two values of x, such that 0< |z’ - &|<n and 0< |2" - &| <.

It should be noted that £ itself is not an admissible value of .

(i) The condition is necessary. For if f(x)—>I when z—¢& it
is possible to choose 7 so that | I - f(2')| <3¢ and |l -f(z")| <}e
when 0<|2' - &|<#n and 0<|z"-¢&|<#n Now
[f@&) @) =1{f@") -1 +{I-f@&)}| < 11-f@@)] +]|1-f(z")|
and therefore

[ f@)-f@")|<eif O<|2'-&|<n and O<|2"-&|<,
so that the condition is necessary.

(ii) The condition is sufficient. For, if the condition is
satisfied there is a number # such that

| f(@') - fa") | <&, or, f&") - e<fla') <fl£") +¢
when O0<|é-2'|<nand O< | é-2" | <.

Thus the set of values of f(x) obtained by assigning to z all
the admissible values of x in (£ —7, & +7) is a bounded infinite
set and has therefore a maximum limit G and a minimum
limit g. Hence

f@)-e<g=G<f(a") +¢
so that 0=G-g= 2.

But, as % tends to zero, G and g (see § 18) tend respectively to
G, and g,, where Gy < ¢ and g, = g; therefore
0=Gy—gp= 2e.

As ¢ is arbitrarily small it follows that G, =g, and therefore,
when x—£, the set of admissible values of f(x) has only one
limiting number G, or g, and I=G,=g,.

If £ is a limiting point for values of = greater than ¢, similar
reasoning shows that f(x) will tend to a limit when x—¢ +0
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if, and only if, there is a number 7 such that | f(z') —f(2") [< e
when 0< |&-2'| <7 and 0<|&-2"| <7 (z'>§ z">§).
If & is a limiting point for values of z less than & then f(x) will
tend to a limit when z—>¢ — 0 if, and only if, there is a number %
such that | f(z') —f(z")| <e when0 < | £ -2 | <7, 0<[|&—-2"| <7
(' <& 2"< &)

Again to find the condition that f(x) should tend to a limit
when z—> +o let z=1/y and f(x)=F(y). When z— +w the
new variable y tends to zero and the condition

| Fly)-F(y")|<eif 0<y'<nand 0<y"<79
becomes
| f(z")-f(z")] <eif 2’>N and "> N,
where N =1/5, and therefore N is an arbitrarily large positive

number.
Similarly if z— — o the condition for a limit of f(z) is

| f(&')-f(z")] <eif ’<-Nand 2"<-N,
where N is an arbitrarily large positive number.

Continuity of f(z). If f(z) is defined for all values of x in the
interval (£ -7, & +7) the condition that f(x) should be con-
tinuous at & is (E.7'. p. 87) that f(x) should tend to f(£) when x
tends to & ; in other words that the limit of f(x) for x tending
to £ should be equal to the value of f(x) for x equal to &. This
condition may now be stated in another form.

Let (x,) be any sequence that tends to £ ; if the sequence

f (@), f=xa), f(=s), ---

tends to f(¢) whatever particular sequence (z,) be chosen, then
f(x) will be continuous at &.

That the two forms of the condition are equivalent may be proved
as follows.

(a) If (x,)->&, then m may be chosen so that | £ — 2, | <y when n=m;
hence if |f(£) —f(z) | <& when | & —x | <7, we shall have |f(§) —f(z,) | <e
when n=m, so that f(z,)»f(&) when (x,)>&. Thus, when the first form
of the condition is satisfied, so is the second.

(b) When the second form is satisfied, so is the first. For, if f(x) does
not tend to f(¢) when @ tends to &, it will be possible to choose € so that
/(&) =f(z)| = & for infinitely many values of = (for a set S, say) in the
interval (¢ —», £ +7%); because, if there were only a finite number of
such values of z, one of them (z’, say) would differ from & by less than
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any of the others and then |f(£)—f(x)| would be less than & when
|& —=z) | <7’, where 4’ =|& —2’|, so that f(z) would tend to f(&) when
z tended to &.

Now from the set § in the interval (& -7, £ +7) a sequence (z,) can be
selected which tends to & (§ 17, Note) ; hence | (&) ~f(x,) | Z & for every
value of 7, so that f(z,) does not tend to f(£) when (x,) tends to &,
This conclusion contradicts the condition that every sequence f (x,) tends
to f(§) when (x,)—& ; it is therefore possible, when the second condition
is satisfied, to choose 7 so that | f(&) ~f(z) | <e when | & —x| <y. Thus,
when the second form is satisfied, so is the first.

The student may, as an exercise, deduce the conditions in
§ 21 from those in § 19.

22. Exponential Functions. The exponential function a®
is, up to this stage, defined for rational values of the variable x
alone. The definition will now be extended to irrational
values of x by showing that if (z,) is any sequence of rational
numbers that has z as its limit the sequence (a*) also has a
limit and this limit is defined to be the value of a®. ‘The
discussion is rather long but it is not difficult ; the inequalities
of § 11 are required. It has to be remembered that the base a
is positive.

(1) a®*—1 when x tends to zero through rational values.

Suppose a > 1 and let a'/*=1 +a, where a, is positive and n
a positive integer ; then (§ 11, (8))

a=(1+a,)*>1 +na,, a,<(a-1)/n
and therefore a,,— 0 and a!/*—1 when n—ow .

Further, a-/»=1/a'/" and therefore a1/"—1 when n—s>ow .

Next, let (z,,) be any sequence of rational numbers that tends
to zero and let N be an arbitrarily large positive integer. It
is possible to choose m so that x, will lie between — 1/N and 1/N
if n>m, and therefore also so that a* lies between a-'¥ and
a'¥ if n>m. But, given ¢ as usual, N may by the preceding
part of the proof be taken so large that both a-1'¥ and a''¥ lie
within the interval (1 — ¢, 1 +¢); so therefore does a*: if n>m,
and therefore a*»—1 when z,—0. :

-Suppose next that a<<l. Then d=1/a>1 and a® =1/b=
so that a®—1 since b*»—1 if n— oo. ’

(2) Next let (z,) be a sequence of rational numbers that
tends to x. We may suppose that z, lies between two fixed
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rational numbers % and v for all values of n so that a* lies
between a* and a® and is therefore bounded, say a® <k for
every value of n.
The sequence (a*+) tends to a limit, o say ; because
l aFn+p — q&n l =| a® (@ — 1) I <k ] a%n+p—%n — | |
and |a®~r = -1| -0 if n—>w since the sequence (x,) is
convergent and therefore z,,, —2,— 0 if n—>cw .

Again if (y,) is any other sequence of rational numbers that
tends to x the sequence (a*») tends, by the above proof, to a
limit, B say, but f=a, as may be seen thus. The integer m
may be chosen so large that z, and y, differ from z and from
each other by less than ¢ if n>m ; further,

| @ —a# | =| a®(a¥=—= - 1) | <k | av»= —1 |
and |a%=*_1|->0 when n—>» because y,-2,—>0 when
n~>w . Hence f=a.

The limit o is therefore the same whatever be the sequence
(a*) when (z,) is a sequence of rational numbers that tends to .
« is defined to be the value of the function a® for all real values
of z, and it will be noticed that a® cannot be negative.

(3) If a>1 and ¢ any rational number in the upper class of
the section that defines x, when x is irrational, then a*<a’.
Hence a® > or < a' according as z > or < y, while if
a<l, a* > or < av according as * < or > y. These con-
clusions follow readily from §11 and the definition of
inequality (§ 5). '

Again, it is easy to prove that the index laws

a® x a¥ =a**?, a~*=1/a®, (a%)=a"
are valid when x and y are any real numbers. Thus, for
example, let x and y be defined by the sequences (x,,) and (y,,) of
rational numbers ; then, by the fundamental theorems of limits,

L.(azn X alln) :A‘(a%ﬂ-ﬂn)’ tha,t iS, a® xa¥=a*tv
n—rwo n—>0
since all the limits exist.

(4) a® is a continuous function of x.
Suppose a>1, It is always possible to choose rational
numbers y and z such that, whether « is rational or irrational,

y<z<z and z-y=1/n.
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Now, let 2’ be any real number such that y<2’'<z; then,
by (3), a¥ <a® <a*. When y and z both tend to z so does
2’; but in this case, by (2), both a¥ and a* tend to a® and
therefore a* also tends to a®.

A similar proof holds if @ < 1. Hence, whether 2’ tends to
x through rational or irrational values of z, a*’ tends to a® and
therefore a” is a continuous function of z.

(5) It follows now that, if a>1, the function a* is a
monotonic, strictly increasing, continuous function of «;
a*—>+w when z— +o and a*->0 when z—>-®. It may
further be noted that a®*—1 when z—0.

If a<1let a=1/b where b > 1 so that a®*=1/b* and it follows
that a® is a monotonic, strictly decreasing function of z.

The student should note specially the following inequality,
which is required in § 24, and is generally useful.

If b>a>1 then b*>a® when 2 > 0, but b* < a® when z < 0,
where z is a real number.

23. Logarithms. In this article a theorem will be assumed
which is more conveniently discussed in the next chapter (§ 32),
namely : If f(x) is a monotonic, strictly increasing, continuous
function of x for a given range of z the equation f(z) =y defines
Z as a monotonic, strictly increasing, continuous function of y
for the corresponding range of y. The two functions are said
to be *“ inverse "’ to each other (E.7. p. 18).

In the preceding article it has been proved that a®is, if @ > 1,
a monotonic, strictly increasing, continuous function of z that
increases from 0 to ® as x increases from — o to ©». The
inverse function is called a logarithm, and if ¥y >0 and a*=y
the definition is that ¢ z is the logarithm of y to the base a,” so
that, in the usual notation,

z=log,y if a®*=y, where a>1 and y > 0.

It is obvious that log,y =0 if y=1 and that log,y is positive
or negative according as y is greater than or less than unity,
(In practice the base a is usually assumed to be greater than
unity.)

There is no need to discuss the well-known rules of operation
with logarithms, but one property may be stated explicitly,
namely, that if (y,) is any sequence of real numbers that tends
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to y the sequence (log ) tends to logy. This property follows
from the fact that log  is a continuous function of ¥ (§ 21).

24. The Base e. Theorems in Limits. It has been proved
in § 11, (10) and (10a) that, if 7 is a positive rational number,
(1 +1/n)" increases as n increases but that (1 +1/n)" is less than
4 for every value of n. Therefore (§15, Th. I) (1 +1/n)"
tends to a limit, usually denoted by e, when n—>c.

Next, let z be any real number greater than unity and let the
positive integer n be chosen so that n<z<mn +1; therefore
when either of the numbers z and n tends to infinity so does the

other.

Now 1+__1_<1+1§1+1’
n+1 2 n

and therefore (l +1—L—1L—1>'l < (l +—;>z < (l +_1li>"+1.
But

1 \n 1 n+l ]_
(1 tail) =175 / ¢ “77;1)’
1\ ALY
(1 +a> :(1 +ﬁ) (1 +;.,>’

1 \» 1\t
and therefore both (1 +m) and (1 +ﬁ> tend to e when

n—> , since (1 +%> does so for all rational values of n. Hence

(1 +2> tends to ¢ when z tends to infinity through real

(positive) values.
Nextletz= —y — 1 where y >0 ; then z— - wheny— +.

N oy Ny Lyl
But (1+;) =) =(1+,) (1+5)
and therefore (1 +;)z tends to e when z2— — .
The above result may be stated as a theorem.

2
Taeorem 1. The expression (1 +%> tends to a definite limit,

denoted by e, when z tends through real values either to + o or
to —oo ; or, (if 1/z is substituted for z) the expression (1 +z)!*
tends to the limit e when z tends to zero through real values which
may be either positive or negative.
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This number e, as the student knows, is taken as the base
of the logarithm in all theoretical investigations, and the
function e® is *“ the exponential function of 2. If ¢ is positive
the function a®, which is of course an exponential function of x,
may be expressed, in what is considered the standard form, as
e”l8a TIn accordance with the usual practice, the symbol log a
is here taken to mean log, a.

TaEOREM II. 4‘9’:}&:«1 =loga, k>0 or h<0.
h—0
Suppose a>1. Then a*=1+k; k is positive or negative
according as h is positive or negative and %k—0 when A->0.
Now hloga=log(l +%), and therefore
a-1_ kloga log a
h log (1 +k) log [(1 +&)V*]
But (Th. I) (1 +k)¥*—e and therefore, since log =z is a con-
tinuous function of «, log[(1+k)¥]—1loge when k—>0. The
theorem is therefore proved since log e=1.
If0<a<l, let b=1/a; then b>1 so that
a1 1621
£ = —— = —logb=loga.

h TABT R
h—0 h—0

Cor. Let h=1/n where n is a positive integer ; then n(/a —1)
tends to log a when n tends to infinity.

TrEOREM III. £ log (z + Z) —logz =;:.

h—0
Since  must be positive we suppose x=¢>0. Now
T

A
BB frog (1.42) ~L1og [ (1.42)']
Let hjx=k; then k—0 when h—0 since z=¢>0. As before
log [(1 +£)'] tends to loge, that is, to unity when %k—>0, so
that the theorem is established.

Theorems IT and III show at once that the derivatives of e,
a® and log x are e®, a*log a and 1/x respectively.

Derivative of x» when n is irrational. Since ", when >0,
may be expressed as e8¢ we find

dd-;":d ';::logxzenlogz . ——d(nizg x)zx" . g:m”-l,
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80 that the usual rule for the derivative of 2* applies whether
n is rational or irrational. However, when n is irrational, z
must be positive.

Notation. The exponential function e* is frequently ex-
pressed by the notation exp(z); this notation is specially
useful when the index is a somewhat lengthy expression such
as (ax? +bx +c)/(a@’x? +b'x +c') or nlog (1 +x/n).

25. Limits and Inequalities. The examples now to be given
establish some theorems in limits of logarithmic and exponential
functions and also some inequalities that are frequently re-
quired.

EBx. 1. If the product nk tends to x when |n | tends to infinity, so
does the product n log (1 +k).

The proof depends on the theorem which has been applied so often
in § 24 that log [(1 +k)1/*] tends to log e, that is, to unity when & tends
in any way to zero.

If nk tends to x whether n tends to +ow or to —o then k tends to
zero whether z is or is not zero. Now

n log (1 +k) =nk log [(1 +k)1/¥]
and therefore

L nlog(14k)= [ (nk). [ Tog [(1 + k)14 ==.
—0

In]—wo In]—0

Ez. 2. If the product nk tends to x when |n | tends to infinity, then

(1 +k)" tends to €°.
(1 +k)* =e®» where x, =n log (1 +k).

By Ex. 1, z,— z and therefore, by § 22, (4), e®»— €*.

Two particular cases of this theorem are important.

(i) Let k =x/n ; then (1 +z/n)" tends to e* when n tends either to +o
orto —o.

(ii) Let nz =m ; then, if z is not zero, | m | tends to infinity when |n |
does so. Therefore

(l +%)'vlz=<l +%>m so that (l +1—1>M—> e®,

If =0, (1 + 1/n)"¢ =1, and therefore the limit is 1 and 1 =¢".
In these and similar examples it has to be remembered that n and ¥
must be such that (1 +k) is posiiive.
Ez. 3. Prove the following inequalities :
(i) e >1+zifz>0; (ii) e®>1-zif 0<z<];
(iii) z —Jx?<log(l+x)<z if O<a<];
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3
(iv) z< -log (1 —x)<x+§l—z_-5 if 0<ae<1;

1+:c 2
= 2w+31

For the extreme values 0 and 1 of z it is best to test the value of the
function. In all cases the inequalities become equalities for z=0;
for 2 =1 the inequalities (ii) and (iii) persist but the logarithms in (iv)
and (v) tend to infinity when z—1.

These results are proved very simply by the method used in the
Elementary Treatise, p. 132, examples 24, 33, 34. To illustrate the
method take the inequalities (v). Let

23
(v) 2z<log po if 0<z<l.

l+z a1+ 2 at
flz)= log1 -2z ; @(x)=log T—_—x-—<2x+§r_—xi).
, 2x2 , 4 b
Here S@ =1 ¢@= 3w

and therefore f’(z) is positive and ¢’(x) negative if 0 < x<1. But f(x)
and ¢@(x) are both zero when z =0 so that the increasing function f(z)
is positive and the decreasing function ¢(z) is negative for the range
0<z<1. The inequalities are therefore proved.
1
+ n(n+1
Exz. 4. Prove that e< (l +$>n §< exe )
where n is any positive number.
The inequalities (v) of Ex. 3 may be expressed in the form
l l+x 1 22
<oz Iog1 x<l+3l 5 O<z<l.

Now let x-—-l/(2n +1) where n >0 ; then

l+x < l)”-ﬂ 1 _g__ 1 .
golog o =tog[ (142)"" ] 517 xrm'

so that 1< log [(1 *n ) H:I l2n(n+l)

and, therefore, passing from logarithms to numbers, we find the
inequalities stated in the example.

Bzx. 5. If g(n)=(cos 0,)™ and if 6,,~ 0 and f(n)—>w when n—ow,
discuss the question of a limit for ¢(n) when n—>e0 .

Let u, =f(n)log (cos 0,) ; then ¢(n)=e% and the problem reduces
to that of finding the limit of u,. This problem is, however, indeter-
minate until a relation between 6,, and f(n) is given.

Now by Ex. 3, (iv) the limit of [log (1 —z)]/x when = tends to zero
is -1. But log(cos 0,)=1% log (1 —-sin? §,)) and

_ . _ 2 [log (1 —sin?0,,) sin 0,,\*
u, =3f(n) log (1 -sin? 0,) =34f(n) . 0, sim? o, ] . ( ”) ,
8o that the limit of w«, is the same as the limit of - }f(n)02 sirice the
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factors sin 6,,/0,, and log (1 ~sin20,,)/sin?0,, tend to 1 and -1 respec-
tively. Hence

if f(n) 02 - 0, u,— 0, p(n)—>1;

if f(n) 62 — a2, u,—~ —}a?, @(n)—>e—ia*;

if f(n) 62~ + o, u,~> —~w, p(n)->0.

0 +
If @p(n)=(sin en/e,,)f‘”’ let sin 0,,/0,=1 - T , where o. -0 when

6
0,,— 0 (that is, use the first two terms of the series for sin 0,)) and then
proceed as before. Or, note that (E.T. p. 77) sin 6,/6,, lies between 1

and cos 0,, when | 0, | <g

Ezx. 6. If m>0, (logz)/x™—> 0 when x—>w .

Let z =e¥ and apply tho method of Examples 8, 9, p. 99 of the
Elementary Treatise.

26. Ex‘ension of Range of Definition. The method by which
the range of definition of the function a® has been extended from
rational to real values of z is of a general character, and may
often be applied. The principle of the method may be stated
in the following way.

Suppose that a function f(x) has the two properties :

(1) f(z) is a bounded, single-valued function of x, defined for
all rational values of z in the range a<z<b ;

(2) if & is any rational value of z in the range, f(x) tends to
f(&) when z tends through rational values to &.

Now every point £ in the interval (a, b) is a limiting point
of the set of rational points in the interval and by Cauchy’s
Test (§ 21) f(x) tends to a limit, /; say, when x tends through
rational values to & whether & is rational or irrational. When
£ is rational I; is the value f(£) of the function; now, if £ is
irrational, let I be defined to be the value of f(z) when z=¢&
and f(z) will be defined for all values of z in (a, b), and
further, f(z) will be continuous for the range a < z < b.

To see that f(z) is continuous, let & and ¢ be two values of
z in the range, ¢ being rational or irrational and c¢ rational.
When z tends to & through rational values, f(x), by the
extended definition, tends to f(£); it has to be proved that
f(z) tends to f(£) whether x tends to & through rational or
through irrational values.

In the first place, # may be chosen so that

@) =f(&) | <ke if |c=&|<N cveverrvrevnens (i)
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Next, let £ be any number, rational or irrational, befween
£ and c¢; there is in the interval (&', ¢) a rational number ¢’
such that |f(c’) -f(&')|<3%e. It is possible that ¢’ may be
taken to be ¢; if not, substitute ¢’ for ¢ in the inequality (i)
(this substitution is manifestly admissible) and let the one
symbol ¢’ be used to cover both cases. We now have

ler =& | <le'-&[<m, | &-&[<n
and [fe)-f(&) | <3de, 1f(e") —f(&) ] <%e,
so that, if | &' - ¢&|<n, we find
[F(&) =f(&) | =1{f () —f(&)} —{f(c') - (&)} ]
<}e+ie, or, e
Thus f(x) tends to f(£) when = tends to & through irrational

as well as through rational values, and therefore f(z) is con-
tinuous at &.

EXERCISES 1II.

1 1 1 1
=7+ v+ T vmE ) T Y ymin)
a,—1 when n—>w.

2. If a

1. If  a,

SRS (RO (N N
ﬂ'—n2+12 n2+22 n2+32 b n2+n2
a,—>n/4 when n—w.

3. If a,,,=%a,+b,) and b,y =(0yb,), @,>0, b,>0, the
sequences (a,) and (b,) are monotonic and converge to the same limit.
o say.

If a,=cosf, b,=1, then a=sin6/0; if a,=cosh u, b,=1 then
o =sinh u/u. (Borchardt.)

4. If a, s =v(a,,a,) and a, >0, the sequences (a,,_,) and (a,,) are
both monotonic, one increasing and the other decreasing ; the sequence

(a,,) tends to (alaﬁ)%.

5. If a,,y=3(a,,, +a,) and a, >0, the sequences (a,,—,) and (azn)
behave as in Ex. 4, and the sequence (a,,) tends to }(a, + 2a,).

6. If a,,; =v/(a +a,), where each number is positive, the sequence
(a,) tends to &, where £ is the positive root of the equation 2% =x +a.

[Here af,, —aZ,,=a, -a,,, so that (each number being positive)
Gp4q > Or< @, according as a, >or< a,,,, that is, (a,) is monotonic.
Again, since £2=¢+a we have a ~&2=a, — & so that a, >¢& if a, >¢&;
also if a, >¢ (the positive root of z%?=x+a) then a?>a+a,=a} or
a, >a,. Thus when (a,) is a decreasing sequence each a, is greater
than £, with a similar conclusion if @, <& Hence, since a, and a,,
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tend to the same (positive) limit, n say, we have %*=a+7 so that
n=§1]

7. If a, =a/(1 +a,_,) (each number positive) the sequence (a,) tends
to a limit &, the positive root of the equation x? +x =a.

8. If u, =H, —logn and v, =H, ~log(n +1) where

H,=1 +%+% +... +;L,

show that (u,) and (v,) tend to the same limit, y say ; 7 is & common
(though not universal) notation for the limit which is always known
as Buler’s Constant. (y=0-577 215 664 ...).

[By the inequalities, § 25, Ex. 3, we have

1
ten =t =5y ~log (1~ 557) > 05

- 1
vn—vn+l=m+log (1+ +l)<0;

u,, ~v, =log (l +%) >0, u, >v,.
Thus (u,,) is decreasing, (v,,) increasing, but «,, > v, and v, < %,. Hence
()~ a limit o and v, — a limit B while (u, —v,)-> 0, so that . =f=7.
Or, we may proceed as follows :

23 m+l_ 1( 1 ( 1
n+1—i —2'-.—‘n—'—<l+l) 1+§> N l+n)9

so that —Z{——log(1+ )} 0<uw <%2

r—l
The series 31/r2 converges and therefore v,—a limit; u,~v,—0
and the sequence (u,) tends to the same limit.]

Cor. H,=y +log n+0, where 8, 0 when n—>o. This expression
for the sum of the first n terms of the harmonic series is often useful.

1 + 1 R 1
n+l n+2 7 T n+n’

9. If a,=
prove that a, > log 2 when n—w and deduce & series for log 2.
[an =H,, ~H, =(y +log 2n +67) —(y +log n + 67),
so that a, =log 2 +(0;, — 6;,)— log 2 since 6,,— 0, 67— 0.

. ~1r2
Again - _E- —2227' 2( r)

r=1 r=1 r=1
SUEL NS T U U,
so that log 2= 72;1 =l-g+g—g+os
LI | nq
10. If a”=zé—;—_—l~ and b, = 5.,
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prove that L@, ~b,)=1log?2,
n—>a0
and deduce that
1 1 1 11 1 1 1 3
L5 g4 gt it st o3~ s 0B 2

n—w0
[Here a, —-b,=H,, —+H,, —3H,. The infinite series
1+3 -2 +1+3 -1+
is a derangement * of the series in Ex. 9 for log 2, so that this derange-
ment alters the sum of the series.}

11. If p and g are fixed positive integers and if

2 q
1 o 1
I o Vo s U T VR

r=1 r=
show that (i) @ —b, =Hypp — §Hpp —3H gn.
.. 1 P
—-b,)=log 2+ log=.
(ii) L‘(an ) =log 3 log 7

n—P0

State the result as a theorem on the change produced in the value of
the series for log 2 (Ex. 9) by a derangement * of its terms.

12. If p is a fixed positive integer and if

ap=»t Lt 1 1
"Tn+l n+2 n+3" 77 Tn+pn’
2 2 2 2
and b"_2n+l+2n+3+2n+5+"'+2n+2pn—l’

show that both a,, and b, tend to log (p + 1) when n—w.

13. If a, ={}(al/n +bl/n)}n, show that a, tends to v(ab) when n—>ow.
[Here a, =(1+k)* where nk=3%{n(alin —1) +n(bl/n —1)} and (§ 24
Th. I, Cor.) nk— } log (ab) when n—w.]

17427 43P +... 40P 1

14. 7 “p+T’

p+1>0.

n—>w0

1P4+2° 439+, 40P n \_1
18. £( n? -p+l>_§’ p>0.

>0

(@+c)? +(a+2)? +... +(a+nc)? nc? }
16. Z{ n? Tp+l

7—>0 -
=(a +4c)c?), »p>0, a==0, ¢>0.

* On derangement of series, see § 59.
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L
1
17. If f(n)=2 n'-:-a) +p. ¢ >0, show that n-1-sf(n)— 0 when
s=1

n—+w and then prove

) n"‘f(n):é; i [ {2-}‘(7»)}:%.

. L= Lt e,
9. 1+~/2+’J3-I;1#4+...+':/n=].

0 1= £33

21. L‘ﬁ{(n+l):‘n:2)...(n+n)}'£'=—

22, nA-}L {+ 1)k +2)...k -l-n)};l'=%, (k fixed).

23. If a, =cyxy +0,%; +Cy%5 + ... +Cyy, b, =Co+€; +C3+... +¢,, where
c(r=0, 1, 2, ..., n) is positive (at least for all values of r greater than
a fixed integer) and b, o when n—« , prove that if z,, tends to a limit{

aﬂ_L‘cwxo +C ... +Ca%a_y
b, Co+Cy+... +Cp )

Nn—x0 N—>0

lis not necessarily finite (see § 20, Ex. 2).

24. If the symbol (;l) denotes the binomial coefficient
n(n —~1)(n-2).. (n r+1)/r!

. show that, when r is a fixed integer, 5 ( )—» 0 when n—>w.

1/n 1 nt 1 nr
[:Here 57‘(') < 71t 9n= r,enlog:,»o if n—>ow :l

25. If a,=z,+ (?)xl + (g)xz +.+ (7)3:, +a <;:) %, show that
a,/2%—> 0 if (z,)—> 0, and that a, /2" z if (z,)—~> 2.

[1 +(’})+<’2') o +(") . +("> =(1+1)r =2,

: 1
o thas it r>1, g [([%)+(,1g) +- ()<
Now if (x,)—> 0 we can choose » so that |z, |<3e¢ if p>r and then,

in>r,
|1 n ) n 1
Sa [( ):cn,‘ +<r+2)av,.+2 e +(w)x,,] < e

2
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Choose r and keep it fixed ; the other part of a,/2" contains a finite
number of terms, namely (r+1), each of which tends to zero when
n—w, and therefore their sum will be less than }s when n >N. Thus
a,/2" is less than ¢ if n > N so that a, /2" 0 if z,~ 0.

If (x,) tend to x we may write
_ 1 (n b _5”—\ n
x_—27,240 Y A r)(x,—x),
r= r=

and b,,/2" - 0 since (x,, —z)— 0 so that a, /2"~ x]

1
26. L.(cos z)*=e-% and £(sin z)sinz—q,
z—0 >0

27. If tan o= A tan (km/n), where 0 < A=1 and k is a fixed positive
integer, prove that

(i) £cos (nog) =cosAkem; (i) Z(cos og)® =1.

n—0 n—rx

The following Examples 28-30 lead to Stirling’s approximation for n!

28. If @(n)=n!er/ntt apply Ex. 4 of § 25 to prove that ¢(n)is a
"monotonic, decreasing, positive function of » and therefore tends to a
limit £ when n—>w. Show that ;> 0.

p(n+1) e

p(n) (1+ 1/n)n+»}<1 5 pn+l)<e(n).

1
Toprove k > 0,let yr(n) =e B g(n); thenyr(n +1) >y (n). Since Yr(n)
has the same limit as ¢(n) and increases to its limit %, it follows that

k> 0.]
29. From Wallis’s expression for #/2 (E.T'. p. 307) prove that v/(w/2)
lies between P,/\/(2n) and P,/v/(2n + 1) where
P, =(2" . n1)%/(2n)!
and therefore
n
(27 . n1)2/(2n)! =\/<§)J(2n +6,), 0<06,<1.

Deduce that

1.3.5... (2n - l)-.—.g-%, where a,,—>—1— when n->w.

2.4.6...(2n) N
20, Si - [p(n))®_w(2n+6,)
30. Show that #(2n) on n . Jm, 0< 0, <1,

and therefore that k=./(2n), where k is defined in Ex. 28, so that
@(n)— /(27) when n—>cw.
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-1
[By Ex. 28, ¢(n) is greater than k£ and y-(n) or e 127 @(n) is less than
k or \/(27); that is
1
p(n) >(27) but @(n) <y(27)el2n
and therefore @(n) =y/(27)ef/12n, 0 <O <1.

Thus finally  n! =(g>"¢(2nn)eo/12», 0<6<l.

The factor ¢¥/12® is less than 1 +-1%L(n > 1) and tends to unity when
n-»o ., The value

(nfe)my/(2an)

is known as Stirling’s Approximation to n! when n is large.
For the form in which Stirling states his theorem see Tweedie’s
James Stirling : A Sketch of his Life and Works, pp. 43-44.]



CHAPTER III

FUNCTIONS OF ONE VARIABLE. DERIVATIVES.
DIFFERENTIALS

27. Oscillation of a Function. Some of the general pro-
perties of a continuous function f(x) that have been either
explicitly or implicitly assumed in the Elementary Treatise
(Chapter V) will now be considered. The function, if not
continuous, will always be assumed, unless the contrary is
expressly stated, to be defined for an infinite set of values of
its argument and the properties of the bounds of the function
will be often required.

Let f(x) be a single-valued, bounded function of », defined
for an infinite set of values of z such that a<z<b, or, for an
infinite set of values in (@, b), including @ and b. The set of
values of f(x) for which f(z) is defined is a bounded set and
therefore has an upper bound M and a lower bound m (the
letter % is so often used to denote an increment of z that it is
convenient to use a different symbol for the bound). The
difference M —m, which cannot be negative, is called the
Oscillation of f(x) in the interval (a, b) and is usually denoted
by O.

The notations M(a, b), m(a, b), and O(a, b) will be used when
it is desired to specify the interval, so that

O(a, b)=M(a, b) —m(a, b) or O=M ~m.

Ex. If ¢ is any number in (a, b) prove that
O(a, b)=0(a, ¢)+0(c, b).

Trrorem. If M is the upper bound of the (single-valued)
function f(z) of x when x varies from a to b, (a and b included)
there is at least one value & such that the upper bound of f(x)

in the interval (£ —¢, & +¢) is also M, where ¢ is an arbitrarily
56
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small positive number. If m is the lower bound of f(z) there
is at least one value &' such that in the interval (&' —¢, & +¢)
the lower bound of f(x) is also m.

If & (or £') is a the interval is (a, @ +¢) and if &(or &) is b
the interval is (b — ¢, b).

The function need not be defined for all values of « in (a, b).

Bisect the interval (a, b) and let c=}(a +b). In at least one
of the intervals (a, ¢) and (c, b) the upper bound of f(x) is M ;
for, obviously, if the upper bound of f(x) is different from M
both in (@, ¢) and in (c, b) it could not be M in (a, b). If M is
the upper bound in both, select, for definiteness, the interval
on the right, that is (c, b) ; denote the one interval or, if there
be two, the selected interval in which the upper bound is M
by (a,, by) so that a;<b, and by —a,;=}(b —a). Therefore the
upper bound of f(z) is M in the interval (a,, b;) where

asa,<b;<b, (b,—a)=%(b-a).

Next bisect the interval (a,, b;) and proceed as in the first
case. Denote the one interval or, if there be two, the interval
on the right by (a, b,); then b, —a,=(b, —a,)/2=(b—a)/2%
Thus the upper bound of f(x) is M in the interval (a,, b,) where

aLa,<a,<b,<b,<b, (by—a,)=(b-a)2?

Proceeding in this way we see that the upper bound of f(z)
is M in the interval (a,, b,) where

S S0 ... £, <b, < ... =b,=b;=b
and b, —a,=(b—a)/2".

The sequence of intervals (a,, b,) satisfies the conditions
of § 16 and therefore determines a point & which is common to
each interval. Given &, choose n so that (b-a)/2" is less
than ¢ and the interval (a,, b,) will lie wholly within the
interval (£ —¢, £+¢). Hence the upper bound of f(z) in the
interval (¢ — ¢, & +¢) is M.

The same proof holds for the lower bound m.

The numbers & and &’ need not be values of z for which f(x)
ig defined. '

If f(x) is not bounded above in (a, b)—that is, if there is a
value of  in (a, b) such that f(z) > K, where K is an arbitrarily
large positive number—the same reasoning shows that there is
a point & in (a, b) such that in the interval (§-e, & +¢) the
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function f(x) is not bounded above. Similarly, if f(x) is not
bounded below in (a, b), there is a point &’ in (a, b) such that
in the interval (&' —e, &' +¢) the function f(z) is not bounded
below.

Note. A function f(xz) may be finite for every given value
of z in the closed range (a, b) and yet not bounded in (a, b).
For example, let f(x) be defined as the limit when n — « of
nxf(1 +n2?); then f(z)=0 if =0, but f(z)=1/z if z is not
zero. Thus f(z) is finite for every given value of = but, in
any interval which contains the value 0 of #, the function
f(x) is not bounded since, if K is any arbitrarily large positive
number, |f(x)| > K when 0< |z | < 1/K.

28. Theorems on Continuous Functions. Throughout this
article the function f(z) is supposed to be single-valued and
continuous for a range a <x=<b, or in the closed interval (a, b);
in the interval x varies continuously—that is, # may take any
value between a and b, including @ and b.

The phrase ““ neighbourhood of &’ will be used occasionally,
and by a neighbourhood is meant the sct of values of z in the
interval (& -6, & +6), excluding &, where J is an arbitrarily
small positive number. If f=¢ the interval is (a, @ + ) and
if £=b the interval is (b - 4, b).

TrEOREM 1. If f(x) is continuous at ¢ and if f(c) is not zero,
‘then f(x) has the same sign as f(c) for all values of z in the
neighbourhood of c.

By the definition of continuity | f(z) —f(c) | <ecif jx~c |<h
go that f(c) - e<f(x)<f(c)+e if 0<|xz-c| <h. When f(c)
is not zero £ may be chosen so that both f(c) — ¢ and f(c) +¢ have
the same sign as f(c), and therefore f(x) has the same sign as
J(c) when 0< |z -¢c | <h.

TerorEM II. If f(x) 48 continuous for the range a<xr=b
and if f(a) and f(b) have opposite signs, f(x) will be zero for at
least one value of x between a and b; further, if f(a)=A and
f(6)=B, f(x) will take once at least every value between 4 and B
when x varies continuously from a to b.

The second part of the theorem is a simple corollary of the
first part. For,if A<C< Bor A>C> B, let p(x)=f(z)-C;
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then g(x) is continuous for a<z=<b, p(a)=4 -C, ¢(b)=B-C
so that ¢(a) and ¢(b) have opposite signs. Therefore, by the
first part, there is at least one value &, where a <£<b, such
that (&) =0 and therefore f(£)=C.

To prove the first part of the theorem suppose, for definiteness,
that f(a) is negative and f(b) positive, and apply the method
of the decreasing interval.

First let c=1%(a +b). If f(c)=0 the theorem is proved, but
if f(c) is not zero, let a=a, and c=b, when f(c) is positive, but
let c =a, and b=b, when f(c) is negative. Thus f(a,) is negative,
f(b,) is positive and f(x) is continuous for a, <z <b, where b; —a,
is equal to (b —a).

Now repeat this process. If ¢,=%4(a, +b,) either f(c,)=0,
in which case the theorem is proved, or else f(c,) is not zero,
and then we take a,=a,, ¢,=b, when f(c,) is positive, but
€, =@y, b, =0, when f(c,) is negative. Hence f(a,) is negative,
f(by) positive and f(x) is continuous for a,<x=<b,, while

1
by —ay=3%(by - a,) =2—2(b - a).

Proceeding in this way we find either a number, ¢, say, for
which f(c,) =0, in which case the theorem is proved, or else a
sequence (@,, b,) of intervals which determines a number §¢,
common to every interval, and f(a,) is negative, f(b,) positive
for every value of =.

The continuity of f(x) now comes into play. If f(£) is not
zero f(x) has the same sign as f(£) in the neighbourhood of ¢&.
But however small the positive number %2 may be, » may be
chosen so that the interval (a,, b,) lies wholly within the
interval (& —h, £ +h) and therefore, since f(a,) and f(b,) have
opposite signs, f(z) has not always the same sign as f(£) when
xz lies in (£-%, £+h). Hence f(£) must be zero and the
theorem is proved.

Ex. If n is a positive integer and k a positive (real) number the
equation 2™ =k has one and only one positive (real) root.

Takebsothatb >kandalsob>1. Thenz"=0ifx=0and 2" =b" > %
if z =b. Therefore as z varies from 0 to b the continuous function z®
must, for at least one value of z, be equal to k. Further, if z >0 and
y >0, z® and y™ are unequal if # and y are unequal, so that there is only
one positive value of x that makes 2" =k.
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Traeorem III. If f(z) is continuous for the range a<x=<b
and if € is any given arbitrarily small positive number there is
a positive number h such that | f(z') - f(x") | < &, where ' and x"
are any two values of x in the range such that |z’' —x" | <h.

Several proofs of this important theorem have been given ;
the following is by Peano.

First, choose a,>a so that |f(z)-f(a)| <}e if asz=<a;
this choice is possible because of the continuity of f(z). Next
choose a,>a, so that | f(z) —f(a,) | <3}eif a;<x=<a,, and let
this process be continued. It has to be proved that a finite
number of values, say a,, @,, @s, ..., @,, can be found such that
in each of the (n +1) intervals

(@, ay), (@y, B3) oo, (@Bpey, Bp), (@, B) evenrnnnnnnnee 1)
If(x) "'f(a'r) l <}e if OST=0yyy, U=0, a’n+1:b'
If a set a,, a,, ... , a, is not finite the method of determining

these numbers gives a sequence (a,) which tends to a limit ¢
where ¢<b, because each element of the scquence is less
than b and the sequence is monotonic and increasing. It
will now be shown that the supposed sequence has no limit-
ing point and that, in fact, ¢ may be taken to be one of the
numbers a,,.

The function f(z) is continuous at ¢ and therefore there is a
number ¢, such that | f(z) —f(c) | < icif c;<x=<c. Again since,
by hypothesis, ¢ is a limiting point of the sequence (a,) there is
an element, a,, say, of the sequence such that ¢, <a,, <c and
therefore, by the last inequality, |f(a.)-f(c)|<#e. Hence
ifa,<zx<c

|f(@) = flan) | < If@@) -fle) | + If(c) - flam) 1 <3,
g0 that ¢ may be taken to be the element a,,,. The
supposition therefore that the point b cannot be reached in a
finite number of steps is untenable.

The interval (a, b) must be closed ; if b were only a limiting
point of the set of values of x and not itself a value of x the above
reasoning would fail.

Suppose now that % is the least of the intervals (1), that is,
that & is the least of the differences (@, —a), (@3 - @;) ..., (b —ay);

then If@) -f@a") | <e if |&—a"|<h.
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For, either 2’ and z” lie in the same interval, (a,, a,.,) say,
and then
|f@) -fla,) | <ie | f(=") - fla,) | <3s,
so that

/@) -f@") | < |f@@) -fa,) | + |f(=") - fla,) | <%e<e;
or else, ' and z”" lie in adjacent intervals (a,_,, @,) and (a,, a,,,).
In this case, 2’ being in (a,_,, @,) and z” in (a,, a,,),

|f@) ~fla,-1) | <3, 1 f@0) ~fla) | <5, |f(=") -f@) | <3,
and therefore |f(z") -fx") | <e.

Thus 1 fE)~-fe")|<eif |2 -2"|<h.

Uniform Continuity. This theorem expresses the property
of uniform continuity. In virtue of the continuity of f(x) it is
possible to choose 4, so that | f(z) - f(c,)| < ¢ if | x —¢, | <k, and
also to choose k, 80 that | f(2) —f(c,) | < e if |z —cy| <hy; but
it is quite possible that A, would have to be less than 4,. The
theorem however proves that, no matter what point c in (a, b)is
taken, there is always one value of % such that | f(z) —f(c) | <e
i |2—c|<h. The uniformity of the continuity lies in the fact
that the same value of & secures the inequality | f(z) —f(c) | <&

when |z -c|<h whatever point in the interval (a, b) the
point ¢ may be.

TreoreM IV. If f(x) is continuous for the range a<x<b it
13 bounded for that range.

Let a, a,, a,, ..., a,, b be an increasing set of numbers that
divide the interval (a, b) into (n +1) sub-intervals such that
@, ,—a,<h and

|f(x)-f(a,) | <eif|z—a, |<h,r=0,1,...,n, ay=a, a,,,=b.
If o, < z<a,,, we have

f(@)=f(a) +{f(a)) - f(@)} + {f(as) - f(a)} +... + {f(x) —f(a,)}
and therefore

[ f@) |=[f@)]| + |f(@) ~f(@)| + | f(as) - fla)) | +...
+f(@) -f@) |<|f@) | + (r +1)e.

Now (r+1)e<(n +1)e, a finite number, and therefore if

|f(@) | +(n +1)e=k we have |f(z) | <k when a<z<b so that
f(x) is bounded.
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The theorem follows at once from §27. If f(z) is not
bounded in (a, b), there is at least one point & in the interval
(a, b) in the neighbourhood of which f(x) is not bounded ; but
this is impossible, because f(x) is continuous at & and therefore
f(x) lies between f(&) —¢ and f(£) +¢, when « is any number in
the interval (& —¢, & +¢).

TaeorEM V. If f(x) is continuous for the range a<x<b then
the upper bound M and the lower bound m of f(x) are values of
f(x); or, f(x) attains its upper and lower bounds.

By Theorem IV, f(x) is bounded and therefore has an upper
bound M and a lower bound m ; it has to be proved that M
and m are values that f(x) actually has—that is, that there is
at least one value £ for which f(£) =M and at least one value &’
for which f(&')=m.

The Theorem of § 27 proves that there is at least one value £
in the neighbourhood of which the upper bound of f(x) is M.
Now f(z) is continuous at £ and therefore, given ¢ as usual, there
is a positive number & such that | f(z) - f(&) | <e if |z - &|<h.
But M is the upper bound of f(z) in the interval (¢ %, & +h)
and therefore there is a value of x in this interval such that
M=fx)>M -¢ or M -f(r)<e. Hence
| M —£(8) | =1 (M ~f@) +£@) ~1(O) | <12 @) | + | f@) -1 (@)
so that | M —f(&)| < 2e. But M and f(£) are constants and ¢
is arbitrarily small ; therefore M =f(£).

In the same way it is proved that m =f(¢’) where a < &'<b.

M is the maximum and m the minimum value of f(x).

29. Discontinuity, In § 44 of the Elementary Treatise the
discontinuity of a function which is in general continuous is
briefly referred to ; Fig. 27, p. 88, and Fig. 32, p. 155, of that
book are graphical representations of certain types of dis-
continuity. Fig. 32 should be specially considered, as it
represents cases that actually occur and not cases manufactured
to prove a possibility.

Removable Discontinuities. Suppose f(z) to be defined for
arangea<z=b; if a <c<b it may happen that when x—c¢ +0
(that is, tends to ¢ through values greater than c) f(z) tends to
a limit ! and that when x—c¢ —0 (that is, tends to ¢ through
values less than ¢) f(z) tends to the same limit [, but that  is
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not the value f(c) which the function has by its definition.
The function is therefore discontinuous at c¢. In this case the
definition of f(x) for the value ¢ of # may be changed and f(c)
taken to be equal to I; if ¢ is the only point of discontinuity
in an interval (¢ —k, ¢ +k) this change would make f(x) con-
tinuous in the interval.

In this case the discontinuity is said to be removable and when
the case occurs the change is usually made.

Discontinuities of the First Kind. If f(x) tends to a limit I
when z—>c¢ —0 and also to a limit I’ when « tends to ¢ +0 and
I is not equal to I’, whether or not one of the numbers [, I’ is
equal to f(c), the discontinuity is said to be of the First Kind.
As a rule, f(z) is not, by its original definition, defined for the
value ¢ of «, but in this case no value assigned to f(c) will make
f(x) continuous at c¢. It is not unusual to define f(c) to be
1( +7')—the mean of the two limits I and I’ (E.T. Fig. 27,
illustrates this type).*

Discontinusties of the Second Kind. If one (or both) of the
limits of f(x) when z—>¢ -0 and when z— ¢ +0 does not exist
the discontinuity is said to be of the Second Kind. The function

sin (x—l—) illustrates this case ; the function does not tend to

a limit either when z— ¢ — 0 or when x—¢ +0.

30. Derivatives. If f(z) is defined for the range a=zx=b
and if x and z, are any two values of the argument in the range,
f(x) is said to have a derivative, denoted by f'(z;), for the
value z, of the argument when the quotient ¢(x), where

o) ={f(x) = f@)} (T =2}, ceerereriiiianaeninns (1)
has a limit ! for = tending to z;. It is to be specially observed
that the limit must be the same whether x tends to z; +0
or to z; —0. The number ! is supposed to be finite ; the cases
I=+w and I= — o are considered a little further on.

When the number [ exists f(z) is said to be differentiable at x,,
or to have a derivative when x =ux,.

It may happen that the quotient ¢(x) tends to a limit I,
when z—z, +0 and to a different limit /, when x—2, -0. In
this case f(z) is not differentiable at z, but f(x) is said to have

* The letters ¢ E.T.” indicate the Elementary Treatise on the Calculus.
G.A.C. D
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at x; “ a derivative on the right ”’ or “ a progressive deriva-
tive ” I, and “ a derivative on the left ” or * a regressive
derivative ”’ I,. Unless I, =, the function f(x) is not differenti-
able at z,; if, however, z, is the extremity of an interval
(a, b) the function f(x) will be said to be differentiable in (a, b)
if it is differentiable for every x between a and b and has a
progressive derivative at @ and a regressive at b.

For example, let f(x) be defined as follows :
Jf@)=1+zif =2, but f(z) =5 -z if x = 2.

Here f(x) is differentiable for all values of x except for z=2. The
quotient {f(z) —f(2)}/(x -~2) tends to -1 when z tends to 2 from
above but to +1 when z tends to 2 from below. There is a progressive
derivative —1 and a regressive derivative +1 for the value 2 of z, but
f(z) is not differentiable for the value 2 of z.

If f(x) does not tend to f(x,) when z tends to x, the limit I of
the quotient @(x) does not exist and therefore f(x) is not
differentiable at ;. Hence f(x) is not differentiable at x, unless
f(x) vs continuous at x, ; if f(z) is differentiable for the range
a=<z=<b it must be continuous for that range.

The converse of this statement is, however, not true ; that is, it is
possible for f(x) to be continuous for a =z = b and yet not differentiable
for any value of « in that range. See Hobson’s Functions of a Real
Variable, § 425 of First Edition. Non-differentiable functions of this
character are outside our limits.

Cases l= +o and l=-w. If f(xr)->o when x>z, the
function is not continuous at z, and therefore has no derivative
for x=2,. On the other hand, if f(x,) is a finite number and
if the quotient ¢(z) tends to +w when z tends to z, (whether
from above or from below) it is reasonable to say, especially
in view of the geometrical interpretation of f'(z,) as a gradient,
that f(x) has a derivative, but that the derivative is +o.
Similarly, if ¢(x) tends to — o« whether x tends to z; -0 or
to z, +0, the derivative of f(x) for =2, is — . In all general
theorems on derivatives, however, it is assumed that the limit 1 is
finite ; each case of an infinite derivative must be considered
by itself.

If f(z)=(z -2,)} the derivative of f(z) for z==, is +w, but if
flx) =(x —xl)g‘ it has no derivative for z =z, since ¢(z) tends to +
or to ~o according as x tends to x, +0 or to z; - 0.
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The student might with advantage read pp. 104-108 of the
Elementary Treatise where various considerations respecting
the derivative are stated. It is useful to remember that f(z)
is strictly monotonic for the range a<z<b if for every value of
z in that range f(x) is continuous and has a derivative f'(z)
that is either always positive or else always negative when
a<x<b. At a (orbd)the derivative may be 0 or +x or —w.

The Theorem of § 34, Ex. 4, should be noted.

Ex. 1. If f(z)==« sin% and if f(z) is assigned the value 0 when z =0,

show that f(x) is continuous for =0 but has no derivative for x =0.

It is necessary to assign a value to f(z) when x =0 because sin (1/x)
is undefined for x=0. The derivative of f(x) for x =0, if it existed,
would be the limit for = tending to 0 of f(x)/z, that is, of sin (1/x), so that
there is no derivative for z =0.

Ez. 2. If f(x)=22sin % and f(0) =0 show that f(z) is differentiable
for all values of «, on the understanding that z sin (1/z) is 0 when x =0.

Here f'(x) =2z sin%—cos% if # is not zero, but f(x)=0 when

x =0 since
f(0) =£j;(:cai)=£m sin;1;=0.

z—0 z—0

The derivative f'(z) is discontinuous and has a discontinuity of the
second kind at =0 ; for we have

L= £ (aencon ) Lo,
z—0 0 z—0
and cos (1/x) does not tend to a limit when 22— 0.

Ezx. 3. Iff(x)=x tanh % and f(0) =0 show that f(x) is not differenti-

able for « =0, but has both a progressive and a regressive derivative
for z =0.

31. Elementary Functions. Function of a Function. The
derivatives of 2", when = is any real number, and of ¢ and log =
have been considered in § 24 ; z in the case of ¢ may be any
real number while it may be any positive real number in the
cases of 2" and log z.

It is possible to define sinz and cosx by infinite series
without any assumption of the geometrical meaning of the
functions and when z is complex the functions are in fact
defined by series (§ 69). It does not, however, seem to be
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desirable to depart at this stage from the usual definitions, and
it is not therefore necessary to reconsider the proofs of the
derivatives of the direct trigonometric functions as these appear
in the Elementary Treatise.

The theorems on Function of a Function and Inverse
Functions may be noted ; the first of these will be considered
in this article and the second in the following article.

Function of a Function. If y=f(z) and z=¢p(u), where
@(u) is single-valued and continuous for a given range of
and f(x) single-valued and continuous for the corresponding
range of x, then y is said to be a function of a function of w.
If F(u) denote this function of u, that is, F(u)=f[¢(u)], it will
first be proved that F(u) is a continuous function of u.

The function y or f(z) is continuous and therefore, ¢ having
the usual meaning, there is a positive number 4 such that

-y |=f(@) -fle) [ <e if |2, -2 |<h.

Again, @(u) being continuous, there is a positive number k

such that
|2, - [ =] puy) —@u) | <h if |u;-u|<k.

Hence | F(u)-F(w)|=|y-y|<eif |u-u|<k,
and therefore F'(u) is a continuous function of .

Next suppose that the derivatives f'(x) and ¢'(u) exist, and
let z; and y, be the values of # and y corresponding to the
value u, of  so that 2, —x=dx=d¢(u) and y, —y = dy = 0 F (u).
Two cases have to be considered.

(1) If 6« is not zero for any value of u, in the neighbourhood
of u we have the identity

0F(w) _ of(2) dp(u)
£77RREmi vai ol S LRLL I TTITRLR L (a)

and therefore, since f'(x) and ¢'(u) exist,

F'(u) =f"(x)g' ().

(2) Since z is a function of « and not an independent variable,
it is possible that for one or more values of %, the increment éz
may be zero and for such values of x the identity (a) would not
be valid. But, by the definition of f'(z),

9 (x)

63: :f,(x) +(X.,
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where a.— 0 when éx— 0, and therefore
OF (u) =0y = [f(z) +&] bz = [f'(x) +a]dgp (), ......... (a")

s that oF L) () +0) ) Splu)

When du—> 0 so does o and the derivative ¢’(u) exists so that,
letting u tend to zero, we get the same value of F'(u) as before.

It should be noted that equation (a’) is true even if dz =0
because dy is then also zero and the derivative f'(x) exists. If
dz is zero for an infinite number of values of u, in the neighbour-
hood of u so is 6z/du, that is d¢(u)/du, and therefore since ¢'(u)
exists ¢’(u) is zero. In this case F'(u) is also zero.

32. Inverse Functions. Let f(z) be a continuous, strictly
monotonic function of z for the range a<x=<b, that is,
f(@,)> f(x,) when z,>=, or else f(z,)<f(z;) when x,>z,;
then, by Theorem II of §28, f(x) takes every value between
f(a) and f(b) as x varies continuously from a to b, and can
take each value only once since f(z,) and f(x,) are unequal
when z; and z, are unequal. Hence the equation f(z)=y,
where y lies between f(a) and f(b), has one and only one
solution, say x=¢(y), and therefore @(y) is a single-valued
function of y. The function ¢ is called the inverse of the
function f, and the equations f[¢(y)] =y and ¢[f(z)] =z are
identities (E.T'. p. 18).

If f(a)=a’ and f(b)=0b' the function ¢(y) either steadily
increases [that is, ¢ (y,)> @(¥,) if y,>y,] or else steadily decreases
[thatis, ¢(y.)<@(y,) if y,>Yy,] as y varies from a’ to b’. Further,
o(y) is continuous.

For, if y,=f(z;) and if « lies in the interval (x, - A, z; +4),
y will, since f(x) is continuous, lie in an interval (y, - 4, y, +1"),
and therefore if A is the smaller of the two positive numbers 4’
and A” the difference |z —z; | will be less than 2 when |y -y, |
is less than 4. Hence x— z,, that is ¢(y)—>¢(y,), when y—y,,
and therefore ¢(y) is continuous.

Now let ¥ and y’ be two unequal numbers in the (closed)
interval (a’, b’) and let z and 2’ be the corresponding values of z,
which are necessarily unequal ; we now have the identity

(=)
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If (y' —y)/(x' —x) tends to a limit that is not zero when z’
tends to #, that is, if the derivative f’(z) exists and is not zero,
we deduce at once, since z'’—>zx when y'—>y, that the
derivative dx/dy or ¢’(y) exists and is given by the equation

¢'(y) =1/f ().

If f(x)>f(a) when 2>a the derivatives f'(x) and ¢’(y) are both
positive ; hence if f'(x)—> 0 when x> a the derivative ¢'(y) will
tend to + o when y tends to a’. Similar considerations apply
if f'(x) is negative when x>a and tends to zero when z—a, and
the cases in which z— b can be treated in like manner.

The derivatives of the inverse trigonometric functions may
be found as in the Elementary Treatise, § 64. There is one
change, however, that seems to be desirable, namely, that the

range of cot! z should be from 0 to = and not from —g to % ;
with the new convention

tan—1x +cotlx =%.

33. Rolle’s Theorem. A proof of this theorem will now be
given in which the proposition (tacitly assumed E.7. p. 162)
that a continuous function reaches, under certain conditions,
its upper and lower bounds becomes one of the essential
elements. The theorem may now be stated as follows :

If F(x) is continuous in the closed interval (a, b) and has
a derivative F'(x) for the range a<z<<b, that is, for the open
interval (a, b); if further F(a)=0 and F(b)=0, then F'(x)
will be zero for at least one value & where a<<£&<b.

Of course F(z) is continuous for those values for which
F'(x) exists, but for the validity of the proof it is necessary
that, when x tends to @ or to b from within the interval, F(x)
should tend to zero; the particular form given to the enuncia-
tion of the theorem secures this.

If F(z) is constantly zero F'(x) is also zero for a<z<b. If
F(x) is not constantly zero it must take either positive or
negative values or both, and therefore, being a continuous
function, must actually take for at least one value of x its upper
bound, if F(x) is positive, and its lower bound if F (x) is negative.
Suppose that F(x) takes positive values; then, for at least
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one value £ such that a<&<b, F(z) is equal to M, its upper
bound. If the positive number % is sufficiently small both
F(& +h) and F(&-h) will be less than F(£), and of the two
quotients

F(E+h) -F(&) | FE-h)-F(@)
h —h ’

the first will be negative and the second positive. Now the
derivative F'(£) exists and is the limit for 4 tending to zero of
either quotient; as the limit of the first quotient F'(§) is
negative if not zero, while as the limit of the second it is
positive if not zero. The only possible conclusion is therefore
that F’(£) is zero, as was to be proved. The same conclusion
follows if F(x) takes negative values, since it must be equal
to its lower bound for at least one z such that a <z <b.

The proof does not require that F’(x) should be finite, only
that it should be definite; geometrically, the graph of F(z)
might have an inflexional tangent at (£, F ()] perpendicular
to the z-axis (a<<¢<b). But F(z) must be continuous.

The following method of discussing the theorem depends on
the use of the derivative as a test of an increasing or decreasing
function.

By the definition of the derivative

F(z +h) — F(z) =h{F'(z) + 4}

where A—0 when h—> 0 so that if | A | is sufficiently small the
sign of F'(z)+2 is that of F'(x) provided F'(x) is not zero.
Hence, so long as F'(z) is positive F(z) increases or decreases
according as z increases or decreases, while so long as F'(x)
is negative F(x) decreases or increases according as x increases
or decreases. Conversely, F'(z) not being zero, if, for example,
F(z) increases as z increases by | 2 | the derivative F’(x) must
be positive, but if F(z) decreases when x increases by | % | the
derivative F’(x) must be negative, | A | being sufficiently small.

Now if F(x) takes positive values in the interval (a, b) it
must, since F(a)=0, F(b)=0 and F(x) is continuous, have
an upper bound M which it reaches for a value § of x between
a and b. Hence F’(z) is positive if & -h<x<£ and negative
if £<x< ¢ +h when the positive number % is sufficiently small.
If F’(£) is not zero F(x) will either increase from a value a
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little less than F'(&) to one a little greater than F(£), or else
decrease from one that is greater than F(£) to one that is less
as x increases from & —% to &£ +h. But there is no greater value
than F (&) and therefore F'(£)=0.

The same argument holds if F(x) takes negative values in
the interval (a, b).

Ez. 1. Suppose that f(z) is continuous and has a derivative f/(x) for
therangea =z =<b. If f(a) and f'(b) are unequal and if k is any number
between f'(a) and f’(b) there is a value & such that f'(£) =k where a < £ <b.

Let ¢(x)=f(x) —kx; then ¢(x) is continuous and has a derivative
¢’(z), equal to f'(x) —k. Now ¢’(a) and ¢’(b) have opposite signs since k&
lies between f’(a) and f'(b). Suppose ¢’(a) >0 and ¢’(b)< 0. Since
¢’(a) is positive, @(z) increases as x increases from a, and since ¢’(b)
is negative ¢(x) also increases as x decreases from b. Now ¢(x) is
continuous and therefore has an upper bound @ which it attains for a
value, £ say, between a and b ; butif ¢(&)is the upper bound ¢’(£) =0and
therefore f’(£) =k. Similarly it is seen that if ¢’(a) < O there is a lower
bound for ¢(x) and therefore a value of x for which ¢’(x) =0 or f’(z) =k.

Ex. 2. If F(z) and F'(x) satisfy the conditions of Rolle’s Theorem
for the interval (a, b) and if o and § are two values of z in the interval
such that F(o) =F(B) and o < 8, show that there is a value £ such that
F’(&) =0 where o < &< 8.

Ex. 3. If a;<a,<a;<...<a, and if F(x) and its derivatives up to
and including the (n —1)th derivative are continuous for the range
a, =z = a,, prove that when F(a,), F(a,), F(a;)..., F(a,) are each zero,
Fn-1)(z) will vanish for at least one value of x in the interval (a,, a,,).

34. Theorem of Mean Value. This theorem (E.7. pp. 162-
165) i3 an immediate deduction from Rolle’s Theorem and may
be stated as follows : If f(z) is continuous in the closed interval
(@, b) and has a derivative f'(x) for every value of z in the open

interval (a, b), then
FO)=f(@) +(b=a)f (&), .ocvvrreerirnanannne. (1)
where a<<£<b.
Take the function F(z) so that

F(2)=f(2) - f(a) - -—2 {f(b) - f(@)}-
b-a

F (x) satisfies the conditions of Rolle’s Theorem, and therefore
there is at least one value £ of x such that F'(£)=0and a<<£<b;

thus F(&) = {f(B) —f(@)}/(b —a) =0,
that is, F®)=F(a) +(b - a) f(&).
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An immediate deduction from this equation is that if f'(x)
is zero when a<<z<Cb the function f(x) is constant for that range ;
for if ¢ and d are any two such values of z the theorem is
applicable, and therefore, £ being some number between c

and d, F@) =f(©) +@ - ) (&) =f(c).
Thus all the values of f(z) in question are the same.

It follows at once that if f(x) and ¢(x) have derivatives that
are equal for every value of z in (a, b) the functions differ, if
at all, by a constant ; for if F(x)=f(x)— ¢(x) the derivative
F'(x) is zero.

The equation (1) may be put in different forms (£.7'. § 73) ;
a useful form is

fla +h)=f(a) +hf'(a +0h), 0<<O<I1. ............. (2)
The theorem in Ex. 4 should be noted.

Ez. 1. If the functions f(z), ¢(z), Y (x) are defined for the closed
interval (a, b) and have derivatives for the open interval (a, b) prove that

fla)y  gla)  Yl(a)
f(o)  @d)  Y(®) |=0,
F'& ) v
where a < £ < b, and deduce the theorem of E.T. p. 419.

Let F(x) be the determinant formed from the given determinant by
putting f(z), ¢(2), Y(2) in place of f(€), ¢'(£), ¥(£) respectively ; F(z)
will satisfy the conditions of Rolle’s Theorem and F’(§) is the given
determinant. Next let f(x)=1; then if () is not zero fora<x<b

wo find 9(5) - 9(a) _ @'(5)
VO =@ V@)

Ez. 2. If f(x) is continuous for the closed interval (a, b) and has a
derivative f’(x) which is bounded for the open interval (a, b), say
1f () | < K, then |f(xy)—f(z,) |< K |, — %, | where z, and z, are any
two values of z within the interval (a, b).

The Theorem of Mean Value is applicable under the conditions
required by Rolle’s Theorem ; these conditions do not require that f’(x)
should be finite but only that it should be a definite number, finite or
+w or —cw. If, however, f/(x) is bounded and if x,, x, are any two
numbers in (a, b) we have

S(xy) =f(2)) + (3 —2,)f(§)y < &<y OF Ty< E< 1y,
and therefore
[f(z2) =Sf(my) | = (2a —2))f(§) | < K | 24 ~ 2, |
if |f(z) | < K whena<z<b.
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A function f(z) which satisfies the condition
[f(@3) —flzy) | < K |2~y |
when z; and z, are any two values of z in (a, b) is sometimes said to
satisfy ¢ Lipschitz’s Condition.”’
Ez. 3. 1If f(x) has a derivative f'(z) in the interval (a, b) and if ¢ is &
point in (a, b) such that f'(x) tends to ! when « tends to ¢ then I =f"(c).
For,

HexM IO _po 1 h) 5 but fi(o+0k)>1 and TR i)

Ex. 4. Theorem. If{'(x) s a continuous function of x for the range
a=x=b the quotient {f(x+h)-f(x)}/h converges uniformly to f'(x)
when h tends to zero.

By the Mean Value Theorem

f(z +h) —f(x) =hf'(x +6h)
f@+h +h)

and therefore
~flx "
@) _ (@) =f'(w + 0b) -1 (2.
Now, since f’(x) is continuous it is uniformly continuous (§ 28, Th. I1I),
and therefore, given ¢ as usual, there is a positive number k such that
|f(x+h)-f(x) |<e if |B]<k
whatever value x may have in the interval. Hence, since |6k |[<|h |,

&M-f’(x) <eif |h|<k,

so that the convergence is uniform—i.e. does not depend on =z.

EXERCISES III.

1. The functions f(x) and f’(z) are continuous for the range a =~z = b.
If f(a) and f(b) are zero but f’(a) and f/(b) not zero prove that, whatever
number % may be, f(x) =kf’(x) for at least one value of « between a and b.

2. Prove that e* — 1 is greater than (1 +=z) log (1 +z) if z is positive.

3. If f(x) =e%(x? - 6x +12) — (2% + 62 +12) find f'(x), f"(x), f"(x), and
show that f'(x) is positive when z is positive. Deduce that when z is
positive 1 11 =

-1 23 1Y

Show also that the expression on the left of this inequality is positive
when x is positive, and tends to zero when x tends to zero.

4. If f(x)=e%(2x? - +2) — (2 +x +2) prove that when z is positive
f(z) iner as z incr . Deduce that if

_e®(x -2)+(x +2)
p(x) —“—?3(—6;_1—)— ,

@(x) tends to } when x tends to zero, and that ¢(z) cannot be greater
than } whatever value x may have. (Hermite.)
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5. If a< 2 < b, prove that

Sy =E=A OO V@) _ 35 3)(2 - a)f ),

where a < z; < b.
6. Show that if ¥*(x) is not zero fora <z <b,

@(b) — p(a) - (b ~a)g’(a) _ ¢"(2,)
V¥(b) =¥ (a) - (b -a) ¥(a) " ¥"(21)

7. Show that if y)(z) is not zero fora <z < b

f_om(z,)
g Vin(xz,)

where F=o(b) - p(a) - S“” = pi(a),

r==1

g=v(b) —V(a) - 2"’ 2 yn(a).

ya<z, <b.

,a<z;<b,

8. Determine the constants c,, ¢;, ¢, 50 that the quadratic function
Q(z) where
Q(x) =¢g +¢,(% —ay) +c(2 — ) (% —a5)

may be equal to f(a,), f(a,), f(a;) When z is equal to a,, a,, a, respec-
tively, the numbers a,, a,, a; being all different ; then prove that

£@ =@ L5 (2 - a)) (@ - ay)(z - ay),
where x, lies between the least and the greatest of a,, a,, a;, 2.
- _fla) , fla,)
[eo=fla, e=gZ 20+ 20
f(a,) + f(a,) f(as)
(a1 —ay)(ay —a;) ' (a3 ~ay)(ay—a5)  (a, —a,)(as —ay)’
Next choose P so that
f(2) =Q () + P(x —ay)(x — a,)(z — a3),
and let P(2) =f(2) - [Q(z) + P(z —a,)(2 — a)(2 - ay))-
The function F(z) is zero for the values a,, @, a3, « of 2, and therefore

F "(z) vanishes for a value z, of z between the least and the greatest of
ay, @y, ay, . But

Cy

F"(z)=f"(z) -1.2.3P,
so that P =f"'(x1)/3!:|
9. Determine the constants cg, €y, ... C,_; S0 that the polynomial
Q(z) where

Q) =cy +Cy(x —a;) +Co(x —ay ) (T —ay) +...
Fepq(Z =)z —ay) ... ( ~ay_y)
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shall be equal to f(a,), f(as;) ..., f(a,) when z is equal to a,, a,, ..., a,
respectively, the numbers a,, a,, ..., a, being all different; then prove
that

f(x) =Q(x) +f(”;#)- (z —a))(x —ay) ... (x —-a,),
where z, lies between the least and the greatest of a,, a,, ..., a,, «.
[co =f(a,); ¢, depends only on a,, a,, ... a,,; and if
Pra(®) =(@ —a;)(® —ay) ... (% —ary,y),

r+1 f(as)‘.
ooy | ®’r11(as)

Cyp =

The following notation is often used :
co =f(ay), ¢; =f(a;, ay), ¢y =f(ay, ay, a3) ... ¢r =f(Gy, Ggy ... Gps Bpyyq)..y
and it may be proved that

_flays agy ... Gy, ar) =f(ay, Qg5 ... Gr_ys Gryq)
Gryy) = Gy —Gryy O

flay, as, ... ap,

10. If f(x +h) —f(x) =Af(x)
Af(z +h) - Af(z) =A% ()

AP (@ +B) - AP () =A% ()

and if, in Example 9, a, =a, a,,, =a +rh, r=1,2, ...,
prove that f(z) is equal to

f@) +25 % A f(a) + “‘1)(-’;-;?“—1"—’ Af(@) + ...
—a)x-a—h)..[z-a—(n-2)h
el a(n_)l)z[;fn-la (»-2) ]A"“f(a)
—a)(x—-a-h)..[x-a~(n-1)k
+(:L’ a)(x 2 ZL! hEZ g (n ) ]f(")(xl),

where w; lies between the least and the greatest of the numbers a,
a+(n—1)h, z.

11. The equation ez’® —x =0 has no real roots if k < e, and never has
more than 2 real roots for any real value of k.

12. If 0< o< /2 and 0 < z < 7, the equation
sin (x - o) =m sindz

where m is positive, has (i) one real root if tan o >}, and (ii) one ot three

real roots if tan o. < §. There are three real roots if m lies between the

minimum and the maximum values of the function sin (x — . )/sin%x.
(Tisserand.)
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1323 + 3%
= ~L o .
y=tenT e 14t 1 3

dy_ 16z432% +1)(z® ~ 1)
dz~ (1 +2) (32 + 142° 1 3)*
and then prove that the equation y =0 has three real roots. (Tisserand.)

13. If

show that

35. Differentials. If y=f(x) the derivative f'(z) is the limit
for dxz— 0 of dy/dx so that

%Z =f'(z) +1; oy =f'(x) oz +Aéx,

where A— 0 when dxr— 0.

When z is the independent variable the part f'(x)dx of dy is
called the differential of y or f(z), and is denoted by dy or df ().
If 6 is an infinitesimal (E.7. p. 195) the difference (dy —dy)
is an infinitesimal of a higher order, because (dy —dy)/dz is
equal to A and A—>0 when dx—0. When in any calculation
powers of éx higher than the first are to be rejected dy may
be substituted for dy.

If z is a function @(f) of ¢ then y is a function of ¢, say
y=flp®t)] =F(t); the independent variable is now ¢ and

therefore dy = F'(t) 6t =f (x)¢’ (£) &t
But z is now a function of ¢ and dz = ¢’(¢) 8¢, so that

dy = (x)¢’(t) 6t =f (x)dz.

Thus, when z is the independent variable dy =f'(x)dx, but
when ¢ is the independent variable dy=f'(x)dx. The two
expressions for dy will therefore have the same form, whether =
is the independent variable or not, provided we take dz to
mean the same thing as dz when z is the independent variable.
There can be no objection to doing so, since dx may be any
number whatever provided dy/dx is equal to f'(x) ; but, further,
6z and dx are the same thing when the function f(z) is x itself
because in that case f'(z) =1 and therefore df(x) =dx.

No confusion therefore can arise if the increment dx of the
independent variable be denoted by dz. There is, besides, the
notable advantage that dy has now the same form,

Ay =f (X)L, «eerverernaineriiieinaanen. (1)
whether z be the independent variable or not ; it is this property
of the differential that makes it so useful.
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Thus the differential d(uv) of the product wv is given by the
equation d(uv) =vdu +udv,
because, if » and v are functions of z,
d(u'v) du + dv

dx dx Uiz

and d(uv) = v dx+ug dx =vdu +udv,

sintce du=§;f dx and dv:% dx, whether z be independent or
not.
If n>1 the differential of the nth order d*y, when y is a
function of z, is defined by the equation
dry =f)(x)(dz) =f™)(x)dx®, ...cuennnn 2)
when x is the independent variable. If z be a function of ¢,
say x=¢(t) so that y=f[¢(f)] = F(t), then
d?y =F"(t)dt? and d%x = ¢"(t) d2.

Now  pr=Y@[d0] He)dp

dt de di?
so that \
2 2
Pae =21 P[00 4], TOTLEE 4]
d*f (x df(xz
:vg}(—z——)' . dx? + -—‘Z(x ) dzx,
or, A2y =f"(x)dx® +f (@)d?X, ..cviiiiiiiiian, (3)

and this is different from the form f”(x)da? which is the value
of d% when # is the independent variable unless d2x=0. There
is no longer the a,dvantage of the same form for d?y whether
the variable « is or is not the independent variable, and the
definition (2) is essentially confined to the case in which z is
the independent variable, or, what is equivalent, to the
assumption that dz is constant so that the differential of dx,
that is, d(dz) or d%z, and all higher differentials of x are zero.
When 2z = @(t) and ¢ is the independent variable
dan = [¢'(¢)] "dtr
so that d(dz) =nl@ ()" t¢"(t) dt. dt*
=n[g'(t) di]*¢"(t) dt*
and therefore  d (da") =ndz"1d%.
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If z is not independent we find by taking the differential of
the product f'(x)dx that

d[f (x)dz] =dzd[f (x)] + f'(x)d(dz)
=daf” (z)dx + f (x)d*x
=f"(x)dx?+ f' (x)d*z,
so that the value of d%y in (3) may be found by taking the
differential of dy, that is, of f'(x)dz; if x is the independent
variable dx is constant and d%*x =0.
In the same way
ddy =d(d?y) =da?d [f"(x)] +f"(x)d[d2?] + d*xd [f ()]
+f(x)d[d*]
=f""(x)da® + 3f" (x)dxd?s + f (x)d>r.
Similarly d%y, d%, ... may be found.

Ez. A curve is given by the equations
z =f(t), y=9(t), z=h(t);

find the equations of the tangent at the point P(z, y, z) and the equation
of the plane to which the plane through the tangent at P and a point @
on the curve tends, as its limiting position, when @ tends along the
curve to P.

The direction cosines of the chord through P, ¢ the point ¢,”” and P’
«the point ¢+ 6t,”’ are proportional to

f(&+0t) —f(8), g(t+3t)—g(t), h(t+dt)—h(),
that is, to PO+, gO +A, KO+

where 1;, Ay, A, tend to zero when &t tends to zero. Hence, if &9, ¢
are current coordinates the equations of the tangent at P are

or, if differentials be used,
§-m m-y_ (=2 (i)

dv  dy ~ dz °
The equation of a plane through the tangent at P is of the form
A -2) + B —9) +0(E=2) =0, oo (ii)
where Adx +Bdy +0dz =0. ccceceviiiiiininineiiens (iii)
If ¢t +dt is the parameter of the point @ these two equations must be
satisfied when for z, ¥, z we put z + 0z, y + 8y, z+ &z, and since the

limit for d¢— 0 is alone required we may simply take the differential of
each equation ; therefore

~ Adz - Bdy —Cdz =0
Ad¥ + By +0d22 =0. ...ovveocverceereaneenns (iv)
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The first of these equations is merely (iii); elimination of 4, B, C
between (ii), (iii) and (iv) gives the required solution

-z -y (-2

dx dy dz |=0.

dx d¥y d%

36. Higher Derivatives. An expression for the nth derivative
of a function of z is, when the function is at all complicated,
usually difficult to find, though the value for #=0 may some-
times be easily obtained (E.7. p. 397). Some general methods
have been elaborated and a statement of some of these will
now be given ; for further information the student may consult
the books named below * from which the following exposition
ig largely drawn.

The nth derivative of y when y=f(u) and % = ¢() is usually
to be found by calculating a few successive derivatives; by
noting the form it may be observed whether any law is
suggested, the suggestion being then tested by mathematical
induction. In the present case we have

Zz%= ?'(@)f (), Z%’éw”(x)f'(u) + @ @) (w) ;

and so on. It is at once suggested that the mth derivative
will be an expression of the form

(Z——An,lf(u)+ Sl )+ 42 ”’ R AR

2 3 L) )

where the coefficients 4,,, do not depend on the function f(u)
and will therefore be the same whatever function f(u) may be,
so long as ¢(x) is the same.

Now put for f(u) successively u, w%, w3, ..., u" in the equa-
tion (1) ; then
dr . dr .
7277“=An,1 S —An, 2u+A,2;
dar . 3 :
_J_xTZA”'I .3u+4,,.3u+A4,;; and so on.

* Schlomilch, Compendium der héheren Analysis, vol. 2, and Ubungsbuch
zum Studium der héheren Analysis, vol. 1; Nielsen, Elemente der Funktionen-
theorie ; Tisserand, Recueil complémentaire d’ Exercices sur le Calcul Infinitésimal.




§§ 35, 36] HIGHER DERIVATIVES 79

These equations give A4, then A4, then A,s, and
finally 4, ,, and the values obtained suggest the law

) s(T) o8 DP (yr—2 )
0= (1) (s>u D2 (@), cvererrreneeenes @)
where the symbol (:) is the usual binomial coefficient ,C,,
that is, r(r—1)(r-2)...(r—s+1)/s!
To test (2), put = +1 for » and (2) becomes
Anise=S0 (=17 (7) s D2¥ (wr-) )
"+1"—_‘z=:0( s u p B T I

Now differentiate (1) ; then
dmily n+1c1dd,, A,,,,__}_du )
dzi— {HW-}'(r—l)!d—x}f () e (3)
on the understanding that 4, o and 4, 41 are identically zero.
If we have the relation

dA,,,
dx

equation (3) will show the same law as equation (1), and there-
fore the formula (2) will hold for every value of n. Now

dA,,, -1

ZJ (- < )u‘ D+t (ur-*)
+ { gl (-1(7 )su-1 D1 (u'—')} du,

and the expression within the brackets is easily found to be

r-2 -
—r Z (_ 1)3<7' ) 1) w D: (u"l_")= ""An,r-l,
s=0

because (:)s r( :i) and the variable index s may be

changed to s +1. Hence
d An r

brdy s o= S (<10 () u D7 ) = A

and the relatlon (4) is established ; the formula (1) where A,, ,
is given by (2) is therefore proved. :
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The expression for 4, , may be put in another form which
is frequently more convenient. Let it be first noted that if
¢(z +¢) is a function of the sum (x +p) of the independent
variables x and g, we have

a"ng to) _Op@+e) 4.4 d ¢(w) [a“qv(x +e)]
xn oo~ '’

Now let [¢p(z +p) - @(x)]" be expanded by the binomial
theorem ; we get

g {7 +0) - 9@} =7 35 (- 11 ()o@ ota + o1

(T . 0" . [p(x +o]™
=3 () o T2
where the term for s=r disa.ppears since it i independent of o.

o . [p(z +0)]"* Jlo@)I—_dr . ur-
But [ 2" Lo dz dx" ;

p=0

and therefore

on ‘| r
4,, =[a“”¢ {(p(x +e) - p(a)] LO. ................ (5)
Ex 1. If y=f(u) and u = p(x) =22 find %
In the formula (1) put » —r for r; this choice of the variable of

summation often gives a simpler form to the result ; then

dy_ "3 Amn—r stn-n)
dzh= < (n-7) 'f ().
Now {p(x +0) - sv(w)}”" =(2xg + """ ;
the only term in the expansion which does not vanish, when g is made

zero after the differentiation with respect to g, is that whose index is n
and the nth derivative of g¢” is n!. Thus we find

An,n—r__ n-r n—2r,
(n—r)!_( >(n r)'(2x) :

=n(n }) - (n 2r+l)(2x),,_2r

on the understanding that this expression is (2x)® when r=0; and
therefore when y =f(u) =f(x?)

dxn Zn(‘n 1) (n r2‘r +1) (2x)“"’f(” ')(u), ......... (8)

where m is §n or %(n - 1) according as n is even or odd.
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If f(u) =(i —u)n—% and if in (6) we put n — 1 for n we find
a1, (1-atyt

dzn1
1 2r+1
(= ) (7R 1)r( )x"‘z"‘l(l—x’) 2, (7)
r=0
where K=1.3.5... (2n-1).
In (7) let 2 =cos 6 where 0 <0< g; then
dr=1 (1 -ttt 1.3.5...(2n-1) .
AR ) LR S = 202D gin g, ... (8)

by using the expression for sin n
n cos™10sin 0 — (g) cos™ 3 0sind 0 + (g) cos™ 5 0sin® 0 —....

Formula (8) was first given by O. Rodrigues in 1815, but is usually
attributed to Jacobi who, no doubt without knowledge of Rodrigues’
work, published it in 1826. (See Exercises IV, 14, for another
solution.)

Ex. 2. If y=f(u) and u=logz find an

The formula (1) is not suitable when u=logz and it is better to
start afresh. A little consideration will show that the form to be
tested is the following :

>y xn{f"”(u) = Ca, 1/ D) + O 2f D) - ..}

nZ( ~1) Cnyr fP (W),  Ono=L.coreeerinnnninnns (9)

r=0
A further differentiation shows that the form is correct.
Now Cp,r is independent of the form of f(u), and to determine these
coefficients we take f(u) equal to e—t4 where f is any constant. Thus

Yy —e—tu=e-tlogz=x-1,
and therefore

I _ 1y + 1)+ 2 1)z-t-n
(W'_(_ P+ 1) (E+2) ... (t+n -1z ,
-y 0" e _qy-rgn-r,—tu _g_ qyn—rgm-r,—t
FO U=t e = (— 1T e ()T
so that, by substituting these values in (9), we have the identity
n-1
HE+1)(E+2) ... (+n =1)= D Cn,rt*".
r=0

By equating the coefficients of £*~* the value of Cp,r is found. When
n is not a large integer the values of Cy,r can be picked out without

much trouble, but there does not seem to be any convenient explicit
formula.
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37. Other Methods for Higher Derivatives. The formula (1)
of the last article is cumbrous, and other methods are available
that often lead to interesting results apart from the particular
formula for the derivative. The formula suggested by a few
differentiations may have coefficients that can be more con-
veniently dealt with than by the method used in the last
article.

1. Comparison of Expansions.
y=f(x)=¢*". This is a particular case of § 36, Example 1.
Express f(x +h) as a series in two different ways.

) f@+h)= Z ,f ().

Next we have flx +h)y=f(x) . e2th . e,
and if each of these two exponentials be expanded in powers
of & and their product formed the coefficient, u,(x) say, of
h*/n! will, when multiplied by f(x), be equal to f™(z) in (i).
Thus we have the second expansion,

(ii) flx +h)=f(z) . { ,26 (2x;)!"h" i

n=0

tnhzn}
n!

) hn
=@ 3 unle)

where
un(@) = (20t + 221 (2aytpees

n(n - )(n - 2)(’"’ - ) (2x)"-4t”-2 +
1.2
The last term is independent of  when » is even and contains
the first power of « when n is odd. Hence
dr . e
dan
If t=,/(~ 1)=1 this formula gives the derivatives of cos (x2?)
and sin (2?) since e#*=cos (22) +1 sin (z?) and the real and
imaginary parts on the two sides of (2) may be equated.
We take the same example to illustrate another method.

=€ Up(T). i (2)

II. Use of a differential equation.
The form of the nth derivative of €' is easily seen to be
the product of et and a polynomial u,(x); the polynomial
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is of the nth degree in z (or 2z), the exponents decrease by 2
and the coefficient of (2x)" is t*. Thus we have, when y =€,
Dy =P un(), «ooovveennrninininnnnnnnnn 2"
where
Un(X) =Co(22)" 4 €1 (22)" 2 + ... +€,(22)" 2+ oiiille (o)
and c,=t"."
We now find a differential equation for u,(xz). Write the
value of Dy in the form

Dy =2xty, ...coovevnrinieniiinneniiiainas (3)
and differentiate this equation » times, using Leibniz’s Theorem;
then Dr+ly =2t Dy + 2nt D™y

But Drily =ety,, ,, D ly=e®u,_, ;
therefore Upyy =208 Uy + 2RE Uy coveennennnniinnnnnnnens (4)

It would be possible to calculate u,,, from (4) if u, and %,
were known ; now u, and u, are easily found so that us, u,, ...
could be calculated. It is better, however, to find a differential
equation for u, ; the process is a little troublesome though not
really hard if the principle be grasped. We have in fact to
eliminate u, , and u,,, and put in their place u, and u,
where u, = Du,, U, = Du,.

Differentiate the equation (2’) once ; therefore

Dy =2 | u, +2xt ¢ . Uy,
so that Upyg =Up +2T U ceveerniesecnnininns (5)
Elimination of u,,, between (5) and (4) gives
U= 2N Uy —eererenveasranseennneenns (6)

Differentiate (6) and for u,_, put 2(n—1)tu, 5 the value
obtained from (6) by changing n into n —1; then

Up =20t . 2(N ~ 1)l Up_g. ceereennerennncninins (7)
Next in (4) put n — 1 for » ; therefore
Uy =22y +2(0 — D) b Upg, coeeereineninnnns 4")

and then the elimination of u,_, and u,_, between (4'), (6)
and (7) gives the required differential equation

UL+ 22t U, — 20U, =0, e (8)

We now substitute in (8) the value of u, given by («); the
equation must be then satisfied identically, and therefore the
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coefficient of each power of x must be zero. The coefficient
of (2x)n-2r ig
[—2nt+2(n - 2r)tlc, + 4(n — 2r +2)(n - 2r + 1)c,_,,

and as this coefficient must be zero we find

C'=(n——2r-|-2)(n—2r+ 1)c ™

rt T

the coefficient of (2z)" being identically zero. Thus, since

Co=1" we get
’ c _nr-1)(n-2)..(n-2r+1)

r=1,23,...

tn-—r

r 1.2....r ’
and therefore u,(x) is the same as was found by the first method.
When ¢ is negative, say ¢= -1, the polynomial u,(z) has

interesting properties.

Exz. 1. When t= -1 prove, by applying Rolle’s Theorem, that the
roots of u,(x) =0 are all real and different.

Let u,(z) =v,(x) when ¢= —1; then we take
f@y=e", fPhz) =20, (a).
Now f(x)=0 for x= -~ and for z= +w ; therefore f’(x) vanishes

for a value o of . Butf'(«) =e-*v,(x) and, as e - «* is not zero, v,() =0.
Again, f'(x) =0 for the values -, o, +o of z, and therefore the
derivative of f’(x), that is, f"(x) vanishes for a value, 8 say, between
- and « and also for a value, y say, between o. and +w. As before
vp(2) =0 for x=p and x=y. Proceeding in this way it is readily seen
that v,(x) is zero for n different values of #. It is besides clear from
equation (8) thg if v,(x) had two equal roots, each equal to 1 say, we
should have v,{1)=0, v;(1) =0, and therefore also v7(1)=0; if the
equation be differentiated once it will be seen that we should have
v7’(2) =0, and so on, so that every derivative of v,(x) would vanish for
2 =1 which is impossible since v,(z) is not identically zero.

Rodrigues’ Formula. The following relation between deriva-
tives, known as Rodrigues’ Formula, is of importance in the
theory of Legendre’s Coefficients :

drr . (@2 -1)* (n-r)! drir (2% - 1)
dzn (n+r)! dz™t

The proof may be easily given by the method I. The
function {2z +A+ (22 - 1)AY}*, where n is a positive integer,
is not altered when (2% — 1)1 is substituted in place of 2. Now

(#%—1)

(20 +ht (2t - DiSr= L (@ +h)2 - 1),
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and therefore by Taylor’s Theorem is equal to
128 hede. (2210 2 hnd . (1)
sl A A e de

=0 8=0
If for h we substitute (z% — 1)A-? the expansion becomes
2n (xz — l)c—nhﬂ—: ds . (xz — l)n
= s! ’ dx? ’

Since the two expansions last written are identical the co-
efficient of A" is the same in both ; for the second expansion
s=n —r and for the first s=n +r. Hence

(x2-1)rdrr.(a2-1)» 1 drr. (A1)
(n—7)! da™" T (n4n)! dantr ’
which at once gives the formula stated.

1 dr.(22-1)"
2%, n! dx® ’
prove that P, (z) satisfies the differential equation
d d
2@ -0} =nin+1)y,

or (1 ~22) D2y — 2xDy +n(n + 1)y =0.
Let 4 =2" . n! P,(x) ; then Rodrigues’ Formula (r=1) gives

Ex. 2. If P,(x)=

d antl, 2 _1)n dan-1 ., s_ln
@ - Y =@ - e T
and therefore
2
;—;{(x’—-l)g% =n(n+1)W=n(ﬂ+l)y.

EXERCISES IV.
1. If » and v are functions of x prove that

v D™ = D*uv) — (\112') DY uDv) + (g) Dn—3(uDi) — ...

-1y (’:) Dv1(uD") + ... +( = 1)uD.

2. If y =(«% +a?) ! and x =a cot § prove that
dﬂ
&=
and deduce that the nth derivative of tan—(z/a) is
(-1)*Yn-1)la"sin® O sinnb.
3. If y =x(2? +a?®)! and z =a cot § show that
dry

= 1)"6;3—1(sin @)n+lcos(n +1)0.

1
s (sin 8)w+sin(n +1) 6,




86 ADVANCED CALCULUS [cH.
4. If y=f(u) and u =1/ prove that

nd (n-1)! /n\fr-r)(u)
(-1 = Z(n-—r—l)!() Zr

and show that
dn , eajz ea/x (n-1)! a\n-r
dan T\ Z(n r-l)'(n><§) )

n(zn-1c3) &
- r 3
5. d_”;x—‘i« (-1 a;n+1 (Halphen.)

6. If y=f(u) and u=yx prove either by the general formula or
independently that

n—1
, (n+r-1! flo—r)(u)
=2 -V e S 1y g

and show that if y =(1 +an/x)?"2,
dy_1.3.5...(2n-1) a (a’ —l>ﬂ—1.
dzn ™ on NS z

[Schlémileh gives the following proof, Compendium 11, pp. 7, 8.

Let o=xt and w=x/(1+t)—1; then §36, (5) gives

=1 n
Now (¢-w)dw/dt=3w and therefore, multiplying by w2,

1 —y_1 — lr
mt.Dt(wr ) r Dt(w’)_%w’ .

Differentiate (n— 1) times as to ¢ and then let ¢=0; thus we find the
reduction-formula

[D:L(“"):lt=o - % I:D ta l(wr_l)l=o ’

or, if n—r is put in place of r so as to obtain 4, ,_,,
__(n—r)(n—l—r—l)[ ~
[D?(w”"')l_,o“ Sim—r—1) LD? ](w""“)],=o'
Now apply this formula till the index of w becomes unity and
note that

1.3.5..(2r1)
[D;"'lwl___o:( -1 91 .

The verification of the value of dny/dz" is simple.]
7. If y =f(u) and u =e® prove that

!.2_ Pgxd —fow),

r=1

h » r=2, (-1 (7) (r=o)™,
where c §=% () s
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8. If y=(u + 1)~ and u =e* prove that

an r
By 2 e ()

where ¢, is given in Example 7. Show independently that
ar, y

(u—l)z

(-1)"(e=+ 1)'”‘1 S =a,e"® t+a,_ +... +a,.€e%,
where a,=1%a, = - (2” -z -{ ! l"),
a”_,=3"—n1-1.2 (nl+12)n.l”’

9. If y =(1 — %) ~* show that
ary__ un()
dzn (1 —z)n+i’
where u,(z) is a polynomial in z of the nth degree in which the coefficient
of 2™ is n! and the exponents of # decrease by 2. Establish the relations:
(1) Upyy —(2n + Dz u, —n3(l —2%u,_;=0;
(i) wpyq=(1 -2)uy +(2n + au,;
(iii) (1 -a2®)uy +(2n - 1)z us —n2u, =0,
and find ,(x). (Compare § 37, I1.)

10. If y=(1 +22)~* deduce from example 9 or prove independently

ary _ ()
that @ =V (T
where (1 +2%)v} — (2n - 1)av), +nv, =0.

Prove that the roots of v,(x) =0 are all real and different.
11. Deduce from Example 10 the nth derivative of log {x + /(1 +a%)}.

12. If y =(x log z)" show that
1 dry S
il dz® To=1 +8, log = + (108 z) + W’“: (log =)™

where S, is the sum of the products, r at a time, of the numbers
,2,3,...,n

13. If u=[f ()]t and v =f(z)[f'(x)] "} prove that

1d%u 1d2%v
W o da (Goursat.)

dn—1. (1 —at)m—k

4. If z=(1-2%)""% and y= et

prove that

(1) (l-a:'-’)d—z+(2n— 1)2z=0;



88 ADVANCED CALCULUS [cH. m1.

and that if z=cos 6 the equation (ii) becomes
@y +nly =0
ags Y=Y
Next show that when x =1
y=0and y(l -22)~t=(-1»"11.3.5...(2n-1),
and deduce that

__qp-11.3.5...(2n-1)
y=(-1)" =

sin nf.
1 dr.(a®-1)"
27 . n! dx®

(i) (a? -1)%-2nm=o;

156. If z=(2®~1)" and y =

prove that

2
i) (1299~ 2% 4 nin+1)y=0.

Show that y =1 when z=1 and y=(-1)® when 2= ~1 and deduce
that the roots of the equation y =0 are all real and different and lie
between —1and +1. (See § 37, Ex. 1.)

16. If P and Q are two rational integral functions of # (polynomials)

such that (1 = P?) =Qu/(1 —x?)
prove that % =n IT-—_—f:: ,
where 7 is an integer.
[1-P2=Q*1 -2?) @
so that, by differentiation,
-2PP’ =2{QQ’(1 - 2?) —xQ} (ii).

From (i) Q is prime to P and therefore from (ii) @ is a factor of P’;
then compare the coefficients of the highest powers in P? and @*, and
also in P’ and Q.]

38. Derivative of a Determinant. The proof of the rule for
forming the derivative of a determinant of the nth order whose

elements are functions of a variable z will be understood by
consideration of a determinant D of the third order, say

| @ ap ag
D= bl bz b3 .
€y Cp C3
Let éa, ..., dc; and 4D be the increments of ay, ..., ¢; and

D corresponding to the increment 6z of x; the determinant

D+dDis a, +da, a,+da, ag+day

by +68b, by +08b; by + b,
¢, +8c, Cg+0cy €5+ dcy
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and may be expressed as the sum of 8 determinants, namely:
(i) the determinant D ;
(ii) 3 determinants, each containing one column of incre-
ments,
| da, a; ag a, a, Oag
b, by dbs |
¢, €y Ocg

a, da, ag
ob, by b b, 6b, by
de, ¢3 €3 ¢, dcg 3

(iii) 3 determinants, each containing two columns of incre-
ments, of the type

’ 1

da, da, ag
6b, 0by b3 |
6c; Ocy Cy

(iv) 1 determinant, containing increments alone.

8D is the sum of the 7 determinants (ii), (iii) and (iv) ; when
each of these determinants is divided by éz * and éx made to
tend to zero, the determinants in (iii) will have each one column
that tends to zero, and the determinant in (iv) two columns
that tend to zero. Hence if accents indicate derivatives with
respect to x we find

’ ’ ’
a; a, ag a, a; ag a, a, as
¢, ¢ €5 €, Cy Cy ¢, €y C

If D were of the nth order the determinant (i) would be D
while (ii) would contain n determinants-each containing one
column of increments,—the first column of the first deter-
minant, the second column of the second determinant, ..., and
the nth column of the nth determinant. All the remaining
determinants, namely (2" — 1 —n) determinants, would contain
at least two columns of increments and would therefore tend
to zero when dz tends to zero. Hence the rule :

The derivative of a determinant of the nth order is the sum
of n determinants which are obtained by substituting in turn
in place of the elements in the 1st, 2nd, ..., nth columns the
derivatives of the elements in the lst, 2nd, ..., nth columns.
Instead of ¢ columns ” the word ¢ rows’ may be used since
a determinant is not altered by the interchange of rows and
columns.

* To divide one of these determinants by 3z, divide any one column of
increments in it by dx.
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Ez. . D=|a-=z b, g
hy b-z, f
gs f» c-a
D'=] -1 0 0 a-z, h, g a-z, h, ¢
h, b—-z, f + 0 -1 0 |+ h, b-a, f
g [ c-= g f, c—x 0 0 -1

= -322 +2(a +b +c)x —(bc +ca +ab —f2 — g® ~ h?).

39. Linear Dependence of Functions. Let f,, f5, ..., f, be
n functions of x defined for a range a<x=<b; if there are n
constants ¢,, ¢, ..., C,, not all zero, such that

Cofi+Cofot s FCafn=0, ceeiiiiiiiiiinin. (1)
the functions fi, fs, ..., f» are said to be linearly dependent;
if there is no such set of constants the functions are said to be
linearly independent.

Obviously if ¢,, ¢,, ... , ¢, is one set of constants that satisfies
(1) so is the set kc,, kc,, ..., kc, where k is any constant that is
not zero. Hence one of the constants may be taken to be 4-1.

The test now to be given for the linear dependence requires
that each of the functions should have all the derivatives up
to and including the (» — 1)th.

First. Suppose that f;, fs, ... , fa are linearly dependent and
that equation (1) therefore holds. The equation (1) may be
differentiated (n —1) times; differentiate and let accents
denote derivatives with respect to . We thus find the
following n equations, including equation (1) :

clfl +02f2 +~°‘+cn—1fn—1 +0ﬂf,. =0,
cxfl +Cof: et Cuifaa +efs =0,

e e e e C e (2)
le§"'2)+ce¢f§”"2)+- +cn lf(n 2)+c f(u 2)_ ’
clftln-l)+02f(2n-l)+. +¢C,_ lf‘('n l)+cnf(n l)_

Now the coefficients ¢;, ¢,, ... , ¢, are not all zero and therefore
the determinant W of the equations must be zero for every z
such that a<x=<b where

fl f3 “'fn-l fn
i i fan ﬂ.
W=. . . .. I T veeneer (3)
f(ln-z) f(z"'z) f(u-z) (n- 2)
f(ln—l) f(’ﬁ-l) e f(ﬁ; 1) f(n 1)
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W is called the Wronskian of the functions f,, f,, :.. , fa, and
is denoted more fully as W(fy, fs, ... , fa)-

Hence the condition W =0 is a necessary condition for the
linear dependence of f,, f,, ..., f, and it is to be noted that W
must be identically zero, that is, zero for every value of z in
the interval (a, b).

Second. The condition W =0, which has been seen to be
necessary, is also a sufficient condition for the linear dependence
of f1, fas -+ » fn provided the Wronskian, W, say, of the (n 1)
functions fy, f,, ... , fa_y i8 DOt zero for a<x=<b.

Consider the system of (n — 1) equations :

cl.fl +62f2 +"'+cn—1fn—1 =fm
clf’l +62f‘,?. +"'+cu—1 ;u-l =f;n
eft  HCfs  AeeitCosrfuor =far ceererenininn. 4)

ftd e fr 4.+, frD=fr,

The determinant of this system is the Wronskian W, and
is therefore not zero. Hence the system determines
€15 Cay +++ » Cuy and these numbers will usually be functions of z;
it has to be shown that if W vanishes for every z in the interval
(a, b) the numbers ¢y, ¢,, ... , €,_, Will be constants and then the
first of equations (4) proves the linear dependence of f, f,, ... , fa-

Let it be first noted that if W =0 we can add the following
equation to (4), namely : '

Cft Do, fe V4 ey f N =0 (4")
For in virtue of (4) we have
Juo  Jao S 0

f;s f;9 "'f;L—l) 0
w=. . . . . . .. .
£, 5 0, 0
S, FB7 e R, J = 0 - a5 =G )
=Wix (fi ) —eft™ —eof 70 — o — i f250)
and W =0, W,=0 so that equation (4") follows.
Now differentiate the first equation in (4) ; therefore
afitefat .ot enifay
tafi+efit .t eaifai=fa
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which by the second equation in (4) reduces to
cfi+cefot . +Choifu =0,

If the other equations in (4) be differentiated it will be seen
in the same way that each equation reduces to an equation
in ¢, ¢, ..., €, the right-hand side being zero; for the last
equation in (4) this result follows from equation (4’). Hence
we have the set of (» — 1) homogeneous equations

cfi  +ef, +eeetCnifay =0,
of  +afi +..+en i fi =0,

LD+ cifD .. o, i =0
The determinant of the system is W, which is not zero and

therefore each of the numbers ¢, c;, ..., c._, is zero, so that

each of the numbersc,, ¢,, ..., ¢,_; is constant. Hence, by (4),
Ja=cifi+cofat o +Cuyfay,

and the functions f}, f,, ..., f, are linearly dependent.

Cor. If W and W, are identically zero but W,, the Wron-
skian of the (n —2) functions f}, f, ..., f,—s, Dot zero, then, by
what has been proved, the (n —1) functions fi, f,, ... , fa_; are
linearly dependent and there are therefore (n —1) constants
€y Cg, -+. , Cy_;, NOL all zero, such that

clfl +02f2 +... +Cn—1fn—1 =0.
The » functions f,, f, ..., f. are therefore linearly dependent
because in (1) we may make ¢, zero and the » constants
€4y Cy, «.., C, are not all zero.
Similarly, there is linear dependence of the n functions if
W, W, and W, are identically zero but W,, the Wronskian of

the (n —3) functions f}, f,, ..., fa_s DOt zero, and so on.
Ez. 1. The functions e*, xe®, x%¢® are linearly independent.
Here, e%, ze%, x2e®
W=| e% (z+1)e%, (z*+2x)e* =237,

e%, (x+2)e®, (x?+4x+2)e”
Ex. 2. The functions sin z, cos z, sin (z +«) are linearly dependent.
- Here, W =0. ¢, sinz+¢;co8x+¢,sin (z +a) =0
if 6= -cosw, Cg=-sinea, cg=1.

Ez. 3. Show that the derivative of a Wronskian is obtained by
differentiating each element of the last row.
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Ex. 4. If yy. 2 ..., y, are functions of x and if = is a function of ¢
prove that
de\intr—1)
WY1r Yas - s Yn) =(d‘_x‘)
where the suffixes # and ¢ denote that the derivatives in the Wronskians
are derivatives with respect to = and ¢ respectively.

We(yss Y20 oo s Yn)s

Ex. 5. Iy, vy, Yy ..., Y are all functions of z show that
Woyyn Y2 ¥Yss - s YUa) =4"WalU1s Y20 Yo -0 5 Yn)-
‘Ex. 6. 1If y is a function of x prove that

dy n(n—1)
W(l, 2y, 342 ..., ny™ ) =nl(n - 1)1 (n ~2)! ... 2! 1 (d—z .



CHAPTER IV

FUNCTIONS OF SEVERAL VARIABLES. DERIVATIVES.
DIFFERENTIALS. CHANGE OF VARIABLES

40. Functions of more than one Variable. The characteristic
properties of a function of » independent variables may usually
be understood by the study of a function of two or of three
variables and unless some definite purpose is to be served the
restriction to not more than three independent variables will
be generally maintained ; this restriction has the considerable
advantage of simplifying the formulae and reducing the mere
mechanical labour.

By extension of the usage of analytical geometry a set of

values a,, a,, ..., a, of n variables will often be called ‘ the
point (a,, @y, ..., a;).” The set of values x,, x,, ..., , other
than a,, a,, ..., a, that satisfy the conditions

lxl_a’l I <o, |x2_a’2 | <@ -+ 5 |xn—an I <o,

where g is an arbitrarily small positive number, is said to form
a “neighbourhood” of the point (a;, a, ..., a,). The
neighbourhood may, however, be specified in other, though
equivalent, ways ; for example, the points inside the sphere
22 +y% +22=p2 may be taken as the point (0, 0, 0) and its
neighbourhood.

The set of values of the variables for which a function is
defined is called ¢ the region (or, domain) of definition of the
function.” A function may be defined for integral values
alone of its variables or for variables that vary continuously
within given limits or that take all real values. The simplest
type is the polynomial which is defined for all real values;
next in simplicity is the quotient of two polynomials which

is defined for all real values except such as make the divisor
94
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zero. In general, all the usual functions of a single variable
reappear.

The language and conceptions of geometry necessarily play an impor-
tant part and certain assumptions are made that may be illustrated
by considering a function f(z, y) of two independent variables. The
function may be defined for the whole plane or for a part or parts of
the plane that are bounded by closed curves. It is supposed that a
closed curve C, without double points, divides the plane into two regions,
an interior and an exterior, such that any two points in any one region
can be joined by a path that lies wholly within that region while every
path that joins a point of one region to a point of the other cuts the
curve C that separates the two regions.

If = =g(¢), y =9(t), where ¢ and y are continuous functions of f, are
the equations of a curve the curve is closed when ¢ and y are periodic
functions of ¢ with period w. In this case the points « ¢’ and “ ¢ + nw,”
where 7 is any integer, are identical. If on the other hand ¢’ and ¢"
are two values of ¢ which do not differ by w or a multiple of w, such that

@(t') =(t") and (') =y(¢") the point ¢’ or ¢” is a double point.

A curve of the kind spoken of may be a circle or an ellipse or any
“ ordinary > curve that does not intersect itself (like a lemniscate),
but it may equally well be a rectangle or polygon, and the path spoken
of as joining two points may be a ¢ curve ”’ in the ordinary sense or a
¢« broken line ” consisting, for example, of a set of segments that are
alternately parallel to the coordinate axes.

The functions ¢(¢) and y(f) are supposed to be continuous but
nothing is prescribed as to their derivatives ; it may be said at once,
however, that it will be assumed that every curve may be divided into
a finite number of parts such that for each part ¢’(¢) and y’(¢) exist.

When a function f(z, y) is defined for the region bounded
by a closed curve C the region of definition is said to be closed
if f(x, v) is defined for all points within and on the curve C,
but open or unclosed when the function is defined for points
within but not on the curve C.

The extension to regions for functions of three variables
is fairly simple, and while geometry fails for the ordinary
mortal when he enters regions of » dimensions it is possible
at least to understand what is meant when it is said that the
region is that within the sphere o} + 2% +... + z2=¢c2

Limiting Points. 1If § is an infinite set of points lying in a
region A the point (a,, a,, ..., a,) is called a limiting point or
a point of condensation of the set when an infinite number of

points of the set lie in every neighbourhood of (a,, a,, ..., @,);
G.A.C. E
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the limiting point itself may or may not be a point of the set

(§ 17).

If, for example, S consists of all the points inside a sphere,
every point inside or on the surface of the sphere is a limiting
point. The region 4 bounded by the sphere is ““ open ” if it
does not include the points on the surface—that is, if it does
not include all its limiting points—but ** closed ”’ if it contains
all its limiting points, because it then contains all points
inside and on the surface of the sphere.

41. Limits and Continuity. A function f(z,, z,, ..., ,) of
n independent variables z,, ,, ..., z, is said to tend to a limit 1
when z,, ,, ..., z, tend respectively to a,, ay, ..., a, if, given
the arbitrarily small positive number &, there is a positive
number 7 such that

| f(y, ®gy ooy ) — 1] <e
when |2, -a, |, |#3-a,], ..., |2, —a,| are each less than ¥,
the set of values x; =a,, z,=a,, ..., z,=a, being excluded.

The modifications required when one or more of the variables
tend to infinity or when lis +® or —o may be left for the
student to state; with his previous work there should be no
difficulty.

It should be specially noted, however, what the above
definition implies ; there must be no assumption of any relation
between the variables as they tend to their respective limits.
For example take f(x, y) where

f(@, y) =2ay/(@* +y?).

If x -0, y being constant, f(z, y) - 0 and if y— 0, = being
constant, f(x, y)— 0 so that these limits of f(x, y) exist and
are the same when #— 0 and when y—0. On the other hand
f(z, y) has no limit when z and y tend independently to zero;
for if we put x=rcos 6, y=rsin 0, we see that f(z, y)=sin 20,
so that near (0, 0) f(z, y) may take any value between -1
and 1 and therefore has no limit. It has to be noticed that 0
is not a value that x can take when y=0 or that y can take
when 2=0. The assumption that y is constant when x— 0 is a
violation of the conditions imposed by the definition, just as
the assumption y=x or any other relation between x and y
would be.
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Continuity. The function f(z, y, 2), the case of three
variables being taken, is said to be continuous at the point
(a, b, ¢) of a region for which it is defined if, given the
arbitrarily small positive number ¢, there is a positive number
n such that |f(z, y, 2) ~f(a, b, ¢)|<e when |z-al, |y-b]|
and |z -c| are each less than 7.

It is necessary, therefore, for the continuity of f(z, y, )
at (a, b, ¢) that f(x, y, z) should tend to a limit when z, y, 2
tend to a, b, ¢ respectively, and also that that limit should be
the value f(a, b, ¢) which, by hypothesis, exists since (a, b, c)
is in the region for which f(z, y, 2) is defined. If (a, b, ¢) is
on the boundary of the region the values of x, ¥, z that satisfy
the conditions |z -a|<n,|y-b|<nand|z-c| <z mustall,
like f(a, b, c) itself, be in the region of definition of the function.

A point to be particularly noticed is that f(x, ¥, 2) may be a
continuous function of each variable when the other two are
constant and yet not a continuous function of z, y and z.
This peculiarity (for it does at first sight seem peculiar) is
illustrated by the function 2zy/(x? +y?) just considered above.
If f(z, y) is defined to have the value zero at (0, 0) it is defined
for every neighbourhood of (0, 0); as has been seen, f(x, ¥)
tends to its value 0 when z— 0 and y is constant, or when y— 0
and « is constant, and is therefore continuous at (0, 0) when
considered as a function of a single variable z or as one of a
single variable y. On the other hand, f(z, y) tends to no
limit when the independent variables x and y tend to zero, and
is therefore not continuous at (0, 0).

42. Sequence of Decreasing Regions. The conceptions of
infinite sets and of upper and lower bounds have no special
restriction to functions of one variable, but the method of the
decreasing interval used in the proof of various theorems
requires a little explanation when it is applied to regions of
two or more dimensions.

For definiteness, consider an area 4 bounded by a curve C ;
the principle is obviously applicable to regions of three or
higher dimensions and the description is greatly facilitated by
restriction of the region to a plane area.

The area will lie completely inside a rectangle R given by the equa-
tions * =a, x =b >a and y =c, y =d >c¢. Let the rectangle R be divided
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into four equal rectangles by the lines x =}(a +b), y =4(¢ +d), and let
one of these four rectangles be selected, it being understood in this
and all subsequent choice of rectangles that the selected rectangle
contains a continuous piece of the area 4. If the sides of this rectangle,
R, say, are given by z=a,, x=b,>¢a, and y=c,, y=d, >c, then
a=a,<b=b, c=c,<d;=d while b, ~a,=%(b ~a), d; ~¢; =%(d —¢).

Next divide the rectangle R, into four equal rectangles by the lines
x=}(a, +b;), y=1%(c; +d;); select one of these four and let it be called
R,. The sides of R, will be given by x=a,, ¥=b,>a,; and y=c,,
y =d, > ¢,, and the following relations will hold :

a=a,Sa,<b,=b,=b, b, —a,:%‘(b —a),

= =o<d=d=d, d-t=gd-o).

Proceeding in this way we obtain a sequence of decreasing rectangles
(R,). The sequences (a,) and (c,) are increasing and the sequences (b,,)
and (d,,) decreasing sequences ; a, < b, and ¢, < d,, while

b, —a,=(b-a)/2" d, -c,=(d -c)/2".

Hence the sequences (a,,) and (b,) determine a number £, the sequences
(¢,) and (d,) a number 5 and the point (& 7) is common to each
rectangle R, each rectangle being closed (§ 16).

If the region were three-dimensional it might first be included in a
cuboid (or rectangular parallelepiped) K bounded by the planes

r=a,x=a"; y=b,y=b'; z=c,2=¢"; a’>a, b’ >b, ¢’ >c.
The first step is to divide K into 8 cuboids by the planes
x=%a+a’), y=3b+b’), z=%§(c+c),
and to select one of these (call it K,) ; its boundaries would be the planes
T=ay, x=a >0a;3 Yy=by, y=b'>by, z=¢;,2=6">¢,
where a=sa,<a/=a, b=b<b’'=V, c=c¢<¢/=c
and ai —a;=%(a’ ~a), by -b =} -b), ¢ —e;=3(c"~¢)
Operate on K, in the same way and so on. The process determines
a point (&, %, {) that is common to each cuboid K,,.

Here, and above, if the region is closed, the point found is a point of
the region.

Notation. If P is the point (z, y, 2) it is often convenient
to denote the value of f(z, y, 2) at P by the symbol f(P). A
point P’(z’, ', 2’) is in a neighbourhood of P if

0<|a'-z| <@ 0<|y'-y|<e 0<|2-2z[<e,
or, if the length PP’ is not zero but is less than o. (One
or two but not all of the differences |z’ ~z|, |y -y| and
|2’ —z| may be zero.)
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Theorems I and II of § 13 on the upper and lower bounds,
M and m say, of a bounded set need no new proof, while
Theorems I and II of § 15 on the limits of bounded monotonic
functions are also valid for functions of several variables.
Thus, if f(z, y, z) increases (or does not decrease) when each
of the variables z, y, z increases but is always less than a fixed
number k, then f(z, y, z) tends to a limit which is not greater
than k£ when z, y, 2 tend to infinity.

Similarly Theorems I and II of § 17 need no new investiga-
tion. The important theorem of § 27 for a function f(z, ¥, 2)
say, namely that < if M is the upper bound of f(z, y, 2) in a
region R there is at least one point P(¢, 7, {) such that the
upper bound is also M in any neighbourhood of P,” may be
proved at once by using a sequence of decreasing regions (R,)
instead of a sequence of decreasing intervals. The method is
the same whether the sequence be a sequence of intervals or
a sequence of regions.

‘The condition that f(z, ¥, z) or f(P) should tend to a limit
when z, y, z tend respectively to £, #, { is that there should
be a neighbourhood of the point 4 (& #,{) such that
| f(P")—f(P") | will be less than ¢ (where ¢ has the usual
meaning) when P’ and P” are any two admussible points
(x',y’, 2') and (2", ¥, 2") of that neighbourhood. [The point
(', y', 2') is admissible when f(z, y, 2) is defined for the values
#',y’,2".] In other language, there must be a positive number
o such that | f(z', y', 2') - f(z", y", 2") | <& when each of the
differences | &~ |, | £-2" |, [q -y’ |, 19~y |, |f 2|, | £~ 2"
lies between 0 and p. (Some but not all of these differences
may be zero.)

That the condition is necessary is obvious. To prove the
sufficiency of the condition proceed as in §21. When it
is satisfied we have

fP") —e <f(P') <f(P") +e,

when P’ and P” are any two admissible points of the neighbour-
hood of A. The set of values f(P’) is therefore bounded and
has maximum and minimum limits @ and g, and so on, the
rest of the proof being, except for verbal changes, the same
as in §21. (The meaning of the terms ¢ upper limit of
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indetermination > and ¢ lower limit of indetermination >’ needs
no further explanation.)

43. Theorems on Continuous Functions. The theorems of
§ 28 for functions of one variable are easily extended to func-
tions of several variables; the theorems will now be stated,
but the proofs will usually be indicated very briefly, if at all,
since they are little more than repetitions of those for a function
of one variable.

TeeoreM I. If f(x,y, z) is continuous at (a, b, ¢) and if
f(a, b, ¢) is not zero, then f(x, y, z) has the same sign as f(a, b, c)
at all points (x, y, z) in some neighbourhood of (a, b, c).

TaeoreM II. If f(z, y, 2) is continuous at all points of a
closed region R and if (2',y',2) and (z",y",2") are two
different points of the region at which f(x,y,z) has two
different values A and B then f(z, y, z) takes in the region R
all values between A and B.

The method of § 28 may be adopted to prove the theorem, but the
following method reduces the proof to that for a function of one variable.
Assume, as will be proved in § 44 from the definition of continuity, that
if x =f,(¢), y =f2(2), 2 =f4(¢), where f,, f,, f5 are continuous functions of ¢,
the function f(x, y, z) becomes F(¢) where F(t) is a continuous function
of t. TIf ¢ and ¢” give the points (@', ¥, 2’) and (2", y”, 2”) respectively,
then F(t) takes all values between 4 and B as ¢t varies from ¢ to t”;
if A and B have opposite signs there is at least one point 7 or (&, 7, {)
at which the function f(z, y, 2) is zero. But, in general, there is an
unlimited number of functions f,, f,, f5—or, in geometrical language,
an unlimited number of paths from (z’, ¥/, z’) to (z”, y”, z”) that lie
in the region R—and therefore f(z, y, z) takes every value between A
and B infinitely often.

The following theorem—the theorem of uniform continuity—
will be proved for a function of two independent variables x
and y but the method of proof is quite general. The method is
not quite the same as that used in § 28 though not essentially
different and the student might, as an exercise, apply the
following method to the theorem of § 28.

TreoreM IIL. If f(z,y) is continuous at all points of a
closed region A there is a positive number h such that, & having
the usual meaning, | f(2', y') = f(2", y") | <& where (', y') and
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(", y") are any two points in the region A, such that | ' —z" | <h
and |y —-y" | <h.

The proof is in two parts; the notation f(P) to denote the
value of f(z, y) will be freely used.

(1) If &, is any given arbitrarily small positive number the
region A can be divided into a finife number of smaller regions
(sub-regions they may be called) such that if P’ and P are any
two points in any sub-region | f(P’) —f(P") | will be less thane,.

If such a division of the region 4 is impossible there will be,
whatever division be made, at least one sub-region in which
two points P’ and P” can be found such that | f(P) - f(P") |=¢,;
let such a sub-region be called, for convenience, special. It has
now to be proved that A contains no special sub-region.

Let the area A be enclosed in a rectangle R, and, as in § 42,
proceed to form a sequence (R,) of rectangles. Of the four
rectangles constructed at the first step one at least must
contain a special sub-region, because if none of them did
neither would 4 ; select the rectangle (or one of the rectangles)
that contains a special sub-region and call it B,. Operate
on R, in the same way and select a rectangle R, that contains
a special sub-region, and so on. A sequence RE;, R,, ... of
rectangles is thus obtained ; the sequence determines a point
P, of A such that every region within which P, lies contains a
special sub-region. This conclusion will now be shown to be
inconsistent with the continuity of f(x, y).

Since f(z, y) is continuous at (£, n) there is a region, o say,
within which Py(&, ) lies, such that if P’ and P” are any fwo
points in ¢

|f(Po) —f(P) | <der, [f(Po) —f(P") | <3ey,
and therefore [f(P) =f(P")| <&

Now » may be taken so large (but finite) that the rectangle R,
will contain P, (either within or on its boundary) and lie
wholly inside the region o; therefore this rectangle R, (a
region that includes P,) contains no special sub-region, since
P’ and P” may be any two points in E,.

Hence the hypothesis that the region 4 cannot be divided
into a finite number of sub-regions of the kind stated is
inadmissible.
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(2) Theorem ITI now follows at once. Take & =3¢ and let
the area A be covered by two sets of straight lines parallel to
the axes of # and y, the distance % between two consecutive
parallels being the same for each set. By (1) it is possible to
choose 4 so that if P’ and P” are any two points in, or on the
boundary of, a sub-region or square of side A we shall have

F(P) - f(P") | <Ze.

Now any two points P’(z’, y’) and P"(z", y") for which
2’ —2"|<h and |y’ —y" | <k must either lie in one and the
same square in which case | f(P') - f(P") | < }e <& or else lie in
adjacent squares. In this case if P is a point on the side
common to the two squares (or if P is a common vertex of the
two squares)

Lf(P) =f(P") | =| f(P") - f(P) +f(P) ~f(P") |
=[fP) -f(P) | +|f(P)-f(P")| < e+ feore.

Of course at the boundary of the region 4 the sub-regions
will as a rule not be complete squares, but this makes no
difference in the proof. Theorem III is therefore proved.

It thus follows that every function which is a continuous
function of its variables, when these assume any values in a
closed region, is a uniformly continuous function of its variables.

TrEOREM IV. If f(2, Yy, 2) 1s continuous at all points of &
closed region it is bounded in that region.

TrEOREM V. If f(x,y,2) is continuous, and therefore
bounded, at all points of a closed region there is at least one
point (&, 1, {) of the region for which f(£, n, ) =M, the upper
bound of f(x, y, z), and at least one point (¢, %', ') for which
f(&',n', £')=m, the lower bound of f(z, y, 2).

The proofs of these two theorems may be left to the student
as little more than verbal changes are needed to adapt the
proofs for a function of a single variable.

44. Function of Functions. If F(z,, z,, ..., z,) is a con-
tinuous function of the n variables z,, 2,, ..., z, in a region D
and if the variables z,, @, ..., z, are continuous functions of
m variables ¥, ¥, ... , ¥, In a region D’ the function
F(zy, z,, ..., x,), when expressed-as a function T T R
is a continuous function of y,, ¥,. ..., ¥, in the region D'.
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Suppose n=3, m=2 and let the two sets of variables be
denoted by z, y, z and s, t where

xz.f(s’ ), y=g(s, 1), z=h(s, t); F(z,y,2)=9(s,1);
also let ' =f(s',t'), y' =g(s', t'), 2’ =h(s', ¥).

Given ¢ as usual it is possible, since f(z, ¥, z) is continuous,
to choose 7(>0) so that

lf(m': y” z’) “'f(x’ Y, z) | <g,
when |2’ -z |, |y -y | and |2’ —2 | are each less than 7.
Again since z, y, z are continuous functions of s and ¢ it is
possible to choose £(>0) so that

| 7', ) =fls, 1) | <m, | g(ss #) —g(s, 8) | <,
| h(s', £) —h(s, 8) | <7
when |s'-s| and |[¢'—¢| are each less than (. Hence
|@(s’, t') —p(s,t) | <e when | s’ —s | and [#'—¢]| are each less
than ¢ and therefore (s, t) is continuous in the region D’.
An important case of this theorem is that in which z, y, z
are functions of a single variable f{, so that the equations
z=f(t), y=g(t), z=h(t) can be taken as giving a curve; the
function F(z, y, 2) or ¢(t) is therefore continuous for all points
on the curve so long asthe curve is within the region of definition.
When z, y, z are functions of two variables the point (z, y, 2)
is restricted to a surface.

45, Partial Derivatives. Mean Value Theorem. In Chapter
XI of the Elementary Treatise partial derivatives have been
defined and various theorems proved; it seems desirable,
however, to re-state briefly the fundamental equations and to
present a more systematic treatment of the theory of differen-
tials. The student is recommended to revise carefully
§§ 92, 93 of that chapter which deal with the rate of variation
in a given direction (important for its applications in mathe-
matical physics) and with the interchangeability of the order
of differentiation, the proof of which is often found difficult.

Suppose f(, ¥, 2) and its partial derivatives f,, f,, f, to be
continuous ; the increment Jf corresponding to increments
h, k,  in z, y, 2 respectively is given by the equation

f =fx+h,y+k;,z+1)-f(z, y, 2),
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and this may be stated in the form
f=[fx+h, y+k z+1l)-flz, y+k, 2+1)]
+[f(x,y+lc,z+l) _f<x) y)z+l)] + [f(x,y, z+l) —f(x9 Y, z)]
By the mean value theorem for a function of one variable
these differences may be expressed in the form

hfo(x+ 0.k, y+k, 2+1), kf (x, y+ 05k, z +1), If (2, y, 2+ 0])
where 0, 0,, 05 all lie between 0 and 1. Hence
Of =hf(x+ 0.k, y+k, z+1)+kf (2, y+ 05k, 2+1)
+lf(z, y, 2+ 040, ...... (1)
or, since these derivatives are continuous and therefore tend
to fa, fy, [, respectively when h, k, I all tend to zero

Of =h(fo+ ;) + k(fy +wp) + Uf, +w3)
=hfo+kfy +1Uf,+ (howy + kg +lwg) ovnenniniiinnnin. 2)

where w,, w,, w; tend to zero when %, k, I all tend to zero.
Suppose now that z, y and z are functions of other variables,
say functions of the two independent variables s and ¢, and
that these functions and their partial derivatives with respect
to s and ¢ are continuous; the function f(z, y, 2) is now a
function of functions and its derivatives df/ds and df/dt may
be obtained at once by applying (2).
Let s alone vary and let the increments & or dx, k or dy,
I or 6z and df correspond to the increment ds of s; if each
member of (2) is divided by ds and the limit taken for ds—0
the last three terms in (2) will tend to zero because w,, w,, w,
tend to zero while their coefficients are finite. We thus find
9f/ds and by a similar process 9f/dt, their expressions being as
follows : af_a_fﬁf'_uaia}_h,if?f
0s 0xds 0Oyods 0z0s’
of ofox ofody dfoz
31 oz ot aydt dzol
The method is obviously the same whatever be the number
of variables in (2) or in (3); if 2, ¥ and z were functions of one
variable only, say functions of ¢, the notation dx/dt, ... instead
of dz/dt ... would be used.
The equation (1) can be expressed so that instead of three
fractions 6,, 0,, 0, there shall be only one, and this alternative
form is often useful ;: it has in fact been already given in § 157,
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p- 409, of the Elementary Treatise for the case of two variables.
Let F(t)=f(x+ht, y+kt, z+1t); then by the mean value
theorem for a function of ¢
F(t) - F(0)=tF'(61) 0<O<l.
It is proved in § 157 that

i (7 @ d 0
F(t)—<h533+k—ag—/+l5—é>f(x+ht,y+kt,z+lt),

and if we now put 6¢ for ¢ in this expression for F'(t) and make
t equal to unity we find

f@+h, y+k, z+10) —f(x, y, 2) =hfo+kf, + U, eeeeeeen. (4)

where f, means the value of df(x, y, z)/0x when x+ 0h, y+ 6k
and z + 0l have been substituted in it for z, y and z respectively

with similar meanings for f,, f,. This notation is not at all
suggestive ; an alternative notation is f,(x +0h, y +0k, z +61)
which is suggestive but cumbrous.

The equation (4) gives the Mean Value Theorem for functions
of more than one variable.

Note. The earlier examples in the Ezercises at the end of
the chapter should be worked at this stage.

46. Differentials. The equation (2) of the last article has
an important meaning in itself. For many purposes a valid
approximation for the increment df is desirable, and such an
approximation is deducible from (2); but the expression for
the approximation has also very useful applications to the
problem of differentiation and change of variables, so that it
is very desirable that the student should have a thorough
grasp of the meaning and working of the differential, as the
expression for the above approximation is called.

Let a principal infinitesimal (E.T. p. 195), ¢ say, be chosen
when 8z, dy, 6z or h, k, | are infinitesimals ; for example, let
e ={(62)*+ (8y)*+ (82)%} or e=| x|+ | Oy |+ oz |
so that h/p, k/o and I/¢ can not exceed unity (numerically).
The part hw, + kw, + lwg of the increment of df is an infinitesimal
of a higher order than g since its ratio to ¢ is numerically less

than the sum oy | + @ | + |l

which tends to zero when &, k, I tend to zéro. The other part
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of the increment df is called the differential of the function
f(x, y, 2) and is denoted by df(z, y, 2) or df, so that

df =fo0x+f, 0y +f.02. ccooveniiiiiil, (1)
The differential df is a valid approximation for the increment of
when each of the increments oz, dy, 6z is ‘“ small ”; this
approximation is of very frequent application.

There is, however, another aspect in which the subject may
be considered, namely, that in which the differential sums up
a whole set of derivatives; there is no question now of
approximations but rather of useful rules of operation.

If z, y, z are independent variables the part

Sfz0x +f, 0y +f, 0z, that is, af6x+gf6y+ f

of the increment df is called the differential of f(x, y, z) and is
denoted, as before, by df(z, ¥, 2) or df simply. The term f,dx
is a partial differential and may be denoted by (df)., with
similar meanings for (df), and (df),. The equation (1) is now
considered simply as defining the differential when the variables
z, Y, z are independent.

Suppose now that x,y, z are not independent but are
functions, say, of two independent variables s, ¢ ; the function
f(z, y, 2) is therefore a function, say F(s, t), of the independent
variables s, . By definition

df(x, y, 2) -dF(s t)=7F, 63 +F,6t. ............... (2)

Now F=1. 244, ay L2

Ft_fxat"'fv +fzat

while, since z, y, z are functions of the independent variables
s, t, their differentials are given by the equations

da:—axds+ax6t dy=...,dz=....
Hence .
df=dF (s, )= fm< 85+ 22 at) o) L),
so that df =f.dx+f,dy+f,dz. ccooineveniiiiiiiiil (3)

The forms (1) and (3) for the differential df differ in nota-
tion; in (3) the differentials dz, dy, dz take the place of the
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increments oz, &y, dz respectively. Now the increments are
arbitrary and no confusion can arise if they be expressed in the
notation of differentials (see §35); in fact, if a function of a
single variable f(x) be taken as a special case of a function
f(z, y, 2) of three variables we can take x itself as the function
and then dz =f,6x =dx. With this change of notation we now

have the theorem
df = afdx+afdy+ f .................. (4)

whether the variables z, y, z are 1ndependent or not ; df is the
total differential of the function f(x, y, 2)

Note. 1If by any process the total differential df of a function
of any number of independent variables s, ¢, u, ... has been
expressed in the form

df=Pds+Qdt+Rdu+... ...cc.oooovinins (5)

where the differentials ds, d¢, du, ... of the independent
variables alone appear and P, @, R, ... do not contain the
differentials, then

A g ¥

ou’
For, by definition,

df:%ds+g€dt+gfdu+ ................ (5"

and the expressions (5) and (5) for df must be identical ; since
the variables are independent we may suppose every increment
except one, say ds, to be zero, and then we find P =4f/os.
Similar reasoning leads to the stated values of @, R, .... We
thus see that an equation such as (4) or (5) sums up a whole set
of partial derivatives.

Ez. 1. fu=(2®- 3)/(x2+y3) and z =sin~? (u}) find dz.

dz=—1 1 wtau=1.  Z+Y¥ ..
(1-u} 2 P y(@? —y2)t

du = E ) d(@? ~y?) - (22 —y?) d(a® +4?) _ doy(y dx ~2dy)
N (=* +y*)* (@*+y?)?

and therefore
2*90(@/ dx —z dy)
(2 +y7)(a? —yt)

The coefficients of dz and dy are 0z/dx and 9z2/dy respectively, and may
therefore be written down at once.

dz=
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Ezx, 2. 1If z is given as a function of two independent variables 2 and
¥, change the variables so that x becomes the function and z and y the
independent variables, and express ox/dz and ox/dy in terms of the
derivatives of z with respect to z and y.

When « and y are independent variables and z the dependent, a usual
notation (which will be often employed) is

0z 0z 0%z 0% 0%z

2 =P 8_y=q’ Friaid oy =8, a—y-i=t-
First, express dz in terms of dx and dy ; we have
0z 0z .
dz.—_%dx +a—ydy.—pdw+qdy. ....................... (i)

Next, when z and y are independent and 2z the function, we have
dz =— Y dz + dy ............................... (ii)
Again, by solving (i) for dz we find
1 q
dr=Zdz~Zdy. .........cviviiiiiiiiiiiiaiinn iii
= Y (iii)

Equations (ii) and (iii) must be identical by the above Note, and

ox_1 ox_ ¢
therefore = -2,
% p %y p

See example of § 47 (Second Method) for a different treatment.

Ex. 3. If uw and v are determined as functions of z, y, z by the
equations ¢(z, y, 2, 4, v) =0 and y(z, y, 2, u, v) =0, find the derivatives
of u and v with respect to z, v, z

In the solution, to secure brevity, we use the notation of Jacobians
(§ 65), namely,

oo v)_
a(u, v)
and so on.

o, v) _

=PuVo = PoVus Gy oy = Fo ¥

Yor Yo

Pur Py
w“’ 'pv

First Method. Differentiate ¢ =0 and y =0 with respect to z, keeping
y and z constant ; thus
ou ov
%*‘7’“3 +%%—0 Vot Vugzz Yo 5 =0
If these equations be solved for du/dx and ov/dx we get
Bu _e, v) e, y) Bv_0d(p y), &g y)

“B(v, %) © o(u,v)’ Bz o(x, u) ~ (u,v)’
In the same way the other derivatives may be found.

Second Method. TUse differentials. The total differentials dp and dy
are zero ; therefore

@z dx + @y dy + @, dz + @, du + ¢, dv =0,
yede +yy dy +y,dz +y, du +y, dv =0.
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Solve these equations for du and dv ; we get

(e, ) (g, v) (g, v) e, v)
3w, v) 30, %) % T3 (oy) W T B0 z)

(P ¥) g, (@ ¥) 4.

du =

JAe v, A Y)

o(u, v) o(x, u) o(y, u) o(z, u)
ou ou ou ov
But du—%dx'i-a/dy-l'?d;dz, dv—55M+....

The equating of coefficients of dx, dy, dz gives

du_0o(p, y). 9, ¥)
oz~ o(v,x) " B(u, v)’

and the other derivatives may similarly be written down at once.

47. Higher Differentials. For brevity suppose that f is a
function of two variables x and y. The second differential of
f(z, y) is the differential of df(x, y), that is, d[df(x, y)] which
is denoted by d?f(z, y) or simply d?f. Hence

&*f =d(f dx + f,dy) = dz df, + f,d(d) + dy df, + f,d(dy),

or d*f =dzdf,+dydf,+fd*x+f,d%y. ..cooooeiinit (1)
Now U =Lrdn+ Yy ~foaw Ly,

and &y =Lraw+ Leay—fudofiy,

so that

da df, + dy df, =fo.(dx)* + 2f , dx dy + [, (dY)?
:faczdxz + 2fwvdx dy +fvudy2’
and therefore
a¥f =f, da? + 2of , dx dy + f,,dy?® + f,d%c + fydPy. ........ (2)
The question now arises ‘ how is the distinction made between
the case of z, y as independent variables and that of z, y as
functions of other variables ” ? The answer that is found to
be most convenient is that, when z and y are independent
variables their differentials dx and dy are taken to be constant
so that d2xz and d?y are zero. Hence when x and y are
independent
d¥f(x, y) =d*f =f,.dx? + 2f , dx dy + [, dY?, cvvvveen (3)
while if # and y are not independent d?f(x, y) is given by (2).
In the same way the third differential d(d%) or d°f and higher
differentials are defined; when z and y are independent
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d®,d%, ... and d%, d%y, ... are all zero. Thus one part of d3fis
formed from the first term in the expression (3) for d?f and gives

Al pod?] =da? df,, = das® [ag_w de + ?gg ay)

or Sowa@T® + g B2 dy, coveeivniini (4)
and for the value of d* when z and y are independent we find
& = [ pued2® 4 3f ., dac?dy +3f,, dx dy? +f, . dys. ........ (5)

If # and y are not independent we must in finding d3f take
equation (2) and include the terms that arise from da and dy
which are no longer constant. Thus to find d[f,,dz? we must
add to the expression (4) the term f,,d(dz?) or 2f,,dx d®x since
d(dx?) is 2dx d2x.

The notation of differentials gives a compact form for
Taylor’s expansion of f(x +k, y +k) when h=dx, k=dy and
h, k are constant ; the form is simply

flx+h, y+lc)—f+df+df df ............... (6)
and the series on the right is of the same form whatever be the
number of independent variables x, y, 2, ... , it being noted that

af(x, y, z, ...)=f.de+f,dy +fdz+... .
(See E.T. p. 508.)

It must be specially noted, however, that when z, y, z, ...
are not independent the expressions for d?f, d%, ... have no
longer the simple forms given by (3) or (5) but involve the
higher differentials of dz, dy, dz, ....

Ex. Take Example 2, § 46, and express the second derivatives of &
with respect to z and y in terms of p, ¢, 7, s, £.
First Method. We have %=1, o _ e (i)
oz p oy p
From the first of these equations we find by taking the differentials

o\ _ (1 0% — d_p ‘ ..
d(a _d(§>, or, = dz +6z6ydy P meenasienes (ii)

o P gy =
Now dp—-%dx +é§ dy =rdx +sdy,

since p is given as a function of # and y. In this expression for dp put

the value of dx in terms of dz and dy, namely (dz —gdy)/p, and the

equation (ii) takes the form
0% P2 7 rq —sp
wdz +az—aydy = ?dz + 7 dy.
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In this equation we have only the differentials of independent
variables, and can therefore equate the coefficients of dz and dy respec-
tively ; hence

0% r 9% rq-sp
@Y moy. P

In the same way the second of equations (i) gives

o2z %z,  pdg-gdp

By T

But dg= 94z + 2 4y —odx +1dy
ox oy ?

and substituting as before for dx in dq and dp we find

02z _a_zip _Tq—Sp 2pq3 _ tpz - ,,.qz
—azaydz+ay2dy— 7 dz + e ,
2 — 2 — ro?
and therefore g_?;=__2pq8 ;g’ '
the value of 8%x/d20y being the same as before.
Co Oz % /O )2__rt —s?
" 2% " oyt <Bz—ay =pr

Second Method. Suppose z=f(z, y); then

oz oz
p= %=fw7 q =a—y =fy-

If the equation z =f(z, y) is solved for  in terms of z and y, giving
Z =@(z, y) say, then the partial derivatives with respect to z and y of
any function y(z, y) are given by

(2)2v 2z, (20) 20 2e, o0
%2/ ox oz’ )_axay oy’

oy
oy oy o .
Here % and 3y are the total derivatives of y with respect to z and y.

The function y(z, y) contains z, since = is now a function of z and Y,
and contains y explicitly as well as through «, thus bringing in the
additional term 2y/dy. The two values (dy/dy) and oy[dy are quite
different.

Now differentiate the equation z=f(x, y) with respect to z and y
respectively ; we find

az—(———az , thatis, 1 —f”E’ so that % Fp

0_( oy /)’ that is, O_f:c‘é?/ +fy» so that %= p’
. aﬁfl?_—l ap__l.apax___r
Aga-m, -a?.__pT a)_? -a?;a—'p_a;
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since p is a function of « and y.

o —l( ) —l[&pax Bp]_rqpxsp

azay p* ox 0y Oy
a’m -1 _2pgs —tp?-rqt
() (-
. aq) 6q ox aq q
since (ay aw ay+ ay -8 5 +.

The student should note carefully the two different meanings of the
symbol dy(, y)/dy. When « is independent of y there is no ambiguity,
the derivative being as usual ; but if = contains y the derivative is a
total derivative (see E.T. p. 212 and p. 219).

If the relation between z, ¥ and z is given by an equation of the form
P(x, y, z) =0 we have, when z is considered as a function of  and v,

o
Fx-i-Fzé-;:O» or p= - Fy/F,,

and similarly g¢= - F/F,.
When F =0 is taken as defining « as a function of z and y we find

ox oz F, 1
Fy+Fop =0, 5= —F’:,:f);
F.+F z_ _Fy_ ¢
vt ’”aJ o o F, P

The rest of the work is as before.

48, Change of Variables. If y is given as a function of z, and

if the variables are changed by the substitutions z = g(u, v),
y=v(u, v) so that v becomes a function of u, the problem of
expressing the derivatives of y with respect to x in terms of
u, v and the derivatives of v with respect to u has been briefly
discussed (E.7. p. 234) for the simple but important case
x=vcosu, y=vsinu. The method is quite general and the
student should have little difficulty in applying it to a given
case. Thus

dy dy . dx dv dv

ds=du " ("’“'P”@)*(‘P“*"’”aa)’
Py_(d dy). do
dz® \du dz/ "~ du’

.. d (dy dx
and the derivatives - Tn < dx) and au 2Te easily found.

The problem of change of variables for functions of several
variables is distinctly harder. A special but very important
case has been worked out fully (E.T. pp. 237-240), and the
principles that underlie the solution in that case will now be
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illustrated in some detail, particularly for a function of two
independent variables.

Problem I a. If z is a function f(x, y) of the independent
variables x, y and if x, y are changed to new independent variables
u, v by the substitutions x=@(u, v), y=1p(u, v) it is required to
express the derivatives of z with respect to z, y in terms of u, v and
the derivatives of z with respect to u, v.

The student must pay particular attention to the meaning of
the symbols. Thus 0z/x means the partial derivative of z
with respect to x when y is constant, while 9z/0u is the partial
derivative of z with respect to « when v is constant, z being now
expressed in terms of w, v.

By §45, (3), we find

02 0z0u 0z0v 0z 0z0u 0z0dv
%:%a+%%’ 5@:%3_:1/-'-5’!—1@ ......... (1)

To obtain ou/oz,...,dv/dy, differentiate the equations
x=g@(u, v) and y=y(u, v) with respect to » and y respec-
tively ; thus, differentiating with respect to z, we get

_Opou  dp dv __Ou v
Samt e 0 TPt Py
_Oyou dyov _Ou v
O=Fu i a o O O Vugt Yoz

and these equations give

ow_y, 0v_ u

=T F= g e (2a)
while, by differentiating with respect to y, we find

ou ¢, oo,
T TS gy e (2b)

where J is the Jacobian (see § 46, Ex. 3 or § 55)

_ _ _a(¢, fl))___a(xy ?/)
J=up, Po¥e= 5w, v) ~ 3w, v)°

The equations (1) now give the required values of 0z{0x and
0z/0y, namely,

2_v,02 9,02 0z 9,0z ¢,02 3
EERNA TR S U vk dF ity dF SAIETUNIS (3)

We may also proceed as follows. By § 45, (3) we havo
Oz _0z0r 0z0y 0z 0zow oz dy ,
5§=%@+@a’ a—v=5:-c 5—v+—a—y a—v, ............... (l)
and if these equations be solved for 8z/dx and 0z/0y in terms of oz/du
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and 9z/dv we find the values given by equations (3), it being observed
that ox/du, ..., dy/ov mean the same thing as ¢y, ..., Y, respectively.
Equations (3) are of the form
0z 0z dz 0z az
a_ = .A % B 'a‘;)’ ay 0 av --------------- (4)
where A, B, C, D, 9z/ou, 0z/dv are all functlons of u, v and do
not contain z, y explicitly. We may therefore say that 0z/0z
and 9z/0y are functions, F(u, v) and G(u, v) say, of the new
variables u, v. Hence, to find 9%2/022 we put F(u, v) in place
of z in the first of equations (3) or (4) ; thus
0%z 0 [0z 0 aF
W‘é&(%)‘a‘é Flu,0)=A7, B% .......... (5)
the function 9z/0x of = and y being F(u, v) when expressed in
terms of 4 and v. In the same way we see that

N G . oq
ay< 2)— ay.G(u,v)_C +p%

9y? oy ou v
9% 9 ,0z\ 0 oG oG
30y 8x<ay> 'ax Glu, v) =43 +B55. ......... (5a)
9%z 0z aF
or dxdy 33/(89: F( U, )= 0 av

When the derivatives are expressed as in (4) we may say that
the operators 9/0x and 9/dy, applied to any function w of =
and ¥, are equivalent to the operators

9 9 0 0
respectively, acting on w, where w, is the value of w expressed
in terms of % and v.
The value of 92z/9x? is thus seen to be
0%z 0% 0%z 0A 09z 0Boz
s =A (A5 Bowos™ o 00" 30 20)
9% 0%z 04 0z 0B az>

+B(Ag 5+ Bt 50 sut v o0

% 0% % ; 94 o4
=A%y pt24B 55 + B av2+<A 8u+Bav>3u
9B _0B\oz
+<A%+B§1—’>%,

and the values of 3%z/dy? and 9%2/dx 0y may be found in the same
wa’y.



§ 48] CHANGE OF VARIABLES 115

The higher derivatives may be obtained by exactly the same
method ; fortunately they are not often required. The
algebra of the transformation is tedious but the method seems
simple.

Ex. 1. If x=rcos 8, y=rsin 0 show that

0%z 6 0 0% cos® @ -sin*f 9% cos Osin 6%
By 008 08in 055+ r rod 12 06
_cos Osin 6 9z cos? § —sin® 6 0z
r o 72 20"

See E.T. p. 236, equations (3) and (4).

Problem I b. If the relation between the old and the new vari-
ables is given by the equations u=@(x, y), v=yp(x, y), express the
old derivatives in terms of the new.

It is of course understood that the equations determine x
and y as functions of % and v, or that they can be solved for
and y in terms of # and ». In this case the form of the solution
is simple ; we have

dz 0z 0z 0z 0z 0z

3z o Pe T 5 Ve 3y ou Pyt 3,V
where the derivatives ¢,, v,, @,, ¥, must now be expressed in
terms ofuandv. The higher derivativesare then found as before.

Problem Ic. If the relation between the old and the new vari-
ables is given by the equations ¢(z, y, u, v)=0, p(, y, u, v)=0,
express the old derivatives in terms of the new.

Assuming that the given equations define each pair of the
variables in terms of the other pair we proceed as follows.
The functions to be determined are the functions 4, B, C, D
of equations (4). It may be possible in a given case to find
the expressions for u, v in terms of x, y or for z, y in terms of
u, v, and when these are found we can apply one of the two
methods already given. If the expressions just mentioned
cannot be found conveniently we calculate du/dz, ..., dv/dy as
in § 46, Ex. 3; these values are

ou_olp,y) g, p) 9v_alp p) g, y)
9z o(v, ) o(u, v)’ dx oz, u) o(u, v)

ou_0(@, y)_ 0@ y) dv_2p y)_ o y)
9y (v, y) 9(u, v)’ dy a(y, u) o(u, v)
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When these values of the derivatives of % and v are inserted
in the equations (3) we have the formal expressions for 9z/ox
and 9z/dy ; if in these expressions the values of z and y in terms
of u and v are substituted we shall have equations (4) and can
then find the higher derivatives as before. Even when z, y
cannot be conveniently expressed in terms of u, v the values
of dujox, ..., 9v/dy given by equations (6) are often useful, and
the student should note carefully the method by which they
are obtained.

Ezx. 2. Apply equations (6) to show that
(i) (g, ) . o(u, ‘U)_a(<p, v) (i) oz, y) . o(u, v) —
o(u, v) o(x,y) oz, y)’ o(u, v) oz, y)

Problem II. If z is a function F(z,y) of the independent
variables x, y, and if all the variables are changed by the sub-
stitution

z=f(u, v, w), y=g(u, v, w), z=hu, v, w), ......... (7)

it 18 required to express 0z/0x and 9z[dy in terms of u, v and the
derivatives ow[ow and dw[ov of the new function w with respect
to the new independent variables u, v.

It is supposed that equations (7) determine u, v, w as
functions of z,y, z. The equation z=F(z, y) becomes an
equation between u, v, w which defines a function w of u, v.
Hence z may be considered as a function of z, y where z, y are
functions of %, v, w, and w a function of %, v ; we may therefore
find (9z/0u) and (9z/0v) in terms of 0z/0x and 9z/dy by the rule
for ¢ function of a function.” The forms in brackets are meant
to indicate that z is a function of %, v and another variable w
which is also a function of , v.

Thus when z=A(u, v, w)

o0z\ 0z 0z 0w ow
<5a>=a_u T IS A (8)
and there are analogous expressions for (9x/du), ..., (dy/ov).
02\ 0Oz /0x\ 0z/0y
Now (a—u) =5(z)+ 5@(97)

since z=F(z, y) and z, y are functions of u, v, w. If we
now insert the values of (9z/0u), (dz/ou) and (dy/du) as given
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by (8) and apply the same method to (9z/dv) we find the
equations

ow ow\ 02 ow\ 0z

hu+hwa_ =(fu fw au> (gu+gw %)’a_y )

et S = (11 50) et (90 00 50

Equations (9) when solved for 0z/ox and 9z/dy determine
these derivatives in terms of dw/du and dw/dv. As a rule, the
coefficients in the expressions will involve all the variables,
but as z, ¥, z, w are all functions of , v, the solution is theoreti-
cally complete though in practice the actual determination of
the explicit forms in terms of %, v may be very laborious. The
values given by (9) are, however, of great importance in many
applications.

Equations (9) may be found by using differentials, thus :

0z 0z
dz_a—xdx+52—/dy#pdx+qdy.

Now express dz, dy, dz in terms of du, dv ; then

(32) du+<gv dv = p[( )d +< )dv]+q[<g%> du+<g—Z) dv].
Equating coefficients of du and dv we find, using (8), the
values given by (9).

49, Special Cases. In problems involving change of variables
it is frequently required to transform a particular expression
involving a combination of derivatives, and the general methods
given above can often be modified so as to reduce the algebraic
work. The following example illustrates an important case.
02 2
.2

Ez. 1. Transform the expression by the substitution

z =gp(u, v), ¥y =y(u, v) and show that
o o2 of o 2z\? [ox\?
f a:{’ ( f ag;) .. (A4), where J =(ﬁ) +(_a;>
i ax oy ow_ ¥y )
if o e s )

In this case it is much simpler to transform from derivatives in u, v to
derivatives in z, y. No doubt, by this method the transformation is
rather verified than proved, but the method of verification is important ;
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a straightforward application of the general method would be tedious.
We have, using the subscript notation to save space,

fu—-fm au +fy B e, (11}

In finding fuu the factors 8z/du and dy/du are obtained by differentiating
with respect to u; the values of 8f,/6u and 9f,/ou are found by
substituting f,, and f, respectively in place of f in (ii).

o2 oy oxdf, oyof
Thus  fuu=foza+/y au'Z+ 0 2u az Eo%

but, by (ii),

9 0 o)
fa; —fa:a: au fml BZ’ f'y —f.m/ au fWI
z\2 ax 0 2
80 th&tv fuu "‘f:c auz fv aug (au) fxa; +2 au azfzfy ( Z) fyyo ........ (111)
In the same Way we find
ox 0 oy\? .
Foo=fo gty ot (B rm+2Z W, 4 Iy m— (iv)

The expression fy, +fy, involves some symmetrical combinations of
the derivatives of x and y which in virtue of conditions (i) reduce the
whole to a simple form. We have

o(x, y) 0w oy 0wdy_ (az>2 (6x>2_(6y>2 (By)z
J_a(u,v) sudv oo \au) t\zs) =\za) T\3y) (W)

%r o oy 00y o% 0%z %

au’—w%—%%_ m, a—uz-l-a—vé =0 i (Vl)
2 2
and in the same way guyz gvz 0. (vii)

oxdy Owdy_  Oxdx Oxdx

Also mwout ooy ude dvou

=0, i, (viii)

If we now add corresponding sides of (iii) and (iv) and take account

of (v)... (viii) we find
fuu +fvo =J(fm +fmz)'

Hence, if f satisfies the equation f,, +f,, =0 it also satisfies the
equation fy,, +fy, =0 since J + 0.

If » and y are interpreted as rectangular coordinates the equations
z=¢(u, v), y=y(u, v) determine, by assigning constant values to
and letting » vary, a family of curves (u =constant), while if v is con-
stant and « variable the equations determine another family of curves
(v=constant). The equation (viii) shows that the two families are
orthogonal—that is, at each point where the two sets of curves intersect
the tangent to the one curve'is perpendicular to the tangent to the
other. - Whenever the curves are orthogonal the equation f,,,, +fyy =0
becomes f,,,, +f,y =0, that is, does not alter its form. :
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It is not hard to prove that, when the equations (i) are satisfied, the
equations (i), (vi), (vii) and (viii) will be satisfied if £ and « are inter-
changed and also y and v—that is, if  and y become the independent
variables and u and v functions of x and y ; the Jacobian J will become
1/J. (See § 48, Problem L. a). The proof of the relation (4) by applying
the general method may then be carried out, as above.

The student may, as an exercise, work out the transformation when
x =cosh u cos v, y =sinh u sin v ; the two families of curves are confocal
ellipses and hyperbolas.

Ex. 2. 1f zis a function f(x, y) of the independent variables z, y, and
if the variables are changed to the independent variables «, v and the

function w where

w2 _ o w=px +qy -2 @
=3.=P v_a?/_.q, SPTAQY =25 ceinineiiiiniinnns )

find the first and second derivatives of w with respect to u, v
Apply the method of differentials. We have

dw=pdr +xdp +qdy +ydg —dz=xdp +ydq

since dz=pdx +qdy,
so that dw=zxdp+ydg=xdu+ydv.
ow ow ow ow
But dw _Eﬁdu +?v- dv, so that =" =Y
If ow/ou =P and dw/dv =Q we therefore have
x=% =P, y=5; =Q, z=Pu+Qv-w............... L(ii)

Let R =0wjou?, S=0%w/oudv, T =0w/dv?, the symbols 7, s,¢
denoting the corresponding derivatives of z as to z, y (§ 46, Ex. 2).
Take the differential of P ; thus

dP_gdu +§€dv =Rdu+S dv.

Now, expressing these differentials in terms of dx and dy we get
AP =dz, du=dp=rdx+sdy, dv=dq=sdx +tdy,
so that dx = R(rdz + sdy) +S(sdx +tdy),
and therefore, equating coefficients of dz and dy,
Rr+8Ss=1, Rs+S8t=0.
Hence : R =t/(rt - %), = —gf(rt —8?),
and, by a similar method, 7T =r/(rt —s?).
It is easily shown that RT —S? =1/(rt —s?) and therefore
 r=T|(RT -8, s= - S/(RT - 8%, t=R/(RT - 8%.
The transformation fails if 7t — 82 =0.

" The transformation is known as Legendre s (see Forsyth D&ﬁ’ Eqns.,
4th Ed., §§ 202, 203). ‘
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The following example illustrates a change of variables that
sometimes causes difficulty through failure to notice the precise
meaning of the symbols.

Ex.3. If z is a function ¢(z, y, t) of three independent variables
z, ¥, t, and if two of the variables z, y are changed to two other inde-
pendent variables u, v by the substitution z=f(u, v, ¢), y=g(u, v, ),
find 8z/2t when z is expressed in terms of v, v, ¢.

If ¢(z, y, t) becomes y(u, v, t) when the substitution has been made,
it is plain that, while z =@ =y, the variable ¢ occurs in y(u, v, ¢) in quite
a different way from that in which it appears in ¢(z, y, £) ; hence
though ¢ =y it is not possible (in general) to have d¢p/dt =2dy/ot.

The simplest way of treating this and similar cases is to change all
the variables ; the substitution will then be, if ¢ =s,

Z=f(U, U, 8)y Y=Gg(Us U, 8)y =8 ceerrerrirenirnnrnnnnn (1)
Now denote z by ¢ or by y according as the differentiation refers to the
old variables «, y, ¢ or to the new u, v, s; by the usual rule we now have
op_opdz 292y Opat
9s 0oxds 0oy 0s ot Os
From (1) we get 0x/ds =f,, ay/as .—:gs, at/as— 1 and therefore

aw 8¢p
fq Hopp e (2)

We might by finding awau, 61,0,/61: complete the transformation in the
usual way, but the difficulty to be noticed is that 22/, when 2 is
expressed in terms of u, v, t, is equal to the expression on the right of
equation (2) after t has been substituted in it for 8. 'Thus if x=f(u, v, t),
y =g(u, v, t) the required value of 9z/2¢ is
opof 090 29,
dxr ot oy ot ' ot 3
and the expression is often, indeed usually, written as
oz of 020g9 0z
woiT oyt T A
on the understanding that z is @(x, y, t).
If the required value of 8z/3¢ be denoted by (9z/dt) we have
(2)-Z.22,2%
%) atwmoattaya
In this simple case if the new value of 8z/d¢ alone is required we may
at once apply the rule for differentiating a function of a function; we
thus find (az> oz 0w o2 6y+6z %z of oz 09 az
%) oz ot T oy ot motT oy ot

50. Elimination of Functions. By the elimination of con-
stants it is possible to form Ordinary Differential Equations
(E.T. Chap. XX); we shall show by means of examples that
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Partial Differential Equations may be derived by the elimina-
tion of functions. The general theory is quite beyond our
limits, and for it reference must be made to works on Differential
Equations. The notation p, g, 7, s, ¢ for the partial derivatives
of z with respect to z, y will often be used in the text and in the
Exercises (§ 46, Ex. 2).

Ex. 1. The equation Z:Z: f (g :cb), where f denotes any function

(an arbitrary function), represents a cone which has the point (a, b, c) as
vertex and whose generators are the lines given by (z —a)/(z —c¢) =f(t),
(y —b)/(z ~c)=t. Show that the differential equation of the cone is
z2-c=(x -a)p +(y —b)q.
Differentiate the given equation with respect to z and y respectively ;
thus, if df(z)/dt =f"(2),
(z-c)-(z-a)p=-(y -b)pf(®)
—(x —a)g={(z —¢) - (y - D)g}f'(®).
Eliminate f’(¢) between these equations and we find, after a slight
reduction, the equation stated.
It will be noticed that the differential equation is independent of the
particular function denoted by the symbol f; the function may be a
polynomial or any other function so long as it is differentiable.

Ez. 2. If z=f(x+ay) where a is constant and f is an arbitrary
function show that ¢ =ap.

Let x +ay =t ; then p =f'(t) and g =af’(t) so that ¢ =ap.

In this case we may prove the converse, namely : if ¢ =ap show that z
is an arbitrary function of x +ay. Change the variables by the sub-
stitution 4 =z +ay, v=x —ay so that u and v are independent.

oz 0z 0z 0z

‘We find p:m-i-%, q:a—a—-——a%’

so that ¢ =ap becomes 2ag~z=0. Hence z is independent of v and is
therefore any function of u or z +ay.
Ex.3. Ifz=x¢ (g) +y (g) show that

T +22Y 8 +YH =0, .o, i)
and by changing the variables from z, y to u, » where z =u, Y =uwv, prove
that equation (i) becomes 9%z/ou? =0.

Let y/z=v and denote by an accent derivatives with respect to v ;
then differentiating with respect to z, y we find

P=0) -L¢'0) - L), g=0') +1v/(v),

so that p+¥q=q¢(v), .................................. “i1)
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Again, differentiate (ii) with respect to z, y ; thus

-y, 11
r+de-Y%9="Lo'v), s+li+zq=;0'0)

so that, by elimination of ¢’(v),
22 +22Y 8+ YR =0, ccevreiriiiniiiiiiiiies (1)
Next we have u =z, v =y/x and therefore
& _voz 10z
P " uow 1Tuww
op vop 0% v 0% +1_;ia~"’z 2v 9z
“Pu uov out “uouow P T RV
8¢ vdg 1 %% v dz 102

=91 L &k vos_ o
=% " ou uov uoudv uwrow: uiow
,_2a_l2_12%
Ty uov udow?

2, 2.

Hence equation (i) becomes u? %l—; =0 or g—uza =0, the integral of
which is z =Au + B where A, B are constants with respect to u but may be
any functions of v; that is z=ug@(v)+y(v). Thus equation (i) has
2 =xp(y/z) +p(y/x) as an integral where ¢ and y are arbitrary functions.

Ex. 4. Show that each of the functions defined by the equations

z=ax +by +ab, ......... (i) and z=2y(xy) +1, ............ (ii)
where @ and b are any constants, are integrals of the differential equation
Z=XP FYGFDPGe coeninnniaiiinaiea (iii)

From (i), p=a, ¢=>b, and elimination of a and b gives (iii).
From (ii), p=n(y/x), g=n(2/y) and therefore
ap +yg +pg =N(xy) +~(@y) +1 =2, by (ii).

The integral given by (ii) cannot be obtained by assigning particular
values to the constants ¢ and b. (Compare E.T. p. 432, Ex. 2.)

Note. When it is said that a function is an integral of a
partial differential equation all that is here meant is that the
differential equation may be obtained from the integral by the
elimination of functions, as in Ex. 3, or of constants, as in
Ex. 4, (i), or else that, as in Ex. 4, (ii), the differential equation
is satisfied by the derivatives of the function, in combination
with the expression for the function in terms of the independent
variables. Whether, in any given case, more integrals than
one exist and, if so, what is the character of the integrals is a
subject discussed in works on Differential Equations, e.g.
Forsyth’s Differential Equations, Chapters IX and X.
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EXERCISES V
1. If 2axz + 2byz +cz® =k, ax +by +cz =R, prove that

0% 0%z 022
8 0% 3 = o=
R Py a*, R %oy abk, R3 o b2k.
2. If 28 + 3(ax +by)z =c?, prove that
0%z 0% 222 2z(ax +by)?

2 7~ 2= =T T I
P 2% oy TV o (aw by 1

3. If ax® +by® +cz® + Bhxyz =k, show that
0%
ox oy
4. Ii u=log[{z + (22 ~y)}} /& — (22 - y*)}}], then
du=2(yde -z dy)ly(=* -y*)}.
5. If wu=cos™ (1 —xy)/(1 +2? + 42 +x”y2)§], then
du =dz/(1 +22) +dy/(1 +y?).
6. If zut + 2yv — 4oy =10, yv? — 22u +y? =15, prove that
du_4dyv-2u-utv dv_ 4y +ut
ox  2x(wv+1) * oz 2y(uv+1)’
ou_ 2y +aav—1v?  Bv_dw -2yu —2v -w?
oy~ 2z(wv+1) ° oy 2y(uv +1)
7. If z =a tan™! (y/x) show that
1) (1 +¢®)r —2pgs+(1 +p2)t=0;
(i) (£ = s")/(1 +p? +a%)? = —a*/(@* +y? +a*).
If z =a cosh™1{(x? +y')i‘/a] show that equation (i) holds but that in (ii)
(«% +%2)? must be put in place of (2 +¥2 +a?)%.

(h2y +c22)3 =hk(hzy —cz?) — 2(abc + h®)z2ysz.

8. If p(z, ¥, 2) =0 and (=, y, 2} =0 show that, when these equations
determine y and z as functions of z,

dy_o(p, ) /0(p, w) dz_2(p, v) [0(p, ¥)

dz~ 0(z, x) | 0(y, 2)° dx o=, y)/ 3(y, 2)
9. If £=y2+272, n=22+22 (=2%+y? and if » is a function of
z, y, 2 prove that

ou ou ou ou ou ou
”%*3/&,“52*2(5@*’75,*%—{)
u ou ou
— 2 3 2 ©
_4(1'/ a§+z 3, T % ac).

10. If z=a,&+b7, y=a.&+byn, (a,b;+a,b;), and if f(x, y) become
F(&, n) when expressed in terms of &,  prove that

9 0 or oF
xl'é{}"’i’/l‘a_fy:‘fla—& _Hh—%’

where £,, , are the values of &, 7 when z,, ¥, are the values of z, y.
Extend the result to n variables z;, z,, ..., z, and &, &, ..., &u-
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11. If f(x, ) is a polynomial of degree n in x and ¥ and if
"f(zft, ylt) = g(x, y, t)
prove that TP, +YPy +ips=ng,
and that, if f(z, y) =0,
(@@, +y@y +i@ele=1=0, or afy +yf, +[Pele=; =0.
Deduce that the equation of the tangent at (x, y) on the curve
f(z, y) =01is, X, Y being current coordinates,
Xfy+ Yfy +{pel=1=0.
Find also the corresponding form of the equation of the tangent
plane at (2, y, z) on the surface f(z, y, 2) =0.
12, If f(x, y) =u, + U, ; +... + U; +uy, where u, is a polynomial in
z, y that is homogeneous and of degree r (u,=const.), show that the
equation of the tangent at (x, y) on the curve f(x, y) =01is
Xfo+Yf, +uy 3 +2U, 5 +... +(n - 1)u, +nuy=0.
If u;, =ax + by, prove that the polar of the origin is
aX +bY +nuy=0.
Find the corresponding equation of the tangent plane at (z, ¥, z) on
the surface f(z, y, z) =0, where u, is now a homogeneous polynomial of
degree r in z, ¥, 2.

13. Change the variables z, y, z in the equation

to &, 1n, { where &=x(z, n=y/2, (=2 and show that the equation
becomes {du/o{=nu. Deduce that u is of the form ("F(¢, 7), ..
2" F(z/z, y/z), and is therefore homogeneous.

14. If » is a function of the differences y -2,z -z, « —y of the
independent variables z, y, z, prove that

O[O + 0[Oy + DUIBZ =0. ...ooaeeeeeeee (i)

Deduce by a suitable change of variables a form of equation (i) which

shows that u is a function of the differences of z, y, z.

15. If z =f[(ny —mz)/(nx —12)] where f is an arbitrary function, prove

that (nx —lz)p +(ny —mz)q=0.
16. If z —az =f(z — by), show that
bp +ag =ab,

and give a geometrical interpretation.
17. If u=logr +6 where r?=zx?+y2, tan 0 =y/r and z=rp(u), the
function ¢ being arbitrary, show that
(z+y)p - (r -y)g=2.
18. If w=f(v) where u, v are functions of z, y, z, prove that
o(u, v) 22 + o(u, v) 22 - o(u, v)
o(y, z) 8z " 0(z, 2) By 2(x, y)’
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19. If u =@(x +at) +y(z —at), ¢, y arbitrary, show that
o*u o

C =2l i
BT =@ g crerereeeeeeeseesinn, i)

Prove also that if the variables x, ¢ are changed to vy, z, where
Yy =% +at, z=x —at equation (i) becomes 9%u/dydz =0, and deduce that
u=f(y) + F(z), (f, F arbitrary).

20. If z is defined by the equation y =z¢(z) +y(z), where ¢ and y are
arbitrary functions, show that

() p+99(2)=0; (ii) ¢* —2pgs +p* =0.

21. In the differential equation r —2s +¢=0 change the independent
variables to « and v, where x =u, = +y =v, and prove that the equation
becomes 92z/u2 =0.

Deduce that z=xz¢(z-+y)+y(r+y) is an integral of the given

equation.
22. If z =f{z + ¢(y)}, where f and ¢ are arbitrary functions, prove that
ps=qr.
23. If z is defined by the equations, ¢ arbitrary,

2B - gy, @) 258y e,

prove that g =2.

24. If {z - p(o))* =a%(y® —a?) and {z—q)(a.)}d%(:'—zza_'v’, show that
pg==y.

25. If z=ax +by +c¢ where a, b, ¢ are functions of a variable A that
satisfy the equation

da, db_ de

atvaita

prove that 7t —s2=0. Give a geometrical interpretation.

=0,

26. If z is a function of #, y and x=wu +v, Y =uv, prove

() (u- )az_uaz_ 0z u )az___a_z_ oz
Vo= "o Va5 o
(ii) a(x,y).a(u, ’U)=L

o(u, v) O(w, y)

27. If u and v are functions of z, y defined by the equations

v _0F(z, u) _ _oF(z, u)
T ow YT T T
where F is an arbitrary function, prove that
ou,0) |

oz, y)
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28. If f and F are two functions of z, y such that
¥z, y)_0F(z,y) ¥l y)__0F(z,y)

ox oy oy ox
prove that if =7 cos 6, y=rsin 0,
of_1oF 19 __or
o ro0’ rod ~ or’

29. Change the variables z and y in the equation
Yir ot =zp —yq
to u and v where u =2 -~ y?, v =2zy, and show that the new equation is

(ui— a)?—z—o
o Yoo

30. If @ =r cos 0, y=r sin 6, prove that the equation

%u %u 2 oy Ou
oy (5;'@*) ~ @ - gy =0
B 2.
becomes r%-z—f‘;:o,

and show that u=rgp(0)+y(r), where ¢ and y are arbitrary functions.

31. If X, Y denote respectively the operators
XExa—-i +y%, stzgc +y2—%,
evaluate X2(xmyr), Y3ax™ym").
If p =0z/0x, ¢ =0z/0y, show that
X (2% +y*q) =Y (zp +yq +2).
Prove that, if r is any positive integer,
YXr=(X-1)yY.

32. Prove that if in the equation

0% oz oz

30 T2yt 5 +2(y —y’)a—y +a%y?z =0,

the variables z, y are changed to u, », where x=wuv, y=1/v, the new
equation is obtained by writing « for z and v for y—that is, z is the same

function of u, v as of «, y.

33. If the variables z, y in the equation
(22 +y2)(r +1t) +4xy s + 2xp +2yqg =0
are changed to u, v, where 2x =e% +e¢?, 2y =e% —¢?, show that the new

equation is
#x o
aator

34. The coordinates of a point P with respect to two sets of rectangular

axes with a common origin are (z, y. z) and (&, 7, {), and the direction
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cosines of the second set of axes with respect to the first are I, m,, ity ;
Uy, My, Ng 5 Uy, My, ngTespectively. Ifuisa function of z, y, 2z, prove that
ou ou
3z ._ll % +l +l3 3 (
with similar expressions for Bu/ oy a.nd du/dz so that the operators
8/ox, 0/0y, 0/0z and 8/0¢, d/en, 0/ are changed by the same formulae
as the variables «, ¥, z and &, 9, (.

Deduce : e - .
3 . 0
i =) (i = —_
® z%zz(ax) ( ( ) 0%t o 08
ou ou ou\? /ou
where ,%,(a?) (6w> +(5§) + az) eto.

35. If r2 =a3 +.y2 +22, and if the function f(r, 2) satisfies the equation

0%u azu %u  o%u
Veus x';zaaﬂ ot =

deduce from Example 34 that the function f(r, Iz +my + nz) also satisfies
the equation, provided 12 +m? +n?=1.

36. If x =rsin 6 cos ¢, ¥y =rsin 0 sin ¢, z=rcos 0; prove that

& _sin 6 cos & —sin 0 sin iar—cos 6;
o P P @ 3
g@_cosocosq: gq_cosesmq) 80 sinf,
ox r oy r oz~ r ’
a.p sin @ aq; cos @ @_0

¢~ rsin0’ %y rsin @’ oz

Find also the derivatives of x, y, z with respect to r, 0, ¢.

37. If u is a function of the independent variables z, y, 2, prove, using
the values in Example 36, that

%—sinecos ou cosecos<pau sn e 3_’“
Pt Pat r 80 rsin 0 0p

ou_ Ou_ cos fsin pdu , cos g du

a./_sln03m¢ar+ - 36 " rsin 0 3g
ou_ cos § 2% _ sin §0u,

i Br r 06°

2. =G+ (50) + (reiwots)
R ( +t\780) *\rein 03¢/ -
38. Using the abbreviations P, Q, R, where
P —sin? o_a_u cos? 0 2w  sin20 0%w  cos® f Ou sin20 du
- A 86:t y Bro6t r or 12 80
_1 0% cot0 o 1 ou
Tr 6raq,+ 7% 8009 ¥ sin? 0 0’
R=—1 2’1{_‘_13_1& cot 0 du
Trsint00gi (ror T 2 00
G.A.C. B
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prove that

%:P cos? p —Q sin 2¢ + R sin?® ¢,

P _ psin? @ +Q sin 2¢ + R cos? ¢,

oyt
U L, (lazu 13_«4)_. 1 2% 10u
-a—z—’——COS 0*672-‘!'8111 9 1’25_0—2-4"['67‘ sin 20 (TW—‘;‘E_@—B ,

and deduce that V*u (E.T. p. 238) is equal to
Ou 20u 1% cotOou 1 o .
61‘3+;a7‘+7'2 702 72 26 Fan? ow ................. (i)
1 f,0%(ru) 2%(ru) o(ru) 1 a“(?'u)} (i)

=m 1" o tagr T 55 Timre g

39. In Example 38 let ru =k® and rp =k% =const. ; if the variable r
is changed to ¢ show that the expression (ii) in Example 38 for Viu
becomes

0% [ 2 9%(ev)

P400) | 0 2e0), 1 Pev)y

e 0p? + 268 sin? 6 o¢?
Hence show that if F(z, y, 2) satisfies the equation V?u =0 so does
1. /kx Ky k% .
?F<7’ 5 ?) (Kelvin.)

[If é=¢sin 0 cos ¢, n=p sin O sin ¢, {=p cos § the equation V2u =0
becomes V20 =0 where in V2v the variables are &, 7, {.
But @ =k*[o® y=Kk/e* 2=k*(le® @*=&-+n*+(* and
v=7§, Pz, y, 2) =% F(lc:—f—, ]%;7, —"-’}).
In v we may now put z, y, 2, r in place of &, 7, {, o.]
40. If &=kz(r?, n=Kky/r?, {=k®%/r?, r?=a?+y?+22, k% =comst., and
if ¥ is a summation as to z, y, z, show that :
(1) Zngle=nals +myly +1as =0, Bebp =0, Z&m,=0;
(i) 2(&)? =Z(n,)* =Z(()? =krt;
(iii) Z&,, = —2&/r2, Zn,, = —2n/r?, Blp, = —2(/r2.
I f(x, y, 2) =&, ()5
(iv) af, +ufy +2fs = — (S +npn + (@)
41. If z=F(x, y) is the equation of a surface and if x=f(u, v),

y =g(u, v), 2 =h(u, v) (See Bell, Coord. Geom. of Three Dimensions, § 185),
prove that
oz _ Jl oz _ Jz
i A i K
Ay, 2) _0(z, x) 9=, y)
o(u, v)’ "7 O(u, vy T o(u,v)

where Jy=



v.] EXERCISES V 129

42. (%, ¥, z; p, ¢ r) is a function of two sets of independent variables
z, 9, z and p, ¢, r, three in each set, and ¢ is homogeneous and of the
second degree in p, ¢, r. The variables p, ¢, r are changed to &, 7, {
by the transformation

%9 . % . % .
5_5;, 77"—aqp {—ar, ........................... (l)

if @(x, ¥, 2; p, q, ) becomes y(zx, y, 2; &, 5, {) prove that

_oy oy Oy
p_sf’ Q—an, r‘—'a—( (i)
dp_ oy op_ oy op_ gy

ox  ox’ 9y oy oz oz
5 o op op .

[By Euler’s Theorem, p% +q 3 tras =2¢ so that we may write

pE+an+r{=2¢0=¢+y.

Now take the complete differential of each side and apply (i): the
results follow at once.

If there are two sets of n independent variables, z,, @,, ..., x, and
P> P2s -+ » Py and if @(xy, ..., 2,5 P, ..., p,) is homogeneous and of the
second degree in p,, ..., p, the transformation

op N
Erzap') r=1, 2: e M ‘P(“’p sy Py ~--,Pn)’="l’(¢”1, cees &y '51""' 5»)

i oy %9 _ Oy
grves Pr=%f ow, " om)




CHAPTER V
IMPLICIT FUNCTIONS. JACOBIANS

51. Implicit Functions. Throughout our work it has been
assumed that an equation f(, ¥) =0 determines y as a function
of x; y may be determined for all real values of z, or only for a
limited range of z, and the equation may define more than one
value of y. For example, the equation

102% — 6zy +y2-1=0
gives y=3x +./(1 -2 and y=3x—./(1 —x?),
and thus defines two functions, each of which exists for the
range —1=xz=1.

It is seldom, however, that it is possible to obtain, as in this
simple case, the expression of y as an explicit function of =z,
and appeal is made to the representation of the equation by
a curve as sufficient evidence for the existence of a function
y that can be treated as if it were explicitly defined as a
function of x. Exercise in the tracing of curves from their
equations is from this point of view of special value as it
produces what may be called a practical certainty that, at
least in a very large number of cases, the equation does define y
as a single-valued, or as a many-valued, function of . Itis
desirable, however, that the advanced student should investi-
gate the question more closely, and we now consider Existence
Theorems—that is, theorems that specify conditions which
guarantee that an equation does define a function, even though
the actual determination of an analytical expression for the
function may demand new processes or may be, from a practical
standpoint, too laborious. For many purposes, however, it is
the fact that an equation does define a function, rather than
an expression for the function thus defined, that is of real

importance ; hence the value of Existence Theorems.
130
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In the following discussion the conditions imposed on the
functions are more drastic than is absolutely necessary but
they allow sufficient scope for the demands of ordinary analysis ;
for an excellent treatment of the whole subject, with less
drastic conditions, the student is referred to Goursat’s Cours
d’ Analyse, Vol. I, Chap. III.

In regard to the general character of the discussion it may
be helpful to the student to note that the existence of a function
is only established, in the first place, for a small range of each
of the variables. Thus if f(x, y, 2) is zero for the values a, b, ¢
of z, y, z respectively it is shown that, under certain conditions,
the equation f(z, y, 2) =0 determines z as a function ¢(x, y) of
z and y where z, y, z differ but little (in general) from a, b, c.
In the language of geometry the point (z, y, z) is confined to
a region (R,) defined by such inequalities as

|z-a|=h |y-b|=Zk, |2-c|=1
where &, k, I are positive and may be very * small.” It may
be possible afterwards to extend the range of the variables
for which ¢(xz, y) exists, but the essential element of the dis-

cussion is the proof of the existence of ¢(x, y) for values of z, y
that differ but little from a, b respectively.

2

52. Existence Theorem I. Let f(x, y) be a function of the
two variables x, y which satisfies the conditions: (i) f(z, y) is
zero for x=a, y=>b; (ii) the partial derivatives f, and f, exist
and are continuous mear (a,b); (iii) the derivative f, is not
zero for x=a, y=b. When these conditions are fulfilled there
18 one and only one function y of x, say y=@(x), that satisfies
the equation f(x, y)=0 for every x that is near a,* and that
is equal to b when x=a; further @(x) has a derivative ¢'(x)
and both @(x) and @'(x) are continuous.

It may be noted first that f(x, y) is continuous near (a, b)
since the derivatives f, and f, exist.

Let the neighbourhood of (@, b) for which conditions (ii)
and (iii) hold be the region (R,) defined by the inequalities

|2 =@ | Shyy || Eyererrerervrenrrennn(By)

* This means that the equation f{x, ¢ (x)} =0 is an identity if = is near a.
A similar meaning is to be given to satisfying an equation in the corresponding
statements in the other theorems.
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If |h| < by and | k | < ¥, we have by the Mean Value Theorem,
§ 45, since f(a, b) =0,

f(@+h, b +k)=hf.(a +06h, b +6k) +kf,(a +06h, b +0F)...... (1)

where 0 < § < 1.

Now f, is continuous near (a, b) and is not zero for x =a, y =b ;
there is therefore a neighbourhood of (a, b) in which f, is not
zero, and it will be assumed that %, and %, have been chosen
so that f, is not zero in (R,). In (R,) the continuous function
[y has therefore always the same sign as it has at (a, b), and is
numerically greater than some constant B, say |f,|> B.
Again f, is continuous and therefore |f,| is bounded in (R,),
say |f.|<A4, a constant.

Next let %, be the smaller of the two numbers %, and Bk,/4,
so that Ah, < Bk,, and let (R,) be the region defined by the
inequalities

|Z—a|Shy, |Y=b|=<ky ceurrrviannnnn.. (R,)

In equation (1) suppose |h|<h, and k= 4k,; the second
term on the right of (1) will then be numerically greater than
Bk, while the first term will be numerically less than Abh,
so that the sign of the right side of (1), and therefore the sign
of f(a +h, b +k), will be that of the second term on the right
of (1). Now f, has always the same sign and therefore if the
second term is positive when k =k, it is negative when k= —k,,
while if it is negative when k=#£, it is positive when k= - ;.
Hence if &, or x where x=a +4, is kept constant the function
f(x, y) changes sign as y varies from b — &, to b +k, and there-
fore, since f(z, y) is a continuous function of ¥, it is zero for
at least one value of y in the interval (b —k,, b +k,). Further,
f(z, y) is not zero for more than one value of y in that interval ;
for, if it were, f, would by Rolle’s Theorem vanish at least
once in the interval and it does not. Thus for every value of
 in the interval (@ — A, @ +h,) there is one and only one value
of y that satisfies the equation f(z, y) =0 ; since to each value
of z there corresponds one and only one value of ¥ we may
denote this value of y by @(z) and obviously y or @(z) is equal
to b when x is equal to a, since « is an admissible value of z.

Again, if y=¢(r) and y+k=g¢(xr +k) both f(r,y) and
f( +h, y +k) are zero provided (z,y) and (z +h, y +k) are
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both in (R,), and equation (1) holds if for @ we put z and for b
we put v ; hence, since f(x +4, y +k) is zero, we have
@ +h) - (@) _k_ _[i(x +0h, y +0k)
h kT fu(x +06h, y +0k)

80 that o'@)= [ kb= ~fuz, Y)fz, v).

h—0

Since f, and f, are continuous, and f, is not zero, ¢’(x) exists
and is continuous; ¢(z) is therefore also continuous.

It is proved, therefore, that when the conditions of the
theorem are fulfilled the equation f(z, y) =0 determines y as a
function ¢(z) of z that exists at least for the range | z —a | < h,.

The range of « for which ¢(x) has been proved to exist
may, however, be greater than that just found. Suppose that
(a’, b’) is a point in (R,) for which y=¢(x); near (a’, b') the
derivatives f, and f, are continuous, f, is not zero and f(a’, b’) =0
so that the conditions of the theorem hold for a certain neigh-
bourhood of (a’, b’), say for a region (R,;) defined by the
inequalities

|z —a' |Shg |y—b"|Sky ooivineeiaennnn. (R3)

It may happen, and usually does, that the region (R;)
projects beyond the region (R,) so as to contain points for which
x is greater than a +h, (or less than a —k,). Now in the region
(Bg) the equation f(x, y)=0 determines one and only one
value of y, say y = y(z), for which b’ = yp(a’) and f(z, y)=0; in
the part common to (R,) and (R,), y=¢(z) and b’ =¢(a’) so
that in the common part y(x) is the same function as ¢(z).
We may, therefore, in the part of (R;) that projects beyond
(R,), denote p(x) by @(z); in this way we see that the range
for which the unique solution of f(z, y)=0 exists may be
extended. By taking a suitable point (a”, b”) in (R;) it may be
possible similarly to extend the range still further; this
procedure will only be stopped when it is impossible to find
in the last region reached a point, («, B) say, that provides
a new region in which all the conditions of the theorem are
fulfilled.

The process thus briefly described is called Analytical
Continuation. The Existence Theorem is quite independent
of the process of continuation; this process is mentioned
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simply to show that the range for which ¢(x) exists may be
much wider than is given by the proof which has been developed
above. A similar process of continuation is applicable in
regard to the other Existence Theorems but will not be further
referred to.

53. Derivatives of Implicit Function. When it is known that
the equation f(z, y) =0 defines y as a function of x that has a
derivative dy/dx that derivative may of course be obtained
simply by differentiating the equation with respect to =, on
the understanding that y is a function ¢(x) of z. Thus we find

If the higher partial derivatives of f(x, y) are continuous we
obtain the higher derivatives of y or ¢(x) by successive
differentiations of (1), provided always that f, is not zero ; thus

dy\ d: d?
fxa: +f931l (f“?’ll f?l?l dz) dZ f1/ dxyz O

or Sou + 2fa:u +f,,1,( > + f,, dx2 ......... (2)

Provided f, is not zero this equation determines the second
derivative, and in a similar way the third and higher derivatives
may be found.

54, Existence Theorem II. Let f(x,, %5,..., %, y) be a
Junction of n +1 variables z,, %y, ..., %, y which satisfies the
conditions : (1) f(2y, Zg, ..., Xn, Y) 1S 2er0 for x,=a,, Xy =a,, ...,
Z,=a,, y=>b; (ii) all the partial dertvatives f,, fu o+ fons fu
exist and are conlinuous near (@y, @g, ..., G, b); (iil) the
derivative f, is not zero for x;=a,, 23=04, ..., Tn=a,, y=b.
When these conditions are fulfilled there is one and only one
Sfunction y of zy, g, ... , Ty, SAY Y= @(Ty, X, ... , ), that satisfies
the equation f(xy, Zs, ... , Ty, ¥) =0 for every point (%, Tg, ... , )
near (a,, @y, ... ,a,) and that is equal to b when X, =a,, ... , T, =a,;
Surther, the derivatives @u;, Puy s s Pa, €xist and are continuous
so that @ is also continuous.

The proof is essentially a repetition of that given for
Theorem I, and may therefore be developed with less detail.
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Let the neighbourhood of (a;, @y, ... , @y, b) for which condi-
tions (ii) and (iii) hold be the region (R,) defined by the
inequalities
le - |§h1’ I Lo — g lghl’ e ’l Zn _a’nléhl’ | y ~b |§k1"°(R1)

where h, and k, are positive. As in the proof of Theorem I it
may be assumed that A, and %k, have been chosen so that in
(R,) the derivative f, is numerically greater than B and each
of the derivatives f,,, fa, ..., fs, numerically less than 4
where 4 and B are positive constants. It is also to be noted
that f, does not change sign in (R,).

Next, in view of the application of the Mean Value Theorem,
let 2, be the smaller of the two numbers %, and Bk,/nd so that
nAh,< Bk, and let (R,) be the region defined by the inequalities

|2, — ay| S, | 23— g | Shy, -ov | Tn —An |Shy, [y —b|<ky ...(Ry)

Suppose now that | §; |<hy, | 85 |Shy,yeee, | 64 |Zhy, | K|S ky;

we have by the Mean Value Theorem, since f(a,, @,, ... , @,,b) =0,
f(a’l +61’ Qg +62’ cee s Ay +6m b +k)
= 0yf 0, +0afey + ooo +0nfan THfy eieiiennnn (1)

where the derivatives are all taken for the values
a, +06,, ay +08,,..., a, +06,, b +0k (0<b<1).

This equation (1) is treated as in the corresponding equation in
the proof of Theorem I. Let k= 4%, ; then the last term on
the right of (1) is numerically greater than the numerical value
of the sum of the first » terms on the right of (1). For

k| f, | is greater than k, B, while
| 8ufey +Oafey +-vv +0ufa, | <ho(4d +4 +... +4),

that is, <ndh,, so that, by the value of %,, the term kf, is
numerically greater than the numerical value of the sum of the
first » terms.

Hence when k= 1k, the sign of the right side of (1) and
therefore the sign of f(a, +9,,..., @, +0,, b +k) is that of the
last term on the right of (1). As before, if

z,=a, +0,, r=1,2,...,n,

and if z, is kept constant, we see that f(z;, ,, ... , Z,, y) changes
sign once and only once as y varies from b - %, to b +%,, and
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therefore the equation f(x,, %, ..., %,, ¥)=0 determines one
and only one value of y as a function of z,, z,,..., z,, say
Y=o, %5, ..., &,); further y=>b when

Xy =0Qy, Ty =0y, ..., T =0y,
since a,, dy, ..., a, are admissible values of .

Again, if
Y=@(®y, Tgs ..., Za), Y +k=‘p(xl +615 Zy +62, cees Zn +05)

where (2, Zy ..., Zn, Y), (%1 + 01, Ty +0gy ..y, Ty + 0y, y +F) lie in
(R,), the Mean Value Theorem gives the equation

0=20, fu + 03 0, + oo +0.fu, +Ef,
where the derivatives are taken for the values
2, +00;, ... , %, +08,, y +0k (0<0<1).

Hence if each 8, except §,, is zero we find

P(@gy ee s Tyt Opyovn s Tp) — Py, oin , Ty onn , ) =£= _@
8, &  f
so that o@/ox, = —f..[fy.

Since f, is not zero and the partial derivatives of f are
continuous, the function ¢ has continuous derivatives with
respect to z, %, ..., Z,; @ is itself continuous since each of its
partial derivatives is continuous.

The higher derivatives of ¢ may be obtained as before by
differentiating the equation f=0 when the derivatives of f
satisfy the usual conditions ; it should be specially noted that
f, must not be zero.

The range of the variables ,, #,, ... , @, for which the function
® has been shown to exist may usually be extended by the
process of analytical continuation sketched in connection with
Theorem 1.

In the proof of Theorem III the determinant called the
Jacobian plays an important part; we therefore define it
and prove one or two of its properties before taking up
Theorem III.

55. The Jacobian. Let y,=f.(%y, %3, ..., ), r=1,2,..., n,
be n functions of the variables z,, z,,..., #,, and let each of
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the partial derivatives dy,/dxz, be a continuous function of
Zy, Zgy ..oy Tn. The determinant J

9y Oy oy
ox,’ dxy’ " 3,

Oy W . O
where J=| oz, oz," "’ 0z,

......................

ox,’ dx,’ "’ ox,

is called the Jacobian or the Functional Determinant of the
functions ¥, ¥,, ... , ¥, With respect to 2, x,, ... , z, and is
denoted by

(Y15 Y2s -+ > Yn) or (Y1, Y25 -+ > Yn)

oy, Toy eee , Ty) A(@y, Zgy «.. , Z,)

T T

or J(ZL z:’ "z”) or J(Yg Yoy --- 5 Yn)-

For n=1 the determinant is simply dy,/dz;, the derivative
of y, with respect to z, ; the first of the notations given for J
is suggested by a certain analogy between the properties of the
Jacobian and the derivative, as shown by the following theorem.

If 24, 25, ..., 2, are functions of yy, Yo, ..., Yn ONd Yy, Yg, ... , Yn

are functions of x,, &, ..., &, then
02y, 295 voe 5 %n) 02y, 29y oo s Zn) Y1 Yoy oo Yn) 1
O(Zy, Tgy ove s ) O(Yys Yy ove s Yn)  O(Xy, Tgy ove , Yp)
If »=1 this is the usual relation dz _dz dy, . The proof is
dz, dy, dz,

simply a theorem in the multiplication of determinants combined
with the rule for the derivative of a function of a function.
Find the product of the two determinants on the right of (1)
by the ‘ row by column >’ rule ; that is, to find the element
in the rth row and the sth column of the product, multiply
the elements in the rth row of the first determinant by the
corresponding elements in the sth column of the second and
add the products. We have
0z, 0z, 0z,
rth row e e 9y,
9y, @_2 0Yn

sth column ;) ox " O
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so that the element in the rth row and the sth column of the
product is
0z, 0y, 0z, 0y, . 0% OYy

3y, oz, " oy, 0z, T By, oz,

and this is equal to 9z,/0z, which is the element in the rth row
and the sth column of the Jacobian of z;, z,, ... , z,.

If we suppose z,=z,, r=1, 2,..., n, and assume that the
equations which define y,, ¥,, ... , ¥, as functions of z,, z,, ... , @,
determine, conversely, z,, Z,, ... , %, as functions of ¥, y,, ... , ¥,
we find

(Y1 Yzs -+ s Yn) . O(%g, Ty, --- ,.'/t:,,):1
a(xb Tos vee s xn) a(yls Yar oee s yn)
%%—2—::—%:; =1, since 0x,/0x,=0 unless r=s, in

which case it is equal to 1.

The theorem expressed in (1) is a particular form of the
following : If y,, ¥s, ... , Yo are determined as functions of
Xy, Ty, .. , T bY the equations @ (%y, gy ooy Tn, Yy, Ygs oo+ > Yn) =0,
r=1,2,...,n, then

because

a(%a (722’ R (p") =( _ 1)na((p1, Pay eee s 'Pn) . a(yl’ Yas -« 5 yn) (3)
a(xl) x‘z: tee xn) a(yl’ ?/2, ey ?/n) a(xl’ x2: L] 27”).

Differentiation of the equation ¢, =0 with respect to x, gives

ar ara ara?/z arayn
alo;ﬁa% ai1+—ai;i o +5% fa@.—_o,

so that the element in the rth row and the sth column of the

determinant which is the product of the two determinants on

the right of (3) is — 9¢,/dz, from which the result follows.
Again, if ¥,.q, Ymes ... » Yn are constant with respect to

Xy, Ly ovv s &gy, OF if Yy, Ys, ... , Y, are constant with respect to

Zpni1> Lmpas -++ 5 Tn, then

a(yv coo Yms Yma1s oo s yn):a(yl» cee s ym) . a(ym+1 () yn)(4)
0Ty v Xy Topygs ve > X)) O(Xyy eee , ) O(Lppyy <o 5 Tn)

and in particular

a(yl coo Yms Tyl --- >xn)=a(y1 i :ym) . (5)
Oy .. Ty Tpgyq e > ) O(Xy oo, 2y,) 777777700
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To prove, note that dy,/dz,=0 if y, is constant with respect
to z..

Ex. 1If & 5 are functions of the three variables z, y, 2 and z, y, 2z
are functions of the two independent variables u, v, prove that

o ) _2&, 1) Az, y) O m) Ay, 2) , A, 4) O(z, @)
3(u, v)~ 3, y) 8(u, v)" Ay, 2) o(u, v)" oz, x) Au, v)’

56. Existence Theorem III. Let Sol@ys Ty ove s By Y15 Yas +-+ 5 Yn)
where r takes the values 1,2, ..., n, be n functions of the m +n
variables Xy, T, -+, T Y1» Yas -+ » Yu Which satisfy the following
conditions : (i) each of the n functions fy, fa, ... , fa 15 zero for

Xy =0y, Tg=0gy eev ) Ty =0psy Y1=0y, Yo=bg, ..., Yn =0y,

that is, at the point (ay, ... , @y by, ... , by) 3 (i) all the first
partial derivatives of the functions fi, fs, ..., fa with respect to

xl: AR xm: yla ey yn

exist and are continuous near (@, ... , @y, by, ..., by); (iil) the
Jacobian J of the functions fy, fs, ..., fn with respect to
Y1s Yoo «o+ » Yn 1S NOL 2€70 AL (@y, «ov y Gy by, ooy b,).

When these conditions are fulfilled there is one and only one
system of functions ¥, Y, ..., Yn Of the variables z,, x, ... , Tm,
say

Y1=@1(®y, Zg, -en s Tm)s Yo = Pa®1, Zgs oov s Tn)y -+
Yn = Qn(@y, Tgs -o- Zm),

such that, for all points (zy, Ty, ... , Tp) nEAT (A1, Ay, --- , Ay), they
satisfy the n equations f,=0, fy=0, ..., fo =0 and become equal
to by, by, ..., b, respectively when zy, Xy, ... , T, are equal
respectively to a, Gy, ... , Gy ; further, all the first partial
derivatives of @y, @a, .-+ , Pn With respect 10 xy, Z,, ... , Ty, exist
and are continuous so that ¢,, @,, ... , p, are also continuous

If n=1, that is, if there is only one function, Theorem III
is simply Theorem II, so that it is true when there is only one
function. It will be proved to hold for n functions by showing
that if it holds for (n — 1) functions, say the functions f, f3, ... , fa,
it will hold for the n functions f,fs, ..., fn. It will thus be
assumed that the equations f,=0, f3=0, ... , f, =0 determine
Yo, Ys -+« » Yn in terms of x;, Z,, ... ,, and y,, these functions of
*, ... T, Y, satisfying all the conditions respecting initial
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values, derivatives and continuity stated in Theorem III ; the
proof for n functions will then be developed.
The Jacobian J is

o% o o o
oYy’ dyy’ dyy’ T dy,
oyy’ Oyy’ dyy’ T

............................

Since J is not zero at (ay, ..., @y, b, ..., b,) the co-factors of
the elements in the first column cannot all be zero ; it will be
assumed that the notation has been chosen so that the co-factor,
J, say, of 9f, /0y, is not zero. J, is the Jacobian of the functions
Jos fas «oe s fo With respect to y,, ¥s, ..., ¥, and is not zero at
(@4, .oy @p,y by, ..., by).

The conditions of Theorem IIT are fulfilled by the functions

Jos fa oo s f» and  determine y,, y,, ..., y, as functions of
Xy, Tgy +ev , Ty, Yy because the hypothesis is that the theorem
holds for (n—1) functions. (It is to be noted that at this
stage y, is associated with x,, z,, ..., x,, and the solutions for
Y2, .- , Yo involve y, as well as z;, ..., z,). Hence we have

Yr=0r(Ty, Tgy eev , Ty Y1)y 7=2,8, e By ceervnrn... (1)
where y,, g, ..., y, satisfy f,=0, fy=0, ... ,fn=0, take the
values by, b, ... , b, respectively at (a,, ..., a,, b,) and are, as
well as their first partial derivatives, continuous near
(@y, ..., an, by).

Let y, be substituted for y, in f, and let

fl(xla cees Ty Y15 Yoy eee s wn):Fl(xlr vee s Lony ?/1) """ (2)

It will now be shown that ¥, =0 determines y, as a function
of z,,..., 2, Of the conditions required by Theorem II
the first is fulfilled since Fi(ay, ... , an, b,) is equal to

filay, oo, @y, by, by, ..., b,)

and is therefore zero. Again the partial derivatives of F,
satisfy the second condition; for, by the rule for differ-
entiating a function of a function, we have, since
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Fl =f1(2}1, voe s Ty Y15 Yoo 00 s yn) where Yar Y3y ooe Yn 8re the
functions y,, v3, ..., ¥n

aF, of, 90y, f10ys of1 0.

e N e L T i I e R P PR R PR TP PR 3
Oy, Oy, 0y 0yy; Y39y, 0Yn 0y, @)
oF, of, of,0vy, ofy Oys %a_'/’_n —
_3_.72‘5&:—_,+53723x3+3_y;3x_s+"'+8y,,8xs ,8=1,2,...m,

and all the derivatives on the right are continuous.

Lastly, the third condition that dF,/dy, is not zero at
(@5, -+ » G, by) is also fulfilled, as will now be shown.

When the values of y, given by equation (1) are sub-
stituted in f,, fs, ... , fn these functions vanish identically (that
is, for all values of z,, @, ... , T, ¥,) N€ar (ay, ... , A, by) and
therefore their derivatives with respect to y, are zero. Hence

_0fy 0fy0ys  0fy0ys 0y Opn
O_ayl +3y23y1+ ay33y1+ ot 0Yn 01y

_Ofn a0y 0fs0vs 0fn0n
=3y, 200y, " Oys 0 T Byadyy”

Now multiply the 2nd column of J by 9y,/dy,, the 3rd by
9 ys/0y;, ... , the nth by 9¢,/dy; and add to the first column ;
this transformation makes no change in the value of J. The
first element in the first column of J as thus transformed is
0F,/dy,, by the first of equations (3), while all the other elements
of the first column are zero, as shown by equations (4) ; hence
the transformed determinant is equal to the product of 9F,/dy,
and the co-factor J, of af,/dy, in J so that

’ oF,
J=J, o

and as J and J, are both different from zero at (a,, ..., @m,
by, ..., b,) so is dF,/dy,. Condition (iii) of Theorem II is
therefore satisfied.

Thus the equation F;=0 gives

Y =@1(Ty, Tgy oev s Trn),
and if now in equation (1) this value of y, is substituted we find
Yr =YLy, oev s Ty 1) =@p(Ty, oo, Tm)y, 7=2,3,..., 0.

At (ay, ..., a,) the functions ¢,, @;, ... , p» are equal to
b,, b, ... , b, respectively, while near (a,, ... , @) the first partial
derivatives of the functions are continuous.
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It has therefore been proved that if Theorem III is true
for (n — 1) functions it is true for » functions ; since the theorem
is true for one function it is therefore true in general.

Ez. Inversion. Let the n functions f,fs, ..., f, of the n independent
variables 2, %, ..., z, and also all the first partial derivatives of the
functions be continuous; prove that if the Jacobian J of fy, fy, ..., fi
with respect to z,, @,, ... , ,, is not identically zero the n equations

Yr=fr(p, Tos oo s @), =12, 0000 ciiiiiiiiiniiiiiiennn, (1)
determine, inversely, x,, 2,, ... , ,, as functions of y;, ¥y, ... » Yp-

Let Fy(xy, @, ..., Xpy Yy) =fr(%y, Ty, ... s 2,) ~y, and we have a case of
Theorem III. The Jacobian of Fj,..., F, with respect to z,, ..., z, is
the same as that of f,, f,, ..., f, with respect to zy, ..., z, (the notation
differs from that of Theorem III by the interchange of 2 and y).

By hypothesis the Jacobian of F,,..., F, with respect to zy, ..., &y,
which is independent of yj, ... , ¥,, is not identically zero, and therefore,
there is a set of values z, =a,, #, =a,, ... , %, =a, for which it is not zero.
For these values of @y, ..., 2, 16t y, =fr(ay, @, ..., @p) =byp, r=1,2, ..., n.
The functions F, satisfy the conditions of Theorem III. For, (i)
F,=0 at (ay, ..., Qp by, ..., b,); (ii) 8F,/dx,=df,/dx; and is therefore
continuous while 8F, /oy, = — 1if r=s but =0 if r=£s; (iii) J is not zero
near (a@..., @y, by,...,b,). Hence the equations F,=0, that is,
Yr =fr(®y, ..., 2,), give the system

Tr=@r(Yps oo s Yp) r=1,2,...,n.

This example is the problem of Inwversion ; the functions z,, ..., 2,
are inverse to the functions y,, ..., ¥,.

The values a;, ay, ..., a, and by, by, ... , b, are often called the * initial
values’’ of the variables w;, ,, ... , , and ¥,, ¥,, ... , ¥, respectively.

57. Dependence of Functions. Letf,,f;, ..., f, be n functions
of m independent variables z,, z,, ..., z,,. The functions are
said to be dependent if they satisfy one or more equations in
which the variables z,, z,, ..., #,, do not appear explicitly—
equations therefore which are satisfied whatever be the values
of z,, x,, ..., ,, ; the functions are said to be independent if they
do not satisfy any equation of the kind just mentioned, that
is, an equation in which #,, z,, ... , ,, do not appear explicitly.

Again, it may be said that the functions are independent if
it is impossible to express one of them in terms of the others.
For example, if f;, f,, f; are the functions

22 +y? +2%, 2y +az +yz, T +Y +2
respectively they are dependent since f; +2f, =f,;2, an equation
in which 2, y, z do not appear explicitly ; here f,=f,2-2f,
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so that one function may be expressed in terms of the rest.
Of course the functions would still be dependent if one could
be expressed in terms of some (not necessarily all) of the others.

In the following discussion we give the method of Goursat;
Cours d’Analyse, Vol. I, Chap. III, to which the student is
referred for fuller information ; the treatment by Bateman,
Differential Equations, Chap. VI is also instructive.

THEOREM. Let the n functions fy, fy, ... , fn of the n independent
variables x,, ,, ..., x, and also all their first partial derivatives
be continuous; the necessary and sufficient condition that the
Junctions should be dependent is that their Jacobian with respect
to x4, Ty, ... , , should be identically zero.

(i) The condition is necessary. Let J be the Jacobian and

Ye=Fr(Zy, Tgyeev, x,), 7=1,2, ..., n.
If J is not identically zero it is possible (§ 56, example) to

determine z,, z,, ..., z, so that
Zr =@ Yy, Ygs o+ 5 Yn)y T=1,2, ..., 10
where y,, ¥,, ... , ¥, may have any values near their respective

initial values d,, b,, ..., b,. Since the values of y;, ¥y, ... , ¥n
are quite arbitrary, it is impossible that they can satisfy an
equation F(y,, y,,..., ¥,)=0 in which the coefficients are
constants, that is, independent of z,, z,, ..., z,. If, therefore,
J is not identically zero the functions are independent.

(i) The condition is sufficient. It will secure brevity and at
the same time show quite plainly the lines of the proof for =
variables to take n =4 ; the notation will also be simplified.

Let the independent variables be z, ¥, z, f, and the functions
u, v, w, § Where

u=f1(2,9,2,8),v=fo(x, ... , 1), w=Fy(, ... , 1), s=fy(, ... ,2) ; ...(1)
the Jacobian J will be

o, of, o, o
ox’ oy’ 0z’ ot
%, % % o
ox’ oy’ 9z’ ot
U s s U
ox’ oy’ 9z’ ot
U s Uy Ui
ox’ oy’ 9z’ ot
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It is now assumed that J is wdentically zero; different cases
arise, dependent, on the minors of J.

I. Suppose that the first minors of J are not all zero; we
may suppose that the notation has been so chosen that the
minor, J, say, obtained by deleting the 4th row and the 4th
column of J is not zero. This minor is the Jacobian of f,, f,, f3
with respect to x, y, z ;

Wy fut)
1T 0=, v, 2)
Now, since J, is not zero, the first three of equations (1) may,

by Existence Theorem III, be solved for z, y, z in terms of
u, v, w, t; let the solutions be

x =@, (u, v, w, t), y=ps(u, v, w, t), 2=pzu, v, w,t). ...(2)
When these values are substituted in the fourth of equations (1)
we get

s=[f (@1, Pa P ) =F(u, v, w, 1) oeennennne. (3)

It is to be noted that u, v, w, ¢t are independent variables and
that the first three of equations (1) become identities when
@1, P2, @3 are substituted for z, y, z respectively.

It will now be shown that 9F /ot is zero, so that F' does not
contain ¢ explicitly. We have, by differentiating F(u, v, w, ?)
that is, fy(z, ¥, 2, t) where z, y, 2 are the functions ¢;, @,, @3

respectively
OF 0,00 000y Ue00s Uy ... (4)

ot ox ot oy ot o0z ot ot

Again, by differentiating the first three of equations (1) which
are identities when g¢,, @,, p; are put in place of =, y,z

respectively

o2 291 061 39y 3, 005 U

Tox ot "oy o8 0z ot ot

_0f3 09y afzz?;z %223 %
0_55_37.}.@ 5 +8z h +at' ............. (8)

_9f3 99, % @y % Qﬂa ajg

0=% o toy ot "oz ot o
Equations (5) determine the {-derivatives of @;, @,, ¢5; but
it is not necessary actually to solve them since the ¢-derivatives
of @, g3, @3 can be eliminated by transforming J, thus:



§ 57] DEPENDENCE OF FUNCTIONS 145

Multiply the 1st column of J by d¢,/dt, the 2nd by 0p,/[ot, the
3rd by 0¢,/dt and add to the 4th ; the elements in the 1st, 2nd
and 3rd rows of the 4th column will now be zero, by equations
(5), while the element in the 4th row is 9F/dz, by equation (4).
We thus find, since the value of J is not changed,

oF
173z
and therefore dF 3t =0 since J =0, J,+0, so that F does not
contain ¢ explicitly. Hence equation (3) gives s=F(u, v, w),
an equation that does not contain , y, 2, ¢ explicitly ; thus
the functions u, v, w, s are dependent.

It may be observed that there cannot be a second relation,
say s =F,(u, v, w), that is distinct from s =F(u, v, w); if there
were there would be an equation F = F, connecting u, v, w, and
therefore JJ; would be zero, contrary to the hypothesis.

II. Suppose all the first but not all the second minors of J
to be zero; we may assume that a non-zero second minor is
that obtained by deleting the 3rd and 4th rows and the 3rd
and 4th columns of J. This minor, J, say, is the Jacobian
of fy, fo with respect to z, y; since J,=0, the first two of
equations (1) may be solved for z, y, giving, say,

J=J

z=y(u, v, 2, £}, y=yp,(u, v, 2, t).
When these values are substituted in the last two of equa-
tions (1) we find
w=f3(7/’1’ Y2 2 t) =F1(u’ v, 2, t)s
s=fa(y1, Pa, 2, 1) = Fy(u, v, 2, 1).

It may be shown as before that neither z not ¢ occurs explicitly
in F,orin F,. For example,

OF, _ofs 0y,  0fs 0y  Os.

0z 0x dz 'Oy 0z 0z’
further, by differentiating the first two of equations (1), which
are identities when z, y are replaced by w,, v, respectively,

we find Oz?flét_p_l.’_% 21/12 +?_fl-
Ox 0z -dy 0z 9z’

0r 0z oy 9z 0z~
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By now treating the determinant J, on the same lines as was
done in the case of J and 9F[of we see that
or, oF,
0z ' 0z
To evaluate 9F,/0t and 8F,/dt take, not J, but, the minor of J which

is obtained by deleting the 4th row and the 3rd column of J; this
minor is also zero, by hypothesis.

Jy=J, =0 since J, =0, J,50.

We thus obtain two relations w = F,(u, v), s = F,(u, v) when
the first minors of J are zero but not all the second minors.

ITI. Suppose all the second (and therefore all the first)
minors of J to be zero but not all the third minors. When
there are four functions the third minors are simply the elements
of J. If we suppose df;/0x not zero we deduce z=g@(u, ¥, 2, 1)
and it is then proved as before that when g is substituted for z
in the other three of equations (1) the variables y, 2, ¢ do not
occur explicitly so that now there are three relations between
the functions.

The procedure is clearly general. When there are n functions
there is one relation when the first minors of J are not all zero,
two relations when the first minors are all zero, but the second
minors not all zero, and so on.

If J is zero merely because one or more of the functions
f1 fas -+ » fn is zero (or constant), it does not follow that the
functions are dependent. It must be specially noticed that
the proofs assume that J is identically zero. The following
simple example is usually given.

Letu =22 +y2 — 1,v =2 cosa +¥y sina — 1, where o is constant.
Here J=2(xsin a. —y cos ) and is therefore not identically
zero. But it is easily seen that

w2 - 20 =},
and J =0 if v =0 and v=0; u and v are, however, independent
and the relation =0 is not a consequence of v=0.

Of course, if the Jacobian of f}, fs, ..., fo With respect to
X, Ty, ..- T, is identically zero, and if these functions contain
other variables, say 2z, 2y, ..., %, these variables 2y, ..., %nm
will appear (usually) in the equation or equations that connect
fu>far-++» fa; what the theorem just proved guarantees is only
that z,, ..., @, do not appear in these equations.
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58. The Hessian. An important Jacobian is that in which
the functions f,, f,,...,f. are the first partial derivatives
of[0x,, of [0z, ..., of[0x, of a function f(z,, z,,..., z,) of the
n independent variables z,, z,, ..., 2, ; this Jacobian is called
the Hessian of the function f(x,,..., z,) and may be denoted
by the symbol H,. The element in the rth row and sth
column of the determinant H, is

d af d f
3z, 3z, that is, a0z,

Ex. 1. If f is the quadratic form
an + .+ Aup®,? 20,0, %0 + ... +20y,_1,, %y 1T,

the Hessian of f is a numerical multiple of the discriminant of f ; it does
not contain any of the variables.

Ex. 2. 1If f(x, y, z) is a polynomial that is homogeneous and of the

nth degree in z, ¥, 2z, prove that the Hessian is homogeneous and of
degree 3(n —2).

EXERCISES VI.

1. If x=rcos 0, y=rsin 0, prove A=, y)_r, and if

o(r, 6)

z=rsin 6 cos ¢, y =rsin O sin ¢, z=r cos 6,
oz, y,2) _ ,
m =72 gin 6.

2. ¥ +y+z=u, y +2z =uv, z =uvw,

oz, y, 2)

— g2
o(u, v, w) =ute.

o, +ag+... tx, =y, Ty +25+... +T4 =Y Yg ...

Tp+Zpygt o Ty =Y1Ys oo Yps ooos Ty =Y1Ys .. Ups
o(xy, Ty, ... , T,)

—yn—lyn—2 42 PR
Y1 Yor - 1Y) ¥ yE Yn—9Yn—1

3. If y, =cos z,, y, =sin x, cos x,, y; = sin x, sin x, cos x,,

AY1s Y2 Ys)
3@y, g, )

extend the theorem to the case of n functions.

=( - 1)® sin’z, sin%z, sin z,,

4. If x =a cosh £ cos 7, y =a sinh & sin 9,

gg—:g; =4}a?(cosh 2£ - cos 29).
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5. If  =sin 6(1 - c%in? q:)*, y =cos 0 cos ¢,
d(x, y)__ —sin p{(1 —c?) cos?0 +c? cos?q}
30, )" (1 —csin?g)}

6. If u=z/(1 -r)}, v =y/(1 -1}, w=2/(1 —r%)} where 12 =22 +y? +22,
show that
o(u, v, w) _ 1 .
o(x, ¥, z) —(l _,z)\}

Extend to the case of n functions y,, ¥,, ... , ¥, Where
Yo=al(1 —r)8, P=zdia® . tad.

7. Prove that the functions 3z +2y -2, x —2y +2 and z(z +2y -2)
are not independent and find the equation that connects them.

8. The functions u, v, w of x, ¥, 2 become functions U, V, W of
&, 7, { when =, y, z are changed to &, 7, { by the substitution
z=U&+mm +n 6, y=0LE+men +nyl, z=05+mgn +nyl;

if M is the determinant | I, m, ny | of the coefficients of the substitution,
show that
a(U, v, W)=M o(u, v, w) .
a(E, s O o(x, Y z)

Extend to the case of n functions of n variables.

9. If f(z, u, z) becomes F(&, 7, {) when the variables are changed as
in Example 8, prove that
Hyp=M?*H,
where Hy and Hy arve the Hessians of f and F' respectively.
Show that the theorem holds for any number of variables.

10. If f(x, y, t) is homogeneous, of the nth degree, in x, y, ¢ so that
Sz, y, ) =t"f(x/t, y/t, 1), prove that

fzzy fxw fxt i fa',a;r fmp fa-
(n-1)?
Hf= fmp fmp fvt =T fa‘y’ fmp fy
fa:b fﬂt’ ftt fa:’ fy! nf/('n'-l)

If &=x/t, n=y/t and f(&, 3, 1) =9 (&, ), show that
Hy=(n- 1)23(n-2) Pezs (p&', L2
Penr Pur P
P Pp nplin-1)

11. If u, v are two polynomials in &, y that are homogeneous and of
the nth degree, prove that '

udv -—vdu::l (v, v)

7 Az, y)(wdy —ydx).
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12. If y, =u,ju, r=1, 2, ..., n, and if » and u, are functions of the n
independent variables z,, ,, ..., ©,, prove that

w, 2 o b

> Bx,’ %z’ ox,

oy Buy 0w

a )1 Yo Bz Bmy ox,,

g le s Val O ou, o ou,
0%y, Tgy o, Tpy)  UPHL | g 6—:0:’ a_';‘: =2 |

n

“ ou, Ou, ou,,

" B, Ox,’ " 0w

If u=v/t and u, =uv,/t, show that the value of the Jacobian is obtained
by substituting v, v, for u, %, in the expression on the right and state
how the determinants in « and v are connected.

13. If A, p, v are the roots of the equation in k
z/(a +k) +y/(b +k) +z/(c +k) =1,
prove that
o, y, ) — __(.“ —v){(v = H(A-p)
AL pv)  (B-olc-a)a=b)

14. Given that z =f(u, v, w), ¥y =g(u, v, w), z =h(u, v, w) and that J is

ggZ’ g’ z; ; if, when z, y, = are taken as the coordin-
y ,

ates of a point referred to rectangular axes, the three surfaces

u =const., v =const., w =const.,

not zero, where J =

intersect orthogonally, show that J = + p,p,p; Where
pi=fi+gi+hl, pi=fo+gi+h;, pi=fi+gi+hi.
[Note that the direction cosines of the normals to the three surfaces
are proportional respectively to
fu’ gu’ hu.; fu’ gv) hv; fw, gw, hw-
Also, since u =const. and v =const. intersect orthogonally,
Sufo+9ugo +hybhy=0;
similarly Jofw+.o+...=0, fufy+...+...=0.
The square of the determinant J is p,2p,2p,2.]
15. If u, v, w are functions of z, y, z, prove that the rate of variation
of u per unit of length along the line of intersection of the surfaces

v =const., w =const. is the quotient of the Jacobian of u, v, w with respect
to x, y, z by

@2+ 03+ )}l +u+ )l sin 0

where 0 is the angle at which the surfaces v=const. and w =const.
intersect at (z, y, z).
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16. If the Jacobian of n functions of n independent variables is not
identically zero, show that the notation of functions and variables may
be so chosen that the functions may be represented by

Yr =[p(Ty, Tpy .., ), 7=1,2, ..., n,
while none of the Jacobians

a(~f1’f2y aes ’fr) _
Ny 2y ooy (LD
is identically zero. Then prove that we may write
Y :(Pl(xl’ Zgs vev s Tp)s Y2 =@a(Y1r Tos Ty -.v s Zp)s
Ys =Ps(Y1s Y25 3o wvos Tp)s von s U =Pp(Y1s Y25 vy Yn_15 Tp)s
and deduce that

&Y1s Yo -oos Un) _Op1 03 0@y Dy

By, @y, ..., x,) Ox, dxy dxy " Ox,,”
17, Prove that if the functions fi(zy, @, ..., z,) and fy(x;, %, ..., z,)
are to be connected by an equation in which none of the variables
Ty, Xy. ..., X, appears explicitly, it is necessary and sufficient that the

corresponding partial derivatives of,/or, and of,/ox,, r=1,2, ..., n,
should be proportional.

18. The roots of the equation in 1
(A-u)3+(A-2)3+ (A-w)3=0
are z, y, z; prove that
A y.2)_ , (v-w)(w-u)(u=1v)
o(u,v,w) (y-2)(z-2)(z~y)
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CHAPTER VI

INFINITE SERIES. COMPLEX FUNCTIONS OF A
REAL VARIABLE

59. Infinite Series. It is necessary, in view of applications
in later chapters, to supplement the sketch of Infinite Series
given in the Elementary Treatise and to discuss briefly the
theory of Infinite Products. An excellent treatment both of
Series and of Products will be found in Bromwich’s Treatise
on Infinite Series, and the student should consult that book for
further developments.

Derangement of Terms. The sum of a finite number of terms
is the same in whatever order the terms be taken in calculating
the sum, but the word ‘“ sum * as applied to the ““ sum of an
infinite series ”’ is not a “ sum ”’ in the same sense as that of
the * sum of a finite number of terms ”’ ; it is the limit of a
sum of a finite number of terms and in the case of infinite
series the commutative law of addition is not true unless under
certain restrictions.

Let Za, and Zb, be two infinite series; if every term that
occurs in one series occurs once and only once in the other, the
one series is said to be formed from the other by a derangement
of the terms of the other series or, simply, to be a derangement
of the other series. The following theorem, usually called
Dirichlet’s Theorem, will now be proved.

DiricHLET’S THEOREM. T'he sum of an absolutely convergent
series 18 the same in whatever order the terms are taken ; the
sum of a series that is not absolutely convergent may be changed
by a change of the order in which the terms are taken.

(1) Let the terms be all positive and let £b,, be a derangement
of Xa,. If s,=a,+ay+...+a,, o,=b,+by+...+b, and if
8,—>8 when n—>o0 it has to be proved that o,—>s when n—w .

151
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Since every term of Zb, occurs in Za, it is possible to take
n so large that every term in o, is a term in s, and therefore
6,< 8, so that o,,<s, a fixed number. Hence ¢, (or ,) tends
to a limit that cannot exceed s; in other words, b, is con-
vergent and its sum, o say, is less than or equal to s.

We may now reverse the process. Xb, is known to be
convergent, with a sum o; Za, is a derangement of Zb, and
therefore is convergent and has a sum not less than o. But the
sum of Za, is s so that, from the two parts, we have 0 < s and
8 < ¢ and therefore o =s.

(2) Suppose there is an infinite number both of positive and
of negative terms in Za,. (If there were only a finite number
of terms of the one kind these could be neglected so far as the
question of convergence is concerned (E.T. p. 380, Note)
and the series would fall under case (1)). Let P, be the sum
of the positive terms and -@, the sum of the negative
terms in s, ; then u +v=n and when n tends to infinity so
do u and ».

Now Za, is absolutely convergent and

lay| +|ag| +... ¥ |G| =P, +Q,, $,=P.-Q,,
so that both P, and @, tend to limits, P and @ say, when u
and » tend to infinity, and if s is the sum of Za, then s=P -Q.
But the series P, and 2@, are series of positive terms and no
derangement of their terms alters their sum. Hence s, the
sum of Za,, is not altered by any derangement of the terms
of Xa,.

If Za, is convergent but not absolutely convergent both of
the series TP, and 2@, are divergent. For, if s =2a,, (P, -Q.)
tends to s while (P, +@,) tends to +« when n—ow . If we
suppose that, for example, P, tends to a limit P when n—o
then @,, which is equal to P, —s, would also tend to a limit,
namely P -s, and this is impossible since P, +@Q, tends to

infinity. Hence
§= £2a,,: A‘(P,‘—-Q,),
n—rw0 Nn—rwL

but s is not equal to £ P, - £ Q,:

“~—>0 r—>a0

the difference is ® — o, a meaningless expression.



§§ 59, 60] DERANGEMENT OF SERIES 153

Of course it has not been proved, nor is it the case, that every
derangement of terms produces an alteration in the sum of a
conditionally convergent series, as a non-absolutely convergent
series is often called, the reason for the name ¢ condi-
tionally convergent ”’ being now obvious. The typical example
of a series whose sum may be changed by derangement of its
terms is the usual series for log 2; see Exercises II. Exs. 10
and 11. On the general theory see Bromwich, Infinite Series
(2nd Ed.), pp. 74-77.

60. Tests of Convergence. The following, known as
Kummer’s Test, is of wide application, the terms of Za, being
positive.

Kummer’s Test. Let Za, be a series of positive terms and
(d,) a sequence of positive numbers such that the series T(1/d,)
18 divergent ; further, let g, be defined by the equation

aﬂ

gn=dn_

- dn
+1*
an+1

The series Za, converges if there is an integer m such that
gn > > 0 when n = m, but diverges if there is an integer m such
that g, < —o. < 0 when n = m (o« a positive constant).

Suppose first that g,> o >0 if n=m ; then since a,,, > 0
By =y Qg > Ay g,
In this inequality put n+1, n+2,..., (o +p — 1) successively

in place of n and add corresponding members of the p inequali-
ties ; then

Al — Qi Q> WBpyy Uy +ooo +8pyy), 1=

The expression on the right side of this inequality is positive ;
therefore the expression on the left side is also positive and,
further, it is less than d,a,. Hence, putting m in place of n
we find that, whatever integer p may be,

Uiy +Oyg +ooo +Cpyy < 4,0/, a constant independent of p.

The sum @,y +@meg +... +0p,, increases as p increases, but
is always less than the constant d,a,/o; this sum therefore
tends to a limit when p tends to o and therefore the series Za,,
is convergent.
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Suppose next that g, < - <0 if n =m. In this case d.a,
<dpiy @nyy if n=m, and therefore

mip _Imi1  Omez  Cmip - Ay Ay Dopapy

b
A (22 At Amip-1 dm+1 dm+2 dm+p

so that Ay > B[y, p=1,2,3,.
Now d,,a,, is independent of p and the series X(1/d,) diverges ;
hence also the series Za, diverges.

Note 1. 1If g, tends to a limit [ which is not zero, the sign of g,
for sufficiently large values of n will be that of /, and therefore
Xa, will converge or diverge according as ! is positive or
negative. Or again if the minimum limit of g, is positive Za,
will converge, while if the maximum limit of g, is negative
Za, will diverge.

Note 2. The proof for divergence shows that if a,,,/a, is greater
than b,,,/b, for n = m, the series Za, diverges if Xb, diverges.
It may be proved in the same way that if a,,,/a, is less than
bp11/b, for n = m the series Za, converges if Xb, converges.

When a,,,/a, tends to unity the Test Ratio fails ; Kummer’s
Theorem leads to a test for this case, usually called Raabe’s
Test, the terms a,, being all positive.

Raabe’s Test. The series Za, will converge or diverge
according as

n( I —-1)>1+a.>1 or n( 2 —1>< l-a<l,
n+l 1
when n = m, a fixed integer (or, according as the limit for n tending
to infinity of this expression is greater than 1 or less than 1).

In Kummer’s Test let d, =n ; the series X(1/n) diverges and

therefore we have for convergence or divergence (o. > 0)

n2n —(r+l)>ocor <-—-o;
Qnty
thatis, (2 _1)>1+a>1lor <l-a<l.
n+1
Gauss’s Test. Suppose that a,/a,., can be expressed in the form
@ _4 2 oy An 4, [1>1
Opyy n’ || 4,| <k, a constant for every n.

The series Xa, wdl converge if u>1 but will diverge if u<l,
the terms a, being all positive.
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Raabe’s Test proves the theorem for x> 1 and for u <1.
For the case u=1, let d,=nlog n ; the series Z(1/d,) diverges
(Ex. 2 below). Now

a, n  A,logn

gn=d”(m—d,.+1=(n+l)logm—l—+ poree
log n
But Lot =0 (825, Ex. 6)
n—>w0
n 1
and £(n+l)logn+1=£(n+l)log<1-ﬂ—)=_1,
n—rwo n—>xw

and therefore g, is negative when » is sufficiently large so that
Za,, diverges when p=1.

The test in Ex. 1 is often useful ; the test in Ex. 4 is theoreti-
cally important.

Ez. 1. Cauchy’s Condensation Test. If Zf(n) is a series of positive
terms and if f(n)>f(n +1), show that Zf(n) converges or diverges
according as the series £2"f(2") converges or diverges.

Of course the inequality f(n)>f(n +1) need only begin when n is
greater than some integer m, but there is no loss of generality in suppos-
ing it to hold from n=1. Proceed as in the case of the series =(1/n%),
(E.T. pp. 380, 381) and take the terms in groups of 2, 22, 23, ..., 27, ...,

If 2% = u < 2" we have

”ng(n) =[£(2) +£(3)] + [f(22) +(5) +£(6) +S(T)]
FLF(23) +£(9) + ... +F(1B)] +... +[F(2%) +£(2% +1) +... +F ()]
<2f(2) +28£(22) + 23(23) + ... +20(2").

When n—>w so does u, and therefore Tf(n) converges if I27f(27%)
converges.
By grouping as follows

Lf(3) +£(22)] + [f(5) + ... +f(28)] +[f(9) +... +f(29)] +...

we see that these groups of terms are respectively greater than
1.22f(22), 1.2%/(29%), }.2%(2%), ...

so that 2f(n) diverges if Z27f(2%) diverges.
It is easy to prove that Zf(n) converges or diverges according as
Zuf(u™) converges or diverges where ux is any integer not less than 2.
In § 148, Ex. 6, it is proved that 4 may be taken tobee. (See Chrystal’s
Algebra, Part I1. p. 124.)
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Ex. 2. The series ZWQI’J&)‘" n> 1, converges or diverges according

asa>lora=l.
Here  f(n)=—m—; o7f(@") =20 ____ 1
n(log n)*’ 2%(log 2™)* " n%(log 2)+°

But (E.7. pp. 380, 381) Z(1/n%) converges or diverges according as
a>1or ax1; so therefore does the given series.

Ez. 3. The Hypergeometric series. The following series

a. B ofat+1). B(B+1) 4 ala+1)(+2). B(B+1)(B+2)
L T8 5+ D) YT 1 2.8yt ©
+m+o.(a.+l)...(o~+n—1).5(ﬂ+1)...(ﬁ+n—l)x,,+m

1.2....n.9(y+1)...(y+n-1)

is called the Hypergeometric Series and is usually denoted by the
symbol F(w, B, . z). The numbers «, B, y, x are called the elements
of the series and z alone is here considered as a variable, the elements
o, B, y being taken to be constants.

The series is symmetric in «. and § so that F(«, §, y, ) = F(8, «, ¥, z),
and if either o. or f is a negative integer, the series terminates. The
element  must not be a negative integer because, after a certain stage,
each term of the series would have a zero denominator.

Take the term in z" as a,, ; then

Apyy_{(x+n)(B+n)
a, (n+1)(y+n)
so that the series converges absolutely if | x | <1 and diverges if | = |> 1.
If =1 we find that
Oy lry-e-f A,
A1 n
where A,—>o?+af+p2~(y+1)(+B)+y when n—>w. When n is
large all the terms are of the same sign since a,/a,,,, differs little from 1
for large values of n. Gauss’s Test may therefore be applied since | 4,, |
is finite for every value of n. Hence the Hypergeometric Series, when
=1, converges if 1+ y —o. — > 1, that is, if y >a+ f and diverges
if y=ea+8.

The student should study this example carefully as the Hyper-

geometric Series is of very great importance.

x -z when n — o

Ex. 4. The series Za, of positive terms converges or diverges
according as the maximum limit @ of a}l/® is less than or greater than
unity.

(i) Suppose G<r<1. There is therefore at most a finite number of
values of al/® which exceed r; let all such values of al/* be included
in the first m values. Hence al/® <r, that is, a,=7" if n>m, and
therefore the series converges.

(ii) Suppose @ >7r>1. There is therefore in this case an infinite
number of values of a,, greater than r* so that the series must diverge.
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. This test is often called Cauchy’s Test and, though not so useful
in ordinary applications as the Ratio Test (which is often called
d’Alembert’s Test), is of great theoretical importance. See Bromwich,
Inf. Ser. (2nd Ed.), p. 32.

Ez. 5. Show that the power series Za,z" converges or diverges
according as |x |<R or |« | >R where 1/R is the maximum limit
of |a, |1/,

61. Tests of Abel and Dirichlet. An inequality that is very
useful in the discussion of convergence is given in the Lemma
(E.T. p. 451), known as Abel’s Inequality, namely : if () is
a decreasing sequence of positive numbers and if, for r < n,

A>u +ug+... +u,> B
where A and B are constants
14 > cyuy +Coly ... +Cutty > ¢y B.
It A>0 and B= - A4 the inequality may be expressed as
| e1%y +Cqttg +..o. + Cuttn | < €y 4.

In the following tests the terms of Zu, need not be all of the
same sign.

Abel’'s Test. A convergent (not mecessarily absolutely con-
vergent) series Xu, remains convergent if each of its terms
Uy, Ug, Ug, ... 18 multiplied by a factor a,, a,, as, ... provided
the sequence (a,) is monotonic and | a, | is less than a constant k&
Jor every m.

The sequence (a,), being monotonic and bounded, converges
to alimit, a say. Letc,=a - a,if (a,)is an increasing sequence
but ¢, =a, ~a if (a,) is a decreasing sequence ; the sequence
(cs) is therefore a decreasing sequence of positive numbers
which has zero as its limit.

Now a,u,=au,-cu, or a,u,=au, +Cq.u, according as
Cn=@-a, or ¢c,=a, —a; since Zu, converges it is sufficient to
prove that Xc,u, converges.

Let ,R,=Cpy Unsy +Cnigllnig +.. +CpipUnyp. The series Zu,
is convergent and therefore there are constants 4 and B such
that

A>Upyy +Upyg +oee +U, > B, p=1,2,3, ....
Hence, by Abel’s Inequality,
Acnyy > 4R, > Beg,,.
But ¢,,;—>0 when n—>ow and therefore ,B,—0 when n->w
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whatever integer p may be so that Tcqu, and therefore also
Sa,u, is convergent. (For the notation ,R, see E.T. p. 379.)
Dirichlet’s Test. If the series Zu, oscillates finitely and if
(ca) is @ decreasing sequence of positive numbers which has zero
as its limit, the series Xc,u, 1S convergent.
Let B =Uniy FUnipp Teoe + Unyp s
then, since Zu, oscillates finitely, there are constants A and B
such that 4 > ,R,>B for every value of n and p. If the rest
of the notation is the same as in the proof of Abel’s Test we have

an =Cni1%Un+1 +Cniolnia Foeo + Cpiplhnip:
AcCpyy > pBu> Bepyy,
and therefore ,R,—0 when n—w for every integral value of p
since ¢,,,—>0 when n—>wo . Hence Zc,u, converges.

Ez. 1. If 6 is neither zero nor a multiple of 27 the series
[

cos nd f:sinn()
Zl; n T n

are convergent. (The second series is zero if =0, + 7, +27,....)

Ex. 2. Discuss the convergence of the series
& cosnb ~ sinnf
_yn-1 222 7 — 1y 222
> (-1 5, 3 (-1

62. Uniform Convergence. When the terms of a series are
functions of a variable z, each term w,(z) being defined for the
range a<z<b, that is, for the closed interval (a, b), the sum
of the series when convergent will be a function S(z) of .
For any given, or fixed, value of z in the interval (a, b) the
condition for convergence is, if ,R,(x) denote the partial
remainder after n terms (E.T. p. 379) and S,(x) the sum of the
first n terms,

| pBa(®) | = | Snsn() = Sn(x) | <eif nzm, p=1, 2,38,...(1)

When z changes so, as a rule, will the integer m ; if m is
such that the inequality (1) is true whatever value  may have
in the closed interval (a, b) the series is said to converge
uniformly with respect to z in the closed interval.

Instead of the partial remainder ,R,(z) we may take the
complete remainder R,(x); the two forms of the condition
are equivalent, that is, given one of the conditions the other
may be deduced from it.
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1f | R, (=) | < ¢ when n=m and a = = b, then, p=1, 2, 3, ...
| pBa(2) | = | Bp(®) = Bpyop(@) | = | By(®) | + | Bpyp(®) | < 2e.
If |,R,(2)|<éewhen nz=m, p=1, 2, 3,...and a =2 =b, then

| Bo(2) | = £ |5Bale) | o< 2.
P>

On pages 385, 386 of the Elementary Treatise some important
theorems are proved. Theorem III, on p. 386, may in substance
be stated in the following form and this test of uniform con-
vergence is frequently cited as the «“ M-Test >’ or ‘“ Weierstrass’s
M-Test.”

The M-Test. If each term of the series Zu,(x) is defined for
the range a<zx=<b and if, for each term, | u,(x) |< M,, a number
independent of x, the series Zu,(x) converges uniformly for the
range a<x<b provided the series XM, is convergent.

m+p

m+
Suaz) | < > M,
n=m n=m

and if the second sum is less than ¢ the choice of m that makes
it so does not depend upon z so that the inequality (1) is satisfied
for the range a <z < b.

The Tests of Abel and Dirichlet are easily adapted so as to
be tests for uniform convergence; the following statements
are from Bromwich (I.c. p. 125).

Abel’s Test. The series Ta,(x)u,(x) converges uniformly in
the closed interval (a, b) if the following conditions are fulfilled :
(i) Zu,(x) converges uniformly in (a, b); (ii) a,(x) is, for a fixed
value of x in (a, b), positive and does not increase as n increases ;
and (iii) a,(x) <k, a constant, for the range a < x < b.

By condition (i) if a<z<b,

| U (Z) + Upyo() + oo + Uy, (2) |<e if n=m,
and therefore, by Abel’s Inequality, with 4 =¢, B= —¢,
ntp

a(x)u(z) | <et () <eckifn=m,a<z=<bh,
r=n+1 1

Obviously

since @, .,(x)=a,(x) and a,(x)<k. Hence Xa,(x)u,(r) converges
uniformly in (a, b).
Special cases of this theorem arise if a,(x) is independent of
or if u,(x) is independent of z.
G.A.C, G
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Dirichlet’s Test. The series Za,(x)u,(z) converges uniformly
in the closed interval (a, b) if the following conditions are fulfilled :

(i) Zu,(x) oscillates, its values lying between —k and k, where
k is a fixed constant ; (ii) a,(x) is, for a fived value of z, positive
and does not increase as n increases ; and (iii) a,(x), when n—w,
tends uniformly to zero for all values of x in the closed interval
(a, b).

By condition (i) if a<x < b,

I un+1(x) +un+2(x)+ +un+zz(z) I <2k
and by condition (iii) m can be chosen so that a,(x)<ecif n=m
and e<x=<b. Hence by Abel’s Inequality
n+p i
D) @ @)u(z) | <2k if n=m,a<z=<b.
r=n+1

Particular cases arise if u,() is independent of x while Zu,

either converges or oscillates finitely or if a,(z) is independent

of x.

Ex. 1. The series Zz"/n! converges uniformly in the interval ( —a, a),
where a is arbitrarily large.

Let a be any positive number, however large, and let M, =a"/n!.
The M-Test shows that the given series converges uniformly if |z | = a.
The series is often said to converge uniformly for every value of , or
¢ for every z.”

Ez. 2. The series Zn~® and Z(logn).n™® converge uniformly if
r=z1+k>1.

For the first series let M, =1/n1** and the M-Test applies.

The second series is obtained by differentiating the first. Now
(logn) .n %> 0 when n—>w if a>0. Therefore there is an integer
m such that 0 <(log n).n~* < O, a constant, if n =m. Nowlet o. =}F,
and we have, if t=1+k > 1,

logn __logn
n® = pltE

If M, =C/n1tik the M-Test applies.

Ez. 8. 1If Ze¢, converges the series Z(c,/n®) converges uniformly in
the closed interval (0, 1).
In Abel’s Test, let a,(x) =n—% and u,(z) =¢,, independent of z.

1
<Cm, n=m.

. cos nx sin nx .
Ex. 4. The series », e > i converge uniformly for every

z if «>1, but if 0<a =1 they converge uniformly for the range
O0<0=z=2nr-6.

If a.> 1 apply the M-Test ; if 0 < o =1 apply Dirichlet’s Test, taking
U,(x) equal to cos ne and to sin nx respectively.
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63. Tannery’s Theorem. The following theorem, stated by
Tannery in his Fonctions d’une Variable, 2nd Ed., § 183, and
called by Bromwich ¢ Tannery’s Theorem,” is closely related
to the M-Test for uniform convergence and is, in fact, proved
by Tannery as a particular case of that test.

Let F(n)= iur(n) ................................. (1)
r=0

where «,(n) is a function of n, and N is also a function of n that
tends to infinity with n. If %,(n), when r is fixed, tends to a

limit, v, say, when n—>w, will the sum F(n) tend to Zvr when
n->w ?

An example is given by taking F(n) equal to (1 +1/n)® and deducing
the value of e as a series (E.T'. § 48). The problem occurs with sufficient
frequency to justify the statement of a general theorem that will save
repetitions.

Tannery’s Theorem. Suppose that the following conditions are
satisfied :

(i) £u,(n)=v,, when r is fixed ;

n—>wo

(ii) Iu,(n) | =M, , where M, is independent of n ;
(iii) ZM 18 convergent.
When these conditions are satisfied F(n)—»?v, when n—wo .

By (i) and (ii) | », | < M, and therefore by (m) v, converges.

Again, since n and therefore N is to tend to infinity we may
always suppose that N is larger than m, whatever integer m
may be, and we ma.y therefore express F(n) —Xv, in the form

F(n) - Zv, Z[u,(n) v,]+z u,(n) Zv, een(2)

r=m+1
Now M, converges and therefore m may be chosen so that

i v, | i M, <e, ilur(n) = ZN: M<e ...... (3)

r=m+1 r=m+1 r=m-+ r=m+1
where ¢ has the usual meaning.

The value of m in the equalities (3) depends only on the
series XM, and is therefore independent of » ; when m has been
chosen so0 as to satisfy the inequalities (3) let it be kept fast.
The first sum on the right of equation (2) contains a finite
number of terms and therefore by condition (i) the number =,
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can be chosen so that, if #>n,, the first sum on the right of (2)
will be numerically less than ¢. Hence if n>n,

L m N e
F(n) - Z'vr = ' Z[ur(n) -v] [+ Z u(n)| + Z )
r=0 r=0 r=m-+1 r=m-1
that is, Fn)-Dv,|<8 ifn>n,
r=0
nd theref F(n)= 3 -
a erefore ) é; (n) 'Z___;ov

Ex. If F(n) =(l +‘£)” show that the limit of F(n) when n tends to

infinity is the series

Here u,(n) =(l —i)(l —5)

Z
N=n,m=;— Ah=-

.

where a is any fixed positive number.

64. Abel’s Theorem. When the interval of convergence
(E.T. p. 384) of a power series is ( — R, R) the interval may be
changed to (-1, 1) by substituting /R for x; we therefore
suppose that in this and the next article each power series
converges for | | < 1 and diverges for | z | > 1. The behaviour
of the series when z->1 or when z— — 1 from within the interval
will now be considered ; for definiteness x will be supposed to
tend to +1.

-]
Let F@) =] ayan, sp=ay +a; +... +ay,
n=0

the series for f(x) converging for |z | <1.

Abel’s Theorem. (i) If s,—s (a finite number) when n—x
the function f(x)—s when x—1; (ii) if s,—>w (or to — ) when
n—>w the function f(x)—>w (or to — ) when x—1.

If o<z<l, 1/(1-x)=§;x”,
0

and therefore, if the series for f(z) and 1/(1 — x) are multiplied,

L

f@)/(1 -2) =§ow =Ssant 3 o

n=m+1
where the series Xs,2" converges for | | < 1.
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(i) Let s,—s. Itisthen possible to choose m so that, givene,
s—e<s, <8s+¢e if n=m,
and when m is thus chosen it is to be kept fixed. Next let

@

() =§osﬂx”, F.(z)= >, sz,

n=m+1
and therefore f(x) =(1 — z)f.(z) + (1 —z)F () ;
then f,,(x) is finite if x—1 so that (1 — z) f,.(z)—> 0 if z—1.

Again, F,(x)<(s+€)>, 2" but > (S —&)>, 2,
m+1

m+1
that is, F(x)<(s +e)x™1/(1 - z) but > (s — &)™ (1 - z),
and therefore  f(z) < (1 —2)f,(x) +(s +&)zm™+L
but f(x)> (1 = 2)f () + (s —)xmtL,
Hence £ f(®)=s +e but = s —e.
z—1

and as ¢ is arbitrarily small f(x)—>s when x—1; therefore

4 @R k4
£(Ea,,x"> =D a,= Z(L‘a,,x”) .
z—>1 ‘n=0 n=0 n=0 \g—1

(ii) Let s,—w so that the series Xa, is divergent; if s,— — o
the sign of every term in 2Za,2" may be changed so that there is
no loss of generality in this restriction on the limit of s,.

Let G be any given arbitrarily large positive number ; m
may be chosen so that s,>G'>@ if n=m. In this case, x
being positive and less than unity,

O

Fp(z)= 2 sua">G'2 a"=G'zm(1 -a),
m+1

n=m-+1
and therefore, since (1 -2)f,(z)—>0 when z—1, f,(1) being
finite,
L’ f@)= 6 >a.
z—1

As @ is arbitrarily large, f(2)—>» when z—1.

Ez. 1. log(l+z)=z-3a?+3a®-fat+..., [z] <L

The series converges for x=1; the series for log 2 is therefore
obtained by putting x=1. The series diverges for z= -1 and
log (1 +x)— —~® when z—> - 1. .
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Ez. 2. If the series Za,a" and 2b,z" converge when | z | <1 their
product is (E.T. p. 388) ¢, ™ where

Cp=0gb, +a,b, ; +ab, o +... +a,b,.

Show that if the series Z¢, converges the product of the convergent
series Za, and Zb, is Zc, whether Xa, and b, converge absolutely or
conditionally.

The statement follows at once from Abel’s Theorem because the series
tend to Za,, Zb, and 2c, respectively when x—1.

65. Cesaro’s Theorem. This theorem deals with the limit
for z—>1 of the ratio of two power series which diverge when
x—1.

Let f(z)=Za,2", g(x)=Zb,z" where the series Za, and Xb,
are both divergent ; we suppose that each diverges to + «,
as in case (ii) of Abel’s Theorem, and that the coefficients b,
are all positive for n > n’, some given number.

There are two cases.

(1) If the quotient a,/b, tends to a (finite) limit | when n—oc
the quotient f(x)/g(x) will tend to I when x—1.

We can choose m so that l-e<a,/b,<l+e if n=m and
therefore, since b, > 0 and z"> 0,

(-e) X buar< X apr<(l+e&) D) bam

n=m-+1 n=m-+1 n=m-+1
m ©
Let Z A" = Svm(x); 2 ax” =¢m(x)a
n=0 n=m-+1
Z b,,x” = 'pm(x)a Z bnxn =\P'm(x) H
n=0 n=m+1
then (=)W () < B (%) < (1 +6) ().

Next q)m(x) =f(x) ~Pm (x) :‘L‘@ . L’:M)_/M ,
V() 9@) - pu®@)  g9(@) 1- pa@)/g(c)
f2) _Pm(@) 1= ypu()/g(x)
g() Ymlz) 1-g@n@)/fl@)

When z->1 both f(z) and g(z) tend to +w (by Abel’s
Theorem) while ¢,,(2) and y,,(x), being each the sum of a finite
number of terms, remain finite ; the fraction

{1 - pn(2) /9(2)} {1 - @m(2)/f(2)}
therefore tends to 1 when z—1. Again the fraction ®,,(x)/¥ . (x)
cannot when x—>1 fall outside the interval (I —-¢, I +¢). Hence
since ¢ is arbitrarily small, f(z)/g(z)— ! when z—>1.

so that
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(ii) If the quotient a,[b, tends to ® when n—o , the quotient
f(x)[g(x) will tend to ® when x—1.

We can choose m so that a,/b,>G'>@ for n = m, where G is
any given arbitrarily large positive number, and therefore
®,.(2)/¥u(x)>G. As before, the limit of f(x)/g(x) when
z—1 is seen to be greater than G and therefore f(x)/g(x) tends
to © when z—1.

For the proof compare that of Theorem II, p. 420, of the
Elementary Treatise.

Bz. 1. ,((1 —w)%(w 42842+ 2™ L) =47
z—1
The symbol [v/n] is used to denote the greatest integer contained
in y/n. For example,

W2l=1; (V4] =2; [¥T]=2; [v29] =5, ...

Let @)=z +x* +2° + ... +a™ + ...
and f(@)=[V1]% +[v2]a? +... +[ynle" +...;
then  (1-m)f@)=9(@); (1-2)ip@=—C0 .
(1-=x)*

©

s &3.5.7..(2n41), <
Now  (1-2) ’"'”z::o 3.4.6.. (3n) © —2ba2" say,

and the series for f(x) and (1 _x)-% diverge when x—1. Hence, by
Cesaro’s Theorem,

La-otem= L0 __ [ bn
z—1 z—1 (-2 "
provided the limit for n—ow exists.
From Exercises II. 29, b,=(2n+1)a,/s/n where a,,—»n"if when

n-»w and therefore,
: vn
[ bn] - ‘}n *

n-—>wm

The above proof is that of Cesaro ; for another proof see Bromwich,
Infinite Series (2nd Ed.), p. 150, Ex. 4.

n-—>wo

Ex. 2. If f(x)=3e," s,=a,+a,+ay+...+a, and if
(80 +8, +83+... +8,)/(n +1)
tends to [ when n—>®, prove that f(x) also tends to ! when x—1.

(Frobenius.)
Let 8y +8; +83+... +s,=t,; th (see the proof of Abel’s Theorem
(i),
% _ Zenx™  Zta® St
J(@) =202 == e T St 1 T
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and therefore, by Cesaro’s Theorem,

Li@= [ o=t

z—1 7n—> 00

If s,—»! the mean t,/(n+1) also tends to I, by Cauchy’s Theorem
(§ 20, Ex. 3) and in this case Frobenius’s Theorem gives no more
information than Abel’s; but it is quite possible that the mean may
tend to a limit though s, does not, and Frobenius’s Theorem does then
give new information about the behaviour of f(x) when z—1.

The process may obviously be carried further. Suppose that
neither s, nor the mean £,/(n +1) tends to a limit and take a second
mean, namely o, /$(n + 1)}(n +2) where

op=(Mm+1)sg+ns; +(n -1)83+ ... +28, ; +s,
=ty +t +l + ...+,
If this means tends to [ when n—w then f(x)—>I when x—1. For

S=x)(1 —x) 3= i o™ (1 —a) 3= i 3(n +1)(n +2)2",
0 0

Sopah

and therefore f(z) =W 4
so that [f(x) In+1)(n+. 1)(n 73 =+

z—1 n—o

by Cesaro’s Theorem.

66. Derangement of a Series. It has been seen (§ 59) that
when a series Xa, is absolutely convergent no derangement
of its terms affects its sum. Suppose now that A4, is a
convergent series whose sum is § and that each term 4,, is
itself an infinite series, say

o0
Am=21am,”=am,l+am,2+...+am,,,+... .......... (1)
=

where m=:1, 2, 3, ..., and therefore

§=34,=3 (za,,,,,,) .................. @)

m=1 m=1
If summation is made first with respect to m, so that for
n=1,2, 3, ... we find

i
Bo=  n =0y g+ g pFeee F gy g Fee sy eeeennnnn (3)
m=1
and then, the new sum being denoted by 8’,

zB D ( za,,,,,,) e (4)

n=1
will the new series be convergent and, if so, will § and 8’ be
equal ?
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The following are sufficient (not necessary) conditions that
the series (4) should be convergent and have the same sum as
the series (2) :

(i) the series (1) converges absolutely for every m say

am:Ia’m,l ‘ + 'am,2|+"'+lam,n[+'“;

(ii) the series X, is convergent, its sum being o, say.

When these conditions are satisfied the series (4) is con-
vergent, S’=8 and the series (3) is absolutely convergent for
every n.

The proof follows from the theorem of § 59 ; because the
terms a,, , of the series (2), which may be called a double
series, as containing a ‘ doubly infinite ’’ number of terms, may
be arranged so to form a single series b;+b,+b5+.... The
arrangement may be effected in many ways, but there are two
ways of special importance.

Let the terms a,, , be arranged @,,,, ay,, G35 1,4, ------ \
in tabular form (T) so that in any a,,,, @y, @5 G4, .---..
one row m is constant and in any  a,,,, Q3,5 Q3,5 @34, ------
one column 7 is constant. A, is @, Qg g, Gg g, Cgyq, - )

the sum of the mth row while B,, is : : : :
the sum of the nth column. : : : T
Arrangement by diagonals. Take the terms for which (m +n) is
constant, taking successively the terms for which (m +n) is equal to
2, 3, 4, ... and, for each group in which (m +n) has the same value,
arrange the terms in descending order with respect to m. We thus find

@11 | Qa1, G0 | Gay1, Goy0, @y, | G, g, By g, Gayg, Gayg | -
Each group lies on a “ diagonal >’ of the array (T).

Arrangement by squares. The terms common to the first m rows and
the first m columns form a square array. In the arrangement by
“ squares *’ the terms are taken from the mth row and the mth column
of the square array, beginning with the term a,,, ,, going on to the term
Gm, m 8nd ending with the term a,,,,. Thus we find the successive
groups Q1,1 | @g,1, @a,5, 01,0 | 5,4, Gg,9, @55, Ba,5, 0y,5 | o

It is clear that both methods give a single series in which each term
occurs once, and only once, in the table (T), while each term in the table
appears once, and only once, in the single series.

Now let T, =b,+by+... +b,and S,=|b, |+ | by |+ ... +] b, |
so that §, is the sum of the moduli of the terms-of 7,. It
is possible to choose m so large that all the terms of the sum
S, occur in the sum o, +0oy+... + o, which is less than o;



168 ADVANCED CALCULUS [cH. vI.

therefore S,, which increases as p increases but is less than ¢
for every value of p, tends to a limit when p—w so that the
series Zb, is absolutely convergent. But, by hypothesis, to
every term b, there corresponds one and only one term a,,
and conversely to every term a,,, there corresponds one,
and only one, term b,, so that the series (2) and (4) are both
derangements of Xb, and therefore both converge and
8'=8=2b,.

Further, if B8,=|ay,,|+|@3n|+---+]| @m,n| the sum p,
is less than Z | b, |, and therefore, by the usual reasoning, the
series (3) is absolutely convergent.

Again, if 8, , is the sum of the terms common to the first m
rows and the first » columns of the array (T) the sum 8, ,, is
the sum 7', if p =m?2, when the terms of the array are arranged
in squares; S, , is the sum when there are m terms in the
“gide ”” of a square and 8, , the sum when there are n terms
in a side, and both S, ,, and S, , tend to S when m and » tend
respectively to infinity. Now §,, , lies between S, ,, and S, ,
in the sense that the difference between S, , and either §,, .,
or 8,, is a sum of terms b, b, b, ...; but the sum
[b, | +|bs|+]|b;| +... tends to zero when m and n tend to
infinity, and therefore when m and n tend in any way to
infinity 8, , also tends to S.

We thus have the result that when conditions (i) and (ii) are
satisfied §,, , tends to the same limit when m and n tend to
infinity in the following three ways :

(a)é‘(ésm,n>: S iam,n

m=1ln=1
£ > 3
£ Sm n> = 24 Zam, n
n_—)m m-—> 0 n=1m=1
~
) [ S, n= £ Zam,n
m, n—c m,n—>wo

where in (¢) m and n tend independently to « , that is, the only
restriction on m and n is that each becomes and remains larger
than any given integer N.

The series in (a) and (b) are said to be formed by ‘‘ repeated
summation ’ ; one of the numbers m, n tends first to infinity
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and then the other and the two repeated summations give the
same sum. In case (c) the ‘ double series ”’ Za,, , is said to
converge.

It is possible, when conditions (i) and (ii) are not satisfied,
that the limit given by (c) may exist and yet the series 4,
and B, may not converge, but into such cases we do not enter.
See Bromwich, Infinite Series, Chapter V.

Cor. Multiplication of Series. If a,, ,=b,c, and if the
series Xb,, and Xc, are absolutely convergent with sums B
and C respectively the terms in the mth row of the array (T)
will be b,,¢y, bpCs, -+ » buCy, ... and therefore

A, =b,(c; +C5+... +Cq+...)=b,0,
0 o

and S= 211,,,:(2 bm>0=BC

m=1 1
because conditions (i) and (ii) are satisfied. If now the terms
in (T) are arranged by diagonals we find

BC =8 =b,c; +(bscy +b1C5) +(bgey +bycy +byc3) +...

which is the usual rule for the multiplication of two absolutely
convergent series.

It would be more symmetrical to take a,, ,=b, 2™ . c,z"
and to let m, n take the values 0, 1, 2, ... ; by this notation
we should get the form given on p. 388 of the Elementary
Treatise.

The following examples 1-4 are from Bromwich, p. 86.

Ez. 1. If a,,=cy,c, where the numbers are positive, the double
series 2a,, , converges if Zc,, converges (say to C).

Here Sy m=(Cy +Ca+ ... +0m)2 < O3,
so that S,,, ,, and therefore also S,,, ,, tends to a limit.

Ex. 2. If m+n=p and if a,, , =¢,/p, the terms being all positive,

the double series Za,,, , converges if =c,, converges (say to C).
Here, if we take the arrangement by diagonals, we have for the single

series .
tea+2(3es) +3(He) + .+ (= 1)) +...< 0,

and the result follows. It may be seen similarly that if a,,, , =d,/p and
if 2d,, diverges go does Za,,, ,.

Ezx.3. The double series Z(m +n)-% converges if . > 2 and dlverges
if & = 2, while Em~%n~8 converges if o. > 1, § > 1.
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Ex. 4. 1If a, c are positive (and ac > b? if b <0) the series
S (am? + 2bmn +cn?) A
converges if A > 1 and diverges if A= 1.
When 4 is the greatest of the three numbers a, ¢, |b |, we have
A(m +n)? >am? +2bmn +cn? > 2[b +\/(ac)]mn
and the result follows from Ex. 3.

Ez. 5. Show that, if |2 |=§, |y|=7 and 2& +92<]1,

(1 =22y +y =14 P (@)
n=1

where P, (x) is a polynomial in « of the nth degree.
If |y(2¢ -y)|< 1 the Binomial Expansion gives

(1 - 22y +y3)"%=l+zl~l'—2?t-£6—(—2—(—7—;—ﬁjl)y”(2x—y)" ........ (1)

Let |x|=¢&and |y|=9; then, if 2&p+9? <1,

0
(1-287 -m2y =1 *,;1—2315%%9 TEE+R) oo @)
Now the series in (2) is what the series in (1) becomes when every
term in it 18 made positive, and as the series in (1) when thus treated is
convergent (by (2)) its terms may be deranged and rearranged in
powers of y. When so rearranged the coefficient of y" is P,(x), the
polynomial of the nth degree,
1.3.5.. (2n—-1){ n(n l)xn_z+n(n—l)(n—2)(n-—3)x"_4__ }
1.2.3 %(2n—-1) 2.4.(2n-1)(2n-3) e
Now 2&p+n2<1if n<(1 +&)% —£ and this inequality is satisfied if
£=1and n<«2 -1=0-414. Hence the series

o
1+ Z P, (x)y™
n=1

converges absolutely and uniformly with respect to x and absolutely
and uniformly with respect to y for the ranges
|z|=1land |y|=c<y2 - 1.

The polynomials P,(x) are called Legendre’s Polynomials of degree n
or Legendre’s Coefficients of degree n or Zonal Harmonics of degree n.
(See, for example, MacRobert’s Spherical Harmonics, Chapters IV, V.)

Ex. 6. Show that P,( -xz)=(-1)*P,(x). ‘

From the value of P,(z) in Ex. 5 it is obvious that P,(x) contains only
even powers of  when 7 is even and only odd powers of z when n is odd ;
the result then follows. The relation may, however, be proved inde-

pendently by expressing (1 +2zy +y’)_5 in the two forms.
[1-2(-2)y +y*"} and [1-20(-y)+(-yrTH,
which give the identical equation
) o
1+ 2 Po( o)y =1+ 3, Po(@)(~y)"
n=1:- n=

and therefore P, (-z)=(-1)"Py(x). -
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Ex. 7. Prove the following values where, for symmetry, Py(x)=1.
5.7 3.5 1.3
Py(z)=1; Py(z) =322 ~}; Py(x) =mm4 -m2x’ 578
7.9 5.7 3.5
Py(x) =x; Py(x) =§2® ~3x; Py(x) =m:v5 “3 4 23 D

EXERCISES VII.

1. Prove the conditions (E.T. p. 395) for the convergence or diver-
gence of the Binomial Expansion of (1 +2)™ when = = +1.

2. If w, =(n!)%x"™/(2n)! the series Zu, converges or diverges according
as |z | is less than 4 or greater than 4.

3. If u,=1.3.5...(2n-1)/2.4.6... 2n the series Zu, diverges.

.. 8 ala+l) a(a+1)a+2) .
4. The series b+b(b+l)+b(b+l)(b+2)+"' converges or diverges

according as b —a (or the real part of b ~a) is greater than 1 or not
greater than 1.

5. If 0<z=c<1 the remainder after n terms of the series
172 + 2722 + 3723 + ...

is less than (n +1)"2"/{1 — (1 4+ 1/n)"x}.
State any restrictions on n and 7.
1 1 1 . Q)
6. If u, =ziron_itzion T =0, then Z u, =log 2.

n=1
7. If u,(x) =2%(2? + 22)(x? +42) ... [@? +(2n — 2)2}/(2n)! the series

1+ uy(x)
1
converges uniformly for every z.

8. If u,(x)=1/(n®*+nx?) the series Z u,(x) converges uniformly for
every . 1

9. If Za,, is convergent the series

-~ xn zn o nxt(l -x) 2na,x™(1 - x)
D ra 2 Tagm 2% Togi t 24 1 ogi

converge uniformly for 0=z =1. (Hardy.)

10. If the series Xa, is convergent and if ¢ is neither zero nor a
negative integer show that the series
0

cfc+1)...(c+n-1)
gla"x(x+l) o (@4+n-1)

is uniformly convergent if  —¢=J > 0 and  neither zero nor a negative
integer. (If ¢ and « are complex, then the real part of x —¢ will be
greater than 4.)
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11. If 3u,(x) converges uniformly for a<x<b and if each of the
functions u,(z) tends to @, when z tends to a from within the interval
(a, b), show (i) that the series Za,, converges, say to 4, and (ii) that

£Eu,,(:c)=A =2 £u"(x).

z~—>a z—>a
(Note that the value of u,(z) for x =a is not in question ; u,(x) may
or may not be defined for x =a so long as u,(z) tends to a limit when
r—>a.)
[With the usual notation, m can be chosen because of the uniform
convergence so that, for every z such that a<x < b, and for n=m,
| pBn(x)| < &, and therefore, if n and p be kept constant while x—a,

£ | pRa) | =6, that is, | @pyy +p g+ ... + 85y | =e.
z-—>a
Thus Za, is convergent. Now take the complete remainders R,,(x)
and R, in the series Zu,(x) and Za, respectively, and write

K R m
D ug(@) = D ap =2, {Un(®) - @y} + Ryp(@) — Ry
1 1 1

we can choose m so that both | R,(x)| and |R,,| are less than ¢
(a < z < b) and then, m being kept fixed, » may be chosen so that

<eif x-a<h,

m
> {ug(@) —ag}
1

[ D
D (@)~ D a,
T 1
that is, Zu,(x)—~Za, if z—a.
Of course a like theorem holds for —b.]

and therefore <8 if x~a<h,

v 12. £(z —xh 4 x? —x18 4+, ) =1,
z—1

[Iff(x) =« —x* + ... thecoefficienta,, of ™ in f(x)(1 — «)~'is 1 or Oaccord-
ing as the greatest integer in 1/n is odd or even. If [s/n] = 1 =greatest
integer in a/n, then

Gy +ayt . +ay =31 (-1 (n+1) +3( - 1M A(A+1).
flx)(1 —x)~2 ay+ay+...+a,
-z 1: Py i 8

z—>1 n—o

2 3
13. Lambert’s Series is i fx+ 1 fz’+ i f:é, +...; prove that it con-

verges if |z |<1. Express it as a double series and show that it may
be transformed into the series (Clausen’s Series)

1+2 1+22 1+a3
xm +1“1 ] +x°1—:?+... .]




§ 67] EXERCISES VII 173
14. Prove that Lambert’s Series may be expressed in the form
z6(1) +220(2) +230(3) +... +a"0(n) +...
where 0(n) is the number of divisors of =, including 1 and n.
16. If |z | <1, show that

x a2 x3 _ oz = + z
T2 i Tzt TT-a 1-22" 1-2°
16. If |z | <1, show that
x 3 o =z 3 + x®
st Tae T Tred T TT-at T2 1 -2t
17. If |z | <1, show that
z 2 3x~"__:v_w’+:c’_
Toe T+ 142t " (+zp (T+ao)t (1+ad)p "

@G ©
18. If f(x) :Za,,x" and g(x) =Z b,z™, both series converging for
n=1 n=1
|z | <1, show that
@« @D
> bafla™) = > angl@®). (Knopp.)
n=1

ne=1
67. Series of Complex Terms. If b and ¢ are real numbers
and ¢ is ““ the imaginary unit ./(—1),” the number @ where
a=b +ci is called a complex number. The student will be
supposed to be familiar with the usual nomenclature and with
the method of representing complex numbers on the Argand
Diagram, as well as with the laws of operation.

For definiteness, it may be noted that when b and ¢ are given and the

numbers r and 0 are determined by the equations
rcos 0 =b, rsin 0 =c¢

subject to the conditions that r is positive and -n<0=m=, tho
number r is called the modulus of a or b+ic and is denoted by |a|
or |b+1c|, being eqlial to the positive value of (b? +c’)i, while 0 is
called the amplitude of a. If 0 is one solution of the equations so i3
6 +2nn where n is any positive or negative integer ; the value of 6 as
above restricted is called the principal value of the amplitude of a.
Again, the principal value is often taken to satisfy the condition
0= 6 < 27 but, unless otherwise specified, the principal value will bo
supposed to be such that -z <60= .

If b, and ¢, are real numbers and a, =b, +ic, the series
Xa, or X(b, +ic,)

is called a series of complex terms or a complex series. Itis
plain that if the series b, and Xc, are both convergent tne
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number 3(b,, +1c,) or Za, is a definite number and in this case
the series Xa, is said to converge. If either Ib, or Zc, is not
convergent the number X(b, +ic,) is not a definite number
and Xa, is said to be not convergent. The convergence of Za,,
may therefore be tested by seeing whether b, and Zc, are
both convergent.

The most important type is the absolutely convergent series.
The series Za,, or X(b, +ic,) is said to be absolutely convergent
if each of the series 2b, and Zc, is absolutely convergent, and
it is easily proved that Za, is absolutely convergent if, and only
if, Z| @, | is convergent. For

| an | = (0 +eB) < [ .| +]ca |
and therefore X |a,| converges if both X |b,| and Z|c, |
converge.
Again,  |b,|< (0F +eBf=|anl, o0 | < |an]
so that both £ ], | and X | ¢, | converge if X | a,, | converges.

The convergence of X |a, | may be tested by the rules for
series of positive terms.

For example, the series Xz, where z is complex, converges absolutely

if |z |[<1 because |a,; |+]|a, |=|z|.
The series Zx"/n! converges absolutely for every = ; because
1@ | _ Apyy [_ [ 2] ' | >0 if n>oo.
Tanl |Tay I"n+1

When a,/a,,, can be expressed in the form

a, @ +if A, +iB,
G A
n n

Qpyy

where | 4, | and | B, | are bounded, we have

={(r gy (G Yy

=142 +92, |Ca| bounded,

Ay

Ay

and therefore (§ 60) Za, will converge absolutely if o >1 but
Z|a,| will diverge if a=<1. Instead of (d,+ :B,)/n®> we
might have (4,+ ¢B,)/n*, 1>1.

Ez. If o, B, y,  are complex, . =a, +iag, f=F; +%fs ¥ =7, +1%»

the hypergeometric series will converge absolutely when z=1 if
(Y1 =y — By), that is, if the Real Part of (¥ —a — B), is positive.
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Tannery’s Theorem, § 63, holds for complex terms as for
real ; the proof needs no change when the terms of Zu,(n)
are complex.

Derangement of Series. Here too no change is required ;
when the conditions (i) and (ii) of § 66 are satisfied the proof is
the same as when the terms are real.

68. The Exponential Function. Let F(n)=(l +z/n)* where
n is a positive integer and z is complex, z =% +1y, z and y being
real ; it will be proved that, when n tends to infinity, F(n)
tends to the limit expressed by the series

z 7’
1+ 24+ +3|+ r!+...=¢p(z), BAY, cevreinernnns (1)

which converges absolutely for every z.

Expand (1 +2/n)* by the binomial theorem, which is appli-
cable when 7 is a positive integer, and express the coefficients
as in § 48 of the Elementary Treatise ; thus

F(n)= 1+z+(l——>§7+ (1—%)(1—%)...(1—1;—!—):—“

re+(1-0)(1-2). (1 Lyt

Let u,(n) be the term of the expansion that contains 2’, and
let [z |=a ; then we have

) £ u,(n) =2"[rl, when r is fixed ;
(i) |u,(n)|=a"[r!; (iii) Za"/r! is convergent.
The conditions of Tannery’s Theorem, § 63, are therefore

-satisfied and
£F(n)_2 G (3)

n-—>w0

and this series converges absolutely for every z.
The limit may, however, be expressed in another form,

namely .
£ F(n)=e"(cos y+18in y).
For, if 1+z/n=r cos 6 and y/n=r sin 6 (n a positive integer)
so that 1+2z/n=(1+a/n)+iy/n=r(cos 6 +1 sin 6),
r cos 0 will, for large values of n, be positive while r sin 6 will
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have the same algebraic sign as y ; hence 6 may be chosen so
that it lies between —7/2 and z/2. By De Moivre’s Theorem

(1 +2/n)* =r"(cos § +1 sin §)" =r"(cos nf +4 sin nd).

Now,

- LR A
’m_{<1 +ﬁ) sl _<l +n> {1 T +w)2} )
But ny?/(n +x)2—>0 when n—>x and therefore by § 25, Ex. 2,

{1 +y%/(n +x)%2 —1 when n—>,
so that rm—>e* when n—>w .

Again, tan 0=y/(n +z) and therefore 6—>0 when n-—>.

Also,
6 ny 6 y
tanO n+2 tanf l+x/n

no = —y when n—>»

if we assume the usual theorem that 6/tan §—>1 when 6—0.

Hence £F(n)= ,((1 +Z +7;y>"=e°‘(cosy +i8iny) ....... (4)

n—>rm n—>w n

and therefore

L‘ <1 z)" - .. ® 2"
A +,) =e (cos y + 4 sin y)—g% r—!"(p(z)'

When z is real, z =z, the series is equal to ¢” ; the definition
of the exponential function is now extended to complex
values by saying that ¢ means the series Z2'/r! or ¢(2) or the
function e*(cosy +isiny) when z =z +iy.

69. Trigonometric and Hyperbolic Functions. If z, and 2,
are any two complex numbers the power ¢* satisfies the index
I&W e X e —ea +Za’
as may be verified either by finding the product ¢(z,) x (2,),
which is easily seen to be ¢(z, +2,), or by taking the product of
en and e when these are expressed in the form

en(cos y, + i8in ;) and €% (cos y, +18iny,).

If n is any positive or negative integer (€")"=e", but when
n is not integral or not real the function is no longer single-

valued. (See § 72.)
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Suppose x=0; the series for ¢(z) then gives, by equating
real and imaginary parts,

2
Ccos Y= g,+?ﬁ g+
¥y

sin y= y——+ e

51

which are the usual power series for cosy and siny; by
equation (4), § 68, y is the number of radians of angle.

In the equation e’=cosy +isiny put -y for y; the
equations e’ =cos y +¢ siny, e*=cosy -4 sin y

ety _I_e—iy eiu - e-w

give Cosy=—p——, S y=—gr— .eerirreres (1)

which are known as Euler’s expressions for cos y and sin y.
The direct trigonometric functions of a complex number 2z
which, as yet, have no existence, are now introduced by
definitions suggested by equations (1), namely,
eiz + e—-iz ei; _ e—-iz

coO8Z=———, ginz= :
2 ’ 2

while the other functions tan z, cot z, cosec z, sec z are defined
by the equations tan z=sin z/cosz, ... sec 2=1/cos 2z, which
hold for real angles.

iz __ ,—t2\ 2 iz —12\ 2
Again, sin2z+coszz=<e 2: ) +<e -;e )=1,

the fundamental identity for real angles. Similarly it is seen
that 1+tan%z=sec?z, 1+cot?z=cosec?z,

and it is also verified very easily that the Addition Theorems
for cos(z;+2,) and sin(z,+4-2,) hold also for complex values.

It should be noted, however, that, when 2z is complex, the
familiar relations |sinz|<1,|cosz|<1 are no longer true
in general.

Periodicity of ¢*. The function e* is periodic, with the pure
imaginary period 2xi; for if n is any positive or negative
integer,

e2+n - 2mi— g% « 27 = g% (cos 2n7 + 4 8in 2n7) =é”.

The trigonometric functions have, however, the same real
periods as when the angles are real ; for

exiletn.2m) —gtiz eiZmri_.e:!:iz



178 ADVANCED CALCULUS [cH. VI

so that an increase or decrease of the argument z in sin z or
cos z by 2z makes no change in the value of sinz or cosz.

The zeros of the trigonometric functions are the same as
when the angles are real. For example, if z=x +iy and
sin z=0 we must have

efe~v =g~iztv  or e* =¢%%=cos 2z +1 sin 2z.

This equation requires, since x and y are real, ¢ =1 or y=0
and cos 2z =1, sin 2 =0 so that x=nn, n=0, +1, +2,....

The Hyperbolic Functions. The definitions are the same as
when z is real (E.7. p. 140) ; for example,

cosh z=}(¢’ +€7%), sinh z=4(e" —e™).
The relations
cos iz=cosh 2z, sintz=¢sinh 2z, sinh tz=1¢sinz

should be noted as they are often useful.

Ex. 1. Show that, « and y being real,
(i) cos (xL+ty)=cos x cosh yF¢ sin z sinh y ;
(ii) sin (x4 %y)=sin & cosh y+4 cos x sinh y ;
sin 2247 sinh 2y

(iii) tan (viy)=" oo = osh 2y °

Ez. 2. If x and y are real prove that
(i) | sin (z+4y | =(sin? z +sinh? y)*f—_» cosh y but =sinh |y |.
(ii) |cos (% 1y | =(cos? x +sinh? y)% = cosh y but = sinh |y|.
Ex. 3. If z +iy =tan (u +4iv) where z, y, 4, v are all real, show that
(i) 2? +y? =(cosh 2v — cos 2u)/(cosh 2v +cos 2u) ;
2x 2
m; (iii) tanh 2v=~l~_—i_xTy+?;
(iv) et?={z* +(y + 1)}/{=* +(y - )}
Ex.4. Ifziscomplex, |e#—-1|<|z|[(1+3]|z]|e!'*!).
Let |z| =r; then |e* — 1] is less than or equal to

(ii) tan 2u =

2 C rz r”
rede{ gy (n+2)+”'}

<r+1}r’{1 +r +;—t +... +:71;+...}=r|:1 +1}?'8':|o

70. Logarithms. If e”=2, where w and 2z are complex, w
is defined to be a logarithm of z ; when z is real there is only one
real logarithm of z, but when z is complex new considerations
come into play.
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Let z=x +iy=r(cos 0 +isin §), where — <0< n, and let
w=u +1iv, where u and v like 2 and y are real ; then

e’ =e+? =g iy =r(cos 6 +17 sin 0),
or €“(cos v +1 sin v) =r(cos 0 +1 sin 6),
and therefore e*=r, v=0 +2nx, =0, 41, +2, ...
Hence, since r is positive, v =log r, a real number, and
w=u+w=logr +i(0 +2nx). ..ceoiveeanan.. (1)

This value of w is ** the general logarithm of z *’ and is denoted
by Log z, so that Log z has an unlimited number of values
that differ by multiples of 27i. The value of w for which n
is zero is called the principal value of the logarithm of z and is
denoted by log z. Hence

Logz=log z +2nmi, n=0, +1, +2, ... ......... (2)

If z=2+14y, then r=(2?+ y“)é, log r =% log (22 + y?) while 0,
the amplitude of z, is the angle which satisfies the equations
rcos O ==, r sin 0 =y and also the inequalities — 7 < 6 < n.

If 6, 0,, ..., 6,, are the principal values of the amplitudes
of z,,2,,...,2, and ¢ the principal value of the amplitude of
the product z,, z,,...,2, then ¢ is not, in general, equal to
0, +0;+... +0, but to 6, +0,+... + 6,, +2kn, where k may be 0
but, in general, is a positive or negative integer which must be
chosen so that — 7z <¢<n. Hence

log (2,25 ... 2,,) =log z; +log 2, + ... +log z,, +2kmni.

Ex. Let m=2.
0,=F. =, k=0; 0,=0,=%7, k= -1, = -2,
b= 5. 0= -2, k=1, =22,

71. Inverse Trigonometric Functions. If = is real and
tan y =z we find by expressing tan y in terms of e* that

iV — g~V a1 +wx
e =X, €
1(e*? +e—) 1~

and therefore - y :211' Log (-{——f—-:—;) ........................ 1y

tan y =



180 ADVANCED CALCULUS [cH. V1.

Let (1 +ix)/(1 —tx)=r(cos 0 +1 sin 6), -n<6<m; then

1-2
r=1, c0s6=—+x— 0— 2, tan 30 =«
1 1+
and §2L°g<1—ﬁ> x 2(0 + 2nx) =40 +nzm.

The principal value of y is therefore 30 and is the value to
which the symbol tan-1z is restricted (Z.7'. p. 133).
The general value of tan- z, when z is complex, is defined to
be 1 1 41z
5; Log (—> e, (2)

11—z

Thus if z+iy=tan(u +iv) so that u +iv is a value of

tan-1(x +1y), it follows from § 69, Ex. 3, that

2z . z? +(y +1)?
- 1 r Ay Ty
22 —y2> +% . % log {x2 = 1)2} (3)
where n=0, +1, +2,..., and therefore, as when z is real, the
values of tan-!z differ by multiples of z.

As we shall make very little use of these inverse functions
it is sufficient to state that all can be expressed in the form
o +%p where oo and g are real functions of the real variables
z and y. For fuller information the student may consult
Chrystal’s Algebra, Chapter XXIX, or Hobson’s T'rigonometry,
Chapter XVI.

Ex. If sin~Y +dy) = +1B, x +4y=sin o cosh §+1 cos o sinh §,
prove that

(i) cosh f=}{(z +1) +y0t + Kz -1 +9t =u;
(ii) sin o =3{(@ + 1) +yt - 3@ - 1)ty =v;
(ifi) sin=Y(z +y) =na +( - 1)*sin~to +1 . ( - 1)" log {u + (u? — )},

72. The Generalised Power. The power z* is defined for all

values of z and 7, real or complex, by the equation
2n —en Logz

% +w=nw+3% tan“‘(

and erlgz jg the principal value of z".
The general power 2" is single-valued if, and only if, » is zero
or an integer, positive or negative ; because
nLog z=nlog z +n . 2kni, k=0, +1,4-2,...,
and in this case e?¥ri iz unity. If n is a rational fraction,
n=-4-p/q, where p and ¢ are positive integers and p/q is in its
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lowest terms, z* has ¢ different values. In all other cases the
general power z* has an unlimited number of different values.

Ex.1. (i) log(-1)=ni; (ii) logi=gi; (iii) log (~%) = - 7—2“"'

Ez. 2. The principal value of i is e~"/2.

Ez. 3. If tan  =c sin /(1 —¢ cos a), show that if £ =0 when ¢=0
1 —ce“"a)

z =1 log (——
2: 1 —cete

Ex. 4. If x and k are complex, |z | <1 and k =o +¢8 where « and 8
are real, find the modulus of the principal value of (1 +x).
The principal value of log (1 +z) is that value which is zero when z
is zero ; for if x =r(cos 6 +¢sin 0), — <6 = n, and
1+7rcos8=pcos g, rsinf=psing,

cos ¢ is positive and therefore — 7/2 <@ <n/2 and ¢ =0 when r =0.

Next, log (1 +z)=log g +1¢,
so that klog (1 +z) =(a log ¢ — Bo) +i(flog ¢ +agp)
and therefore | (1 +x)* | —ealogp-Bpd =% -8

where ¢ =(1 +2r cos 0 +r’)‘}.

Since lol =2, |(1+a)k|=g%!#li,

73. Complex Functions of a Real Variable. If » and v are
real functions of the real variable x—that is, functions in which
the constants are real numbers—the function u +%v is called a
complex function of the real variable x.

A polynomial f(x) of degree n (n a positive integer) in which the
coefficients are complex numbers may, by separating the purely real
and the purely imaginary parts, be expressed in the form « +4v. The
quotient of two such polynomials is of the form (u; +1v,)/(u, +1v,;) and

Uy +10; Uty U1V, | Ugly — UV

1 = i - =u 41,
Uy +10, u} +v3 + ul +v3

Again, if a=b +1c (b, ¢ real) €3 is of the form u +iv where
u =eb* cos cz and v =e€b? sin cx.

From the definitions of logarithms and of the circular functions,
direct and inverse, it will be seen that they are all of the form u +4v.
The definition therefore includes all the ordinary functions.

The derivative and the integral of a complex function f(x)
of the real variable x are defined, when f(x) has been expressed
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in the form w +iv where u and v are real functions of z, by
the equations
df(z) _du
“dxr dx

where C is a constant, in general complex, C'=C, +1C,.
The definite integral is defined by the equation

b b (P
[ f(x)dx:J- udx +zj- vdz,

where the limits a and b are, of course, like z, real numbers.

The rules for differentiating a sum, a product or quotient,
and a function of a function (both variables being real) will
obviously be the same for the complex as for the real functions;
the rule for differentiating an inverse function will be proved
for the standard formulae, as the general proof really requires
the concept of the complex variable.

(I) e*, where w=wu + v and u, v are real functions of the real
variable z.
By definition, ¥ =¢*(cos v +1 sinv) ; therefore
d.e’ e )
de

+ P Y and _[f(x)dx_ udz +zjvdx +C,

u(cosv +i8inv) +e*( ~sinv +14 cosv)d
=¢¥ 'inv~ e*(co 'in'v—
(cosv +18 )d +2e*(cosv +18 )dx

=e*(cosv +zsmv)<d +zdv>

d.e® dw
dr ~ % dz

We thus have the same rule as if w were real.

(ITI) Trigonometric Functions. By expressing sin w, cos w,
tan w, etc., in terms of e and applying (I) it is readily
found that the derivatives have the same form as when w is
real.

For example,

d.sinw 1 d(e—e*™) . . _undw
dx 2 de =¥+ e )

go that

 d.sinw_ dw
so that iz =CO8 W iz
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(III) logw. In this case let w=p(cos ¢ +isin¢p) where
¢ and g are real functions of 2 ; thenlogw =logg +i¢p so that
d.logw 'ldg_*_ .de
Tdx edx dx’

dw __Q . . . . . de
Now ¢ (cos @ +18in @) +ip(cos @ +4 s8in @) Iz
ldp , .de
—Iw(ﬁ dxt* dx)
and therefore
d.logw 1dw
dz ~wdz’

Since Log w=log w +2nni the derivative of Logw is the
same as that of log w.

(IV) Inverse Trigonometric functions. The forms are the
same as when w is real ; for example

d.tanw 1 d 1 4w 1 dw
T dz Zidz O ( 1—ww/ 1+widz’

(V) w*. Let logw be the principal value of Logw and
w" =e"%e¥ where w is a complex function of the real variable
z and n a complex constant. We find by (I) and (III)

d.w" __ glogw d(nlogw) —un dw

Tdx o odx w dz’
d.w* . idw
80 tha;t 7&;— =nw -CTx' .
Cor. If the same value of Log w is used for w™ and w1
d.w* . gdw

dz =™ Gz

(VI) In respect of integration we may assume (as will be
fairly evident from consideration of the definite integral as the
limit of a sum) that

J:(u +iv)dx’§Jj| u +iv | dz

b b
or ”wdx gjlwfdx,

where a and b are real numbers and a <b.
It is also assumed that the mtegra,l of df ()/dz is f(x)+ con-.
stant.
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Ez. Find the integrals of e%®cos bx and e%®sin bz, (a, b real).
e(@Hd)Z  ¢aZ(00g b + ¢ 8in bx)

)7 dop = =
ie(ﬁ de =3 a+1ib

and g e(a+d)z da = §c°“ cosbxdx +1 ge‘"‘ sin bz dzx.
Equate real and imaginary parts.

74. Logarithmic and Binomial Series. The series for
log (1 +2) and (1 +«)*, where « and %k are complex, will now be
established.

I. log(1+x). When ¢ is real, 0=<¢=<1, and z complex,
|2 | <1, the principal value of log (1+«t) is that for which
z (or t) is zero (§ 72, Ex. 4).

Now,let | | =¢ < 1 and let ¢ be real; the binomial 1+ «¢ can-
not vanish if 0 <¢< 1, and therefore

r @ dt = Principal value of Log (1 +x)
o 1+at P g )

Again, by elementary algebra, we have
X —_— 2 — 71 AT 471 —_ ‘nx”+1 t”
I A AR SR v

and therefore, log (1+2x) denoting the principal value of
Log (1 +x),

log (1 +x)=,2( ~1 2 (- 1) Ryfa), | 2] =@<1, coeenr(1)
1 il fn
where R, (z)= omdt.
Now |1+at|=1-0>0 when |z| =p<1and 0=¢<1; hence
gn+1 1 n Qn+l 1
|R,,(x)|<T-:—eLtdt, | Bafe) | < £ (@)
and therefore R,(z)—0 when n —». We thus find that

log(l+z)=x-§22 +ia® -t +..., |z | <1, .......(3)
8o that the series for the principal value of log (1 +2) when
x is complex and |z|<1 is the same as that for log (1 +z)
when z is real and |z |< 1.
Ezx. 1. If |z] <3 |log(l+%)|=2]|x].
In the inequality (2) let
n=1; then 1-p>4 and |[R(=)|=|z[2=|x]|,
so that llog(1+2)|=|2|+] Bylx)|=2]|2].
(The sign = occurs only for x =0.)
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Ex.2. |log(l+x)|=|x]+%|x[2+|z|3+...
and therefore [log (1 +z)|=-log(1-|=|), |z|<]1.

Exz.3. Show that |-3+ir-ja?+l2*—...| <1 if |[z|<} and
deduce that log (1 +x)=x+0x% where |0 | < lif|2z| < }.

II. (1 +2)*. Suppose that x and k are complex, |z |< 1, and
let ¢ be a real variable, 0=<¢=1; the principal value of (1 +a¢)*
is that value which is equal to 1 when t=0 and the principal
value of (1 +xz)* is that value which is equal to 1 when z=0.

Let F(t) be a complex function of the real variable ¢ defined
for the range 0 < ¢ <1 by the equation

F(t):"f( B ar (1 4atfr (=0 s (4)
where (r) kk - 1)1(k2 23) (ko7 1), (k) ........ (5)

Now the rules of dJﬂerentla,tlon with respect to the real
variable ¢ are the same as if 2 and k were real ; differentiating
F(t) we find (compare E.7T'. pp. 390, 391) that

d5§’)_n< Jan(l +aty=r (-t e (6)

Since |z|<1 the binomial (1+xt) cannot be zero for
0<:¢=<1 and therefore every power of (1 +zt) is finite ; we may
therefore integrate with respect to ¢ from 0 to 1 and then
equation (6) gives

P(1) - F©)=n(¥)a[" (1 +atyr(1 - gprat= R, ). .0
0
Again, from (4) we find that
n-1s%
F(1) - FO)=(1 +2) = 31w,
and therefore, by (7), e

(1 +2)*= z( Yo + Bye)

r=0
=1+kz+—"——* (k 1)
Ic(lc 1) (k n+2)
- (n—1)

where R,(z) is given by the mbegral in equation (7).

It may now be shown by a method analogous to that given
on p. 394 of the Elementary Treatise that R,(z)—>0 when
n—oo if |z |<1.

+
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Let k=a +18, x=9(cos 0 +i sin ), - z< 0=, and put the
integral for R, (x) in the form
1-t )n—l

R, (x) =n(z> x”Jz (1 +xt)""1<l i dt.

Now, since tisreal and |z| = p <1 we have, if 0 <21,

|1 +at|=1-pt=1-tsothat | (1 —t)=(1 +at) | <1,
and therefore [{(1 —t)/(1 +zf)}* 1| <1 0<¢t< 1.

Again, since 1 +z¢ cannot be zero when |z| <1 and 0<¢<1,
the power |(1+t)*1| must be finite, say less than M, for
0sit<1.

Further, if | k| =./(a2 + 2| =«, we have

l”(ﬁ)\z"‘(ﬁzbl<”'(K+l)(K+2)m(K+n_l)'

1.2...(n-1)
Hence l_r (1 +xt)’“‘1< 1-¢ )n_ldt < Mfdt:M
0 1+xt o

(k +1)(x +2) ... (k +n—1)
1.2....(n-1)
where a,_, is the nth term of the convergent series

¢ +2
gic_—*_-_i.).(;_-F)QZ_l_.'. .

and | R,(2) \ <x Mo =xoM .a,_,

1+(c+1)o+

Therefore, since a,,_,—>0 when n—>« , being the nth term of a
convergent series, the Remainder R,(z) in the expansion (8)
also tends to zero when n—> . The principal value of (1 +z)*
is therefore given by the series
k(k-1)

1.2
so that the expansion has the same form as when z and k are
real.

Ez. 4. If x is complex and f,, =(l +;1L )x(l +§)_1, prove that

L - =te@-1).

—> w0

(L+z)r=1+kx+ 22+ ... |wj<1,

n
If n> |z |, we have
z x(x-1) z x?

a =(1 +2 20 )(l — - )

=1+28 =D A4 s @ - 1),
50 that Z:n’(f,, “1)=}a(z -1).
N>

Cor. The series 2(f, - 1) converges absolutely for every value of z.
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75. Uniform Convergence. When 2z is complex, z=z+1y

where z and y are real, a series Zu,(z) will be of the form
Zoa(2, ¥) +1 Zwa(z, Y)

where v,(z, y) and wy(xz, y) are real functions of the real

variables x and .

If when | z | < o or, more generally, when z is any point within

or on the boundary of a closed curve C, the term u,(2) is such that
(i) |un(2)| =< M,, where M, is a positive constant

and (ii) the series XM, converges,

the series Zu,(z) converges absolutely and uniformly for such

values of 2.

The series converges since XM, converges; further, the
convergence does not depend on any particular value of z so
long as z is in the region specified, because the convergence of
the series of constant terms XM, is independent of z. The
property of uniform convergence is therefore maintained.

It is not hard to state theorems corresponding to those of
Dirichlet and Abel, but for these and other developments we
refer to Bromwich’s Infinite Series (2nd Ed.), Chapter X.

EXERCISES VIII.

1. Show that the points on the Argand Diagram that represent the
roots of the equation (z +1)% =322 are concyeclic.

2. If z, o, B are real, show that the two series
n—-1 . n-1
C= Ex" cos(a +7f), S=Ex" sin(e +78)
r=0 r=0

may be expressed in closed form by summing the geometric progression
n—1
‘?’6 27 ei(a +78)
=

and equating real and imaginary parts.

3. Zx” sin (o. +nﬁ)_

n=0

7038 gin (o + 8in f).

0
4. From the equation (1-z)"1=> 2", |z| <1, deduce that, if |z| <1,
n=0

(@) 1-zcos @
1 -2z cos 0 +x?
sin 0 . . .

(ii) {5705 028 50 0 +x sin 26 +23% sin 36 +...;

=1+xcos 0 +z%cos 20 +...;

1 -2
(m)m 1+2x cos 0 +2x% cos 20 +....
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5. Show that (1 — 2z cos 0 +a?)~1 is equal to

1 40
TR 0(1 —ex5i9 1= :z:e-w) and deduce Ex. 4, (ii).

6. fx=r(cos @ +isin0) and r<1, —n<0=7, prove that
: e=|14+x| =y(1+2r cos 6 +72),

and @ =amp(1 +=z), where ¢ cos ¢ =1 +7 cos 0, g sin ¢ =rsin 6,
so that ¢=tan~1{r sin 0/(1 + r cos 0)}, —7—21:<qp<i2¢ .
Deduce from the series for log (1 +z) that
. © -
(i) 3 log (1 +2r cos 6 +12) = Z(— 1)""1'—n— cos nb ;
n=1
. af_rsing \_ &, "
(ii) tan (——————Hrcos 0)_”2:;1( 127 sin ne.

7. In Ex. 6, let r—1 and show, by Abel’s Theorem, that
-]
(i) log (2 cos $6) =" ( - 1)n—1%ﬁ~9, —n<l<m;

n=1
or, 26 being put in place of 6,

. cos2nO n T
(ii) log (2 cos 6) = ,,Z=:1( =, —5<b<3;

(i) 40= D0 (-pmBnl g,
n=1
or, n — 0 being put in place of 6,

E, sin nb
iv) (x-0) = snn , 0< 0 < 2n.
(iv) §(m-0) =3 =
In (iii) the value of the series for 6 =z or — x is zero but the limit of
the series when 67 is =, and when 6~ -z is - ix.
In (iv) the value of the series for 0 =0 is 0 but the limit of the series
when 60 is }n.

8. Show that in the notation of § 74, II, « =g (cos 0 +7 sin 6), o<1
and -n<0=am, if k=m a real number, the principal value of (1 +z)™
is (1 +2p cos 0 + %)% (cos me +1 sin me) where

@ =tan~1{g sin 0/(1 + ¢ cos 0)}, ~12‘< <p<i2’.

9. Convergence of the binomial series for (1 +z)™ when m is real and
jz| =1, x=cos 8 +1isin § where -z <0 = n.

(i) Convergence absolute if m >0; (ii) convergence conditional if
0>m > -1, and also 0 not equal to x ; (iii) dwergence ifm=-1.

[Let a,, be the coefficient of =™ or (cos n6 +7 sin n0) ; then

Ga_ I_’”“ +221, 4n; 4, bounded.
an-H.I

I m +1>1 or m >0, the convergence is absolute.
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If m<0, let m= -y, p>0; the term in 2" may now be written

e+l .. (u+n -1,
1.2...n ?

b,[cos (n0 +nx) +4sin(nb +nn)], b, =

b,—>0 when n—w if, and only if, u<1. Now apply Dirichlet’s Test to
the two real series.]

0. Deduce from Examples 8 and 9 that, when m is real and |z | =1,
z=cos9 +48in 0, —n<0=nx, the series

1 +( )x+<m>z (?)z‘+

is equal to (2 cos $0)™ (cos $m0 +4sin $m0) for all values of m for which
the series converges.

11. Show that the value of P,(x), defined in § 66, Ex. 5, holds when
z is complex provided |z | =
12, If # =cos 0 (0 real), express (1 - 2y cos 0 +y”)_% in the form
(1 -yeiyEx (1 —ye-i0y,
expand each binomial in powers of y, find the product of the two series
and show that

@ 0
1+ Z P, (cosf)y™ =1 + Z u,(0)y™
n=1 n=1

where u,,(6)—which is equal to Pﬂ(cos 0)—is equal to
22(”2(’:3')’{2005 no+ 2cos (n—-2)0

ﬁ n(n -1)
1.2 (2n -1)(2n -3)
where the series ends, if n is odd, with the term which contains 2 cos 0
as a factor, but, if n is even, with the term which contains cos (0.6),
that is, unity as factor.

Since the coefficients are all positive P,(cos 6) has its greatest value
when 0 0 and then P,(cos 0) =1 so that, when 8 is real,

-1=P,(cos0)=1.

+ 2eos(n—4)0 +...)



CHAPTER VII

SUBSTITUTION OF A SERIES IN A SERIES. REVERSION
OF SERIES. LAGRANGE’S EXPANSION. MAXIMA
AND MINIMA OF FUNCTIONS OF SEVERAL VARIABLES

76. Power Series. The theorem of § 66 on the derangement
of a series will now be applied to the expansion of functions in
a power series.

Substitution of a Power Series in a Power Series.

Suppose the function f(y) to be given as a power series,
convergent for |y |<s,

f@)=ag+ay+ay®+ ...+ @y +..., |y |<8 eenen. (1)
where y is a power series in x, convergent for |z |<7,
Y=by+ b +by2%+ ... +b 2"+ ..., |2 |<r el (2)

If f(y) were a series in powers of (y —y,) and (y —y,) a series
in powers of (z — 2,), these could be reduced to the forms in (1)
and (2) by substituting y for (y —y,) and z for (x —z,) so that
there is no loss of generality in using the given forms ; this
simplification of notation is frequently used.

The values of y2, 4%, ... y™... may be found as series in
powers of z by the rule for multiplying series, applied to the
series (2) and all these series converge for |z|<r. Now
substitute for ¥, 42, ... in (1) and rearrange in powers of x ; the
rearrangement can be effected when the conditions of § 66
are satisfied. The series 4,, of § 66 will take the form

A= Y™ =8 (An, g+ Cimy 1 T+ By g B2+ oo + By o T+ .00).--(3)
where the series in brackets is the mth power of the series
(2). (For m=1, a,, (=081, 9=bg, cee Um n=0y,,=by; for m=2,

Ay, 0 =02 a, 1 =2byb,, ay o =2bgb,+b... and so on.)
190
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Now the series given by A4,, is absolutely convergent for
| # |< r, but the conditions of § 66 demand that the series
a'm:"aml(lam,o.l""lam.l' |x|
+|@p o] |22+t |G| 2|+
should converge and also that Zw,, not merely X | 4,, |, should
converge and a smaller value of |z | may be needed to secure
this, because «, and |A4,| are, as a rule, very different
numbers.

We now “use the symbol o, tn a different sense from that given
to it in this reference to § 66.

Let |a,| =0, |b,] =B, and |z | =& We try to satisfy the
conditions of § 66.

The first condition is plainly that 8, < s because y =b, when
z=0.

Again, the series (2), and therefore also the series (3),
converges absolutely if |z | < ¢ <7 so that 8,0, being a term
of a convergent series, is finite for every value of n, say
Bno"<M. From (2) we find

[y | SBo+ Prl+ Bal2+ ...+ Bpén+

§ & &
<ﬁo+M< +e +. +e +. )

and therefore |y |<<B,+ME&/(o - &).

If then £ is chosen so that B, +M /(o — &) is less than s, that
is, B, being less than s by the first condition, if & is such that

i< st’—m”%‘,’l Bo<S wreereereeeeeeeeann, )

the series (1) will converge as required when the series (2) has
been substituted in it for y and rearrangement is allowable.
The series B, of § 66 will be

3
B, =( ZO A, ,,)a:" =c,z", say,

and then fly)= 2, L P (5)
The substitution and rea.rra,ngement are therefore valid if
(@) Bo<s, (i) |2] < ﬁﬂi)gl, 0T weeeannn, (6)

where M is an upper limit to the values of g,0" and 8,=|b, l

G.A.0. H
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Cor. 1. 1If by =0 only one condition is necessary, namely
| <sel(s+M);
this case is of special importance because the coefficient of

2™ in (5) contains only a finite number of terms and is not an
infinite series.

Cor. 2. Again if s=w there is only one condition,
lz|<eo<r
and, since ¢ may differ as little as we please from r, the trans-
formation is valid simply if |z | <r.

In proofs of Existence Theorems it is usually the possibility
and not the full range of a transformation that is in question;
in the above case it is frequently possible to verify that the
range of the variable x may be greater than the inequalities (6)
would allow. It may be noted further that conditions (6) are
merely sufficient, not necessary.

Ez. 1. The expansion of log (1 +sin «) in powers of z. (E.7T. p. 398.)

Here Jy)=log (1 +y)=y -2 +3® -}t +.. lyl<l ... (1)
3 7
where y=smx=x—g~!+§5—!—%+ .......................... (2)

If |x|=p and all the terms in (2) are made positive the series
becomes sinh ¢. Now sinh 0-88 =0-998 <1 and the transformation is
valid if |x| < 0-88.

Ex. 2. fly)=eY, y=Fklog(l+x).

In this case the series for f(y) converges for every value of y while the
series for y is convergent if |x[<1. Therefore the transformation

holds if || < 1. Further b, =0 so that the coefficient of 2" is a poly-
nomial. Show that

cn =7%k(k “1)(k~2)...(k-n+1),
and, since f(y) =(1 +)¥, deduce the binomial theorem.

77. Division by a Series. If the quotient u/v is required where
% is a polynomial or an infinite series in powers of #, and v is an
infinite series in powers of ¥ we may first express 1/v as an
infinite series and then find the product of » and 1/v by
multiplication of series.

If v=by+bx+by2?+... we may suppose by=1 when b, is
not zero ; for by may be taken out as a factor of the series and
then b, written in place of b,/b,. There are two cases.
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(@) bo=1. Let o porbats..|z)<r v verveeeen(1)
then 1Yo=1/(1+y)=1-y+y*-3+...Jy|<1l. ..cc...a(2)
By § 76, we may when |z | is less than some number, ¢’ say,
substitute the series (1) in the series (2) and rearrange in powers
of 2 ; the product of » and 1/v will then be of the form Z¢,z".
(i) Suppose b,=0 and let the lowest power of x that occurs
in v be z?, its coefficient being taken to be unity, say
v=a"+ b, @ +b, 2"+ . x| <r (3)
=2?(1 +b,x+b,,,22+...).
Express (1 +b,,,2 +b,,,2%+...)" 1 as a power series Zc,z" ; then

u 1 1
= xux (Ze,a) =;v,r§o At
%_ d d, dy_
80 that = ° 0+ x”‘l S Bt 1 tdy+dp @+ dy 22+

In pra.ctlce it is usually sumpler, now that the validity of the
transformation is established, to apply the method of un-
determined multipliers (£.T. p. 388, Ex. 10.)

Exz. Expansion of z/(e® - 1).

2 :_z:_ and therefore zx =l where
=iont e -1 v
z x? 28 xn
v=1+ 2+3'+ Fe i e e (1)

and the value of z/(e* — 1) for z =0 is taken to be unity.
Now express 1/v in the form
1jp=co+c;@ +Ca@® 4+ ... +C, @™ + ... ciiriiiiiiininnns (2)

where ¢, ¢,, ... have to be determined. Multiply the series in (2) by
the series for v in (1) ; then the following equation

(1+2+3‘+ )(co+clw+ch’+...) ................ (3)

must be identically true for |z |< g, where g is not definitely known
except that it must be positive, not zero. Hence the absolute term c,
on the right of (3) must be equal to 1, the only term on the left ; while
the coefficient of each power of & on the right of (3), when the multiplica-
tion has been effected, must be zero. Thus we find

Co
» 3'

+.6

c o
co=1; ~2‘!+cl=0 s gt g

+2+c,-—0 +2+c,,—0

and, in general,

Co cl Cs Cn =
(n+1)' (n—l)!+"'+ 5 +c¢, =0.
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These equations, when solved, give :

co=1, e;=~4 ca=p =0, ¢,= ~7d5 =0,....
It is hopeless to seek by this method the value of c, except for the
smaller values of n ; it may be proved, however, that no odd power of =
above the first occurs in the expansion. For, if we write

f@) =" +1z,

we find that f( — ) =f(z) so that f(x) is an even function and contains
only even powers of . The fact, however, that there is a power series
has been established.

See further § 94.

78. Reversion of Series. If y is defined as a function of x

by the convergent series

Y=1% +ax% +... +a,2" +..., |Z|<P, corennennnn (A)
the problem of reversing the series in (A) is, in general terms,
that of expressing x as a convergent series in powers of .
It has been pointed out in § 76 that there is no loss of generality
in taking 2, y instead of x —x, y —y, as the variables, and
further, that no importance attaches to the particular value
of r (provided r is not zero). In the following discussion,
therefore, the essential point is that the series converge ; the
determination of the maximum range of convergence of the
various series is a separate problem.

It is, however, desirable to reduce the equation (A) to a
standard form before defining more precisely the problem of
reversion. _

Suppose in the first place that the coefficient a, is not zero
and make the substitutions :

yla,=y', a,la,=a,, n>1.
Equation (A) becomes

Y=+ax2+ a2+ . + G+ oet ' cveeriniaens (A,)
Suppose next that the coefficient a,, is not zero but that
@y, G, ..., @,_, are all zero and make the substitutions :

y/am":y’: [ - ‘,_"a:nﬂn »=L2,...
In this case equation (A) takes the form
Yy =xm+a, ™l a2 L (Ay)
The series in (A,) and (A,) will still be convergent ; the fact
that the coefficient of z in (A,) and of =™ in (A,) is unity is an
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important simplification. The accents may now be dropped
and the discussion will proceed on the basis of equations (A,)
and (A,), as thus changed. The two equations require
separate consideration.

First Case. Coefficient a, in (A) not zero. The equation to
be considered is

Y=T+ 022+ Qg2+ ...+ BE oot v (1)

The problem of reversing the series in (1) may now be stated
as follows : to show that there is one, and only one, convergent
series for x in powers of y, say

T=y+bgy2+bgyP + ... + by + oot it (2)

which satisfies the two conditions that =0 when y=0 and
makes the equation (1) an identity when the series (2) is
substituted for x in the equation (1).

We must first show that when |z | is sufficiently small, y, as
determined by equation (1), cannot be zero unless x=0. For,
¥ =2(1 + apr + azgx? + ...) =z(1 + v) say.

The series v, that is, @,z + az2? + ..., is convergent and there-
fore defines a continuous function of z (E.7'. p. 886); further
v=0 when =0, and therefore, by the continuity of v, it is
possible to choose |z | so small, say |z|<7r;, as to make
|v|<1. Hence 1+v is positive if |z|<r, and therefore
z(1+v) is, if |z | <r,, zero if, and only if, =0.

Let it be assumed for the moment that there is at least one
convergent series which when substituted for « in (1) makes
that equation an identity. Since the coefficient of y in
equation (1) is unity its coefficient in the series for x must also
be unity ; the equation (2) may therefore be taken as defining
the assumed series for x. The solution of the problem of
reversion consists in showing that this assumption is justifiable.

When the series (2) is substituted for z in (1) and the co-
efficients of 32, 43, ... calculated, each coefficient must be zero
because the equation is then an identity ; thus, the following
equations connecting the a’s and the b’s are obtained.

by= —ay, by= —a,(2b,) —aj,
by= —ay(b2 + 2b3) —ayg(8by) —ay, weerveirerrennnn «(3)
bs=o--, bszn..
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These equations determine, in succession, by, b, by, ...
uniquely as polynomials in a,, a,, a,, ... , the coefficients of the
polynomials being positive or negative integers; that is,
b, is of the form,

bp=Py(a,, a,, ..., a,).

(If the coefficient of z in (1) were not unity P, would be a
polynomial, not in a,, as, ..., a, simply, but in a,, a,,..., a,,
divided by a power of @;,.) This determination of the coefficients
b, proves the important result that if there is a series of the
kind assumed there is only one such series.

The next step is, by a method due, like so much in the
theory, to Cauchy, to solve a particular case of the problem
and then by means of this solution to pass to that of the given
problem.

Suppose that the series (1) converges for |z | <7; then it
converges absolutely for | x| < p <r and therefore there is a
positive number M such that |a,|e*< M for every value of
the integer n. Let a,=M/o" and consider the problem for
the particular case, where for distinction &, n are used in place
of z, y respectively :

=802 —agfi— . [ & <p<r .iiniinnnn. (1a)
E=n+ B+ BapP+ et i (2a)
The equations corresponding to (3) are
Ba=0t, B3=05(28,) + 0,
Ba=0a(f2+ 283) + 03(3Ba) + Oy, wevninniniiinnnnns (3a)
/35:..., ﬂ6=""
and therefore, since each o is positive, so is each S.
Now |a,|< a, and therefore
[be|=]0s| <og; |by|<PBo.
1bg|=las|(2[bz])+|ag| <aa(2Bs) +oe5; |bg] < Bs,
and so on, | b,|<fB,, n=2,3,4,....

If then the series (2a) converges, say for |n|<s, the series
(2) will converge for |y |<s and then by § 76, Cor. 1, the
substitution in (1) of the series (2) for = will be justified ; the
equation (1) will be identically satisfied and the problem of
the reversion of the series (1) will be solved.
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We now determine the series (2a¢).  In (1a) put M/p" for o, ;
then if | £| < ¢ we find, as another form of (la),

g2 g3 Mg
n:E—M(é—z-*-?-i- >=§—m ............
so that (M + 0)&% - (0 +n)oé + 0*n=0.
Solving this quadratic for ¢ and taking the negative sign of
the square root since & =0 when 7 =0 we obtain the equation :
2(M + 0)§ =o(0 +7) - 0fe* - (4M + 20)y + 3.
Let g2=s;8, and 4M +2¢=s,+s,; 8, and s, are positive
and we take s,<<s,. Thus
2(M + )¢ =ele +7) - ¢*(1 ~nfsy}(1 —n/s,)}.
If |n|<s,<s, the binomials (1 - n/sl)* and (1- n/sg)’} may
be expanded in convergent series of powers of » and when these
series are multiplied we obtain the equation :

8182

2(M + o) =p(e +n) —92{1 —3%t S, ot —egnd - }
|
e

2M +
=0(g +7) - 92{1 s € 5~ can® —can® -

so that E:n 4 —c~292 .,72 + 0392 ,),]3 + (4)
2(M + 9) 2(.M+ 9) ................

(There is no purpose to be served by evaluating c,, cg, ... in
terms of s; and s, since the series is known to be convergent.)

It has been already pointed out that if there is one con-
vergent series of the type (2a) there is only one; the series
given by (4) is convergent and therefore the series given by (4)
and by (2¢) must be identical. Hence the series (2) is con-
vergent and therefore solves the problem of the reversion of
the series (1).

Exz. If in the series of Equation (1) the signs are alternately +
and - so that '
: Y= — a2+ a,x® —axt+ ax® —agxt+ ...,
show that z is given by
2=y — by + byy® — byt + by5 - beyS+- ...
where by, by, by, ... are the same as in Equation (2).

Second Case. The coefficients a,,@,,:..., @, in (A) zero,
a,, not zero.
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In this case the form of equation (A) becomes (A,) or
Y=+ Q1 8™ 4 @y ™2 L (5)
=21+ W), W= T+ %% +...
When || is sufficiently small it may be proved as before

that 1+ w is positive so that y =0 only if 2=0.
Let y =y™ ; then 5 has m different values, given by

n=y™ <cosg]£—+zs1nglcf) =y™ 0, k=0,1,...(m -1),

where y'/™ is the principal value of the mth root of y. Hence,
by taking the mth root and expanding (1 +w)/™ in powers
of x by the binomial theorem, we find that equation (5) may
be represented by m equations of the type

1
Y O =n=2(l+cx+Cca®2+...) =T+ ;2% +cox3+ ... . ...(6)
The work in the First Case is not essentially altered if y is
complex, and therefore to each of the equations of the type (6)
¢there corresponds an equation of the type
2= +dP+dmP e, i (7)
and the different equations of the type (7) are obtained by
putting # equal to y'/m,.
Thus in this case there are m different series each of which
is zero when y =0 and when substituted in (5) reduces it to an
identity.

79. Lagrange’s Expansion. In the equation
2=24+Yf(2), criiirriiiiiii (1)

let = be considered as a constant (or a parameter) and y as a
function of z. If f(z) can be expressed as a convergent series
in powers of (z —x), say

fR)=ay+a,(z—2) +ay(z —2)>+ ... ceeriininnnns (2)
where a,=f(x) and is not zero, y may, by expressing 1/f(z) as a
series in powers of (z - z), be represented by a convergent series
of the form

y=by(z - ) +by(z — ) +... bl=l/ao ............. (3)
and then, by reversion of this series,

2=X=CY+Cy:+ e+ ... Cy=1/by=ag ........... (4)



§§ 78, 79] LAGRANGE’S EXPANSION 199

Again, if @(z) may be represented by a convergent power
series in (2 —z) the substitution of the series (4) for (z —z) will
give for ¢(2) a convergent series of the form

w(z) =d0 + dly + dzyz Feee s esecccicctscorscnnes (5)

When f(z) and ¢(z) satisfy the conditions stated both f(z)
and ¢@(z) possess nth derivatives with respect to y for all values
of n and therefore the series in (5), which, by the conditions
satisfied by f(z) and ¢(z), is unique must be the same as Taylor’s
expansion of @(z) in powers of ¥.

The range of y for which the series (5) converges cannot, as a
rule, be found by the theorems at our disposal but it is certain
from the theory of reversion of series that the series does
converge for |y|<s, where s is positive. A rule for deter-
mining s in certain cases will be stated at the end of the article.

The calculation of the derivatives of ¢(z) can be effected by
a method due to Lagrange by which the derivatives with
respect to y are expressed in terms of derivatives with respect
to the parameter z and when the coefficients d,, in (5) are ex-
pressed as derivatives with respect to x the expansion (5) is
generally called Lagrange’s Expansion of ¢(z).

From the equation (1) we find

0z 202 0z ,, 02
5 =1+ U ()5, @—f(z)-i-yf(z)@,

and therefore, by eliminating f'(z),

0 oz
37’; =f@) g e, (@)
. dp(2) _ , .02 . 0z
Again, oy @ (z)@ =g'(2) f(z)ﬁi C et (b)
Next let y(z) be any differentiable function of z; then

0 oz 1y 0% 02 02 d 0z
a5 =¥ @) et VO = 2 VA5

and therefore by (a)

a%{'l’(z)g-:;} = %'{w(z)f(z)g:—i} e eteeteiereisriieenesrasennees (¢)
Nowlet  y(2)=¢'(2)f(z); then by (b) and (c)
Po(z) _ 0

F =gz} =2lrerenrZ}. ..«
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Similarly by putting ¢'(2) [f(z)]2 for w(z) in (c¢) we find
Poz) 9 o 20 2 ( "
L g ly@UEn ) = sl v U ] e
Let it be now assumed that the law suggested by (¢’) and (¢")
is general, that is, that

a:;;;(z) KA P 17 () <A SR (d)

After putting ¢'(2)[f(2)]" for 9(z) in (c), differentiate with

respect to y and we obtain the equation
n41 n_ n

=0 @ ) = | P @U@ S
so that the (n +1)th derivative of ¢(z) with respect to y is of
the same form as the nth derivative. Hence the form given by
(d) holds for all values of n greater than unity ; the form (b) may
be treated as the zeroth derivative of ¢’(2)f(z)9z/0x so that
the law holds if » >0.

The variables x and y in these differentiations are inde-
pendent. The value of the nth derivative of ¢(z) with respect
to y for any given value of y may therefore be obtained by
substituting that value in the right-hand member of equation
(d) either before or after the differentiations with respect to z
have been made. If the given value of y is zero then z==x
and 0z/0xz =1 so that

a" dr1 .
[ 3(’;(’?):',,:0: TP @) [f@)]"
Now expand ¢(z) by Maclaurin’s Theorem :

=p(@) + y9'(@)/(@) +2—7 2 @@ N+

+ ;i_"n___ll{,p'(x) @™+ e . 0

where the form d/dx may be used since ¢’(z)[f(x)]” is a function
of x alone.
The special case in whlch qa(z) 2 glves the expansion

zzx+yf(x)+ﬂ ESZ' [f@)2+... +,,7! d‘;ﬁ.—;[f(z)}”+.... (IT)
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If =0 equation (I) takes the form

#(z) =9(0) +y[¢'(@)f ()], _, + g[{%‘ @] 2}] gm0

+§’7'; [%:_1—1 {¢' (@) f(2)] "}] SR e (I11)

=

In all cases z is the value which satisfies the condition that
2=0 when y=0.

For another form of the Expansion, see § 80, Ex. 13.

Note. Lagrange’s Expansion requires for a complete
discussion the theory of functions of a complex variable.
Reference may be made to MacRobert, Functions of a Complex
Variable, § 54, or Whittaker and Watson, Modern Analysis,
§ 7-32.

Hermite’s Cours, rédigé en 1882 par M. Andoyer, contains on
pages 182-197 a valuable discussion of Kepler’s Equation (see
Example 5, § 80). Serret’s Algébre Supérieure, 6th Ed. Vol. I.
pp- 466-484, gives an exposition based on memoirs of Cauchy
and Rouché.

An excellent presentation of Lagrange’s method is given by
Bromwich, Infinite Series, 2nd Ed., pp. 158-160, and pp. 265-
266.

A rule for determining the range of y for which Lagrange’s
Expansion converges when z=yf(z) may be stated as
follows :

Let |z|=r and let y(r) be the least value of | |, that is, of
|2+f(2)| when |z|=r. If s is the maximum value of wp(r)
Lagrange’s Expansion converges when |y |<s.

If the equation is z=x +yf(2) let z={ +z so that

C=yf(¢ +a)=yF({)
and proceed as before.

The rule is by no means evident but the application of it
in the examples of § 80 makes its meaning clear; there are
many cases, however, such as Example 5, in which the deter-
mination of s is laborious.

The proof of the rule depencs on the theory of functions of -
the complex variable ; see Bromwich, l.c. p. 265, or Goursat,
Cours, Vol. II, pp. 123-4.
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Serret (I.c. p. 480) states the rule in the form : If s is the

least value of |y | for which the equations
z=z +yf(z) and 1=yf'(2)

have a common root—that is, for which the equation
z=x +yf(z) has two equal roots in z—Lagrange’s Expansion
converges when |y |<s.

In whatever way the range of convergence of the series in
(I), (II) and (III) may be determined, the corresponding
expansions are valid for that range.

80. Examples. The following examples furnish illustrations
of Lagrange’s Expansion ; some of them are worked out in full
to indicate the general method of solution. The numbers
(1), (IT) and (III) refer to the equations of § 79.

Ex.1. If y=2(1+2z)™ where m is a positive integer expand in
powers of y that value of z which is zero when y =0.

Write the equation in the form z=y(l+z)"™; then z=0,
f2)=(1+2)"™, @(z)=2. Hence [f(x)]* =(1+x)~™"; when the deriva-
tives of [f(z)]" have been calculated the value 0 is to be put for z, and
equation (II) gives

2m 3m(3m +1) am(4m +1)(4m +2)
2=y — ,ﬁ,yﬁ_}_ 3 3 Py 4
+( -1y nm(nm +1)...(nm+n — 2)y"+

n!
The least value of |y | when |z|=r >0 is (1 —r)™, and the maximum
value of r(1 —r)™ is easily found to be m™/(m +1)™+1; the series just
found converges if |y | is less than this number.

Ex. 2. y=z-az™", m a positive integer ; find the series for that
value of z which is zero when y is zero.

Proceed as in Ex. 1. f(z) =(1 —az™)"1 so that [f(x)]* is (1 —ax™)™™.
The only derivatives of the powers of f(x) that are not zero when = =0
are the mth, (2m)th, (3m)th, ..., (nm)th... and therefore the only
powers of y that occur in the series after y itself are the (m +1)th,
(2Zm +1)th, .... The values of the derivatives are easily found by
expanding (1 —ax"‘)‘” by the binomial theorem. Hence

2,:3,_+_c,,ym~t-1.,_2_”"'21;2 atyrmHl g

(nm +2)(nm +3) ... (nm +n)
n!
Again, the least value of |y| when |z|=risr -Ar"‘“(A =|a|), and
the series converges if’

arytmily

|yl < = (om + 1) ) e
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Ex. 3. z=x+yz™; z=zx for y=0, m a positive integer and =z
positive.

(i) z=x+yz™t1+ 2m2+ 2

YRzt 4 M%Mswsm~u+ .

2m +1 " ,m+(3m+2)(3m+1) m 4y
51 g Y

Both series converge if |y | < m™/(m + 1)m+tigm,

(ii) log z=log z+yzx™+—(5—

Exz. 4. Expand €% in powers of y when y =zeb?.

Here z =ye b2 go that f(x) =%, p(x) =%
and o'(z)[f(x)]" =ae@a—"b)x,  Equation (III) gives
- —nb)1
%=1 +ay+'_l(12!_2_b>ya .. +a_<a_’;ﬂ_yn

and the series converges if [by| <1/e.

Cor. If a=1, b= -1, x =¢* then log z =zy, and we find

_ 3 , 4% . 5 , (n+1)n1
x—l+y+§y +3!y +Ziy +... ‘l‘———n!—~

Yyt ...

Ex. 5. z=z+ysinz2. (Kepler'’s Equation.)

The determination of the general term in the expansion is a matter of
difficulty and the student should consult the section in Hermite’s Cours
(see § 79, Note). It is easy enough to calculate a few of the earlier
terms.

3
(i) 2=z +ysinz +y2 sin 2z +%(3sin3w —ginz)+....

ii) sinz =sinx +¥

2
Y sin 2z +¥(35in 3z - sin )

Y. .
+§(2sm4x ~-8in2z) +....

3
(ili) 1 -ycosz=1-ycosz + l—-cos2:c)+3Ty(cosm—cos3x)

2(
+%‘(cos 2z -cosdx) +....

Ez. 8. If z=2 -y/z expand z~? in powers of y, that value of z being
taken which is equal to 2 when y =0.

Here f(x) = —x~! and ¢(x) =2~?. Apply equation (I), putting 2 for =
in the evaluated derivatives ; the result is

z_,,=1+p p(p+3)(_) p(p+4)(p+5)<4) +

P 4+ 27,91 \4 27. 31
. ppAn+D(@+n+2)... (p+2n—1)/y\"
the general term being Sl (Z) ,

and the series converges if |y| <1.
Since z=1 +(1 - y)* the expansion may be stated in the form

(xa —y)*}-v_l . (y)+p<p+3>( )*+
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Cor. Let (1 —y)i=1 ~-2u, p= ~n; then

n(n -3)

(1-u)r=1 —-u(l —-u)+

wi(1 —u)? - n(n — 43)!(n - 5)

u(1 —u)t +
where -{;(\/2—1)<u.<<}.

Ezx.7. InEx. 6let y=4¢, where |4¢| <1, and let p = — % where k is
a positive integer ; show that if P(¢) is given by.the equation

11 —anhE | 11 —anbyx
Po={~F5 )+ ()
P(t) is a polynomial of degree 3% or (¥ — 1) according as k is even or odd.
Then prove that
P(t)=1~kt+

k(k = 3) 5 _k(k—4)(k =5)
21 3t

—(1 -4} 1+(1 -4yt %
O e O
so that the expansion of this part of P(¢) will cancel all except the terms
of the polynomial that arise from the first part of P(z).

Note that {

Ex. 8. Prove that if |4t] <1
log {1—(1 4t)} t+gt‘-’+4—3’!—5t’+...,

(n+1)(n+2)...(2n - l)t"
n!

the general term being

Ez. 9. Theorem. The derivatives of ¢(z) with respect to x
are obtained by differentiating Lagrange’s Expansion term by
term with respect to x.

@(2), by hypothesis, can be expressed as a convergent series
Zea(z —x)" and the derivatives 9™g(z)/dz™ are obtained by
differentiating the series term by term (E£.7'. p. 400). But the
form of the series shows that 9™ ¢(z)/0x™ is simply

(- 1)"amg(z) oz
so that 0™¢(z)/ox™ can be expressed as a convergent series in
powers of z —z.
Now, by equation (d) of § 79,
0" 9"g(z) 0" 39(z) _ z"_ 2 n0
T T T T g (P U5
and therefore

o] = e # @)
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go that the expansion of a"'q:(z) /a=™ by Maclaurin’s Theorem is

ar d
L) & (o @f @) + o+ L | ¢ @@+
and this is the series obtained by differentiating the series for
¢(2) term by term.

Ex. 10. Prove that if m is a positive integer and |y| <1,
(z —y)™ o y" ar _ 1)
Loy ="+ ?‘ 2 nida{ =@ }- (Serret.)
Let z=x+y(z —1) so that f(z) z—l and in the series for og(z)/ox
let ¢’(z)=2"™.
2 _
Ex. 11. If z=x+y (§—2—1), expand in powers of y that value of z

which is equal to £ when y=0.
Here f(x)=4(z*- 1) and equation (II) gives at once

2% 1 2 4 /a2-1\2 nogn—1 /a8 _ ]\
z=x+y(T)+q‘é—!d—x.(T) +...+%-§-‘Txﬂ—__1- T) +..o. (1)

If we solve the quadratic equation for z, choosing the negative sign
of the root, sinece z=x when y=0, we find
2 =(1-(1 - 22y +y")hyy,
and therefore, differentiating z with respect to z,

©
=(1-2ey+y") P =14+ D Py oo (2
n=1
by § 66, Ex. 5, P,(z) being Legendre’s Polynomial.
Now differentiate (1) with respect to x ; therefore by Ex. 9,

oz X gy dr o /xE - 1\P
‘a—é—1+'.2=1m3:—vg<-—2—'> 3 sessssessserecasisnes (3)
so that by equating coefficients of y™ in (2) and (3) we find
1 ar
P"(x)zma?.-(x’—l)". ..................... (4)

Equation (4) gives Rodrigues’ Formula for P,(=).
Ex. 12. By differentiating the equation

L
v=(1 -2zy +y2y =1+ Pyl
=1
with respect to y, show that "

0
(@ —y)(1 - 2wy +y* = (1 - 22y +97) D) nPu(2)y",
n=1
and, by equating coefficients of y*, prove that

(n+1)P,4(z) - (2n + 1)z P,(x) +nP,_,(z) =0, n=0, 1, 2,
where P_,(x) is taken to be unity. '
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Again by differentiating with respect to x, show that
(@-y) Py 2
Y) 52 =Y oy’
that is, if P,(x) denote d P, (x)/dz,
o a0
(@ ~9) 2 Po(a)y" =y 3 nPo(a)y™,
ne= ne=]
and deduce, by equating coefficients of y®, that
ZP(x) = Pp_y(2) =nPp(@), n=1, 2, c.. eerrrrrerrrorn. (i)
Ex. 13. Show that
by PR, SV
O o= v @fE@ s 35 gl v @)
and, if y(z) can be expressed as a convergent series Zc,(z ~x)*,

@) 127 =ve@+ 3 L Zlversen)

The expansion (i) is obtained by differentiating with respect to y
the series (I) for ¢(z). The expansion (ii) is then found by putting y(z)
for ¢’(2)f(2); by the conditions for Lagrange’s Expansion ¢’(z)f(z)
can be expressed as a convergent series in powers of (z — ).

Ez. 14. Prove that
1 _ Nyt AR (L4 2+ at)n
¢('1-2y-3yt)"l+,§1m dzh ]
Apply Ex. 13 (ii) taking f(z) =1+2z+2® and y(z)=1; the expansion
begins with the terms
1+y+3y2+Ty3 + 1994 +... .

z=0

81. Implicit Function of One Variable. It has been proved
in Chapter V, § 52, that under certain conditions an equation
F(x, y) =0 defines y as a function of xz. We shall now consider
a special case in which F(z, y) is given by an infinite series and
then sketch the proof of the corresponding general theorem.

Let M be a positive constant, u, the homogeneous poly-

nomial
Up =" + 2" Ly + 222 + L+ 2yl 4 yn,

and y=Mx +M 232“" .................................... (1)
=
the series in (1) being convergent, as will be proved, when

|z|<land |y|<l. Itisto be proved that if y=0 when z=0
the equation (1) defines y as a single-valued function of z.
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To each side of equation (1) add M +My ; the equation thus
becomes, if u,=1, L

M+ (M+1)y=Muy+ Uy +Ug+ coet Uy +.0a) e cennene (2)

The series in brackets contains every product of the type

zmy" where both m and n take every positive integral value,
including zero. The terms in (2) that contain z™ form the

series Mem(l+y+ 9%+ ... +y+...)

and the series formed by the moduli of the terms, namely,
M|z|»L+|y|+|y|2+...+]y|*+...)

convergesif | ¥ | <1, its sum being M| z|™(1 - |y|). Also

2 Mz -y )t =M1 - |21~ |y

provided |z |<1. Hence the double series in (2) is convergent
if |z|<1 and | ¥ |<1 and its sum is therefore given by

MY am 2y =M(1l -z)(1-y)?
m=0 n=0

so that M+ (M+1)y=M(1-2)1(1-y)L
This equation is a quadratic in ¥,
(M+1)y2-y+Mx(l -2)1=0 ....ccvu.n.nn. (3)
and, when solved for y, gives
oM+ )y=1-(1 -2y 0 -@M+1)23} ........... (4)

where the negative value of the root has been chosen so that we
may have y =0 when z=0.

If |z |<1/(2M + 1)2 (and therefore also | # |<1), each binomial
can be expanded in a convergent series of powers of z and, when
the series have been multiplied, y will be given by a convergent

series Y=ME+Co®+ G323+ e vrivniniviranninnn, (5)

The theorem is therefore proved. The general theorem of
which this is a special case may be stated as follows :

THEOREM. Let u, denote the polynomial
Uy =0y, g X"+ Oy, T Y + Qg 2 " 2Y2 + ... + g Y™,

and let F(2,Y)= Y+ 0y o%+ D, Un weeeeeeereennnns (1)
n=2

where the coefficient of y is —1 and the series converges for
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[z|<l and |y|<l. The equation F(x, y)=0 defines y as a
single-valued function of x by a convergent series, say

Y=bm + b2+ bzx®+ ... + b2+ ..., (11)
which satisfies the condition that y=0 when x=0. The series,
when substituted for y in F(x, y), makes F(x, y) identically zero.

The coefficient of the first power of y in F(z, y) must not be zero, and
there is no loss of generality in assigning the stated form to F(z, y).
If the series converges for |z| < R; and |y]| < R, put x = R,a’, y = Ryy’,
and if the coefficient of y’ is not —1 but k, say, divide the equation
F(Rx’, Ryy’)=0by ~k ; the new form of the function is that assumed
in the above statement., When the transformation has been completed
the accents may be dropped from «’, ¥’ and the coefficients denoted by
the symbols given. Again F(x, y) may be a polynomial, that is, after
a certain stage each coefficient a,,, , may be zero.

The method of proof follows the lines of that used in the
theorem of the Reversion of Series. Suppose, to begin with,
that the coefficients b, in (II) are undetermined ; substitute
the series for y in F(z, y), and, if possible, choose by, b,, ...
so that when F(z, y) is arranged in powers of x the coefficient
of each power will be zero. If this choice can be made, and if
the values of b;, by, ... so found are unique, the condition that
F(x, y) vanishes identically will be formally satisfied, and the
theorem will be formally proved since y=0 when x=0. To
make the proof complete (that is, a real proof) it must be shown
that the series (II), with the values of b,, b,, ... that have been
found, is a convergent series ; when it is convergent the various
transformations are valid.

Now, the equating of coefficients determines by, b, ... in
succession (compare § 78) and b, is given by a polynomial
ba=P.(ay.¢, Tz,0, B1,1, W, 2, ++ Fg,n) wovevencnses (I1I)

in which the coefficients are positive integers. This deter-
mination is unique and therefore if there is one convergent
series such as (II) there is only one.

Next, the general term in the series (I) is @, » 2™y", and since
the series converges for |z|<1 and |y|<1 there is a positive
number, M say, such that |a, ,|<M for every value of m
and n. Take now the equation ¢(¢, n)=0 where

o(E, )= - +ME+M(E2 +&n +n2 + 8 +& +...) ...(1a)
and let =P + P2 +PE+ o+ Bl (Ila)
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Substitute this value of % in ¢(¢, ) and choose $,, s, ... 80
that ¢(£, ) may be identically zero. The value of g, is given
by the polynomial in (III) when M has been substituted for
each of the numbers a, , @5, ... ; since the coefficients in
P, are positive integers and |a,,,|<M the number g, is
positive and greater than |b,|. It has, however, been proved
that equation (5) with &, 5 in place of z, ¥ gives a convergent
series which makes @(&, 5) identically zero and therefore the
geries in (5) and (IIa) must be the same. Hence the series (11a)
and therefore the series (II), since | b, |<p,, converge, so that
the proof of the theorem is now complete.

Factorisation. In F(z, y) substitute P(x)+z for y, where
P(z) is the series in (II), and arrange as a series in powers of
and z; the function F[x, P(x)+2] is identically zero when
2=0 and therefore F[z, P(xz)+2] is of the form 2P,(z,2)
where P,(z, z) is a series in powers of 2 and z. Let z be now
replaced by y — P(x) and we find

F(z, y)=[y - P(2)] Py(z, y)
where P,(x, y) is a series in powers of z and y, the absolute
term being — 1 because the coefficient of ¥ in F(z, ) is — 1.
The analogy with the usual expression f(z)=(z —a)fy(z) when
fla)=0 is obvious. This Factorisation Theorem is due to
Weierstrass.

Cor. 1If F(z,,y,) =0, the substitution z =z, + 2’ and y =y, + ¢’
reduces the problem of finding a series for y in powers of x which
is such that y=y, when x=x, to the problem just discussed
for the function F(z,+z’, y,+y’) or Fy(z', ¥').

For applications and extensions of the above theorem
the student is referred to Chrystal’s Algebra, Part II,
Chap. XXX, pp. 373-397. Some illustrations are given in
Chapter XII of the Hlementary Treatise (§§ 106, 107, and
Exercises XX).

82. Algebraic Forms. As a preliminary to the consideration
of the Remainder in Taylor’s Theorem for a function of several
variables it is necessary to prove two theorems on the behaviour
of the ratio of two algebraic forms. The number of variables
that appear in the statements will usually be three, z, y, 2, but
the definitions and the theorems are quite general. It is to
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be understood that the variables and constants are all real
numbers.

A polynomial that is homogeneous and of the nth degree in
two or more variables is called a Form or a Quantic. A form
f(z, y, 2) is a continuous function of its variables and therefore
(§ 43, Th. IT) if it has opposite signs for the values a, b, ¢ and
a’, b’, ¢’ respectively of z, y, 2—or, as will be often said, at the
points (a, b, ¢) and (a’, b’, ¢’)—it will be zero for an unlimited
number of values of z, y, 2, or at an unlimited number of points
(2, y, 2).

A form is said to be definite if it is not zero unless its variables
are all zero and to be indefinite if it is zero for values of its
variables that are not all zero.

For example, z* + 4+ 2* is a definite form. Every form of
odd degree in the variables is indefinite because in that case
f(—=z, —y, —2) and f(z, y, z) have opposite signs for all values
of z, y, z (not all zero).

A definite form has the same sign for all values of its variables
(unless these are all zero) because, as has just been seen, if it
had opposite signs at two points it would be zero at an unlimited
number of points. The form is called a positive definite form
or a negative definite form according as the sign is positive or
negative.

It is possible, however, for a form to be neither definite
nor indefinite ; it may, like a definite form, have the
same sign when it is not zero and yet be zero when its
variables are not all zero. In this case the form is said to
be semi-definite. For example, the form (x + 2y —2)% is semi-
definite ; it is never negative but it is zero at all points in the
plane z=z+2y.

Let Q=f(x, v, 2)/9(x, y, z) where f and g are two forms of
the same degree ; though each form is defined and continuous
for all values of the variables, @ is not defined for values of the
variables that are all zero. The point (0, 0, 0) is a limiting
point of the region for which Q is defined but does not belong
to it so that the region is not closed (§ 40). The proof that a
continuous function attains its upper and lower bounds,
however, requires that its region of definition should be closed
and, as the proof is important for the applications to be made
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of the properties of forms, it will be shown how a closed region
may be obtained.

Let x=r§, y=ry, z:r(,r=|(x2+y2+22)‘}| ;
then Q:f(s! 7, C)/g(é‘, n, C)’
where E24m2 4 L2=1. i, (S)

@ is not defined for x =0, y =0, z=0, and r is not zero unless
z, y, z are all zero ; all the values for which @ is defined may
thus be obtained by assigning to &, 5, { values which satisfy
equation (S). Now the region defined by (S), which for three
variables is the surface of a sphere, contains its limiting points ;
for, if P(a, b, c) is a limiting point of a set P'(a + b, b+ k, ¢ +1)
which lies on (S) then

(@+h)2+(b+k)?+ (c+1)2=1,
and therefore when 4, k, I all tend to zero the numbers a, b, ¢
satisfy equation (S) so that P lies on (S). In other words the
region defined by equation (S) contains all its limiting points
and is therefore closed ; the reasoning is clearly applicable to
the case of n variables z, v, z, w, ... .

Now equation (S) is not satisfied when &, 5, { are all zero,
and therefore when g(x, y, 2) is a definite form g(&, 5, {) cannot
be zero for any admissible values of &, 3, {.

Two theorems will now be proved which are essential for
the discussion to be given of the Remainder in Taylor’s
Theorem and these, with the whole discussion of the Remainder,
are based on the exposition in the Calculus of Genocchi-Peano
(German Translation, pp. 170-189).

Taeorem 1. If f(x,y,2) and g(z,y, z) are forms of degree n

the ratio f(x,y, 2)[g(x, y, z) has an upper bound M and a lower
bound m which are attained and are therefore maximum and
minimum values of the ratio, provided g(z, y, z) is a definite
form.
" Let the ratio be transformed in the manner just shown
to f(&, n, £)/g(&, n, ). The ratio is a continuous function of
&, n, {, since g(&, 5, £) is not zero at any point (£, 7%, {), and
therefore has upper and lower bounds, M and m respectively,
which are attained and are therefore maximum and minimum
values of the ratio. :
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TrEorREM II. Let g(x,y, 2) be, as in Theorem I, a definite form
of degree n and let f(z, y, z) be expressible as the sum

(@, Y, 2) f1(z, ¥, 2) +co(, Y, 2) fal@, 4, 2) + oo +Cn(®, Y, 2) fru(, Y, 2)
where fi, fa, oo s fm are forms of degree m while the coefficients
C1s Coy +-+ » Cpy 7€ functions of x, y, z, each of which tends to zero when
all the variables tend to zero. The ratio f(x,y,2)/g(x, y, z) tends to
zero when all the variables x, y, z tend to zero.
fl=,y,2) & fr(®,9,2)

For Texme PR o
Each ratio f,/g is bounded, by Theorem I, and each of the
coefficients ¢, tends to zero when z, y, z all tend to zero so that
flg also tends to zero.

Ex. 1. Find the condition that the form axz? + 2bxy +cy? should be
definite.

If y =0 the form becomes az? so that a cannot be zero if the form is
definite ; similarly ¢ cannot be zero and must have the same sign as a.

Again ax? + 2bxy +cy? =a(x + by/a)? + (ac - b2)yt/a
so that if ac > b2 the form has the same sign as that of a (or ¢) and is
therefore definite.

If ac =b2 the form is semi-definite. If ac < b2 the factors of the form
are real and different and the form is then indefinite.

Ezx. 2. If ¢z, y, z) =az?® +by? +c2? + 2fyz + 2gzx + 2haxy, the form ¢
is definite if (i) @, b, c are all of the same sign, (ii) 4, B, C are all positive,
where 4, B, C are the co-factors of a, b, ¢ in the discriminant A of the
form, and (iii) A has the same sign as a (or b or ¢).

¢(1, 0, 0) =a, ¢(0,1,0)=>, ¢(0,0, 1) =c and therefore a, b, ¢ must be
all different from zero and have the same sign when the form is definite.
Again 2 2

¢ <P(x,y,z)=a(x+hyzgz> +g(y—%z) N
and therefors C must be positive and A must not be zero and must
have the same sign as a.

Also aA =BC - F2, bA=CA -G*, ¢cA=AB —-H? (where F, G, H are
the co-factors of f, g, 2 in A). But @A is positive and therefore BC,
and therefore B, is positive ; similarly 4 is positive.

In general, when a form of the second degree in any number of
variables is given the terms in one variable, say z, are brought together
(as has been done above) into one term a(z+b'y+cz+dw+...)?%;
the terms left give a form in which the number of variables has been
reduced by one and this form is treated in a similar way. Finally, a
form in one variable is left.

The student may consult treatises on Higher Algebra, such as Bocher’s
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Iniroduction to Higher Algebra. Bromwich’s Quadratic Forms is useful ;
see also Hilton’s Linear Substitutions.

Ex.3. Show that (x%-y?)/(x?+y?) and (x?+y® —22)/(x? +y2? +22)
have +1 as the maximum value and -1 as the minimum value.
Ex. 4. The forms
(i) 2y +y* +2yz + 322 +wy +wz,
(i) xy +2yz + 3zx +wy +wz ;
can be expressed as
AX?} +BX; -CX; - DX}

where 4, B, 0, D are positive numbers and X, X, X, X, are linear
functions of =, ¥, z, w

83. Remainder in Taylor’s Theorem. Suppose that f(z, y, z)
is continuous at (a, b, c¢) and can be expanded near (a, b, ¢) by
Taylor’s Theorem ; let x=a +Af, y=>b +kt, 2=c +It, where
|2|, | k| and |I| are small, and f(z, y, 2)= F(¢), f(a, b, ¢)= F(0).
In the notation of § 157 of the Elementary Treatise, when =1
and therefore x,y,z equal to a+h, b+k, c+1 respectively
and f(z, y, ) = F(1), the expansion is given by the equation

F)=F(©0) + F'(0) + ... + 3 FO0) 4 ...+ 2 F(0) ...(1)

where 0<< 0 <1 and F™(6)/n! = R, the Remainder after » terms.
F)(0) is a form of degree r in the variables &, k, I, namely

Fo) =(h 2 k2 +12) 1@, b,

—hr f r—1 af rarf
ha +7rh Ic 30135+ +lac (A)

=2Aap, " KD, o+ B+y=r

where 4., , is a function of a, b, c. F®™(6) is of degree n in
h, k, I and the coefficients, 4; ;4 , say, in this case are functions
of a+6h, b+ 0k, c +6l.

The equation (1) may be written so as to contain an addi-
tional term with the remainder R,,,, namely,

F(l)=ug+uy+ oo +Up+eoe+Up+ Ry oevveennnn.. (2)
where u, =F"(0) /7!, r=1, 2,..., n, and u, + By, = R,, so that
R, =R, —u,={F™(6) - F™0)}/n! ............. (3)
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TaEOREM L. If the term u, is a definite form in the variables
h, k, 1 the ratio of R, to u, tends to zero, and the ratio of R, to
u,, tends to unity, when all the variables h, k,  tend fo zero.

The expression for R,,; given by (3) shows that E,,, is a
form of degree n in the variables 4, k, !, namely

R =25l gy = Aa p, WP, o 44y =n;

but (44, s,, — Aa,p,,)—>0 when all the variables A, k, [ tend to
zero and therefore by Theorem II of § 82 the ratio of R,,, to u,
tends to zero. Hence when all the variables tend to zero

LIV Ba=tn__ o that is, Tr 1,
u‘n ufl un
It should be specially noted that the proof is essentially

conditioned by the assumption that u, is a definite form.

TrEOREM II. Suppose that f(a,b, c) or F(0) is zero and that
the first of the terms in (1) or (2) that does not vanish identically
is u, or FU)0)/r! There are two cases. (i) If F"(0) is a
definite form f(x,y,z) is not zero and is always of the same sign
in the neighbourhood of (a, b, c) (that is, when h, k, 1 are not all
zero). (ii) If F((0) is an indefinite form f(x, y, z) takes positive,
negative and zero values in the neighbourhood of (a, b, c).

Case (i). In the equation (1) let n=r; then f(x, y, z) or
F(1) is F™(0)/r! The form F(0) is definite and therefore
by Theorem I F®(6)/F"(0) tends to unity ; since F)(6) is
continuous in %, k, I and F™(0) is not zero and is always of the
same sign so is F(0) and therefore f(z, y, 2).

Case (ii). In this case the form F((0) is indefinite and
therefore there are values of %, k, I for which it is positive and
also values for which it is negative. But F(6)—F™(0) when
h, &k and 1 all tend to zero, and therefore, since it tends to
values that are positive or negative according to the choice of
h, k, 1 it must itself take both positive and negative values.
Further F™(60) is a continuous function of %, k¥ and ! and
therefore must also take zero values.

If f(a,b,c) and g(a,b,c) are each zero the fraction
f(z, y, 2)/g(z, y, z) is not defined for the values a, b, ¢ of
z,y, z and (compare E.T'. §161) f(a, b, ¢)/g(a, b, ¢) used to be
called an ‘ Indeterminate Form.” The following theorem
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throws some light on the possibilities of what may happen
when z, y, z tend to a, b, ¢ respectively.

It is understood that f(z, y, z) and g(z, y, #) can be expressed
near (a, b, ¢) by Taylor’s Theorem. Let G(¢) have the same
meaning for g(z, y, z) as F(t) has in the preceding theorems for
f(x, y, 2) ; then F(0)=f(a, b, c)=0, G(0)=g(a, b, ¢)=0 and

F(l)=wuy+Ug+ .o +Up + ..
G(l)=v,+ v+ ... + v, +
where u, = F"(0)/r! and v, —G(')(O)/r!

Suppose that F"(0) vanishes identically, that is, for all
values of 4, k, I, when r has the values 1, 2, ... (m — 1) but not
when r=m and that G"(0) vanishes identically when
r=1,2,... (n—-1) but not when r=n. Further, let w denote
the quotient f(z, y, 2)/g(z, y, 2).

TueoreM III. If G™(0) is a definite form the quotient w or
[(x,y,2)[g(z, y, z) behaves, when all the variables h, k,1 tend to
zero, in the way specified in the following cases :

Case (i), m>n : w tends to zero ;

Case (ii), m=n: w oscillates finitely unless the ratio
F™(0)/G™(0) tends to a limit, K say, in which case w also
tends to K ;

Case (iii), m < n : w does not tend to any finite limit.

Case (i). Let g(z, y, 2) =G (1) =G"™(0")/n!, 0<0'<1; then
G™(6")/G™(0)—1 because G™(0) is a definite form (Theorem I).

Next let f(z, y, 2) =F(1)=F™(0)/n! as in equation (1);
though F®(0) is identically zero since m>n the form Fm(6)
is not zero because F(1) is not zero. When all the variables
h, k, | tend to zero the coefficients A; 4, in the form F®)(§)
tend to the coefficients 4;,4,, in the form F(™(0) and therefore
to zero since F((0) is identically zero. Hence by Theorem II
of § 82, since G(0) is a definite form, the ratio F™(6)/G(0)
tends to zero and therefore w also tends to zero when %, k, [
tend to zero because

__Fm(0)  Fag)  G(6)
TE™(6) T @™(0) * G™(0)
and G™(0')/G™(0) tends to unity.

Case (ii), m=n. Let F(1)=u,+R,,, where R,,, is given
by equation (3). By the same reasoning as before the ratio
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of (n! R,,,), that is, of {F™(f) — F(0)} to the definite form
G™(0) tends to zero when all the variables %, %, I tend to zero
and therefore the behaviour of the ratio F®(0)/G™(0) when
h, k. 1 tend to zero is the same as that of the ratio F®(0)/G(0).
Fm(6) _ F™(0)  G(6)

TG0 T GO(0) T G(0)

and G™(6’)/G™(0) tends to unity so that w behaves in the same
way as F((0)/G™(0) when all the variables %, k, I tend to
zero. But, by Theorem I of § 82, the ratio F(0)/G(0) has a
maximum value M and a minimum value m and therefore w
oscillates between M and m unless the ratio F¢(0)/G™(0) tends
to a limit K in which case M =m =K and then w tends to K.

Cases (iii) m<n. In this case take the functions F(f) and
G(¢) instead of F(1) and G(1); we now have

F@) 1 nal F™(6¢)
Q@) T ml GM(0T)

If the form F(™(0) is definite F¢(0t)—F((0) when ¢t—0
and F(™)(0) is not zero unless &, k, I are all zero. If F(™(0)
is indefinite A, k, I can be chosen so that F¢™(0) is not zero
since F((0) is not identically zero. Therefore whether
F(™(0) is definite or indefinite, the ratio of F(™(0¢t) to G™(6't),
when ¢{—0, may be made to tend to F(™(0)/G™(0), or N say,
where N is not zero. Hence w cannot tend to a finite limit
when ¢t—0, since m<n and therefore 1/t"™™ tends to infinity
while the factor N is not zero.

84. Maxima and Minima. The difficulty noticed in § 159 of
the Elementary Treatise can now be to a certain extent cleared
up. When f(z, y) is continuous near (a, b) the derivatives
f. and f, are both zero and, in the notation of the preceding
article, we have for two variables 2, &,

fla+h, b+k)-fla, b)y=F"(6)/2.

The conclusions of Theorem II of § 83 are now applied.
If F”(0) is a definite form F”(#) is not zero and is always
of the same sign in the neighbourhood of (a, b), that is, when
h and k are not both zero. On the other hand, if F"(0) is an
indefinite form -F”(6) takes both positive and negative values
in the neighbourhood of (a,b). Hence, when F7(0) is a

Now
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definite form f(a, b) is a maximum value of f(x, y) when the
form is negative and a minimum when the form is positive
but if F”(0) is an indefinite form f(x, y) is neither a maximum
nor a minimum for the values a, b of z, ¥.

It is seen in the same way that if F((0)/r! is the first term
in the expansion of f(a + &, b + k) — f(a, b) that is not identically
zero f(x, y) will be a maximum or a minimum for x=a, y=>56
if F(0) is a definite form but will be neither a maximum nor a
minimum if F"(0) is an indefinite form.

These conclusions obviously hold for functions of any number
of variables.

Nothing has been said of what conclusion may be drawn
when F7(0) is a semi-definite form ; this is the case of Peano’s
example (E.7'. p. 413). All that can be said in this case is that
the above tests for a maximum or a minimum fail and further
examination is necessary to decide the question of a maximum
or a minimum. In many of the cases that occur in ordinary
work it is often possible, as with Peano’s example, to decide
the question by use of purely algebraic methods but any general
method usually involves complicated expansions, and even
then may not lead to a definite conclusion. See, for example,
Jordan’s Cours d’ Analyse, Vol. I, §§ 399, 400 ; Stolz’s Differen-
tial- und Integral-Rechnung, Vol. I, Abschnitt V. (with the
references) ; Hobson’s Functions of a Real Variable, Chapter VI.

Bz, flz, y)=2*+y* - 2(z - y)%

The equations f,=0, f,=0 give the points (v2, —n/2), ( —v2, ~v2)
and (0, 0) as points for which f(z, y) may have a maximum or a mini-
mum value. The test from the character of the form F”(0) shows
that f(x, y) is a minimum at (v/2, —/2) and at (- /2, v/2); the test fails
for the point (0, 0).

But f(4, 4)=214>0, f(1, 0) = A%( A2 —2) <0 if A2<2; since f(0, 0) =0
the function f(x, y) takes both positive and negative values in the
neighbourhood of (0, 0), because |[A| may be arbitrarily small, and
therefore f(x, y) has neither & maximum nor a minimum value at (0, 0).

In this and similar cases the consideration of the surface z =f(z, y)
is often useful.

It may, however, be remarked that the determination of
maximum and minimum values can frequently be effected by
the use of algebraic inequalities, as noted in the Elementary
Treatise (§76), and the discussion in Chrystal’s Algebra, Vol. 11,
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Chapter XXIV, will repay careful study. The methods of the
Calculus are powerful, but it is a great mistake to neglect the
resources of comparatively simple and straightforward algebra.

85. Absolute Maxima and Minima. When a function, f(z)say,
is defined for the range a =<z < b it does not follow, of course,
that even when more than one maximum value has been found
the greatest of these is also the greatest value of f(z) in the
range. It may quite well happen that f(a) or f(b) or both f(a)
and f(b) may be greater than any value of f(x) for the range
a<x<b; the method of the calculus implies that the values
of x for which the function is a maximum or a minimum lie
inside the range. To find the absolute maximum or minimum
it is therefore necessary to find the turning values, as deter-
mined by the Calculus, and then to compare them with each
other and with f(a) and f(b).

It may be the case that f(a) and f(b) are themselves the
maximum and minimum values and that f(x) has no turning
value between a and b.

For example, the perpendicular p from the focus (ae, 0) of the
ellipse x%/a? +y?/b3=1 on the tangent at the point (z, y) is given by
the equation

p=b(a - ea:)*(a +ex)t
dp _ —abe
4% (g + ex)(a? - e'a?)t
so that dp/dx is neither zero nor infinite in the range ( -a, a). As z
increases from -a to a the perpendicular p steadily decreases from

a(1 +e¢) to a(l —e), so that a(l +e) is the absolute maximum and a(1 -e)
the absolute minumum value of p.

and

Though the maximum and minimum values of p cannot be
found by the ordinary rule yet the sign of the derivative settles the
matter ; even when the derivative is discontinuous the sign
will often indicate the possibility of a maximum or a minimum.
Thus the function f(x) where

f(x)=a+ b}z —c)}
is a minimum when z=c; f'(z) is discontinuous for z=¢ but
f’ (%) is negative when z<<c¢ and positive when >>¢, so that f(c)

is the minimum value of the function.
In the case of functions of more than one variable corre-
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sponding observations may be made. The type of region
defined by the equation £2+%2+ {?=1 in § 82 is of importance
in some connections, for example, in the problem there treated
and in the case of the determinant presently to be considered.
The region has no boundaries in the usual meaning of the term,
and every maximum or minimum that may occur is given by
values that are within the region. ,
Implicit Functions of one Variable. If the equation f(z, y) =0
defines y as a function of z, the determination of the turning
values of y is of course a frequent problem in the tracing of the
curve represented by the equation and hardly demands any
special treatment.
.00 )

ax+@%_ ...........................

the condition that dy/dx=0 gives the equation f,=0 and the
two equations f=0, f,=0 determine the possible values of
z and y. The sign of d2y/dz? has next to be considered ;
differentiating equation (1) and noting that dy/dxz=0 for a
turning value we get o . of d2y
dx? " Oy dx® ™

What is the significance of the coefficient of dy/dz in (1) and

of d%y/dx? in equation (2) ?

Since

86. Hadamard’s Determinant. Let D be a determinant of
the nth order, the element in the rth row and sth column being
a,,; if the numbers a,, satisfy the n conditions

Or=0h + A+ eee + At oo + Aoy — b, =0 cerreeee. (1)
where 7 has the values 1, 2, ..., n and b, is constant, then
| D|=</(byby ... b,)
when the elements a,, vary continuously.

The region defined by the equations (1) has no boundaries
and therefore D, being a continuous function of its elements a,,,
has both a marimum and a minimum value which may be
obtained by the usual method of undetermined multipliers
(E.T. pp. 414, 415). Let A,, be the co-factor of a,,in D ; then

D=ag A+ ...+, 4,0+ ..+ @A, r=1,2,..., 0. ...(2)

Now take the multipliers }4,, 32, ..., 34, and let

F=D-}l¢,—3Aps— ... —324,@r— . ~ 32,00, ..... (3)
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and the values of a,, that determine the turning values of D
are obtained by equating to zero the differentials of the elements
in F. The coefficient of a,, in D is 4,, and the only one of
the functions ¢ in which a,, occurs is ¢, ; hence we find

A, —Aa,,=0, r=1,2,...,m,8=1,2,....n ......... (4)

From (4), keeping r constant, assigning to s the values

1, 2,...,n and multiplying by a,, we obtain the equations
A Ay + QpgApg oo + Qnd =2 (G5 + A + ... +al),

that is, D=1b,, ... 7=1, 2, .0.% coveruiiiiiiiiiinl (5)

~ Again, instead of the multiplier a,, take a,, where ¢ is any of

the integers 1, 2, ...,n except r; then keeping r and ¢ fixed

we get the equation

A+l gt oo+ @Ay =A@y 00y + Colrg + -0 + QynGon),
that is, Ay Oy + Crgyg + ov + Bl =0, cevniniinnnen.en. (6)
since @y A,q+ ... + Ay A,y =0.

From equations (4) and (5)

A,y=0a, Db, ceoiniiiininiii (7)

In the equations (6), r and ¢ are any two different integers
from 1 to n so that when D has its maximum or minimum value
the determinant is orthogonal, that is, the sum of the n products
of corresponding elements in any two rows (say the rth and
the 7th) is zero. (Compare the equations (1) and (6) with the
relations between the direction-cosines of three mutually
perpendicular lines.)

The determinant which has 4,, as the element in the rth row
and sth column is equal to D*-1; but that determinant is by (7)
equal to D*1/b,b, ... b,. Hence the maximum and the minimum
values of D are given by the equation

Dr1=bb, ... b, D", that is, D*=byb, ... b,,
so that | D=/ (byb,y ... by)
whatever values the elements @,, may take so long as they
satisfy the conditions (1).
Cor. 1If |a,,|< M, and therefore b,<nM?2, then
| D|< (nmytmm,

The above theorem is due to Hadamard and is of great

importance in the theory of Integral Equations.
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EXERCISES IX.
(For answers to some of the Examples, see at end of the Set. )

Find the maxnnum a.nd zmmmum values of the functlons in Exa.mples
1-12: :

1. zy?(3x + 6y - 2). 2. y? + 4wy + 323 +a3.

3. (x-1)(y - 1)(x2 +y% - 4). 4, x‘;|-2a:’y—x’+3y’.

5. y? + a2y +axd. 6. y? + 222 - 52t 4-4a5,

7. ot +yt +24 — dayz. 8. vy +x 14y L

9. (x+y -1)/(x® +y2). 10. (z +y)/(x® + 2y2 + 6).
11 (2 ~y)/(x® +yE + 1), 12, (y +2) + (2 +2)? +xyz.

13. If all the letters denote positive numbers, show that the maximum
value of

y? 2t
wy(z -0 5+
is (2h/5)5ab/ct. (a b cz)

14. If 72® + 3022y + 21y® =21, find the maximum and minimum values
of 2% +y2.

15. The maximum value of zyz/(a +z)(x +y)(y +2)(z +b), where all
the letters denote positive numbers, is given by

16. If 3a®y? +zy® + 4ax® =0, show that y has a maximum value, - 3a,
when z =3?a » and that, if 223 + 3ay* —~22y® =0, y is & minimum, a . 553,
when x =a . 543 (a is positive.) (Todhunter.)

17. If xyz=8, the product (z +1)(y +1)(z+1) is a minimum when
r =y =2z=2, and if xyz =b® the minimum value of the product

(* +a?)(y* +a?)(2* +a?)
is (a? +b2)3,
18. If xyz =k*, the product (x +a)(y +b)(z +¢) is a minimum when
z_ y z__k '
a b ¢ (abc)P
the letters denoting positive numbers.

In Examples 19-24 all the letters denote positive numbers.

19. If f(z, y, 2) =axly™z" and g(x, y, z) = +y +2, apply the tests for
dlscnmmatmg maxima and minima to prove that f possesses a maximum
when g is constant and that g possesses a minimum when [ is constant.

Show that the theorem holds for p variables ,, s, ... «,, and extend
to the more general form

9(x, ¥, z) =ax® +byb +cz".
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20. (i) If 22 + 3y + 4z =a, the maximum value of x2y%* is (a/9)°.
(ii) If a®x?+ 2byd+ z4=c4, the maximum value of z%yz? is given by
17a%2? =12¢4, 17by® =c4, 1724 =3ct.

21. If zyz =abc, the minimum value of bcx +cay +abz is 3abe.

22. If 22/a® +y2/b? +22/c? =1, the maximum value of xyz is abc/3+/3.
Interpret geometrically.

23. If ayz =a*(z +y +z), the minimum value of yz +2x +zy is 9al.

24, If 2% +y%*=1, the minimum value of (az? +by3)/(a’x? +b’y’)ir is
2(ab)}/(a +b).

25. o@(z, ¥, 2)=ax? +by? +cz?® + 2fyz + 29z + 2hry, and

y(z, y, 2)=lx +my +nz ;
find the maximum and minimum values of 72 where 7% is equal to
2 +y? +22
(1) if ¢ =k =constant ; (ii) if ¢ =%k and p =0.

If w = - k/r?, the values of 72 are the roots of the equations
| at+tu, 5 g (ii) | @ +u, & g 1
h, b+u, f =0; hy, b+u, f, m
d» f, c+u 9 fr c+u, n 0.
1, m, n, 0

When ¢ =k represents an ellipsoid the volume of the ellipsoid and
the area of the section by the plane y =0 are 4ar;r;7;/3 and mp,0,
where 7, r, r, are the roots of Equation (1) and g,, o3 those of Equa-
tion (ii); these products are easily found.

26. If (x? +y? +22)? =a%x? +b%y? +c%® and lx +my +nz =0, show that
the maximum and minimum values of (=22 + 2+ 22) are given by the
equation 13/(7% - a?) + m3/(r? - b3) + n3/(r? — c?) =0.

27. If f(x, y, z)=(a22?+ b2%y? + c222)[/x2y?2?, where ax?®+by?+cz2=1
and a, b, ¢ are positive, show that the minimum value of f(x, y, 2) is
given by . u . u . u
2= , Y= ) 2=

Sa{u +a) 25w +5) Sc(u +0)
where u is the positive root of the equation
u3 — (be +ca +ab)u — 2abc =0. (Schlémilch.)
28. f(x, y, z) and g(=, y, z) are two quadratic forms
f=00,22 + Qggy® + Ag2® + 2a55y2 + 20522 + 20,42Y,
g="b1172 + bygly® + by2® + 2bgayz + 2b5 22 + 2by,2Y ;
if g is a positive definite form, prove that the maximum and minimum
values of the ratio f/g are the values of u given by the equation
ay —byu, @y ~byu, a3 -bu
Ggy — by, Gyp —byati, @y —~byu |=0.
Qg —byth, @gy —bygtt, @g5 —bygu
where a;; =ay, bps=bgy. (r=1,2, 3,8=1, 2, 3).

If f=a% 4722 - 2yz 22y, g=a®+2y® + 52% +2yz — 22y, show that u

has the values 2, 1, —1..
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29. If f(x, y) =8a* ~ 6xy® + 44, and if z =ht, y =k, f(z, y) = F(t), show
that F(?) is a minimum when ¢ =0 (h + 0, k + 0) although (E.T. p. 413)
Jf(z, ¥) is not a minimum for =0, y =0.

Hence if z=a +kt, y=b+kt, f(zx, y)=F(t) it is possible that F(0)
may be a turning value of F(t) and yet f(a, b) not a turning value
of f(x, y).

30. From the point B(0, -b) of the ellipse 2#2/a® +y3/b*=1 & chord
BP of the ellipse is drawn ; find the position of P when the length of
BP is greatest. (Lampe.)

1. Min. at (},3). 2. Min. at (3, —4).

3. Two minima given by 2z*+2y*=2+y+4 and z=y and two
maxima given by 222 +2y?=x +y +4 and z +y=1.

4. Min. at( . -1) and at(—-— -1).

5. Min. at (0, 0) if ¢ > }. 6. Min. at (1, 0, 0).
7. Min. at (1, 1, 1). 8. Min. at (1, 1).
9. Max. at (1, 1). 10. Max. at (2, 1), Min. at ( -2, -1).

. Max. at(vz ‘/2) Min. at(\/2 \;2>

12. No Maximum or Minimum.

1

p—

14. The values are obtained from the given equation and the three
equations z =0, y =2x, y =5x ; the first two give minimum values and
the third gives a maximum.

30. If a® > 2b2, P is given by = +a%(a?® - 260} /(a2 - bY), y=b%/(a® - b?),
but if a? < 282, P is (0, b).

G.A.C. 1



CHAPTER VIII

INFINITE PRODUCTS. PRODUCTS AND SERIES OF PAR-
TTAL FRACTIONS FOR TRIGONOMETRIC FUNCTIONS.
GAMMA FUNCTIONS

87. Infinite Products. Let fi, f,, fs, ... be a sequence of real
or complex numbers and let P, be the product f,f,...fs, or,
in the usual symbols n

P n= Hf r

r=1

Definition. 1f when n tends to infinity P, tends to a limit,
P say, which is not zero unless one of the factors f, is zero, the
infinite product is said ‘“ to converge ”’ or ““ to be convergent ”’
and P is called the value of the product or simply “* the product.”
If P, tends to + « or to — w or (when no factor f, is zero) to
zero the infinite product is said * to diverge” or ¢ to be
divergent.” If P, tends to no definite limit (finite or infinite)
the infinite product is said ‘“ to oscillate.”

It is possible for P, to tend to zero even though no factor f,
is zero; for example, P,=1/(n +1) when f,=r/(r +1) and
P,—0 when n—w. Of course, if any one factor f, is zero so
is P, when n=r and therefore P, tends to zero; but, by con-
sidering products that tend to zero when no factor f, is zero as
divergent, the property that a product does not vanish unless
one of its factors vanishes, remains for convergent products.

Thus, if no factor f, is zero and if P, tends to a limit P that
is not zero, | P, | must be greater than a positive constant,
C say, for every value of n ; because m may be chosen so that
| P, |>C;>0 when n>m, while | P, | is not zero when n takes
any one of the m values, 1, 2, ..., m, since no factor f, is zero.
Hence | P, |>C for every value of n, where C is any positive
constant less than C, or than any of the m numbers | P, |, | P,|,
s | Pm ]

224
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In testing for convergence the condition that the limit P
is not zero unless a factor f, is zero must be specially noted.
The notation for an infinite product is, in analogy with that
for an infinite series,
Mf, or IIf, or ﬁ (1-+u,) or TT(1+wu,)
ne=1 n=1
the brackets being used when the factor contains two or more
terms.
In the following work the symbol ¢ has the usual meaning.

THEOREM. The product P,, where P,=f,f, ... fn, will, when
n tends to infinity, tend to a limit P, that is not zero unless one of
the factors f. is zero, provided there is an integer m such that

@) |fosr frra oS —ll<eifnz=zm, p=1,2,3, ....

This condition is equivalent to the following which is often
more convenient in practice :

(it) £ (fasrfare oo o —1)=0,p=1, 2, 3,....

7l— 0

The product f,,1 foss -+ faip 1S Pryp/Ph-

(a) The condition is necessary. If no factor f, is zero | P,|
is greater than a positive constant C for every value of » while,
if P, tends to a limit, m may be chosen so that | P, ,, — P, |<eC
when n = m whatever integer p may be. Hence

| fasa fasz oo farp—1] =L1%%Tpﬂ< %’9 n=m,
80 that |foiy fore oo frp—1ll<e if n=m, p=1,2,3,.... The
condition is therefore necessary.
(b) The condition is sufficient. Lete=1%; since condition (i)
is satisfied m may be chosen so that, whatever integer n may
be provided that n>m,

|fm+1 fm+2 "’fn -1 |< ‘%’ or, %< lfm+lfm+2 fn l<%:
and therefore, m being now fixed,
| Pu|<|Pu|<2|P,| ifnz=zm, ........... (k)
If therefore P, tends to a limit that limit cannot be zero unless
a factor of P,, is zero. We have now

IPnH)—PnI:anI Ifn+1fn+2 °°°fn+11—ll'
But |P,|<% |Pn|<K, a constant, by (k); and, since
condition (i) is satisfied, there is an integer x (which may be
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taken greater than m) such that |fu.;...fasp —1|<é&/K when
n=zpu,p=1,2,3,.... Hence

| Ppyp—Pol<e if nzpu,p=1,2,3,...,
so that P, tends to a limit which, as has been shown, is not
zero.

Cor. 1. Let p=1. For convergence it is necessary that
fai1 or (what amounts to the same thing) that f, should tend
to unity when n tends to infinity ; it is therefore usual to write
the typical factor f, in the form (1 +wu,), where u,—>0 when
n— . The form f, is, however, useful, and u,=f, — 1.

The condition that u,— 0 is necessary but not sufficient
for convergence (§ 88, Ex. 1).

The two Lemmas that follow are often required.

Lemma l. l+a<etifa>0; 1-a<e® if O0<a<l.
See § 25, Ex. 3.

Lemma 2. If |u,| =a,, whether u, is real or complex,
[ o)1 +2tgyg) oo (1 +2y4,) -1

=1 4+8p1)(1 +Gppg) o (1 +a4,5) ~ 1
Take three factors,

1+u,1+v,14+w where |u|=a,|v|=b, |w]|=c;
then (1 +u)(1+v)(1+w)-1=(u+v+w)+ (W +uw +vw) +uvw,
and therefore
| (1 +u)(1+v)(1+w)-1]=(a+b+c)+(ab +ac +bec) +abe,
that is =(1+a)(1+b)(1+c)-1.
The proof is obviously quite general.

88. Tests for Convergence of Products. Two tests for
convergence will now be given ; these will be sufficient for the
applications we make, and Bromwich’s treatise on Infinite
Series may be consulted for further information.

Test 1. If a, is real and positive for every value of n the
product I1(1 +a,) converges or diverges according as the series
2a, converges or diverges.

Let s, =a, +a, + ... + a,, and, when Za, converges, let s, tend
to s when n tends to infinity.

(i) Let Za,, be convergent. By Lemma 1 of § 87, 1 + a,<<e’
and therefore

P,=(1+a)(1+ay)...(1+a,)<ehretr... e,

8o that P,<en< e’
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Thus P, increases as n increases, but is less than the fixed
number e* for every value of n ; therefore P, tends to a limit
and the product II(1 +a,) is convergent.

(ii) Let XZa, be divergent. In this case
P,=(1+ay)(1+ay)...(1+a,)=1+s, + (positive terms),
and therefore P,—+ w when n—>o since s, does so. The

infinite product II(1 + a,) is therefore divergent.

Test2. If u, is any number, real or complex, and if | u, | =ay,
the product TI(1 +u,) converges if the product II(1 + a,) converges.

By Lemma 2 of § 87

[+ %) (1 + U)o (1 + Unyp) — 1]
g(l +a’n+1)(1 +an+2) (1 +a’n+p) -1

Now (§ 87, Theorem) [(1 + @41 )(1 + @pyg) -+ (1 + @py,) — 1] tends
to zero when n tends to « if the product II(1 +a,) converges;
therefore, when II(1 +a,) converges,

I 1+ un+1)(1 + Unyg) oo (1+ Unyp) — 1 I
also tends to zero when » tends to infinity so that the product
II(1 + u,) is convergent.

Definition. 1If u, is real or complex the product II(1 + u,) is
said to converge absolutely when the product II(1+|u,]|)
converges.

Hence II(1 + u,) converges absolutely if | u, | converges and
I1f, converges absolutely if X|f, — 1| converges.

Again, since II(1 +u,) cannot converge unless u,—0 when
n—>, it may always be assumed in testing for convergence
that |u,|<1; the omission of all factors in which |u,|=1
would at most affect the value of the product and not the
property of convergence or divergence.

Suppose now that II(1 +u,) is expressed in the form

P=TI(1 +un) =TT(1 + ) x I (1+u,)=P, .Q,
1 1 m-+1

where Q.= ﬁ (1 +u,).
m+1

The product P will or will not converge according as the
product @,, does or does not converge. Further, we may
suppose |u,| to be not merely less than unity but less than
any positive number ¢ when considering the convergence of
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Q.., the integer m being taken large enough to make |u,|<c
when n>m.
An expression for log P will now be found and the assumption
is expressly made that every logarithm has its principal value.
Suppose (i) that the series

i log (1 4+ %) covevnininiiniiiinins (o)

m+1
converges, its sum being /; (ii) that m is so large that |l |<x;
and, therefore, (iii) that ! is the principal value of log @,.
It follows that
P=P, .Q,=14+u)( +u,) ... (1 +u,)e
since @,, =¢'.
Again, by § 70,

log [(1 +2u)(1 +up) ... (L+up)]= i log (1 + u,) + 2k=ns,
1

where £ is zero or a positive or negative integer. Hence, since

l=log Qs m
log P =2, log (1 +u,) + 2kni +1
1

=§.::log(l )+ 2k i (B

The number % is not zero, in general, but it is finite (not
greater than m numerically); even when u, is real the factor
(1 +u,) may be negative and therefore log (1 +u,) may be
complex for several values of n.

If there is no value of m for which the series (o) converges
then the product Q,, and therefore also the product P cannot
converge. The existence of the number I, that is, the con-
vergence of the series (a), is therefore both sufficient and
necessary for the convergence of the product II(1 + u,).

Note. In testing the convergence of X|u,| a useful com-
parison series is £(1/n2). Thus 2| u, | converges if n® | u, | —£,
a constant, when n—> o ; for if k' >k and n sufficiently large
n? | u,| will be less than £’ and therefore |u,|<k'[n®. But
$(1/n?) converges and therefore X|u, | will also converge.

Be. 1. () H(l;};’%,); (ii) H(l:&;%); (i) II<1 +%)

The products (i) and (ii) converge absolutely (r may be real or
complex) because T(1/n?) converges. The product (iii) diverges because
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2(1/n) is a divergent series. The product (iii) is an example of a
divergent product II(1 +u,) for which u,— 0 when n-> « so that, as
for infinite series, the condition that u,—>0 when n—>w is necessary
but not sufficient for convergence.

Ez. 2. If a, is positive and less than unity for every value of n and
Za, divergent the product Il(1 -a,) diverges to zero.

Of course it would be the same thing if a, <1 for n = m, some fixed
number. Now

_ a2
1_a,r:l a",so that 0<1 -a, <

TTa, and therefore

1
1+a,

n n
<JI (1-a)<1= 1] (1+a,).
r=1 r=1
”n
But the product [] (1 +a,) tends to +w when n—w and therefore
1
n
the product [] (1 —a,) tends to zero when n—ow .
1

I P, _z(x+1)(x+2)...(x+n)

Y+ +2)... (Y +n)
P,—~ 0 when n—+ .

Ezx. 3.

, where 0 < z < y, show that

Here Z1%_y_Y-2 t 22 _4_ and the result follows from
y+n yrn y+n
Ex. 2.
Bo.4. Tf 2% —14% and if b,—~b>0 when n —w, show that
Cpi1 n

a,—0 when n—>w .
G G e e "L (140
a, a, a3 a,, a, r=1
When r is large b, differs but little from the limit b, say b, >b" >0
when r>m. The series 2(b’/n) diverges to o so that a,/a, diverges

to o and therefore a,— 0.

-
Ez. 5. The product II {(1 +:—i> e "} converges absolutely for every

value of z, real or complex.
By § 68 we have

z\ =% z x z2 1 23
<1 +’V_l>e "'=<l +ﬁ>(l-ﬁ+%—n—3—§i178+...>
x? 2
:l—&ﬁi-i-%?—
z\ -% x?
Hence f"—1=(1+7—b>e 1=

and therefore n?|f,-1| >34|z|? when n-—>w so that the series
2| fn = 1| converges and therefore the product II f, converges absolutely
for every value of z, real or complex.

This example is of fundamental importance for what follows.
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89. Derangement of Factors in Product. It is proved in § 59
that no derangement of the terms of an absolutely convergent
series alters the sum of the series; it will now be proved that
no derangement of the factors of an absolutely convergent
product alters the value of the product.

Let the sequence g, g, g; ... be a derangement of the
sequence f, f, fs ... in the sense that every element in one
sequence occurs once, and only once, in the other.

Suppose that IIf, converges absolutely; then the series
Z(fa —1) converges absolutely and, by §59, no derangement
of its terms alters the sum of the series. Hence the series
3(g,—1), which is derived from the series Z(f,-1) by a
derangement of its terms, is absolutely convergent (with the
same sum) and therefore the product Ilg, is absolutely conver-
gent. It has now to be proved that I f, and Ilg, are equal.

Let Pm=ﬁfsa‘nd Qn=ﬁgr-
8=1 r=1

However large m may be, n may be chosen so that Q,
contains all the factors that occur in P,, ; but whatever integer
r may be there is one, and only one, integer s such that g, =f,
and therefore the quotient @,/P, -contains only factors
fas fgs .-+, fr such that the integers «, B, ..., 4 are each greater
than m. Thus

1= lfafaer-bi-1]

and, since [If, is absolutely convergent, | f, fs...fy —1| tends
to zero when m—>w. But when m-—>w so does n and there-
fore @,/P,, tends to unity and P, and @, tend to IIf, and
IIg, respectively; but IIf,, being an absolutely convergent
product, is not zero so that Ilg, =IIf,.

EXERCISES X.

1. Show that
l .
@ ”112{1 n(n+l)} @) H (n‘+1 =3
2. Prove 1.3 f 6‘2"2;1)

N>’
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3. If0<a<y prove that

x+l)...(x+n-1) 1
+,§1 g+ .. (y+n-D(y+n) y-

4. If the factors (1+1/r) and (1 -1/r) are multiplied by ¢!/ and
el/* respectively, prove that the products

H{(1+ )e:} and H{(l——)a'}

r=2 r=2
are convergent while the products
n 1
[1(1+-) and H(l——-)
r=2 4 r=2
diverge, when n—ow, to infinity and to zero respectively.
5. Prove that the equation
w(z—-1) z(x-1)(z-2) (x—-1)...(x-n+1)
2r 3! n!

1-z+

o+ 1)n

=1 —-:c)(l ~§)(1 —’g)(l -g)

holds for all values of  and investigate the relation, when n->w,
between the series and the product.

n
6. If P,(x)= Hl(l +zu,)
o=
”
show that P, (z)=1+ Z oz’

where ¢, is the sum of the products of u,, u,, ... u, taken r at a time,
and deduce that if Su,, is absolutely convergent

an O
II (1 +2uy) =1+, o,a™,
n=1 n=1

the series being absolutely convergent for every value of z.
[If Sp=|uy| +|ug] +... +|u,| and if S,,— .8 when n— w0, then

EXCIETLCIRAR FESPA e L

n—0 r=1
also |op| < Siirtif r>1.]
7. If |« | <1, show that
(1 +2)(1 +22)(1 +at)... (1 +23") ... =1/(1 - =z).
8. Prove that if |¢| < 1 the four products, n=1, 2, ...,
' go=I(1-g™), ¢ =TI(1+¢™),
=TI(1 +g"™1); g, =TI(1 -g"Y)
are absolutely convergent. Further,
02 =TI{1 -¢"). 010y =TI(1 +¢"), g10s05 =1.
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9. If f(x) =II(1 +¢*'z), show that (1 + gx)f(¢%r) =f(x),

0
and if f) =1+ A,am,
1
show that g+q24,=4,, ¢4, ; +¢*"4,=4,,
__ 9 _ w
wd S A

10. If F(z)=II{(1 +¢*"'x)(1 +¢**!/x)}, show that gzF(g%z) is equal
to F(x); then prove that F(x) may be represented by a series

F(z) =B, + i B, (™ +1/z™)

n=1

where B, =B,q%, B,=1/gq, ¢, being the product in Ex. 8.
11. If ja| > 1, prove that

0 z\ 2 (- hran
”1}1(1“&)‘“'7;1 G@-D@-1).. (@-1)
12. If [a] <1 and |z| < 1, prove that

© 1 2. zn

11 (1—anx>=l+”2=41(1-a)(1-a2)...(1—an)'

n=0

90. Uniform Convergence. If the factors f, are functions
of a real variable z, say f,=1 +u,(x), the question of uniform
convergence arises. It is sufficient for our purposes to consider
the case that corresponds to the convergence of series when the
M-Test applies. It is assumed therefore that

(i) each function u,(z) is defined for the closed interval
(a, ) ; '
(ii) |u,(z)|< M, for every n, where M, is independent of = ;

(iii) XM, is convergent.

If P(x)=TI{1 +u,(x)} the convergence will be uniform, and,
further, if each function «,(z) is continuous for e < x < b the
product P(x) will be a continuous function of z for that range.

That the product converges both absolutely and uniformly
follows from the fact that X|wu,(x)|<ZM, and that the con-
vergence of X|u,(x)| is therefore independent of x.

Let P, (z)= Ii[l{l + U ()}, @p= [:Il(l +M,);

then | u,(z) |< M, and therefore, by Lemma 2 of § 87 and the
conditions for convergence, m may be chosen (and then kept
fixed) so that

1 Porys(@) = Pon(@) | <@y ~ Q€' o (1)
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for every z such that a <2z =<b and for p=1, 2, 3, .... Now
let p-> o ; therefore
| P(x) = Pp(x) |S e'<e, a=x=b. .covvnnrrnnene. (2)

Suppose now that each function u,(x) is continuous. If z,
is any number in (a, b) we can choose A so that
| P(®) = Py} |<e if |2z—2|<h .coennnne. (3)
because P,,(x) is the product of a finite number of continuous
factors.
Hence P(x) — P(x,)
=[P(x) — Pu(2)] = [P(2y) = Ppu(21)] + [Pm(®) = Pra(®1)],
and therefore, by (2) and (3),
| P(x) — P(x,) | <3¢ if |z-2,|<h,
so that P(x) is continuous.
Differentiation. If u,(x)is continuous for a given range, say
for a < x £ b, the derivative of log P(z) is given by the equation,
P'(x) < un(z)
P@) 1 +u,x)
when the following conditions are satisfied :
(i) | 1 +un(x) |> A4 >0, for a <2< b, and for every value
of n;
(ii) |un(x)|< B,, independent of z, for a<x=b and for
every value of » ;
(iii) XB, convergent.
When these conditions are satisfied the series
& Un(®)
< 1 +u,(x)
converges uniformly for the range a <z <b and therefore (£.7'.
p- 400) the series is the derivative of the series for log P(x).
The above conditions are not very wide, but they are suffi-
cient for many applications.

© 2
Bx. I P(z):xn(l-!- z 2), show that
1 nerw

P@ 1 <~ 2 —
T"(E—E'lel m, 0< a§-|x|=.~b
where b is arbitrarily large.

u,(x)=2%/n?a® and therefore P(z) converges uniformly for every
value of z, |z |=b, If v,(x)=2z/(2? +n?n?) the limit of niy,(z) for
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n—>ow is 2r/n?; B, may be taken to be 2b/n*n% and 3B, is con-
vergent. Obviously 1 +u,(x) is-positive for every value of n and =.
‘The term 1/x requires that |z| be positive.

91. Tannery’s Theorem. The Theorem for products corre-
sponding to that of § 63 for series may be stated as follows :

If F(n)= ﬁ {1 +u,(n)}, where N is a function of » that tends
r=0

to infinity with n and w,(n) is a function of n, the product F(n)
will tend to a limit when # tends to infinity provided the
following conditions are satisfied :

(i) [ u,(n)=v,, when r is fixed ;

71— 00
(ii) |u,(n)| = M,, where M, is independent of = ;
(iii) 2M, is convergent.

When these conditions are satisfied F(n) tends to a limit
when 7 — « and the limit is given by the equation

L Py - ﬁo(l +0,).

As in § 63, it is plain that X | v, | converges and therefore the .
product TI(1 +v,) is convergent. Again, since % and therefore
also N is to tend to infinity, we may always suppose that N
is greater than any given integer m, however large m may be.
Now take the notations

P =TT +um), @=T(1+v), @=1f 140y,
and express F(n) —@ in the form o« + 8 — y where
—Pm(n) _Qm’ ﬂ':PN(n) "'Pm(n)’ )’:Q _Qm'
We now have

| B1=1Potm) || T1 {1+ w0y -1

gﬁ(HM,)[ (1+M,)-1],

r=m+1

Y =1@ml

H(1+vr)~l<H(1+Mr) H(1+M>—1]

r=m- r=m-+1

Since ZM, and therefore II(1 +J,) converges m may be
chosen so that, given ¢ as usual, both | 8| and | ¥ | will be less
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than ¢. When m has been chosen let it be kept fixed and then
n, may be chosen so that if » > n, the modulus

|a.|=|Pm(n)—le
will, by condition (i), be less than ¢. Hence

|F(n) -@Q|<3¢ if n>mny, or £F(n) l'[(1+'v,)

This Theorem is essentially the same as that stated by
Chrystal on p. 346, Part II, of his Algebra.

92, Infinite Products for Trigonometric Functions. The ex-
pression of sin z, sinh # and similar functions as infinite products
was given by Euler in his Analysis Infinitorum, Vol. I, §§ 156
et seq. ; the following method, which is an improved version
of Euler’s, is given by Tannery and Molk, Fonctions Elliptiques,
1, Chapter III of the Introduction, and is said to be due to
Darboux.

Let f"(x)=§{<l+£>ﬂ—<1~5)”} .................. (1)

where 7 is an odd positive integer and  is any number, real
or complex ; f.(x) —sinh x when n — .

fa(z) is a polynomial of degree » in z; the absolute term of
the polynomial is zero and the coefficient of the first power of z
is unity so that f,(x)/xz —1 when z — 0.

The roots of f,(x) =0 are 0 and 4z, where

z,=tntan(kn/n), k=1,2,..., $(n-1)=N,

and therefore

Jolz)=Az H {x’ +n? tan2<k”>} , A =constant.

But f,.(z)/x —1 when 2—0 ; therefore

1 =AI?{ n? tan? (’%’)}

and f,.(x):va[{l.,._ai—__}, N=3(®-1) wo..... 2)
k=1

n? tan?(ka/n)

We now apply Tannery’s Theorem, § 91. The greatest value
of kz/n is (n — 1)7/2n which is less than /2 so that n? tan?(k7w/n)
is greater than k%n? and therefore, if | 2? | =a?

[{1 + 2?®/n? tan? (kx/n)}| <1 + a®[/k2n?,
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and the series Za?/k?»? converges. Further, when % is fixed,
£ {1 + x2/n? tan®(kx/n)} =1 +a2/k3n2.

” >0
The conditions of Tannery’s Theorem are therefore satisfied ;
and since f,(z)—>sinh  when n — «, we find

sinh x=xkﬁ (1 + 22/k?x?) :xI(f[ (1 +22/n2n?), ......... (3)
=1

and the product converges absolutely and uniformly for the
range | |< K where K is an arbitrarily large positive number.
The number M, of § 90 may be taken to be K2/n2n2.

Again, cosh x=sinh 22/2sinhz. The product (3) is abso-
lutely convergent, and therefore the factors of the product may
be arranged so that one set contains x and the even multiples
of 7z while the other contains the odd multiples of # ; thus

2 42
sinh 2z = 2xH< 44f 2)x H{1+(.‘M—ai5??}
and therefore

° 4x?
COth=nI;IIII+(2n T 2J ........................... (4)

The formulae (3) and (4) are valid for complex as well as for
real values of 2 and therefore if sz is substituted for  we find

sin :x”11<1 - n%:z—z) ........................ (5)
42
cos x_nﬂl{l (—2—77_70—1)2—7!2} C ererreneeneeen, (6)

93. Expansions in Partial Fractions. The products in (3),
(4), (5) and (6) of the preceding article may be differentiated
logarithmically (§ 90). Thus from (5), if 0 <z < =,

2z
% - nin?

- 1 |
Z{mx-uc Wi Dm—zf (la)

co’ox—l+ 2

n=0
Again, cot 3z —cot x=1fsin x ; therefore
1 1 . %
v ”zl(-l) —nw ........................ (2)
= n 1 \
,,;0(—1) {nn+x m+D)a—2f (2a)
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Another method of obtaining an expansion in partial fractions
is given by Tannery and Molk (see § 92) and is, like the method
for obtaining an infinite product, said to be due to Darboux.
The method may be seen by taking the function 1/sinhz,
defined as the limit of 1/f,(x), where f,(z) is the polynomial
of §92.

Express 1/f,(x) as a sum of partial fractions ; since f,(z)/z—1
when z—-0 we have

1 1 &K 4, XA By
fa@) "z le xk+k2=‘1x Tz’ N=}{n-1).

Now (E.T. p. 291) if fi(x)=df,(x)/dx the value of 4, is

1/f2(z:) ; therefore, as is easily proved,

A,=(-1) (cos %)n_z =By,

1 1 & 224,
s0 that m_f%m. .............................. (3)

Apply Tannery’s Theorem, § 63. If k is fixed
' £ 2xAk (- 22
Sy

n—»w

(For the limit of A4, see § 25, Ex. 5.)
Next | 4, |<1 and |2?--2}|>]| k*n%— | x|?| so that

2xA4, 2|z
2% —xE| T |kEnt —|x|®]|
If X is not a multiple of » the series

2 2X
2 Them? — XE|
is absolutely convergent and therefore the conditions required
by Tannery’s Theorem are satisfied, and we find

1 1 2z
m=5+’;(—l)nm—z ............... (4)

The values 0, +nnt are of course not values that x may take.

In (4) put iz in place of 2 and the series (2) for 1/sin x is
obtained.

By either of the above methods various series may be
derived ; as the product formulae hold whether x be real or
complex the series for a trigonometric function can at once be
transformed into one for the correspondlng hyperbolic function
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and vice versa. An identity such as tan z=cot z — 2 cot 2z is
also useful. Several of these series are given in Exercises XI
and many developments which lie outside our limits will be
found in Chrystal’'s Algebra, Chapter XXX, Bromwich’s
Infinite Series, and books on Trigonometry, such as Hobson’s.

Ezx.1. Show thatif O<z<=x

- _ 1)+
sinz 2’( l)'(m +x+(r+l)n x)“ 1R y()
where B (z)< 2/(n+1)n.
Write equation (2a) in the form

T 1 1 n.
sinz 2(— )(rn+x (r+1)m ~ x>+(_l) 1 By(z),

1 1
where R, (z)=u,; —t,a+..., u’“rn+x+(r+l)n—x'
If0=a=n, u,>U,y, r=n+1,n+2, ... and therefore

R () < iy, < 2/(n +1)n.
Ez. 2. Show that

cos x - cos o.=(1 - cos a.)(l —-f—::)lnf[{(l - (2n:: a_)a)(l "(2n::-ou)‘>}
a.;wsina.;-x

=S5 (-G (- ) -

Let 2 =0 ; 1—008m=?H{<1 —ﬁ}:;)(l -Z;:;—;—,)} .

Take the quotient (cos z —cos o.)/(1 —cos o) ; the typical factor is
4nPn? — (o —2)* 4n?al — (o +2)?
4n2n? — o2 dnin? — o3

=(l + 2nnx— a.)( 1- 2nnx+ o.)( 1- 2nnx— a)(l + 2n:+ 0.)
2 2
=(l - (2‘n:—m)’><1 _(2n::+ a.)’) :

Ex. 3. Find the values of ,231 39 Z g
From the infinite product for sin :v/x we find

~log sma:_ - z log(l —-~—-,—:;;)

m=1
Now if 2* < n® and 4,, is the series
A—-lo(l-’”) at 1 at 1
m= —108 i) “mim T e i T e T

(cosx—cos a)=2=sin
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the series 4,, and ZA4,, satisfy the conditions for derangement of § 86.
Hence we have

- 2 log(l - ’n*) cx® et + @b+ ... .......... (i)

m=1
1 1 1 a1
where 022?2;;,'2’”4:2‘ }1“;
Again, since sin z/x =1 — x2/6 +x*/5! — etc.
sin x z? ot
—log( P ): —log {1 —<§—m+...)}

_fxt at z?  at 2
—(@'—1—204*...)4-%(‘6-——1‘2—0*‘...) +,

and, as before the series may be re-arranged in powers of x, so that
i 2 4
“og (H2E)_2, e )

G T IRD T e

The series (1) and (2) are convergent for a common range, say for
2% < a?; therefore equating coefficients we find

1 @
Cy=g Or Z
1

L

1
fg—o or ;——'—

In the same way the values of n—8, £n~8, ... may be found.

3»] —
o3,

Ez. 4. Show that 2(2n - 1)~2 =n2/8, 3(2n - 1)~*=n4/96,....
Proceed as in Ex. 3, using the infinite product for cosz.

94. Bernoulli’s Numbers. In equation (1) of §93 put x
for z ; then we find
coth x == + Z 2z

‘ nin? + x?’

and if we now put }¢ for  the equation (1) gives, after a slight
reduction,

t

t2
ai=1- yms‘m .................. (2)

The series in (2) may be expressed as a series in powers of ¢;
for if |¢| =o. < 2x we have, n=1, 2; 3, ...,

12 {2 1 t2 >—1
dnin? + 127 4n3n?® < Yt

{2 tl tim

—— e —_\\mr. 7
=Tt @) +.o.+ (1) @i et
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"This series converges absolutely if || = < 2x, and therefore,
by § 66, the series in (2), namely,
— 1)1
nzl mzl( ) (4n2“2)m
may be evaluated by summing first with respect to n and next
with respect to m. Thus

SPRLIN VIR
= a4 1 _mgl (2m)2m = nem
© S
—_ —_1\ym1 2m__ g2m
=2, D" gy !
. 1 1 © 1
if Szm=m+2—27”+...zz:ln———-m ............ (3)
n=
Hence, if we now, for convenience, interchange » and m
we get ¢ 8,
—1 -1 — 1)1 n_ g2
P t+22( e L (4)
Again (E.T. p. 404, Ex. 7)
t
—] -1 — n—1 " 2n =
=1 t+2( 1t gy B s (5)

where B,, B,, ... are Bernoulli’s numbers. Therefore, equating
the coefficients of £2# in (4) and (5) we find
_g (2n)!
e (6)
It may be verified from this expression for B, that the
series (5) converges absolutely when |t}<2n; for S,,,9<8s,
and _ Bn+1 . £ S2n+2 __t_
B, (2n+1)(2n+2) on 27z 27
Equation (4) shows that #/(e’ - 1) is expressible by a power
geries and therefore the Maclaurin series (5) is now justified;
also (5) holds for complex values of ¢ since in (4) ¢ may be
complex.
The remainder after the term in 2, equation (5), may be put
in a convenient form, ¢ being real. For

o & N i
anin? + 12 2,}-‘..1( - (4n2n?)"

+(-1)™

2 2

. 2t2m+2
(@n?z® + ) (dn*n?)m
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and therefore, when summation is made with respect to n in
the series (2), the coefficient of ( = 1)mgem+2 jg
1 1 28
2 Z { (4n2n? +12 (4n2n2)m< Z 4 (AnPat)™ i~ (2)2m+e

80 that the coefficient is of the form 0,,{282m+2/(27)2™*2} where
0<0,<1.

Hence, interchanging m and n as before, we see that the
remainder R,(¢) after the term in #2" in (5) is given by

B,
E.(8)=(-1)"0, @n fé)! 2142, 0< 0, <L. .......... (5a)

If ¢ is complex the above reasoning fails, but there is a
similar form.

t _ ot 2
e€+1 ef—-1 e2-1
we deduce from (5) that if || <=,

Since

t o
m=%t+1§1(-1 (2 ),Bt2 [2] <7, cveeneenaT)

and, by putting sz for ¢, series expressing various trigonometric
functions in terms of B,, B,,... may be found (see Exercises
XT).

The following values of B, may be useful :

B, =%, By=+5, By=77, By=45, B;=+%s, By = 8.

See Chrystal’s Algebra, Part II, Chapter XXVIII, §6;
Nielsen, Traité Elémentaire des Nombres de Bernoulls.

For the expression of B, as an integral see § 165, Ex. 5.

EXERCISES XI.

1. Show that H ( * l) =(e" —e")/2m.

2. Show thatnﬂl (%ﬁ) 3eE +677),
T ] (n+2x)2 _ (7 +2x)3 2
3. 1+sinz=}(x +200{1 - }{ St ) e
. x x .
4. (1) cos 3 5 cos 2, 08 55 COS g ... =_x ;

1 1

(11)-ta,n2 53 a0 g3+ o5 tan 5 +... = —cot .

What restriction is there on « in case (ii) ?
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5. (i) 9‘—“-3— 1 -—sm 3,,)
(ii) cos a:=”]1(1 ~4 gin? 3,‘) (Laisant)
6. ﬁi:i-ﬁ:;%_nnl {(1 +nn23x)(l —nn%ix)} )

Examples 7-17 are taken from Chapter IX of Euler’s Introductio in
Analysin I nﬂnitomm.

ebt® o 4(b —c)x + 4
BCETE {l+(2n—1)2n“+(b—c)’)

ebte _ e 2z \ & 4(b - c)r + 4x?
8. B —(1 *p —c)”l;ll {1 tinta? +( -c)’} )

9. (cosh x +cosh ¢)/(1 +cosh ¢)

= H {(1 @ 2—0913):;: c’)(l “(2n 2—0:;);7::&)}’

n=1

10. (coshz —cosh¢)/(1 - cosh ¢)
o -
(B {(r+ o)t -t as))
11. (sinhz +sinhe¢)/sinhc
@ -
=(1 +“E°)”I=Il{1 4120w + 2t ””’} )

nnt ¢t

12. (sinh x —sinh ¢)/sinh ¢
=—(1--)n{1 plolitoriaty

n2n? 4 c?

13. By putting iz for z and ic for c, or otherwise, deduce the formulae
for the circular functions corresponding to those of Examples 9-12.
For instance, from 9, if m =2n -1

tramet= I e e}
1, S2E@-0_ H{(Hm}fn-%xl‘(2n_219)6n+2c)}'
5. 228 (1-) [ {(1 472 )1 -re)}
0. =2z oeme (1,2 L (1o grap ) )

ﬁ
17.(2%1%:%:—?} ”l;[l{( (2n - 1n+c)’)(1+(2n—alc:t-°)')}.
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18. From Examples 16, 17, deduce products for cosh 2u 4-cos 2« and
deduce the value of
ﬁ 4n? —dn + 5)
am\ BT —dn +1)°

el 4
19. I (1 R ) cosh(mqu)tzxfos(nxJZ)

n=1
z(x +1)
n(n+1)

20. sinm:nx(x+1)ﬁ {1 -

21. coth .’E——'l' 2m

cosh ax _ ,,a,cosm; e
22. () g nZ( s —aSesa;

0

(ii) sinh ax 22 l)”_lnsmm:

sinh az 7~ n®+ad®’

— A< er<m;

sinh = . 2z 2
(i) coshz+ cosc=”é1{[(2n— 1)n—c]3+x’+[(2n— l)n+c]’+x’} )

o
8x
23. tanw_,é:lm.
& 8z
24. tanh :“=1(2" P v

1< ey  H2n-Dan
25 osz= 20 U - T

1< w1 4@2n-1)n
2. 2 -0

a0
2a
27. —+’§m =z coth an.
Put ax for z in Ex. 21. Many numerical series may be expressed in

finite form by assigning particular values to z in Examples 21-26 and
similar examples.

0
22 B
28. xcotx =1 - Zpin, x| <.
n§=;1 2n)!

4
29. tanzxz= > (2" -1 "x”‘-l, z|<Z.
> em-nig: =1<3

2n_9)B, .
,.2:1( T 2 12l <

31. Derive the series for the hyperbolic functions corresponding to
the circular functions in 28-30 by putting «x for z.
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32. By multiplying the power series for (¢f — 1)/t and the series (5) of
§ 94 for t/(e? — 1) prove that

(2n2+ 1>Bl (2’n + 1>Ba +(2n + 1>B3

2n +1 2n -1
— 1)1 —
+( 1)1»( ; )Bn_ —
33. Show from equation (2) of § 94 that if 0 < ¢
1 1 1
O<g—1-7%3<13’
a0
2,2 L2yl _— SO
Note that ;(‘mn +12) <4n22’

34. Expand the logarithm of the infinite product (i) for (sin z/x)
and (ii) for cosz as a double series, and show that it may in each case be
arranged as a power series in x (see § 93, Ex. 3); then show that

22”—1B
(1) log~———= - (2n)' - z, |x| <
X 9n—1(92n _
(i) logcos:zf::-z2 ((;LT”II)—%‘%M, |”|<12t
35 secm—{i‘ T"*"xz” lx|<§-
. = P e 3
-1 i o
" 1 1 1 1
where Topa= 1EnHi~ gEnA T 5amdl T qEaa T

20+ 2n) Typ iy
n =T
The numbers E,, are called Euler’s Numbers. E, =1, E,=5, E;=61,
E,=1385. (Chrystal’s Algebra, Part II, Ch. XXX, § 3 and § 15.)

1
(@m —1)2F1"

and

36. Prove that 1 +to 1 1 >S,m >1+

Apply the mequahtles (5) of §11.

37. Prove that B, and E, are both positive and tend to « when
n—>oo.

Examples 38-40 are from Tannery and Molk, Fonctions Elliptiques 1.
38. If 1 is real and positive but not greater than unity, show that
cosAx_1 21 2x cos nisn
(-1 =3

202
smx -’E n=1 —-Nn°m

- £ i”: (_l)ncosnln’

C m—sw n=—m T —-nn
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Let f,(%)=1%p,(x)/y,(x) where n is an odd positive integer and
(), v, (x) are polynomials in x, namely :

oo =( Y (1Y, (1215,

fn(®) = cos Az/si1z when n — © and zf,(r) >1 when z —» 0.
Express f, (z) in partial fractions ; the roots of y,(x) =0 are x =0 and
= +ar= tntan(knajn), k=1, 2, ..., }(n —1)=N.

f,.(x)——+ Z(m o xf;k)

_p _¢_ 1| cos (kx/n)q" cos (neg) ’f_’
and Ar=Bp=(-1) [ 008 og " GoF (kn)’ tan oz =4 tan

Now proceed as in § 93. For the limit of 4; see Exercises II, 27.
Show that the series represents the function if —~1=41=1.

sin Ax 2nn sin n)»rt 5 8in niz
.SM—ZN L A S :

At
-n2n o ns=m T —nx

where A is the same as in Ex. 38.

sin Az { cos Ax  cos A(x + )
. =——7—{cos An — :
sinxz  sin An sinz = sin (x+ 7)

40. M___. L‘ in: (—l)” enini )

sin m-—>n n=-m na

Note.

95. The Gamma Function. The product P,(x) where

n! n*1
P"(x)zx(x+l)(x+2)...(x+n—l) ............. (1)

is defined for all values of z, real or complex, except the values
zerc, and the negative integers numerically less than n. It
will now be shown that P,(z) tends to a limit when n tends to
infinity ; the limit is called the Gamma Function of x, is denoted
by I'(z) and is defined for all values of z, real or complex, except
zero and the negative integers.

The limit will not be altered if P,(z) is multiplied by the
factor n/(n +z) which tends to unity when » tends to infinity ;
hence we may, as is often convenient, suppose that P,(z) is
defined by the equation

n! n®
P,,(x):x(ﬁl)(“2)...(“”). ............. (1a)

When a distinction is needed, the form (1) may be called the
first and the form (1a) the second form of P,(x).
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First Proof. Take the form (1) and write

alntl=(n - 1) n®=(n - 1)1(? gr_’;_ln_"_z_iy
| =(n- 1)’};[1( 1>x
also. (x+1)(x+2)..(.n(ai-{-)7;)...(x+n—1)::‘l=:[11<1+%:>.
Thus  @P,(@)= 1] 1{(1+1) (1 +—”9)_1}="I111(fr)-
Now  f=(1e3iTEIN A0 2 2 By
=1+.1.ﬂ_“_1_) ¢
2 1.2 73’

where A, B, C are all finite ; therefore
r? |f,—1|—>%|z(x—-1)| when r— o
so that Z(f, —1) converges absolutely for every x. Hence
P, (x) converges absolutely when n— .
Second Proof. Taking the definition (la) we may write

1 (+1)(x+2)...(x+7)...(x+n)
zP,(x) 1.2...r...n

since n~*=e*lgn, Now express the factor (x+r)/r in the

e—= logn

form

[(l + f) e'fr] e§
and we find xp O — ¢2Cp H ( ;) ¢ —f]
where

C’,,=1+%+§+...+1—1L—logn.

Now (Exercises II, 8) C,—>y, Euler’s Constant, when n—> .
Also by §88, Ex. 5, the product II[(1 +z/n)e~*!"] converges
absolutely for every z; it also converges uniformly since
n?|f,—-1|—>4%|2?| and therefore the M-Test applies, for
we may take M,=3}K?n?® where K is any given number.
Hence 1/2P,(x) converges absolutely -and uniformly for every x

when n— o, so that .
_e'YzzII[(l-l— e:] Ceeeeenas evrnens(2)
T oA=]
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Equation (2) may, since 2I'(x)=I'(z+ 1), (see next article)
be expressed in the form

T(@+1) =e"7‘”i[1{(1 +:—i)‘1. e?f} e, 3)

Obviously 1/I'(x) is zero and I'(x) infinite if = is zero or a
negative integer.

The product (2) is usually called Weierstrass’s Form. The
name “ Gamma Function ’ and the notation I'(x) are due to
Legendre.

Gauss’s II-Function. The function I'(x + 1) is the same as
the function II(x) introduced by Gauss. As will be seen
immediately I'(z + 1) =aI'(z) so that II(x) is the limit of zP,(x)
when n— o .

Cor. If m is a fized positive integer I'(z) is the limit of
P,.(x) for mn—>o. For, when a sequence P,, P,.;, P,.,, ...
tends to a limit any partial sequence selected from it, P,,,,
P Poiry oo (p<g<r ...) will tend to the same limit.
Py Prnits Ponsss -+ 18 such a partial sequence.

96. Properties of I'(x). The following properties are easily
deduced from the first form of the definition.
(1) T(1)=1.
P,(1)=1 and therefore I'(1)=1.
(2) T'(x+1)=2l'(x) or I'(x)=(zx - )['(x -1).
n .
P, (x +1)=aP,(x)- 710 % that I'(x +1)=al'(x).
(3) If x=n, a positive integer, I'(n) =(n - 1)!.
Apply (2) repeatedly.
L(n)=(n-1T(n-1)=(n-1)n-2)['(n-2)=...
the last factor being I'(1) which is unity.
Cor. 1. II(n)=I(n+1)=nl.
Cor. 2. If p is a positive proper fraction and n a positive
integer )
F'n+p)=n-1+p)n-3+p)... Al +p)L'(1 +p) ....(Q)
Pl -p)=-pl(-p)=-p(-p-NI(-p-1)
=(-p)(-p2-1)...(-p-n)'(-p-n),
go that I'( - n — p) =( - 1)™T'(1 = p)/p(p'+ 1} (P +2) ... (P + n). (ii)
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(4) T'(@)'(1 =x) ==/sin na.
If z is real or complex, but not zero nor a positive or negative
integer, the product P,(x)P,(1 —z) may be expressed as
n! n®1 I
Tl )2 2) ... m—1+2) (1-2)(2-2)... n—1-z)(n—a)
and this is equal to unity divided by

(1 +x)(l +32”> (1 +i>

n-1
(=915, )0-3
that is, [x’:I;[KI —::;:)] X (1 —73:)

When n-> o the product last written tends to (sin mz)/n
so that I'(z)['(1-=z) is the reciprocal of (sinzmz)/m. Thus,
whether z is real or complex (the values 0 and positive and
negative integers excluded) I'(x)['(1 — ) =x/sin 7.

If x+y=1, I'(x)['(y) = =/sin nx = x/sin y.

Cor. 1. I’(%)F(%):n/sinf; I'(}) =./=n, since I'(}) is positive.
Cor. 2. II(z)II( —2)=T(1+2)[(1 - x) = nz/sin zx.

Cor. 3. II(-3)=T(1-3)=I{E)==.

(5) £ (z +n)['(z) =( - 1)#/n! (n a positive integer).

Z—>-—-n

For, (z+n)(z)=T(x+n+1)/z@x+1)(z+2)...(x+n-1).
(6) If a is real and positive and n a positive integer,

1:7%-(%1))9 1 when n — .
F I'(n +a) T(a).a(a+1)a+2)...(a+n-1)_ T(a)
or n°l(n) — n! n-1 “P,(a)

and P,(a) —T'(¢) when n — o,

97. Gauss’s Function yp(z). If y(x) denote the derivative
of logI'(1 +x) with respect to z, the function y(x) is called
Gauss’s Function y(x). A Table of values of y(z) is given in
No. I of Tracts for Computers (Cambridge University Press);
y() is there named the Digamma Function and a Table is also
given of the values of the function dy(x)/dx which is there
called the Trigamma Function.
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It should be noted, however, that the symbol () is frequently
(in English text-books, usually) taken to be the derivative, not
of logI'(1 + z), but of logI'(x). If, for the sake of distinction,
v,(x) is taken to mean dlogI'(x)/dz, the relation between y,(z)
and Gauss’s Function y(z) is simply »,(x) =yp(x - 1).

If a is constant y(ax) means dlog I'(1 + ax)/d(ax); that is

laz) = (l; dlog I“i(; + aa:) w(—2)= - dlog g;l —x)

The following properties of Gauss’s Function () are easily
proved by using Weierstrass’s form of I'(1 + ).

W) p@)=-y+ 5 (- i) @ wO=-7.

‘\n z+n

() v+ 1)=w(x)+x—i—i; w(w+n)=v(x)+§x—i-r.

@ v=-7+37.

(5) y(—x-1) - p(x)=mn cot mx.

(5a) py(1-2) - pa(@) =z cot mz if py(z) = 2BLE),
d () dzlogl“(l+x)__ 1

(6) dzx dax? _,,Z:;l(x+n)2'

To prove (5) observe that
I'(-2)T(1 +x) =x/sin #(x +1) = — 7/sin 7z
_dlog'(—-x) dlogI'(1+2) dlog (sin 7x)

so that Tz dz dr =m cot nx.
Ex. 1. o'(0)=2
By (6), w’(0)=§)lnl,=%z, (§ 93, Ex. 3).
Bz 2. v(-%) =“_' )
By (6), v'(-¥= L I ey 4$ T (893, Ex. 4).

For other relations see Exercises XII, 8, 9, 10, 14, 15.
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98. Examples. The following examples indicate methods
of expressing some infinite products as Gamma Functions.

ﬁ (n+a)(n+b)  T{a+b+1)
s nntatb) D@+DIG+])’
In § 95, (1) let x =a +1 and we find
(@a+1)(a@+2)... (@+n)=n!n?/Pya+1),
and therefore, the other factors being treated similarly,

ﬁ (r+a)(r+b) _ nind nlnd 1 Pyla+b+1)
el r(r +a+b)  P,(a+1) P,,(b+1) n! n!notd
P, a+b+1)
n(a+l)P"(b+l)

The result follows at once.

2. (1-z)(1 +3x)(1 ~$=x)(1 +{=) ... r(1+§§)(i}*)(§ )’

Lot fo, =(1 —2)(1 +32) (1 -m>(1 +%); then

Jenia =fen[1 —2/(2n +1)] so that, if f,, tends to a limit, f;,,, tends to
the same limit and therefore f, tends to a limit whether » is even or

odd. Now )
+x x
(gt ) Lol d)

and the result follows from Ex. 1 by taking a = — }(1 +x), b =4x.

afe+1)...(e+n-1). B(B+1)...(B+n - l)
1.2...n.9(y+1)...(y+n-1)
investigate the convergence of Zu,,.
The series 2u, is F(«, §, 7, 1), § 60, Ex. 3. Proceeding as in Ex. 1,
we see that
nnt-1 ninf-l 1 Pu(y) __ Pu(y) 1
Po«) PoB) nl alnr-1 Pya)P,(B) nr-o-p+l"
Suppose that I'(e), I'(8) and I'(y) are definite numbers and let oy, By
and y, be the real parts of o, # and y; then
Pn(7) 1 < K
P (o) P,(B) Inn - Bitl T pyn-a1-pit+l
where K is a constant which, for large values of n, differs little from
|T(»)/T(«)T(B)|. Hence Zu, converges absolutely if y; -, —§, is
positive, that is, ¥, >a; + f;.

. K
Again, £ | nu, | = eTh =0,

n—>w n—rao

3. I Uy =

U, =

Jug| =

when Tu,, converges absolutely.
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o T {(152) o) =5,

ctn/¢ [ TTO+c+a)

We may write
c+z
(1 +c +x) e n

(1+c+n (1+ ) <

o (D

since I'(1 +¢ +2) =(c +x)I'(c +x), the result follows at once.

The following example gives an interesting illustration of
Cesaro’s Theorem, § 65.

5. Let f(x)=1#-1x +26-122 +3#-123 + ... +né-12" +...; show that,
if p is positive, (1 — z)*f(z)—T (u) when z—1.

The series converges if | z | <1 but diverges if x=1. The function
(1 —~z)~* is, by the Binomial Theorem, represented by the series

2 alp+1)(p +i) (pin—1) n
n=0

which (by Raabe’s Test) diverges if z=1. In Cesaro’s Theorem take
g(x)=(1 ~z)~*; then

f(x) nln#-1
£“ -2)f (@) ‘£ @ & ple+D.@tn-D’

z—1

provided the last limit exists, as it does, being I'(u).

99. The Hypergeometric Function. The hypergeometric series,
when the real part of (y—-o—pB) is positive, is equal to
F(o,pB,7,1); when the parameters «,f,y satisfy the
condition just stated, the function F (., §,y, 1) can be expressed
in terms of Gamma Functions, namely

Tl (y-o-p)
P by V=14 -arpy=p)

The theorem may be verified as follows. Let u,, v, and w,
be the coefficients of 2" in the series for F(a, g, y, z),
F(x, B, y+1,z) and F(o -1, B, y, x) respectively ;

Uy =1 =0y =w,.
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It is not hard to see that the following relations hold :

Q) u,,-u,,+1=(1 —g) O = Wnyys 0=0, 1, 2,....

(i) (y—-o)(Up —w,) =Py + [(n - Vu,_, —nu,], n=1, 2,....
All three series Zu,, Zv,, Zw, converge when the real part
of y — o — Bis positive ; also (by § 98, Ex. 3) nu,—0 whenn—>w .
Now sum (i) from n=0 to n=w ; therefore
1=(1-0) Pl B v+ 1, )= (P -1, 8, . 1) -1,
or yFle-1, B, 7, i=(y - B)F(, B, y+1,1) ... (a)
Again, sum (ii) from n=1 to n = ; therefore
(7"0‘-){F(a-, /3: Ie) 1)_F(a-"'1’ ﬂ: Y 1)}=ﬂF((l, ﬁ’ e 1)—£(nun)

=pF(x, B, y, 1):‘
.Ol' (7"'(1'— ﬂ)F(OL, ﬂr 14] 1)=(7_a')F(a'_ L ﬂ’ Vs 1)‘ (b)
Eliminate F(a -1, 8, v, 1) between (a) and (b); we thus find
F(o, B, 7, 1)=%§’_‘£) F( B, y+1, 1) (o)
Now apply the formula (c) repeatedly so as to increase the
third element to y +n; thus F(x, y, 8, 1) becomes equal to

y-a)y-o+l)...(y-oatn=-1).(y-B)(y-B+1) ... (y - B+n-1)
Piy+1) .. (y+n=-1). (y—a=-B)(y—=B+1) ... (y—a-B+n-1)
x Fe, B, y+m, 1).

But (see § 98, Examples 1, 3) the coefficient of F(o, 8, ¥ +n, 1)

has as its limit when n—w
LT (y - - B)T(y ~)T(y - B)
Again, when n—>w , every term in the series for
B, B, y+m, 1)

tends to zero except the first term which is unity. Hence

'ty -« -p)
F(a, B, v, U“p(,,-a)[‘(y—ﬂf

100. Gauss’s Formula for I'(mx). If m is a positive integer

C@T(e+ D)0+ 2) ..o ™22) 20T Tina)
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Take the first form of P,(x). The function P,,(:v+ %), when

numerator and denominator have been multiplied by m» is

P<x+1)— m*.n! . n”
n m/ (mx+r)(mx+m+r)... mx+n-1)ym+r]’

r
+5-1

If each of the functions P,(x +7/m), for r=0, 1, ... m -1, is
expressed in the same way and the m functions then multiplied
together, it is readily seen that the denominator will be the
product of the factors (mzx +r) from r =0 to r =mn — 1 inclusive.
The first factor from each denominator gives

mx(mx +1) ... (mx +m - 1) ;
then the second factor from each gives
(mx +m)(mx +m +1) ... (mzx +2m - 1),
and so on. Hence

m~1 r
,I;IOP" x+ﬁ> ~ma(mz + 1)mx + 2) ... (mz+mn—1) "

(mn n!)m e —-Hm+1)

(1)
Now, § 95, Cor., we may take ['(mz) as the limit for mn
tending to infinity of P,,,(mx), where
(mn)! (mn)m=-1
mx(mx + L)(mx + 2) ... (mx +mn -1)"

...... )

If we now divide corresponding members of (1) and (2) we find

Po(mx) =

m-1 r
P+l

o (= m_), mot o (). (3)
P yn(ma) (mn)! n 2

and the expression on the right is independent of x ; its limit

for n—>o is easily found by using the value of »! in Exercises IT,
-1
30 to be (2n)m2 .m~%. The limit for n—>w of the left hand

side is I'(@)I'(x+ 1/m)...T[x+ (m - 1)/m] . m™-1T\(mx) so that
the formula is established.

The student might work out independently, by the same
method, the particular case I'()['(z + }), obtained by a totally
different method in the Elementary Treatise, p. 450.

In Gauss’s Formula put z +1/m in place of z ; then

1l-m m=1 s
Tma+1)=(2a) T et T T(142 -2 .......(4)

=0
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_dlogl'mz+1) 1 1dlogI'(mz +1)

Now  y(mz)=

d(mzx) “m dx ’
and therefore, by taking logarithms and differentiating (4) we
ﬁnd 1 m-1 8
1p(ma:)=logm+ﬁ’§0 w(x—',—n). ............... (5)

EXERCISES XII.

1. If f(z) =nlz[1 {(l+%) c"*ni"} , prove that f(x) x f( —x) =sin z/z.

n
2* If g(x)= I’ (1 - —) show that when m and »n tend to infinity
ru=—m

@(x) tends to the limit (sin z/x)a?/* where a is the limit of (m/n).

Note that II (1 —_) I] {(1———)6’"} x e*n

where 8 =——{(l+}+ St ) logn}——logn

Thus ¢(z) tends to sin z/x if, and only if, ¢ =1, that is, if m and n tend
to infinity * in a ratio of equality.”

3. (i) smm=mr [T {(1 —g)e'x"};

n=-o
o 1 r 1 1 3.
(ii) ucotm:—-5+n§w ;’l+x—_n}’

0
(i) = 1
sinfax” | & (z-n)?
4. Prove the following statements :

0 s@= T {(1-525) %) =22t v,

(ii) 25 {n a+m} a{cot (x +a) — cot na}.

* The symbol II’, with the accent on II, indicates that the value r=0is
excluded so that r takes the values ~m, -(m-1),..-2, -1,1, 2,...n.
A similar meaning is assigned to the symbol of summation ‘.
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5. If p(z) == H’ {(1 ——) e”} and if f(x) is the function defined by

n=-w
the product in Ex. 4, (i), prove, without using the circular functions
and simply by transforming the products, that

o(x+a) _¢'(a),
(i) f(x)= “o@) edz, 4 = wla)’
(i) gz +1)= -g(), ¢'(z+1)/p(x + 1) =¢'()p(z);
(iii) f(z +1) = -4 f(x).
0 c c I(a)T'(b)
. ,,I;IO{(I t +a)(l “n +b) “Ta+ce)T(b-c)°

Show that if a=p, b=y -o -8, ¢c= —«, where the real part of
{y —a - ) is positive, the infinite product is F(x, B, p, 1).

n ATy -
8 ,,ljo{(l +:v-(: )e vn } F(I:;(i)a) MWD, (Mellin.)

9. (1) y(H)+y=2-2log2; (ii) w(-})-w(-H=
10. (i) Z{ﬁ-log(l-pm%)}:yﬂogx;

(i) 2 {Iog(l+m) ;—_*_—;—ﬁ} = y(x) - log=.

n=0

11. If n, p, « are all positive integers, prove that

(z+n)(z+n+1)...(x+n+p-1)

@ )@+2) .. @ip) -V

>0

GRS VCES PHCES VES) g
2. [ 35...n-1). 202 +2).. T+ -9~ 2

n—>w

13. Prove that if |[z]| < 1,

(i) logT(1 +x) = — px + 2 (- 1)"S =

n=2
where S, ll”+ 1 +3l,,+
(ii) log I'(1 +z) +log(l +x) =(1 - p)r + 2 (-1 21 - s,,)~

n=2

(iii) logI'(1 -=) +log (1 —2) = ~ (1 - p) - 2 (1- S,,)—
G.A.C, K
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. 1-=
(iv) log (1 +2) ~log T'(1~2) =log 1
> 2n+1
P21 -9 422 (1 ~Sanpa) gy 5
el

(v) log I'(1 +2) +log I'(1 —2) —log(nx/sin nzx);
(vi) logI'(1 +2) = }log( ) -}log +(1 -y

sin 7w
xin+1

+”21 (1 'Szn+1)'2—m .

[To obtain (i) use Weierstrass’s form for I'(1 +x), expand each
logarithm and show that the series may be deranged and expressed in
powers of x. The equations (ii) ... (vi) then follow easily.]

14. Deduce by putting x = -} in Ex. 13, (vi) that
SZn+l 1
y=1-log}- Z Tl

15. Deduce series for y(z) from Ex. 13; for example,

o0
y)=-y+ >, (-1)"San?, |z| <l

n=2



cH. x. § 101]

CHAPTER IX
INTEGRATION OF BOUNDED FUNCTIONS

101. Intervals. Sets. In establishing general theorems in
integration there is frequent use of the division of an interval
into sub-intervals and of sums of terms associated with sub-
intervals; it will obviate inconvenient interruptions in
exposition and perhaps emphasize the essential elements in the
discussion if we begin with some definitions and explanations.

Numbers z;, z,, ..., z,_, chosen so that
A=Ty< By <2< ... <@y <b=2x,
effect a division, D say, of the interval (a, b) into n sub-intervals, the
notation a =, b==, being adopted for symmetry and for use in
summations.

If in one, more or all of the sub-intervals of D there be inserted one or
more numbers, a new division, D’ say, of the interval (a, b) is made
which is said to be consecutive to D; the numbers z,, z,, ..., «,_, and
the numbers that have been inserted are considered as a single set and
are always supposed to be arranged in order of magnitude from a to b.
For example D’ might be

a, 4, &1, &y Tgy Ty, @y, &g, ooy Epy Tpy, b,

where £, §,, ... are the numbers inserted and a < x; <&, < &, < 2, ... < b.
If there are two different divisions of (a, b), say
D, [a, 2y, Xy, --. s Tpyy, b]
with m sub-intervals and D, [aq, &, &, ..., &,_;, b] with n sub-intervals,
the division, D; say, formed by taking the numbers # and & in order
of magnitude from a to b is said to be made by superposition of
the divisions D, and D,. In the division D, there will lie between a
and b at most (m +n —2) numbers ; but there may be fewer, since a
number x may be equal to a number & and every equality of this kind
reduces (m +n -2). Thus if z,=§,, 2, =§,, the four numbers z,, z,,
&3, &3 would give only two different numbers and the number (m +n - 2)
would be reduced by 2. It is obvious that D; may be considered as
consecutive both to D, and to D, ; if D, is taken to be consecutive to D,
267
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there are not more than (n — 1) numbers inserted in the sub-intervals
of D, but there may be fewer owing to equalities such as , =&;, 2, = §&;,.

The formation of a consecutive division by superposition is of constant
occurrence and the student should be quite clear what exactly is being
done.

Again, there may be associated with a sub-interval (z,, z,4,) of a
division D a number «, and with the division D there may be associated
a sum v, where

V=g (@) — Q)+ Uy (Tg = Zy) F oo+ Up (T = )+ oo+ Uy (-2, )
n-1
= Eur(‘vr-u - Zy).
r=0

If the division D varies so will the number v, and if we suppose, as
will usually happen, that n may be as large as we please and that the
numbers 2, may be chosen arbitrarily so long as they are arranged in
order of magnitude from @ to b, the numbers v will form an infinite
set (v). The properties of the bounds of the set (v) will then be discussed.
It is the properties of such sets that lead to the conditions for the
existence of an integral.

If the student turn to p. 324 of the Elementary Treatise he will see
that v is the sum of the expression (1) on that page when w,=F(x,);
the upper bound of the set (v) is the area ABDC under the curve
(Fig. 75). In the absence of theorems on the existence of bounds of
infinite sets appeal was made to the conception of an area to determine
the limit of the sum (1), p. 324, and establish the existence of the
integral. From our present standpoint the process is reversed ; the
existence of the integral is first established without appeal to geometrical
considerations and then the area is defined by an integral.

102. The Sums S and s. Let the function F(x) be single-
valued and bounded for the range a < x <b; at present no other
restriction, such as continuity, is imposed on F(x).*

Let Dla, 2y, ..., ,_;, b] be a division of the interval (a, b)
and let (z,,., —x,)=h,, a positive number that measures the
length of the sub-interval (z,, z,,;). Further, denote by
M, m and M,, m, the upper and lower bounds respectively of
F(z) in the whole interval (e, b) and in the sub-interval

(@, xr+1)-
Now consider the sums S and s where

n-1

S=M0h0+M1hl+...+Mn__1h”_1=Z()).M,]br ............... (1)
=
n-1

8=mghg+ Myt e+ My by =D M by e ven(2)
r=0

* For the value of F(x) at a point of discontinuity in (a, b) see § 29.
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S and s are called respectively the upper and lower sums for
the function F(z) and the division D of the interval (a, b).
In whatever way the numbers «, are chosen we have

m=m,<M, <M,
and therefore, from equations (1) and (2),
mb-a)<s<SMb-a) ..cecuvuven.n.... (3)
since ho+hy+...+ by y=b-a.
From the inequalities (3) take the following
s<8, S=mpb-a), sSMb-a) ............ (3a)

Thus it is seen that for the same division of (a, b), s< 8.
Again, the inequalities § = m(b — a) and s < M (b — a) are true in
whatever way the division D may be varied. The variation
of D may be made in an infinite number of ways by varying n
and the numbers z, and for each division there is a corre-
sponding § and a corresponding s. Hence the inequalities (3a)
for § and s show that the set (S) has a lower bound, L say, and
the set (s) an upper bound, which may be called 1.

Some properties of S and s will now be proved.

1. The inequalities

mb-a)<S=Mb-a), mb-a)<s<Mb-a)
are true whatever be the division of (a, b)

These inequalities are obvious but important.

2. If the division D, of (a, b) is consecutive to the division D,
and if S, and s; are the upper and lower sums respectively for
the division D,, then § = §;, s < s, ; that is, in passing from any
division to a conmsecutive division the sum S decreases or is
stationary while the sum s increases or is stationary.

Suppose first that D, contains only one number & where
r,<E<zx,,,, that does not occur in D, and let M’, M” be the
upper bounds of F(x) in the intervals (z,, &), (&, z,,,) respec-
tively. All the terms in 8 and 8, are the same except that
instead of the term M,(z,,, —,) in S there is in 8, the sum of
the two terms M'(§ —z,) and M"(x,,, — £). Hence

8- Sl =M (%4 —x,) - [M'(& -Z,) +M"(:t,.+1 -8l
but (x,.; -2,)=(£-2,) +(2,,, — &) and therefore
8 =8y = (M, - M'YE-2,) + (M, — M")(@,0 =£). .....(4)
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One of the numbers M’, M" is equal to M, while the other
may be less than M, or equal to M, ; each term on the right of
(4) is therefore zero or positive so that S — 8, is zero or positive,
that is, = 8;.

In a similar way it may be seen that s < s; since the lower
bounds, m’, m” say, of F(z) in the intervals (x,, &), (¢, Z,4)
are greater than or equal to m,.

Suppose next that D, contains more than one number that
does not occur in D ; these numbers may be supposed to be
inserted in succession and since at each insertion S decreases
and s increases (if there is any change at all) we see that
however many numbers there may be in D; that do not occur
in D the relations § = 8, and s< s, are true.

3. If the consecutive division D, contains 4 numbers that
do not occur in D and if for the division D the length (A,) of
each interval is less than A then

0S-8,<u(M-mh, 0=8, —s< u(M -m)h.

The relations 0 < S —8;, 0 < s, — s have been proved in 2.

As before, suppose first that only one point &, where
r,< £ < Z,.,, has been inserted in D. Then, M,-M'< M -m,
M,-M"< M —m and therefore by equation (4) we find

N —Sl = (M _m)(xr+1 "xr) < (M _m)h

Thus the decrease in S due to the insertion of one number is
less than (M —m)h. Suppose next that x4 numbers have been
inserted. As before, they may be supposed to be inserted in
succession, and as the insertion of each additional number
produces a change that is less than (M —m)h the insertion of
u numbers produces a change that is less than u(M —m)h so
that S — S, is less than u(M —m)h.

In the same way the relation s; —s < u(M —m)h is proved ;
we thus find the inequalities stated.

4. The lower sum s for any one division cannot exceed the
upper sum S for any other division and not merely for the same
division (as shown in (3a)).

Let S, s and §’, s’ be, respectively, the two sums for two
different divisions D and D’ of (a, b) and let 8", s” be the
sums for the division D” formed by the superposition of D
and D’.
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If D" be taken to be consecutive to D we have (by 2)
§=8", s<¢s”,
while if taken to be consecutive to D’ we have
S'=8""s<s"

But s"< 8" since both sums belong to the division D”;
therefore s<s"<8"<§ and #<s"<8"'<8S
as was to be proved.

5. I= L. By the definitions of the bounds I and L there are
divisions D’ and D" of (a, b) such that s’ differs from ! and 8"
from L by as little as we please ; the inequality I>L would
therefore imply an s’ and an 8" for which s'>8”, which has
been seen to be impossible.

103. Darboux’s Theorem. The following Theorem or Lemma,
known as Darboux’s Theorem, is of fundamental importance ;
¢ denotes as usual an arbitrarily small positive number and
is to be understood in this sense throughout the discussion.
The Theorem will be stated in two forms.

First Form. To any given & there corresponds a positive
number h such that S<L+¢ and s>l —¢ for every division of
(@, b) n which the length of each (or the longest) sub-interval
1s less than h.

Second Form. 8 and s tend to L and 1 respectively if the
number of sub-intervals in the division of (a, b) tends to infinity
wn such a way that the length of each (or the longest) sub-interval
tends to zero.

I. Consider, for example, the sum 8. Let D be any division
of (a, b) into n sub-intervals such that the length of each is less
than 4 ; for the present 4 is simply a fixed positive number.

Next, since L is the lower bound of the set (S) there is, by
the definition of L, a division D’ of (a, b)—which will be
supposed to contain x numbers between a and 6—such that the
corresponding sum 8’ satisfies the inequality

B'<L+3e ciiiiiiiiiiiiiiniiiiieenanen, (1)
Now superpose the divisions D and D’ to form a new division

D", and let 8” be the sum for the division D”. If D" is con-
sidered as consecutive to D we have (§ 102, 3)

B<8"+u(M ~m)h cevvvevivieinrinnnannns (2)
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since there are u (or fewer) numbers that enter the sub-intervals
of D from D’. On the other hand if D” is taken to be con-
secutive to D’ we have (§ 102, 2 and (1) above)

S'<8'<L+3%e coveieniiniiiniiinnn, (3)
and therefore, by (2),

S<L+}e+u(M-mh. .cocuvvnninannnn. (4)

The numbers u, M, m are fixed (though x depends on ¢);
we now suppose h chosen so that u(M —m)h <%e. Hence,
applying (4), we have found % so that S<L+e¢; the only
restriction on the division D is that the length of each sub-
interval is less than A.

The proof for the lower sum s may be left to the student since
it follows the same lines as that just given and requires little
more than verbal changes.

II. Again S= L since L is the lower bound of the set (S);
combining this relation with the inequality S <L +¢, we see
that if in any division of (@, b) the number of sub-intervals is
so great and at the same time the length of each sub-interval
80 small that the longest is less than A

0sS-L<e.

Therefore L is the limit of S under the conditions stated.
Obviously we also have 0 <[ —s < ¢ and [ is the limit of s.

Ex. 1. Prove that if F(z) is continuous I =L.

The proof of Darboux’s Theorem requires the property 3 of § 102, but
when F(z) is continuous that property need not be appealed to.

Since F(r) is continuous it is uniformly continuous and therefore we
can choose & so that (M, —m,) shall be less than &/(b —a) provided that
(@44 —2r) =hp < b where r is any of the numbers 0, 1, 2, ..., (n -1).
From equations (1) and (2) of § 102 we find

n-1 >
S—8= > (M, —mghy < g‘_h;=e

r=0

since Zh, =(b - a).
Next we have the identity
S -8=(8~-L)+(L-1)+( -8).
Each of the numbers (S - L), (L -1), (I -8) is positive when not zero,
and therefore each is less than S —-s< e. But I, L are constants so
that I =L. Again S—L and -8 when each /.—0.

Ez. 2. Dla, %, %3, ..., T,_;, b] is & division of the interval (a, b);
F(x) is bounded in (a, b) and @(x) is continuous and steadily increases
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as z increases from a to b. If M, and m, are the upper and lower
bounds of F(z) in (z,, x,,,) and if Sy and sy denote the sums

n-1 n-1
Sp= ;)M,[ P(ry) ~9(zr)], sp= ’;)m,w(zm) - plr))y

show that if n tends to infinity in such a way that the length of each
sub-interval (z, Zy,;) tends to zero Sy and sy will tend to limits L and I

respectively. If F(x) is continuous in (a, b) prove that I=L.
(Goursat.)

104. Functions with Limited Variation. A function F(z)
which, for a range a <x<0b, has the property called limited
variation can be expressed as the difference of two functions
which are each positive, monotonic, increasing (or, at least
not decreasing) as z increases ; for variation the word fluctuation
is sometimes used. This class of functions is important in
many investigations and we therefore make a brief reference
to them. ‘

Let Dla, xy, %, ... , Zo—;, b] be a division of the interval (a, b)
and F(z) a function that is single-valued and bounded in the
interval. Consider the differences {F(x,,;) - F(z,)} and also
their absolute values |F(z,,,)~- F(z,)|; if v(a, b) is the sum
of the absolute values we have

v(a, b) =|F(x,) - F(a)| + | F(x,) — F(z,)| + }
+|F () - F(z,_y)]| '
and, identically, for the sum of the differences,
F(b) - F(a)={F(z,) - F(a)} + {F(x,) — Flay)} +...\ 2)
+{FO) - Flay)} |
so that v(a, b) = | F(b) — F(a)|.

The number v(a, b) is called the variation of F(x) in the
interval (a, b) for the division D; it is usually different from
|F(b) — F(a)|. If the set (v) is bounded when the division D
varies in all possible ways its upper bound, which will be
denoted by V(a, b), is called the total variation of F(z) in (a, b)
and F(z) is said to be a function with limited variation in (a, b)—
more fully, with limited fofal variation in (a, b).

If p(a, b) is the sum of the differences in (2) which are positive
and —n(a, b) the sum of those which are negative, we have
obviously F@b)-F(a)=p~-n, v=p+n
and therefore

v=2p+ F(a) - F(b), v=2n-F(a)+ F(b) .........(3)

(1)
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From (3) it follows that p(a, b) and n(a, b) bave upper
bounds when v has an upper bound ; these are denoted by
P(a, b) and N(a, b) respectively and satisfy the equations

V(a, b)=2P(a, b) + F(a) - F(b),
V(a, b)=2N(a, b) — F(a)+ F(b) }

P(a, b) and - N(a, b) are the tofal positive and negative
variations.

The variations V(a, z), P(a, ), N(a, z) in the interval (a, x)
where a <x <b are obtained by substituting x for & in the
formulae ; obviously these numbers are positive and all
increase (at least do not decrease) as x increases. In equations
(4) put z for b and eliminate V(a, x); then

F(zx)=F(a)+ P(a, x) — N(a, x);
take any constant C' > | F(a) | and we find
F(x)={C + F(a)+ P(a, 2)} —{C+ N(a, 2)} =p(x) - p(z).

The functions ¢(x) and y(z) are positive, monotonic, increas-
ing functions ; F(z) is thus expressed in the form stated.

It may be remarked that F(x) may be continuous and yet not
have limited (total) variation (or fluctuation). See Goursat,
Cours d’ Analyse, I, p. 23 (2nd Ed.).

Ez. 1. If F(x) is monotonic for a =x=b, V(a, b)=| F(a) - F(b)].

Exz. 2. If F(x) has limited variation in (a, b) and if a < < b the
limits for A — 0 of F(x+ k) and F(x — h) are definite numbers.

Ex. 3. If F(x) and f(x) have each limited variation in (@, b) so has

their product.
Write the difference F(x,,,) f(zr.,) — F(z,) f(x;) in the form
F@p M f(@rs) —fl@e)} + (@ {F () — F(xe)}

if the upper bounds of |F(z)| and |f(z)| are A, B respectively, the
absolute value of the difference is less than or equal to

A |f(wr+1) ~flzy)} +BlF(xr+1) - F(z,)],
and therefore the (total) variation of the product cannot exceed

AV (a, b)]y + BV(a, b)1e.

105. The Definite Integral. The theory now to be explained
is usually called Riemann’s Theory of Integration ; other
theories, such as that of Lebesgue, will not be discussed as they
involve considerations that are outside our limits. We shall
suppose the student to be familiar with the terminology and
the subject-matter of integration as presented in the Elementary
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T'reatise and shall direct attention chiefly to those aspects of
the subject that depend on the more fully developed theory of
number and limits given in the preceding pages.

The bounds L and ! respectively of the upper and lower
sums S and s associated with the bounded function F(x) and
the interval (a, b) are shown by Darboux’s Theorem to be the
limits of the respective sums, in whatever way the interval
(@, b) may be divided provided the number of sub-intervals
tends to infinity in such a way that the length of each sub-
interval tends to zero.

Definition 1. The limits L and I are defined to be the upper
and lower integrals respectively of F(x) over the range a<x<b
and are expressed by the symbols

L =I—: F(x)ydz, 1 :le F(z)dz.

The numbers a and b are called the lower and upper limits
respectively of the integrals.

These two integrals always exist, in virtue of Darboux’s
Theorem, when F(z) is a single-valued, bounded function in
(@, b). In general L and [ are unequal, but if L =1, the common
limit is defined to be the integral of F(z) for the range a<x<b.

Definition 2. If L=1 this common limit is defined to be the
(definite) integral of F(x) over the range a<x=<b and is expressed
by the usual notation

JZF(x) dx.

When L =] the function F(z) is said to be integrable over the
interval (a, b) and the next step is to state the condition that
F(x) should be integrable. It must be remembered that the
function F(x) is restricted to being single-valued and bounded,
and the limits a, b finite ; at a later stage (Chapter XIII.) the
definition will be extended to cases in which F(x) is not bounded
and the limits @ and b (one or both) infinite.

106. Condition of Integrability. The condition follows from
Darboux’s Theorem, and will be stated in the two corresponding
forms.

First Form. Given ¢ (as usual) there must be a positive
number h such that S —s will be less than & for every division
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of (a, b) in which the length of each (or the longest) sub-interval
18 less than h.

Second Form. The difference S —s must tend to zero when
the number of sub-intervals in the division of (a, b) tends to
infinity in such a way that the length of each (or the longest)
sub-interval tends to zero.

Consider the First Form. The condition is necessary. Let
h, be the longest of the sub-intervals in the division of (a, b) ;
then, by Darboux’s Theorem, there is a positive number A
such that S-L<}e l-s<i}eif h,<h,
and therefore if L =1,

S—-s=8-L)y+(-s)y<eif b, <h.
Again the condition is sufficient ; because
S=L=zl=zs; L-1<8-s.
Hence if § — s<<e when &, <k so is L — and therefore L =1, since
L and ! are constants.

Cor. It may be noted that F(z) is integrable over (a, b)
provided there is one division of (a, &) for which § ~s<e. The
condition is sufficient for L -1 <8 -s<e and therefore L=I.
It is also necessary for, as has been seen, if L =1 every division
for which A, < h makes § —s <e.

The proof for the Second Form is equally simple. If L=I
then §—s, that is, (S—L)+ (I -s) tends to zero when h,—0
since in this case § —L—0 and I-s5—0. Again, if §-s—0
when h,—0 we must have L=[ since L-1< S —s.

A third form of the condition of integrability may be given
which depends on the oscillation w, of F(z) in the sub-interval
(%, Z,41) ; if M, and m, are the upper and lower bounds of F(x)
in the sub-interval w, =M, —m, (§ 27). In terms of w, we have

S —-s=%(M, - m,)h, =Zw,h,.

If F(x) is continuous for a < 2 < it is possible to choose &
(§ 28) so that w,<<¢/(b —a) provided A, <h(r=0,1, 2,...,n-1);
in this case § —s <<¢ if h, is less than A, since Zw, %, is less than
(Zh,)e/(b—a) or e. Thus a continuous function is always
integrable.

On the other hand if F(x) is discontinuous for x=c, where
x, < ¢, <%, the oscillation w, of F(x) in the sub-interval
(x,, ®,,;) is finite and does not tend to zero when h,—0. The
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value of F(x) for x=c, is frequently not determined by the
analytical expression for F(z) but it is always assumed to be
a fixed number, C, say, such that m < 0, < M, where M and m
are the upper and lower bounds of F(z) in (a, b) (or, m,<C,< M,.
The precise value of C, is of no importance provided |C,|
isfinite.) See§29. The discontinuity of F(z) at ¢, is measured
by the lower bound of (M, —m,) when z, and z,.,, tend each to
¢, and therefore cannot exceed M —m.

The condition of integrability may now be stated in another
way.

Third Form. The necessary and sufficient condition that
the bounded function F(x) be integrable over (a, b) is that to
every pair of arbitrarily small positive numbers w and n there
shall correspond a division of (a, b) such that the sum of the
lengths of the sub-intervals in which the oscillation of F(x) is
greater than or equal to w will be less than 7.

Let 4, and %, be the lengths of typical sub-intervals of the
division D of (a, ) in which the oscillations w, of F(x) are
respectively greater than or equal to w and less than w ; also
let 2=%4,. Then

8 -s=Zw,d, + Zwk,.

Obviously Xw,d, = v but Zwd, < A(M —m)
since w,< M —m; further, Zw,k, < (b —a)w since Xk, < b —a.
Hence =8 -s= MM -m)+ (b -a)w.

The condition is necessary ; for if w and # are given § —s,
which is not less than Aw, cannot be less than 7w unless A <7
and therefore, if 7w = ¢, cannot be less than ¢ unless 1 <.

The condition is sufficient ; for, given &, the numbers w and 5
may be chosen so that

w=4%¢/(b - a) and n=}/(M —m),
and therefore, if A<7, the division D is such that § —s < e—an
inequality which secures that L =I.

107. Other Forms of the Definition of an Integral. Let the
notation for the division of the interval (@, b) be the same as in
the preceding articles, F(z) being integrable over (a, b). Now
take &, so that

xré Ergxr+1’ 7‘20: 1: 2: ere s (n - 1)) xf+1 _xT:hT’
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and consider the sum S, where

n-1
8, = 2% F(EN e ceeneeineiiiiiinieieenans (1)
r=
We have m, < F(£,) < M, and therefore s<S,< 8. Hence
b
1= [ s,,:j F)AT oeorerereererenen, (D)
n—r o a

provided n tends to infinity in such a way that &, tends to zero
{r=0,1,2,..., (n-1).]

This definition may also be stated in the form: Given the
arbitrarily small positive number ¢ there is a positive number 2
such that

b
I F(x)dx -S,|<e, if b, <h,r=0,1,2,..., (n—-1). (D,)

It will often be convenient to call 8, an approrimation to the
integral I and equation (1) would read ¢ S, =1 approximately.”

Cor. Instead of F(&,) we may take F,where m, < F,.< M,.

Another form that is of frequent use in applications may be
stated. In place of F(¢,) put F(x,)+ o, or F(x,,,)+ o, where
|, | <e/(b—a)if b, <h so that a, tends uniformly to zero
when A,—0. Let o, denote the sum

n-1
On= 2 {F(@) + b oo (Dy)

n-1 n-1
=2, F@)h, + 2 0h,.
r=0 r=0
Now if h,<h we have |Zah,|<<{¢/(b-a)}(Zh,), that is,
<e. Also, when n is sufficiently large ZF(x,)h, differs, by
(D,), from the integral I by less than e. Hence | I - g, | <Z2¢,
when n is sufficiently large, say n > N, so that o, tends to I

when n tends to infinity in such a way that the length of each
sub-interval tends to zero.

108. Integrable Functions. The following classes of functions
are integrable ; the functions are supposed to be single-valued
and bounded, and the range (a, b) of integration finite.

I. Continuous Functions. II. Monotonic Functions. III.
Functions with Limited Variation.

I. Continuous Functions. The proof is given in § 106. A
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constant C is a special case of a continuous function; but the
integrability of a constant is obvious from the definition.

I1. Monotonic Functions. Suppose first that the function
F(x) increases (or at least does not decrease) as x increases
from a to b. If D is the division [a, 2y, %, ..., Zs_;, b] then
M,=F(z,,,), m,=F(z,) so that

8 =F(z,)(x, - a) + F(2,) (%, — 1) + ... + F(b)(b — Zny),
s=F(a)(@, - a)+ F(&;)(@s — 1) + .o + F(Zny)(b — Zn_y),

n-1
S—-s =§{F(x,+1) - F(xi‘)}(xr+1 - x")'

The differences {F(z,.,) - F(z,)} are each positive or zero
and their sum is F(b) - F(a) ; therefore if each difference
(%,41 — %) is less than A

8 s <hE(F(2,1y) - F(z,)} or K{F() - F(a)}

so that 8 —s <¢ if 4 <¢/{F(b) — F(a)}, which is the condition of
integrability.

If, next, F(x) is a decreasing (non-increasing) function
M,=F(z,), m,=F(z,,,) and S -s<e if h<e/{F(a) - F(b)}; in
this case also the condition of integrability is satisfied.

Cor. A function that is bounded and has only a limited
number of maxima and minima is integrable because the
range of integration may be divided into a finite number of
intervals in each of which the function is monotonic. (See
§ 109, Th. VIIL.)

III. Functions with Limited Variation. A function with
limited variation can be expressed as the difference of two
monotonic functions and therefore its integrability follows
from II, if it be assumed, as will be proved immediately (§ 109),
that the difference of two integrable functions is integrable.

109. General Theorems. The method of proof is simple.
A division of the interval (a, b) is supposed to be made, the
upper and lower sums § and s to be formed and the condition
of integrability in one of its forms to be applied. In the
application of the First Form it should be remembered that, by
the Corollary to it, a function F(z) is integrable over (a, b)
provided there is one division of (a, b) for which § — s<<e where ¢
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(as will always be assumed) denotes an arbitrarily small positive
number. :

It is supposed further that the interval of integration is (a, b)
unless a different interval is expressly mentioned, so that the
specification of the interval may be omitted in the enunciation
of the Theorems.

Tueorem 1. If F(x) is integrable so is CF(x) where C is a
constant and
r' 0F(x)dx=0’r F(z)dz,

If the division of (a, ) is such that S — s for F(x) is less than ¢
it is such that S -s for CF(x) is less than | C| ¢ and since
|C| e is, like &, an arbitrarily small positive number CF(x) is
integrable. The equality of the integrals follows from the
definition of an integral, for example, from the definition (D,)
of § 107.

TaeorEM II. If Fi(x) and F,(x) are integrable so is their
sum and their difference and

2
J-:{Fl(x) + Fy(x)}dx =JZ F(x) dx:}:fa Fy(x)de.

In the sub-interval (w,, z,.;) let M}, m, and M” m” be
the bounds of F(x) and F,(x) respectively and 8,, s; and 8,, s,
the respective sums. Let @,, g, and S;, s; be the corresponding
numbers for the sum F,(z)+ Fy(x) ; then, as is easily seen,

Gré-M;"*'MIr” grgm;""m’a’-; Gr _grg (M;_m;)“" (M;" "m:):
so that 83 —83= (8, —81) + (S — 8p).

It is easily proved that this relation also holds when
G,, 9r, 83, 83 are the corresponding numbers for F,(x) - Fy(x)
because

Grg -M;' —'m:: gr%m; _M;{; Gr "grg (M‘; _m;{) _(m;‘ “M;")-

Hence if the division of (a, b) is such that S, -s; <3e,
8, — 83 < }e it is such that S; — s; <e and therefore F,(x)+ F,(x)
is integrable.

The relation between the integrals follows as before.

Cor. Jb [2 O,F,(x)] dz = 2 C',r F(x)dx

if Fy(z), Fy(x), ..., F,(x) are integrable and C,, C,, ..., C,, con-
stants, m being a finite integer.
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TaeoreM III. If F,(x) and Fy(x) are integrable so is their
product. . i

First, suppose that F(z) and F,(z) are both positive and use
the same notation as in the proof of Theorem II, the numbers
G:, 9., Ss, 83 referring to the product F,(x)Fy(zx). A little
consideration shows that G, < MM and g, = m/m/ ; therefore

G -9, = M M7 —mm; =M, (M]-m})+m!(M,-m.)

so that G, -9, <A(M; -m;)+ B(M; - m)),
and 83 —83<A(8y —8;)+ B(S, —sy),
where 4 and B are upper bounds of F,(z) and Fy(z) in (a, b).

Hence if the division of (@, b) is such that 8, -s,<e¢ and
8, —s,<¢ it is such that S;-s;<(4 +B)e and therefore is
arbitrarily small, so that the product F,(z)F,(z) is integrable.

Next, if F,(x) and Fy(x) are not both positive for a <2< b
there are positive constants C; and C, such that F,(z)+C,
and Fy(x) +C, are both positive in (a, b) and therefore the
product (F, +C,)(F, +C,) integrable. But

F\F,=(F, +C,)(Fy +C,) - C,F, - C,F, - C,C,

and therefore F', F, is integrable since it is the sum of integrable
functions.

Cor. 1If each of the m functions F(z), Fy(2), ..., F(z) is
integrable so is their product, m being a finite integer.

TreorEM IV. If F(x) is integrable in (a, b) so is 1/F(x)
provided | F(z)|>c¢>0 for a <z < b where c i3 a constant.

In the sub-interval (z,, 2,4,) let M,, m, and G,, g, be the
upper and lower bounds of F(x) and 1/F(x) respectively.

First, suppose that F(z) is either always positive, F(z) > c,
or else always negative, F(z)<<—c, for a<x<b. In this casc
G,=1/m, and g,=1/M, while the product M,m, is positive and
greater than ¢ Therefore

1 1 M,-m, 1
G'_g'zﬁ—ﬂ:z Mrmr <c_2(Mr_mr)~

Next, suppose that F(z) takes both positive and negative
values in (z,, #,4;) so that M, >0 and m,<0. Let m. be the
lower bound of the positive values of F(x) and M’ the upper
bound of the negative values of F(x) in (,, Z,,1); in this case
G,=1/m, and g, =1/M,. Now M; and m, are both negative
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and (- M) S(-m,) while (- M;)>c; also M,=m,. Hence
G -9, =;1L_;. - ﬂlz'z %<55(M7 —-m,),

and therefore if S, s and §,, s, are the sums for F(x) and 1/F(z)

respectively S; —s; < (8 —s)/c? so that 1/F(z) is integrable.

Cor. If F(x) satisfies the conditions of the Theorem and
if F,(x) is integrable so is F,(x)/F(x). This is now simply a
particular case of Theorem III.

TaeorEM V. Any rational function ¢(Fy, F,, ..., F,) of m
integrable functions F(x), Fyx), ..., F,(x), m being a finite
integer, is integrable provided the lower bound of | ¢(Fy, Fy,..., Fp)|
18 posttive (not zero).

This follows at once from the preceding four Theorems.

Taeorem VI. If F(x) is integrable so is | F(x)| but | F(x)|
may be integrable and F(x) not integrable. Further

J‘DF(x)dx _S_r F(x)|dx.
a a

If y, z are any two numbers and |y | =7, | 2| ={ then

ly-z|=|n-]

go that the oscillation of | F(z)| in any sub-interval cannot
exceed that of F(x); hence | F(x)| is integrable if F(x) is.
The relation between the two integrals follows at once from the
form (D,), § 107, of the definition of an integral.

That | F(x)| may be integrable but F(z) not integrable may be seen
by considering the (somewhat artificial) function F(z), defined for the
interval (0, 1) as follows : F(x) =1 for irrational values but F(x)= -1
for rational values of z in (0, 1). In thiscase | F(z)| =1 and is therefore
integrable. On the other hand, in any sub-interval the upper and lower
bounds of F(x) are 1 and -1 respectively so that § —s=2 whatever
division of (0, 1) be made and therefore F(x) is not integrable.

Taeorem VIL. If the interval (a, b) is divided into m partial
intervals (a, a,), (@, @g), oo, (@m—y, ) by the fixed numbers
@y, Aoy eve s Uy Where a <y <Ay <...<p,<b and if F(z) is
integrable over (a, b) it is integrable over each partial interval
(@, @y), (@4, B3), -++ 5 (@m—y, D). Conversely, if F(zx) is integrable
over each partial interval it is integrable over the whole interval
(a, b). In both cases

J:F(x)dx =J‘:l F(x)dz +J: Fx)de +... +J:~

F(z)dz.
1



§§ 109, 110] DISCONTINUITIES 273

The proof is obvious. If there is a division of (a, b), the
numbers a,, a, ... , @,_, being fixed points of the division, such
that § —s for the whole range is less than ¢, then S —s for any
one of the partial intervals is certainly less than ¢. Again, if
there is a division of (@, b) such that §—s for each partial
interval is less than ¢/m then 8 — s for the whole interval (a, b)
is less than m(¢/m) or e.

110. Discontinuities. It has been seen in § 108 that every
continuous function is integrable; the third form of the
condition of integrability (§ 106) shows, however, that a
bounded function may be discontinuous and yet integrable.
The following theorem throws some light on what may be
called ‘ admissible discontinuities.”

TrEOREM I. A4 bounded function F(z) is integrable over (a, b)
(i) if there is only a finite number, m say, of points of discontinuity
(@, b), and (i) if there is an infinite number of points of
discontinuity in (a, b) provided this infinite set of points has only
a finite number of limiting points in (a, b).

First, let there be only one point of discontinuity, ¢, and let
| F(x)| be less than K for every value of z in (a, ). Choose
6 (6>0) so that the length 26 of the sub-interval (¢ — 8, ¢+ 6)
may be less than ¢/4K ; then the part of S —s arising from the
interval (¢ —d, c+6) can not exceed the product of 2K and 24
(the length of the sub-interval), that is, cannot exceed 1e.
In the intervals (a, ¢ - d) and (c+ 8, b) the function F(z) is
continuous so that there is a division of the intervals (a, ¢ — d)
and (c+ d, b) such that the part of S - s arising from these two
intervals jointly is less than }e. Thus there is a division of
the whole interval (@, b) for which S -s is less than ¢ and
therefore F(x) is integrable over (a, b).

Next, let there be m points of discontinuity ¢,, ¢,, ..., ¢,, and
enclose these in sub-intervals (c,-9,, ¢, +6,), r=1, 2,..., m,
such that the sum (2X4,) of their lengths is less than ¢/4K,
where K has the same meaning as in the first case. The part
of 8—s arising from these m sub-intervals cannot exceed
2K x (2%4,), that is, }¢; on the other hand, in the partial
intervals (a, ¢; —6;), (¢, + 84, €3 — 85), --. , (Cs + O, b) the function
F(z) is continuous and therefore the part of S —s arising from
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these partial intervals jointly can by a suitable division of the
intervals be made less than }e. Hence there is a division of
(@, b) for which S — sisless than ¢ and therefore F(x) is integrable
over (a, b).

Finally, suppose that the set of points ¢, for which F(z) is
discontinuous is infinite but has only a finite number, u say,
of limiting points. If there is only one limiting point—say {—
all but a finite number of the points ¢, ¢,, ... can be enclosed
in a sub-interval (&£ — 8, £ +J) where 26 <¢/8K (K as before) ;
the remaining points c,, ¢,, ... can be enclosed in sub-intervals
whose total length is less than ¢/8K and there is left a finite
number of partial intervals in each of which F(z) is continuous.
The contribution to S — s from the interval (& — 8, £ + ) is less
than 2K x (¢/8K) or }e and the contribution from the sub-
intervals that enclose c,, Cy, ... is also less than }e; further,
there is a division of the partial intervals in which F(z) is
continuous for which the contribution to § —s is less than }e.
Hence on the whole there is a division of (a, b) for which § —s is
less than e so that F(z) is integrable over (a, b).

In the same way the proof is carried out when there are u
limiting points.

The theorem just proved leads to an interesting result. If
the bounded functions F(x) and f(z) are equal for the range
a< x<b, except for the values ¢;, ¢y, ..., ¢ of 2, and if F(x)
is integrable over (a, b) so is f(x), and further

J‘:f(x) dx =KF (x) d=.

Suppose that | F(x)|<H and |f(x)|<K when a<z<b. Let
the points c, be enclosed in sub-intervals (c, - é, ¢, + é,); then
the values of S —s for F(x) and f(z) respectively differ only in
the parts that arise from the m sub-intervals (c, - d,, ¢, +9,).
But that difference cannot exceed (2H +2K) x (2Z4,) and will
therefore be less than ¢ if 36, is chosen (as is possible) to be less
than ¢/(4H + 4K). Since F(z) is integrable over (a, b) there is
a division of (a, b) such that S -s for F(x) is less than e;
therefore for that division and for the function f(z) the difference
S — s is less than 2¢ so that f(z) is integrable over (a, b). That
the two integrals are equal follows from the facts (i) that the
integrals are constants and (ii) that their difference depends
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solely on the contribution from the sub-intervals (c, - é,, ¢, +9,),
which can be made arbitrarily small ; but two constants whose
difference is arbitrarily small are equal. Hence we find the
following theorem :

TueorEM II. The values of an integrable bounded function
f(x) may be arbitrarily changed at any finite number of points
in the range of integration (a, b) without changing the value of
the integral over (a, b) provided the new values of F(z) are
Jinite.

It is easy to see that this theorem is still true when the
number of points ¢, for which the value of F(z) is changed (the
new values of F(z) being finite) is infinite provided the set (c,)
of points has only a finite number of limiting points.

Ez. 1. F(z) is defined for the interval (0, 1) by the condition that
if r is a positive integer, r =1, 2, 3, ...
1

1
F(x) =2rx when g G

prove that F(z) is integrable over (0, 1). (Nielsen, FElemente der
Funktionenlehre, p. 143.)
If § is positive and sufficiently small,

F(l - a)=2r<1- 5), r=1,28,..;
r r

F(; + 6):2(r - 1)(}+5), r=2,3, ..

so that F(r~!-9)—>2 and F(r1+6)-2(1 —r1) when 8—->0. Hence,
however F(x) may be defined for x =1/r, r=2, 3, ... the points = =1/r
are points of discontinuity. F(z)will be continuous for z tending to 1 if
F(1) =2 and 2 will be taken as the value of F(1).

The set of numbers é, % vees %, ... has only one limiting point, namely
the point x=0; let F(x)=2 when z =0.

Now enclose the point 1/r in the sub-interval (r* — &,, r! + §,) where
Op=¢[2TH, r=2, 3, ..., (m+1); further enclose the limiting point 0
in the sub-interval (0, p~1) where m + 1< p<m+2. The total length
of these sub-intervals is

1, "E 11 1\ 1.1
;)4'8,; §;=§+§8<1 —2Tn><5+§8’
and is less than ¢ if m is chosen so that m+ 1>2/¢ and therefore 1/p<&/2.
Hence F(z) is integrable over (0, 1).

The integrability of F(x) follows at once from the fact that the set
of points for which F(z) is discontinuous has only one limiting point ;
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the above determination of the sub-intervals that enclose the points of
discontinuity is merely made in order to indicate one way of securing
the required sub-intervals.

For the evaluation of the integral see § 112.

Ex. 2. Show that sin (1/x) is integrable over any finite range,
whether the range includes the point =0 or not.

Ex. 3. If F(x) is bounded and monotonic for the range a=x=b,
prove that the limits for § tending to zero of F(c —d) and F(c+9),
where a < ¢< b, both exist ; also that, if §>0, the limits of F(a + d)
and F(b - 6) both exist.

111. Properties of the Integral. It has been assumed up to
this stage that the upper limit b is greater than the lower limit a ;

this restriction will now be removed.
If b=a the integral is defined to be zero.

Definition 1 J' F(x)dz=0.
a
If b<a the numbers in the division [a, %;, Z,, ... ¥,_y, b] of
the interval (a, b) satisfy the relations

A>T >Ty> o0 > Ty >,

and each difference z,,, —, is negative. The sums S, s and
their limits L, I simply have their signs changed ; hence the
definition :

D '@
Definition 2. [ Flz)dw=- [ Fe)da.
Ja Jb

If the three numbers a, b, ¢ all lie within an interval over
which F(z) is integrable we have

f F(z)de +£ F(z)d +L F(z)da =0,

as an equivalent form of the equation

[ F(z)de +J'z F(z)de =JZ F(x)de,

which was previously (§ 109, Th. VII) proved for the relation
a<c<b.

In §124, pp. 298-301 of the Elementary Treatise, some
inequalities between integrals are proved, but these all depend
on Theorem III, p. 298 ; when that theorem has been proved
for the integral of a bounded function Theorems V, VI and VII
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of that article will then hold for the integrals of bounded
functions. We now prove that theorem.

TrrorEM. If a<b and F(z)= 0, f " Pla)dz = 0; if F(z) <0,
r F(x)dx < 0.

If F(z)= 0 the lower sum s cannot be negative and therefore
the integral cannot be negative; similarly, if F(z)< 0 the
integral cannot be positive, since the upper sum § cannot be
positive.

On account of their frequent use the two Mean Value
Theorems for bounded integrable functions are stated :

First Theorem of Mean Value. If a<b, ¢(x)=0, g< pE)=Q
fora<x<b, then

0) o o)z < pap)des of parde

i) [ p@)p@)de=&[" gz, g< K @;
a a
if p(x) 18 not merely integrable but continuous for a < x < b,
b
(iii) r @(x) p(x)dx =pla+ 6(b - a)}f o(x)dz, 0<0<1.

Equations (ii) and (iii) are valid if a > b.

Second Theorem of Mean Value. If for a <z <b the SJunction
@(x) is bounded, positive and decreases (or at least does not
increase) as x increases, and if w(x) is bounded and integrable, then

0) [ se)pardz=pia+ 0 peyi, as £ 50
f @(x) is simply bounded and monotonic, then
@) [[ po)v@de=pa+0)[ paide

b - 0>J'Z v(@)dz, a<E<b.

The proof already given of the Second Theorem (B.T.
pp. 452-454) is valid for the theorem as now stated. The
following points should be noted :

(1) @(x), being bounded and monotonic, is integrable and the
product of the two integrable functions g(z) and p(x) is
integrable ;

(2) the limits p(a +0) and @(b - 0) exist, and if a, b are points
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of discontinuity of ¢(x) these are to be taken as the values of
¢(a) and ¢(b); further, if a<wz,<b, and if z, is a point of
discontinuity of ¢(z), the value of ¢(x,) may be taken to be
o(x, — 0) or g(z, +0) or any number between these ;

(8) as will be proved in the next article, the integral

w(t)dt is a continuous function of x and therefore there is a
a

value & of z such that, for z=§, that integral is equal to the
mean value M (E.7. p. 452) ;

(4) by § 109, Theorem VI, U.z zp(x)dx SJ lzp(x)ldx

so that if | p(z)|<K fora<x =<, and if nis chosen so large that
each difference (x, —~x,_;) is less than &/K, the integral just
written will be less than ¢ ;

(5) 25 (9(ars) - (@)} S pla +0) - p(b -0).

It will be a good exercise to go carefully through the proof.

It is sometimes more convenient to express the theorem,
not in terms of the mean value M but in terms of the two
numbers between which M lies. Let f(z) be the integral from
which the mean value M is derived, namely,

f@)=[ vy,

As z varies from a to b, the function f(x) being continuous
will take once at least every value between its lower bound,
g say, which is in this case the least value of f(x), and its upper
bound or greatest value, G' say. The Mean Value Theorem
may therefore be expressed in a third form, namely,

(i) gp(a +0) = [‘9(a) p(@)dw S Gola +0)

Cor. In form (i) let z=a+b—u, p(x)=@,(u), p(x)=p,(u);
@y(u) is bounded, positive and increases (or at least does not
decrease) as % increases from a to 5. Thus

[m@n@dn=p6 -0y a<n s,
or . gipb-0)s fb%(u)%(u) du = Gyy(b, - 0),

where g1, G, are the least and greatest values of wl(u)du as 4
yaries from atob,
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The change of variable is valid by § 114. Here
p(a +0)=g,(b-0)

¢ ) )
and I¢(x)dx=j v(w)du =Iw1(u)du, a+b-&=n.
a at+b-¢ )

See the other forms of the Second Theorem of Mean Value
stated in § 112, Ex. 2.

112. The Integral as a Function of its Limits. Take x as the
upper limit of the integral and, to avoid ambiguity, ¢ as the
variable of integration ; F(x) is supposed to be bounded and
integrable fora < x < b.

Let ?(@) =Jj FEY oo, 1)

and for x put +h, aSx+h<b; h may be either positive or
negative. Now

o(z+h)= r Foydi= f F()de +J:+;"(t)dt,

+h
so that o(z+ k) — p(x) =r F@ydt. ..ccovvvnnnnn.. (2)

The function F(t) is bounded, say | F(t) | < K ; therefore
lp(x+h)- o) | <K|h|,

so that @(z+h)—>@(x) when h—>0. We thus find the very
important theorem :

THEOREM I. The integral of a bounded function F(z) is
continuous whether F(x) is continuous or not.

Again, if F(¢)is continuous forz — | A | <¢ <z +| h|, the First
Theorem of Mean Value gives (A > 0 or k< 0)

'z +h
j F()dt=hF(z+ 0h), 0< 0<1,

and therefore

@)=L 2"”*"}&——-& = [ F@+6h)=F@).....(3)

h—0 h—0
that is ciix J'Z F)dt=F(). eoveereereeserrnnr.. (3)
Cor. ‘—%ﬂ F(t)ydt= —(%J: F@)dt= — F(z). .......... ..(37)

From the equation (3) the following fundamental theorem is
deduced :
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TreoreM II. If F(x) is continuous for asx<b and if
F(z)=f"(x), then

f:F(x)dx —f(B) =F(@). e, 4)
For, if ¢(x) is defined by (1) it has been proved that g(z) is

continuous and that ¢'(x)=F(x); hence ¢’(x)-f'(x) is zero
and therefore (§ 34) ¢(x) — f(x) is a constant, C say. Thus

J"F(t)dt —f(@)=C, or, rF(t) B=f(@)+C o, (5)
When x =a, the integral is zero, so that C' = - f(a), and therefore
I " PO =f@) ~f@). v (5")

If 2 =b the equation (5') has the same meaning as equation (4),
since the variable of integration may be taken to be x instead
of ¢.

When the integral in (5) is considered simply as a function
of its upper limit x we may omit the lower limit a and write

rF(t)dt =f(x) + const., or, j- F(x)dx =f(x)+ const. ...(5")

The two symbols r F(t)dt andJ.F(x)dx mean the same thing,

namely ‘ the indefinite integral of F(x) with respect to =’ ;
since f'(x)=F(x) we thus verify the usual rule that ¢ the
derivative of the integral is equal to the integrand.”

When F(x) is continuous the integral ¢(x) exists, and when
the function f(x) has been found it may be said that the integral
has been ‘“ evaluated ”’ and the equations (5), (5’), (5") give
the ““ value ” of the integral. It has to be noted, however,
that Theorem II has been proved on the assumption that F(x)
is continuous for the closed range (a, b) or (a, z) if a<x<b.
When F(x) is not continuous the theorem given in (3) requires
modification and therefore also Theorem II.

Discontinuity of F(x). Suppose that F(x) is continuous
in (@, b) except for the one value ¢ of z, and that the discon-
tinuity is of the first kind. If a<c<b the limits F(c —-0) and
F(c +0) exist but are not equal ; if ¢ is @ or 4 the limit F(a +0)
or F(b - 0) exists but is not equal to F(a) or F(b).
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In equation (2) let z=c and take h>0. Since p() is con-
tinuous ¢(c) is a definite number and the Mean Value Theorem

gives plc +h) - pl) =hF(c +6h),
so that ¢'(c +0)= L‘(_p(_c_—tﬁl)b_—g(_c) =F(c +0);

h—0
in the same way it is seen that ¢'(c — 0)=F(c -0).

On the other hand, if ¢ is a point of discontinuity of the second

kind either F(c —0) or F(c +0) or both will not be definite and
one or both of the derivatives ¢’(c —0), ¢'(c +0) will not exist.
Thus when ¢ is a point of discontinuity for F(x) it is also a
point of discontinuity of the same kind for ¢’(x) while, it must
always be remembered, it is a point of continuity for ¢(z).
- When F(x) is integrable over (a, b) and is discontinuous, say,
for x equal to ¢, ¢y, .. , ¢, Where a < ¢, and b = ¢, enclose ¢, in
the sub-interval (c, - d,, ¢, +96,); we may put each 4, equal
to & where & is positive and so small that when z is in the
partial interval (c,, ¢,,,) we shall have ¢, + 6<x=<¢,,; — 6. The
limit for 60 of the sum

¢y — & m-1(cp41-8 (3
I F(x)dz+ >, F(x)dx +f F(x)dx
a r=1%cp+" em+8
is, since each integral is continuous,
¢y m-1fepy1 b (/]
J F(x)dx + ZI F(x)dx+j F(x)dx =I F(z)de.
a r=1%c¢, om a

Now F(x) is continuous for ¢, + § <z < ¢,y — 9, and therefore,
by Theorem II, if F(z)=f(x) for ¢, +6 =z =c,,, — 6 We have

+1
j: F@)do= L [fiers— 0) —foler+ 0] =frlerss) —Fler).

§—0

Hence, for symmetry, denoting a by ¢, and b by c,.,, we find

b m
[ F@dz=3 Utor) 1o

In practice, when it is known that the integral exists, we
may at once write

er+1
Lr F(z)dx =f(C.y) = fr(C0)-
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Ezx. 1. As an illustration, take Ex. 1 of § 110. In this case
F(z) =2rz when 1/(r+1)<ax < 1/r.
Let 2rx =f;(x) and therefore

1
Jr F(z)de = f 2wz =r {4 - 7 :1),}.

r+1 1
The integral of F(x) is obtained by giving to r the values 1, 2, ... m,
adding the partial integrals and letting m tend to infinity (1/p tends to
zero when m tends to infinity). Hence

1 o f1
J.IF(’”)d“’:;;’{ﬁ (r+1)2} 2 AT

m-+1

J‘l @ i =
and Fx)de= ), ="—.

0 r=z21"2 6

Ezx. 2. Prove that in the form (i) of the Second Theorem of Mean
Value (§ 111) it is admissible to substitute 4 in place of ¢(a +0) provided
that 4 is greater than ¢(a +0), A being finite.

The value of the integral of ¢(x)y(x) over the range (a, b) is not
changed by substituting 4 y(a) in place of ¢(a +0)y(a), by Theorem IT
of § 110; further, the monotonic character of ¢(z) is preserved since
4 > ¢(a +0) so that the proof is still valid.

Similarly, in the form (ii) we may put 4 in place of g(a +0) and
B in place of ¢(b —0) provided the monotonic character of g¢(x) is pre-
served ; that is, A >¢(a+0)>¢@(z)>eb -0)>B if ¢(x) decreases
or A< ga+0)< @(x)< @b-0)< B if @(z) increases. Hence the
two forms

) [ piorpiarde =4 wialds, 4> ota+0)>o(a),

(iie) S ¢(z) y(x)de =4 g p(x)dx + BS y(x)dx,
where in (iia) 4 and B suit the monotomc character of ¢(x) as explained
above.

113. Examples. One method of dividing the interval (a, b)
into » sub-intervals is to make each sub-interval of the same
length A, where h=(b —a)/n. In this case the integral of F(x)
over (a, b) is the limit for A— 0 of the sum

(i) 2 F(E)h, a+(r-Dh< &, <a+7h;
r=1

if we first put &, =a+rh and then &,=a+ (r - 1)h we find the
following two sums, which are specially useful :

(ii) él F(a+rh). b, (iii) 2 F{a+(r—1)h}. R,
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When A—> 0 each of the sums (i), (ii) and (iii) tends to

Jz F(z)dex.

1 §lﬁ, prove that S,—log 2 when

Ez. 1. If S,= n+1 +aret

n—-o,
Here we may write
o1 1
Sn= 20 Torm M =g
and comparison with form (ii) above shows that we may take F(x) =1/z,
a=1,b=2or F(x)=1/(1+x), a=0, b=1. Therefore the limit of S, is

de 1 dx
51 5 l+x—1°g2
Cor. 1t iseasy to prove that S,=1-}+%-}+... +%_1—2—,1’; and

@«
thus to deduce that log 2 = Z (- 1)y"1n.
1

Ex. 2. 1If F(x) and F'(x) are continuous for a = x=b, and if
n
8p=) F(a+rh)h, I=Sb F(z)dz
r=1 a

where h=(b-a)/n, prove that the limit of n(S,-I) for n—»>o is
$(b-a){F(b) - F(a)}.

For brevity, let a +rh =x,, a =x,, b==, ; then

n zp o e
S, = 2 F(x,)g dx, smceg de =2, —z,_, =h,

r=1 Ty -1 Tr-1
I= Zj Pz, 5, 1= ZS [F(@r) - Pz de

But if 2, Ex ==, F(z)=F(z,) - (z, —x)F’ (&r) @p_ 1 =& =2,
Therefore

s,,—I:Zf " (@ =) FUENGTe v veeren(1)
r=1"2r-1

Now suppose that g, = F'(x) = G, for x,_; =2 =2x,; then,
2

Ty r
P =
Ty

(zr —x)F,('fr)dx<Gr§ (xr - x)dz,
Zy-1 -1
that is, 3hig, = g " (@ —2) FU(E,)d = } G,
Ty -1

Hence, multiplying both sides of equation (1) by » and noting that
nh =b —a, we find

35 -a) > gh =n(S, - I) = }(5 -a) D, Gsh.
r=1 r=1
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But by the form (i) above, when k>0, both Zg,4 and 2G.h tend to
b
S F(z)dz = F(b) - F(a),
and therefore ¢

[ 78, ~ D =}(b ~a){F®) - Fla).

7> 0

Ez. 3. 1If I and h have the same meaning as in Example 2, but if
now F”(z) is also continuous in (a, b) and

S, ZF( 7k,

r=1

show that the limit of n*(I ~.§,,) for n—>w is

(b —a){F'(b) - F'(a)}.

Proceed exactly as in Example 2 ; note that for the interval (z,_;, z,),

if a +2' h=c, we have F(z) - F(c) =(z - ¢)F’(c) + }(x — ¢)2F"(&,) and

therefore

[ (re - r(es 2 a0 (s -a -2t e,

where z,_, = ¢, =w,, and this integral lies between F;g,k* and #Gh%
G, and g, being the upper and lower bounds of F”(z) in the interval
(%r_y, 2¢). Hence

£ n¥(I -8 )_(b a)* S F(z)de =0 “’ (F(b) - F'(a)}.

7n—r o

Ex. 4. Show that £ n(log 2 -8,)= +} where S, has the same
— 0
meaning as in Exampz; 1.

Apply Example 2; a=1, b=2, F(z)=1/z.

114. Transformations of the Integral. No change is required
in the proof of the formula of Integration by Parts (E.T'. p. 282)
when the functions that appear in the formula are continuous;
the use of the formula is in practice confined to this case. The
formula for Change of Variable, however, requires a new proof.

Suppose that F(z) is bounded and integrable fora<z<b
and that the variable is changed from z to  where x=g(u) ;
let =« when z=a and w=p when z=b. Both ¢(u) and
@'(u) are to be continuous and ¢’(u) is not to change sign as u
varies from o to f; hence @(u) is strictly monotonic, and as =
increases from a to b, either u increases from o to f (when
@' (u) is positive) or else u decreases from o to § (when ¢’(u) is
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negative). When these conditions are satisfied « is a single-
valued, monotonic function of z, say = p(z), and the formula
for change of variable is, as before,

(] (-]
[ Forde=[" Fiomne @

Take the division [a, u;, %, ... %,,, f] of the interval («, B)

and the corresponding division [a, z,, 2,, ..., Z,_;, b] of the
interval (a, b) where z, =¢(u,). We have
Tryg — (ur+1) ‘p(ur) 14 (’U,-) (ur+1 - ur) """"" (1)

where v, lies between u, and %, ; let &, =g¢(v,) so that &, lies
between z, and z,,,. Hence

n-1 n-1
;} F(Er)(xr+1 -z,) =’Z(:’ F[‘P(’”r)] ‘P’(vr)(ur+1 = U)o veenen (2)

The product of the integrable function F[¢(u)] and the
continuous function ¢’(u) is integrable and, by (1), when =
tenas to infinity in such a way that the length of each inter-
val (z,, #,,,) tends to zero so does the length of each interval
(%, Uryy). If we use the definition (D,), §(107), we now see
that the formula stated above is correct.

The proof contains that for the indefinite integral ; for we
may suppose x and y(z) to be put in place of b and B, where
z=¢p(u)and a <z <b.

Note. When z is defined implicitly as a function of » by an
equation f(x, u) =0 special care is required. See E.7T'. p 470,
Ex. 6, for an illustration.

EXERCISES XIII.

1. Evaluate the integrals of % sin (cx +¢’), cos (cx +¢’) over the
interval (a, b) by taking a division of (a, b) into n equal parts.

2. If 0< a< b and ag® =b so that g—1 when n— ®, show that

n-1
‘ F(x)dx = L‘ Z F(ap™)(ap™* —ag")

n-—>w =0

n-1
= ,( (e -1)2 F(agag".

—1 r=0
Deduce that ’
. (P bm+l _ gmtl ... (0 dx b
(1) sazmd:c:—m———"_—i——, mz£ —-1; (i) L—x——loga,

(iii) gi log zdz =(b log b —b) - (a log a ~a).



286 ADVANCED CALCULUS [cH.

3. The base BC of a triangle ABC is divided into n equal parts
B,B,,,, r=0, 1, 2, ... (n ~1), (B,, B, denote B, C respectively), and a
point P, is taken anywhere in the segment B,B,,; if P is any point in
BC and BP =z, prove that, with the usual notation for the triangle 4 BC,

!B,B,,, (°dx _ ( B c'>
£ AP, L}TI—’_IOg cot 5 cot 5 ).

n—o© r-O

4. If a>0, p a positive integer and N =pn, prove the following

results :
b L 3k me(142):
o A 2w a
(ii) if also b >0,

L3 tiog(142);

e 00 11 MO +rb” b

(iii) £ Z—m—ilog(l+2p>

n—>K0 f_
Show that the results hold if p is not integral but is greater than 1
and N such that N=np< N +1.

5. If S, _f 5 Tn= er

where p, ¢ are posmve integers, show that
o_gn

-1y 1
i) 8, -7, 2 ) +ZW’p>q'

1 {(g=2)n 1
-t .
(ii) S, ~Tn 2,( ) >, Zpnrer-1'P<9

r=

and prove that, whether p= 2 q,
C 1oe?
(8, -T,)=log2 +—210ga .

n—>n
Deduce a theorem on the change of value of the infinite series
PRRL IS S G i
) + 371 .

produced by a certain derangement of its terms.
2 2
6. If S Zm—’i. prove thatn—é;n (10g2 Sﬂ) y‘!

7. By use of the identity
~1=(a?-1) H (1 —-2acos -—+a’>

r=1
show that
S log(l - 2a cosc +a?)dx =nlog(a?), a® > 1.

=0 ’a2< 1.
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8. If f(n, r) is a bounded, homogeneous function of n and r, of degree
-1, and p a positive integer, prove that

£ 8 so =10, e

n—>0w0 =]

9. If w=2at and if f(x) and all its derivatives up to and including
J™)(u) are continuous for 0 = u =z (or for 0 =« = = when x is negative),
show that xf’'(u) =df(u)/dt and that

1
f@ -1 == far

=[ —z(1 -t)f’(u)]: +a? [: (1 - 0)f"(u)ds.

Deduce that
(@) =£(0) + }3 Zf0)+ R,
r=1
x n—1 ¢(n)
where R,= m-1 l)!L( 1-6)"" f"™(u)dt,

and, noting that (1 -¢)*1=(1 —¢)?Y(1 —-¢)*?, 1=p=n, and applying
the First Theorem of Mean Value, show that
z"(1 — 6)n—? f(")(Ox)

Bn=—""m1ip

10. If ¢(x), y(x) and all their derivatives up to and including ¢ (x),
y(")(x) are continuous for ¢ =z = b, prove that

[oervm@az=[ F@ ] +(-1r( vpm@as

n-1
where F(z)= 2 (- 1) g(z)pn—r-(z), ¢O(z)=g(z).

r=0

11. In Example 10, let y(x)=(b —z)*! and show that

poy =3, C-ar 2 gir(a) + B,

r=0

where R,,=(T_l—l—)! g:(b — 2y 1gM(z)dx
_ (B = &)"2(b - a)Pp(™)(§) { E=a+0(b-a),0<b<]1,
= m-T)ip b-f=(b-aVl-0), I=p=n.

12. In 10 put n +1 for n ; then prove that, if p(x)=€\* and ¢(z) is a
polynomial in = of degree n,

" »

Q.A.0. L
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13. Prove that
:—; {fE-D(@)g N ~z)} =fON@)gN( - 2) - D (2)g=TH( ~2) ...(1)

where  ¢( —w)—‘fig(( ;)) dgfi;w). g ~z) = —d.____——g"'g;‘”).

In (i) give to 7 in succession the values 1, 2, ..., » and, by adding the
n values of the two members of equation (i), deduce that

ar D) fia)g( - ) - @GN =) oo (i)
where F(x)= zf 1 (z)g"="( - x).
r=1

14. If f(z) is eny polynomial in & of degree less than n and P,(z) a
polynomial of degree n given by

P, (x)= d - {A(:v a)*(z - b)"}, A =constant,
deduce from Example 13 that
[: F@PA@)E =0, .oeeeeeererereereenereneees )
[Let g(x)=A(x +a)*(x+b)*, so that P,(x)=(-1)"g™(-=); then
integrate equation (ii).]
15. If Q,(x) is a polynomial of degree n such that
[ r@)@uaan =0,

where, as before, f(r) is any polynomial of degree less than n, prove that
Q,.(z) =CP,(x) when C is a constant.

[We have r f(x){Q,(x) - CP,(x)}dx =0.

Now C may be chosen so that @, - CP,, is of degree n —1 (or lower
degree) ; let it be so chosen. Since f(x) is any polynomial of degree less
than n we may take f(z) =Q,, - CP, and then

(" @) - 0P, (o)tda =o.

But Q,(x) — OP,(x) is continuous for a =« =b and the integral will
necessarily be positive unless @,(r) - OP,(x) =0 fora == =b.
The integral in Example 14 thus expresses a characteristic property
of P,(x). An important special case is the following if m £ n:
13
L Po@)Po(@)d@ =0 c.o.vveeeeeeeienenen (i)
Let f(x) =P,(x) if m < n and f(z) =P,(z) if m >n.]

16. In Example 14, let a= -1, b=1, A =1/2" . n! so that

”(‘J) - 2” 1 n! dx"{(x’ )"}'

This value of P,(z) is called The Legendre Polynomial of degree n, or
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The Legendre Coefficient of degree n; by convention, Py(x) is taken to
be unity. Prove that
(@) Po(1)=1, Pp(-1)=(-1)";
1
i) | Pule)Pa)ds =0, matn
-1
=2/(2n +1), m=n.

[If m £ n the result is proved in Example 15. If m =n use the above
form of P,(x) and note that DJ.(x%-1)"=0 for r<n both when
z=1 and when z= —1. For the general theory of these functions
reference may be made to Professor MacRobert’s book on Spherical
Harmonics. As an exercise the student may show that if f(x) is any
polynomial of degree n,

Jx)=Apg" + A" 1+, +4, x+A,
it can be expressed in the form, B, =constant,
flx) =B,P,(x) + B,P,_(z) + ... B, Py(x) + B,Py(x).

Show that B, may be chosen so that f(z) — B,P,(z) is a polynomial
fi(z) of degree (n —1) and therefore f(x) =B,P,(x) +f,(x); the process
may be repeated with f,(z), and so on. Further, by equation (ii), show
that 2, 1 &

5757 Bor=|_ @ Pr(@)da.

If f(x)=2P,(x), a polynomial of degree (n +1), deduce from the

equation
2P () =BP, ., + BiP, + B,P,_, +... + B,P, + B, ., P,

(a) that P, (x) contains no power that occurs in P, (z) so that B, =0;

(b) by applying equation (ii) that B,_, =0 if r<n -1; (iii) by
comparing coefficients of ™! and z"! that By,=(n+1)/(2n +1),
B, =n/(2n +1). Hence the relation between P, ,, P,, P,_,

(n+1)P,,, —(2n +1)2P, +nP,_, =0.]

17. If u and » are bounded integrable functions of 2 for the range

a=xz=b, prove that

b 2 b b
(5 uvdx) é(i u’dx)x(‘ v’dx).
a G Ja
This inequality is known as Schwarz’s Inequality. To prove it, let
A and p be constants ; then
b
g (A + poyde = AJ2 + 2BAp + Cpt
a

where A4 is the integral of u? etc. The quadratic form cannot be
negative so that B* = AC; the equality can only occur if »/v is constant.

18. If F(x) is continuous and positive for a =z =b, prove that the
product of the integral of F(x) and the integral of 1/F(z), each taken
over the interval (a, b), is least when F(x) is constant.
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19. If F(z)=(1 +=)™ for 0=z =1, and if f(z) = F(z) except for the
values « =1/r, where r =1, 2, 3, ... , prove that
1
S f(z)dz =log 2.
)
20. If F(z)is defined for the interval (0, 1) by the condition that if r is
a positive integer, r=1, 2, 3, ...
F(x)=(~1)"1when (r +1)t<z<r?
prove that )
s F(z)dz =log4 - 1.
L0

2
21. If f(z)= K log (sin 2)dt, 0 < néxéﬁ, prove that f(x) tends to a
z g 2

limit when z—0.
Write log sin ¢ =log (sint/t) +log ¢ and note that

5 logtdt=tlogt -t,

while ¢ log t—0 when £—0 and sin ¢/¢ is continuous for 0=t=mn/2.
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CHAPTER X

RECTIFICATION. CURVILINEAR INTEGRALS. AREAS.
REPEATED AND DOUBLE INTEGRALS. VOLUMES.
SURFACES.

115. Rectification of Curves.* Let a curve 4B be defined, the
axes of coordinates being rectangular, by the freedom equations

r=f(t), y=9@), t,St=<T. cvveenennnn.n.. (1)
By ¢ the point #,” is meant the point 4 ,(x,, ¥,) where x, and v,
are the values of  and y respectively for ¢=t¢, ; A is the point ¢,
and B the point T'. As ¢ increases from ¢, to 7' the point (z, y)
moves along the curve from A4 to B.

Let [t,, ¢y, ty, ... 8oy, T'], T'=t,, be a division of the interval
(%, T') and let 4, be the point ¢, ; 4is Ajand Bis 4,. Denote
by 4,4,,, the length of the chord 4,4,,,; then, the positive
value of the square root being taken throughout,

4,4,, =S{(@rs1 = %)+ Y711 — Y%

='\/{ [f(tr+1) _f(tr)] 2+ [g(tr+1) - g(tr)] 2};
and if 1, is the sum of these chords for r=0, 1, 2, ..., (n-1),

n—1 n-1
b= 23 A= 3 [ftrss) = fE)12+ [9(Era) = 9(20]3.

Definition. 1If, when n tends to infinity in such a way that
the length (t,., —?,) of each interval (¢,, {,,;) tends to zero, I,
tends to a dofinite limit [, the curve AB is said to be rectifiable
and the number [ is defined to be the length of the curve 4 B.

If AB is a curve in three dimensions defined, with respect to
rectangular axes, by the freedom equations

$=f(t), y=g(t)7 2 =h(t): to =t=T,

* For a discussion of curves, areas, volumes and surfaces that involves less
drastic restrictions on the defining functions the student may consult de la
Vallée Poussin’s Cours d’Analyse (2nd ed.), Vol. I, pp. 347-373 or Jordan’s

Cours d’ Analyse (2nd Ed.), Vol. I, Chap. VIII.
291



292 ADVANCED CALCULUS [cH. x.
the length of the chord 4,4, is given by
ArAr-u =\/{(xr+1 -z, + (yr+1 - yr)2 + (Zp4y — zr)2}

n-1
and lo=>,4,4,,.
r==0

The definition just given for the length of a plane curve is
taken as defining the length of a curve in space. The develop-
ments that will now be given for a plane curve are applicable
with little more than verbal changes to a curve in space ; they
involve less complicated formulae, and the results can be at
once adapted to the case of three dimensions.

It will now be proved that 4B is rectifiable if f(2), f'(t), g(t),
g'(t) are continuous for {, < ¢t < T'; these conditions are sufficient
but not necessary. Jordan (see his Cours d’ Analyse, 2nd Ed.,
§§ 105-108) has proved that the sufficient and necessary
conditior.s that the curve AB should be rectifiable are that the
functions f(t) and g(¢) should be continuous and of limited
variation.

By the Mean Value Theorem we have

f(tr+1) _f(tr) :f,(r;’)(tr+l - tr)s g(tr+1) - g(tr) :g,(r:)(tr-{»l - tr)

where 7, and 7/ both lie between ¢, and ¢,,,, so that

Apd o =@+ 9 EN B iy =) eeeeees (2
This expression for 4,4,,, can be put in the form
A A, = WAL @12+ (9 @)% + 0l (g =) -enenees (3)

where o, tends uniformly to zero when each difference (¢,., —¢,)
tends to zero; the change from the form (2) to the form (3)
is an essential element in the proof and the equivalence of the
two forms may be shown as follows.

Let d=+(u?+0?), d; =+/(u} +v2) where u, uy, v, v; are real numbers
and d, d, are positive ; then

d, —al_(il +d-—-(u1 u)d———7i+(vl —v)m

Now  d=|ul, d>[vl d,=|u, |, d;=|v,| so that
dy+dZ|uy +u), dy+dZ|v, +0],

and therefore
ldy —d] =| (1} +02) - (Vu? +0?) | =] uy —u] + v ~v].
In the same way we have, w and w, being real,
| V(ud + 03 +wd) —(ud + 02 +wd) | S|y ~u] +|v, -v] +]w, ~w].



§ 115] RECTIFICATION OF CURVES 293
Now for u, v put f'(t,), ¢'(t,) and for u,, v, put f'(z7), g'(})
respectively ; then
| AP (12 + 9 (x2)) % = AL @12 + [9° ()] 3
S| ) =F @)+ 9'(x7) - 9"l
But f'(¢), g’(t) are continuous and both 7, and 7j lie between
t, and ¢,,, ; therefore, given ¢, we may choose 7 so that

|f'(ze) —f ) < %e, |9'(ze) —g'(t,)| < e,
ifonly ¢, -, <%,r=0,1,2,..., n—1. Hence we have
V@12 + g (1B =VALF @12 +[9' (8% + ek,
where | o, |<eif ¢,,, —#, <7, so that o, tends uniformly to zero
when ¢,,, — ¢, tends to zero.
We now have, using the form (3)

n-1
=’Z;) (VA [f’(tr):' 2+ [g’(tr)]z} +0t,] (B4q — )

and therefore, since the function /{[f'(¢)]®+[g9'(!)]*} is con-
tinuous, by applying § 107, (D;) we see that 1,— 1 where

= vurar +iwoma=[ (%) +(3) @ @

If P is the point ¢ on the curve and arc AP =s we have, with
0 as the variable of integration,

s =J; \/ {(%)2+ (%)2} F S (5)

and, for a curve in space

—I \/{ +(§lg) }do ........................ (6)

Note. The class of rectifiable curves may obviously be
extended to include a curve of the following type (a composite
curve). Let the curves AC,, C\C,, ..., C,B be joined up at
the points C,, 0, ... , C,, 80 as to form one curve 4 B and suppose
that 4, C,, C,, ..., C,, B are the points ¢y, ¢, t5, ... , tp, T
respectively where #,<t#, <f,...<t,<T. If the functions
f@), g(t), h(t) are continuous for f{,<¢= T the curve AB is
continuous ; if also the derivatives f'(¢), g'(t), »'(f) are con-
tinuous for each of the closed intervals (ty, t,), (4, ts), --- » (tms T')
then each part AC,, C,C,,..., C,B of the composite curve is
rectifiable, and the sum of the lengths of the parts AC,,
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C,C,, ..., C,B is defined to be the length of the curve 4 B. At
the points C,, Cy, ..., C, one or more of the derivatives
/@), g'(¢), #'(t) will usually be discontinuous and there will be
two tangents at such a point, there being an angle between the
backward and the forward tangents at the point (as at the
point H, p. 161, Fig. 33 of the Elem. Treat.). The simplest
example is that of a ““broken line” 4C,C, ... C,B in which
each of the parts AC,, C,C,, ..., C,, B is a straight line and no
two consecutive parts are collinear.

Cor. 1. The expression for s as an integral in (6) gives

ds dz\2 rdy\*  (dz\?
Ez: {(m) + %) +(a—t'> } s sececesesasanne ()
and therefore, in terms of differentials,
ds?=da?+dy?+dz? ...ccoviniiiiinininnn (B)

(The corresponding expressions deducible from (5) are obtained
by supposing dz to be identically zero.) The equation (8)
holds whatever the independent variable may be.

Cor. 2. If y=g(z) and if ¢(x) and ¢’(z) are continuous for
a<x=b, the curve has the freedom equations x=¢, y=g(t),
so that, replacing ¢ by x, we have

ds? =dx? + dy? ={1 + [¢'(x)]2dz?,
and = r S+ [¢'(£)]BdE.

Similarly, in three dimensions, we may write
z=t, y=9(t), z=y(),

and o= j:m + (@' (&)12 + [¥'(£)]2dE.

Cor. 3. Iffort,<t< T the functions f(t), g(t), k(¢), f'(£), g’ (t),
}’'(t) are continuous and the derivatives are not all zero for the
same value of ¢, the function s defined by the integral (6) is a
‘continuous, monotonic, -increasing function of ¢ and ds/df as
well as s is continuous. Hence ¢ is a continuous, monotonie,
increasing function of s and z, y, 2 may therefore be taken as
functions of ¢ which, with their first derivatives, are continuous
functions of s for the range 0= s=1 where ! is the length of 4 B;
that is, the curve A B may be represented by freedom equations
of the form z=F(3), y=0G(s), 2=H(s).



§ 115] RECTIFICATION OF CURVES 295

In this case dx/ds, dy/ds, dz/ds are the direction cosines of the
tangent to the curve at the * point s,” as is easily seen ; the
derivatives dx/dt, dy/dt, dz/dt are proportional to these direction
cosines (for a plane curve dz may be taken to be identically zero).

Ez. 1. If the curve A B is plane and given by an equation r =£(8) in
polar coordinates, show that

ds? —dr2 +7d6?,

8 —I\/ {r2 }do + constant.

In the equation ds? =dz? + dy? put x=rcos 0, y=rsin 6 ; then
dx =cos Odr —r sin 6d6, dy =sin 0dr +7 cos 6d6,
so that ds? =dr? +r2d02.

Ez. 2. If for a curve in space the coordinates z, y, z are changed to
spherical polar coordinates r, 6, ¢ by the transformation
z =7r8in 0 cos ¢, y=rsin 6 sin ¢, z=7 cos 0,
show, in the same way as in Example 1, that
ds? =dr? +7r%d 0% + 72 sin20 de?.

Here dx=sin 0 cos pdr +r cos 6 cos pdf ~r sin 0 sin pdyp
with similar expressions for dy and dz ; substitute in the equation

ds? =dxz? +dy? +d2?
, and the result follows.

Ez.3. If A, end A4,,, are the points ¢, and ¢,,, respectively on the
curve 4B, prove that the ratio of the chord 4,4,,, to the arc 4,4, ,
tends to unity when 4,,, tends along the arc to 4,, or, when ¢, ,—¢,.

For simplicity suppose AB a plane curve. The integral (5) gives

t

1
arc A, 4,,,= . VLS OF +1g' ()1 dt=(ty s — t IWLF (7)1 + [97(2,) 1%

where 7, lies between ¢, and ¢,,,. Also by § 115, equation (2),
chord 4,441 =(tpy ~ LWL (DT +(g/(x01}
where 77 and 77 both lie between ¢, and ¢,.,.
But, as proved above, if ¢,,; -, < 5, we have

IV (=0 +1g'(x0) 1% — VL (2P + 19" (z) 1B < &
and therefore
chord 4,4,,, 1 l< €
arc 4,4, |S TGP+ 5@
so that, if f'(¢) and g’(¢) are not simultaneously zero for £,=¢=t, ,, the
ratio of the chord to the arc tends to unity when A4,,, tends to 4,.

This property of the ratio of chord to arc was assumed previously
(£.T. p. 109) as an axiom ; with the definition of what is meant by
* the length of a curve,” based on the integral, the axioin now appears
as a theorem capable of proof.
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Ex. 4. Prove Example 14, p. 361, of the Elementary Treatise.

Ex. 5. If a curve is represented by freedom equations x =f(s), ... , the
parameter s being the length of the arc from a fixed point on it up to
(z, ¥, 2), and if accents denote derivatives with respect to s (z’ =dx/ds,
x” =d?%x|ds?, ...), prove that

xlz’ +y/y' +zlzﬂ :0,
and if ¢~2=(2")®+(y")?+(2")?, show that the line whose direction
cosines are gz”, py”, 02" is perpendicular to the tangent to the curve at
(z, ¥, z). Find also the direction cosines of the line
that is perpendicular to these two lines.
Note that (@2 +@)2+@)2=1

116, Curvilinear Integrals. Let y=¢(z),
where ¢(z) is single-valued and continuous
for the range a=x=<0b, be the equation,
referred to rectangular axes, of the curve
APB (Fig. 1), A being the point (a, a’) and B

A the point (b, b").

Fe. 1. Suppose that F(x, y) is a single-valued
function of z and y where y=¢(x) and form a division
(@, &3, X9, +.. » Tny, D] of the interval (a, b). Take &, such that
%, < E,=%,., let n,=@(&,), and consider the sum S, where

n-1 n-—-1
S, 2;) F(Er: 7’],)(3},+1 - ,) ‘_"’Z% F{Sr: ¢(§r)}(xr+l -Z,).

Definition. If, when n tends to infinity in such a way that
the length (z,,,-2,) of each sub-interval (z,, z,,;) tends to
zero, S, tends to a limit, that limit is called an integral of
F(x, y) along the curve AB (a curvilinear integral) and is
denoted by the symbol
I F(z, y)dx.

A8

The limit will certainly exist if F(x, y) is a continuous
function of z and y because F{z, ()} will be a continuous
function of z for the range a < < b, since ¢(x) is so. The sum
8, is in this case merely a particular example of the general
theorem in integration, so that

b
[ P, pao= £ 8.=[ Fe, pmpae.

n-—>wo
- It is supposed in what follows that F(z, y) is a continuous
function of z and y.
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The definition can be extended to cases in which y is not a
single-valued function of z. Consider the curves [Fig. 2,

(), (B), (¥)].

B
1
H D '
| : Y E
A :I: :|:: H
': ::u' ]
R I B I i
a d ¢ b a d b ¢ &
(e (8
Fi6. 2.

Along AC let y=g¢(x), a<x<c; along CD let y=g,(z),
c2z=d; along DB in () and (B) y=g4(x), d<x=<b; while
in (y) x=d along DE and y=g,(x), d<x<b along EB.

The functions ¢,(z) and F{z, ¢,(z)}, r=1, 2, 3, are supposed
to be single-valued and continuous in the respective intervals ;
along DE in (y) x is constant and the integral arising from DE
is therefore zero. Thus the integral along AB is defined as
the sum of the integrals along AC, CD, DB (or DE and EB),
each of which has a definite value :

¢ d b
| P v [P, podo+ [P, puepdn+ [ e, putea

=L F(z, y)da + f Flz, y)da +L F(z, y) do.

In the same way the curvilinear integral

L BG(x, y) dy

is defined, x being a single-valued continuous function y(y) say,
of y when every line parallel to the z-axis meets the curve A B
in only one point at most, or different single-valued continuous
functions y,(y), ¥s(y), ... when a line parallel to the z-axis may
meet 4 B in two or more points.

Again, the curve may be closed, like a circle or an ellipse ;
in this case B coincides with 4 and the direction of describing
the curve may be indicated by taking two points C, D on the
curve and using the form ACDA instead of 4AB.

The definition may be extended to a curve in space. If the
curve is defined as the intersection of the cylinders y = gp(z),
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2= y(z) and if F(z, y, 2) is a single-valued function of z, y, 2
the curvilinear integral

F(z, y, z)dx
4B

means IZF{x, @(x), p(x)}dx

where a, b are the z-coordinates of 4, B respectively. Corre-
sponding definitions hold for integrals with respect to y and z.

117, Area. Let y=F(x), where F(x) is single-valued and
continuous for the range a <2 < b, be the equation, referred to
rectangular axes, of a curve CD and let AC, BD be the ordi-
nates at C, D so that AC=F(a) and BD=F(b). The area of
a polygon—that is, a closed plane figure bounded by straight
lines—has a definite measure, but when the boundary of a
closed figure consists in whole or in part of curved lines the
method by which the measure of a polygon is determined is
no longer applicable and the measure of the area of such a
figure needs definition. The measure may be defined in the
following way.

First, suppose that F(x) is positive for a <x=<b and take a
division [a, %, %, ..., Z,_;, b] of the interval (a, b). Let M,
and m, be the maximum and minimum values of F(z) in the
sub-interval (z,, x,,;) of length A.(=2,,, —z,), and let 4P,
and 4,,,P,,, be the ordinates F(z,) and F(z,,,). The figure
A.A4,,,P, P—where PP, is the arc of the curve CD between
P, and P, ,—lies between the two rectangles whose areas are
M.k, and m,h, respectively. Thus the figure ABDC lies
between two sets of rectangles whose total areas are § and s
respectively where

n-1 n-1
8=>,Mk, and s= D, ,m,h,.
r=0 r={

When n-—>w and each A,—>0 the numbers S and s have a
limit which is the same for each, namely, the integral

r F(z)d.

This integral is defined to be the measure of the area ABDC,
or more simply, the area ABJIC, when it.is obvious that its
measure is in question.



§§ 116-118] AREA OF CLOSED CURVE 299

The extension to other cases then follows exactly as is shown
in §§ 80 and 128 of the Elementary Treatise; the rule for
determining the sign of the area, § 80, p. 187, and § 128, p. 318,
should be noted.

118. Area of a Closed Curve. Let ACDA be a closed curve
without a double point, and let its freedom equations be

Z=f(t), Y=gy -creereererrrieiinanns (1)
the point (z, y) describing the curve as ¢ varies from ¢, to 7'.
If ¢, and ¢, are unequal values of ¢ and if both lie between f,
and 7' the points ¢, and ¢, will be different because the curve
has no double point ; on the other hand, the points ¢, and T
are the same.

If it be assumed further that f'(f) and g¢’(f) are continuous
in the interval (4, 7') it may be proved, as in § 128 of the
Elementary Treatise, that when the point (z, ¥) moves round the
curve in the positive direction the area enclosed by the curve
is given by each of the three integrals

dy
r dt, - ydtdt -%J' 2%y Bt ... )

The functions f(¢), f'(t) and g(t), g'(t) are by hypothesis
continuous and therefore the curve ACDA is rectifiable.

Next suppose that the closed curve is a composite curve, that
is, a8 explained in the Note, § 115, a curve formed by joining
up the curves AC;, C,C,, CyC,, ..., Cp1Cp, CA at the points
Cy, Cyy..., 0, A. If A is the point £, (or T since the curve
is closed) and C,, C,,..., C, the points ¢, ¢,,..., ¢, where
<t <ty<..<t,<T, and if the functions f(¢) and g(t) give
the coordinates # and y of any point on the curve, we assume
(i) that f(t) and g(t) are continuous in the closed interval (¢, T')
and (ii) that f'(¢) and ¢'(¢) are continuous in each of the closed
intervals (%, ¢,), (¢, %), --. , (tm, T'). The curve is rectifiable and
the area enclosed by the curve will still be given by the integral
(2).

One or more of the curves AC,, C,C,, ... may be straight
lines ; in particular they may be segments parallel to one or
other of the coordinate axes. For example, AC; might be
part of the z-axis, C,C, and AC,, parallel to the y-axis while
the abscissae of the points C;, C, ... , C,,_, might all lie between
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the abscissae of 4 and C, ; in this case the closed area is ‘* the
area under the curve C,C,,” just as (E.T. p. 185) the area
ABDC is the area under the curve CD.

It is sometimes useful to define f(¢) and g(¢) for values of ¢
that lie outside the interval (f,, 7') ; the definition is simply
to make them periodic, with period (7' —t,), so that

FI(T — o) +t] =f(8), g(n(T —to) +1£] =g(2),
where 7 is any positive or negative integer.
Again, if the origin of coordinates be changed and the axes
turned through an angle « the old and new coordinates, (z, ¥)
and (&, ) are connected by equations of the form

z=£fcosa—msina+a, y=~E&sino +7coso+b.

Now since the (closed) curve is rectifiable the length s of the
arc, from a fixed point on the curve up to the variable point
(z, ¥), may be taken instead of ¢ in the freedom equations ; s
will be taken to be positive when measured in the direction
that is taken as the positive direction of motion of the point
(%, y). If lis the length of the curve, its area is given by the

integral
[ (x -y ds) ds,
and it is easily proved that this is equa,l to
‘%I 77 ds

so that the number that measures the area is independent (as it
should be) of any particular coordinate axes.

Note. Conditions to be satisfied by a curve. It will be
assumed in all that follows that a curve may be defined, in the
manner illustrated, by freedom equations x =f(t), y =g(t) where
f(t) and g(¢) are continuous and the derivatives f'() and g’(¢)
i general continuous—that is, continuous except for a finite
number of values of ¢. A curve as thus defined is both recti-
fiable and quadrable—that is, any arc of the curve has a
definite length and the area enclosed by the curve (if it be
closed) or the area bounded by the z-axis, an arc AC (for which
the ordinate is single-valued) and the ordinates at 4 and C is
measured by a definite number.
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EXERCISES XIV.

1. A curve is given by the freedom equations
x=acost—3}(a-b)cos®t, y=bsint+ia -b)sin?s;
the length of the curve, measured from the point ¢ =0, is
Ha +b)t —4(a —b) cos tsin t.
2. The length of that arc of the curve
' 4(z? +y2) =3ata? + a2

which lies in the first quadrant is $a and the length of the whole curve
is 6a.

3. The length of each of the following curves is z +z, when the point
on each curve from which the length is measured is properly chosen :

(i) 2ay =22, 6a%z =23 ;

(i) y=v(a?-22), z=}alog T1Z _yu;
. x a+x
(i) y=asin™ (5) » 2 =}alog—0. (Schlémilch)
4. The whole length of the curve given by the freedom equations
SO VL Gt VSR L U
976 DTS SRR "N B |
is T na.

5. Ifx=acos 8, y=asin 8, z =c6, show that s =a/(a® +¢?).80.

6. If x =at cos ¢, y =at sin ¢, z =ct, show that

a?+c? at+ (at+c? + at2)d
5 log { ( ) } .
a (a? +cr)t
7. If x =acoshtcost, y=acoshtsint, z=at then s =4y2.asinht.
8. Given that

8=13}t(a+ c?+ a?? )i +

x=acosa—bacosﬂ+bsin%gsine, z=/(b% _az)(l —0“9139)’

y:acos‘—?sin@ —bsin%ecos 0,

show that 8 =bz/a. Prove that a tangent to the curve makes a constant
angle with the z-axis.
9. On the sphere given by the freedom equations
x=asinfcosp, y=asinOsing, z=acosbh,
a curve is determined by the equation sin § coshng =1; show that, if
n=cota, the length of an arc, measured from the point (0, 0, a) is

afseco and that the curve cuts the curves ¢ =const. at a constant
angle ().



302 ADVANCED CALCULUS [cH. X.

10. The area enclosed by the curve
a?(z? +y2)3(b%? + a?y?) = (a? — b%)pixt
is nb(a - b)2(2a +b)/2a2.
11. The area enclosed by the curve
a2(b2x2 +a2y2 )3 — (az _ bZ)ZbﬂxC
is 3nb(a® - b2)2/8ad.
12. Show that the curve given by the equation
4 + 4a2y® — 6a%2® +at =0
consists of two ovals and that the area of each oval is nal.
13. A curve is given by the equations
x=acosl, y=a(2 +sin 0)sin? 0/(3 +cos? 0);
show that the area enclosed by it is (16 — 9x/3)7a?/y/3.

14. The area enclosed by the curve (a2 +a?)’y? =al%(a? —a2%) can be
expressed in terms of Gamma Functions.

15. ‘M A(/x’+y2)dx: —3%a(a® +2b%) where ABA’ is the upper half of

the ellipse 22?/a% +y2/b2 =1, A being the end of the major axis 4’4 that
lies on the positive side of the origin.

16. ( ay d round the cardioid r =a(1 — cos 0) is 5nad/4.

17. 5 yzdx along the curve defined by the equations
r=acos 0, y=asin b, z=cl
from the point (a, 0, 0) to the point (a, 0, 2zc) is — nalc.

18. g (y dx +zdy +x dz) along the curve in which the plane z +z=R

intersects the sphere 22 +y? +22=R? is equal to —nR?/\/2; the path
begins at (R, 0, 0) and lies at first in the positive octant of the sphere.

-

19. j [(y? +2%)dx + (2* + 22)dy + (x? +y?)dz] = — 2nab?, when the path

of integration is that part for which 2= 0 of the intersection of the

surfaces
22 +y?+22=2ax and 2®+y?=2bx, a >b>0;

the path begins at the origin and runs at first in the positive octant.

119, Integral as Function of a Parameter. When the
integrand contains numbers ¥, z, ... besides the variable of
integration « the integral will usually be a function of these
numbers or parameters as they are often called when they
become subsidiary variables ; these parameters are constants
so far as integration with respect to = is concerned, but they
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usually vary within some prescribed range. Some properties
of the integral as a function of one parameter, y say, will now
be considered ; the discussion when there are more parameters
than one may be carried out on similar lines.

The integrand F(z, y) is assumed to be single-valued and
bounded and the integral of F(z, y) over (a, b) will be denoted

b that
TR det [ Fe g

Further, the function F(z, y) is supposed to be defined for a
region bounded by a closed curve, the boundary being included
in the region, and every curve is assumed to be rectifiable
(§ 115, Note).

The property of f(y) that will be first considered is its
continuity and the following simple examples give some
suggestions regarding the behaviour of f(y) when discontinuities
occur in F(z, y).

Ez. 1. Let F(z, y) be defined for the square bounded by the lines
#=0,z=a and y =0, y =a as follows : F(z, y) =2 +y?2 for all points of
the square except for the sides =0, z =a and the diagonal z =y, in
which cases F(z, y)=0.

By integration it is found at once that Jf(y) =ay? +}a?, so that though
F(z, y) is discontinuous for all points (except the origin) on the lines
=0, x=a and z =y the integral f(y) is a continuous function of y in
the closed interval (0, a).

The three lines =0, z=a and = =y are called lines of discontinuity
for the function F(z, y).

Ez. 2. The same as Ez. 1 except that F(z, y) =0 when y =a so that
the line y =a is a fourth line of discontinuity.

In this case f(y) =ay?+}a® when 0=y<a but f(y)=0 when y=a
so that f(y) is discontinuous at the end a of the interval (0, a).

If F(z, y)=0 when y=b< a, as well as on the other four lines of
discontinuity f(y) would be discontinuous at b as well as at a.

Ez. 3. For the cube bounded by the planes =0, x =a, y =0, y =a,
2=0,z=a, let F(z, y, z) =2 +y? +2? except for points in the planes
# =y and z =z in which cases F(z, v, z)=0. If f(y, z) is the integral of
F(z, y, z) with respect to z over (0, @), show that f(y, z) is a continuous
function of y and z in the square given by y =0, y =a and z =0, z =a.

Consider the continuity of f(y, z) when the planes y =a and z =a are
also planes of discontinuity for F(z, v, 2).

Discontinuities. The integrand F(z, y) will be assumed to
be in general continuous in its region of definition but it may
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be discontinuous at a finite or at an infinite number of points
in the region. When the number of points of discontinuity
is infinite they will be restricted by the condition that they
will be assumed to lie on a finite number of curves (including
straight lines) none of which is parallel to the z-axis or can be
cut by a straight line parallel to the x-axis in more than a finite
number of points. At a point (,, ;) of discontinuity ¥(z, y)
will be assumed to be defined—that is, F(x,, y;) will have a
definite value ; the precise value does not matter so long as it
is finite.

When the discontinuities satisfy the above conditions they
may be said to be mormal; if a line of discontinuity is
parallel to the z-axis this case must be explicitly stated and
discussed.

Of course if z is the parameter and y the variable of integra-
tion the normal discontinuities of F(z, y) would exclude lines
of discontinuity parallel to the y-axis while no line of dis-
continuity would be met by a parallel to the y-axis in more
than a finite number of points.

Notation. When the region of definition is the rectangle K
bounded by the lines x=a, x=>b and y=a’, y=b", the region
will, for brevity, be sometimes called * the rectangle
R(a,a’; b,b’); the points (a, a’) and (b, b’) are opposite
vertices of the rectangle.

120. Continuity with respect to a Parameter. Suppose first
that F(z, y) is defined for the rectangle R(a, a’; b, b").

TarorEM 1. Let F(x,y) be integrable with respect to z for
every fixed value of y in R. If F(z, y) is continuous in R or has
only normal discontinuities in R then f(y) where

jo)= P@ yya

is a continuous function of y for the range o’ <y <b'.
Case (i), F(z, y) continuous. Let ¢ and c+k be two values
of yin R ; then

fle+ k)= (F(z, e+ 1) - F(@, o)da.

Now F(z, y) is continuous and therefore, by the property of
uniform continuity, there is a positive number # such that,
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whatever value z may take in (a, b), & having the usual meaning,
| F(z, c+k)-F(z,c) | <eif |k]| <,

and therefore | f(c+%) - f(c) | < e(b-a) if | k| <7%. Hence J()

is continuous at ¢ where ¢ is any number in (a’, b’) so that J(y)is

continuous in the (closed) interval (a’, b’).

Case (ii), F(z, y) discontinuous.

Let there be one curve of discontinuity DD’ (Fig. 3) and let
it be met by a parallel to the z-axis in only one point at most;
say that y=c meets DD A
where z =a.

If 6 is an arbitrarily small oA B

U
positive number it is possible }
to choose 7 so that if (2, y) f
is in either of the rectangles E '/,
EF(a,c-n; o~d,c+n)and D/ |
GH(x+6,c~7n; b,c+ny) the ‘[ A ' B
function F(z,y)is continuous. ot a 5 =
If | F(z, y) | < M in the small Fig. 3.
rectangle F'G whose centre is the point (o, ¢) the contribution
from that region to the difference | f(c +k) —f(c) | is less than
2M x26 when |k|<#. Since d, and therefore 4Ms, is
arbitrarily small it now follows by Case (i) (because F(z, y) is
continuous in the rectangles £ F and GH) that Sf(y) is continuous
at c.

If there were more lines of discontinuity than one the line
y=c would meet these in a finite number of points at most,
say the points which had &y, %y, ... O, Tespectively for
abscissae. The neighbourhood of each of these points (c,, ¢)
could be treated as has been done in the case of the point («, ¢);
the contribution to | f(c + &) — f(c) [ from these neighbourhoods
would be less than (m x 4M4) when |k|<#, and therefore
would be arbitrarily small. Outside the small rectangles with
centres («,, ¢) the function F(z, y) is continuous so that fly) is
continuous.

Note. Tt is now clear that there will be no loss of generality
in assuming that there is only one line of discontinuity and, as a
rule, the proof will be given for only one line.

Suppose next that F(z, y) is defined for all points inside or
on the boundary of an area D, bounded by a closed curve C.
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TaeoreM 1I. Let F(z,y) be integrable with respect to «
for every fized value of y in D. If F(z, y) is continuous in D or
has only normal discontinuities in D then f(y) is a continuous
Sfunction of y. _

The curve C will be assumed to be such that it can be cut by
a line parallel to either axis in not more than two points ; if
this condition is not satisfied it will be assumed that the area
may be divided into a finite number of parts for each of which
the condition is satisfied, so that when the theorem has been
proved for one part it will hold for the region composed of the
sum of the parts. See, for example, Fig. 11 (a); the lines
PQ, RS and T'U divide the area into three parts each of which
satisfies the required condition.

Let C be the curve EFGH (Fig. 4). The curve lies wholly
between the lines #=a, x=>b and y=a’, y=0b" and we suppose

that the equation of EHG is x = ¢,(y)

7 ' ,  and that of EFG is x=p,(y), so that
g2 Q /9\ B @,(y) and g@,(y) are each single-
Q F valued, continuous functions of y for

N1 g  therange a Sy="b'.
The theorem to be proved can be
H C/ / reduced to the Theorem I in the fol-
N\ = lowing way. Let the function F(z,y)
5 . = —> be defined so that F,(x,y) = F(x,y) for

all points inside or on the boundary
of the area EFGH, but F,(z, y)=0
for all other points in the rectangle ABB'A’. 1f the curve C,
that is, EFQH is taken as a line of discontinuity for F,(x, y) the
discontinuities of F,(z, y) are the same as those of F(z, y) and
in addition those that lie on C. The function f(y) where

&)=, Pz, y)ds

is continuous for o’ < y < b’ by Theorem I. But if y=0N =c,

Fia. 4.

NS ] bs(c)
f(c):_" F(z, ¢)da= I Pz, opde=["" F(z, c)dw
NR' NE $i(c)

because Fy(x,c)=0 if NR"<z<NR or if NS <x< NS’ and
F,(x,c)=F(z,c) if NR<x<NS. Hence f(y) is continuous
at ¢ and ¢ is any number in (a’, b').
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The curve C may of course consist in part of straight lines.
For example, C might be formed by the arc FGH and the
straight lines HA, AB, BF.

Ez. 1. If F(z, y, z) is bounded when (z, y, z) is any point of the
cube given by # =0, z =a, y =0, y =a, 2 =0, z =a, and if

fy, 2) =(: F(x, y, z)de,

show that f(y, 2) is a continuous function of y and z if F(z, y, 2) is
continuous or if, when discontinuous, its discontinuities all lie in the
planes x =y and = =z.

Ez. 2. If F(x, y, z) is bounded when (z, y, z) is any point in the
tetrahedron whose vertices are the points (0, 0, 0), (a, a, a), (a, a, 0)

and (0, a, 0) and if v
fw =[] F, y. 2)da,

show that f(y, z) is continuous if F(z, y, z) is continuous or if, when
discontinuous, its discontinuities lie in the plane = +y +2z =a.

121. Differentiation and Integration. Consider first the
differentiation of f(y).

Differentiation. With the notation of the preceding article
let F(x,y) and the partial derivative 9F/dy be continuous
functions of # and y in the rectangle R; then f(y) has a deriva-
tive given by the equation

4o)_[orE g,

that is, given ¢ by dlﬁerentla.tmg with respect to y under the
sign of integration.”
If y and y + k are both in (a’, b’) we have

Jy+8) -fly) _PF,y+k)~F(x,y), (PoF(z,y,)
) _J"’ ) dx_JZ—-—ay 1 de,

where, by the Mean Value Theorem (§ 34), y, lies between y
and y+%. But by hypothesis dF/dy is a continuous function
of x and y, and therefore 7 can be chosen so that, for a<z=<b
and o' Sy <.

oF (z, yy)

o9y
If we now write
k « Oy

a

_F(, y)‘<e i k<.

% %
equation (1) follows at once.
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If a and b are not constants but differentiable, and therefore
conttnuous, functions of y, write f(y) in the form f(y, a, b) and
then the total derivative is given by

daf _of ofda ofdb
dy 9y oa dy obdy’

a
and of/oy is given by equation (1) so that
raF @ Y 30 _ F(a, y)d“+ 7, y) 2 d ......... @)

Cor. A curvﬂmear integral is reduc1ble to an ordinary
integral and therefore the above investigation applies to the
integral of F(x, y, A) when F and 0F /0] are continuous functions
of z, y, . If the points 4 and B are fixed

d aF(z, y,
d_AL,, Py, de:fﬂ ia—f/—) T, e (3)

Integration. The function f(y) may, as we have seen, be
continuous for ¢’ < y < b’ even though F(z, y) is discontinuous
in R, but for the present F(x, y) will be supposed to be con-
tinuous in R; f(y) is therefore integrable over (a’, b’) and the
integral may be written

f:,f (y)dy =Jz, {Jz F(z, y)dx}dy = Jt :dyﬁ F(x,y)dz ...... 4)

the latter form being the usual one. The two-fold integration
gives a ““repeated ” (or “iterated ) integral, with the meaning
that « F(z, y) is to be first integrated as to z, the parameter or
variable y being treated as a constant in this first integration,
and then the result of the z-integration is to be integrated
with respect to y.”

It will now be proved that if F(x, y) is continuous in R we
may interchange the order of integration and write

ﬁ:f(y)dy=fz:dyjz F(z, y)dx;ﬁdx a:?’(x, Ndy ...... (3)

so that the integral of f(y) is found ‘¢ by integrating under the
sign of integration.”

The integrals of F(z, y) over (a, b) with respect to = and
over (a’, b’) with respect to y exist and are continuous functions
of y and « respectively so that both of the repeated integrals
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in (5) exist. Let ¢ be any chosen number in (a, b) and put ¢ in
place of b in both of the repeated integrals in (5) ; both of these
integrals will be zero if £ =a, and therefore they will be equal if
their derivatives with respect to ¢ are equal.

Let ¢(¢, y) and w(x) be defined as follows :

[[Pe ao=ot, ), [ Fo, nidy=ta),

then we have
d dg(t,
2 av) Pepaz=5[ ot pay=[ 2D ay

and therefore :F’F(t, y)dy.
Again :
ijtdxr'F( )d —dj" () de = y(2
), %) Fle y)dy =) w(z)dz=y(t)

and therefore = r F(t, y)dy.
”

b’ t t 4
a’ a a a’

and ¢ is any number in (a, b), so that b6 may be put for 2.

It must be noted that this change in the order of integration
without change in the value of the repeated integral assumes
that the limits a, b and a’, b’ are constants.

For an extension of the conditions on which this change of
order of integration is allowable see § 126.

o do
Ea Lt 50 @ c0s20 + b sin%0 2J(ab) »a>0,5>0,
show by diﬁerentlatmg I with respect to @ and b that
(i) g cos?6d6 7, 1
o (@ cos?0 +b sin20)2” 4 aa/(ab)’
(ii) § cos?6 sin®60df = 1
o (@ cos20 +b sin360)® " 16 aby/(ab)
Here (i 22 jg___.._“"’s"’d" .S N
da ) (@ cos?f +bsin?6)?” 4 an/(ad)’

(i) 027 r 2 cos?0sin?0df _x 1

oboa” )o (a cos?6 +bsin26)3 " 8 aby/(ab)

The usual forms are obtained by putting a? and b2 for @ and b respec-
tively after differentiation.

, ete.
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122. Double Integrals. Let A be an area bounded by a closed
curve C and F(z, y) a function of two independent variables
« and y that is single-valued and bounded in 4 ; the integral
of F(z, y) over the area A will now be defined and, as the
preliminary considerations that lead to the definition are in
substance identical with those on which the definition of the
integral of a function of a single variable is based, the statement
of them may be made in a condensed form.

Let a division, D say, of the area 4 be made by dividing it
into n elementary areas oy, 0y, ... , 0n, Which may for brevity
be called meshes ; for example, the meshes may
2, be formed by drawing two sets of curves that

A cover the area like a net (Fig. 5). The longest
chord d, of the mesh o,—that is, the upper
limit of the distance between two points on the
boundary of o,—will be called the diagonal of
the mesh, and the area o, will tend to zera
in all its dimensions when d, tends to zero.
Obviously ¢,<d2; there can be no ambiguity
in using the symbols o,, 4 to denote both the areas and their
measures

Now let M, m and M,, m, be the upper and lower bounds
of F(z, y) in A and in o, respectively ; the sums .S and s where

F16. 5

n

n
8S=>, M,o, s:Z}lm,a,
“

r=1
are called the upper and lower sums respectively for the
function F(xz, y) and the division D of the area 4.

The properties 1 ... 5 stated for the sums S and s in § 102 are
also true in this case, the nomenclature used in the discussion
being suitably interpreted. Thus, the division D, of the area 4
is comsecutive to the division D if it is formed from D by
dividing one or more of its meshes into two or more smaller
meshes. The division D, is formed by superposition of the
divisions D and D, when the net for the division D, contains
all the lines that are present in the nets for the divisions D
and D, ; of course, when a mesh of D, coincides completely
with a mesh of D that mesh appears only once in D,.

The change from the work of § 102 to the present case is
simply made by substituting  area 4~ and *“ mesh ¢, " for
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“interval (@, b)” and * sub-interval (z,, z,,,)”"; for “h,<h”
such a phrase as “o,<d?” or “d,<d” will be used. As an
example, consider the property 3, § 102.

Let o, be a mesh of the net for the division D and 8 the upper
sum for that division. If o, is divided into two or more meshes
o}, 07, ... in which the upper bounds of F(z, y) are M., M;,...
respectively, and if S} is the upper sum for the new division
D1 which is consecutive to D (o, alone being divided), then

S8-8i=M.0,— (Mo, + Mo} +...)
=(M,-M)o,+ (M, M), +...
since o,=0,+0; +.... But M], M;,...are each less than or,
at most, equal to M, and M,< M while M}, M, ... are each
not less than m ; therefore
0=8-8i=(H —m)o,<(M —m)d? if o,<d? ......... ()
If 4 of the meshes (u < n) are each divided into two or more

meshes, thus forming a division D, consecutive to D, and if S,
is the new value of §, then

0< 8- 8,<pu(M —m)d2 ..o, 8

when the diagonal of each mesh in the division D is less than d.

It is therefore merely a repetition of § 103 to show that S
and s tend respectively to the lower limit L and the upper limit?
when 7 tends to infinity in such a way that the diagonal of each
mesh tends to zero. On account of its importance Darboux’s
Theorem will be stated explicitly.

Darboux’s Theorem. If D is a division of the area A for
which the upper and lower sums are S and s respectively then, to
any given &, where ¢ is an arbitrarily small positive number, there
corresponds a positive number d such that

0=<8S-L<e, 0=Zl-s<e,
when the diagonal of each mesh is less than d.

Or, 8— L and s— I when n tends to infinity in such a way that
the diagonal of each mesh tends to zero.

Note. For the special but important case in which L=1 the
theorem may be put in the form : If one division of the area 4
can be found for which S -s<e¢ then 8 and s tend to limits
which are the same for both.

For, (i) § and s are bounded and S=s; (ii) 8 is monotonic
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and decreasing and therefore tends to a limit L while s is
monotonic and increasing and therefore tends to a limit /.
The condition that L=I is then simply § —s <e.

Double Integral. Definitions. The limits L and ! are called
respectively the upper and the lower double integrals of F(z, y)
over the area (or field, or region) 4 and are denoted by the
symbols

L=I Flz, y)do, l=J. F(xz, y)do.

If L=I, the common limit of S and s is called the double
integral of F(z, y) over the area (or field, or region) 4, and is
denoted by the symbol

L F(z, y)do.

The symbol do corresponds to the elementary area o,, and
is often called ‘¢ the element of area ’ ; the letter A annexed to
the symbol of integration indicates the area over which the
integration is taken. Other notations will be given later.

123. Division of the Area. In the division D of the area 4
the meshes o, may be of any shape ; the limits of § and s exist
provided the diagonal of each mesh tends to zero. The
division of the area into elementary rectangles by lines parallel
to the coordinate axes is, however, of special importance, and
the form taken by the sums S and s for this case will therefore
be explicitly stated.

Let the area be the rectangle R given by

z=a,x=b and y=a’, y=">,

and let [a@, %), Zg ... Ty, b] and  [a@', Yy, Yo, oov ) Yny, 0]
be divisions of the intervals (a, b) and (a’, b') into m and =
sub-intervals respectively ; parallels to the coordinate axes
through the points of division of these intervals will divide
the rectangle R into mn rectangular meshes. If h,=(z,,; —%,)
and k,= (¥4, —¥,) the area of the mesh, g, , say, bounded by
the lines z =z,, x =2,,, and ¥y =Y,, ¥ =¥,y is h,k, ; the diagonal
d,,, of this mesh is ./(h?+ k2) and the mesh o, , tends to zero
in all its dimensions if and only if 4, and %, each tend to zero.
At the boundary of the area, when it is not a rectangle, the
meshes will usually be only part of a rectangle.
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If M, m and M, ,, m,, are the upper and lower bounds of
F(z, y) in B and in o, , respectively, then

8= M,, bk, s=D,m, hk, .c.......... (1)
7,8 7,8

where r and s take independently the values 0, 1, 2, ..., (m - 1)
and 0,1, 2, ..., (n — 1) respectively. S will tend to L and s to !
when m and » tend to infinity provided that ,/(A2+ k2) tends
tozero ; the order in which m and n tend to infinity is irrelevant.

A slight variation in the proof of the property, § 122, (8), namely,
0=8-8;< u(M -m)d?
is needed. Take & so that z. < £ < z,,, and draw through & a varallel
to the y-axis.
Each of the n rectangles o,, 4, 0,4, ..., 0, ,_; Will be divided into two
rectangles, and if S is the new value of S we shall have

n-1
0=8 -8 <(M -m)h > ks =(M —m)h(b’ -a’), hy < h.
0

8=
If 5 is now taken so that y; < < y,,, and a parallel drawn through 7
to the z-axis S; will become S] where
0=8]-S1<(M -m)k(db -a), ki<k,
and therefore
0=8-8S7<(M —-m){h(b’ -a’) + k(b —a)}.

More generally, if D, is derived from D by inserting x4 numbers
between a and b and u’ numbers between a’ and b’, the sum S becoming
8,, we shall have

0=8 -8, <(M - m){uh(d’ - a’) + u’k(b - a)}
where h,<h, ks<k for r=0, 1,..., (m-1)and §=0, 1, ..., (n - 1).
It is obviously possible to c¢hoose & and & so that
(M —m){ph(b" - a’) + p'k(b —a)} < }e
as required (see § 103, equation (4)) for the proof of Darboux’s Theorem.

Ez. Establish the result for an area 4 bounded by any curve C by
enclosing 4 in a rectangle R, as in § 120, Theorem II.

The meshes of § 122 may of course be rectangles with sides
parallel to the coordinate axes, but the division of the area
just discussed supposes that the meshes are arranged in a
particular way, namely, in such a way that if z,<é<z,,,, the
line z = £ runs through a whole set of meshes of the same width
(%r41 —2,), and if y,<n<y,,; the line y =7 runs through a whole
set of meshes of the same height (y,,, - ¥,).
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In the more general case of § 122 the corresponding sets of
meshes would usually have different widths and heights.

The rectangular mesh suggests another notation for the
element of area in the double integral, namely

[ Fe pasay

where (dxdy) takes the place of do ; for the present the brackets
are retained in the symbol for the element.

For polar coordinates the element of area would be (r dr d0)
and the integral of F(r, 6) would appear as (see E.T'. p. 338)

_" F(r, 0)(rdrdb).

124, Integrable Functions. The condition for the integra-
bility of a bounded function follows at once from Darboux’s
Theorem.

Condition of Integrability. The condition that the bounded
function F(x, y) should be integrable over an area A is that, ¢
being given (as usual) there should be a positive number 1 such
that S —s will be less than ¢ when the diagonal of each mesh in
the division of A for which S and s have been calculated s less
than . Or, 8 —s must tend to zero when the diagonal of each
mesh tends to zero.

It will be useful to state here another form of the definition
of the double integral. If (&,, #,) is any point in the mesh g,,
then m, <F(&,, n,) < M,, and therefore

§$= Z mrarézF(gﬂ ns)aréz M.0,=8

so that IF(x, y)dc=£ZF(§n N0y evnernrininnnn, (1)
If the meshes are rectangular and (&,, n,) any point in (%,k,)
LF(:::, y)(dzdy) = L’ SF(Es, nhokye e (2)

In each case the limit is taken for the number of meshes
tending to infinity in such a way that the diagonal of each mesh
tends to zero.

. The position of the point (£,, 7,) in the rectangle (k,k,) is
arbitrary ; it is permissible therefore to choose &, so that the
point chosen in each of the meshes contained between the lines
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z =z, and z =z, shall have &, as its abscissa. The limit given
by (2) cannot be affected by this choice.

Of the functions that are integrable the first and most
important class is that of continuous functions.

I. If F(x, y) is a continuous function of z and y in 4, then
F(z, y) is integrable over 4.

The bounds M, and m, are values of F(z, y) since F(z, y) is
continuous in A. Further, by the property of uniform
continuity, the number # can be chosen so that (M, —m,) will
be less than ¢/4 for every value of r, and therefore

n
S-s<§(2 o,), thatis, < ¢
r=1

when the diagonal of each mesh is less than #, and this is the
condition for the integrability of F(x, y) over the field 4.

Cor. 1t F(z, y)=1, j (dzdy)=A.

II. If F(z, y) is discontinuous in A4, but if its discontinuities
are either finite in number or else, if infinite in number, all lie
on a finite number of curves then F(z, y) is integrable over A.

It must be remembered that F(zx, y) is bounded and that
every curve is supposed to be rectifiable. It will be sufficient
to prove the theorem for the case (Fig. 6) in
which F(z, y) is discontinuous at all points
on the curve ZF and on the part GFH of
the bounding curve C.

Draw curves abc and def which will cut out
the lines of discontinuity from the area 4 ;
in the remaining parts, 4, and 4,, of the area
4 the function F(z, y) is continuous.

Now the curves abc and def may be drawn so close to EF
and GFH that the area they cut out of 4 will be as small as
we please, say less than ¢/4M where M is the upper limit of
F(z, y)in A. (Since the curves are all rectifiable, this assump-
tion is easy to prove, if it be not considered to be  obvious.”)
The contribution to § —s from this area is therefore less than
2M x (g/4M), that is, less than }e.

The curves abc and def, when chosen as stated, are to be kept
fixed. In the areas A, and A, F(z,y) is continuous.and

F16. 6.
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therefore, as in Theorem I, there is a division of 4, and 4,
such that the contribution to § -s from these areas is less
than }e. Therefore a division of the area 4 has been found
for which § - s<e¢ and thus F(z, y) is integrable over 4. (See
Note, § 122.)

If there were other lines of discontinuity the method of proof
would be the same.

Cor. If F(z, y) is integrable over 4 the values of F(z, y)
may be arbitrarily changed at isolated points in 4 or at all
points on a finite number of curves without changing the value
of the integral, provided the new values of F(z, y) are finite.
It would be sufficient to reckon these isolated points, or the
curves, among the discontinuities of F(z, y); the function
would still be integrable over 4, and it is evident from the
nature of the proof of integrability that the value of the integral
would not be changed.

125. General Theorems. The :following theorems are so
simple that their formal proof may be left to the student. The
functions F(z, y), F,(z, y) and Fy(x,y) are supposed to be
integrable over an area 4.

L I CF(x, y)dczOI F(z, y)do, C =constant.

I [ (Fy(@, ) Fufa, o= Fya, pdox| Fola, y)do.
II1. The product F,(z, y) Fy(z, y) is integrable over A.

IV. The quotient F\(x, y)/Fy(x,y) is integrable over A if
|Fy(z, y)|Zc>0in A.

V. When F(z, y) is integrable over A so is |F(z, y)| and
” F(z, y)do gf |F(z, y)| do.
4 A

VI. If the area A is divided into a finite number of partial
areas A,, A,, ...,

L F(z, y)do:j‘MF(x, y)da+LiF(x, y)do +....

VII. Mean Value Theorem. If F(x, y) is positive or zero in
A then the integral of F(x,y) is positive or zero. Hence if
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F(z, y)=o(x, y)p(z, y) it may be deduced, as in §111, that tf
¢z, y) 2 0, and
gy, y) <G, when (z,y)1sin 4,

0 of ol ydos [ o, 9)v(z, 1)do= 6 ola, v)do;

@ [ o 996 ndo=K| ¢ y)ds, g< K 6;

(iii) if p(x, y) 1s continuous in 4,

[ #t vtz pao=v& n)| o vdo, & in 4.

Note. In the next article it is proved that when the dis-
continuities of F(z, y) are of a certain type the double integral
of F(z, y) can be expressed as a repeated integral. It will
subsequently be assumed that this restriction on F(z, y) is
made, unless it is explicitly stated to be removed.

126. Reduction to Repeated Integrals. It will be assumed
that, if the function F(z, y) is not continuous, all its discon-
tinuities lie on a finite number of

curves none of which can be cut by 7 , , ,

. . N 1 A Q G B
a line parallel to either axis in more & 7 N
than a finite numbér of points ; with / Q F
this restriction on the discontinuities p , d
the double integral of F(x, y) exists. Rl/B
This restriction is not necessary, but H P
these admissible discontinuities in- o ;

. . Al E [P B8

clude a very wide range of functions.

(See also § 127.) ° e M
Consider first the case in which the . 7.

field of integration is the rectangle ABB'A’, or R, given by

z=a, x=b, y=a’, y=b" (Fig. 7); then by § 124, (2),

LF(x, y)(dz dy) =limit of D> F(&,, n)hKy «........ (1)

where r takes the values 0, 1, 2...,(m —1) and s the values
0,1,2,..., (n—1) while m and n tend independently to infinity.

First, let n—o, the numbers A4,, &,, m being kept constant,
and consider the sum S, where

n-1
S, =‘§0 F(& mky wevevnaeeeeneeinianne. (2)
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£, is supposed to have the same value in every mesh that lies
between z =z, and z=xz,,,.

The function F(¢,, y) is a bounded function of y in (a’, b’)
and therefore when n—o (and %,—0) it has upper and lower
integrals, ¢(&,) and y(&,) say, where

wE=[Fien Dy, we=[Fie iy, o)

But, by hypothesis, F(&,, y) bas at most a finite number of
(finite) discontinuities and therefore ¢(£,) = y(&,) so that

»C 8o =@(&,) = p(&,) =IZ:F(5,, YAY. oo (4)

, In (1) let m now tend to infinity ; the limit exists since it is
equal to the double integral. Hence

[ Fepaan= L S oteah,=[ o@ds ......s)

m—o r=0

so that J'RF(x, y) (dx dy) ::I: dx J.::F(x, YAY. i (6)

Next, let m tend first to infinity, k,, 5, and » being kept
constant. As before, we find

£S5 B na=[ P, nyae

m—wo r=0
and L F(z, y)(dz dy) =J-:Idyj‘: F(z, y)dz. ...... (7)

The double integral is thus expressed in two different ways
by repeated integrals and the repeated integrals are equal
because each is equal to the double integral.

As a corollary we have an extension of the conditions for
the validity of changing the order of integration in a repeated
integral with constant limits; namely, if the discontinuities
of F(x, y) in the rectangle R satisfy the restriction stated at the
beginning of this article, change of order of integration is per-
massible, that is,

.[b dyr F(x, y)dx =r dx J'D,F(x, y)dy.

Consider next the case in which the field of integration is
the area 4 bounded by the curve C or EFGH (Fig. 7); it is
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supposed for the present that C' cannot be cut by a parallel
to either axis in more than two points. This case can be
reduced to tha,t of the recta.ngIe R glven by z= a, z= b y =a/,
y=b. -

Let Fy(z, y) ==F(x, y) when the point (z, y) is on or inside C
but F,(x, y)=0 when the point (z, ) is in R but not on or
inside C. The lines AB, A’B' and A4’, BB’ touch the curve C
at B, G and H, F respectively.

The equations of HEF and HGF may be taken to be

Yy=MP=g,(z) and y=MUQ=gp,(x)
respectively where x=0M ; a’'=MP’, b’ =MQ’.

b (M
Now f F(z, y)(d=z dy) =J dz| F(z,y)dy
R a MP!

since the investigation for the rectangle B remains valid
provided the curve C is considered to be a curve of discontinuity
for Fy(z, y); the curve C satisfies the condition for a curve of
discontinuity. But F\(z, y)=0 for all points of R that are
outside the curve C so that

[P vazdy = [ Fa,y ety [T dy=[ T ay

and :
I F(x, y)(dz dy) =rdx"‘¢!(zl)7’(x, y)dy. e, (8)

In the same way it may be seen that if the equations of EH@G
and EFQ are :

z=NR=y,(y) and 2=NS= "/’2(?/)
respectively where y =ON, we find

LF(x, y)(dz dy) :J:;iy I::?’(x YAz, e (9)

When the area A is bounded by a curve that may be cut by a
line parallel to an axis in more points than two, it may be
divided into a finite number of partial areas 4,, 4,, ... bounded
by curves C,, C,, ... each of which cannot be cut by a parallel
to either axis in more than two points. The integral over 4 is
the sum of the integrals over 4,, 4,, ..., and the reduction to
repeated integrals is made for each partial area. (See Fig. 11.)

G.A.C, M
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Notation. It is usual, in view of the expression in terms of
repeated integrals, to denote the double integral by the double

symbol H and to omit the brackets round dzdy ; thus

[[ P yazdy, [[Pe yazay, [[#@ ydo

(See also E.T. § 136.)

Ex. Integrate F(x, y) over the area A bounded by the circle
(@ - o) +(y - B =c*.
The tangents to the circle parallel to the y-axis are
r=o~c=a and z=co +c=b.
The values of y for a given x are
MP =g - y{c* - (x - o)?} and MQ = +V{c* - (z - )%}
where the root is positive., Hence
1+4e MQ R
1=“ Fla, y)dxdy=§ dxs F(@, Y)8Y  eerererreenens )
A 4i=C MP
and there is a similar form if integration is first made with respect to z.
Frequently, however, it is preferable to use the polar element of area,

rdrdf. In this case transfer the origin to («, ) and then change to
polar coordinates (r, 6) so that

x=a+rcos 0, y=p4+rsin 0.

The limits of 6 are 0 and 2x and of r are 0 and ¢ ; therefore if F,(r, 6)
is the value of F(z, y) in terms of r and 6.

2T
I=“ Fyr, 0)rdrd0=§crdr§ Fy(r, 0)do.
A J0 []

Since the limits are constants the order of integration is easily
changed.
It will be a good exercise to work out the value of the integral by
both methods when
F(z, y) =2*y*V{e* - (z - o)* —(y - )%},
and to verify that the value is the same for both. It should be noted
that 2
S (A4 sin®™0 cos 0 + B costd sin 0)d0
()
is zero when m and n are positive integers or zero; much needless
labour is saved by attending to a simple matter like this.

126a. Another Proof. Let S and s be the upper and lower
sums given by equation (1) of § 124 for the function F(z, y),
the field of integration being the rectangle E; the upper
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integral L and the lower integral I of F(x, y) over R exist and
satisfy the inequalities
L8, 1=8 civviiviiiiiiiiiiiiieens (1)

The only restriction on F(z, y) is that it is single-valued and
bounded in the rectangle R.
It will be first proved that

_ }
rd“’” r,F (v, y)dy=L, rdxf,F(x, ydy=1l ... (2)

A little consideration will show that the various steps in the
proof that involve upper and lower integrals are legitimate.

Darboux’s Theorem, § 122, shows that, given ¢ as usual, it
is possible to choose d so that when the diagonal of each mesh
is less than d we shall have

L<S=> M, bk, <L+e oouueuereece... (3)
7,8

If z is fixed, say z=¢&, where z,< £, < z,,,, the function
F(&,, y) of y has an upper integral, p(&,) say, and

®(&r) ZJ-:F(én ydy = 2:4 M.,k
Again, ¢(r) is a function of x which has an upper integral
over (a, b) and, if M, is the upper bound of ¢(z) in (z,, Z,,,)
J.a pE)dz< D, Mh, <D, M,, hk,<L+e.
a r 7,8

But ¢ is arbitrarily small and therefore

j—: w‘”"’“ﬁ dz f F,y)dy<L.

Let it be noted that the inequalities for the lower integral
corresponding to those in (3) for the upper integral are

l-e<s=m, bk <l
and it may be proved in the same way that
-
< j. dx r‘F(x, y)dy.

Thus the relations (2) are established.
Suppose now that F(z, y) has a double integral over R ;
in this case L =1 and the repeated integrals in (2) will therefore
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also be equal to each other and to the double integral of F(z, y).
Hence if

v b’
| L'F(x, y)dy:LlF(x, YAY, oo, (4)

"
and therefore =_[ F(z, y)dy,
&

we have
- R (Y
[ 7, ey =[ @[ P, nay=[ @z [ P, ay,
that is, . )
b Y
J.RF(x, y)(dx dy) =de L,F(m, YAY. e, (5)

If, however, the two integrals in (4) are not equal the
repeated integral

b (D
dej F(z, YAY i, (6)

is equal to the integral of F(z, y) over B whether the upper or
the lower integral with respect to y be taken; equation (5)
will therefore hold even in this case provided (5) is interpreted
by (6).

A similar investigation shows that equation (5) holds when
the order of integration is changed. The general theorem
when the field of integration is not a rectangle is dealt with
as before. :

Note. The student should, before reading the following
articles, work through the Examples 1-6 of § 130.

127. Conditions for Repeated Integrals. There is one exten-
sion of the conditions prescribed in Article 126 that may
be noticed. If one of the curves of discontinuity were a
straight line parallel to a coordinate axis the double integral
would still exist but there is a peculiarity as shown by the
following simple example.

Ex. For the rectangle R given by x=0,x=1, y=0, y=1, let
F(z, y) =1 except when = =}, and let F(}, y) = +1 for irrational values

of y but F(4, y) = — 1 for rational values of y.
From the rectangle R cut out the rectangle given by

rx=%-¢ v=%+¢, y=0, y=1,
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where ¢ and ¢’ are positive and arbitrarily small, and let R’ be the area
that is left. The double integral of F(z, y) over R’ is (1 —¢ —¢’) so that
the integral over R is, by definition, equal to unity.

Again

! t-¢ 1 1 1
[ P y)(dxdy)=§ dxj 1.dy+§ dxj ldy=1-¢c—¢
lur o ° t+e Jo

1 e 11
5 Pz, y)(d:cdy):j dys ldx +§ dyS lde=1-¢-¢'
& o Jo 0 ‘it
and therefore when ¢ and.¢’ tend to zero we find in this case

“RF(x, y)dzdy =s:dx§:F'(x y)dy =g:dy§:17'(x, y)de.

1
The point to be noted is that S F(z, y)dy does not exist for the value
[}

3 of z ; if f(zx) denote this integral f(z) is discontinuous for # =}. When
x =} the upper integral of F(z, y) is +1, the lower integral is — 1 and
their difference measures the discontinuity of f(z) when x =4.

In general, if the lines z=c¢,, z=c,,..., x=c,, are lines of
discontinuity, and if f(z) is given by

»
f(x) =L,F(x, y)dy,

f(x) will be discontinuous at ¢, ¢,,..., ¢, (see § 119, Ex. 2,
interchanging z and y), but f(z) will still be integrable since
the number of discontinuities is finite. A similar remark holds
when there is a finite number of lines of discontinuity parallel
to the z-axis.

It may be stated that one of the repeated integrals may exist
or even that both may exist and be equal and yet the double
integral not exist. (See Hobson’s Functions of a Real Variable,
1st Ed. p. 428.) The existence of one or of both of the repeated
integrals is no warrant for assuming the existence of the double
integral.

128. Volume. Area of a Curved Surface. The equation of
a surface, the axes of coordinates being rectangular, is in general
of the form ¢(z, y, 2) =0, and a line parallel to the z-axis may
meet the surface in more points than one ; a part of the surface
which is met by a line parallel to the z-axis in not more than
one point will be represented by an equation of the form
z=F(z, y) where F(z, y) is single-valued and continuous.
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Suppose now that F(z, y) is single-valued, continuous and
positive (or at least not negative) when the point (z, y) is in
an area A bounded by a closed curve C and lying in the plane
2z=0. A cylinder which has the curve C as its section by the
plane z=0 and its generators parallel to the z-axis will intersect
the surface z = F(z, y) in a curve C’ of which C is the projection
on the zy plane ; let V be the volume that is intercepted by the
cylinder between its base A and the portion of the surface
bounded by the curve C’. The measure of the volume V will
now be defined.

Let the volume V be divided by two sets of planes parallel
to the yz and 2z planes respectively into elementary volumes
that may be called columns ; the area A will at the same time
be divided into meshes that are, except possibly near the
boundary, rectangular. If ¢ is a typical mesh and if F(z,, y,)
and F(x,, y,) are the least and greatest values of F(z, y) when
(z, y) is a point in o, the column which has ¢ for base will lie
between two cuboids (that is, rectangular parallelepipeds)
which have as their measure the products F(x; y;)0 and
F(x,,y,)o. Hence the volume V will lie between two sets of
cuboids whose measures are S and s where

8=Z F(z,,y,) 0, s=X% F(xlr Y1) o,
and the summation extends over all the meshes of 4.

Now F(z, y) is continuous in 4 and therefore § and s have
a common limit when the number of meshes tends to infinity
and at the same time the diagonal of each mesh tends to zero ;
this limit is the double integral of F(z, y) over A and is taken
as the definition of the measure of the volume V or, when the
measure of the volume is obviously meant, simply the definition
of V. Hence

V= I Pz, y)dc:J.J.AF(x, YA P (1)

Further, since the integral is independent of the shape of the
meshes so long as the diagonal of each mesh tends to zero, the
element of area do is itself arbitrary in shape.

Again, if there are two surfaces or two parts of the same
surface that are each met by a line parallel to the z-axis in only
one point, their equations will be of the form z=F(z, y) and
z=F,(z, y), so that if F,(z, y) is greater than or equal to F(z, y)
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the volume intercepted by the cylinder between the surfaces
will be

[ i@ o - [ Pegdo=| Fiie ) - Fa yido.

The form of the result shows that the formula holds even
when F(z, y) is negative as would be the case, for example,
if the surface were the sphere 22 +y?+2%=a? and

Fy(z,y)=(a? - 22 —y?)} and F(z,y)= - (a? -2 -yt
If the curve C is EFGH, Fig. 7, p. 317, then

7 ’ NS
14 zrdx j' F(z,y)dy =r dy J- F(z,y)de.
a up a NR

When C may be cut by a line parallel to an axis in more points
than two, it may be divided into a finite number of curves each
of which will be cut by a line parallel to an axis in not more than
two points and the volume would be given by the sum of the
integrals over the partial areas.

Ez. 1. The volume intercepted between the plane x +y +z=a and
the paraboloid 2az =2 +y? is given by the integral

[ {0022 an iyt

where A is the area bounded by the circle z =0, 22 +y2 + 2a(x +y) =2a%.

Here F(x, y)=a -z -y and F(z, y)=(x*+y?)/2a and these surfaces
intersect in a curve whose projection on the xy plane is the circle. For
the evaluation of the integral see § 130, Ex. 6.

Area of a Curved Surface. If S is the part of the surface
z=F(x, y) that lies within the curve (" it is natural to assume
that it has an * area,” but as the surface is not in general a
plane surface some definition is needed of the measure of such
an area. This definition will now be given.

If p =92/0x =0 F|dx and ¢ =0z/dy =0 F[dy, and if y is the acute
angle between the z-axis and the normal to the surface at

(=, ¥, 2) cosy=|(p2+q2+l)—%];

hence, if p and g are continuous, and therefore finite, when the
point (z, y, 0) is in the area A4, the normal will not be parallel
to the zy plane and therefore no tangent plane at any point of
8 will be perpendicular to that plane. It is assumed that p
and ¢ are continuous.
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- The column- (in the ‘previous construction) which has the
mesh o for its base will cut the tangent plane at any point
¢ P(z, y, z) of the surface

that is inside the column
in a quadrilateral ¢,¢,t,t,
(Fig. 8). The area, o
4 say, of this quadrilateral
is osecy because o is the
projection of ¢’ on the zy
plane. The sum of all

v

£

L
[ & S

1
o, -‘_ii the quadrilaterals for the
[ ’ .
A R meshes of 4 is
/ vl T2
-, L0 ‘7 Zsecy.o=3Z,/(p?+¢%+1)o.
v i

~ Now /(p*+4¢%+1) is a
Fie. 8. continuous function of =z

and y and therefore when the number of meshes tends to infinity,
the diagonal of each mesh tending at the same time to zero,
this sum has a limit, namely the integral

f S+ +1)do.

This integral is defined to be the measure of the surface S or,
as before, the definition of S when it is the measure that is
clearly meant. Hence

S:LJ{(%—? 2%(%1 y l}da. ereeeeeeenn(2)

In the next article it is shown that this measure of the area
is independent of any particular choice of the coordinate axes.
See also Exercises XVI, 33.

From equation (2) it follows that dS=do sec y, so that, if
48 is the measure of a small area of the surface at P,

o8 48 o _dS
’_,0-0_’,—:04‘07 ' vé:)? ::i; cosy:l.
Hence, in finding dS we may substitute ¢’ for 6S—that is, we
may suppose the area ¢S to be the quadrilateral tyt,t5t, that lies
in the tangent plane at P and the arcs that bound the area 68
to be the sides of the quadrilateral. When o is a rectangle ¢’
may be taken to be a parallelogram of which o is the projection ;
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the area v.may, however, be of any sha,pe as was noted in
dealing with the integral (1).

If the surface is a cylinder, y =f(x), it is obvious that dS =dzds
where ds is an element of the curve, z=0, y =f(x).

. E=z. 2. Apply the integral (2) to prove that if 4, B, C are the points
in which the plane zla +y/b +zjc=1
cuts the coordinate axes the area of the triangle 4 BC is
IV(b%c? +c?a? +a?h?).
Here p = —c¢fa, g = —¢/b, and therefore

! 2 2 ’
S =UV(1 + ‘%+%)dxdy, taken over the triangle OAB

=4/(b2%c? + c2a? +a?b2).
The integral thus gives the usual value, so that the two methods of
measuring the area agree in this case.

Ex. 3. The area of the surface of the paraboloid az =x? +42 that lies
between the planes z =0 and z =a is }7(5./5 — 1)a?.

The projection on the xy plane of the curve in which the plane z =a
cuts the paraboloid is the circle (4) given by z =0, 22 +y% =a? ; therefore

S A )i

Now transform to polar coordinates.  (See also § 129, Ex. 5.)

129. Curves on a Surface. Element of Surface. Let the
coordinates z, y, z of a point P in space, the axes being rect-
angular, be defined by the equations

z=f(u, v), y=g(u,v), z=h(u, ) TS (1)
where f, g, h and their first derivatives with respect to « and v

are single-valued, continuous functions when % and v vary
independently within some given range. If the Jacobian

o(f, 9) ;

. v) is not zero u and v can be expressed as continuous
3

functions of z and y and, when these functions are substituted
for » and v in A(w, v), an equation, z= F(z, y) say, is obtained
so that the equations (1) define a surface. It will be assumed
for the present that the above Jacobian is not zero.

When v is constant, say v=1v,, and varies, the equations (1)
define a curve, C(v,) say, which lies on the surface and, similarly,
when u is constant, u=u,, and v varies, they define another
curve C(uo) on the surface ; the values %, and v; determine a
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point P, on the surface which may be called ‘“ the point (u,, v,)
—that is, the point on the surface in which the curves C(u,)
and C(v,), that is, u =u, and v =v,, intersect.*

The direction cosines of the tangent at the point (u, v) to the
curve C(v), that is, v=constant, are, by § 115, Cor. 3, pro-
portional to the derivatives f,, g,, A,, and those of the tangent
to the curve C(u) are proportional to the derivatives f,, g,, hy,
so that, by the usual formulae of three dimensional coordinate
geometry, if I, m, n are the direction cosines of the normal to
the surface at (u, v),

I m =n +1

T, T, Ty J(EG-F?)

where
Jl =guhv _hugw J2=huf1: -fuhm Ja zfugu —gufv} (2)
E'—‘—f& +9124 +h3: F ‘:fufv +Gudv +huhv G:ﬁ +g§ +hg

If 6 is the angle between the tangents at (u, v) to C(u) and
C),  JEQ).cos0=F, .J(EG).sin0=/(EG-F?) ...... (3)
and it is easy to prove that at the point (u, »)

0z Jy o0z J,
a'ﬁx‘—— _js, —a?/——' —-cl_a ---------------------- (4)

Again, an equation between v and v will define a curve
C which lies on the surface. If P is a point (z, y, z) or (u, v)
which lies on C and if s is the length of the arc AP, measured
from any fixed point 4 on C, then (§ 115, Cor. 1)

ds? =dx? +dy? +dz2.
Now dx=f,du +fdv, dy=g,du +g,dv, dz=h,du +h,dv,
and therefore ds?=Edu?+2Fdudv+Gdv? .................. (5)

If 5, and s, are the lengths of the arcs of C(v) and C(u) then
dv =0 for C(v) and du =0 for C(u) so that
ds;=JEdu, dsy=/Gdv ............oooiiill (6)
where ./E and ,/G are to be taken as positive. The direction
cosines of the tangent to C(v) are dz/ds,, dy/ds,, dz/ds, ; but
- LB, L =qJuE, =hIVE.

* See Bell’s Coordinate Geometry of Three Dimensions (2nd Ed.), pp. 348-352,
with the references in the Footnote on p. 352.
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with similar expressions for the direction cosines of the tangent
to C(u), so that as before ,/(ZG)cos §=1F.

Suppose now that the curvilinear quadrilateral in Fig. 8 is
that which is determined by the curves C(u), C(v), C(u +du),
C(v +dv) ; the quadrilateral ¢,£,¢,t, in the tangent plane may,
as has been seen in § 128, be substituted for 48 and considered
as a parallelogram with sides ds;, and ds,, so that the element of
area dS is given by

8 =ds,ds, sin 0 = /(EQ) du dv sin 0 =./(EG - F¥)du dv ...(7)

where ./(EG - F?) is positive. The area S is given by the
integral

S=”J(EG’ — P AUV, s (8)

Suppose next that the Jacobian J; or (f,g, — guf») is identically
zero. The functions f(u, v) and g¢(u, v) are therefore not
independent so that f and g, or # and y, are connected by a
relation, ¢(z, y) =0 say. In this case the surface is a cylinder
with generators parallel to the z-axis; it may be given in
general by the equations

x:fl(u)9 y=gl(“)1 z:h(u, 'U),
where f, and g, are functions of « alone.

Here F=h,h, G=h 1If we take simply z=v then F =0
and G=1,

If a second Jacobian, J, say, were also zero so that an
equation y(y, z) =0 would hold in addition to ¢(z, y) =0, the
equations (1) would represent a curve and not a surface.

Change of axes. If the coordinate axes are changed to
another set of rectangular axes with a new origin (a, b, c), the

usual equations of transformation give, &, », { being the new
coordinates,

z=a+LE+mm+n,8, y=b+LE+..., 2=c +l& +....
The known relations between the direction-cosines /,, ... , nggive
ds? =dx?® +dy? +dz2=d&? +dn? +d{?,
so that the values of E, F, G are not changed and therefore the

value of S, given by the integral (8), is not changed. Thus
the measure of the area is independent of the coordinate axes,
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as it should be. The functions E, F, G are independent of any
particular choice of coordinate axes, so that the value given by
(8) depends solely on the surface.

Change of parameters. 1f the parameters u, v are changed
to u,, v; by the transformation
u=@(uy, v1), v="p(uy, v;), J —aa(,(lZ’ Zz) #0,

and if E,, F,, G, are the new values of E, F, G, it is not hard to
show that J(EBGQ, - F2)=/(EQ - F?) . |J |,
and therefore (by § 134, Problem I),

[[J w6 - Pranan=|[, 26, - Fau,an,

Hence § is independent of the particular parameters u, v, as
well as of any particular set of coordinate axes.

Ez. 1. The curves C(u) and C(v) are orthogonal if F' =0.
For cos 6 =0 and therefore 6 =n/2 when F =0. In this case dS takes
the simple form /(EQ) du dv.

Ez. 2. For a sphere of radius R we may put
=R sinf cosp, y=Rsin 0 sin ¢, z=R cos 0
and dS =R?sin 0 df do
Here 0, ¢ take the place of «, v and
E=R? F=0, G=R?sin?0; \/(EG)=R?sin 6.

Ez. 3. TFor a surface of revolution about the z-axis we may put
r=ucosv, y=usinv, z="F(u)

and a8 =v{1 +[ F'(u)Fududv.

Ex. 4. If the curve given by the polar equation r =f(0) makes a
complete revolution about the initial line

dS =vilf(6)1+L[f(0) 1%} sin 6 d6 do.
Here we may take
x=f(0) cos 0, y=f(6) sin 0 cosp, z=f(0) sin § sin ¢.

Ez. 5. For the paraboloid of § 128, Example 3, we may put
r=ucosv, y=usinv, z=ulla

and E =(4u? +a*)[a?, F =0, G =u?.
Then uJ(4u2 a?) dudv—g 1r j u\/(4'l:: +a’)du
° o

so that %’(5../5 ~1)az.
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Ez. 6. If 2=0 so that the surface is a plane surface, show that the
area enclosed by a plane curve { is given by

If| s

dudv.

2
2, Y)1*  Seq § 134, Problem I, Cor.

In this case EQ@ - F*= .
o(u, v)

130. Worked Examples. Some examples will now be worked
out to illustrate certain elements in the evaluation of double
integrals.

When a double integral is given the first consideration is to
determine the field of integration, and the student is strongly
recommended to sketch, roughly it may be, the area over
which the integration extends. There is no necessity for a
detailed drawing, but the essential elements of the figure
should be noted.

Ez.1. Evaluate “xydxdy, the field being the positive quadrant

(that is, the quadrant in which both x and y are positive) of the circle
z? +y?=al.
A figure shows at once that the integral is
a (a3 — 28) a v(at —22) a 2 _ 2 4
) o

0 /0

Ez. 2. Evaluate “ y dx dy over the part of the plane bounded by the

line y =2 and the parabola y =4z —z2.

The line and the parabola intersect at the points (0, 0) and (3, 3);
the field of integration is that segment of the parabola that lies above
the line, and if the ordinate MP at the point P(z, y¥) on the parabola
meets the line at @ the limits for the integration with respect to y are
MQ =x and MP =4x —~2* while the limits for the z-integration are
0 and 3. Thus

4z — 22
”ydxdy:fodxfx ydy=54=10-8.

Ez. 3. Integrate (z2 +y?) over the circle x2 + y2 =a?.

In this case rectangular coordinates are laborious and it is simpler to
suppose that the area is divided by the use of polar coordinates 7, 6.
The element of area is then (E.T'. p. 338) rdrd6 and the integrand is 72;
the angle 6 will vary from 0 to 2z and r from 0 to a. The integral is

2 4
therefore s wdf)rradr =£2a— .
o Jo

Ex. 4. Integrate F(z, y) over the positive quadrant of the ellipse
a?a® +y2[b? =1.
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This example is taken to illustrate the method of changing
the variables of integration in a double integral ; at each stage
the diagram should be drawn. The integral is

a. (4 b
fodx go Flz, y)dy, 3=, n(a* -2%).

Now let y =by, dy =bdy. The limits for 7 are 0 and 1, =+ y(a® ~2%),
so that rdx SylF(x, y)dy =brdx V'F(m, bn)dn.
o o o Jo
Let the order of integration be changed. The limit 5, is an ordinate
(in the first quadrant) of the ellipse a%;% =a? —a2. When the order of
integration is changed the limits for « will be 2 =0 and x =z, =a./(1 - 5?)
while the limits for  will be =0 and n=1. Thus the integral becomes

b rd S"‘F( by)d
x, .
0 n o )@
If now x=af, dr=adf and the limits for £ are 0 and & =s(1 —7?)
so that the integral becomes
1 &
ab 'an [('Fiat, bm)de, &=v(1-m)

The field of integration is now the positive quadrant of the circle
£2 +92=1. This transformation is often useful, as in the next example.

K/(a2b2 — bzxz _— azyx)
~(a%? + bix? + a’y?)
being the positive quadrant of the ellipse z%/a? +y2/b2 =1.

dx dy, the area of integration

Ezx. 5. Eva,lua,te”

—apl (ML =€ —75?) ; 2 Lt
Integral ._abﬁ AT E T dédn over pos. quad. of circle £2 +72 =1

afn 1
=3(i-2)®
To evaluate the integral in £, %, use polar coordinates; the integral

becomes, if the factor ab be omitted,

1./(1 —r2)rdr % % . ~
Lwﬁow—ggl V(2 - g¥)de, if gt =1+72

Ex. 6. Evaluate “{2(12 - 2a(x +y) - (2% +y?)} de dy, the field of inte-

gration being the circle x2 + y2 + 2a(x +y) =2a2.
Transfer to ( ~a, —a) as origin by putting z +a=§&, y +a=n; the
integral becomes

ﬁ(w - & —y?)dEdy over the circle & + % —4a2.

Now change to poiar coordinates ; the result is 8za?.
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Ez. 7. The volume common to the sphere z? +y* +2* =a? and the
cylinder % +y? =ay is } (3n —4)a®.
The volume required is double the volume that lies above the plane
2z =0 and is therefore if z =y/(a? - z® —¥?),

2”z dxdy, taken over the circle 22 +y? =ay.

Transform to polar coordinates and integrate over half the circle,
that is from 0 =0 to 0 = /2 ; the volume is therefore

w/2 rasiné
2 x 250 dego V(a? —r¥)r dr =3(37 - 4)a?.

Ex. 8. The volume common to the surfaces y®+z®=4ax and
2% +y? =2ax is $(3n + 8)a’.
The volume is given by the integral

2a
4|, dxﬁ‘vuax _yt)dy, 9y =v/(2az -2,

Now, z is constant when intégration is made with respect to y; we
may change from y to 6 where y =y/(4ax).sin 6 and then the integral
becomes

4§?de: dazcos?0dl, sino= \/@ - %})

P 1 2 1 =z I \/ 1 =z
“8“_[070{\/(2“4@)\/(2’“42)*5‘” (z-4)) &=

If for « is put 2a cos ¢ the result comes at once.

The fact that one of the variables is constant when integration is

made with respect to the other should not be forgotten when change of
one of the variables is being made.

" Ex.9. When the integrand is the product of a function ¢(x) of x
alone and a function y(y) of y alone and the limits a, b for the z-integra-
tion and a’, b’ for the y-integration are constant, show that

[} d= [ o vy =([] ot@rda) x ([}, viwray ).

The following examples refer to the change in the order of
integration ; a diagram of the field of integration is useful, and
the student should make one, however rough.

Ez. 10. §:dx 5; F(z, y)dy = g: dy S: F(z, 9)dz oo, eeneli)

‘: de s: F(z, y)dy =(Z dy S: F(@, §)d2. oo . (i)
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The field in case (i) is. the triangle 4 BC (Fig. 9), and in case (ii) the
tna,ngle ACD; AD BC are the lines  =a, 2=b and 4B, DO’ the lmes
Y¥=a, Yy=b while 4C is.z=y.

7A

,L_0 K C
i

N-HL R s

) P lg

ol a M ¢ =
6. 9.

Taking the triangle 4 BC as the area of integration we have
b z ‘ (b uQ
fode (7 P vty =(" do [ P, yyay = ay [ B, 1o
a a : a MuP

[ [’ 7@, ).
a v

The other equation is proved in the same way. The special cases in

which a =0 are frequently required and are sometimes called Dirichlet’s
Formulae.

Ez. 11. Prove that if n=0
b y 1
ooy [l w-orrs@e =2 |
Apply (if) of Example 10; thus the double integral is equal to

e e sy o[ oty

1, -2 f(@) da.

EBz. 12. Prove rdzr —Fx(x, y)dy = 5 dyj F(w, y)dx

o Jo
The field is the triangle bounded by =0, y =0 and z +¥ =a.
Ex. 13. Prove that

20, (36— 3a_ [3a-
|, 42 [ Fe gray = [ aw [P, yyao + [ [l gy
1 . :
* (Todhunter, Int. Cal. p. 212.)

The field is the area bounded by the straight lines =0, y=3a -
and the parabola y=a%/4a. The parabola and the line y=3a -z
intersect at 4 (2a, a) and the field is the area OAB where OB =3a;
the lines MN, CA, PQ are parallel to the z-axis and OC =a (Fig. 10).
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- In this case the area OAB must be divided into the partial areas
0AC and CAB ; the arc 04 and the line AB give MN =2+/(ay) when

yA

B

P Q

c A

M N A

0 27 ‘x

OM =y and PQ =3a -y when OP=y. The double integral becomes,
when the z-integration is taken first

oc MN (7] PQ
; dy‘ Fz, y)dx+§ dy‘ F(z, y)dx
o J oc ~ Jo

g dy ‘ F(a:, y)dx +( yj F(a:, y)dzx.
Ezx. 14. Show thatif 0< a< b
b z a b b b .
L dz SEF(:C, v)dy :ggdy S‘L’F(x, y)dz + L dy .‘v F(z, y)da.
z b v

The field is the sector bounded by the hyperboia xy =a? and the
straight lines y =z and # =b ; it must be divided into two partial areas
as in Example 13.

131. Green’s Theorem. Let F(z,y) and Q(z,y) be two
single-valued functions of z and y which, with the partial
derivatives dF/dy and 9G/dz, are continuous when the point
(%, y) is inside or on the boundary C of an area 4. Green’s
Theorem gives the following relation between a double integral
over 4 and a curvilinear integral along C

” aG aF)dxdy—J(Fdx+Gdy) .............. (1)

where the integral along C is taken in the positive direction.*

* The relation (1) is a particular case of Green’s general Theorem for
expressing an integral taken through-a volume by an integral over the surface
that bounds the volume. See § 138.
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Suppose first that no straight line parallel to either axis can
cut C in more than two points and take the notation of Fig. 7,
p- 317; then -

RaF T8 b’ b’
I —dxdy-j dyj —dr -I G(NS, y)dy —J’ G(NR, y)dy
where NS = y,(y) and NR=y,(y). Hence

”,%g d dy = I 6w, y)dy - IG(x y) dy =I§ By e, )
Again
ey b )
I OF 1z dy —j d:cj --dy—f Pz, MQ)dx ~j F(z, MP)dx
where MQ ®o(x) and M P = g,(x) ; therefore
I OF edy=[ P, y)de - J'F(x, y) da = ~dex ........ 3)

a HGF

From (2) and (3) equation (1) follows. The particular cases
(2) and (3) should be noted. It is obvious that the curve ('
may consist in whole or in part of rectilinear segments; for
example, C might consist of the arc FGH and the segments
HA, AB, BF. Along AB, y is constant and the contribution
to the integral (2) from 4B is zero ; similarly the contributions
to the integral (3) from HA and BF are zero.

Next, if C can be cut by a
line parallel to an axis in more
than two points, as in Fig. 11,
(a), the area may be divided
by the lines PQ, RS, TU into
partial areas whose boundaries
satisfy the condition first im-
posed on C. The double integral
over the whole area is the sum
of the double integrals over the
partial areas, while the curvilin-

& ear integrals along the auxiliary
O lines cancel since along each line
(5) the integral is taken twice in

Fo. 11.

opposite directions. The area
might be the ring-shaped region between two closed curves

(Fig. 11, (b)).
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Ezx. 1, If 0G/ox =0F oy for every point (2, y) in A and if o and g are
any two points in 4, prove that the integral

L (Pdz +Qay)

has the same value for every path from « to §, provided the path lies
in A.

Let ooy f and o f be any two curves joining o. and § that liein 4 and
have no points in common except o and f. Green’s Theorem holds
for the area A’ bounded by the curve ayfde (or C’); but the double
integral over A’ is zero since 9@/ox =0F|[dy at every point in 4’ and
therefore the integral along C’ is zero. Now

S (Fd +G dy) =§ (Pdz +Gdy) -5 (Fdz +Gdy)
(4 ays adp

so that the two curvilinear integrals are equal.

Ex. 2. If the curvilinear integral in Ex. 1 is independent of the
path o when o and § are any two points in 4 and the path lies in A4,
show that 8G/dx =8 F oy for every point (z, y) in 4.

If A’ is the area bounded by any closed curve ¢’ that lies in 4 then

§(Fdx+ady)=o, 80 that ﬁ (iq_@)dxdyﬂ.
[+

4\%xr 0Oy
Now if the continuous function (@, ~ F,) is not zero at P, any point
in A, there is a region 4’ surrounding P in which (G, - F,) has the same
sign as at P and the integral over A4’ could not be zero.

Ez. 3. If oG/ox =0F|dy for every point (z, y) in 4 then Fdzx +Gdy
is a complete differential (E.T. § 94).

Let P(& n) be any point in 4. It is always possible to choose
another point M (a, b) in 4 so that the path MNP, where N is the point
(& b), liesin 4. Let f(&, ) be defined by the equation

J(&, n)=SHN£de + G dy) +const.,

=r Pz, byde + g” G(&, y)dy + const.

» 0G(&,
o

so that af s2=F(& b)+ F(&, n) - F(&, ) =F(E, ).

Now om0 +[] 28 W ay = pig, 1) + |7 2L 2 gy,

Also g%=a(s, n).
Hence F(&, n)dE +G(&, n)dn = ‘fd§+ ‘fd'l =df(&, 1),

or, z and y bemg put for £ and 5 respectxvely,
F(z, y)dz +G(=, y)dy =df(z, y).
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EXERCISES XYV.

1. The volume common to the cylinders
22 +y?=a?; af 422 =a?
1fq® and the surface of one cylinder that lies inside the other is 8a®.

2. A sphere of radius a is pierced by a circular cylinder of radius
b(b< a), the axis of the cylinder passing through the centre of the
sphere. Prove that the volume  of the sphere that lies inside the
cylinder is 4nf{a® - (a® - b*)g} and that the surface of the sphere inside
the cylinder is 4na{a — (a® - b‘)‘}}.

3. The sphere x? +y? +2% =a? is pierced by the cylinder 2 +y%=ay ;
the area of the spherical surface inside the cylinder is 2(x — 2)a®.

4. An arc AB of a circle of radius r subtends the angle 6 at the centre
O of the circle; show that the volume of the sector of the sphere
formed by the revolution about OA of the sector 04 B of the circle is
2an3(l —cos ).

Deduce the expression (E.7T'. p. 346) for the polar element of volume
of a surface of revolution about the initial line.

5. One loop of the curve r%cos?fl =a%cos20 makes a complete
revolution about the initial line ; the volume of the solid generated is
37(10 - 3n)ad.

6. The area of the surface of the spherex? +y2 +22=1 that lies inside
the cylinder 2z%(z? +y?) =3(x? - y?) is

2 - 44/2. {4/3log (/3 +4/2) —2log (1 ++/2)}.
7. The volume and the surface of that part of the cylinder
x%la® +2%/c® =1, a® -c?=e%a?,
which lies between the planes y =0 and y =mx(m > 0) are $ma®c and
1 ~e? 1l+e

ma={2 t— log (—175,)} respectively.

8. ABC is a spherical triangle and the angle 4 BC is =/2 ; if the radius
of the sphere is unity, show that the area of the triangle 4 BC is
A +C -}n where 4 and C are the numbers of radians in the angles
BAC and BCA.

9. The sphere x? +y? +2% =a? is pierced by the cylinder

(2 +9°)* =a¥(x® —y*) ;
prove that the volume of the sphere inside the cylinder is
8/n 5 42
3 (z t3=73 )¢
and that the area of the spherical surface inside the cylinder is

8(%+1 —,./2)a=.
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10. The part of the volume of a sphere of radius a that lies inside a
right circular cone of semi-vertical angle a. whose vertex is on the sphere
and whose axis is a diameter of the sphere is $z(1 - costa.)as.

11. O is the centre of the ellipse 22/a? +y2/b2=1 and P, Q are two
points on the ellipse whose eccentric angles are o, 8 (0. < f8) respectively.
A cylinder with OPQ as base and with generators parallel to the z-axis
intersects the paraboloid z?/a +y2/b=2z; prove that the area of the
surface of the paraboloid inside the cylinder is

}(2v2 - 1) (B - w)ab.

12. The area of the paraboloid x2/a +y%/b =2z inside the cylinder
2ta? +y?[bt =k is §n{(1 + k) — L}ab.

13.* The area of the surface of the sphere x? +y%+22=2cz, ¢ >0,
inside the cone 2% =22 tan« +y? tan?g is 4nc?cos o cosf.

Take the coordinates z =csinfcosp, y=csinfsing, z=c+ccosf;
the element of spherical surface is ¢?sin 6 d0 dp and the values of 6 and ¢
at the intersection of sphere and cone are connected by the equation

(1 +cos 6) =(1 - cos 8)( cos?p tan?o. +sin? @ tan2p),
2m 2de to
o 1 +cos?ptan®a +sin? @ tan3f’ ete.

2
area =02§0(1 —cos 0)de =c=§

14. If in Example 13 the cone is replaced by the paraboloid
az =z*tan’a +y2tan?p

the area is 27mac cot a cot f.

15. The area of the surface az=axy that lies inside the cylinder
(x? +y%)? =2a%xy is }(20 - 3n)al.

16. If p is the perpendicular from the centre of the ellipsoid

x%a? +y3[b? +-22/c? =1, a? > b? > c2,

on the tangent plane at the point P(x, y, z) and dS the element of area
at the point, prove that, p being positive,

i) { pdS =4nabc ;

ii 1ao =47 pae o o292 o g2pe
(ii) g 598 =505 (bic* +%at -+ atby),
the integration being in both cases over the whole surface.

Deduce from (i) the volume of the ellipsoid.
17. The surface of the ellipsoid of Example 16 is given by the integral

a®-c® , b2-o % 22y -1
f{1- 5" - ) (1 -5 ) Ve,
the integration being over the ellipse z?/a® +y%/b% =1.

Evaluate the integral for the spheroids given by (i) b=a, (ii) ¢ =b
(E.T. p. 310). See also Examples 21, 22.

* Examples 13 and 14 are modified forms of examples given by Schlémilch,
Ubungsbuch, ii. pp. 281, 282.
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18. The coordinates of the point (=, ¥, z) on the ellipsoid of Example
16 are given as

z=asinfcosg, y=>bsinfsing, z=ccosf;
show that dS may be expressed in the form
dS = {b%c? sin20 cos?p + c2a? sin0 sin’p +a?b? cos’O}‘% sin 0d0dey,
and that the whole area of the surface is obtained by integrating with

respect to 6 and @ from 0 to # and from 0 to 27 respectively.
Evaluate for the cases b=a and c¢=b.

19. If r, 0, ¢ are the spherical polar coordinates of a point P on a
surface and y the acute angle between the radius vector OP and the
normal to the surface at P, prove that the element of surface may be
expressed by the equation

dS =r2gsecysin 6 db do.

[Let dS’ be the element of surface of a sphere with centre at the
origin O and unit radius, and let a cone with O as vertex and dS’ as
base cut the given surface in the element dS; then dScosy =r2dS8’
so that

dS =r?secy dS’ =r?secysin 6d0 dg.]

20. Find, by applying the form of dS given in Example 19, the total

area of the surface given by the equation

(x2 +y2 +zz)2 =a2xl +b2yﬁ +czzz,
and show that it is equal to the total surface of an ellipsoid whose
semi-axes are bc/a, ca/b and ab/c respectively.

21. In the notation of Example 16, if 6 is the angle between the normal
at P and the z-axis, cos 0 =pz/c? ; show that if 0 is constant P lies on
the curve C in which the surface

cos20(x?/at +y?[b% +22[ct) =23[ct

intersects the ellipsoid. Suppose z>0 and 0= 6 < #/2; let S be the
area of the surface bounded by C (and containing the point (0, 0, ¢))
and o the area bounded by the projection C’ of C on the plane z=0.
Show that the surface dS lying between the curves C and C, that
correspond to the values 6 and 6 +d0 is equal to do sec 6 where do is
the area between the projections ¢’ and O of € and C, and that

o =nab(1 — cos?0)/y/{(1 — €2 cos?8)(1 —ef cos?0)}
where e} =(a? - c?)/a® and e} =(b% —c?)/b.
[Obviously the equation of C is

(1-¢} cos"())Ef +(1 —e2 cos’ﬂ)y—’ =1 - cos?0
1 a2 2 bz - ’

and the expression for o is the area of this ellipse.]
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22. The area § within the curve C (Ex. 21) is given by the integral
_(do @ _‘o'sinOdO
“Jeosf cos® | cos?@
the initial value of 0 being zero.
[To evaluate the integral, let
e,cos6 =sing, e}le}=k?®<1, ¢=sin~l¢, when §=0
then it may be shown that S/nab is equal to

V(1 ~ef)v(1 —ef)

_[(1 —€}) —e}cos?p]sing
eycos ga/(1 — k?sin?p)

1 sin—le, dtp rsin~le, Ksino)d
+(e—l—el)j¢ AT gy tal, V(1-Keintp)dp.

The transformation is somewhat laborious, but it forms a good

exercise. The whole area of the surface is found by putting ¢ =0 and
doubling the result. ]

23. Apply the method of Example 22 to Example 12.



CHAPTER XI
MULTIPLE INTEGRALS. SURFACE INTEGRALS

132. Multiple Integrals. Suppose that a single-valued,
bounded function F(z, y, z) of three independent variables is
defined for all points (z, ¥, z) in a volume V, the surface of the
volume being included in the region of definition ; the volume
may be, for example, a tetrahedron or a cuboid (that is, a
rectangular parallelepiped), or an ellipsoid.

If the volume be divided in any way into n elementary
volumes v,, ¥y, ..., v, and if M, m and M,, m, are the upper
and lower bounds respectively of F(z, y, 2) in V and v, we
may form the sums

n n
S=> M, $=D,My ceerrerrrnrnnnnnn, 1)
r=1 r=1

as was done for functions of one and two variables; as before,
8 and s will be called the upper and lower sums for the function
F(z, y, z) and the particular division [vy, vy, ... ,v,] of V. After
the discussion of the corresponding sums for the cases of
functions of one and two variables there can be no difficulty
in establishing similar conclusions for this case, and we will
therefore simply state, without further proof, the fundamental
results and then give the definitions of the integrals.

It is assumed as before that all curves are rectifiable and
that all plane areas bounded by curves are quadrable; the
measure of a volume is defined in § 128.

By the diagonal d, of an element of volume v, -is meant
the upper limit of the distance between two points on the
surface that bounds the element; clearly v,<<d®. When
d,—0 the element v, will tend to zero in all its dimensions.

The sum S has a lower limit L and the sum s an upper limit
342
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to which they tend when # tends to infinity in such a way that
the diagonal of each element of volume tends to zero.

The limits L and [ are called the upper and lower triple
integrals respectively of F(z, y, z) over the volume (or region,
or field) ¥, and are denoted by the symbols

L=J.VF(x, Y, 2)dv, Z=J-"F(x, Y, 2)dv. ............ 2)

- When L=1 the common limit of S and s is called the triple
integral of Fl(z, y, z) over the volume V and is denoted by the

symbol IVF(x, Yy 2)AV. cviniiiniianinn, ceeees(8)

The symbol dv represents the elementary volume », and is
called, with reference to the integral, < the element of volume.”
- The mode of dividing V into elementary volumes is arbitrary,
so long as the elementary volume tends to zero in all its
dimensions when its diagonal tends to zero. If V were a
cuboid given by the equations z=a,, =5y, y =a,, y =b,, z=a,,
z=b;, the intervals (a,, d,), (a,, b,) and (a, b;) might be
divided into m, n and p sub-intervals respectively and planes
drawn through the points of division parallel to the coordinate
planes. The typical elementary volume would then be
(k. ki) where h, =Zpyy — %y, ks =Yer1~ Y U =241 -2, the
numbers z,, y,, z, being representative numbers in the intervals
(@1 b1), (a3, by), (ag, b3). If (&, 7, {;) is any point in the
elementary volume (k,k,l,) the triple integral over ¥V would be
defined as the limit of the sum
r=0,1,2,..,(m-1)
2 F(&,, s COhEL, §=0,1,2,...,(n-1)......... (4)
nat t=0,1,2,...,(p-1)

when m, » and p tend to infinity in such a way that the diagonal
(A% +k%4-13) of each elementary volume tends to zero. The

corresponding notation for the triple integral would be

J- F(z,y, z)(dedydz) or ”' F(z,y,2)(dxdydz) ...... (5)
v v

the element of volume being now (dxdydz). The three symbols
J. of integration become appropriate when the evaluation of

the triple integral is made by three repeated integrations ; it
is usual then to omit the brackets round dz dy dz.
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Integrable Functions. The condition that F(z, y, z) should
be integrable over V is found as before ; L will be equal to [ if
there is a division of V¥ for which § — s is less than ¢ (see § 122,
Note), or if §~s tends to zero when the diagonal of each
elementary volume tends to zero.

If F(z, y, 2) is continuous in ¥V it may be shown as before,
by using the property of uniform continuity, that F(z, y, 2)
is integrable over V. If F(z, y, 2) is discontinuous in V it will
be integrable over V if its discontinuities are finite in number
or if, when infinite in number, they all lie on a finite number
of surfaces, which can therefore be enclosed in a finite number
of volumes whose total volume can be made arbitrarily small.

The reduction to repeated integrals is effected by the same
method as in § 126. Take the case given by (4) for the cuboid.
In the sum keep all the numbers except those that refer to the
division of (a, b;) constant and let S, be the sum

-1
Sp:l—ZOF(E" Nss $¢)lt;

when p—>o this sum tends to a limit, ¢(&,, 7,) say, where

(&, M) =J':F(§r: s, %,0%,

because F(&,, 5,, z) is either continuous or has only a finite
number of discontinuities. The sum Zg(&,, 5,)k.k, can now be
treated in the same way and we find

”. VF(Z, y,2)dxdy dz=J.:dx Iz:dy J—::F(x, y,2)dz. ...(6)

The order in which m, n, p are made to tend to infinity
makes no difference to the value of the triple integral and
therefore the six repeated integrals, of which that in equation
(6) is one, are all equal ; in other words the order of integration,
when the limits are all constants, is indifferent, just as for the
case of two variables. The repeated integrals will exist even
though there be a finite number of planes of discontinuity
parallel to the coordinate axes though the separate integrals
may not exist (see § 127).

If V is not a cuboid the reduction to repeated integrals may
be effected in the same way as for a double integral by enclosing



§§ 132, 133] REPEATED INTEGRALS 345

V in a cuboid and taking F,(z, y, 2z) = F(z, y, z) for points in
V, but F,(z, y, 2) =0 for points in the cuboid that are not in V.
(See § 126.) See also E.T'. pp. 338, 339.
If F(z, y, 2z, w) is defined for a four-dimensional region R,
say for the points (z, y, 2, w) where
G=x<b, aSy=b, a;=2=b; and g, <w=<b,,
the quadruple integral

I F(z,y, z, w)(dz dy dz dw)

would be defined as the common limit of sums 8 and s where
S=> MW, s= > m,W,
r=1 r=1

and M,, m, are the upper and lower limits of the function
F(z, y, z, w) in the elementary region W,, and the integral
would be reducible to four repeated integrals

by () s «
I F(x, y, z, w)dz dy dz dw=[ dx f dy r dz r F(z,y, z, w)dw.
= Ja a a Ja

In the same way quintuple, sextuple, ..., n-ple integrals may
be defined.

Ezx. 1. S“ z% throughout the volume bounded by the

planes x =0, y =0, 2 =0, z +y +2z=1.
See Fig. 78 (E.T. p. 339) and let 0OA =OB=0C=1. The integral is

de sl:iz S’l—x-y dz =31 2
o 4 0 (x+y+z+l)3_% 82 s

Ez. 2. If x® +y? +23 =r2, calculate the integral of 2 when the field of
integration is the volume inside the sphere x? +y? +22 =a?.

In this case it is most convenient to take the polar element of volume
r2sin 0 drd0dyp (E.T. p. 346). The integral is

g" ridr (" sin 0 def"dlp A
) Jo ) 5

Examples 6-14 (E.T. pp. 348, 349) furnish easy cases of double and

triple integrals.

133. Change of Variables. The method will first be con-
sidered for special cases that will illustrate the general process
and emphasize important details. :

The first point that must be grasped is that in the case of a
double integral, for example, when the variables z and y are
changed to « and v by the substitutions = =f(x, v), y =g(u, v)
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and 4-is to take the place of x and v the place of y, the change
from y to v is made on the supposition that x is constant ; the
variable » may be supposed to be eliminated between the
equations x=f(u, v), y=g(u, v) so as to give an equation
y=¢(x, v). If v is not eliminated the relation between dy
and dv would be obtained by differentiating the equations
x=f, y=g, treating = as constant and eliminating du from

the equa.tions
| gg du +g dv.

Next when v has ta,ken the place of y the order of integration
must be changed ; the value of dx is then obtained from the
equation between z, u and v, the variable v being now treated
as a constant.

Care must be taken to assign the limits of the new integrals
properly, and in any given example the use of a diagram is
strongly recommended.

af du +afdv dy =

Ex. 1. Transform theintegral I = ) dmg F(x, y)dy by the substitutions
T +y=u, r=uv.

We can at once express y in terms of z and « and since the first
integration is with respect to y we replace y by u ; thus we find

I :S:dx S:F(x, w—z)du= Cdx S:Fl(x, u)du ................ (i)

where F(x, u) is the value of F(x, y) in terms of = and u.
The next step is to change the order of integration ; we get

a U
I =Sodu§0F1(:c, Y PR e (i)

Finally from the equation x =uv we have do =udv and the limits for v
are 0 and 1 so that

gdu\ F(uv, w)udv = S dug Fy(u, viudv
where Fy(u, v) is the value of F(z, y) in terms of » and v.
The integral has therefore been expressed as an integral with constant
limits.
Ex. 2. By means of the substitution in Example 1, show that

Too(1- 1 1
g dx g ;m—lyn-l( l-x -~ y)l’—ldy —_ ‘ um+n—1( 1- u)’—ldu S vm—l( 1- U)n_ldt!
Yo : 0

where m, n, p are each not less than unity (so that the integrand ma,y
be bounded). Prove that the value of the integral is

T'(m)T(n)D(p)/T(m +n +p).



§ 133] CHANGE OF VARIABLES 347

a a-z (@-Z~y .
Ez.3. Transform the integral I =[ dx ‘ dyg F(z, y, z)dz by
‘0 o °

the substitution THY+2=U, T+y=uv, T=uvw.
* First, let z =u -z -y and change from z to % ; then

1=de5“'§yr Fy@, Yy W)y ..o (i)
‘0 0 v+

where F,(x, y, u) is the value of F(x, y, z) in terms of z, y, u
The next step is to change the order of integration. The integral

a-x a
S dy { Fl(x’ Y, '“)du
0 Y+

is taken over the triangle bounded by y =0, u ='a, %=y +z (v constant);
& diagram will show at once that the limits for y are 0 and » —~z and for
w are ¢ and a. Hence .

. a a u- a a
I =§ dx§ du S Fi(z, v, u)dy :S dxs o(x, u)du, say
. o 'z Yo o ‘'z .

where u-z
@(x, u) =$0 Fi(z, y, u)dy.

The change of order in this value of I is given by Ex. 10, § 130, so that
a % u-z .
I =§ du j dxj Fyx, y, wydy. .cocoooeenenen.... (ii)
0 o ‘o , . :
Now take the equation y =uv -z ; keep u and z in (ii) constant and
then dy = dv so that we find
a ] 1
I—_—‘ duj dxg Foz, v, wyudv .ooovvvveneennnn.... (iii)
Jo 0 %
where Fy(x, v, u) is the value of F(z, y, z) in terms of z, u, v.

Again, the order of integration with respect to # and v has to be
changed ; by Ex. 10, § 130, slightly modified, the integral becomes

a 1 Uy
=Sdu ( dv( Fo(@, 0, WU d oo (iv)
o Jo loo % A
Finally, let « =uvw and then dx =uvdw, so that
5du§ dvg Fo(w, v, W20 dw ..o )

where Fy(w, v, u) is the value of F(z, y, z) in terms of u, v, w.
The new integral has constant limits.
Ez. 4. In Example 3 let
a=1 and F(z, y, z) =x™ WYy 129 Y] — g —y —2)™1 )
where m, n, p, r are each not less than unity so that F(z, Y, 2) may "be
bounded ; then prove that the value of the integral is

T(m)L(n)L(p)T(r)/T(m +n +p +71).
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Ez. 5. Prove that the integral

1 1-2y (l-ay~Tg(l—2y—23—1T3
S dxxg dxz‘ dxsg F(xy, 23, %3, ,) A2y
o Jo Jo °

can be expressed as a quadruple integral with the limits 0 and 1 for
each of the new variables. Extend the result to an n-ple integral.

a z
Ex. 6. If I =§ dxg F(z, y)dy and x(1 +u)=v, y =2u, prove that
o o

1={alP A d
"So u’go S(u’ ’U) (1 +u)’ Uy
where F,(u, v) is the value of F(x, y) in terms of u, v.

Here the equation y =au at once suggests that u should take the place

of y and then we find
a 1 1 a
1=| dxs P, su)wdu = g dus (e, o)z d.
70 0 0 0

The change of order is easy since the limits are constants. We
then take the equation z(1 +%)=v; since u is constant for the z-inte-
gration dx =(1 +u)~'dv and the result comes at once.

Another method may be adopted for integrals of the type of
Examples 3 and 4 ; we take a=1 and transform the integral
in Example 3.

Ex. 7. First, let z=(1 ~z —y)(; therefore

1-z-y 1
go Fla, y, 2)dz =(1 - —y)SoF[:z:, (1 - -9)01d¢

=(1 -z -y)g(z, y), say,
because the integral is a function of = and y alone.
Next, let y =(1 —~z)y so that 1 —z —y =(1 —z)(1 —7); then

1-z 1
[ 71 -2 -ipte, w1y =(1 2| 1 -mgt=, (1 -2 dn

where glz, (1 -2)1] =§:th (1 =z, (1 -2)1 =)

Lastly, let z =¢, for symmetry, and we find that the given integral
becomes

1 1
Sl(l -e>=ds§ (1 —n)dng FLE, (1 - &), (1 - E)(1 -l
0 0 0

11¢1
=§°§.,50F (€, (1—&m, (1 - &)L — )L - E)XL ~n)dédndl.
The transformation is given by

z=§ y=(1-&n z=(1-E(1-n)
The method obviously applies to Example (4) and the general integral
of the same type. Note that

oz, ¥, 2) _y _
3G, n, 0-—(1 (1 -n).
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134. General Method. In the method of the preceding
article the new variables are introduced in succession, and when
the first new variable has been introduced a change in the
order of integration is necessary before the second new variable
can be brought in. In the general method that will now be
explained the same procedure will be adopted, but no attempt
will be made to specify the limits of the individual integrals
either before or after the transformation has been made. The
equations that connect the old variables z, y, z, ... with the
new u, v, w, ... will transform the old field of integration into
a new field, and when the integral over the given field has been
transformed into one over the new field the actual specification
of the limits of the integral in both forms of it is left for deter-
mination in each particular case. The following observations
may be useful.

Let I be the integral of F(z, y, z) over a region A and suppose
that it is expressed as a repeated integral, say

:(2) ez, )
I =rde- dy F(z,y,2)dz.
a $i(z) Iz, y)

The integral will be said to be in standard form if the upper
limit of each of the repeated integrals is algebraically greater
than the lower limit. The student might write down the
values of the functions ¢,, ¢,, y,, y, for a region bounded by
a simple surface (such as an ellipsoid) which is cut in not more
than two points by a line parallel to any coordinate axis ;
there is no real limitation in supposing that the region can
always be divided into partial regions that satisfy this condition
and the integral over the whole region is the sum of the
integrals over the partial regions. In any particular case this
division is usually made (see, for example, § 130, Examples 13,
14).

It will be assumed that every integral is expressed in standard
form and that the change of order of integration can be effected
though the actual limits of the integrals will not be specified.
The importance of the assumption of the standard form will
be seen in the discussion of Problem 1.

Again it will be assumed that the old variables are expressed
in terms of the new by functions which are not only continuous
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but have continuous partial derivatives of the first and second
orders and that the correspondence is “ one-to-one ’—thait is,
that to each point, (z, y, 2) say, within and not on the boundary
of the old region there corresponds one and only one point,
(u, v, w) say, within and not on the boundary of the new region
into which the old region is transformed by the equations of
transformation..

Problem I. Two variables. The field is a region 4 and the
integral is I where

I =IIA F(z, y)dx dy:J.de‘ F(z,y) dy:jdyIF(x, y) dex.

Let the transformation be given by the equations

o z=f(u, v), Y=g(U, V) «rrrerrerieereennns (1)
and let J be the Jacobian
J___J , :fu’fv :xu’xv\.
(f g) ,gw gv yu’ yv

If J is not zero and does not change sign the correspondence
is one-to-one (§ 56, Theorem III, Ex.).

(1) Substitute for y in terms of ». In this operation z is
constant and » may be considered to be a parameter ; theoreti-
cally % might be eliminated between equations (1) and y
expressed as a function of x and v but, though this elimination
is sometimes useful, it is in general impracticable. Of course,
if x is constant and v varies, » must also vary, but this variation
is taken into account in findingdy. Take the differentials of the
functions in equations (1) ; then

o=f,du+f,dv, dy=g,du+g,dv
and therefore, solving for dy,
_f ud» _f Ju ___J
dy = 7. dv= 7 dv.

Now the integral I is in standard form and therefore the
upper limit, y, say, of the y-integral is algebraically greater
than the lower limit y, and dy is positive ; let the values of v
given.by the transformation be v,, v, when those of y are
Y1, Y Tespectively.

If J[f, is positive v will increase when y increases and there-
fore v,>v,. On the other hand, if J/f, is negative v will decrease
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a8 y increases and therefore v,<v,; the upper limit of the
v-integral when in standard form will now be v, and this
interchange of the limits is made by changing the sign of the
v-integral, or the sign of the integrand, so that (J/f,)dv becomes
(-J[f,)dv. In both cases therefore

dv

dy =

dv, I= J-dx IFl(x, )

J J
Ju Ju
where F,(z, v)=F(x, y)—that is, F,(z, v) is the value of
F(x, y) in terms of x and v.

In general, therefore, however many variables of each set
there may be, when the transformation gives dy = ¢ . dv, where
@ is a function of v and other variables, the form to be sub-
stituted for dy is not ¢ dv but | ¢ |dv. This form will now be
used, without further remark, in all cases.

(ii) The next step is to change the order of integration, and
this change is assumed to be made so that

1 =IdvIF1(x, )

(iii) Finally, substitute for « in terms of u, keeping v constant;
then dz =| f,| du so that

I =fdvIF2(u, 2) || du = ﬂpz(u, o) [ |dudv

where Fy(u, v)=F(z, y).

If f,, were identically zero the above process would fail because
of the value it gives for dy. But in this case f, cannot be
identically zero because, if it were, J would be zero and z
would be constant. Consequently we can begin by substituting
for y in terms of u. We may, however, begin by substituting
for  in terms of v and then dx=|f,|dv, and the integral
becomes

1=y [ Py, o)l fuldo=[ av [ Fyty, 0)f.ldy.
Next, dy = |g,|du so that
1= av [ Fy(w,0)| foliguldu = [ Fotu, o)\ |duds,

the same value as before, because |J| =| f,g.].
G.A.C. N

}]—u‘dx.
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Cor. The element of area dA in terms of the coordinates
u, v is d4 =|J|dudv,
as may be seen by supposing F(z, y)=1.
Ex. 1. If x=rcosb, y=rsinb then |J|=r so that
“ F(z, y)dxdy:“ Fy(r, 6)rdrdf, Fyr,0)=F(z, y).
This example shows that J may be zero at isolated points, provided

it does not change sign.
Ex. 2. If x=a&, y=by, a>0,b >0, then J=ab >0 so that

[, P vyavay=ab || Fu(& mazan.

If the field 4 is the ellipse 22/a? +y2/b? =1 the field A’ is the circle
£ 4 92=1; if the field A is a sector of the ellipse the field 4’ is the
corresponding sector of the circle.

Problem II. Three variables. Let the transformation be
x=f(u, v, w), y=g(u, v, w), z=h(u, v, w). ......... (2)
The Jacobian J :M must be different from zero and
o(u, v, w)
always of the same sign; the correspondence will then be
one-to-one.

The work may be carried out in this case with less fulness
of detail.

(i) Substitute for z in terms of w. The differential dz is found
by taking the differentials in equations (2), z and y being
constant ; then

O=f,du+..., 0=g,du+..., dze=h,du+h,dv+h,dw,
J

. _J _of, 9)
so that, if J;£0, dz_Ja dw, J3"a(u, v)’

Hence
1={as [ dy [ Pya v, 0| 3| @0, Frte,y,0)=Fie, 3,2).
3

(ii) Change the order of integration and substitute for y in
terms of v ; dy is found from the equations x =f and y =g, when
x and w are kept constant. Hence

0=f,du+f,dv, dy=g,du+g,dv,
so that dy=(J,4/ f.) dv,

and I:J.dw_" dxj Fy(z, v, w)|}’;

dv, Fy(z,v,w)=F(z,y,2).
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(iii) Change the order of integration and substitute for z
in terms of » ; then dz=f, du and

I =jdw J dv j P, v, )| |du _Hj Fylu, v, w)|J|du do dw

where Fy(u, v, w) is the value of F(z, vy, z) in terms of u, v, w.

If J, is identically zero there must be at least one of the first
minors of J, say d(g, h)/d(v, w), that is not identically zero,
otherwise J would be zero. The differential dz, when y and z
are constant, is given by (J/J,)du where J, is the above minor;
begin therefore by substituting for « in terms of «. In all
cases the form of the resultant integral is the same.

Cor. The element of volume dV in terms of the coordinates

u, v, wis
dV=|J|dudvdw,

as may be seen by supposing F(z, y, z)=1. See also Exercises
XVI, 34.

Ez.3. If x=rsin6 cos g, y=rsin0 sin ¢, z=r cos § then J =72 sin §
and

m F(z, y, z) dz dy dz =m Fiy(r, 0, ¢) 72 sin 6 dr d0 dg.
See remark on Ex. 1.

Ex. 4. If x=af, y=by, z=¢{, a>0, 5>0, ¢ >0, J=abc

and m F(z,y, 2) dw dy dz =abe m F(a&, by, of)d& dn d¢.
(Compare Ex. 2.)
Problem 111. Implicit Functions. If the old and the new
variables are connected by equations of the form
o, ¥, 2, u, v, w) =0, p(z,...,w)=0, y(z,...,w)=0,
express the Jacobian J by means of the relation, § 55, (3),

e, v, Z): _ 1)33_(9’_’M -J

o(u, v, w) o, y,z)
The transformed value of the integral may therefore be
expressed by using the solution in Problem II, when z, y, 2
have been determined as functions of u, v, w; this is possible
since obviously the Jacobians are supposed to be different
from zero.

Problem IV. n variables. If there are n variables
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Zy, Ty, ... , &, connected with the new variables y,, y,, ... , y, by
the equations

2, =fr(Y1s Yas ooe > Yu)hy r=1, 2, .00, 1,
the solution will obviously be

J'J f Py, By . » @) dyd, ... dzy = ”I P\ | dydys, ... dy.

where F, is the value of F(x,, %, ... , ,) in terms of ¥, y5, ... , ¥»
and 0y, T, .l , )
—a(yb Yas oo s yn) ’
If the variables are given as in Problem III by equations of
the form
PeXyy oo s Ty Ypy e, Yu) =0, r=1,2,...,0
proceed as in Problem III.

Ez. 5. If the variables z, y, z are changed to &, 5, { by a properly
chosen orthogonal transformation, show that

mF(ax +by +cz) du dy dz =“5F(k£)d5dqd{ .............. )

where k =|(a® +b® +c”)§| and the region of integration in each case is a
sphere of radius unity with centre at the origin of coordinates.

The new and the old variables are connected (Bell, Coordinate
Geometry of Three Dimensions, Chap. IV) by equations of the form

=l +mgy +ngz, =0T +mey +n52, (=l +mgy +ng2

where E2 P+ (P=a 4yt 422
and the coefficients ,, ... , ny satisfy certain conditions—the conditions
of orthogonality. (See Bell, l.c., Equations (A), (B), (C), (D) of § 53,
2nd Ed.)

Now let a=Fkl;, b=km,, ¢=Fkn,; this choice is possible provided
k% =a? +b% +c? and k will be taken to be positive.

Again,
my, N
A& m, ) _ ," e | 11 < 2@ 95 2)
i 9 h 1"" b
v, 2) | e T TR D)

Since | J| =1 and ax +by +cz =k& the equation (1) follows at once
and the region of integration in the new integral is the sphere given
by &2 +n2+{2=1.

The theorem may obviously be extended to the case of n variables
Zy, Xy, ... » T, When the transformation to the new variables &,, &, ... ,£,
is orthogonal—that is, when the coefficients of the transformation satisfy
equations corresponding to the equations (A) ... (D) mentioned above

so that a?tad+... ral=E+E& 4. +EL
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The function F(a,z, +8s73 + ... +a,2,) would become F(k&;) where
k is |(a}+ai+... +a$,)§| ; the Jacobian |J | =1 and the new variables
are such that 0=&+&8+... +&2 =1, it being understood that the
old variables are such that 0=} +z§+... +23 = 1.

- The student should work some of the earlier examples in
Exercises XVI before reading further in the text.

135, Surface Integrals. On a surface given by the equation
@(, ¥, 2) =0 let there be a portion S, bounded by a closed
curve C, which is such that it cannot be cut by any line parallel
to the coordinate axes in more than one point; the relation
between the coordinates of any point on S may therefore be
expressed in any one of the forms

z=f(y, 2), y=9(2, x), z=h(x, y) .cecocvreri.. (1)
where f, g, b are single-valued, continuous functions of their
variables.

Let C,, C,, C;3 be the projections of C on the coordinate
planes of yz, zz, xy respectively and 8,, S,, S; the areas enclosed
by these curves.

If F(z, y, 2) is single-valued and continuous when (z, y, z) is
any point in § the function depends only on two variables
because one of them may be eliminated by using the equations
(1). Suppose that z is eliminated so that F(z,y, z) becomes
Fi{z, y, h(z, y)} or Fy(z, y). The area S; in the zy plane is the
projection of § and the definition is now made :

Definition. The double integral of Fy(x, y) over S;, that is,

J.L Fy(x,y)dedy, -oovvevinininninnnn. (2)

is a surface integral of F(x, y, z) over the surface S.

Similar definitions hold when the variables  or y are elimi-
nated and the double integral is taken over §; in the plane of ¥z
or over S, in the plane of zx so that there are three types of
surface integrals when z, y, z are the variables..

If I, m, n are the direction cosines of the normal to the
surface S at (z, ¥, 2), and if the element dS projects into the
element dzdy then, if » is positive, drdy =ndS and the integral

(2) may be written A
: ‘ J.J' Flz,y,2)nd8S; .oocvviveniiiniiinn, (3)

but questions of sign arise when 7 is negative and the relations
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between the forms (2) and (3) must be investigated. In some
of the most important applications the double integral (2) has
to be transformed into a curvilinear integral round Cj, and the
relation between the positive directions of integration along C
and along C; needs elucidation. The following example illus-
trates the nature of the difficulties (or ambiguities) that occur.

Suppose that the partial derivatives F, and F, are continuous
when (z, y, 2) is any point on S; by Green’s Theorem (§ 131,

3
®)) f Fyfe, y)da = J aFa"’ 01 W) g dy, v (4)

provided the curvilinear integral is taken in the positive
direction round Cj.
Now oF(x, y) aF(x Y, 2) 6F(x Y, 2) 02
oy oy 0z oy

since x is constant. The value of 9z/dy may be obtained
from the equation of the surface S, namely, z=%h(z, y) or its
equivalent ¢(z, y, 2) =0 ; thus,
dp  0p 0z _ z_ @,  m
AR T TR Y
because the direction cosines of the normal are proportional
to ¢,, @,, ¢, respectively. Hence

J‘ Fa(x,y)dx—J.I aF(x y, )~ oF (x, y,z)> dxdy (5)

But, by the definition of a curvﬂinear integral,

J Fy(x, y)dx:J F(x,y, 2)dx,
and dx dy =projection of dS=nd8, if n is positive ; therefore

_L F(z,y,z)d» =J‘L <m or_ %S) d8. .eevrrennen. (6)

The proof of the equation (6) is, however, unsatisfactory ;
equation (4) assumes that the direction of integration along
C; is positive, and we have no guarantee whatever that when
(», ¥, z) moves along C the projection of the point on the zy
plane moves along C; in the positive direction. Further, if
n were negative, the sign of the double integral in (6) would
apparently need to be changed. The whole matter therefore
must be considered more carefully.

I
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136. Surface ; positive and negative Sides. A small area o,
bounded by a curve y, is taken on a surface given by the
equation ¢(z, y, 2)=0 and o', y’ are the projections of o, y
on a coordinate plane, say the plane of zy.

Take any point P in ¢ and let NPN' (Fig. 12) be the normal
to the surface at P. The ** half-lines ”’ PN and PN’ are drawn
in opposite directions from the surface o ; one of these direc-
tions, say that of PN, is chosen as the positive direction of the
normal at P, and PN may be
called the positive normal, PN’
the negative normal. That side
of the surface o which faces the ) e
positive direction of the normal )
at P will be called the positive
side (or face) of the surface o,
the other side of ¢ which faces
the direction PN’ being the negative side of the surface. If
a surface is closed—the surface of a sphere, for example—
the area o on the side chosen as positive may be supposed to
spread out till it covers the whole surface and the whole of that
side will be positive ; it is not possible to pass from the positive
to the negative side without penetrating the surface. If the
surface is not closed, such as a spherical cap, it has a bounding
edge and it is not possible to pass from one side to the other
without crossing the edge.

The coordinate planes have also two sides. The direction
of the positive normal to a coordinate plane is the positive
direction of the coordinate axis that is perpendicular to the
plane, and the positive side of the plane is that which faces in
this direction.

Convention as to sign. The positive direction along the
curve y, that bounds the area o, is that which is determined by
the right-handed screw relation ; when the screw advances in
the direction PN it twists in the positive direction of rotation
round PN (the arrows in the diagram show the relation). This
convention agrees with that already adopted for plane curves.
Further, the area o is always assumed to lie on the positive
side of the surface and to be positive—that is, measured by a
positive number.

F16. 12.
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Now suppose that ¢ cannot be cut by a line parallel to the
2-axis in more than one point and that », where % is the cosine
of the angle between the positive direction of the z-axis and the
positive direction of the normal at any point P in o, does not
change sign as P varies in ¢ so that it is in general either always
positive or always negative.

The area o’ which is the projection of o on the zy plane will
always be assumed to lie on the positive side of the plane. If
Q' is the point on y’ which is the projection of the point @ on y,
it will now be shown that when @ describes y in the positive
direction @’ will describe y’ in the positive or in the negative
direction according as » is positive or negative.

A small area o, at any point P on ¢ projects into an area o’
on the xy plane whose measure is (approximately) no; and is
therefore positive or negative according as » is positive or
negative ; this relation holds for the complete area o’ since
n does not change sign. Now |o’| is given by the double
integral

'[ dx dy, taken over the area bounded by .

When the double integral is transformed into a curvilinear
integral round 9’ the number that measures the area o’ will
be positive or negative according as the direction of integration
is positive or negative ; in other words, Q' describes 9’ in the
positive or in the negative direction according as » is positive
or negative.

The same considerations apply when the projection is made
on the other coordinate planes, the projections of the area o
being always supposed to lie on the positive side of a coordinate
plane. The change from one coordinate plane to another is
made by the symmetrical change of z, y, z; to pass from the
xy to the yz plane, put y for x and z for y, ete.

137. Stokes’s Theorem.. Consider equations (4), (5) and (6)
of §135. If n is positive no change is needed ; when the
direction of integration round C is positive, as it is always
assumed to be, so is that round C;. ' If, however, » is negative,
@’ passes round C, in the negative direction: But in Green’s
Theorem the direction round C; must be positive, and therefore
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in equation (4) the sign of the curvilinear integral must be
changed so that the equation becomes

-—J‘ Fy(z, y)dx = —.U aI’Lg——w’y)dxdy
C 83 Y

where now the integration round C, is in the positive direction.
We thus find in this case

J' Py, y)dz= f f Fs=Y) gy, oo (4)
Cs 83 ay

The equation (5) thus becomes

L Foe, y)do— — J‘J‘ (m aF(g,zy, 2) _,0F(,y, z)) dxndy. (5')

oy
Now, however, dzdy = —ndS so that we get
oF oF
L F(z,y, z)dx..J‘L <m-§ e YL (6)

which is the same equation as before.

Suppose now that G(z, y, z) and H(z, y, z) are single-valued
and continuous and have continuous partial derivatives
G., G, and H,, H, when (z, y, z) is any point on 8 ; it may be
proved in the same way, or it may be deduced by symmetry
from equation (6), that

G oG
Lo(x, 4, z)dy:jL (n 33 ~12)d8 oo (7)
oH  oH
LH(z, v, z)dz:”; (za—y ~mS2)ds, ... (8)
and therefore, by addition of (6), (7), (8),
J' (Fdz + Gdy + Hdz)

zﬂs{l %iyf_%ij +m<%§—aa—g)+n(g—%’)}d& . (9)

Equation (9) is Stokes’s Theorem for transforming a curvi-
linear integral round a curve C into a surface integral over a
surface on which C lies.

In equation (9) the surface ¢(z, y, z) =0 appears only through
the numbers I, m, n which are the direction cosines of a normal
to @=0; any other surface therefore which satisfied the
conditions to which ¢ =0 has been subjected might be taken
as that on which the curve C lies. :
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It has been assumed that the surface is not met by any line
parallel to the coordinate axes in more than one point ; but
this condition is obviously unnecessary if the surface can be
divided into a finite number of partial surfaces each of which
satisfies the condition just stated. The curvilinear integrals
along any curve that is introduced would, as in the case of
Green’s Theorem, § 131, cancel and the sum of the surface
integrals over the partial surfaces would be the integral over
the given surface.

Again, it is not necessary that the derivatives ¢., ¢,, @,
should be everywhere continuous, provided they are in general
continuous. For example, the surface might be a tetrahedron ;
along the edges the derivatives ¢,, ¢,, ¢, are double-valued, but
they are continuous in each plane of the tetrahedron.

138. Green’s General Theorem. Let u, v, w be single-valued
functions of z, y, z which, with the derivatives du/dx, dv/dy,
dw/dz, are continuous throughout the volume W bounded by
a surface S, and let I, m, n be the direction cosines of the normal
PP’ at a point P(z, y, z) on S, where PP’ is the inward normal,
that is, the half line from P to a point P near P and inside W.
The following relation holds :

au ov ow
.[HW 7t ay az>d dydz= —”S(lu+mv+nw)ds (1)

where dS is the element of the surface S at (z, y, 2).
Let Fig. 13 represent a section of the surface by a plane

z4l

N
A\

AN

xY

0o
F16. 13.

parallel to the zz plane. The parallel to the z-axis through
point (0, ¥, z) will meet the surface in 2 or 4 or 6 or, in general,
in an even number of points, say P,, P,, P;, P,
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Now let MP, =%, MP,=x, MP;=zx,, MP, =, ; then

”] ?;—; dx dy dz =”{ —u(xy, Y, z) +u(x,, y, 2)
~U(¥3, Y ) + u(Zy, Y, 2)} dy dz.

A cuboid with base dy dz and with lateral surfaces parallel to
the z-axis will cut out of the surface S the elements ds,, dS,,
dS;, dS, at P,, P,, P,, P, respectively. If the direction
cosines of the inward normals at P, P,, P,, P, are distinguished
by the suffixes 1, 2, 3, 4 respectively, then

dydz=1,d8, = —1,d8,=1,dS;= - 1,d8S,
because dydz is positive and the angle between MP, and the
normal is acute at P, and Py, obtuse at P,, P,. Hence, when
expressed in terms of dS, the element of the double integral is
of the form —lu(z, y, z)dS, so that

ou
”-IW 5% drdydz= - J‘L luds.

The other two triple integrals in (1) may obviously be
treated in the same way as the first triple integral, and the
equation (1) follows.

Now let u=U%Z,v=Ua—V,w=Uﬂ/,
z oy 0z
2V 2V v
2y =2~ L7 v
and let V2y = o a7 T
then
oUadV oaUaV aU oV 2
.U.Rﬁ %+?§ @"L_EE 55)dxdydz+J'I UVVdxdy dz
oV av oV
- —J'J'U<155+m§y—+n$)ds ................................. 2)
oV .
= -J.J‘Ua«ds ........................................................ (3)

where (E.T. p. 219, (3)) aV/dv is the derivative of V in the
direction of the inward normal. _

Equations (2) and (3) give Green’s Theorem. The form 1)
was given independently by Ostrogradsky in a memoir read
before the St. Petersburg Academy in the same year (1828)
as that in which Green’s Essay was published. For a short
note on the history of Green’s and similar theorems see Pro-
ceedings of the Edinburgh Mathematical Society, vol. 8, Pp- 2-5.
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In (3) let V—U ; then

Hj{ aU +(%) }awdyde+ [[[vvrvanaya
”U—— B8, oo @)

In (3) interchange U and V and subtract the members of the
equation thus obtained from the corresponding members
of (3) ; thus

(o o) sy 037

In equations (1) ... (5) the sign ( —) before the surface integral
will be changed to ( +) if the outward normal is chosen instead of
the inward.

139. Transformation of V2V. Suppose that in equation (2)
of § 138 the function U is zero on the surface S that bounds the
space W ; the equation will then become

[[[ [2% % awayde=-([[ vvVizayas......q)

Now let x, y, z be changed to u, v, w where
z=f(u, v, w), y=g(u, v, w), z2=h(u, v, w),
and the surfaces u =const., v =const., w =const. are orthogonal.
If ds is the segment joining the points
(x,y,2) and (x +dz,y +dy, z +dz)
ds? =ZXdx? _?Zh( fudu + f,dv + fudw)?,
2 95
or ds? =3 (f2+ g3+ h3)du? = oidu® + ojdv® + ofdw?

u, v, W
where o}=f3+g2+h3, o3=fi+gi+hi, ej=fi+gi+hi }
because f,f,+gugo+ bubo=0, fofw+... =0, fufu+

since the surfaces are orthogonal.
If ds,, ds,, ds; are the elementary segments of the normals
to u, v, w respectively,

ds;=01du, ds,=pydv, ds;=padv
where p,, 05, 05 are positive, and the new element of volume is
ds,ds,ds, =0, 0,05 du dv dw.
(Note that p,0,0;=]|J|, where J is the Jacobian of z, y, z

..(2)
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with respect to u, v, w; this may be seen by forming the
square of J.)
From the equations
dr=f,du+fdv+fdw, dy=g,du+..., dz=hdu+...
we find
oidu=f dx+g.dy + hdz, oddv=fdx+..., gldw=Ffdx+...
so that
ou f,, ou_g, Ou_bh, ov_f, ow_f,
0z ¢’ 0y o}’ % o}’ 0 o}’ % o} "
Hence
U _ an,, oUuf, aUf, U _ U
o0r  ou o} Ov ol Owei’ 9y '’ 0z
so that
Ea_ua_gzl aU8V+ laUaV+_1_§_I_JQ’
0r or p}ou du o} Ov Ov  p} owow
by using equations (2).
Thus the integral on the left of (1) becomes

10UV
m { g_g‘azzm} 010203 du dv dw

259U 0V | 050,9U 0V el_ezifa_z}
_J.J.J‘WI{ (4% ou au Q2 a‘v a?)+ 03 ow dw d’ud'vdw (3)

where W' represents the new field of integration.

Now

Qz&ifgz_i{ 0203 9V\] a 1’929331’}
0, Ou du ou o, ou/|” BuL 0, Ou

If the transformation of § 138 is now applied, u, v, w simply
taking the place of z, y, z, the surface integral into which the
first term on the right of the equation is transformed will be
zero since U is zero on the bounding surface. Hence the
integral (3) is equal to

gzgsaV 0 93913V 0 [p,0:0V }
J‘J.J.Wr {au 0 a'u + av( 02 anv + aw< 03 aw) du dv dw (4)
which is thus the form taken by the integral on the left of (1),

U, V being now expressed in terms of u, v, w.
The integral on the right of (1) is transformed into

'I” ; [0v7 | ciwesdudoduo. .............. ()
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The only restriction to which U is subjected is that it be
continuous and vanish on the bounding surface and therefore,
since the integrands of the integrals (4) and (5) are continuous,
it is necessary that the coefficient of U in each integral be the
same. Hence V2V becomes

9203aV 9391317 nggaV }
eleze3l8u 0, ou (92 £ +aw< 05 aw> ()

The above transformation is due to Jacobi. If x=f(u, v),
y=g(u, v) and z=w (so that z is only formally changed ; com-
pare E.T. p. 237, equation (8)); we have

fo=0=gy, b,=0=h,, h,=1=p,, 02V [0w?=0%V[02*

1 [9(00V\ 0 (0 0V 2V

2 2 —(=1Z -

and v V"glgzlau(gl 6u>+av 02 3’0)} T
where 92V [02? is zero if V is independent of z.

140. Worked Examples. The following examples give some
illustrations of the theorems of Green and Stokes.

Ex.1. If H,=G,, F,=H, G,=F, for every point (z, y,2) in a
volume V, bounded by a closed surface S, and if o. and § are any two
points in V, prove that the integral

LB (Fdz +Gdy +Hdz)

has the same value for every path o f, provided the path lies in V.

Asin § 131, Ex. 1, take two paths o.y 8 and «.68 lying in V and having
no common points except o and 8. If C denote the curve oy B, the
curvilinear integral round C is zero by § 137, (9), and therefore the
integrals along oy 8 and «.6f are equal.

Ex. 2. If the curvilinear integral in Ex. 1 is independent of the
path o where o and f are any two points in ¥ and the path lies in V,
show that H,=@G,, F,=H,, G,=F,.

Proceed as in § 131, Ex. 2.

Ez. 3. If H,=G, F,=H,, @,=F, for every point (z,y,z) in V,
prove that Fdx +Qdy +Hdz is a complete differential.
Let P(&, 7, {) be any point in V. We can choose the points L(a, b, c),
M(&, b, ¢), N(&, 9, c) so that the path LMNP (or p) liesin V. Now let
(&, 0, {) be defined by the integral

$&, n, ():L (Fdz +Gdy + H dz) +const.

=§i F(z, b, c)dx +§: G(¢&, y, ¢c)dy +E H(&, n, 2)dz +const.
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Differentiate with respect to £ and note that
9G(£, v, 6)= oF(, y,¢) 0H(E, n,2) _0F(§,1,2) .

ot oy Y3 oz
ence
Y = F(&b,0) +F(Em, ) - F&, b, )] +LF(E, m, O - Bl m, 0]
=F(& n, ().

Similarly  af/on=G(&, 0, {), of/o{=H(&, 3, {) so that
F(&, n, Odé +G(&, n, {dn + H(&, n, {)d{=df(§, 1, {),
and for &, 1, { we may put z, y, z respectively.

Ez. 4. If u, v, w satisfy the conditions of § 138 and if K is a surface
inside W bounded by a closed curve C, under what conditions will the
surface integral

BK (Il +mv +nw)dS ..o TP (i)

depend solely on the curve C and not on the particular surface K on
which C lies ?

The numbers I, m, n are the direction cosines of the negative normal
at a point P on the surface K (§ 136) and the integration is taken over
the positive face of K. Now let S be a closed surface formed by two
surfaces K, and K, that lie in W and pass through C but contain no other
common points than those on C; denote by V, the volume enclosed
by 8.

If the integral (i) depends only on C then

H (lu +mv +nw)dS =H (lu +mv + nw)dS
p. <% J Ky
and therefore, if K, is on the positive face of S,
“ (lw +mv + nw)dS =0;
8

because in the integral over the part K, of S the normal at a point P
on K, is an tnward normal to S, that is, is a positive normal to K, so that

“ (lu+mv+nw)dS=§ (lu+mv+ww)d.8'—§ (lu +mv +nw)dS.
8 K, Ky

Hence by § 138, equation (1),

ou ov ow
5557‘(%+@+-a—z)dxdydz _HS (e +mo +nw)dS =0.
Now the surface S is arbitrary since K, and K, are any surfaces, and

therefore the triple integral cannot be zero unless its integrand, which
is a continuous function, is zero. Hence the condition

ou ov ow

Bz + a—y + e
must be satisfied at every point in W if the integral (i) is to depend
solely on C and not on K ; that is, condition (ii) is necessary.
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That condition (ii) is also sufficient may be shown by finding, if it is
satisfied, the line integral round C that is equal to the surface integral (i).
By Stokes’s Theorem we have to find F, @, H so that
°oH @ _  oF oH oG OoF
8y %% % " =Y oy N (ii1)
Now if F,, G,, H, are values of F, G, H respectively that satisfy (iii)
so will the functions
F=F =, @=G, + ay s
where pis a smgle-valued function of z, y, z which has continuous first
and second derivatives ; because

2 2
MGGy, By (30, Dy,

oy oz oy  oyoz oz oyoz
The functions F,, @, H, may be taken to be
z .
FFL vdz +9,(2, y), G = -ﬁ wdz + @y, )y Hy=0 ......... v)

where ¢ is a constant and ¢,, ¢, are functions of x and y. These
equations give

9H, 0@,  8F, @oH,

y e % e v ond

N DU T PRI T O

oz oy Je '671:"'6_3/ o oy o oz o
by equation (ii). Hence
oG, ©oF 0
T2 oy =W 9 2) ~ i, y, o) + 2 2 =Wl 9, 2)
. ggg Opy .
if o _—By SW(Ly Yy C)e verereienieiie e reierrarreaeeaiaeairaeees (vi)

Let one of the functions ¢,, @, be chosen arbitrarily ; the other is then
determined by the equation (vi) and the functions F,, G, H, satisfy
equations (iii). Hence the functions F, G, H given by (iv) are such that

“ (. +mv +nw)dS =§0 (Pd +Gdy + Hdz).
K

Solid Angle. Definition. The solid angle subtended at a
point A4 in space by a surface S, bounded by a closed curve C,
is measured by the area intercepted on the sphere with centre
A and unit radius by the cone with vertex 4 and the surface S
as base ; the measure is positive or negative according as the
positive or negative face of the surface is seen from 4.

If the surface S is closed (like an ellipsoid), the solid angle
will be measured by the complete surface of the unit sphere
when A is inside 8 but will be zero when A is outside S. These
two results may be obtained from the expression (i) of Ex..5
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as limiting cases ; the definition assumes that S is not a closed
surface but is bounded by a closed curve.

Ez. 5. Expression for a solid angle.

Let 4 be (a, b, ¢), P any point (z, y, z) in the small area 6S and @ the
angle between the positive normal PN to 6S and the direction PA
from P to A. Let dw be the area intercepted on the sphere with
centre A and unit radius by the cone with vertex 4 and base 8S ; the
area of the section of the cone by the plane through P perpendicular
to P4 is (approximately) 8S |cos 6| in numerical value where 48 is
positive. But, if |PA|=r, we have, by geometry, ?|dw|= 88 |cos 6|
and therefore, in sign and magnitude, 726w = 38 cos 0 so that

w :”s 08 S e, Q)

If I, m, n are the direction cosines of PN, we have
cos @ ={l(a —x) +m(b —y) +n(c —2)}/r
since the direction cosines of PA are (a —=x)/r, (b ~y)/r, (¢ —z)/r, so that

w=([ (fem2tmloutne D) 4o ........... (i)
If u=(a -2)/r®, v=(b ~y)/r*, w=(c ~2)/r?, it is easy to verify that
ou ow K ow
%+@ +a—z =0,

so that (Ex. 4) o is independent of the surface & and depends only on
the bounding curve.
EXERCISES XVI.
1. Change the order of integration in the integral
2 e
5 dy L) F(z, y)d=.
0

2. When the field of integration is the triangle given by y =0, y=x
and z =1, show that

[[viaar - mazay =3 (5+52).
a . (b dy 1 ab
N de) — == 1

3 go xjo (® +92 + %)} o b {c\/(az +b2 +c?)

4. When the field of integration is the circle #? +y? =2ay, show that
[[v(day ~adzdy =3(3n + 812,

5. The integral of (xsin -y cosc)?, taken over the ellipse

r?/a® +y%[b® =1, is equal to
}7ab(a?sin%a. + b2 costo.).

. If the integral is taken over the rectangle given by z=qa, 2= —a
and y =b, y = -, its value is

4ab(a? sin®e. +b? cos?a).
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. dxd/y 1 2 32—
6. If I _ﬂ TE TPy taken over the circle z? +y?=a?, find I
and show that 7
0 c
~ze=2{1 - Jarran) -

7. m (ax® +by? + cz®)da dy dz, taken through the sphere 2® +y* +2% = R?
is #&n(a +b +c) RE.

8. “S zdxdydz =%c‘ cot o cot B
4

where V is the volume bounded by the cone z%=zx2 tan®« +y® tan®f
and the planes z =0, z =c¢.

9. If V’is that part of the volume ¥ of Example 8 for which x, y, and 2
are positive, show that

m zyz dx dy dz =74 c® cot?a cot? B,
v

10. If p is the perpendicular from (x, y, z) on the diameter of the
ellipsoid ?/a® +y?/b? +2%/c®=1 which is inclined to the axes at the
angles o, B, y, prove that

“s prdxdydz =‘;~‘-5‘ abe(a? sin®a +b?sin? § +c?sin?y)
where the integration is taken through the ellipsoid.

11. The value of SSS 22dx dy dz, taken through the volume common

to the sphere x? +y® +22 =a? and the cylinder «? +y* =ax, is

i(zz - _fi) b
15\2 15/°°
12. The mean value of (ax +by +cz)®", where n is a positive integer,
over the surface of the sphere 22 +y2 +22=11is
(a® +b2% +¢c?)"/(2n + 1)
and the mean value over the volume of the sphere is
3(a2 +b? +¢?)"/(2n + 1)(2n + 3).
13 [ ymray gl-yx’"l(l +aymni(l —z —y)ide
lo 0
=TT )T +m +n), IZ1, m=1, n=1.
14. If m, n, p are each not less than unity,
[l @-omraf @-yrray | @ -oriserde
_P(m)F(n)I‘(p) S“ _ +n+p—1
=Tmin+p) o (@ —2)™ f(z)dz.

* 1, m, n are taken to be each not less than 1, so that the integrand may be
a bounded function of # and y. When the improper integral has been defined
it will be seen that the result holds if I, m, n are each positive. A similar
remark is applicable in the case of other cxamples.



XI.] EXERCISES XVI 369
16. If m =0, prove that the integral

ﬁ( 1-%_ i’—:)mf(Ax + By)dwdy,

aﬁ
taken over the ellipse x?/a? +y2/b? =1, is equal to
P )

1
B(}, m +1)ab 5_ (1 ~a?ym+i f(ke)dw, k=(A%?+BW1)s.

L "

16. F dp|® F(1 -sin 0 cos p)sin 0.d6 =21 P@)da.
0 JO 10

2 (7 /sin®6 cos?p . sin%0sin2p cos2
17. od‘PS ( a2 + b2 PE]

)_%sin 6 d6 = 4nabe.

18. (i) If ¢ > a, show that the integral
j‘ 5 (c —x)dzdy
(c-al+y®’
taken over the ellipse #2/a? +y2/b% =1, is equal to
f,L_a:a{c —+/(c® —a? +b')} .
(ii) If @ >h >0, show, that the integral
5“‘ (a —z)dzdydz
@ +y? +(a -2)3t
taken throughout the volume bounded by the cylinder * +y?=c? and
the planes z =h, z = —h, is equal to
a{{c? +(a - B2 ~[c + (a + R TE + 2R},
19. Prove that when the double integral in z and v is taken over the
positive quadrant of the circle #? +y2 =1,
(i g S dx dy _n
Vva-= e
and deduce that, if x=sin 8+/(1 — m?sin?p), y=sgin @y/(1 - n?sin20), where
mi+ni=1and 0S0=7/2, 0= ¢ = mn/2,

(i) F Sg (m? cos’q.) +n? cos?0)df dp 7

0 Jo V(1 —m?sin?p)y/(1 —n2sin20) 2
Give a geometrical interpretation of the integral (i).
[The integral (i) is not a proper integral. See, however, p. 380.]
z do
0 v/ (1 —m?sin26)’
and m? +n?=1, deduce, by the help of Example 19, that

20. If F(m) =j E(m) =ﬁ V(1 - m2sin?6)de,

F(m) E(n) + F(n) E(m) - F(m) F(n) =% .
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21. If z=rsin 64/(1 - m?sin?@), y=rsin gy/(1 — n?sin®6), 2=rcos f cos p
where, as in Example 19, m? +n% =1, prove that (z, y, 2) is a point on &

sphere of radius  and change the variables in the integral “gda:dy dz,

taken over that octant of the sphere 22 +42 +22 =1 for which z, y, z are
all positive, to the variables r, 6, .
Deduce the value of the integral in Example 19, (ii).

22. Prove that
2
So d(pS; Fl(asin 6 cos ¢ +b sin 0 sin @ +c cos §) sin §d6
=2n§1  F(k2)da, b=(a* +b* s 3

By differentiating with respect to a, b, ¢ other integrals may be
derived ; thus, differentiating as to ¢ and putting f(z) for F’'(x) we find

2 L]
gowdtpjof(asinOcosrp+bsin08in<p+ccos 0)cos 0 sin 6 d6
J 2nefl
=—,’:—5 | J)zda.

23. From the sphere z* +¥* +2? =a® a segment is cut off by the plane
z=h >0; P is any point on the curved surface S, Q any point in the
volumo V of the smaller segment and C the point (0, 0, ¢), where
¢ >a. Prove

dS 2na

) U,=§L = (e - 2ch +a?)} —crap

o ol 85

=%~§{(cs — 20k +a)} +a%) - 5 (20" ~ 6oh + 3h* + 3a?).

If the segment is made by the plane z= -k, where k > 0, show that
the values of U, and U, are obtained by writing - k for h.

24. If F(z, y, z) =at1ym™1zn1f {(g)p+(%)q+ (z)r} , where a, b, c are
positive and the indices are such that F(z, y, z) is continuous, show
that the integral of F(z, y, z), taken through the part of the volume
bounded by the surface

(z]a)? +(y/b)e +(z]c)" =1
in which =, ¥, z are all positive, is equal to

1-2 -1 l-z-y 2-1

2
1 ‘-1
MSI P dxgo y1 dySo oVt flz +y +2z)dz.

prar Jo

The example may easily be extended to the case of n variables. The

integral may be transformed to one with constant limits (§ 133,

Examples 3, 7). If f(u) =(1 —u)? the integral can be expressed in terms
of Gamma Functions.
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25. Elliptic Coordinates.* The equation f(t) =0, where
2 2 2
fy=1-%- Lo o e,

is satisfied by three real values 22, u2, v, where
B>ct>pd>b >t
and the three surfaces A=const., u=const., v=const. are confocal
conicoids which pass through the point (, y, z) and intersect ortho-
gonally. The values of z, y, z are given by
A B (BB b0t -bY) (32— o)t = M)t~ t)
b202 > bz(ba - cﬂ) ’ G’(G’ bl)

When A, p, v are fixed, the point (, y, 2) will be uniquely determined
if, for example, », v/(u? —b%) and /(A% —¢c?) are allowed to take either
positive or negative values while 1, u and the other square roots are
kept positive. The numbers A, u, v are called the elliptic coordinates
of the point (z, vy, z).

() T J = ;‘f’ ?"z)) , prove that

[J] = (2% — p2)(A% - 2?)(u® ~2)
VAR B2 - ) ) - @ e P
(ii) If ds is the distance between the points
(4 p,v) and (A+dA, u +dp, v +dv),

show that
ds? =da? 4 dyd + d2?
= ) g W ) g ()
(== * T e et - (6% -93)(c* —?)
(iii) If ds,, ds, and ds, are the respective va.lues of ds when 4, u and v
alone vary, prove that
ds, =AdA, dsy=Bdu, ds; =Cdy,
2 _ ,3)(]2 —p2 I »
e a0/ ()|
0=I (A2 —9)(ut ~9%) 1 l
(6* —v2)(c? -»?)
Deduce from (iii) the value of |J|.

aut +

26. If p is the length of the perpendicular from the centre of the
ellipsoid A =const. on the tangent plane at (4, u, v), prove that

PP =A2(22 D342 - c¥) /(A2 — pt)(A2 —9%)
and deduce, by expressing the volume of the positive octant of the
ellipeoid as the integral } (j pds, ds, over the surface, that
I ‘”S T e = -
o v{(p? - b3)(c¥ — u?)(B? —v3)(c? - )}

* See Bell’s Coordinate Geometry of Three Dimensions, Cha.pﬁer X, for the
properties of Confocal Conicoids.
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27. Prove the following results :
@ ("aa (] auf} 17100 =5 v -0t - s
2 2 2
o Lo o (S o
(iii) ; Sb (A% — p?)(A2 —v2)(u? —v%)dvy 6{314 2(b2 + ¢2)A2 + b2c2}.

O (T [ o
28. Express V2V in terms of the elliptic coordinates 4, u, ». If

oA di _am du
¢ ‘““Sa vizE-oyE -y " =a, Ve =Bt — p)}
c=a2g" ' dv
Jo VA{(b% —v?)(c? —2)}°
show that oy
v =K{(u - 3+ (- G (2 ) 5 }
where K =a%/(2% - M’)(’»2 —v2)(u? —2?).

29. E is the ellipse z2/a? +%2/b% =1 and the equations
x3/cosh?u +y?[sinh?u =c?, x%/cos?y —y?[sin*v =c*
give respectively ellipses and hyperbolas confocal with E.
If p is the perpendicular from (0, 0) to the tangent at (z, y) on the
ellipse u, show that « and y may be expressed in the forms
 =c cosh u cosv, ¥y =csinhusinv
and then prove

(i) J :g—gz—’-—’!{)—; =c? (cosh?®u sin%v +sinh?u cos?), p?J =c* cosh?y sinh?u;

(ii) SL pidedy =£—{ab(a3 +b?) — (a? — b?%)? cosh™? \_/(a—za-‘bz_)} .

30. If x=p cos ¢, y =¢sin ¢, z=2 and if U=9}V, prove that
82U 122U U, U
%V“V— 2a(p2+'§3—+19—2',
bsmh A 2= bsin w
cosh A+cosw’ ” cosh A +cosw
02 U o2U\  o:U 1
2 LA
o2V =(sinh )? (35 + 57 )+ 3+ 3 U-
31. If z,=rcosb,, =z,=rsinb cosb,, x;=rsinb, sinbcosb; and
x, =7 sin 0, sin 0, sin 0;, show that
xy, Tgy Ty Xa) _ 5 : ap
o(r, 8, 05, 05) =r*sin®, sin 6y,
and extend to the case of two sets of n variables x,, ,, ..., z, and
7y 04 ... 0,_;. Prove that
(i) 22 +af +... +23=7%;

oy O(%y, Tgy Tgy ... X, /e P - .
(ii) 3((:,:10:’053,,_ 0 n) =9"=1(sin 6,)"2(sin 6,)"~2 ... (sin 8, _,).

and if o=

n—1
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32. If
%, =rsin 6 cos ¢, ¥y =rsin fsin ¢, z, =rcos b cosy
and z, =r cos 0 siny then Za? =12
o(xy, Ty, 25, L)
oaAr, 6, @, v)
33. If the rectangular axes of 2, y, z are changed to another set of
rectangular axes &, 5, { with a new origin (a;, a,, a3), show that

W)+ (5) 1) asar=[[W{(3) +(55) +1) aen
The formulae of transformation are
z, Y, z2=a,+LE§+my+n,(, r=1,2,3.
If p =0z/0x, g =0dz/0y and P =2(/0&, Q =8(/dn, it is not hard to prove
that

and =7%cos 0sin 6.

(i) V(P +@* +1)=|np +nyq — 15| . V(P? +Q* +1);

@ |38 o et

The measure § of a surface is therefore independent of any particular
set of coordinate axes.

34. If z=f(u, v, w), y=g(u, v, w), 2=h(u, v, w) and if P, 4, B, C

are the points determined by the parameters
(u, v, w), (u +du, v, w), (u, v +dv, w), (4, v, w+dw)

respectively, prove that the volume of the tetrahedron PABC is
3|J | dudvdw where J is the Jacobian of f, g, h with respect to u, v,
w and du, dv, dw are positive.

The volume of the parallelepiped of which P4, PB, PC are con-
terminous edges is |J|dudvdw. Deduce the transformation of
Problem II, § 134. (Compare Exercises VI, 14.)

35. The value of H (lx? + my? +n2?)dS, taken over the surface of the

sphere (x—-a)+(y-b)2+(z —c)*=R?
is §n(a +b+c)R?, the direction cosines I, m, n being those of the
outward normal to the sphere.

Verify the result by transforming the integral into a triple integral,
taken through the sphere.

36. C is the curve given by the equations
22 +y? +2% - 2ax - 2ay =0, z+y=2a;
prove that - o
|(wdz+zdy +2de) = ~2v2 . o,
4 B S TR -

the path beginning at the point (2a, 0, 0) and vlying at first below the
plane of zy. Transform the curvilinear integral into a surface integral
over the plane area enclosed by C.
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37. Verify Example 19, Exercises XIV, by applying Stokes’s Theorem
to transform the curvilinear integral into a surface integral over the
relative portion of the surface of the sphere.

38. On the perpendicular from the centre O of the circle 22 +y? =a? to
the plane of the circle a point P is taken ; if OP =z > 0, show that the
solid angle w subtended at P by the circle is

z
2n {1 V@ +z’)} .
If z < 0, what is the value of w?

39. Prove that, if the symbols have the same meaning as in Example 5,
§ 140, the integral (i) that measures w is, when S is a closed surface,
47 or 0 according as A is inside or outside the surface, the inward
normal being considered the positive normal.

If A is outside S, a line through A will meet S at an even number of
points, P,, P,, P;, P, say (compare Fig. 13); a cone with vertex A
and small vertical angle, having AP, ... P, as axis, will intercept areas
48y, ..., 6S,at Py, ..., Py. If these areas be projected on the unit sphere
with centre 4, the area intercepted on the sphere by the cone being
dw, then

dw= 68, cos 0,/AP}= — 8S;cos 0,/AP}
= 083 cos 03/AP}= — 68, cos 0,/A P},
so that the sum of the four elements 6S cos 8/4AP? is zero. For the
whole surface it follows that the sum is zero so that w is zero.

If A is inside it is plain that the sum is simply the area of the unit

sphere, that is, 47.

40. If as in § 140, Example 5,

w-—“ l(a—x)+m(b—y)+n(c—z)ds
=|), = s

show that
%=5L{la%("%”)+ ) el S} @S-

If F=0, =% pet ,H_ b,showthat

1—3

(z-c)dy - (y ~b)dz
73

ow
0

where C is the curve that bounds S.
Prove in the same way that _
dw 5 (x —a)dz —(z -c)dx
ab ¢ 73 ’
ow [ (y-byde —(z -a)dy
E-L - .

S (Gdy +Hdz) = S
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CHAPTER XII
IMPROPER INTEGRALS

141. Improper Integrals. The definition of an integral in
Chapter IX expressly assumes that the integrand is bounded
and the range of integration finite. It is possible, however,
to extend the definition so that the integral will still have a
value when the integrand is not bounded or the range is not
finite ; the integral, as thus extended, is called an Improper
(or Generalised or Infinite) Integral while, for the sake of
distinction, the integral of Chapter IX is called a Proper (or
Finite) Integral.*

The following preliminary definition is given as it simplifies
the expression of conditions in many cases.

Singular Point. A point ¢ in an interval (@, b) is called a
singular point of the interval for a function F(z) if F(z) is
not bounded in the interval (c - 6, ¢ +¢’) where 8 and &' are
arbitrarily small positive numbers ; =0 when ¢=a and &’ =0
when ¢=b. It is often convenient to say that |F(z)|=o
for z=c, but this expression means simply that c is a singular
point.

It will be assumed throughout that the number of singular
points in any interval is finite and therefore, when the range of
integration is infinite, that all the singular points can be
included in a finite interval. This restriction on the number is

* The term * infinite integral * is in some respects more suggestive than
* improper integral,” especially because of analogies with * infinite series »’;
but it seems to be too great a strain on language to describe an integral as
infinite when the infinity attaches not to the range but to the integrand.
None of the terms is really satisfactory, but that of “ improper integral  is
in such general use that it seems best to retain it.
3756
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not necessary for the existence of the improper integral, but
the consideration of an infinite number of singular points is
beyond our limits.

Note. The sketch of the improper integral in the Elementary
Treatise (Chapter XXI) is based on the supposition that the
integrand is in general continuous, but the method is equally
applicable when the integrand satisfies the conditions for a
proper integral. The improper integral of a function over any
range will be defined as the limit of a proper integral over a
part of that range ; a necessary condition for the existence of an
improper integral is therefore that both the corresponding proper
integral and its limit should exist. Tt will save much tedious
repetition to assume once for all that the proper integral and
the limit both exist, and this assumption—which should be
steadily kept in mind—will be adopted ; explicit reference
will be made to the proper integral and to the limit only when
there seems to be special reason for it.

142. Definitions. A set of definitions will now be given.
Take first the case of a finite range (a, b), where b > a, and let
8, &' be two arbitrarily small positive numbers.

Range Finite. If a is the only singular point in (a, b) the
improper integral of F(x) over (a, b) is defined by the equation

b b
j Faydo= L[ F@)dz, .ooereernees 1)
a §—>0va+d
while if b is the only singular point in (a, b)
b b8
j Fa)yds= [, j F(@)dZ. oerrrerereenns @)
a §—~0va

The integral is often said ¢ to converge at a ” (or at b);
again, such an expression as “ the integral over (a, b) is con-
vergent >’ is often used as equivalent to the statement that
the improper integral over (a, b) exists. Similar language,
borrowed from the theory of infinite series, is used throughout
and will require no further explanation. :

If ¢, where a<c<b, is the only singular point in (a, b) the
improper integral over (a, b) is defined by the equation

‘J’b F(z)dz= £IC_SF(x)dé+ £ ’ F(z)dz, ...... (3)

&0 &#—0v -8



§ 142] IMPROPER INTEGRAL . RANGE FINITE 371

provided each of the limits exists ; in other words, the limit
must not depend on any relation between 6 and ¢’.

This proviso is important, as the following simple case shows :

j.c_sﬁ :log__a_ J-b ._d_x.._zlogb___(.;
e T—C c-a’ Joipx—c o
Neither of the limits for 60 or 4’—0 exists, so that the im-
proper integral of 1/(xz—c) over (a, b) does not exist. If,
however, we suppose 6’=4 the limit for —0 is the definite
number log[(b —c)/(c —a)], and this limit was called by Cauchy
the Principal Value of the integral, in accordance with the
definition :

Principal Value. If the integral of F(z) as defined by
equation (3) has a definite value when &’=4, but not when
6 and ¢’ tend independently to zero, that value is called the
Principal Value of the integral.

This so-called Principal Value is clearly of a very special
kind, and we shall make little or no use of it. (For notation,
see below.)

The definitions (1), (2), (3) may be supplemented by the
following.

If @ and b (but no other point in (a, b) ) are singular points,
take any point ¢ such that a<c<b ; the integral of F(z) over
(a, b) is defined by the equation

rF(x)dxz [r Fayde+ L[ F@yds, wit)
a §—>0va+s &F—>0v¢
provided (as in (3)) that eack limit exists.
If there are m singular points c,, ¢y, ..., ¢, in (a, b) where

A=0y, € <Cy, ..., C = b, and if each of the integrals
r F(z)da, J" F(z)da, ... r’" F(2)da, r F(z)de
a [ ‘m—1 om

exists in the sense of equation (4), then

JZ F(x)dz:f Fz)de +'§J:‘“.‘z«*(x)dx + r F@)de ...5)

where the first integral on the right disappears if ¢, =a and the
last if ¢,, =b. .

The case of an infinite range of integration will now be
considered.
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Range Infinite. Suppose £ >a. The definition is now

r F(z)dz= J' F@) AT oo, (6)
a t—>wova
while if £’ is positive and - &' <a
f‘ Fa)ydz= L, @ i )
- E—>0

If each of the limits in equatlons (6) and (7) exists when ¢
and &' tend independently to infinity, then, by definition,

r: F (@) da =r_ F(x)dz +I:F(w) dx. .oeeeieennn (8)

Let qa(ef)::J.(S F(x)dx. If when £—ow the integral ¢(&)

becomes and remains greater than any positive number N
(or less than any negative number —N) the integral (6) is
divergent. It may happen, however, that when {—ow the
integral neither converges nor diverges ; ¢(&) may tend to no
limit and yet be bounded.

For example, if Fl(x)=sinz, @(&)=cosa-cosé and
|@(&)| = 2 for every §&.

In this case the integral is said to oscillate (finitely). If
@(£) neither converges nor diverges to + or to —o and is
not bounded when £-—w, the integral is sometimes said to
« ogcillate infinitely.”

It may happen that the limits in equations (6) and (7) do not
exist when & and & tend independently to infinity, and yet
that the limit

L[ F@) e

& —a0
is a definite number ; in thls case the integral is called, as for
a finite interval, the Principal Value of the integral. The
notations

PﬂF(x)dz and P J' " F)de

are sometimes used to denote the Principal Values.

If the integral of F(z) over a given interval is convergent,
F(z) is said to be integrable over the interval.

Absolute Convergence. If the integrals of F(x) and |F(z)|
over a given interval are both convergent, the integral of F(z)
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is said to converge absolutely over the interval ; or F(z) is said
to be absolutely integrable over the interval.

For an important contrast between Proper and Improper Inte-
grals in respect of absolute convergence, see § 145, Theorem B.

143. General Conditions for Convergence. In stating the
conditions for convergence it is clearly sufficient to consider
the convergence at one singular point of an interval (a, b) and
at © ; if ¢ is the singular point, a<c<b, the condition for
integrability at ¢ must hold whether z tend to ¢ from below
or from above, and it will therefore secure brevity without
loss of generality to take the singular point to be at an end of
the interval. It has to be remembered that we always assume
that the proper integral of which the improper is the limit has
a definite value—that is, that it exists.

Let a be the only singular point of F(z) in the interval
(a, b), and let

#)=[ P@)ds, a< <.

The condition that ¢(£) should tend to a limit when £—sa is
that, given the arbitrarily small positive number &, there shall
be a positive number ¢ such that

|@p(ay) — @(ay)|<e if a<a,<a,<a +4.
play) - gla) = [ "F (@) dz,

and therefore the condition that the integral of F(z) should
converge at a, or that F(x) should be integrable at a, is that

Now

J-a’F(x) dx ( <eif a<a; <@y, <A +8 .ouuunnnn..... (1)
a

or, what is equivalent, that
Ay
,( j. F(z)dx =0 if a<a,<a,.
ag—aY a;

If b were the only singular point in an interval (a, b) the
condition would be

f:F(x) dx

b
or L ["Fydz=0 it b,<b,<b.
o0 by

<& if b - 6 § bl<b2<b’ .............. (2)
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In the same way for convergence at o« there must be,
given ¢ as usual, a positive number N such that

U"F(x) dx\<e £ eb2 N, .. ceveeeen(3)
b
or £ rF (z)dx =0 if ¢c>b.

b—>nvd

The integrand always of the same sign. Suppose, for example,
that F(z) is not negative for any value of z in the range. In
this case the proper integral must be positive (or, at least, can-
not be negative) and therefore must tend either to a (finite)
limit or to +, so that the corresponding improper integral
must either converge or diverge and cannot oscillate.

A change of variable, the change being made in the proper
integral of which the improper is the limit, will sometimes
transform an improper into a proper integral. For example,
if f(z) is continuous for 0 < x < /2, and if 0 < a<1 the change
from z to y where x =sin y gives

a f(a:)dx _ sin~la
A LW— o f(siny)dy,
and therefore

w
3

' fleydx £fsm—}?siny) dy=| f(siny)dy.
0

o V(=28 S0
Again, an integral over a finite range may be changed into
one over an infinite range and vice versa. Thus, if x=e" and

0<d<l m%

J: log GE) dx = , ye~'dy,

and if one of the integrals converges so does the other.

Change of values of the integrand. As in the case of the
proper integral, § 110, Theorem II, it is obvious that for the
values of F(x), when these values are finite, there may be
substituted at any finite number of points in the range any other
finite values without changing the value of the integral.

Singular Integral. For brevity, the integrals in (1), (2), (3)
will sometimes be called the singular integrals at the singular
points a, b, »; if a<c<b there will be two singular integrals
for the point ¢, and these may be called the left and the right
singular integrals.



§§ 143, 144] TEST FOR CONVERGENCE 381

144. Special Test. The following test for convergence covers
a large class of integrals.

I. Convergence at a Singular Point. Let a be the only
singular point of an interval (a, b), and suppose there is a
neighbourhood (@, @ + ) of a for which (z —a)"F(z) = ¢(z).

(i) If 0<n<l and if ¢(z) is bounded, say |p(z)|<K, F(x)
is absolutely integrable at a ;

(ii) if n=1 and if @(x) is always of the same sign (never zero)
in (@, a +46), say ¢(xr)>K,>0 or ¢(x)< - K,<0, where K, is a
constant, F(x) is not integrable at a.

(i) 0<n<l, a<a,<a,<a +46 and |p(z)| <K ;

U F(x)dxl<'[ |F(x)|dx<J' (Kd“

a)*
=0 (@~ (ay — .

Both (a;-a)-" and (a,-a)" tend to zero when a,—a;
therefore both F(z) and |F(x)| are integrable at a.

(ii) Suppose n= 1 and that F(z) is positive and @(x) positive,
not zero, <p(x)>K1>O' then

o w K,de K, 1. 1
Jore =[G = e e
—Kl log{(a, - a)/(a, - a)}, n=

Clearly the integral does not tend to a limit when a,— a, and
therefore F(x) is not integrable at a. A similar proof holds
if p(x)< - K;<0.

If b were the singular point we should put (b —z)" F(z) = @(x)
for the range b - § < b,<<b,<b.

Ez. 1. Of the integrals

n>1

? sin )do
., (bsin(z —a)dx . j z—-a ..., [bcos{x —a)dx
)\ ———F (i) ) ———%—, (iii) g — sz
¢ (r-a) (z -a) ¢ (z-a)
the first and the second are convergent while the third is not. For (i),
note that (x - a) F(x)->1 when z—a; if n were taken to be 3/2 the
integral might seem to be divergent but then ¢(a) would be .zero and
the conditions for I (ii) would be violated.
II. Convergence at «. Suppose that z"F(x) =g@(x) when
z 2 b, an arbitrarily large positive number.
(i) If »>1 and |@(z)|<K, a constant, F(x) converges
absolutely at o ;
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(ii) if n <1 and if ¢(x) is always of the same sign (not zero),
say g(x)>K,>0 or ¢(z)< - K;<0, where K, is a constant, the
integral of F(x) does not converge at «.

(i) If n>1, c>b and |p(z)|<K,

c (] (4
\LF(x) dxléIbIF(x)ldx< . I%:Lff:ﬁ,{% (b—"l_—l _c"—1—1> .
Hence, since n>1, (b~* —c=*)—>0 when b—w, and therefore
both F(x) and | F(x)| are integrable at .
(ii) Suppose n<1 and ¢(x) positive, ¢(z)>K,>0; then
F(x) is positive and
° ceK,dx K,
LF(x) da> [ FadZ - Fo
=K,log(c/b), n=1.

The integral therefore cannot converge at «. A similar

proof holds if ¢(x)< - K;<0.

(¢t — bt-7), n<l

. ® gin & dx © gin
Ez. 2. Theintegrals Sl s—x?,,— d }’ x;v/ zd:c
For the first integral n =3/2 and @(x) =sin 2. For the second integral
there is convergence at 0 by I (i) above, but the convergence at
cannot be tested by the above rule. However,
5 ¢ sinx
b 22

are both convergent.

H ¢sinx
S sinzde; Hb i 4 l——bll!’

but in this case the convergence is not absolute, as may be proved by the
method given in the E.T. p. 445, Ex. 1.

— dr = =HR

145, General Theorems. The improper integral has been
defined as the limit of a proper integral, and it is therefore
necessary to inquire whether certain General Theorems, proved
for the proper integral in §§ 109, 111, 112, are valid for the
improper integral. The definitions 1 and 2 of § 111 may simply
be assumed for the improper integral, and Theorems I, II
and VII of § 109 are valid for the improper integral as being
either definitions or simple consequences of the definitions.
Theorem III, however (and as dependent upon it Theorems IV
and V), and also Theorem VI, require modification.

THEOREM A. If ¢(x) and y(x) are absolutely integrable over
an interval so is their product unless the functions have the same
singular point, in which case the product may or may not be
integrable.
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(1) Interval (a, b). Let b be a singular point for y(x) but
not for ¢(z) and suppose |p(x)|<K if b-d=<x=<b; then, ¢
and 6 having the usual meaning, if b — 6 < b,<by<b,

J':’I p@)p(z)| de<K J‘:*hv(w)l dr<e

because |y(x)| is integrable at b and therefore é can be chosen
so that the inequality is satisfied. From Theorem B below it
follows that @(x)y(z) is absolutely integrable over any finite
interval.

It may again be noted that the integrals used in the proof
are proper integrals so that the various inequality theorems
may be used.

Cor. If g(z) is bounded and integrable and y(x) absolutely
integrable so is ¢(z)p(x), because in this case |@(x)| is bounded
and integrable.

(ii) Interval (@, «). The convergence at « alone needs
investigation since the convergence over any finite interval is
settled by case (i).

Obviously neither the integral of |¢(x)| nor that of |¢(z)| can
converge at o« unless |@(x)| and |p(z)| are bounded when = = b,
an arbitrarily large positive number. Suppose |g(z)[<K’
when = b ; then if ¢c>b

f:l p(@)yp(z)| de<K 'I:|«p(x)| dz—>0 when b—>o,

because |yp(x)| isintegrable at . Hence |p(x)y(x)| is integrable,
and, from Theorem B, ¢(z)p(x) is absolutely integrable over
(@, o).

Exz. 1. Let the interval be (0, 1). If ¢(z) =(1 —m)'é, y(z)=(1 - z)"28,
both g(x) and y(x) are positive and integrable but their product is not;
if y(x)=(1 —x)~1/4 the product of p(z) and y(x) is integrable.

An extension of this theorem is given below, Theorems E
and F.

TurorEM B. If the integral of | F(x)| converges at a singular
point or at © so does that of F(x), but the mtegml of F(z) may
converge while that of | F(x)| does not converge.

G.A,C, [o]
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Let the integral of | F(z)| converge at b ; with the notation
of Theorem A we have

be b
I F() dxléj | F(z)| dz—>0 if b,~>b,
by b

since | F(z)| is integrable at b. Similarly, if ¢>b,

U F(x) dx

The first part of the theorem is therefore proved.
It follows that if both F(x) and | F(x)| are integrable

l I:F(x) dx \ = I:l F(z)| d=, ”:F(x) dz l < Jj| F(z)| da.

An example of the truth of the second part has been given
in the Elementary Treatise, p. 445, when the range of integration
is infinite ; the following illustrates the case of a finite range.

Ex. 2. Let F(x) be defined for the range (0, 1) as follows, r being
any positive integer :

F)=(-1YWif (r +1) <2< rl

The point 0 is a singular point. Now

SF(x)dac £IZ(;1);—II=1—log2;

n—>®0 r=1

I | F(z)] dw—0 if b

but (1 |F(x)|dx = Z ——~—>oo when n—ow.
ntl

In the case of a proper integral, |F(x)| is always integrable when
F(x) is, but for an improper integral this statement is not correct,
F(z) may be integrable when | F(z)| is not.

TrEOREM C. An improper integral is a continuous function
of its limits.

If 2 and x+ % are both within the range of integration, we
have in the notation of §112

z z+h
o) = [ P, o +h)-p@ =] Fa

When 2 is not a singular point, ¢ can be chosen so that the
interval (z — 8,  + 6) contains no singular point, and therefore
when ||<d the function F(¢) is bounded and ¢(r +i)—>¢(z)
when %A —0, because the proof of § 112 is applicable. On the
other hand, if = is a singular point @(z) has a definite value
because, by hypothesis, the improper integral exists; next,
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@(x +h)—>@(x) when h—0 by the definition of tho convergence
of the integral at z.
We can now prove a theorem that is of constant application.
TaeoreEM D. If F(x) is integrable over (a, b) and if there is a
function f(x) such that (i) f(x) is continuous for a <z <b and
(ii) F(x)=f'(z) except at ¢ singular point, then

[[F@ye=1®) 1@

Let ¢, where a<c<b, be the only singular point; then,
é, ¢’ being as before,

J’” Fayds= [, f Feyde+r L[ fi)de

§—>0 8—>0Je+s’
= Lifo=0)~fan+ LU®) ~fe+ o))

=f(b) — f(a), since f(x) is continuous at c.
If the range is (a, «) we have, if ¢>b,
JﬂoF(x) dx :rf’(x) dx + £rf'(x) dzx,
a a c—oJb
where we now suppose the conditions to hold for an arbitrarily
large interval (a, ¢). Thus

[(F@)de=-f@)+ [ f0)=-f@)+K

C—>»cC
if f(c)—>K when c—w.

The conditions of Theorem A for the integrability of a
product are supplemented by the following Theorems, often
called Abel’s Theorem and Dirichlet’s Theorem respectively.

TreoreM E, or, Abel’'s Theorem. If ¢(z) is bounded and
monotonic and if y(x) is integrable, whether the range of integra-
tion is (i) finite (a, b) or (i) infinite (a, ), their product is
integrable.

(i) p(x) is integrable since it is bounded and monotonic.
If b is a singular point for y(z) and if b — 6 < b;<<b,<b, we have
by the Second Theorem of Mean Value for proper integrals
(by=¢<by)

be b2
[[v@)vi@) do =g, +0)[] pie) d +p(6s - 0 i) da
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Each of the integrals on the right tends to zero when b, -0,
since y(x) is integrable at b while @(b; +0) and ¢(b, —0) are
finite ; the integral of the product is therefore convergent at b,
so that the product is integrable over any finite range.

(ii) Take b so large that all the singular points of y(x) lie
within (a, b) ; then, if c>band b< é<c,

[ #@ 9(e) de=g(d +0) w(@) do + 910 - 0)[ pio) e ;
b b £

as before, it follows that the product is integrable over (b, »)
and therefore by (i) over (a, «).

Cor. The product is absolutely integrable if y(x) is so.

TraeoreM F, or, Dirichlet’s Theorem. If ¢(x) is monotonic
and tends to zero when x—o0, and if the integral of y(x) converges
over an arbitrarily large interval (a, b) but oscillates (finitely) at «,
the integral -
L(p(x)zp(x) dx
18 convergent.

By Theorem E the product ¢(x)y(x) is integrable over (a, b).
If ¢c>b and b < £ < ¢ we have

”:qv(x) y(x) dx ‘ =' @(b+0) j:«p(x) dx ] <K |p(b+0)]

since the integral of y(x) oscillates finitely. But ¢(b+0)—0
when b—>w and K is finite so that the integral of the product
converges at o.

Theorems E and F give useful tests for the convergence of
an integral. Abel’s Theorem shows that a convergent integral
remains convergent when the integrand is multiplied by a
bounded monotonic factor, while Dirichlet’s shows that an
oscillating integral may be made convergent by multiplying
the integrand by a monotonic factor which tends to zero
when z tends to infinity.

Ez. 3. Discuss Dirichlet’s Theorem for a finite interval (a, b).

The student should now have little difficulty in extending the
Fundamental Inequality Theorem and the two Theorems of
Mean Value to improper integrals ; a sketch of the proofs will
therefore be sufficient.
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If a is the only singular point in (a, b) and if F () is integrable
over (a, b) and not negative, then, a <a,,

be(x)dxgo, f"F(x)dx=£ " F (@) dw 0.
ay a

a,—~a¥ Oy

Similarly, if F(x) is integrable over (a, ), the integral is
not negative.

The First Theorem of Mean Value follows at once. In the
notation of § 111 put ¢(x){y(z)—g} and then ¢(x){G -y(x)}
for F(z); these products are integrable by Theorem A, and
the method (£.7T. § 124) applies.

For the Second Theorem of Mean Value, with the notation
of § 111, y(x) being integrable over (a, b) so is ¢(x)y(x) by
Abel’s Theorem. Now suppose that ¢, where a <c<b, is the
only singularity of y(z) in (@, b) and enclose ¢ in the interval
(¢ -8, c+06) where 8 is positive and arbitrarily small ; since
the integrals of y () and ¢ (z) p() exist, the interval (¢ -, ¢ + )
instead of (¢ - 4, ¢ +4’) may be taken. Choose y, () so that

p@)=ypx)ifa<zr=c-dorc+é=z=bh,
but P {x)=0if c-d<x<<c+4.

b b
Let I-[ pw@is, L=[ p@mn@is,

md  f@=[p0d  fE@=] non

All these integrals exist and I,—I, f,(x)—f(z) when d—0;
for, by the definition of v, (),

-1 [Tp@@ae| = | 1@ - fi@) 5| [ poi] =i

and, since the integrals converge at ¢, both 7, and #7; tend to
zero when J tends to zero.

The Mean Value Theorem holds for the integral I, since
¥, (2) is finite ; therefore if g, and G; are the minimum and
maximum value of f; (z) for a < < b we have

I -g9(@+0)=0, Gpa+0)-1,=0.

Hence, since g;—¢g and G;—G when 6—0, we find

1@+0)= [ pe(a)des Gp(a+0).

The theorem, being now proved when there is one singularity,
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can be extended to the case of a second singularity ¢’ by the
method just used and then, in succession, to the case of m
singularities. A similar method is obviously applicable when
the range of integration is infinite (@, ). The usual form

b 1
[ #erv@dn=pa+0) [ yaas

is deduced as before, b being finite or + .

Transformations of the Improper Integral. In practice it is
advisable to carry out a change in the variable of integration
by operating on the proper integral and passing to the limit;
if the precautions required for operating on the proper integral
are observed there will be, as a rule, little difficulty in com-
pleting the transformation, so that little or nothing is to be
gained by elaborating any special rules for the improper
integral.

A similar observation is applicable to the rule of integration
by parts. The student’s “ common sense ’ may be left with
some range of operations on which to exercise itself.

1 i net @ yn—ldy 0
Ex. 4. gox (1—(12) dx=g0(~1+—w;";;, m>0, n>0.

If 0< m< 1and 0< n< 1, the integral
1
B(m, n) =§ ™Y1 - z)"1de
0

is an improper integral. Let A and u be small positive numbers ; the
integral

1-p
5 ™Y1 - z)*1dz
A

is a proper integral, and if x =1/(1+ y) the integral becomes

1
e
w (L+y)ymen’
1-p
The limit of this integral when A0 and u—0 is the convergent integral
© nm—1d,
S _y"dy
o (1+y)m+n
1 0 n—1
= w1l —gyr-rdp= | Y1y
80 that B(m, n) _.gox’” (1 -2) dm__go gy

146. Worked Examples. Additional Tests. The Special
Test, given in § 144, and the Tests of Abel and Dirichlet,
given in § 145, are sufficient for determining the convergence
of large classes of integrals, but, as in the analogous theory of
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the convergence of series, there is no set of Tests that cover
all cases. In this article examples will be worked to illustrate
the use of the Tests mentioned, and some additional methods
of considering the convergence of improper integrals will
be indicated. The student is reminded of the assumptions
stated in § 141, Note.

Such limits as ,(x" log 2z, »>0 and [x”e‘” (E.T. p. 99)

z<—0 z—
are often required, and elementary transformations of a very
simple kind are frequently effective. For example, if 0<a< g,
let sin # be put in the form (sin z/x)z, taking the value of
(sin z/z) for £=0 to be 1; then

5 . . s
r log sin x dx =F log < 81%6 dx+| logzdz......... (@)
Now Jlogxdxzx log x -,

and therefore the integral of log sin x converges at 0, because
each of the two integrals on the right of equation (a) tends to 0
when f—0.

Again, if 0<az<1, ztlog(1+2)=1-4x+... so that the
integral of x~!log (1-+x) converges at 0; the singularity in
this case is ‘‘ removable,”” as in that of (sin z/z), by defining the
function for the value =0 to be the limit for x—0. (See
E.T. p. 418 ; also § 29 above.)

See also the remarks about change of variable in § 143.

1
Ez. 1. The integral B(m, n):{ z™-1(1 ~z)*ldx is convergent
. 1o

(absolutely) if, and only if, m >0 and n» > 0.

So far as the question of convergence is concerned we may take the
integrand to be #™~! near the lower limit and (1 — )"~ near the upper
limit ; because near these limits the integrand is of the forms A4 x™!
and B(1 —x)"! respectively where A and B differ but little from unity
and the convergence is not affected by the particular values of 4 and B
80 long as these are finite. The-Test of § 144 then gives the relations
m >0 and n >0.

Ez. 2. The integral L '.ff"‘((—:)z dx, where f,(x) and f,(x) are poly-

n
nomials of degrees m and n respectively, is (absolutely) convergent if
n=Zm+2, (i) provided a is greater than the greatest root of f,(z)=0,
(ii) for every value of @, including - «, if the equation f,(z) =0 has no
real roots ; it diverges if n < m + 2 for every value of a.
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The integrand is of the form Az™"{1 +4,} where 7,0 if 2+ w;
the result then follows by § 144.

Ez. 3. Of the following integrals,
S” Ax®+ Bz +C das r Adx r dx
avVi®-a)o-2)L7" Ja(z-a)(b-2)’ Jo ¥V{x-1)(x-2)}
the first and third converge while the second diverges. Show that the
first is reducible to a proper integral by the substitution

« =a cos?@ +b sin?0.
Ex. 4. The integral 52 (sin )™ (cos x)*1dx converges if, and only
i
if, m >0, n >0.
Here (sin 2)™-1 =(sin z/x)™! . 2™-1 so that, near the lower limit the
integrand may be taken as x™!; similarly, near the upper limit the

~1
integrand may be taken to be (% —x)ﬂ . Apply § 144.

Ifo<oa< /3<7—2t and sin z =y¥ we have

sin?g

m_y 2
e Y2 (19 dy;s

jﬂ (sin )™ (cos x)*1dr=1% S
a
let o.—> O and B~ 12!; the given integral is %B(% , g) by Ex. 1.

T
2 x™dx

Ex. 5. The integral So (#in %) converges if, and only if, n<m+1

”
and 52 de converges if n< 1.

o (sinz)®
Note that the first integrand =z™—"(x/sin z)".
o 4 P—1

Ex. 6. The integral g x1+ix converges if, and only if, 0<p< 1.
0

Apply the method of Examples 1 and 2.

s
Ez. 7. The integral go%ﬂdx converges if 0<n< 1, a£0,

b£0, but if 0<n< 2, a5%0, b=0.
By Dirichlet’s Test the integral converges at « if n>0; for con-
vergence at 0 apply § 144.

Ex. 8. The integral 5;(:1:’ +z~?)log (1l +x) %x convergesif -1<p< 1.

DO p2P-1 P

' ' 191 . =
Ex.9. Prove tha,tj dx=2§ it
i} 1-2

o l-=z2
The value of the integrand for # =1 may be taken as (1 — 2p).

dzif 0O<p<l.
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Ezx. 10. Prove that, if 0 is the only singular point for F(z) in (0, a),

) 5: P(z)dz =S: Fla -z)de;
then, as in E.T. p. 332, Example 6, show that

~

(2 . .
(ii) 50 logsin zdx = —2log2,
-8
For (i), if 0< é< a, g‘: F(a:)dx:ﬁz F(a -y)dy; then let 6-»0.

Ez. 11. Show that r log I'(x)dx is convergent and then, by using
0
the relation (§ 96, (4)) I'(x)[(1 - z) = #/sin 7z and the results in Ex. 10,
prove that 1
go log I'(x) dx =} log (2x).
Since I'(x) =T'(z +1)/z and log I'(z) =log I'(z + 1) ~log x the integral
converges at 0 ; then, asin E.T. p. 332, Example 6,
1
E) log I'(z)dz =§; logT'(1 -z)dw =% 50 log [T(=)T(1 - )] da,
and therefore 5(1) log'(z)dx =} j(l) log [ #/sin nx] dx, ete.

Ex.12. Ifu= r i logT'(t)dt, =0, prove that du/dx =log x and deduce
z
that u =xlogx —x +}log (2x).

fe<a<z+l, u=r+1 log T'(¢) dt —r log I'(¢) dt,
a a
and therefore Z—Z =logI'(x + 1) —log I'(z) =log =.

Now integrate and apply Ex. 11 to determine the constant of inte-
gration.

1
Ex. 13. The integral So cosz logxzdx converges but the integral
ﬁ cosx logxdx oscillates when £—+.

A simple but useful Test, called from analogy with a test
for series (E.T. p. 380) the Comparison Test, is derived as
follows :

Let o(&) = F@ydz, pe)=[ fx)d,
b b

where b is an arbitrarily large (positive) number. If F(z) is
positive for = b the function ¢(£) is positive, monotonic and
increasing, so that if @(£) is bounded, say ¢(£) < K, a positive
constant, for &> b it tends to a limit and the integral of F(z)
converges absolutely at «, while if p(£) is not bounded for
&> b the integral of F(x) dxverges at o,
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Again, if F(z)<f(z) for #=b (f(z)>0), and if the integral
of f(x) converges at  , so that y(£) is bounded for £ > b, then
@(&) <u(£), and therefore the integral of F(x) converges
(absolutely) at « if that of f(x) does so. Similarly, when
F(x)>f(x) for x=b, it is seen that if the integral of f(x)
diverges at © so does that of F(x).

A similar test for convergence at the ends @ and b of an
interval (a, b) may be derived by considering the integrals

b £
wu(@)=[ Py, pu)= [ Fa)de.
The Comparison Test applies only to absolute convergence.

Ex. 14. The integral Swe’kxx”‘ldx =T (n)/k" k>0
: . 0 T n>0.

(i) Convergence at . If k>0 and p is any positive integer
eks > (kx)?[p! ; ekl < K[a?

where p is so chosen that p —n > 1 and K is a constant (¢~7p!). In the
comparison test let f(x) = K/«® and, by § 144, the integral converges at
for every value of n.

If & =0, the integral converges at « if n is negative (not zero), while
if & < 0 the integral obviously diverges at .

(ii) Convergence at 0. By § 144 the integral converges at the lower
limit if, and only if, n > 0.

Thus the integral converges if ¥ >0 and n >0 and diverges in all
other cases.

From this example a useful Comparison Function is derived.
Put n +1 for n and let f(z) =Ae 2", A >0; the integral of
f(x) converges at « , if k> 0, for every n but diverges at o, if
k<o, for every n. If k=0 the test of § 144 may be used.

Ezx. 15. If f(x)=Ax*1(log )", 4 >0,  >b (arbitrarily large), the
integral of f(x) converges at «, if k >0, for every n but diverges at «,
if k< 0, for every n.

Let log x =% ; then
T =logé&

B =logb.

When &£— o so does 7 and the result follows from the comparison
function de-*¢¢*. Thus, by the change of variable, another comparison
funection is obtained.

Bz, 16. If f(x)=Az*[log (1/x)]", A >0, 0<2=1, the integral of
f(x) converges at 0, if k > 0, for every n, but diverges at 0, if £ < 0, for
every n; if k=0, the integral converges at 0, if, and only if, n< -~ 1.
The integral converges at 1 if, and only if, n > - 1.

Si flx)dz = g: Ae ktnde,
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Let z=et; thenif O<a< <1,
B e a=log(1/e)
= Xt
[t~ [l emean, G2E0E oo,
When f->0, b— » and the result for % == 0 follows, as before, for con-
vergence at 0. If k=0 the test of § 144 applies for convergence at 0;
the same test applies for convergence at 1 for every value of k.

o0
Ezx. 17. The integral { e ®z" 1 (logx)™dx converges (absolutely) if
lo

n >0 and m any positive integer.

If 0<x <1, the integrand is less than 2™1( -logz)™, numerically,
while for large values of = the integrand is less than ¢~®gn-1+m,

Now apply the results of Example 16 for convergence at 0.
]

Ez.18. If a>1, the integral g

diverges if m = 1.

2 Z(log2)™ converges if m > 1 but

Ez.19. Letlz, %z, I, ... denote log x, log(log x), log[log (log )], ....
Show that, when « is large enough to make I™x positive, tho integral of
f(x) where

fl@)=1[z.lx.Bx ... ™1z (Imx)k]
converges at o if k> 1, but diverges at o if k= 1.
Let z=e% so that lx =x,, 1% =lx,, ... I™z =1""1%, ; then if ¢ >b,
¢ o dx ¢, =loge
L, f(z)dz =$,,,x1 Az, Pz, ... l';“%l. (Im=Tg, )k’ bi =10§ b.
Next let #; =e7s, then x, =e%s and so on ; the integral is thus reduced
e °m dx c,=1"c
[ /@ =jb,,, ZE by =lmb,
Now apply § 144.

to

Ex. 20. (i) If a® and b? are both different from zero the integral
lo

converges (absolutely) for every value of n.
... (Pz"logxdx
@ | s
Deduce that, if a > 0,
r"x" logxdxﬁélogaB n+l n+l
Jo (@F 422yt~ 2 gnHl (T ’ ’T) :
When the range of integration is not bounded it is often useful
to express the integral as a series; the following examples
illustrate the method.

=0ifn> ~1.

. ® gin bl
Ezx. 21. The integral j —dzx=2 go sin (2?)dr converges con.

V&
ditionally. 0
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If nn = § < (n + 1)=, divide the interval (0, §) into the partial intervals

0, @), (@, 2x) ... [(n - 1)z, nnl, (nzm, §). Now
S(Hl)fr sin

e vz

* sin y dy
o V(ra+y)

deo = («—1)'5 , T=rm+y;

therefore :
Esinw dm = sinydy =
W= ‘,Z(,( A [ S+ Ra= et By
where -
|R,| =\55*’"’( -1)y*siny
" o V(nr+y) v(na)®

When & ®, R,— 0 and the series 2u, is a convergent alternating

series so that the integral converges, but not absolutely.

The integral is equal to (/2)} (E.T. p. 471).

dyl<

Hw.22. Tf «=0 and >0, the integral | ~— % _
v, & o= gt o 1 +aBsin?z
absolutely if g > 2(« + 1) but diverges if §= 2(a. +1).

The integrand is never negative, so that the integral cannot oscillate.
Now if n is zero or a positive integer and nz =z = (n +1)=,

(nm)* 2% = (n +1)*n®
1+(n+1)Bnf sm‘“’x =1 +aBsin?x = 1 + (nx)fsiniz’
But if 4 and B are positive

T~  Adx 2 A cosec’rdx nA
Sol+Bsi.n% Socot3x+l+B v(1+B)’
and therefore, from the inequalities,
nenttl +r 2%z (n +1)*a+!
=V +(n+ 1)Bnk 5 T T afsiniz v/ (1 + 1) "

Each of the series “u, and Zv, converges (absolutely) if § > 2(a +1)
but diverges if f= 2(c.+1) because Zu,, and Zv, behave like Z1/nis~%.
Hence the integral behaves as stated.

converges

Ex. 23. As particular cases of Example 22, prove that the integrals
@ dx ®  xdx
50 1+ zisinx So 1+ 2%in2x
are convergent.
Prove by a similar method that the integrals
®  zdx d g ®  xdx
go 1+ 23|sina| an Jo 1+ ?|sinx|
are respectively convergent and divergent. These are particular cases
of the integral % xBdx
So 1 +2%|sinz|
(See Hardy, Messenger of Mathematics, XXXI, Note VIII} which
converges if o > f+1 and diverges if « =8 +1. [The series of Notes
contains much instructive analysis.]

,>0, §>0,
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Ex. 24. -Show by dividing the range. into partial intervals, as in
E.T. p. 449, that ’
~
o (® . dr_ (2 . dz
@) | Psine) =} Fuina) 22
if F,(u) is an odd function of «, and

-
JUR . dx (2 R dx
(i) So F,(sin z) 2 So Fy(sinx) Emap’
if Fy(u) is an even function of , it being understood that the integrals
converge.
Ho<do=a= izt ,an expression for cosec?r in terms of partial fractions
is given in Exercises XII, Ex. 3, (iii) by substituting « for 7z ; namely

L L S [ ]
sin%z z* & L(nn+2)? (nm—z)? ’

Of the methods applicable to particular types of integrals
one of the most interesting is a method of treating Frullani’s
Integral (E.T. p. 480, Ex. 22). An important article by
Hardy, A Generalisation of Frullani’s Integral, Messenger of
Mathematics, XXXIV, pp. 11-18, p. 102, should be consulted ;
also Bromwich, Inf. Ser. 2nd Ed. p. 479.

. P p(ax) — ¢(bx) a>0
Ex. 25. Frullani’s Integral. So plaz) ~9(2) g, 47 1.

Suppose that @(z) is integrable over an arbitrarily large interval
(A, #) where A>0 and that the integral of ¢(x) either converges or
oscillates finitely at o; by Abel’s or Dirichlet’s Test ¢(z)/z and
therefore also, since a and b are positive, g(ax)/zx and ¢(bx)/xz are
integrable over (4, « ).

Now, putting ¢ in turn for ax and bz, we find

| o) g =" 20y r’i‘&x—)dx=r 20 44

h = at e w t
and therefore

5°°<p(ax) —obz) 40 rb o) gy gb 24 4o

A x aa O a <X

(i) Suppose that g@(z)—>N, a definite number, when z-—0. The
numbers a and b are positive and finite so that A can be chosen so small
that |@(Az) - N| will be arbitrarily small for the range a=x=b; the
limit for A-~0 may therefore be found by putting N for ¢(iz) in the
integral. - Hence ‘ v

ez [ 20 Yol
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(ii) Suppose that ¢(x)—>M, a definite number, when z-»o ; -in this
case the integral of ¢(x) diverges at « unless M =0 and the preceding
work vequires modification. But, if ¢(z) is integrable over the arbitrary
interval (4, uj, we have

[f eam) ) 5, [+ 00y [ 60 g 20 _ [ 20
A z by} Ab a f wa t
so that

S'* plaz) - p(bz) 5 S” pliz) - gpz) o
A xr a x

Hence, if ¢(xr)—>N when -0 and ¢(x)—>M when z— o, we find by
letting A— 0 and y— o that

jo 2a2) = 90) gy — (v - M)g =(N - ) log 2.

Exz. 26. Ifa>0, b>0, n>0,deducefromEx 25:

(1)S ﬂ‘%‘i—dxﬂog? (n)j

e % —e”
z

dx:logn;

cos ax ~ cos bx b
(iii) S —_— dz =log o3
. e 9% —g=b% _ (b —a)xeb* b
(iv) go xz( dx:b-—a—aloga.

Bz, 27. Ifa,b,c, ... kare positive, and if the constants 4, B, C, ... K
satisfy the equations
(i) ZA=A+B+...+K=0; (ii) ZAa=Aa+ Bb+...+Kk=0,
prove that

r {EAe‘"} — =24daloga
0

where SAe T =de %% + Be"”c + ...+ Ke k=
and ZAaloga=Aaloga+ Bblogb+...+ Kklog k.

Conditions (i) and (ii) show that the integral converges at  =0. The
result may be proved by integration by parts. Denote the integrand
by F(x); then, 0< A< p,

,.,Ae—“ u fr —ZAae%®
( Fle)do=[ - 1. +§A 2 de

By equations (i) and (ii), the integrated part tends to 0 when A— 0;
also it tends to 0 when u— o« since a, b, ... k are positive. Again, by
equation (ii),

-Z4ae¥=3FAae® -3ZAae %% =3 4a(e% —e9%),
and now, if A 0 and x— 0, the result follows by Ex. 26 (ii).

Ex. 28. Suppose that ¢(z) and ¢’(z) are continuous and integrable
over an arbitrarily large interval (4, u), 4 > 0, and that the integrals of
¢(x) and ¢’(x) either converge or oscillate finitely at «, the functions
¢(x) and ¢’(x) being continuous and expressible by Maclaurin’s Theorem
near x =0.
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If A =0 and ZA4a =0, prove that

5: (S4g(ax) % = - /(0)24alog a.

Proceed as in Ex. 27. Note that, since £4a =0,
ZAag'(az) = - Z4a[¢'(z) - ¢'(ax)],
® 7 —
and S q_,_(,aix_(p(_a:.v_)dx =(P’(O) log a.
°
For example, let ¢(x) =cos z.
For further developments consult the paper by Hardy in the
Messenger.

147. Complex Functions of a Real Variable. A detailed
discussion of complex functions of a real variable is outside
the scope of this book, but a few of the more important cases
may be noted.

Notation. When ¢=co +1f, where o and B are real, the real
part o will often be denoted by R(c) and the coefficient j of the
imaginary part 18 by I(c) or R(c[s).

o e—cae
Ex. 1. 5 e‘“dz:—-c— , a real, B(c) > 0.
a
Let c=a +18; then |e | =e~%% and
0 00 —ab
H eeedi| = eewdr =
) b a
so that this integral tends to zero when b— w, since o = E(¢c) > 0.
b —ca —cb
But g eordp=2—_"°
Ja c ¢
o0 b —CG
and therefore ‘ e ®dx = £ i erde=""—".
Ja b—roo 2 c

The integral is therefore evaluated by the usual rule when R(c) > 0.

1—
Bz. 2. ‘“d“’ I Rny<1.

Jo 1;4'7‘= 1-n’
Here a is necessarily real. Let n=o +if; then 2" =xz%i8logz and
|x® | =2* so that

’

15|l
lpa® hrx® 1-a
and therefore, if o =R(n)< 1, this integral tends to zero when k and &
tend to zero. The result then follows since the integral of z—" is
z1-7[(1 - n).

b dx b+c
Ezx. 3. Lm— gt © complez.

Of course a and b are real. The value of log {(b +c¢)/(a +¢)} is the
principal value, and its amplitude 0 is such that - < 6= & (§ 70).
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I‘((;) , R(¢) >0, n real and positive.

Let ¢ =a +1b, @ > 0 ; by definition

L]
Ez. 4. {0 e—ompn=1 gy =

00 0 a0
g e~ t¥pn—1dxy =S e—6%xh—loos brdx —1 g e~0%xn—1 gin bz dz,
0 ) 0

and therefore (E.T. p. 471, equations (6), (7) ) the integral is equal to

T'(n)(cos nb — 1 sin n0) cos 0 —¢sin 6\* T'(n)
( 2 =1"(n)( . ) =—c—("—

since a=rcosf, b=rsin 0, (cos 0 —i sin 0)/r =(a —b)[r? =1]c.

The integral also converges if a=R(¢)=0 and O<n<1l (E.T.
p. 471, (8) ),
so that I'(n)

0
—~ibTn—1 [l bA 4
So e~ Tyl dy (@’ 0<n<1, breal,

7T
2
Definition of T'(x) as an integral when x is complex, R(x) > 0.
The definition of I'(x) as the limit of the product P,(x) (§ 95,
(1a) ), where

and the amplitude of b is g or -5 according asb>0or b< 0.

nln®
P"(z)zz(x +1)(x +2)... (® +n)’
will now be applied to show that the usual expression for I'(z)
as an integral holds for complex values of z if B(x) > 0:

0
Ez. 5. ﬂ e-tia1 dp — £ P,(z)=T(z), R(z)>0.
70 n— o
Let x=£&+iy, £>0; then |et®1|=¢tté~1 so that the integral
converges at © ; by Ex. 2 it also converges at 0 if § > 0.
Now, if B(x)=£ > 0 and n a positive integer, the integral

1
S §%71(1 -8)"ds
[
is convergent ; the value of the integral is easily found to be

(n)/{x(x + 1) (x +2)... (x +n)},
and therefore, if s =t/n,

§: (1 - —:;)nt”“l dt =P, (z).

Hence £ I"(l ~£>”t”'1 dt= £ P (z)=T(x)
0

n—» 0 n n—» 0

It has to be proved that

L I: (1 - %)"t’—l dt =J.:e"‘ t*-1ds.

n—>w
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Now

_re"‘ t*-1dt —'r (1 - 7%)”;@—1 di R
-t

and it is proved below that if 0 <¢=<n,

2
0 et —(1 ——t—>“§ e“.t—
n

n’
so that if R(x)=£&>0,
n _ tn] _ 1~ . 1 , :
og_[o {e -(1-1) je ldtéﬁj‘oe L < T8 +2).
Hence J.n{e-’—<1—£>"}t5-1dt—>0Whenn—>oo,
0 nsJ

'n n )
and therefore I {e" - ( 1- %) }t’”‘l dt — 0 when n — 0,
0 .
since | "1 | =¢ -1

Further, r e~tt*3dt — 0 when n —

Jn
since the integral is convergent. Thus

o o n t\n o
Joe“‘t 1dt — [I (1-%) *1dt=0,

Nn—>w ¥
and j. et t*1dt=T(z), R(x)>0.
0

To prove the inequalities used above we have by § 25,
Ex. 3 (ii),

_t t t\* t\".
e n>1——,e"‘><l——->, 0<e-‘—(1——-> if 0<t<nm.
n n n
Also by § 25, Ex. 3 (i), ! > (1 +¢/n)" if 0 <t <m, so that

e-(- 1) <[ (- )< [1-(-5)]

and therefore by § 11, (2), with z=1 and y=1 - #3/n2> 0,

n 2 2
e“—(l —~7£') < et n[l —<1 —%)]:e"%

t\* 2.
so that ,0<-e—t—<1-—7—z) <e—‘.ﬁlf o<t<n.
When ¢ =0, it is obvious that the inequalities become equalities.
For this method of proving these inequalities see Whittaker

and Watson, Modern Analysis (2nd Ed.), p. 236.
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148. Miscellaneous Examples. The following method of
extending the range of a constant that occurs in an integral
may be noted.

D p2M,

Ex. 1. Evaluate So:"_"-li-dﬁl

m < n, and deduce that
r%"‘dx n

where m and m are positive integers,

0o 1+ =sinp7z’
L] ximdx k2] xzmdx
Soz2”+l= S~—wx2”+1’
and, since the last integral converges absolutely at » and at -, we
may take &= & (§ 142, (7)) so that
S‘” o2y Sﬁ x2™dx
f—wx

- T ) -gatn 17

O<p<l.

Here

Express the integrand as a sum of partial fractions :

aim Y 24,(z —cos0,) |1 "2-:1 sin 6,sin (2m + 1),
P ’Z\{)z’ ~2xcosf,+1" n & (x - cos0,)*+sin%0,’
where 0, =(2r +1)z/2n. Now
gf 2(z —cos 0,)dx ~lo &2 —-2fcos 0, +1
_¢a?—9mcosO, +1 B EEt2EcosO, +1

and therefore

-0 when £{—wo,

©  gimdy g . . 2m+1)n
S_wiﬁﬁ‘i '=0sm(2m + 1)0,.-Rcosec——27n——— s
or r’ BT _ T omec 2 1)7
02" +1 2n 2n
Now change the variable by the substitution 22" =y ; then
5 ml_y
g Y2 Y eosecZm LT
0 l1+y 2n

If we put p =(2m +1)/2n it is not hard to prove that the integral is a
continuous function of p for the range §=p=1 -1, when  and 7 are
positive and arbitrarily small ; since cosec p= is also continuous for the
same range, the integral can now be defined to be equal to z cosecpn
if p is any real number such that s=p=1-%. (See §26.)

Ezx. 2. If m, n, p are positive integers, m<p and n<p, and
if (x?™ - 227)/(2?P — 1) be defined for = + 1 as the limit of the fraction
for « tending to +1, prove by the method of Ex. 1 that,

®  gim _g2n 7 2n +1 2m +1
E_wwdx—i(cot 2]) 7 —cot 2p ﬂ),
and deduce that if 0<a< land 0<b< 1,
® pa-1 _ a1
jo 1-2

dx =z (cot an - cot bx).
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The definition of an integral as the limit of a sum is not
directly applicable when the integrand is not bounded or
when the range of integration is infinite ; there are, however,
classes of cases in which the limit of a sum may be expressed as
an improper integral.

Suppose first that the range (a, ) is finite and that a is the
only singular point of F(z) in (a, b) ; in the notation of § 113 let

8,=>,F(a+rh)h, nh=b-a,
r=1

so that A—0 when n—ow . The following theorem may be stated.
TraEOREM I. If F(x) is monotonic and has always the same
sign in (a, b) and if the integral of F(x) over (a, b) converges, then
£ S, = £ZF(a +rh)h_j F(z)dzx.
n—>x h—0r=1
Suppose F(x) to be positive so that F(z) -+ © when
z—>a+0. (If F(x)is negative,let p() = — F(x) and the reasoning
holds for ¢(x), and therefore for F(x) by changing sign in each
member of the above equation.) Thus F(x) decreases as x
increases.
By the monotonic property of F(x) we have

a+rh
F@)de > Fla +h)h, r=1,2,...,n

a+(r-1)h
and therefore, summing from r=1 to r=n, since the integral
b
of F(z) converges, I F(R)AT > 8y veeeerreereeeineeeaneannn. @)
a+(r-+1)
Again, F(a +rh)h >I +F(z)aloc r=1,2,...(n-1),
a+rh

and therefore, summing from r=1 to r=n -1 and adding the
term F(b)A to both sums,

8, > f’ F(2)dz +F®B)h. coeeeeeeannn.... (ii)
a+h

Let n— o and A—0; the inequalities (i) and (ii) give the
theorem.

Cor. 1. It is obvious that a similar theorem holds when &
is the only singular point of F(z) in (a, b) and F(z) is monotonic
and of the same sign in (a, b) ; in this case

ﬂ

S,= P(GH rh)h.

1-_



402 ADVANCED CALCULUS [CH. XIT.

Cor. 2. Further, the monotonic property of F(z) is essential
only in an interval (a, ¢), a<c<b, (or in an interval (c, b)) ;
it is not hard to modify the proof to suit this case. Lastly,
F(x) might, when F(z) is supposed as in the proof to be positive,
be allowed to take negative values in an interval (c, b), a<<c<b;
the theorem would hold for F(x)+C, where C is a constant
such that F(z) +C is positive, and therefore would hold for
F(x).

k.

Ex. 3. Sz logsinzdx = —7—2'10g 2.
In the identity
n-1
2 —1=(x-1)I1 (x —cosgﬂ —-isin2—r75)
re1 n n

after dividing by « -1 let 1 and take the modulus of each side of
the equation ; then

n-1 n-1
n=1[1 (2sinr—”)= I1 ‘:2asin’1.sinw:l,
re1 n r1 2n 2n

since cos(rm/2n)=sin[(n —~r)n/2n]. Take the square root (which is
positive) ; therefore

A in 27 s'n—33 in (P17

gnoi=Sing.singo.sing. ... CTnE

Let h =7/2n, take the logarithm of each member and multiply by & ;
thus
n-1
- inrhy=logn_z(y 1
,Sﬂ_’Z;lhlog(smrh)—zl " 2(1 n)logZ,

and S, -—’—;log 2 when h—0 or n—>w. The integral is convergeni
i

and its value is therefore — 5

log 2.

”
1 . 1= . 22 ) _
Cor. Solog(sm 7-z:r:)da:.‘ﬂs0 log(smx)dx—-zso log (sinx)dx = —log 2.

Ez. 4. If 0<p<1 and ¢"—>0 when g—1, prove that

b n-1
So log zdz= £b(l - )Y, e"log (be") =blogb -b.
p—1 r=(

Compare Exercises XIII, 2, (iii).

TaroreM II. If F(x) is monotonic in (a, ) and tends to
zero when x tends to infinity ; if, further, a is the only singular
point of F(x), then

£ Y F(a+'nh)=r F(x)dz,
h—0 an=1 a

provided that the integral converges.
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Since F(x) is monotonic and converges to zero it cannot
change sign ; F(z) will be supposed to be positive. Now let

S"=,.=21 Fla+rh)h;

then, /4 being kept constant, we have by equation (i) above and
the monotonic property of F(z),

a+nh had
S,,<I +F(x)dx<j‘ F(z)dz=K say,

the integral being convergent and equal to K.
Thus 8, increases as n increases, but is less than the fixed
number K ; therefore the series S, where

S=h>, Fla+nh),
n=1

is convergent. It is now easily seen, by the same method as
used for the proof of Theorem I, that '

j F(z)dx>h >, Fa+nh) > I F(z)dz.
a n=1 a+h
Let 2— 0 and the theorem follows at once.
Ex. 5. Prove that (wxnde‘“‘d:c =I'(u), #>0.

lo
0 Ed
Let S——-hz (nk)u~1e""‘=h#2nu~1e“"".
n=1

n=1
Now let e 2=y so that y—1 when A—0 and A/(1 ~e?)—>1 when
y—>1. The series § may be put in the form

S:(l—_—h—ﬁ)" (I-gyyp{lp-1y+2u-1y2 4+ +uu-lyn+ .}
and, by § 98, Ex. 5, S>TI'(u) when y—1. The integral is therefore equal
to I'(u), for the integral is known to converge.

The following test for the convergence of a series Za, of
positive terms was given by Maclaurin (Fluzions, § 350) though
it is often called Cauchy’s Integral Test.

Integral Test for Convergence of Series. If a,=a,,, >0 and
if a,=F(n) where F(z) is a positive, monotonic, decreasing
function of z, defined for = 1, the series Za, and the integral
I, where

I :IjF(x)dx,

either both converge or both diverge.
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A graph of F(x) will make the inequalities used below
iztuitive. )

n n
Let S,=2>, a, Inzj F(z)dx;
r=1 1
then, from the monotonic property of F(z), it follows at once
that I J.r F(z)dz = a,.
r-1

Sum from r=2 to r == ; therefore
S,-a,=1,=8,-a,, or, 0, =28, - I, =a,>0.
Hence (S,—I,) is bounded and not negative. Further
(S, - I,,) decreases as n increases ; for
(Sn ~1I,) - (Sn+1 - I'n+1) = (In+1 -1I,) - (Sn+1 -8,)

n-+1
=I F(x)dx —a,,,=0.

n
Thus (S, — I,,) tends to a limit which is not negative and does
not exceed a, ; therefore S, and I, either both tend to a limit
or both tend to infinity. :
Even if 8, and I, both tend to infinity the difference (S, — 1)
tends to a limit.

Ezx. 6. The series SF(n) and Ze"F(e") are either both convergent or
both divergent, F(z) being a positive, monotonic, decreasing function
of z, defined for x = 1. (Cauchy’s Condensation Test, § 60, Ex. 1.)

Let N be positive and arbitrarily large, logb=N, ¢c>b and z=e¥;

th loge
o Sc F(x)dx :g eV F(e¥)dy
b ‘logbd

and therefore the two integrals are either both convergent or both
divergent.
Again, from the monotonic properties of F(x) and e%,
® 0
2e’F(e")<g T (e)da,
n—

r=n

eT1F(e") < Sr e*F(e®)dx, 1
r-1 e
P41 e ®
e™HF(e") > gr e*F(e®)dx, e Z e"F(e’) > gn e*F(e®)dx.
N r=n
Hence the series Se"F(e") converges or diverges according as the
integral of e*F(e®) converges or diverges, therefore according as the

integral of F(x) converges or diverges and therefore finally according
as the series £ F(n) converges or diverges.

Ez. 7. Euler's Constant. If a,=1/r, then F(z)=1/x and
S,-I,=1+§+%+... +7_1z —~log n=0C,, say.

But (S, — I,,) tends to & limit, y say, which lies between 0 and a, (=1) ;
therefore 0, —y when n— . (Exercises IT, 8.)
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EXERCISES XVIIL.

Prove that the integrals in Examples 1-6 are convergent.

S“’l dz

05317——1 F,a>0,n>2.

34

1

co

™ (1 - z)*? (log ) dx, m >0, n > 0, p a positive integer.
0

G
|
4. r( 1 ;%)——x—ob: k> 0.
|
3

0

S

ydz if sinhzsinhy=1.

(=}

o

(sin z)™~1(log sin )?dx, m > 0, p a positive integer.

7. The three integrals

©s 1 dx © 1 1 % 1 dz
e o p— Y\ PRy — —_ —p—x \
So(1+w ¢ )x’ gu(l—e'“‘ w>e “dz, ,0(1+-‘0s ¢ )a:

are convergent and equal.

k2
8. Sl< ) dz =nlog2.
0 sin

®ginarsinbs , a+b
9. So—z_dx—%loga—:—, a>b>0.

g m+ne %\ dx b
10- S(j log(m)-—log(l-& )10ga,
where a > 0,5 >0, m >0, m+n>0.

11. If a >0, b >0 and n a positive integer,

2n~1 2n-—1
()g cos?® axzeos" bxdx:logg;

® cos®*tax —cos?bx , (2n)! b
z dx—-(l nin! 2’”) a

12. ()\ w =12z(b—a),a?0,b>0;

®sin gz sin bx
e

dx:’—;b, a>b>0.

13. If q;(a:) and ¢’(x) satisfly the conditions of Ex. 28, § 146, and if
a >0, b >0, show that

g:{q)(aa:);aqp(bx) ~(a —b)q’}’x)} dz =¢’(0){blogb~aloga +a - b}.
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14. If n is a positive integer.

P gin?ny 1.3.5....(2n-3) =
So 7 ®=r 6. .. @n-23 "}
g,n 1.

15. If F(zx) is a positive, monotonic, decreasing function defined for
z= 1 and if e*F(e®)/F(x) < K < 1 when # = G =1, prove that the integral
of F(x) converges at oo and that therefore the series 2F(n) converges.

[r Flz)da =V eV F(eV)dy < K V F(z)dz, ¢>b>G,
e b Jb
(1 —K)S:: F(z)dw < KD: Fla)de - [: F(x)dx:]

=K [Vb F(z)ds —rc Fla)ds]

K

so that § F(z)de < — 1-&

S F(x)dx, a constant.

Hence, since F(z) is positive, the integral of F'(x) converges at « and
therefore the series £F(n) is convergent.]

16. If F(x) is as in Ex. 15, but e*F(e®)/F(x)= 1 when z =G, show
that the integral of F(z) diverges at o and that the series ZF(n) is
divergent.

The tests given by Ex. 15 and Ex. 16 are known as Ermakoff’s Tests
for convergence and divergence.

Examples 17-22 are from Pélya and Szeg6, Aufgaben, I, pp. 40-42.

17. If oo > 0, prove that

. £ 191 4281 4 301 4, 402
(1) ° ne

1
s
o
n—-w

. 16-1_9a-1 4 ga-1_ 4 (_])n1pe—t
w A Sl

n—-w

18. Show that if 0<t< 1, £(1 t)21+tn—log2
t—1

19. Prove that £ {1 +2 } 7.
M) 21 1+n’t’
20: Prove that, if 0<¢<'1, -

A {(1 rv).é ro+log(1 —t)}:f: (15m-2)ewax.

1—1
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21. Prove that

(i) g log (1 +2-9) dz = ké;h > log[l +(nh)a], o > 13
n=1

(ii) if f(t)= H [l+( ) ] [llogf(t)—ncosec(n/a.)

22. Prove that, if 0= ¢ ==,
Q0
§0 log (1 - 2272 cos 2¢ +2~4)dx = 2= sin ¢,
by considering the integral as the limit

L