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AN

PREFACE

BY Spherical Astronomy I mean that part of Mathematical

Astronomy which lies between the vast domain of Dynamical
Astronomy on the one hand and the multitudinous details of
Practical Astronomy on the other.

I have aimed at providing for the student a book on Spherical
Astronomy which is generally within the limits thus indicated,
but I have not hesitated to transgress those limits now and then
when there seemed to be good reason for doing so. For example
I have just crossed the border of Dynamical Astronomy in
Chapter VII, and in two concluding chapters I have so far
entered on Practical Astronomy as to give some account of the
fundamental geometrical principles of astronomical instruments.

It has been assumed that the reader of this book is already
acquainted with the main facts of Descriptive Astronomy. The
reader is also expected to be familiar with the ordinary processes
of Plane and Spherical Trigonometry and he should have at least
an elementary knowledge of Analytic Geometry and Conic Sections
as well as of the Differential and Integral Calculus. It need hardly
be added that the student of any branch of Mathematical Astro-
nomy should also know the principles of Statics and Dynamics.

As a guide to the student who is making his first acquaintance
with Spherical Astronomy, I have affixed an asterisk to the titles
of those articles which he may omit on a first reading ; the articles
so indicated being rather more advanced than the articles which
precede or follow.

Such articles as relate to the more important subjects are
generally illustrated by exercises. In making a selection from the
large amount of available material I have endeavoured to choose
exercises which not only bear directly on the text, but also have
some special astronomical or mathematical interest. It will be
seen that the Tripos examinations at Cambridge and many College
examinations at Cambridge and elsewhere have provided a large
proportion of the exercises. I have also obtained exercises from
many other sources which are duly indicated.
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vi PREFACE

The work on the subject to which I have most frequently
turned while preparing this volume is Briinnow’s Spherical
Astronomy, a most excellent book which is available in English
and French translations as well as in its original German.
Among recent authors I have consulted Valentiner’s extensive
Handworterbuch der Astronomie which no student of astronomy
can afford to overlook, and I have learned much from the
admirable writings of Professor Newcomb.

I have to acknowledge with many thanks the assistance which
friends have kindly rendered to me. Mr Arthur Berry has fur-
nished me with many solutions of exercises, more especially of
Tripos questions. Dr J. L. E. Dreyer has read over the chapter
on Aberration and made useful suggestions. Mr W. E. Hartley
has helped in the correction of the proofs as well as in the revision
of parts of the manuscript. Mr A. R. Hinks has given me help in
the correction of the proofs and I am also indebted to him for
assistance in the chapter on the Solar Parallax. Dr A. A.
Rambaut has devoted much time to the reading of proofs and has
assisted in many other ways. Mr F. J. M. Stratton has revised
some of the pages, especially those on the rotation of the moon.
Dr E. T. Whittaker has given me useful suggestions especially in
the chapter on Refraction, and he has also helped in reading proofs,
and my son, Mr R. 8. Ball, has drawn many of the diagrams.
Lastly, I must acknowledge my obligation to the Syndics of the
University Press, who have met all my wishes in the kindest
manner.

The list of parallaxes of stars (p. 328) is based on more exten-
sive lists given by Newcomb in The Stars and Kapteyn in the
Groningen publications No. 8. The results stated for a Centauri,
Sirius and a Gruis have been obtained by Sir D. Gill; those for
Procyon, Altair, Aldebaran, Capella, Vega, Arcturus, by Dr Elkin ;
that for Cordoba Zone 5" 243, by Dr De Sitter; that for 1830
Groombridge by Professor Kapteyn; that for 21185 Lalande by
Mr H. N. Russell; that for Polaris by Pritchard; and that for
61 Cygni is a mean result.

I ought to add that when I use the word ephemeris I refer, so
far as works in the English language are concerned, either to the
British Nautical Almanac or to the American Ephemeris.

ROBERT S. BALL.

OBSERVATORY,
CAMBRIDGE,

18th October, 1908.
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1. Spherical Trigonometry.

Let a, b, ¢, A, B, C be as usual the sides and angles of a
spherical triangle. It is proved in works on spherical trigono-
metry that ‘

cosc=cosacosb+sinasinbcosC......... 1),
sinccos 4 =cosasinb—sinacosbeosC......... (2),
sincsind =sinasinC .......ccvvevniieinininnnnes (3).

Formula (2) may be conveniently obtained from (1) as
follows.
Produce AC (Fig. 1) to H so that

CH=90°-b,

A b Cgoo_(, H
Fra. 1.

then from the triangle BA H, we have by (1)
cos BH =sinccos 4,
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and from triangle BCH
cos BH =cosa sinb — sin a cos b cos C.

Equating these values of cos BH we have formula (2).

The various formulae of the type (2) can thus be written down
as occasion may require with but little tax on the memory.

The equations (1), (2), (3) are the simplest which can be
employed when two sides @ and b and the included angle C are
given and it is required to find the parts A and c of the spherical
triangle. It may at first be a matter of surprise that three
equations should be required for the determination of only two
quantities. But a definite solution cannot be obtained if the
equations for finding 4 and ¢ be fewer than three.

Suppose, for example, that only the pair of equations (1) and
(2) had been given and that values for 4 and ¢ had been found
which satisfied those equations. It is plain that the same equa-
tions would be equally well satisfied by three other sets of values,
namely

180°+ A4, 360°—c; 360°— A4,c; 180°— A4, 360°—c.
If, however, we require that the values to be adopted shall also
satisfy the equation (3) then the last two pairs of values would be
excluded. We thus see that when (1), (2) and (8) are all satisfied
by A, ¢ the only other solution is 180° + 4, 360° — c.

As to this remaining ambiguity it must be remembered that
the length of the great circle joining two points A and B on
a sphere is generally ambiguous. It may be either AB or
360°— AB. In like manner if the angle between two great circles
is even defined as the arc between two particular poles there
will still be an ambiguity as to which of the two arcs between
these poles is the measure of the angle. The circumstances of
each particular problem will generally make it quite clear as to
which of the two solutions 4, ¢ or 180°+ 4, 360° —c is that required.

If one side and the two adjacent angles are given then we
require two new formulae (4) and (5) to be associated with (3)

cos C'= — cos 4 cos B +sin 4 sin Beosec......... 4),
sinCcosa= cosAsinB +sin 4 cos Beos c......... (3),
sinCsina= SINABINC......coevrvivierirririninnnne. 3).

The formulae (4) and (5) are obtained from (1) and (2)
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respectively by the general principle of the Polar triangle, viz.,
that any formula true for all spherical triangles remains true if,
instead of a, b, ¢, 4, B, C, we write
180°— 4, 180°- B, 180°- C, 180°—a, 180°—b, 180°—c.
If we are given two sides and the angle between or two angles
and the side between the triangle may also be solved by formulae
easily deduced from (2) and (3) and of the type

cotasinb=-cot Asin C +cosbcosC............ (6).

If a, b and C are given this will determine cot 4, and thus 4
i8 known for there will always be one value of 4 between 0° and
180° which will correspond to any value of cot A from + o to
— . Of course 180°+ 4 is also a solution.

In like manner if 4, C, b were given, this formula would
determine cot a.

It may be noted that formula (6) shows the connection
between four consecutive parts of the triangle B
as written round a circle (Fig.2). As we may
commence with any one of the elements
there are six formulae of this type.

The following rule has been given* for
remembering the formulae of the type (6).

“Of the angles and sides entering into
any one of these formulae, one of the angles
is contained by the two sides and may be
called the inner angle, and one of the sides lies between the -
two angles and may be called the inner side. The formula may
then be stated thus:—

(cosine of inner side) (cosine of inner angle)

A

b
Fia. 2.

= (sine of inner side) (cotangent of other side)
— (sine of inner angle) (cotangent of other angle).”

For example, in writing down the formula involving the four
parts a, b, C, B we have C as the inner angle and a as the inner
side, whence we obtain (6)

cosa cos C = sin a cot b — sin C cot B.

If two sides a, ¢ and the angle A opposite to a are given, then
from (3) we obtain sin C. If sin C>1 the problem is impossible.
* In Leathem’s edition of Todhunter’s Spherical Trigonometry (1908), p. 27.

: 1—2
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If sin C <1 there is still nothing to show which of two supple-
mentary values is to be given to C, and unless some additional
information is obtainable, showing whether C is acute or obtuse,
the problem is ambiguous.

If two angles and a side opposite to one of them are given,
then, from formula (3) the side opposite the other angle will be
determined, subject as before to an ambiguity between the arc
and its supplement.

When the ambiguity in either case is removed the problem is
reduced to that in which two sides and the angles opposite to both
are known. From equations (1) and (2) the following formula is
easily deduced

tan b= tan @ cos C' + tan c cos 4

1—tanacos Ctanccos A’

and (2) will show whether b or 180°+b is to be used. The
calculation may be simplified by taking

tan @ =tan a cos C; tan ¢ = tan ¢ cos 4,

whence we find b= 6 + ¢.
By means of the polar triangle we obtain

tan 4 cosc + tan Ccosa |
1—tan A cosctanCcosa’

from which B may be determined for (5) removes the ambiguity
between B and 180° + B. Also if we take

tan & =tan 4 cosc¢ and tan ¢’=tan Ccosa,
we find B=180"-¢ - ¢

When the three sides are given, a spherical triangle may be
solved as follows. Let 2s=a + b+ ¢, then

—tan B=

sin (8 — b) sin (8 —¢)
sinasn(s—a) T ("),

tan 34 =

by which 4 is found, and by similar formulae we obtain B and C.
If the three angles 4, B, C were given, then making

_ /. cos S cos(S—4)
we have tan%a—\/ cos (S—B)cos (S—0) ~""""" (8),

by which a is found, and similarly for b and c.
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In the important case when the triangle is right-angled we
make C'=90° and from formulae like (1), (2), (8), we can show
that

sinccos A =cosasind .......coeeviiiiininnnn.n. 9,
COBC=CO8ACOSD ...oo0envrirnnnnnnnnen. (10),
8BiNc8in A =8IDa ....oovvvvenriirnreninienenn. (11),
cosA=tanbcotc ......oocerniriininnnnn, (12),

tan A =tan ¢ cosecd .........ceeeninennns (13),
cosa =cos 4 cosecB ...........uuunnnn. (14),
secc=tandtan B.........coeiniininnn, (15).

These formulae may be easily written down by the help of
Napier’s rules, for the enunciation of which
the quantities a, b, (90° — 4), (90° —c¢),
(90° — B), often called the “circular parts,”
are to be arranged inside a circle as shown
in Fig. 3.

Any one of the circular parts being
chosen as a “middle,” the two on each
side are termed “adjacents,” and the two
others are “opposites.”

Formulae (10) to (15) are written down
from Napier’s rules which are as follows:

sine of middle = product of tangents of adjacents,
sine of middle = product of cosines of opposites.

Ten formulae can thus be obtained, for each of the five parts
may be taken as a middle.

It is easy to show that whenever two sides and an angle, or
two angles and a side of any spherical triangle are given, the
triangle can be solved by Napier’s rules if divided into two right-
angled triangles by a perpendicular from one angle on the opposite
side (see Ex. 2 on p. 8).

The formulae for a quadrantal triangle (¢ = 90°) can be written
down also from the same diagram (Fig. 3). Napier’s rules applied
to the circular parts on the outside of the circumference give
the ten formulae for the quadrantal triangle. As examples
we thus find sin 4 =sin asin C and cos b= — tan 4 cot C where
A and 90° — b are respectively the middle parts.
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The relation here implied between the right-angled triangle
and the quadrantal triangle is shown by Fig. 4. If AB=90° and
BC is produced to €’ so that BC' = 90°, then £ (' =90°. Napier’s
rules, applied to the right-angled triangle AC'C, give the formulae
belonging to the quadrantal triangle 4 BC.

90 o
Fie. 4.

LogARITHMS :—The usual notation employed in writing log-
arithms of the trigonometrical functions may be illustrated by
an example,

The natural cosine of 25° is 09063078 and

log cos 25° = log 9-063078 — log 10 = — 0°042724.

To obviate the inconvenience of negative logarithms this is some-
times written 1957276 which stands for

—1+0957276.

We shall however generally follow the more usual practice of
the tables and add 10 to the logarithm of every trigonometrical
function. When this change is made we use L instead of I in
writing the word log. Thus in the preceding case the Log would
be written 9957276 and more generally

Log cos 8 = log cos 6 + 10.

If it is necessary to state that the trigonometrical function of
which the logarithm is used is a negative number it is usual to
write (n) after the logarithm.

For example, if cos155° occurred as a factor in an expression
we should write 9957276 (n) as its Logarithm, where the figures
denote Log cos 25°.



§1] FUNDAMENTAL FORMULAE 7

It frequently happens that after an angle 6 has been deter-
mined in the first part of a computation we have to employ
certain trigonometrical functions of € in the second part of the
same computation. In this second part we have often a choice as
to whether we shall employ one formula depending on Logsin 8
or another depending on Logcos@. It is generally immaterial
which formula the calculator employs, but if @ be nearly zero
or nearly 90° one of the formulae will be uncertain and the
other should be used. It is therefore proper to consider the
principles on which the choice should be exercised in so far as
any general principles can be laid down. :

We may assume that, proper care having been taken, the work
is free from numerical error so far as the necessary limitations of
the tables will permit. But these very limitations imnply that the
value of § we have obtained is only an approximate value. The
calculator may, generally, protect the latter part of the work from
becoming appreciably wrong notwithstanding that it is based on
a quantity which is somewhat erroneous. The practical rule to
follow is a very simple one. The two quantities Log sin 8 and
Log cos @ are not generally equal and the formula containing the
greater should be used in the remainder of the calculation.
This follows from the consideration that if 8 be >(<)45° a
small error in @ will have less effect on sin @(cos @) than on
cos @ (sin ).

Ex.1. Show how the side a may be determined by the formula

cot @ sin b=cot A sin C+cos b cos

if we are given
A=117°116"; C=154"13'64"; b=108°30'30".

Logcot 4 977106244 (n), Logcos C 99545123 (n),
Logsin ¢ 96382230, Logcos b 95016652 (n),
Logcot 4 8in C' 93488474 (n), Log cosCcos b 9°4561775;

(Nat.)cot 4 sinC - 02232789,
» cosCcos b +02858759,
, cotasind +00625970;
Logcot @ sin b 87965535,
Logsin b 99769354,

Log cot a 8'8196181. a=86°13'24",
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Ex. 2. Being given b=57°42'39"; ¢=19"18"2"; 4=120°12'36", find a
and B by the method of right-angled triangles.
Draw CP (=p) perp. to AB; then
Logsin b 99270432
sind 99366077
sin p 98636509 p=46°55'568"
tan b 10°1993454
cos (180— 4) 97017154
tanm 99010608 m=38"31'45"
cosp 98343291
cos(c+m) 97262684
cosa 95605976 a=68"40"48"
tan p 100293218
cosec (c+m) 10-0723887
tan B 10°1017106 B=»51°38’55"

2. Delambre’s and Napier's analogies.

The following equations are of great utility in spherical
astronomy :
sin §csin 4 (4 —B)=cos 4Csin (e —b)......... (16),
sin ccos § (A — B)=sin $Csin ¥ (a + d)......... (17),
cos3csin § (A +B)=cos§Ccos}(a—-"D)......... (18),
cos§ccos§ (4 +B)=sin$Ccos}(a+b)......... (19).

These equations are often described as Gauss’ analogies, but their
discovery is really due to Delambre *.

As Delambre’s analogies are more convenient for logarithmic
calculation than (1), (2), (8) and (4), (5), (6), they are often
preferred for the solution of spherical triangles when a, b and C
are given or when 4, B and ¢ are given.

It is frequently troublesome to remember these formulae
without such assistance as is given by Rambaut’s rulet.

We write the two rows of quantities

$(4+B), $(4-B), (',
1@ +?), $@-0b), i

* For this statement as well as for the proofs of these formulae, reference may
be made to Mr Leathem’s edition of Todhunter’s Spherical Trigonometry (1903),
p. 86.

+ See Dr A. A. Rambaut, dstronomische Nachrichten, No. 4185.
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where C’=180° -~ C. Then Rambaut’s rule is as follows:
Sum (difference) in one row is always to be associated with
cosine (sine) in the other row.
For example to obtain the Delambre analogy which contains
sin 4 (A — B) we conclude from Rambaut’s rule:
(1) that §c must enter with a sine because A and B enter
as a difference ;
(2) that a and b must enter as a difference because } (4 — B)
enters with a sine;
(3) that }(a—b) must enter with a sine because 4 and B
enter as a difference ;
(4) that 30’ must enter with a sine because ¢ and b enter
as a difference.
Hence the analogy may be written down
sin{csin § (4 - B)=sin $C’'sin} (a - b)
=cos }C sin} (a—0b).
As an example of the use of Delambre’s analogies we may
employ the spherical triangle in which
a=62° 48" 54", A =93° 46" 36",
b=57 42 39, B=T1 29 30,
c=25 466, (=29 11 13.
We shall suppose that a, b, C are given and find 4, B and c.
The numerical values here set down are the Logs of the
corresponding trigonometrical functions:
3C=14° 85" 36”5
3 (a+b)=60° 15" 46"5; }(a—b)=2°33"7"5
sin 4 (a—b) 86486286
cos §C 99857578
86343864 =sin §csin } (4 — B)
sin § (e +b) 99386752
sin§C 94013301
9-3400053 = sin §ccos } (4 — B)
cosf(a—b) 99995690
cos §C 99857578
99853268 = cos 4csin 3 (4 + B)
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cos}(a+b) 96954999
sin $C 94013301
9:0968300 = cos §ccos 4 (4 + B)
cosycsin} (A +B) 99853268 }(A+B) 82°38 3"
cosjccos} (A +B) 90968300 3(4—B) 11 8 33
tan } (4 + B) 08884968 A =93 46 36
sin §csin § (4 —B) 86343864 3(4A+B) 82°38 37
sin §ccos} (4 —B) 93400053 }(4-B) 11 8 33
tan § (4 — B) 92943811 B=T71 29 30
*sin §ccos (4 — B) 93400053
cos} (4 —-B) 99917352
sin ¢ 93482701

tcosicsin § (4 + B) 99853268
sin} (4 +B) 99964012
cos ¢ 99889256
gin ¢ 9'3482701
cos j¢ 99889256
tanfc 9:3593445 3c 12° 53 3”
Hence
A =93°46'36"; B="T1°29"30"; c=25° 46" 6".
From Delambre’s analogies we easily obtain the following four
formulae known as Napier’s analogies :

cos} (4 — B)

tan§ (@ + D)= e g B EC (20),
tan}(a — b)=:-:]‘—§§———mtan 6w, @),
tan} (4 + B) = z-z:—%—g—:_-%cot‘}(] ......... (22),
tan } (4 —B)=%cot 3C oo, (23).

As an example of the solution of a triangle by Napier’s
analogies we may take
A=23°27"; B=T°15"; c=74"29;
* We use this rather than sinjec 8in (4 ~B), because cosj(4d-B) is
>gin (4 - B) as already explained on p. 7.

+ We use this rather than cos §ccos }(4+B), because sin §(4+B) is
>cos §(4 + B).
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and use four-figure logarithms which are quite accurate enough
for many purposes.

cos § (4 — B) = 99956 sin } (4 — B) = 9'1489

sec} (4 + B)=00158 cosec} (4 + B)=05772

tan §¢ = 98809 tan } ¢ = 98809

tan } (@ + b) = 9:8923 tan § (a — b) = 96070
}(a+b)=237° 58 3(a—b)=22"2

a=60°0"; b=15° 56"
As }(a—0b) and }(a+0b) are both < 45° the proper formula
for finding C is (22) which may be written

tan4C=cos} (a—b)sec}(a+b)cot} (4 + B)
cos}(a — b)=99671
sec}(a + b)=01033
cot 3 (4 + B)=0'5614
tan $C = 06318
C=153" 44'.

3. Accuracy attainable in Logarithmic Calculation.

When the logarithm of a trigonometrical function is given it
is generally possible to find the angle with sufficient accuracy.
But- we often meet with cases in which this statement ceases to
be quite true.

For example, suppose we are retaining only five figures in our
logarithms and that we want to find 6 from the statement that

Log sin 6 = 9-99998.
This tells us nothing more than that # must lie somewhere
between 89° 23'7” and 89°31’25”. Nor will the retention of so
many as seven places of decimals always prevent ambiguity. We
note, for example, that every angle from 89° 56’ 19” to 89° 57'8"
has as its Log sin the same tabular value, viz. 9°9999998.

We thus see that angles near 90° are not well determined from
the Logsin, and in like manner angles near zero are not well
determined by the Log cos. Butall angles can be accurately found
from the Log tan as will now be proved.

If @ receive a small increment A" or in circular measure A sin 1”
and the increment in Log,,tan 6 be z units in the 7th place of
decimals, we have to find the equation between A and .
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Changing the common logs into Napierian logs by the modulus
04343, we have
2/10000000 = 04343 log, tan (6 + A sin 1”) — 04343 log, tan

= 04343 log, (1 + A 8in 1”cot )
— 04343 log, (1 — hsin 1” tan 6),
whence by expanding the logarithms
z = 4343000 sin 1”(tan @ + cot 6) & very nearly,
which may be written
h =z sin 20/42'1.

The greatest value of h is #/42'1, and hence the concluded
value of § when Log tan @ is given could never be 1” wrong unless
Log tan 6 was itself wrong to the extent of 0:0000042.

Ex. 1. Show that when 5-figure logarithms are used and the computation

is exact to within two units of the last decimal the error of an angle de-
termined from its tangent cannot exceed 5 seconds.

Ex. 2. Investigate the change in the value of an angle produced by the
alteration of one unit in the last decimal of its Logsin, and show that under
all circumstances it is more accurate to determine the angle by its tangent
than by its sine.

Ex. 3. Prove that if 4 is a small angle its value in seconds is given
approximately by the expression cosec 1" sin 4 (sec 0)%, and show that even if 8
be as much as 10° this expression will not be erroneous by so much as 1”.

Ex. 4. If 0 is a small angle expressed in seconds, show that

Logsin 8=log 6+ 8,

where &8 =3(20+ Log cos ) — 53144251,
and as an example show that when §=2074"-20
Log sin §=8-0024182.

The quantity S is given in Bruhn’s tables. (Tauchnitz, Leipzig, 1870.)
Ex. 6. Determine the angle 8 of which the Log sin is 8:0123456.

Tables which, like those of Bagay (Paris, 1829), give the functions for
each second show that the required angle differs from 0°35'22"” by not
more than a small fraction of a second. To determine that fraction we
compute S=4(204 Logcos §) — 53144251 which becomes 46855672 by sub-
stituting 0° 35' 22" for @ in Log cos 4. Then from the equation

log §=Log sin § —.§ we obtain §=2122"16.

4. Differential formulae in a Spherical Triangle.

Six angles a, b, ¢, 4, B, C will not in general be the sides and
angles of a spherical triangle, for they must fulfil three conditions
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if they are to possess this property. This is obvious from the
consideration that if these six quantities were indeed the parts
of a triangle, then any three of them being given the other three
could be determined.

Let us however assume that these six quantities are indeed
the parts of a spherical triangle, and let them all receive small
changes Aa, Ab, Ac, A4, AB, AC respectively. The quantities
as thus altered a + Ae, &c. will in general no longer be the
parts of a spherical triangle. If they are to be such parts
they must satisfy three conditions, which it is now proposed to
determine.

Differentiate the fundamental formula (1)

cosa=cosbcosc+sinbsinccos 4,
and we have

—sinaAa = — sin b cos cAb — cos b sin cAc
+ cos b sin ¢ cos AAb + sin b cos ¢ cos AAc
—sinbsincsin AAA.
But from the formula (2) in § 1
sin @ cos B = cos bsin ¢ —sin b cos ¢ cos 4,
sinacos C =sinbcosc —cosbsinccos 4;
whence by substitution, and writing the similar formulae

Aa= cos CAb + cos BAc + H sin b sin cAA}

Ab=cos AAc + cos CAa + H sin ¢ sin aAB
Ac = cos BAa + cos AAb + H sin a sin bAC

where H =sin A/sin a = sin B/sin b = sin C/sin c.
Proceeding in like manner from formulae (4), (5) we obtain
the equivalent equations

AA = — cos cAB — cos bAC + H'sin Bsin CAa
AB = — cos aAC — cos cAA+ H'sin C sin AAb;...... (ii).
AC = — cos bAA — cos aAB + Hsin A sin BAc

We have thus proved that if a, b, ¢, 4, B, C are the parts of
a spherical triangle, either set of equations (i) or (ii) expresses the
three necessary and sufficient conditions that

a+da, b+Ab, c+Ac, A+AA, B+AB, C+AC
shall also be the parts of a spherical triangle.

"
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If three of the differentials be zero, then the other three will
also in general vanish. This is evident from the equations as it
i8 also from the consideration that if three of the parts of a
spherical triangle remain unaltered, then generally the other
parts must also remain unaltered.

As an illustration of an exception to this statement let C'=90°,
and Ab=0, Ac=0, AB=0. The second equation of (i) will in
this case not require that Aa=0.

Ex. 1. Under what conditions can a spherical triangle undergo a small
change such that Ae=0, Ab=0, A4 =0, AB=0 while both Ac and AC are not

zero ?
From (ii) we see that a=90°, b=90°, whence 4 =90°, B=90".

Ex. 2. If a spherical triangle receive a small change which does not
alter the sum of its three angles, show that the alterations in the lengths of
the sides must satisfy the condition

Aa sin (S— A)+ Absin (S - B)+ Acsin (S- C)=0,
where S=3}{(4A+B+C).

*5. The Art of Interpolation.

In the calculations of astronomy use is made not ouly of
logarithmic tables but also of many other tables such, for example,
as those which are found in every ephemeris. The art of
interpolation is concerned with the general principles on which
such tables are to be utilised.

Let y be a quantity, the magnitude of which depends upon
the magnitude of another quautity . We then say that y is
a function of z and we express the relation thus

Y=F(@) evrrreeneeeeeee. @)

where f(z) denotes any function of #. This general form would
include as particular cases such equations as
y=logz or y=Logtanaz.

Suppose that the value zero is assigned to z, then the corre-
sponding value y, of y is given by the relation y, = £(0). Let us
next substitute successively h, 2h, 34, ... for & in (i), and let the
corresponding values of y be respectively y., ¥s, ¥s, &. Then the
essential feature of a table is that in one column we place the
values of @, viz. 0, k, 2h, 8k, &c., and in another column beside it
the corresponding values of y, viz. ¥, ¥, ¥s» ¥s, &c.
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The value of «, often called the argument, advances by equal
steps h, and each corresponding value of y, often called the
JSunction, is calculated with as much accuracy as is demanded by
the purpose to which the table is to be applied.

Table for
y=r(@). .
z y
0 Yo
h N
2k Y2
3k Y3
|
|

The object of such a table is either to show the value of the
function corresponding to a given value of the argument, or to
show the value of the argument corresponding to a given value
of the function.

We often require to know the numerical value of a function
corresponding to an argument which is not explicitly shown in
the table, but which lies between two consecutive tabular values
of the argument. The converse problem also frequently arises, of
finding the value of the argument corresponding to a value
which lies between two consecutive tabular values of the function.
It might at first be imagined that in either of these cases we
should have to resort again to the original equation (i). This
however is not necessary. The character of the functional
relation has been so far imparted to the table that, when either of
the quantities « or y is given, the other is ascertained by the art
of interpolation now to be explained.

The nature of this art is most clearly illustrated by geometry.
We can construct graphically the curve y=f(«) in the usual
manner. From the origin O we mark off along the axis of «
a series of points 4,, 4;, 4, at distances A, 2k, 3k from 0. We
compute the corresponding values y,, ¥, ¥s,... of y from the
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formula y=f(x). Then we erect ordinates 4,P,, 4,P,, &c.,
at 4,, 4,, &c., (Fig. 6) equal to the corresponding values y,, y,, &ec.
The points P,, P;,, P,, &c., will
generally be found so placed that a
curve can be drawn to pass smoothly
through them. If the points 4,, 4,,
&c., are sufficiently close together, <.e.
if h be small enough, the trend of the
curve will be so clearly indicated that
there will be little ambiguity, and the
curve y = f(z) passing through P,, P,, O A, AA, A
P, will not, in general, appreciably Fia. 6.

differ within these limits from the

curve just drawn through the same points. The true curve will
of course depend upon the character of the function which y is
of z. As however, in the art of interpolation, we are concerned
with only a small part of the curve, it will be unnecessary
to consider the particular characteristics of the special curve
involved.

We need not therefore make use, for our present purpose, of
the true curve y =f(z) but of any osculating curve. We employ
at first the osculating circle which, so far as the needs of inter-
polation are concerned, is sufficiently accurate. It is generally
possible to draw this circle, whose arc coincides so nearly with
that of the given curve at a given point that for a small distance
the departure of the circle from the curve is insensible. We may,
therefore, whatever be the true curve, regard that small part which
concerns us as a circular arc. Accordingly, we describe a circle
through P,, P, and P,, and we assume that for any point P
between P, and P; the ordinate to the circle is the value of y
for the corresponding #. Thus if AP be the ordinate then 4P
is the value of the function when z=0A4. We shall make
use of the circle to determine an expression for AP which
shall involve only its abscissa and the coordinates of P,, P,, P,.
This may not, of course, be the value of y as obtained from
the formula y =f(z), but it will not differ appreciably there-
from.

Let TMM'N'N be a circle and TLL’ the tangent to it at T.
Let LN and L'N’ be two lines which are both perpendicular

\
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to the axis of X. We have, by the property of the circle

(Fig. 1),
LM LN = LT
LM L'N'=LTs
whence
LM LT L'N

¥ “LT IN "
Let us now suppose that LN and

L’N’ approach indefinitely close to
T,then L'N’/LN =1 and we have

LM : L'M' :: LT® : I'T Fie. 1.
Remembering that the arc of the
curve is indistinguishable from that of its osculating circle in the
vicinity of the point of contact, we obtain the principle on which
interpolation is based and which may be thus expressed.

If a tangent TL be drawn touching a curve at T, and LM
be an ordinate contiguous to 7|, then the intercept LM on that
ordinate between the tangent and the curve is proportional to
the square of T'L.

In Fig. 8, O is the origin, y is the ordinate of P, and y, that
of T, then, as we have shown, PB
varies as BT? and therefore, as /

CT?, also OB varies as CT'; hence, 7
if z be the abscissa of P

Yy —y,=lx+ ma?,
where | and m are constants for T
points in the neighbourhood of . == | ©
This is of course the equation of
a parabola.

With a change in the con-
stants to I’ and m' we may write Fio. 8.
the equation as follows

y=y,+ Vo +mz(z—r);
. we find I and m’ from the consideration that (k, %,); (2k, y,) are
to be points on the curve. The first gives

|~
B

,_yl—%
r=t¥
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while =2k, y =y, gives
' $2=Yo+2 (% — Yo) + Wm0,

’r__ Ys — 23/1 + Yo
- ™=
and the equation becomes
—h .
y=yo+§(y|—yo)+ g G )(y. 20y + Yo eveeren @).

Let y,, %, ¥, be three consecutive values of the function y, where h
is the difference of the arguments between the second and the
first value and also between the third and the second. Then for
any argument which is greater by # than the first argument but
less than the third argument the above formula gives the required
function.

The constants of this formula are very easily obtained from
the table by the method of differences:

1st Diff. 2nd Diff.

Yo

% Ya— 21 + ¥
Ya—

Ya

The first column contains three consecutive values of y.
The second column shows the differences between each value and
the preceding one. The third gives the differences between con-
secutive terms in the second. The third and higher differences
are to be similarly formed if required.

If for brevity we write y, — Y= A and y,—2y,+y,=
and if we replace « by ¢ as the time is generally the mdependent
variable in astronomical work, and if we make the difference A
the unit of time, then the equation becomes
The rate at which y changes with respect to ¢ obtained by

differentiating the last equation with respect to ¢, is

dy _ LA
TJZ—A_‘}A +tA,

from which it appears that the rate of increase will itself increase
uniformly.
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In two time-units the function increases from y, to y;, hence
its average rate of increase per time-unit is §(¥s — ), and as
the rate increases uniformly it will attain its average value when
half the time has elapsed, i.e. when the function has the value y,.
Hence we deduce the following result:

The rate at which the function is changing per unit of time
at any epoch ¢ is half the difference between the values of the
function at one unit of time after ¢ and at one unit of time before ¢.

Provision is often made in the Ephemeris for a more rapid
process of interpolation by giving an additional column indicating
the rate of variation of the function at the corresponding moment.
We shall illustrate this by finding the South Declination of the
Moon at 15 +¢ hours after Greenwich mean noon on Sept. 6,
1905.

The Ephemeris gives the South Declination of the Moon at 15%
G.M.T. to be 18° 38’ 1”2 and the variation in 10 minutes as 23”55,
the moon moving south. At 16" on the same day, the next line
of the table shows the variation in 10™ to be 22"'41, and as the
rate of variation may be regarded as declining uniformly, the
variation per ten minutes at (15+4¢) hours after noon is

2355 — 0"°57¢.

This may be assumed to be the average rate of variation for
the whole interval between 15® and 15" + ¢, and since ¢ is ex-
pressed in hours the total variation in that interval is found by
multiplying the average rate by 6¢. We thus find for the South
Declination of the Moon at 15" + ¢ on Sept. 6, 1903,

18°38'1"2 + 1413t — 3"42¢8*

Formulae of interpolation are also used for the inverse
problem of finding the time at which a certain function reaches
a specified value. Suppose, for example, that it is required to
know the time on September 6th, 1905, when the Moon’s South
Declination is 18°40". We have from the equation just found

18°40" =18°38" 1”2 + 141”3t — 3'"42¢2,
This is a quadratic for ¢, and by neglecting the last term the

root we seek is found to be approximately 0-86. Substituting
this value in ¢ in the original equation it becomes

1188 = 1413t — 2:53,



20 FUNDAMENTAL FORMULAE [cH. 1

whence ¢= 0859 and the required time is 15* 51™5. The other
root of the quadratic is irrelevant.

It is easy to generalize the fundamental formula of interpola-
tion given above.

Let us assume

y=Ado+ Ayt + At (E—1)+ At (t—1) (£ —2)
+Ag(@t-1)(¢—-2)(-3),

where 4,, 4,, 4., 4,, 4, are undetermined coefficients, to be so
adjusted that when ¢ becomes in succession 0, 1, 2, 3, 4, then y
assumes the values y,, %1, ¥s, ¥s» ¥, Tespectively.

Hence by substitution we have

ys=A4,+ 24, + 24,,

yy=A4,+34,+64,+ 64,,

Yo=Ad,+ 44, + 124, + 244, + 244,;
from which,

4A,= Yo»

A4, = W — Yo

A;=13(y:— 29 + %),

A=} (3/: —3Y:+ 3y1— %),

4,= 'zl{(.’lc" 43/: + 692 — 4y +3/o)-

By this means we obtain the general formula of interpolation

t t 1 t t—-1)(t—-2

tt-1D(t—-2)(¢=3)
1.2.3.4 ¢

where A,, A;, A,, A, are the successive differences.
Generally the last term may be neglected as
Yo— 49+ 63— 4y, + 9o
will usually be very small. If we make it equal to zero we have
=3+ 95) — 4 (% + ¥0).

The quantities given in the tables are of course generally
erroneous to an extent which may amount to almost half a digit

Y=Y+ 8+ ——5

+




§5) FUNDAMENTAL FORMULAE 21

in the last place. If y, and y, were each too large by half a
digit in the last place, and y, and y, were each too small by the
same amount, then even under these most unfavourable circum-
stances the combination can give an error of barely a single digit
in the last place in y,.

We have also from the same equation

Yo=4ys— 6y + 4y, — Yo,

from which it might appear that from knowing y,, %, %, ¥s We
could compute y,. But this “extrapolation” would be unsafe,
for if ¥, and y; were each half a digit too large, and y, and y,
each half a digit too small, as might conceivably happen, the total
error in y, would amount to 7 or 8 digits of the last place.

The following method of interpolation due to Bessel should
also be noted. '

Let ¢t be the argument measured from a point midway
between two tabular arguments, and set down that part of the
table as far as two tabular arguments on each side of the origin.

lst Dift. 2nd Diff. 8rd Diff.
KA
Ys— U1
Ya Ys— 23/3 + 3%
Ys—Ya Yi—3ys + 8y — 1
Ys Yi— 23/: + Y
Ye—Ys
Y.
We shall make
a=4(¥+9); b=ys— %,

c=4(H—Y—%t+tn); d=y—3y+3y%—y,
where a, b, ¢, d are either quantities on the horizontal line through
the origin or the arithmetic means of two adjacent quantities on
opposite sides of the line.

We may write down
y=—tnC+HCE-HCE-H+1nC+HCE-HE-H
“35CE+HEHHC-H +150E+HE+HHE-D,

for obviously by substituting for ¢ respectively —§, —4, §, §, we
obtain y,, ¥., ¥s, ¥4, and we assume that for neighbouring values
of ¢ the same expression will give the corresponding values of y.
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Expanding we obtain
48y=~ y, (8 —120— 2t +3)
+ 3y, (88— 42— 18t +9)
— 3y, (8t*+ 4t*— 18t —-9)

+ y.(82+1202— 2t -3),
and consequently,

48y = (8 — 2t) (d + 3b) + (12 — 8) (2¢ + 2a)
+ (54t — 246%) b + (54 — 24t a,

or y=a+bt+c(2t—l)8(2t+1)+dt(2t—12)4(2t+1).

[cH. 1

If t=0 we have y=a - }c, by which we see that the value of
the function for an argument halfway between two consecutive
arguments is equal to the mean of the two adjacent values less
one-eighth of the mean of the two second differences on the same

horizontal lines as these values,

As an illustration of this method we may take the following
problem. The Moon’s mean longitude at Greenwich mean noon
being given as under for 1st, 2nd, 3rd and 4th March, 1899, it is
required to find its mean longitude at midnight on March 2nd.

Moon’s mean
1899 longitude at noon 1st Diff. 2nd Diff.

March 1st 205° 3838”1
+12° 58 6”9

» 2nd 218 36 45 -0 +13'11"2

+13 11 18 1

» ord 231 48 3°1 + 14 40 6

+13 25 58 7
» 4th 245 14 18

The required result is

4

$(218°36" 450 + 231° 48’ 3"1) — 1 (13' 11”2 + 14’ 40"6)

= 225°10' 39”5.
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*EXERCISES ON CHAP. I

Ex. 1. Show that in any formula relating to a spherical triangle «, b, ¢,
A, B, C may be changed respectively into a, 180°- %, 180°~¢, 4, 180°- B,
180°—C and hence deduce the second of Napier’s analogies (21) from the
first (20).

Ex. 2. Esxplain in what sense Delambre’s formula (16)
sin §csin § (4 — B)=+cos 4Csin g (a—b)
may be also written in the form
singcsin$ (4 — B)=—cos }Csin § (a—b)
and show that there is a similar ambiguity of sign in the remaining three
formulae.

Ex. 3. Show that
cot ada+ cot BdB=cot bdb+cot AdA,
sin adB =sin Cdb—sin B cos adec—sin bcos CdA.

Ex. 4. If when ¢ assumes the values %, ¢;, £3 the corresponding values of
y are ¥, ¥1, y3 respectively, show that a formula of interpolation based on
these data is given by the equation
y=y (t=t)(t—t) ¥ (e-t) (¢—t) y (t—to) (t=t1) .
Clo—0) (=t " 7 (h—t) (1 —t0) "~ (ta—to) (ta— 1)
It is sufficient to observe that this is the simplest expression of y in
terms of ¢ which obviously gives for y the values g, 31, ¥s when &, ¢, ¢, are
substituted for ¢

Ex 5. Show that if t,—¢=t3—¢ =4 the formula of interpolation in the
last example will reduce to the fundamental formula
1 t(t—-h
Y=Y+ ; ®1—30)+ (%g )(112-2.'/1 +¥0)

if the time be measured from the Epoch ¢,

Ex. 6. Extracting the following from the Ephemeris :

Greenwich mean noon.
N. Decl. of Sun
1905. April 7th ... ... 6° 40 49"9
» 8h ., .. 7 3 224
w Sth ... ... 7 2 477
Show that the Sun’s declination at 6 p.m. Greenwich mean time on Apr. 7
is 6° 46’ 28"7.
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Ex. 7. The Moon’s semi-diameter is as follows :
Greenwich mean noon.

Semi-diameter
) of Moon
1909. Sept. 3 ... ... 16 29”44
w 4 o .. 16 18 61
w O e e 186 597
w 6 .. ... 15 52 69

Show that the Moon’s semi-diameter at midnight on Sept. 4 is 16'12"°44.

Ex. 8. From the following data find the mean time on Aug. 11th, 1909,
when Venus and Jupiter have the same R.a.

1909
Mean noon B.A. of Venus B.A. of Jupiter
Aug. 11 11k 10™ 40%24 11k 13m 35%58
» 12 11 15 7-24 11 14 2036
» 13 11 19 3361 11 16 531

If ¢ be the fractional part of a day after noon on Aug. 11 the formulae of
Interpolation give the equation

11b 10m 40824426700 — 031 £ (¢ —1)
=11b 13™ 36558+4¢ 44%7840%08¢(¢-1).

It is plain that ¢ must be about 4. Hence the last terms on each side of the
equation may be replaced by +005 and - 0-01. Solving the simple equation
we have ¢="78877 whence the required answer is 18t 55m-8,

Ex. 9. We extract from the Ephemeris as follows :

Right Ascension of
Moon
1905. Dec. 21 O hrs. G.M.T. . 13k 39™ 5569
12 hrs. 14 7 3204
» 22 O 14 35 38°14
‘ 12 16 4 1631

Show from Bessel’s formula, neglecting d as it is very small, that the r.a
of the Moon at (18+12x) hours on Dec. 21, 1905, was

14b 21m 35+09 +(28™ 6+10) 2+ 386 (22 — 1) (22 +1).
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6. Graduated great circles on the sphere.

The circumference of a great circle is supposed to be divided
into 360 equal parts by dividing marks. Starting from one of
these marks, which is taken as zero, the succeeding marks in regular
order will be termed 1°, 2°, 3° and so on up to 359°, after which the
next mark is zero so that this point may be indifferently termed
0° or 360°. Thus we obtain what is known as a graduated great
circle, and it may have subordinate marks by which each interval
of 1° is further divided as may be required.

In starting from zero the numbers may increase in either
direction, so that there are two perfectly distinct methods of
graduating the same circle from the same zero mark.

A man walking on the outside of the sphere along a graduated
great circle in the direction in which the numbers increase, i.e.
from 0° to 1° not from 0° to 359°, will have on his left hand that
pole of the great circle which may be distinguished by the word
nolet, and on his right that pole of the great circle which may
be distinguished by the word antinole.

+ The ancient word nole being obsolete in its original sense of head or neck seems
available for the purpose now proposed. There being a choice of various spellings
that one is preferred which most immediately suggests north pole.
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Thus when the terrestrial equator is considered as a graduated
great circle for longitudes eastward from Greenwich or Paris,
the north pole of the earth is the nole of that circle so graduated
and its antinole is the south pole of the earth. If on the other
hand the equator be graduated so as to show longitudes increasing
as the observer moves westward, then the nole of the circle so
graduated is the south pole of the earth, and the north pole of
the earth is the antinole.

When a point on a sphere is indicated as the nole of a graduated
great circle, then, not only is the position of that great circle
determined, but also the direction of graduation round it.

If the given point on the sphere had been indicated as the
antinole of the graduated great circle, then the direction of
graduation would be reversed, for by definition the antinole is
on the right hand of a man walking along the great circle in the
direction of increasing graduation.

To indicate the direction 0° to 1° on a graduated circle it is
sufficient to attach an arrow-head to the circle  joy0 5og0
as shown in Fig. 9 and Fig. 10, and it will be con-
venient to speak of the direction of increasing —>
gradnation as the positive direction, and the Fig. 9.
direction of diminishing graduation as the negative direction.

7. Coordinates of a point on a sphere.

Any great circle of the sphere graduated from 0° at an origin
O being chosen for reference, we can
express the position of any point on
the sphere by the help of two co-
ordinates a and & with respect to
that graduated great circle.

When specific values are given
to @ and §, the corresponding point
S on the sphere is obtained in the
following way. We measure from O Fie. 10.
along the great circle in the direc-
tion of increasing graduation to a point P so that OP=a.
At P a great circle is drawn perpendicular to OP, and on this
an arc is to be set off equal to 8. If & is positive, then the
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required point S is to be taken in the hemisphere which
contains the nole. But if 8 is negative, then the required point
S’ is in the hemisphere which contains the antinole. Thus when
a, 8 are given, the place of a point on the sphere is definitely
indicated. It is often convenient to speak of the hemisphere
which contains the nole as the positive hemisphere and that
which contains the antinole as the negative hemisphere.

Negative values of a need not be considered, for though a point
Q might be indicated as — 90° if 0CQ = — 90°, yet it would generally
be more conveniently indicated by + 270°, the measurement
being made in the positive direction. We hence establish the
convention that all values of a are to lie between 0° and + 360°.

It is convenient to restrict the values of & between — 90° and
+ 90°, for this dispels some ambiguity while still preserving perfect
generality. Two coordinates will indeed always determine one
point, but without this limitation of & it will not follow that one
point will have only a single possible pair of coordinates. For
example a =30°, §=+ 20° will indicate a point not different from
a=210°, 8= +160°. Tf however we establish the convention that
3 shall never lie outside the limits — 90° and + 90° we are able to
affirm that not only does one pair of coordinates determine one
point, but that one point, in general, has but one pair of co-
ordinates. The only exceptions then remaining will be the nole
and antinole of the fundamental circle. In the former &=+ 90°,
and in the latter § = — 90°, but in each a is indeterminate.

Ex. 1. Abandoning the restrictions that 03a$360° and —90°}3390°,
show that the point a=40°, 3=30° would have been equally represented by
any of the following pairs of values for a, 3 respectively :

2920°, 150°; —320°, 30°; —140°, 150°; 400°, 30°; —680°, 30°;
580°, 160°;  40°, 390°.

We can always apply +360° to either or both of the coordinates without
thereby altering the position of the point to which these coordinates refer.

Ex. 2. Show that the following pairs of coordinates
a; 8
360°+a; 3
180°+a; 180°-8
180°+a; —180°-8
all indicate the same point, and thus verify that for every point on the sphere
a pair of coordinates can be found such that 03a}360° and -90°$33$90°.
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8. Expression of the cosine of the arc between two
points in terms of their coordinates.

Let AA’ be the great circle of reference and P its nole, and
let S and S’ be the two points. As AS=34 e
we must have SP=90°-3, and in like
manner S’P=90°-&. We have also
AA'=a —a, and as PA and PA’ are
each 90°,
LSPS' =d —a.
Applying fundamental formula (1) to the
triangle SPS’ we have if S8’ =6
cos = sin & sin &’
+cosdcosdcos(a’ —a)...... @).
When the points S, 8’ are close together
on the sphere a more convenient formula
for the determination of their distance is
found as follows.
We have
cos @ = sin & sin &' + cos & cos &' cos (a — a')
= gin & sin &' {cos*  (a — ') + sin? § (a — &)}
+ cos d cos &' {cos? § (2 — a’) — sin*} (a — ')}
=cos (8 —&')cos*} (a —a’) — cos (8 + &) sin* § (a — o).
Subtracting this from
l1=cos*} (a —a')+sin*} (a—a’),

we have
sin®} @ =cos* 4 (a — a") sin? § (8 — &) + sin® § (a — a’) cos? § (3 + &').
This is of course generally true, and when 8 is very small it gives
the approximate solution
F=@B-8)+(a—aYcos*}(8+8).

We can prove this formula geometrically as follows (Fig. 11).

Let SN and SN’ be perpendicular to S’P and SP respectively.

As SN'S’ is a very small triangle

SN+ N'8?= 88",
whence approximately
@8+ (a—a) costd =8S"
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In like manner from triangle SNS’

@—-8y+(a—a)cos*’d=88"
These approximate values of SS”? only differ in that one
contains cos § and the other cos 8. Generally one is too large and
the other too small and for an approximation we may write in-
stead of cos 8 or cos & their mean found as follows:

4 (cos 8+ cosd)=cos} (8 +8)cosd (8 —8)=cos}(8+9),
which gives by substitution the desired result.
Rectangular Coordinates:—We can determine from (i) the

rectangular coordinates of the point a, 8 on a sphere of radius r,
with reference to axes defined as follows:

+ z is from the centre of the sphere to the point a'=0, & =0.
F Y et e a' =90° &=0.
2 iiiiiieieititieiiiaeeetetteteeteaiaeatareaasaaaas &' =90°
We thus see by substitution in (i) that the cosines of the
arcs from P to the extremities of the three positive axes are
respectively
cosacosd, sinacosd, sins,
and hence the rectangular coordinates are
x=rcosacosd; y=rsinacosd; z=rsind.
Ex. 1. Find the distance 8 between .§ and 8’ when it is given that
3=12°24'45"; &=24"1540"; a' —a=42° 38" 41",
We calculate the distance 8 directly from the formula (i)

cos & 9959844

sind 9613731 cos 8 9989728
sin§ 9-332334 cos (a’—a) 9866623
8:946085 9816195

1st term 0088321
ond , 0654930
cos 8 0-743251
6=41° b9’ 27",
Ex 2. If 3=27°11'6", ¥=32°17'21” and a'—a=29"11" 13", show that
8=25° 46’ 6",

Ex. 3. The coordinates of two stars are a;, 8; and a;, 8 respectively.
Show from (i) that the coordinates a, 8 of the poles of the great circle joining
them are given by the equations

—tan 8=cot 8, cos (a — a;)=cot 83 cos (a — ay),
and obtain the same equations geometrically.
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Ex. 4. Ezxplain how the solution of the last question applies to both
poles, and show how to distinguish the nole from the antinole if the positive
direction be from the first star to the second.

Ex. 5. Show that if L be the length of the arc of a great circle on the
earth (supposed a sphere of radius R) extending from lat. A, long. {; to

lat. Ag, long. I3, then
L=R cos~!(sin A, sin A sec? ¢),

where m8¢=wtxlCOth008(ll—l’);
and that the highest latitude reached by the great circle will be

oos"(cos)\, cos g 8in ({; ~ ;) cosec £)

R
Let §;S; be the two points (Fig. 12), N
OP, P, the equator, N the north pole;
then

cos S]Sz=ﬂin A sin Ag
+008k1 (‘Oskg 008(1] —lg).
To prove the second part the highest
latitude on §;8;, produced if necessary,

equals £ S,0P;. Ss
From A NOS, we have o

OOBS‘OPI =sin NOS. =sin Nsl Sin IVSIO Pl Pg
=sgin NS, sin NS; sin §; V'S, cosec S, S;. Fra. 12.

Ex. 6. Verify that in the expression of the distance between a point a, 3
and another point ay, 8, there is no change if a and 3 be altered into 180°+a
and 180° — 8 respectively, and explain why this is necessary.

9. Interpretation of an equation in spherical coor-
dinates.

When a and & are given, then as we have shown a point of
which these quantities are the coordinates is definitely determined
on the sphere. If we know nothing with regard to a and &, except
that they satisfy one equation into which they enter in conjunction
with other quantities which are known, we have not sufficient
data to determine the two unknowns. .

Any value of a substituted in the equation will give an
equation in § for which, in general, one or more roots can be
found. Repeating the process with different values of a we can
obtain an indefinitely numerous series of pairs of coordinates a, 3,
each of which corresponds to a point on the sphere. If several
of these points be constructed, they will indicate a curve traced on
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the spherical surface. The original equation may be described as
the equation of that curve just in the same way as an equation
in  and y indicates a plane curve in analytic geometry.

We shall first show that if the coordinates of a point a, &
satisfy the equation

Asgind+ Bsinacos §+ Ccosacosd=0,

where A, B, C are constants, the locus of the point will be a
great circle of which the poles will have coordinates o', & and
180° + a’, — &', where

tana’ = B/C; sin & = A/VA*+ B*+ C2,

We can make A positive, because if necessary the signs of all
the terms can be changed. Assume three new quantities H, o', &'
such that A=Hsind, B=Hsina cos &, C = H cosa’ cos §, then
by squaring and adding H = + ¥4+ B+ (C* Taking the upper
sign we obtain from the first equation sin 8’ = a positive quantity,
%1, hence & is positive and as & 3 90° there is no confusion
between & and 180° —&. The second and third equations give
cosa’ and sin a’, and thus a’is found without ambiguity, and we
have obtained one solution a’, §'. If however we had taken the
negative value of H, then instead of & we should have had — &
from the first equation, and the two last can only be satisfied by
putting o' + 180° instead of a’. Thus there are two solutions,
o, & and 180°+«, —&. And these are two antipodal points.
The original equation then reduces to

H {sin &'sin 8 + cos & cos &' cos (a' - a)} =0,

whence a, § must be 90° from the fixed point a’, & and therefore
its locus is a great circle.

Ex. 1. Show that if the following equation is satisfied :—
Asind+Bsinacosd+ Ccosacosd=D,
the locus of the point a, 3 will be in general a small circle of which the radius is
cos=1{D[(4*+ B+ C)}},

and that if D?=A2+ B?+4 (2 the equation represents no more than a point.

Ex. 2. If a, 8 are the current coordinates of a point on a sphere and a, b
are constants, show that the equation

tan 8=tan b sin (a — @)

represents a great circle which has the point a=a+270° and 8=90°—-b as
a pole.
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10. The inclination of two graduated great circles is the
arc $ 180° joining their noles.

The inclination of two ungraduated great circles is in general
unavoidably ambiguous, for it may be either of two supplemental
angles, and it is only .when the two circles cross at right angles
that this ambiguity disappears.

But the inclination of two graduated great circles need not be
ambiguous because we can always distinguish that one of the two
supplemental angles which is to be deemed the inclination of the
two circles. The inclination is defined to be the angle 3 180°

N,

Fio. 13. Fie. 14.

between those parts of the circles in which the arrow-heads
are both diverging from an intersection or converging towards
an intersection,

In Fig. 13 the two segments of the circles diverging from O
are 04, and OA,, and consequently the angle is to be 4,04,=e.
If however we simply change the direction of the arrow-head on
04, without any other alteration in the figure, we have the
condition shown in Fig. 14, where the diverging segments 04, and
OA; now contain the angle 4,04,=180° — ¢, which is accordingly
to be taken as the inclination of the two graduated circles in
this case.

If 4,A,N,N, (Fig. 13) is the great circle perpendicular both
to OA, and OA4,, then since 04, =90° and 0A4;=90°, we have
A,A,=¢. If N, and N, be the noles of 04, and 04, respectively,
we have 4,N, = 90° and A,N, = 90°, and hence

N].Ng = A|Ag=e-

In like manner in Fig. 14 the nole N, of 04, is now the
antinole of the former case. Since A4,0N,=90°, we have
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A,ON,=90°—¢, and as 4,0N, =90° we have N,0ON,=180°—¢,
which as already explained is the inclination of the two graduated
circles in this case. Then we obtain the important result that
the inclination between two graduated great circles is always
measured by the arc between their noles.

No doubt a question may arise as to the arc N, N, (Fig. 13).
Is it the lesser of the two arcs which we should naturally take, or
is it the arc reckoned the other way round the circle from N, by
4, and A,? There are thus two arcs together making 360°, of
which either may in one sense be regarded as the inclination. We
can however remove any ambiguity thus arising by the conven-
tion that the inclination of two graduated great circles is never to
exceed 180°.

Ex. 1. If BC, CA, AB be the positive directions on three graduated great
circles which form the triangle 4 BC and if 4’, B', C’ be their respective noles,
show that

(1) If B'C’, C'A’, A'B’ be the positive directions on the sides of the
polar triangle 4'B'C’ the noles of those sides are 4, B, C respectively.

(2) The sides and angles of 4'B’C’ are respectively supplementary to
the angles and sides of 4 BC.

Ex. 2. If aj, 3, and ag, 3; be the noles of two graduated circles show that
if ¢ is the inclination of the two circles
cos e=sin 8, sin 33+ cos 8, cos 3; cos (a; — az),
and that if a, 8 are the coordinates of the intersection of the two circles

cos 8; cos 33 8in (ag— a|)
sin €

sind=+

cos 8, 8in 8 8in a, —sin 3, cos 3, 8in a,
sin e

cosdcosa=+

8in 8, cos 8; cos ag— 8in 85 cos 8, coea,
sin e

cosdsina=+

where the upper and lower signs refer to the two intersections.

11. On the intersections of two graduated great circles.

Let C and C’ (Fig. 15) be two graduated great circles which
intersect in the two diametrically opposite points ¥ and V’. Let
N be the nole of C and N’ the nole of C".

A point moving along C” in the positive direction crosses at V'
into the positive hemisphere bounded by C. Thus V is described
as the ascending node of C’ with respect to C.

B. A. . 3
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A point moving along C’ in the positive direction crosses at V*
into the negative hemisphere bounded by C. Thus ¥V is described
as the descending node of C' with respect to C.

If O be the origin on C from which coordinates are measured
and OP =a, PN’ = 3, then a and & are the coordinates of N’ the
nole of C’ with respect to C.

As the angle between two graduated great circles is the arc
between their noles (§ 10) we see that 90° — & is the inclination
between C and C'.

We have OV =0P + PV =a+90°,
OV'=0V +180° = a +270°
and thus we obtain the following general statement :

If &, & be the coordinates of the nole of one graduated great
circle C’ with respect to another C, then the inclination of the two
circles is 90° — §, the ascending node of C’ on C has coordinates
90° + &, 0, and the descending node of C' on C has coordinates
270° +a, 0.

If, as is often convenient, we take Q, 0 as the coordinates of the

Fio. 15.

ascending node of C' on C and e as the inclination of the two
circles, we have (@ + 270°), (90° — ¢) as the coordinates of the nole
of €', the circle of reference being C.
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In general to fix the position and direction of graduation of
one great circle with respect to another, we must know three
parameters of the second circle with regard to the first. We
may, for instance, be given the two coordinates of its nole.
For this fixes the nole, and then not only is the great circle de-
termined of which that nole is the pole but also the direction
in which the graduation advances on the second circle is known.
If we had merely been given the coordinates of a pole of the
great circle, then no donbt the place of the great circle would
be defined, but so long as it is unknown whether the given pole
is the nole or the antinole the direction of graduation will remain
unspecified. The third parameter is required to fix the origin of
the graduation on the second circle.

Or we may be given () the ascending node of the second circle
on the first and also e the inclination. Starting from the origin
we set off  in the positive direction and thus find the ascending
node. The second circle is then entering the positive hemisphere
of the first. If we make the two diverging arcs from the node
contain the angle e there is no ambiguity as to the exact place
of the circle required.

Ex. 1. Show that the ascending node of ¢’ with regard to C is the
descending node of €' with regard to C".

Ex. 2. Show by a figure the difference between two graduated great
circles which, having equal inclinations to the great circle of reference, have
respectively 8 and 180°+ 6 as the distances of their ascending nodes from the .
origin.

Ex. 3. If @ be the longitude of the ascending node of a graduated great
circle L and e its inclination to a fundamental circle, and if @', ¢ be the
corresponding quantities with regard to another great circle L', determine the
coordinates of the ascending node V of L' upon L.

Let N, N’ (Fig. 16) be the nodes on the fundamental circle ONAN", then
V is the ascending node of L' upon L ; let & be the distance ¥ V. We have
to find 7z in terms of ¢, ¢ and 2'-Q.

From formula (6) in § 1 we obtain

cot z 8in (@' — ) — cos (' — @) cos e= —sin e cot ¢,
cos(Q' — 2) cos e —8in e cot ¢
= sin (Q'— Q)
To find which value of z is to be taken observe that as
sinz :8in(Q'—Q) ::sine :8in V
and V and ¢ are both }180° sinz must have the same sign as sin (2'- Q),
which shows whether x or #+180° is the angle required.

whence cotx

3—-2
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When 2 is known we determine a, 8 the coordinates of V with respect to
the fundamental circle from the equations
sin 3=sgin  sine,
cos 8 cos (a— 2)=cos z,
cos 88in (a— @)=sin 2 cose.

F1e. 16.

Ex. 4. With the data of the last example find the inclination p between
the two great circles specified by Q, e and 2/, ¢ respectively.
We have found that the coordinates of the noles are @+ 270° 90° - ¢ and
Q'+270° 90° - ¢, and hence by § 10 Ex. 2 we have
€08 p=Co08 € 08 ¢+ 8in € 8in ¢ cos (2 - Q').
Ex. 5. If x be the length of the common perpendicular to the two great
circles defined by @, € and @', ¢ show that
CO8 Z=C08 ¢ 08 ¢ +8in € 8in ¢ cos (2 - Q').

12. Transformation of coordinates.

Being given the coordinates of a point with regard to one
graduated great circle it is often necessary to determine the
coordinates of the same point with regard to a different graduated
great circle.

Let a, 8 be the original coordinates of a point P and let o, &
be the coordinates of the same point P in the new system. In
like manner let &, 8, and a,, 8," be the original and transformed
coordinates of some other point P, Since the transformation
cannot affect the distance PP, we must have that distance the
same whichever be the coordinates in which it is expressed, and
consequently (§ 8)
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sin &’ sin 8, + cos &’ cos &, cos (a’ — a,)
= sin & sin &, + cos & cos §, cos (a — a,)...... ().
All the formulae connected with the transformation are virtually
contained in this equation.

If we know the coordinates of any point P, in both systems,
te. a,, &, a,, 8 and substitute these values in (i) we obtain an
equation connecting in general a, § and ', &’. In like manner if
the coordinates of a second point are known in both systems
we obtain another equation in a, 8§ and o', &. Thus we have two
equations for the determination of «', &’ in terms of a, 8.

But two equations are not sufficient for finding ', 8" uniquely
in terms of a, 8. The distances PP,, PP, do not fix P with-
out ambiguity. There are obviously two positions which P
might occupy. Their distances from a third point P, will not
however be equal unless indeed P, happens to lie on the great
circle through P,P,. Excluding this case we may say that a
point is determinate if its distance from three given points is
known. Hence we have to obtain a third equation between a, 8
and o', & by taking some third point of which the coordinates
a, 8 and a, 8, in both systems are known and which does not
lie on the great circle passing through the two points previously
selected.

’ < N
P A
Dl
[ e
(o] v o g A
nl
o!
Fia. 17.

Let OA (Fig. 17) be the original great circle graduated in the
direction of the arrow from the origin O and having its nole at N.
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Let O’A’ be the graduated great circle with nole at N’ and origin
O’ to which the coordinates are to be transformed. Let Q, Q' be
the distances from O and O’ respectively of ¥ the ascending node
of the second circle on the first. Let e be the inclination of the
two graduated circles. Then , ', € are the three parameters
which completely define in every way the second graduated great
circle with reference to the first (§ 11).

We have now to select three points, not on the same great
circle, and such that their coordinates in both systems can be
directly perceived.

The points we shall choose are respectively ¥, 4 and N. It
i8 obvious from the figure that as 'A = VA’ =90° the coordinates
of these points in the two systems are as follows :

FO!' Vao=Q; 80=0. and ao'=0’; 8°'=0'
b A 46=90+0;8=0 , a'=90"+0"; 8 =-¢
w N a=0; &=90° , a’ =90°+Q; & =90°—e

Substituting these coordinates successively in the equation (i)
we have the general formulae of transformation

cosdcos(a—N)=cosd cos(ad —Q)eeerieriiiiiniieninininn. (i1),
cos 8 sin (a — 2) = —sin &' sin € + cos &’ cos € sin (a’ — Q)...(1i1),
sind= sin & cos e+ cos & sin esin (a'— Q')...(iv).
From these we derive
cosd cos(a —Q)=cosdcos(@a—N) ...covvvvrnverenennnnnn. (ii),
cos &'sin (@’ — ') = sin 8 8in € + cos S cos e sin (a — Q) ...(V),
8in &' = sin & cos e — cos 8 8in e sin (a— ) ...(vi),
for, by multiplying (iii) by cos ¢ and adding (iv) multiplied by sin e
we obtain (v), and by multiplying (iv) by cos € and subtracting (iii)
multiplied by sin ¢ we obtain (vi).

The first set of equatious determine the coordinates a, § when
o', 8 are known and the second set determine a’, 8 when «, § are
known.

Another proof of the fundamental formulae for the trans-
formation of spherical coordinates may be obtained in the follow-
ing way.

Since V' is the pole of NN’ (Fig. 17) we bave £ VNN'=90°
also ZVND=a- (), whence Z N'NP=90°+a—. We also see



§12] THE USE OF SPHERICAL COORDINATES 39

that o'~ Q'=£ VN'D’ whence ZNN'P=90°—a'+Q". The
figure also shows that NP =90°—38, N'/P=90°— & and NN' =e.
In the triangle NN'P we thus have expressions for the three
sides and two angles, and hence from the fundamental formulae
(3). (2), (1) of §1 we deduce (ii), (iii), (iv) on the last page.

The necessity already pointed out for having three equations
in the formulae of transformation may be illustrated from the group
(i), (v) and (vi).

Suppose that we sought o’ and & from equations (ii) and (v);
we have at once

tan (o' — Q') = {sin 3 sin € + cos & cos e sin (a — Q)] sec & sec (a — Q).
As all the quantities on the right-hand side are known, tan (a’ — )
is known. Let 6 be the angle 3 180° which has this value for its
tangent, then (a'—’) must be either § or +180°: we can
decide which value is to be taken for a’— Q' by equation (ii).
For as & and & are always between the limits —90° and + 90°,
cos § and cosd are both necessarily positive. The sign of
cos (&’ — ') must therefore be the same as the sign of cos (a — Q).
It is thus ascertained whether a’ — )’ is to be 8 or 180° + 6, for
only one of these angles will have a cosine agreeing in sign
with cos (a— Q).

Thus the two equations (ii) and (v) determine (a’ — £0') without

* ambiguity and therefore a is known. We then find-cos & from (ii).
At this point the insufficiency of two equations becomes apparent,
for though the magnitude of & is known its sign is indeterminate.
Hence the necessity for a third equation like (vi) which gives the
value of sin &’ and hence the sign of &'

The problem of finding &', & from (ii), (v) and (vi) might also
be solved thus.

Equation (vi) determines sin §’ and thus shows that 8’ must be
one or other of two supplemental angles. It is however understood
that — 90° 3 & $ 90° and we choose for &' that one of the supple-
mental angles which fulfils this condition. Thus & is known
and hence cos 8. Equation (ii) will then give cos (a’ — Q) and
(v) will give sin (o — Q’), hence o’ — ' is determined without
ambiguity as both its sine and cosine are known.

Ex. 1. If d'=90°+9', ¥=0, show that a=90°+0, 8=¢, and find the
point indicated on the sphere.
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Ex. 2. Show that the coordinates of the nole of 0’4’ in the first and
second systems respectively are
a=270°4+Q, 8=90°—¢; d indeterminate, §'=90°;
and verify that these quantities satisfy the equations (ii), (iii), (iv).
Ex. 3. As a verification of the equations (ii), (iii), (iv), show that the sum
of the squares of the right-hand members is unity.

Ex. 4. Show that the equations (v), (vi) might have been written
down at once from (iii), (iv).

For V is the descending node of OA with respect to 0’4’. This implies
that a and 3 may be interchanged with o’ and & if at the same time 2 and Q'
be each increased by 180°.

Ex. 5. If the planes of two graduated great circles are coincident show
the connection of the coordinates a, 8 on one graduated great circle and o', &
on the other of the same point on the sphere.

In the general formulae (ii), (v), (vi) we make =0 if the two circles are
graduated in the same direction, and ¢=180" if they are graduated in
opposite directions. In the first case

cos § cos (a'— Q')=cos 8 cos (a— Q)

cos & sin (a’'— 2')=cos 8 sin (a - Q)
8in &' =sin §,

whence 8'=8 and a'=a+2' - Q.
In the second case

cos ¥ cos(a'~ Q)= cosdcos(a—Q)

cos &’ sin (a' — Q') = —cos 3 sin (a— Q)
8in &= —sin 8,

§=-8 d=0+0Q-a

The coordinate 8 here changes sign because the reversal of the direction

of graduation interchanges the positive and negative hemispheres.

Ex. 6. Let S be a fundamental graduated great circle and let 8, X be the
coordinates of any point P with respect to S. Let S’ be another graduated
great circle and let 8y, Ao be the coordinates of its nole with respect to .S.
Let 9, denote the degrees, minutes and seconds marked on S’ at its ascend-
ing node on S. Let 8, X’ be the coordinates of P with regard to S’. Show
that for the determination of £, A’ in terms of 8, A

008 8 008 (' = 26) =008 8 8in (A — Xo)
{oosﬂ’ sin (A’ — Q) =sin B cus B, — cos B 8in 8, cos (A — Ag)
sin 8'=sin 8 8in By + cos B cos By cos (A —Ag),
and that for the determination of 8, \ in terms of 8, A’
cos 8 8in (A —A) =cos 8 cos (A’ — Qo)
Joosﬁoos()\-ko)=sinﬂ’oosﬂo-cosﬂ’sinﬁosin N - Q)
sin 8=sgin 8’ sin By+ cos B’ cos B, 8in (A" — Q).
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Ex. 7. Let aq, 8 and a3, 3; be the coordinates of two stars in the first
system and a, 8" and ag, 3; the corresponding coordinates in the second
system. As the distance of the two stars must be the same in both systems
we have

sin & sin 8,+cos 8, cos 83 cos (al - ag)
=sgin 81’ sin 83’ +-cos 8]’ cos 82' cos (Gl' - dg’) H
verify this from the equations (ii), (iii), (iv).
Ex. 8. Explain the changes in the coordinates on the celestial sphere

according as the sphere is supposed to be viewed from the interior or the
exterior and show that the formulae remain unaltered.

Fig. 17 is supposed to be drawn as usual from the appearance of the
sphere as seen from the outside.

But if we wish Fig. 17 to represent a portion of the sphere as seen from
the inside then V is the descending node. Instead of @ and 8 we should write
180°+ 0 and — 3 and similarly 180°+2' and — &' for @', 8. These changes
_ make no alteration in the formulae (ii), (v), (vi).

Ex. 9. If q, 8 and o/, & are the coordinates of two points show that the
nodes of the great circle joining them are distant from the origin by quantities
L and L+180° where

sin (8’ 4-8)

L=3}(a+d)- tan-! (m g tani (@ -..))

13. Adaptation to Logarithms.

If, in calculating the transformed coordinates @', &, the equa-
tions (ii), (v), (vi) (§ 12) be used as they stand, the two terms in
(vi) should be evaluated logarithmically and then & is taken from a
table of natural sines. The equation (ii) determines cos (¢’ — Q)
and (v) is used only to determine the sign of a’— Q’; for this we
need calculate only the logarithms of the two terms on the nght-
hand side even when they are of opposite signs.

It is, however, often thought convenient to effect a transfor-
mation of the formulae (ii), (v), (vi) (§ 12) by the introduction of
auxiliary quantities which will make them more immediately
adapted for logarithmic calculation. This may be best effected as
follows.

Let m be a positive quantity and M an angle between 0° and
360° such that

sind=mcos M; cosdsin(a—N)=msin M.

Hence tan M=cotdsin(a— Q). If M, is the smallest angle
which satisfies this, M is either M, or M,+180°. As m is



42 THE USE OF SPHERICAL COORDINATES [cH. 11

positive we must choose that value for M which gives cos M with
. the same sign as sin 8. Thus logm and M become known. By
substitution of these auxiliary quantities in (ii), (v), (vi) (§ 12)
these equations become

cos &’ cos (o' — ') = cos § cos (a—Q)
cosd'sin(a'—Q)=msin (M+e¢) }............ Q).
sin &' =mcos (M + ¢)

From the last of these formulae & is obtained both as to mag-
nitude (3 90°) and as to sign. This value substituted in the two
other formulae determines both cos(a’'— Q') and sin(a'— Q).
The first gives the magnitude of a’— Q' and the second gives
its sign.

Ex. 1. The coordinates of a point are a=75°, 8=15°. Show by the
formulae (ii), (v), (vi), that when transformed to a circle of reference
defined by the quantities 9=215° ¢=23°30, Q'=115" the coordinates
become o' =327° 13/, 8'=29°0'.

Ex. 2. If the problem of Ex. 1 be solved with the help of the auxiliary
quantities M and m show that #=292° 38’ and Log m=9-8278.

Ex. 3. If VP (Fig. 17) when produced meets NN’ in K show that
m=cos PK and M=NK, and obtain the formulae (i) from the right-angled
triangle N'PK.
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14. Introductory.

That the earth is globular in form would be suggested by the
analogous forms of the sun and moon, and it is demonstrated by
familiar facts as set forth in books on geography.

Accurate measurements of the figure of the earth are of
fundamental importance in Astronomy and this chapter will be
devoted to the elementary parts of this subject as well as to
explaining how curved surfaces, such as that of the earth, can
be depicted on flat surfaces, as in the art of map making.

It is necessary to explain that by the expression “figure of
the earth” we do not mean its irregular surface diversified by con-
tinent and ocean as we actually see it, but a surface, part of which
is indicated by the ocean at rest, and which in other parts may be
defined as coincident with the level to which water would rise at
the place if freely communicating with the sea by means of canals
which we may imagine traversing the continents from ocean to
ocean.
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16. Latitude.

If the earth be regarded as a sphere, then the latitude of any
station on the earth’s surface is the inclination to the plane of the
terrestrial equator of the terrestrial radius to that station. But the
true figure of the earth is not spherical. It rather approximates
to the spheroid of revolution obtained by the rotation of an ellipse
about its minor axis. The lengths of the semi-axes of this ellipse
as given by Colonel Clarke? are

a = 20926202 feet [7-3206904],
= (approximately) 39633 miles [3:59806],
= 63782 kilometres [3:80470],

b = 20854895 feet [7°3192080],
= (approximately) 39498 miles [3:59657],
= 6356°5 kilometres [3-80322].

The figures in square brackets denote the logarithms of the
numbers to which they are attached.

If the normal PN to the earth’s surface (Fig. 18) meet the
plane of the equator in N and CNA be the semi-axis major, then
£ PNA = ¢ is the geographical latitude of P and £ PCA = ¢’ is
its geocentric latitude.

5

Fie. 18.

If the equation of the ellipse be Z—':+%= 1, and 2’ and ¥’ be
the coordinates of a point P of which A is the excentric angle,
then we easily see that

tan ¢ = a tan A/b, tan ¢’ =b tan:/a,

+ Geodesy, Clarendon Press, 1880, p. 819.
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and ¢’ and ¢ are connected by the relation tan¢ = b*tan ¢/a?,
by which the geocentric latitude is obtained when the true
or geographical latitude is known or wice versa.

We obtain r, the geocentric distance of P, as follows:
a cos® ¢ + b*sin? ¢

‘3 2 — 2 cos? 2o\ —
r=2z"+y'*=a® cos? A + b?sin* A = T oot §+ it

= ¢1+_( L;i::’)z ¢sm’ o o(1- e sintg),

if powers of e above the second may be neglected.
Under the same conditions
_,n_ tandp—tang’ (a’—b*)tan ¢
tan (¢ ¢)—1+tan¢tan¢'_ a*+b* tan* ¢
and consequently we obtain the following result.
If the earth be regarded as produced by the revolution of
an ellipse of eccentricity e about its minor axis, and if the
equatorial radius of the earth be taken as unity, then, a point
having the geographical latitude ¢ on the earth’s surface will
have for its approximate geocentric latitude and radius vector

¢’ = ¢ — §[e? cosec 1” sin 241",
r=1-}e+ }e cos 2¢.
Using Clarke’s values for a and b we easily find
€ = (a*— b*)/a* = 1/147,

=e*sin ¢ cos P,

and we obtain
¢’ = ¢ — 702" sin 2¢ = ¢ —[2:846] sin 2¢,
r =9983 + [7°2306] cos 2¢.

Thus 702" 8in2¢ is the amount to be subtracted from the
geographical latitude to obtain the geocentric latitude.
If we desire a higher degree of approximation we may proceed

as follows: (@ —b) B 9
a? — b?) tan ¢ (a* — b®) sin ¢
tan (6= ¢) = G e — (@ + 6% + (a* = b*) cos 2¢p

from which we easily obtain the approximate formula

¢—¢' = b’ g oosec 1”sin 2¢p — ’+b:) cosec 17 sin 4¢.

For the accurate calculation of ¢’ and r the following is the
method most generally used.
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Taking a as unity we have
7 cos ¢’ =a’ = cos A = cos ¢/V'1 — ¢*sin’ §,
rsin ¢’ =y =bsinh=(1—¢)sin ¢p/V1 — ¢ sin’ .
If therefore we make
-_(1-€) Y= 1
“Wi—esn'g’ = Nl-esintg’
we obtain rsing =X sing, rcos¢’ =Y cos.

The quantities log X and log ¥ are given in the Ephemeris
for each degree of ¢. As sin?¢ is multiplied by ¢! in X and Y,
a small error in ¢ will make no appreciable effect on X and Y.
Thus log X and log ¥ may be obtained by inspection of the
table without troublesome interpolation. Then the accurate
values of log sin ¢ and log cos ¢ being added to log X and log ¥
respectively, we obtain logrsin ¢’ and logr cos¢’ and thence r
and ¢'t. We may note that log X and log ¥ have a constant
difference.

As an illustration of the application of this method we may
take the following case.

The geographical latitude of Cambridge being 52° 12’ 527,
show that the reduction to be applied to obtain the geocentric
latitude is — 11’ 22", and find the distance of Cambridge from the
earth’s centre when the earth’s equatorial radius is taken as unity.

Log X = 99979599 log ¥ = 00009247
Logsing 98977972 Logcos¢ 97872534
Logrsing’ 98957571 Logrcos¢’ 97881781

Logrcos¢’ 97881781
tan¢’ 01075790

Logrsing’ 98957571 ¢ 52° 12 52

Logsin¢’ 98966801 ¢ 52° 1 30"

Logr 9 9990770 ¢'=¢—11 227
r=-99788.

Log r could of course also have been found from r cos ¢’, but
rsin¢’ > rcos¢’, and we adhere to the rule of using the larger of
the two quantities, see p. 7.

+ E. J. Stone gives a table in Monthly Notices, R.4.S. vol. xrLm1. p.' 102 for
aid in computing the reduction of the latitude and log r.
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Ex. 1. Using Clarke's elements for the figure of the earth, show that
tan ¢'=[9'9970352] tan ¢,
the figures enclosed in brackets representing a Logarithm, and show that as
the geographical latitude of Greenwich is 51° 26’ 38” its geocentric latitude is
51°17'11".
Ex. 2. If powers of e higher than the second are neglected, show that
X=1-§e-}etcos2¢,
Y=1+}e-}e2cos 2¢.
Ex. 3. Show that the tables for Log X a.nd Log Y so far as five places are
concerned may be computed from
Log X =9-99778 — 00074 cos 2¢,
log ¥=0-00074 — 00074 cos 2¢.

*16. Radius of curvature along the meridian.

The curvature of the earth along a meridian at any point is
the curvature of the circle which osculates the ellipse at that point.
If acosf, bsinf be the coordinates of a point on the ellipse
a*fa* + y/b*=1, then the equation of the normal at that point
is

az sin 0 — by cos @ = (a* — b*) sin @ cos f.......... (1),

and for the latitude ¢, or the angle which the normal makes with
the major axis
tan ¢ = a tan 6/b.

The centre of curvature is the intersection of two consecutive
normals. Differentiating (i) with regard to 6 we see that the co-
ordinates of the centre of curvature must satisfy the equation

az cos § + by sin § = (a* — b*) cos 26 ............ (ii).

Solving for # and y from (i) and (ii) we have for the co-
ordinates of the centre of curvature

z = (a*—b*) cos® 0/a, y=(b*—a?)sin®@)b,
and for the radius of curvature we then find
p = (a*sin®* @ + b* cos® ﬁ)g/ab,
or in terms of the latitude ¢,
p = a2b* (b* sin? ¢ + a? cos? ¢) ~ &,
Hence we see that if s be the distance between two points on
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the same meridian whose geographical latitudes expressed in
radians are ¢ and ¢, respectively, we have

L
S B
¢ (b*sin® ¢ + a? cos® ¢)§
It easily follows that if powers of the eccentricity above the
second are neglected, we have, as an approximate value of the arc
between the latitudes ¢ and ¢,,

8= (a—}0)(¢1— $) — §osin ($ — §) cos ($ + §),
where c =a—b. The quantity c/a is often called the ellipticity.
We also obtain the approximate expression

a—4c— 3ccos 2¢

for the radius of curvature of the meridian at the latitude ¢,
and the approximate length of the quadrant of the meridian is
m (a + b)/4.

Ex. 1. If the lengths of a degree of the meridian measured at latitudes
60° and 46° be s, and s; respectively, prove that the ellipticity of the earth
regarded as a spheroid of revolution is § (1 - s/s,). [Math. Trip. I. 1892.]

The radius of curvature of the meridian at lat. ¢ is a - §¢- 3¢ cos 2¢.

Hence the length of 1° at lat. ¢ is

(a—%c— e cos 2¢) 2/360.
8 =(a+}c) 2/360,
33=(a—4c) 2 /360.
Hence 2/8=1-3c/4a.

Ex. 2. If the powers of ¢ up to the fourth are to be retained, show that
for the radius of curvature p of the meridian at a point of geographical lati-
tude ¢ we have the expression

p=a(1-}et= fot—(Jet+ fyet) con 2+ et con dp)

Ex. 3. Adopting Clarke’s constants as the semi-axes of the earth
regarded as a spheroid of revolution, show that the number of metres
in a quadrant of the meridian from the pole to the equator is 10000186.
(log metre in feet=05159889.)

Ex. 4. In Clarke’s Geodesy, p. 112, we read “1It is customary in geodetical
calculations to convert a distance measured along a meridian when that dis-
tance does not exceed a degree or so into difference of latitude by dividing the
length by the radius of curvature corresponding to the middle point or rather
to the mean of the terminal latitudes.”
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Show that if ¢+4a and ¢ —4a be the extreme latitudes the error of this
assumption will be about } (@ — b) sin® a cos 2¢.

For as shown above the arc s=(a—4c)a~§csin acos2¢, while the as-
sumed arc is (@ —4§c)a—Fcacos2¢. The difference is

§c cos 2¢ (a—sin a)=}c sin’ a cos 2¢
as a is small. The expression for this difference in inches is approximately
214000 sin® a cos 2,
which, if ¢=60° and a=1°, would be about half an inch.

Ex. 5. Measuring along the meridian from the latitude ¢ until the

latitude ¢+1’ is reached the number of feet to be traversed will be
6077 — 31 cos 2.
Ex. 6. If zbethe radius of the parallel of latitude ¢, and y be the height
of the parallel above the equator, both expressed in miles, show that with
Clarke’s data
x=23966°7 cos ¢ — 3°4 cos 3¢,
y=3946"4 sin ¢ — 34 sin 3¢,

and that if p be the radius of curvature of the meridian at the latitude ¢
p=23956'6 — 20'2 cos 2¢.

Ex. 7. Show from Clarke’s data that at latitude ¢ the length in feet.
of a degree on the meridian is expressed by

364609 — 1867 cos 2¢p + 4 cos 4¢,
where ¢ is the latitude of the middle of the arc. Show also that the
length of a degree of longitude is
365643 cos ¢ — 312 cos 3¢.

17. The theory of map making.

By the word map is here meant a plane representation of
points or figures on a sphere. We have first to consider the
methods by which we are to assign to each point on the sphere
its corresponding point on the map. We must obtain either a
geometrical construction by which each point on the map is
connected with the point on the sphere which it represents, or
two formulae from which, when the spherical coordinates of a
point on the sphere are given, the rectangular coordinates of
the corresponding point on the map are determined. Both of these
methods are used. We shall commence with the latter.

Let B, A be respectively the latitude and longitude of a point
on the sphere referred to a fundamental great circle. Let z, y
be the coordinates of the corresponding point in a plane referred

B. A. 4
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to a pair of rectangular axes. If 8 and A\ are given the problem
requires that we must have some means of finding « and y.
There is also the converse problem to be counsidered. If z and y
are given we must have some means of finding 8 and A. These
considerations imply the existence of relations such as

z=£BN); y=ALBN)

where f; and f, are known functions. This is perhaps the most
general conception of the art of map making.

Considerable limitations must however be imposed on the forms
of the functions f; and f; when we bear in mind the practical
purposes for which maps are constructed. For a useful map of,
let us say, Great Britain, the shapes of the counties on the map
must be as far as possible the shapes of the same counties on the
spherical surface of the earth. We also expect that the distances
of the several towns as shown on the map shall be, at least approxi-
mately, proportional to the true distances measured in arc along the
earth’s surface. It is admitted that the conditions here indicated
can under no circumstances be exactly complied with. It is not
possible that any plane map could be devised which should repre-
sent in their true proportions the distances between every pair of
points on the sphere. It is however possible in various ways to
arrange a correspondence such that every spherical figure, of which
each dimension is small in comparison with the diameter of the
sphere, shall be represented on the map by a figure essentially
similar.

If a spherical triangle is to be represented in a map by a plane
triangle, it is obvious that their corresponding angles cannot be
equal; indeed as the sum of the three angles of a spherical triangle
exceeds 180° its angles cannot be those of any plane triangle.
If however the spherical triangle be small in comparison with the
entire surface of the sphere, the spherical excess (4 + B+ C — 180°)
is small, and if it may be neglected we can then in various ways
obtain functions f; and f; such that every small spherical triangle
on the sphere shall be similar to the triangle which represents it
in the plane. |

A map which possesses the property thus indicated is said to
be a conformal representation of the spherical surface. Let 4’, B,
C’ on the map be the representations of three points 4, B, C on
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the sphere and let us assume that these points are adjacent. If
the map is conformal, then

ABJA'B'=BC/B'C’=CA/C’'4’,
and, unless these relations are generally true for adjacent points
A, B, C on the sphere, the map is not conformal.

*18. Conditions that a map shall be conformal.

The general conditions that a map shall be conformal are thus
found.

Let A, B, C be three adjacent points on the sphere, the
coordinates of 4 being B, A, of B being 8+h, M +k, and of C
B+Hk, A+ ¥, where h, k, ', k' are small quantities. Then from
§ 8, we have

AB*=a*(h*+kcos*B); BC'=a*(h—h'P+ (k- k) cos*B);

CA3=a?*(h* + k™ cos® B),
where a is the radius of the sphere.

If 4’, B’, C’ be the correspondents of 4, B, C and if z, y be
the coordinates of A’, then we have for coordinates of B’

ox ox oy oy
z + 28 h +5 Ic Y+33 3 h 5 k
and for the coordinates of C’
' , Oz ,, ay , Z)y ,
6 38 2 h + Ic a 56 K+ k

If the triangles A BC and A'B’C’ are similar and H*is a common
factor not depending upon &, k, &', k¥,

(G50 48] + (g0 + 28] = )

ox ,, 0x a.'/'ay' 1g2 (b2 + k'? cos?
(aﬁh+ k) (Bh Ic) = H?%a*(h"* + k" cos* B)
(a—é(h-h)a,éx(k-/a)) +(F -+ E@&-)
=Ha*{(h-hy+ (k- Ic’)’cos’ﬁ}
These equations will be satisfied for all values of &, k, A, &’
if the following equations are satisfied:

Oz 0z 0y Oy _ .
B 3)\+8/3 = =0 i (ii),

(g_f») + (g%) =cos'8 {(ae) + (g%)} ...... (i),

[ ..(i).
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These are the conditions with which # and y must comply when
expressed in terms of 8 and A if the representation is to be
conformal.
When one conformal map has heen drawn it is easy to obtain
various others as follows.
Let w denote the complex variable z + 1y where ¢ is as usual
a square root of — 1. If we form any function of w, eg. w* or
sin w or log tan w, &c. or more generally f(w), we obtain another
complex variable which may be represented thus
f(@+y)=u+1,
and also
f@—1y)=u—1.
Differentiating both these equations with rega.rd to 8 and A

Frie+in) (g5+i 'aﬁ,

(55 +58) =5
fravip(E+i¥) 2 a,\,
(o3 =2%

, . | [0
f ("” - ".’/) a_a aﬁ ’
, . | (O ay au av
Fe=9(m-im)=n=im

Multiplying the first and last and adding the product of the second

and third, we have
, L\ Oz oz Oy dy\ Ou ou kK ov v
S (@+1y) f(z—1y) (3.3 a)\.+8/3 67\) 5;—6'8_X+578'a_7\.’
and as the left-hand side is zero from (ii) because (z, y) is a con-
formal representation, so must also the right-hand side be zero.
Multiplying the second equation and the last

revinri—n () + ()~ @ + ().
and from the first and the third
+(38)"

Farinr @ (@) + @)= )
&)+ G =8 {@G) + G}

We thus see from (iii) that
Thus we prove the following important theorem.
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If 2, y be any functions of 8, A which give a conformal
representation of the surface of a sphere on a plane, then the
coordinates u, v defined by any equation of the form

f@ty)=ut
will also be in conformal correspondence with 8, A.

Ex. If a conformal representation of the points on a sphere is to have
for x and y formulae of the type = Ucos)\, y = Usin ]\, where U is a function
of B, show from the general conditions for conformal representation that

U=Iztan(§tg).

Substituting for 2 and y we see that (ii) is identically satisfied and (iii)
becomes .
—cos?g (22
U3=cos B@g) .

*19. The scale in a conformal representation.

The geometrical signification of H (§ 18) should be noted. It is
termed the scale of the projection under consideration, for it is
plain from the first of the equations (i) in which H is introduced
that this is the factor to be applied to a small arc on the sphere
to give the length of the corresponding arc on the projection.

To obtain the expression for H we may (as the projection is
conformal) compare any small arc on the sphere in the vicinity of
the point with its correspondent. We shall take as the simplest
a small arc of length h between the points B, h and B+h, A
Then from (i) we obtain

b (g;) +i (% B) = H'a'hs,

whence we obtain the following theorem.

If z, y be the plane rectangular coordinates of a point repre-
senting in any conformal map the point with coordinates 8, A on the
sphere of radius a, then the scale or factor to be applied to each
short arc on the sphere to show the length of the corresponding
short line in the projection is

HEy @)Y
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20. Mercator’s projection.

We have now to consider that representation of the sphere
known as “ Mercator’s projection ” which is so useful in navigation.
The essential features of this projection are:

(1) That the abscissa of a point on the map is directly
proportional to the longitude of the corresponding point on the
sphere.

(2) That the ordinate of a point on the map is a function of
the latitude (but not of the longitude) of the corresponding point
on the sphere.

(3) That the representation is conformal.

To express the first condition we make z=~h’A. To express the
second condition we make y = f(8), and to comply with the third
we have to determine the form of f so that the representation
shall be conformal. The projection would not be conformal if we
simply made y proportional to 8.

The fundamental conditions (ii) and (iii) § 18 must be satisfied.
We have ; ) 5 %

z z ., 0y _ . _
a_ﬁ=0’ a_x=hr aTg"'f 8, 'a‘i_o'
With these substitutions (ii) vanishes identically and (iii) becomes
h'* = cos* B(f'B)",

and we have

é{;(TB)=ih’secB.

If we desire that the positive direction of y shall correspond
to northwards on the sphere we take the upper sign and

J(B) =} log, tan (% +%5 ) + constant.

The constant may be made equal to zero, for then the ordinates on
the map are zero for points on the equator. Thus we learn the
fundamental theorem on which Mercator’s projection depends, and
which is thus enunciated.
If A, B be the longitude and latitude of a point on the sphere,
then a map constructed with rectangular coordinates
x=h'\, y=h’log,tan(£+§),
will be conformal with the sphere.
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As )\ is here expressed in radians and the logarithm employed

is Napierian it is convenient to transform the equations so that A
shall be expressed as usual in degrees of longitude, and that the
logarithms shall be changed to common logarithms with the help
of the modulus 04343. With these changes

_ 2wk K

=350 > ¥=gageglometan (345
Introducing instead of &’ a new constant h such that 360k = 27k’
we have

a=H, =132 log, tan (7 4,,/;) ............ Q),

where A is in degrees and ordinary logarithms are employed.
Ex. 1. Show that the scale in the Mercator projection

z=k'N\, y=Fk log,tan ( B
is expressed by A’ secS/a.
Ex. 2. Ifin a Mercator chart of the Atlantic ocean the parallel for north

latitude 70° is 185 mm. from the equator, what must be the distance of the
parallel of 20°, and the length of 50° on the equator ?

We have © 185=132% logyo tan (:{ +35°),
whence 4 is found to be 1'86 and the equation for the chart is

¥=245 mm. log,, tan (Z;- + g—) ,
which when B8=20° gives =38 mm.
As r=1'86\ we have 1'88 x50=93 mm. for the answer to the second
part.
Ex. 3. What difference would be produced in a Mercator chart if instead
of taking

/ ﬂ
y= hlogtan<4 2)

we had taken y= h’logtsn(z—g)?

Ex. 4. If s be a small terrestrial arc at latitude 8 and if & be its
Mercator projection, show that /s is the ratio of the length of the terrestrial
circle of latitude through 8 to the length of the equator on the projection.

Ex. 5. In the Mercator projection show that the length of the nautical
mile (1’ in latitude) varies as the secant of the latitude.

Ex. 6. In the practical use of Mercators charts in coasting navigation
the mariner, desiring to find by how many nautical miles (i.. minutes of
arc) two points 4 and B are separated, places the points of his dividers on
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the two points corresponding to 4 and B on the chart and then by applying
the dividers to the graduation for latitude on the margin of tkat same ckart
at about the latitude of A and B ascertains what he desires. Give the justifi-
cation for this procedure.

The chart being conformal and representing but a small part of the sphere
may be used as if every distance on the chart including the scale of latitudes
were strictly proportional to the corresponding distances on the sphere. But
the minutes of latitude on charts representing various parts of the earth will
generally differ in length even though those charts are all part of the same
Mercator projection. Hence the mariner should take his distance scale from
the chart he is considering and from about the same latitude as the points
whose distance he is measuring.

Ex. 7. Show that on a Mercator map the length of a degree of latitude
about Cambridge (Lat. 52°12' 52") is 2'06 times the length of a degree of
longitude on the equator.

From the formulae (i) we see that if % be one degree of longitude on the
equator the distance between the parallels of latitude B8, and B; on the
Mercator map is

1324 (logw ta.n(’—; + %) —logyo tan (% + %2)) .
Substituting for 8; the value 52°42’'52"” and for B; 51° 42 52” the ex-
pression becomes 2°06A.

Ex. 8. Prove that the equation of the trace on a Mercator's chart of a
great circle will always be of the form

2 sin (’2+c> = k(e% - e"::"),
where 27a is the length on the map of the equatorial circumference, and ¢, £
are constants defining the great circle.

Ex. 9. If B is small enough for tans 38 to be neglected, show that the
difference of the distances of a place, whose latitude is 8, from the equator on
Mercator’s chart, and on a chart obtained by projecting from the centre of the
earth on the enveloping cylinder touching the earth along the equator is

% tan® § 8 x the earth’s diameter.
The projection on the cylinder of a point on the surface of the sphere gives
r=2rak[360, y=atanp,
where 8 and X are the latitude and longitude of the point and @ the radius of
the sphere.
For the Mercator projection
r=2mak[360, y=a logtan (45+4R8).
The difference of the distances from the equator in the two cases is

o(ans-r 2t
=a(2tan}B+2tan3}B...... 2 tan § 8 - § tan®§B......)
=4 tan® 48 x 2a.
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*21. The loxodrome.

If we assume the earth to be a sphere, then the course taken
by a ship which steers constantly on the same course, i.e. always
making the same angle with the meridian, is called the lozodrome
or sometimes a Rhumb-line.

If A be the longitude and 8 the latitude and if @ be the angle
at which the curve cuts the successive meridians, then the differ-
ential equation of the loxodrome is tan = cos 8 d\/dB, whence
(by integration)

A = tan 6 log, tan (g + g) + const.
If we substitute this value of A in the Mercator projection,
z=H\, y=»Ilog, tan (g+§ ,
we have z = y tan 6 + const., showing that the Mercator projection
of a loxodrome is a straight line cutting the projections of the
meridians at the same angle as that at which the loxodrome is
inclined to the meridians on the sphere.

The property just mentioned is of the utmost importance in
navigation, for when the mariner joins two points on the Mercator
chart by a straight line, the constant angle at which this line cuts
the projected meridians indicates the course that is to be steered
from one place to the other.

Ex. 1. If r be the radius of a sphere, if 4 be the constant angle at which
the meridians intersect a loxodrome, if +z be the axis from the centre to the
north pole, and if the axes +, +y be the radii to the points on the equator
of longitudes 0° and 90° respectively, then the equations of the loxodrome are

rtand.dz+ydr—zdy=0,
23+ y2 2=,

Ex. 2. If r be the radius of a sphere, if 8 be the constant angle at which
the meridians intersect a loxodrome, and if s be the length of the arc of the
loxodrome whose terminal points are in latitudes 8,, 8;, then

(8, —B3)=8cosf.

Ex. 3. If the earth be regarded as a spheroid produced by the rotation of
an ellipse of small eccentricity e about its minor axis, show that the equation
connecting A the longitude and B the latitude of a point on the loxodrome
intersecting meridians at the constant angle 4 is

)\=tan8<logta.n (-’—4r+§) - e’sinﬁ) + const.
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If p be the radius of curvature of the point in the ellipse, and p’ the
intercept on the normal between the curve and the minor axis,
, a
P N-asmip’
The differential equation of the loxodrome is

d\ =° tand tanéd
B poos B m—e’t&n@oosﬁ very nearly.

Ex. 4. Show that on a Mercator chart on which the unit of length is
taken to be 1’ of equatorial longitude the ordinate to the parallel of latitude
B will be

’3
=£—’-(l—e’).

7916 log)o tan ( B) 3438¢3 8in B,

where ¢ is the eccentricity of the ellipse given by a meridional section of the
earth.

From Ex. 3 we see that the point z, y in the projection corresponding to
A, B is given by the equations

z=AhA,
y=h (]og. tan (" ﬁ) e’smB)

As ) is in circular measure z is given in minutes by making A=3438 and
3438/0°4343 ="7916.

*22. B8tereographic Projection.

One of the most important methods of representing the points
oun a sphere by a conformal projection is that known as the stereo-
graphic, which is thus described.

A point O on the sphere having been chosen as the origin of
projection, the plane of projection is the plane of the great circle
of which O is the pole, or any parallel plane. If P be any other
point on the sphere and OP cuts the plane of projection in P’,
then P’ is said to be the stereographic projection of P.

Draw the plane OP' PC where C is the centre of the sphere.
The tangent plane at P will cut the plane of projection in a line
through M perpendicular to the plane of the paper. Let M, be any
point on that line. To show that the projection gives a conformal
representation we shall consider the inclination of any arc through
P to the meridian FPO and the corresponding angle in the
projection.

From the properties of the circle MP = MP’ and therefore
M,P=M,P’. Hence the triangles M, PM and M,P'M are equal
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and thus ¢ M,PM =« M,P'M. But £ M,PM is the angle of
intersection of two circles on the sphere and < M, P’'M is the
angle of intersection of their projections.

Perhaps the simplest proof that stereographic projection is
conformal is this. The ratio of a line-element at P’ to the corre-
sponding line-element at P is OP’/OP, as is at once seen by
similar triangles: and the fact that this ratio does not depend on
the direction of the line-element shows that the representation
is conformal. We also see that the scale is OP'/OP.

F

o
Fre. 19.

It is instructive to show how the stereographic projection can
be deduced from Mercator’s projection by the principle of § 18,
that if 4+ =f(2+ 4y) then the coordinates u, v give a repre-
sentation conformal to that given by z, y.
In Mercator’s projection
z=h\, y= h.locrt,a.n(4 +35)
therefore

iz+iy) _ m é’)
h =log tan (4—2 +1A,

and hence
i (.1:+ i (z+1y)

(% g)cos7\+zatan(4 ’Z)smx
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The left-hand member is a function of z+ 3y and consequently

by § 18
u= atan(4 'g)cOSX and v= atan(z—g)sinx

are also the coordinates of a conformal representation, and it is
easy to show that they correspond to a stereographic projection.
For if the plane of the equator be taken as the plane of projection,

then the angle FOP in Fig. 19 is ( and

8
i-3)
CP = 00 tan (Z -g)

If A is the longitude of P the projections of CP’ in the direction
of, and at right angles to, the zero of longitude are

C0 tan (Z - g) cos A and CO tan ( 3 /25) sin A respectively.

From the formulae of § 19 we can determine the scale at
the point B, A on the sphere in the stereographic projection when,

the apex being at the antinole of the fundamental circle, the pro-
jection is defined by the equations

x= acosktan(4 g) Y= asmxtan(z—g)

in which a is the radius of the sphere. We have

a_w acos\ a_y asinA
08 —1—sinB’' 08 —1-sinpB’

HE @Y - e

Ex. 1. Determine the value of the scale at the point 8, A on the sphere
in the stereographic projection, when, the apex being at the point A=180°
B=0 on the fundamental circle, the projection is defined by the equations

and hence

__ acos@sinA ____asinfB
“T+oosBoosn’ ¥ T+cosBooshr’

Ex. 2. Show that in the stereographic projection of the earth any point
and its antipodes will have as their correspondents two points collinear with
the centre of the map and such that their distances from the map’s centre
have a constant product.

Ex. 3. Let z, y be the point in the stereographic projection corresponding
to the point of latitude 8 and longitude A on the sphere. Let 2+ Az, y+Ay
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be the point corresponding to 8+AB8, A+A\. Show that when Az, Ay, A8,
AX are small,
Axr= —yA\ -z 8ec BAB,

Ay= zxAN—ysecBAS.
Ex. 4. A map of the world is to be constructed in three parts, two
circumpolar, on the stereographic projection, and one equatorial, on Mercator’s
projection. The circumpolar maps are to be such that the scale in latitude a

is the same as that of the other map at the equator, and the scale at the
bounding latitude ¢ is to be the same for all the maps. Prove that

2 tan ¢ (1 +8ina)=sina (2+sina),

and that the scale in latitude ¢ is that at the equator multiplied by

sinfa
2(1+sina)’

From the scales already shown in § 20, Ex. 1 and § 22, for the Mercator
and stereographic projections respectively

h/(1+sin a)=FJa, k/(1+sin p)=FA'sec ¢p/a,
whence eliminating A'/ak,
tang+V1+tan*p=1+sina.

Solving for tan ¢ the result given is obtained.
The ratio of the scale in lat. ¢ to that at the equator is sec ¢, and solving

sec ¢ +Vsec’p— 1=1+sina,
we obtain sec ¢ as required.

1+

*23. The stereographic projection of any circle on the
sphere is also a circle.

Let C be the centre of the circle on the sphere and draw the
plane through the origin of projection, the centre of the sphere
and C.

Let PQ be the intersection of this plane with the plane of the
circle. The cone whose apex is O and which passes through all
points on the circumference of the circle must have OC as its axis,
for since CP is equal to CQ, £ COP =2C0Q. This must be true
for every plane through OC, but this could only be the case if
OC were the axis of the cone.

Every cone has two planes of circular section which make
equal angles with the axis and whose intersection is perpendicular
to the axis. The tangent planes to the sphere at C and 0 make
equal angles with CO and their intersection is perpendicular to
CO. But the tangent plane at C is parallel to one circular section
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PQ and therefore the tangent plane at O must be parallel to the
other. Thus the fundamental property of stereographic pro-
Jection is proved.

[

N

Fre. 20.

As a cone has only two systems of circular sections there
can be no other planes except those parallel to the tangent at O
which give the characteristic feature of stereographic projection.

The same theorem may also be proved as follows.

The generators of a cone touching the sphere in the given
circle are each perpendicular to the tangents to the circle drawn
at the point of contact. Small portions of the generators at the
point of contact may be considered as lying on the sphere. In
the projection this cone becomes a pencil of straight lines passing
through a point, and as angles are preserved, the projection of the
circle must be a curve cutting all these. lines at right angles,
t.e. another circle.

Ex. 1. Show that in the stereographic projection the centre of a circle
on the sphere is projected into the centre of its corresponding circle if the
diameters of the original circle are small enough to be considered as right
lines.

For by the preservation of angles a right-angled triangle inscribed in the
original circle becomes a right-angled triangle in the projection, and therefore
every diameter of the original circle is projected into a diameter of the corre-
sponding circle.

Ex. 2. Show that in the stereographic projection of the sphere from any
point on the surface a system of meridians projects into a system of coaxial
circles.



§ 23-24] THE FIGURE OF THE EARTH AND MAP MAKING 63

Ex. 3. Show that by the stereographic projection a system of concentric
small circles on the sphere project into a system of circles whose centres are
collinear and each of which cuts orthogonally the same system of coaxial
circles.

For all the great circles through the centre C of the concentric circles
invert into a set of coaxial circles, and as angles are preserved in inversion,
the inverses of the concentric circles must intersect these coaxial circles
orthogonally, and their centres must lie on the line which is the inverse of
the great circle OC where O is the centre of projection.

*24. General formulae for stereographic projection.
Let 270°, B, be the coordinates of the origin O of the stereo-
graphic projection and let A, 8 be the coordinates of any other
point P, both referred to the same graduated great circle S.
Let S’ be the graduated great circle of which O is the nole.
Let the straight line OP intersect the plane of 8’ in P’. Thus
the stereographic projection of P is />’ and we assume the co-
ordinates of P’ in the plane S’ to be X, ¥. The axis + X is from
the centre of the sphere to the ascending node of 8 on S. The
axis + Y passes through 90° on §’, it being assumed that this
node is the origin of graduation on S’ as well as S.
We have to find expressions for X and ¥ in terms of 3, A.
We assume three rectangular axes from the centre of the
sphere as follows:
axis 4+« to the point 8=0, A=0,
» Y ) ” B= O) A= 900’
s +z o, » B=90° A\ is indeterminate.
With reference to these axes the coordinates of O, P’, P are as
follows :

z y s

0 0 —acosf, asin B,
P’ X Ysin 8, YcosB,
P acosBcosr acos Bsin A asin 8.

We express that O, P’ and P are collinear and obtain
acosBcosA—X acosBsinA—YsinB, asinB—YcosB,

cosBcosA  cosBsinA+cosB,  sinB—sing,
Solving for X and Y we have
Kma | _ o8Box
1 —sin Bsin B, + cos B cos B,8in A A
Y=a sin 8 cos 8, + cos B sin 8, sin A (i)
1 —sin 8sin B, +cos Bcos Bysin A"~ ’
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If O be the nole of S, then 8,=90° and we have
cos B cosh ¥ cos 8sinA

X=a5_ 1—smng8’ =a 1-sin8 "
If O be the antinole of S, 8, =—90° and
X=a cos B cos A __acosBsinX.
1+sin8°’ =~ 1+sin8 "’
If O lieon S, B,=0 and
_ cosSBcosh
X_al-l-oosﬁsin)\.’
sin 8
Y= 1+cosﬂsm7\.

We have assumed in these formulae that the zero of graduation
on 8 coincides with the ascending node of S’ on S. If the zero of
graduation had been elsewhere let us suppose that the longitude
of the ascending node is . Then in the formulae (i) and (ii)
we must put A — (2 instead of A and thus obtain

cos Bcos (A — Q)
1—sansano+cosﬁcosB°sm(7«. Q) ° ~+(i),

sin 8 cos B, + cos B sin B, 8in (A — Q) (iv)

X=

1 —sin Bsin B, +cos Bcos B, sin (A~ Q) " !

By the formulae (i) and (ii) or (iii) and (iv) we can compute X
and Y for any given values of A and B, and thus construct by
rectangular coordinates the stereographic chart of any figure on
the sphere.

Y=a

Ex. 1. Show that when the stereographic projection is from the nole of
the fundamental circle, and when the axis + X is from the centre to the point
A=0, =0, and the axis + Y is from the centre to the point A=90°, 8=0,
then the relations between .X, ¥ and A, B8 are

X=acos)\tan('—;+§ y Y=asinl tan (§+E

Ex. 2. Show that when the stereographic projection is from the antinole of
the fundamental circle, and when the axis + X is from the centre to the point
A=0, 8=0, and axis + ¥ is from the centre to the point A=90°, 8=0, then
the relations between .X, ¥ and A, 8 are

B 8
X—acos)\tan(z—é), Y——asnnkt&n(z-§)

Ex. 3. If the origin of projection be at Greenwich and the earth be
assumed to be spherical, show how the formulae (iii) and (iv) will enable
a stereographic map of Australia to be drawn.
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Substitute for 8, the latitude of Greenwich and assuming that the longi-
tudes X are measured from Greenwich make @=90°. Then if A, 8 be the
longitude and latitude of any point on the coast of Australia, the correspond-
ing plane rectangular coordinates X and ¥ will be determined from (iii) and
(iv), when a convenient value for the desired size of the map has been assigned
to the constant a.

Ex. 4. If A, B be regarded as variable coordinates but subject to the

relation
A4 cos\ cos B8+ Bsin A cos 8+ C'sin 8=0,

where 4, B, C are constants, show from (iii) and (iv) that all the points
indicated by X, ¥ will lie on the circumference of the same circle.

26. On the construction of a map in which each area on
the sphere is represented by an equal area on the map.

If , y; 2, y'; ",y be three points on the chart, then the
area they contain is

He @' —=v)+2 (y—y")+2" (Y - y)}...... ceend(i).
We take as the three corresponding points on the sphere 8, \;
B+k, A and B, A +h, where A and & are small quantities. The
area formed by these points on the sphere is }a*hk cos 8. '
We then have for the coordinates 2/, y’

oy
aﬁk y+aBk
and for z”, y” 5 )
d Y
stmh Ytk

Thus by substitution in (i) we have for the area in the plane

o (i ap) (e e+ (o4 5 ) 3}
'{‘”(hax "a/s w+8}3k hax"’ x4+ —h kaB
ox 0y Ox Oy
= Lhk ( 55 5)1) :
Equating these two expressions for the area and noting that all
surfaces can be built from such elementary areas, we have the
following theorem.
If a plane projection of a sphere be such that # and y the
coordinates corresponding to the point A, 8 on the sphere fulfil

the condition
0 0z 0 ..
8‘{ g% a% a;{ a’coB B ..eiiiiiinnnns (i1),
then any area on the sphere projects into an equal area.

B A. 5
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MISCELLANEOUS EXERCISES ON CHAP. IIL

Ex. 1. If the points on a sphere be projected from the centre of the
sphere on a plane (Gnomonic Projection), examine by the principles of § 18
whether this projection is conformal.

Ex. 2. If (¢, ) be the latitude and longitude of any point lying on a
great circle of a sphere, then

tan ¢ =4 cos !+ Bsin!,
where 4 and B are constants. If then we put
(1) x=cot¢pcosl, y=cotesinl,
or(2) X=tan¢sec!, Y=tanl,
_ we get a linear relation between x and y (or X and ¥). Plotting  and y
(or X and ¥) as Cartesian coordinates, all great circles would be therefore
straight lines.

Show how both of these charts may be obtained by a perspective projec-
tion of the sphere on a plane.

Ex. 3. A circle on the earth’s surface has an angular radius p, and its
centre 4 is in latitude By; show that in a stereographic projection from the
north pole on the plane of the equator this circle is represented by a circle
(radius p’), the distance of its centre from the point which represents 4 being

p’ tan g tan (41+%°)

Ex. 4. In Gauss’ projection of the sphere the meridians are represented
as straight lines passing through a point 0, and the angle between any two
such lines is A\, where X is the difference of longitude between the two cor-
responding meridians. The parallels of latitude are circular arcs with their
centres at O. If the projection is to be conformal, show that the radius of
the arc correspouding to colatitude % must be k(tan}u)* where £ is a
constant.

We must have 2= Ucos (h\), y= U sin (kA) where U is a function of the
latitude. By substitution in equation (iii), § 18 we have

MU =cos’B (aa—g> :

Ex. 5. If
r=h (g - )\), y=rh log tan (;; +g),
prove that .
tan ‘%}:‘—y =u+1v,
where

u=cosBcosA/(1+cos Bsin}), v=sinB/(1+cosBsin]),
and hence show that u, v are coordinates giving a conformal representation.
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Ex. 6. If the point 8, X on the sphere be represented on a plane by the
point whose coordinates are
pe 08 BcosA - sin B
YT 14cosgsin\’ 14cosBsin)’
show that a circle on the sphere with radius p and centre 8y, Ay will be repre-
sented by a circle on the plane having for radius sin p/(cos p+cos 8, 8in Ap),
and for the coordinates of its centre cos 8, cos Ag/(cos p+cosBysin ) and
sin By/(cos p+cos By 8in A).
Eliminate 8 and A with help of the equation
co8 p=s8in 8 sin By +cos 8 cos By cos (A — Ao).

Ex. 7. A map of the northern hemisphere is constructed in such a way
that parallels of latitude become concentric circles and meridians radii of
these circles, and that equal areas on the earth become equal areas on the
map. Find the equation of the curve which a loxodrome becomes on the map,
and trace it.

From the conditions of the problem we have

z=pcos\, y=psin),
where p is a function of 8.

As areas are to be preserved we substitute these values in the condition

given in § 25 and find
P g% = —hcospB,

where % is some constant connected with the ratio of the areas on the sphere
and in the projection.
Integrating and determining the arbitrary constant by the condition that
p=0 if 8=90°,
p®=2k (1 -s8in B),

and p=2\r/:sin<§—§).

The projection of the loxodrome cutting the meridians at angle ¢ (§ 21)
is the result of eliminating 8 and X between

A=tan ¢ log, tan (% - g),
tan A=y/z,
VT gi=2Visin (; _g),
and the result in polar coordinates is
73 (1462000t ) — 448,

Ex. 8. Show that the greatest distance that could be saved in a single
voyage by sailing along a great circle instead of a parallel of latitude is

a[2sin‘112-; + J;rT—_.Z—w],

where a is the earth’s radius.
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It is obvious that in the case supposed the ports of arrival and departure
should have a difference of longitude of 180° so that the great circle joining
them should pass through the pole. If ¢ be the latitude the difference of the
two voyages is a (w cos ¢ — w +2¢) and for this to be a maximum sin ¢ =2/n.

Ex. 9. Show that in sailing from one meridian to a place in the same
latitude on another meridian, the distance saved by sailing along a great
circle instead of sailing due E. and W. is a maximum for latitude

cos~1(4/AZ—sin? \/A sin ),
where ) is the difference of longitude of the two meridians.

Ex. 10. Describe the shortest course of a steamer which is to go from
one point to another without going beyond a certain latitude, supposing the
great circle course to cross that latitude.

Ex. 11. Cape Clear is in latitude 51° 26’ N., long. 9° 29’ W, and Cape Race
is in lat. 46°40’ N., long. 63° 8’ W. ; verify that the great circle course between
them would require a vessel to sail in a course from Cape Clear about 173°
further north than the straight course on a Mercator’s chart, and that the
former course is the shorter by about 28 miles, [Math. Trip. I, 1887.]

Ex. 12. If a be the radius of the sphere, m the distance of the plane of
the stereographic projection from the origin, P and P’ a pair of corresponding
points, r the distance of P’ from the diameter through the origin, show that
a small arc p on the sphere near P will project into a small arc near P’ and
of length p (m2+1%)/2ma,
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"26. The celestial sphere.

Let A, B, C (Fig. 21) be three stars and O the position of
the observer.

A

o
Fro. 21.

With centre O and radius any length OA’ a sphere is described
cutting 04, OB, OC in A’, B, C’ respectively, thus giving the
spherical triangle 4’B'C’.

The angle A0B is the angle which the stars A and B subtend
at the observer. This is conveniently measured by A'B’ the side
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of the spherical triangle. In like manner, B'C" and C’A’ measure
the angles BOC and COA respectively.

The apparent distance of two stars is measured by the angle
they subtend at the eye. For example, the apparent distance of
A and O is measured by £ A4O0C, te. by A’C’. The apparent
distance of two stars from each other, which is of course only an
angle, affords no clue to the real distance between them which is,
of course, a linear magnitude. To determine the real distance
we should also know the linear distance of each of the stars from
the observer. The stars in the Pleiades appear to be much closer
together than the stars in Ursa Major, but it does not necessarily
follow that the Pleiades is the lesser group of the two.

Astronomical measurements of the relative positions of celestial
bodies generally determine only apparent distances, and these, as
we bave seen, may be taken as arcs on the sphere described
round O. Thus the geometry of astronomical measurements of
position is the geometry of the sphere.

The sphere we have been considering shows the apparent
distances of the celestial bodies just as they are seen on the
heavens. This sphere is termed the celestial sphere. The length
of its radius is immaterial, and in comparing different celestxal
spheres we shall assume all the radii to be equal.

The centre of a celestial sphere is the station of the observer,
and for each station there will be of course a different celestial
sphere. We have to consider to what extent the celestial spheres
at different stations differ from one another.

Suppose, for instance, an observer was situated at the star
Arcturus, the celestial sphere that he would construct would not
be the same as the celestial sphere censtructed for a terrestrial
observer. The apparent distances of the same pairs of stars would
be generally quite different in the two cases.

The nearer the two stations the more closely do the two
celestial spheres resemble each other which have those stations
as their centres. So far as the fized stars, usually so called, are
concerned it is correct to say that the celestial spheres constructed
for all points on the earth’s surface are practically identical.
This is because the distances of the fixed stars from the earth
are so great that the diameter of the earth is quite inappre-
ciable by comparison. As an illustration we may state that the
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alteration in the apparent distance of two stars, by a shift of
the observer’s place from any station on the earth to its antipodes,
could in no case exceed the 16,000th part of a second of arc so far
as we at present know Stellar distances. An angle would have to
be about a thousand times larger than this before it could be
appreciable by our measuring instruments.

By the annual motion of the earth round the sun the station
of a terrestrial observer is carried round a nearly circular path
of mean radius 92,900,000 miles. A terrestrial observer is there-
fore shifted in the space of six months through a distance about
double this amount. But even under these circumstances the
great majority of apparent star places are without appreciable
alteration and in no case, so far as we know, does the greatest
alteration from this cause exceed 1”:5. (See Chap. XV.)

What has been said so far relates only to the fixed stars, We
shall see in Chap. XI1. that the apparent places on the celestial
sphere of the sun and the planets, to some extent, and that of
the moon to a large extent, are affected by the position on the
earth’s surface occupied by the observer.

We are not now considering the individual motions certain of
the heavenly bodies possess ; these of course affect their positions
on the celestial sphere of every observatory.

If we have marked on the celestial spheres only those celestial
bodies, such as most of the fixed stars, which are so far off that
the apparent distances by which they are separated from each
other are sensibly the same from all parts of the solar system, we
may make the following statements with regard to the celestial
spheres, it being supposed that the radii of all the spheres are
equal.

For every station in the solar system there will be a celestial
sphere of which that station is the centre.

Every celestial sphere is the same as every other celestial
sphere not only as to radius but also as to the stars marked
on it.

At any given moment the celestial spheres are all similarly
placed, t.e. any radius of one sphere to a particular star is parallel
to the corresponding radius of any other sphere. It is often
convenient to treat of the celestial sphere as if its centre were
coincident with the centre of the earth.
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Ex. 1. Show that any point at a finite distance may be regarded as the
centre of the celestial sphere of which the radius is indefinitely great.

Let O be the centre of the celestial sphere and let X be any point at
a finite distance from O and S be a point on the celestial sphere,

X§:=08*-208. 0X cos XOS +0X*

0x 0
=0’g'(“20s cos XOS+ 0—§>.

As OX is finite, we see that as OS approaches infinity 0.X/0S approaches
zero, whence in the limit XS/0S=1. But as OS is constant for all points §
on the sphere so must X§ be constant, whence X may be regarded as the
centre without appreciable error.

Ex. 2. Show that the directions of X.§ and OS tend in the limit to
become identical.

27. The celestial horizon.

Let P be the station of an observer on the earth’s surface
and let us suppose his celestial sphere to be drawn, the radius
of which is incomparably greater than the radius of the earth.
A tangent plane drawn to the earth at P will cut this celestial
sphere in a great circle, which is known as the celestial horizon
of P.

The plane of the horizon at any place is also the plane of the
surface of a liquid at rest in an open vessel at that place. This
plane is normal to the direction of terrestrial gravitation, and con-
sequently the direction of a plumb-line at any place P on the
earth’s surface is perpendicular to the plane of the horizon at P.
The points on the celestial sphere to which the plumb-line points,
when continued in both directions, are of the utmost importance in
spherical astronomy. The point Z thus indicated overhead is
called the zenith of P. The other point N in which the direction
of the plumb-line supposed continued beneath our feet cuts the
celestial sphere is called the nadvr.

28. The diurnal motion.

The dazly rotation of the earth on its axis in the approximate
period of 23 hrs. 56 m. 4 secs., which is usually called the sidereal
day (see § 33), causes the celestial sphere to have an apparent
rotation in the opposite direction, %.e. from east to west, which is
known as the diwurnal motion.

The most direct method of demonstrating that the earth
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rotates upon its axis is afforded by Foucault’s beautiful pendulum
experiment. If we assume the earth to be a perfect sphere with
centre O the principles of Foucault’s pendulum are as follows.

Let ¢ be the north latitude of the observer at P and w the
angular velocity of the earth round its axis. We may suppose w
to be resolved into components  sin¢ round OP and wcos ¢
round 0Q, where Q is the point with south latitude 90° — ¢ and on
the meridian of P. So far as P and places in its neighbourhood are
concerned this latter rotation has only the effect of a translation, so
that for our present purpose this component may be neglected. The
other component produces a rotation of the plane of the horizon at
P round OP with an angular velocity wsin¢. If therefore a
vertical plane at P did not partake in the rotation about OP, the
angle made with it by any vertical plane which did partake of
the rotation about OP would increase with the velocity wsin ¢.
Foucault’s pendulum provides the means of verifying this experi-
mentally. Without entering into practical details the essential
feature of the experiment is as follows.

A heavy weight is suspended by a long wire from a fixed point.
The weight being drawn aside is carefully released and oscillates
slowly to and fro. The plane in which the pendulum oscillates
does not partake in the rotation about OP. As however the
observer is unconscious of the terrestrial rotation about OP, the
plane of oscillation appears to revolve with reference to the
terrestrial objects around. The direction of this motion and
measurements of its magnitude demonstrate the diurnal rotation
of the earth. The experiment would be best seen if it could be
performed at one of the poles. At a station on the equator the
plane of oscillation would have no apparent motion.

All points on the celestial sphere, except two, participate in
the diurnal motion; these are of course the North and South
Poles of the celestial sphere. The line joining these points
passes through the centre of the earth and is the axis about
which the earth rotates. It is always to be remembered that
the dimensions of the earth are inappreciable in comparison with
the celestial sphere, so that for present purposes we regard the
earth as no more than a point at the centre of the celestial
sphere. The special convenience of this stipulation is that we may
not only consider the axis of the celestial sphere as passing through
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the centre of the earth, but we may always consider also that
it passes through the station of any observer wherever he may be
situated on the earth’s surface. The pole which lies in that part
of the celestial sphere within view of the dwellers in northern
latitudes, is known as the North Pole. Fortunately for northern
astronomers, the locality of the North Pole is conveniently in-
dicated by the contiguous bright Pole star. The similar point
in the southern skies and known as the South Pole is not so
conveniently indicated, as there is no bright star in its vicinity.

The plane of the earth’s equator will, of course, be unaffected
by the diurnal rotation. Its intersection with the celestial sphere
forms the great circle known as the celestial equator, and the
poles of this great circle are the north and south poles of the
heavens. Any plane parallel to the equator and at a finite
distance cuts the celestial sphere in the celestial equator which
is the vanishing line of all such planes. Any diameter of the earth
(or indeed any straight line rigidly connected with the earth and
prolonged indefinitely both ways) will intersect the celestial sphere
in two points which as the earth rotates will describe what are
called parallel-circles. They are in general small circles of the
celestial sphere which, when the line producing them is parallel
to the earth’s axis, merge into the north and south poles re-
spectively; and when the line is perpendicular to the earth’s
axis coalesce to form the equator.

The celestial horizon divides the telestial sphere into the
visible hemisphere and the invisible hemisphere. In the act of
passing from below the horizon to above, the star is said to be
rising ; when passing from above to below it is said to be setting.
If the observer were at the north pole of the earth the celestial north
pole would then be in his zenith and his horizon would be the
celestial equator. In this case the diurnal motion would make the
stars appear to move parallel to the horizon and the phenomena of
rising and setting would be unknown ; of one half of the celestial
sphere no part would ever come above the observer’s horizon and
no part of the other half would ever set. If the observer were on
the terrestrial equator the north and south poles would be on his
horizon and the hemispheres into which the horizon divides the
celestial sphere would be continually changing. The stars rise
perpendicularly to the horizon and each star in the heavens will
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be above the observer’s horizon for one half the sidereal day and
below it for the other halff. Thus a contrast between the
circumstances of an observer at the pole and an observer at
the equator would be that, from the former station, no part of the
celestial sphere visible to him at any moment can ever become
invisible by diurnal rotation, while to an observer at the equator
every portion of the celestial sphere becomes at times invisible.

At a terrestrial station which is neither one of the poles
nor on the equator part of the celestial sphere is always above -
the horizon, part of it is always below the horizon, and the re-
mainder is sometimes above and sometimes below the horizon.
Each star in consequence of the diurnal motion revolves in a small
circle of the celestial sphere of which one of the celestial poles is
the centre. If this circle should lie entirely above the horizon,
then the star never sets and is therefore always visible (apart
from such interferences as clouds or daylight, which are not at
present considered). If the circle should lie entirely below the
horizon, then the star never rises and must be permanently in-
visible from the station in question. If however the circle cuts
the horizon, then the star will sometimes be above the horizon
and sometimes below.

29. The meridian and the prime vertical.

The great circle which passes through the two celestial poles
and the zenith and the nadir of the observer is called the
meridian of the place where the observer is stationed. The
celestial meridian is also the intersection of the plane of the
terrestrial meridian of the observer with the celestial sphere.
Thus the celestial meridian is the great circle which, starting at
right angles to the horizon from the north point N (Fig. 22), meets
the horizon again perpendicularly at the south point S and then
continues its course below the horizon back to N.

Each star must pass twice across the meridian in the di-
urnal revolution of the celestial sphere, and on each occasion the
star is said to transit. The meridian is divided by the north
and south poles into two semicircles of which one contains the
zenith and the other the nadir. A star in the transit across
the first semicircle is said to be at its upper culmination, while

+ Refraction is not here taken into account.
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in transit across the other, half of the meridian the star is said
to be at its lower culminatiop.

Among the great circles ot the celestial sphere the meridian
is the most important because it passes through the two most
remarkable points of the sphere, namely, the pole P and the
zenith Z (Fig. 22). There are also three other points to be
specially noted. They are the north point N and the south point
S in which the meridian intersects the horizon, and £ in which
it intersects the celestial equator.

The latitude ¢ is the angle between the direction of a plumb-
line and the plane of the equator. Hence (Fig. 22) the latitude
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Meridian in Northern Hemisphere at North latitude ¢
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of the observer is the angle ZOE, i.e. that between the zenith and
the equator. Since POE and ZON are both right angles we
must have NOP equal to ¢, and the angle NOP being the eleva-
tion of the pole above the horizen is, as we shall see in § 30, called
its altitude. Thus we obtain the fundamental proposition that
the altitude of the pole s the latitude of the observer.

The arc ZP =90°— ¢ from the zenith to the elevated pole is
generally called the colatitude.

It is obvious that a star X does not set unless its distance PX
from the elevated pole exceeds the latitude of the observer. A
star which does not set is called a circumpolar star and its distance
EX from the equator towards the north pole, that is to say, its north
declination (§ 31) must not be less than 90°~¢. A star does not
rise if its south declination is more than 90° — ¢.
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The corresponding diagram showiag the meridian in the
southern hemisphere is given in Fiyg. 23. It may be remarked
that southern latitudes are often expressed by attaching a minus
sign to the numerical value of the latitude. Thus this figure
shows the meridian of latitijde —¢.
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Meridian in Southern Hemisphere at South Latitude ¢
Fre. 23,

The great circle through the zenith and at right angles to
the meridian is called the prime vertical. It passes through the
east and west points of the horizon.

Ex. 1. Show that with reference to a station in latitude ¢ the greatest
and least zenith distances of a star of declination 8 are respectively
180° — {0° ~ (¢ +3)} and ¢ ~3.

Ex. 2. If the zenith distance of a star is to remain always the same,
show that either the observer’s latitude is 90° or the star’s declination is 90°.

Ex. 3. Show that if a star is always above the horizon, {0° ~ (¢ +8)} > 90°,
if it is never above the horizon ¢ ~8 > 90°, and that if it rises and sets,
{0°~(¢p+8)} < 90° and ¢ ~8 < 90°.

Ex. 4. If the latitude of the observer be known, show how the declination

of a star can be obtained from observations of its zenith distance at the
moment of transit.

Ex. 5. The latitude of Greenwich being 51° 28’ 38”1, show that for the
meridian of Greenwich (Fig. 22)
SE=7ZP=38" 31’ 21”9 and EZ=PN=51° 28 38"1.
Ex. 6. Show that 51° 29’ is the lowest latitude at which all stars having

a north declination exceeding 38° 31’ are circumpolar. Show that all stars
having a south declination exceeding 38° 31’ must be there invisible.

Ex. 7. On Nov. 13th the sun is 108° from the north pole, show that
in any north latitude exceeding 72° the sun does not rise above the horizon.
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Ex. 8. The observatory ok, Stockholm is in latitude 59° 20° 33”0 N.,
and that at the Cape of Good h'ope in latitude 33° 56’ 3”56 S. The declina-
tion of Sirius is —16° 35 22”0. - Find the altitudes of Sirius when in
culmination in Stockholm and at the Cape of Good Hope respectively.

The distance along the meridian from the north pole to the south point
of the horizon is 180°—¢, where ¢ is the north latitude (Fig. 22). The
distance from the pole to a star of declination 3 is 90°—8 (the proper sign
being given to 8), whence the distance from the south point of the horizon

to the star is
180°~ ¢ —(90°—8)=90"- ¢ +38.

Hence in the case of Stockholm (the declination of Sirius being negative),
the altitude of Sirius is 90° —(59° 20’ 33"-0)—(16° 35’ 22"0)=14" 4’ 5"0.

At a southern latitude (Fig. 23) the arc from the south pole to the north
point is 180°—¢, and to a north declination 8 is 90°+8. Hence the altitude

at culmination is
180°—¢—(90°+8)=90"-¢p -8,

and for Sirius at the Cape
90°—(33° 56’ 3"°5)+16° 35’ 227 0="72° 39’ 18"5,
Ex. 9. If 2, 2, be the zenith distances of a circumpolar star at upper and

at lower culmination respectively, and both culminations are to the north
of the zenith, show that the north latitude of the observer is 90° - } (z, +25).

30. Altitude and azimuth.

Perhaps the most obvious system of celestial coordinates is
that in which the horizon is used as the fundamental circle.
We shall suppose that the star is above the horizon, and that
a great circle is drawn from the zenith through the star and
thence to the horizon, which it cuts at right angles. Such
a circle is called a vertical circle. The arc of this circle between
the horizon and the star is called the altitude of the star and is
one of the coordinates defining the place of the star. The second
coordinate is the azimuth, which is reckoned along the horizon
in various ways. It seems desirable to adopt a uniform practice
in this matter. We shall therefore always measure the azimuth
of a celestial object from the north point round by east and
south to the foot of the vertical circle through the start. Thus
the azimuth may have any value from 0° to 360°, and the
nole of the horizon so graduated is the nadir,—not the zenith.
When the azimuth and altitude of a star are known, its position
is determined.

+ This mode of reckoning azimuths has ancient authority. I have seen it on a
compass card of date 1640 kindly shown to me by Professor Silvanus Thompson.
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For example, if the azimuth of a star be 310° and its altitude
is 15° then the star can be found as follows. We start from the
north point of the horizon and proceed round to the east at the
azimuth 90° and thence to the south and the west at azimuths
of 180° and 270° respectively, and then 40° further in the same
direction indicates the azimuth 310°. The vertical circle thus
reached might, no doubt, be described as having an azimuth of
—50°, that is, as lying 50° to the westward of the north point.
But it is convenient to avoid negative values in this coordinate
as can always be done by adding 860°. The point in which the
vertical circle meets the horizon being thus defined by its azimuth,
a point is then to be taken on the vertical circle at the proper
altitude, in this case 15° above the horizon, and we obtain the
required position of the star.

Instead of the altitude of a star it is often convenient to use
the complement of the altitude which is known as the zenith
distance. Thus in the case in question, when the altitude is 15°
the zenith distance is 75°.

For approximate measurements of azimuth the magnetic
compass is used. The needle points to the magnetic north, which
deviates from the true north by what is called the magnetic de-
clination. This varies both for different times and for different
places. For the British Islands in A.D. 1908 the needle points
on an average 18° west of the true north. Thus the azimuth of
the magnetic north, 7.e. the azimuth measured from the true north
round by east, south and west, is about 342° for the British Isles
in 1908+.

+ The following information has been kindly communicated by the National

Physical Laboratory :
Mean magnetic declinations for 1906 :

Kew ... ... .. .. .. 16°28-5W.
Stonyhurst ... ... .. .. 17° 483 W,
Valencia ... ... .. .. 21° 63 W.

The magnetic declination is decreasing, and for the annual amount of change
the mean values at Kew have been as follows for the series of years indicated:
1870 to 1880 ... -8"1 1890 to 1900 ... -58
1880 to 1890 ... -6"8 1900 to 1906 ... -4"0
Valencia observations commenced in 1901 : for the five years 1901 to 1906 the
mean values of the annual changes in Declination were :
Stonyhurst ... -4"3 Falmouth ... —470
Kew e e =471 Valencia ... ... -4"8
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In the mariner’s compass the indications are shown on a card
by the division of the circumference into 32 equal points of 11}°

each. The four chief points on the card are marked N. (at the
magnetic north), E., S., W. at intervals of 90°. Each of these
intervals is bisected by points marked NE. SE., SW. NW.
respectively. Thus the circumference is divided into eight equal
parts of four points each. Each of these parts is again bisected :
the bisection of N. and NE. is marked NNE, that of NE. and
E.is ENE, and so on. In this way half the points receive their
designations. The remaining sixteen points are derived from the
first eight, viz. N, E,, S, W.; NE,, SE,, SW,, NW. by simply
adding the word “by” and appending one of the letters N, E,,
S., W. For example, “W. by N.” means one point from west
towards north ; “ W. by S.” in like manner means one point from
west towards the south, and “SE. by E.” means one point from
SE. towards E.
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Ex. 1. Find the azimuth measured from the magnetic north of the point
NE. by N.

NE. is four points from magnetic north, and “ NE. by N.” means one
point back again towards N. Hence the answer is three points or 33§°.

Ex. 2. Show in like manner that the azimuth from the magnetic north
of WNW. is 292°5.

Ex. 3. If the azimuth of a point as shown by the compass is 73°, find the
true azimuth when the magnetic declination is 18°:6 W.

Ex. 4. Find the true azimuth of the magnetic bearing SE. by S. if the
magnetic declination is 17° W.

MISCELLANEOUS EXERCISES ON CHAP. IV.

Ex. 1. If r, r3 be the real distances of two stars from the observer, and
if 6 be the apparent distance between the stars on the celestial sphere, show
that the square of the true dlst.ance of the stars from each other is

—2r 75 cO8 0 + 18,

Ex. 2. Show that the prime vertical, the horizon, and the equator
intersect in the same two points.

Ex. 3. If q, b be the equatorial and polar radii of the earth, assumed a
spheroid, show that the greatest angular difference possible at any point on
the earth’s surface between the plumb-line and the radius to the earth’s
centre is

a?- b
2ab *

Ex. 4. If the declination & of a star exceeds the latitude ¢, show that

the azimuth of the star must oscillate between

sin~! (cos 8 sec ¢)
on one side of the meridian and the same angle on the other.

Ex. 5. Show that the cosine of the angle which the path of a star as it
sets makes with the horizon is equal to the sine of the latitude multiplied
by the secant of the declination.

Ex. 6. Two places are of the same latitude and the distance of the pole
from the great circle through them is equal to the sun’s declination. Prove

that at these places the length of the night is equal to their difference of
longitude.

tan—1
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31. Right ascension and declination. Though the altitude
and azimuth are, in one sense, the simplest coordinates of
a star, certain other systems are generally more convenient.
The altitude and azimuth of a star are continually changing with
the time on account of the diurnal motion, and even at the same
moment the altitude and azimuth of a star are different for two
different observatories. It is often preferable to employ co-
ordinates which remain unaltered by the diurnal motion and are
the same whatever may be the latitude and longitude of the
observer’s station. We can obtain coordinates possessing the
required qualities by referring the star to a great circle fixed
on the celestial sphere.

The celestial equator as already pointed out (§ 28) remains
unaltered in position notwithstanding the diurnal rotation. The
equator also possesses such a natural relation to the diurnal
motion that it is specially suited to serve as the fundamental
circle, and the coordinates most generally useful in spherical
astronomy are accordingly referred to the celestial equator. When
referred to the equator, the coordinates of a point on the celestial
sphere do not change by the diurnal motion, nor do they change
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when the station of the observer is changed unless the object
be near enough to the earth for what is known as parallaz to be
appreciable. This will be discussed in Chap. x11.,, and need not
be further considered here.

To construct the coordinates of a star with respect to the
celestial equator we proceed as follows.
A great circle NP, Fig. 24, is drawn N
from the north celestial pole N through
a star S and meets the celestial equator

at P. The arc PS intercepted on this ™~
circle between the equator and the
star is the declination of the star. The

arc TP measured from a certain point D a=--eo3
T on the equator and in the direction Fio. 24.
which has N for its nole is the right

ascension of the star.

The Right Ascension, or “ R.A.” as it is often written for brevity,
is generally expressed by the letter &, and measured from 0° to 360°.
The Declination or *“Decl.” as it is often written, is generally
expressed by 8, and a negative sign is attached to & when S
is south of the equator. SN or 90°—& is the “North Polar
Distance ” and is sometimes used instead of & as the second
coordinate of the star.

32. The first point of Aries or 7. In a subsequent chapter
we shall consider the sun’s apparent annual movement with respect
to the fixed stars. We may, however, here anticipate so far as to
say that the sun describes a complete circuit with reference to the
stars once in a year in the direction of the diurnal rotation of
the earth, t.e. from West through South to East. In this move-
ment the centre of the sun appears to follow very closely a great
circle on the celestial sphere. This great circle is known as the
ecliptic, and was so called by the ancients because when Eclipses
take place the moon is crossing this circle.

Observing the direction in which the sun moves round the
ecliptic, we can distinguish between the two nodes or inter-
sections of the ecliptic and the equator. These nodes are to
be designated as follows. That at which the sun crosses from
S. to N. of the equator is called the first point of Aries and is

6—2
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represented by the symbol ™. The sun passes through T at the
moment known as the vernal equinox. This occurs each year
about March 21. For example, in the year 1909 the vernal
equinox is on March 21 at 6 13", Greenwich Mean Time.

The other node, or that at which the sun crosses from N. to S.
of the equator, is called the first point of Libra and is represented
by the symbol «. The sun passes through = at the moment
of the autumnal equinox (1909, Sept. 23, 4* 45, G.M.T.).

By universal agreement the origin on the equator from which
right ascensions are to be measured is the first point of Aries,
or M. The positive direction along the equator is such that
the right ascension of the sun, constantly altering by the sun’s
motion, is always tncreasing. Thus since the path of the sun
among the stars is from W. through S. to E,, 7 is the ascending,
2« the descending node of the ecliptic on the equator.

As the “first point of Aries” occupies a place of such exceptional
importance in astronomy, it may be proper to observe that the
word “Aries” has in this expression but little more than historical
significance. The node through which the sun passed at the
vernal equinox was no doubt at one time in the constellation
Aries, but it is not so at present. We shall see in the chapter on
Precession (ViiL) that while the plane of the ecliptic shifts only
slightly in space, the plane of the equator rotates so that while it
makes a nearly constant angle with the ecliptic, its intersection
with the ecliptic moves along that circle in the negative direction at
the rate of about 50” annually, so that from this cause alone, in
the greater part of the heavens, the R.A. of a celestial body is
always increasing.

The present position of T may be approximately indicated
as follows. When the great square of Pegasus is towards the
south imagine the left vertical side produced downwards to a
distance equal to its own length; from the point thus found draw
a line to the right, parallel to the lower horizontal side of the
square and one-fourth of its length. This terminates at about the
present position of “the first point of Aries.”

In Fig. 25 "HH' is the equator, and T"KK’ is the ecliptic,
P and P’ are respectively the nole and antinole of the equator,
and Q and Q' are the nole and antinole of the ecliptic. The
arrow-head on TK shows the direction of the apparent motion
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of the sun relative to stars on the celestial sphere, the arrow-
head on T"H shows the direction in which the right ascensions
are measured.

Fia. 25.

The great circle HKH'K’ is known as the solstitial colure
and K, K’ are the points at which the sun is found at the summer
and winter solstices respectively. The great circle through Pra
is called the equinoctial colure.

The inclination between the ecliptic and the equator is generally
known as the obliquity of the ecliptic. The mean value of the
obliquity of the ecliptic as given in the Ephemeris for 1909
is 23° 27° 4"04. It is subject to small temporary fluctuation
by nutation (see Chap. viiL), and it has also a slow continuous
decline at the rate of 46°84 per century.

Ex. 1. If a be the right ascension and & the declination of a point on the
celestial sphere, show that the values of a, 8 for certain points (Fig. 25) on
the sphere are as follows, » being the obliquity of the ecliptic:

a 3 a 3
H 90° 0 P ? 90°
H 270° 0 P ? -90°
K 90° @ Q 270° 90° -
K’ 270° -0 (4 920° ®-90°
Ly 0 -0 n 180° 0
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Ex. 2. Show that the right ascension a and the declination & of the sun
will always be connected by the equation

tan 3 = tan w sin a.
Ex. 3. On the 9th May, 1910, the sun’s right ascension is 45° 30’, and

the obliquity of the ecliptic is 23°27'. Show that the declination of the
sun is +17°11"5.

33. The hour angle and the sidereal day. It is sometimes
convenient to take as the origin from which coordinates are
measured on the equator that point, above the horizon, where the
equator is intersected by the meridian of the observer. Owing to
the diurnal motion which carries the meridian round the celestial
sphere in the course of a sidereal day, this origin is not a fixed
point on the celestial sphere, but moves steadily round the equator
so as to complete its revolution in a sidereal day. One of the co-
ordinates of an object fixed on the celestial sphere measured from
this moving origin must necessarily change with the time. If
a great circle, called an hour circle, be drawn from the pole to
a star, the angle this hour circle makes with the meridian is
termed the hour angle, and the hour angle of a star and its
declination or its polar distance form a system of coordinates which
are often convenient.

The declination of an object does not vary in consequence
of the diurnal rotation. The hour angle of a star is incessantly
altering. Since the star appears to move from upper culmination
towards the west we shall measure hour angle from the meridian
to the westward. Thus the hour angle is zero when the object
is at upper culmination, and gradually increases to 180° as the
object passes to lower culmination. From thence the hour angle
is continually increasing until it reaches 360° at the next upper
culmination. To the west of the meridian an hour angle is
therefore between 0° and 180°. On the east of the meridian the
hour angle is between 180° and 360°. With this understanding
hour angles are always increasing, and, since 360° can always be
added to or subtracted from any angle when used in a trigo-
nometrical function, we may say that all hour angles are between
—180° and +180° and that hour angles west are positive, and
-hour angles east negative.

The hour angle (unlike the declination in this respect also)
changes with the station of the observer. For example when
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a star is passing the meridian at Greenwich its hour angle is there
zero. But at the same moment the star will have passed the
meridian of easterly stations and will therefore to such stations
show hour angles west. At a place where the longitude is 2 hours
east of Greenwich, the star would appear to have an hour angle
two hours west at the same moment as an observer at Greenwich
bas the star on his meridian. More generally we may say that
at two places with east longitudes  and I’ respectively, the hour
angles west of the same object would be simultaneously 6 and
0+l

A sidereal day is the interval between two consecutive transits
of the first point of Aries across any selected meridian. If we
remember that the stars are practically fixed on the celestial sphere,
and if we overlook for the present certain small irregularities, we
may also say that the time interval between two consecutive
transits of the same star across the meridian is a sidereal day.
It is also accurate enough for all practical purposes to define the
sidereal day as the period of rotation of the earth on its axis
(see §28). Expressed in mean solar time the sidereal day is
23" 56™ 4*0906.

Like the solar day the sidereal day is divided into 24 equal
periods, which are called sidereal hours. A sidereal hour is
divided into sixty minutes, and each minute is subdivided into -
sixty seconds.

In one hour of sidereal time after the meridian passage of
a star its hour angle measured in degrees wouald be 15°, this being
the 24th part of the circumference. It is usual to express the
hour angle in sidereal time rather than in degrees. If, for example,
the star be 3 hours (sidereal) past the meridian, and the secondary
from the pole to the equator which passes through the star have
an intercept of 35° between the star and the equator, we could
express the position of the star at that particular place and at
that particular moment by saying that it had a west hour angle
of three hours and a north declination of 35°.

The hour angle west of the first point of Aries when turned
into time at the rate of 15° per hour is tpe sideral  time.
When the first point of Aries is on the merid{an at upper cul-
mination the sidereal time is 0" 0™ 0% en the first point
of Aries has passed the meridian so tlfat its hour angle is

/
/

,/'
’
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15°, then the sidereal time is 1hr., and when it has passed the
meridian so long that the hour angle is 285° then the sidereal
time is 19 hrs.

Let a be the right ascension expressed in time of a star S, and
let A be the hour angle west
and 9 the sidereal time.

Let NZ be the meridian
(Fig. 26), N the equinoctial
colure, then the sidereal time 9,
as already defined, is measured
by 2TNZ.

The right ascension of S is
NS, and there can be no am-
biguity about the sign, for N is
the nole of the equator and the
R.A. i8 measured in the positive
direction from the equinoctial
colure; also ZNS is the hour
angle of S; and hence

h=%-a.
Thus we obtain an important
relation connecting the hour angle and the right ascension of a
body with the sidereal time.

F1a. 26.

Ex. 1. Show that the sidereal time can be determined by measuring the
hour angle of a star whose right ascension is known.

Ex. 2. If the hour angle east of a star be 98° 11’ 15” and its R.A. be
21b gm 23s show that the sidereal time is 14b 36m 38e.

The hour angle west is 360° - (98° 11’ 15”) =261° 48’ 45" which turned into
time at 15° per hour is 17t 27m 158 whence

S=a+h=38h 36m 38=14b 36m 38,
as 24b may always be rejected.

Ex. 3. If 4 be an hour angle measured in degrees, show that the angle
expressed in circular measure is 2w6/360°.

Ex. 4. If ¢ be the number of hours in an hour angle, show that the
circular measure of that angle is =¢/12.

Ex. 5. At any place of north latitude ¢ the interval between one of the
transits of a star across a vertical circle of azimuth 4 and one of its transits
across the other vertical circle, which makes the same angle with the meridian, is
the same for all stars, and equal to cot™! (sin ¢ tan A)/= of a sidereal day.
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Let &V (Fig. 27) be the celestial pole, Z the zenith, ZP, ZQ the two vertical
circles, NP, NQ great circles perpendicular thereto, P,, P the points at which
any given star crosses ZP and @, @, the points where it crosses Z@. Then

from symum
oty LP,NP=(LPNP;=L@QNQ=LQNG,,

and therefore LP,NQ =L P NQ=¢LPNQ,
and is therefore independent of the star chosen.

Py

Fra. 27.

Further cot PNZ=sin ¢ tan 4 and the required interval is
cot~1(sin ¢ tan 4)/w
of the sidereal day.

Ex. 6. If at a place in latitude ¢, a pair of stars whose coordinates are

respectively a, 8 and o', 8’ ever come on the same vertical, show that
cos ¢ > cos 3 cos & sin (a —a') cosec 6,
where 6 is the arc joining the stars.

Let 8, S’ (Fig. 28) be the two stars. Then the triangle SNS’ rotates
about N. Let fall N7 (=p) perpendicular on §S’. Then no point on the
great circle S8’ can be at less distance than p from N. But if S, §' are
to be on the same vertical, then this arc must pass through the zenith.
Therefore 90°~¢>p or cos¢p>sinp. But cosdsin ¥§S§'=sinp and
8in N 88’ sin §=cos & sin (a=a’), whence sin p=cos & cos & sin (a — a’) cosec 4.

Ex. 7. Show that 2B 23m 24%92 of mean solar time is equivalent to
2b 23m 4848 of sidereal time and that 15b of sidereal time will be turned
into mean solar time by subtracting 2m 2744,

Ex. 8. Show that 1465 sidereal days are very nearly the same as 1461
mean solar days.
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34. Determination of szenith distance and azimuth
from hour angle and declination. The required formulae may
be written down from the general equations of transformation of

Fi1o, 28,

coordinates. By our convention for the measurement of azimuth
from the north point a is taken in such a direction (§ 30) that the
nadir is the nole of the horizon when regarded as a great circle
graduated for azimuth. The north pole is of course the nole
of the equator when graduated for right ascension. From the
definition of a nole (§ 6) it follows that if N and N’ are the
noles of two graduated great circles L and L', then the nole of
NN’ ($180°) is the ascending node of L on L and the nole of
N'N ($180°) is the ascending node of L on L. Thus the
ascending node of the horizon on the equator is at the point
due west, and consequently (', i.e. the azimuth of the ascending
node, is 270° when measured from the origin at the north point.
The sidereal time % is the hour angle by which 7 is to the west
of the meridian. Hence remembering the direction in which
right ascensions are measured we must have (2, 1.e. the right
ascension of the ascending node of the horizon on the equator,
equal to 270° +%. The angle between the equator and horizon
is 90° + ¢, for this is the angle between their two noles (§ 10).
Finally as the zenith is the antinole of the horizon, & is negative
and equal to z—90°. Making the requisite substitutions in the
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formulae (ii), (iii), (iv), (v), (vi) of § 12, we have the desired
equations
—sin @ sin z = cos 8 8in (Y — a)
cos @ 8in z = cos ¢ sin & — sin ¢ cos & cos (Y — a) } (1),
o8 z = sin ¢ sin § + cos ¢ cos & cos (Y — a)
and the equivalent group

co8 (D — a) cos 8 = cos ¢ cos z — sin ¢ cos a sin £

—sin (Y —a)cos 8 =sinasin z
.. (i).
8in 8 = sin ¢ cos 2z + cos ¢ cos a sin z

By the equations (i) we can calculate the zenith distance and
azimuth when the declination and the hour angle (3 —a) are
known, and conversely by (ii) we can find the declination and
the hour angle when the zenith distance and the azimuth are
known.

For a determination of the zenith distance when the hour
angle and the declination are known the following process is very
convenient. The angle subtended at the star by the arc joining
the zenith and the pole is called the parallactic angle. This we
shall denote by n and for its determination we have from the funda-
mental formulae, (1), (2), (8) § 1, the following equations in which
h is written instead of (% — &) for the hour angle :

cos z = sin ¢ sin & + cos ¢ cos & cos A
8in 7 sin z=cos ¢ sin A }
co8 7 sin z = s8in ¢ cos & — cos ¢ sin  cos h
When %~ and 8 are known, the parallactic angle 5 and the zenith
distance z can both be found from these equations. As sinz and
cos ¢ are both always positive, it follows from the second equation
that 7 and h have the same sign. They are both positive to the
west of the meridian and negative to the east.
It is often desirable to make these calculations by the help
of subsidiary quantities. We introduce two new angles m and
n by the conditions

sin 7 cos m = sin ¢
sin n sinm = cos ¢ cosh

If n,, m; be a pair of values of n and m which satisfy these
equations they will be equally satisfied by 360° — n, and 180° + m,.

cosn=cos¢sinh }
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It is a matter of indifference whether in the subsequent work
we use n,, m, or 360° —n,, 180° + m,. Taking one of these two
pairs as n, m, we have by substitution in (iii)

cos z = sin n sin (8 +m)
sin 9 sin z=cosn (v).
cos 7 8in 2 = sin n cos (8 + m)

These equations may also be
written thus

tann=cotnsec(8+m)} (vi)
tan z =secy cot (8§ +m)| **" Y

From the first of these % is found
and then the second gives z. Of
course z could also be found from
the first of (v), but it is always
preferable to find an angle from
its tangent rather than its cosine
@§ 3).

The formulae (iv) and (v) may
be obtained at once geometrically.
For if ZL be perpendicular to NP
in Fig. 29 we have NL=m and
ZL =90°—n. Fia. 29.

It is plain from equations (iv) that as n and m depend only on
the latitude and the hour angle they are the same for stars of
all declinations. It is therefore convenient to calculate once
for all for a given observatory, or rather for a given latitude, a
table by which for each particular hour angle at any station
on that latitude the values of m and Logcotn can be imme-
diately obtained.

Ex. 1. Verify that the equations
tan n=cot n sec (8+m) and tan z=sec 5 cot (3+m),

undergo no change when m and n are changed respectively into 180°+m and
360° - n.

Ex. 2. Determine the zenith distance and parallactic angle of the star
61 Cygni when it is 3 E. of the meridian, its declination being +38° ¢,
and the latitude of the observer being 53° 23'.

From equations (iv) we find m =27° 43’ and Log cot n=9'6676 (n). Hence
8+m=65" 52’ and (vi) n= —48°41’, z=34"10".
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35. Applications of the differential Formulae.

It is convenient to bring together the six differential formulae
obtained by applying the fundamental formulae, § 4, to the triangle
(Fig. 29) of which the vertices are the Pole N, the Star P, and
the zenith Z. The arc NP is the polar distance, 90°— 3, the
colatitude is NZ or 90°—¢; PZ is the zenith distance z, and, of
course, the altitude is 90° —z. The parallactic angle, 9, is at P.
This angle is positive because it is on the west side of the meridian.
The hour angle % is equal to ¥ —a, where Y is the sidereal time
of observation and a is the right ascension of the star. The
azimuth a is measured from the north round by east so that PZN
is 360° —a.

The six differential formulae of § 4, of which only three are
independent, may be written

Ad + cos nAz — cos hA¢p — sin h cos pAa =0......... 1),
Az + cosaA¢ + cos nAd + cos ¢ sin aAk =0......... (2),
A¢+ cos aAz — cos hAS + cos §sin hAn =0......... 3),
Aa — cos zAn — sin pAh — sin h cos $AS =0......... (4),
Ah + sin A7 — sin pAa — sin 7 cos 8Az =0......... (5),
A7 — cos zAa + sin 8Ah — sin a sin z2A¢ =0......... (6).

There can be fifteen combinations of four out of the six elements
which enter into a triangle. Each set of four are connected by an
equation (§ 1). In most cases where variations of the elements are
required, two of the elements remain constant, and we seek the
relative variations of two other elements. We therefore select
that one of the fifteen equations which contains just those two
elements that are to be constant and those two whose relative
variations are required. The differentiation of that equation with
respect to the two variables gives the required relation.

As an example we may take a case which frequently occurs
in the determination of latitude by the observation of the zenith
distance of a star. Suppose that we know the hour angle and the
declination of a star with accuracy, but that there is an error
Az in the assumed zenith distance. We require to see what error
will arise in the calculated latitude because the erroneous zenith
distance is used in association with the correct hour angle and
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declination. Here the four quantities concerned are A&, 8, 2, ¢,
and the formula is therefore

co8 z = sin ¢ sin & + cos ¢ cos & cos .
Differentiating and supposing k2 and &8 constant,
— 8in zAz = (cos ¢ sin & — sin ¢ cos & cos h) A,
and substituting sin z cos a for the coefficient of A¢ we obtain
A¢ = — sec alz.

Of course this might have been obtained directly from formula
(2) as just given, by making A8=0, Ah=0.

As another illustration and one involving the parallactic angle,
we shall determine when the parallactic angle of a given star
becomes a maximum in the course of the diurnal rotation. The
conditions are that while ¢ and 8 are both constaut, 4, z and a
shall vary in such a way that there shall be no change in 7,
t.e. An must vanish. The formula involving ¢, 8, , & is

tan ¢ cos & = cot 9 sin & + sin & cos k.

Differentiating we have

(cot 7 cos b — sin 8 sin k) Ak =0,
and as the coefficient of Ak must vanish, cot # = sin 8 tan A, from
which we find cosa=0, and the star must be on the prime
vertical.

In this we have anotber illustration of those exceptional cases
in which though three of the variations are zero the formulae
do not require that the other three variations shall also be zero
 4)

The differential formulae are specially instructive in pointing
out how observations should be arranged so that though a small
error is made in the course of the observation, the existence of
this error shall be as little injurious as possible to the result that
is sought.

Suppose, for instance, the mariner is seeking the hour angle of
the sun in order to correct his chronometer. What he measures
is the altitude of the sun. But from refraction and other causes
which no skill can entirely obviate there will be a small error
in the altitude and consequently in the zenith distance. The
observer measures the zenith distance as z, and concludes that the
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hour angle is A. But the true zenith distance is z+ Ag, 1.6 Az
is the quantity which must be added to the observed zenith
distance to give the true zenith distance. The true hour angle is
therefore not A but some slightly different quantity,  + Ah, where
Ah is the correction to be applied to k, so that Ak is the quantity
now sought.

The formula containing only the parts z, ¢, , & is

cos ¢ = sin ¢ sin & + cos ¢ cos 3 cos A,
Differentiating this and regarding ¢ and & as constant,

— 8in 2Az = — cos ¢ cos & sin hAh,

and substituting —sinasin z=sin h cos J,
— Az =sin a cos $pAh,
whence Ah = — sec ¢ cosec aAz.

The following is a geometrical proof of this formula:

If the sun moves from P to P’ (Fig. 30) about the pole ¥,
PP being a very small arc, its zenith distance changes from ZP

o
N ) P'

Fro. 80.

to ZP'. If PT be perpendicular to ZP', Az=TP. As «NPP
and £ZPT are both 90°, £TPP'=y, and Ahsin NP=PP
= Az cosec 7, whence if NK is perpendicular to ZP we shall have
Az=Ahsin NK, by which we learn that the rate of change of the
zenith distance of the sun with respect to the time is proportional
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to the sine of the perpendicular from the pole on the vertical circle
through the sun. We have also

sin NK =sin ZN sin (a — 180°) = — cos ¢ sin a,
whence as before Ak = — sec ¢ cosec alz,

The observation should be so timed that cosec a shall be as
small as possible, for then the error Az will have the smallest
possible effect on the determination of the hour angle. It follows
that a should be near 90° or 270°. Hence the practical rule
s0 well known to the mariner that for the determination of the
time the altitude of the sun should be observed when the sun
is on or near the prime vertical.

If the sun does not come to the prime vertical, the smallest

value of Ah/Az is seod.

Ex. 1. By solving the formulae (1), (2), (3) for A3, Az and A¢, show how
the formulae (4), (5), (6) can be deduced.

Ex. 2. Show geometrically that if the assumed declination of the sun be
erroneous to the extent A8, the error thence produced on a determination of
the hour angle from an observation of the sun’s zenith distance will be

cotnsecd. Ad.

Ex. 3. Under what circumstances is the change of zenith distance of a
star by the diurnal motion proportional throughout the day to its change of
hour angle?

We have from (2) Az/Ak= —sin a cos ¢, and this must be constant, whence
a must be constant and the observer must be on the equator and the star
must be an equatorial star.

Ex. 4. If the hour angle is being determined from an observed zenith
distance of a celestial object of known declination, show geometrically that a
small error A¢ in the assumed latitude ¢ will produce an error — cot a sec pag
in the hour angle, where a is the azimuth.

Show also that this error will generally be of little consequence provided
the object be near the prime vertical.

The triangle PSZ is formed from the polar distance PS (=90°-38), the
zenith distance ZS (=2z) and the colatitude PZ (=90°-¢). Fig. 31. The
parallactic angle 5 is negative because it is to the east of the meridian (§ 34).

The triangle PS’Z’ is formed from the polar distance PS (=PS8’), the
zenith distance ZS (=Z2'8") and the colatitude PZ’ (=90°—¢ — A¢).

Draw Z'M and S’L perpendicular to SZ, then as 8Z and §'Z’ are very
close together 8'Z'= LM, but as §'Z’'=S8Z we must have SL=ZH.

LS8SZZ' is the azimuth a, so that SL=ZM= —cos aa¢.

LPSZ= -y and SS'=SL sec (90°+7)= + cos a cosec nA¢.
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But Ah= S8’ cosec PSS, whence
Ah = cos a cosec PS cosec nAd = — cot a sec pAp.

/\
se Z

Fia. 31.

Ex. 5. A star of declination 8 is observed to have zenith distances ¢;, z;
at instants separated by an interval 2r; show that the colatitude ¢ can be
determined from the equation

sin §c=sin § (z+2) sin 6 cosec e,
where z, d, z, 6, e are auxiliary angles given by
(i) tanz=cotdcosr,
(ii) sind=cosdsinr,
(iii) cos z=com §(z; +2¢) cos §(z, — z3) sec d,
(iv) sin8=sin §(z; +2;) sin 4 (2, — 2z3) cosec z cosec d,
(v) tane=sin(z+2)cosecd(z—2z)tandd. [Math, Trip.]

Ex. 6. If A be the N.P.D. and 2 the zenith distance of Polaris observed
below the pole at an hour angle % from the meridian, show that the colatitude
¢ may be determined from the equations

siny=sin Asink, tanzr=tanAcos#,
tan®4(c+z)=tan §(z+y)tan §(z—y).

What is the geometrical significance of the auxiliaries x and y?

[Math. Trip.]

Ex. 7. If 3 be a star’s declination and 4 its maximum azimuth, show that
in ¢ seconds of time from the moment when the azimuth is 4 the azimuth
has changed by

$15%¢38in 1” 8in% 3 tan A4 seconds of arc.

If there be a maximum value of the azimuth, the star culminates between
pole and zenith, and for the maximum azimuth, the zenith distance is tangent
to the small circle described by the star in its apparent diurnal motion.

B. A. . 7
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Differentiating — cot 4 =cos ¢ tan 8 cosec 4 —sin ¢ cot £,
we obtain cosec’A%—i=oos¢tanBoosechcoth—sin¢ooeec’h
= —cot 4 cot A —sin ¢.
Differentiating again and making 7—1‘—; =0, we have
oosec’A%:-ootA cosec? A,

and %% =tan 4 sin? 3.

Therefore if x be the change of azimuth in ¢ seconds from the moment

of maximum azimuth
4 sin 1" =} 1522 sin? 1" 8in? 8 tan 4. [Math. Trip.]

*36. On the time of culmination of a celestial body.

At the moment of upper culmination (§ 29) the right ascension
of the body is the sidereal time. The problem of finding the time
of upper culmination reduces therefore to the discovery of the right
ascension of the body at the moment when it crosses the meridian.

THE TIME OF A STAR'S UPPER CULMINATION.

In the case of a star, the computation is a very simple
one; for as the apparent right ascension alters very slowly we
can always find it by inspection from the tables, and so have
at once the sidereal time of upper culmination.

For instance, suppose we seek the time of culmination of
Arcturus at Greenwich. on 1906 Feb. 12, which for this particular
purpose is conveniently reckoned from apparent noon on Feb. 12
to apparent noon on Feb. 13. We find in the ephemeris for 1906
that the R.A. at upper culmination on Feb. 10 is 14 11™ 22° 42,
It increases 0°'29 in 10 days; and therefore at culmination on
Feb. 12 the R.A. is 14 11™ 22°48. On that day the sidereal time
at mean noon for Greenwich is 21* 26™ 29*-91 (§ 69).

We thus see that Arcturus will reach the meridian at
24P + (142 11™ 22°-48) — (21" 26™ 29*'91) = 16" 44™ 52*-57 of sidereal
time after mean noon on Feb. 12. We transform this into mean
time by the tables given in the nautical almanac.

16" 152 57" 22°73

44" 43 5279
52° 51 ‘86
57 57

16 42 795
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The culmination of Arcturus therefore takes place at
16" 42™ 7*:95 on Feb. 12. '

In the case of a moving body such as a planet or the moon,
whose right ascension changes rapidly from hour to hour, we
proceed as follows.

Let the right ascension of the body be a,, a,, a,, at three con-
secutive epochs ¢, 4, &, for which the tables give the calculated
values, and such that culmination occurs between ¢, and ¢,. Then
taking either of the equal intervals ¢, — ¢, or t,—¢, as the unit of
time, and supposing culmination occurs ¢ units after ¢, we have
by interpolation for the R.A. at culmination

at+t(a—a)+§t(E—1)(a, — 20, + ).

This will be the sidereal time of the body’s culmination. Let
6, be the sidereal time at the epoch ¢,, and let H be the value of
the unit in sidereal time. Then at the moment of culmination
the sidereal time is

6, + Ht.
But this must be equal to the expression already written; whence
6+ Ht=a,+t(x—a) +§t (¢t —1)(a — 2a,+ ay).

From this equation ¢ is to be determined. The equation is a
quadratic; but obviously the significant root for our purpose is
indicated by the fact that 4¢(¢—1)(a —2a,+a,) is a small
quantity. To solve the equation we therefore deduce an ap-
proximate value ¢ for ¢ by solving

6,4+ Ht =a, +t' (4 — a);
and then we introduce this value ¢’ into the small term and
solve the following simple equation for ¢
6+ Ht=a,+t(a,—a)+ 4t (' — 1)(a, — 203 + a5).

THE TIME OF A PLANET'S UPPER CULMINATION.

To illustrate the process we shall compute the time of culmi-
nation of Jupiter at Greenwich on Sept. 25, 1906.

From the nautical almanac, p. 247, we have:

Mean noon R.A. of Jupiter 1st diff. 2nd diff.
1906. Sept. 25 ¢b 39m 53¢ 569
+26 90
26 40 20 49 —-00-68
+26 22
27 40 46 ‘71 .
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Hence the R.A. of Jupiter ¢ days after noon on Sept. 25 is
6 39™ 53°°59 + 26°:90¢ — 0°-34¢ (¢ —1).

At the moment of culmination this equals the sidereal time,

which is
12k 13™ 3462 + ¢ [24" 3™ 56°'55],
whence the equation for ¢ is
30" 39™ 53*°59 + 26°90¢ — 0°34¢ (¢ — 1)
=12"13™ 34*62 + ¢ [24" 3™ 56*55].

Neglecting the last term on the left-hand side, and omitting

all seconds in the first solution, we have
18 26™ = ¢ (24b 3m),

whence t=077. ‘

Introducing this approximate value of ¢ into — 0*-34¢ (¢~ 1),
it reduces to + 0*06.

The equation therefore becomes

30" 39™ 5365 + 26*90¢ = 12" 13™ 34*°62 + ¢ (24" 3™ 56*'55),

18 26™ 19*:03

= 545 50065 = 0'766416.

Jupiter’s culmination will therefore be 0766416 of a mean solar
day after noon, t.e. at 18" 23™ 38°'34 6.M.T. (see N. 4.,1906, p. 272).

THE TIME OF THE MOON’S UPPER CULMINATION,

In the case of the moon the motidn is so rapid that the places
from hour to hour, as given in the ephemeris, are required. For
the sake of illustration we shall compute the time at which the
moon culminates at Greenwich on 1906 Oct. 29.

The sidereal time at mean noon on that day is 14" 27™ 37*42
(N.A., 1906, p. 165). The moon’s R.A. at noon (N. 4., p. 175) is
0t 23 23%-62. If there were no motion this would mean that the
moon must culminate about ten o'clock in the evening. At
10 o’clock the R.A. of the moon is about 0" 43®, and this shows
that the interval between noon and the moon’s culmination is
about 10® 16™ of sidereal time, or about 10® 14™ of mean solar
time. We are therefore certain to include the time of culmina-
tion by taking from the ephemeris the following:

whence

) Moon’s R.A. 1st diff. 2nd diff.
1906, Oct. 29. 10h. Qb 42m 528-03
+1m 56040
11 h. 0 44 48 43 —-006
+1 56 34

12h. 0 46 44 77
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It follows that the R.A. of the moon at (10 + ¢) hours after
noon is
0" 42™ 5203 + 116°40¢t — 0*03¢t (¢ — 1).
Since ¢ is about }, the last term amounts to about one two-
hundredth of a second, and may be neglected. We thus have the
following equation for finding ¢:

0 42™ 52403 + 11640t
= sidereal time at 10® mean time + ¢ [1* 0™ 9*-86],

the coefficient of ¢ on the right-hand side being the sidereal value
of one mean hour. The sidereal time at mean noon on the day
in question is 14* 27™ 3742, if we add to this 10 1™ 38*'56 which
is the sidereal equivalent of 10* of mean time we see that the
sidereal time at 10" G.M.T. is 0" 29™15*98; the equation is
therefore

0" 42 52403 — 0" 29™ 15°°98 = ¢ (1" 0™ 9*'86 — 1™ 56*'40),

13™ 3605

= 5813746 = 0233594,
This is the fraction of one mean hour after 10 P.M., at which the
culmination takes place; that is, at 10® 14™ 0*94 (N. 4., 1906,
p- 167).

THE TIME OF CULMINATION AT LONGITUDE A.

Suppose it be required to find the time of upper culmina-
tion of a heavenly body at a place P in longitude A to the west
of Greenwich.

The R.A. of the body at the moment of culmination will of
course be equal to the sidereal time at the place. Let @ be the
local mean time; then the mean time at Greenwich at the same
instant is @ + A, and the R.A. of the body can be expressed by
interpolation as a function of @+,

We have therefore only to find the sidereal time at P corre-
sponding to the mean time . The ephemeris gives the sidereal
time at mean noon at Greenwich, which must be increased by
A/24* x (the difference in sidereal time between the mean solar and
sidereal day) to give the sidereal time at mean noon at P. To
this we must add 6, increased in the ratio of the duration of the
mean day to the duration of the sidereal day. The resulting
sidereal time is to be equated to the Right Ascension, and @ is
determined.

¢
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For example, let it be proposed to find the time when the
moon culminates at the Lick Observatory, Mount Hamilton,
California, on Dec. 25,1906. The longitude is here 8" 6™ 34*:89;
and if 6 is the local mean time of culmination, the Greenwich
mean time is 8" 6™ 34°-89 + 6.

The ephemeris shows that on Dec. 25 the sidereal time at
Greenwich mean noon is 18" 12= 21*:18; and the moon’s R.A.
varies from 2b19™29*84 at O® to 3" 3™ 40*32 at 23" and it is
also seen that the culmination at Greenwich takes place about
8" 22" a.M.T. In the following 8" the moon’s R.A. increases
about 15™; hence culmination will take place at Lick at about
8237™ local mean time, or about 16®43™ 6.M.T. The portion of
the tables to be employed in the accurate calculation is therefore
as follows:

@.M.T, Moon’s r.A. 1st diff. 2nd diff.
1906. Dec. 25. 16h. 2b 50m 9s-73
+ 1m 558565
17 52 5-28 4008
+1 5563
18 54 091
Let 8" 6™ 34*89 + 6 = 16" + ¢, where ¢ is a fraction of an hour.
Then =" 53™ 2511 + ¢.

The sidereal time at Lick corresponding to the local mean
time 6 is found as follows.

The sidereal time at Greenwich
mean noon =18"12™21*13
The Longitude of Lick
x (3™ 56°°56)/24* = 1 1993
(7" 53™ 25*11 + t) expressed in
sidereal time = 7 54 42 ‘88 4 (1" 0™ 9*86)¢
Adding these three lines we obtain the sidereal time of the moon’s
upper culmination at Lick = 2 8 23*94 + (1 0™ 9*86) ¢.
The R.A. of the moon at G.M.T. (16 + ¢)* is
22 50™ 9*-73 + ¢ (115°55) + 0°04¢ (¢t — 1).
As t is about 0"'7 the third term in this expression is — 001,
and to find ¢t we have
28 8™ 23°94 + ¢ (12 0™ 9°+86)
=28 50" 9*72 + ¢ (115"55),
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41" 4578

= m = 717103 hours

or t

= 43" 1"'57.
Hence the culmination of the moon at Lick took place at

16 43™ 1*'57 Greenwich mean time, or at 8 36™ 26*68 local
mean time.

37. Rising and setting of a celestial body.

The time of rising or setting of a celestial body is much
affected by refraction. Postponing the consideration of the effect
of refraction to a later chapter (v1.) we here give the formulae for
finding when a celestial body, atmospheric influences apart, is on
the horizon, t.e. 90° from the zenith,

Z
- 90°
ol
3
90% 8
N P
Fia. 82.

In Fig. 32 the points N and Z are the north pole and the
zenith respectively. P is a star at the moment of rising or
setting when ZP=90°. We have ther&fore ‘

0 =sin ¢ sin 8 + cos ¢ cos & cos &,
whence cos b =—tan ¢ tan 4.

Provided the star be one which rises and sets at the latitude of
the observer there are two solutions, & (< 180°) corresponding to
setting, and 360° — h corresponding to rising.

Ex. 1. Unless tan ¢ tan 3<1 (sign not regarded) show that an object of
declination 8 neither rises nor sets in a place of latitude ¢.

Ex. 2. If the N. decl. of a star is 40°, show that the number of hours in
the sidereal day during which it will be below the horizon of a place which
has latitude 30° is 8-136.

Ex. 3. The declination of Arcturus in 1909 is 19° 39’ N. and the latitude
of Cambridge is 52° 13, find the hour angle through which the star moves
between the time at which it rises and that at which it culminates.
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Ex. 4. Let § be the sidereal time of rising of a star whose coordinates are
a, 3 and §’ be the time of setting. Show that S=a+a', S'=a+«", where o’
and «” are the two roots of the equation

cos o= —tan ¢ tan 3.

Ex. 5. Under what conditions would the azimuth of a star remain
constant from rising to transit?

If the star is to have a constant azimuth it must move along a great
circle passing through the zenith. Hence the star must be on the celestial
equator and the pole on the observer’s horizon, i.e. the observer on the
terrestrial equator.

Ex. 6. If ¢ be the latitude, 8 the declination of a celestial body and 4
its hour angle when rising or setting, show that when refraction is not
considered

2 cos? $ h=sec ¢ sec 8 cos (¢ +3).

Ex. 7. Show that in latitude 45° the interval between the time at which
any star passes due East and the time of its setting is constant.
[Math. Trip.]
Let E be the position of the star when due East, Z the zenith and P
the pole (Fig. 33). Then LEZP=90°, ZP=45°, and ZP is produced to J
so that PJ=45° and ZH =90° is inflected from Z on EPH. Since

Fio. 88.

ZJ=ZH=90", we have . ZJH=90° and therefore in the triangles ZPFE
and JPH, we have ZP=PJ and EZP=HJP=90". Hence the triangles
are equal and EP=HP, and as H is 90° from the zenith it is the position of
the star at setting, so that half a sidereal day elapses while the star moves
from E to H.

Ex. 8. Two stars whose declinations are 8;, 8; are observed to be in the
East at the same time and also to set at the same time; show that the
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latitude of the place of observation is 45°, and that if ¢ be the number of
hours between the times at which they rise,
15°.¢

2 cos —;— = ~/(1+tan3,) (1 +tan )+~ (1-tan ;) (1 - tand,).

The length of the perpendicular from the pole on the great circle joining
the two stars being unaffected by the diurnal motion, we see that the pole
is equidistant from the prime vertical and the horizon, 7.e. the latitude
is 45°

Further the time during which a star is above the horizon is twice the
hour angle at setting, or

2cos~1 (- tan ¢ tan 8).

Since the stars set together, antl ¢ is 45°, the interval between their

risings is

2co8~1(—tand;)—2cos~!(—tan 3),
whence the required result.

Ex. 9. If two stars whose coordinates are respectively a, 8 and a', &
rise at the same moment at a station of latitude ¢, show that

sin? (a— a’) cot? p =tan? 3+ tan? &’ — 2 tan 3 tan &' cos (a—a’).

Ex. 10. If 4 be the area of the celestial sphere, show that to an observer
in latitude ¢ the stars in a portion 4 sin?4¢ will never be above his horizon,
the stars in another portion A4 sin?3¢ will always be above his horizon, the
stars in a portion 4 cos ¢ will daily rise and set, and a portion 4 cos? $¢ will
include all the stars with which he can become acquainted.

If @ be the radius of a sphere the area cut off by a small circle of radius ¢
is 27a®(1 —cos¢). Small circles of radius ¢ about the north and south
poles respectively show the portions of the sphere always above and always
below the horizon.

Ex. 11. If at a place whose north latitude is ¢, two stars whose N.P.D.
are respectively A and A’, rise together, and the former comes to the meridian
when the latter sets, prove that

tang | 2tan’'e
tan A tanta’ *
It is plain that if A be the hour angle of the second star at rising, that of
the first must be 24, whence we have
0=cos A sin ¢ +8in A cos ¢ cos 24,
O=cos A’sin ¢ +8in A’ cos ¢ cos A,
and the elimination of 4 gives the desired result.
Ex. 12. If at any instant the plane of vibration of a Foucault’s pendulum

pass through a star near the horizon, prove that the plane will continue to
pass through the star so long as it is near the horizon. [Math. Trip.]

The plane of a Foucault’s pendulum appears to rotate round the vertical
with an angular velocity found by multiplying the angular velocity of the

[Math. Trip.]
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celestial sphere by the sine of the latitude. In the small time d¢ the star S
(Fig. 34) moves over SS’'=cos 3d¢. If 8'T be perpendicular to ZS we have
8'T=8"'Ssin §'ST=cos 8 cos ndt=sin ¢dt.
Hence 8'Z8=sin ¢ dt.

90%-¢

N

Fi1e. 34.

38. Celestial latitude and longitude. For certain classes
of investigation we have to employ yet another system of co-
ordinates on the celestial sphere. Just as the equator has
furnished the means of defining the right ascension and the
declination of a star, so the ecliptic is made the basis of a system
of coordinates known as celestial longitude and latitude. We
employ in this new system the same origin as before. The first
point of Aries T is the origin from which longitude is to be
measured and the direction of the measurement is to be that of
the apparent annual movement of the sun along the ecliptic as
indicated by the arrow-head on Fig. 35.

A great circle is drawn from the nole K of the ecliptic through
the star S, and the intercept T'S on this great circle between the
star and the ecliptic is that coordinate which is called the latitude
of the star. The latitude is positive or negative according as the
star lies in the hemisphere which contains the nole or the antinole
of the ecliptic. The arc on the ecliptic from the origin T to T,
the foot of the perpendicular, is called the longitude, which is
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the second coordinate. This is measured round the circle from
0° to 360°,so that if the right ascension of an object on the
ecliptic is increased its longitude is also increased.

The reader will of course observe that the meanings of the
words latitude and longitude as here explained in their astrono-
mical significance are quite different from the meanings of the
same words in their more familiar use with regard to terrestrial
matters. It is usual to employ the letter A to express astrono-
mical longitude and 8 to express astronomical latitude, thus
T=x\and TS = 4.

The arc of the solstitial colure LH intercepted between the
equator and the ecliptic is equal to the obliquity of the
ecliptic.

T
Fia. 85.

If a, 8§ be the R.A. and decl. of S, then the formulae for
transformation are obtained either from the general formulae of
§ 12 or directly from the triangle SKN (Fig. 35), and for the
determination of the latitude and longitude we have the equations

sin 8 = cos w sin § — sin @ cos & sin.a‘
cos 8sin A =sin wsin § + cos w cos §sin af... ...... 1),
cos Bcos A =cosdcosa
by which we can determine 8 and A when a and & are known.
It is generally easy to see from the nature of the problem whether
the longitude is greater or less than 180°. When this is known

one of the last two equations may be dispensed with.
We can make these equations more convenient for logarithmic
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work by the introduction of an auxiliary quantity M = 2 STL, so
that tan M =cosec a tan & (§ 13), and we have
sin 8 = sin & sin (M — w) cosec M,
cos Bsin A = sin & cos (M — w) cosec M,
cos 8 cosA =cos & cosa
The form of the equations shows that a change of 180° in the
adopted value of M does not affect the result.

If we represent by 90° — E' the angle subtended at S by KN
we have froin Delambre’s formulae

cos § (E + 1) cos (45°— 4 B) = cos {45° — § (8 + w)} cos (45° + } a),

sin } (E + \) cos (45°— 4 B) = cos (45° — } (8 — w)} sin (45° + } a),

gin § (£ — \) sin (45°— 4 B) =sin {45° — 4 (8 + w)} cos (45° + } a),

cos 4 (£ —\)sin (45°— 4 B) =sin {45° — } (8 - w)} sin (45° +} a),
by which A and B as well as £ can be determined.

If it be required to solve the converse problem, namely, to
determine the R.A. and decl. when the latitude and longitude are
given, we have by transformation of (1)

sin 8 = cos w sin 8 + 8in @ cos Bsin A
cos dsin a = — 8in wsin 8+ cos w cos Bsin A} ...... (2).
cos § cos a = cos B cos A
Ex. 1. Show that the right ascension and declination of the nole of the

ecliptic are respectively 270°, 90°-w and that the right ascension and
declination of the antinole are 90°, o — 90°.

Ex. 2. If a, 3 are the R.A. and decl. of the point of the ecliptic whose

longitude is A, show that
€08 A ==C08 a coS 3,

8in A 8in 0 =8in 3,
+ 8in )\ cos w=sin a cos 8.

Ex. 3. If a, 8, and ag, 3; be the R.A. and decl. of two stars which have
the same longitude, prove that

8in (ag— a;) =tan w (tan 3, cos a; — tan 8; cos a;).
Ex. 4. The right ascension of a Orionis is 5 h. 49 m., its declination is
+7°23, and the obliquity of the ecliptic is 23°27". Show that the longitude
and latitude of the star are respectively 87° 10/, —16° 2",
Ex. 5. If a=6°33'29", 8= —16°22' 35", w==23"27'32", show that
A=3569°17"44", B=—17°35'37".
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MISCELLANEOUS EXERCISES ON CHAP. V.

Ex. 1. Show that to an observer at the north pole of the earth the
altitude of a star would be its declination and would be unaltered by the
diurnal motion. Show that in the same case the azimuth of a star (measured
from any fixed meridian) would differ from its right ascension only by an
arc which would be the sume at a given instant for all stars.

Ex. 2. A star of right ascension a and declination 8 has a small latitude 8.
Prove that the longitude of the sun when its R.A. is a, differs from the
longitude of the star by 8sin 3 cot a approximately.

Ex. 3. Show that for a place within the arctic or antarctic circle the points
of intersection of the ecliptic with the horizon travel completely round the
horizon, during a sidereal day, but that for any other place they oscillate
about the East and West points. [Math. Trip.]

Ex. 4. The East point is denoted by E, the pole by P, and the places
of two stars by 4, B. P4 meets EB in 4’y and PB meets £4 in B’. The
declinations of 4, B, 4', B’ are 8,, 8;, 8/, 8, respectively, show that

tan 6,’ twbg'=t&nal t&nbg.

Let £4 and EB intersect the meridian at distances A, p respectively from
the pole. Then since £ is the pole of the meridian, tan A/tan p=tan 8,/tan §;
and tan p/tan A=tan &;'/tan 3,.

Ex. 5. If z be the zenith distance of a star as seen from a station P,
then at the same moment at a station P’ which is at a small distance s
from P the zenith distance will be very nearly # where

¢=¢—8co8 0+4%ss8in 1" cot 38in? 4,

0 being the difference between the azimuths of the star and P’ as seen
from P.

We assume that 2/—z and s are both expressed in arc, their measures
in radians are therefore (2 —z)sin 1” and ssin1”. We have

€08 2/ =08 2 o8 8+ 8in z 8in s cos §
=cosz(l—4s%sin?1”)+8sin 1”sinzcosé.
But we also have
cos ¢ =cos (¢ —z) co8 z—8in (Z —2) sin z
=cosz{l -} (7-2)38in*1"} - (¢~ £)sin 1”8inz,
and equating these two values of cos Z gives
7 —2=—scos d+}ssin1"cotz -4 (¢ —2)%s8in 1" cot z;
as a first approximation ¢ —z= —scos §, and with thJs substitution in the
last term the desired result is obtained.

Ex. 6. Let o', &, n’ be respectively the azimuth, the declination and the
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parallactic angle of a point on the horizon. Show that for a given latitude ¢
these quantities can be calculated for any hour angle by the formulae

tand' = —cot¢ cosk, sina’'= —sin hcos ¥, cosa’=+secPsind’,
tana’= +sin¢ptank, cosn’'= +sin¢secd’, sinp = +sinkcosg.
Ex. 7. If 8, & be respectively the declination and the hour angle of a star,
obtain the following formulae by which its azimuth a and zenith distance z

can be easily determined when for that latitude the values of a’, &, n’
(a8 defined in the last example), corresponding to 4 are known.

cos z=8in (8’ - 8) cos ’,
sin (¢’ — a) sin z=sin (8’ — 8) sin x’,
cos (@'~ a)8in z=cos (&' - 3).
Ex. 8. Show that with the quantities used in the last example we
have for determining n the star’s parallactic angle :
sin p=sin (@ - a') cosec (3’ - 3),
cos n=cot zcot (&' - 8).
Ex. 9. As an illustration of the formulae of Exs. 6 and 7, calculate the

zenith distance and azimuth of Arcturus at the West hour angle 2k 35™, being
given that the declination is +19° 44’ and the latitude 52° 13",

Ex. 10. Show that the latitude ¢ can be determined by an observation
of the altitude a of the pole star which at the time of observation hasan hour
angle 4 and a polar distance p and that the formula is approximately

¢=a-pcosh+4sinl” p3sin®htan a.
Ex. 11. Show that the hour angle 4 and the zenith distance ¢ when a star
is due East or due West may be found from the equations
sin3=sin¢pcosz; sinhcosd=F sinz; coshcosd=cosccosz;
by using the upper sign in the former case and the lower sign in the latter.
Ex. 12. Find the first and second differential coefficients of the zenith

distance z of a star with respect to the hour angle.
We can investigate this either from the fundamental formulae or geo-

metrically as follows, Fig. 36.

N is the north pole, Z the zenith, P the star. In the time di the star
has moved to H, where PH is perpendicular to NP and NH. If PQ be
perpendicular to ZH, then

dz=H@Q= HPsinn=cos 3 sinndh=~cos ¢ sinadh.
We have also
da=P@Q cosec z=PH cos n cosec z=cos 8 cos 5 cosec zdh,

da
whence d—h=oosboos-;cosecz.
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To find the second differential coefficient we differentiate dz/dk as above
found with respect to 4 and assuming that & and 4 are both expressed in
radians, &

2

da
= —eosqmosam—‘,

= — 08 ¢b o8 @ co8 8 CO8 1) COseC 2.

Fie. 36.

Ex. 13. If the declination of a star exceed the latitude, show that the
most rapid rate of change in zenith distance by diurnal motion is equal to
the cosine of the declination. If the declination be less than the latitude,
show that the most rapid rate of change in zenith distance is equal to the
cosine of the latitude.

Ex. 14. If 5, be the zenith distance of an object at the bour angle 4, and
if z be the zenith distance of the same object at the hour angle A which is
very near to &y, show from Ex. 12 that
z2—zy=—15(h — Ay) cos ¢ sin @ — § 225 8in 1” (A — A,)2 cos ¢ cos a cos § cos n coseoz,
where the zenith distances are expressed in arc and the hour angles in time.

Ex. 15. A series of measurements of zenith distances z, ... z, of the same
star are made at closely following hour angles 4,...4,. Let 7, A be the
arithmetic means of the zenith distances and hour angles. Show that z,, the
value of ¢ corresponding to 4, is obtained by applying to 2’ the correction

n
+2ln2253in 1" cos ¢ cos a cos & cos n cosec ¢2 (A, — ko).
1



112 RIGHT ASCENSION AND DECLINATION [cH. Vv

Making A= —cos ¢ sina, B= —}225sin 1" cos ¢ cos a cos 3 cos 5 cosec ¢,
we have from the last question
n=zg+ A (k= ho) + B (ks — ko),
zy=2o+ A (kg - ho)+ B (hs— ko)’

sa=z0+ A (hu— ko) + B (ha — o),
adding and dividing by »
¢ty B3 (hy - oY,
which proves the theorem.

This formula is useful when it is desired to obtain the best result from a
series of zenith distances taken in rapid succession.

Ex. 16. Show that if the hour angle of a star of declination 8 be A
when it has the azimuth ¢ and A’ when it has the azimuth 180°+a the
latitude ¢ can be found from the equation
008 § (K'+4)
cos} (h'~4)’

Ex. 17. In north latitude 45° the greatest azimuth attained by one of the

circumpolar stars is 45° from the north point of the horizon. Prove that the
star’s polar distance is 30°. [Math. Trip.]

Ex. 18. Show how to find the latitude if the local sidereal time be
observed at which two known stars have the same azimuth.
The hour angles 4, 4’ at which the two stars have the azimuth a are
known and (p. 3) )
cotasinh =—cos¢ptand +sin ¢ cosk,
cot @ sin A'= —cos ¢ tan & +sin ¢ cos &/,

whence eliminating a

tan ¢ =tan 3

tan 3sin A’ —tan §'sin A
sin (&' — k)

Ex. 19. Two altitudes of the sun, 8 and 8+AB, are simultaneously
observed at two neighbouring places on the same meridian at a time when
the declination of the sun is 8. Prove that, if ¢ be the latitude of one of the
places, the difference of their latitudes is approximately

AB cos B cos ¢/{sin 3 —sin Bsin ¢}.

tan ¢ =

[Coll. Exam.]

Ex. 20. Show that if a is the sun’s altitude in the prime vertical, L its
longitude, and o the obliquity of the ecliptic, the latitude of the place is
sin~! (sin w sin L/sin a).
Ex. 21. Show how ¢ the latitude may be accurately found from an

observed zenith distance of a body of known declination 8 when near the
-meridian, assuming as an approximate value ¢y=2+32.
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From the fundamental formula
cos z=gin ¢ 8in 8+ cos ¢ cos 3cos A
=co8 (¢ —3) —2sin? } 4 cos ¢ cos &
sin § (2+3 - @) sin § (- 3+ ¢)=cos 3 cos P sind } 4,

in which the hour angle 4 is known from the local sidereal time and the
right ascension of the body. If we make =34 8- ¢, we obtain

we obtain

. _ _cosdcosgp . .
umix—ain @3+ ) o A
But as the star is near the meridian z is small, whence we obtain very
nearly (§ 3, Ex. 3)

-2°°“°°°4’gin’y¢ sin (¢ — 3) (sec §z)t,

" ‘sin(¢p-3) sin (¢ -3+4x)
or making (= 23310?——4:.%;’-0 sin?® §A,

and observing that { is very nearly x, we have
_, _s8in(¢o—3)
=4 i -0 4) e 10
whence ¢ =2+ 38—z becomes known.

Ex. 22. If R be the sun’s radius vector, ®, B8 its true longitude and
latitude,  the obliquity of the ecliptic, X the coordinate measured along the
line from the earth’s centre to the true vernal equinox, ¥ the coordinate
measured along the line in the plane of the equator perpendicular to X and
towards the first point of Cancer, i.c. to a point whose R.A. is 6% and Z the
coordinate perpendicular to the equator and towards the north pole, show
that (p. 618, N.4. 1906),

X=Rcos ®,
Y=Rsin ® cos - 193 RS,
Z=~Rsin ® sinw+44'5 RB,
where the sun’s mean distance is the unit of length and the numerical

coefficients are in units of the seventh place of decimals.
From the general formulae of transformation we have

8in 3=sin 8 cos w+cos Bsin w8in ®,
co8 3 cos a=cos 3cos ®,

cos 3 8in a= — 8in B 8in w+-cos 8 cos w 8in O,

whence
X= RcosBcos @,

Y= - RsinBsin o+ R cos B cos w 8in @,

Z= Rsin B cos o+ R cos Bsin wsin ®.
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In the case of the sun B is extremely small and making sin 8=gsin 1",
8in w='3980 and cos w="9174 we obtain the desired result. Tables of X, ¥,
and Z for each day throughout the year are given in the ephemeris.

Ex. 23. Assuming the Milky Way to be a great circle of stars, cutting
the equator in R.A. 18® 30®, and making an angle 65°, measured northwards,
with the equator, determine the R.A. and decl. of its pole.

Ex. 24. A planet’s heliocentric orbit is inclined at a small angle < to the
ecliptic ; 'show that if its declination is a maximum, either the motion in
latitude vanishes, or the longitude is approximately 90°+ cot o sin a where a
is the longitude of the ascending node.

As the declination is a maximum the planet P must be 90° from the
intersection & of its orbit with the equator. The projection of NP on the
ecliptic will also be nearly 90°. Let N7 be the perpendicular from ¥ on

T8 the ecliptic, where T is the vernal equinox and & the ascending node.
In the small triangle N¥7T we have tan N7 =sin "7 tan w, and in the
triangle N7'Q we have tan NT=sin (a—T"7) tan .
Hence sin T7'=tan ¢ sin (a— T'7") cot w,
and approximately TT=i{cot wsina,

whence the planet’s longitude is in general 90°+4?cot w sin a.

P

Fra. 387.

Ex. 25. Show that the true distance between Regulus and the moon at
4 p.M. Greenwich mean time on Jan. 6, 1909 is 41° 59’ 31", being given

Right Ascension Declination
Moon 7b 12m 56%9 N 24 15 40"
Star 10 3 316 N 12 24 46
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Ex. 26. Prove that for a star which rises to the north of east, the rate at
which the azimuth changes is the same when it rises as when it is due east,

and is a minimum when the azimuth is sin-! (ta.n A.sin lf_ﬂ) north of
cos

east, where X is the latltude and a the altitude of the star when due east.
[Math. Trip. 1902.]

Ex. 27. Show that observations of the altitudes of two known satars
at a known Greenwich time are sufficient to determine the latitude and
longitude of the observer. Show how from these observations the position
of the observer may be found graphically on a terrestrial globe.

If the stars chosen for observation are on opposite sides of the meridian,
show that the errors in latitude and longitude due to the small error ¢ in the
observed altitude of each star are respectively

e8ec (a; +ag) cos (ay —ag) and e sec P sec (a; +a,) 8in (a; — ag),

where ¢ is the estimated latitude and 2a,, 2a; are the azimuths of the stars,
[Oxford Second Public Examination, 1902.]

8—2
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39. The laws of optical refraction.

If a ray of light AO (Fig. 38) moving through one transparent
homogeneous medium HH enters at O a different transparent
homogeneous medium KK the ray generally undergoes a sudden
change of direction and traverses the new medium in the direc-
tion O0'. This change is known as refraction. The ray 4O is
called the incident ray and the ray OO the refracted ray, and
both the incident ray and the refracted ray lie in the same plane
through the normal at O to the surface separating the media.

Let MON be the normal at O to the surface separating the two
media, then £ NOA = is known as the angle of incidence and
£LMOO' = ¢ as the angle of refraction, and the fundamental law
of refraction is expressed by the formula

sin Y = u sin ¢,

where 4 is a certain constant depending on the character of the
two media. If by a change in the direction of the incident ray
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the angle 4~ alters, then ¢ must alter correspondingly in such
a way that the ratio of the sines of the two angles shall remain
the same. We call u the index of refraction from the first
medium into the second.

Fia. 38.

It should in strictness be noted that while u varies, as stated,
with the nature of the two media, it also varies with the character
of the light. For example, u would be different for a ray of blue
light from what it is for a ray of red light, the media being the
same in both cases. We have to consider however only atmospheric
refraction and in this case the dispersion, as this phenomenon
is called, is not great enmough to make it necessary to attend to
it for purposes of practical astronomy. We therefore take a mean
value of u which will be sufficiently accurate even though the
rays of light with which we have to deal are of a composite
nature. The refractive index of the atmosphere at the earth’s
surface at the temperature 0°C. and pressure 760 mm. is taken
to be 1000294 (Everett, Units and Physical Constants, p. 75).

If the direction of the ray were reversed, t.e. if a ray went
from O through the medium KK to O and thence emerged into
the medium HH the ray would traverse HH precisely along the
path OA. This is only a particular case of the general property
that the curved or broken line which a ray follows in the course
of a series of refractions through any media and at any in-
cidences would also be followed if the direction of propagation
of the light were reversed. Hence we see that if the lower surface
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of the medium KK is parallel to the upper surface, the ray
on its emergence at 0’ into a second layer of the medium HH
will pursue a direction O’A4’, which is parallel to the incident
direction A0. Thus we learn that a ray of light on passing
through a parallel-sided homogeneous plate is not changed in
direction though it will no doubt be shifted laterally. As we are
now only concerned with the directions of rays the lateral shift
need not be attended to.

Let u, be the refractive index from a medium H, into H,
(Fig. 39). Let u, be the refractive index from H, into H,,
it is required to find the refractive index from the medium H,
into H,.

Hy

" . "
o

He EO Oi

Ho J Ho
Fi1a. 89.

A ray from H, through parallel plates of H, and H, emerges
in H, parallel to its original direction; and if y, ¢, 6 be the
successive angles of incidence, then from the first incidence and
the last emergence we have the equations

' siny=msing and siny = u,siné,
whence 1 8in ¢ = p, 8in 6.

We thus obtain the following result.

If u, be the index of refraction from a standard medmm
into another medium H,, u, the index of refraction from the
standard medium into another medium H,, and if ¢ be the angle
of incidence of a ray passing direct from H, to H,, and @ the
angle of refraction, then u,sin¢ = u,sin 6, and the index of re-
fraction for a ray passing directly from H, to H, is py/p,.

40. Astronomical refraction.

The rays of light from a celestial body on passing from outer
space through the earth’s atmosphere undergo what is known as



§§ 39-40] ATMOSPHERIC REFRACTION 119

astronomical refraction. In the upper regions of the atmosphere
the density of the air is so small that but little is there con-
tributed to the total refraction. The refraction with which
astronomers have to deal takes place mainly within a very few
miles of the earth’s surface. In consequence of refraction a ray
of light from a star does not pass through the atmosphere in
a straight line. It follows a curve, so that when the obeerver
receives the rays the star appears to him to be in a direction
which is not its true direction.

Fio. 40.

A ray of light coming towards us from a distant star in the
direction SA (Fig. 40) pursues a straight path until it enters the
effective atmosphere at 4, and from thence the path is no longer
straight. From A to the observer at O the ray is passing through
atmospheric layers of which the density is continually in-
creasing, so that the ray curves more and more till it reaches 0.
To the observer the rays appear to come from T, where OT is
the tangent to the curve at 0. If through O a line OR be drawn
parallel to AS this line will show the direction in which the
star would appear if there had been no refracting disturbance.
Thus the effect of refraction is to move the apparent place of
the star through the angle TOR up towards Z, the zenith of the
observer. Refraction is greatest at the horizon where objects are
apparently elevated by this cause through about 35’

The observed coordinates of a heavenly body must, in general,
receive corrections which will show what the coordinates would
have been had there been no refraction. The investigation of
the effects of refraction is therefore an important part of practical
astronomy.
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An approximate table is here given showing the amount by
which refraction diminishes the apparent zenith distances of stars.
The barometer is supposed to stand at 30 in. and the thermometer
at 50°F. See Newcomb'’s Spherical Astronomy, p. 433.

Apparent Apparent Apparent
Zenith Refraction enith | Refraction Zenith Refraction
Distance Distance Distance
0° o’ 35° 41” 70° 2 39”
6° 5" 40° 49" 75° 3 34"
10° 10” 45° 58” 80° 6 19"
15° 16" 50° 1 9 85° 9 51”
20° 21” 55° 1’ 23" 87° 14’ 23"
25° 27" 60° 1 41" 88° 18’ 16"
30° 34" 65° 2 4 88° 40 22’ 23"

For example, at an apparent zenith distance of 50° we learn
that the refraction is 1’ 9” and that consequently the true zenith
distance is 50°1’9”. It will be noted that for any zenith distance
<45° the refraction is not so much as 1’, and that for zenith
distances up to 20° the refraction is practically 1” per 1°

41. General theory of atmospheric refraction.

We shall suppose that the earth is spherical and that the
atmosphere is composed of a
succession of thin layers bounded
by spheres concentric with the
earth. The refractive index of
the air throughout each layer is
to be constant, but it may vary
from one layer to another.

Consider two such layers 4
and B (Fig. 41). The refractive
index of the outer layer 4 is
m relative to free aether and
that of B is u,. A ray passing
through A4 in the direction PQ
is bent into the direction QR
as it passes into B.
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Let C be the earth’s centre,

¥ =2s8QP, ¢,= £QPC, ¢,= £RQC, CP=nr,, CQ=r,.

Then from the principles of refraction (§ 39) because CQ is
normal to the surface of separation we have

y 8in Y = p, 8in ¢,
But from the triangle PCQ
sin v :sin ¢, :: 7 : 7y,
whence eliminating 4 we obtain
T4 8IN ¢y = Py, 8ID By
The same would of course be true for any two consecutive layers,
and thus we obtain the following general theorem.

Let the atmosphere be regarded as constituted of a number of
thin spherical homogeneous layers, concentric with the earth and
varying in density from one layer to another. As a ray of light
traverses successive layers, the product of the sine of the angle of
refraction by the radius of the layer and by its refractive index is
constant. .

We may express this theorem in the following formula :

TBID @ = Ay 8IN Z..eueniniininneninninin, @),
where z is the apparent zenith distance, a the radius of the earth

and u, the index of refraction of the lowest layer.
X

Fic. 42.

If we suppose the layers to be indefinitely thin, then the path
of the ray instead of being a broken line would be a curve. Let
XTO (Fig. 42) be the curve as it passes through the successive
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~ layers and reaches the earth at 0. Draw the tangent TQP to
the curve at T, where the ray enters a layer whose . refractive
index is u, and radius r. The tangent coincides with a small
part of the ray and consequently £ CTQ = ¢, the angle of
refraction. When the ray first enters the atmospheric strata the
tangent to the curve must coincide with the true direction of the
star. On the other hand the tangent to the curve at O indicates
the direction in which the ray enters the eye of the observer.
The angle between these two tangents shows the total change in
the direction of the ray. This is the quantity which we seek to
determine, for this is what we commonly call the refraction.
If p be the refraction then dp is the angle between two con-
secutive tangents = df —d¢ if = 2 ACT and ¢ =2 CTP. From
geometry we see that df =— tan ¢dr/r, whence

dp = —tan ¢dr/r — dé.
We can now transform this equation by (i), which may be
written
log r + log p + log sin ¢ = const.,

differentiating we have

dr/r+du/p + cot pdp =0............ eeeee(id),
whence dp=tan pdu/p ..covveniniinninnnn. (iii).
Eliminating tan ¢ by the help of (i) we find
_1 ap,sin z

p (r*u? — a?pu,’ sin? z)#
Thus we obtain the differential equation for the refraction.

*42. Integration of the differential equation for the
refraction.

To determine the refraction accurately this equation would have
to be integrated between the limits of u = u, and x =1 the value
of u at the upper layer of atmosphere. It is at this point that
the difficulty in the theory of refraction makes itself felt .

+ The general discussion of the integration of this equation is too difficult
for insertion here. Reference may be made to Professor Newcomb’s Compendium
of Spherical Astronomy and to Professor Campbell’s Practical Astronomy. An
account of Bessel’s elaborate investigation will be found in Briinnow’s Spherical
dstronomy. I am indebted to Prof. E. T. Whittaker for calling my attention to
the elegant approximate method here given.
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The expression to be integrated contains two variables r and u
which must be related. If the law of this relation were known
then we could express r in terms of 4 so that the problem would
be the integration of a certain function of x. But we have not
precise information as to the law according to which the index
of refraction varies with the elevation above the earth’s surface.
It is however most interesting to find that it is possible to obtain
an approximate solution of the problem quite sufficient for most
purposes without any knowledge of the law according to which
the density of the atmosphere diminishes with the elevation above
the earth’s surface.

We shall assume r/a =1 + 8 where s is a small quantity because
the altitude of even the highest part of the atmosphere is small
in comparison with the earth’s radius. We shall substitute this
value for r/a in the expression of dp and disregard all powers of
8 above the first. We thus have

Mo o 8D 2dp
P=f1 o (= it sin? z + 26t

w Mo 8inzdp 2su? -1
(1 + —r——.—T)
1 I"(F” - I-‘o’ sin? z)i U= @y 81N° 2
wo  MoSinzdp _]“o spupe8in zdp
14 (p’ - F-o’ sin? z)i 1 (#a_ a? sin? z)* :
The refraction is thus expressed by two integrals of which the
first and most important part expresses what the refraction would

be if 8 =0, 1.e. if the earth’s surface was a plane. Thisis of course
a well-known elementary integral and its value is

sin™ (u, 8in 2) — 2.

If we denote by = the small quantity (u, — 1) the integral may

be written
sin™' {(1 +z)sinz} —z

and this when developed in powers of # by Maclaurin’s theorem
will be convenient for calculation. If we neglect all powers of
z above the second we see that (u, —1)tan z+ § (u— 1) tan®z
is the approximate value of the first integral.

In evaluating the second integral we are to notice that s
enters as a factor into the integrand and therefore we shall make
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no appreciable error by putting u = s, =1, for quantities of the
order §(u,— 1) are so small that they may be neglected. Thus
the second integral assumes the simple form
ginz (ko
~ cos® z,{ 1 sdp.
Let m be the density of that atmospheric shell which has x as
its refractive index, then by Gladstone and Dale’s law u and m are
connected by an equation of the form

u—1=cm,
where c is a constant quantity, so
du=c.dm.
If m, be the density of the air at the surface of the earth, then
the integral becomes
smz ] ™o
cos’

Integrating by parts this becomes

sin z
- cos’zf m . da,

for the terms independent of the integral vanish at both limits;
we also make s =5 when m=0 and s=0 when m=m, The
integral in this expression has a remarkable significance, for it
is obvious that it expresses the total mass of air lying vertically
over a unit area on the earth’s surface and is therefore propor-
tional to the pressure of the atmosphere, t.e. to the height of
the barometer. Thus the actual law by which the density of the
atmosphere may vary with the altitude is not now required in the
problem.

The theoretical expression of the refraction has therefore
assumed a remarkably simple form. Tt is the difference between
two integrals whereof the first has been found and the second must
be proportional to tan z+tan*z. From this we learn that the
total refraction must be of the form A4 tan z+ Btan®z where z is
the apparent zenith distance and A4, B are certain constants.
The values of these constants are to be determined by observation
as is shown in § 46.

We can also assume various hypotheses as to the relation
between r and u and compare the results so calculated with
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those of actual observation. It is noteworthy that several
different relations between » and u each give a theory of refrac-
tion the results of which are in fair accordance with observation.

43. Cassini’s formula for atmospheric refraction.

By the hypothesis of Cassini, who assumed that the atmo-
sphere is horaogeneous, we can obtain an expression for the refrac-
tion practically identical with that just found. Of course this
hypothesis is untrue, but it should be observed that if the surface
of the earth were a plane instead of being a curved surface the
successive atmospheric layers would be parallel-sided, and there-
fore the refractive index of the lowest layer alone would determine
the total refraction (§ 39). It is therefore only the curvature of the
earth which prevents the formula derived from Cassini’s theory
“from being strictly true.

There are excellent grounds for believing that at an altitude
of twenty miles the atmospheric density would be less than a
thirtieth part of its amount at the earth’s surface. ~We may
therefore conclude that almost all the refraction is produced
within twenty miles of the earth’s surface.

Let O (Fig. 43) be the place of the observer and OH a ray
reaching O in a horizontal direc-
tion: such a ray has of course
experienced more refraction than
any other ray.

Let a be the radius of the
earth, and a +! the radius of
the shell of atmosphere which
the ray first strikes at H. If
0 be the angle between the
tangents to the shells at O and
H, and if HO be taken to be a
straight line we have
sin’f =1-a?*/(a + 1)

= 2l/a = 40/4000 = 1/100, Fra. 48.
whence 6 is about 6°.

Hence the effective layers of air of various densities through
which the rays have to pass are so nearly parallel that none
of them would have to be altered through an angle exceeding
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6° to make them strictly parallel. We might therefore antici-
pate that no wide departure from truth will arise by assuming
the atmosphere to be in horizontal layers, in which case the non-
homogeneity produces no effect on the total refraction.

The formula connecting the refraction with the zenith distance
in the case of a supposed homogeneous atmosphere ha.s been thus
obtained by Cassini.

We shall assume that the atmosphere is condensed into
the space between the two
spherical shells of radii CS
and CV respectively. The
atmosphere is considered of
uniform density and of refrac-
tive index u.

The ray LI irpinges at
on the atmospheric surface to
which CIH is normal and
reaches the observer on the
earth’s surface at S, so that
¢LIH =+ is the angle of
incidence and 2£SIC=¢ is
the angle of refraction. Fro. 44,

The ray reaches the ob-
server in the direction IS, so that «ISV =2z is the apparent
zenith distance of the object. If a denotes as before the radius
of the earth, and ! the thickness of the atmosphere SV, we have
from the triangle SCI

(1+!/a)sin ¢ =sin z,

and also sin Y= p sin ¢.

Hence sin y=pu (1 —l/a)sin g,

very nearly, since //a is a small quantity estimated at less than
1/800.

If p be the whole refraction, i.e. the angle through which the
incident ray is bent from its original direction, we have ¥ =¢ +p,
and assuming p to be expressed in seconds of arc

p8in 1” =(sin y — sin ¢) sec ¢.
Substituting for sin vy, sin ¢, cos ¢ respectively the expressions
u(l—1la)sinz, (1-1l/a)sinz, V1—(1—1l/a)sin’z,
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we obtain 1 = Yaysi
" — l/a) sin z
p=(u~1)cosecl {1=(1 = l/a) sin? 2}}
= (u — 1) cosec 1” {tan z — (tan 2 + tan®z) l/a}
=Atanz+ Btan’z ....cocoiiiiiiiiiieinin, (i),
where . A=(u-1)(1 -!/a)cosec 1",
B=—(u—1)!l/a cosec1”.

For the practical application of the formula which has thus
been derived by the different processes of this and the preceding
article, we must obtain numerical values for A and B. This has
to be done from actual observation of the refraction in at least
two particular instances (see § 46), and we shall assume it has
been thus found that at temperature 50°F. and pressure 30 in.
the refractions at the apparent zenith distances 54° and 74° are
80”06 and 200746 respectively.

The formula (i) will thus give for the determination of A and
B the two equations

80”06 = A (tan 54°) + B (tan 54°),
200746 = A (tan 74°) + B (tan 74°).

Solving these equations we obtain the following general
expression for the refraction at mean pressure 30 in. and tempera-
ture 50°F.,

p = 587294 tan z — 006682 tan’z ............ (ii).

Thus B/A is only 1/873 so that unless tan®z becomes very
great, i.e. unless the object is near the horizon, we may neglect
the second term.

If the zenith distance does not exceed 70°, the refraction may
be computed with sufficient accuracy for many purposes where no
extreme temperatures are involved by the simple expression

k tan z,

and where we are using only the first term, that is neglecting the
term containing tan® z, it is slightly more accurate to take k=582
rather than 587294. The quantity & is called the coefficient of
refraction.

Ex. 1. What ought to be the thickness of a homogeneous atmosphere

which would give an expression for refraction in accordance with obser-

vation ?
—B/A=l/a,
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whence !/a=00668/58'3=1/873,
80 that taking a=3957 miles, we find /=45 miles.

Ex. 2. Show that the refractive index of the atmosphere would be
1-000283 at pressure 30in. and temp. 50° F. according to Cassini’s theory of
refraction.

Ex. 3. Show from formula (ii) that 1’48”-3 is the refraction at the
apparent zenith distance 61°48' (p=30in., temp.=50"F.).

Ex. 4. Show that if quantities less than the fifth part of a second be dis-

regarded the second term in the expression for the refraction may be omitted
whenever the zenith distance does not exceed 55°.

Ex. 5. If we express the refraction as ¥’ tan z” where 2’ is the true¢ zenith
distance instead of in the usual form £ tanz where z is the apparent zenith
distance, show that if £ and £’ are both expressed in seconds of arc

¥ =k (1 ksectzsin17).

44. Other formulae for atmospheric refraction.

It is obvious that the density of the air constituting the
atmosphere diminishes as the distance from the earth increases.
The index of atmospheric refraction will in like manner diminish
from 1000294 its value at the earth’s surface to the value 1
at the upper limits of the refracting atmosphere.

We take a as in § 41 to be the radius of the lowest atmospheric
layer for which u = u,, and 7’ the radius of the layer when u has
declined to unity. Simpson assumed that ru™+'=7', where n is
a quantity at present unknown. The assumed equation gives
r=17 when u=1 as already arranged. As r increases p is
to diminish, and this will be the case provided (n+1) be
positive.

We have seen (§ 41) that ursin ¢ = const. Equating the ex-
pressions of this product for the upper and lower limits of the
atmosphere

poa 8in z=1"sin 72,
where 2’ is the angle of incidence at the uppermost layer and 2
at the lowest. Substituting for ' we have

@ SiD 2 = ap,"H sin £,
whence sin £ = " sin 2/,

;. _,8iDZ
or =8~ —-.
Mo
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Taking the logarithmic differeutial of ru** =7, we have

r dr
1)-4+5 =0,
(n+ )“+d,u

whence from (ii) (§ 41)

n d¢
—=cot -,
AL
and from (iii) (§ 41)
dp _1
d¢ n’

To find the refraction we have only to integrate this expression
between the values of ¢ at the atmospheric boundaries. The
angle of refraction is z at the earth’s surface, and

. _ sin 2
sin =

at the upper boundary of the atmosphere, whence we have
Simpson’s formula for the refraction

=1 z—sin™! (sin z)
pP= n 'u'on *

Ex.1. Show that if uy*=1+ w, where w is a small quantity of which powers
above the second may be neglected, we can obtain from Simpson’s formula the
following approximate expression for the refraction

» o w?
=(2_% — — tan$
P (n n)tanz 2nt‘a\n 2

Ex. 2. Assuming that observation has shown the law of refraction to

be (§ 42)
p="58"-294 tan z — 0706682 tan3 z,

show that Simpson’s formula would give for p, the index of refraction of the
air at the earth’s surface the value 100028, and also that n=8 and
po=r[r.
Ex. 3. Show that if Simpson’s formula were correct the height of the
atmosphere so far as it is effective for refraction would be about ten miles.

A convenient furmula due to Bradley may be deduced from
the expression just obtained:
p= 1(z— sin™! s._in_z)
n Mo
which may be written

8in (2 — np) =sin z/u,",
sin z —sin (z—np) _ p"—1
sin z+8in (z —np) "+ 1’

whence

B. A. 9
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or, as the refraction is small,
n_
p= 7% E*_:F % tan (z — 1}113).

If we introduce the values of u, and n used in Ex. 2, p. 129, we
should find as the approximate formula

p=59"tan (z — 4p).

We can correct this formula so as to make it exact for two
known refractions at standard temperature and pressure, if for
example we take

2=>50° p=69"36 and z="75°, p=214"10
(see Greenwich Tables), we get the final form
p = 587361 tan (z — 4:09p).
By this formula all refractions up to the zenith distance of 80° can
be determined approximately.

Bradley’s formulae is suited for observations near the horizon,
because tan(z— 409p) does not become indefinitely large as z
approaches 90°.

Ex. 1. Show that the formula for refraction given by Bradley and
Cassini, viz.

p=58"361 tan (z — 4-09p)
and p=>58""294 tan z — 0""06682 tans z,
are practically equivalent until the zenith distance becomes very large.

Ex. 2. On the supposition that the (n+1)th power of the index of

refraction of the atmosphere varies inversely as the distance from the

centre of the earth, prove Bradley’s approximate formula for astronomical
refraction p=atan (2 —-4np). Oxford Senior Scholarship, 1903.

Ex. 3. If in the atmosphere the index of refraction vary inversely as the
square of the distance from the earth’s centre, being p, at the earth’s surface
and unity at the limit of the atmosphere, show that the corresponding
correction for refraction is given by

sin (24+3p)=a/posin 2. Mathematical Tripos, 1906.

45. Effect of atmospheric pressure and temperature on
refraction.

In the formula (ii) for the refraction already obtained (§ 43) we
assumed that the barometer stood at 30 inches and the external
air at the temperature 50°F. We have now to find the formula
to be used when pressure and temperature have any other known
values.
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We assume that the refraction is proportional to the density of
the air at the earth’s surface, so that if p be the refraction for
pressure p and temperature ¢ and p, the refraction at the
standard pressure 30 inches and temperature 50°, we obtain from
the properties of gases

p __p 460+50 17p

po 30 460+t 460+t

Introducing the value of p, already found (§ 42) we obtain
the approximate formula for atmospheric refraction at pressure p
and temperature ¢ for the apparent zenith distance z.

p= 4-61(’)7 ?;-_t (587294 tan z — 0"-06682 tan? z).

In the appendix to the Greenwich Observations for 1898, Mr
P. H. Cowell has arranged tables of refraction which are used in
Greenwich observatory. These tables contain the mean refractions
for the pressure 30 inches and temperature 50° F. for every minute
of zenith distance from 0° to 88° 40. The corrections which
must be applied for changes in temperature and pressure are given
in additional tables.

46. On the determination of atmospheric refraction from
observation. '

We describe three of the methods by which the coefficients
A and B in the expression for the refraction, 4 tanz+ Btan’z
can be determined by observation of meridian zenith distances.
The first and second methods can be carried out at a single
observatory provided its latitude is neither very great nor very
small. The third method requires the cooperation of two obser-
vatories, one in the northern and one in the southern hemispheret.

First Method. A star is selected such that it will be above
the horizon both at upper and at lower culmination. If ¢, 2 be
the apparent zenith distances at lower and upper culmination
respectively and positive to the north of the zenith, then
the true zenith distances will be z+ A tan z+ B tan*z and
Z 4+ A tanz + Btan’Z. The mean of these two zenith distances

t+ Of the remaining methods of observing refractions we may mention that

of Loewy described by Sir David Gill in the Monthly Notices of the Royal Astro-
nomical Society, Vol. xLvi. p. 325.

9.

w
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is, of course, the distance from the zenith to the north pole,
t.e. the colatitude. Hence we obtain the equation

3 {z+2 + A (tan z + tan 2') + B (tan® z + tan® 2’)} = 90° — ¢.

Substituting the observed values of z and 2z’ we obtain a linear
equation between the three quantities 4, B and ¢.

Other stars are also observed in the same way and each star
gives an equation in the same three unknowns. Three of such
equations will suffice to determine 4, B, ¢. The result will, how-
ever, be much more accurate if we observe many stars and then
treat the resulting equations by the method of least squares to
be subsequently described.

As a simple illustration we shall take a case in which the
latitude is known and in which, as neither of the zenith distances
is excessive, we may assume that the refraction is expressed by
the single termn £ tan z.

At Dunsink in N. latitude 53° 25" 13" the star a Cephei is ob-
served to have the apparent zenith distance 8°48 37" at upper
culmination. At lower culmination 12 hours later its apparent
zenith distance is 64° 22' 47",

The true zenith distances will be

8° 48’ 37" + k tan ( 8° 48'37"),
64° 22’ 47" + k tan (64° 22’ 47").
The sum of these must be double the colatitude (36°36’47"),
whence
73° 11’ 24" + k (0155 + 2:085) = 73° 13’ 347,
from which k=58"0.

Second Method. The constants of refraction can also be
determined by observation of the solstitial zenith distances of
the sun.

Let z,, 2, be the apparent meridional zenith distances of the
sun at the solstices. Let p, and p, be the corresponding refractions.
Then the true zenith distances are 2, + p, and z; + p,. Assuming
that the sun’s latitude may be neglected, or in other words, that
the sun’s centre is actually in the ecliptic as is always very
nearly true, we obtain for the mean of these zenith distances the
arc from the zenith to the equator, .. the latitude. Hence

we have
2¢ =2, + 2+ p1+ pa-
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If the latitude be known and if we assume
pr=ktan z, and p,=k tan z,
we obtain an equation for k.

Third Method. In this we require observations of the zenith
distances SZ, and SZ, of the same star S, both from a northern
observatory at N. latitude ¢,, and a souphern observatory at
S. latitude ¢, (Fig. 45).

If P and P’ be the north and south celestial poles we have

SZ,=8P -Z,P =¢,-39,
S8Z,=8SP — Z,P =¢,+ 8.

If z, and 2, be the observed zenith distances, and if we assume
the refractions to be k tan 2, and
k tan z, respectively, then

SZ, =2+ k tan z,,
SZ,=2,+ k tan z,,
whence
z,+ ktan 2z, + 2z, + k tan 2,
= 4’1 + 4’2;

from which % can be found.

We shall take as an example
B Andromede, which was ob-
served to culminate at Green-
wich at an apparent south
zenith distance 16° 20’ 3”, the latitude of Greenwich being
51° 28’ 38" N. The culmination of the star was also observed
at the Cape of Good Hope Observatory in 33° 56" 4” south lati-
tude, and the apparent north zenith distance was 69° 1’ 50",

We thus have the equation

16° 20" 3” + k tan (16° 20") + 69° 1’ 50” + k tan (69° 2')
= 85° 24/ 427,

whence k=58"3.

Fie. 45.

47. Effect of refraction on hour angle and declination.

We may make use of the differential formulae of § 35 to
determine the effect of refraction on the hour angle and declina-
tion of a star. The effect of refraction is to throw the star upwards
towards the zenith. If the observed zenith distance be z the true
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zenith distance is z+ Az where Az=/ktanz. We assume that
the latitude is known so that A¢ =0, and as the azimuth does not
alter by refraction Aa =0.

To find the effect on declination we write the formula con-
necting Aa, A, Az, A3, § 35 (1),

Ad + cos nAz — cos hA¢ — sin h cos pAa = 0,

which with the substitution Aa=0, A¢ =0, Az="Fktan 2 gives
A8 =—ktanzcos, te if & is the observed declination then
8 —ktanzcos is the true declination.

To find the effect on hour angle we have (§ 35 (2))

Az + cos alA¢ + cos A + cos ¢ sin aAh = 0,
from which by the same substitutions
Ah =k sin 7 tan £ sec é.
For the effect on parallactic angle we use (§ 35 (6))
An — cos zAa + sin 8Ah —sin a 8in 2A¢ =0,
and find An = —ksiny tan & tan z.

The results just obtained may be otherwise proved as follows.
In Fig. 46 N is the North Pole, Z the zenith, P the true place
of the star, and P’ the apparent place of the star as raised

Fro. 46.

towards the zenith by refraction, and PP’ =Fktan ZP'=F tan ¢.
P'Q is perpendicular to PN and provided the £ PNP’ is small, as
will be the case unless P is near the pole, the change in polar
distance is

PQ=PP cosn=ktanzcos.
The observed declination is 90° — NQ, but the real declination is
90°— NP. Hence the observed declination is too large, and
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consequently the correction Ad to be applied to the observed
declination to obtain the true declination is given by
Ad =—ktan z cos .
We have also

Ah = P’NQ =k tan 2 sin 5 cosec P’N = k tan z sin 7 sec 8.
As sin 9 cos § is unaltered by refraction we must have
cos 5 cos A% =sin 7 sin 8AS, '
whence by substituting for A8 we find
A7n = — ksin g tan § tan 2.

48. Effect of refraction on the apparent distance between
two neighbouring celestial points.

We shall first show that if the refraction be taken as k tan 2,
then the correction to be added to the apparent distance D in
seconds of arc between two neighbouring stars is in seconds of arc

kD (1 + cos? @ tan® z) sin 1",
where 2 is the zenith distance of the principal star and @ is the
angle between the arc joining the two stars and the arc from the
principal star to the zenith.

Let Z be the zenith, ZA=2, ZB=y, AB=D, £ AZB=a,
ZAB=20. The effect of re-
fraction is to move the arc
AB up to A'B where

AA'=ktanzx
and BB =ktany. P
Then Fia. 47.

cos D =cos x cos y + sin « sin y cos a.

Differentiating with a as constant, and making
Az =—Fktanz
we find Ay =—ktany,
—sinD.AD =ksinxzcosy tana + k cosxsin y tan y
— k cos a cos z8in y tan z — k cos @ sin # cos y tan y
= ksin? (x — y) sec x sec y + 4k sin* 4 a sin zsin y.

As both these terms are small we may put 2=y =2z, the zenith
distance of either star, in the expressions seczsecy and

sinzsiny. Also since a.D are small we may put
sin D=D and sin®(z - y)= D?cos* @
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also 4 8in® }a = a*= D?sin® @ cosec® 2
and we thus obtain for the decrease in D due to refraction
kD (1 + cos® @ tan® z)

or if k, D, AD are expressed in seconds of arc
kD (1 + cos? 6 tan? z) sin 1”

gives the seconds by which D has been lessened by refraction ; this
is consequently the correction to the measured distance between
two neighbouring stars to clear from the effect of refraction.

We have next to show that 6, the angle which the line joining
the two stars makes with the vertical, is increased by refraction
to the extent ksin @ cos § tan?z.

Taking the logarithmic differential of the equation

Dsin @ =sinasiny
we have AD/D + cot HA8 = cot yAy,
which becomes by substitution
—k (1 + cos*@ tan? 2) + cot 0A0 = —k,
whence A@ =Fksin @ cos 0 tan? z,

and this is the quantity which must be subtracted from the
apparent angle B'A’Z to get the true angle BAZ.
The deformation of the circular disc of the sun or moon
by refraction is obtained as follows:
Let S (Fig. 48) be the sun’s centre, a its radius, P a point on
its limb, and Z the zenith, and let ZS = 2.
Let & be the coefficient of refraction which
displaces P to P, and let PQ and P'Q be
perpendiculars on ZS. From what we have
Jjust seen PQ is displaced by refraction to P'Q'.
If we take S as origin, SZ as axis of z, and
z and y the coordinates of P, then
y=PQ =(1-k)PQ=a(1-k)siné.
Also z=8Q =acosf+ QQ
=acos @+ ktan(z— a cos 6)
=a cos 0 + k (tan z — a cos 6 sec?z),

and by eliminating @ we have for the equation
of the refracted figure of the sun

(z—ktan z) ¥ -1
(a—aksectz)  a*(l—k)p Fro. 48.
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The major axis is @ (1 —k) and the minor a (1 — k sec? 2), and
their ratio is 1 — ktan*z. Of course k is here in radians.

We may note that any short horizontal arc is diminished by
refraction in the ratio 1 —%:1, and any small vertical arc at a
considerable zenith distance is diminished in the ratio )

1—ksectz:1.

Ex. 1. If D be the difference of declination between two adjacent stars,
and if z be the zenith distance and » the parallactic angle of one of these stars,
then the effect of refraction is to diminish the difference of declination by

kD (1 +tan?zcos?n)sin1”,
it being assumed that the refraction is proportional to the tangent of the
zenith distance and that £ is its coefficient.
D is then the projection of the arc joining the two stars on the hour circle
through one of them, and the hour circle makes the angle n with the zenith
distance.

Ex. 2. A telescope at an observatory in N. lat. 563° 23’ 13" is directed to
a point on the parallel of 38° 9’ N. decl., and is fixed at an hour angle of 7b™,
Two stars trail successively through the field, and their apparent difference
of declination is 68”02 ; show that to correct for the effect of refraction this
difference should be increased by 0709.

(One of the stars is 61 Cygni and the other is one of the comparison stars
used at Dunsink in determining the parallax of 61 Cygni by the method of
differences of declination.)

Ex.3. Intheir unrefracted positions a number of stars lie on a small curve
of which the polar equation is p=f(6), where p is the great circle distance
from a point O taken as origin to a point P on the curve, and where 6 is the
angle between O and OZ where Z is the observer’s zenith. Show that on
taking account of refraction the polar equation of the curve will be found
by the elimination of p and 8 from the equations

p =f(6)

p'=p—kp (1 +tan2z cos?d),

0’ =0+k sin 0 cos 6 tan?z,
in which p’ is the radius vector joining the points O’ and F, which are the
refracted positions of O and £’ respectively, and 8" is the angle which O’/
makes with 0'Z.

Ex. 4. It is proposed to determine the angular diameter of the sun. The
arithmetic mean of two measured diameters at right angles to one another
is D ; the coefficient of refraction is &, here expressed in radians ; the zenith
distance of the sun’s centre is z Show that the true diameter is
D (1+k+4k tan?z), whatever may have been the position angles in which
the two diameters at right angles to one another were measured. (Based on
a result in the introduction to the Greenwich Observations.)

The distance from the centre of the ellipse to the point 4 is
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a(l—k—kcos?ftan?z). Hence the arithmetic mean of the radii measured
at right angles, te. at 8 and 0+90°, is a (1 -k-}ktan2z)=4D, whence
2a=D (1+k+4ktan?z).

*49. Effect of refraction on the measurement of the
position angle of a double star. ‘

Let A, B be respectively the principal star and the secondary star
of the pair which form the double star and let P be the north pole.

Imagine a circle with centre 4 on the celestial sphere and
graduated so that the observer is the nole and that 4P (<180°)
cuts the circle at 0°. The point in which 4B meets the graduated
circle is said to be the position angle of the star B with respect to A.
The mode in which the position angle is measured may be further
illustrated as follows. Suppose the double star is on or near the
meridian and at its upper culmination, and the secondary star is
due east of the principal star. Then the position angle is about 90°.
If, however, the secondary star had been due west when the
principal star was on the meridian, its position angle would be
about 270° for in each case the direction of measurement from
the arc drawn to the pole is the same. Astronomers generally
know this as the N.F.s.p. direction, for the measurement proceeds
from the north point towards the part of the sky which is following
from the diurnal movement round by the south and then back to
the north by the preceding part of the sky.

If P be the pole, Z the zenith, and A the principal star of
the double 4B (Fig. 49), then the position
angle as we have just defined itis £ PAB.
The refraction changes the position angle
into PA'B. Thus the refraction changes
the position angle in two ways, first by
altering the parallactic angle PAZ =1
and secondly by altering BAZ. Both
these angles are altered by refraction, and
the correction to apply to an observed
position angle in the case represented in
the figure must be negative. We denote
the true position angle by p.

We have £BAZ=p-17, and hence Fra. 49.

(§ 48)

2B A'Z=p—n+ksin(p—n)cos(p—n)tan?z,
2 PA'Z =5+ ktan ztan &sin 9.
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If therefore p, be the position angle as affected by refraction,
pr=p+ ktan ztan 8sin n + ksin (p — n) cos (p — ) tan? z.

If p, and p’ be the corresponding quantities with respect to
another star with reference to the same primary,

p’ = p’ + ktaun 2z tan 8 sin 5 + & sin (p’ — ) cos (p’ — 9) tan? z.
Subtracting we easily find

P —p=p’ — p,— ktan*zsin (p’' — p) cos (20— p—p).
The true position angle p’ of the direction in which A moves by
the diurnal motion is 270°. If therefore p, be the observed
position angle for the movement of A when carried by the diurnal
motion,
p=p,+270° — p,’ + k tan® z cos p sin (29 — p).

Summary. From the last article and the present we obtain
the following result for the correction of the observed distance and
position angle of a double star for refraction t.

Let D be the distance of the two stars expressed in seconds of
arc, z the zenith distance, p the position angle, n the parallactic
angle, and k the coefficient of refraction in seconds of arc, then the

correction to be added to the apparent distance to obtain the
true distance is

kD (1 +tan?z cos? (p — 1)} sin 1",

and the correction to be added to the measured position angle
to obtain the true position angle is

k tan? z cos p sin (29 — p).

Ex. If the declination of a Lyre is 38° 40’ and the position angle of
an adjacent star is 150° 58"0, find the correction for refraction to be applied
to the position angle when the hour angle is 7 hours west, the latitude
is 53° 23’ 13", and the coefficient of refraction is 58"2.

It is first necessary to compute the zenith distance 67° 36’ and the
parallactic angle 38° 32', whence the formula gives 4“6 as the correction
to be added to the observed position angle to clear it from the effect of
refraction.

t For tables to facilitate the application of these corrections see Monthly
Notices of the Royal Astronomical Society, Vol. xr1. p. 445.
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MISCELLANEOUS QUESTIONS ON REFRACTION.

Ex. 1. Show that refraction reduces the sine of the zenith distance of an
object in the ratio of (1 - £):1 where ¥ is the coefficient of refraction.

Ex. 2. The north declination of a Aquile is 8° 37’ 39”. Show that its
apparent zenith distance at culmination at Greenwich (lat. 51° 28’ 38” N.) is
42° 50’ 5" and at Cape of Good Hope (lat. 33° 56’ 4” S.) is 42° 32’ 50"

Ex. 3. If the horizontal refraction be 35, show that the formula for the
hour angle % of the sun’s centre at rising or setting when its declination is 8 is

cos? 4 =sec ¢ sec 8 cos (45°+17"5 — $ ¢ — 48) sin (45° ~ 175 — 4 — 4 8).

Ex. 4. Assuming that the moon is depressed at rising by parallax
through 59’ and elevated by refraction through 35, show that if 4 be the hour
angle and 8 the declination we have at Greenwich

cos? } h=[2056] sec 8 cos (19° 37 — 48) sin (19° 277 — 33).

Ex. 5. At sunrise at Greenwich (lat. 51° 28’ 38"'1) on Feb. 8th, 1894, the
sun’s declination is 14° 39’ S, Find its apparent hour angle assuming that
the horizontal refraction is 35’

Ex. 6. The apparent path of a star not far from the pole, projected on
the plane of the horizon, is an ellipse of excentricity cos ¢, where ¢ is the
latitude. Show that if the zenith distance of the star is not very great, the
same will be the case for the apparent path as altered by refraction.

[Coll. Exam.]

Ex. 7. The north declination of a Cygni being 44° 57’ 17" (1909), show
that its apparent zenith distances at upper and lower culmination at the
latitude 53° 23’ 13” are respectively 8°25'49” and 81°33'18", assuming
that the refraction may be taken as

58”:294 tan z — 0706682 tand z,
where z=the apparent zenith distance.

Ex. 8. Prove that if at a certain instant the declination of a star is
‘unaffected by refraction the star culminates between the pole and the zenith,
and the azimuth of the star is a maximum at the instant considered.
[Math. Trip. L]

A great circle drawn from the zenith to touch the small circle described
by the star round the pole will give the point in which the zenith distance of
the star is at right angles to its polar distance. It is obvious that the star
can never have an azimuth greater than when situated at the point of
contact.
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Ex. 9. Prove that, within the limits of zenith distance in which the
refraction may be taken as £ tan (zen. dist.) the apparent place of a star
describes each sidereal day, a conic section, which is an ellipse or hyperbola
according as sin? ¢ Z cos?3, where 8 is the declination of the star and ¢ the
latitude of the place.

The great circle from the star’s true place to the pole being the axis of «,
we have as the plane coordinates of the refracted place

x=ktanzcosn, y=#ktan:zsiny,

where z and nare respectively the zenith distance and the parallactic angle.
From the spherical triangle
sinzsinn=cos ¢p8in ¢, sinzcosn=cosdsin ¢ —sin 3cos¢ cos?,
cos z==8in 8 8in ¢ +cos 3 cos ¢ cos ¢,

kcosbsmd; ksin 3 cospcost kcos¢sint
sindsin ¢ +cosdcos ¢ cost ’ y= 8in 3 8in ¢ +cos & cos ¢ cos ¢’

from which we have

= ¥
sin ¢=tan ¢ zcos 3+4sin &’

kcosd—xsind
cos¢=tan ¢ zcond+ksin 3’
whence eliminating ¢

y*+(kcos 8- zsin 3)=cot? p (z cos 3+ ksin 3)?,
which may be written
22 (8in? ¢ — cos? 8) + y® sin? ¢ — xk sin 28 + &2 (sin? ¢ — sin? 8) =0,

and this is an ellipse or a hyperbola according as sin?¢—cos?8 is positive
or negative.

Ex. 10. Assuming that refraction is small and proportional to the
tangent of the zenith distance, show that if the same star is observed simul-
taneously from different stations on the same meridian its apparent places lie
on an arc of a great circle.

[Coll. Exam.]

This follows at once from the following geometrical theorem which is
easily proved from the rules for quadrantal triangles, p. 5. If A0 be a
quadrant and a variable great circle through O cut two fixed great circles
through 4 in P, @ respectively, then tan OP/tan OQ is constant.

Ex. 11. If 3 be the declination of a star, show that, if the horizontal
refraction be 1, the time of a star’s rising at a place in latitude ¢ is changed
approximately by a number of seconds equal to

r
15Vcos? 5—sint ¢
With the usual notation

cos z=sin ¢ sin 3+ cos ¢ cos 8 cos ¢.
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Differentiating Az=cos ¢ cos 3sin t At,
but as the star is on the horizon sinz=1 and
Q== cos z=8in ¢ 8in 8+ cos ¢ cos 8 cos ¢,
cosdwos3sint=(cos’¢oos’8—cos’¢oos’3cos’t)§
=(cos? ¢ cos? 3 —sin? ¢ 8in?3) %
=(cos? 8 —sin? ¢p) ] ;
whence Az=(cos?3 - sin?¢p) $A:

If Az=be expressed in seconds of arc and A¢ be n seconds of time we put
Az=1", At=15n", whence we find for » the required result.

Ex. 12. Assuming that the alteration in the zenith distance z of a star
owing to refraction is £ tan z, where £ is small, show that in latitude ¢ the
change produced in the hour angle of a circumpolar star is greatest when the
angle PSN is a right angle, where P is the pole, § the stur, and & the north
point of the horizon ; and that it8 maximum value is

where z; and z; are the greatest and least zenith distances of the star.
[Coll. Exam. ]

The change in the hour angle 2 by refraction is ksec 3 cos ¢ sin hsec 2,
and if sin 4 sec z is & maximum the point S found by producing SP through
P till S8 =90° is 80° from N.

Ex. 13. Assuming that the refraction of any object S is equal to
ktan Z8, prove that the resolved parts of the refraction in R.A. and N.P.D.
expressed respectively in seconds of time and seconds of arc are very nearly

k tan ZL

15 8in 4 cos (4~ PL) and £tan (A— PL),

where A is the north polar distance of the object, P the pole, and ZL an arc
of a great circle drawn from Z perpendicular to PS.
[Math. Trip. IL.]

*Ex. 14. Let ¢ be the latitude of the observer, 8 the declination of a star
and 4 its west hour angle, and let the coefficient of refraction be 58”4 (its
value for the photographic rays). Show that refraction diminishes the
apparent rate of change of hour angle by .

24¢°5 sin m cos m (tan 3+ cot ¢ sec &) cosec? (3 + m) per day,

where tan m=cot ¢ cos A.
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Show also that the rate of change of refraction in declination is

+156":3 cot ¢ 8in A cosec? (8 +m) cos? m per hour.
[Mr A. R. Hinks, Monthly Notices R.A.S., vol. Lx. p. 544.]
Refraction raises the star towards the zenith Z from its true place §
to an apparent place S’. Let the true hour angle be %2 and the apparent
hour angle 4. Draw the arc ZL=90"-n perpendicular to PS (Fig. 50)
(hA—A") cos 8 =k tan zsin ZSL
=k cos nsecz
k cos ¢ sin &
sm¢sm 3+ cos«pcosacosh
Differentiating with respect to ¢
dh _dk
dt ~

)cosb
cos / (8in ¢ 8in 3+ cos ¢ cus 8 cos A)+ cos ¢ cos 8sink dh
(8in ¢ sin 8+ cos ¢ cos 8 cos A )? dt
cos ¢ cos 3+sin ¢ sin 8cos k di
cos? z dt
8in ¢ cos 3 cos 4 (tan 3+ cot ¢ sec &) dA
sin? (8+m) sinf » dt
sm¢cos¢cos&ooslzoos’m(tan 8 4 cot ¢ sec k) dh
sin? (34 m) sin? ¢ dt
tan 3+cot ¢ sech dh
sin¥(84m) dt’

=kcos ¢

=kcos ¢

=kcos ¢

=k cos 88inm cosm

Fre. 50.
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The number of seconds in a sidereal day is 86400. Let 86400+ be the
number of seconds which would be required for a complete revolution if
the apparent hour angle of the star continued to increase for the whole
day at the same rate as at the moment under consideration. Hence we

have
dh 2 dr’ 2

dt 86400’ dt ~ 56100+’

and thus
(2—" - = 2"—) =k 8in m cosm tan§+cp§¢sech 2 .
86400 8640047 sin?(8+m) 86400
As r is very small we have by making £ =58'4/206265,
r=24%5 sin m cos m (tan 8 + cot ¢ sec A) cosec? (3 +m),

in which tan m=cot ¢ cos k.

The case of an equatorial star is instructive,
8=0 and r=24*5 cot m cot ¢ sec &
=24%"5 sec? A.
Thus even in the neighbourhood of the meridian on either side an equa-
torial star is so affected by refraction that it will only keep time with a

sidereal clock when that clock is losing at the rate of 24°'5 secs. daily.
1f  be the refraction in declination expressed in seconds then

x=Fk tanzcos ZSL
=k tan (90° — 8 — m)=*% cot (8 +m).
Hence differentiating and regarding Az, Am and A% as all expressed in

seconds of arc
Azx= — k cosec?(8+m) Am sin 1",

but tan m = cot ¢ cos A,
sec? m Am= —cot ¢ sin 4 Ak,
whence sec?m Ar=Fk cosec? (8+m) cot p sink Ak sin1”.

If & is the hourly rate expressed in seconds of arc at which the declina-
tion is changing then Az/ah=AN/15x60x60. With these substitutions we
find on introducing the values of £ and sin 1” the desired result namely

N=15"3 cot ¢ sin A cosec? (8 + m) cos® m.
These results are of practical importance in the art of celestial photo-
graphy.
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50. The laws of Kepler and Newton.

The laws according to which the planets move round the
sun and which always bear the name of their discoverer Kepler,
are as follows.

(1) The orbit of a planet round the sun is an ellipse; in
one focus of which the centre of the sun 1is situated.

Let S in Fig. 51 be the
centre of the sun. Then the ; —=
orbit ABPQ of any planet i
is an ellipse of which § is
a focus. The velocity of the \s
planet is not constant and =
the law according to which
the speed varies is given by @
Kepler’s second law.

(2) The radius wvector, "EFE
drawn from the centre of the T
sun to the planet, sweeps over equal areas in equal times.

For example take any two points AB on the ellipse and also
two other points PQ, then if the area ASB=area PSQ the
time taken in describing AB will equal the time taken in
describing PQ. From this it follows that, with the points as
represented in the figure, the velocity of the planet is greater while
describing PQ than while describing 4 B.

B A, 10
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In the first two laws of Kepler we are concerned with the
motion of a single planet only. In Kepler's third law we obtain
a remarkable relation between the movements of two different
planets. We define the mean distance of a planet to be the
semi-axis major of its orbit, and the periodic time to be the period
in which a planet completes an entire circuit of its orbit. Kepler's
third law is then stated as follows.

(8) The squares of the periodic times of two planets have the
same ratio as the cubes of their mean distances from the sun.

Ezample:—The periodic times of the earth and Venus are
3653 and 2247 days respectively, and the ratio of the squares
of these periodic times is (365'3)}/(224'7)*=2643. The corre-
sponding mean distances are 1 and ‘7233 and as 1/("7233)*= 2643
we have a verification of Kepler’s third law for these two planets.

The three laws of Kepler given above were deduced by him
entirely from observations of the movements of the planets and
without any reference to the nature of the forces which control
these movements. For more than three quarters of a century
they remained isolated facts without explanation until Newton
showed them to be consequences of the law of universal gravitation
which appears to govern the movement of every particle of
matter in the universe. '

The three axioms or laws of motion, on which the science
of dynamics is built, and which are generally known as Newton’s
Laws, may be stated as follows :

Law 1. Every body continues in its state of rest, or of uniform
motion in a stratght line, except in so far as it may be compelled to
change that state by impressed forces.

Law II. Change of motion is proportional to the impressed
Jorce and takes place in the direction of the straight line in
which the force acts.’

Law III. To every action there is always an equal and
contrary reaction; or the mutual actions of any two bodies are
always equal and oppositely directed.

By change of motion Newton denoted what is often called the
rate of change of momentum, or the product of the mass of the

+ The reader who desires a fuller development of Newton's Laws and their
applications may refer to Routh’s Dynamics of a particle, 1898, where the laws as
here expressed are given on p. 18.
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moving body by the rate of change of its velocity, which may be
otherwise expressed as the product of the mass by the acceleration.
Law IT enables us to say that,in the case of a planet for example,
the change of motion is proportional to the impressed force and
takes place in the direction of the straight line in which the force
acts.

Kepler’s first and second laws enabled Newton to prove that
each planet moves under the control of a force always directed
towards the sun and varying inversely as the square of the
distance from the sun. Kepler's third law enabled Newton to
compare the acceleration of one planet with that of another, and
from this he was led to the doctrine of universal gravitation with
which his name is identified and which states that every particle
of matter attracts every other particle with a force varying as the
product of their masses and inversely as the square of the distance
between them.

We shall first prove that if the radius vector drawn to a
moving particle from a fixed point sweeps over equal areas in
equal times then the force on the particle must always be directed
towards the fixed point.

If r is the radius vector, SP, (Fig. 52) and 6 the angle it

Fic. 52.

makes with any fixed direction, SO, then the velocities along and
at right angles to SP are respectively,
ar ond ™
dt dt -’
After the short time At the velocity along and at right angles
to the consecutive radius vector will be
dr d*r  rdf d( d
rralt TP m L (v D),
10—2
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resolving these velocities along the original radius vector with
which the consecutive radius vector makes the angle At.d6/dt,

we obtain p
dr 1y rdf dé

whence if — F be the acceleration towards-S we have

dr dé\:
-F-Z - (q)
In like manner resolving these velocities perpendicular to the
original radius vector we find for the resolved part in this
direction

dé d/ dé dr dé
’m“‘z(’a)“‘mm'

whence for the acceleration perpendicular to the original radius
vector we have the expression
1d/,dé
rai (")
Twice the area swept over by the radius vector in the time
dt is r°d, and if these two quantities are in a constant ratio, as

Kepler's second law informs us is the case in the motion of a
planet, we have

do

a constant, and therefore
1d/ . dé
Fa (@)=

Hence there is no acceleration, no change of motion,and there-
fore, by Newton’s 2nd law, no force at right angles to the radius
vector. The whole force is, therefore, directed towards S. Thus
Kepler's second law proves that the planets move under the
action of a force directed continually towards the centre of the
sun.

The next step is to show that if a body moves in a conic section
under a force directed to one of the foci and if the body moves in
such a way that the radius vector drawn to it from that focus
describes areas proportional to the time, then the foree must vary
inversely as the square of the focal radius vector.

The equation of a conic referred to the focus is

r=p/(1+ecosb),
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where p is the semi-latus rectum, e the eccentricity, and @ the
angle which the radius vector (r) makes with the line joining the’
focus to the nearer apse (§ 52).

We have thus the following three equations

r=p/(14+€c0860)...c..cccccen..... @),

dir do\e .

d—t’_r<¢7t') =—F i (i1)

and r' ‘%= B, (iii),

from which to determine F, t.e. the acceleration towards the sun.
Differentiating (i) we find

dr _ pesind df esinf ,d6 _he .
dt  (I1+ecosdydt p r’t—i—t—FsmG
dir _he df _ h*ecos 6

=—co8f— =

e~ p dt pr
Also r (%g)' = g;

and therefore

dlr_r d_ﬁ)’_h’ ecos @ 1}
ae (dt Tl p r

h* (ecos@ 1+ecosf) A
L A R
Thus we see that the acceleration, and therefore the force, at
every point of the orbit varies inversely as the square of the
distance from the focus. This is of course true whatever be the
value of e and consequently we see that this result holds whether
the orbit be an ellipse, an hyperbola or a parabola.
If we denote the acceleration by u/r%, where u is the accelera-
tion at unit distance due to the sun’s attraction, we have from
the formulae just given

and

We are now in a position to prove from Kepler's third law
that the constant, u, is the same for all the planets. For & is
twice the area described in the unit of time, and therefore by
Kepler's second law if the periodic time be P we must have

h=2wab/P.
But p =b*/a. Hence by means of (iv) we find
4ma®/ P2 = p.



150 KEPLER'S AND NEWTON’S LAWS [cH. viI

But according to Kepler’s third law a*/P* is the same for all the
planets and hence we find that x is a constant throughout the
solar system.

If a perpendicular be drawn from the centre of a planet to the
ecliptic, then the angle through which a line from the sun’s
centre through 7 would have to be turned in the positive direction
in the plane of the ecliptic to meet this perpendicular is termed the
heliocentric longitude of the planet. The geocentric longitude of the
sun increased by 180° is the heliocentric longitude of the earth.

By the synodic period of two planets is meant the average
interval between two successive occasions on which the planets
are in conjunction, .. have the same heliocentric longitude. If
they move uniformly in circular orbits in the same plane and in
periods P, p respectively, and if L, ! be the heliocentric longi-
tudes of the planets at the time ¢, then

L=2mt/P+L
l=2ntlp+1,
where L', U are the longitudes at the time ¢ = 0.

Let z be the synodic period and ¢, the time when L — =0, then
to + « is the time when the planets have next the same longitude,
and (if p>P) L —1is then 2r. We thus have the equations

0 = 2mty/P — 2mto/p+ L'V
2w =2n (t, + z)|P - 2w (t, + z)/p+ L'- U,
whence by subtracting

z = Pp/(p - P).

If one of the planets is the earth, the year the unit of time,
the earth’s mean distance the unit of length, and a the mean dis-
tance of the other planet from the sun, then from Kepler's third
law, we have for an outer planet

z= aﬁ/(a3 -1),
and for an inner planet
a:=a’;/(1—a'3).

Ex. 1. Assuming the mean distance of the earth from the sun to be
92-9 (the unit being 1,000,000 miles) and the eccentricity of the carth’s orbit
to be ‘0168, find the side of a square equal to the area swept over daily by the
radius vector. )

N.B. The year may always be taken to be 365256 mean solar days unless
otherwise stated.
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Ex. 2. If o, v, be the velocities of a planet at perihelion and aphelion
respectively and if e be the eccentricity of its orbit, show that

(1-e)n,=(1+¢€)v,.

Ex. 3. Show that the velocity of a planet at any moment may be resolved
into a component A/p perpendicular to the radius vector and a component
eh/p perpendicular to the major axis of the orbit.

Ex. 4. Show from Kepler's 2nd and 3rd laws that two planets in the
system describe areas in a given time which are in the ratio of the square
roots of their latera recta.

Ex. 5. The mean distance of Jupiter from the sun is 5203 when the
unit of length is the mean distance of the earth from the sun. The periodic
time of Jupiter is 11'862 years and of Mercury 0-2408 years: show that the
mean distance of Mercury from the sun is 0'387.

Ex. 8. The eccentricity of the orbit of Mars is 00933 and its mean
distance from the sun is 1'5237 times that of the earth from the sun.
Assuming that the earth’s distance from the sun is 92,900,000 miles and
that the eccentricity of its orbit may be neglected, determine the greatest
and least possible distances of Mars from the earth.

Ex. 7. If the periodic time of a planet be P and the length of its
semi-axis major be a, show that a small change Aa in the semi-axis major
“will produce a change 3PAa/2a in the periodic time.

Ex. 8. Show that in the motion of a planet in an elliptical orbit about
the sun according to the law of nature the angular velocity round the
unoccupied focus varies as the square of the sine of the angle between
the radius vector and the tangent.

Let ds be an elementary arc of the ellipse at a distance r from the sun
and ' from the unoccupied focus. Let p, p’ be the perpendiculars from the
foci on the tangent at ds. Let 6 be the angle which either focal radius makes
with the tangent.

From Kepler's second law it follows immediately that p is inversely
proportional to the linear velocity of the planet, and hence the time of
describing ds« pds. The angle described about the unoccupied focus is
ds sin /7 and hence the angular velocity round the unoccupied focus

o« desin §/r'pds=sin 6/r'p=sin? §/p'p.
But from the property of the ellipse p'p is const. and thus the theorem
is proved.

Ex. 9. If in an elliptical orbit of a planet about the sun in one focus the
square of the eccentricity may be neglected, show that the angular velocity
of the planet is uniform about the other focus.

*Ex. 10. Prove by means of the annexed table, extracted from the
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Nautical Almanac for 1890, that the eccentricity of the Earth’s orbit is 0168
approximately.
Sun’a longitude

Jan. 1 ... .. 281° 530”8
w 2 . .. 282 6397
July 1 ... .. 9932191
w 2 .. .. 100 29296

[Coll. Exam.]

*Ex. 11. If the orbit of a minor planet be assumed to be a circle in the
ecliptic, prove that two observations of the difference of longitude of the planet
and the sun, with a knowledge of the elapsed time are sufficient to determine
the radius. Show also that three such observations will determine the orbit
if it be assumed to be parabolic. [Math. Trip. 1.]

A single observation of the difference of longitude shows that the planet
must lie on a known straight line, 7.e. the line through the earth’s centre to
the point of the ecliptic at the observed distance from the sun. When two
such lines are known a circle with centre at the sun will cut each of these
lines in two points. If a point of intersection on one line and a point of
intersection on the other subtend the angle at the sun’s centre which for
that radius gives the observed time interval the problem is solved. Trial
will thus determine the radius. An equation could also be found for the
radius but this again could only be solved by trial.

*Ex. 12. Prove that in a synodic period an inferior planet crosses the.
meridian the same number of times as the sun, but that a superior planet
crosses it once oftener. [Math. Trip. 1. 1902.]

*Ex. 13. The fourth satellite of Jupiter has an orbital period of
164 18k 5™ 6%-9 =169-7563552,

while the fifth satellite has a period of 02 11k 57m 27+-6=04-498236. Find
from Kepler’s third law the ratio of the mean distances of these two satellites
from the primary.

*Ex. 14. Assuming that Deimos and Phobos, the satellites of Mars, revolve
in circular orbits and that at the opposition of Sept. 23, 1909, the observed
greatest distance of Deimos from the centre of Mars is 1’ 23”1, show from
Kepler's third law that the greatest apparent distance of Phobos is 33”2,
it being given that the periodic time of Phobos is 7b 39™ 13%85 and of
Deimos 30t 17m 54+-86.

61. Apparent motion of the Sun.

The revolution of the earth about the sun causes changes both
in the apparent place and the apparent size of the sun as seen
from the earth. We have now to show that the phenomena with
which we are concerned in this chapter would be exactly re-
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produced if the earth were indeed at rest and if the sun revolved
round the the earth in an orbit governed by Kepler's laws,
and identical in shape and size with the earth’s orbit round
the sun.

Let S, Fig. 53, be the sun, and E, and E, two positions of the
earth. From E, the sun is seen
in the direction E.,S and at the E;
distance E,S. =

Draw ES, from E in Fig. 54
parallel and equal to E£,8. In
like manner let ES, be equal
and parallel to E,S. If this
be repeated for other pairs of Fro. 53.
points E,, S,, &c., the ellipse
traced out by S,, S,, &c. will be
exactly the same shape and size
a8 that traced by E,, E,, &c.

The latter is the true path of

the earth round the sun, the

former is the path which the S, S

sun appears to describe round Fia. 54.

the earth. At every moment

the apparent direction of the sun and the distance of the sun
are the same, whether we regard the earth as going round the
fixed sun as in Fig. 53, or the sun going round the fixed earth as
in Fig. 54.

If a be the radius of the sun and » the distance of the sun’s
centre from the earth, which we shall here regard as a point,
then the angular value of the apparent semi-diameter A of the
sun as seen from the earth is sin —'a/r. As this angle is small
we may with sufficient approximation take A =a/r sin 1” as its
value in seconds of arc. Thus we see that » varies inversely
as A, so that if A be determined by observation at two different
dates during the year, the relative distances of the sun at those
two dates are immediately obtained.

Es

Ex. On Jan. 3, 1909, the sun, being then at its least distance from the
earth, has the angular semidiameter 16’ 17"-58. On July 4th, 1909, the sun,
being then at its greatest distance, has the angular semidiameter 15’ 45”-37.
Show from these data that the eccentricity of the Earth’s orbit is ‘0167.
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62. Calculation of elliptic motion.

Let F be the earth’s centre and OP(Q’ the ellipse, with
F as focus, in which the sun
appears to make its annual
revolution. OO’ is the major Q
axis of the ellipse and C its
centre. The circle 0QO’ has

its centre at C and its radius o
CO=400'=a. The line of—HF—=% o
QPH is perpeudicular to 00';

and FP=r. Let £ OFP =y,

and 2£00Q=u. Thus v, r

are the polar coordinates of

P with respect to the origin

F and axis FO. The angles Fie. 55.
vand u are called respectively

the true anomaly and the eccentric anomaly.

The points O and O’ being the extremities of the major axis
of the ellipse are termed the apses of the orbit. That apse O
which is nearest the earth is termed the perigee. The other
apse O is called the apogee. The time is to be measured from
that moment known as the epoch, at which the sun passes
through the perigee O. If we had been considering the true
motion of the earth round the sun, then the points O and O’
would have been termed the perihelion and the aphelion respec-
tively. We should also note that CF = ¢CO = ea.

We have now to show how the polar coordinates of the sun are
to be found when the time is given. It is not indeed possible
to obtain finite values for » and v in terms of t. We can, how-
ever, with the help of the eccentric anomaly u, obtain expressions
in series which enable the values of » and v to be calculated to any
desired approximation.

From Kepler’s second law we see that if ¢ be the time in which
the sun moves from O to P, and if T be the periodic time of the
orbit,

t: T :: area OFP : area of ellipse.
Introducing n to signify the mean motion, i.e. the circular measure
of the average value of the angle swept over by the radius vector
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in the unit of time, we have n=2x/T, and as the area of the
ellipse is mab we have
nt =2 area OFP/ab.

The angle nt is of much importance ; it is called the mean anomaly,
and is usually denoted by m.

From the properties of the ellipse PH/QH = b/a, whence
area OHP=b.0HQ/a=b(00Q — HCQ)/a =} ab (u — sin u cos u).
Also

area FHP =b.QH . FH|2a = } ab (sin u cos 4 — e 8in u),

whence OFP =0HP + FHP = } ab(u — e sin u),
and finally M=U—€EBINU .eceverrririrnerninennss @)

Thus m is expressed in terms of u, and we express v in
terms of u as follows:
From the ellipse we see at once

7CO8 Y = @ COS U — ae,
rsinv=>bsinu,
whence, squaring and adding, we obtain
r=a(l1—€eco8uU) .ccocernininianinnins (i1).
2rsin?jv=r(1 —cosv)=a(l —ecosu—cos u+e)
=a (1 +¢€) (1 —cosu),
2rcos*4v=7r(1 +cosv) =a(l —ecosu+ cosu—e)

=a (1 —e)(1+cosu),
and finally

*[ APPLICATION OF LAGRANGE'S THEOREM. If we could eliminate
u from (i) and (iii) we should have the relation between m and v,
but owing to the transcendental nature of the equations such
an elimination in finite terms is impossible. With the help of
Lagrange’s theorem we may, however, express v in terms of m by
a series ascending in powers of ¢ which for given values of m and e
will enable us to compute v with any degree of accuracy required.

Lagrange’s theorem may be thus stated :—If we are given

2=+ YP(2) ceeirniiiii (a),
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in which # and y are independent variables, and if F (z) be any
function of z, then

F@)=F@)+y$ @ P@)+Ls L[ @pF @)+

tE T @ P (@) +cte..(A)

in which F’(z) as usual denotes (—% {(F(2)}.

To apply this to the case before us we see that, if we write
u for 2, m for z, e for y, and if we make ¢ (v) = sin u, equation (a)
is identical with equation (1). If further we write (iii) in the
form v=F(u) then we have from equation (4)

v=F (u)=F (m) + esin m F (m) +5 {sin® m F"(m)}

d
|2 dm
da:
+ B Ini {sin*m F'(m)} + ete. ...... (B).
But from equation (iii) we find by a well-known trigono-
metrical expansion which is proved on p. 160,
v=F(u)=u+2 {csinu+ §c*sin 2u + }¢*sin 3u + etc....},
where ¢ = {1 —¥1 —¢'}/e. Hence
F(m)=m +2{csin m + } ¢?sin 2m + }¢*sin 3m +ete....},
and therefore

F’ (m)=1+2 {ccosm + ¢* cos 2m + ¢* cos 3m + etc....}.

Hence all terms on the right-hand side of equation (B) may be
evaluated, and thus v may be obtained with any required degree
of accuracy. See formula (vii), p. 161.]

KEepLER'S PROBLEM. To effect the solution of equation (i), z.e.
to determine 4 when m is known is often called Kepler's problem.

Suppose u, is an approximate value of u, which has been
arrived at by estimation or otherwise, and let

U, — €8in u, = My,

If the true value of u be u, + Au,, then by substitution in (i)
we have approximately

m—m, .
Atg= —— i iv).
*" 1—ecosu, @iv)
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Cagnoli has shown that this method of approximation is
improved if instead of the formula (iv) we use
m—m,
1 —ecos{u,+4 (m—m,)} "’

As pointed out by Adams¥, both these methods are virtually
given by Newton.

Many processes have been employed for the solution of
Kepler's problem by the assistance of graphical methods. 1
shall here give one of these graphical solutions, for which I am
indebted to Dr Rambauty.

Draw three concentric circles (Fig. 56) with radii respectively

Auy=

Fia. 56.

CB=>b, OF =ae and CM =a. These circles are referred to as the
minor circle, the focal circle, and the major circle respectively.
Draw the involute ATJ to the major circle starting from any
point A. Let CA be the direction from which the mean anomaly
m= £ ACM is measured. The values of r, u, v corresponding
to m can now be found.

Let CM cut the focal circle in F. The normal to the involute
at T is a tangent to the major circle: let U be its point of
contact: then CU which crosses the minor circle at @ is parallel

t Collected Works, Vol. 1. p. 291,
1 Compare Monthly Notices R.4.S., Vol. Lxvr. p. 519.
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to FT. From the essential property of an involute it follows
that the arc AU is equal to UT, but

UT = CF sin FCU = aesin FCU,
whence aesin FCU=a (£ FCU — ¢« ACF)
which, if we make £ FCU=u, becomes simply
m=u—esinu.
Drawing perpendiculars UR from U on CF and QV from Q
on UR we have
FVcos£ MFV =CUcos u — CF =a cosu—ae,
FVsinZMFV =CQsinu = b sin u.
Thus when the three circles and the involute ATJ have been

drawn the solution of Kepler's problem may be summarized as
follows :

Take a point M on the major circle so that £ ACM =m.
From F the intersection of CM with the focal circle, draw
the tangent FT to the involute, and through C draw CQU parallel
to FT, cutting the major and minor circles in U and @
respectively.

Then 2ACM=m; £MFV=v; £MCU=u; FV=r,

and the problem is solved.

*[Tables such as those of Bauschingert greatly facilitate the
solution of the problem of finding w when m and e are given.
We illustrate their use in the following question.

Being given the following assumed elements for the orbit of
Halley’s Comet,

Eccentricity, e = 0961733,
Time of Perihelion Passage = 1910, May 24,
Period, P ="76085 years,

find the eccentric, and true anomalies of the comet on 1900,
May 24.

We have the mean motion equal to 360°/P, and since the time
to perihelion is 10 years we have

=10><360><60 x 60"

e = 1703358 = 47° 18’ 55"8.

+ Astronomical Tables by Bauschinger, published by Engelmann, Leipzig.
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Entering Bauschinger’s Tables of double entry with the
arguments m =47°3 and e=096 we find the approximate value
of the eccentric anomaly

Uuy=101°3.
Then from formula (iv) we calculate Ay, as follows
Logsinu, =9'9914984 Logcosu, =929214n
Loge = 99830547 Loge = 998305
IOg cosec 1’ = 53144251 Log € Ccos Ny = m_n
logesinu, =52889782 - 1—ecosu,=11884
e sin u, = 1945262
= 54° 2 6”2 log (m —m,) = 2:26007
%=101 18 0 ‘0 log (1l —ecosu,)=007496
me= 47 1553 ‘8 log Au, = 2:18511
m= 47 1855 ‘8 Ay, = 15315
Sem—my= 18270 = 0° 2 33°15

=101 18 0 °00
souy, =101 20 33 15
This must be very nearly the true value of u. To verify it we
proceed to a second approximation :
Logsinu, =99914338
Loge = 99830547
log cosec 17 = 53144251
log e sin v, = 52689136
e sin u, = 19449731
= 54° 1'37"31
v, =101 20 33 ‘15

m= 47 18 55 ‘80
m—m, = - 004
This small difference is quite negligible, but if it were to be
attended to we remark that 1 —e cos u, will not differ sensibly from
1 — e cos u, already calculated, and we have
m—m_ _ m-m _ —0"04
—ecosu, l—ecosu, 12
and thus finally u=101°20" 33""12.

Ay, = i =-—0"03,

Having found the eccentric anomaly u=101°20"33"12 we
substitute this in equation (iii) to find ». For this purpose it is
convenient to write equation (iii) in the form

tan v =tan (}7 + § ¢) tan v,
where sin ¢ =e.
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Although Bauschinger's Tables are useful as enabling us at
once to obtain a good approximation to the required value they
are not indispensable. Any of the graphical methods would
readily determine u to within three or four degrees of the true
value. We may then obtain a value as accurate as that of the
tables by the help of four place logarithms. If, for example, we
have found u,=105° by a graphical process the next step may
be conducted as follows:

Logsinu, = 99849 Log cos u, =94130n
log e cosec1” = 52975 Loge = 99831
logesiny, = 52824 Log e cos u, =93961n
e sin u, = 191600" 1—ecos u, = 1249
= 53°133
, =105 00 log(m—=m;)  =06493n
my= 51 467 log (1 — e cos u,) = 00966
m= 47 189 log Au, =0552Tn
m—my=—4 278 Auy,=—3°6
= — 410‘46 Uy = 105'0
= 1014

The problems which arise in the majority of cases are those in
which the eccentricity is very small; for example in the motion of
the earth about the sun the eccentricity is no more than 1/59°7.
For such cases it is best to obtain an approximate expression for
the sun’s true anomaly v in terms of m in the form of a series
which need not for most purposes be carried beyond €]

Writing sin ¢ instead of e we have from § 52 (iii)

tan v =tan 4u (1 + tan }¢)/(1 — tan §¢),
whence if ¢ be the base of Napierian logarithms,
(eim_ —:‘m) /(Eim + 6—1'0[2)
= (1 + tan §) (€42 — e=i9)/(1 — tan ) (¢ + e~v0),
or €? = ¢ (1 — ™ tan §¢)/(1 — € tan }¢),
and by taking logarithms of both sides
v=u+ 2 (tan ¢ sin u +} tan’ }$ sin 2u +...).
To express the formula in terms of the eccentricity e, we have
tanfp=(1-V1—¢é)e=4e+ e+ ..
and by substitution
v=u+(e+}e’)sinu+ }esin 2u+ e’ sin u...... (v).
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It remains to eliminate u between this formula and
m=u—esinu.
As a first approximation
% =m+ esin m.
If terms beyond e* are neglected,
w=m + e sin (m + e sin m)
=m + e sin m + }6'sin 2m,’
and from this we have
sin u= (1 — }€*) sin m + }e sin 2m + §e* sin 3m.
By substitution of this in

u=m+esinu,
we find
u=m + (¢ — }€*) sin m + }¢* sin 2m + €' sin 3m ...(vi).
We have also to the first power of ¢,
sin 2u = sin 2m + e (sin 3m — sin m).

Introducing these values into (iv) we obtain

v=m+(2e — } &) sin m + §e* sin 2m + }§€*sin 3m...(vii).
This is a fundamental equation in astronomy. It gives the true
anomaly of a planet in terms of its mean anomaly. It has been

here computed to the third power of the eccentricity, but for our

present purposes the third power is generally too small to require
attention and consequently

v=m+ 2esin m + §¢*sin 2m

will be here regarded as a sufficiently accurate formula.
The difference between the true anomaly and the mean
anomaly, or v—m, is called the equation of the centre, and is

represented by
: 2¢sin m + § e’ sin 2m.

Ezpression of the mean anomaly in terms of the true. The
elementary area swept over by the radius vector when the planet’s
true anomaly increases by dv is §7%dv. If d¢ be the time required
to describe this area, and if 7' be the periodic time of the planet
then from Kepler's second law

$r’dv : wab :: dt : T.
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If dm be the increase in the mean anomaly in the time dt
then
dm : 27 ::dt : T,

dm

whence Tp Sah s (viii).
This equation may be written thus
dm (1-e?
(l + e cos v)*’

whence
m=(1 —e’)gfv(l — 2e cos v + 3¢? cos? v — 4e® cos® v) dv,
0

and by integration
m=v—2¢sin v+ §6'sin 20 —}e*sin3v.......... (ix),

where powers of e above the third are neglected.
*[General Expansion. This series can be obtained as follows.
We have from (viii)

sin .
= cos® ¢ 5+ P73 (l-l-_sim;Lcos—v) where e=sin ¢.
If we make = ¢", it is easy to verify that

‘siqn__._t ¢{ 1 _ tan1}¢.z“}
1+sin¢cosv l+tanddp.2 1+tangd.z™?

=tan ¢ {1 + 22 (= 1)* cos kv. tan* } ¢},

and hence

:lin—t—cos’cﬁd(#[tand, {1422 (— 1) cos kv. tan* } ¢}]

= 1+22(—l)"coslw.tanh}¢
+2sin ¢ cos = (— 1)¥cos kv . d¢(tan“§¢)
=1+2%(—1)cosky. tan*} ¢

+ 2sin ¢ cos ¢ (— 1)"coskv.tank1}¢_k1+tam,}¢

2tan ¢
=1+ 23 (—1)*cos kv.tan* } ¢ (1 + k cos ¢).

Integrating we find
k
m=v+23 (- 1) t;ank}¢ (1 + k& cos ¢) sin kv,
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the constant of integration being zero since m and v vanish
together. The first four terms of this series are
m=v—2tan }¢ (1 4 cos ¢)sinv
+tan®}¢ (1 + 2 cos ¢) sin 2v
— $tan® 4 ¢ (1 + 3 cos ¢) sin 3v.
If powers of e above the third may be neglected we have
p=e+}e, cosp=1—13e and tan }¢p = fe+ i€

and therefore we obtain as before

m =v — 2¢sin v + ¢ sin 2v — }e* sin 3v.]

Ex. 1. Being given that
m=v—2esin v+ Je?sin 2v - §38in 3,
where ¢ is a small quantity of which all powers above the third are neglected,
show by reversal of the series that
v=m+ (26— }6%) sin m + fesin 2m + 44 ¢’ sin 3m.

Ex. 2. Show that the angle between the direction of a planet’s motion
and the planet’s radius vector has as its tangent 4/T—é¢3/e sin u.

Ex. 3. If the eccentricity sin ¢ be very nearly unity, show that the mean
anomaly m can be expressed in terms of the true anomaly » by the following
formula in which #=tan $v,

2co8’¢p + 1 sm¢(z4+x5))
=@ +sin ¢ l+sm¢ 5/)°

Ex. 4. Prove the following graphical method given by J. C. Adamst of
solving for % from the equation m=u — e sin .

Draw the curve of sines y=sinz. From the origin O measure OM=m
along the axis of . Through ¥ draw a line inclined to the axis of z at the

angle cot—1e, and let P be the point in which it cuts the curve, then « is the
abscissa of P.

Ex. 5. Prove Leverrier's rule for the solution of m=wu- ¢sin u if powers
of e above the third may be neglected,

R esinm -3 esinm
l-ecosm 1-ecosm

Ex. 8. If & be the longitude of a planet measured from an apse round
the empty focus, prove that
& =nt+}e? sin 2n¢,
if powers of e above the second be neglected.

t See also Routh, Dynamics of a particle, p. 225, and Monthly Notices R.A.8S.,
Vol. L. p. 801.

11—2
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*Ex. 7. If C(6) is an abbreviation for 4 (6 +cos 4) show that the equation
m=y—esin ¥ may be written m=C (¢ +u)— C(¢p—u) if e=sin ¢, and show
how a table of the values of C'(6) will facilitate the solution of Keplers
problem.

See the paper by Mr Aldis in Monthly Notices R.4.S. Vol. Lxm. p. 633,
where the table is given with illustrations of its use.

63. Formule of elliptic motion expressed by quadratures.

We take @ to be the longitude of the perihelion of the planet
measured from a fixed direction in the plane of the orbit, 6
the longitude of the planet and v=(6 — =) the true anomaly.
The quantity b*/a is represented by p. The periodic time is P.

From the properties of the ellipse we have for the radius
vector 7,

r= ﬁ——a) ..................... @i).
For any body moving round the sun, we have (§ 50)
rdO/dt=Vup ..ooveriinieiiannen (ii).
Solving (ii) for dt, substituting for = from (i) and integrating,
we have . i
t=%f¢{l+ecos(0-w)}’ ............ (i)

where ¢ is the time in which the planet moves from perihelion to
the true anomaly v= (6 — =) in an orbit of which e is the eccen-
tricity and p the semi-latus rectum. The equation may also be
written in the homogeneous form

P 1 g,

Py opqd)o(L+ecosvy

where a,, P, are the mean distance and the periodic time re-
spectively of the earth.

Differentiating (i) with regard to ¢ we obtain
dr _ pesin(6—w) dé
dt {1 +ecos(6—w)dt

=¢sin(f - w)zg ‘f—ig=e\/; sin (§—=)/Wp,

also r%?=~/;_4 {1 + e cos (6 — =)}/Vp,
and for the square of the velocity of the planet

(Z—:)z-i- r ((‘li-—f);p{l +2ecos (6 — =) + €'} /p = 2u/r — u/a,
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which may be expressed more conveniently for calculation in the
homogeneous form
4mial 2 1
7 (7-a)-
In the case of a parabolic orbit such as that in which the
great majority of comets revolve, e=1 and a=0, so that the
formule (i) and (iii) become

r=43psec?} (0 —w)

b= PP 4 (0 w)+ et (B ) [0
47ra0‘3
The result at which we have arrived may be thus stated.
Let P,, a, be respectively the periodic time and the mean
distance of any planet, for example, the earth. If the semi-latus
rectum of the parabolic orbit of a comet be p, then the time
in which the comet passes from perihelion to the true anomaly v is

P.,pg (tan v + § tan® }v)/ha,g.

EuLER’'S THEOREM. A remarkable property of parabolic motion
is expressed in Euler’s theorem, which is thus enunciated.

If » and 7' be the radii vectores from the sun to two points C'
and O’ in the parabolic orbit of a comet, and if £ be the distance
CC’, the time required by the comet to move from C to C" is

P <r+r'+k)3_ r+r'—k)*3}
127 ay ( Qy
where P, is the length of the sidereal year and a, the earth’s

mean distance.
For brevity we make

q=P.,p§/4-1ra.,3; z = tan }v; a'=tan §v'; 8 =(r + 7'+ k)/2;
then t'—t=gq(a'—z+}(a"—2*)}
=3q(@—-2)(1+2"+1+2%+ 1 +22').
But from the properties of the parabola
1+at=2r/p; 1+2"=2r/p;

2V -
1+ zz’ =sec v sec v cos § (v —v) = ‘\;” \/8 (8rr’ k) )

whence ~
t'—t=2q (@ —2z)(r+r'+Vs.8—-k)/3p

=2¢ (¢~ z) (s +8—k+Vs.3-Fk}/3p.
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But we have also
(@-ap=1+22+1+2"-2(1 +22)
=2{s+8—k—2Vs(s—k}/p
=2 {Vs—vs—k}'/p,
whence t—t=2qv2 (s - (s - k)}}/3p?
=ql{(r+r+ k)g —(r+ r’-k)g}/:}pg,
and by restoring the value of ¢ the desired result is obtained.

*LAMBERT'S THEOREM. An important extension of Euler’s
theorem for motion in a parabola to the more general case of
motion in an ellipse is given by Lambert, and may be stated
as follows.

If ¢t is the time occupied by the planet in moving from the
position indicated by the radius vector r to the position indicated
by the radius vector 7/, and if k& is the chord between the two
positions, then

27t/P = (y — sin n) — (9’ —siny’),

Sin*’r):%/\/r-’-z-‘-—k, Siﬂ*ﬂ':i\/‘r-‘-r—k;

where

a
and P is the periodic time of the planet.
We havet
r=a(l—ecosu), r=a(l—ecosu),
k*=a?(cos w — cos u')* + a* (1 — €*) (sin u — sin u')?,
2wt/P =u—u' — e (sinu — sin ¥'),
=u—u —2es8in§ (u—u)cos} (u+u),
whence
(r+7r)/2a=1-ecos (u+u’)cos}(u—u'),
k*/4a* =sin® § (u—u') {1 — e cos § (u + ')},
2mt/P = u—u' — 2e cos § (w+ u') sin § (u — u'),
We thus see that if a and therefore P are known then
(r+ ), k, and t are functions of the two quantities v —u' and
ecos § (u +.u).

+ The proof here given is due to Adams, Collected Papers, Vol. 1. p. 411. See
also Routh, Dynamics of a particle, p. 228.
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Let us now make
u—u'=2a and ecos § (u+ u’)=cos B,

then (r+7r)/2a=1—cosacosB; k/2a=sin asinf,
therefore (r+7r' +k)/2a=1-cos(B+a),

(r+7' —k)/2a=1—cos (B —a),
also 2wt/P =2a -~ 2sinacos 8

={B+a—sin(8+a)} - {8 —a—sin(8-a),
whence making 8+a=7% and B—a=7 we have Lambert’s
theorem as enunciated.

Ex. 1. Show that m the mean anomaly in an elliptic orbit of which
the mean distance is a may be variously expressed as follows

m=2ma,dt/a} Py=2magt (1-e)t t/p" Py=+/ ;t/ag .

where a,, P, are respectively the mean distance of the earth from the sun and
the length of the sidereal year.

*Ex. 2. If m be the mean anomaly, » the true anomaly, and e the
eccentricity, show that

im=0-0)(152) tnpo- 152 (120 awso

1-6ef1-e\¥
+ ——5— (m) tan %v - &c- ...... )
and transform this equation into

Vur_ 1

1-3e
P T ek L T

1-5¢ 1-e¢ b
% (l+e)‘m fo-&c........

[Edinburgh Degree Examination, 1907.]
We have m=u—esinu

1-e l+e
= -1 i
2{tan (\/H.etaniv)

1 + tan’gv
r oA / tan&v write X and we have

§m=tan N—e—,

taniv

1+>@
SONSE DLES DU AN W s B U NI UPS I 25

1-3e l.')e
=(1-r--5 M-ée.......,

A4

=(1—e)<}—;g>itan§v 1338 (1+:);tan3§v
+152 (55 )’mnqu-&c. .......

5 1+
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But we have

"=ﬁ‘—(1 é)'J“ . nz=(l—e’)§i;.z.
at o
Hence
“/"t 1 1-3e 1-5¢ 1-¢
apt =g 0¥ g vt qgptentiv-de.

This equation corresponds for the ellipse or hyperbola to equation (iv) of
§ 53 for the parabola. If we put e=1 in this expression we get simply

Vur=4pt {tan }v+3 tan* 3o},
since all terms after the second have (1 —¢) as a factor.

Ex. 3. Show that the time spent by a comet within the earth’s orbit is
V2 (1-m)} (1+42m)/3m parts of a year where m is the perihelion distance of
the comet the unit being the earth’s heliocentric distance regarded as constant.
The orbit of the comet is presumed to be parabolic, and in the plane of the
ecliptic.

As p=2m we find for the time from perihelion to a true anomaly »

mi (tan v+ tand §o)/m 42,

r=msec? }v,

80 that cos?4v=m will determine the true anomaly of the point where the
comet crosses the earth’s orbit. Hence substituting for tan $v we have

mt \/l—m+*(l-m)*}
/2 m m ’
as the time from the earth’s orbit to perihelion, and double this period gives

the answer to the question.
This expression has its greatest value 2/3= when m=1/2.

we have also

*Ex. 4. Two planets are moving in coplanar orbits. Show that when
these planets are nearest to each other their longitudes 6 and & must satisfy
the two following equations:

g0 ___d0 _p_ff 4 _
T+p /. (1+ecos (6 —w"))? T-p o' (1+¢€ cos (¢ — ') o
and
V_sm (6—w) {r—1 cos (6— 0)}+v_ sin (¢ — @) {r'—r cos (- &)}

+sin (0-0) (¢;,§ - VP ,5,) =0,

in which 7' and 7" are the epochs at which the planets pass through
perihelion.

The first equation merely expresses that the planets have the longitudes
6 and & at the same moment.
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To find the second equation we note that 3 —2r cos (6 — §') 42 is to be
& minimum whence

rg—:-. 79" cos (- &) — r 9 cos (6 a)+w'i”-'
+ ' 8in (0 - 0’)(2? ‘3::) ()

Lo dr e dé _Wp . .
Substituting &= 7; sin (60— o), Z = Ve obtain the second equation.
If e and ¢ are both small, 8 and ¢ are nearly equal and the second
equation may be written

(a-a') eV sin (0 — @)~ € V/asin (& — @)} +(a't —at) sin (- 8)=0.

*Ex. 5. Show that the distance of the earth from a planet, whose orbit
is in the ecliptic, will not in general be & minimum when the planet is in
opposition unless the earth is at one or other of two points in her orbit, but
that if the perihelia of the two orbits have the same heliocentric longitude
and the latera recta are in the duplicate ratio of the eccentricities, the
distance will be a minimum at every opposition.

[Math. Trip. I. 1900.]

This may be deduced from the last question or obtained otherwise as
follows.

Let P, @ Fig. 57 be the simultaneous positions of the two planets at the
time ¢ and P, @ their positions
at the time ¢+d¢t. If then PQ is a
minimum or maximum we must
have PQ=P’'@ whence

PP cos PPN=QQ cos QQN.

Let LAFP=6, LAFQ=6,
LANP=w, L FPP =¢, FQ@ =4,
FP=7‘, FQ=1",
then

PP cos¢p= - dr, PP sin ¢=rdb,

Q9

A F N
whence Fie. 57.

PP cos PPN=PP cos (¢ — 6+ w)= —drcos (6 — w)+rdf sin (6 — w)
={—esin (§— @) cos (6 — w)/Vp+Vpsin (60— w)/r} ¥ dt
={esin (@ — )/Vp+sin (0 — w)/Vp} Vu dt.
If therefore PQ=P'¢ we must have
¢ 8in (@ - o)/Vp+8in (8 - w)/Vp=¢' sin (@’ - w)/Np' +sin (& - w)/Vp.
If 6=6'=w the planet is in opposition, and we have
esin (w — 0)/\/;= ¢ sin (w' — 0)/Vp'.
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Hence there are two values for 8 differing by 180°. This is the first part

of the question. Also if @ ==’ and e/V/p=¢/v/p’, the condition is satisfied at
every opposition.

Ex. 6. Show how Euler’s theorem for the time of describing the arc
of a parabola can be deduced from Lambert’s theorem.
In this case both 8 and a will become indefinitely small.

Ex. 7. The sun passed through the first point of Aries on March 20, 1898,
at 2b 5™, and through the first point of Libra on Sept. 22 at 12h 35®; show
that the interval is consistent with the facts that the eccentricity of the
earth’s orbit is about 1/60, and that the apse line is nearly at right angles
to the line of equinoxes. [Coll. Exam.]

If the sun is at an Equinoctial point and if €2 is negligible it can easily
be shown that

sin (w + u)=esin =,
whence we have the two values of %, namely e¢sin w — @ and = — @ —esin @.

If ¢, and ¢; be the times of passage through T and 2 respectively, 7' the

time of passing through perihelion and P the length of the year,

t-T . . .
2 5 =esin @ — @ —esin (¢ sin w — @),
ta—-T . . .
21r"—1;— = —w—esin @ —esin (@ +esin @),
2 .
whence t,—tl=§P—1—r Pesin .

If @ be near 90°, e be #;, and P=365}, we see that t3-¢, differs from
half a year by 3'8 days.

Ex. 8. Assuming that the orbit of the earth relative to the sun is a plane
curve show that for every set of three observations of the solar coordinates
a, 8; d, &; a", 8" the following equation is satisfied

tan 3 sin (a’ - a”)+tan 8 sin (a” — a) +tan 8” sin (a — a’)=0.
[Coll. Exam.]
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54. How luni-solar precession is observed. The important
phenomenon which we know as the precession of the equinoxes is
most easily made apparent when the observed right ascension and
declination of any fixed star at one epoch are compared with the
observed right ascension and declination of the same star at a later
epoch sufficiently distant from the earlier one. For example the
coordinates of Polaris (the Pole Star) were determined as follows :

. o [ RA. 1k 5 23
Polaris 1st Jan. 1850 { s +88° 30’ 49",
These are now to be compared with the coordinates of the
same star as determined 50 years later:

. RA 1t 23™ 0*
Polaris 1st Jan. 1900{ s 88° 46 537
The differences between these two sets of coordinates amounting
to more than a quarter of an hour in right ascension and more than
a quarter of a degree in declination must receive close attention.
At first it might appear that the change in the apparent
position of Polaris must be attributed to actual movements of
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that star. But we can show that the phenomena cannot be thus
explained. Changes in the coordinates of a point may be caused
by changes in the axes with regard to which those coordinates are
measured as well as by absolute changes in the position of the
point itself. We have to show that the changes in the place of
Polaris are only apparent. They are to be attributed to changes
not in the place of the star but in the place of the great circle
with reference to which the star’s place is determined. These
changes are due to the phenomena known as Precession and
Nutation.

Consider first the declination of Polaris which in the course of
half a century is shown by observation to have increased no less
than 16’ 4", or at the average rate of 19” annually. This means
that the distance between the Pole and Polaris has been
diminishing 19” annually. It follows that either the Pole or
Polaris, or both, must be in movement.

But no appreciable portion of the change in the polar distance
of Polaris can be attributed to the proper motion (§ 60) of that
star. Measurements of the distance of Polaris from other neigh-
bouring stars show no variation comparable with that in the dis-
tance from Polaris to the Pole. Any true proper motion which Polaris
may possess is far too small to account for the changes observed in
its declination. It is also to be noticed that while, in the course of
fifty years, other stars generally exhibit large changes in their polar
distances they do not show considerable changes iun their distances
from each other. We are thus led to the conclusion that the
changes in the distance between Polaris and the Pole are not to
be attributed to the movement of Polaris itself, but to a move-
ment of the Celestial Pole, and we have now to study the
character of this movement.

If the Pole shifts its position continually on the celestial
sphere the celestial equator must also be in constant motion,
because under all circumstances every point on the equator
must be 90° from the Pole. But though the equator moves
yet it always preserves the same average inclination to the
ecliptic. The angle only fluctuates some seconds to one side or
the other of its mean value. The declination of the sun at mid-
summer is the obliquity of the ecliptic, and this was practically
the same in 1850 as in 1900 (see p. 187). Hence we see that
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the equator must move so that it cuts the ecliptic, regarded as
fixed, at a nearly constant angle, while the equinoctial points
move along the ecliptic in the opposite direction to the earth’s
motion. The pole of the ecliptic may be regarded as fixed on
the celestial sphere, and the motion with which we are at present
concerned causes the pole of the equator to describe a small
circle around the pole of the ecliptic. This is the movement
which is known as the luni-solar precession of the equinoxes.
It manifests itself most simply by a continuous increase in the
longitude of a star, while the star’s latitude remains unaltered.
In general luni-solar precession produces change both in the
declination and the right ascension of a celestial body.

55. Physical explanation of luni-solar precession and
nutation.

The direction of the axis about which the earth performs its
diurnal rotation undergoes very slow changes, and these changes
produce the phenomena of precession and nutation. The dis-
turbance of the earth’s axis from the constant direction it would
otherwise retain is due to the fact that the resultant attraction of
an external body (moon or sun) on a spheroidal body like the earth
is not a single force through the centre of gravity of the earth.

If the earth were a truly spherical rigid body, and if the
density along the surface of each internal concentric spherical
shell was constant, then the attraction of any external body, such
as the moon or the sun, would be equivalent to a force acting at
the centre of the sphere. A force whose line of action passes
through the centre of gravity of the body on which it acts would
be without effect on the rotation of the body about its centre of
gravity. But under the conditions existing in the solar system
the attraction of neither sun nor moon passes in general through
the earth’s centre of gravity. Hence arise those disturbances of
the earth’s rotation which we are now to consider.

Although for reasons indicated later, the moon is more effective
than the sun in producing precession, we consider first the effect
of the sun because its motion relative to the earth is simpler than
that of the moon.

If we assume that the earth is a solid of revolution and
symmetrical about the equator, then NS, Fig. 57, being its axis
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and C its centre, P any external pdrticle, the plane NSP divides
the earth symmetrically, and therefore the resultant attraction of
P oun the earth lies in the plane NSP: further if P be in the
plane of the equator, the resultant attraction will also be in that
plane. Hence if P lies in the equatorial plane AB the resultant
attraction will be along CP.

If P were in the axis NS (a case we need not consider) it is
clear that the resultant attraction would be along CP, but for
any other position of P, such as that indicated in Fig. 57, it can
be shown that the resultant attraction does not pass through C
but along a line such as HP in the plane NSP.

H

Fio. 57.

At first sight it might seem as if this force would tend towards
turning NS into a direction perpendicular to HP, in other words
as the sun is the attracting body, the immediate effect would seem
to be to force the earth’s equator towards the ecliptic. But the
fact that the earth is in rapid rotation produces the apparently
paradoxical effect that the axis NS at each instant moves in a
direction not in the plane NSP but at right angles thereto.

This is a phenomenon well illustrated by the common pegtop,
though in this case we are dealing not with the rotation about
the centre of gravity of a body free in space, but with rotation
about a fixed point—which is mathematically a very similar
problem. While the pegtop is in rapid rotation about its axis of
symmetry that axis is itself slowly describing a cone round the
vertical. Thus the axis of the pegtop is at each instant moving
in a direction at right angles to that in which the force of gravity
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would appear to urge it and which it is only prevented from
following by the fact that the top has a rotation about its axis
very much more rapid than the conical motion of the axis itself.

The diurnal rotation of the earth appears very rapid when
compared with the conical motion of the earth’s axis inasmuch
as the period of the latter is about 24,500 years. Applying the
analogy of the conical rotation of the axis of the pegtop to the
case of the rotation of the earth as disturbed by the sun we should
expect to find that the terrestrial axis NS would slowly describe
a right circular cone about the normal to the plane of the ecliptic.

The precessional action of the moon is more important than
that of the sun, for though the total attraction of the moon on
the earth is very much less than that of the sun, yet as the pre-
cessional effect depends upon the difference between the attractions
exercised by the disturbing body on different parts of the earth
the greater proximity of the moon raises its precessional effect
to double that of the sun.

The plane of the moon’s orbit is very near the ecliptic, being
inclined thereto only at the small angle of 5°, and the moon'’s orbit
while preserving this inclination is in continuous motion, so that
each of its nodes accomplishes a complete circuit of the ecliptic in
about 19 years, a very small quantity in comparison with the
precessional period of 26,000 years. As the moon is always near
the ecliptic and is as much below the ecliptic as above, and as the
average position of its orbit coincides with the ecliptic, it follows
that the principal part of the moon’s precessional action is of the
same general tendency as that of the sun. The sun’s action and
this part of the moon’s action together constitute what is called
luni-solar precession by which T moves on the ecliptic in the
opposite direction to increasing longitudes at the rate of 50%”
annually. About two-thirds of this quantity is due to the action
of the moon and the remainder to that of the sun. The obliquity
of the ecliptic ® remains unaltered by luni-solar precession.

But the moon has also an important influence from the
circumstance that its movement, though near the ecliptic, is not
exactly in that plane. The precessional action of the moon tends
to make the axis of the earth describe a cone round the pole
of the lunar orbit, which is itself describing a circle of radius 5°
about the pole of the ecliptic. The influence of this on the plane
of the equator is twofold. It gives to T a small periodic movement
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of oscillation to and fro on the ecliptic about its mean place as
determined by luni-solar precession. It also gives to w a small
oscillation to and fro about its mean value. These phenomena are
known as nutation, and their discovery was one of Bradley’s great
achievements. The sun has also some effect in producing nuta-
tion, but it is very small compared with that of the moon.

*56. Planetary precession. The luni-solar precession and
nutation relate, as we have seen, to change in the relative position
of the equator and the ecliptic due to the motion of the former.
We have now to learn that the ecliptic is itself not quite a fixed
plane, and its changes have to be taken into account, though these

s

E

F1e. 68 (after Brunnow).

changes are so small that they may for many purposes be regarded
as non-existent and the ecliptic be treated as absolutely fixed.

The movements of the ecliptic are due to the attractions of
the other planets on the earth. The irregularity thus caused in
the positions of the equinoctial points is accordingly known as
Planetary precessiont.

We must take some standard position of the ecliptic to which
its position at other dates shall be referred and we use for this
purpose the great circle with which the ecliptic coincided at
the beginning of the year 1850, EE,, Fig. 58. Let EE’ be

+ The reader who desires to learn more about Planetary Precession than is con-
tained in the slight sketch here given is referred to Newcomb’s Ccmpendium of

Spherical Astronomy, from which source the numerical values here used have been
obtained.
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the position of the ecliptic in the year 1850 +¢. Let 4 A4, be the
equator at the commencement of 1850 and let the equator have
moved by luni-solar precession to A’4” at the time 1850 +¢.
Let SL and SL’ be perpendiculars from a star S on EE, and EE’.
Let DD’ be drawn perpendicular to EE’ from the intersection of
EFE,and AA,. Then we have the following statements.

BD is the Luni-solar Precession in t years,
£ D'CA” is the obliquity of the true ecliptic in 1850 + ¢,
< DBA" is the obliquity of the fized ecliptic in 1850 + ¢.

BC being the distance along the equator through which the
node has been shifted by the motion of the ecliptic in ¢ years is
known as the Planetary Precession and its magnitude has been
found to be 0”13t.

CD is the General Precession in longitude. It is the displace-
ment of the intersection of the equator with the apparent ecliptic
on the latter, and its annual increase at the date 1850 + ¢ is

50”2453 + 0°0002225¢.

This quantity is known as the constant of precession. It changes
with extreme slowness, thus in 1900 its value is 50”2564 and in
1950 it is 507-2675. It will be accurate enough for our purposes
to take the present constant of precession as 50”26.

At the date 1850 + ¢ the angle between the equator and the
ecliptic of the same date (neglecting periodic terms) is

23° 27' 320 — 0"47¢,

and the second term is called the secular change in the obliquity.
Observing the directions of the arrow heads we see that E is the
descending node of the true ecliptic on the fixed ecliptic and con-
sequently 180° — EC is the longitude of the ascending node of the
true ecliptic on the fixed ecliptic.

The longitude of the star S which was DL in 1850 becomes BL
in 1850 + ¢ by the luni-solar precession. The latitude of S, or SL,
is unaltered by the luni-solar precession.

If planetary precession as well as luni-solar precession be
considered then the longitude of S, which was DL at the date
1850, becomes CL’ at the date 1850 + ¢, and in like manner the
latitude changes from SL to SL'.

B A. 12
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57. General formulae for precess:on and nutation in
right ascension and declination.

We shall generally assume that the plane of the ecliptic is
unchanged, and that the position of the equator with respect to
the ecliptic is subjected to slow changes due to precession and -
putation in the only ways in which a great circle of the sphere
can change, v.e. the line of nodes changes and the obliquity of the
ecliptic also changes. Any alterations in the great circles with
respect to which the coordinates of a star are measured neces-
sarily involve changes in those coordinates even though, as we
shall at present suppose, there is actually no change in the place
of the star on the celestial sphere.

Consider two positions of the equator: the first cutting the
ecliptic ‘at an equinoctial point T, with obliquity w, the second
cutting the ecliptic at an equinoctial point 7, which has moved
along the ecliptic through aun arc £, in the direction of diminishing
longitude, while the obliquity has changed from o to o’ (Fig. 59).

Let a and & be the R.A. and declination of a star S referred to
the first equator and equinox (System IL.); and let @’ and & be the
coordinates of the same star referred to the second equator and
equinox (System IL).

Let «, & and a/, &' be the corresponding coordinates of
a second star S’ referred to the two systems.

Then since the length of the arc S8’ is the same whichever
system of coordinates be used, we have the fundamental equation
as used in § 12,

sin 8 sin &, + cos & cos &, cos (a — a;)

=sin & sin 8, + cos & cos 8’ cos (a’ — a;’).

We shall now introduce into this equation three cases in
which a;, 8, and «/, 8, are at once evident and thus obtain the
three equations of transformation.

If the second star 8 is at 7 its coordinates in System I. are

a,=0, & =0.

The coordinates of the same star in System II. are given by
the equations

sin §,’ = sin k sin o',
cos &, sin &, = sin k cos o',
cos 8, cos a,” = cos k.
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And making these substitutions in the fundamental equation
we have
cos & cos a =sgin k sin o’ sin &
+ cos k cos &' cos &’ + sin k cos o’ cos & sin a'......(1).
In the same way by taking S at 1 we find
cos &’ cos a’ = — sin k 8in w sin & + cos k cos & cos a
—sin k cos w cos & 8in a......(ii).
Finally, suppose the second star S’ is at the pole of the
ecliptic.
Its coordinates in System I. are
a,=270°, & =90°- o,

and in System IIL
a =270°, &' =90°- o'

F1o. 59.

Making these substitutions in the fundamental equation we have
sin & cos w — cos & sin w 8in @
=sgin & cos ®’ — cos &’ sin ' sin a'...... (iii),
and we thus obtain the three general equations connecting a, 3
with a’, & and the necessary constants k, o, o'.

We may note that (iii) is symmetrical in accented and
unaccented letters and it is easily seen how (ii) might have
been obtained from (i) by the interchange of accented and un-
accented letters and by changing the sign of £.

If the known quantities are o', &, then from (i), (ii), (iii) we can
express sin 8 and cos § sina each in terms of o, & and we thus

12—2
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group the three equations (iv), (i), (v) from which a, & can be
found without ambiguity :
sin & = sin &’ (cos k sin w sin @’ + cos w cos w’)

— cos & cos o' sin w sin &k

+ cos &' sin a’ (cos k sin  co8 ' — cos w 8in @’)... (iv),
cos & cos a = sin &' sin £ sin o’

+ cos &’ cos a’ cos k

+cosd sina sinkcos @ ...oceviiiiiiiniiininiiiennn (1)
cos 8 sin @ = sin 8’ (cos k cos w sin " — sin o cos o)

—cos & cosa’ cos wsink

+ cos & sin « (cos k cos w cos @’ + sin  8in @')......(V).

If it be desired to de_:termine a', & when a and & are given,
we find in the same way
sin &' = sin 8 (cos £ sin w 8in »’ + cos w cos'w’)
+ cos & cos asin @’ sin k
+ cos & sin a (cos & sin @’ cos @ — cos @’ sin w) ...(vi),
cos &' cos @’ = — gin & sin k 8in @
+cosdcosacos k
—CoSSINABINKCOB® .vuvvvnrenennreninninennnrannn.. (i)
cos &' sin &' = sin & (cos k& cos @' 8in w — s8in w’ cos w)
+ cos & cos a cos ' sin k
+ cos & sin a (cos k cos w cos @’ + 8in w sin w') ...(vii).
For the calculation of precession we may usually regard £ as
so small that powers above the first may be neglected and we also
take w = ', so that the formula (vi), (ii), (vii) become
sin & = 8in & + & sin @ cos & cos a,
cos &' cos @ = cos 8 cos @ — k sin w sin & — k cos w cos & sin «,
cos & sin a’ = cos & sin a + k cos w cos & cos a.
From which we easily obtain the approximate results
a—a=kcosw+ksinwtandsina...... <. viii),
& —8=ksinwcosa .....eveenrnnennennenn.. (ix)
These are the fundamental formula for precession.
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Ex. 1. Show that, if a, 3, be the R.A. and decl. of a star, its annual
increase of right ascension in consequence of precession when expressed in
seconds of arc will be very nearly 46”+20"tan3sina and in declination -
20" cos a.

Ex. 2. kis the angular velocity of the pole of the equator round the pole
of the ecliptic, L is the longitude of the instantaneous axis of rotation of the
ecliptic, and n its angular velocity. Show that these changes in the planes
of reference produce annual rates of change ‘

m+nsinatand and ncosa
in a, 8, the R.A. and decl. of a star, where
m=4k cos — 5 sin L cosec
and n=ksin w,
o being the inclination of the equator to the ecliptic.
[Sheepshanks Exhibition, 1903.]

Ex. 3. Prove that the points on the celestial sphere whose declinations
undergo the greatest change in a given period, owing to the precession of the
equinoxes, lie on two arcs of a great circle; and that the points whose
declinations are, at the end of the period, unchanged lie on another great

circle.
[Math. Trip. I. 1901.]

Let P, P’ be the poles of the equator at the beginning and end of the
period. Then it is obvious geometrically that the greatest possible change of
declination by precession in this period is equal to the arc PP’, and that the
stars which undergo this greatest change lie on the great circle through PP,
outside the limits of the arc PP’ and its antipodal arc. The stars whose
declinations are, at the end of the period, unchanged lie on the great circle
bisecting the arc PP’ at right angles.

Ex. 4. Show that if a star lie on the solstitial colure it has no preces-
sion in declination, and that all stars on the equinoctial colure have the same
precession in right ascension and also in declination.

Ex. 5. Prove that if S be a star without precession in R.a.,and P, X
the poles of the equator and the ecliptic respectively, then SP and SK will
be at right angles. .

[Math. Trip.]

Ex. 6. Show that all stars whose R.A. is not at the moment being
altered by precession lie on an elliptic cone passing through the poles of the
equator and the ecliptic.

[Coll. Exam.]

The condition is, see (viii),

€08 » +8in @ tan 3 sin a=0.
If we make Z=r CcOS a CO8 3,
y=rsinacos §,
z=rgin g,
and eliminate 7, a, 3, we have as the equation of the cone
yz8in w + (22 + y2) cos @ =0.
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Ex. 7. Show that for all stars for which the rate of variation in the
declination due to the motion of the node of the equator along the ecliptic has
its greatest value 4, the rate of variation in right ascension due to the same
cause is A cot », where w is the angle between the ecliptic and the equator.

Ex. 8. Show from the formule (i), (ii), (iii) that we have the following
expressions for the differential coefficients of a’, 8’ with respect to o’ and £

ad' » aa’ < ’ .
w-—tana’cosa i 5y —sind;

%%=cos»’+sin ' tand’sina’; %’=sin o’ cosa’.
Differentiating (vi) with regard to o' and regarding a, 8, £, » a8 constants
we have from (vii)
cos & g-b-:=ooea’sin d
@
whence excluding the case of & =90°
a_al =8in a’.
5o/ =sin d’
Differentiating (ii) with regard to o’
cos &' sin a’ a—a,+sin & cosa’ 3_8:=0
ow Ow
whence after substituting for 93'/de’ we have
?—,= —tan & cosa'.
(]
Differentiating (vi) with regard to £ we have

oosb’g—i=sin @' (—sin 3 8in % sin w +cos 8 cos a cos & — cos 3 sin a sin £ cos w)
=gin o’ cos &' cos o’
whence or 8in ' cos a’
ok )
Finally differentiating (iii) with regard to & and substituting the value
just found for 0¥’ /ok
O=cos 8’ co8 w’ 8in o’ cos a’+8in &' 8in o' 8in a’8in @’ cos a’ o
—cos & 8in w’ cosa’ 3—2

whence %1=cos ' +8in o’ tan 8’ sina’.

Ex.9. Show that notwithstanding the precessional movement the celestial
equator always touches two fixed small circles.

Ex. 10. If there be a change in the obliquity Aw without any change in
o prove that
cO8 a co8 §=co8 ay oS &,
8in a cos 3 =sin ay co8 8, 08 Aw — 8in &) 8in Aw,
8in 3=8in a, co8 &, sin Aw +8in 3, cos Aw,
where a, 8, and aqq, 3, are the right ascension and declination of a star as
affected and unaffected respectively by the alteration.
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Ex. 11. Let a, 8 be the right ascension and declination of a star at a given
epoch, £ the constant of precession, and w the obliquity of the ecliptic.

If A denote the expression sinwsind+coswcosdsina and B denote
cos a cos 8, then after ¢ years the values of these expressions for the same
star will be

A cos kt+ Bsin kt, and Bcos kt— A4 sin kt.

Also if the declination change to &8 in this period,

8in 8 —sin & =sinw {4 (1 —cos kt)— Bsin kz}.

[Coll. Exam. 1901.]
We note that

(8in o 8in 8 4 cos @ cos 8 8in a)?+ (cos a cos 3)?
is an invariant so far as precession is concerned and it is easy to see that
this expression is always the square of the cosine of the latitude. The
expression ’

8in 8 cos w —cos 8 sin a 8in @

being the sine of the latitude is of course also an invariant, and from this
circumstance Formula (iii) might have been at once written down.

Ex. 12. Show that, owing to precession, the R.A. of a star at a greater
distance than 23}° from the pole of the ecliptic will undergo all possible
changes, but that the R.a. of a star at a less distance than 23}° will always
be greater than 12 hours.

If z=tan 44, then from (ii) and (vii) we obtain .

2% (2 8in 3 8in o CO8 w + 08 3 8in a cos 2w — tan a’ cos 8 cos a)

- 2z (cos 8 cos a cos w+ tan a’ sin 3 8in w +tan a’ cos 88in a cos )

+tana’cos3cosa—cos dsina=0,
the condition that this quadratic shall have real roots is easily seen to be

tan3 a’ cos? B8+ cos? w —8in2 8>0,
where 8 is the latitude of the star, If 8<(90°—w) a real value of & can be
found for every value of a’.
We have also (Ex. 11)
8in &’ cos w — cos 8 sina’ sin @ =sin B.

If B> (90° - ») we must have sin o’ always negative.

*Ex. 13. Let 2, 7, z be the coordinates of a star referred to rectangular
axes, the axis of z through the vernal equinox, the axis of y at right angles to
it in the plane of the equator, the axis of z the polar axis of the earth.
Assume that the ecliptic is fixed, and that precession may be represented as
arevolution of the pole cf the equator round the pole of the ecliptic at an
angular rate ¢. After an interval of ¢ years let the coordinates of the star,
referred to the new positions of the axes, be & 5, (.

Show that the relations between the two sets of coordinates are

§=xcos gt — ycos w 8in gt —z8in w 8in g?,
n=2 co8 w 8in gt +y (cos? w cos ¢t +8in? w) +2 cos w sin w (cos g¢—1),
{=x8in o 8in gt +¥ cos » 8in w (cos g¢— 1) +2 (sin? w cos g¢+cos? w),
where o is the obliquity of the ecliptic.
[Prof. H. H. Turner, Monthly Notices, R.A.8. LX. 207.]
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We have
2=cos § cos a, é=cosd cosa’
y=cos 8 sin q, n=cos §'sina’,
z=sin g, {=sin &

Hence putting £=g¢g¢ and letting o'=w the results follow at once from (ii),
(vi), (vii).

*Ex. 14. Supposing the pole of an orbit progresses with uniform velocity
in a small circle, find on what great circles the motion of the nodes is
(1) uniform, (2) continuous but variable, (3) oscillatory; and show that in
the last case the progressive motion of the node takes longer than the
regressive.

Let o’ be the radius 390° of the circle described by the moving pole P about
the fixed point P). Then the great circle ¢ of which P is pole intersects C, of
which P, is pole at the constant angle »’. The node moves uniformly along C,
and there is no other great circle except C, on which the node moves uniformly.
Draw two small circles C; and C; parallel to C, and on opposite sides of it at
the constant distance «’ from C,. Then as no point on € can be at a distance

Fi1e. 60.

from C, greater than o' we see that all the points on C must be confined to
the zone Z between C; and C;. Hence all possible nodes of € with any other
circle O are limited to this zone Z.

The circle C is intersected by its consecutive position at its points of
contact with C; and C;. Hence if the node in which C intersects any other
circle O be stationary that node must lie on either C; or C;.

If the node in which a fixed circle O is intersected by C is to advance
continuously it must not become stationary at any point, and consequently
0 must have no real intersections with €y and C,; it must therefore be confined
within the zone Z.

If O be not confined within Z then the nodes can only oscillate, for ay we
have seen that the nodes lie within Z it follows that they can never enter
the portions of O exterior to Z, and consequently each node must oscillate in
one of the two arcs intercepted on 0 by Z.

Let 7T} and T} be the points of contact of C' with C; and C; and let O and
0, be the points in which an arc of O terminates in C; and C;. Let the arc
from O, to O3 make an acute angle with that direction in which the nodes of
C on C, are moving. When 7} becomes coincident with O; then direct
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motion of the node will be commencing on 0,0;. But this will not be
completed till 7% becomes coincident with O,, and for this ¢ will have to
be turned more than half-way round, 7.e. the direct oscillation takes more than
half the whole period of C. But after 7} has passed O; then the retrograde
motion commences, and it will be finished when 7' again reaches 0, and
therefore requires less than half the complete revolution.

We can also investigate the question thus. Let H'FH (Fig. 60) be the
circle Co, HN be C and FN be 0. Then from the triangle FHN we have by

§1(6)

cos a sin £+8in a cos £ cos w—sin acot &’ 8in 0=0 ............ @i).

_ To find the corresponding changes of a and ¥ we differentiate, treating » and
»’ as constant, and obtain

Aa _ cos a cos k¥ —8in a sin ¥ cos »
Ak~ sinasin & —cos a cos k£ cos w+cos a cot o' 8in o

If N is a stationary node then cosacosk—sinasinkcosw=0 or HN=90°,
which means that o’ is the perpendicular from & on FH, this being of course
the same condition as that A shall liec on ;. We hence find that
cos £=tan o’ cot , and thus we see that H moves over an arc 2k, while the
node retrogrades from the stationary node &' on C; to N. As tano’cot o is
positive in the case represented we have £<90° and 2£ is less than half the
circumference, so that the regression of the nodes in the oscillatory movement
takes less time than the progression.

*Ex. 15. On account of precession the interval between two passages of
a given meridian through the same star differs from a mean sidereal day. If
the colatitude of the star be less than that of the pole, show that this
difference will vanish when the difference of longitudes of the pole and star is

_, tan (colat. of star)
tan (colat. of pole)”

*Ex. 16. If p, be the position angle of the smaller component of a double
star at the epoch 7Y, show that if the effect of precession only be considered,
the position angle p at any other epoch 7' will be given by the equation

P=po+0"3342 (T - To) sin asec$,
where a, 3 are the R.A. and decl. of the principal star of the pair and where 7'
and T, are expressed in years.

68. Movement of the first point of Aries on the ecliptic.

In consequence of precession and nutation the intersection of
the equator and ecliptic, which we call the first point of Aries
("), is in motion on the ecliptic supposed fixed. Its position is
therefore a function of the time, and if Q be the distance of 7
measured from some fixed point O on the ecliptic we may write

Q=a+bt+ P
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In this equation ¢ is the time measured from some fixed epoch
and a and b are constants, while P consists of periodic terms only.
These terms contain ¢ in the expressions of angles which enter P
solely by their sines and cosines. There is thus a fundamental
difference between the quantities b¢ and P; the former is capable
of indefinite increase in proportion to the time, and b is in fact the
constant of precession. The value of P, on the other hand, is
restricted between limits—it can never become greater than some
quantity + P, nor less than — P, where P, is a finite quantity.
The quantity P is the nutation by which Q fluctuates about the
uniformly moving position it would have if the nutation were
absent.

Let N be a point moving uniformly on the ecliptic 8o that its
distance from O at any time ¢ is represented by a +bt. T will be
sometimes in advance of N and sometimes behind N, but the
distance "N can never exceed P,. The movement of " will be
the same on the average as that of N, and consequently N may
be regarded as the mean vernal equinoctial point which moves
uniformly along the ecliptic and in the immediate neighbourhood
of which the first point of Aries is always to be found.

As the longitude of a star is measured from 7 along the
ecliptic it is clear that the longitude must be generally increasing
by the motion of T even though the star itself be devoid of proper
motion. Introducing the numerical valuest of the principal terms
we have the following expression for the true longitude \ of a star
on the ecliptic

A =N+ 50”26t —17"235sin & — 1”27 sin 2L,
where

A, is the longitude of the star at the beginning of the year
with reference to N ;

t is the fraction of the year which has elapsed at the time
under consideration ;

8 is the geocentric longitude of the moon’s ascending node;

L is the sun’s mean longitude which for our present purpose
may with sufficient accuracy be regarded as the sun’s
true geocentric longitude.

+ The values of the coefficients in this expression were adopted by a conference
of astronomers which met in Paris in May 1896 and are those now used in the
Nautical Almanaoc.
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The second term in the expression of A\ is due to preces-
sion. It corresponds to an annual increase of 50”26 in the
longitude of the star. As this term contains ¢ as a factor, it
is capable of indefinite increase and may become by far the most
important of the three variable terms.

The third term involves 8, the longitude of the moon’s
ascending node on the eclipticc. This term may make the
longitude of the first point of Aries vary from +177235 to
— 17235 on either side of its mean value. As the moon’s nodes
revolve round the ecliptic in about 184 years, nutation causes T to
be in advance of its mean place for about 9 years and then to be
behind its mean place for about 9 years. The last term is the
nutation in longitude due to the sun, it is expressed in terms of L
the mean longitude of the sun, and has a period of about six months.

Besides its effect on longitude, nutation has also a periodic
effect on the obliquity of the ecliptic so that to find the true
obliquity at any given time the mean obliquity for the beginning
of the year must be increased by 9”21 cos 8 +0"55cos2L. We
should here remember that there is another minute variation in
the obliquity of the ecliptic namely that due to the planetary
precession (§ 56). The whole amount of the variation so caused is
a diminution at the rate of 0468 per annnm.

The joint effect of the nutation (omitting the small terms)
and the planetary precession gives for the date 7' the following
value for the obliquity of the ecliptict: g

23° 27 358 — 0468 (T — 1910) + 9“21 cos & + 0755 cos 2L.

The last two terms represent the nutation with sufficient
accuracy for almost every purpose. The complete expression
is given in the ephemeris. (See Ex. 5.)

Ex. 1. Newcomb’s value of the constant of Precession as used in N. 4.

(see p. v) is
50" 2453 + 0-0002225¢,

where ¢ is the interval in years from 18500.
Show that this gives 50":2584 for the constant of precession in 1909.

+ The following values of the mean obliguity for the eight equidistant epochs
from 1750 to 2100 are given by Newcomb, Spherical Astronomy, p. 238 :

1760 23° 28’ 1851 1950 23° 26’ 44"-84
1800 23 27 55 ‘10 2000 23 26 21 ‘41
1850 23 27 381 ‘68 2050 28 25 57 99

1900 23 27 8 -26 2100 23 25 34 ‘56
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Ex. 2. If the origin of longitudes is the position of the mean equinoctial
point at 19080, find the longitude of the first point of Aries and the obliquity
of the ecliptic on June 29, 1908, being given that & =94°-9, L=97°, and that
t=0493.

Precession in longitude for the interval is 24”8 and the nutation terms
are — 17”1 and +0"3 respectively, so that the answer is 8”0. In like manner
the obliquity is shown to be 23° 27’ 2"-96.

Ex. 3. Show that on 7th November, 1909, the precession in longitude
from the beginning of the year is 42”7 and the nutation is —17”-3, being
given that £=226>1 and & =68°7.

Ex. 4. If 23°27 4”04 be the mean value of the obliquity of the ecliptic
in 19090, show that the apparent value on June 10th, 1909, when & =766
and L="1782, will be 23° 27’ 5":48.

*Ex. 5. If the nutation of the obliquity of the ecliptic Aw is computed
from the more complete expression (V.4. 1910, p. v)
Ao=+9"210cos & —0"090cos2 & +0"551 cos 2L
07009 cos (L~ 78°°6)+0"-022 cos (3L +78°6),
in which & is the longitude of the moon’s ascending node and Z is the mean

longitude of the sun, show that the nutation of the obliquity on 1st May,
1909, is 41”97, being given 8 =787 and L=38""8.

*Ex. 6. If the nutation of longitude AL is computed from the more
complete expression (N.4. 1910, p. v)

AL= -17"2358in & +0"°2098in2 & — 1"-270sin 2L
407107 sin (L +74°3) — 0”05 sin (3L +78°6),

show that its value on 27 December, 1909, is — 15”37, being given & =66°00
and L=2756"33.

*59. The independent day numbers.

Even if a star is devoid of any proper motion (§ 60), as we
shall at present suppose to be the case, its coordinates must be
continually altering by precession and nutation. We may now
assume that the ecliptic is a fixed circle and the mean equinoctial
point is defined as moving uniformly on the ecliptic so that its
average distance from the first point of Aries is zero. The mean
equator at the date 7' intersects the ecliptic at the mean equi-
noctial point and as above explained is inclined to the ecliptic at
the angle

23° 27’ 83”58 — 07468 (T'— 1910).

By the mean right ascension and declination of a star we are

to understand the R.A. and declination of that star as referred to
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the mean equator at the commencement of the year. The problem
now before us is to determine o', &’ the apparent coordinates of
a star on any particular day when we are given its mean coordinates
a and 8 for the year in which that day is contained.

The general formule (vi), (ii), (vii) of § 57 will provide us with
the required equations and for our present purpose we may regard
both % and o —» as small quantities whose squares or product
may be neglected. Under these circumstances the equations
reduce to

sin &' = 8in & + s8in £ sin » cos & cos a + 8in (0’ — w) cos S sin a,
cos &’ cos a’ = cos & cos a — sin k sin w sin & — sin k cos w cos & sin a,
cos &’ sin a’ = cos § sin a + sin & cos w cos 8 cos a — sin (" — w) sin 8.
From which we obtain
cos & sin (a' — &) = sin k (cos w cos 8 + sin w sin 8 sin a)
—sin (o’ — w)sin § cos a,
2sin 4 (8 — &) =sin ksin w cos a + sin (0’ — w) sin a.
We thus have approxlmately, if @' —a be expressed in seconds of
time and & —§, k, o'— w in seconds of arc,
a —a={kcosw + { {ksin wsin a — (0’ — w) cos a} tan 8} .
& —-8=ksinwcosa+ (o' —w)sina -0

We now assume three new quantities f; g, G determined by
the equations

S=tkcosw; gcos@=ksinw; gsinG=— (o - w)...(ii),
and the equations (i) become

a'—a=f+ {gsin(G + a) tan §
&—8=gcos(G+a) }

It will be observed that f, g, G are independent of the co-
ordinates of the star, they only vary with the day of the year
and they are called the independent day numbers.

To facilitate the computation of the effects of precession and
nutation upon the coordinates of a star, tables are provided
in the ephemeris in which the values of the independent day
numbers will be found for each day of the year. The accurate
formule are given each year in the ephemeris (see for example
N.A. 1910, p. 233) by which the computation of the day numbers
/5 9, G as well as other day numbers to which we have not as yet
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referred is to be effected. So far as we are at present concerned
the following approximate equations will suffice

S={xcosw (50”26t —17"2sin R — 1”3 sin 2L)
= 3073 (t — 0342 sin 8 —0025 sin 2L)
gcos G =sin w (50726t —17"28in8—1"38in 2L) }...(iv).
=20"05 (¢t — 0-342 sin & — 0°025 sin 2L) )
gsin G=—9"2cosg—0"6 cos 2L

In these equations L and & are (as on p. 186) the sun’s mean
longitude and the longitude of the moon’s ascending node on the
ecliptic.

The time ¢ is the fractional part of the year which has elapsed
since the commencement of the yeart.

We can obtain the annual precession in R.A. and declination .
directly from formule (iii) by writing instead of f, g, G the values
of those quantities that would be derived from formule (iv) if we
omitted the terms due to nutation. We thus substitute in (iii)
3073t for f, 20”05t for g and zero for G, and find for the star a, &
that as in Ex. 1, § 57

one year's precession in R.A. changes a into

a+3*073 +1°°336 sin atan § ™
eee(V).
» Decl. changes & into

8+ 20705 cosa

We are now able to solve the general problem of precession and
nutation which may be stated as follows.

Being given a,, 8, the mean R.A. and decl. of a star at the
beginning of the year T, it is required to find ;, &, the apparent
R.A. and decl. of the same star for a certain day in the year T so
far as precession and nutation are concerned.

We have first to find the coordinates of the star referred to the
mean equator on Jan. 1st in the year T} (> T;). These are obtained
by adding to the given mean R. A. and Decl. the following precessions

» »

+ It should be noted that if the strictest accuracy is required the beginning of
the year is taken to be the moment when the sun’s mean longitude is exactly 280°.
In the year 1910 this is at 5" 40™ a.m. on Jan. 1st which may also be expressed as
Jan. 04-735. For the Greenwich mean time of the beginning of each adopted
tropical year between the dates 1900 and 2000, see Appendix to Newcomb's
Spherical Astronomy, p. 403, where other useful tables will also be found.
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Precession in R.A. (3*073 4+ 1*:336 sin a, tan &,) (T, — T,),
” » Decl. (20705 cos a,) (T, — T}).

Having thus obtained the mean place for Jan. 1st in the year
T, we obtain from the ephemeris for that year the values f;, g,, G,
for the particular day for which the coordinates a,, 8, are required
and apply formule (iii), which give

a, = a, +(3*073 + 1*:336 siu a, tan §,) (T}, — T},)
+/i+ kgi8in (G, + a,) tan §, .. (vil).
8, =8, + 20”05 cos ay (T} — T\) + g, cos (G4 + a,)

As an example of the application of these formule we shall
calculate the apparent R.A. and Decl. of 8 Geminorum at Green-
wich mean midnight on 1910, Nov. 7th, so far as precession and
nutation are concerned $.

In the Greenwich second Ten-Year Catalogue of 6892 stars
we find for the mean place of 8 Geminorum for 1890

a=T" 38 35°06, &=28°17" 28"4.

Substituting these values in 3*°073 + 1°:336 sin a tan § we see
that the annual precession is 3*727 so that as T)— T, is in this
case 20 years the precession in R.A. from the mean place for 1890
to the mean place for 1910 is 1™ 14*54. In like manner the
annual precession in declination is 20”05 cos a = — 8”36 so that
in 20 years it amounts to — (2’ 47"2). Thus we see that the
mean place of 8 Geminorum for 1910 is

a="T" 39™ 4960, &=28°14" 41”2

We have now to apply the corrections for giving the apparent
place on 1910, Nov. 7th. From the N.4. p. 250 we obtain for
that day
f=175 logg=11099, @G =332°10.

The equivalent of a in arc is 114° 57’ 24” so that G + a =87° 7/,
wheuce g sin (G + a) tan 8 = 0°°46 and thus the correction to a
is 1°75 + 0*46 = 2*21. The correction to & is g cos (G + a)=0"7
so that we have finally for the desired apparent place on 1910,

Nov. 7th
o =70 39™ 51°81, & =28° 14’ 41"9.

+ See N.4. 1910, p. 583, where the further corrections for aberration and
proper motion are also attended to. See also Chap. x1, § 91.
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If at the time ¢=0, a, be the right ascension with reference
to the mean equinox of a star on the equator then the true
right ascension of that star at the time ¢ (when ¢ is expressed in
years) will be so far as the motion of 7 is concerned

a=a,+ 3**073t —1°06 sin & — 0*"08 sin 2L.

In this formula 3°°073 is the annunal change in R.A. due to pre-
cession and the first two terms form the mean right ascension
at the time t. The last two terms are due to nutation. We
thus see that the variations of the right ascension of an equa-
torial star from its mean value are comprised between the limits
+1*14 and —1*14. So far as concerns the principal term of the
nutation a complete cycle of the possible changes is run through
in 18} years, this being, as already mentioned, the period in which
& increases through an angle of 360°.

Let AR and AL be the daily changes in the longitude of the
moon’s node and in the sun’s mean longitude respectively, then
the daily change in T due to nutation is

—1*06cosg.AR—0%16 cos 2L.AL.

The values of AR and AL expressed in radians are approximately
— 0000927 and 00172, and consequently the diurnal change in T
is very nearly

0°-001 cos g — 0°-003 cos 2L.
This expression must lie between the limits — 0°°004 and + 0*004
and consequently the difference between any sidereal day and the
mean sidereal day cannot exceed 0°-004 (excess or defect).

We have already (§ 33) defined the sidereal day as the interval
between two successive trausits of T, and now it appears that
owing to the fact that the movement of 1 is not absolutely uniform
all sidereal days would not be strictly equal. It might therefore be
thought that we should distinguish the average sidereal day from
the apparent sidereal day included between two transits of T, and
therefore slightly variable. We are reminded of the distinction
between the apparent solar day and the mean solar day to be
subsequently considered, but there is no real analogy. The
difference between two apparent solar days in the same year
may be several thousand times as much as the greatest difference
between two sidereal days (see p. 215).

If we had an ideally perfect clock which would keep time
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without any correction whatever for 184 years, so that throughout
that period the hands showed 0" 0™ 0* at the completion of each
average sidereal day, then " would culminate daily for 18} years
at various clock times which would lie between 23" 59= 58°-86
and O® 0™ 1*14. But as even the best clocks require frequent
correction by comparison with observation, the errors arising
between one correction and the next, and attributable to the
irregularities in 7" are neglected because they are inappreciable in
comparison with the other sources of ‘error. Thus we define the
sidereal day as commencing with the culmination of the true first
point of Aries.

To illustrate the actual extent of the influence of the move-
ment of .7 on the measurement of sidereal time we take the case
of 1909, June 10 .and 20. On the first date the ephemeris gives
for the nutation — 1*05 and on the second —1*°02. Assuming all
other sources of error absent this would be equivalent to a daily
clock rate averaging ‘003 secs. So small a quantity would be
. masked by the much larger changes in the rate of the clock
arising from ordinary mechanical or climatic causes. Nor would
the error arising from the irregularity of 7 accumulate, for on
Oct. 18 the nutation is again —1%05, so that from June 10 to
Oct. 18 the average apparent change of rate of the clock from
this cause would be zero.

Thus the frequent determination of the error of the clock will
obviate not only the small irregularities unavoidable in a piece
of mechanism however carefully made, but will at the same time
allow us to assume that the sidereal time as shown by the clock
after the correction has been applied is with all needful accuracy
the hour angle of the first point of Aries.

It will be useful to investigate the effects of precession and
nutation on the place of a star in another manner as follows.

As the longitude of a star is measured from the first point
of Aries the precessional movement of the equator will alter the
longitude of a star while its latitude remains unaltered. Thus if
A be the longitude of a star at any time, and if the first point of
Aries move so that the longitude of the star becomes A+ AX,
while at the same time the obliquity @ becomes » + Aw, we have
the two following systems of equations. Of these (i), (ii), (iii) give
the values of a and 8 at the first Epoch, and then (iv), (v),(vi) give

B. A. 13
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Aa and A8 by which the coordinates are changed by precession
in the interval

cos dsin a = sin A cos B cos w — 8in Bsin w......... (1),
€o83COSA=COSACOS B ..cvvvvirrnienninnnnninannnns (i1),
sind =sinAcos Bsinw +sinBcosw ...... (ii1),

and
cos (8 + A8) sin (« + Aa) = sin (A + AX)cos B cos (0 + Aw)
. —sin Bsin(w + Aw)...(iv),
cos (8 + Ad)cos(a+ Aa)=cos(A+ Ar)cos B ....cccevenrnnenen (v),
sin (8 + A8) = sin (X + A\) cos 8 sin (o + Aw)
+ sin B cos(w + Aw)...(vi).
These equations determine Aa and A8 when A\ and Aw are given,
and the solution is effected without ambiguity in the most general
case. But in the case of most general use in astronomy the four
quantities A\, Aw, Aa, Ad are all small quantities, and we proceed
directly as follows.
Differentiating (iii) and dividing by cos 8 (for we need not
consider the case of 8§ =90°) we have after a slight reduction
A8 =cos asin wAX + sin aAw;
also differentiating (i) and dividing by cos 8
cos aAa — tan 8 8in aAd = cos a cos wA\ — tan $Aw,

we thus obtain the following results by which the effects of pre-
cession and nutation on right ascensions and declinations can be
calculated with sufficient precision for most purposes.

If the position of the first point of Arvies be displaced along
the ecliptic so that all longitudes are increased by the small
quantity A, and if the obliquity be increased by a small angle
Aw, then the corresponding changes, Aa and A$, in the right
ascension and declination of a star are given by

Aa =(cos w + sin a tan & sin ) AN — tan 8 cos aAw,
Ad = cosasin AN + sin aAw.

Ex. 1. Show that on any given day the stars whose declination are
increased by precession are divided from those whose declination is diminished
by precession by a great circle the stars on which have on that day no
precession in declination.

For if cos (G'+a)=0 then all stars whose R.A. i8 90° — G or 270° — ¢/ are
unchanged as to declination by precession.
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Ex. 2. Show how the independent day numbers will enable the apparent
obliquity of the ecliptic to be readily computed.

From (ii) § 59 we have gsin = — (o'~ ) and therefore o'=w—gsin G.

For example on March 2nd, 1910, we find, V. 4. p. 245, that log g=0-7232
and G=243° 49, hence gsin G=-4"-74, and consequently as the mean
obliquity 19100, N.4. p. 1, is 23° 27’ 3”58 the obliquity when corrected for
nutation is 23° 27 8”-32. As however the mean obliquity steadily diminishes
by 07468 annually we must further apply a reduction of 0”08 so that the
apparent obliquity on March 2nd is 23° 27° 824 as in N. 4. p. 217.

Ex. 3. Show how to compute from the independent day numbers the
position of T the apparent equinoctial point on the ecliptic with respect to
the mean equinoctial point T, at the beginning of the year.

T, is the quantity # which we see from § 59 (ii) is (225/2+ g% cos? G)}.
For example 1910, Dec. 25th (midnight) we have f=2'274, logg = 12018,
(=338 47° (N. A. p. 251), whence £=37"20.

Ex. 4. Show that —6%30 is the annual precession in right ascension of
¢ Ursae minoris, being given that a=16" 56m 12*; 3=82° 12’ (1900).

Ex. 5. Explain how to find out, by the aid of a celestial globe, what
constellations visible in the latitude of Cambridge 2000 years ago are no
longer visible there; and indicate in what part of the heavens they lie.

[Math. Trip. I.]

60. Proper motions of stars. Besides those changes in
right ascension and declination which arise from changes in the
great circles to which the coordinates of the star are referred there
are in the case of many stars real changes of place arising from
the actual movements of the stars themselves. Such changes are
called proper motions. The star in the northern hemisphere with
the largest known motion of this kind is a small star of 65
magnitude in the constellation Canes Venatici. It bears the
number 1830 in Groombridge’s catalogue and its coordinates for
1900 are

a=11" 4722, &=+ 38° 26"
This star moves over an arc of 7” annually, and as its distance is
also known it can be shown that its velocity must be not less than
150 miles per second. This motion is exceeded by that of a small
star (magnitude 85) in the southern hemisphere, which was dis-
covered by Kapteyn and Innes to have a proper motion of 8”7
annually : its coordinates for 19000 are

a=35"7T"7, 8§=—-45"3.
13—2
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Among the bright stars the largest proper motion is that of
a Centauri {a = 14% 32™°8, § = — 60° 25’ (1900)} which amounts to
3”7 annually and it is so directed as to produce an annual change
— 0%49 in RA. and +0”'7 in Declination. Arcturus {a=14" 1171,
8=+19° 42’ (1900)} has a proper motion of 2“3 per annum, cor-
responding to a speed of 257 miles per second, and the annual
effect on the R.A. is —0°08 and in decl. — 2”0. In giving the
apparent places of the stars throughout the year in the ephemeris
the proper motion, if appreciable, is of course taken into account.

The proper motions just referred to are those which affect the
coordinates of a star on the celestial sphere. If a star is moving
in the line of sight the spherical coordinates are not changed by
that motion and the existence of such a motion can be deduced
only from spectroscopic observations. Thus Groombridge 1830, is
found to be approaching our system at the rate of 59 miles per
second. We have already seen that the tangential speed of this
star is 150 miles per second so that its total velocity in space
relation to the sun appears to be about 160 miles per second.

61. Variations in terrestrial latitudes. The axis about
which the earth rotates was found by Kiistner to be affected by a
small motion with respect to the earth. The effect of such a
change in the earth’s axis is to alter the positions of the terrestrial
pvles and consequently of the terrestrial equator, and hence the
latitude of any point on the earth’s surface undergoes changes
not due to actual motion in the point, but to changes in the base
from which the latitudes are measured. The first systematic in-
vestigation of this subject was made in 1891 by Chandler, who
showed that the observed changes in latitude could apparently be
explained by the supposition that the pole of the earth described
a circle with a radius of thirty feet in a period of about fourteen
months. Later investigations by Chandler himself and others,
while substantiating the general fact that the pole is in move-
ment, have shown that the character of that movement is not
quite so simple as had been at first supposed. We reproduce here
the diagram (Fig. 61) given by Professor Albrecht in Astrono-
mische Nachrichten, Nr. 4187, as a provisional result of the work
of the International Geodetic Association. Reference may also be
made to an account given by Mr Sidney D. Townley in the Publi-
cations of the Astronomical Society of the Pacific, Vol. XIX. p. 152.
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In this diagram the origin at the centre of the figure is the
mean position of the north pole in the earth, and the points
marked on the curves indicate the actual positions of the pole
at the corresponding dates. Thus for example the curve nearest
the centre shows the movement of the pole from 18999 to 1901-0,
from whence it can be traced forward in its various convolutions
up to 1907-0. It will be seen that the positions of the pole are
included within a square, each side of which subtends about 0”50
at the earth’s centre. The movements of the pole during the six
years are thus comprised within a square of which the sides are
not more than 50 feet. The individual positions are no doubt
subject to considerable uncertainty.
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EXERCISES ON CHAPTER VIIL

Ex. 1. Assuming that the constant of precession is 50”2453 + 0"-0002325¢
where ¢ is the interval in years from 18500, find the number of years that
must elapse before T makes a complete circuit of the ecliptic.

Integrating we find the movement of 7" in ¢ years and if x be the number

sought we have
5024532 + 00001112523 = 1296000,

Of the two roots of this quadratic one is negative and irrelevant, the other
root is 24468 or in round numbers 24,500.

*Ex. 2. Show that the points on the celestial sphere where the correction
to R.A. for precession and nutation is zero on any given day lie on the cone

F(23 497+ hygz (@sin G+ cos §) =0,
where the origin is at the sun’s centre and the axes +.X, +¥, +Z pass re-
spectively through the points whose R.A. and 8 are (0°, 0°) ; (90°, 0°), (0°, 90°)
and where f, g, G are the independent day numbers for the day in question.
If the nutation be omitted deduce Ex. 6, § 57.

Ex. 3. Neglecting nutation show that the interval between two successive
returns of the star (a, 3) to the meridian will exceed by 0000366 sin a tan 3
the sidereal day as defined by successive transits of T, it being supposed
that the star has no proper motion.

Ex. 4. The right ascension of a star on the ecliptic'is g, its declination 8,
its longitude /. The precessions in right ascension, declination, and longitude
are respectively o', &, I'. Prove the relations

& cot 8=10'cotl{=u’ cot a cos?d.
[Coll. Exam.]

Ex. 5. The stars on the celestial sphere regarded as a rigid system are
supposed to be subjected to three rotations as follows.

(1) Through a small angle n round T as nole,
(2) ”» ”» ” ” e » B ” ”»
(3) ” ” ” ” c ” P ” ”
where P is the north pole and B the point a=90°, 8=0.
Show that if Aa, A3 are the changes thus produced in the a and 8 of
a star, then
Aa= —ncosatand - £sinatand+(,
A8= psina-§cosa.
This is proved most easily by infinitesimal geometry each of the three
rotations being considered separately.

*Ex. 6. Show that the apparent place of the equator as affected by pre-
cession and nutation at any date 7' during the year can be obtained by
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applying to the position of the equator at the commencement of the year
the three following rotations.

(1) Through the small angle gsin ¢ round T as nole,

(2) ” ”» ” ” gcos G ” B ” ”

3 ”» ” » o» - 15f w Py oy
where P is the north pole and B the point a=90°, 3=0.

The point where T was situated at the commencement of the year has as

its coordinates with respect to the equator of the date 7, o'=15f; 8 =gcos G
where f is expressed in seconds of time. In like manner the point B at the
beginning of the year has as its coordinates with respect to the equator at
time 7, a'=90°+15f, &= —gsin G. It is obvious from geometry that rota-
tions g sin G, g cos G, - 15f round noles T, B, P will convey the two points
in question from the equator at the beginning of the year to the equator at
the date 7.

Ex. 7. Show geometrically that the effect of precession and nutation
upon the R.A. and decl. of the stars during an interval ¢ is equivalent to
that produced by rotating the celestial sphere (i.e. the sphere containing the
stars but not the circles of reference), about a diameter passing through the
point whose longitude is zero and latitude is

tan—! (fi‘téé

Aw ’

the angle of rotation being

{(pt+aLlp+{aoph,
and its direction retrograde, where p is the constant of precession, and AL, Aw
are the nutations in longitude and obliquity respectively.

The effect of precession and nutation in longitude could be produced by
rotating the celestial sphere round P the pole of the ecliptic through the
angle pt+AL= VPV, (Fig. 62). Thus any point R on PV is conveyed to R,
on PV,. The direction of this rotation is determined by the necessity that

P

V), 8

Fic. 62.
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it shall increase the longitude of each point. To effect the change arising
from the increase of @ by the nutation Aw the celestial sphere is to be
rotated round V. The movement of the equator through the angle Aw
increases the angle between the ecliptic V.S and the equator while the
ecliptic remains fixed. The effect will be the same as if all points had
an anti-clockwise rotation Aw round V. Each point on PV, will be moved
to the left and there will be some point R, which will be moved back to its
original place R. Thus so far as this point is concerned the two rotations
neutralize. The two rotations round V and P will therefore compound into
one rotation about R.
If 6 be the latitude of R, then VR=6 and

RR,=(pt+AL)cos §=Aonsiné,

whence tan §=(pt+AL)/Aw, and as the component rotations are at right
angles the resultant is the square root of the sum of their squares, t.c.

J(i+ ALFF(BaY.

Ex. 8. Show that on a given day the greatest displacement of apparent
position which a star can have by precession and nutation is
N(pt+ AL+ (a0)?,
that all stars which have this displacement must lie on & great circle, whose
equation is
cos a c08 8 Aw + (8in 3 cos w — sin a cos 3 8in ) (pt+AL)=0,
and finally that the displaced position lies also on the same great circle.
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62. Sidereal time.

We have already seen (Ex. 1, p. 198) that in the course of about
24,500 years T accomplishes a complete revolution of the heavens,
and in such a direction that in this period the stars have made
one complete apparent revolution less than T The duration of
the earth’s rotation bears to the sidereal day (§ 33) the ratio of
24,500 years + 1 day to 24,500 years. Thus the period of rotation
of the earth exceeds by about one hundredth of a second the
sidereal day as actually used in the observatory. It has been
pointed out (§ 59) that the variations in the length of the sidereal
day, due to the irregularities in the motion of T, are too small to
be perceptible.

The sidereal clock, by which we mean a clock regulated
to keep sidereal time, carries a dial divided into 24 equal spaces
by figures marked 0 to 23. When 7 is on the meridian of the
observer, then if the sidereal clock has no error it will show
0" 0™ 0%, and if in addition the rate of the clock is correct it will
again show 0" 0™ 0* when %' returns to the meridian.
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The special convenience of sidereal time in the observatory is
due to the fact that, subject to certain small corrections, the same
star crosses the meridian each day at the same sidereal time t.

Ex. 1. If the proper motion by which a star shifts its place on the
celestial sphere amounts to p seconds of arc annually, show that so far as this
is concerned the interval between two successive transits of this star could
never differ from a sidereal day by more than -00018p sec 8 seconds, where
3 is the declination of the star.

Ex. 2. If the distance of the first point of Aries measured from a fixed
equatorial star is
p+qt+ A cos mt+ Bsin mt,

where p, ¢, 4, m, B are constants and where ¢ is the time expressed in years,
show that the interval between two successive upper transits of the first point.
of Aries will have as its extreme limits

24h 4+ ¥ A2+ B3[36624 and 24" — m v A%+ B/366-24.
Let ¢ be a moment of culmmatlon of T, then the next culmination will
'366 % The distance of T from its original
position will have changed by the amount

take place approximately at ¢+ ——

pr+g (t’ 366° 24)+A cos mt' —mA 366245"“7“'

+ B sin mt +mB366 21 cos mt

—(p+qt + A cos m¢t' + Bsinmt').
Of this the periodic part is 3%1(B cosmt — 4 sinmt’), and there is no

L VATEB

value for ¢ which can make this numenca.lly greater than 3 66

63. The setting of the astronomical clock.

The practical method for determining the correction of the
astronomical clock, is, in its simplest form, as follows.

The ephemeris shows for every tenth day the apparent right
ascensions of some hundreds of fundamental stars, so distributed
over the heavens that at every place and at every hour one or
more of these stars is approaching the meridian. The correction of
the clock is obtained by subtracting the clock time of transit over
the meridian as found by observation from the Right Ascension of
the star as deduced by interpolation from the ephemeris. Thus

+ In the ephemeris tables will be found for transforming intervals of sidereal
time into the corresponding intervals of mean time and vice versa.
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the correction is positive when the clock is slow, for an addition
has then to be made to the clock time to obtain the true time.
When the clock is fast the correction is negative. .

Suppose, for example, that an observation of the transit of the
star 8 Eridani is made on 1910, Feb. 10, and that when all due
corrections have been applied we have:

Clock time of transit of 3 Eridani 5b 3™ 4286
Ephemeris gives for the apparent R.A. of 8 Eridani 5 3 256
Correction of clock -0 170

If therefore the correction — 17°0 is applied to any reading of
the clock the correct corresponding time is obtained. Thus at the
moment when the first point of Aries is on the meridian this
clock, which ought to show 0® 0™ 0%, does in fact show 0* 0™ 17*-0.
To obtain greater accuracy the mean of the corrections derived
from a number of fundamental stars should be used.

The rate of the clock is found by comparing the corrections to
the clock found at suitable intervals. Thus suppose

on June 14, at 20® s.T. the correction is + 18°-64,
on June 15, at 21 ,, » " + 20 ‘80.

The rate per day at which the clock has been losing during
the interval is therefore §# x 2°16 = 2°07.

When the rate of the clock is known the difference of Right
Ascensions of two stars is determined by observing the difference
of their times of transit and then applying the correction for the
rate of the clock in the interval.

Thus if the Right Ascension of even one celestial body is known
we can determine, subject to certain qualifications, the Right
Ascensions of other celestial bodies. We have therefore to show
bhow a single fandamental R.A. is to be ascertained, and as the
position of T is determined by the sun’s motion, it is obvious that
the sun must be the body to be observed for this purpose.

If @ be the obliquity of the ecliptic and «, § the R.A. and
Declination of the sun, the centre of which is supposed to be in the

ecliptic, then
sina=1tan 8 Cot @....ouveuevirieninnnnn. ().

We shall assume that o is known (§ 64) and that & has been ob-
served. Then a can be calculated from this equation. If 7 be the
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time of transit as shown by the astronomical clock, then a — 7, the
error of the clock, is known.

As an example of this process we may take the following.

Suppose that on the meridian of Greenwich the clock time of
the transit of the sun on March 28, 1909, is 0® 26™ 49*'2 and the
observed declination of the sun’s centre is 2° 51'1”"3 N. The
obliquity of the ecliptic is known to be 23° 27’ 6”1, and we seek
the correction to the clock. We find the R.A. of the sun at transit
by the formula (i), and the calculation is as follows:

Log tan 2°51'17'3 86971357
log cot 23 27 6 ‘1 03627002
Log sin 0® 26™ 21°7 =9:0598359.
The correction of the clock is therefore
O 26™ 21°-7 — (0O 26™ 49°-2) = — 27*5.

By the application of this correction to any clock time and
allowing for the rate of the clock (assumed constant) the true
corresponding sidereal time is found.

In the following method of finding the right ascension of a
star we shall suppose the effects of precession and nutation to
have been already allowed for.

Let a be the unknown R.A. of a star, and on a certain day at a
_ certain place let ¢, be the interval in sidereal time by which the
transit of the sun precedes the transit of the star. The R.A. of the
sun is therefore a — ¢,, and if 8 be its declination and  the obliquity
of the ecliptic

sin(a—t)=tan 8, cot ® .......cco.e.uunnn. (ii).

On another occasion in the course of the year let the transit of
the sun with declination 8, precede that of the same star by the
time ¢, and we have

sin(@—1t)=tan & COt @ vevvvvnvnnnnn.n.n. (i11),

subtracting these equations and then adding them we easily
deduce

cot {a— 3 (¢, + t,)} =cot ¥ (¢, — ) sin (8, — &;) cosec (8, + &,)...(1v).

Hence from observing &, and & and the time intervals ¢, and ¢,
we have the means of finding a without a previous knowledge
of .
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Ex. 1. If E, be the correction to the astronomical clock at a clock time
T, and if r be the gaining rate of the clock, expressed in seconds per day,
show that the correction to be applied to any clock time 7' to obtain the
true time is Eo— (T — T,)r/24, where T and 7, are expressed in hours.

Ex. 2. On a little shelf attached to the middle of the pendulum of a
mean time clock a number of small equal masses are carried, each just so
heavy that an addition of one to their number causes an increase in the rate
of the clock of one second daily. It is arranged that any small number of
these masses may be placed on the shelf or removed from the shelf while the
clock is going without disturbing the clock’s motion.

If the correction of the clock at noon yesterday was E, seconds and at
noon to-day is Ej, show that the number of the masses to be added to the
shelf at noon to-day to make the clock right at noon to-morrow is 2E; - E,.

Ex. 3. On March 25, 1909, the sun crosses the meridian 5" 34™ 47% before
a Orionis, and on September 17 the sun crosses the meridian 5 47 28¢ after
a Orionis, the corresponding declinations of the sun being +1°40'27" and
+2°24' 37",
Show that the R.A. of a Orionis is approximately 5t 50 14s,
' [Math. Trip. L. 1901.]

64. The obliquity of the ecliptic.

The obliquity of the ecliptic (see p. 187) is found by measure-
ment of the declination of the sun about the time of a solstice. If
this measurement could be made exactly at the time of the solstice
then the obliquity would be equal to this measured declination.
But an observation will not generally be feasible actually at the
moment of the solstice, so the problem we have to consider is how
the obliquity is obtained fromn an observed declination of the sun
about the time of the solstice and at a known Right Ascension.

We have as in last section

tan @ =tan COSEC A ..uvuveuinrenennnnenen. @)
It would at first seem that there could be no more simple
formula than this for the determination of & when & and a are
given. We have however to show that a more practical formula
for the actual calculations can be obtained, even though its form
is more complicated and even though it is only an approximate
formula, while the formula (i) just written is exact.

We have from (i), for the summer solstice,
tan & (1 — sin a)
‘sina+tan*$
= sin & cos § (1 — sin @), since sin « is nearly 1,

whence  w— & =sin 28sin?(45°—4a)cosecl”.................. (1i).

tan (0 — &) =
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This is the proper formula to be used in this calculation, because
in (ii) we are computing not @ but only w —8; and as  is very
nearly equal to & we have only to find the small quantity w — 8.
This will be illustrated by taking a particular case.

On 22 June, 1909, at apparent noon at Greenwich, the sun’s
apparent Declination is 23° 27" 4”:3. Its Right Ascension is
6" 1™ 4329 (=90° 25" 497-35). We now calculate (@ — &) from
formula (ii), using only three decimal places in the logarithms :

Log sin 28 = 9863
Log sin (45° — 4a) =7'574n
’ ” =T7574n
log cosec 1” = 5314
log (@ — 8) =0325 w—8=+2"1

w=23" 27" 6"4.

There would be no advantage in using more than three figures
in the logarithms, for neglect of the remaining figures could by
no possibility make a difference of 0”1 in w. It also appears
that & need be taken to only the nearest minute when log sin 2§
is being written down..

If we attempted to find by using logarithms of three figures
in formula (i) we have

Log tan & = 9637

Log sin a = 0000

Log tan w = 9637
from which it would seem that w may be any angle between
23° 24’ 48” and 23° 27° 42”. Thus we see that while formula (ii)
determines w correctly to 0”1, formula (i) gives a value of  which
may be wrong by nearly 3’, although the same number of decimal
places has been used in the logarithms in each case. A few further
trials will show that the 3-figure logs applied to an approximate
formula (ii) actually give a more correct result than 4, 5 or even
6-figure logs applied to an exact formula (i); and this is true not-
withstanding that formula (ii) has been deduced from formula (i).

Of course (i) must give the accurate result if a sufficient
number of decimal places in the logarithms be employed. For
example, using 7 figures,

Log tan 8 = 96372895
Log sin a = 99999878
Log tan @ = 96373017
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and we obtain the correct result o = 23° 27" 6”*4. This however
cannot be obtained without interpolation even if we employ
Bagay’s tables which give the logarithms of the trigonometrical
functions for each second of arc.

The point here illustrated is important not only in connection
with the determination of the obliquity of the ecliptic but in other
astronomical problems in which an unknown quantity is sought
and in which a choice of the most suitable formula for the cal-
culation has to be made.

In general we should select a formula which, as in (ii), gives
an expression not exactly for the unknown itself but rather for
the difference between the unknown and a known approximate
value. When such a formula is obtained, troublesome interpola-
tion in the calculation can generally be dispensed with, and a
small number of decimal places suffices in the logarithms.

Ex. 1. Show that near the time of the winter solstice the obliquity of the
ecliptic  is given by the formula =23+ cosec 1" sin 23 sin? (45° +4a), a being
the right ascension and 3 the southern declination of the sun and apply this
formula to show that when 8 =23° 26’582 S. and a=17" 57™ 47%98 (22 Dec.
1907) the obliquity of the ecliptic is 23° 27° 1"*9.

Ex. 2. Prove from the following observation and data that on Jan. 1,
1893, the mean obliquity of the ecliptic was 23° 27" 11736 :—
Observed :—
®’s apparent declination June 19 at apparent noon 23° 26’ 42°90 N.
Extracted from Nautical Almanac :—
©’s apparent R.A. June 19 at apparent noon 5b 52m 52s-11.
©’s apparent latitude June 19 is 0”45 N.
Nutation in obliquity June 19 47"-73.
Secular change in obliquity — 0”476 annually.
[Math. Trip. IL.]

In consequence of the planetary perturbations the earth swerves to a
small extent now to one side of the ecliptic and now to the other, thus the
centre of the sun has apparently a very small latitude 8 which though
generally neglected is taken account of in this question. The value of o on
June 19 is easily seen to be

0=3- 88in o cosec § +sin 23 sin?(45° - 4a) cosec 1".
Introducing the given values we have
»=23° 26’ 4290+ 35”95 =23° 27’ 18”85,
Applying the nutation and the secular change of the obliquity for half a year
we must correct this by —77:73 and +0”-24 and we thus have for the mean
obliquity at the beginning of the year 23° 27’ 11”36 as proposed.
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Ex. 3. If the observed right ascension of the sun be 90°—u, and its
declination 8, find the following formula for the determination of the
obliquity of the ecliptic from observations taken near the solstice
_tan® }u tan® ju
" sinl” sin 2"
where o is the required obliquity, and o — 8 is measured in seconds.

Discuss carefully the following questions arising from the formula:—
(1) A knowledge of the position of the first point of Aries is required in
order to determine . (2) A correction is required for 8 owing to the small
latitude of the sun. (3) The sought quantity » appears on the right-hand
side.

0—-8 sin 2w — sin 4w +...

[Coll. Exam.]

65. Estimation of the accuracy obtainable in the deter-
mination of Right Ascensions.

It is useful to examine the degree of accuracy attainable in
the determination of the origin from which Right Ascensions are
measured. ‘

Let us first suppose that there was an error Aw in the value
of the obliquity of the ecliptic assumed in calculating the R.A. of
the sun from observed values of the Declination. Differentiating
the equation sin a = tan & cot w and regarding & as constant,

cos aAa = — tan § cosec? wAw,
or Aa = — 2 tan a cosec 2wAw.

Substituting in this for o its approximate value 23° 27’, we

have
A= — 274 tan aAw.

We thus see the advantage obtained by making these observa-
tions as nearly as possible at the equinox. The greater is a the
greater becomes Aa for a given value of Aw. As therefore we
want Aw to produce the smallest possible effect on a, we should
have a as small as possible.

Suppose the adopted value of the obliquity were erroneous to
the extent of one second of arc then Aw =1, and if this produce
an error of z seconds of time in a we have Aa = 152, whence

z=-— 0183 tan a.
If then the R.A. 1s to be correct to within 0*1 we must have

tan a 3548 or a $ 1° 54™. This is the R.A. of the sun on the
20th April. Heuce we see that for about a month on either side
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of the equinox this method may be relied on to give the position
of ™ accurately to the tenth part of a second, provided the assumed
value of the obliquity of the ecliptic is known to within a second
of arc. It is, of course, in this assumed that there is no error in
the observed value of the declination.

We must next consider what would have been the effect of an
error in the observed Declination on the concluded value of the
R.A. of the sun.

Differentiating sin a = tan & cot w with respect to a and 8, and
regarding o as constant, we obtain

Aa =sec a sec? § cot wAS.
which may also be written in the form
Aa =sec a (1 + sin® a tan® o) cot @ AS.

As 8 is the measured quantity we must take care to arrange our
observations so that any error A8 (and, of course, such errors are
unavoidable) shall not unduly affect a. The factor cot w is con-
stant, and as the declination of the sun never exceeds w there
will be no great variations in sec*8. As however sec @ may have
any value from 1 to oc it is plain that we must have seca at its
lowest value to keep Az as small as possible, 7.e. @ should be nearly
zero or 180°, and hence the sun should be near 7 or =, and con-
sequently the observations must be made near either the vernal or
the autumnal equinox.

Substituting its numerical value for  we easily find that the
values of Aa, corresponding to different Right Ascensions of the
sun, are as follows:

R.A. of sun. Aa,
o 28 Ad
2b 28 Ad
4h 53 AS

and at the solstice the coefficient of A8 would be infinite.
Thus we see how important it is to minimize errors by
making the observations near one of the equinoxes.
If the right ascension be required within the tenth part of
a second Aa=01=1"'5, and consequently an error of a tenth
of a second of time may arise from an error of 0”'65 in the deter-
mination of the sun’s declination even close to the equinox.

B. A, 14
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66. The sidereal year and the tropical year.

In consequence of the revolution of the earth the sun appears
to a terrestrial observer to make a complete circuit of the heavens
once a year. It is important to distinguish the different meanings
which may be assigned to the word year.

The sitdereal year is the time interval in which the sun’s
centre performs a complete revolution with reference to the stars,
or more precisely with reference to any one star situated in the
ecliptic and devoid of proper motion. The sidereal year is also the
periodic time in which the earth completes one sidereal revolution
round the sun, when the earth is regarded as a planet belonging
to the solar system. At the epoch 1900 the duration of the
sidereal year is 3652564 mean solar days.

The troprical year is the average interval between two successive
returns of the sun to the first point of Aries. This point moves
on the ecliptic by precession and advances to meet the sun at
the rate (1900) of 50”2564 annually (Newcomb). The tropical
year is therefore less than the sidereal year in the ratio of
(860° — 50”-2564)/360°, and is found to be 3652422 mean solar
days. We have already mentioned (see note on p. 190) that in
astronomical reckoning the commencement of the tropical year is
the moment when the sun’s mean longitude is exactly 280°, which
in the year 1910 corresponds to Jan. 04-735.

It is the tropical year and not the sidereal year which is adopted
as the basis in determining the civil year. According to the
Julian Calendar the tropical year was assumed to be 36525 days
and it was arranged that of every four consecutive civil years three
should have 365 days each and the fourth year, i.e. that divisible
by 4, should be leap year and have a 29th of February added to
make the number of days 366. This arrangement made the
average civil year about 11 minutes longer than the tropical year.

The Gregorian correction to the Julian Calendar was introduced
to bring about a closer correspondence between the average civil
year and the tropical year. By this correction three of the leap
years given by the Julian rule in every four centuries were
suppressed. If the number expressing a year terminated in two
cyphers, then such a year being divisible by 4 would be of course
a leap year according to the Julian rule. But according to the
Calendar with the Gregorian correction such a year is not to be
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a leap year unless the number formed by its two first digits is to
be divisible by 4. Thus 1800, 1900, 2100, 2200, 2300 though
Julian leap years are not Gregorian leap years but 2000 and 2400
are leap years in both systems. It is the Julian Calendar with the
Gregorian correction that we now employ.

The present Calendar thus contains 97 leap years in every four
centuries, and consequently the number of days in the four centuries
is 365 x 400 + 97 = 146097 so that the average length of the civil
year according to our present system is 3652425 days. This
agrees with the tropical year to within 00003 of a day. This
approximation is so close that an error of a day in the reckoning
would not be reached for some thousands of years.

Ex. 1. Show that at any observatory the number of upper culminations
of the first point of Aries in the course of a tropical year (i.e. the number of
sidereal days between two consecutive passages of the sun through T)
exceeds by unity the number of upper culminations of the sun at the same
observatory and in the same year.

At the first transit of T after the year has commenced the sun must
culminate somewhat later than 1. At the second, third, and subsequent
culminations of T the sun will be ever more and more behind until when the
year draws near its completion the sun will have fallen behind by nearly the
whole circumference. The nth culmination of the sun will then be speedily
followed by the (z+1)th culmination of M. If the sun overtakes T when T
is not in culmination the year is complete but the number of culminations of
the sun is one short. If the sun overtakes T at the moment of its culmina-
tion then at the expiring moment of the year one more culmination is added
to both sun and 7T, thus leaving the sun still one short.

Ex. 2. In a certain country the rule for leap year is :—If there are any
cyphers at the end of the number for the year, strike off as many pairs of
cyphers as possible ; then if the remaining number is divisible by 4, it is leap
year. In another country the rule is :—Divide the number of the year by 33,
then if there is a remainder and if that remainder is divisible by 4, it is leap
year. Prove that the reckoning will never differ by more than a day in the

two countries.
[Math. Trip.]

In 33 consecutive periods each of 400 years there must be one period but
only one which commences with a year of which the number is divisible
by 33. That year will not be a leap year, and the total number of leap years
in the second country in that period of 400 years will be 96 and it thus falls
1 day in arrear. In each of the other 32 periods the number of leap years
is 97. Hence the total number in 33 x 400=13200 years is 33 x 97 - 1.

In the first country there will be generally 97 leap years per 400 years,
but in a period of 13,200 years there will be according to the condition no

14—2
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leap year in the year 10,000 and the count will fall one day in arrear. Hence
the total number of leap years in each 13,200 years is 33 x 97 — 1=3200.
Thus we see that each cycle of 13,200 years contains exactly 3200 leap years
in either country.

67. The geometrical principle of a mean motion.

A point P is moving in the circumference of a circle (Fig. 63),
and in such a way that at the time ¢ the angle OCP = 6, measured
from a fixed radius CO, is defined by the equation

2nt . 27rt
f=a+ T°+A sm +Bl To

4t 4m't

+ A, sin - T +B To ............ (i)
6wt 6t
+ A;ssin —- T, + B, cos ;

..............................

where a, Ty, 4,, B,, 4,, B;, A,, B, ... are constants. The very
general expression of 6 in terms of ¢ here given will include as a
particular case the formula for the longitude of the sun in terms

of the time.

X
Fie., 63.

If t+ T, be written in the expression for 4 instead of ¢, then 6
becomes @ + 27, i.e. P returns to the point from which it started.
Thus T, is the periodic time of the motion of P.

Differentiating 6 with respect to ¢ we have

dé 27r+27rA coqgm_'t_%rB, . 2mt
a&a~T, T T T T,
4mwA;, 4wt 4mwB, . 4wt

COS —~ — —75— BIN 5 cecnnennnens
+ T, S T, T, 81 T,
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an expression which is not altered by changing ¢ into ¢+ T,.
Thus we see that if v be the velocity with which P passes through
any point X in one circuit, then v will also be the velocity with
which P passes through the same point X on every circuit.

It thus appears that every circuit exactly reproduces every
other circuit. Not only is the time taken for the circuit the
same but the actual velocity at every point is the same in every
circuit,

That part of the expression of df/dt, namely 2m/T,, which is
obtained by omitting the trigonometrical functions, is termed the
mean angular velocity. Let P, be a point moving uniformly round
the circle with the angular velocity 27/T,, and so that at every
moment CP, makes with the fixed radius CO the angle a + 27t/7,,
then we have the following properties of the mean position P, and
the true position P:

(1) The periodic times of P and P, are identical.

(2) The distance between P and P, can never exceed a
certain finite limit.

(8) The average difference between P and P, in the course
of a complete circuit is zero.

(1) is evident because each of these periodic times is T,.

(2) follows because the distance from P to P, can never
exceed the sum + 4, + 4, + 4, + B, t+ B, + B, &c. where each sign
is so taken that the corresponding term is positive.

(3) For whenever = is an integer we have

j T, in 2nart 2n1rt
0 T o

Hence it follows that if we subtract the angle representing the
position of P, from the corresponding € the average value of the
difference is zero, for that difference consists of periodic terms
only, and the average value of each one is zero.

It follows that in moving uniformly round the circle P, is
sometimes in advance of P and sometimes behind P, and that on
the average P, will be just as much before P as it is behind.
Thus the movement of P, is rightly described as the mean motion
of P. We may regard the true motion of P as an oscillatory
movement about the mean place P,.

dt=0 and f cos dt=0.
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Ex.1. If 4, 6, ..., 85 be the values of 8 at the times 0, 70/6, 270/6, 37,/6,
47T,/6, 57T,/6 respectively, show that for a the part of 6 independent of ¢ we
have

a=}% (6o+6,+6;+ 05+ 6,+ 6;) — 150°,
if 44, B, and all higher terms be omitted.

By successive substitutions in the general formula (i)

b6p=a +B, .+Bs + Bs,

6y=a+ 60°+4,3/2+ B,/2+ 43V3/2 - By/2 — By,

65=a+120 +A4,3/2— B,/2— A;3/3/2 - By/2 +B,,

63=a+180 -B +B, - B,

6,=a+240 — A,/3/2 - B,/2+ Ay J3/2 - By/2 +Bs,

65=a+300 — 4,/3/2+ B,/2— A3/3/2~ By/2 - B,
whence by addition

a=} (6o+6,+ 63+ 05+ 6,+ ;) — 160°.

If therefore we know the values of § at the six epochs which divide a
whole period of revolution 7, into six equal parts we can determine @ and
thence a+2xt/7, or the mean position P, at any time ¢ is known.

Ex. 2. Show how the general formula (i) is simplified if the motion is
symmetrical about the axis CO.

In this case dd/d¢ will be the same for ¢ and 7 —¢, if ¢ be measured from
the time of passage through O, whence by substitution in (ii)

2wB, . 2mt 4By . 4wt 6mB, . 6mt

T, sin T, + T, sin T + T, smTo=0,
as this must be true for all values of ¢, B;=B;= By=0, and thus the formula (i)
reduces to

0=2nt/Ty+ A, 8in 2t/ Ty+ Agsin 4wt/ T+ Agsin 6xt/ Ty

Ex. 3. Assuming that the movement is symmetrical and that the axis
of symmetry is the axis from which 6 is measured and that 4; and higher
coefficients may be regarded as zero, show that if 4, <24, there will be three
real points in which the mean position of P coincides with its true position.

Ex. 4. From the Nautical Almanac for 1909 we obtain the following
values for the apparent longitude of the sun at mean noon:—

1909 Apparent longitude
Mean noon of ©
Jan. 18t ..coccvivenceeenennns 280° 28’ 1”1
Ap. 2nd seeeiniiiniinnnennns 12 6309
July 2nd ....ccevneennnnnnns 99 55 40 4
(0715 11 2 187 39 27 -2

Show that 280°-4994-360° ¢/T, is the mean longitude of the sun where ¢ is
the number of mean solar days elapsed since mean noon on Jan. 1st, 1909, and
where 7, is the length of the tropical year expressed in mean solar days.
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In applying formula (i) we discard A3, B; and higher terms. In the
periodic terms we may, with sufficient accuracy, make ¢ successively 0, } 7,
$To, 7T, and we must obviously increase each of the apparent longitudes on
the last three dates by 360°. Thus we have from (i)

280° 28’ 1”1=a +B, +B,
372 6 30 '9=a+360°x 91/7’0 +A| —Bg,
459 55 40 ‘4=a+360 x182/7, —B, +B,,
547 39 27 2=a+360 x273/Ty, —A, -B,,
whence by addition and making 7=365-2422,
1660° 9’ 39”°6=4a+538° 9' 48”6,
and finally a=280499.
The daily increase of mean longitude of the sun is 0°-98565 and the mean

longitude is zero 80656 days after the commencement of the year, ze.
March 22ud.

‘When several small terms which are here omitted have been attended to
the sun’s mean longitude is

280°°49942 +360° ¢/ Ty,

Ex. 5. Show from the last example that on Nov. 7th, 1906, the mean
longitude of the sun is 226°-05.

Ex. 6. Being given that the sun’s mean longitude is 9°°20768 on
April 1st, 1909, and that the daily increase is 0°-98565, show that the sun’s
mean longitude on Jan. 04-493 was 280°.

68. Mean time.

Though it is essential for the special work of the observatory
to employ sidereal time, yet it is obvious that the astronomical
clock would not serve the ordinary purposes of civil life. For
this latter object a day of which the length is regulated by the
sun and not by the stars is required. We therefore use what is
known as the mean solar day for our ordinary time measurement.

Since the movement of the sun in Right Ascension is not
uniform, the interval between two successive returns of the sun’s
centre to the meridian is not constant. As an illustration we here
give the sidereal length of the solar day at four equidistant
dates throughout the year 1909:

1909. Sidereal interval.

Apparent noon Jan. 1st to apparent noon Jan. 2nd 24* 4™ 24*-9
” » April2nd , » April3rd 24 3 38°5

”» » July 3rd ,, " » Jdulydth 24 4 7°5

» » Oct.2nd » » Oct.3rd 24 3 37°6
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The first line of this table states that if the time at which the
sun’s centre crosses the meridian of the observer be taken by an
astronomical clock on Jan. 1st, 1909, and the observation be re-
peated on the following day, the astronowmical clock, if due
allowance be made for its rate, will show that an interval of
24b 4™ 2429 of sidereal time has elapsed between the two
transits.

We observe that the apparent solar day, commencing at
apparent noon on Jan. 1st, is 47'3 sidereal seconds longer than
that commencing. at apparent noon on Oct. 2nd. It thus ap-
pears that the length of the apparent solar day is not constant
throughout the year, and its variations certainly exceed three-
quarters of a minute. On account of these irregularities the true
solar day is not a suitable unit for ordinary time measurement.
We adopt as the unit a mean solar day, the length of which is
the average duration of the apparent solar days in a large number
of years. The average duration of the four days in the list just
given for 1909 is 24" 3™ 571, and this is an approximate value
of the mean solar day. When the mean of an exceedingly large
number of consecutive apparent solar days has been taken it is
found that the equivalent in sidereal time to one mean solar day
is 24> 3™ 56°555.

To avoid circumlocution astronomers have found it convenient
to imagine a fictitious body (or point rather) which at every
moment is on the apparent equator, and has an apparent right
ascension equal to the mean longitude of the sun. This imaginary
body is called the mean sun. It will be shown in § 74 that the
apparent right ascension of the sun is equal to the sum of the
mean longitude of the sun and periodic terms. Thus the apparent
R.A. of the sun and the apparent R.A. of the mean sun differ by
periodic terms only. Hence in a long interval of time the average
difference in apparent R.A. between the true sun and the mean
sun will tend to zero. If we could overlook the movement of
the equator by precession and nutation then the mean sun
might be described as a body moving uniformly in the equator
so that at every moment its R.A. is equal to the sun’s mean
longitude.

When the mean sun is in the meridian a clock properly
regulated to show local mean time will read 0" 0™ 0°. Thus the
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time shown by the mean time clock indicates at any moment the
hour angle of the mean sun from the meridian. For civil purposes
the day commences at midnight, and the hours are counted from
1® to 12" (noon), and then again from 1P to 12" (midnight), the
former hours being distinguished by the letters A.M. and the latter
by p.M. In astronomical reckoning the day extends from noon to
noon: noon is called 0% and the following hours are numbered
consecutively, up to 23®. Thus 12.30 p.M. civil reckoning is
called 0 30™ in astronomical reckoning.

Ex. 1. Find the length of the mean solar day in sidereal time from the
following data :—

On 4th July, 1836, the apparent R.A. of the centre of the sun was
found by observation at transit at Greenwich to be 6b 54m 75-03.

Similarly on 4th July, 1890, the apparent R.A. of the centre of the
sun was found to be 6h 53 54%61.

We have first to determine the sidereal interval between 6t 54m 7+-03
sidereal time on 4th July, 1836, and 6 53 54*61 sidereal time on
4th July, 1890.

This is an interval of 54 years and therefore there will be 54 more
transits of the first point of Aries than of the sun (§ 66, Ex.1). Of the latter
there are 19723, so that there are 19777 of T, and consequently the total
interval expressed in sidereal time is

197774 6h 53m 545-61 — (6h 54™ 79-03),

Dividing this by 19723 we find the sidereal value of the mean solar
day to be 24h 3m 56+555,

Ex. 2. The length of the mean solar day in sidereal time is determined
a3 in the last example by comparing the right ascensions of the sun at two
epochs of which one is 30 years later than the other. Show that errors
as great as 5% in both of the right ascensions cannot affect the value found
for the mean solar day by more than the thousandth of a second.

Ex. 3. An approximate rule for converting mean solar time into sidereal
may be stated thus:—For every 12 1™ add 10¢; for every remaining 1™ 1*
add 3*; for every remaining 4* add 001. What is the error in finding by
this rule the length of a mean solar day?

[Sheepshanks Exhibition.]

Ex. 4. If in the expression of the duration of the tropical year in days,
hours, minutes and seconds of mean solar time the number of days is
increased by unity while the hours, minutes, and seconds are left unaltered,
the result expresses the duration of the tropical year in days, hours, minutes
and seconds of sidereal time.
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69. The sidereal time at mean noon.

The right ascension of the mean sun or more precisely the
distance at a given moment of the mean sun from 7 is as already
explained (§ 68) the mean longitude of the sun and we have
for this the expression (Ex. 4, § 67)

280°49942 + 360° ¢/ Ty,

where 7, is the length of the tropical year and where ¢/T is the
fractional part of the tropical year which has elapsed since noon
on Jan. 1st, 1909.

Transforming this expression into time at the rate of 15° to
an hour we find that at ¢ mean solar days, after Greenwich
mean noon on 1909, January 1, the right ascension of the mean

sun is
18P 41™ 58%-84 + 236°5554¢.

We may explain as follows the nature of the observations
by which a the first term of this expression has been obtained.
Divide the year T, into a sufficient number of equal parts. At
each point of division we shall suppose the R.A. of the sun to be
observed with results a,, as, a;... respectively. We shall assume
that the average of these right ascensions is the average of
the right ascensions of the mean sun at the same epochs.
This assumption is justified because each of the chief periodic
terms runs through a complete cycle of changes in an interval
which is contained an exact number of times in a year. If
therefore we take a number of instants dividing the year into
equal parts the average value of any one of these terms for
those instants will be zero (provided the number of instants
taken be sufficiently large, § 67). Hence the average right
ascension of the true and the mean sun at these instants
will be equal. We may illustrate the process by taking 6 such
epochs for which the sun’s mean longitudes are respectively

a, (a+4%), (a+ 8", etec.
where a is the unknown to be found. If we determine the
right ascensions (a,, a, ... @) of the true sun at these epochs
we have
a+(@+4")+(@+8")+(a+12)+ (a+ 16°) + (a + 20%)
=+ ay+ ay+ o, + o5 + a.
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To obtain @ we take as a particular case the values of a,...a, 88
shown in the following table:

Eqnidi.étant
dates
G.M.T. R.A. of sun
1909. Jan. 14 O .. .. 18b 45m 33s
March 2 21 ... ... 22 54 12
May 2 18 .. .. 2 38 41 +24
July 2 16 .. .. 6 45 47 424b
Sep. 1 12 .. .. 10 41 54 +24b
Nov. 1 9 .. .. 14 25 40 +424b

and by substitution in the formula we have
a=18" 41 58"

Making the slight alteration of less than 1°® in a, which is
necessitated when due attention is paid to many small details
which it would not have been possible for us to consider here,
we have the required value 18" 41™ 58°-84.

When the mean sun comes to the meridian its right
ascension is of course the sidereal time at the moment. Thus
we obtain the important element in practical astronomy known as
the sidereal time of mean noon. This is an indispensable quantity
in transforming sidereal time to mean time and vice versd. The
sidereal time at mean noon is given in the ephemeris for each
day.

Ex. 1. Show that the sidereal time at Greenwich at mean noon on
1909, March 27, is Ob 17m 6s,

At mean noon on March 27 the interval from Jan. 1 is 85 days. Putting
this value for ¢ into the expression

18h 41m 5884 423645554¢,
the required result is obtained.

Ex. 2. Find at what date in 1809 the mean sun passes through the first
point of Aries.

Ex. 3. Given that the mean times of transit at Greenwich of the first
point of Aries on 1896, March 21, are O 1m 59%70 and 23t 58m 379,
determine the moment at which the Greenwich mean and sidereal times
are the same.

[Math. Trip.]

Ex. 4. Show that the right ascension of the mean sun at ¢ mean solar
days after mean noon on January 1st, 1900, is 18h 42 43¢-51 4-236*-56554¢ and
the mean longitude of the sun is

280°-681 4 0°-98565¢.
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70. Determination of mean time from sidereal time.

The determination of the mean solar time at any station must,
of course, depend directly or indirectly on observations of the sun.
The mariner usually obtains the time from observations of the
sun made with his sextant in the morning or the evening. This
is an example of the direct method. But the astronomer, who has -
the use of fixed instruments of much greater power and precision
than the sextant, generally deduces the mean time by calculation
from the sidereal time, which, as already explained (§ 63), he
obtains from observation of certain so-called “clock stars.” The
places of the clock stars he finds from the ephemeris. Those
places depend on the position of T, which is determined from solar
observations. Hence in the clock star method of finding the mean
time the observations of the sun are only indirectly-involved.

The ephemeris gives the true sidereal time at which the clock
star culminates and the observer notes the time shown by his
sidereal clock. The difference is the correction to his clock, and
thus the sidereal time is known. The ephemeris also gives the
sidereal time at Greenwich mean noon, so that a comparison of
the mean time clock with the sidereal clock if made at noon will
show the error of the former. The comparison of the mean clock
and the sidereal clock cannot however generally be made at noon,
nor will the longitude of the observer generally be zero. We
therefore proceed as follows :

Let S be the local sidereal time,

,» T be the simultaneous local mean time,

» U be the longitude of the observer west of Greenwich,

» 7 be the number of mean solar days in a tropical year
= 3652422,

» M be the sidereal time at preceding mean noon at
Greenwich.

There are n + 1 sidereal days in n mean solar days, hence an
interval of solar time is transformed into the equivalent sidereal
time by the factor (n+1)/n, and an interval of sidereal time
into the equivalent solar time by the factor n/(n+1). In the
case proposed the longitude is /, and we notice that this implies
both of the following statements:

(1) The first point of Aries will move, in Z hours of sidereal time,
from the meridian of Greenwich to the meridian of the observer.
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(2) The mean sun will move in ! hours of mean time from the
meridian of Greenwich to the meridian of the observer.

As 8 and T are the local sidereal and mean times at the
instant considered, it follows that S+4! and T+ ! are the
corresponding Greenwich sidereal and mean times.

The interval T + [ of mean time is reduced to sidereal time by
the factor (n+ 1)/n. By subtracting this from S+ we must
obtain the sidereal time at mean noon at Greenwich the same
day, hence

M=8+1l-(n+1)(T+1/n,
which may be written in the equivalent forms often found con-
venient for use with the tables in the Ephemeris
T+l=S8+I-M)n/(n+1),
S+l=M+T+1)(n+1)/n

Probably the most practical method for determining mean
time from sidereal time is as follows:

If we put '=0 in any one of the three equivalent equations
Just written and make M; the local sidereal time of local mean
noon we shall have '

M=M+1l-1l(n+1)/n,
or Mi=M+l/n

This I/n is a constant quantity for the particular meridian. It
is added to the sidereal time at mean noon at Greenwich to obtain
the local sidereal time at local mean noon.

Then we have simply

T=(S—M)n/(n+1),

which may be very simply computed by the tables for converting
intervals of sidereal time into the corresponding intervals of mean
time.

Ex. 1. If M be the sidereal time at mean noon at Greenwich, show
that A, the sidereal time at mean noon on the same day, at a station of
which / is the longitude west from Greenwich, expressed in hours, is given by

My=M+9+8565 x I.

Ex. 2. Show that if an interval of time is expressed by ¢ when reckoned
in mean time and by ¢ when reckoned in sidereal time, then

t'=t +9%8565¢,
t =t —9+8296¢,
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where ¢ and ¢ are expressed in hours and fractional parts of an hour in
the last term of each expression.

Ex. 3. On 1909, Feb. 18th, the sidereal time at Greenwich mean noon is
21b 51m 13+-55. Show that the transit of the first point of Aries takes place
at 2h 8m 2535 mean time.

Ex. 4. Show that the Greenwich mean time of sidereal noon at Greenwich
is (242~ M) n/(n+1), where M is the sidereal time at mean noon and » the
number of mean solar days in the tropical year.

Show also that the local mean time of sidereal noon at west longitude / is
obtained by subtracting {/(n+1) from the Greenwich mean time of sidereal
noon at Greenwich.

N.B. By sidereal noon is meant the moment of culmination of 7.

Ex. 5. Show that 21t 2m 39% is the sidereal time at Madras (longitude
6h 21m 0s E.) at 1 p.M. Greenwich mean time on 1908, Nov. 1, being given
that the sidereal time at Greenwich at mean noon is 14h 41™ 299,

Ex. 6. Columbia College, New York, is in longitude 4b 55 54* West
of Greenwich. The sidereal time at mean noon at Greenwich on 1908, Dec. 12,
is 17h23m 8. Show that on the same day when the sidereal time at
Columbia College is 202 8= 4¢ the local mean time is 2b 43= 41s,

Ex. 7. The sidereal time in which the sun’s semidiameter passes the
meridian on 1908, July 1, being 1= 873, show that the corresponding
mean time is found by subtracting 019 from the sidereal time.

71. . The terrestrial date line.

The notion of the terrestrial date line may be conveniently
introduced by a particular illustration as follows:

Suppose the epoch to be 10 A.M. at Greenwich on Wednesday,
June 14th, 1905. We have to consider for the same epoch
what is the hour and more especially the name of the day on
every other meridian east or west.

On the meridian 9® 59™ west of Greenwich the time at the
stated epoch is just after midnight, 7.e. Wednesday has commenced.
But on the meridian 10* 1® W, the time is 11® 59™ p.M., and
therefore on this meridian it is still Tuesday, June 13th. If we
imagine each meridian all round the globe to be labelled with
the day of the week (or month) pertaining to it at the epoch
10 A.M. June 14th, 1905, at Greenwich, there will be an abrupt
change in the names on the labels when we come to the meridian
10* W. from Greenwich.

But it is easily seen that another breach of continuity must
present itself at some other meridian. For imagine we could move
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with the quickness of thought westward from the meridian
10 W, all round the globe, we should begin by crossing meridians
labelled Tuesday, but when the journey was near completion and we
were approaching the meridian of 10® W. from the east, we should
find ourselves crossing meridians labelled Wednesday. There must
therefore have been some other transition from a meridian labelled
with one day to that labelled with another day.

This second breach of continuity in the labels on the meridians
cannot have arisen as the first did by the occurrence of midnight.
The change at a midnight point would be in the wrong direction,
and indeed 10* W. is the only meridian on the whole globe then
at midnight. Every parallel of latitude must therefore possess
a second point at which there is a breach of continuity in the
dates pertaining to different places along that parallel. Any
point on the parallel might be assigned for this purpose: we
therefore choose it arbitrarily to suit general convenience. The
convention followed is that the point shall be as near as is
convenient to the meridian 12" from Greenwich if it cannot be
actually taken on that meridian. The actual ““date line” as it
is called is drawn from pole to pole. In so far as the meridian
of 12" passes through the opeu ocean, as it does during the
greater part of its course, the date line coincides with that
meridian. At other places the date line may swerve a little to
one side or the other of the meridian of 12", so as not to pass, for
example, across inhabited land in Alaska or to divide the
Aleutian Islands in a way which would be inconvenient to their
inhabitants.

In the case proposed the day is Wednesday, June 14th, at all
west longitudes up to 10® W. For two hours more of west longi-
tude, v.e. from 10" W. to 12" W, or more accurately from 10® W. up to
the point where the date line crosses, the day is Tuesday, June 13th.
But as the parallel crosses the date line the date suddenly alters.
From being about 10 p.M. on Tuesday, June 13th, on one side of
that line the date becomes about 10 P.M. on Wednesday, June 14th,
on the other side of the line. Thus Wednesday, June 14th, prevails
over all E. longitudes from 0 to about 12" It thus appears that
at the moment considered about 22 hours of longitude have the
date Wednesday, June 14th,and 2 hours have Tuesday, June 13th.

As another example let the hour be 6 p.M. at Greenwich on
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Sunday. Then at 5° 59™ E. long. the time is 11® 59™ p.M. on
Sunday. At 6 1™ E. long. the time is 0" 1™ A.M. on Monday.
Thus as we move eastwards from 6® E. long. to 12® E. long., or
more accurately to the date line on this parallel the day is
Monday, but at the date line (where the actual time is about
6 A.M.) the date suddenly changes to Sunday at the same hour,
and Sunday prevails at all west longitudes from the date line
to Greenwich.

EXERCISES ON CHAPTER IX.

Ex. 1. If X be the longitude of the sun, a its R.A. and © the obliquity of
the ecliptic, show that the greatest value of A — a occurs when tan A =+/sec o and
tan a=vcos w.

Ex. 2. On the 22nd of September the sun’s declination at transit was
observed to be 17’ 2780 N., and on the 23rd it was observed to be 621”56 S. ;
also the sidereal interval of the two transits was 24b 3m 35¢50. What was
the sun’s R.A. at the second observation ?

Where would the chief errors be likely to occur in determining the first

point of Aries by the method of this example ?
[Coll. Exam.]

Ex. 3. The R.A. of Polaris is 1h 21m 18¢; the sidereal times of mean
noon at Greenwich on April 11 and 12 are respectively 1t 19= 50+60 and
12 23m 47515, Find the mean times of the three transits of Polaris at
Greenwich on April 11.

[Coll. Exam.]
Ex. 4. Given from the Nautical Almanac
Sidereal time of mean noon March 21, 1898 ...... 23b 56w 5087
Sidereal time of mean noon March 22, 1898 ...... 0 0 242

find approximately the mean time at which the mean sun passed the vernal
equinox.
[Coll. Exam.]

Ex. 5. On Feb. 7 a star, the R.A. of which is 5b 9 43+9, is in transit at
Sydney (longitude 151° 12’ 23" E.), when the time by the observer’s watch
which should keep local time is 8» 0™ 3%, Given that the mean sun’s R.A. at
mean noon at Greenwich on Feb. 7 is 21h 8m 36%1, and that 1t of sidereal
time is equivalent to 59™ 50%'2 of mean time, find to the nearest second how

much the watch is fast or slow.
[Math. Trip.]

Ex. 6. Show that a single altitude of a known star is sufficient to deter-
mine the latitude if the local sidereal time be known, and to determine the

local sidereal time if the latitude be known.
If the observed altitude have an error # minutes of arc, then the deduced
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sidereal time will have an error y 2 sec A cosec a minutes of time; where
A is the latitude of the place and a the azimuth of the star at the instant of
observation. [Math. Trip.]

Ex. 7. If a star of declination 3 has a zenith distance z when observed
near the meridian at an hour angle ¢, show that unless ¢ — 8 is very small the
latitude ¢ may be determined accurately by the equation

2 cos 3 cos ¢
sin (¢ —8)
in the last term of which an approximate value of ¢ may be used.

¢=2+4+3- sin?}¢,

*Ex. 8. If the sidereal clock times when the sun arrives at equal altitudes
on each side of the meridian are «’ and %, and if the change of declination &
of the sun in the interval be d8, and the right ascension of the sun at culmi-
nation is a, show that the correction to be applied to clock time to obtain the
true sidereal time is

, tan3 tan ¢
a=}(utu)-} (ts.n YW —u) sing (u’—u)) @,
and explain why no account need be taken of the sun’s movement in right
ascension between the two observations.

*Ex. 9. Show that, if /-3 is the zenith distance of the sun observed near
the meridian when it is in declination 8, and 2 is its hour angle measured in
seconds of time, the latitude of the place is approximately

coslcos8sinl” )
~“gem (-8 (1OA)

Show also that, if the observation is made from a ship in motion in a
direction making an angle  with the meridian, the greatest altitude occurs
when the sun is approximately % seconds of time from the instantaneous
meridian, where

=sin(a-dm) vcoso_m 1
cos pcos 3 \psin 1” 15%.60%.8in1"’
* v is the space described by the ship per hour, p the radius of the earth, ¢ the
latitude of the place, 8 the declination of the sun, and m the change of decli-
nation per hour measured in seconds of arc. [Math. Trip.]
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72. The reduction to the equator.

As the sun performs its annual circuit of the ecliptic its true
longitude ® measured of course from T and in the direction of .
the sun’s motion is continuously, though not uniformly, increas-
ing. In like manner the sun’s right ascension a is continuously,
though not uniformly, increasing. The difference between the
right ascension and the longitude, that is to say the quantity
(a— ©) which must be added to the sun’s longitude to give the
sun’s right ascension, is called the reduction to the equator. We
are now to consider the variations in the reduction to the equator
in the course of the year. The centre of the sun is presumed to
be in the ecliptic, as we need not here take account of its small
latitude which is <1”.

Let a, 8 be the right ascension and declination of a point on
the ecliptic. The longitude of the point is © and if @ be the
obliquity of the ecliptic we have

tana=coswtan @ ........cceiininnnnns (1),
and we can transform this equation into
sin (a — ©)=—tan'jwsin(a + ©) ............ (2).

Thus we see that a — © must lie between the limits — sin™ tan’} &
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and +sin'tan*}w or if we take for w its mean value for 1910,
viz. 23° 27’ 4", we may say that the reduction to the equator
varies between — 6 and + 6 where 6 =2° 28’ 8”. The variations
of the reduction as © increases from 0° to 360° may be indicated
as follows :

As a and © start together from T where they are both zero
© is at first the greater so that the reduction is at first negative
and attains & minimum — @ when © is 45° + 6. Then the right
ascension begins to gain on the longitude so that © and a reach
90° together and the reduction is zero. In the second quadrant
a gradually increases its lead over ©® until a becomes 135° + 46
when © is 135°—3460 and the reduction has its maximum value
of +6. In the third quadrant there is another minimum — @ when
©=225°+460 and in the fourth quadrant there is another
maximum of +6 when © =315°—4}6. Finally the values of ®
and a coincide at 360° when the circuit is complete.

For the calculation of the reduction we use the formula (3)
which is easily derived from (1)

tan (@ — ©) = — tan*} w 8in 20/(1 + tan*} w cos 20)...(3)

by which the reduction is obtained at once for any given longitude.
It is also convenient to obtain an expression for (a — ©) in a series
ascending by powers of the small quantity tan’jw. This is most
readily deduced from equation (1) by a well known expansion.
(See Todhunter’s Plane Trigonometry, p. 238.)

a—© =—tan'}wsin 20 + § tan*} w sin 4©
—}tan*}wsin 6O +... ...... (4).

The terms in this formula are expressed in radians but the
reduction to the equator is more conveniently expressed by putting
for each radian its equivalent of 86400/27 =13751 seconds of
time. If we multiply the expression for (a — ®) given in (4) by
13751 and if we further reduce it by substituting for » its mean
value already given we have

a—© = — 59238 sin 20 + 1276 sin 4© — 0*36 sin 60...(5).

The coefficients of the terms in series (5) decrease so rapidly
that there is no need to take account of more than the three

terms there written and even the last of these may be generally
omitted.

16—2
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If we had assumed that no more than two terms of (4) would
be required, then those terms could have been obtained otherwise
from (3) for we have by Gregory’s series
a—O=tan(a—O)— }tan*(a —O) + ...

= —sin 20 tan’}w (1 + cos 20 tan’} )™ + § sin? 20 tan’}w
which gives the desired expression when quantities smaller than
tan®j @ are neglected.

Ex. 1. Prove the following graphic method of obtaining the reduction
to the equator for any given longitude ®.

Describe a circle with centre C (Fig. 64) and radius C4=tan?}w, and
take a fixed point O so that CO=1. Find the point P on the circle such
that £ OCP=2® and let P’ be the point on the circle diametrically opposite
to P. Then . P'OC is the reduction with its sign changed.

Let A and B be the points in which CO cuts the circle. Join AP’ and

Fi1o. 64.

BP'. Draw CD perpendicular to 4P’ and produce it to meet OP’ in E.
Then the anharmonic ratio of the pencil P’ (0ACB) is

04/0B=(1-tan*}0)/(1+tan?}w)=cosw.
But since 4P’ is perpendicular to BP’' and to CD we have the same an-
harmonic ratio also equal to
ED|DC=tan EP'DjtanDP'C.
Hence tan EP'D=cos w tan DP'C'=cos o tan ®.
Therefore EP'D=a, and since CAP'=CP'A=3 we have P'0C=@® —a.

Ex. 2. Prove the following construction. Take any line 4B and cut off
a part AC such that AC=4Bcosw. At A4 erect AL perpendicular to 4B.
Draw the line CP to meet AL in P 8o that LACP=®. Join BP. Then
LABP=a, and £ BPC is the reduction to the equator.

Ex. 3. Show from Ex.1 that the greatest value of the reduction is
sin~1(tan*}o) and that in this case AP in Ex. 2 is a tangent to the circle
circumscribing CBP and that a and ® are complementary.
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Ex. 4. Show that, if the sun be supposed to move uniformly in the
ecliptic and another body to move at the same uniform rate in the equator,
the difference of their right ascensions will vanish four times in the year
only if the interval between their passages through the first point of Aries
be less than sin—!(tan?})/2m of & year. [Coll. Exam.]

Let ¢ be the fraction of a year that has elapsed between the passage
of the sun through T and the passage of the body moving in the equator
through 1. Then, when their right ascensions are both a,

tan (2nt+a)cos o=tana.
We thus have for a the equation
tan2a tan 27t — (1 —cos w) tan a+tan 2r¢ cos @ =G. °
The roots of this will be real if
2nt<sin-! (tan?}ow).
There will thus be two real values of tan a and four of a.

Ex. 5. Assuming the sun’s apparent orbit to be circular, show that the
ratio of the sidereal times occupied by the passage of the sun’s diameter
across the meridian at an equinox and at a solstice is approximately
(cos @ — ‘0027 sin?w), where o is the obliquity of the ecliptic.

[Math. Trip.]

If R be the sun’s radius and 8 its declination, then at the moment when
the preceding limb is on the meridian the hour angle of its centre is
- Rsecd. If ¢, denote the sidereal time and a, the sun’s R.A. at this moment
we have

H—ay=— Rsec8.

Similarly, when the following limb is on the meridian, we have

lg—az=+ R secs.
And therefore (ta—t) —(ag—a;)=2R sec8.

Differentiating the equation tana=cose tan ®, and remembering that
co8 ® =cosa cos 8, we find
da de
a? = cos  sec?$ -a‘— .
But since ¢ increases 360° in one day, whereas ©® increases by the same
amount in about 365 days, we have d@® /d¢=1/3656="0027. Hence

da/dt="0027 cos o sec?3.

And ag—a1=(t,—t|) dd/dl,
therefore - (ta— ) {1 - 0027 cos  sec?8} =2R sec 8,
or t3— 4, =2R/ {cos 8 — ‘0027 cos w sec 8}.

At the equinoxes 8=0 and at the solstices 8= +, hence the sidereal time
occupied by the passage of the sun’s diameter across the meridian at the
equinox is to that at the solstice in the ratio

(cos @ — “0027)/(1 — 0027 cos ») =cos @ — 0027 sintw.
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73. The equation of the centre.

Let T4 be the equator, and 1B, Fig. 63, be the ecliptic, where
S is the position of the sun and P the perigee of the sun’s
apparent orbit, i.e. the point occupied by the sun when nearest to

Fi1e. 65.
the earth
TP =w, the longitude of the perigee,

PS8 =v, the sun’s true anomaly,
TS=0© =w +v, the sun’s true longitude.

Let n be the average value for the whole year of the apparent
angle daily swept over by the radius vector drawn from the
earth’s centre to the sun’s centre. The sun’s mean longitude is
expressed by L =nt+ ¢, where ¢ is the time in days and e is the
value of the mean longitude at the epoch from which the time is
measured. The sun’s mean anomaly is L — = and the correspond-
ing true anomaly is © — w.

In § 52 we have determined the relation between the true
anomaly and the mean anomaly in an elliptic orbit, and substituting
in the formula there given (© — =) for v and L — = for m, we
obtain

© =L +(2¢ - }¢*)sin (L — @) + §e*sin (2L — 2=)
+4esin (8L -3w) .........(1),
where e is the eccentricity of the earth’s orbit.

The terms involving e* are too small to require attention for
most purposes. We shall neglect them as before and write
simply

© =L + 2¢sin (L — =) + §e*sin (2L — 2w)......... (2).
We have thus obtained the expression for the true longitude
of the sun in terms of its mean longitude.
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Reversing this series we obtain by omitting powers of ¢ above
the second

L=0 —2¢sin (O — w) + §¢*sin (20 — 2w) ...... 3),

which expresses the sun’s mean longitude in terms of its true
longitude.

It is now necessary to know the numerical values of ¢ and =,
and we have to show how continued observations of the sun’s right
ascension enable us to determine these quantities. This is done
by formula (3) which we shall transform by making z=e¢cosw,
y=esinw, L=nt+¢ and in the first instance neglecting ¢* as
very small, we have

nt+e=0 —2z8in O +2ycos O ............ (4),

as the approximate formula.

In this equation there are four unknowns, », ¢, z, y, and to
determine them we must suppose that a series of determina-
tions of the longitude ©,, ©,, ©,, O,...... have been calculated
from observations of the right ascension made at certain times
t, ta, by baennnnnn Each of these quantities represents the number
of mean solar days since a moment taken as the epoch. Each
value of © and its corresponding date ¢ when substituted in (4)
will give a linear equation connecting n, ¢, z, y. Four such equa-
tions would therefore make these quantities determinate, though
for increased accuracy the result should be based on very many
observations extended over many years. Thus z and y and
therefore ¢ and = become known approximately. At the same
time n and ¢ become known and the expression for the mean
longitude L is determined. We now substitute the approximate
values for e and w in the term involving e* in equation (3), for as
this term is so small there will be no appreciable error in its
value even though ¢ and @ may not be quite correct. Thus a
more accurate linear equation between n, ¢, z, y is obtained and
each observation will supply one such equation. In this way
¢ and @ may be obtained with all desirable precision.

The length of the tropical year is 360/n days, and of course
if we had been at liberty to assume as we have so often done
already that the tropical year is 365:2422 days we should not have
described 7 as an unknown. But it is necessary to point out that
it is by such an investigation as that now given that this value of
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the tropical year has been itself determined so that having found
n from the system of equations we obtain 360/n. The quantity e
is the sun’s mean longitude at the epoch. We thus obtain the
formula for L which has been already determined in a more ele-
mentary manner in § 67, Ex. 4.

It remains to give equations (2) and (3) their numerical forms
by introducing the actual values of ¢ and = for the earth’s orbit.
These are for the year 1900

¢=001675, @ =281°13,

and though on account of the perturbations caused by the other
planets these quantities are not strictly constant, their changes
from year to year are far too minute to be of any consequence
for our present purpose. Substituting these values and using
the value 3438’ for one radian we obtain

© =L + 1152 sin (L — 281°2) + 12 sin (2L — 202°4)...(5),

L =0-115"2 sin (© — 281°2) + 0*7 sin (20 — 202°4)...(6).

We may thus make the approximate statements: :

The true longitude © of the sun at any epoch is obtained by
adding to the mean longitude L of the sun at the same epoch
the quantity which has been defined in § 52 as the equation of the
centre, and for which we have now found the expression

115’ sin (L — 281°).

The mean longitude L of the sun at any epoch is obtained by
adding to the true longitude © of the sun at the same epoch the
quantity

— 115’ sin (© — 281°).

Ex. 1. Show that the equation of the centre is never zero unless the
sun is at one of the apsides.

*Ex. 2. Show that if attention is paid to the seconds of arc, the formula
(5) is to be written
© =L+1344"sin L+6778" cos L — 67" sin 2L + 28" cos 2.L.

74. The equation of time.

We can now express a, the right ascension of the sun, in terms
of its mean longitude L, for if © be the true longitude then
from § 72, 78,

a=0© —tan’{w sin 20 + § tan* j » . sin 4O,
© =L +2¢sin(L — w) +§e*sin (2L - 2w).
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The expression of a in terms of L involves a number of terms
with small coefficients. As the formulae need not be encumbered
with terms which are too small to produce an appreciable effect
we shall not retain any power or product of powers of e and
tan’$ w which is less than 1/10,000. This condition excludes all
except tan*4w=1/2321, e=1/59-70, tan‘4w=1/5387, etan’iw
=1/1385 and €*=1/3564.

Eliminating ©® we obtain
a=1L +2¢sin (L — =)+ §e*sin 2(L — w)

—tan?}w {sin 2L + 4esin (L — =) .cos 2L} + L tan* }w . 8in 4L,
which may be written
a=L+ 2¢sin (L — »)— tan®* o .sin 2L + 2¢e tan® fwsin (L + =)
+4esin 2 (L —w) — 2e tan? fwsin (3L — =) +  tan* fw . sin4L.

As the quantities €% etan’}w and tan‘}w are very small, the
first two terms of the expression (a — L) are by far the most im-
portant, and the others may for our present purposes be neglected,
so that we have

a=L+ E,
where E = 2¢sin (L — w) — tan* o sin 2L.
The quantity E is called the equation of time. It is to be added
to the mean longitude of the sun to give the sun’s right ascension.

E is here expressed in radians. We transform it into time at
the rate of 2w radians to 24 hours, and consequently for the
equation of time in hours, we have

12 {2¢ sin (L — w) — tan® o sin 2L}/,
or in seconds of time
13751 {2e sin (L — @) — tan® }w sin 2L}.
If in this we make e= 001675, w =281°'2, we obtain the approxi-
mate result
a=L + 90°sin L + 452° cos L — 592* sin 2L,
which is equivalent to the statement that
E=90*sin L + 452° cos L — 592°sin 2L ......... @)
is the equation of time when small terms are omitted.
At any sidereal time % the hour angle of the true sun is

Y—a,or
apparent solar time =% — a.
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At the same instant the hour angle of the mean sun is equal
to S —L, or

mean solar time = — L=(Y —12) + (a— L).

The equation of time is therefore defined to be the correction
to be added algebraically to the apparent solar time to find the
mean solar time.

Ex. 1. Determine approximately the equation of time at mean noon on
Dec. 27, 1910, being given that the sun’s mean longitude is then 275°.

By substitution in (i) we find E= + 53¢. If all the terms now neglected
had been taken account of we should have obtained 52¢-81 as given in the
ephemeris. The R.A. of the true sun a is thus 53* greater than L, which is
the R.A. of the mean sun. At apparent noon the mean sun is already past
the meridian by 53¢, so that to obtain the mean time we have to add 53* to
the apparent time.

Ex. 2. Show that the equation of time is about 73™ at the vernal equinox
and about — 74™ at the autumnal.

Ex. 3. Find the sun’s true R.A. at apparent noon on Nov. 1st, 1902,
given that the equation of time at mean noon that day is —16= 18s, and
that the sidereal time of mean noon on June 14 is 5b 27m 23s. (Take a
tropical year to be 365} days.)

[Oxford Second Public Examination, 1902.]

Ex. 4. Show that at the summer solstice, the equation of time has an
hourly increase of about 0-53 seconds, it being assumed that the daily motion
of the mean sun in arc is 59’ 8”32,

We have (1) 90*sin L +452° cos L — 592 sin 2L for the equation of time.
For a small change AL in L this increases by

(90% cos L—452 sin L—1184 cos 2L) AL.

In one hour AL=147"'85, or, in radians, ‘000717. Hence the hourly change
in the equation of time is

AE=0%064 cos L —0%-324 sin L —0%-849 cos 2L.
In the particular case supposed L=90°, and AE=0%5625.

Ex. 5. Show that the greatest value of the equation of time arising from
the eccentricity is 24e/m hours.
75. Formulae connected with the equation of time.

It is convenient to bring together various formulae connected
with the equation of time. The observer is supposed to be in
longitude ! west of Greenwich, and at a certain moment he
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observes the apparent solar time. The following is the notation

employed :

a is the sun’s R.A. at the moment of observation,
A, apparent time ” ’ ”
T , local mean time " "
S ,, local sidereal time ,, ” ”
E ,, equation of time ,, » "
E, , equation of time at the preceding G.M.N,,
E, , » " " following »
M, , Greenwich sidereal time at preceding G.M.N.,
MO, » » ” following ,,

We have from the definition of E (see p. 234)

T=A+E ....e.ccevvvvnveninnnnn (i),
At the moment of observation the G.M.T. is 4 + £+, and
assuming that E changes uniformly, we have
E=E,+(A+E+1)(E - E,)/24"............ (it).
We have also
A= —A oo (iii).
When the Greenwich mean time is 7'+ the Greenwich
sidereal time is %+ 1. The sidereal interval since the preceding
Greenwich mean noon is therefore & + [ — M,, and this is con-
verted into mean time by applying the factor 24" /(24" + M, — M,).
We thus have the equation
T+1l=242(S+1-M)/(24*+ M, - M),
from which we obtain
T=S-—My—(M,— M) - M, +1))(24" + M, — M,)...(iv).
From the equations (i), (ii), (iii), (iv) involving the six
quantities @, 4, T, Y, E,! we can determine any four when the
two others are given. It is understood that E,, E,, M,, M, are
constants for the day obtained from the ephemeris.
Ex. 1. Show that at any place and at ary moment the sidereal time 9,
the mean time 7', the right ascension of the sun a and the equation of time

E are connected by the relation
9—-a+E-T=0.

Ex. 2. If ¢ be the Greenwich mean time, X, ¥,, E,, E, the sidereal
times and the equations of time at the preceding and the succeeding
Greenwich mean noons, and if 4 be the observed apparent solar time, find
the longitude, and show that the local sidereal time is

Mo+ Ey+t (M) + E\— My — E)[240 + 4.
[Coll. Exam.]
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Ex. 3. If at Greenwich q, o’ are the hour angles (in degrees) of the sun at
¢t and ¢ hours mean time, show that the equations of time at the preceding
and following mean noons expressed in fractions of an hour are respectively

a't—at a'(24-1t)—a(24-7)

150 =0) S LY (2]

[Math. Trip.]
Ex. 4. Show from (ii) that -
E=242E/(240 + Ey - Ey)+(4 +1) (E, - Ey)/(24" + E, - E)),
and prove from the formulse given on the last page that the corresponding
mean time at Greenwich is
245 (A + Ey+1)/(24> + Ey— Ey).

Ex. 5. Find the sidereal time at New York, in longitude 73° 58' 24”-6
West at apparent noon on October 1, given that the numerical values of the
equation of time at Greenwich mean noon on October 1 and October 2
are 10™ 23¢-28 and 13m 42¢28 respectively, and that the sidereal times at
Greenwich mean noon on those days are 12b 40™ 57462 and 12b 44m 54°°17
respectively.

pocivey [Math. Trip.]

Ex. 6. On April 15th and 16th, 1895, at Greenwich mean noon, the
equation of time is given as 1°57 and 13¢-09, to be subtracted from and
added to mean time respectively. Find the apparent hour angle of the
sun at a place 4° E. of Greenwich at 11 58 local mean time on April 16.

[Coll. Exam.]

76. Graphical representation of the equation of time.
It appears from § 74 that the equation of time, E, when ex-.
pressed in hours of mean solar time is with sufficient approximation
E =12 {2¢sin (L — @) — tan*§ w sin 2L}/m.
Making in this expression the following approximate substitu-
tions,
tan'dw =1/232, e=1/597, @ =360°—79°
we obtain after reduction (or directly from (i), p. 233)
E = 0128 sin (L + 79°) — 0165 sin 2L
=768 sin (L + 79°) — 990 sin 2L.

We then plot (Fig. 66) the two curves of which the equations
are

y=T"68sin (L+79).ccccciuirniinnnnin. @),
and y=9 90sin2L ..ccoevvviiniininninnnn.. (ii),

where the mean longitude L is taken as abscissa, the ordinates
being laid off positively and negatively as shown in the left-hand
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margin. The curves are plotted for every longitude from 0° to
360°, and are thus available from the vernal equinox of one year
to that of the next. The diagram can be used without appreciable
alteration for a great number of successive years.

Fi1a. 66.

The use of the curves depends upon the fact that the equation
of time is equal to the ordinate of curve (i) minus the ordinate
of curve (ii), it being understood that in accordance with the
usual convention, ordinates on the upper side of the horizontal
axis are positive and those below are negative.

Thus on May 22nd the equation of time is @, P, and is
negative. On July 22nd it is @, P, and positive. On Oct. 22nd
it is Q, P, and negative, and on Jan. 22nd it is @, P, and positive.

In this way, taking as ordinate the difference of the ordinates
of curves (i) and (ii) with its proper sign, we obtain the continuous
curve in Fig. 66, the ordinates of which represent the equation of
time for every day in the year.
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There are four places at which the curves (i) and (ii) intersect
and at which consequently the equation of time is zero. Thus
we learn that the equation of time vanishes four times a year and
the continuous curve cuts the horizontal axis at four points which
show the corresponding dates.

That the equation of time must vanish at least four times in
the year may be shown otherwise as follows. We shall suppose
that ¢ is the part of the equation of time due to the obliquity of
the ecliptic, and ¢' that due to eccentricity. Let k be the greatest
value of ¢ without regard to sign, then %k is greater than any
value of #. The value of k is, as we have seen, 990, while ¢’
never exceeds 7™68.

From the vernal equinox to the summer solstice ¢ must be
negative, because so far as the inequality arises from obliquity,
the R.A. of the mean sun exceeds that of the true sun. Hence
the mean sun crosses the meridian after the true sun, and thus
a subtraction has to be made from the apparent time to find the
mean time. From similar reasoning it appears that from the
summer solstice to the autumnal equinox ¢ is positive, from the
autumnal equinox to the winter solstice ¢ is negative, and from
the winter solstice to the vernal equinox ¢ is positive. At both
the equinoxes and both the solstices ¢ is zero. As to the part
of the equation of time which arises from the eccentricity we
observe that ¢ is zero both at apogee and perigee, and since
from perigee to apogee the true sun is in advance of its mean
place, the value of ¢" must be continuously positive. "In like
manner ¢ must be negative all the way from apogee to perigee.

Let P, A (Fig. 67) be the perigee and apogee respectively,
S, W the positions of the sun at the summer and winter solstices,
and T, 2 the equinoctial points.

Let M be the point occupied by the sun at the moment when
t, which is zero at T and at S, has its greatest negative value.
Then remembering that E, the equation of time, i8 ¢+ ¢/, we see
that from P to T the value of £ must be continuously positive,
for ¢ and ¢’ are both positive.

At M we have E=t —k, and as t' can never equal k, we must
have E negative at M. Since E is positive at T, negative at M,
and again positive at S, there must be some point between T and
M, and also another between M and S, where £ =0. Thus the
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equation of time must vanish at least twice between the vernal
equinox and the summer solstice.

From S to A both ¢ and ¢ are positive, and therefore £ is
continuously positive from the summer solstice to the apogee.
But from A to & ¢’ is negative, and as ¢ is zero at = and ¢’ is
still negative, £ must be negative at o~ and positive at 4. It
follows that £ must be zero somewhere between 4 and =, and
thus the equation of time must vanish at least once again between
apogee and the autumnal equinox.

D

AN

o<

~— ™M
Fie. 67.

From 2 to W both ¢ and ¢ are continuously negative, and
thus the equation of time cannot vanish between these points of
the orbit. At P we find £ has become positive again, and there-
fore it must vanish at least once between W and P.

We thus learn that the equation of time vanishes at least
twice between the vernal equinox and the summer solstice, at
least once between the apogee and the autumnal equinox, and at
least once between the winter solstice and the perigee.

Ex. 1. If we take x as the tangent of the sun’s mean longitude Z,
show that the days on which the equation of time vanishes can be found
graphically as the intersections of the curve 3/=.7:(1+:¢")"i with a straight
line; and if the equation of this line be

y=007z+038,
estimate roughly the dates in question.
[Coll. Exam.]

In the equation tan? 4w sin 2L =2¢ sin (L — @) we make tan L=z and the
equation in  thus obtained is obviously the result of eliminating y between
the two equations

y=ex cos w cot? $w — 6 8in @ cot?}w,
y=2z(1 +x’)‘§.
Ex. 2. It has been shown that the equation of time expressed in seconds is
90 sin L + 452 cos L — 592 sin 2L,
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where Z is the mean longitude of the sun. Prove from this expression that
the equation of time vanishes at least four times annually.

If we substitute successively 0°, 45° for L in the expression, the sign
changes from + to —, hence there must be some value for L between 0° and
45° which is a root of the equation

90 sin L+ 462 cos L — 592 sin 2L=0.

We have further changes of sign for values of L between 45° and 90°,
between 90° and 180° and between 180° and 360°. Hence there must be four
real roots, and when some other small terms are taken account of it is found
that the roots are approximately

23°, 83°, 159°, 272°,
and the corresponding dates on which the equation of time vanishes are
16th Ap., 14th June, 31st Aug, 24th Dec.

Ex. 3. Show that the sum of the solar longitudes on the four occasions
on which the equation of time vanishes must be 540° if the square of ¢ and
the 4th power of tan $» are neglected.

We have 2e8in (L — w)=tan?$ o sin 2L,
and making
z=tan L, m=ecoswcot’}ow, n=esinw cot?w,
we find mz4 — 2mnad + (m3+nd— 1) 22 - 2mnzx +n2=0.

The coefficients of 2% and z in the equation are equal, and if we express
this fact in terms of the longitudes Z,, Ls, L;, L, corresponding to the four
roots, we have the condition

tan (Ly+ Ly + L3+ L,)=0.

This equation shows that L+ Lg+ Ly+ Ly=4k.180°, where £ is an integer.
But we have seen (Ex. 2) that L3>90° and L,>270° hence #>2. Also
L+ Ly<180°, L3;<180° and L,<360°, hence £<4. Thus the only admissible
value of £ is 3, and accordingly

Ly + Ly+ L+ Ly =540°.
It is also easy to show that
sin L, 48in Ly+sin Lz +8in Z,+8in L, sin L, sin Ly+8in L, sin Lgsin L,
+8in Z, sin Ly sin Ly +sin L, sin Ly sin L3=0.

Ex. 4. If the eccentricity of the earth’s orbit be 1/60, the cosine of the
obliquity 11/12, and the line of equinoxes be taken as perpendicular to the
major axis of the orbit, prove that the longitudes of the sun when the equa-
tion of time due to both causes conjointly is numerically & maximum are

angles whose sines are approximately 0617 and —0-809.
[Math. Trip. 1.]
The equation of time being

2e 8in (L - w) — tan?® $ w sin 2.,
becomes a maximum for @ =90° when
esin L —tan? 4w cos 2L=0.
Introducing the given constants the equation is g sin L — g5 cos 2L =0, whence
we obtain a quadratic for sin Z whose roots are the given numbers.
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77. General investigation of stationary equation of time.

We shall now determine when the equation of time is a
maximum or a minimum independently of any assumption with
regard to the obliquity of the ecliptic or the eccentricity of the
earth’s orbit. We shall however suppose that the movement of
the earth about the sun takes place in a fixed ellipse and that the
movement of the equator is neglected. We obtain the necessary
equations from § 52, and they are as follows:

tanv=V1 —e?sin u/(cos u —€); m=u— esin u;

tan a = cos w tan ©; O=v+w;
where v, m, u are the true, mean, and eccentric anomalies, ® the
sun’s true longitude, e the eccentricity of the orbit, and = the
longitude of perihelion.

Differentiating these equations with regard to the time ¢, we

obtain
dv_ Vl-e du

(T-t = m . at— .............. (l),
(1= ecosu) 2 dt "Z‘ ........................... (i),
(cos’® + cos’w sm’@) d =cos w Z: ..................... (iii).

The equation of time is obtained by subtracting the mean
longitude of the sun (m + @) from its right ascension «, and when
the equation of time is stationary its differential coefficient with
regard to the time is zero whence

da_ dm
e dt’
or by elimination of the differential coefficients
(1 — e cos u) (cos?® + cos’w 8in?@) = V1 — ¢ cos w.
From the geometrical properties of an ellipse we have
(1-e)=(1—ecosu){l +ecos (O — =)},
whence

a- e')g (cos’© + cos’w 8in* @) =cos w {1 + e cos (O — w)}2.
This formula involves no limitation in the magnitude of e and is
a general equation for the determination of ® when the equation
of time is stationary.

B. A. 16
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Ex. 1. Show that the stationary values of the equation of time occur
when the projection of the sun’s radius vector on the plane of the

equator is (1 - e’)*(oos m)i times the mean distance, @, where e is the ec-
centricity of the orbit, » the obliquity of the ecliptic.
Let p be the projection, then if 8 be the sun’s declination,

p=a(1-e?)cosd/{l+ecos(® —m)},
but cos 3=(cos? ® + cos? w sin? @)5,
and from what has just been proved,

(cos* © +eostasin? ©)F _ (cos )b

1+ecos(® —m) (l_eg)i’
whence p=a(l- e’)é (cos 0)5 .

Ex. 2. In general, supposing the sun’s path relative to the earth to be
an exact ellipse with the earth in the focus, and a second ellipse to be con-
structed by projecting the former on the plane of the equator, then the
projections of the sun’s position when the equation of time is greatest are
the intersections of the second ellipse with a circle whose centre is at the
earth, and whose area is equal to the area of this ellipse.

[Math. Trip. 1905.]

Ex. 3. In the general case show that whatever be the eccentricity the
equation of the centre is a maximum, when the radius vector is a geometric
mean between the major and minor axes.

78. The cause of the seasons.

The apparent annual path of the sun in the heavens is divided
into four quadrants by the equinoctial and solstitial points. The
corresponding intervals of time are called the seasons, Spring,
Summer, Autumn, and Winter. Spring commences when the
sun enters the sign of Aries, that is to say when its longitude is
zero. When the sun reaches the solstitial point (longitude =90°)
Summer begins. Autumn commences when the sun enters Libra
(longitude =180°) and Winter, commencing when the sun’s longi-
tude is 270° continues until the vernal equinox is regained.

The changes in the meteorological conditions of the earth’s
atmosphere, which constitute the phenomenon known as the
variation of the seasons, are determined chiefly by the changes in
the amount of heat received from the sun as the year advances.

The amount of heat received from the sun at any place on
the surface of the earth depends upon the number of hours during
which the sun is above the horizon and its zenith distance at noon.
At a place situated in latitude ¢ the interval from sunrise to
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sunset is equal to 24h/mw, where h is the angle, expressed in
radians, given by the equation

cosh=—tan¢tand ..................... i),

and the zenith distance at noon is ¢ ~ §, & being the declination
of the sun.

As the sun moves along the ecliptic from the first point of
Aries its declination is positive (see Fig. 68) and increases to a
maximum at the summer solstice, when the sun is at the first
point of Cancer marked by the symbol ®, the declination being

F1e. 68.

then equal to the obliquity of the ecliptic, viz. 23° 27. From
this point the solar declination diminishes until it vanishes at the
autumnal equinox =, from which the declination becomes negative
diminishing until a minimum (- 23° 27’) is reached at the winter
solstice in Capricornus, marked by the symbol v#, after which it
begins once more to increase and vanishes again at the following
equinox.

In considering the seasonal changes it is convenient to divide
the earth into five zones which are bounded by circles parallel to
the equator in latitudes + 23°27’ and + 66°33". The zone in-
cluded between the parallels of 23°27" north and south is called

16—-2
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the Torrid Zone, and its northern and southern bounding circles
are termed the Tropics of Cancer and Capricorn respectively.
The parallels of latitude 66° 33’ north and south are called the
Arctic and Antarctic Circles respectively. The zone included be-
tween the Arctic Circle and the Tropic of Cancer is known as
the North Temperate Zone, while that bounded by the Tropic of
Capricorn and the Antarctic Circle is the South Temperate Zone.
Lastly, the regions round the North and South Poles bounded by
the Arctic and Antarctic Circles respectively, are known as the
North and South Frigid Zones.

At the time of the summer solstice 8§ = + 23° 27’ and we have
then for any point on the Arctic Circle tan¢tand=1. Under
these circumstances the hour angle of the sun at rising or setting
is 180°. That is to say the diurnal course of the sun is then a
circle parallel to the equator, touching the horizon at the north
point, so that at midnight one-half of its disc would be visible (we
are not here taking the effect of refraction into account). Within
the frigid zone the sun will remain above the horizon without
setting for a continually increasing number of days, as the
observer approaches the pole. To an observer at the pole itself
the sun would appear to move round the horizon at the equinox,
after which it will describe a spiral round and round the sky,
gradually increasing its height above the horizon until at the
solstice its diurnal track will be very nearly a circle parallel to
the horizon at an altitude of 23°27". After the solstice it will
return in a similar spiral curve towards the horizon, which it
reaches at the autumnal equinox. In the winter half of the year
the sun will be continuously below the horizon.

The phenomena in the south temperate and south frigid
zones will be similar to those in the corresponding northern
zones, but they will occur at opposite epochs of the year. Thus
the spring of the southern hemisphere coincides in point of time
with autumn in the northern hemisphere, the summer of the
North with the winter of the South, and vice versa.

In the torrid zone the conditions are as follows. On the
equator, since ¢ =0, we have from (i) cos h = 0 whatever may be
be the value of 8. Hence k=4, or the length of the day is
12 hours all the year round. The meridian zenith distance of
the sun will however vary from day to day. At the vernal
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equinox the sun’s meridional zenith distance will be nearly equal
to zero (it would be exactly zero if the sun crossed the meridian
of the place at the moment when it was passing through the
first point of Aries). As spring advances the meridian zenith
distance will gradually increase until the solstice, when the sun
culminates about 23° 27’ north of the zenith. At the autumnal
equinox the sun again passes nearly through the zenith at noon,
and at the winter solstice it culminates 23° 27’ south of the
zenith. At places situated between the equator and either tropic
the amount of heat received from the sun will, so far as it is
affected by the sun's zenith distance at noon, reach a maximum
twice a year when the sun’s declination is equal to the latitude
of the place. .

Though the four parts into which the great circle of the
ecliptic is divided by the equinoxes and solstices are equal in
length, the times occupied by the sun in passing over them are
not equal.

To find the lengths of the seasons we employ equation (3)
of § 73, connecting the mean and true longitudes of the sun,

namely
L=0 —2¢sin (O —w)+4e!sin2 (O —=).

For our present purpose we may neglect the third term in this
expression, and write simply
L=0© —2¢sin (O - w).
When the sun is in T we have ® =0, and putting L, to repre-
sent the mean longitude at that moment, we have
L, = 2¢ sin .
In like manner, putting L,, L,, L,, and L, respectively to denote

the mean longitudes at the summer solstice, autumnal equinox,
winter solstice, and vernal equinox next succeeding, we find

L, = }m — 2¢ cos w,
L,= m—2¢sin w,
Ly=3§m +2ecos w,
L,=2mr + 2¢sin w.

The lengths of the seasons are found by multiplying the
difference between each consecutive pair of the five mean longi-
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tudes by the factor 365:24/27. Writing K for this factor we have
for the northern hemisphere
No. of days in
Spring =K (L, - L,)=91'310 — 2¢K (sin w + cos w))
Summer = K (L, — L,) = 91310 — 2¢K (sio w —cos w) | (i)
Autumn = K (L,— L,) = 91310 + 2¢K (sin = + cos =)
Winter = K (L,— L;)=91-310 4+ 2¢K (sin w — cos =)
Taking the values of ¢ and = as given in § 78 we obtain
2¢K sin w = — 1'910 days,

and 2¢K cosw =+ 0379
from which we deduce the lengths of the four seasons as follows:—
Days Hours
Spring contaius ... v 92 202
Summer , ... ... 93 144
Autumn ,, ... ... 89 187
Winter y e ... 89 0-5.

Thus we see that the spring and summer seasons together last for
186 days 106 hrs,, whereas the autumn and winter together
contain only 178 days 19-2 hrs. The reverse of this is the case
in the southern hemisphere, the summer half of the southern
year lasting for 178 days 19'2 hrs., whereas the southern winter
lasts for 186 days 106 brs.

Ex. 1. Assuming that @ increases uniformly show that in the course of
time the lengths of the four seasons will have as their extreme limits

91310 + ~/2 x 365'24 x ¢/m.

Ex. 2. If P be the number of days in the year and if summer is longer
than spring by @ days and longer than autumn by R days, find the eccen-
tricity of the orbit and the longitude of perigee.

EXERCISES ON CHAPTER X.

Ex. 1. On the assumption that the earth’s orbit is a nearly circular
ellipse and that the apsidal and solstitial lines have the same longitude,
prove that the eccentricity is approximately equal to

E\ - E, 2
El: Ez tan iﬂ,
where ), E; are the hourly variations in the equation of time at perigee

and apogee, and o i8 the obliquity of the ecliptic.
[Math. Trip. I. 1900.]
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Ex. 2. A clock at Cambridge keeps Greenwich mean time. Find what
time it indicated when the sun’s preceding limb arrived on the meridian on
Jan. 6, 1875, having given

Longitude of Cambridge ... 2275 E,,
Time of ®’s semi-diameter passing mendmn e 1m10 62,
Equation of time ... .. 6 288,

Ex. 3. Show that the columns in the Nautical Almanac which give the
¢ Variation of the sun’s right ascension in one hour’ and the ‘Time of the
semi-diameter passing the meridian’ increase and: diminish together, the
former quantity being practically proportional to the square of the latter.

[Math. Trip. L]

Ex. 4. If the eccentricity of the earth’s orbit be e and if the line of
equinoxes be perpendicular to the axis major of the orbit, show that the
number of days’ difference in the time taken by the earth in moving from
T to & and from £ to T is 465¢ very nearly.

Ex. 5. Show that the greatest equation of the centre is 2¢+11¢3/48 and
that when this is the case

v=4r+ie+ Ahed, m=4nr-fe—£FKA, u=4nr-}e— ffe
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79. Introductory.

We have already learned that in consequence of atmospheric
refraction there is generally a difference between the true place of
a celestial body and the place which that body seems to occupy.
We have here to consider another derangement of the place of a
celestial body which is due to the fact that the velocity of light,
though no doubt extremely great, is still not incomparably
greater than the velocity with which the observer is himself
moving. Any apparent change in the place of a celestial body
arising from this cause is known as aberration. The true co-
ordinates of a celestial body cannot therefore be ascertained
until certain corrections for aberration have been applied to the
apparent coordinates as indicated by direct observationt. The
nature of these corrections is now to be investigated. -

t That this must be the case was perceived by Roemer, when he discovered the
gradual propagation of light in 1675. This appears in a letter he wrote to Huygens
(Ocuvres completes de C. Huygens, T. vim. p. 53). Though a periodic change in
the place of the Pole Star, really due to aberration, was announced in 1680 by

Picard, the credit of discovering the general phenomenon of aberration is due to
Bradley (1728), who also gave the correct explanation of it.
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80. Relative velocity.

Let AB (Fig. 69) repres