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PREFACE.

THE following work is designed as a text-book for univer-
sities and technical schools, and as a manual for the field
astronomer. The author has not sought after originality,
but has attempted to present in a systematic form the most
approved methods in actual use at the present time.

Each subject is developed as fully as the necessities of the
case are likely to require; but as the work is designed to
be a practical one, those methods and developments which
have merely a theoretical or historic interest have been ex-
cluded.

Very complete numerical examples are given illustrative
of all the prominent subjects treated. These have been
selected with care from records of work actually performed,
and will show what may be expected in circumstances ordi-
narily favorable.

Such auxiliary tables as are applicable only to special prob-
lems will be found in the body of the work- those which
have a wider application are printed at the end of the volume.

The universal employment of the method of Least Squares
in work of this kind has led to the publication of an introduc-
tion to the subject for the benefit of those readers who are
not already familiar with it. This introduction develops
the method with special reference to the requirements of
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iv PREFACE.

this particular class of work, and it has not been the design
to make it exhaustive.

For the materials employed original papers and memoirs
have been consulted whenever practicable. The illustrative
examples have been drawn largely from the reports of the
Coast and other government surveys. For most of the exam-
ples of sextant work, as well as for-many valuable sugges-
tions, the author is indebted to his friend and former col-
league Prof. Lewis Boss. Much assistance has also been
derived from the excellent works of Chauvenet, Briinnow,
and Sawitsch. i

Fully appreciating the difficulty of eliminating all mis-
takes from a work of this character, the author can only hope
that this one may not prove to be distigured by an undue
number of such blemishes.

C. L. DOOLITTLE.
BETHLEHEM, PA., May 20, 1885. :
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INTRODUCTION TO THE METHOD OF
LEAST SQUARES.

1. When a quantity is determined by observation, the re.
sult can never be regarded otherwise than as an approxima-
tion to the true value. If a number of measurements of the

+ same quantity are made with extreme care, no two of the
values obtained will probably agree exactly; at the same
time none of them will differ very widely from the true one.

There is a limit to the precision of the most refined instru-
ment, even when used by the most skilful observer, and
therefore the determination of a quantity depending on in-
strumental measurement, however carefully made, must be
imperfect. It becomes then a problem of great practical
importance to determine how the mass of data resulting from
observation shall be combined so as to give the best possible
value of the quantity sought. The theory of probabilities
furnishes the basis for such an investigation.*

2. Observations are liable to errors of three kinds:
First. Constant errors, or those which affect all observa-

* The reader is supposed to be familiar with the theory of probability as de-
veloped in the ordinary text-books on algebra. See, for instance, Davies
Bourdon, edition‘of 1874, p. 322, or Olney’s University Algebra, p. 294.



2 LEAST SQUARES. § 3.

tions of a given series alike. These may result from a
variety of causes, such as errors in the instruments used,
personal error of the observer, errors in the constants of re-
fraction, parallax, etc., used in the reduction of observations.
A proper investigation will generally show the magnitude of
such errors, and consequently the necessary corrections—at
least the more important ones. We shall suppose the data
to which our discussion applies freed from such errors, as
their investigation does not come within the scope of this
subject.

Second. Mistakes, such as recording the wrong degree in'
measuring an angle, or the wrong hour in the clock reading.
When such errors are large they are not likely to give much
trouble, as their true nature appears at once. When they are
small they may prove embarrassing. The present discussion
does not apply to them, and we shall suppose that no urdis-
covered mistakes have been made.

Third. Errors which are purely accidental. 1t is to these
that our present investigation applies.

At first sight it might seem that such purely accidental
errors were entirely outside the sphere of mathematical in-
vestigation, but we shall see that they follow a very definite
faw, and that theory is verified in an exceedingly satisfactory
manner by observation.

3. We shall assume as the basis of our investigation the
ifollowing axioms:

L. If we have a series of direct measurements of a quantity,
all made with equal care, the most probable value of the
quantity will be obtained by taking the arithmetical
mean of the individual measurements.

I1. Plus and minus errors will occur with equal frequency.
I11. Small ervors will occur with greater frequency than
large ones. -
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Various attempts have been made to prove the first of
these as a proposition. All such proofs are more or less
unsatisfactory, and for elementary purposes it is more ex-
pedient to assume its truth at once. The “most probable
value” there mentioned must be understood as the value
which most nearly represents the given data, and from the
evidence furnished by this series of observations alone it is
the best attainable approximation to the true value.

The principles are supposed in all cases to be applied to a
large number of observations; the larger the number the
more closely will the results correspond to the laws assumed.

The Law of Distribution of Error.

4. Let » be a quantity whose value is to be determined
by observation either directly or indirectly.

Let M, M, M, . .. M, betheindividual values obtained.

Then regarding M, as a determination of the unknown
quantity #, its error will be (M, — z). Similarly, (M, — x),
(M, ~ z), . .. (M, — x) will be the errors of the other ob-
served values.

Let us write

[N

M —2)=4,M,—2)=4, ... M,—x)=4,. (1)

Let y, = the probability of the occurrence of the error 4,;
7, = the probability of the occurrence of the error 4,;

¥= = the probability of the occurrence of the error 4,,.

Then our second and third axioms assume a law as existing
such that the probability of a given error occurring will be

0
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a function of the magnitude of the error itself. We shall
therefore have the equation '

y:(p(d),. SIS IS 1 (L0 B e (2)

in which 4 represents any error, and y the probability of its
occurring. *

If this reasoning seems obscure, a different application of
.the same logic may possibly assist in comprehending it.
Suppose we have a large number of tickets in a lottery-
wheel. Let a definite proportion of them be numbered 1,
a certain other proportion respectively 2,3, etc. Then
the probability of drawing any given number from the wheel
will be a function of the number itself—viz.: 3

Suppose 1 ticket in every 55 numbered 1 ;
2 tickets in every 55 numbered 2 ;
3 tickets1in every 55 numbered 3 ;

10 ticketsin every 55 numbered 10.

Then every ticket would have one of the numbers, 1, R
5,6, 7, 8,9, 10, and

The probability of drawing a 1 would be 5 ;
The probability of drawing a 2 would be 2;
The probability of drawing a 10 would be }3.

Or if % represents any one of the numbers from 1 to 10 in-
clusive, the probability of drawing a £ will be E}JS = f(#), or

v = f(#) is the equation which represents the probability of
drawing a 4.

If now we were ignorant of the relations existing between
the successive numbers 1, 2, 3, etc., and the reldative number
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of tickets so marked, we could, by drawing a sufficiently large
number of tickets from the wheel, determine it, at least ap-
proximately. In this case we have to determine the proba-
bility of a given event occurring, viz., that of drawing a
ticket marked with any given number 4. Intheabove prob-
lem we have also to discuss the probability of a certain event
occurring, viz., that of the appearance of any given error 4
in any one of our observations taken at random.

The Curve of Probability.

5. In the equation y = @(d), we can regard 4 as the ab-
scissa, and y as the ordinate of a curve. From the laws pre-
viously assumed we at once infer that the general form of
the curve will be that of the following figure. In the first
place, as 4 and — errors are equally probable, it follows
that the curve will be symmetrical with' respect to the axis
of y; and as small errors are more probable than large ones,
it follows that the values of 4 near zero will correspond to
large values of y, while as 4 becomes very large y becomes
very small.

(2]

i
i
1
i
1
1
\
'
i
i
i
1
i
;
1]

g SRSV

X P [5) P X

Fic. 1.

Practically 4 is not a continuous variable, and our locus,
therefore, consists of a series of disconnected points. The
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intervals between the different values of 4 will pe equal to
the smallest reading of the instrument with which the obser-
vations were made. The greater the degree of precision in
the data, however, the more closely will our locus approach
continuity ; so by regarding it as a continuous curve we have
a condition towards which we are constantly approximating
as methods of observation become more and more refined.

Determination of the Function @.
6. For the probability of an error 4 we have the equation
7= ¢(4);
and for an error 4 - 64,
Y = @44 64).

The probability that an error falls between 4 and 4 4 64
will be the sum of all the probabilities between y and »'; or
if 64 is small, it will be nearly 64¢(4). When 64 becomes
dd4, we have rigorously y = @(4)d4 for the probability that
an error falls between 4 and 4 4 44.* For the probability
of an error falling between any finite limits, as for instance

* By way of illustration let us suppose the smallest unit of measure made
use of in our observations to be 0”'.1, and that any given number of these units,
as for instance 3, are represented by 4. Then the errors between 4 and
4 484, including the latter, will be (4 4 1), (4 4 2), and (4} 3); and their
respective probabilities, 1 = @4+ 1), y2 = ¢(4 + 2), and y3 = @4 + 3).
1f now the limits between which the errors of our series lie extend to + 10",
we see that the probability y, will differ but little from ys, and the sum of all the
probabilities 31 -+ ya -+ ys will differ but little from 3y, or

8dy = p(d)6 4.
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+ a, we shall have the sum of the probabilities for all values
of 4 between =+ a, or

pZI:“¢(A)dA. A e L

When we extend the limits of integration so as to include
all possible values of 4, the probability becomes a certainty,
which is expressed mathematically by unity. As, however,
it is impossible to fix a finite limit to the value of 4 which
shall be universal in its application, the limits in this case
must be’extended to 4 «, giving us the eguation

1=[:“¢(A)d4. e e S

From the foregoing we have

7, = @(4,) for the probability of the error 4;;
¥, = @(4,) for the probability of the error 4,;

Im = @(4,) for the probability of the error 4,,.

If now P= the probability that all these errors occur si-
multaneously, we have, from the theory of probabilities,

P=gpd)pdypd) . - - 94, . . . (5

and the most probable value of the unknown quantity x will
be that which makes the quantity 7 a maximum.

Taking the logarithms of both members of this equation,
we have

log 2= log ¢(4,) + log ¢(4,)+ . . . + log @(4,,).
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Differentiating this with respect to z, and placing the dif-
ferential coefficient equal to zero, which is the condition of a
maximum, we have

d(log P) _ d[logp(4,)] 44, , dllog ¢(4,)] 44,
gt o R e e e
d[log ¢(4,)] d4.,
+ ...4 aa, < =0.

From (1) we have
d4, a4,

g

iy il P U el el
Substituting these values in the above equation, also for 4,
etc., their values (M, — x), etc., it becomes

dlog p(M, —x)  dlog p(M, — z)
A, = %) dM, = )
d log (M, — x)
S R g

="0:=u(6)

This equation gives the means of determining » as soon
as the form of the function ¢ is known, and this can best be
determined by considering a particular case. As this func-
tion is strictly general, if we have once determined its form
in a special case the result will be applicable to all cases.

We have assumed as an axiom that in the case of direct
measurement of the quantity sought the most probable value
will be the arithmetical mean of the individual measurements.
This principle will furnish the basis for investigating the
form of the function @.

In case of direct measurement we have for the unknown
quantity

L MAME e

m
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which may be written

M —)+M,—2)+...+M,—2x)=0. . (8
Equation (6) may be written

dlog (M, — ) dlog p(M,
ar—» [ = S air=] + 0t [ S i

dlog @(M, — %)
+ Dl _‘_(Mm—x) [(Mm —gx(p)d(Mm— x)] =0. .

Comparing equations (8) and (g), we see that since the
quantities (M, — x), (M, — x), etc., are independent of each
other, these equations may be satisfied by placing the coeffi-
cients of (M, — x), (M, — z), etc., in (9), respectively equal
‘to the same constant, 2. We have therefore

. dlogpM,—x) _ dlog p(M, — x)
(M, — x)dM, — %) (M, — x)dM,— )
; leg q)(Mm =5 ;L’)

A (JWm—x)d(Mm—x)zk' (10)
Writing for (M — x) in general 4, we have
dlog @(d4) = kdd4,
and, by integration, log @(4) = 344"+ log ¢,
¢ being the constant of integration, <
or R e T ey

From axiom IIL it appears that as 4 increases this quan-
tity must diminish, and this requires the exponent of ¢ to be
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negative. As 4° cannot be negative, it follows that 2 must
be so. Wrniting therefore 42 = — /’, our equation becomes °

TR s e e R € 5

7. Let us now consider the constant of integration¢. This
may be determined by substituting the value of @(d4) in (4),

glVlng us g
|- oo
Sk

a special form of the integral known as the gamma function.
For the purpose of integrating the expression, place 24 = ¢.

dt
Then d4 = 7 and we have
£ A e Pt ol
I—Iw 7¢ dt'—ﬁu/—,‘” e~ "dt.

As ¢ in this expression is involved only in the quadratic
form, we evidently have

St [ rtata [T et = o [ e-dt = 24

(in which we write the integral equal to 4 for convenience).
In the definite integral [ ¢—#dt the value will be the same

if we write another symbol instead of 2. Therefore

../: e‘"a’z‘:[ e~ ’dv.

Multiplying both members of this equation by I " -ndt, we

a= [ -tz

have’
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In the second member of this equation write v = #u,
dv = tdu. Then

A’ =f a’u/ e =20+ 2N¢gy,
[+] o

— Bt Y) el Paata +uj)
But : /e tdt T
. e I
which between the given limits becomes )
Therefore
I -1 i -1 o .l_

_f : + " :5(tan oo — tan o)_47r.
Therefore A= —27-[-
and we have L= ;—5‘4/'7?, or c= Vi;’
and equation (12) becomes

p .
: y:tp(d):—ﬁe"‘mﬂ. s L SR (13)

In this equation the constant /% will require further con-
sideration ; but if we assign any arbitrary value, as unity, to
% we can readily construct the locus of the equation. It will
at once appear that the general form will be that shown on

page 5.
Condition of Maximum Probability,

8. Substituting in equation 5) the values of @(4,), ¢(4,),
etc., from (13), it becomes

f\" et st an)
= (L) mmaltart ke, (1
P (V”) e (14)
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From this equation we see that 2 will increase in value as
the exponent of ¢ diminishes, or 2 will be a maximum when
4+ 4 4. ..+ 4, is a minimum, thus giving us the im-
portant principle—

The most probable value of the unknown quantity ts that whick
makes the sum of the squares of the residual errors a minimum.

From this principle comes the name Mez/od of Least Squares.

The Measure of Precision.

9. Let us now consider the constant /.
Substituting in equation (3) the value of ¢(4), we have for
the probability of an error between the values + «

+ k — R32A%
e &z 1/7_1'? At e A Lk (15)

1f we take another series of observations, we have the
probability of an error between + &’

i f TR gy,

If these respective probabilities are equal we shall have

S g rmpgn = [ i,

which equation will be satisfied by making %a = /'a’, or
AR = a raReRO I T i (16)

We see from this equation that in two different series of
observations % will have different values, these values being
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to each other inversely as the errots to be ascribed with equal
probability to each series. If, for instance, the errors of the
first series are twice as great as those of the second, Z will
equal 3%’. The constant % is therefore the measure of pre-
cision of the series of observations; and if its value could be
determined from the observations themselves, we should by
this means be able to know to what degree of confidence the
data were entitled. This determination is possible,—at least
approximately,—but for practical purposes it is more con-
venient to compare the relative accuracy of different series of
observations by means of their respective probable errors,
which will now be considered.

The Probable Error.

10. The probable error of any observation of a given series
is a quantity such that if the errors committed be arranged
according to their magnitude without reference to the
algebraic sign, this quantity will occupy the middle place in
the series. [t may therefore be defined as a gquantity of suck
value that the probability of an error greater than this one ts the
same as the probability of one less.

When we consider both plus and minus errors, we have
from equation (15) the following expression for the probability
of an error between + ¢, remembering that the probability
between o and + ¢ is the same as between o and — a:

:ﬁ oaé’_h,Azdd. SEAEIOR R (17)

Let » = the probable error.
The whole number of errors being represented by unity,
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our definition of the probable error gives us the following
equation:

1_2/z 7
2. yYmYe

A2 I 2 ﬁr — A3A2
Atk R or 5: ﬁ[ e~ A4 4. (18)

The solution of this equation will give us 47; so that if % is
known » becomes known, and’ conversely.

11. It is evident that the equation for /%» can only be
solved approximately, as the expression e-#4"%d4 is not
directly integrable. The only method of solution is to com-
pute a series of numerical values of the integral for different
values of the limit, 27, and then by interpolation determine
that value whiclr satisfies equation (18) with the necessary
degree of precision.

Owing to the great importance of this integral, not only
in this connection, but also in the theory of refraction, vari-
ous methods have been developed for computing its numeri-
cal value. The most elementary of these consists in expand-
ing e~ #** = ¢ = # (,4 being written equal to #) into a series ot
ascending powers of 7, by means of Maclaurin’s formula, and
integrating the separate terms of the series. This series
converges rapidly for small values of ¢ and is therefore well
adapted to numerical computation, but for large values of ¢
it becomes diverging. For this case, as well as for the case
where 7 is small, a series may be obtained by successive ap-
plications of the formula for integration by parts,

/ua’v = uv — | vdu,

by which means the expansion may be effected either in
terms of ascending or descending powers of 2 When an
extensive series of values of the integral is required, as in
computing a table of values for different values of the argu-
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ment, 7, the most simple process is to apply what is known
as the method of Mechanical Quadratures.

As very complete tables of numerical values of this integral
have been many times computed, we shall simply refer to the
tabular quantities without entering more fully into the methods
of computation. Table I. of this volume gives the values of

¢

V—Z_—fe-" dt for values of ¢ from o to . We readily find
I °

from this table that the value of /7 which satisfies equation

(18) lies between .47 and .48. An interpolation readily gives

hr = 0.47604;
5 — 47094

P R R e e e N
li0% .47294_

The Mean Error.

12. The probable error is not the only function of the
errors which may be used for comparing the relative ac-
curacy of different series of observations. Another quantity
which may be used for this purpose, or as a convenient aux-
iliary for computing the probable error, is the Mean Error.

The Meéean Error is a quantity whose square is the mean of
the squares of the individual errors.

Let ¢ = the mean error. Then to determine the relation
between ¢ and %, and consequently between ¢ and 7, we pro-
ceed as follows: Let

4', 4", 4", etc.= the different errors which occur ;
4, @(4"), p(4’""), etc. = their respective probabilities.
P P p

n
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Then m being the whole number of errors, there will be a
number expressed by the quantity 2m@(d4’) (both 4+ and —
errors included) of the value &', 2m@p(4”) of the value 47,
etc., and in all :

4 44,4+ 4, + ... = 2m@p(4)4" 4 2mp(4")4”
S ZﬁZQD(A”’)A”/ + etc.

From the definition of the mean error ¢ we shall have

ot 2mp(4) A" 4 2mp(4") A" + 2mep(4"")4""* + etc.
Iy m

— 23p(4) 4.

Expressing this by an integral, by the same method of rea.
soning as was used in deriving equation (3) we have

S
& —= 2‘/0‘ —éd’e""“dd.

This equation expresses a relation between € and %2 To
dat

effect the integration, let as before 24 = ¢. Then d4 = 7
and we have

= ey Lt

2
7V mve
Integrating this by parts by placing # = # and dv = ¢~ *“#ds,
and substituting in f udv = uv — f vdu, we find

ef: /;“21/;[ (2et’)t—w _f _ﬂdt]

which readily gives & =2i;l;. M R
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Substituting the value of / from (19), we have

1.48267; }

i HETIR - )

> 7

From these 7 is readily computed when we know ¢, and vice
versa.

The Mean of the Errors.

13. Another quantity which is much used as an auxiliary
for computing 7 is The Mean of the Errors. This must not
be confused with the mean error. It is thus defined :

The Mean of the Ervors s the arithmetical mean of the differ-
ent errors all taken with the positive sign.

Let » = the mean of the errors. Then to determine the
relation between » and » we proceed in a manner similar to
that followed in the previous section. As before, let

zaff; 4% 4", etc. = the individual errors.
p(4’), (4", (4", etc. = their respective probabilities.

Then, thé whole number of observations being #,
mn = 2m qJ(A/)A' + 2m tp(d")d".+ 2m (p(AII/)AIII’ etc.,
from definition; and therefore

2mp(A4) 4" -2 ANA" L 2mp(A4"N4", etc.
34, p(4") 4" +-2me( )m +2mp(4"") — 23 ¢(4)4.

Passing to the integral as before, 7 being supposed very
large,

<7 2A2
17:2.[ —177:1: _hAAdA:}—V: . . . (22)
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Substituting the value of Z from (ig),
e 1.18297-;}
» S ol SR - (23)

Equations (20) and (22) give us the following relations be-
tween ¢ and 7, which we shall hereafter find convenient :

”Z‘/z& oA B S ()
T

Either of the quantities 7, ¢, or » may be used for comparing
the relative accuracy of different series of observations, or of
the quantities derived from them by computation. We shall,
however, always use 7 for this purpose, making use of » and
&, when occasion serves, as convenient auxiliaries for comput-
ing the probable error 7.

, Precision of the Arithmetical Mean.

14. Although the arithmetical mean is the best value to be
obtained from a series of equally good direct measurements,
it will only be an approximation to the true value. Itisthere-
fore important to determine to what degree of confidence it
is entitled. Let

A A R T, zmd1v1dualmeasurementsof the quantity x;
4,4,4,, ...4, = the errors.of each = respectively.

Then =@ —4)=@n—4)=...= (t,— 4,).
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Then the most probable value of x is that which gives a
maximum value to the expression
/l m
P = <-—;) P LV R R S A N
= - (14)

42 42+ ...+ 4, must therefore be a minimum.
But this is the case when x is the arithmetical mean of the
individual values #,, #,, . . . #,,.

If any other value is assumed for x, as x -} 6, the cor-
responding errors will be 4, — 6, 4, —6, ... 4, — 6, and
(14) becomes _

k m
P = <__) L1 =8P+ (La=8 . « . +(d, =]
4/7[ (14)1
Y < /‘~>m e~ hAEA2—283 4 +md?)
Vr
But from article 12, =4°= me’. Also, Z4=o.
Therefore (14) and (14), become

— < £ )ms_mh"’,

Vr
oo < /l— )ina_mh’(E’—’r’B’);
vV
or WBL Bhaks e g st o R S PRI D S e ]
For a single observation 7 = 1, and this expression

becomes
B P A e b i ke R W R SR

Therefore /% being the measure of precision of the indi-
vidual observations, that of the arithmetical mean. of » such
observations is % ¥ .

Therefore, calling %, the measure of precision, €, and 7, the
mean and probable errors of the arithmetical mean, we have,
from formule (19), (21), (25), and (25),,

€ie=ryr=nril= Fo o R ee)
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That is, the precision of a result obtained by direct measurement
is divectly as the square root of the number of measurements.

Deternination of the Probable Errvor.

15. From the foregoing principles we can now compute
from the observations themselves the probable error of a
quantity determined directly by observation.

As before, let », n, n, . ..n, = the individual measure-
ments of a quantity .

Let x, = the arithmetical mean of the #’s;
U= — Xy Vy= My — Xy . o Uy = Ny — X,.

These quantities (z,, v,, etc.) are known as residuals, and
must not be confounded with the true errors (4,, 4,, etc.),
from which they will always differ, unless #, is absolutely the
true value of .

Let the error of x, be 6. Thenx = », + 6, and conse-
quently ‘

A=, =8 A =8 A= 6,
and we shall have
[44] = [v0] — 2[0]8 4 mé*;
in which [w]* =049+ ...+ 2,
and [v1* =2, + 9, +...4 ¥,

Since z, is the arithmetical mean of the quantities #,, #,,
etc., it follows that [2] = o, and consequently

[44] = [20] + mé"

* Frequent use will be made hereafter of this symbol of summation, and it
will require no further explanation.
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6 being the error of the arithmetical mean, is unknown. A
close approximation will, however, be obtained-if we assume
it equal to the mean error ¢,.* Then referring to (25), we have

2

&

mo0* = me! = m— = &
S m

and since [44] = m¢, we have
me = [vv] + €.

T ;

Therefore & = :
m— 1

and from (21), r = 6745 \/m[vw]l_
SR
; m(m — 1)
F= -6745\/ it ol
; m(m — 1)/

Combining equations (27) and (24), we readily find

(27)

3]

From (25) and (26),

go==T1.25232 —iﬂ— 7, —="0:8453 —B—ﬂ]— 1
(28)

Von(m — 1)’ Vn(m — I)’
Ef— 5. 2633 i e 7, = 0.8453 ___L—l—_v]_
P mVm— 1 3 my m— 1

In these expressions [ ] represents the sum of the residuals
all taken with the positive sign.

These simple formula (27) and (28) are of great practical
value. When the number of observations is not large the
values given by (27) will be a little more accurate than those

* From what precedes we see that this assumption would be rigorously true if
the number of observations were infinite,
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by (28), but when the number is large (28) will be sufficiently
accurate for practical purposes, and the facility with which
they are applied is something in their favor.

+ Probable Error of the Sum or Difference of Two or More
Observed Quantities.

16. Let us next suppose the unknown quantity x, instead
of being directly observed, to be the sum or difference of two
or more quantities whose values are obtained by direct
measurement ; viz.:

Let x = y, + 7, in which , and y, are independent of each
other and whose values are directly observed.

Let the individual errors of observation be—

For_y,, Axlr Axﬂv gL gl Axm;
Elonypse skl w12 Safim,

. The errors of the individual determinations of x will then be
(Anl :t Aal)v (All’ :t AQH)! R (Alm i Aam);

and if € is the mean error of a determination of z, we shall
have

me® = (Al/ % Ag’)’ + (‘Axl, oE Aﬂli)2+ =08 + (Alm C Aﬁm)n'
Expanding and making use of the symbol for summation,
me = [d4,4] £ 2[4,4,] + [4,4,].

Let ¢ and ¢, = the mean errors of a measurement of y, and
7, respectively. Then since, for reasons before explained,
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the middle term ([4,4,]) may be regarded as vanishing in
comparison with [4,4,] and [4,4,], we shall have
me = mée® -+ me,’,

or RS RN ot L IR RO,

In a manner precisely similar we may extend the method
to the sum or difference of any number of observed quanti-
ties, so that in general if we havexr =y, £ 7, £ ... & 7,
the mean errors being respectively ¢, ¢, ¢, ... &,, we shall
have

eV T e T e T T =y . (30)

Suppose next that we have r = a,y, + a, 3, & . . . &+ @, ¥,

in which a,, a,, . . . «, are constants. If, as before, ¢, ¢,, . . .
&, are the mean errors of 7, 7,, . . . 7., then the mean errors
of a,y, a,y, ... a,y, will be respectively a,&,, a,e,, . . . apén,

and the mean error of x

£ =+Va'e® + a’e’ + ...+ ¢, = V[ae]. . (31)

Principle of Weights.

17. In the foregoing we have assumed all the observations
considered to be equally trustworthy, or, as it is expressed
technically, of equal weight. As will readily be seen, we
shall frequently have occasion to combine observations of
different weights. It is therefore important to ascertain
how to treat them, so that each shall have its proper influ-
ence in determining the result.

Confining our discussion for the present to the case of a
directly observed quantity, the most elementary form of the
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problem will be that where the quantities combined are them-
selves the arithmetical means of several observations of the
weight unity. Thus, suppose the quantity x to be deter-
mined from 72’ such observations; the most probable value
of #’ will then be

{ :”l/+”2/+”s/+"'+”m’,

'

\

From a second, third, etc., series of #:”/, #'”, etc., observa-
tions we have respectively

m/ ) gl

xll 1”,/ 3
o e n /r/+” /N+” /N+ +ﬂ £
X '

.

Combining all these individual values, we have for the
most probable value of »

o« o M ™
m o fwm

' 2 A g
or . r = 77’/—:— ! _:—7”///_}_._?_. 7 Lo SR (32)

The value of » will not be affected if we multiply both nu-
merator and denominator of this fraction by any constant «;

viz.,

am/x/+ am’/ 24 + a7n7//xlll + ( 2)*
= Tom Fam Faml F ... 3
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in which we may regard awm/, am”, etc., as the respective
weights of 2/, 2/, etc. « may be integral or fractional.
From this we see that the weights are simply relative quan-
tities and are in no case to be regarded as absolute.

From the foregoing we have the following practical rule:

When observations are to be combined to which different weights
are to be ascribed, the most probable value of the unknown quantit»
will be obtained by multiplying each observation by its weight,
and diwiding the sum of the products by the sum of the
werghts.

It is clear that the difference of welghts may result from
a variety of causes other than the simple one considered
above; as, for instance, one series of observations may be
made with a more accurate instrument than another, or by a
more skilled observer. Thus, for example, it may be the
case that ten measurements made by one observer will have
as much value as twenty made by another. If the weight of
an observation of the first series be unity, one of the second
would only be entitled to a weight of one half; or more gen-
erally,

Letting » = the weight of an observation of the second series,
Then 2p = the weight of an observation of the first series.

If then we have a series z,, z,, z,, etc., of observations of
the weights p,, 2., 2,, etc., and consequently

xl+Pﬁx2+p3x3—|—"'
p1+Pa+Ps+--'

as the most probable value of z, it is evident that, whatever
may have been the cause of this difference of weight, we may
consider each value z,, z,, etc., as derived from p,, 2, etc., in-
dividual observations of the weight unity. Let
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¢ = the mean error of an observation of the weight unity;
&, &, etc., the mean errors of z, z,, etc.

13 2%

Then from (25), & =—, & =—, etc -
Vi’a byt 135)
or &8, =Vp,:Vp, &:&=4p,:4p,etc.

The whole number of observations being equal to g, + p,
-+ #, + ... = [#] observations of the welght unity or of the
mean error ¢ we have for the mean error of #, from (25),

E":@""""(‘%)

The Probable Error when Observations have Different Weights.

18. The mean taken according to weights, as in equation
(32) or (32)*, is sometimes called the General Mean. 1In order
to derive the formula for the probable error in this case, let,
as before, & be the error of the general mean x,; viz., x — x,= 6.
Then, the notation being as before, we have

41201—3, A,:?J,——(?, A._,:'zzs-—é‘, etc..

The error 4, belongs to z, and therefore appears p, times;
The error 4, belongs to #, and therefore appears p, times;

Therefore [pd4] = [pvv] — 2[pv]d + [p]6*

For the same reason as in previous cases [pv] may be dis-
regarded as being inappreciable in comparison with the other
terms, when we have

[p44] = [pov] + [2]0
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Substifuting for ¢ the mean error of » from (34), we have

[p44] = [p0) + €.

Now, as z, is equivalent to p, observations of weight unity,
there will be the equivalent of p, errors equal to 4,; and ¢,
being the mean error of z,, we shall have

28 = pndxdn
Whence from (33), A 0
Similarly, & = p4.4, = p4.4, ete.

And » being the whole number of quantities, or observa-
tions, x,, x,, etc., we have

7”52 :pxdldx +ﬁ~zdadn +psdsdﬁ’ etc.

Our equation therefore becomes m& = [ pvv] + &, from which

el \/ Zzn |
m — I
and from (34), LT (2] (l;::v]_ I) (35)
> 3 . [~ 35
and from (21), il [7’ ]
i [PW] -
7, = .6745 2] m — 1) )

m in these formulze 1s.the number of individual observations,
or quantities, x,, x,, etc.,, and must not be mistaken for the
sum of the weights.

It will be evident upon a careful comparison of these ex-
pressions with the formulee (27) that we should have reached
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the 'same result by multiplying each quantity z,, x,, etc., by
the square root of its weight, and then proceeding exactly as
we have previously done with observations of equal weight.

We have therefore éstablished the following rule which we
may apply in combining observations of different weights :

First reduce all observations to a common unit of weight by
multiplying eack by the square root of its weight, then combine
them precisely as if they had originally been of equal weight.

- For examples of the application of the formula see pages
515 and 516. .

General Remarks.

19. We have hitherto considered only those cases where
the unknown quantity is'derived in the simplest manner from
observation, viz., by direct measurement or by the sum or
difference of directly measured quantities.

Before proceeding to the more complex cases a few general
remarks may not be out of place. '

Equation (13), which represents the law of distribution of
error, and on which the subsequent discussion is based, rests
upon two hypotheses neither of which is ever fully realized
in practice, viz., that the number of observations is infinite,
and that they are eatirely free from constant errors, i.e.,
errors which affect all alike. The formule deduced when
applied to the cases which actually arise can give us only
approximate results, although they will be the best attainable
approximations from the given data. This is particularly to
be borne in mind when the number of observations is small.
The probable errors in such cases are apt to be entirely illu-
sory, and in general are- only reliable when the number of
observations is large enough to exhibit approximately the
law of distribution of error derived from the hypothesis of
an infinite series of observations.
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The second hypothesis mentioned above, viz., that con-
stant errors do not exist in our data, can never be fully realized,
and this fact is often the source of great annoyance and un-
certainty in combining observations taken under different
conditions. Such errors arise from a variety of causes, some
easy to investigate and others not at all so. It is of very
frequent occurrence that a result derived from a single series
of observations will give a small probable error, and yet differ
widely from that derived from a second series to all appear-
ances equally good. It sometimes happens that computers
who are puzzled by such occurrences attribute the difficulty
to faults in the method, the truth being that they are due to
the presence of a class of errors with which the method does
not profess to deal.

The remedy for this difficulty is to vary as much as pos-
sible the conditions under which the observations are made,
and in a manner calculated to eliminate as far as possible
those constant errors which cannot be investigated.

Comparison of Theory with Observation.

20. The test of theory is its agreement with observed facts.
We may in this manner test the truth of the law which we
have derived for the distribution of errors.

We have the probability that an error falls between the
limits + a expressed by the equation ’

ek, g
pzla V_;e—ﬁ b B PR 0 (15)

In accordance with the theory of probabilities,  here is a
fraction which expresses the ratio of the number of errors
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between 4+ @ to the whole number. If then the number of
observations is 2, the number of errors between + a will be

y/) 57

m— | Cp-mmrgy
R

)

To test the law expressed by this formula we have only to
compute the probable error of the series of observations under
consideration by (27) or (28), and then %z by (19). The value
of the integral will then be obtained from Table I., and we
shall be in possession of everything necessary for comparing
the number of errors between any two limits as indicated by
this formula with the number shown by the series of observa-
tions. Many such comparisons have been made, and always
with satisfactory results, when the number of observations
compared has been large. A perfect agreement is of course
not to be looked for, as our formula has been derived on the
theory of an infinite number of observations; and further, we
are not in possession of the true errors for comparison with
the formula, but the residuals instead, which will always differ
from the errors unless we are in possession of the absolutely
true value of the unknown quantity.

As an illustration of the above the following tabular state-

ment gives the result of a comparison with theory of the
~errors of the observed right ascensions of Sirius and Altair.
The example is given by Bessel in the Fundamenta Astrono-
mie.

In a series of 470 observations by Bradley the probabie
error of a single observation was found to be » = 0".2637,
whence /2 = 1.80865. Therefore for the number of errors less
than ”.1 the argument of Table I. will be # = 24 = .180865.
With this argument we find for the integral .20188, which
multiplied by 470, the entire number of errors, gives 95 as
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the number of errors less than ”.1. In a manner similar to
this the following results were found :

No. o .

Between boy '{hE;;;.rs b?oE:;ggg:Z.
o’.0and o'l.1 95 94
0’.1 and 0".2 89 88
0’.2 and 0".3 78 78
0".3and 0.3 64 58
0".4 and 0".5 50 51
o".5and 0.6 36 36
o’.6and 0’.7 24 26
0’.7and 0".8 15 15
0".8 and 0".9 9 e
o".9and 1".0 5 7

over 1.0 5 8

This agreement is very satisfactory, but here, as in other
similar examples, the larger errors occur a little more
frequently than theory would indicate.

This is probably due to the fact that (unconsciously, per-
haps) every observer will occasionally let an observation pass
which is not up to the average standard of accuracy. Small
mistakes will sometimes occur, also, which are not of sufficient
magnitude to attract attention. A considerationof the matter
has led to attempts on the part of Peirce of Harvard College
and Stone of England to establish criteria for the rejection
of such doubtful observations. On the other hand it has been
proposed to overcome the difficulty by determining a system
of weights which should give those observations which show
large discrepancies less influence than those showing small
ones.

This branch of the subject, however, is beyond the scope
of the present work. It is an exceedingly delicate matter
to deal with, and from its nature is probably incapable of a
mathematical treatment which shall be entirely satisfactory.

Every computer occasionally feels compelled to reject
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observations. This should always be done with extreme cau-
tion. As for the criteria for this purpose hitherto proposed,
probably the most that can be said in their favor is that their
use insures a uniformity in the matter, thus leaving nothing
to the individual caprice of the computer.

Indirect Observations.

21. We have now investigated the simplest case of the
determination of the unknown quantity by observation, viz.,
that when the quantity to be determined is measured directly.
In the more general form of the problem the unknown
quantities are connected with the observed quantities by an
equation of the form

Tz it =) =

M being given by observation, and z, y, z, etc., being the un-
known quantities. This general form includes the case which
we have previously investigated, where there was only one
unknown quantity. Each observation furnishes an equation
of this form; therefore a number of observations equal to that
of the unknown quantities will completely determine their
value. - g -

This would leave nothing to be desired if the observations
were perfect ; but owing to the errors to which they are liable,
the values of z, 5, 2, etc., will be more reliable the greater
the number of observations on which they depend. If now
we have four unknown quantities, z, y, 2, and =, four observa-
tions will give us four equations from which the values of the
unknown quantities may be determined. If we have more
than four equations, we may determine values of the unknown
quantities by combining any four of them. ‘As the equations
depend on observations more or less erroneous, we should
thus obtain a variety of ‘values for #, 7, 5, and w, all of them
probably in error to some extent.

.
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The problem then is this: Of all possible systems of values
of the unknown quantities, to find that which most accurately
represents all of the observations. \

We shall confine ourselves to the consideration of linear
equations; and as the problems in which we shall be more
particularly interested do not give rise to equations of more
than four unknown quantities, we shall limit our discussion to
that number. It will be obvious, however, that it can be
extended to any number. '

Suppose we have the following system of equations:

ax+ by + ez + dw =
ax + by + ez + dw = n;
ax + by +czt+dw=mnip- - - - (36

in which =z, 7, 2, and w are unknown quantities, ¢, 4, ¢, 4,
etc., are coefficients given by theory, and #, 7, =, etc., are
quantities given by observdtion.

If now the data were perfect we should obtain the same
values of z, 5, 5, and w by combining any four of these
equations. Owing, however, to the errors of observation to

- which #, », etc., are subject, it is not probable that a substitu-
tion of the true values of #, y, z, and w (it we knew them)
would exactly satisfy any one of the equations.

Let v, 9, 9, etc., be the residuals obtained by substituting
in equations (36) for x, 3, 2, and w their approximate values
such that the following equations will be rigorously satisfied :

alx—*_bly_l_clz_*_dlw:”l—vl;
aﬁx+bny+cnz+a‘gw:”2_vﬁ]
asx—l_&sy—'—csz—l_d:w:”a_vs'j' R (37)
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Now the most probable values of our unknown quantities
will be those which make the sum of the squares of these
residuals a minimum, viz.,

v, 4+ o' 4o tetc.=Ax, 5w . . (38)

must be a minimum.

In these equations z, y, 2, and w are supposed independent,
therefore the differential coefficients with reference to each
variable must separately be equal to zero to satisfy the
conditions of a minimum. That is,

dvv] _ d[vv] _ d [w/]
T R T =

d [w/]
Tdw

Eed )

Writing out these expressions in full, we have the following :

av, dv, dv, PG
5 Vi o s or B 1o

dv, dv, v, IR
vldy_}_vﬁdy—l—ys y’ +"'_0’ (
i, o ot s Ll iy
ldz uar 33_ Lo ’

d’l/l dvs Lo
ley‘f‘ adw_{_ﬂs ---—O-J

z, 7, 2, and w being independent, we have from (37),

‘_Z_iﬁ—_——a @:_a @:—a etc.;
dr 2 dx ! dx g
dv, _ dv, _ av, _ :
;i}_/—_-b" Z;_—b,, @_—-b,,etc.,
‘&z—c ‘_iz}_qz._c t.lz’..—_-—-—-c etc. ;
ds S~ 5 25
d‘l/l__ d'Z/.‘ dvs

d__w_._d" %2—0’,, d.-_w:—d,,etc.;
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by means of which values equations (39) become

‘av, + o, + o, “+ ...
b, + bv, + v, + ...
Clvl + cﬂvﬂ + ‘-57]3 + & e
dlv! + dﬂvﬂ + dsﬂs + s

Substituting for v,, v, etc., their values from (37), we have
for the first of these

(40)

(1 1 B
oo oo

a.ax + alél.y + a,6,% + axdxw - an,
+ a.ax + a,b,y + a6 + aedaw — a.n,
—I_ a.a.x + aabsy + ae + asdaw — &, = o.
Hariid . : ; .

The second of (40) becomes

axéxx _l_ blbl.y + b1£13‘+ éldxw i blnl
+ a,b,x + 5152.7 + &u‘:ﬂz + bedew = ba”a
"I_ asbsx + b:bsy + bacsz + bsdsw gy és”s =0
4350 . ; . :

and similarly for the remaining equations. Using Gauss’
symbols of summation, we have therefore

[aa)s -+ [ab)y + [acls + [ad]w = [an];
(@bl + [88]y -+ [0c)s + (6w = [6n) | (.
[acde + 6]y + [ecls + [edw = [en]; [* -
[ead]x + [6d)y + [ed ]2+ [ddw = [dn].

These are called Normal Equations, and the values of the
unknown quantities obtained by solving them will be the
system of values which makes the sum of the squares of the
residuals v,, 7,, etc., a minimum, and therefore the most prob-
able system of values. Equations (36) are called Eguations of
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Condition, or Observation Equations. An inspection of (41)
gives us the following rule for solving a series of equations
of condition :

Multiply each equation by the cocfficient of x in that equation,
then add together the resulting equations for a new equation,
then multiply each equation by the coefficient of y tn that equation,
and, as before, form the sum of the resulting equations. Continue
the process with the coefficients of each of the unknown quantities.
The number of resulting Norvmmal Equations will be equal to that
of the unknown quantities, and the values of the unknown quanti-
ties deduced therefrom will be the most probable values.

It must be borne in mind that this process supposes the
number of equations of condition to be greater than that of
the unknown quantities. If it is less, this process will give
us a number of equations equal to that of the quantities to be
determined, but they will be indeterminate none the less than
the original equations were, as can be easily shown.

\ Observations of Unequal Weight.

22. In deriving the normal equations from the equations
of condition, we have regarded the latter as of equal weight.
In the more general case the weights will be unequal.

In the equation a,x + 4,y + ¢,2 + dw = #,, if we suppose,
as in (33), that p, represents the weight of an observation,
viz., of #,, that ¢, is the mean error of #, and ¢ the mean error
of an observation of weight unity, we have

goses L
1 V‘Z"
Multiplying the above equation by #,, we have
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an equation in which the mean error of the absolute term

n, ¥p, is & and the weight unity. In the same manner we
multiply each equation by the square root of its weight, thus
reducing them all to the same unit of weight, when we pro-
ceed precisely as before in forming the normal equations.

Computation of the Coefficients.

23. The method of forming the normal equations is now
fully explained; the work of computation, however, is some-
what laborious, especially when the number of equations of
condition is large. It will therefore be important to arrange
the work so that the numerous multiplications and additions
may be performed with the least liability to error, and so
that convenient checks may be applied for insuring accuracy
in the results. The multiplications may be performed by
togarithms, 1in which case a four-place table will give the
necessary degree of precision, or Crelle’s multiplication-table
may be employed with advantage.* We shall also show
how to perform the multiplications by the use of a table of
squares.

Convenient proof-formulae may be derived as follows: Let
the sum of all the coefficients entering into each equation be
formed in succession, and represent them by s with the proper
subscript. Thus:

a,+b+c¢+d —n=s;
tl,—i—é,—{—c‘,—l—d,—'ﬂ,:é', (43)

* Dr. A. L. Crelle’s * Rechentafeln welche alles multipliciren und dividiren mit
Zahlen unter Tausend"” (Berlin, 1869).
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Multiplying these sums by their respective a, 4, ¢, etc., in
succession, and adding the products, we shall have the follow-
ing equations for checking the accuracy of the coefficients of
the normal equations:

[aa] + [a8] +- [ac] + [ad] — [an] = [as];

(28] + (66 + [bc] + [6d ] — [n] = [bs]; (44)
[ac] + [be] + [ec] + [ed] — [en] = [es]; | °
[ed] + [6d] + [cd]+- [dd] — [dn] = [ds]

This requires the computation of the additional terms [as],
[6s], ...and the agreement must come within the limit of
error of the computation. These additional terms will be
further useful for checking the accuracy of the solution of
the normal equations, as will afterwards appear.

24. If it should happen that the coefficients of one unknown
quantity in the equations of condition were much larger than
those of another, considerable discrepancies might exist in
the agreement of the proof-formulz with the sums of the co-
efficients. It will generally be necessary practically to limit
the computation to a certain number of decimals, when the
products of the large quantities may introduce errors into
the last places, where the products of the small quantities
introduce none.

This difficulty is overcome by substituting for the unknown
quantities other quantities which will make the coefficients
of the same order of magnitude throughout. This is con-
veniently accomplished by selecting the largest coefficient
with which an unknown quantity is affected and dividing
.each of the coefficients of this quantity by it. Thus, let
a, B, v, 6 be the largest coefficients of the quantities x, 2% W,
respectively, which occur in the equations of condition, and
let » be the largest of the series of known quantities #,, 7,
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n,, ... Then we may place the equations of condition in the
following form :

—~(ax)+ ﬂ(ﬁy) + ’(72) + (6w)
-(ax) e ﬁ(ﬂy) =15 (7/3) =+ ’(W)

s §|§ §l§

where the unknown quantities are (ax), (By), ... and the
values obtained in solving the equations will be in terms of
v. The equations will be made homogeneous by this pro-
cess before beginning the work of forming the normal equa-
tions. The sums s, s,, ... will be mogt convenient for the
purpose to which they are applied, if they are formed from
these homogeneous equations.

For the kind of problems which we shall have occasion to
solve in the following pages there will seldom be a system- -
atic difference in the magnitudes of the coefficients of the
different unknown quantities of importance enough to render
this operation necessary. ' In cases, however, where there is
a marked difference in this respect it will be advisable to
incur the slight additional labor involved, and in some cases
it becomes a matter of considerable importance.

25. The formation of the normal equations with the accom-
panying proof-formula will therefore require the computa-
tion of the following quantities:

[aa] [ab] [ac] [ad] [ar] [as];
(28] [&c] [6d] [6n] [&s];

[ec] [ed] [en] [es];

[dd] [dn] [5];

[nn] [ns].
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The latter will be employed for checking the ﬁnal compu-
tation, as will be shown hereafter. As will be seen, there are
twenty of these quantities required in a series of four equa-

tions. In general the number will be * Geaelint 3 I,
2

where # is the number of unknown quantities.

Let a sheet of paper be ruled with a number of vertical
columns represented by the above formula. In the first
horizontal line will be the symbols of the products written in
the columns below, viz., [aa], [a&], . . . and in the last line the
sums of the products. If the results are correct the proof-
equations (44) must be satisfied. The algebraic signs of the
various products will demand special attention, as they form
a very fruitful source of error.

If the application of the prooffounulae is postponed until
the conclusion of this part of the computation, the position
of an error is often shown at once, since each sum, with the
exception of the sum of the squares, is found in two different
" proof-equations. If two of the proofformule fail to be
satisfied, while the others prove true, the error is in the term
common to both ; while if only one equation fails to be satis-
fied, the error is in the quadratic term.

Before proceeding further it is recommended .that the
reader refer to the example found on page 329. The num-
ber of observation equations is twelve, each of which has
been multiplied by the square root of its weight. The num-
ber of unknown quantities is three, the coeflicients of which
have no systematic difference in magnitude of sufficient
importance to require the application of the process for
rendering them homogeneous. The formation of the
normal equations is found on page 330. The.number of

* It is the sum of a series of terms in arithmctical progression minus 1; num-
ber of terms = (2 - 2); first term = 1; last term = (z - 2).
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unknown quantities being three, we require by the formula
just given fourteen columns. It will be observed that the
proof-formulee are perfectly verified, as they should: be in
this case, no decimal terms having been neglected.

Computation of the Coefficients by a Table of Squares.

26. By whatever method the multiplications are performed
a table of squares will be found very convenient for the
quadratic terms. Terms of the form [@4] may also be com-
puted with such a table, as-will appear from the following.

We have a5, = ${(a, 4 4)" — o' — &’};
atb, = $i(a, + &) — a’ — 6'};
asbs B é:(aa + bs)2 i asq g bsﬂ};

(@] = $1[(a + 8] — [aa] — [} - . (45)

The quadratic terms [aa], [6¢], . . . will be computed in any
case, so there will only be required in addition the terms of
the form [(a@ + 4)*]. In case of four unknown quantities we
shall require the following quadratic terms:

[aa] [(@ + &)1 [(@ + ¢)'] [(e + @) [(e — »)'];
(661 [+ oy [(6 4 2)] (6 — »)'];
[ec] . [ 4+ a1l — a1t (46)
[dd]  [(@— »)];
[ss] [#272].

The last two will be employed in checking this and the sub-
sequent computation. Thus for the case of four unknown
quantities we have sixteen terms of the above form, or in

general, didbar 1)2(” e -+ 1.
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The equations having been multiplied by the square roots
of their respective weights, and the coefficients made homo-
geneous if necessary, the computation will be carried out as
shown in the following scheme:

[aa}z i_bfbb]
: ad]

2f{ac
ac

lan]

aa | 66 | cc |...| nn | ss ‘(a+b)9 (@a+4¢)? (@ — »n)? @&+ )2
; ::121 glgl :1;‘1 "1"1"131 gal iil); E“l +51%: E“l ) ”ﬂ:
...\ %gng sg59| (a -
B P i e R AR R R
(aa] (28] [cc]|-..| [nn]| [ss]l (e + )71 | L@ + 2] e = | e om |0
aa] + [ec] | o

i, ol g el a7 57 B

[ée

In order to derive a convenient proof-formula we square
both members of equations (43) and add

(5] + 3 {[aa] + [68] + [cc] + [dd] 4 [nn]} =
[(@ + 8] + (@ + oy + [(@ + )]+ [(a — #)7]
16 4 9T+ [6 + 4] + [(6 = )]

+ [ 4+ @] + [c — »)]

+ [(@ — =],

(47)

For an example bf the application of the above method
the reader will turn to page 334, where the normal equations
are computed from the equations of condition before re-
ferred to. This method possesses some advantages over
that by direct multiplication: the most important of these is
in the fact that the liability to error in algebraic signs 1s for
the most part avoided. Care being taken informing the sums
(a 4+ b), (a + ¢), etc., no further attention need be given to
‘the algebraic signs until the coefficients of the ncrmal equa-

tions are completed.
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Solution of the Normal Equations.

27. In the solution of the normal equations the work should
be arranged so that it may be conveniently reviewed for
detecting errors in case such exist, and so that proof-formula
may be applied at the various stages of progress.

The order in which the unknown quantities are determined
is generally indifferent except in the case where the nature
of the problem is such that one or more of them cannot be
determined with accuracy from the equations. We may
know in advance that we have a case of this kind, or it may
be discovered in solving the equations.

It will be shown hereafter that the weight of any unknown
quantity will be determined by arranging the solution in such
a way that this quantity is determined first. The weight will
then be represented by its coefficient in the last equation from
which the others have been eliminated. If now this coefficient
is very small it shows that this quantity cannot be well
determined without additional data, and the solution must
then be arranged so that the uncertainty in this quantity will
have the least effect on the others. In case a preliminary
computation shows that the weight of any unknown quantity
is very small, the elimination will be repeated in such a way
that this quantity is first determined. The values of the
otners will then be expressed in terms of this one. If then
at any time additional data become available for determining
this quantity, or if it is known from any other source, the
other quantities become known also.

As such cases will seldom occur in the problems with
which we shall have to deal, it will not be necessary to enter
more fully into the matter at present.

28. In the elimination it will be convenient to employ the
method of substitution, using a form of notation proposed by
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Gauss. In developing the formulz, we shall suppose as before
the number of unknown quantities to be four. It will be a
simple matter to extend or abridge them in case of a greater
or less number.

The equations to be solved are

[aalx + [ab]y + [aclz + [adJow =
[eb)x + [66]y + [bc)e + [bd]w = [bn], (41)
[ac)x + [bely + [ec)e + [ed]w = [en]; | °
[ad ) + [b6d]y+ [cd)s + [dd)ew = [dn].

From the first of these we have

(an] _[ab) ,_[ac), _[ad],
ey A e e O R

T =

which value being substituted 1n the remaining three equa-
tions, we shall have x eliminated. The ﬁrst of the resulting
equations will be -

[0 ~ Eian ]y + [1e — it

+ [ 1Braay Jow = [16m) [“ﬂ[a 1),

and similarly for the remaining two.
Let us now write ‘ \

(66) — 1991 = 126 1); | p2) — 18 [aay = (221 ;]|
[aa] L (49)
[6c] —%‘Zq[m [beals ' [4] —Elz—g[an] = [on1);
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and for the coefficients of the second equation, ioh 1

[ec] — %_a—cl][ac] = [ec1]; [en] — Eacj][cm] == el
__lac]

[ed] T ][ad] =lificiTy. G

Similarly for the third,

i s Ead]] [ad] = [dd 1]; [d= EZZ’]][an] =[dn1]. )

Our three equations then become

(66 11y + [bec 1)z + [bd1]w = [bn 1];
[bc 1]y + [ecci]e+[cd1]w = [en1]; . . . (50)
[6d1]y + [ed1]z + [dd1]w = [dr1]. '

In these the same symmetry of notation is preserved as in
the normal equations, and it can easily be shown that the
terms [64 1], [cc 1],and [ 1], which have the quadratid form,
will always be positive.

From the first of (50) we have

(brn1] [bc 1] [6d I] .
T A 7 R

J/:

This is to be substituted in the second and third, and the fol-
lowing auxiliary coefficients computed :

’

[ec1]— i I][bc 1]=[ec2]; [cn I]—‘-—— [bn 1] =[cn 2]; ;|

[41] [%1]
Cadi]d [[‘;2 ‘I]]W 1)=[ed 2]; L (49),
[4d 1] [#d 1]

[ddr]— [ba’l] [dd2]; [dn1]— [b;zl]—-rzmz],J

[65 1] [66 1]
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which process gives us the following equations:

[cc 2]e + [cd 2]w = [en2];
[cd 2]z 4 [ddZ]’w == [271 2]. } O (52)

From the first of these,

_ [en2] [cd2]

' z T Mk = AL S (53)

Substituting this in the second, and writing

(2] — 02N 2) = [ad5), [anz) — (A len2]=Tan 3} ),
we have (e 3o Tan'3]s s ne s HEHED
from which wzgzg. Sl G B it

-

z, 3, and x can now readily be found by substituting succes-
sively in (53), (51), and (48).

The first equation in each of (41), (50), (52), and (54) are
called elimination equations, and are here brought together
for convenience of reference :

[aalx + [ably + [acle + [ed]w = [an];
(86 1]y + [be1)e + [bd1]w = [ 1]5 | - ()
[ec 2]z + [ed 2]w = [en 2];
[dd3]w = [dn3].

This is all that will be strictly necessary in case the weights
and probable errors of the unknown quantities are not re-
quired.
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Proof-Formule.

29. Convenient proof-formula for checking the accuracy
of the successive auxiliary coefficients may be derived from
the summation terms [as], [4s], . . . of equations (44).

Referring to these formulz, let us write

[4s] — E"b}[as] = [&s 1),

Substituting for [4s] and [as] their values, thlS expression
may be written in the form

(s = [ [00] - ["’”[ a8] |+ 121 - ["b][ac]]
- [WJ a1 | — [1n) — ED1am] |

Therefore, writing for the quantities in the brackets their
values, we have

[bs1] = [6b1] 4~ [bc 1] 4 [6d 1] — [b7 1],

a formula by which the accuracy of the coefficients in the
second member can be tested, and which requires the addi-
tional auxiliary quantity [és1].

Proceeding in a similar manner, we shall require for check-
ing the computation at the end of the first stage of the eli-
mination the following auxiliary quantities:

[4s 1] = [bs] — %"b}[as] [es 1] = [es] — H[J
[ds 1] = [ds] — [ad][as],

aa]
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when we shall have the following proof-equations:

[6s 1] = [66 1] + [bec 1] + [6d 1] — [bne1];

[es 1] = [bc 1] + [ec 1] + [ed 1] — [en 1] } (57)
[ds1] = [6d1] + [ed1] + [dd1]} — [dr1].

In the same manner we have, for checking the next step in

the operation,

e 2] S e %&2 I%[b B30 TP ldin] — gg"?[z} 1):
: [552]_[c52]—|--[m’2]‘—-[mz];}f o0 g
[ds 2] = [cd 8] - [dd 2] — [dn 3]s

"~ and finally, [ds 3] = [dsz2] — %%[cs 2L

[#03] =[PP {dn 3]s o o v W o ulsY)

The agreement of these two values of [ds 3] must be within
the limits of error of the computation, and it furnishes a very
accurate control over the accuracy of the computation up to
this point.

30. After the values of x, 3, 2, w have been'determined, a
most thorough proof of the accuracy of the entire computa-
tion is obtained by means of the residuals, 7, 7,, . . . obtained
by substituting these values of z, », 2, w in the equations of
condition, (37), p- 33, viz.:

alx+b1y+clg+dlw—n1:—vl;
ax +by+cz+dw—n=—u9,;

ax +by+cztdw—n=—v.¢ - - (37)
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Multiplying these equations by — v,, — v,, — v,, . . . in order,
adding, and writing, in accordance with the notation em-
ployed,
2,7, + a,v, + a,7, + R = [a'l/],

we have

[nv] — [av]x — [bv]y — [cv]z — [dv]w = [vv];
but by equations {40),

[ev] =0, [fv]=0, [cv]=0, [dv]=o0.

Therefore [ra]’ = {od) eV | O SO TR R (60)
Now multiply equations (37) by #, 7, =, ... in order, and
add, viz.:

[#n] — [an)x — [bn]y — [en]e — [drn]w =[nv] = [vv]. (61)

By means of this equation [vv] may also be computed as
soon as %, y, 2, w become known. But we have

t

_[en) _[a8),_[ad), [ad],
s 7y il v E A vl

Let this value be substituted in (61), and write

(] -~ M tan) = (1,

[aa]
also write [4# 1], [¢n 1], etc., for their values, when we have
(1] — [bn1]y — [en 1]z — [dn 1]w = [vo].

Let the same process be carried on for eliminating 7, 2, and
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w in succession from this and the resulting equations. We
shall have in all the following auxiliary quantities to com-
pute:

[#r 1] = [mz] E‘m%[an] S = [mz 1] — IF;Z I%[bn I
[en 2] [dnr 3]
fom 5] = [om 2] = popaifon ks Iana] = IAESHEST gl 2* 3]

Either of the following equations will then give the value of

[vo]:

[#n] — [an]x — [bn]y — [en]z — [dn]lw = [vv];
[#n1] — [bn 1]y — [en 1)z — [dr 1]w = [vv];
[mn2] — [en2]z — [dr2]w = [vv]; + (62)
[#n3] — [dn3]w = [vo];
[#n4] = [v7].

Only the last of these will generally be used.

31. The value of [#z4] = [vv] can be derived from the
summation quantities [zs], [#s 1] etc., with very little addi-
tional labor. We have

5] = [an] + [n] + [en] + [dn] — [m]).

Let us write [ns 1] = [ns] — % %[ s,

and substitute in this expression for [#s] and [as] their values,
when it may be placed in the following form:

(s 1] = [ 160 — (28] |+ [ [end 1) |
- [[dn] (M ad) | - [[n] — foiond
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or what is the same thing,
[#s1] = [bn 1] + [en1] + [dn1] — [#n1].

Proceeding in a similar manner to form in succession the
following auxiliary quantities, we have the series of equations
by which the accuracy of the quantities [67 1], [¢cn1],...
[#1 4] may be verified :

[r53) = [252] — E 2%[62] [5s41=[ns 3]—Edd3][ 31
[#s1] = [bn 1] + [en 1] 4 [dn 1] — [#n1];
[#s 2] = [en 2] + [dn 2] — [#n2]; » 63) s
(s3] = [dn3] — [#n 3];
[ns4] = — [nn 4]

Only the last of these equations will generally be required.

’ Form of Computation.

32. In computing the various auxiliary quantities which
occur in the solution of a series of normal equations, the work
should be arranged so that it may be carried through from
beginning to end in a systematic manner in order to keep a
general oversight of the results at the various stages of prog-
ress, and to apply conveniently the proof-formulae. This will
be the more important the greater the number of unknown
quantities. The following scheme will be found to answer
these requirements.

It will generally be found expedlent to make the computa-
tion by the use of locrarlthms, but in some cases the computer
may prefer to perform the multiplications and divisions by
the aid of Crelle’s table. In the following scheme we have
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supposed logarithms used. A sheet of paper is first ruled
with vertical columns, the number of which is greater by two
than that of the unknown quantities. In the first horizontal
line will be written in order the coefficients which are com-
bined with «, viz,, [ea], [a8], . . . [a#x], [as], and immediately
below these their logarithms. Attention is directed to this
line by means of the letter E in the margin, as it is the first
of the elimination equations (56), and will be used for deter-
mining # after y, 2, and w become known.

In the third line are the coefficients [64], [oc], . . . [45], soO
placed that the letters combined with & fall in the same verti.
cal column with the same letters combined with a, viz., [éc]
under [ac], [6d] under [ad], etc.

In the fourth line of the first column is now written

log E b% the value of which, as well as those of all the quan-
tities in this column, must be carefully verified, as an error
in this factor may not be detected by the proof-formula.

The log [a0] ; is now written on the lower edge of a card

[aa]

and added in succession to the logarithms of [ab], [ac], .
[as], and as each addition is performed the natural number is
taken from the logarithmic table and written in the place in-
dicated in the scheme. With a little practice the computer
will be able to make this addition mentally, and take from
the table the corresponding number without writing down
this logarithm. Thus we shall have

E"b]]w] written under [44];

[ad]
[aa]

[ac] written under [4c];
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5 d
wftla | oitn | woeBa | orila | owkia | el E
[26] b¢) (6] 47] [4s]
Lad]
8 o) | | el Bl | [ea | [en | iy
54 bc bd 5
o T R S B £ B W A A g 1R
[ac], t‘c‘] cd] [e7]) 5]
[4¢ 1] fec 1] [ed 1] [en 1] fes 1] 11
1 *
°F [253] [Li‘b’!]] [be 1] E;; ‘]] (6d 1] [[i; ':]] {6 1] Ei; z]] [8s1]
d
logfcilz] log[azi]z] log[c[':':]z] log S[fs 2] EI’
[24] [d7] [ds]
d
log E:_Z]]* E” ]][ 4] %][an] [ad][as]
[6d 1] [dd1] dn 1] ds 1] v
1% 51" Gtea a1 | By, [[i‘;’[,] [bs1)
[ed n] [dd 2] [dn 2] [ds 2] v
log [ed 2] [cd 2] [ed 2]
[ec 2] Za [cd 2] [ic :] [en 2] T 2] [es 2]
dd . d.
el | el |0 e
[an] [nn] [75] l log w
Bl o M S 0 ol o
871 [77 1} [zs1] VII Preof-Eguations.
%8 ol %%W 1 Ei: 3 8s1] . 31 = (001) e fod = fom
[nn2] [#s2] VIII IIH’ 5;; - ;5: %{%}2 1__ IZ";} [;" I]
= Ci L ot
og E::]] ol 8 il TSR B L T 5 & o [0 5] Lo ebbraiit ¥ ik
[ce 2] [ec 2] VI’. ds3| = [dd3] — [dn3
VII. [ns1] = [6n1 :t cn 1 -}—[dn x] [nn1];
[dn 3] - [77 3] y [7s 3] 1X VIIII. ;t;z E 27;2 fif z:z]]-— [nn2];
8 [d< 3] %&%;%[d"s] Ed:;:% [ds3] X, mi == in 4). Sl
[n7 4] [7s 4] X

Practically only those proof-equations which are distinguished by an accent will ordinarily
be employed. The lines marked by an E in the margin give the logarithms of the coefficients
of the elimination equations. The logarithms marked * must be carefully verified, since an
error in one of these may escape detection by the proof-equation.

For the application to a numerical example see page 331.
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and by subtraction,
(66 1), [b¢ 1], [6d 1], [bn 1], [bs 1].

These are the coefficients of the second elimination equation,
and will be used for determining y after z and w have become
known. The I in the margin refers to the proof-formula
by which the values of these quantities will be verified.

It will not be necessary to proceed farther with this ex-
planation, as a reference to the scheme in connection with
the formulee for the auxiliary quantities will show clearly the
process. The elimination being completed, the quantities
[#n 4] and — [zs 4] are computed as shown in the scheme, the
agreement of which with each other and with [27], obtained
by substituting the values of z, », 2, w in the equations of
condition, furnishes a most thorough proof of the accuracy
of the entire computation.

Weights of the Most Probable Values of the Unknown Quantities.

33. In case of a single unknown quantity determined by
direct observation, the computation of the weight of the
arithmetical mean was found to be very simple. Inthe case
under consideration, where the equations to be solved con-
tain several unknown quantities, the difficulty is greatly
augmented.

In our equations of condition we have supposed the quanti-
ties observed to be #,, #,, 7, etc. We have already shown that
if the resulting equations of condition are not of equal weight,
they may be made so by multiplying each by the square
root of its respective weight. We shall therefore in investi-
gating the weights of the unknown yuantities assume the
weight of each observation to be unity.



§ 33. WEIGHTS OF UNKNOWN QUANTITIES. 5

Let p, 1) 8 Pur b€ the weights of #, y, 5, and w respectively ;
&4 &, &, & their mean errors.
Let ¢ be the mean error of an observation.

As all of our equations are linear, it is evident that if the
elimination of the three unknown quantities z, 5, and 2z be
completely carried out, the resulting equation will give w as
a linear function of #, n, », etc. Similarly, if z, y, and w be
eliminated, we shall have z expressed as a linear function of
the same quantities, and so of each of the others.

We may therefore write

= an, + an, —'_ Aty + etc.;
= P, + p, + B, + etc;
= Vi + Vifta + yan, - et
== 61”1 —l_ 6‘)”2 + 63”3 —I— etc';

. (64)

ISR Y

a, B, etc.,, being numerical coefficients and functions of «, 4,
etc.
We have now from (31), remembering the above notation,

»

& = Va4 a'}- a4 etc. = & V[aa].
: 3 i . TS e (68)

&= ¢ /87 0, 1 6, F etc. = & ¥/[69].

& I 1
—— el e Ml e & —_ . . . 66
822 [aa] Pw [66] ( )

From (33), 2.
The weights therefore become known when we have the
values of [aa] ... [6d]. For this purpose we must make use
of the normal equations (41), which for convenience of refer-
ence are here rewritten :
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[aa)x + [ab]y + [acls + [adYew = [an] ;1 |
[a8)x + [68)y + [bc)s + [bdTew = [bn] o
[aclx + [8c]y 4 [ecle + [cdTew = [en] j '
[ad)x + [2d]y+ [ed )z + [dd Tew = [dn].

Let us now assume the following system of equations :

[aa]Q + [a0]Q' + [ac]Q” + [ad]Q"
[22]Q + [66)Q" + [6c]Q" + [6d]Q"
[ec]Q + [6]Q' + [ec]Q” + [2]Q"
[2d]Q +-[6d]Q" + [cd]Q" + [dd]Q"

These ‘equations will be possible, as there are four unknown
quantities, Q, @', 0", and Q'”/, and four equations for determin-
ing their values; further, as the equations are of the first de-
gree there will only be one system of values for Q, 0/, etc.
Now let the normal equations be multiplied by Q, @', 0",
and @, in their respective orders, and the resulting equations
added. Then in consequence of (67) in the resulting equations
the coefficients of x, y, and s will be zero, and that of w unity.
Therefore we shall have ¢

@ =l Ook WA o (301 Hleel . ' (65)

We shall now show that Q" = [d6], and is therefore the
reciprocal of the weight of .

Let us expand the quantities contained in the brackets,
equation (68), and compare the results with the last of
equations (64). We thus find the following values of ¢,, J,,
etc.: !
6,=a,0+ 060 + 0"+ 40";

6, = a0+ 60 + a0’ + 40";
68 asQ + bsQ, + “'sQ” + dsQN, . SRl (69)

©7)

Q. JOREE)

i

1

e
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Multiplying each of these by its # and then adding, then
multiplying each by its 4, ¢, and & successively and adding,
we have by (67) the following equations :

a0, + ad,+ 26, + ...=[ad] =o0;
b0 b8 4 b0+ ... =[46] =o;
(’.161 + 5262 + C362 + S : [Cé\] :.o ;j : | (70)
: d161+d26a+dsé\s+"'=[dé\:l=I'

«

Now let each of (69g) be multiplied by its ¢ and the results
added. Then by (70) we have

8,0, 4 6,6, 4 66, +...=[66] = Q”. Q.E.D. (71)

The solution of equations (67) therefore determines the
weight of w. In a precisely similar manner the weight of
each of the unknown quantities may be determined. Thus,
to determine the weight of x, we write for the second mem-
ber of the first of (67) unity instead of zero, and write zero
for the absolute term of each remaining equation. The re-
sulting value of Q will be the reciprocal of the weight of z.

This process is simple enough in theory, but its application
is laborious, as we must solve equations (67) separately for
the weight of each unknown quantity. This does not involve
so great an amount of labor as may at first appear, as much
of the computation will already have been performed in the
solution of ‘the normal equations. It is easy, however, to
derive a process which will generally be much more con-
venient. It is as follows:

34. In thesolution of equations (41) by successive substitu-
tions we found for the final equations in w—see (56)—

(dd 3]w = [dn 3].
We shall now show that the coefficient [dd 3] = -QI—,-,-,, and

is therefore the weight of w.
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For this purpose let us write equations (41) as follows:

[aa)x + [ably + [ac)z + [adJw — [an] =
[ab)e + [66]y + [bcle + [bd)w — [bn] =
[aclr + [bly + [clz + [cdlew — [en] = C;
[ad)x 4 [6d]y + [cd])z + [dd]w — [dn] =

Let us now suppose the equations solved by means of the
auxiliaries @, @', @”,and Q", determined from (67), when we
shall have

w = [an]Q + [6n]Q" + [cn]Q" + [dn] Q"
+ 4Q + BQ + €Q" + DQ". (72)

This will now be the same value of w as before obtained, if
wemake A =B=C=D=o.

Let us now suppose the equations solved, as before, by
substitution. Since in this process no new terms in D are
introduced, the coefficient of D will not be changed in the
final equation for w, and we shall have

[dd3]w =[dn3]+ D < termsind, B, and C;

dn 3] D ;
from which w = {de 53 terms in 4, B, and C.
Y s T T

Now itis evident that the coefficients of 4, B, C,and D must
be the same in this equation as in the value before obtained,
equation (72). Therefore

I EAE 5 E. D-
0" =i 0

We therefore see that we can obtain the values of the un-
known quantities from equations (41), and at the same time
their respective weights, by arranging the elimination so that
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each in succession shall come out last. The coefficient of the
unknown quantity in the final equation will be its weight.

35. In solving a system of four equations like the above
it is best to proceed as follows: Let w be determined, as
above, by substitution in the order z, y, 2. We then have
w with its weight from

[dd 3]w = [dn 3],

Equations (56) then give successively z, y, and .

Let now the elimination be performed in the opposite order,
viz., w, 2, y, when we have x with its weight from the equa-
tion

[aa 3]x = [an 3],

[aa 3] being the weight of .

This value of # must agree with the former value within
the limits of error of the computation, thus furnishing a con-
venient check to the accuracy of the computation.

For the weight of y and # we need not repeat the elimina-
tion, but proceed as follows:

Let us suppose the elimination performed in the order x,
7 w, 5. We shall then have the same auxiljary coefficients
as in the first case, as far as those indicated by the numerals
I and 2, and equations (52) will be the same a8 before; but
as the elimination will now be performed in the order w,
instead of z, w, we write them

[dd2]w + [cd 2]z = [dr2];
[cd2]w +- [cc2]z = [cen2].
From the first of these,

_[@rn2] [ 2]
T [dd2] [ddz] 2]
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Substituting this in the second gives us for the coefficient
of z

lee 5] = e 2] =* 28 1ea 2] = 5.

[cd 2]
[ce 2]

From these two equations we find

But we have [dd3] = [dd2] — [ed 2].

(ee 3] = ee 2573 = 2.

And in a similar manner,

[46 3] = [0 2]%” 3} 2

We therefore have the following precepts and formula

for computing the waghts in the case of four normal equa-
tions :

First, perform the elimination in the order z, 3, 2, %, |
L]

then p, = [dd3];
7 dd
=3lce 2]% i 3%
: r(73)
Second, perform the elimination in the order w, 2, 5, #,

then 2, = [aa3];

P aa 3]
by =253 )
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The formulae for the auxiliary coefficients for the second
elimination may be derived from those for the first by simply
interchanging the letters 2 and 4 and 4 and ¢. The process
is so simple that it will be unnecessary to write them out in
full.

dtizer Expressions for the Weights.

36. When the equations have been solved, as already ex-
plained, and the various checks applied, so that the computer
is convinced that the results obtained are reliable, it may be
undesirable to repeat the elimination merely for determining
the weights of the first and second unknown quantities. We
may derive convenient expressions for computing the weights
in this case, as follows :

Suppose four solutions of the equations to be carried
through so that each unknown quantity in turn is first deter-
mined, the order of the others remaining the same: we should
then have each unknown quantity with its weight completely
determined, as we have already seen. The solution of the
equations for which we have given the complete formule is
in the order 4, ¢, 4, 2, where we have written the coefficients
instead of the unknown quantities. If now we substitute the
values of w, z, and y in the third, second, and first of equations
(56) in order, we have finally the expression for #, which will
be a fraction with the denominator’

[aa] [66 1] [cc 2] [dd 3).

In the four solutions which we have supposed made, the un-
known quantities last determined will be in succession z,, z,
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7, and the denominators of the expressions for their values will
be as follows:

[aala [66 1)a [cc 2)a [dd 3]s
[aa). [66 1], [dd 2], [ec 3]s ;
[aaly [cc 11s [dd 2], [66 3]s ;
(66, [cc 1), [dd 2], [aa 3]as
*
where the subscripts show which unknown quanticy is first
determined in each solution. As the elimination is performed
by successive substitutions, no new factors being introduced,
it follows that these expressions are equal to each other re-
spectively.

It is evident that when the order of the elimination is
changed so that a different quantity is first determined, the
order of the others remaining the same as before, the values
of the auxiliary coefficients [ 1], [¢c 2], etc., which do not
contain the coefficient of this quantity will remain as before.

Suppose, as above, the unknown quantities to be determined
in the order &, ¢, 4, 2. Now let a second solution be made in
the order ¢, d, b, a; then all of the auxiliary coefficients as
far as those designated by the numerals 1 and 2 will remain
as before. In a third solution following the order 4, 4, ¢, a,
the coefficients designated by the numeral 1 will have the
same values as in the first case; while in a fourth determina-
tion in the order a, 4, ¢, 4, they will all differ from the first
series of values.

Thus indicating by the subscripts only those coefficients
which have values different from those given by the first
elimination, we have the following equations:

[aa] [861] [cc 2] [dd 3] = [aa] [66 1] [dd 2] [ec 3],
[aa] [66 1] [cc 2] [dd 3] = [aa] [cc 1] [dd 2], [663];
[aa] [66 1] [cc 2] [dd 3] = [68] [ec 1]a[dd 2], [aa 3]
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We already have the weight of w. The weights of z, , and
x are given by these last equations, viz. :

= [d43]; '
2= lee3) = G daas); :

= (66 31:””5?3%2}; Lo (74)
= [aa3] = el 280 188

In applying these formula the following additional auxiliary
coefficients must be computed :

[ed 1]
[ec 1]

lee 1o = [e] — [0l

[dd2), = [dd1] — [ed 1]; |

bc
[cd1], = [cd] Ebb%[&d] roe .o (75)

pe _ [4d]
[ddl]a P [dd] [&b] [bd]

[ed1],

(421, = [dd 1), — ZEtled 1. |

In case of three unknown quantities the formulee become

ﬁz=[cc2]E ]

u ccz]

-”"“[bbl][m]’ FHibiyy w3 0]
[ ][bbl][ccz]

[66] [cc1]a

where [cc 1], has the value given above.
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37. An elegant expression for the weights is obtained by
making use of the determinant notation. Thus, referring to

the normal equations (41),
ab) [65 c ac]) aa) [ab] [ac aa) [ad] [ac
= 6 e + 23 6 e~ [ 8 e + 2 T I

5 ad]{

i) Eaa}] ta f] r?] Eazf
ab bc] [
ac] [éc] [ec] [cd] *
ad] [6d] [cd] [dd

Q'”, the reciprocal of the weight of w, given by equations (67),
is the same as the value of w obtained from the above equa-
tion by making [a#n] = [én] = [cn] = o and [dr] = 1.

Therefore writing 4 for the complete determinant which
forms the denominator of the above expression, D" for the
partial determinant formed by dropping the last horizontal
line and last vertical column, D” for the partial determi-
nant formed by dropping the third horizontal line and third
vertical column, and similarly 2’ and D for the other two,
we have

[e7] + [en] 4+ [dn]

55, ced s
pw F/‘/) pz—ﬁﬁy ( )
4 I G 7/

A number of other forms may be derived for the weights,
all of which involve about the same numerical operations as
the above. In certain special cases different forms may.be
more convenient, but for our immediate purposes it will not
be necessary to develop the subject further.

It may readily be seen from what precedes that the rela-
tive weights of the unknown quantities may be derived, even
when the number of observations does not exceed the num-
ber of unknown quantities. No probable errors, however,
can be determined in this case.
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Mean Errvors of the Unknown Quantities.

38. For determining the mean and probable error of an
unknown quantity nothing further is required except the ex-
pression for the mean error of an observation. It is supposed
that the equations of condition have been reduced to the
common unit of weight by multiplying each equation when
necessary by the square root of its weight.

The values of z, 3, 2, and w, as deduced above, are the most
probable values as deduced from the given data. When
substituted in the equations ot condition the residuals
v, v, U, €tc., will not be the true errors unless the derived
values z, ¥, 2, and w are absolutely the true values, a condi-
tion not likely to be realized.

Let (x4 0x), ( + dy), (2 + 02), (w + dw) be the true values;
A ASRA N A e e e T LOTS.

We shall then have two systems of equations, as follows :

alx—l_bl'y_i_clz—i_dlw—nl:—'yl;
a,xﬂ—é,y—}—c,z-{—d,w—n,: — Uy L
na=—uv,.p - - (79

ax + bs.y + (2 + daw v

a(#-+82)+-0,(y+-89)+-6(3+ 02)d (w-H0w) — m= — 4;
aa(x+6x)+ba(y+6y)+Ce(z+6z)+da(w+é\w> il e A,;
a(x4-02)4-b,(y+-0y)-c (24 02)+-d(w+Ow) — n,= — 4, (79)

Let us multiply each of equations (78) by its v and add the
resulting equations. Then by (40) the coefficients of z, y, 2,
and w will vanish, giving us the relation before derived,

. [orle=tlpuliis s e g1 (80)
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Proceeding in the same manner with (79), we find

7 AT U ¢ 38
o RS SREIERAT

[on] =
Therefore [vd] =

In order tc obtain an expression for the sum of the squares
of the true errors, viz.,, [44], in terms of the sum of the
squares of the residuals [27], let us first multiply each of
equations (78) by its 4 and add the resulting equations;
secondly, let us multiply each of (79) by its 4 and add in
like manner. The results are as follows:

[ad)e + [34]y + [c4)s + [dd}w — [#4] = — [v4] = — [20];
[ad] (x 4 62) + (64] (54-09) + [c4] (¢ 4 62)
+ [d4] (w + dw) — [nd] = — [44].

Subtracting the first of these from the second, we obtain
[d44]) = [vv] — [ad]ox — [64]0y — [cd]0z — [dd]Sw. (83)

If we could now assume dx, 8y, 6z, and Sw to vanish, we
should obtain, since m&* = [44] by definition,

e 7]
m

This will give us a close approximation to the true value of
& when # is large.

For a more accurate determination of ¢ we must endeavor
to find approximate values of [@4]dx, [64]dy, etc. The true
values are beyond our reach, but principles already estab-
lished give us a means of approximation.

Multiplying each of equations (79) by its , and adding,
we have

[acls -+ [atly + ade 4 (ol — [on] ] _ _
-+ [aa]éx + [ab]0y + [ac)dz + [ad]dw
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Comparing this with (41), we see that the first line is equal
to zero. :

Multiplying each equation of (79) by its 4 and adding,
then in a similar manner by its ¢ and & and adding, we have
finally

[0a)0x + [aBldy + [acs + [ad)0w = — [ad];
[ab]0x. = [8818y. + [4c102 . + [2d 10w = — [54]:
(el SRl Ep N ee0r e 105w = —= [edll s O
[ad)0x + [6d]0y + [ed )02z + [dd]Yw = — [d4].

Comparing these with (41), we see that they are of precisely
the same form, the unknown quantities being in this case
dx, 0y, 0z, and.dw, instead of #, y, 2, and =, and the absolute
terms having — 4 in the place of z. The solution will there-
fore have the form—see (64)—

xr = — (aldx + azda + asds + e ')’
6_]/ = (ﬁldl + ﬂzdz + ﬁsds + £¥ 7 ); A (85)
63:—(yldx+yn‘da+7/sdﬁ+"'); '

* dw= — (6,4, 4+ 06,4, + 04, +...).

If we now write these values in (83), we shall have for
— [a4]0x, etc., the following values:

— [adi0x = (a4, + a4, + a4, + .. ) A
(a’:Ax + anAn + asda"l- s ');
E=3 [[’A]‘B\J’ =3 (bldl + 6242 + bsds + Crg ')
(ﬁldl + ﬂzda +ﬂsds+ 153 ')’ *(86)
S [(’-A]é‘z = (cldl + tﬂAﬂ + csds + o > )
p (yldx'l_yadn_!—ysds—l""');
— [dd)6w= (@4, + dd,+ d, 4, + . . )
(17 PV i S W G iy B

In regard to these products it is to be remarked that they
must necessarily be positive, as our conditions require [77]
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to be a minimum. Any system of values of «, 7, z. and w, there-
fore, differing from those derived from the normal equations
(41) must increase the sum of the squares of the residuals.
Therefore [44] > [vv], and the terms following [v7] in (83)
must be positive.

Let us now perform the indicated multiplication in (86).

Confining ourselves to the last equation, since the form is
the same for all, we can indicate the result as follows :

— [d4)0w = d,6,4,4,+d,0,4,4,+ d,8,4, 4,4 . . . + Sk, 4)).

The last term indicates the sum of all the terms formed by
multiplying together different valuesof 4, as 4.4,, 4.4, . . .
4, _.4,. Now, since positive and negative errors occur
with equal frequency when the number of equations of con-
dition is very large, we may assume this term equal to zero.*

Writing for (4,4,), (4,4,), etc., the meanvalue of those
quantities, viz., ¢, and placing for [4¢] its value from the last
of (70), viz., [dd] = 1, we have

— [d4]dw = &\,
In a manner precisely similar. we find
— [ad]éx = — [b4]6y = — [c4]ds = — [dd]0w = &.
Therefore equation (83) becomes
me' = [vv] + 4¢"

From which e =+ ;z[v%][; R 1k Lt D (87)

In this case there are four unknown quantities. In general’
if the number of unknown quantities is u, we shall have

[eo]
O S JER e O, 1 (88)
* Also positive and negative valuesof d,, @y . .., 8,, 85 . .. are equally prob

able.
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With the values of p,, 2,, 2., and p, computed by (73), we
have finally N
& &

) &

&
== 1/1—);; &y = V_p—y, ¥ 4/};-: 8w=7—;;(89)

and the probable errors of z, y, 2, and w will be obtained by
multiplying these respectively by .6745.

We have now developed the subject as far as is necessary
for our purposes. A complete example of the solution of a
series of equations with three unknown quantities, together
with the determination of their respective weights and
probable errors, will be found in connection with article
(191) of this volume. ,



INTERPOLATION,

39. In the Nautical Almanac are given various quantities,
such as the right ascension and declination of the sun, moon,
and planets, places of fixed stars, etc., which are functions of
the time. This is assumed as the independent variable, or
argument as it is termed by astronomers. The ephemeris
gives a series of values of the function corresponding to
equidistant values of the argument. In case of the moon,
which moves rapidly, the position is given at intervals of one
hour; the place of‘the sun is given at intervals of twenty-four
hours; while the apparent places of the fixed stars vary so
slowly that ten-day intervals are sufficiently small. When
any of these quantities are required for a given time, this
time will generally fall between two of the dates of the ephe-
meris—seldom coinciding with one of them ; the required

. value must then be found by interpolation.

Interpolation in general is the process by which, having given
a series of numerical values of any function of a quantity (or argu-
ment), the value of the function for any other value of the drgu-
ment may be deduced without knowing the analytical form of the
Sunction.

We shall consider the subject more in detail than will be
necessary for the simple purpose of using the ephemerls,
on account of its importance in other directions.

In what follows we shall suppose the values of the function
given for equidistant values of the argument, which will
always be the case practically. Also the intervals must be
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small enough, so that the function will be continuous between
consecutive values of the argument.
Let 2w = the interval of the argument.
cu o (T—=3w), (T —2w), (T —w), (T), (T+w), (T+ 2w),
(74 3w), . . . = the values of the argument.
The notation for the arguments, functions, and successive
differences will be shown by the following scheme :

~

‘::grl:t- Function. Diﬁ::nce. Diﬁzegcncc. Diﬂ%?'ence Dlﬁg];nce. Dlﬁscglence.
7'—3w A T—3w)
; F(T—fw)
T—2w [(7'—2w)” S(T—2w) o
T—w AT—w) T8 fm(T 3 o ) |
o S e R O Rk g
Tbw ey LT g gy STy gy ) ST
b PTGy oy oo P T
+2wﬂT+2w)f/(T+5 )f (7-+2w)
T3w A T+3w) &

/

The notation shows at once where each quantity belongs
in the scheme. The first differences are formed by subtract-
ing each function from the quantity immediately following
it, the argument being the arithmetical mean of the arguments
of the two functions. Similarly the second differences are
formed by subtracting each quantity in the column of first
differences from the one immediately below it,and so on for
the successive orders of differences. It will be observed that
the even orders of differences, ", f, etc., fall in the same
horizontal lines with the functions themselves, and have the
same arguments, while the odd orders, /7, /', etc., fall be-
tween those lines. The even differences all haveintegral argu-
ments, and the odd differences fractional arguments.

The arithmetical mean of two consecutive differences is
indicated by writing it as a function of the intermediate
argument. For example:

SUT) =3[ (T — 3w) + /(T + {w)];
SUT + 3w) = (7)) + /(T + w)l.



G INTERPOLATION. ; § 40.

. 40. Suppose now we set out from the function whose argu-
ment is 7. Evidently,

AT+ w) = AT) + (T + w);
AT+ 20) = AT+w) +7(T+ o)
= A7)+ 2/ (T+ Yw) + F(T + w);
AT+ 3w) = AT + 20) -+ f(T+ §)
= AT) 4 3/ (T~ 4w) +3 " (T+w)-+f " (T4 jw).

Proceeding in this manner, we readily discover the law of
the series; viz., the coefficients are those of the binomial
formula, and each successive function, /7, f”/, etc., is on the
horizontal line drawn under the one which immediately pre-
cedessit. Thus we have the general formula

AT+ m0) = AT) + nf (T4 o) + 22D T )
L 7z(7% — I) (e — z)f,,,(T_l_ 3

128

L nln—1)(n— 2) (n— 3) o g
ol B =S T+ 2w)
S : (91)

Jf we assign integral values to z» we obtain the tabular
values, viz., A7 - w), f{ T -+ 2w), etc.; but the formula is not
“used for this purpose, but for interpolating between the
tabular values, in which case 7 is fractional and must be ex-
pressed in terms of the interval of argument w as the unit.
41. A more convenient form may be given to this expres-
sion (91), as follows: We have

ST +w) =" (T)+f"(T+ bw);
ST 4-§0) = (T4 §20) + T 4+ £ T+ 4w)
£ (T 20) = f D)+ 27T+ ) +4T) + (T + $w).
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Substituting these values in (91) and reducing, we readily
obtain

AT+ m) = AT) + nf (T4 3) + 2= D)
gl UnCm Yoy gu)

Ig52,13
+ D=2 g (o2)

The law of the series is obvious ; viz., a factor is added to the
numerator of each succeeding coefficient alternately after
and before the other factors, the last factor of the denomi-
nator being the same as the order of differences. The succes-
sive differences are taken alternately below and above the
horizontal line drawn immediately below the function from
which we set out.

Formula (g2) will be used for interpolating forward. For
interpolating backward a better form may be derived by
writing for /(T + 3w), /(T + $w), . . . their values in terms
of /(T — 3w), f'/"(T — 3w), ... viz.:

ST+ dw) = f' (T — 3w) + f(7);
ST+ dw) = (T — w) + (7).

Changing # at the same time into — #, since the formula is
to be used for interpolating backwards, we readily find

AT = mo) = AT) — nf (T —ja) + 2= D7)
(” N ;)7:(: il I)f”,<T )

(ﬂ—l— I)”(”_ I)(” 2) L)
R L L IV, 6 S
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42. In applying (92) and (93) it w111 be more convement
to write them as follows:

AT Amo) = AD) +n F( T+ + 220 L ()

-]-”_I_I{f”’(T—} ju) " . Z{fw(]‘)
{

AT+ dw) . } S Y

77

AT — ma) = f(T)-—n{f(T o) -

{f///(T %w) L 12 {f“,(],)

"+2 e R S S

In (92), and (93), each difference is used to correct the one of
the next lower order immediately préceding it, and the quanti-
ties to be multiplied will generally be small. In interpolating
a value of the function corresponding to a value of the argu-
ment between 7 and (7 - w), we use (92), and set out from
AT). If the argument is between (7 + 4w) and (T 4 w),
we use (93), and set out from A7 + w).

When the interpolation is carried to any given order of
differences, as the fifth, it is a little more accurate to take the

<arithmetical mean of the last differences, which fall immedi.

ately above and below the horizontal line drawn in the vicinity
of the required function. Thus the last term of (92), and
(93), would be f¥(T).

43. For the quantities tabulated in the American Ephe-
meris it will only be necessary to carry the interpolation to
second differences ; but for computing ephemerides or tables
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of any continuous function, much labor is saved by comput-
ing the quantity directly for a comparatively few dates and
supplying the intermediate values by interpolation. If the
function is of such a character that some order of differences,
as the third, fourth, or any other, vanishes, this gives exact
values for the interpolated quantities, and in fact the process
may then be used for computing values of the function for
any value whatever of the argument. It is on this principle
that “tabulating engines” are constructed.

44. As an example of the application of (go), (92),, and (93),,
we take from the American Ephemeris the following values
of the moon’s right ascension for intervals of 12 hours:

1883,
July W =k bl A Tl ey SR

h. m. S.
3d, o" 5 45 15.68

29 39.05
12" 6 14 54.73 — 27.08 .
29 11.97 — 6.91
4th, o* 6 44 6.70 — 33.99 —+ 2.01
28 37.98 — 4.90 — .06
12" 7 12 44.68 — 38.89 + 1.95
27 50.09 — 2.0% — .0I
sth, o' 7 40 43.77 — 41.84 + 1.94
27 17.25 — 1.0I — .16
12> 8 8 1oz — 42.85 -+ 1.78
» 26 34.40 + .77 — .33
6th, o" 8 34 35.42 — 42.08 -+ 1.45
25 52.32 -+ 2.22 — .33
12" 9 0 27.74 — 39.86 + 1.12
25 12.46 + 3.34
7th, o* 9 25 40.20 — 36.52
24 3594

12" g 50 16.14
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Example 1. As an example of the application of (92),, let
us interpolate the moon’s right ascension for 1883, July sth,
4. gt .
Since the interval of the argument w is here 12", we have
in this case #nw = 4, or » = & = }. Setting out from July
sth, o°, we have

AT —3w) = — oI
S(T+3w) =— 6. f%(T)=—.085
71—5_’—_—%“’ = — .040
FeNA —{_——_1.940
Corrected, f* = 4 1.900
n—2( .
wl . ..=— 702
et 9
et =t SO0
Corrected, f/// = — 1.802
’%——I{f”’—f—...:— .801
S = — 41.840
Corrected:f "’ « =~ 42—641 .
n—1

¥ {f”+...=—|— 14.214

¥ 3 Ll G 4o
Corrected, f :2—7—;318,464
n{f +...= 910488
S = a=740"43"77
1883, July sth, 4*, a = 7"49’—“57‘,;6_

This value agrees exactly with that found in the American
Ephemeris for 1883 (see page 115).
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Example 2. Letus now apply (93), to determine the moon’s
right ascension, July sth, 20". Here we set out from July 6.

As before, =13, f(T) = — .33.
w2
el G R £
/=4 1450
Corrected, f* = - 1604
a2 ( kel e
o zf ..= -+ .668
S e M
Corrected, /" =+ 1.438
nt1§ _,
——i_—{fl—...:— .639
S = — 42.080
Corrected, /" © = — 42.719
Bt {f” = '— 14.240
S =26M34°.400
Corrected, f’ =26"20%160
. —nif —...= 8746720

: [ = a = 834"35°42
1833, July sth, 20" @ = 8"25748".70

The algebraic signs of the various corrections are deter-
mined without difficulty, as follows: If a horizontal line be
drawn in the table of functions and differences (p. 75) in the
vicinity of the given argument (in the first of the above
examples immediately below 590"), the successive differences
required will fall alternately below and above this line.
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Beginning with f* we determine the correction to f%, which
is to be applied so as to bring the value nearer to that imme:
diately below the line. In this case /™ = 4 1.94; that which
immediately follows is -+ 1.78 ; therefore the correction must
be subtracted from 1.94, giving the corrected /™ = 1.90.
The value of f” is — 1.01; the value immediately above
the line is — 2.95. The first must be corrected so as to
bring it nearer the latter, giving in this case the corrected
f"" = —1.802, and so on for each difference in succession.
That is, iy
s elow
When the quantity is { AR

the correction so as to bring it in the direction of the one in

the same vertical column immediately { ?)2?(::?7 % 1t

}the horizontal line, apply

Special Cases.

45. Whenever (92), or (93), can be applied, nothing more
will be necessary; they require, however, a knowledge of
the value of the function for several dates both befor