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' PREFACE.

THE present treatise on Plane and Spherical Trigo-
nometry is designed as a text-book for Colleges, Scien-
tific Schools, and Institutes of Technology. The aim
has been to present the subjeet in as concise a form as
is consistent with clearness, to make it attractive and
easily intelligible to the student, and at the same
time to present the fullest course of Trigonometry
which is usually given in the best Technological
Schools.

Considerable care has been taken to instruct the
student in the theory and use of Logarithms, and
their practical application to the solution of triangles.
It is hoped that the work may commend itself, not
only to those who wish to confine themselves to the
numerical calculations which occur in Trigonometry,
but also to those who intend to pursue the study of
the higher mathematics.

The examples are very numerous and are carefully
selected. Many are placed in immediate connection
with the subject-matter which they illustrate. The
numerical solution of triangles has received much
attention, each case being treated in detail. The
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iv PREFACE.

examples at the ends of the chapters have been care-
fully graded, beginning with those which are easy,
and extending to those which are more and more diffi-
cult. These examples illustrate every part of the sub-
ject, and are intended to test, not only the student’s
knowledge of the usual methods of computation, but
his ability to grasp them in the many forms they may
assume in practical applications. Among these exam-
ples are some of the most elegant theorems in Plane
and Spherical Trigonometry.

The Chapters on De Moivre’s Theorem, and Astron-
omy, Geodesy, and Polyedrons, will serve to introduce
the student to some of the higher applications of
Trigonometry, rarely found in American text-books.

In writing this book, the best English and French
authors have been consulted. I am indebted especially
to the works of Todhunter, Casey, Lock, Hobson,
Clarke, Eustis, Snowball, M’Clelland and Preston,
Smith, and Serret.

It remains for me to express my thanks to my col-
leagues, Prof. R. W. Prentiss for reading the MS.,
and Mr. I. S. Upson for reading the proof-sheets.

Any corrections or suggestions, either in the text
or the examples, will be thankfully received.

‘ E. A. B.
RuTGERS COLLEGE,

New Brunswick, N. J., April, 1892.
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PART I
PLANE TRIGONOMETRY.

CHAPTER 1.
MEASUREMENT OF ANGLES.

1. Trigonometry is that branch of mathematics which
treats (1) of the solution of plane and spherical triangles,
and (2) of the general relations of angles and certain func-
tions of them called the trigonometric functions.

Plane Trigonometry comprises the solution of plane trian-
gles and investigations of plane angles and their functions.

Trigonometry was originally the science which treated only of the
sides and angles of plane and spherical triangles; but it has been

recently extended so as to include the analytic treatment of all theo-
rems involving the consideration of angular magnitudes.

2. The Measure of a Quantity. — All measurements of
lines, angles, etc., are made in terms of some fixed standard
or unit, and the measure of a quantity is the number of times
the quantity contains the unit.

It is evident that the same quantity will be represented
by different numbers when different units are adopted. For
example, the distance of a mile will be represented by the
number 1 when a mile is the unit of length, by the number
1760 when a yard is the unit of length, by the number 5280
when a foot is the unit of length, and so on. In like man-
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2 PLANE TRIGONOMETRY.

" the BunitoE; éxpressing the magnitude of an angle will

depend op, the unit of angle. |

EXAMPLES.

1. What is the measure of 24 miles when a yard is the
unit ?
24 miles = § x 1760 yards
= 4400 yards = 4400 x 1 yard.

.. the measure is 4400 when a yard is the unit.

2. What is the measure of a mile when a chain of 66 feet

is the unit ? Ans. 80.
3. What is the measure of 2 acres when a square whose
side is 22 yards is the unit ? : Ans. 20.

4. The measure of a certain field is 44 and the unit is
1100 square yards; express the area of the field in acres.

Ans. 10 acres.

5. If 7 inches be taken as the unit of length, by what

number will 15 feet 2 inches be represented ? Ans. 26.

6. If 192 square inches be represented by the number 12,
what is the unit of linear measurement ? Ans. 4 inches.

3. Angles.— An angle is the opening between two straight
lines drawn from the same point. The point is called the
vertex of the angle, and the straight lines are called the sides
of the angle.

An angle may be generated by revolving a line from coin-
cidence with another line about a fixed point. The initial
and final positions of the line are the g
sides of the angle; the amount of
revolution measures the magnitude of
the angle ; and the angle may be traced
out by any number of revolutions of
the line. o A

Thus, to form the angle AOB, OB may be supposed to
have revolved from OA to OB; and it is obvious that OB
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may go on revolving until it comes into the same position
OB as many times as we please; the angle AOB, having the
same bounding lines OA and OB, may therefore be greater
than 2, 4, 8, or any ndfmber of right angles.

The line OA from which OB moves is called the initial
line, and OB in its final position, the terminal line. The
revolving line OB is called the generatriz. The point O is
called the origin, vertex, or pole.

4. Positive and Negative Angles. — We supposed in Art.
3 that OB revolved in the direction opposite to that of the
hands of a watch. But angles may, of course, be described
by a line revolving in the same direction as the hands of a
watch, and it is often necessary to distinguish between the
two directions in which angles may be measured from the
same fixed line. This is conveniently effected by adopting
the convention that angles measured in one direction shall
be considered positive, and angles measured in the opposite
direction, negative. In all branches of mathematics angles
described by the revolution of a straight line in the direc-
tion opposite to that in which the hands of a watch move
are usually considered positive, and all angles described by
the revolution of a straight line in the same direction as the
hands of a watch move are considered negative.

Thus, the revolving line OB starts from the initial line
OA. When it revolves in the
direction contrary to that of the
hands of a watch, and comes into
the position OB, it traces out the
positive angle AOB (marked + a);
and when it revolves in the same
direction as the hands of a watch,
it traces the negative angle AOB (marked — b).

The revolving line is always considered negative.

5. The Measure of Angles.— An angle is measured by
the arc of a circle whose centre is at the vertex of the
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angle and whose ends are on the sides of the angle (Geom.,
Art. 236).

Let the line OP of fixed length generate an angle by
revolving in the positive direction®
round a fixed point O from an initial
position OA. Since OP is of constant
length, the point P will trace out the
circumference ABA'B' whose centre
is 0. The two perpendicular diam-
eters AA' and BB' of this circle will
inclose the four right angles AOB,
BOA’, A'OB’, and B'OA.

The circumference is divided at the points A, B, A', B
into four quadrants, of which

AB is called the first quadrant.
BA' « ¢« « gecond quadrant.
A'B'«  «  « third quadrant.
B'A « « «  fourth quadrant.

In the figure, the angle AOP, between the initial line
OA and the revolving line OP,, is less than a right angle,
and is said to be an angle in the first quadrant. AOP,is
greater than one and less than two right angles, and is said to
be an angle in the second quadrant. AOQOP; is greater than two
and less than three right angles, and is said to be an angle
in the third quadrant. AOP, is greater than three and less
than four right angles, and is said to be an angle in the
Jourth quadrant.

When the revolving line returns to the initial position
OA, the angle AOA is an angle of four right angles. - By
supposing OP to continue revolving, the angle described
will become greater than an angle of four right angles.
Thus, when OP coincides with the lines OB, OA', OB/, OA,
in the second revolution, the angles described, measured
from the beginning of the first revolution, are angles of five
right angles, six right angles, seven right angles, eight right
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angles, respectively, and so on. By the continued revolu-
tion of OP the angle between the initial line OA and the
revolving line OP may become of any magnitude whatever.

In the same way OP may revolve in the negative direc-
tion about O any number of times, generating a negative
angle; and this negative angle may obviously have any
magnitude whatever.

The angle AOP may be the geometric representative of
any of the Trigonometric angles formed by any number of
complete revolutions, either in the positive direction added
to the positive angle AOP, or in the negative direction added
to the negative angle AOP. In all cases the angle is said to
be in the quadrant indicated by its terminal line.

There are three methods of measuring angles, called
respectively the Sexagesimal, the Centesimal, and the Cir-
cular methods.

6. The Sexagesimal Method. — This is the method in
general use. In this method the right angle is divided into
90 equal parts, each of which is called a degree. FEach
degree is subdivided into 60 equal parts, each of which is
called a minute. Each minute is subdivided into 60 equal
parts, each of which is called a second. Then the magni-
tude of an angle is expressed by the number of degrees,
minutes, and seconds which it contains. Degrees, minutes,
and seconds are denoted respectively by the symbols °, !, '":
thus, to represent 18 degrees, 6 minutes, 34.58 seconds, we
write

18° €' 34".58.

A degree of arc is g}y of the circumference to which the
arc belongs. The degree of arc is subdivided in the same
manner as the degree of angle.

Then 1 circumference = 360° = 21600’ = 1296000"".
1 quadrant or right angle = 90°.

Instruments used for measuring angles are subdivided
accordingly.
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7. The Centesimal or Decimal Method. — In this method
the right angle is divided into 100 equal parts, each of
which is called a grade. Each grade is subdivided into 100
equal parts, each of which is called a minute. Each minute
is subdivided into 100 equal parts, each of which is called
a second. The magnitude of an angle is then expressed by
the number of grades, minutes, and seconds which it con-
tains. Grades, minutes, and seconds are denoted respect-
ively by the symbols & \, \\: thus, to represent 34 grades,
48 minutes, 86.47 seconds, we write

345 48" 86'\\.47.

The centesimal or decimal method was proposed by the French
mathematicians in the beginning of the present century. But
although it possesses many advantages over the established method,
they were not considered sufficient to counterbalance the enormous
labor which would have been necessary to rearrange all the mathe-
matical tables, books of reference, and records of observations, which
would have to be transferred into the decimal system before its
advantages could be felt. Thus, the centesimal method has never been
used even in France, and in all probability never will be used in prac-
tical work.

8. The Circular Measure. — The unit of B
circular measure is the angle subtended at
-the centre of a circle by an arc equal in
length to the radius.
This unit of circular measure is called a o A
radian.
Let O be the centre of a circle whose radius is .
Let the arc AB be equal to the radius
OA =r. 8
Then, since angles at the centre of a
circle are in the same ratio as their
intercepted arcs (Geom., Art. 234), and
since the ratio of the circumference of
a circle to its diameter is = = 3.14159265
(Geom.,, Art. 436),

»
o
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.. angle AOB : 4 rt. angles : : arc AB : circumference,
ir:2mr i1 2
. angle AOB = 4 1t. angles _ 2rt. angles

e -
- a radian = angle AOB = —3% __ _ 57°.2957795
3.14159265

= 3437'.74677 = 206264"'.806.

Therefore, the radian is the same for all circles, and
= §7°.2957795. B
Let ABP be any circle; let the angle P
AOB be the radian; and let AOP be
any other angle. A
Then arc AB =radius OA.

.. angle AOP : angle AOB
::arc AP:arc AB;

or angle AOP: radian ::arc AP : radius.

. angle AP = 21¢ AP

~—— x radian.
radius

The measure of any quantity is the number of times it

contains the unit of measure (Art. 2). -
arc AP

.~ the circular measure of angle AOP ==——
radius

NoTE 1, — The student will notice that a radian is a little less than an angle of an
equilateral triangle, i.e., of 60°,

Angles expressed in circular measure are usually denoted by Greek letters, a, 8,
Vs ees 50, 9, e

The circular measure is employed in the various branches of Analytical Mathe-
matics, in which the angle under consideration is almost always expressed by s
letter.

NotE 2. — The student cannot too carefully notice that unless an angle is obvi-
ouely referred to, the letters a, B, ..., 8, ¢, ... stand for mere bers. Thus, = stand:
Jor a number, and a number only, viz., 3.14159 ..., but in the expression ‘ the angle
m,’ that is, ‘the angle 3.14159 ...,’ there must be some unit understood. The unit
understood here is a radian, and therefore ¢ the angle =’ stands for ‘ = radians’ or
3.14159 ... radians, that is, two right angles.

Hence, when an angle is referred to, m is a very convenient abbreviation for
two right angles.

8o also ¢ the angle a or 6’ means * a radians or 0 radians.’

The units in the three systems, when expressed in terms
of one common standard, two right angles, stand thus :
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The unit in the Sexagesimal Method = 180 of 2 right angles.

&« [{ I {14 Centesimal “«© - €« «

{13 [{3

80
1
200
11 [/ 1A 1] Circular &« = 1-_
m
If D, G, and 0 denote the number of degrees, grades, and
radians respectively in any angle, then
D _G _#6
=_—=- 1
180 200 « @
because each fraction is the ratio of the a.ngle to two right
"angles.

9. Comparison of the Sexagesimal and Centesimal Meas-
ures of an Angle. — Although the centesimal method was
never in general use among mathematicians, and is now
totally abandoned everywhere, yet it still possesses some
interest, as it shows the application of the decimal system
to the measurement of angles.

From (1) of Art. 8 we have

D_G,

180 200

9 1
.zD=EQmﬂG_£

EXAMPLES.

1. Express 49° 15' 35" in centesimal measure.
First express the angle in degrees and decimals of a

degree thus:
60) 35"

60) 15'.583
49°.25972
10

9) 492.5972
548.733024 ...
- 49° 15' 35" = 548 73\ 30\.24 ...,
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2. Express 877 2\ 25'\ in degrees, etc.
First express the angle in grades and decimals of a grade
thus:
87¢ 2" 25\ = 87¢.0225
9
78.32025
60

19.215
60

12,9
- 878 2' 25\ =78° 19' 12".9,

Find the number of grades, minutes, and seconds in the
following angles:

3.” 51° 4'30". Ans. 568 75" OW

4. 45°33" 3" 508 61" 20M.37.

5. 27°15' 46", 308 29° 19N\.75 ...
6. 157° 4' 9", 1748 52\ 122962 ...

Find the number of degrees, minutes, and seconds in the
following angles :

7. 198 45' 95™. Ans. 17° 30" 48".78,
8. 1248 5 8™ 111° 38' 44"".592,
9. 558 18" 35" 49° 39' 54".54.

10. Comparison of the Sexagesimal and Circular Meas-
ures of an Angle.
From (1) of Art. 8 we have

D _
180

. p_1808 Dx
~ D="2C, and 0_180

LIS
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EXAMPLES.
1. Find the number of degrees in the angle whose circu-
lar measure is §.

1

H 0==-.
ere 2
. p=180,1_90

T 2 =«
90

x 7
=2° ! "
99 8° 38' 10"1Y,

where 22 is used for .
2. Find the circular measure of the angle 59° 52' 30".
Express the angle in degrees and decimals of a degree

thus:
60)52.5
59.875
. f—59.875_ __ oY —
o 0= T30 7=(.333---) 1=1.0453 ....
3. Express, in degrees, the angles whose circular measures
T T T T
2 3¢ e "
NoTE 1. — The student should especially t himself to express readily in
circular measure an angle which is given in degrees.

are

4. Express in circular measure the following angles :
T T m 31!'

600, 22° 30', 11° 15'7 270°. Ans. gy gs E, 7’

5. Express in circular measure 3° 12', and find to seconds
the angle whose circular measure is .8.

22 dr  pe
(Take 1r=7-> Ans. 2T, 45° 49/ 5.

6. One angle of a triangle is 45° and the circular measure
of another is 1.5. Find the third angle in degrees.
Ans. 49° 5' 27" 3.,

NoTEe 2. — Questions in which angles are expressed in different systems of meas-
urement are easily solved by expressing each angle in right angles.
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7. The sum of the measure of an angle in degrees and
twice its measure in radians is 23%; find its measure in
degrees (= 232).

Let the angle contain « right angles.

Then the measure of the angle in degrees = 90 2.

“ou “ oow e« raadia,ns=72'-'w.
o 0e 4w =23%;
o902+ 2R =$;

- 6522 =163, .- w=i.

.. the angle is } of 90° = 224°.
8. The difference between two angles is =, and their sum
is 56°; find the angles in degrees. Ans. 38° 18°.

11. General Measure of an Angle. — In Euclidian geom-
etry and in practical applications of trigonometry, angles
are generally considered to be less than two right angles;
but in the theoretical parts of mathematics, angles are
treated as quantities which may be of any magnitude what-
ever.

Thus, when we are told that an angle is in some particu-
lar quadrant, say the second (Art. 5), we know that the
position in which the revolving line stops is in the second
quadrant. But there is an unlimited number of angles
having the same final position, OP.

The revolving line OP may pass from B
OA to OP, not only by describing the P
arc ABP, but by moving through a whole
revolution plus the arc ABP, or through
any number of revolutions plus the arc o
ABP.

For example, the final position of OP
may represent geometrically all the fol-
lowing angles :




12 PLANE TRIGONOMETRY.

Angle AOP =130°, or 360°4 130° or 720°4 130° or
—'360° 4 130°, or — 720° 4 130°, etc. ]

Let A be an angle between 0 and 90° and let n be any
whole number, positive or negative. Then

(1) 2n x 180° + A represents algebraically an angle in the
Jirst quadrant.

(2) 2n x 180° — A represents algebraically an angle in the
JSourth quadrant.

(3) (2n+1) 180° — A represents algebraically an angle in
the second quadrant.

(4) (27 +1) 180° + A represents algebraically an angle in
the third quadrant.

In cireular measure the corresponding expressions are
1) 2n7+06, (2) 2nwr—0, (3) (2n+1)r—0, (4) (Zn+1)=+6.

EXAMPLES.
State in which quadrant the revolving line will be after
describing the following angles:
(1) 120°, (2) 340°, (3) 490°, (4) —100°,
(5) —380° (6) %7, (7)10x+ :—;

12. Complement and Supplement of an Angle or Arc. —
The complement of an angle or arc is the remainder obtained
by subtracting it from a right angle or 90°.

The supplement of an angle or arc is the remaimder
obtained by subtracting it from two right angles or 180°.

Thus, the complement of A is (90° — A).

The complement of 190° is (90° — 190°) = —100°.
The supplement of A is (180° — A).

The supplement of 200° is (180° — 200°) = — 20°.
The complement of § is (g - -}1r>= —3m

The supplement of 3= is (v —}#x) =1
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EXAMPLES,
1. If 192 square inches be represented by the number 12,
what is the unit of linear measurement ? Ans. 4 inches.

2. If 1000 square inches be represented by the number
40, what is the unit of linear measurement ? _Ans. 5 inches.
3. If 2000 cubic inches be represented by the number 16,
what is the unit of linear measurement ? Ans. 5 inches.
4. The length of an Atlantic cable is 2300 miles and the
length of the cable from England to France is 31 miles.
Express the length of the first in terms of the second as

unit. Ans. 10941
5. Find the measure of a miles when b yards is the unit.
Ans. 17§0a_

6. The ratio of the area of one field to that of another is
20: 1, and the area of the first is half a square mile. Find
the number of square yards in the second. Ans. 77440.

7. A certain weight is 3.125 tons. What is its measure

in terms of 4 cwt.? Ans. 15.625.

Express the following 12 angles in centesimal measure:
8. 42°15'18". Ans. 46F 95\
9. 63°19' 17" 708.35" TON.98 -...

10. 103° 15 45", 1145 73 611

11, 19° 018" 218 11" 66™.6.

12. 143° 9 0" 1595 5\ 55\.5.

13. 300° 15' 58", 333¢ 62 90™.1234567890.

14. 27°41' 51", 308.775.

15. 67°.4325. 748,925,

16. 8° 15' 27", 98 17" 50™.

17. 97° 5 15", 1078 87 50™.

18. 16°14'19". 188 4 29%....

19. 132° 6 1468 77\ TTV\T.
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Express the following 11 angles in degrees, minutes, and

seconds :

20. 1058 52\ 75\,
21. 82k 9\ 54W
22. 70815\ 92,
23. 158 O\15“
24. 1548 T\ 24,
25. 3245 13' 88\.7.
26. 108 42" 50™.
27. 208 77\ 50™.
28. 8 TH

29. 170% 45\ 35\,
30. 248 0\ 25,

Ans. 94° 58' 29".1.

73° 53' 9".096.
63° 8'35".808.
13° 30" 4".86.
138° 39" 54".576.
291° 43' 29".9388.
9° 22' 57",
18° 41' 51".
7° 52' 30".
153° 24' 29".34.
21° 36" 8'".1.

Express in circular measure the following angles:

31. 315° 24° 13

32. 95° 20, 12° 5' 4"
33. 221°, 1°, 57°.295.
34. 120°, 45° 270°.
35. 360°, 31 rt. angles.

Ans. Im,

14537
10800
143 = 271911'.
270° 40500
1§r’ 1_18%’ 1 radian.
200430, 7, .

2w, g

Express in degrees, etc., the angles whose circular meas-

ures are:
1
36. §m 3m 7

37.112 45

463 p=
38. g, 854,

== degrees, 80 dégrees,
m

Ans. 112°.5, 120°, 2 degrees.
m™

120

T

degrees.

AT° 43 38", 45°.
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39. 4}, f;m 2.504. Aas. 257° 49' 43".39, 15°, 143°.468.

40. .0234, 1.234, § 1°20'27", 70°42'11", 38°11'50".

41. Find the number of radians in an angle at the centre
of a circle of radius 25 feet, which intercepts an arc of
37} feet. Ans. 1}.

42. Find the number of degrees in an angle at the centre
of a circle of radius 10 feet, which intercepts an arc of
5 feet. Ans. 90°.

43. Find the number of right angles in an angle at the
centre of a circle of radius 32 inches, which intercepts an
arc of 2 feet. Ans. 4%,

44. Find the length of the arc subtending an angle of
4} radians at the centre of a circle whose radius is 25 feet.

Ans. 1121 ft.
45. Find the length of an arc of §0° on a circle of 4 feet
radius. Ans. 537 ft.

46. The angle subtended by the diameter of the Sun at
the eye of an observer is 32': find approximately the
diameter of the Sun if its distance from the observer be
90 000 000 miles. Ans. 838 000 miles.

47. A railway train is travelling on a curve of half a mile
radius at the rate of 20 miles an hour: through what angle
has it turned in 10 seconds ? Ans. 64 degrees.

48. If the radius of a circle be 4000 miles, find the length
of an arc which subtends an angle of 1" at the centre of the
circle. Ans. About 34 yards.

49. On a circle of 80 feet radius it was found that an
angle of 22° 30" at the centre was subtended by an arc
31 ft. 5in. in length: hence calculate to four decimal places
the numerical value of the ratio of the circumference of a
circle to its diameter. Ans. 3.1416.

50. Find the number of radians in 10" correct to four sig-
nificant figures (use ${§ for ). Ans. .00004848.
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CHAPTER IIL
THE TRIGONOMETRIO FUNOTIONS.

13. Definitions of the Trigonometric Functions. — Let
RAD be an angle; in AD, one of the lines containing the
angle, take any point B, and from B
draw BC perpendicular to the other B
line AR, thus forming a right triangle c
ABC, right-angled at C. Then denot- a
ing the angles by the capital letters A,
B, C, respectively, and the three sides A b c
opposite these angles by the corresponding small italics, a,
b, ¢,* we have the following definitions:

D

R
"

— Opposite side is called the sine of the angle A.
hypotenuse

_J—a’]i;;‘:)iﬁzzie is called the cosine of the angle A.

opposite side ;o .116q the tangent of the angle A.
adjacent side

adjacent side ;o o110 the cotangent of the angle A.
opposite side

M is called the secant of the angle A.
adjacent side

_hm is called the cosecant of the angle A.
opposite side

a
Cc
b
c
a
b
b
a
4
b
4
a

If the cosine of A be subtracted from unity, the remain-
der is called the wersed sine of A. If the sine of A be sub-

* The letters a, b, c are numbers, being the number of times the lengths of the sides
contain some chosen unit of length.
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tracted from unity, the remainder is called the coversed sine
of A; the latter term is hardly ever used in practice.

The words sine, cosine, etc., are abbreviated, and the func-
tions of an angle A are written thus: sinA, cosA, tanA,
cot A, sec A, cosec A, vers A, covers A.

The following is the verbal enunciation of these defini-
tions:

The sine of an angle i3 the ratio of the opposite side to the

hypotenuse; or sin A = 2.
c

The cosine of an angle is the ratio of the adjacent side to

the hypotenuse; or cos A = b,
c

" The tangent of an angle i3 the ratio of the opposite side to
the adjacent side; or tan A = %.

The cotangent of an angle is the ratio of the adjacent side to
the opposite side; or cot A = 5
a

The secant of an angle is the ratio of the hypotenuse to the
adjacent stde; or sec A = bc-

The cosecant of an angle is the ratio of the hypotenuse to the
opposite side; or cosec A = (—i

The versed sine of an angle is unity minus thc cosine of the

angle; or versA=1—cosA=1— b,
c

The coversed sine of an angle is unity minus the sine of the

angle; orcovers A=1—sinA=1— g-

These ratios are called Trigonometric Functions. The
student should carefully commit them to memory, as upon
them is founded the whole theory of Trigonometry.

These functions are, it will be observed, not lengths, but
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ratios of one length to another; that is, they are abstract
numbers, simply numerical quantities; and they remain
unchanged so long as the angle remains unchanged, as will
be proved in Art. 14.

It is clear from the above definitions that

1 . 1
cosec A = — r or sinA = pr——Y
1 1
SecA = cos A, or COSA = m,
1 1
A = tA = .
tan cota’ o % tan A

The powers of the Trigonometric functions are expressed
as follows:
(sin A)? is written sin’A,
(cos A)® is written cos®A,
and so on.
NoTE. — The student must notice that ¢ sin A * is a single symbol, the name of a

number, or fraction belonging to the angle A. Also sinz A is an abbreviation for
(sin A)?2, i.e., for (sin A)x (sin A). Buch abbreviations are used for convenience.

14. The Trigonometric Functions are always the Same
for the Same Angle. — Let BAD be
any angle; in AD take P, P', any
two points, and draw PC, P'C' per-
pendicular to AB. Take P", any
point in AB, and draw P"C" per- o
pendicular to AD. . A cc P”=

Then the three triangles PAC, P'AC', P""AC" are equi-
angular, since they are right-angled, and have a common
angle at A : therefore they are similar.

. PC PICI PHCN
AP AP AP"

But each of these ratios is the sine of the angle A. Thus,
sin A is the same whatever be the position of the point P on
either of the lines containing the angle A.
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Therefore sinA is always the same. A similar proof
may be given for each of the other functions.
In the right triangle of Art. 13, show that

a=csinA =ccosB=btanA =5 cotB,
b=acotA =atanB=ccosA =csinB,
¢ =a cosecA =asecB =bsecA =b cosecB.

NoTE. — These results should be carefully noticed, a8 they are of frequent use in
the golution of right triangles and elsewhere.

EXAMPLES, .

1. Calculate the value of the functions, sine, cosine, etc.,
of the angle A in the right triangles whose sides a, b, ¢ are
respectively (1) 8,15, 17; (2) 40, 9, 41; (3) 196, 315, 371 ;
(4) 480, 31, 481; (5) 1700, 945, 1945.

Ans. (1) sinA = £, cosA =13, tanA =&, etc.;
(2) sinA =4y, cosA =2, etc.;
(3) sinA =38, tanA =24, etc.;
(4) sinA =439, tan A = 480 etc.;
(5) sinA = 343, tan A = §43, ete.
In a right triangle, given:
2. a=Vm*+n} b=+2mn; calculate sin A.

ns. Y

m+n
3. a=Vm?*—mn, b=n; calculate secA. n—a,

n
2

4. a=vVm’+ mn, c=m+n; calculate tan A. A [m + m’:

mn +n
5. a= 2mn, b=m?— n?; calculate cos A. ﬂ:_—"z
m2+ n?
6. sinA =3, ¢=200.5; calculate a. 120.3.
7. cosA = .44, ¢=30.5; calculate b. 13.42.
8. tanA =11, b=2]; calculate c. 7 V130,



o

20 - PLANE TRIGONOMETRY.

15. Functions of Complemental Angles. — In the rt. A ABC
we have

sinA = g and cosB=% (Art.13.) e
. c
.. sinA = cosB. ¢ a
But B is the complement of A, since -~
their sum is aright angle, or 90°; i.e., b e
B=90°—A. :
~ sinA  =cosB =cos(90°—A) = %
Also, cosA =sinB =sin(90°—A) = g
tanA =cotB =cot(90°—A) = %,
cotA =tanB =tan(90°—A) = 3
secA  =cosecB =cosec(90°— A) = ;)3,
cosecA =secB =sec(90°—A) =2
«
versA = coversB =covers (90°— A)=1— é,
c
coversA =versB = vers (90°— A) =1-2
c

Therefore the sine, tangent, secant, and versed sine of an
angle are equal respectively to the cosine, cotangent, cosecant,
and coversed sine of the complement of the angle.

16. Representation of the Trigonometric Functions by
Straight Lines.— The Trigonometric functions were for-
merly defined as being certain straight lines geometrically
connected with the arc subtending the angle at the centre
of a circle of given radius.

Thus, let AP be the arc of a circle subtending the angle
AOP at the centre.
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Draw the tangents AT, BT' meeting :JP produced to T',
and draw PC, PD L to OA, OB. '

Then PC was called the sine of the arc AP.

oC ¢« cosine “
AT “« tangent “
BT' “ cotangent “
oT “ secant “
orT’ “ cosecant “
AC “ versed sine “
BD “ coversed sine ¥

Since any arc is the measure of the angle at the centre
which the arc subtends (Art. 5), the above functions of the
arc AP are also functions of the angle AOP.

It should be noticed that the old functions of the arc above
given, when divided by the radius of the circle, become the
modern functions of the angle which the arc subtends at the
centre. If, therefore, the radius be taken as unity, the old
functions of the arc AP become the modern functions of the
angle AOP.

Thus, representing the arc AP, or the angle AOP by 6, we
have, when OA =O0P =1,
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. PC _PC
=—=——=P
glno or= 1 C,
AT AT "
tana_UA_ i = AT,

and similarly for the other functions.

Therefore, in a circle whose radius is unity, the T'rigono-
metric functions of an arc, or of the angle at the centre meas-
ured by that arc, may be defined as follows:

The sine ts the perpendicular let fall from one ewtremity of
the arc upon the diameter passing through the other extremity.

The cosine is the distance from the centre of the circle to the
JSoot of the sine.

The tangent is the line which touches one extremity of the
arc and is terminated by the diameter produced passing through
the other extremity.

The secant is the portion of the diameter produced through
one extremity of the arc which is intercepted between the centre
and the tangent at the other extremity.

The wversed sine i3 the part of the diameter intercepted
between the beginning of the arc and the foot of the sine.

Since the lines PD or OC, BT, O'1", and BD are respect-
ively the sine, tangent, secant, and versed sine of the arc
BP, which (Art. 12) is the complement of AP, we see that
the cosine, the cotangent, the cosecant, and the coversed sine of
an arc are respectively the sine, the tangent, the secant, and the
versed sine of its complement.

EXAMPLES.

1. Prove tan Asin A 4 cos A =secA.

2 ¢«  cot Acos A + sin A = cosec A.

3. ¢« (tanA—sinA)’+(1—cosA)?=(secA —1)%
4. “ tanA + cot A =sec A cosec A.

5 “ (sinA+4cosA)-=(secA + cosecA)=sin A cosA.
6. “ (1+4tanA)?4(1+ cotA)®=(secA + cosecA)2
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7. Given tanA =cot2A; find A.

8. « sinA —eos3A; find A.

9. % sinA =cos(45°—%A); find A.
10 “ tanA=cot6A; find A.
1. % cotA =tan(45°+ A); find A.

17. Positive and Negative Lines. — Let AA'and BB’ be
two perpendicular right lines intersecting at the point O.
Then the position of any point in

the line AA’'or BB’ will be deter- B

mined if we know the distance of P

the point from O, and if we know ; l

also upon which side of O the A—M N A

point lies. It is therefore con- .
venient to employ the algebraic
signs + and —, so that if dis- A
tances measured along the fixed

line OA or OB from O in one direction’be considered
positive, distances measured along OA' or OB' in the oppo-
site direction from O will be considered negative.

This convention, as it is called, is extended to lines parallel
to AA' and BB'; and it is customary to consider distances
measured from BB’ towards the right and from AA' upwards
as positive, and consequently distances measured from BB'
towards the left and from A A' downwards as negative.

18. Trigonometric Functions of Angles of Any Magni-
tude. — In the definitions of the trigonometric functions
given in Art. 13 we considered only acute angles, i.e., angles
in the first quadrant (Art. 5), since the angle was assumed
to be one of the acute angles of a right triangle. We shall
now show that these definitions apply to angles of any mag-
nitude, and that the functions vary in sign according to the
quadrant in which the angle happens to be.
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Let AOP be an angle of any mag-
nitude formed by OP revolving from
an initial position OA. Draw PM L°
to AA' Consider OP as always
positive. Let the angle AOP be
denoted by A ; then whatever be the
magnitude of the angle A, the defini-
tions of the trigonometric functions
are

OM MP
P’ tan A = O’
sec A = %II\—)[’ cot A = 1(\)/[—1\1{), coseCcA = %

I. When A lies in the 1st quadrant, B
MP is positive because measured from M P
upwards, OM is positive because measured A o
from O towards the right (Art. 17), and OP M
is positive.

Hence in the first quadrant all the funec- B
tions are positive.'

II. When A lies in the 2d quadrant, as
the obtuse angle AOP, MP is positive
because measured from M upwards, OM is
negative because measured from O towards
the left (Art. 17), and OP is positive.

Hence in the second quadrant

sin A =-(_)M§, COSA =

sinA = 1(\()[_;) is positive;

OM . ,
A =2 .
Cos 18 negatwe 5

MP . .
tan A = oM is megative ;

and therefore sec A and cot A are megative, and cosec A is
positive (Art. 13).
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III. When A lies in the 3d quadrant,
as the reflex angle AOP, MP is negative
because measured from M downwards, OM
is negative, and OP is positive.

Hence in the third quadrant the sine,
cosine, secant, and cosecant, are negative,
but the tangent and cotangent are positive.

IV. When A lies in the 4th quadrant,
as the reflex angle AOP, MP is negative,
OM is positive, and OP is posiive.

Hence in the jfourth quadrant the sine,
tangent, cotangent, and cosecant are negative,
but the cosine and secant are positive.

The signs of the different functions are shown in the

annexed table.

QUADRANT. L II. | IIL. | IV.
Sin and cosec + + — —
Cos and sec + - - +
Tan and cot + - + -

I :

Nors. — It is apparent from this table that the signs of all the functions in any
quadrant are known when those of the sine and cosine are known. The tangent and
cotangent are + or —, according as the sine and cosine bave like or different signs.

19. Changes in the Value of the Sine as the Angle in-

creases from 0° to 360°. — Let A de-
note the angle AOP described by the
revolution of OP from its initial posi-
tion OA through 360°. Then, PM
being drawn perpendicular to AA/,
. MP

sinA = opP’
whatever be the magnitude of the
angle A.
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“When the angle A is 0°, P coincides with A, and MP is
zero ; therefore sin0° = 0.

As A increases from 0° to 90°, MP increases from zero to
OB or OP, and is positive,; therefore sin90° == 1.

Hence in the 1st quadrant sin A is positive, and increases
from O to 1.

As A increases from 90° to 180°, MP decreases from OP
to zero, and is positive; therefore sin180° = 0.

Hence in the 2d quadrant sin A is positive, and decreases
from 1 to 0.

As A increases from 180° to 270°, MP increases from
zero to OP, and is negative; therefore sin270° =—1.

Hence in the 3d quadrant sin A is negative, and decreases
algebraically from 0 to — 1.

As A increases from 270° to 360°, MP decreases from OP
to zero, and is negative,; therefore sin360°= 0.

Hence in the 4th quadrant sin A is negative, and increases
algebraically from —1 to 0.

20. Changes in the Cosine as the Angle increases from 0°
to 360°. — In the figure of Art. 19
OM
cos A = oP
When the angle A is 0° P coincides with A, and
OM = OP ; therefore cos0°= 1.
As A increases from 0° to 90°, OM decreases from OP to
zero and is positive; therefore cos 90°= 0.
Hence in the 1st quadrant cos A is positive, and decreases
from 1 to 0.
As A increases from 90° to 180°, OM increases from zero
to OP, and is negative; therefore cos180° = — 1.
Hence in the 2d quadrant cos A is negative, and decreases
algebraically from 0 to — 1.
As A increases from 180° to 270°, OM decreases from OP
to zero, and is negative ; therefore cos 270° = 0.
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Hence in the 3d quadrant cos A is negative, and increases
algebraically from — 1 to 0.

As A increases from 270° to 360°, OM increases from zero
to OP, and is positive; therefore cos 360°= 1.

Hence in the 4th quadrant cos A is positive, and increases
from 0 to 1.

21. Changes in the Tangent as the Angle increases
from 0° to 360°. — In the figure of Art. 19

MP
oM

When A is 0°, MP is zero, and OM = OP; therefore tan
0°=0.

As A increases from 0° to 90°, MP increases from zero to
OP, and OM decreases from OP to zero, so that on both
accounts tan A increases numerically; therefore tan 90°=o0.

Hence in the 1st quadrant tan A is positive, and increases
from 0 to oo.

As A increases from 90° to 180°, MP decreases from OP
to zero, and is positive, OM becomes negative and decreases
algebraically from zero to — 1; therefore tan180°= 0.

Hence in the 2d quadrant tan A is negative, and increases
algebraically from — oo to 0.

tanA =

When A passes into the 2d quadrant, and is only just greater than
90°, tan A changes from +wo to — .

As A increases from 180° to 270°, MP increases from zero
to OP, and is negative, OM decreases from OP to zero, and
is negative; therefore tan270°= oo.

Hence in the 3d quadrant tan A is positive, and increases
from 0 to oo.

As A increases from 270° to 360°, MP decreases from OP
to zero, and is negative, OM increases from zero to OP, and
is positive; therefore tan360°= 0.

Hence in the 4th quadrant tan A is negative, and increases
algebraically from —oo to 0.
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The student is recommended to trace in a manner similar
to the above the changes in the other functions, t.e., the
cotangent, secant, and cosecant, and to see that his results
agree with those given in the following table.

22. Table giving the Changes of the Trigonometric
Functions in the Four Quadrants.

QUADRANT. L II. III. IV.

+ + - -

sin varies from | Oto1l 1to0 Oto—1 | -1t 0
+ - - +

cos ¢ “ 1to0 0Oto—1 | —1to0 Otol
+ - + -

tan .« Otoww —oto0 0to —otol
+ - + -

cot ¢ ¢ o to0 0to ® to 0 0to —o
+ - - +

sec ¢ e 1tow |[—owto—1 | —1t0 —a o tol
+ + - -

cosec ¢ “ otol 1tow —oto—1 |—1to —w
+ + + +

vers ‘¢ ¢ 0to1l 1to2 2tol 1to0

NotE 1. — The z, ¢, and cotangent of an angle A have the same sign

as the sine, cosine, and tangent of A respectively.

The sine and cosine vary from 1 to — 1, passing through the value 0. They are
never greater than unity.

The secant and cosecant vary from 1 te — 1, passing through the valuew. They
are never numerically less than unity.

The $angent and codangent are unlimited in value. They have all values from —x
to + o,

The versed sine and coversed sine vary from 0 to 2, and are always positive.

The trig trie functions ch sign in passing through the values 0 and o,
and through no other values.

In the 1st quadrant the functions increase, and the cofunctions decrease.

NoTE 2. — From the results given in the above table, it will be seen that, if the
value of a trigonometric function be given, we cannot fix on one angle to which it
belongs exclusively. .

Thus, if the given value of sin A be }, we know since sin A passes through all
values from 0 to 1 as A increases from 0° to 90°, that one value of A lies between 0°
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and 90°. But since we also know that the value of sin A passes through all values
between 1 and 0 as A increases from 90° to 180°, it is evident that there is another
value of A between 90° and 180° for which ein A =}.

23. Relations between the Trigonometric Functions of
the Same Angle. — Let the radius start
from the initial position OA, and revolve p,
in either direction, to the position OP. ¢
Let 6 denote the angle traced out, and A
let the lengths of the sides PM, MO, \M ¢ ©
OP be denoted by the letters a, b, c.*

The following relations are evident
from the definitions (Art. 13):

1 1 1
cosgco = secl = wosd cotd = tand
I tanf— sin 0
) cos® .
a
—e_¢_sind
For tano—b_g—coso
c
II. sin?@ 4 cos?6 =1. 1
For sin’0+cos’0_(zz+%: az;rbg 1. _ ‘m
III. sec®f=1 + tan?6.
oL
For sec’o—-22 = ¥+a =1 +(—1—2=1+tan’0. tan
b? b? T
IV. cosec?@ =1 + cot?6.
1
For cosec’0=32 _“_'H’. =1 + Z=1+-cot?.
a?

cot

Formule I., I1, III., IV. are very important, and must be
remembered.

*a, b, c are numbers, being the number of times the lengthe of the sides contain
some chosen unit of length.
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24. Use of the Preceding Formule.
I. To express all the other functions in terms of the sine.

. cosf=++V1—sin?6.

Since  sin?@ 4 cos?6 =1,
tand ___'sin 7} — sin @ i
cosf 1—sin%6
1 V1 —8in?é
t6 = = .
cotd tané sin @
1 1
secld = =%
cosf V1 —sin%6
cosecd = —-1—
siné

II. To express all the other functions in terms of the tan-
gent.

Since tanf= sin 6
cos@
sin0=tan00080=tano= ta—no_
sech V1 + tan®d
1 1

cosf = =+
sec 6 V1 4 tan?d

cotd = tL secd =+ V1 4 tan*6.

an d
cosecd = _1 — 4 V1+tan’d
sin @ tané

Similarly, any one of the functions of an angle may be
expressed in terms of any other function of that angle.
The sign of the radical will in all cases depend upon the
quadrant in which the angle 6 lies.

25, Graphic Method of finding All the Functions in Terms
of One of them.

To express all the other functions in
terms of the cosecant. o 1

Construct a right triangle ABC, hav-
ing the side BC =1. Then A

Veosect—1 C
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AB_AB

== = AB.
cosec A BC 1
.. AC = + Vcosec?A —1.
. BC_ 1
Now sind = AB  cosecA’

AC Veosec?A —1
A==y X~ =
eos AB cosecA

tanA = E ] 1

=t—"
AC VeosecrA — 1

and similarly the other functions may be expressed in terms
of cosec A.

26. To find the Trigonometric Functions of 45°. — Let

ABC be an isosceles right triangle in which 8
. CA=CB.
Then CAB = CBA =45°.
Let AC=m=CB. £ m
Then %
A_B2=E2+W=m’+m’=2m’.
. AB= m \/§ A m
BC m 1
sindy’ =—Y = —— = —.
AB nv2 V2
AC m 1
cos4b’ =" =" —=_—_
AB nv2 V2
o BC m o
== ="=1, 45°=
tan 45 AC 1. cot45°=1

" secd5°=vV2. cosecd5°=V2.

27. To find the Trigonometric Func-
tions of 60° and 30°. —Let AB be an
equilateral triangle. Draw AD perpen- §
dicular to BC. Then AD bisects the IE
angle BAC and the side BC. Therefore
BAD = 30°, and ABD = 60°. 8 m D c
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Let BA=2m. .. BD=m.
Then AD = Vimi—m? =mV3.

- sin60° =2 _ m V3 =4V3. .. cosec60°=—2_.
AB 2m .\/3
€08 60° = g—fz_% .. sec60°=2.
tan60°=£)-="~'—"-l/§=\/§. cot60°=i-
BD m V3
vmwm—1—mwm—1_%=l
BD m 1
1 =" === .. °= 2.
Also sind AR om=2 cosec30°=2
cosSO°=AQ=M=1}\/§. - 56030° = —2_.
AB 2m V3

ta.n30°= 2]—3=——,n—='=i-:§- o 00t30°='\/§.

EXAMPLES.

1. Given s1n9_§ find the other

trigonometric functmns 5
Let BAC be the angle, and BC be
perpendicular to AC. Represent BC

by 3, AB by 5, and consequently AC [ 1
by V% —9=

AC_4

Then cosf="- AB=E
BC_3
AC ¢
AB_5
AC ¢4
AB_5,
BC 3

tanf =

secl =

cosecd =
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2. Given sinf= g; find tan 6 and cosecd. Ans. §, g
3. Given cosf = % ; find sin fand cot 6. V2, 2—\1/—‘2 .
4. Given secd =4; find cotfand siné. —1:, V13 .
vis 4

. = . 5 1

5. Given tanf=+/3; find sin6 and cos 6. V3, 3
12 ' 5.

6. Given sinf = 13’ find cosé. 1
7. Given cosecd = 5; find secd and tané. 5 —-—1—_
2v6 26

A _ 41, . 40 9

8. ‘Given secf= 9’ find sin @ and coté. 9o
9. Given cotf = —2—; find sin 6 and secé. ﬁ, 3,
G E

10. Given siné =§ ; find cosé, tand, and cotf.

VT 3VT VT

4 7 3

11. Given sind="2; find tand. b .
e Voo

12. Given sinf= ﬁn_n_; find tané. 2mn
m? 4 n? m?:— n?

28. Reduction of Trigonometric Functions to the 1st
Quadrant. — All mathematical tables give the trigonometric
functions of angles between 0° and 90° only, but in practice
we constantly have to deal with angles greater than 90°.
The object of the following six Articles is to show that the
trigonometric functions of any angle, positive or negative,
can be expressed in terms of the trigonometric functions of
an angle less than 90° so that, if a given angle is greater
than 90°, we can find an angle in the 1st quadrant whose
trigonometric function has the same absolute value.
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29. Functions of Complemental Angles. —Let AA', BB'
be two diameters of a circle at right angles, and let OP and

OP' be the positions of the radius for B_ o

any angle AOP =A, and its comple-

ment AOP'=90°— A (Art. 12). P
Draw PM a,nd P'M' at right angles p .

to OA. o w mA
Angle OP'M'=BOP'= AOP = A.
Also OP=OP"

B’ R
Hence the triangles OPM and OP'M' are equal in all
respects.

. PM L PM'_OM
. P'"M'= OM. 5P = OP
*. #in (90° — A) = cos AOP = cos A.
Also, OM' = PM. . %’ - 1(;_11‘){.
.. €05 (90° — A) =sin AOP =sin A.
P'M' _OM

Similarly, tan (90°— A)=tan AOP'= = cot A.

OP' — OP
The other relations are obtained by inverting the above.
30. Functions of Supplemental An- B
gles. — Let OP and OP' be the positions
of the radius for any angle AOP = A, p
and its supplement AOP'=180°— A Al
(Art. 12). e
Since OP = OP/, and POA =P'0A/,
the triangles POM and P'OM’' are
geometrically equal. B’
. sin (180°— A)=sin AOP'= ]i’)g =%1‘r§_sin A,
cos (180°— A) = cos AOP'= QM _ —OM _ _ 54,

[ (03
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tan(180°— A)= tan AOP'=E M _PM _ _ .0 A

oM' OM
Similarly the other relations may be obtained.

31. To prove sin(90°+A)=cos A, co8(90°+A)=—sinA,
and tan (90°+ A)=— cot A. p_B

Let OP and OP' be the positions
of the radius for any angle AOP = A, P
and AOP'=90°+ A.

Since OP — OP', and AOP=P'OB [ W [0 ™"
= OP'M/, the triangles POM and
P'OM' are equal in all respects.
. e
o PM' _OM
. 90°+ A)=sin AOP'= =
sin (90°+ A)=sin oP = op =% A,
cos (90°+ A) = cos AOP'= g_PM" =:OI;_,M =—sinA,
o PM'_ OM
tan (90°+ A) = tan AOP'= o= jﬁ —cot A.
32. To prove 8in(180°+ A) = —sinA, B
cos (180°+ A)= —cos A, and tan (180°
+ A)=tanA. p
Let the angle AOP = A; then the (-
angle AOP’, measured in the positive A o mA
direction, = (180°+ A). P
The triangles POM and P'OM' are
equal. B
. sin (180°4 A) =sin AOP' = % = —T];M = —sinA,

cos (180°4+ A)=cos AOP' = OM' _ —OM _ _ ;5

tan (180°+ A) =tanAOP' = LM _ = PM _ 1. o,
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33. To prove sin(— A)=—sinA, cos (—A)=cosA,
tan (— A)=—tanA. B

Let OP and OP' be the positions of
the radius for any equal angles AOP
A

and AOP' measured from the initial

line AO in opposite directions. Then : o m]A
if the angle AOP be denoted by A, the
numerically equal angle AOP' will be P’
denoted by — A (Art. 4). B’
The triangles POM and P'OM are geometrically equal.
PM__ —PM .
. A = P! = -~ =—sinA
sin (— A)=sin AO OP = OP sinA,
OM OM
—A)= Pr=— =
cos (—A)=cosAO OP' = OP =Cos A,
PM_ —-PM
A)y= = == .
tan(— A)=tanAOP' = OM - oM tan A

34. To prove 8in (270° 4+ A)=1sin (270° — A)=—cos A,

and cos (270° + A)=— cos (270°— A) B
=sinA. ,

Let the angle AOP = A; then the P
angles AOQ and AOR, measured in N O L
the positive direction, = (270°— A) X Ml
and (270°+ A) respectively.

The triangles POM, QON, and ROL
are geometrically equal. ' Q4R

RL=QN =oM. . 2L_QN_—OM

"OR_0Q OP
.+ 8in (270°+ A) =sin (270°— A) = — cos A.

OL_ —ON_PM
OR~ 0Q ~oP

*. €08 (270°+ A) = — cos (270°— A) = sin A.

Also,
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35. Table giving the Values of the Functions of Any Angle
in Terms of the Functions of an Angle less than 80°. — The
foregoing results, and other similar ones, which may be
proved in the same manner, are here collected for reference.

Quaprant II.

sin (180°— A)= sinA.
cos (180°— A)=—cos A.
tan (180°— A)=—tanA.
cot (180°— A)=—cot A.
sec (180°— A) = —secA.

sin (90°+ A)= cosA.
cos (90°+ A)= —sinA.
tan (90°+ A)= —cot A.
cot (90°+ A)=—tanA.
sec (90°+ A )= — cosec A.

cosec (180°— A)=cosec A. cosec (90°+ A)= secA.

QuaprAanT IIIL
sin (180°+ A) = —sin A. sin (270°— A) = —cos A.
cos (180°+ A)=—cosA. cos (270°— A) = —sinA.
tan (180°+ A)= tanA. tan (270°— A)= "cotA.
cot (180°+ A)= cotA.  cot (270°— A)= tanA.
sec (180°4+ A)= —secA. sec (270°— A) = — cosec A.
cosec (180°+ A)=— cosecA. cosec (270°— A)=—sec A.

Quaprant IV.
sin (360°— A)=—sin A, sin (270°4 A) = — cos A.
cos (360°— A)= cos A. cos (270°+ A)= sinA.
tan (360°— A) = — tanA. tan (270°+ A) = —cot A.
cot (360°— A)= — cot A. cot (270°4+ A)= —tan A.
sec (360°— A)= secA. sec (270°+ A)= cosec A.
cosec (360°— A) = — cosec A. cosec (270°+ A)=—secA.

NoOTE. — These relations * may be remembered by noting the following rules:

‘When A is associated with an even multiple of 90°, any function of the angle is
numerically equal to the same function of A.

When A is associated with an odd multiple of 90°, any function of the angle is
numerically equal to the corresponding cofunction of the angle A.

The sign to be prefixed will depend upon the quadrant to which the angle belongs
(Art. 5), regarding A as an acute angle.

* Although these relations have been proved only in case of A, an acute angle,
they are true whatever A may be.
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Thus, cos (270° — A) =—sin A; the angle 270°— A being in the 3d quadrant, and
its cosine negative in consequence.
For an angle in the

First quadrant all the functions are positive.

Second quadrant all are negative except the sine and cosecant.
Third quadrant all are negative except the tangent and cotanyent
Fourth quadrant all are negat pt the cosine aud

36. Periodicity of the Trigonometric Functions. — Let
AOQOP be an angle of any magnitude, as in the figure of
Art. 18; then if OP revolve in the positive or the negative
direction through an angle of 360° it will return to the
position from which it started. Hence it is clear from the
definitions that the trigonometric functions remain un-
changed when the angle is increased or diminished by 360°,
or any multiple of 360°. Thus the functions of the angle
400° are the same both in numerical value and in algebraic
sign as the functions of the angle of 400°— 360°, i.e., of the
angle of 40°. Also the functions of 360°+ A are the same
in numerical value and in sign as those of A.

In general, if n+denote any integer, either positive or
negative, the functions of n X 360°+ A are the same as those
of A.

Thus the functions of 1470°= the functions of 30°.

If 6 denotes any angle in circular measure, the functions
of (2nm + 9) are the same as those of . Thus

sin (207 + 0) =sin6, cos (2nw + )= cos 6, ete.

By this proposition we can reduce an angle of any magni-
tude to an angle less than 360° without changing the values
of the functions. It is therefore unnecessary to consider
the functions of angles greater than 360°; the formule
already established are true for angles of any magnitude
whatever.

EXAMPLES.
Express sin 700° in terms of the functions of an acute
angle.
8in 700°= sin (360°+ 340°) = sin 340°= sin (180°+ 160°)
= 8in 160°= — sin 20°.
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Express the following functions in terms of the functions
of acute angles:

1. sin204° sin510° Ans. —sin24°, sin30°.
2. cos (— 800°), cos359°. cos 80° cos1°.
3. tan500° tan300°. — tan40° — cot30°.

Find the value of the sine, cosine, and tangent of the
following angles:

1 1
4. 150°. dns. L _1v3 1.
ns 2, %'\/_, -\/3
5. — 240°. 53, _%, —3.
1 = 1
. 330°, —_= 3
6. 3 » z V3 i
7. 225°. -1 1
V2 o V2

Find the values of the following functions:
8. sin810° sin(— 240°), cos210°. Ans. 1, V3, —4V3.
1

9. tan (— 120°), cot420° cot510°. V3, Vet 1.
10. sin930°, tan 6420°. -1

2 V3
11. cot1035° cosec 570° -1, -2

37. Angles corresponding to Given Functions. — When an
angle is given, we can find its trigonometric functions, as in
Arts. 26 and 27; and to each value of the angle there is
but one value of each of the functions. Butin the converse
proposition — being given the value of the trigonometric
functions, to find the corresponding angles — we have seen
(Art. 36) that there are many angles of dlfferent magnitude
which have the same functions.

If two such angles are in the same quadrant, they are
represented geometrically by the same position of OP, so
that they differ by some multiple of four right angles.
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If we are given the value of the sine of an angle, it is
important to be able to find all the angles which have that
value for their sine.

38. General Expression for All Angles which have a
Given S8ine a.—Let O be the centre of the unit circle.

Draw the diameters AA', BB/, at right B
angles.
From O draw on OB a line ON, so P P
that its measure is a. ' N
Through N draw PP’ parallel to At [3) M)A

AA'. Join OP, OP/, and draw PM,
P'M!, perpendicular to AA'.

Then since MP = M'P'=ON =a, B
the sine of AOP is equal to the sine of AQP".

Hence the angles AOP and AOP' are supplemental (Art.
30), and if AOP be denoted by ¢, AOP' will == — e

Now it is clear from the figure that the only positive
angles which have the sine equal to a are « and = —«, and
the angles formed by adding any multiple of four right
angles to « and = —«. Hence, if § be the general value of
the required angle, we have

0=2nr+a, or =207 +7r—0e, . . . . (1)
where n is zero or any positive integer.

Also the only negative angles which have the sine equal
to a are — (7 + ), and — (27 —«), and the angles formed
by adding to these any multiple of four right angles taken
negatively ; that is, we have

0=2nr—(r+a), 0=2n7r—27r—0a), . . (2)

where n is zero or any negative integer.
Now the angles in (1) and (2) may be arranged thus:

2nr 4, Cn+1)r—a, Cn—1)r—a, CZn—2)7+0
all of which, and no others, are included in the formula
O=nr+(—D", . . . . . . . . . . 3
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where 7 is zero, or any positive or negative integer. There-
fore (3) is the general expression for all angles which have
a given sine.

NoTE. — The same formula determines all the angles which have the same
cosecant as a.

39. An Expression for All Angles with a Given Cosine a. —
Let O be the centre of the unit circle. B
Draw AA', BB/, at right angles. P

From O draw OM, so that its meas-
ure is a.

Through M draw PP’ parallel to A ok—Tw A
BB'. Join OP, OP".

Then since OM =a, the cosine of
AOQP is equal to the cosine of AQP". g

Hence, if AOP = o, AQOP'=—a.

Now it is clear that the only angles which have the cosine
equal to @ are @ and — &, and the angles which differ from
either by a multiple of four right angles.

Hence if 6 be the general value of all angles whose cosine
is a, we have

9=2’n1r;l:a,

where n i8 zero, or any positive or negative integer.

NoTE. — The same formula determines all the angles which bave the same secant
or the same versed sine as a.

40. An Expression for All Angles with a Given Tangent a.
—Lét O be the centre of the unit T
circle. Draw AT, touching the circle
at A, and take AT so that its measure
is a.

Join OT, cutting the circle at PA’
and P'.

Then it is clear from the figure that
the only angles which have the tan- P
gent equal to a are @ and = + «, and the angles which differ
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from either by a multiple of four right angles. Hence if 6
be the general value of the required angle, we have
0=2nr+a and 2or+7w4a. . . . . . (1)

Also, the only negative angles which have the tangent
equal to @ are —(r —a), and — (27 —«), and the angles
which differ from either by a multiple of four right angles
taken negatively ; that is, we have

0=2nr —(r —a), and 2nr —(2r—a), . . (2)
where n is zero or any negative integer.

Now the angles in (1) and (2) may be arranged thus:

2nr+a, Cn+ 1w+ Cu—1)r+e, 2n—2)r+a,
all of which, and no others, are included in the formula

O=nr+e, . . . . . . . . . ... 3

where n is zero, or any positive or negative integer. There-
fore (3) is the general expression for all angles which have
a given tangent.

NoTE. — The same formula determines all the angles which have the same cofan-
gent as a.

EXAMPLES.

1. Find six angles between —4 right angles and + 8
right angles which satisfy the equation sin A = sin18°.
We have from (3) of Art. 38,

0=n1r+(—1)“i’56, or A=n x 180°4+(—1)"18°

Put for n the values — 2, —1, 0, 1, 2, 3, successively,
and we get A =— 360° 4 18°, — 180° — 18°, 18°, 180° — 18°,
360° 4 18°, 540°—18°;
that is, —342°, —198°, 18°, 162°, 378° 522°

NoTE. — The student should draw a figure in the above example, and in each
example of this kind which he works.
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2. Find the four smallest angles whlch satisfy the

equations (1) smA_—, (2) sinA=— \/ -, (3) smA_%j

4) sinA = — L.
(4) sin 2 Ans. (1) 30°, 150°, — 210°, — 330°;

(2) 45°, 135°, — 225°, — 315°;
(3) 60°, 120° — 240°, — 300°;
(4) —30°, —150°, 210°, 330°.

1=

41. Trigonometric Identities. — A trigonometric identity
is an expression which states in the form of an equation a
relation which is true for all values of the angle involved.
Thus, the relations of Arts. 13 and 23, and all others that
may be deduced from them by the aid of the ordinary
formule of Algebra, are universally true, and are therefore
called identities; but such relations as sinf =%, cosd =1,
are not identities.

EXAMPLES.

1. Prove that secf —tan@.sinfd = cosé.
Here  secd—tanfsing= - >89 (Art. 24)
cos@ cosd
_1—gin%0
cos @

cos?d
= Art. 24
cosf (Art. 24)

= cosf.
2. Prove that cotd —secf cosecd (1 — 2 sin?f) = tané.

cotd — secf cosec 6 (1 — 2 sin?6)

cos @ 1° .
=" = ..~ (1—-2sin? .2
sind cosé sm0( sin*0) (Axt. 24)

=cos’0-— 14 2sin?é
siné cos @
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__cos?f — (sin*6 4 cos*@) +2 sin®é
- 8iné cos @

(Art. 24)

sin’f _ sinf _

T sinfcosd cosf tang.

NoTe.— It will be observed that in solving these examples we first express the
other functions in terms of the sine and cosine, and in most cases the beginner will
find this the simplest course, It is generally advisable to begin with the most com-
plicated side and work towards the other,

Prove the following identities :
3. cosftanf =siné.
cos§ = sin g cot 4.
(tan @ + cot @) sinf cos § = 1.
(tan @ — cot 8) sin @ cos 6 = sin?§ — cos?6.
8in?6 -+ cosec®d = sin*4.
sectd — tan*l = sec?f + tan?é.
(sind — cos 0)?=1 — 2 sin@ cosé.

10. 1 —tan*d = 2 sec?d — secté.

© P NS o

1+4cosd_ 2
11. T cosd— (cosecd + cot §)2

12. (sin@ + cos )%+ (sind — cos §)?=2.
13. sin*é — cos'd = sin?d — cos?6.
14. sin*@ 4+ vers?6 =2 (1 — cos9).

15. cot?@ — cos?6 = cot?d cos?6.

EXAMPLES.
In a right triangle ABC (see figure of Art. 15) given:
1. a=7p’+4pq, c=¢*+ pg; calculate cot A.

~/a? 2
Ans. YL—P,
p
2
2. b=Im+n, c=1In-+ m; calculate cosec A. S C—

nt —mt
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3.sinA = g, ¢=20.5; calculate a. Ans. 12.3.

4. Given cot4A =tanA; find A.

5.
6.
7
8.
9
10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

[{4

{3

({4

«

«

3

sinA =cos2A; find A.
cotA =tan6A; find A,
tanA =cot8A; find A.
sin2A =cos3A; find A.

sinA =-2-; find cos A and tan A. iB’ _2__
3 3° V5

cosA = %;v find sin A and tan A %’ ‘—:

cosec A = é; find cos A and tan A. ﬁ, 3.
3 4" V1

sin A =—1—~; find cos A and tanA. \/2, —1——
V3 3 V2

cosA =b; find tanA and cosecA.

V1-¥ 1
b VI—#
sinA =.6; find cos A and cot A. %, %
tanA —%; find sinA. 4
5 Vil
8 . 15
cotA = 5 find sec A and sin A. -18—7, T
A 12 5,
sin A =13 find cos A. 3
cosA = .28; find sinA. .96.
4 . 4
tan A =3 find sin A. 5

sinA = :1,,; find cos A. 3V2.
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21. Given tanA = ;; find sin A and secA. Ans. f;-,

ol ot

22. “ tand =%, find sind and cosé.
b a b

VI E VIR
; find sin@ and coté.
va—1 1
N |
24. If sinf=q, and tanf= ">, prove that

Q—a) @ +0)=1

23. % cosf =

S |-

Express the following functions in terms of the functions
of acute angles less than 45°:

25. sin168° sin210°. Ans. sin12°, —sin30°,
26. tan125° tan310°. —cot35°% — cot40°.
27. sec244° cosec281°. — cosec26°, —sec11®.
28. sec930°, cosec (— 600°). —sec30° sec30°.
29. cot460° sec299°. — tan10° cosec29°.
30. tan 1400°, cot (—1400°). — tan40° cot40°.

Find the values of the following functions:

31. sin120°, sin135°, sin240°. dns. Y3, L _V3,
27 /2 2
1 _ 2
32. cos135° tan 300°, cosec300°. —_ =3, -
) ) _\/2, '\/ y ‘\/3
33. sec315° cot330° tan780°. V2, —+V3, V3.
. rono i AaEe : 1 1
34. sin480°, sin495° sin870°. %, o

35. tan1020°, sec1395°, sin1485°. —V3, V3, ;;_E
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36. sin (— 240°), cot (— 675°), cosec (— 690°).
Ans. %”, 1, 2
37. cos (— 300°), cot (—315°), cosec (— 1740°).
, 1 2

1, =.
27 V3

38. tan®660°, cos®1020°. — 33, %-

Find the value of the sine, cosine, and tangent of the
following angles :

39. — 300°. Ans. '§, 3 V3.
o 1 1
40. —135°. ~ 5 T 1
41, 7500, ! \_;5, %
12. —840°. —§, -3 V3
43. 1020°, —'%3, > —V3.
44. (2'n+1)1r—-§- ‘/75, —%, —V3.
5 @n—1r+T -3 —?, 53-

Prove, drawing a separate figure in each case, that
46. sin340°= sin (— 160°).

47. sin (— 40°) = sin220°.

48. c0s320°= — cos (140°).

49. cos (— 380°) = — cos 560°.

50. c0s195°= — cos (— 15°).

61. cos 380°= — cos 560°.
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52.
53.
54.
55.
56.
57.
58.
59.
60.

PLANE TRIGONOMETRY.

cos (— 225°) = — cos (— 45°).
c0s 1005°= — cos 1185°,

o1
Draw an angle whose sine is =

“ ww “ eosecant is 2.
“ e “  tangent is 2.
Can an angle be drawn whose tangent is 427 ?
({313 43 4 “« (13 cosine is § ?
4
[{3 {3 [13 [14 13 [43 Secant is 7 ?
Find four angles between zero and + 8 right angles

which satisfy the equations

(1) sinA =5in20° (2) sinA =—

61.

\}Q, (3) sinA =—T.

Ans. (1) 20°, 160°, 380°, 520°;
@) S5# Tw 137 15«

T 44
(3) 8= 137 2% 2
. 77 7 7
State the sign of the sine, cosine, and tangent of each

of the following angles:

(1) 275°; (2) —91°; (3) —193°; (4) — 350°;

(5) —1000°; (6) 2mr+?%.

Ans. (1) — +, =3 (2) —y = +3 (3) +, — —3
@+ +,+; G+ +, +;5 (6) +, — —.

Prove the following identities :

62.

63.

64.

60.

(sin® 4+ cos?0)’=1.

(sin?@ — cos?0)?=1 — 4 cos?d + 4 cos*#.
(sin@ + cos #)°=1 + 2sin 6 cos 6.

(secd — tan6) (secd + tand) = 1.



66.
67.
68.
69.
70.
71.
72.

74.
75.
76.
7.
78.
79.
80.
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(cosec 6 — cot ) (cosec 6 + cot§) = 1.

8in®@ 4 cos®@ = (sin 8 + cos ) (1 — sin @ cos §).

sin®@ 4 cos®d = sin*@ 4 cos*d — sin?@ cos?4.

sin%@ tan®@ + cos?d cot?d = tan®d + cot?’d — 1.

sin 0 tan%0 4+ cosecd sec?d= 2 tan 0 secd — cosec §4 sin (.
cos®d — sin®@ = (cos  — sin6) (1 + sind cos ).

sin®6 + cos®d =1 — 3sin%6 cos?4.

tane + tan 8 = tan« tan B (cote 4 cot B).

cot e 4 tan B = cot w tan B (tan « 4+ cot B).

1 —sinae=(1+sine) (seca — tane).

1+ cose= (1 — cose) (cosec — cotar).

(1 +sinee 4 cosa)?=2(1 + sine) (1 + cos ).

(1 —sine — cos)®(1 + sin e + cose)?= 4 sin*e cos’e.
2vers e — vers’e = sin’a.

verse (1 + cosa) = sin’a.
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CHAPTER III.
TRIGONOMETRIO FUNOTIONS OF TWO ANGLES.

42. Fundamental Formul®. — We now proceed to express
the trigonometric functions of the sum and difference of
two angles in terms of the trigonometric functions of the
angles themselves.

The fundamental formulee first to be established are the
following :

sin (¢ + y)=sinzcosy +coszsiny . . . . (1)
cos (x +y)=cosxzcosy —sinzsiny . . . . (2)
sin (¢ —y)=sinxcosy —coszsiny . . . . (3)
cos (x —y)=cosxcosy +sinzsiny . . . . (4)

Norx.— Here x and y are angles; so that (z + y) and (x —y) are also angles.
Hence, sin (x + y) Is the sine of an angle, and is not the same as sin = + siny.
8in (x + y) is a single fraetion.

8in z + sin y is the sum of two fractions.

43. To prove that
sin (¢ + y) = sinz cos y 4 cos x siny,
and €08 (% + ¥) = cos x cos y — sinz siny.

Let the angle AOB =z, and the
angle BOC = y; then the angle

In OC, the bounding line of the
angle (x+y), take any point P,
and draw PD, PE, perpendicular
to OA and OB, respectively ; draw °
EH, EK, perpendicular to PD and OA.
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Then a.ngle EPH = 90°— HEP = HEO = AOQE = 2.

sin(oty)DP _EK +PH_EK PH
S @+)=5p=""or —op ' op

_EK OE* PH PE
“OE OP ' PE OP

=sinz cosy + cosx siny.

OE OP PE 0P
=cosx cosy — sinx siny.

NortE. —These two formuls have been obtained by a construction in which z + y
is an acute angle; but the proof is perfectly general, and applies to angles of any
magnitude whatever, by paying due regard to the algebraic signe. For example,

Let AOB =z, as before, and BOC=y;
then AOC, measured in the positive direc-
tion, is the angle z + y.

In OC, take any point P, and draw PD,
PE, perpendicular to OA and OB produced ;
draw EH and EK perpendicular to PD and
OA.

Then, angle EOK = 180° —x;
EPH = EOK =180°—x;
and COE =y — 180°.

DP EK—-PH EK , PH

i =——— =222 LR _IH

sin (x +y) opP oP OP+ oP
-—EK OE_ PH PE

OE OP PE OP
=—sin (180°— x) cos (y — 180°) + cos (180° — z) sin (y — 180°)
=sinzcosy + coszsiny. (Art. 35)

OD_OK+EH_OK , EH
08 =—— = =
C+9=-55="op ~op‘op

_OK OE EH PE

" OE OP PE OP

* The introduced line OE is the only line in the figur2 which is at once a side of
two right triangles (OEK and OEP) into which EK and OP enter. A similar
remark applies to PE.
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= cos (180° — x) cos (y — 180°) + sin (180° — z) sin (y — 180°)
=cosx cosy — sin x sin y. (Art. 35)

The student should notice that the words of the two proofs are very nearly the
same.

44. To prove that
sin (# — y) = sin cosy — cos « siny,
and cos (& — y) = cos & cos ¥ + sinx sin y.

Let the angle AOB be denoted B
by @, and COB by y; then the angle
AOC=z—y. EH ¢

In OC take any point P*, and P/
draw PD, PE, perpendicular to <
OA and OB respectively; draw b
EH, EK, perpendicular to PD and O ' K D A
OA respectively.

Then the angle EPH =90° — HEP = BEH = AOB =x.

sin (¢ —y)=2F _EK—HP_EK_HP

op OP ~OP OP

= e ——— —

=sinz cosy — cosz siny.

_OD_OK+EH_OK A EH
s (@-9=Gp="" 0P ~—oP ' OP
_OK OE  EH PE
“OE OP  PE OP
=cosx cosy + sinx siny.
NoTE 1.— The eign in the expression of the eine is the same as it is in the angle
expanded ; in the cosine it is the opposit

-

* P is taken in the line bounding the angle under consideration; i.e., AOC.
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Norz 2. —In this proof the angle x —y is acute; but the proof, like the one given

in Art. 43, applies to angles of any itude whatever. For example,
Let AOB, measured in the positive N

direction, =z, and BOC=y. 'Then N

AOC=z—y. H—E
In OC take any point P, and draw . -

PD, PE, perpendicular to OA and OB P N7

produced: draw EH, EK, perpendicu. 7\,7%0 \\

lar to DP and AO produced. — i { A
Then, D K\‘ L

angle EPH = EOK = AOB = 360°—z, N

and POE=180°—y. yo—

PD_EK - HP
sin(r—y)="2 LK HP
-9 op op

OE OP PE OP
=sin(800°—:c)cos(180°—-y)—eo|(360°—z)llh(l&0°—y)
= (—sinz)(- cosy) —cosxsiny
=sinx cosy —cosz siny.

"~ TOE 0P PE OP
= — 08 (360° — ) cos (180° — y) — sin (360° — z) sin (180° —g)
= (—cosz)(—cosy) — (—sinz) siny

=cosxcosy + sin rsiny.

NotE 3. — The four fundamental formuls just proved are very important, and
must be committed to memory. It will be convenient to refer to them as the ¢ z,y"°
formule. From any one of them, all the others can be deduced in the following
manner :

Thus, from cos (¢ — y) to deduce sin (x +y). We have
cos (z —y)=coswcosy+sinzsiny. . . . (1)
Substitute 90°— « for # in (1), and it becomes’
€08{90°— (= + y) } = cos (90°— ) cos y + sin (90°— z) siny.
. sin (2 4+ y)=sinz cosy + cosz siny. (Art. 29)

The student should make the substitutions indicated
below, and satisfy himself that the corresponding results
follow :
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From
sin (x4 y) to deduce cos (z + y) substitute (90°4-x) for .
« « « cos(z—y) . “.  (90°—2) forw.
cos(z+y) “ “ sin(rx+y) « (90°+ x) for .

7 « “  sin (z—y) “ (90°— =) for «.

[{3 {4 (43 cos (x — y) € —_ y for y.
ete. ete. ete.
EXAMPLES,

1. To find the value of sin 15°.
sin 15°= sin (45°— 30°)

= sin45° cos 30° — cos45° sin 30°

1. v3 11
vz 2 V22
_V3-1
2V2
2. Show that sin75°= Y3+ 1.
| 2v2
3. Show that cos75°= ﬁ——_—l .
2V2
4. Show that cos 15°= \—/—3—+_—1
22
5. If sinx= g, and cosy= 15:—)’, find sin (z+y) and
€0s (# —y)- Ans. 88, ana 9C.
65’ 65
6. If sinz =12, and cosy = ‘1), find sin (¢ + y) and
cos (z —y). “

Ans. 1, and —\g .
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45. Formule for the Transformation of Sums into Prod-
ucts. — From the four fundamental formula of Arts. 43
and 44 we have, by addition and subtraction, the following:

sin (¢ 4+ y) +sin (¢ — y) = 2sinwcosy . . . (1)
sin(x+y)—sin(z—y)=2coszsiny . . . (2)
cos (z+y)+cos (x—y)=2cosxcosy . . . (3)
cos (x —y) —cos (¢ + y)=2sinwsiny . . . (4) ’
These formulae are useful in proving identities by trans-
forming products into terms of first degree. They enable
us, when read from right to left, to replace the product of a
sine or a cosine into a sine or a cosine by half the sum or
half the difference of two such ratios.
Let 4+ y=A, and z—y=B.
. 2=4%4(A+B), and y=4 (A —B).

Substituting these values in the above formule, and
putting, for the sake of uniformity of notation, , y instead
of A, B, we get

sing +siny=2sing (x+y)cosi(x—y). . (5)
sinz —siny=2cos¢ (z+y)sing(z—y). . (6)
cosz +cosy=2cos} (x+y)cost(z—y). . (7)
cosy —cosx=2sin} (x4 y)sing (z—y). . (8)

The formule are of great importance in mathematical
investigations (especially in computations by logarithms);
they enable us to express the sum or the difference of two
sines or two cosines in the form of a product. The student
is recommended to become familiar with them, and to com

mit the following enunciations to memory :
Of any two angles, the

Sum of the sines = 2sin 4 sum - cos # diff.
Diff. « « « =2cos4sum-singdiff.
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Sum of the cosines = 2cos 4 sum - cos } diff.
Diff. « « “ = 2sin}sum-sin}diff.

EXAMPLES.

1. sind2 cos32 =} (sin8x 4 sin2z).

For, sinbzcos3x =4} {sin (5 + 3x)+ sin (52— 3x)}
=3 (sin8x +sin2x).

2. Prove sin@sin36 =3 (cos26 — cos46).

3 “ 2sinfcos¢  =sin (6 + @)+ sin (8 — ¢).

4 “ 2sin26cos3¢ =sin(20+3¢)+ sin(26—3¢).
5. “  8in 60° 4 sin 30°=2 sin 45° cos 15°.

6 “  8in40°—sin10°= 2 cos 25° sin 15°.

7 “ §in100+4sin668 = 2sin 840 cos24.

8 “ sin8a—sinda =2cos6uasin2a.

9 “ sin3x 4 sine =2sin2xcosax.

10. “ sin3xz—sinz =2cos2zsinz.

11. ¢ sindx 4 sin2x = 2sin3x cosa.
46. Useful Formule. — The following formule, which

are of frequent use, may be deduced by taking the quotient
of each pair of the formule (5) to (8) of Art. 45 as follows:

sinz + siny __ 2sin (= +y) cos $(z —y)
" sinz—siny 2cos}(z+ y)sind(z—y)
= tan4(x + y) cotd(x —y)
= tand(z+y) (Art. 24)
tan{(x —y)
The following may be proved by the student in a similar
manner :

2. sina:-l-siny=_t ’
COSZ 4 cos Yy an$ (@ +)
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3. smw+smy=c0t%(w_y)’

COSY — COSZ
4. w=tan T —
COSZ + cos Yy -y,
5. Sinw_sm?]:cot%(w-{-y),

cosy — cosx

6. SO8THCOSY_ ot t4(x —y).
oy ool = ot (@ +3) coth(z—)

47. The Tangent of the Sum and Difference of Two Angles.
— Expressions for the value of tan(x + y), tan (z — y), ete.,
may be established geometrically. It is simpler, however,
to deduce them from the formule already established, as
follows :

Dividing the first of the ‘z, y’ formule by the second,
we have, by Art. 23,

tan (z 4 y) = sin (z + ) _sinzcosy + cosx si.ny.
cos (x+y) coswcosy—sinzsiny

Dividing both terms of the fraction by cosz cosy,

sinz cosy , coszsiny
COSZCOSY COSZ COSY
coszcosy  sinzsiny
COSTCOSY COSZ COSZT

tan (¢ + y) =

— tanx 4 tany A 1
1*——tana:tany( rt.23) . . . )

In the same manner may be derived

tanz — tany

tan(z —Y)=——""T"""29  _ . . . . (2
n(@—y) 14 tanz tany )
Also, cot(w+y)=% NG )
and cot (x_y)=w e 4)

coty —cotx
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EXERCISES.
Prove the following:

o tanz 41

1. t 45°) =T,

an (@ +45%) 1—tanx

tanx —1
2. tan —45°) = .

(= ) 14 tanz

3. sin(rx+y) _ tanx+4tany

sin(¢—y)  tanz—tany

4 cos(zx—y) _tanztany+1
) cos (z + ¥) 1 —tanztany

o

sin (% + y) sin (% — y) = sin’z — sin’y

= cos?y — cos?x.

o

cos (z + y) cos (z — y) = cos®x — sin’y
= cos’y — sin’z.

7. tanz + tany = sin (),
COS X COSY

8. cotz + coty _sin(y+2)
sinzsiny

9 sin2x cos2z

< = Secx.
sSin& cosx

10. If tanz =4 and tany =}, prove that tan (z +y)=$,
and tan (z —y) =%
11. Prove that tan15°=2 — V3.

12. If tanz=}§, and tany =, prove that tan(z + y)=1.
What is (2 4+ y) in this case?

48. Formule for the Sum of Three or More Angles. — Let
%, ¥, z be any three angles; we have by Art. 43,
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sin (¢ + y + 2) = sin (¢ + y) cosz + cos (z + y) sinz
=sinx cosy cosz + cosz siny cosz
+ coswcosy sinz —sinx sinysinz . . (1)

In like manner, )

cos (¢ + y + z) = cosx cosy cosz — sinx siny cos 2
—sinzcosy sinz — cosz siny sinz . . (2)

Dividing (1) by (2), and reducing by dividing both terms
of the fraction by cosz cosy cosz, we get

tanz + tany 4 tanz — tanx tany tanz 3)

t =
an(z+y+2) 1 —tanz tany —tany tanz — tanz tanx

EXAMPLES.
1. Prove that sinz 4 siny + sinz —sin (z +y +2)
=4sin}(x + y) sin}(y + 2) sin§(z + x).
By (6) of Art. 44 we have
sinz —sin (¢ +y + 2)=—2cos3(2x+ y + 2) sind(y + 2),
and siny + sinz = 2sin4(y + z) cos § (y —2).
-, sinz + siny + 8inz —sin (z 4+ y + 2)
=2sin}(y+2) cos}(y—2) —2cos 3 (2x+y+2) sind(y+2)
=2s8in4(y +2) §cos$(y —2) —cos$(2x+y +2)}
=2sin}(y +2) 2sin}(z + y) sin}(z + 2)
=4s8in{(z + y) sin§(y + 2) sind(z + x).
Prove the following:
2. cosz 4 cosy + cosz + cos (z + y + 2)
=4cos$(y +2z) cosi(z+2z)cost(x+y).
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3. sin(#+y —2)=sinzcosy cosz + cos x siny cosz
' — cosx cosy simz 4 sin siny sinz.
4. sinz 4 siny —sinz — sin (x+y—2)
=4sin{(x —2)sing(y —2)sing(z +y).
5. sin(y —2) +sin (z —x) 4 sin(x — y) ,
+ 4sin4(y—2z)sin4(z — ) sin} (x — y)=0.
49. Functions of Double Angles. — To express the trigo-

nometric functions of the angle 2z in terms of those of the
angle z.

Put y==in (1) of Art. 42, and it becomes
sin2z = sinx cosx 4 cosz sinz,
or sin2x¢=2sinzgcosz . . . . . . . (1)
Put y=2in (2) of Art. 42, and it becomes
cos2x=cos’z—sin*z . . . . . . . (2)
=1—-2sin’z. . . . . . . . 3

or =2co8’2—1. . . . . . . . 4

Put y=2in (1) and (3) of Art. 47, and they become

2tanx
tm2m=m « e e e e o . (5)
2
£2 =cot rz—1
‘co v 2cotz ©)

Transposing 1 in (4), and dividing it into (1), we have

sin2z
m_tanx..........(’f)
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Note. — These seven formuls are very important. The student must notice that
z is any angle, and therefore these formulsee will be true whatever we put for z.

Thus, if we write ‘f for z, we get

sinz=2snTesZ . ... . ... ..... (8)
2 2
co-a:=cos’-;'3—-in'§ ............. 9
or =1—2dn’f=2cou’§—l ......... (10)
and so on.
BEXAMPLES,

Prove the following:
1. 2cosec2x = secz cosecz.

sec?x
o _Cosec

=sec2x.
cosecx — 2 seeL@
3. 12’%:% =sin2z.
nx
1 — tan’z .
4. l—-i-_tan?x =cos2z.

5. tanz4-cotz = 2cosec2zx.

6. cotx—tanx=2cot2a.

g, _Sinz %
14 cosz 2
g _sinz =&
1—cosz 2

9. Given sin45°= %; find tan 224°. Ans. V2 —1.

24 24

10. Given tanz="; find tan2z, and sin2z. T o5

W

50. To Express the Functions of 3z in Terms of the Func-
tions of x.
Put y=2zin (1) of Art. 42, and it becomes
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sin3z =sin (22 + )
=sin2x cosx + cos2xsinz
= 2sinw cos’x + (1 — 2sin’x) sinz  (Art. 49)
= 2sinz (1 — sin’z) + sinz — 2sin®z
= 3sinz — 4sin’x.

cos 3z = cos (22 + x)
=cos2x cosz —sin2z sinz

- =(2cos’xz — 1) cosz — 2sin*z cosz (Art. 49)

=4cos’z —3cosz.

tan3z=tan2z 4 x

_ tan2x 4 tanx
- 1—tan2zxtanz

2tana
_1—tan’z

T 2tan’z
1 — tan’x

+ tanz

_ Stanz —tan®z

1 — 3tan’x
EXAMPLES.
Prove the following:
1. 81082 _ 5005224 1.
sSinx

2 sin3z — sinx

= tanz.
cos3x + cosx

sin3x +4 cos 3z

- =2sin2z—1.
cosz —sinz
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1 1

. = cot 2.
tan3xz —tanz cotx —cot3z
1—cos3zx

5. —— 27— (1 4+ 2cosx)>
1—cosz (1 +2cosz)

61. Functions of Half an Angle. — To express the func-

tions of g in terms of the functions of z.

Since cosa:=1—2sin’;,

or =200$’g-—1 . . . [Art. 49, (10)]
.-.sin*”_z”:l"zﬂ N € )

and cos’;=1+;osx P 9]

Or _ sing=¢\/?%§’ B ¢))

and cos%:i\fl—%” N ()

By division, tan%=x i;zg::;c:il;:(fz . (5

By formulee (3), (4), and (5) the functions of half an
angle may be found when the cosine of the whole angle is
given.

52 If the Cosine of an Angle be given, the Sine and the
Cosine of its Half are each Two-Valued.

By Art. 51, each value of cosz (nothing else being known

about the angle x) gives two values each for sing and cos g,

one positive and one negative. But if the value of z be
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given, we know the quadrant in which g lies, and hence
we know which sign is to be taken.

Thus, if = hes between 0° and 360°, a: lies between 0° and
180°, and therefore smé is positive; but if x lies between

360° and 720° % 3 lies between 180° and 360° and hence

sing is negative. Also, if = lie between 0° and 180°, cosg

is positive; but if x lie between 180° and 360°, cosg is
negative.

The case may be investigated geometrically thus :

Let OM = the given cosine (radius being unity, Art. 16),
=cosz. Through M draw PQ per-
pendicular to OA; and draw OP, OQ.
Then all angles whose cosines are
equal to cosx are terminated either
by OP or OQ, and the halves of these
angles are terminated by the dotted
lines Op, Ogq, Or, or Os. The sines
of angles ending at Op and Ogq are
the same, and equal numerically to
those of angles ending at Or and Os; but in the former case
they are positive, and in the latter, negative; hence we

obtain two, and only two, values of sinZ from a given value
of cosz. 2

Also, she cosines of angles ending at Op and Os are the
same, and have the positive sign. They are equal numeri-
cally to the cosines of the angles ending at Og and Or, but
the latter are negative; hence we obtain two, and only two,

values of cosg from a given value of cosz.

Also, the tangent of half the angle whose cosine is given
is two-valued. This follows immediately from (5) of Art.
51.
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53. If the Sine of an Angle be given, the Sine and the
Cosine of its Half are each Four-Valued.

We have 2sing cos%: sinz . . . (Art.49)

and sin’§+coszg=1 .« . . (Art. 23)

w8

By addition, (sing + cos -)2= 1 4 sinz.

8

2
By subtraction, (sing — cos —> =1—sinz.

o

- sinf 4 cosfe=+ Vigsing . . (1)
2 2
and sin%—-cos%’:;t V1—sinz . . (2)
2sing=;t V14sinz + VI—sinz . . (3)
and 2cosg=;t VI+sinzFVIi—sinz . . (4)

Thus, if we are given the value of sinz (nothing else
being known about the angle z), it follows from (3) and

(4) that sing and cosg have each four values equal, two

by two, in absolute value, but of contrary signs.

The case may be investigated geometrically thus:

Let ON =the given sine (radius being unity) = sina.
Through N draw PQ parallel to OA; B
and draw OP, OQ. Then all angles
whose sines are equal to sinz are
terminated either by OP or OQ, and
the halves of these angles are termi-
nated by the dotted lines Op, Og, Or,
or Os. The sines of angles ending
at Op, Og, Or, and Os are all different
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in value; and so are their cosines. Hence we obtain four
values for sin%’, and four also for cosg, in terms of z.
‘When the angle « is given, there is no ambiguity in the
calculations; for 9—; is then known, and therefore the signs
and relative magnitudes of sing and cosg are known. Then

equations (1) and (2), which should always be used, im-
mediately determine the signs to be taken in equations (3)
and (4). ,

Thus, when g lies between — 45° and + 45°, cosg > sin g,
and is positive.

Therefore (1) is positive, and (2) is negative - and hence
(3) and (4) become

28in§= V14 sinz— V1 —sinz,

2cosg= V1 +sinz + V1 —sing.

‘When g lies between 45° and 135°, sing>cosg, and is

positive.
Therefore (1) and (2) are both positive; and hence (3)
and (4) become

28ing= V1 +sinz + V1 —sing,

2008%: V1 +sinz — V1 —sinz.
And so on.

54. If the Tangent of an Angle be given, the Tangent
of its Half is Two-Valued.

2tan

Wi

We have tanf = . « . (Art. 49)

— 7
1 —tan??
2
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Put tang= z; thus
(1—2%)tan6 =2z,

2 . _

z’+ta——noa:_1.

ta.ng=a:= —1+ V1 4 tan?é
2 tané@

Thus, given tané, we find two unequal values for taug,
one positive and one negative. 2

This result may be proved geometrically, an exercise which
we leave for the student.

§5. If the Sine of an Angle be given, the Sine of One-
Third of the Angle is Three-Valued.

We have sin3z =3sinz —4sin*z . . (Art. 50)

Put = g, and we get

sinf =3 sing - 4sin3§,

a cubic equation, which therefore has three roots.

EXAMPLES,
1. Determine the limits between which A must lie to
satisfy the equation

2sinA =—+1+s8in2A — V1 —sin2A.

By (1) and (2) of Art. 53, 2sinA can have this value
only when

sinA +cos A =— V1 +sin2A,
and sinA —cos A =— V1 —sin2A;

t.e., when sin A > cos A and negative.
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Therefore A lies between 225° and 315° or between the
angles formed by adding or subtracting any multiple of
four right angles to each of these; i.e., A lies between

Tr
=’

where n is zero or any positive or negative integer.

2nw +§Tw and 2nnx +

2. Determine the limits between which A must lie to
satisfy the equation

2cosA =V1+4sin2A — V1 —sin2A.
By (1) and (2) of Art. 53, 2cos A can have this value

only when
cosA +8in A = V1 4sin24,
and cosA —sinA =— /1 —sin2A;

i.e., when sin A > cos A and positive.
Therefore A lies between

3
_4‘7
where n is any positive or negative integer.

2n-u-+';—r and 2nr +

3. State the signs of (sinf+ cos@) and (sind — cos#d)
when 6 has the following values: (1) 22°; (2) 191°;
(3) 290°; (4) 345°; () —22°; (6) —275°; (T) —470°;
(8) 1000°.

'Ans‘ (1) +) g (2) 0 +; (3) - (4) +’ -
®) +,—; 6) +,+; () = —;5 (&) — —-

4. Prove that the formule which give the values of
sing and of cosg in terms of sinxz are unaltered when z

has the values
(1) 92°, 268° 900°% 4nwr + §x, or (4n+2) 7 —§n;

(2) 88°, — 88° 770° — 770° or 4nr + %-
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5. Find the limits between which A must lie when
2sinA = V1 +sin2A — V1 —sin2A.

56. Find the Values of the Functions of 224°. —In (3),
(4), and (5) of Art. 51, put x=45°. Then

sin 224°= \/1 - ‘;"345" N2—v2

2
c08224°= \/M _V2+v2
2 2 ’
1 — cos 45°
tan223°= L —C08%0 _ (/5 1
an22p= == V2

Since 224° is an acute angle, its functions are all positive.

The above results are also the cosine, sine, and cotangent
respectively of 674° since the latter is the complement of
224° (Art. 15).

5§7. Find the Sine and Cosine of 18°.
Let 2=18° then 2z=36°, and 3z =>54°.

o224 3x=90°
~oosin2rx=cosd3z . . . . . (Art 15)
.. 2sinzcosz=4cos*x —3cosz . . (Art. 50)
or 2sinz = 4costz — 3
=1 —4sin’.

Solving the quadratic, and taking the upper sign, since
8in 18° must be positive, we get

sin18°= l/_%‘—_!.

Also, cos18°= i sin’i8= Ylii;i\ii

Hence we have also the sine and cosine of 72° (Art. 15).
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58. Find the Sine and Cosine of 36°.

c0836°=1—2sin’18° . . . [(3) of Art. 49]
—1.6-2v56_+v5+1
8 4

- sin36°= vI—oosae— Y0 =2V 42\/—

The above results are also the sine and cosine, respec-
tively, of 54° (Art. 15).
Otherwise thus : Let z = 36° then 22=72° and 32=108".

* 224 32 =180°
.. sin22=s8in3z. . . . . . (Art. 29)
2sinz cosz = 3sinxz —4sin’z,

2cosx =3 — 4sin’x

=4cos’z —1.
Solving, cosx = %5"'1

But 36° is an acute angle, and therefore its cosine is
positive.
.. 00836° = @.
) T4

59. If A+B4C=180° or if A, B, C are the Angles
of a Triangle, prove the Following Identities:

(1) sinA 4 sinB+sinC= 4¢os%cosgcosg-
(2) cosA+cosB+cosC=1 +4sin%singsing-

(3) tanA + tanB + tanC = tan A tan B tanC.
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We have A 4+ B 4 C =180°

- sin(A+B)=sinC, and sinA T B _ cos g (Arts.15and 30)

2
L]
Now sinA+sinB=2siné_i2’—BcosA; B (Art. 15)
=2c0sCcosA =B | | (Art. 15)
2 2
and sinC=23ingcosg. .. . (Art. 49)
=2cosf&;Bcosg . . (Art. 15)
.. sinA 4sinB -i-sinC=2(=,os(—jcos—l-\—_§+ZcosgcosA"'B
2 2 2 2
=2005(—2)<cosA;B +cosA;B)
—2c0sC A osB
= 2cos.2 (2 cos 2 cos 2). (Art. 45)
=4cos%cos]§3cosg B €]

Again, cosA +cosB= 2cosA ;: B cosA—’zl]E . (Art. 45)

=2singcosA_2'B;
and cosc=1_2sinﬂg ... . (Art.49)
.. coSA + cosB +cosC=1+2$ing(cosA;B-—sing>
=1 +2sing(cosA;B—cosA;B)

=1+4sin‘%singsing )]
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Again, tan(A+B)=—tanC . . . . . (Art. 30)

__ tanA 4 tanB
_l—tanAta,nB'.' - (Art. 4T)

... tanA +tanB = —tanC (1 — tan A tanB).
.. tanA +tanB 4 tanC =tanA tanBtanC . . . . (3)

NoTE.— The student will observe that (1), (2), and (3) follow directly from
Examples 1 and 2, and formula (3), respectively, of Art.48, by putting

A +B+C=180°.
EXAMPLES.
Prove the following statements if A 4+ B 4 C =180°:
1. cos(A+B—C)=—cos2C.
A.B ¢C

2. sinA 4 sinB —sinC = 4sin§sin-2-cos§-

3. sin2A+sin2B-I|-sin2C=4sinAsinB sinC.

4. sin2A +4sin2B —sin2C =4sinC cos A cosB.

5. tan7TA —tan4 A —tan3 A =tan7 A tan4 A tan3 A.
6

. : v aanA . B C

3 smA—-smB+smC_4sm2cos2 s1n2
A oot 4 ootC — oot A ot BootC.
7. cot§+cot§ +cot§ = cot2 cot:2 cot2

8. tanA — cotBl= sec A cosecB cosC.

60. Inverse Trigonometric Functions. — The equation
sinf@ =2 means that 6 is the angle whose sine is «; this
may be written § = sin~'x, where sin~'z is an abbreviation
for the angle (or arc) whose sine is 2.

So the symbols cos~!w, tan~'z, and sec™'y, are read “the
angle (or arc) whose cosine is #,” “the angle (or arc) whose
tangent is @,” and “the angle (or arc) whose secant is y.”
These angles are spoken of as being the inverse sine of w, the
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inverse cosine of =, the inverse tangent of x, and the inverse
secant of y, respectively. Such expressions are called inverse
trigonometric functions.

NoTEe. — The student must be careful to notice that —1 is not an exponent, sinlz
is not (sin z)~1, which = 1.
sinz

Notice also that sin'l‘/—:= cos'li-7 is not an identity, but is true only for the par-

ticular angle 60°,

This notation is only analogous to the use of exponents in multiplication, where
we have ala=a’=1. Thus, cos™! (cosz) =z, and sin(sinlz) = x; that is, cos-!
is inverse to cos, and applied to it annuls it; and so for other functions.

The French method of writing inverse functions is
arc sinx, arc cosw, arc tanw, and so on.

EXAMPLES. .

1. Show that 30° is one value of sin~'3.
We know that sin30°= 4. ... 30°is an angle whose sine
is 4; or 30°=sin"'4.

2. Prove that tan='4 4 tan=1}=45°
tan='4 is one of the angles whose tangent is 4, and tan—'}
is one of the angles whose tangent is }.

Let e=tan"'4, and B=tan-1};

then tane=4 and tanB=1}.

Now tan(a+ﬁ)=1iaﬂ‘w—m ... (Art.47)

' =_3+% _4
1-4x%}

But  tan 45°=1, et B=45°;
that is, tam~'4 4 tan—'} = 45°

Therefore 45° is one value of tan—'4 + tan-'}.
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3. Prove that tan-'z + tan~'y = tan—' T+ L.

1—wy
.. Let tan'z=A. .. tanA=ux.
— %8
tan~ly=B. .. tanB=y.
__ tanA 4 tanB
Now tan (A +B) =1 nA tanB
=2ty
1—ay

o~ A+B=tan"’—w+y-
1—wy

z+y,

. tan—! tan—'y = tan~!
SR e

Any relations which have been established among the
trigonometric functions may be expressed by means of the
inverse notation. Thus, we know that

4. cosz = V1 —sin’z.
This may be written r=cos~'V1—sin’z . . (1)
Put gsinz =0; then z=sin"'6.

Thus (1) becomes sin~'f=cos~!vV1— &
5. By Art. 49, cos20=2cos’6 —1,
which may be written 26 = cos~!(2cos%6 —1).
Put cosf==x .. 2cos~'z=cos~1(22%—1).
6. By Art. 49, 8in260 = 2sinf cos¥,
which may be written 26 =sin~!(2sin @ cos h).

Put sinf=z. .. 2sin-'z=sin"!(22V1—%).
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7. Prove sin-'z = cos~' V1 — 22 =tan—' — 2.
vi-o
8 « tan-1z = sin~'—%___ — cos~! 1
Vita? vit+#

\ 9. « 2tan~lz =tan™7 2 ?

10. « sin(2sin7'z)=2zV1—2%

1.« ta.n"‘g + tan"% -

12, « cos“% + 2sin"% =120°.
13. -« cot~13 + cosec~! V5 = i
4. « 3sin~'z =sin~'(3z — 42°)

6L Table of Useful Formul®. — The following is a list
of important formule proved in this chapter, and summed
quor the convenience of the student:

1. sin(z+y) =sinzcosy+coszsiny . . (Art. 43)
2. cos (x+y) =-coszcosy—sinxsiny.
3. sin(x—y) =sinzcosy—coszsiny . . (Art. 44)
\4. cos (x—y) =-coszcosy+ sinzsiny.
2sinzcosy =sin(x+y)+sin(z—y) . (Art. 45)
2cosz siny =sin (z+y)—sin (z —y).
2coszxcosy = cos (z+ y)+ cos (¢ —y).

2sinzsiny = cos (z —y) — cos (z + ¥).

®© ® N o =

sin2 + siny = 2sin (= 4 y) cos 4 (z — y).
10. sinz —siny = 2cos}(x + y) sin}(x — ¥).
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11.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
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cosz + cosy = 2cos 4 (x + y) cos}(z — y).

cosy — cosx = 2sin(x + y) sin§(x — y).

sinw+siny=tan1}(a:+y) .. . . . (Art 46)
sinz —siny  tan4(z —y)
tan (z + y) =%. © . .. (Art.47)
_ tanz —tany
tan (& —y) "1+ tanztany
_cotwzeoty—1
cot(@+y) = cotx + coty
_ _cotzcoty +1
cot(z—y) = cotz — coty
tanz F 1
45°)=""""= . . . . . . (Art.47
tan(z+ o)‘ fanz 1l ( )

sin (z+4y) sin ( — y) = sin’*x — sin®y = cos?y — cos?z.
cos (24 y) cos (¢ — y) = cos’x — sin’y = cos*y — sin’z.

tanz + tany = S0P £ ¥),

COSZ COS Y

cotx + coty = sin (y + @),

sinz siny

sin2z = 2sinzeose = 23RZ_ (Ay 49)
1 4 tan?z

cos 22 = cos?x — sin*xr =1 — 2sin®x = 2cosiy — 1

_1—tan’z
1 4 tan?x

1—cos2x _2sh?z

= = tan?a.
1+cos2x 2cosx .
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26. tan2g— _2tanT

1 — tan®’z

27 cot2z = OFT—1,
2cotx

28. sin3x =3sinx —4sin’z . . . . . . (Art 50)
29. cos3x = 4 cos’z — 3cosz.

3
30. tan3z— 3tanx — tan’z,

1 — 3tan’x
3. sin'2 =1_—§_°S_“ e ... . (A oBD)
14 cosz
32. cos?T =T 2057,
cos2 3
33. tan“a:+tan“y=tan"m . . . . (Art. 60
1—2ay )

EXAMPLES.

1. If sine= %, and sinB = :%,’ find a value for sin (a¢+ 8),

and sin (¢ — B). Ans, YO +4V2 V5—4v2
) 9 7 9

2. Ifcosa= %, and cos B8 = :—(1), find a value for sin(« + f3),

and cos (a + B). e, 156133,

Ans. 205 205

3. If cosa= 'Z, and cosB = %, find a value for sin(a + B),

and sin (e — B). Ans 2V7T+3v2l 2vV7T—-3v21
' 20 ’ 20

4. If sina= %, and sing = ?_-), find a value for sin(e + 8),

and cos (« + B). N Ans. 1, ;_é
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5. If sine =.6,and sin8 = -15,—3, find a value for sin(a—g),
and cos (¢ 4 B8). ) 4 16 33
ns. o o5
6. If sina=L_, and sin8 = —1_—_, show that one value
V5 vio
of a+ B is 45°.
7. Prove cosf+ cos30 = 2cos280 cosé.
8 « 2cosecosB =cos(x— fB)+ cos (a+ B).

9. « 28in360cos50 =sin89 —sin24.
10. « 2cos-gocosg = cos § + cos 2.

11. « sin40sinfd = 4(cos36 — cos50).
12.  « 2c0s810°sin50°= sin 60° + sin40°.

13. Simplify 2cos26 cosf — 2sin4 6 siné.
Ans. 2co0s836cos24.

14. Simplify sin5—29 cosg —sin 9?0 cos %0- —cos40sin26.

Prove the following statements :

15. cos3a —cosTa=2sin5esin2e.
16. sin60°4- 8in20°= 2sin 40° cos 20°.
17. 8in8360 +sin56 = 2sin46 cosé.
18. 8in70 —sin560 = 2cos60 siné.

19. cos56 + cos96 = 2cos76 cos26.

8in20 4 sind 36
, ——— T = ~ =tan—-.
20 cosf + cos26 an 2

21, cos (60°+ A) + cos (60°— A) = cos A.
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29.

30.
31.

32.

33.

35.

36.

37.

38.

39.
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. cos (45°+ A) + cos (45°— A) = v/2Zcos A.

sin (45°+ A) —sin (45°— A) = VZsinA.

. €0820 4 cos46 =2cos36 cosé.

cos46 —cos66 =2sin50siné.

. €080 4 c0s360 + cos50 + cos 70 =4 cos 6 cos 28 cos 40.

. cota+tang =998 (2—R)

sine cos 8

cote —tanfB = c_os_(ﬂ)

sina cos B
sin (A — 45°) = sin A —_cosA
V2
V2sin (A + 45°) =sin A + cos A.
cos (A + 45°) + sin (A — 45°) = 0.

tan (6 — ¢)+tang
1—tan (0—¢)tan¢_ta'no°

tan (6 4+ ¢) +tang
1+ tan (0 + ¢) tané = tang.

cos (0 + ¢) — sin (6 — ¢) = 2sin (Z—O)cos(i— )

sinnf cos 6 + cos nf sin § = sin (n + 1)6.

" cot0+1
eo (0 ) 1—cotd

7r “ —
tan(o —1> +cot(0+z)_0.

L LAY
cot<0—z +tan(0+z)_

tan (n + 1) ¢ — tanng
14 tan (n+1) ¢ tanng

= tan ¢.
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40.

41.

42.

43.

PLANE TRIGONOMETRY.

1
If tanz =1, and tany = %, prove that

tan (z +7) =2+ V3.

1
If tane = m’:_ T and tanB = ST prove that
tan (¢ 4+ 8)=1.
If tan @ = m, and tan 8 = n, prove that
1 —mn
cos (e + B)=
V(1 +m?) (1 +n?)

If tanf = (a + 1), and tan ¢ = (@ — 1), prove that
2cot (6 — ¢) =a’.

Prove the following statements :

44.

45.

46.

47.

48.

49.

cos (¢ — Y + 2) = cos & oS Y €oS2 4 cosx Siny sinz

— sinz cos y sinz 4 sinx siny cosz.
sin (¢ —y — 2)=sinxz + siny + sinz

+ 4sin§(x — y) sin$(x—=2) sin§(y+2).
sin(z+y—2)+sin(z+2—y)+sin(y+2—2x)

=sin (2 + y 4+ 2) + 4sinz siny sinz.
sin2x 4 sin2y + sin2z — sin2 (x + y 4 2)

=4sin (z + y) sin (y + 2) sin (z + ).
cos2z 4 cos2y 4 cos2z + cos 2 (x + y + 2)

= 4cos (z + y) cos (¥ + 2) cos (z 4 ).
cos(x+y—2)+cos(y+2—2a)+cos(z+x—y)

+cos (x + y + 2) = 4cosx cos y cosz.



50.

51.

52.

&

55.

56.

57.

58.

59.

60.

61.

62.

63.
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sin’z 4 sin’y + sin’z + sin? (z 4 y + 2)
= 2§1 — cos (z + y) cos (y+2) cos (2+x) §.

cos?z 4 cos?y + cos?z 4 cos? (z+y—2)
= 2§14 c0s (z + y) cos (z—2) cos (y—z) {.
o8z sin(y —z) + cosy sin(z—=2) + cos 2 sin(z—y)=0.
sinzsin(y — 2) + siny sin(z—a) + sinz sin(x —y)=0.

¢os (2 + y) cos (¢ — y) + sin (¥ + 2) sin (y—2)

—cos (£ + z) cos (z —2z) =0.

2 — sec?
—— = T —cos24.
oo’ cos 26
cos?d (1 — tan?@) = cos 2.

29 _1
t26=C°0t0—1
Cob 20 = otd

eot?d + 1

20—
sec20= - He 1

. 8 o0 .
(smE + cos 5) =1 4 siné.

.0 2 1 —sing
(s1n§——cosg>_ — siné.

14secd _ 20
sec —20082

cos260 _1—tané

1+sin26 1+tand

0

14 tan2

cosf + 2.
1—sing ;. 0

2
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64.

65.

66.

67.

68.

69.

70.

T1.

72.
73.

74.

75.

76.

77.

78.

PLANE TRIGONOMETRY.

14 sinz+ cosz cot®

14 sinx — cosa 2

cos®z +sin’z 2 —sin2«
cosx + sinx 2
cos®z —sin®z 24 sin2:v.
cosx — sinz 2
cos*f —sin*d =cos26.

sin36‘__cos30 =2
sin cos 0

0_0_83—0 sin36 = 2cot 24.
sin @ cosf

sin4 6
=2co0s26.

sn2f 6

sin97 cos Sn

—12__"12 =2V3.

s T T
Slnﬁ Ccos i-2-

tan (45°+ ) — tan (45°— x) = 2tan22.
tan (45°— x) 4 cot (45°— x) = 2sec 2.
tan’(45°+- ) —1 _ sin2z
tan?(45°4 z) + 1 )

cos (x 4 45°)

=sec2x —tan2a.
cos (z — 45°) sec2x — tan2x.

sinz 4 sin2zx

tanzx = .
14 cosxz+cos2x

sin22 —sinx .
1 —cos®s+cos2z

tanx =

x
ﬁ: 2c082x —1.
cosx
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82.

83.

84.
85.
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87.

88.

89.

90.

91.

92.

98.
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3sinz — sin3x
cos3x + 3cosz

= tan®zx.

cot’x — 3eotx

cot3z = 3cot?r —1

1—cos3z

=142 3,
1—cosz (1 +Zcosz)

sinz 4 cosx

—“=tan2x 4+ sec2x.
cosx —sinx

cos2x +cosl12x , cosTx —cos3x . 2sindx =0
cos6x + cos8x coOST — COS3 sin2x

sin 2z sin 2y = sin®*(x + y) — sin®(z — y).
tan 50°4- cot 50°= 2sec10°.
sin3 % = 4sin& sin (60°+ «) sin (60°— ).

cot’g'-— tan’§'= 2.

4tan@ (1 — tan’)
tan4 6 =
andf= 1 —6tan?6 4 tan*@

2cos— V2 2.
(3sin @ — 45sin®6)?+ (4 cos®6 — 3cosh)> =1

sin26 cos § —tan?.
(14+cos26) (14cosb) 2

If tano— 7 and tan ¢ = , prove tan (20 + ¢)_-
Prove that tan-g and cotg are the roots of the

22— 22 cosecd +1=0.
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94. If tanf= 3, prove that

\/a-{-b a—b_ 2cosf
-b a+b  /cos26

95. Find the values of (1) sin9° (2) cos9° (3) sin81°, .
(4) cos189°, (5) tan2024° (6) tan974°.

4ns. (1) 1 (V34 V5 — V5 VB),
(2) ¥ (V34 vB+ V5 V5),
(3) sin81°=cos 9°,
(4) c0s189°= — cos9°,
() V2 -1,
(6) —(V3+V2)(VE+1).
96. If A = 200° prove that

(1) 2sin~‘% =+ VitsinA +vI—sjmA.

A —(1+\/1+ta,n’A)-
tan=- = .
(2) tan 2 tan A

97. If A lies between 270° and 360° prove that

1) 23in% =+ VI—smA— vIFsmA
2) tan‘% =—cot A + cosec A.

98. If A lies between 450° and 630°, prove that

1) 2sin%=— V1+sinA — V1 —sinA.

1)) 2cos%= — VitsmA + vi—simA
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Prove the following statements, A, B, C being the angles
of a triangle.

99.

100.

101.

102.

103.

104.

105.

106.

sinA —sinB _ C A—-B
SinA $snB - Rt
sin3B —sin3C _ tan3A
cos3C —cos3B~ 2

sm%cosé+sml;cos]23+smgcosg
=2cos%cosgcosg-

2 A sB_ 2C _ 90082 cosBsinC.

08 +cos cosz_ cos2cos2sm2

sin A cos A —sinB cos B 4 sinC cosC
=2cos A sinB cosC.

cos2A +cos2B +cos2C=—1—4cosA cosBecosC.
sin? A — sin?B + sin?C = 2sin A cos B sinC.

B, C C A A B _
I:anﬁtang-htané1;a,n§-i-l:an§tml5 =1.

Prove the following statements when we take for sin-),
cos~', ete., their least positive value.

107.

108.

109.

110.

sin"% = coa"‘%3 = cot~'vV/3.

2tan-(cos 20) = tan-! (‘EE"’_—@E)

2
1 1 =
4tan—'= —tan~'—="Z.
AT 53T 1
a4 g 8 13T
sin +sm 7 + sin 85_2
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111. tan'v5(2 — V3) — cot=' V5 (2 4 V3) = cot~! V5.

112. sec~'V3 = 2cot! V2.

113. 2cot—'zx = cosec™! ——— + xz

114. ta.n“\/g'}'\/2 "\/3 3,
V3-+v2

. 1 n
115. sin™!'— 4 cot~'3=".
V5 4

_,63

+2t !
an

= =sin
5

3
116. -19,
6. cos F

117. 1f 6= sin"g, and ¢ = cos'lg, then 8 + ¢ = 90°.

1—2o°

118. Prove that cbs (2tan~'z) = T

119, «  « tan"% + cosec! V10 = 1—'

a5

3= siu"3—§-

120. “ “« 2tan"§ — cosec 65

121. « ¢« 2tan

122. «  « gin~'(cosz)+ cos7! (siny)+ x4 y=m

1 + tan-! % = nmr.
x @

123. “ “ tan"’%_!_x + 1:a.n"1 —

-1 1 T
124. « « tan-1% tan-! — T,
an o + tan T nw + 1

125. « “ sin~lz —sinly

=cos~! (zy + VI — o — ¢y’ + 2%*).
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CHAPTER IV.

LOGARITHMS AND LOGARITHMIO TABLES. — TRIGO-
NOMETRIO TABLES.

62. Nature and Use of Logarithms. — The numerical cal-
-culations which occur in Trigonometry are very much
abbreviated by the aid of logarithms; and thus it is neces-
sary to explain the nature and use of logarithms, and the
manner of calculating them.

The logarithm of a number to a given base is the exponent
of the power to which the base must be raised to give the
number.

Thus, if a*=m, = is called the “logarithm of m to the
base a,” and is usually written x = log,m, the base being
put as a suffix.*

The relation between the base, logarithm, and number is
expressed by the equation,

(base) 't = number.

Thus, if the base of a system of logarithms is 2, then 3
is the logarithm of the number 8, because 2% = 8.

If the base be 5, then 3 is the logarithm of 125, because
5% =125.

63. Properties of Logarithms. —The use of logarithms
depends on the following properties which are true for all
logarithms, whatever may be the base.

*From the definition it follows that (1) log, a*= 2, and conversely (2) alogam™ =m,
Taking the logarithms of both sides of the equation a* = m, we have log, a* = x=log m.
Conversely, taking the exponentials of both sides of z = log, m to base a, we have
a*=a'%fa™=m. a*=m and z=log, m are thus seen to be equivalent, and to
express the same relation between a number, m, and its logarithm, z, to base a.
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(1) The logarithm of 1 is zero.

For a’ =1, whatever a may be; therefore log1 =0.

(2) The logarithm of the base of any system ts unity.

For a'= a, whatever a may be; therefore log,a = 1.

(3) The logarithm of zero in any system whose base is

greater than 1 is minus infinity.

For a™= %: 1 = 0; therefore log 0 = — oo.
a®  w

(4) The logarithm of a product is equal to the sum of the
logarithms of its factors. .

For let z=log,m, and y = log,n.
. m=a% and n=a
ooomn = a™t,

.. log,mn =z + y =log, m 4 log,n.
Similarly, log, mnp = log,m + log,n + log,p,
and so on for any number of factors.
Thus, log60 =log (3 x 4 x 5),
= log3 + log4 + log 5.

(5) The logarithm of a quotient is equal to the logarithm
of the dividend minus the logarithm of the divisor.

For let z =log, m, and y = log,n.
Soomo=a?, and n=da".
. "1. — XY
n .

log,,% = — y =log,m — log,n.

Thus, log 137 =log17 —logh.
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(6) The logarithm of any power of a number is equal to
the logarithm of the number multiplied by the exponent of the
power.

For let x=1log,m. .. m=a~
SomP = ar,
.. log,m? = pz = plog,m.

(7) The logarithm of any root of a number is equal to the
logarithm of the number divided by the index of the root.

For let z=log,m. .. m=a~
1 z
“om=a
Lz 1
A | N="==1 .
og (m7) =" =" log.m.

It follows from these propositions that by means of
logarithms, the operations of multiplication and division are
changed into those of addition and subtraction; and the
operations of involution and evolution are changed into those
of multiplication and division.

1. Suppose, for instance, it is required to find the product
of 246 and 357; we add the logarithms of the factors, and
the sum is the logarithm of the product: thus,

log,, 246 = 2.39093
log,,357 = 2.55267
4.94360

which is the logarithm of 87822, the product required.

2. If we are required to divide 371.49 by 52.376, we pro-

ceed thus:
log;,,371.49 = 2.56995

log,52.376 = 1.71913
0.85082
which is the logarithm of 7.092752, the quotient required.
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3. If we have to find the fourth power of 13, we proceed

thus:
log,y13 =1.11394

4
4.45576

which is the logarithm of 28561, the number required.
4. If we are to find the fifth root of 16807, we proceed
thus:
5)4.22549 = log,,16807,
0.845098
which is the logarithm of 7, the root required.

5. Given log,2 = 0.30103; find log,y128, log,,512.
Ans. 210721, 2.70927.

6. Given log,3 = 0.47712; find log, 81, log, 2187.
Ans. 1.90849, 3.33985.

7. Given log,3; find log, V3. 0.28627.
8. Find the logarithms to the base a of
as, ajﬁo', va, vV, ai,

9. Find the logarithms to the base 2 of 8, 64, §, .125,

.015625, ~/64. Ans. 3, 6, —1, —3, —6, 2.
10. Find the logarithms to base 4 of 8, /16, V.5
+/015625. Ans. 3, 3, —4 —1.

Express the following logarithms in terms of loga, logd,
and logec:

11. log vV (a*b%¢)®. Ans. 6loga+ 9logb + 3loge.
12. logVaitd. $loga + $logb + Zloge.

R
13. 1Og_ﬂg_

. 3loga.
(atb? c“)%
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64. Common System of Logarithms. — There are two
systems of logarithms in use, viz.,, the Nuaperian* system
and the common system.

The Naperian system is used for purely theoretic investi-
gations; its base is e = 2.7182818.

The common systemt of logarithins is the system that
is used in all practical calculations; its base is 10.

By a system of logarithms to the base 10, is meant a suc-
cession of values of z which satisfy the equation

m=10’,

for all positive values of m, integral or fractional. Thus, if
we suppose m to assume in succession every value from 0
to oo, the corresponding values of = will form a system of
logarithms, to the base 10.

Such a system is formed by means of the series of loga-
rithms of the natural numbers from 1 to 100000, which con-
stitute the logarithms registered in our ordinary tables.

Now 10°=1, oo logl =05
10! = 10, o logld =15
10% =100, - logl100 =2;
10% = 1000, .~ log1000 = 3.
and so on.
Also, 10-'=4 =.1, oologl =-—1;
10-?=;3; =.01, .. log.01 =-2;

10-3= g5 =001, .- log.001 =—3.
and so on.
Hence, in the common system, the logarithm of any
number between

1 and 10 is some number between 0 and 1; e, 0+
a decimal;

* 8o called from its inventor, Baron Napier, a Scotch mathematician.
t First introduced in 1615 by Brigys, a contemporary of Napier.
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10 and 100 is some number between 1 and 2; e, 14
a decimal ; ’

100 and 1000 is some number between 2 and 3; t.e., 2 +
a decimal ;

1 and .1 is some number between 0 and —1; e, —1 4
a decimal ;

1 and .01 is some number between —1 and —2; t.e.,
— 2 + a decimal ;

.01 and .001 is some number between —2 and —3; i.e,
— 3+ a decimal;

and so on.

It thus appears that

(1) The (common) logarithm of any number greater than
1 is positive.

(2) The logarithm of any positive number less than 1 is
negative.

(3) In general, the common logarithm of a number con-
sists of two parts, an integral part and a decimal part.

The integral part of a logarithm is called the characteristic
of the logarithm, and may be either positive or negative.

The decimal part of a logarithm is called the mantissa
of the logarithm, and is always kept positive.

NoTe. — It is convenient to keep the decimal part of the logarithms always posi-

tive, in order that numbers consisting of the same digits in the same order may
correspond to the same mantissa.

It is evident from the above examples that the character-
istic of a logarithm can always be obtained by the following
rule:

RuLE. — The characteristic of the logarithm of a number
greater than unity is one less than the number of digits in
the whole number.

The characteristic of the logarithm of a number less than
unity is negative, and is one more than the number of ciphers
immediately after the decimal point.



RULES FOR THE CHARACTERISTIC. 93

Thus, the characteristics of the logarithms of 1234, 123.4,
1.234, .1234, .00001234, 12340, are respectively, 3, 2, 0, —1,
-5, 4.

NoTE. — When the characteristic is negative, the minus sign is written over it to
indicate that the characteristic alone is negative, the mantissa being always positive,

‘Write down the characteristics of the common logarithms
of the following numbers :

1. 17601, 361.1, 4.01, 723000, 29. Ans. 4,2, 0, 5, 1.

2. .04, .0000612, .7963, .001201, .1.
Ans. —2, —5, —1, —3, —1.

8. How many digits are there in the integral part of the
numbers whose common logarithms are respectively 3.461,
0.30203, 5.47123, 2.67101 ?

4. Given log2 = 0.30103; find the number of digits in the
integral part of 8, 2%, 16%, 2!, Ans. 10, 4, 25, 31.

65. Comparison of Two Systems of Logarithms. —Given
the logarithm of a number to base a; to find the logarithm
of the same number to base b.

Let m be any number whose logarithm to base b is

required.
Let z =log,m; then b*=m.
. log,(¥*) =1log,m; or xlog,b=log,m.
1
w=log,b X log,m,
: log, m
or mm=1 @

Hence, to transform the logarithm of a number from

base a to base b, we multiply it by fog b
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is called the modulus of

. o 1
Th tant multipl
is constant multiplier Toa b

the system of which the base i3 b with reference to the system
of which the base is a.

If, then, a list of logarithms to some base e can be made,
we can deduce from it a list of common logarithms by mul-
tiplying each logarithm in the given list by the modulus

1
log,10°
Putting a for m in (1), we have

of the common system

log,a 1
1 = a — N e
0g,a fog. b log.¥/ by (2) of Art. 63

. logya x log,b=1.

EXAMPLES.

1. Show how to transform logarithms with base 5 to
logarithms with base 125.

Let m be any number, and let x be its logarithm to base
125.

Then m=125*=(5*)*=5% .. 3z =logym.

- @ =logm = }logsm.

Thus, the logarithm of any number to base 5, divided by
3 (i.e., by log;125), is the logarithm of the same number to
the base 125.

Otherwise by the rule given in (1). Thus,

= logsm _ logsm
log,125~ 3

logim

Show how to transform

2. Logarithms with base 2 to logarithms with base 8.
Ans. Divide each logarithm by 3.
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3. Logarithms with base 9 to logarithms with base 3.
Ans. Multiply each logarithm by 2.

4. Find log,8, log,1, log,2, log;1, log, 128.
Ans. 3, 0, §, 0, L.

66. Tables of Logarithms. —The common logarithms of
all integers from 1 to 100000 have been found and registered
in tables, which are therefore called tabular logarithms. In
most tables they are given to six places of decimals, though
they may be calculated to various degrees of approximation,
such as flve, six, seven, or a higher number of decimal places.
Tables of logarithms to seven places of decimals are in
common use for astronomical and mathematical calculations.
The common system to base 10 is the one in practical use,
and it has two great advantages:

(1) From the rule (Art. 64) the characteristics can be
written down at once, so that only the mantisse have to be
given in the tables.

(2) The mantisse are the same for the logarithms of all
numbers which have the same significant digits, in the same
order, so that it is sufficient to tabulate the mantissa of the
logarithms of integers.

For, since altering the position of the decimal point with-
out changing the sequence of figures merely multiplies or
divides the number by an integral power of 10, it follows
that its logarithm will be increased or diminished by an
integer; i.e., that the mantissa of the logarithm remains
unaltered.

In General. —If N be any number, and p and ¢ any
integers, it follows that N x 10? and N = 10¢ are numbers
whose significant digits are the same as those of N.

Then log (N x 10?) =1logN + plog1l0=1logN +p. (1)

Also, log (N +107)=1logN —qlogl0=10ogN —gq. (2)
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In (1) the logarithm of N is increased by an integer, and
in (2) it is diminished by an integer.

That is, the same mantissa serves for the logarithms of
all numbers, whether greater or less. than wunity, which have
the same significant digits, and differ only in the position
of the decimal point.

This will perhaps be better understood if we take a
particular case.

From a table of logarithms we find the mantissa of the
logarithm of 787 to be 895975 ; therefore, prefixing the char-
acteristic with its appropriate sign according to the rule,
we have

log787 = 2.895975.
787

Now log7.87 = logm =1og787 —2

= 0.895975.

Also, log.0787 =log <%)> =1log 787 — 4

= 2.895975.
Also, log 78700 = log (787 x 100) =1log 787 + 2
= 4.895975.

NotEe 1. — We do not write log,,787; for so long as we are treating of logarithms
to the particular base 10, we may omit the suffix.

NotE 2. — Sometimes in working with negative logarithms, an arithmetic artifice
will be neceesary to make the mantissa positive. For example, a result such as
—2.60897, in which the whole expression is negative, may be transformed by sub.
tracting 1 from the characteristic, and adding 1 to the mantissa. Thus,

—2.69897 = — 8 + (1 - .69897) = 3.30103.

NoTE 3. — When the characteristic of a logarithm is negative, it is often, espe-
cially in Astronomy and Geodesy, for convenience, made positive by the addition
of 10, which can lead to no error, if we are careful to subtract 10,

Thus, instead of the logarithm 3,603582, we may write 7.603582 — 10.

In calculations with negative characteristics we follow
the rules of Algebra.
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EXAMPLES,
1. Add together 2.2143
1.3142
5.9068

T7.4353 Ans.
2. From 3.24569
take 5.62493
1.62076

the 1 carried from the last subtraction in decimal places
changes — 5 into — 4, and then — 4 subtracted from —3
gives 1 as a result.

3. Multiply 2.1528 by 7.

2.1528
7

13.0696

the 1 carried from the last multiplication of the decimal
places being added to — 14, and thus-giving — 13 as a result.

NotTE 4. — When a logarithm with negative characteristic has to be divided by a
number which is not an exact divisor of the characteristic, we proceed as follows in
order to keep the characteristic integral. Increase the characteristic numerically by

a number which will make it exactly divisible, and prefix an equal positive number
to the mantissa.

4. Divide 3.7268 by 5.
Increase the negative characteristic so that it may be
exactly divisible by 5; thus

3.7268 B+ 2.7268
5 5

Given that log2=.30103, log 3=.47712, and log 7 =.84510;
find the values of

5. log6, log42, log16.  Ans. 77815, 1.62325, 1.20412.

= 1.5453.
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6. log49, log36, log63. Ans. 1.69020, 1.55630, 1.79934.
7. 10g200, log 600, log70.  2.30103, 2.77815, 1.84510.
8. log 60, log.03, log 1.05, 10g.0000432.

NortEe. — The logarithm of 5 and its powers can always be obtained from log 2.

Ans. 1.77815, 2.47712, .02119, 5.63548.

9. Given log2=.30103; find log 128, log 125, and log 2500.
Ans. 210721, 2.09691, 3.39794.

Given the logarithms of 2, 3, and 7, as above; find the
logarithms of the following:

10. 20736, 432, 98, 686, 1.728, .336.
Ans. 4.31672, 2.63548, 1.99122, 2.83632, .23754, 1.52634.

1. V2, (03)}, (.0021)%, (L0982 (.00042)% (.0336)%.
Ans. 1.65052, 1.61928, 1.46444, 1.97368, 17.11625, 1.26317.

67. Use of Tables of Logarithms* of Numbers. —In our
explanations of the use of tables of common logarithms we
shall use tables of sevemn places of decimals.t These tables
are arranged so as to give the mantisse of the logarithms
of the natural members from 1 to 100000 ; i.e., of numbers
containing from one to five digits.

A table of logarithms of numbers correct to seven deci-
mal places is exact for all the practical purposes of Astron-
omy and Geodesy. For an actual measurement of any kind
must be made with the greatest care, with the most accurate
instruments, by the most skilful observers, if it is to attain
to anything like the accuracy represented by seven signifi-
cant figures.

* The methods by which these tables are formed will be given in Chap. VIII.

t The student should here provide himself with logarithmic and trigonometric
tables of seven decimal places. The most convenient seven-figure tables used in this
country are Stanley’s, Vega’s, Bruhne’, etc. In the appendix to the Elementary

Trigonometry are given five-figured tables, which are sufficiently near for most prac-
tical applications.
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If the measure of any length is known accurately to seven figures,
it is practically exact; i.e., it is known to within the limits of obser-
vation.

If the measure of any angle is known to within the tenth part of a
second, the greatest accuracy possible, at present, in the measurement
of angles is reached. The tenth part of a second is about the two-
millionth part of a radian. This degree of accuracy is attainable only
with the largest and best instruments, and under the most favorable
conditions.

On page 101 is a specimen page of Logarithmic Tables.
It consists of the mantisse of the logarithms, correct to
seven places of decimals, of all numbers between 62500 and
63009. The figures of the number are those in the left
column headed N, followed by one in larger type at the top
of the page. The first three figures of the mantissae 795,
796, 797 ..., and the remaining four are in the same hori-
zontal line with the first four figures of the number, and in
the vertical column under the last.

Logarithms are in general incommensurable numbers.
Their values can therefore only be given approzimately.
Throughout all approximate calculations it is usual to take
for the last figure which we retain, that figure which gives
the nearest approach to the true value. When only a cer-
tain number of decimal places is required, the general rule
is this: Strike out the rest of the figures, and increase the last
Jfigure retained by 1 if the first figure struck off is 5 or greater
than 5.

68. To find the Logarithm of a Given Number. — When
the given number has not more than five digits, we have
merely to take the mantissa immediately from the table,
and prefix the characteristic by the rule (Art. 64).

Thus, suppose we require the logarithm of 62541. The
table gives .7961648 as the mantissa, and the characteristic
is 4, by the rule; therefore

log 62541 — 4.7961648.
Similarly, log.006281 = 3.7980288 . . (Art. 64)



100 PLANE TRIGONOMETRY.

Suppose, however, that the given number has more than
" five digits. For example:

Suppose we require to find log 62761.6.

We find from the table

log 62761 = 4.7976899
log 62762 = 4.7976968

and diff. for 1 = 0.0000069

Thus for an increase of 1 in the number there is an in-
crease of .0000069 in the logarithm.

Hence, assuming that the increase of the logarithm is
proportional to the increase of the number, then an increase
in the number of .6 will correspond to an increase in the
logarithm of .6 x .0000069 = .0000041, to the nearest sev-
enth decimal place.

Hence, log 62761 = 4.7976899
diff. for .6 = 41

.. 1log 62761.6 = 4.7976940

This explains the use of the column of proportional parts
on the extreme right of the page. It will be seen that the
difference between the logarithms of two consecutive num-
bers is not always the same; for instance, those in the
upper part of the page before us differ by .0000070, while
those in the middle and the lower parts differ by .0000069
and .0000068. Under the column with the heading 69 we
see the difference 41 corresponding to the figure 6, which
implies that when the difference between the logarithms of
two consecutive members is .0000069, the increase in the
logarithm corresponding to an increase of .6 in the number
i8 .0000041; for .06 it is evidently .0000004, and so on.

NoTE. — We assume in this method that the increase in a logarithm is propor-
tional to the increase in the number. Although this is not strictly true, yet it is in
most cases sufliciently exact for practical purposes.

Had we taken a whole number or a decimal, the process would have been the
same.



TABLE OF LOGARITHMS; *::% 7 181
N. () 1|23 |4]|5|617.|8]|9|PP_
6250 | 795 88008870/8939/9009/907819148 9217,07879856.942 - 2+ I
51 9495(9564/9634/9703/9773(9842,9912/998110051 0120)
52 | 796 0190|0259/0329/0398|0468]0537/0606/0676/0745'0815
53|  0884/0954/1023/1093|1162{1232;1301|1370|1440 1509
54 1579|1648|1718(1787|1857(1926|19952065 2134|2204
65 2273|2343|2412(2481)2551(2620/2690|2759|2829 2898
56 2967|3037(3106|3176(324 5[3314|3384/3453(3523(3592 | 70
67 3662|3731|3800/3870(3939(4009|4078/4147(4217/4286( 1| 7.0
58 4356|4425|4494|4564(4633(4703|4772/4841(491114980 2 |14.0
59 5050(5119,5188/5258)5327|5396/5466/5535(5605:5674| 3 | 21.0
6260 | 796 5743(5813:5882(5951|6021 6090 6160|6229|6298 6368| 4 | 28.0
61 6437/6506/6576|66456714(6784/6853|6923/6992/7061| 5 |35.0
62 7131|720017269|7339|7408{7477|7547|7616|7685|7755| 6 [42.0
68 7824/7893|7963(8032(8101(81 71/8240|8309/8379,8448] 7 |49.0
64 8517|8587|8656(8725/8795/886 4(8933/9003(9072(9141( 8 | 56.0
65 9211/9280/9349/9419|9488]9557/9627(/9696(9765/9835| 9 {63.0
66 9904/997310043/0112/0181)0250,0320(0389{04580528
87 1797 059 7/0666|0736/0805 0874(0943(1013|1082(1151|1221
68 12901359,14281498|1567(1 636/1706|1775|1844/1913
69 1983/2052/2121(2191|2260|2329,2398| 2468|2537/2606
6270 | 797 2675|274512514|2883| 2952|3022 (3091 3160|3229(3299
") 33683437,3507|3576|3645[3714,3754|3853/3922|3991| | 69
72 40604130(4199|4268/4337[4407|4476|4545|4614,4684 1 | 6.9
78 4753|4822(4891(4961|5030(5 099/5168(5237|5307|5376] 2 (13.8
4 5445|5514/5584(5653 (57225 791 |5860]5930] 5999|6068 3 |20.7
75 61376207|62766345/641416483165536622/6691/6760| 4 (27.6
76 6829/689916968|7037|7106/7175|7245!7314|7383|7452] 5 (34.5
71 7521|7590|7660,7729,7798|7867|7936/8006/8075(8144| 6 (41.4
8 8213|8282/8351/8421'8490(8559|8628/8697|8766/8836 7 (48.3
79 8905(8974/9043|9112,9181/9251/9320(9389,9458/9527| 8 |55.2
6280 | 797 9596(9666/9735/9804(9873(994210011/0080/0150(0219] 9 [62.1
81 | 798 0288|0357|04260495,0565(0634 0703 0772(0841/0910|
82 0979)1048/1118|1187|1256|1325|1394/1463| 1532|1601
83 1671|1740(1809/18781947(2016|2085|2154(2224(2293
84 2362|2431/2500(2569|2638|2707,2776|2846|2915(2984
86 3053|3122|3191|3260/3329|33983467|3536|3606(3675
86 3744|3813|3882,3951/4020[4 089141 58(4227|4296(4366| | 68
87 4435|4504/457314642(4711]4 780/4849/4918/4987|5056( 1 | 6.8
88 5125|5194|5263|5333|5402(5471/5540{5609(5678(5747| 2 |13.6
89 5816|5885|5954(602316092[616162306299/6368|6437| 3 | 20.4
6290 | 798 6506|6575|6645|6714/6783/6852|6921|6990(7059|7128| 4 (27.2
91 7197|7266(7335|74047473|7542|7611| 7680|7749 7818| 5 | 34.0
92 7887|7956(8025(8094(8163(8232/8301(8370|8439(8508] 6 |40.8
93 8577|8646|8715|8784(8853(8922(8991/9060(9129/9198} 7 |47.6
94 9267|9336/9405(9474(9543[9612/9681/9750/9819/9888| 8 | 54.4
95 9957|0026/0095/0164,0233{0302/0371/0440,0509,0578] 9 |61.2
96 | 799 0647(0716|0785/0854|0923(0992| 10611130/ 1199|1268
97 1337|1406(1475/1544(16131682|1751|1820| 1889|1958
98 2027|2096/2164(2233|2302(2371(2440|2509|2578| 2647
99 2716/2785|2854(29232992{3061|3130|3199/3268,3337
6800 | 799 3405|3474|3543|3612|3681|3750|3819|3888|3957/4026
N.| 0 (11218 |4|5|6|7|8|9]|PP.
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Thul, luppoae we requlre to find log 627616 and log .627616. The mantisea is
exactly the same as before (Art. 68), and the only ditference to be made in the final
result is to change the characteristic according to rule (Art. 64).

Thus log 627616 = 5.7976942,
and log .627616 = 1.7976942.

69. To find the Number corresponding to a Given Loga-
rithm. — If the decimal part of the logarithm is found ex-
actly in the table, we can take out the corresponding
number, and put the decimal point in the number, in the
place indicated by the characteristic.

Thus if we have to find the number whose logarithm is
2.7982915, we look in the table for the mantissa .7982915,
and we find it set down opposite the number 62848: and
as the characteristic is 2, there must be one cipher before
the first significant figure (Art. 64).

Hence 2.7982915 is the logarithm of .062848.

Next, suppose that the decimal part of the logarithm’ is
not found exactly in the table. For example, suppose we
have to find the number whose logarithm is 2. 7 974453.

We find from the table

log 62726 = 4.7974476
log 62725 = 4.7974407

diff. for 1 = .0000069

Thus for a difference of 1 in the numbers there is a
difference of .0000069 in the logarithms. The excess of
the given mantissa above .7974407 is (. 7974453 —.7974407)
or .0000046.

Hence, assuming that the increase of the number is
proportional to the increase of the logarithm, we have

.0000069 : .0000046 : : 1 : number to be added to 627.25.

.». number to be added — 0000046 _ 46 = .667 69):6 2( 666

7 .0000069 ~ 69
. log 62725.667 = 4.7974453, 460
and .. log627.25667 = 2.7974453 ; 414 .
therefore number required is 627.25667. 460
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We might have saved the labor of dividing 46 by 69, by
using the table of proportional parts as follows:

given mantissa =.7974453
mantissa of 62725 = .7974407

diff. of mantisse = 46
proportional part for .6 = 414
4.6
“« “ « 06 = 414
46
« “  « 006= 414
and so on.

.». number = 627.256666 --..

69a. Arithmetic Complement. — By the arithmetic com-
plement of the logarithm of a number, or, briefly, the
cologarithm of the number, is meant the remainder found
by subtracting the logarithm from 10. To subtract one
logarithm from another is the same as to add the co-
logarithm and then subtract 10 from the result.

Thus, a—b=a+ (10 —b)—10,

where a and b are logarithms, and 10 — b is the arithmetic
complement of b. ’

When one logarithm is to be subtracted from the sum of
several others, it is more convenient to add its cologarithm
to the sum, and reject 10. The advantage of using the
cologarithm is that it enables us to exhibit the work in a
more compact form.

The cologarithm is easily taken from the table mentally
by subtracting the last significant figure on the right from
10, and all the others from 9. '
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1. Given

find

2. Given

find

3. Given

find

4. Given

find

5. Given
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EXAMPLES.

log 52502 = 4.7201758,
log 52503 = 4.7201841;
log 52502.5.

log 3.0042 = 0.4777288,
log 3.0043 = 0.4777433;
log 300.425.

log 7.6543 = 0.8839055,
log 7.6544 = 0.8839112;
log 7.65432.

log 6.4371 = 0.8086903,
log 6.4372 = 0.8086970 ;
log 6437125.

log 12954 = 4.1124039,
log 12955 = 4.1124374;

find the number whose logarithm is 4.1124307.

6. Given

log 60195 = 4.7795532, .
log 60196 = 4.7795604 ;

find the number whose logarithm is 2.7795561.

7. Given

log 3.7040 = .5686710,
log 3.7041 = .5686827 ;

find the number whose logarithm is .5686760.

8. Given

log 2.4928 = .3966874,
log 2.4929 = .3967049 ;

find the number whose logarithm is 6.3966938.

. 4.7201799.

2.4777360.

.8839066.

6.8086920.

12954.8.

601.95403.

3.70404.

2492837.



NATURAL TRIGONOMETRIC FUNCTIONS. 105

9. Given log 32642 = 4.5137768,
log 32643 = 4.5137901 ;

find log 32642.5. Ans. 4.5137835.
10. Find the logarithm of 62654326. 7.7969510.
Use specimen page.

11. Find the number whose logarithm is 4.7989672.
Ans. 62945.876.

70. Use of Trigonometric Tables. — Trigonometric Tables
are of two kinds, — Tables of Natural Trigonometric Functions
and Tables of Logarithmic Trigonometric Functions. As the
greater part of the computations of Trigonometry is carried
on by logarithms, the latter tables are by far the most use-
ful.

We have explained in Art. 27 how to find the actual
numerical values of certain trigonometric functions, exactly
or approximately.

Thus, sin30°= %; that is, .5 exactly.

Also, tan60°=+/3; that is, 1.73205 approximately.

A table of natural trigonometric functions gives their
approximate numerical values for angles at regular intervals
in the first quadrant. In some tables the angles succeed
each other at intervals of 1", in others, at intervals of 10"
but in ordinary tables at intervals of 1': and the values of
the functions are given correct to five, siz, and seven places.
The functions of intermediate angles can be found by the
principle of proportional pasrts as applied in the table of
logarithms of numbers (Arts. 68 and 69).

It is sufficient to have tables which give the functions
of angles only in the first quadrant, since the functions of
all angles of whatever size can be reduced to functions
of angles less than 90° (Art. 35).
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71. Use of Tables of Natural Trigonometric Functions. —
These tables, which consist of the actual numerical values
of the trigonometric functions, are commonly called tables
of natural sines, cosines, etc., so as to distinguish them from
the tables of the logarithms of the sines, cosines, ete.

We shall now explain, first, how to determine the value
of a function that lies between the functions of two con-
secutive angles given in the tables; and secondly, how to
determine the angle to which a given ratio corresponds.

72. To find the Sine of a Given Angle.
Find the sine of 25° 14’ 20", having given from the table

sin 25° 15" = .4265687

sin 25° 14' = .4263056

diff. for 1' =.0002631

Let d = diff. for 20"; and assuming that an increase in

the angle is proportional to an increase in the sine, we have
60:20::.0002631 : d.

_ 20 x.0002631 _

o d .0000877.
50 0877
-, sin 25° 14' 20" = .4263056 4 .0000877
= .4263933.

NoTE. — We assumed here that an increase in the angle is proportional to the
increase in the corresponding sine, which is sufficiently exact for practical purposes,
with certain exceptions.

73. To find the Cosine of a Given Angle.
Find the cosine of 44° 35' 25", having given from the table

cos 44° 35' = .7122303
cos 44° 36’ = .7120260

diff. for 1'=.0002043

observing that the cosine decreases as the angle increases
from 0° to 90°.



Let d = decrease of cosine for 25" ; then

EXAMPLES.

60 : 25 ::.0002043 : d.

25

107

=25 . 0002043 = .0000851.
60 <

*. c0s44° 35' 25" = .7122303 — .0000851

= 7121452.

Similarly, we may find the values of the other trigono-
metric functions, remembering that, in the first quadrant,
the tangent and secant increase and the cotangent and
cosecant decrease, as the angle increases.

1. Given

find

2. Given

find

3. Given

find

4. Given

find

5. Given

find

EXAMPLES.

sin 44° 35'= .7019459,
sin 44° 36'=.7021531;
sin 44° 35 25",

sin 42° 15'= .6723668,
sin 42° 16'= .6725821;
sin 42° 15' 16",

sin 43° 23'=.6868761,
sin 43° 22'= .6866647 ;
sin 43° 22' 50",

sin 31° 6' = .5165333,
sin 31° 7' = .5167824;
sin 31° 6' 25",

cos T4° 45'= .4265687,
cos 74° 46' = .4263056 ;
cos 74° 45' 40",

Ans. .7020322.

.6724242.

.6868408.

.5166371.

.4263933.
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6. Given cos 41° 13' = .7522233,
cos 41° 14'=.7520316 ;
find cos 41° 13' 26" Ans. .7521403.
7. Given cos 47° 38'= 6738727,
cos 47° 39'= .6736577 ;
find cos47° 38' 30", .6737652.

74. To find the Angle whose Sine is Given.
Find the angle whose sine is .5082784, having given from

‘the table sin 30° 33' = .5082901
sin 30° 32' = .5080396

diff. for 1’ =.0002505

given sine = .5082784
sin 30° 32' = .5080396

diff. = .0002388

Let d=diff. between 30°32' and required angle; then
.0002505 : .0002388 :: 60 : d.

. 4 2388 x 60 _ 6552
- 2505 167

= 57.2 nearly.
*. required angle = 30° 32' 57".2.

75. To find the Angle whose Cosine is Given.
Find the angle whose cosine is .4043281, having given

from the table cos 66° 9'=.4043436
cos 66° 10’ = .4040775

diff. for 1' = .0002661

cos 66° 9'=.4043436
given cosine =.4043281

diff. =.0000155
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Let d=diff. between 66°9' and required angle; then
.0002661 : .0000155 : : 60 : d.

155 x 60
2661

Required angle is greater than 66°9' because its cosine is
less than cos 66° 9'.

*. required angle = 66° 9’ 3".5.

L d= =3.5. ‘

EXAMPLES.
1. Given sin 44°12' = .6971651,
sin 44° 11" = .6969565 ;
find the angle whose sine is .6970886. Ans. 44°11'38",

2. Giveg sin 48° 47' = .7522233,
sin 48° 46' = .7520316 ;
find the angle whose sine is .752140. 48° 46' 34"
3. Given sin 24° 11' = 4096577,
sin 24° 12! = .4099230 ;
find the angle whose sine is .4097559. 24°11' 22".2.
4. Given €08 32° 31" = .8432351,
cos 32° 32' = .8430787;
find the angle whose cosine is .8432. 32°31'13".5.
5. Given cos 44°11' = .7171134,
cos 44° 12' =.7169106 ;
find the angle whose cosine is .7169848. 44°11' 38".
6. Given cos 70° 32' = .3332584,

cos 70° 31' = .3335326 ;
find the angle whose cosine is .3333333. 70° 31' 43".6.
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76. Use of Tables of Logarithmic Trigonometric Func-
tions. — Since the sines, cosines, tangents, etc., of angles
are numbers, we may use the logarithms of these numbers
in numerical calculations in which trigonometric functions
are involved; and these logarithms are in practice much
more useful than the numbers themselves, as with their
assistance we are able to abbreviate greatly our calcula-
tions; this is especially the case, as we shall see hereafter,
in the solution of triangles. In order to avoid the trouble
of referring twice to tables —first to the table of natural
functions for the value of the function, and then to a table
of logarithms for the logarithm of that function — the log-
arithms of the trigonometric functions have been calculated
and arranged in tables, forming tables of the logarithms of
the sines, logarithms of the cosines, etc.; these.tables are
called tables of logarithmic sines, logarithmic cosingg, ete.

Since the sines and cosines of all angles and the tangents
of angles less than 45° are less than unity, the logarithms of
these functions are negative. To avoid the inconvenience of
using negative characteristics, 10 is added to the logarithms
of all the functions before they are entered in the table.
The logarithms so increased are called the tabulur logarithms
of the sine, cosine, etc. Thus, the tabular logarithmic sine
of 30° is

10 + log sin 30° = 10 + log% =10 — log 2 = 9.6989700.

In calculations we have to remember and allow for this
increase of the true logarithms. When the value of any
one of the tabular logarithms is given, we must take away
10 from it to obtain the true value of the logarithm.

Thus in the tables we find

log sin 31° 15' = 9.7149776.

Therefore the true value of the logarithm of the sine of
31°15' is 9.7149776 — 10 = 1.7149776.
Similarly with the logarithms of other functions.



TABLES OF LOGARITHMIC FUNCTIONS. 111

Note. — English authors usually denote these tabular logarithms by the letter L,
Thus, L sin A denotes the tabular logarithin of the sine of A.
French authors use the logarithms of the tables diminished by 10. Thus,

, log sin A =1.8598213, instead of 9.8508213.

The Tables contain the tabular logs of the functions of all
angles in the first quadrant at intervals of 1'; and from
these the logarithmic functions of all other angles can be
found.*

Since every angle between 45° and 90° is the complement
of another angle between 45° and 0° every sine, tangent,
ete., of an angle less than 45° is the cosine, cotangent, ete.,
of another angle greater than 45° (Art. 16). Hence the
degrees at the top of the tables are generally marked from’
0° to 45° and those at the bottom from 45° to 90° while
the minutes are marked both in the first column at the lef?,
and in ‘the last column at the right. Every number there-
fore in eagh column, except those marked diff., stands for
two functions —the one named at the top of the column,
and the complemental function named at the bottom of the
column. In looking for a function of an angle, if it be less
than 45° the degrees are found at the top, and the minutes
at the left-hand side. If greater than 45° the degrees are
found at the foot, and the mninutes at the right-hand side.

On page 113 is a specimen page of Mathematical Tables.
It gives the tabular logarithmic functions of all angles between
38° and 39° and also of those between 51° and 52° both
inclusive, at intervals of 1. The names of the functions
for 38° are printed at the top of the page, and those for 51°
at the foot. The column of minutes for 38° is on the left,
that for 51° is on the right.

Thus we find

log sin 38°29' = 9.7939907.
log cos 38° 45" = 9.8920303.
log tan 51°18' = 10.0962856.

* Many tables are calculated for angles at intervals of 10",
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77. To find the Logarithmic Sine of a Given Angle.
Find log sin 38° 52' 46"
We have from page 113
log sin 38° 53' = 9.7977775
log sin 38° 52" = 9.7976208
diff. for 1'= .0001567
Let d=diff. for 46", and assuming that the change in
the log sine is proportional to the change in the angle, we
have

. 60 :46::.0001567 : d.
sod= @M =.0001201.
60
log sin 38° 52' 46" = 9.7976208 + .0001201
= 9.7977409.

78. To find the Logarithmic Cosine of a Given Angle.
Find log cos 83° 27' 23", having given from the table

log cos 83° 27'=9.0571723
log cos 83° 28'= 9.0560706

diff. for 1'= .0011017
Let d = decrease of log cosine for 23"; then

60:23::.0011017 : d.
. a=23X 001017 _ 6404093 nearly.

60
log cos 83° 27" 23" = 9.0571723 — .00042323
= 9.0567500.
EXAMPLES,

1. Given logsin 6°33'=9.0571723,
log sin  6° 32'= 9.0560706 ;
find log sin  6° 32' 37". Ans. 9.05675.



38 Deg.

TABLE OF LOGARITHMS.

» | Bine,

Diff,

Tang,

Diff.

_Costne,

o 9.7893420
1' 9.7895036
2 ‘ 9.7896652
3! 9.7898266
| 9.7899880 !

1616
1616
1614
1614
1613

9.8928098

98941114

g 89
10.1058886

4
5 | 9.7901493
6 9.7903104
97904715
9.7906325
97997933
9:7909541
9.7911148
97912754
97914359
97915963
97917566
9.7919168
97920769
97932369
9.7923968
9:7925566
97927163
97928760
9.7930355
9.7931949
9-7933543
9.7935135
97936727
97938317
97939907
97941496
97943083
97944670
9.7946256
9:7947841
97949425
9.7951008
9.7952590
9.7954171
9.7955751
97957330

1611
1611
1610
1608

‘1608

1607
1606
1605
1604

98943715
98946317
9.8948918
9.8951519
98954119 |
9.8956719
9.8959319

2598
2598

10.1056285
10.1053683
10.1051082
10.1048481
10.1045881
10.1043281
10.1040681
10.1038082
10.1035483
10.1032884
10.1030286
10.1027688
10.1025090
10.1022493
10.1019896
10.1017300
10.1014704
10.1013108
10.1009513
10.1006918

9.8965321
9:8964334
98963346
9.8962358
9.8961369
9.8960379
98959389
9.8958398
98957406
98956414
98955422
9-8954429
98953435
9.8952440
9-8951445
98950450
9.8949453
98948457
98947459
9.8946461
9-8945463
98944463
9.8943464
9:8942463
9.8941462
9-8940461

10.1004323
10.1001729

0
$
£

10.0991355
10.0988763
10.0986170
10.0983578
10.0980987

9-8939458
9.8938456
9.8937452
9-8936448
98935444
98934439

9-8930412

10.0978396
10.0975805

97958909
9.7960486
9.7962062 |
9.7963638

9.7965212 |

£
5

9.7966786 |
97968359
97969930
97971501
97973071
97974640
97976208
97977775
97979341
9:7980906
9.7982470
9.7984034
9.7985596
9.7987158
9.7988718

1565
1564
1564
1562
1562
1560

9.8929404
9.8928395
9.8927385
98926375
9-8925365

9-8924354
98923342
9.8922329
9.8921316
9-8920303

10.0952503
10.0949915
10.0947328
10.0944741
10.0942155

98919289
9.8918274
9.8917258
9.8916242
9.8915226

'_9:9979773.
i 9.9073357
. 9.9075041
9.9078525
9.9081109
99083692

7
8
9
10
11
12
I3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
A

Oosine.

Diff.,

Cotang.

10.0939569
10.0936983
10.0934397
10.0931812

10.0929227

9.8914208
9.8913191
9.8912172
9.8911153
9.8g10133

10.0926643
10.0924059

' 10.0921475

10.0918891
10.0916308

" Tang.

9.8909113
9.8g08092
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2. Given log sin 55° 33'= 9.9162539,
log sin 55° 34'= 9.9163406 ;
find log sin 55° 33' 54", Ans. 9.9163319.

3. Given logcos 37° 28'=9.8996604,
log cos 37° 29'= 9.8995636 ;
find log cos 37° 28' 36", 9.8996023.

4. Given log cos 44° 35' 20" = 9.8525789,
log cos 44° 35' 30" = 9.8525582
find log cos 44° 35' 25".7. 9.8525671.
See foot-note of Art. 76.
5. Given logcos 55°11'= 9.7565999,
, log cos 55° 12'= 9.7564182;
find log cos 55°11' 12", 9.7565636.
6. Given logtan27°13'= 9.7112148,
log tan 27° 14'= 9.7115254 ;
find log tan 27° 13' 45", 9.7114477.

79. To find the Angle whose Logarithmic Sine is Given.

Find the angle whose logsine is 8.8785940, having given

from the table
log sin 4° 21'= 8.8799493

log sin 4° 20'= 8.8782854
diff. for 1'=.0016639
given log sine = 8.8785940
log sin 4° 20'= 8.8782854
diff. = .0003086
Let d = diff. between 4° 20" and required angle; then
0016639 : .0003086 : : GO : d.

3086 x 60
716639

-. required angle = 4° 20' 24",

d= = 24, nearly.
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80. To find the Angle whose Logarithmic Cosine is Given.
Find the angle whose log cosine is 9.8934342.
We have from page 113

log cos 38° 31'= 9.8934439
log cos 38° 32'= 9.8933433

diff. for 1'=.0001006

log cos 38° 31'= 9.8934439
given log cosine = 9.8934342

diff. = .0000097
Let d = diff. between 38° 31' and required angle; then

.0001006 : .0000097 : : 60 : d.

.0000097 97 x 60
l=-' 60:—‘”—*:5".8.
‘ 0001006 X 1006

- required angle = 38° 31' 5".8.

NoTEe. — In using both the tables of the n«tural sines, cosines, etc., and the tables
of the logarithmic sines, cosines, etc., the student will remember that, in the first
quadrant, as the angle increases, the sine, tangent, and secant increase, but the
cosine, cotangent, and cosecant decrease.

EXAMPLES,

1. Given  logsin 14° 24'= 0.3956581,
log sin 14° 25'= 9.3961499 ;
find the angle whose log sine is 9.3959449. Ans. 14°24'35".

2. Given log sin 71° 40'= 9.9773772,
log sin 71° 41'= 9.9774191 ;

fird the angle whose log sine is 9.9773897. 71°40'18".
3. Given  logcos28°17'=9.9447862,

log cos 28° 16'= 9.9448541
find the angle whose log cosine is 9.9448230.  28° 16' 27".5.
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4. Given log cos 80° 53'= 9.1998793,
log cos 80° 52' 50" = 9.2000105 ;

find the angle whose log cosine is 9.2000000.
Ans. 80°52' 51",

5. Given log tan 35° 4'= 9.8463018,
log tan 35° 5'=9.8465705;
find the angle whose log tangent is 9.8464028.  35°4'23".

6. Given log sin 44° 35’ 30" = 9.8463678,
log sin 44° 35' 20" = 9.8463464;
find the angle whose log sine is 9.8463586. 44° 35' 25".7.

7. Find the angle by page 113 whose log tangent is
10.1018542. Ans. 51°39' 28'".7,

8l. Angles near the Limits of the Quadrant. —It was
assumed in Arts. 72-80 that, in general, the differences of
the trigonometric functions, both natural and logarithmie,
are approximately proportional to the differences of their
corresponding angles, with certain exceptions. The excep-
tional cases are as follows:

(1) Natural functions. —For the sine the differences are
insensible for angles near 90°; for the cosine they are in-
sensible for angles near 0°. For the tangent the differences
are irregular for angles near 90°; for the cotangent they are
irregular for angles near 0°.

(2) Logarithmic functions.— The principle of propor-
tional parts fails both for angles near 0° and angles near
90°.  For the log sine and the log cosecant the differences are
irregular for angles near 0°, and insensible for angles near 90°.
For the log cosine and the log secant the differences are in-
sensible for angles near 0° and irregular for angles near 90°.
For the log tangent and the log cotangent the differences are
irregular for angles near 0° and angles near 90°.
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It follows, therefore, that angles near 0° and angles near
90° cannot be found with exactness from their log trigono-
metric functions. These difficulties may be met in three
ways.

(1) For an angle near 0° use the principle that the sines
and tangents of small angles are approximately proportional
to the angles themselves. (See Art. 130.)

(2) For an angle near 90° use the half angle (Art. 99).

(3) In using the proportional parts, find two, three, or
more orders of differences (Alg., Art. 197).

Special tables are employed for angles near the limits of
the quadrant.
EXAMPLES.

1. Given log, 7 = .8450980, find log),, 343, log,, 2401, and
log,,16.807. Ans. 2.5352940, 3.3803920, 1.2254900.

2. Find the logarithms to the base 3 of 9, 81, 1, 4, .1,
Ans. 2,4, —1, -3, —2, — 4.

3. Find the value of log,8, log,.5, log;243, log;(.04),
log;, 1000, logy, .001. Ans. 3, —1,5, —2,3, —3.

4. Find the value of log, a*, log,xs/b—”, logs2, logx 3, 10g,010.

Ans. $, % 4, 4 1

Given log), 2 =.3010300, log), 3 = .4771213, and log, 7=
.8450980, find the values of the following:

5. logy 35, logy, 150, log,,.2. B
Ans. 1.544068, 2.1760913, 1.30103.

6. logm 3.5, loglo 7-29, logw .081. _
Ans. .5440680, .8627278, 2.9084852. .

7. logi 3, logi 3% logy ~ 12,
Ans. 3679767, 2.3856065, .0780278.
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8. Write down the integral part of the common loga-
rithms of 7963, .1, 2.61, 79.6341, 1.0006, .00000079.
Ans. 3, —1,0,1,0, — 7.
9. Give the position of the first significant figure in the
numbers whose logarithms are

2.4612310, 1.2793400, 6.1763241.

10. Give the position of the first significant figure in
the numbers whose logarithms are 4.2990713, .3040595,
2.5860244, 3.1760913, 1.3180633, .4980347.

Ans. ten thousands, units, hundreds, 3rd dec. pl., 1st
dec. pl., units.

11. Given log 7 = .8450980, find the number of digits in
the integral part of 7%, 49% 343'%%, (19)®, (4.9)%, (3.43)".

Ans. 9,11, 85, 4, 9, 6.

12. Find the position of the first significant figure in the

numerical value of 207, (.02)7, (.007)% (3.43)11‘7, (-0343)%,

(.0343) s,
Ans. tenth integral pl., 12th dec. pl.,, 5th dee. pl., units,
12th dec. pl., 1st dec. pl.

Show how to transform

13. Common logarithms to logarithms with base 2.
Ans. Divide each logarithm by .30103.

14. Logarithms with base 3 to common logarithms.
Ans. Multiply each log by .4771213.

15. Given log; 2 = .3010300, find log, 10. 3.32190.
16. Given log; 7 = .8450980, find log; 10. 1.183.
17. Given log; 2 = .3010300, find logs 10. 1.10730.

18. The mantissa of the log of 85762 is 9332949; find
(1) the log of V/:0085762, and (2) the number of figures in
(85762)", when it is multiplied out.

Ans. (1) 1.8121177, (2) 55.
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19. What are the characteristics of the logarithms of
3742 to the bases 3, 6, 10, and 12 respectively ?
Ans. 7, 4,3, 3.

20. Prove that 7log }2 + Glog § + 5log ¢ + log 33 =log 3.

21. Given log, 7, find log; 490. Ans. 2 + 1 -
logyy 7

22. From 5.3429 take 3.6284. 3.7145.

23. Divide 13.2615 by 8. 2.4076.

24. Prove that 6log  + 4log ;% + 2log 25 = 0.

25. Find log {297v/11}% to the base 3V11. 18.
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