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TRANSLATOR’S

DEDICATORY PREFACE.

o the Boston Soriety of Cinil Engineers:

INn dedicating this translation to your Society, I take this
occasion to express my thanks for the interest you have mani-
fested in it, and for the friendly aid you have given me. I wish
you to regard it as my quota towards the contributions of scien-
tific or other matter, which it was our main object to elicit from
each member. I trust it may be found worthy of your attention,
and if I should succeed in imparting to others a portion of the
delight and profit derived by me from the study of the original,
I shall think I have labored to some purpose.

When I had made some progress in this translation, I received
an interesting letter from FrankniN Forses, Esq., accompany-

“ing a translation of the first half of the book. It was his
intention to have finished the same for publication, but his pro-
feesional engagements prevented him. For so free and generous
a gift from an entire stranger, I would offer this expression of
my sincere thanks.

Considerations connected with the cost of the work have
changed one proposed feature of the translation; which was, to
present before the reader, side by side, the metrical formulee,
with their reductions to the English units of measure, to enable
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him to judge for himself of the accuracy of these reductions,
which are often of a complicated character. In case of any
error, the means of its correction, on this plan, might be close
at hand. My friends overruled this, and insisted upon the
necessity of presenting the English measures solely.

Had I adopted this course from tho first, I should have selected
round numbers, and not the fractional numbers, as they are
now necessarily given, as the equivalents of the original metrical
quantities. Aware of the respomsibility of presenting these
English reductions, and of the .absolute necessity that they
should bo correctly given, I have revised most carefully all the
formulge, as far as the subject matter of motors and their effects.
In the Appendix will be found the method of their reduction,
not as any thing new to mathematicians, but to save the unskil-
ful the unnecessary labor, which I myself should have avoided,
had I been as familiar with the process as at present.

A direct reduction of the formule, as given by D’Aubuisson,
has not been made in all cases. When, for instance, in fol-
lowing implicitly his steps, with English measures, I have
arrived at results not exactly equivalent to his, I have adhered
to the results thus found, as a true fulfilment of the purposes of
the author. Iu case, therefore, of an apparent discrepancy, the
reader will do well to retrace the steps I have taken, before
pronouncing them erroneous.

No particular pains were taken as to the construction of sen-
tences, nor as to clegance of diction. The reductions being four
fifths of the labor of the work, received my chief attention. For
many improvements and corrections of the original manuscript,
I am much indebted to my friends James B. Fraxcis and E. S.
CuesproucH ; and to the interest which they, with some other
members of your Society, have taken in this matter, I am
indebted for its publication.

JOSEPH BENNETT.



AUTHOR’S PREFACE.

My purpose in composing this work has been to present to
engineers, (that is, to all who have to propose or to execute
great constructions,) the rules which should guide them in the
plans they project for the conveyance of water, and for hydraulic
works and machines. I wished, at the same time, to impart a
full understanding of these rules, to fix the degree of confidence
which they ought to inspire, and to show their application.

Hydraulics, as I proposed to treat it, being a science of facts,
it was my duty to explain the facts and the circumstances proper
to make them well understood. Guided, then, by simple reason-
ings, or by the principles of physics and elementary mechanics,
I sought to deduce from them the rules which I have given.
Many of them could be expressed by algebraic formulse, and T
have not failed to make use of that most cxact and concise of
languages. A single glance thrown on an algebraic result
shows at once all the quantities relative to the question in
hand, as well as the operations to be performed on them in order
to arrive at the solution. Whenever the formulae did not flow
immediately from the facts observed, I have always been careful
to compare their results with those of experiment. Both classes
of results have been, as much as possible, placed in the form of
tables before the eye of the reader, so that he might judge for
himself as to the modifications which that comparison required
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in the formulse, as well as of the degree of exactness which
they promised in applying them to practice.

Examples, showing the manner of effecting such applications,
serve as a commentary on the rules, and have, moreover, enabled
me to make mention of the cases which most frequently occur in
practice.

Engineers occupied exclusively in their department for a long
series of years, may have lost the ready use of formuls, and
may find themselves under temporary embarrassment as to the
acceptation to be given to some of the characters employed in
them; one example, on a problem analogous to that which they
desire to solve, will free them from the embarrassment.

It may further be said, on the use which I have often made of
algebraic expressions, what has already been said on the occa-
sion of another of my works, nearly of the nature of the present,
that in using a language unknown to many persons employed in
constructions, I make my work less generally useful. I have
noticed some of the advantages of this language, and I do not
believe that in sacrificing them I should gain rather than lose in
respect to utility. I will also remark, that if any one would
confine himself to what is strictly necessary, the use of this
treatise only demands an ability to read a most elementary alge-
braie formula, and to perform by logarithms the operations which
it indicates. But this knowledge is indispensable to the solution
of questions in hydraulics : let it be required, for example, to fix
the diameter of a series of pipes designed to convey a given
volume of water ; it would be necessary, among other operations,
to extract the fifth root of the square of that volume; and such
an extraction can scarcely be effected otherwise than by loga-
rithms.

On the other hand, some will certainly reproach me for having
too much neglected the use of analysis, and especially the infini-
tesimal analysis. But this book, a kind of manual of Aydraulics

Jor the use of engineers, is not a mathematical work, nor an
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application of mathematics, like the Jdraulica of Venturoli. A
very great number of the rules and precepts which it contains,
for example, on the good arrangement to be given to a system of
pipes, on the subject of eluice-gates, on bucket-wheels, &c., are
foreign to that science; in this treatise, mathematics are only
accessory ; whenever they have offered me a means of arriving at
my object without being confined to geometrical rigor, as I might
otherwise have been, I have taken the most direct, most easy,
and most beaten path. Hence it follows, that I have not used the
principle of the vis viva—a principle so fruitful, and now become
almost the only instrument which geometricians use in questions
relating to hydraulics and to machines; I feared that it would
not be sufficiently familiar to most of those for whom this book
was designed ; besides, the method which I have followed, pre-
serving in the problems to he solved the immediate data of the
observation, the height of the head in the flow of fluids, the
amount of fall in machines, &ec., appeared to lead me more
directly to practical applications. Thus my work, by its nature,
falls more properly in the province of the sciences uf observation,
of the physical sciences, than in that of the mathematical
sciences ; it is a treatise on experimental and applied hydrau-
lics, and not on theoretical hydraulics.

I have no more to say respecting the plan which I have
followed ; the tablo of contents at the beginning of the volume
sufficiently indicates it; and the short headings of the sections
and chapters explain their character. I have distinguished, by
means of a smaller type, the examples, the details of experi-
ments, when it has been convenient to give them, some particu-
lar remarks, and some developments not found elsewhere; for
example, on conduits and distributions of water.

Our metrical system of weights and measures offers too many
advantages in calculations, and especially in the calculations of
hydraulics, by the extreme facility with which the weights of
water can be converted to volumes and reciprocally, to be neg-
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lected; thus I have adopted that system, with its decimal
division, exclusively and in all its purity. Consequently, I have
taken but one unit for measures, the metre; and one for weights,
the kilogramme. In measures of length, I indicate the place of
the unit figure by an =, placed as an exponent; the comma then
being useless, I neglect it; thus, I write 17=38 and 0=037; I
put two (=) in the measures of surface, and three in those of
capacity: I write, for example, 8=42 for 8,42 square metres,
and 0==0594 for 0,0594 of a cubic metre. In being thus con-
fined to a single unit, we must often employ a great number of
zeros, it is true ; but this method is infinitely the most suitable
for comparisons ; it spares the reader that confusion in which
the mind is continually held, when sometimes the metre, some-
times the centimetre, and sometimes the millimetre is taken for
unity.

The second will always be our unit of time.

Finally, I have preserved the division of the circle into 360°;
a division which goes back to the remotest antiquity, and which
is exclusively adopted by all nations. I feared to disturb this
happy uniformity in the language of all times and of all coun-
tries.

Permit me here to claim indulgence for this work, most prob-
ably the last which I shall be able to write. The single desire
of propagating scientific knowledge and its applications in
France, so that our hydraulic works and machines might for the
future be more fitly arranged, induced me to undertake it ; somo
of those which I have already published have, perhaps, not heen
without some utility, and, addressing myself to the genius
which inspired them, I said :

¢ Ertremum hunc, Arethusa, mihi concede laborem.*’
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ifestly erroneous; and, consequently, its equivalent in feet,
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38, ¢« 23, for 2164*A/ H, read 2.164*A/H.

40, <« 21, for 0.889, read .0889.

47, ¢ 14, for quality, read quantity.

47, last line, for .0885SA/2gH, read 0.8855A/2gH.

51, line 11, for one examlll)le, read our example.

55, table, 4th column, 5th line, for 6.5782, read 6.5882.

58, table, 1st column, 7th line, for 100°, read 180°,

75, line 14, for sensible (so in original), read insensible.

83, ¢« 5, for above .8202 ft., or a quarter of, &o., read
above 0.25 (or a quarter) of, &e.

87, line 3, for .664, read .663.

93, ¢« 22, for sVr, read mSVt.

99, ¢ 12, for in one second r, and the descent, &ec., read
in one second, and x the descent, &c.

114, 1ine_ 3, after ac, insert— calling ab the entire force of

vity, or g.
119, Iine 25, for after, read according to.
121, ¢« 5, for .022332, read .022449.
125, ¢« 11, for berms, read banks.
131, ¢ 12, for a=0.000024265, read a=0.000111415.
¢« 13, for b=10.000111415, read b=10.217785.
174, « 11, for Registrar of the States, read registers of
the stages.
176, line 9, for Q=, read H =.
189, ¢ 6, for m 0.85, read m, 0.85.
206, ¢ 6, for supplied, read replaced.

« o« 925, for 0001333 %’-,read.oommss I‘_l;".

— 5

247, « 12, for D = .2349A/ &c., read D = .23494/ &e.

252, ¢ 15, for dimensions, read diminutions.

286, ¢ 25, and in marginal note, line 3, for immersion,
read emersion.

346, line 29, for 0.049 ft., read 0.490 ft.

350, ¢ 17, for dynamic, read dynamometric.

417, « 29, for expense, read expenditure.



TREATISE

ON

HYDRAULICS.

1. HyprauLics has for its object the knowledge
of the phenomena presented by fluids in motion, and
of the laws which nature follows in the production of
those phenomena. It has principally in view the ap-
plication of this knowledge to the means of directing,
conveying and raising fluids, in the manner best
suited to the end proposed.

2. Fluids are bodies whose particles, in conse-
quence of an extreme mobility, yield to the slightest
impression which they experience. Their independ-
ence, however, is not perfect; an adhesion binds them,
to a certain extent, to each other.

3. These bodies are divided into two classes: —
incompressible fluids, or fluids properly so called,
to which philosophers sometimes give the name of
liquids; and compressible or elastic fluids. Water is
the type of the former, and atmospheric air of the

latter.
1



2 PRELIMINARIES.

4. Although all fluids, as well as all bodies in
nature, are strictly compressible and elastic, yet some
are so slightly so, in comparison with others, and the
difference in this respect is so essential in the expres-
sion of the laws of their motions, that we have pre-
served this distinction.



PART FIRST.
HYDRAULICS, PROPERLY SO CALLED.

5. Water in motion presents itself in four different
ways: as passing out of a reservoir; or flowing in a
bed; acting as a motor; or in a passive state, raised
by machines. Hence our four sections of hydraulics.

Before commencing them, let us fix the true value of two
quantities, which are found in all calculations relating to this
science—the weight of water and the intensity of gravity.
These quantities are variable, but almost always supposed con-
stant. What follows will enable us to judge of the error which
may result from this supposition, in the different cases which
will be treated of.

6. When water is entirely pure, and is taken at its marimum
density, it weighs 62.4491 Ibs. per cubic foot: such is its specific
weight.

It may vary from three causes.

The most powerful is the temperature. We know that heat
expands all bodies, and this diminishes their density or specific
weight. From the most accurate experiments, the density of
pure water, at different degrees of the Centigrade and Fahrenheit
thermometers, would be as indicated in the following table:—

TEMPERATURE. Weight of a Wée“i a'r?,ﬁz'
Centigrade. | Fahrenhelt. | Cubic Metre. in 1bs.
kil.

4 39 1000. 62.449
6 4 999.95 62.446
8 999.87 62.441
10 50 999.72 61.432
12 53 | 999.54 | 62.420
15 59 999.14 62.396
20 68 998.24 62.339
25 77 997.99 62.268
30 86 995.73 62.182
50 122 987.58 61.673
100 212 956.70 59.745

Welght of
Water.
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4 PRELIMINARIES.

Below 4° Centigrade or 39° Fahrenheit, the density, instead
of continuing to increase, diminishes; this diminution, at first
very slow, rapidly progresses towards the limit of congelation,
and the weight of a cubic foot of ice is only 58.078 lbs.

The effects of pressure are much less sensible. Water was, for
a long time, considered wholly incompressible; but experiments,
lately made, have shown that, under very heavy loads, it is
really compressed, although but a very small quantity; about
0.000046 of its volume under the weight of one atmosphere;
that is, under a pressure represented by the height of a column
of mercury in a barometer, a height estimated at 29.922 inches,
and which is equivalent to the height of a column of water
about 33.793 feet ; so that the specific weight of the lower part
of a lake 328 feet deep would he 22064 lbs., that of the upper
part being 2205} lbs.

But as, in common practice, we shall not have to calculate
upon such depths or heights of water, we may, without sensible
error, cntirely neglect the effects of pressure.

‘What proceeds from saline or earthy substances contained in
the waters which run on the surface of the globe, may also, in
most cases, be omitted, the specific weight of the water of rivers
being only one or two ten-thousandths greater than that of dis-
tilled water, which is taken as the standard of perfectly pure
water.

Professor Boisgaraud found, by many trials, made with great
care, 1000%.149 for the specific gravity of the water of the
Garonne, that of distilled water being 1000 kilogrammes to the
metre, or 62.449 pounds to the cubic foot. Brisson has nearly
an equal result for the Seine.

Moreover, a mass of water, when surrounded by air, loses, like
all other bodies, a part of its weight equal to the weight of air
whose place it occupies; and this loss, which is seldom below
o005 =,00010, MAY be even ydy=00015.

Finally, in our mean temperatures, and according to different
circumstances, the weight of a cubic foot of water will he only
from 62.35 lbs. to 62.39, or the cubic metre from 9984 to 999%.
We shall, however, in this treatise, constantly admit 1000*, this
value rendering the conversion of cubic metres of water into
kilogrammes, and vice versa, extremely easy.

7. Experiments made with extreme care at the observatory of
Paris, gave 09934 =39.128 inches, or 3.2606 feet, for the length
of a pendulum vibrating seconds, this length being reduced to
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the level of the sea. Whence we conclude, that in that place, a
heavy body descends 479044 (=}<0.993847%)=16.091 feet, dur-
ing the first second of its fall. If, at the end of that time,
gravity ceased to act upon it, it would continue to descend, but
with a uniform motion, running through double the space, or
32.182 feet per second ; this number, which expresses the velocity
impressed by gravity in the unit of time, represents, for Paris,
the intensity of that accelerating force; we generally designate
that intensity or velocity by g, the initial letter of the word
gravity. It augments, however, with the latitude, and dimin-
ishes with the elevation above the level of the sea, and generally
we have

In et ( g=32°16954 (1—0.00284 cos 2) (1— 3)
.

2
tn metres (| g=978051 (1—0.00284 cos 2) (1— =)
"

1 being the latitude of the place, ¢ its elevation above the level of
the sea, r the radius of the terrestrial spheroid at the level of the
sea in that place:

{r=06366407= (14-0.00164 cos 27) }=20887510" (1+4-0.00164 cos 2/)

Thus, at Toulouse, where /=13° 36’ and =146"=479" we
have g=9-8032=32.1633"; at Montlouis, where /=42° 30’ and
¢=1620"=5315" (the mean height of the barometer being 23> 2}!
=24.72 inches) (Journal des Mines, tom. 23, p. 318), g=%7977=
32.1453".

Notwithstanding these variations, I shall constantly take
£=9"8808=32.1817; but I shall remark, at the same time, and
according to the examples we havo just seen, that the results of
calculations into which this quantity shall enter, may be in
error, even for France, more than one-thousandth.

8. The value of g will very often appear under two forms, of
which I will show the origin.

According to the first principle of the fall of heavy bodies, and
of uniformly accelerated motion in general, the velocities acquired
are as the times occupied in acquiring them; so that if v is the
velocity acquired by a body at the end of the time ¢, g being, as
we have just seen, the velocity acquired in 17, we shall have

v:g:t:],orv=gt.
According to the second principle, the spaces passed through,
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or the heights of the falls, are as the squares of the times occu-
pied in passing through them; then if A is the height through
which the same body has fallen in the time ¢, § g being the fall
corresponding to 17, we shall have

3
¢
h:ig::t‘:(l”)’,orh=%.

Taking the value of ¢ in this latter equation, and substituting
it in the first, we have

v=a/2gh, and consequently =
29
Since g=98088=32.182"
A 2g=n/ 64.364=8.0227
1
and —=.015536.
29

Consequently, v=8.0227 o/%; and h=.015536 v*.

We call v the velocity due to the height h, and h the height due to
the velocity v.

The Greek letter 7, which we have taken above, as it ex-
presses the ratio of the circumferance to the diameter (3.1416), it
will have no other acceptation in this work. The fourth of that
quantity, (.7854,) which is the ratio of the circle to the circum-
scribed square, presenting itself very frequently in our calcula-
tions, we shall designate by n’.



SECTION FIRST.

ON THE FLOWING OF WATER CONTAINED

IN A RESERVOIR.

9. The reservoir from which water flows may be
kept constantly full; or it may receive no additional
water, and then empty itself; the opening through
which it flows, instead of emitting the fluid into the
atmosphere, may pour it into a second reservoir, more
or less filled. These three cases give place to the
division of this section into three chapters.

CHAPTER FIRST.

ON THE FLOWING, WHEN THE RESERVOIR IS CON-
STANTLY FULL.

10. The opening through which the water flows is
made in the bottom, or one of the sides of the reser-
voir. In the latter position, (and this is of most fre-
quent occurrence, ) the surface of the fluid in the basin
may be kept above the upper edge of the opening,
which is then surmounted, and, as it were, bounded by
the fluid throughout its perimeter; in this case, it takes
more particularly the name of orifice. This orifice is

Definitions.
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either simply made in a thin side, that is to say, in a
side whose thickness is not half of the smallest dimen-
sion of the opening; or it is supplied with an ajutage,
or short tube, sometimes cylindrical, more often coni-
cal, converging towards the exterior of the basin, and
rarely diverging; an opening made in a very thick
side would evidently be equivalent to an orifice in a
thin side, with an ajutage. The surface of the fluid
may also be below the upper edge of the opening; this
edge is then as if it were not, and generally it does not
exist; the opening is no longer limited on the upper
part, and it takes the name of weir. The laws of
flowing, in this second case, as they present peculiar
circumstances, will be the object of a special article.
The third case is intermediate between the two preced-
ing, as when the fluid surface is kept at a very small
elevation above the orifice. We shall precede the three
articles, whose object we have just indicated, by an
article, in which we shall expose the general principles
of flowing, and the modifications which affect it from
the contraction which the fluid vein experiences in
passing through the different openings just mentioned.

The vertical distance or height of the fluid surface
in the reservoir above the centre of gravity of the
orifice, a distance sometimes elliptically designated by
the simple phrase height of the reservoir, is the head
of water on the orifice, or the head under which the
flowing takes place.
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ARTICLE FIRST.

General principles of flowing and modifications
due to contraction.

1. PRINCIPLES.

11. Let X be a vessel kept constantly full of water
up to AB. If on the horizontal faces CD and EF are
made the orifices M and N, the fluid will pass out in
the form of vertical jets, which will rise nearly to the
level AK of the water in the reservoir; they would
quite attain that level, if certain causes, to be investi-
gated in the sequel, opposed no obstacle.

Now, from the first principles of dynamics, in order
that a body thrown vertically may attain a certain
height, it is necessary that at its point of departure, it
receive a velocity equal to that which it would have
acquired by falling freely from the same height. Con-
sequently, since the fluid particles which pass from the
orifices M and N are raised to the respective heights
M G and N H on passing out, they must have been
impelled with velocities due to those heights, which are
the heights of the surface of the reservoir above the
orifices. In like manner, if on a vertical face FR an
opening O be made, we shall hereafter see (86) that,
according to the respective values of the lines OP and
PQ, the fluid passes out at O with a velocity due to
the height OK. It would pass out with a velocity due
to KR, if the orifice were opened on the bottom RT of
the vessel.

It will always be thus with these different orifices,
whatever be their magnitude compared to the transverse
section of the vessel, provided, however, that the fluid

2

Theorem
of
Torricelll.

Fig. 1.

Poisson
Mech.
§ 130.
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surface, preserving a constant level, remain even and
tranquil; a condition which could not be fulfilled, if
the size were very large, the water flowing out produc-
ing violent commotion in the vessel.

Generally, and making abstraction of every obstacle
or all cause of perturbation, the velocity of a fluid, at
its passage through an orifice made in the side of
a reservoir, is the same as a heavy body would
acquire in falling freely from the height comprised
between the level of the fiuid surface in the reservoir
and the centre of that orifice.

This theorem, known under the name of Toricelli's
theorem, was established and published by that cele-
brated philosopher in 1643, as a consequence of the laws
of the fall of heavy bodies; laws which had just been
discovered by his master, the illustrious Galileo.

If we designate by v the velocity of issue, and by H
the height or head of water in the reservoir, it will

give (8)
v=a/2gH.
General 12. We have just seen that water passing from the

Princlples. openings M and N did not quite attain the level of the

fluid in the reservoir. If to these openings we adapted
two perfectly equal tubes, the water would rise still
less high; but the diminution of height would follow
exactly the same ratio. For example: if the jet
which issues from the tube at M were only two thirds
of MG, that which would pass from the tube at N
would be only two thirds of NH. In general, let n be
the ratio between the height of the jet and that of the
reservoir for a tube of a certain form, H and H’ two
heights of the reservoir, and v and v’ the corresponding
velocities, we shall have

v=o/2gnH and v=a/2gnH’; whence

v:v 2 NH: VH;
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that is to say, the openings being of the same form, tke
velocities are always as the square roots of the
heads.

Experiments made by Mariotte, 150 years ago, and repeated a
hundred times since, leave no doubt as to this principle. I will
here give the results of some of them; this will fix the degree of
confidence with which the principle may be received; other de-
tails from the series of experiments which furnished these will
be given at No. 25. The first series was made by M. Castel and
myself; the second, by Bossut; the third and fourth, by Miche-
lotti, and the last, by MM. Poncelet and Lesbros.

It will be remarked, that the

< 2. . " SERIES OF
;neads were c:tmed in tge urlatlo of | D me l!::d 5. roots Dischar
 to 200 and more, and the sec- || 0 |6 e, | Heads. [foeition
tions of the orifices from 1 to “Tncbon | 1nches
500; and yet, in all, the veloci- || 03837 Hgf Lowo 1o
ties followed the ratio of the 1575 | 1241 | las
1969 | L3e8 | 13w
square roots of the heads; the 236 | 1519 | 1624
emall differences which m |7 FEEEERFES TR
. . . 106 | 4265 | 1.000 | 1.000
sometimes in excess, sometimes S50 | Lo | L
deficient, may be meglected;— (I...... 00 1. . P A S
.o . 318 | i6ri | i.000 | T1.000
small errors are inevitable in ‘ o | Las | 1a0
such experiments. Their direct ||. w5 | s.m .. 1000 . )m
object was the determination of 12008 | 1316 | 1315
the discharges; but it is evident ||squares. "1.512 "' "i.00 "| “1.000 "
— — 2297 | 1323 | 1.3%0
that when the orifice is the same, R | 2l | Ll | L0
. . . v 4285 | Lao3 | 1808
the discharge varies only with || 7.4in. | 5240 | 20000 | 2.000
the velocity, that it is exactly

proportional to it, and that the series of ratios of one is also the
series of ratios of the other.

18. The general principle that the velocities are as
the square roots of the heads, as well as the theorem
of Toricelli for cases where it is applicable, extends to
fluids of all kinds; to mercury, oil, and even aeriform
fluids. So that the velocity with which each of them
passes an orifice, is independent of its nature and of
its density; it depends only on the head; experience
proves it.

Answers for
flulds of all
kinds.
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Simple reasoning, also, can show that it must be
so. Take mercury, for example; the particles placed
before the orifice, and on which it is necessary to
impress a certain velocity, are, it is true, fourteen
times more dense than those of water, and therefore
they oppose fourteen times as much resistance to mo-
tion; but as the mass which presses and which produces
the velocity of passing out, (being fourteen times

_ greater,) exerts a motive effort fourteen times greater,

there is a compensation, and the impressed velocity
remains the same.

14. To the pressure which a fluid contained in a ves-
sel exerts by its weight on the orifice of exit, may be
added a foreign pressure, and the velocity of flowing is
augmented. What will be its increase and its definite
value?

Let P be the weight of body which produces the
pressure, and s the fluid surface or portion of the fluid
surface on which it immediately acts, namely, that
which is in contact with it; 4 the elevation of that sur-
face above the orifice, and p the weight of a cubic foot
of the fluid contained in the vessel. For the given
body substitute, in imagination, a column of that fluid,
which would have s for its base, and whose height A’
would be such that the weight of the column would be
equal to that of the body; we should thus have P—=psh’
from which to deduce %’; substituting thus one body
for another of equal weight, we should not change the
pressure experienced by the particles contained in the
vessel. Suppose, further, that after having withdrawn
the body, we add in the vessel (whose sides we may
suppose to be prolonged to an indefinite height) a
quantity of the same fluid as that already contained,
until its level has attained the summit of the column;
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according to the laws of hydrostatics, all the mass of
the fluid added would only produce a pressure equiva-
lent to that of a single column; so that the particles
situated before the orifice would experience a pressure
exactly equal to what they first experienced, and will
always tend to pass out with the same velocity. Now,
in the new state of things, the height of the reservoir
above the orifice, the height generating the velocity of
exit, is evidently 4’4, and consequently this velocity
will be
N2g (h+F)

Take, for example, a vessel closed on all sides and filled with
aleohol, whose specific gravity is 0.837; on the cover is a circular
opening of 1} inch diameter, in which is a piston loaded with
18+; the orifice of exit is 10 inches bencath that opening. To
determine the velocity with which the alcohol will run out. We
admit that the friction of the piston on the edges of the opening
is balanced by the weight of the piston itself.

We then have P=18=+=1.125""; s=.7854¢(1.25)*=1.227%"
=.0085%"; p==837X62.429=>52.271" and Ah=10"=.833":
for 4, the equation P=psk’or 1.125=>52.271X.0085 ¥, gives 2.5329",
Thus the alcohol will issue with a velocity of A/ zg(2.5329-4-.833)
=a/ 64.364X3.3659=14.718".

If the vessel were not kept constantly full, this velocity would
gradually diminish, and in such a manner as we shall see in the
following chapter.

15. After having given the expression of the veloci-
ty with which any fluid issues from an orifice, we pass
to the use made of it in determining the discharge.

We call the discharge of an orifice, the volume of
fluid which runs out of it in the unit of time, the
second.

If the mean velocity of all the fluid particles were
that due to the whole head, H, this velocity, which is
then called theoretic velocity, would be o/2gH; if, at

Theoretic
Discharge.
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the same time, the particles passed out from all points
of the orifice, and in parallel lines, it is evident that
the volume of water running out in one second would
be equal to the volume of a prism which had the orifice
for a base, and that velocity for its height; it would be,
calling S the area or section of the orifice,

S A/22H.

This is the theoretic discharge.

16. But the actual discharge is always less.

To give an accurate idea of the state of things, let
us consider the fluid vein a little after its passage from
the orifice, and let us cut it by a plane perpendicular
to its direction. It is manifest that the discharge will
be equivalent to the product of the section by the mean
velocity of the lines, at the instant of their crossing the
section: if this section were equal to that of the orifice,
and if this velocity be equal to that due to the head,
the actual discharge would be equal to the theoretic
discharge. But it happens, ecither that the section of
the vein is sensibly smaller than that of the orifice, as
in flowing through orifices in a thin side; or that the
velocity at the section is sensibly less than that due to
the head, as in cylindrical tubes; or even that there is
a diminution both in the section and in the velocity, as
in certain conical tubes. So that the actual discharge
will, in all these different cases, be less than the theo-
retic; and in order to reduce the theoretic to the actual,
it must be multiplied by a fraction. If m represent

that fraction, and Q the actual discharge, we shall
have

Q=m 8 ~/2gH.
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Designating by Q' the volume of water flowing in
any time T, we should also have

Q=m ST o/2gH.

Whether the diminution in the discharge proceed from
a diminution in the section of the vein, or from a di-
minution in the velocity, it is always a consequence of
the contraction which the vein experiences on passing
through the orifice; thus the multiplier m, or coeffi-
cient of reduction of the theoretic discharge to the
actual discharge, is commonly called tke coefficient of
the contraction of the fluid vein, or simply, coefficient
of contraction. Its determination is one of very great
importance: on its accuracy depends that of the results
obtained when the formula for the flow of fluids is ap-
plied to practice; it has also been the great object of
the experimental researches of hydraulicians. We will
make known the results to which they have arrived,
after making some preliminary observations.

2. ON CoNTRACTION AND ITS EFFECTS.

17. Take a transparent vessel, let water flow through
an orifice in its side, and make the motion of the parti-
cles of the fluid visible by mixing with them small
substances of a specific gravity about equal to that of
the water, such as saw-dust of certain kinds of wood;
or, better still, by introducing light chemical precipi-
tates, such, for example, as take place when drops of
the solution of nitrate of silver are poured into water
slightly salted; at a small distance from the orifice, say
from 1 inch to 1} inch for an orifice of } inch diameter,
the fluid particles directed from all parts towards the
orifice are seen to describe curved lines, and to termi-

Cause
of
Contraction.

Figs. 2and 3.
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nate by passing towards the orifice with a very accele-
rated motion, as towards a centre of attraction.

The convergence of the directions which they take
in the interior of the vessel, on the instant of their
arrival at the orifice, still continues for a little distance
after they have passed through it; so that the fluid
vein, at its passage from the orifice, is gradually con-
tracted up to a point where its particles, by the effect
of their reciprocal action, and of the motions impressed
upon them, take a parallel direction, or other directions.
The vein thus forms a kind of truncated pyramid or
cone, whose greater base is the orifice, and whose
smaller is the fluid section at the point of greatest
contraction—a section which is often called tAe section
of the contracted vein. This figure, and all the phe-
nomena of contraction, arc thus a consequence of the
convergence of the lines, when they arrive at the
orifice, or of the obliquity of the direction of some in
respect to others.

18. When the orifice is in a thin side, the contrac-
tion takes place below the plane of that orifice; it is
exterior; it is seen; its dimensions can be measured,
and they have actually been measured. We shall soon
tell what has been done in this respect; we shall here
simply remark, that in circular orifices, beyond the
section of the greatest contraction and up to a certain
distance, the vein continues in the form of a cylinder,
of which that section would be the base, and with a
velocity nearly that due to the height of the reservoir.
The discharge, then, will be the product of that section
by that velocity; so that the contraction will be limited
to reducing the section which is to enter into the
expression of the discharge. The flowing takes place
as if, for the real orifice, another had been substituted,



CONTRACTION OF THE VEIN. 17

of a diameter equal to that of the contracted section,
and as if there had been no contraction.

19. If to the orifice AB, a cylindrical tube ABCD
be fitted, the fluid lines will arrive at AB converging,
and consequently the fluid will be contracted at the
entrance of the tube. Experiments, to be given here-
after (44), will indicate that the contraction there is
equal to that which takes place in orifices with thin
sides; it would be only ¢nterior in relation to the mouth
of the outlet. Moreover, beyond the contracted sec-
tion, the attraction of the sides of the tube occasions a
dilation of the vein; the threads are carried against the
sides, they follow the sides, and pass out parallel to
each other and to the axis of the tube; so that the
section of the vein at its exit is quite equal to that of
the orifice, but the velocity is not that due to the head
of the reservoir. If the flowing were produced only
by the simple pressure of the fluid contained in the res-
ervoir, probably the velocity, at the section of greatest
contraction, would be that due to the head; then it
would diminish in proportion as the vein dilates, in
virtue of the law or axiom of hydraulics, when an
incompressible fluid in motion forms a continuous
mass, the velocity, at its different sections, i3 in the
inverse ratio of the area of the section; the diminu-
tion would cease when, the vein having attained the
sides, its section would become equal to that of the
orifice. Since m is the ratio of the section of greatest
contraction to that of the orifice, the velocity along the
sides, and consequently at the exit, would be ma/ ZgH;
and for the discharge, we should have SXma/2gH.

In orifices in a thin side, it was mSXa/2gH; thus
the discharge would be the same in both cases; the only
difference is, that in the latter, the diminution would
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have affected the factor S, and in the tubes, it would
have fallen on the factor A/2gH ; that is to say, on the
velocity. But the attractive action of the sides changes
this state of things; not only does it cause the lines to
deviate from their direction, but it also increases their
velocity ; so that the velocity of exit is greater than
ma/2gH; it will be m'a/2gH, m’' being a fraction
greater than m ; and the discharge will become SXm’
o/ 22H.

We see by this, that in cylindrical tubes and in aju-
tages generally, the effect of contraction is involved in
that of the attraction of the sides. Without being able
to assign what belongs to the first alone, we will remark,
that for every interior contraction, there is a corre-
sponding diminution of velocity, and every exterior con-
traction produces a diminution of section.

Formof thevein, 2(. Let us examine the form which contraction gives

the orifice being
circular.

to the fluid vein passing from an .orifice. Take first
the most simple case, that of a circular orifice in a thin
and plane side.

The direction as well as the velocity of the particles
at the different points of the orifice being symmetrical,
the contracted vein must also have a symmetrical form,
and consequently be a solid of revolution, a conoid. It
is so in fact, and observations about to be reported, give
it the form represented by A B b a (Fig. 4). Beyond
a b, the contraction ceases, and the vein continues under
a form sensibly cylindrical for a certain length, and
until it becomes entirely deformed, from the resistance
of the air and other causes.

In the first part of that length, it is full, clear, some-
times like a bar of the most beautiful crystal; then it
becomes disturbed, and, examined in a strong light, it
presents a series of swellings and contractions. From
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the very ingenious experiments of M. Savart, the
appearance of continuity of the disturbed part is only
an optical illusion, arising from the rapidity of the
motions ; this part consists of a series of distinct drops,
alternately large and small, leaving between each other
a space eight or ten times greater than their mean diam-
eter, the form of which, oscillating round that of a
sphere, is alternately an elongated and an oblate sphe-
roid.

The same philosopher observed, that the length of the clear
part, as well as that of the swellings in the disturbed part,
increased proportionally to the diameter of the orifice and the
head ; for the clear part, it was nearly 380 d A/A in metres, or
209 d A/ in feet. The formation of drops, that is to say, their
detachment from the clear part, is not, even in descending jets, an
effect of the acceleration of velocity due to gravity; for it takes
place equally in jets thrown upwards. It appeared to Savart to
be an immediate effect of the oscillation, which occurred in the
fluid of the reservoir, in consequence of which, the particles of the
Jet, being sometimes more and sometimes less pressed at their
exit from the orifice, moved with a velocity alternately greater and
less. I have discovered such alternations in most of the motions
of fluids which I have been enabled to observe ; I have seen them
also, in a very marked manner, during my experiments upon the
resistance which the air experiences in conduit pipes; I have
seen the air advance irregularly and as by undulations ; the waves,
as they spread, would accelerate and retard the velocity periodi-
cally.* .

M. Savart also showed the very singular influence of the waves
of sound on the liquid veins; for example, if the disturbed part
be received on the bottom of a vessel, there is heard a sound due
to the impulse of successive drops; if then a note be produced
on & violin in unison with this sound, the clear part of the jet is
immediately seen to become shortened, and sometimes even to
disappear entirely; the swellings of the troubled part become
bigger and shorter, and the space which separates them is greater.

* Annals des Mines, tom. III., p. 401. 1828,
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I refer to the paper of the author (*) for other effects of sonorous
undulations on fluid veins; I confine myself here to remarking,
that these undulations have no influence on the discharge.

~ 21. Toreturn to the commencement of the jet, to the
contracted vein properly so called, the conoid AB b a.
Attempts have been made to determine its respective di-
mensions, and particularly the ratio between the diame-
ters of the two bases, by direct measurements. Newton,
who discovered the phenomenon of contraction and its
effects on the discharge, and first attempted such an ad-
measurement ; he concluded that the ratio of the section
of the orifice to the contracted section was that of A/2 to
1; and consequently, that of the diameter was as 1 to
0.841; but we believe that theorctical considerations,
rather than a physical measurement, led him to adopt
that result. Since then, several philosophers have made
like measurements; thus AB being 1, Poleny found
for ab 0.79; Borda, 0.804; Michelotti, 0.792; Bos-
sut, from .812 to .817; Eytelwein, .80; Venturi, .798;
finally, Brunaci, .78. Nearly all these numbers, whose
mean term is .80, are very probably a little too large;
they were found by measurements taken with callipers;
if closed too much, the points were thrust into the
body of the stream and the disturbance indicated it;
but if too much open, the eye could not exactly appre-
ciate how much it was so; hence an error in excess
might be made, but not one in deficiency.

Michelotti the younger, took up this question, which
had already been treated by his father. Large jets
obtained under great heads, gave him the following
results :—

* De la constitution des velnes liquides lancés par des orifices circulaires ecn mince
parol, par M. Felix Savart. 1833,
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Dnllﬂm IN INCHES. Distance |Ratio of tho

'm“' :’:"“ —- - |, R‘“‘;)I from orifice| distance to |
b Feortr| At the ori- | At the con- N e 7| to contrac- | the contract-
fice. traction. eters.  tjon, In incs.|ed diamecter.

6.890 | 6.394 | 5.047 | 0.790 | 2.520 | 0.501
12,008 | 6.394 | 5.039| 0,788 | 2.520 | 0.500
7.349 | 3.197 | 2.511 | 0.786 | 1.260 | 0.500
12,502 | 3.197 | 2.504 | 0.783 1.210 | 0.492
22.179 | 3.197 | 24131 0.755 | 1.181 0.497

Abstracting the last number 0.755, which is entirely
anomalous, the mean ratio between the two diameters is
0.787. From what has been said, I think it may be
adopted, but only as a mean term; for, as we shall soon
see, (26,) this ratio experiences variations, slight, to be
sure, which depend upon the heads and the diameters
of the orifices. The length of the contracted vein should
be about half the diameter of the smallest section, or
0.39 of the diameter of the orifice. ~According to these
experiments, the three principal dimensions, AB, a b
and CD, of the contracted vein, would be respectively
as the numbers 100, 79 and 39.

Eytelwein, chiefly increasing the last dimension, one
very difficult to determine with accuracy, takes the
numbers 10, 8 and 5; this ratio is quite generally
admitted. As to the curves Aa and Bb, Michelotti
refers them to a cycloid. In conclusion, the form of
the fluid vein, at its passage from a circular orifice, has
some resemblance to the bell-shaped end of a hunting
horn.

22. The ratio between the diameters being 0.787, ey
that between the sections will be the square of 0.787, ' Diecharse-
or 0.619; thus, if s is the section of the contracted vein
and S that of the orifice, we shall have s=0.619 S.
From the explanations made, (16 and 18,) the dis-
charge will be sa/2gH, or 0.619 S &/2gH. So that
m, or the coefficient of contraction given by physical
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measurements of the vein, will be at a mean 0.619;
and the measurements of the discharge indicate nearly
the same (25).

If the velocity due to the head of the reservoir were really the
velocity at the passage of the contracted section, and the flowing
were produced through a tube which had exactly the form of the
contracted vein, by introducing into the expression of the dis-
charge, the exterior orifice of that tube or s, the calculated dis-
charge would be equal to the real discharge, and the coeficient
for reducing one to the other would be 1. Michelotti, in one of his
experiments, by employing a cycloidal tube, found it 0.984 ; it is
probable that it would have come up to 1, if the sides of the
tube had been more exactly bent to the curvature of the fluid
vein ; and if the resistance of the sides, as well as that of the air,
had not slightly retarded the motion.

23. Orifices, whose perimeter is a polygon, or any
figure other than a circle, do not present a form so sim-
ple, or leading to the same consequences.

The different parts of the orifices not being symmet-
rical, the fluid vein does not preserve the form which it
had on coming out, and it changes from it continually
as it removes from it. At its exit, the faces correspond-
ing to the rectilinear sides of the orifice become more
and more concave; the edges corresponding to the
angles become truncated and terminate by disappearing.
Thus Poncelet and Lesbros, having drawn, by aid of
very exact means, the form of a vein which passed from
a square orifice ACEG, whose sides were T} inches
under a head of 5] feet, had, at the distance of 5.9
inches from the orifice, the section a ¢ e g; and at 11.81
inches, the section &’ &' f* A'.*

* Expériences hydrauliques sur les lois de 1'écoulemont des caux & traverse les
orifices rectangulalres verticeaux et & grandes dimensions, par M. M. Poncelet et Les-
bros, Capitaines du génie—1832. Pag. 120 ot sulvantes.
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This last, one of the nine sections observed, was the
smallest ; its area was to that of the orifice in the ratio
of 0.562 to 1, whilst that of the actual discharge to
the theoretic discharge was found to be 0.605; they
would have been equal, if the velocity of that smallest
section had been due to the head of the reservoir.

24. Although the fluid particles at & ¢ &, &c., on
this section, are those which came out at the points
BCD, &c., of the orifice, and in removing from the res-
ervoir have always remained on the line of intersection
of the vein with the planes passing through its axis and
those points respectively, it is nevertheless true, that
the section &’ d f’ /' is a kind of square, the vertex of
whose angles corresponds to the middle of the sides of
the square of the orifice; and that the vein appears to
have made an eighth of a revolution around its axis.

A phenomenon of this nature is produced on all the
veins which come out of an orifice not circular; it is
called the reversing of the vein. It is accompanied
by very remarkable circumstances, which I will state in
referring to the results of one of the numerous experi-
ments of Bidone on this subject.*

The orifice was a regular pentagon A of 0.551 inches each side,
made in a thih vertical plate of copper; (the figure representing
it, with its accessories, is one quarter of the natural size) ; the
flowing took place under a head of 6.463 feet. At the distance
of 0.472 inches, the section perpendicular to the axis of the vein
was a quite regular decagon. At 1.181 inches was the greatest
contraction or first knot. Beyond, the vein entirely changed its
form ; it presented five fluid plates, disposed symmetrically around
the axis, as is seen in the section B, made 3.74 inches from the
orifice ; the planes of the blades passed through the centres of
the sides of the orifice. Their breadth continued to increase up

* Expéricnces sur 1a forme et la direction des veines et courants d‘eau lancés
par diverses overtures, de George Bidone. Turin, 1829,

Reversing of
the vein.

Fig. 8.
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to the belly of the vein represented at C. Then it diminished,
and the blades united anew in a second knot, at 2 feet 10 inches
from the orifice. Beyond, the vein was twisted and irregular.

For the rectilinear pentagon of the orifice, were successively
substituted pentagons with convex and concave sides, sides pre-
senting salient and re-entering angles like the star D, and the
vein always preserves the same form, the same five blades.

With orifices of 6 and 8 sides, we had 6 and 8 blades ; and the
reversing of the vein was a 12th and 16th of the circumference.
When the opening was a rectangle, narrow and very long in the
horizontal direction, at a certain distance, the vein consisted only
of a broad vertical blade ; the reversing scemed complete.

Often, beyond the second knot, the vein dilates again and di-
vides a second time into the same number of blades ; but their
plane does not correspond to the middle of the sides of the
orifice, but to the vertex of the angles ; that is to say, the vein is
again turned an equal quantity ; or rather it returns to its place.
The blades increase in breadth up to the second belly and dimin-
ish again to form a third knot, beyond which sometimes there is
still a new dilation, a third belly and a fourth knot. Eytelwein
produced similar series of knots and swells with orifices of
different forms; he represented them in his German transla-
tion of Sperimenti idraulici of Michelotti, p. 19 et pl. iv.—
1808.

There are also hollow veins, &c.; but the examination of all
these forms, as well as of the causes which may produce them,
do not come in the province of this treatise; and I refer to the
very interesting paper of Bidone for these particulars. I limit
myself to the following observations. The first and principal
cause of the forms and reversing of the veins is the oblique direc-
tion with which the different fluid lines arrive at the orifice of
exit, a direction which has a tendency to continue beyond. The
action of these lines on the form is stronger and more influential,
the more acute the angles from which they issue ; those from the
acute angles compress the vein in some sort more strongly than
the rest, and consequently, the blades are formed on the parts
intermediate to those where they exert their action. Then the
resistance of the air and the mutual attraction of the particles
contribute to shrink up the blades and to the formation of the
second knot.
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- The obliquity of the fluid lines, in respect to each other, on
their arrival at and passage through the orifice, also produced an
effect which I ought to mention. As long as the obliquity is
equal on all parts, the axis of the vein, which is in the direction
of the resultant of the reciprocal action of the filets, remains per-
pendicular to the plane of the orifice ; but if the obliquity is de-
stroyed on one of the sides, for example, by the aid of a board
tangent to the side, and which passes into the interior of the res-
ervoir, perpendicular to the plane, the oblique impulse of the
lines which arrive on the other sides, not being counterbalanced
on that side, will carry the vein over, and its axis will no longer
be that of the orifice.

ARTICLE SECOND.
On flowing through Orifices.

We have distinguished four kinds of orifices; those
in a thin side, cylindrical tubes, conical converging and
conical diverging tubes. Let us examine the principal
circumstances of the motion through each of them, par-
+ ticularly in what concerns their discharge.

1. ORIFICES IN A THIN PARTITION.

25. We come to the direct determination of the
coefficient of reduction, from the theoretic to the actual
discharge.

We will measure with care the volume of water
passing from a given orifice, under a constant head, and
during a certain time; and we shall derive from it the
product of the flow in one second or the actual dis-
charge; we will divide it by the theoretic discharge
corresponding to that orifice and to that head, and the
quotient will be the coefficient sought.

4

Determination
of the
coefficient

contraction.
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Many hydraulicians have applied themselves to this
investigation; I give, in the following table, the prin-
cipal results obtained up to the present time; those
which appear to have been made under the most favor-
able circumstances or which were generally admitted.

CIRCULAR ORIFICES. SQUARE ORIFICES,
Side of]|
, | Coefti- N -
Observers. e:{;‘fn };{ne?'e Slen‘a Observers. Bquare l’i:‘rg g“";?
Mariotti, | 0.268| 5.873/0.692 || Castel, 0.394] 0.164| 0.655
Do. 0.268/25.920/0.692 || Bossut, 1.063|12.500| 0.616
Castel, 0.394{ 2.1330.673 || Michelotti,| 1.063|12.500| 0.607
Do. 0.394) 1.017/0.654 Do. 1,063/22.409| 0.606
Do. 0.590| 0.453/0.632 | Bossut, 2.126/12.500| 0.618
Do. 0. 0.98410.617 || Michelotti,| 2.126| 7.349] 0.603
Eytelwein, | 1.027| 2.372/0.618 Do. 2.126{12.566| 0.603
Bossut, 1.067| 4.265{0.619 Do. 2.126(22.245| 0.602
Michelotti,| 1.067| 7.317/0.618 Do. 3.228| 7.415| 0.616
Castel, 1.181| 0.223/0.629 Do. 3.189|12.566/ 0.619
Venturi, 1.614| 2.88710.622 Do. 3.189!22.376| 0.616
Bossut, 2.126(12.50010.618
Michelotti,| 2.126/ 7.218/0.607 || RecTaxcULAR ORIFICES (Bidone).
Do. 3.189| 7.349(0.613
Do. 3.189(12.500(0.612 RECTANGLE.
Do | T ein | B | o
[ . . . jinfncs.| clen
Do. | 6.378[12.008/0.619 || ‘'oches. |inincs.
0.362 0.728| 13 | 0.620
0.362 1.457| 13 | 0.620
0.362 2.909| 13 | 0.621
0.362 5.818| 13 | 0.628

The most remarkable of all these experiments, as well for the
great size of the jets as for the greatness of the head, are those
which Michelotti executed in 1764, at the fine hydraulic establish-
ment constructed for that purpose at about two miles from Turin ;
the reservoir consisted of a tower twenty-six feet three inches
high, whose interior, which is a square of 3.182 feet per side,
receives through a canal the waters of the Doire. On one of the
faces were fitted, at the different heights, the orifices or tubes
which were thought proper ; arrangements were made to receive
them, and on the ground, which is at the base, were several meas-
uring basins.* These experiments were repeated in 1784 by
Michelotti the younger, and they are the last introduced into the

¢ Speriment idraulici, etc., de F. D. Michelotti. Turino, 1767 et 1771.
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table. I shall remark, on this subject, that the coefficients ob-
tained with the great orifices were larger than the rest, and that,
contrary to the rule deduced from the observations collectively ;
some peculiar circumstances must have produced this anomaly.
The results given by Bossut are generally greater than those of
Michelotti, and seem to be erroneous by excess.

As to the experiments which M. Castel and myself made at
Toulouse, notwithstanding all our pains bestowed upon them,
the smallness of the orifices does not permit us to vouch for the
determined coefficients to within hundredths. We were princi-
pally engaged with the orifice of 0*01=0.394 inch, as being, in
some respects, the point of departure in the distribution of water
made according to the metrical system of weights and mcasures.

26. The experiments just reported and those made
by other authors, by M. Hachette in particular, have
shown that the coefficient of contraction is generally
greater for small orifices and small heads; but they
furnished only vague and almost contradictory notions
in this respect. It would have been impossible to
deduce from them the series of coefficients from great
orifices to the smallest and from great heads to the
smallest; this deficiency has recently been supplied by
MM. Poncelet and Lesbros. They made, in 1826 and
1827, at Metz, a series of experiments on a very great
scale, and with care and means which had not before
been employed.

They appear to me to have nearly solved the great and
useful problem of the contraction of the vein in a thin
partition, perhaps as nearly as the nature of the subject
admits; and in & manner, if not entirely theoretical, at
least, very suitable to applications.*

In these experiments, the orifices were rectangular, and all of
02=7.874 inches base; the heights were successively 7.874

¢ Expériences hydrauliques, etc.

Experiments
of
MM. Poncelet
and
Lesbros.
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inches, 3.937 inches, 1.968 inches, 1.18 inches, 0.787 inch,
0.394 inch; the heads varied from 0.394 inch to 5.577 feet.
For each of these orifices, the discharge was measured, with sev-
cral repetitions, under seven or ten heads, of which the two
extremes were taken, the one nearly as small and the other as
large as the apparatus allowed; and the corresponding coeffi-
cients were calculated.

Taking, then, the heads for abscissas and their cocfficients for
ordinates, the curve relating to that orifice was traced; and by
its aid, they determined the ordinates or coefficients intermediate
to those directly given by experiment. In this manner, the
authors wero enabled to arrange a large table of coefficients for
cach orifice, from which I extract the following:

HEAD | HEIGHT OF ORIFICES (base of each 7.874 Inches).

ol Cn f —— - - e - = - H
Contee. | 7BT4 3937 1068 | 1181|787 | 304
Er 0709
787 0.660 | 0.698
1.181 0.638 | 0.660 | 0.691
1.575 0.612 | 0.640 | 0.659 | 0.685
1.968 0.617 | 0.640 | 0.659 | 0.682
2.362 0.590 | 0.622 | 0.640 | 0.658 | 0.678
3.150 0.600 | 0.626 [ 0.G39 | 0.657 | 0.671
3.937 0.605 | 0.628 | 0.638 | 0.655 | 0.667
4.725 | 0572 | 0.609 | 0:G30 | 0.637 | 0.654 | 0.664 |
5006 | 0-585 | 0.611 | 0.631 | 0.635 | 0.653 | 0.660
7.874 | 0592 | 0.613 | 0.634 | 0.634 | 0.650 | 0.655
11.811 | 0.598 |70.616 | 0.632 | 0.632 | 0.645 | 0.650
15.748 | 0.600 | 0.617 | 0.631 | 0.631 | 0.642 | 0.647

Feet.
1.640 | 0.602 | 0.617 | 0.631 | 0.630 | 0.640 | 0.643
2.297 | 0.604 | 0.616 | 0.620 | 0.629 | 0.637 | 0.638
3.281 | 0.605 | 0.615 | 0.627 | 0.627 | 0.632 | 0.627
4.265 1 0.604 | 0.613 | 0.623 | 0.623 | 0.625 | 0.621
5.250 | 0.602 | 0.611 | 0.619 | 0.619 | 0.618 0.616
6.582 | 0.601 | 0.607 | 0.613 | 0.613 | 0.613 | 0.613
9843 | 0.601 | 0.603 | 0.606 | 0.607 | 0.608 | 0.609

All the numbers in this table are the respective values of m in
the formula Q=mS A/2gII. But those which in each column
are found above the transverse line, are not the true cocflicients
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of reduction from the theoretic to the actual discharge, as we shall
see in a following article. (64)

Glancing over the numbers of each column, we see that they
increase as the head increases, but only up to a certain point,
beyond which they diminish, although the head still augments.
However, in small orifices, those below 1.181 inches, the increas-
ing part of the series is very limited; and even in very small
ones it is nothing. We see also that the terms of the decreasing
part of all the series approach equality in proportion as the head
increases in value.

27. Although the coefficients in the table above are ™pame coe-
deduced from experiments made on rectangular orifices, for ail forms of
they may serve for all others, whatever be their form; orifest
the height of the rectangle noted in the table will
express the smallest dimension of the orifice which
should be used. For it is generally admitted, that the
discharge is entirely independent of the figure of the
orifice, and that it always remains the same, while the
area of the opening is unchanged ; always provided, in
accordance with an observation made by M. Hachette,
that this figure presents no reéntrant angles.

28. Although some of the orifices on which Poncelet ®speriments -
and Lesbros made their experiments are very large, Stulce Gates.
still there are those which discharge twenty or thirty
times as much water; such are the openings of sluice
gates in canals of navigation, and it was important to
establish directly the coefficient of their discharge. In
1782, Lespinasse, a skilful engineer, made for this pur-
pose several experiments on the canal of Languedoc,
to which, ten years after, Pin, engineer of the same
canal, added some others.* The principal results of
these, like the former, are placed in the following table.

* Anclens Mémoires de 1'Académic des Scl de Toulouse. Tom. II. 1784.—
Historle du canal du Midi ou Languedoc, par l¢ général André . Tom. 1., pag. 251.
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The breadth of the opening is nearly 4.265 feet; the
form not being exactly a rectangle, the heights are to
be regarded as only approximate.

OPENINGS, Head on | Discharge
Aren. | Helght [the centre.| 1none |Coefficlent,
“sq. fect. | feet. feet. | cubic feet.

7.745 | 1.805 | 14.554 (145.292 613
6.992 | 1.640 | 6.631 | 92.635 .641
6.992 | 1.640 | 6.247 | 88.221 .629
6.466 | 1.509 | 12.878 {138.937 .641
6.723 | 1.575 | 13.586 |128.764 .647
6.723 | 1.575 | 6.394 | 83.948 .616
6.723 | 1.575 | 6.217 | 79.857 594
6.717 | 1.575 | 6.480 | 85.219 .621
Mean term, . .625

This mean coefficient, exactly equal to that obtained from an
experiment made on a sluice of the basin of Havre* is a little
greater than that indicated by the table of M. Poncelet (26);
probably the cause of it is, that on all the perimeter of the open-
ing, the flowing did not occur as in a thin side, and that on
some point, the contraction was suppressed. It may be remarked
on this subject, that the wood work which surrounded this orifice
was 0.27==.886 ft. thick, and even 0.54*=1.772 feet thick on
the lower edge. Also, when the gate was raised only a small
quantity, the contraction ceased on the four sides and the coeffi-
cient increased considerably. For example, Lespinasse having
raised the gate only 0.12°=.394 ft., had for a coefficient .803,
while with 1.509 feet opening, he had a coefficient of only .641.

29. The experiments of this engineer presented a
very remarkable fact, of which no mention was made,

and which redippeared in those of Pin.

A sluice gate

had two parts, and each had an opening in it; if, while
the water was flowing through one, the second was open-
ed, the discharge of the first was diminished; if both

¢ Architecture hydraulique, par Bélidor et Navier. Tom. 1., pag. 289.
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were opened together, the discharge was not double of
the two taken separately, although each had the same
area and head. The difference is about one eighth, as
may be seen by the following comparison of the coeffi-
cients of reduction, for the two cases.

The interval between the two open- | ~orrriciEnt |
ings is 2™.92=9.58", and their plane ||ith one with two
forms an angle of 60° with the direc- ||~ 51 70550
tion of the canal. 0.689 | 0.555

80. But it is very worthy of remark, 8:2(12 g:gg‘é
that this fact, which appeared positive || 0.621 | 0.555
for the sluices of the canals, did mnot || 600 [T0.548
take place at all in a series of experi- —————
ments which M. Castel and I made on a small scale,
but with very great care, for the purpose of verifying
it. We had, side by side, three rectangular orifices of
.328" base by .033 height, and separated by an inter-
val of only .033". We measured the water passing the
middle orifice first, keeping the two side orifices closed,
then opening one and finally opening both; the mean
results are given in the following table: —

DISCHARGE FROX MIDDLE ORIFICE.

Head on the Middle ori- | Middle ori-
orce. | B |5 AL A e coemetnt.
open. fice, open. ifices, open.
feet. cubic feet. | cublc feet. | cubic feet.
.0656 | .01607 | .01606 | .01614 0.728
.0984 | .01946 | .01946 | .01942 0.720
JA312 | .02242 | .02246 | .02250 0.719
.1640 | .02497 | .02497 0.715
1969 | .02723 | .02716 0.710

Supposing that these unexpected coefficients might
have been influenced by the very small interval from
one orifice to the other, we increased the interval five
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fold, that is, from .394 inch to 1.968 inches, and the
coefficients remained the same.

31. Surprised at the difference between our results
and those found on the canal of Languedoc, and fearing
that it arose from the particular form of our orifices
and apparatus, I requested M. Castel to make new
experiments; and in 1836 he had the kindness to per-
form a series, by the aid of the great apparatus which
he had just been using for his great work on wiers (No.
72 and seq.). He dammed up a canal 0™.74=2.428 feet
broad, with a thin copper plate, in which he opened, on
the same horizontal strip, three rectangular orifices,
each 3.94 inches wide by 2.86 inches high, and sep-
arated from each other by an interval of 8.15 inches.
The flowing took place under a constant head of 4.218
inches above their centre, and the coefficients of con-
traction were as follows:

for the middle .6198
One orifice open “  right .6193
“ o left .6194

the two outsides 6205
Two orifices open { middle and right  .6205
o Jeft .6207

The three orifices all open .6230

Here, in proportion as the orifices were open, in-
stead of a diminution in the coefficients, there was an
increase, very small, to be sure. As it depended on a
particular cause, a greater velocity of water in the
canal, in consequence of a greater discharge (See Nos.
88 to 79), we shall make deduction of that, and con-
clude that, when in the dam of a reservoir or course of
water, new orifices are opened by the side of an orifice



THROUGH ORIFICES IN A THIN SIDE. 38

already existing, the discharge through that orifice is
not diminished by it.*

* Some persons thought that such a consequence would
not extend to the case when two orifices were situated in
planes making a certain angle, as in the openings of the sluice
gates. M. Castel has just solved this question. He took two plates
Joined at an angle of 120° (that of sluice gates is generally from
10° to 20° more open) ; in each he made two rectangular orifices
of 3.94 inches wide by 2.36 inches high; one 4.72 inches and
the other 11.02 inches distant from the angle that joined them ;
he fitted this partition to the extremity of his canal, and let the
water flow under a head of (0=14=>5.51 inches. He first opened
successively each of the four orifices; then two at a time, dif-
ferently combined ; then three differently combined, and final-
ly four. The following table presents the mean results ob-
tained.

- That given in the second line was obtained [

. . N No. orifi-{ Coeffi-
by the two extreme orifices, which were dis-|| ces. | clent.

posed like those of the sluice of the canal of|| 1 | .618
Languedoc. 2 | 619
As a last objection, it was said that the i 620

heads at the sluice of the canal of Languedoc| _—_ (_522_
were from 2==6} feet to 4°=13 feet. To obtain an analogous
case, M. Castel adapted to the experimental apparatus cited in
article 49, two orifices of 1.97 inches wide by 1.18 inches high,
and had the following results.

It is always the same coeflicient, with l No. orle1 Coeffi-
the insignificant increase due to the | e | fce. | clent

number of orifices open. 1§ 1 | .621
These experiments, often repeated, 381947 2 g?g

with apparatus free from every excep- ||6.693™ ; ‘621

tionable circumstance, and where any ;

sensible error was impossible, by the most accurate and consci-
entious observer, induce me, if not to call in doubt the facts an-
nounced in No. 29, at least to regard them as anomalous, and to
reject the general consequence which I had drawn from them.
[15th November, 1838.]
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32. In the different cases hitherto investigated, it is
admitted that the fluid of the reservoir arrives equally
at all parts of the orifice, but often it is not so; for
example, when the orifice is at the bottom of a vertical
side, and its lower edge is in the plane of the bottom of
the reservoir, the contraction is then destroyed on that
side, and consequently, the discharge is greater. What
will be the increase in discharge for a certain length of
suppression in the contraction? This question has
recently been nearly solved by M. Bidone, by the aid
of numerous experiments made for that purpose at the
water-works of Turin.*

The orifices were made in thin vertical copper-plates;
on their interior surface were fixed, perpendicular to
their plane, small plates, on a level with certain
sides of the orifice; as it were, the prolonging of these
sides into the interior of the reservoir. During the
flowing, the water running along the plates passed
through the adjacent sides without any contraction,
while a contraction occurred on the other sides. The
form and size of these orifices were various. I shall
limit myself to giving the results of experiments with
a rectangular orifice of 0"054=2} inches base and 1.06
inches in height; the plates adapted to them, sometimes
on one side and sometimes on two or three, were 2.638
inches long; they thus extended that length into the
reservoir. The flowing having been produced under
heads varying from 6.562 feet to 22.573 feet, we have
the following coefficients :

¢ Recherches expérl et théoriques sur les contractions partielles des
veines d'eau, etc., par George Bidone. Turin, 1838.
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The contraction Part of ori-|

being suppressed on g::‘:‘lcﬂtllz:f Coefliclent. Ratio.
Neither side 0 .608 1.000
a small ¢ .620 1.020
a great ¢ 637 1.049
a great and a small .659 1.085
two small and one great .680 1.119
two great and one small .692 1.139

M. Bidone, taking the mean result of all the experi-
ments made on rectangular orifices, admits for the num-
bers of the last column, which indicates the increase
of the coefficient and consequently of the discharge,
that for the orifice entirely free being taken for unity,
the general expression 1+-0.152%, in which 7 represents
the length of the part of the perimeter when the con-
traction is suppressed, and p the length of the whole
perimeter. The greatest error which this formula gave
M. Bidone being only %, we may adopt for the value of
the discharge in rectangular orifices when there is no
contraction on a part of the perimeter,

mSa/2gH (1+0.152}).

The same author also made experiments on circular
orifices. He took one of 1.575 inches diameter, and
by the aid of curved cylindrical plates, he destroyed the
contraction, first, on an eighth of the circumference;
then successively on 2, 8, 4, 5, 6 and T eighths. I
indicate the results obtained in the following table.

We see here that the numbers [— —~ —-
of the last column increase a lit- || 7 | cient | Ratio.
tle less rapidly than in the case || 0 0.597 | 1.000
of the rectangular orifices, so 82‘1)2 %g%}?
that the general expression from 0.625 | 1.048
these numbers would be only 8@3 %357;-?
14-0.128 5- 0.664 | 1.112

M. Bidone, after having cir- || 0.670 | 1.123
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cumscribed seven-eighths of his circular orifice, wished
to circumscribe it entirely; and for this purpose, he
fitted to the orifice a cylindrical tube of 0™04=1.575
inches diameter, which ran 0™067=2.638 inches into
the interior of the reservoir; he had 0.767 for the co-
efficient, and consequently, 1.285 for the number of the
last column. The expression above would have given
1.128 —a number in which the increase is not even
half of that really obtained. Whence we conclude,
that the phenomena of flowing through interior tubes,
the case where the contraction is entirely suppressed at
the edges of the exterior orifice, is no longer of the
same kind as that where it is destroyed only in part,
however great that part may be; there is no passing
from one case to the other.

orficesn sides  33. We have always supposed the sides in which the

not plane.

Fig. 1.

orifices were, to be plane, but they may be of another
form. To give an idea of the effect which may result
upon the product of the flowing, it is necessary to
remember, that if the fluid lines arrive at the orifice
parallel to each other, the actual discharge would be
equal to the theoretic discharge, and that it is less only
in consequence of the obliquity with which they unite,
from which obliquity necessarily results, at the point of
contact, the destruction of a part of the motion acquir-
ed. - This being established, if around the orifice we
imagine a spherical surface or cap, of a radius equal to
that of the sphere of activity of the orifice, and limited
by the sides of the vessel, it would be traversed at each
of its points, and in a direction nearly perpendicular, by
the arriving lines ; the more extended the spherical cap,
the more oblique will be their directions, and the more
opposed to each other; and consequently, the more will
their motion be destroyed at the orifice, and the less
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considerable the discharge. When the side is plane,
the cap is the surface of a hemisphere (Fig. 8), and is
found in the case to which belong the coefficients of
discharge given above (26). But if it is disposed in
the form of a funnel, or if it is simply concave towards
the interior of the vessel, then the cap is smaller and
the discharge greater, without, however, exactly follow-
ing the ratio of the spherical surface. If, on the con-
trary, the side is convex, the product is less; it will be
smaller still in the case represented at Fig. 7. Finally,
it would be a minimum, if the cap became an entire
sphere ; and this would happen, if it were possible to
transport an orifice to the middle of the fluid mass
incloged in the vessel.

34. Borda succeeded in almost entirely realizing this
case. He introduced into a vessel a tin tube 0™135
=4.43 feet long and 0™032=.105 feet diameter;
and under a head of 0.820 feet, he caused the flow-
ing to take place in such a manner that the effluent
water in no way touched the sides of the tubes; the
actual discharge was only 0.515 of the theoretical dis-
charge, and several considerations led Borda to admit
that it might have been reduced to .50.%*

Having afterwards surrounded the orifice of entrance
of the tube with a large border, thus putting it, although
in the middle of the fluid, into the same circumstances
as when it is perforated through a thin side of a vessel,
the coefficient was raised to 0.625. He might have
obtained the same result by employing simply a tube
with very thick sides.

If the sides of the tube had a sensible thickness, with-
out being too considerable, 0.394 inch or even 0.788

¢ Mémolires de I'Académie des Scl de Paris. Année 1768.

Fig. 3.

Interior Tubes.

Fig. 8.
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inch, for example, and were also cut quite square off
at the extremity, so that the zone formed by the thick-
ness should be plane, with sharp edges, the fluid wind-
ing round the exterior edge would enter the tube with-
out touching the rest of the zone (Fig. 8 a); so that
every part of the side inside of the exterior surface
would be without effect, and the flowing would take
place as if that surface alone existed. This, therefore,
will be its diameter; that is to say, the exterior diame-
ter of the tube, which must be introduced into calcula-
tions relating to interior tubes. By taking this, Bidone
found, by two experiments, that the action of the vein
running in the tubes without touching the interior, was
very nearly half the section of the tube, and that the
coefficient of contraction was nearly 0.50.

85. Thus 0.50 and 1 (22) will be the limits of the
coefficients of contraction ; limits which may be ap-
proached very nearly, but never quite attained. For
orifices in a plane side, they seldom descend below .60 or
rise above .70 ; and even in ordinary practice, they are
confined between .60 and .64 ; as a mean approximate
term, .62 is usually taken, and we have—

In Metres, Q=0.62 SA/2gH=2.75 SA/H=216d24/H; or,
In Feet, Q=0.62 SA/2gH=4.974 SA/11=3.906642 o/,

d being the diameter of a circular orifice. But, when-
ever accuracy is required, we should have recourse to
the coefficient of No. 26.

36. In the velocity with which water flows from ori-
fices in a thin side, as we have admitted exactly that
due to the head of the reservoir, is it o/2g11? We
will examine it.

We may ascertain the velocity with which water runs
from an orifice, by the height to which a vertical jet,
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starting from that orifice, is thrown; it is at least \/2g4,
A being that height. Now, from what will be seen in the
chapter on spouting fluids, h differs from H only 1, 2,
3, &c. hundredths of the square of its value, according
as H is 17, 22 3™, &c.; and the velocities being as the
square roots of the heights, the actual velocities will
differ in the same cases only 1, 2, 3, &c. half-hundredths
of the theoretic velocity. Another mode of determin-
ing the actual velocity indicates still less difference.
I will present it, before making an application of it. -

87. When a body is thrown in any direction AY,
with a certain velocity, by the combined influence of
that velocity and of gravity, it describes a curve AMB;
if the velocity, and consequently the resistance of the
air, is not very great, that curve is a parabola.

The demonstration of this fact being found in all treatises of
mechanics and physics, I shall not dwell upon it, but confine
myself to what concerns the fundamental principle which we are
to employ. Let v be the velocity with which a body is impelled
along AY, and ¢ the time spent in arriving at N, in this direc-
tion, if the force of projection acted alone upon it; the motion
would then have been uniform, and we should have had AN=wt;
on the other hand, had the body been subjected to the action of
gravity alone, it would have descended from A to P during the
same time, so that we should have had AP=’7" (8). Draw the
parallelogram APMN ; at the end of the same time, it really will
arrive at M, and will have described the arc AM ; AP will be its
abscissa, and MP parallel to the axis AY, will be its ordinate.
Call the first of these lines x and the second y, we shall have
:=’f and y=uvz; in this latter equation, taking the value of ¢,
and substituting it in the first, we have x=%; or y="2%; or,
calling 4 the height due to the velocity v, and recollecting that
;;=h, y*=4 hz; an equation of a parabola of which 44 is the
parameter. Hence the theorem, that a heavy body, impelled by any
Sforce of projection, describes a parabola whose parameter is four times
the height due to the velocity of projection.

Fig. 9.
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What we have just said of a body in general is
applicable also to every jet of water issuing from an
orifice. If this orifice is in a vertical side, the axis of
projection being horizontal, the ordinates will be hori-
zontal; they will be the distances of the different points
of the jet from the vertical, let down from the centre
of the orifice; and if through any point ¢ of that ver-
tical, we imagine a horizontal plane, the distance CD
is called the reach of the jet on that plane. Accord-
ing to our theorem, the square of this range, or in
general of a distance MP, divided by four times its
corresponding perpendicular AP, will give the height
due to the velocity of exit (A=[); and consequently,

we shall have for this velocity, v=n/2g~=2.215 /;

in metres, or 4.0118 = in feet.

By following this mode of determination, Bossut, in
two experiments, found 0.974 and 0.980 for the ratio
of the actual to the theoretic velocity. Michelotti hav-
ing caused jets to issue from each of the three stories
of the tower of his hydraulic establishment (25),
through a vertical orifice, 0.889 feet diameter, obtained
the results given in the following table: —

JET. | VELOCITY.
HEAD. | jpscisen. | Range. Real. | Theoretic. | RATIO. |
feet. feet. feet. feet. feet.
7.513 20.615 | 24.706 | 21.819 | 21.983 993
12.894 15.289 | 27.724 | 28.446 | 28.807 .988
4.626 | 20.506 | 38.289 | 38.978 .  .983

23.590

The difference between the two velocities increases
with the head. It should be so, since the cause of this
difference, the resistance of the air, increases as the
square of the velocity, and consequently, nearly as the
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head. Without this cause, the difference would have
been almost nothing. Consequently, there are grounds
for concluding that, in the flowing (of water) through
orifices in a thin side, the velocity of exit is mearly
that due to the height of the reservoir, and it is not
sensibly diminished by contraction.

38. If the water contained in the reservoir, instead Case. :Ifn:h: fluld
of being at rest, were animated with a velocity which anacquirea
carried it towards the orifice; for example, if the basin "
having a small section, were fed by a course of water
which came directly to the side on which the orifice is
open, the fluid particles would go out, not only in vir-
tue of the pressure exerted by the fluid mass above, but
also in virtue of the velocity which they had at the
moment of entering the sphere of activity of the ori-
fice; we should thus have to add to the head measuring
the pressure, a new force, which will be the head gene-
rating that velocity. Thus, if « represent that veloci-
ty, we shall have

Q=m8«2g (h+)=m8 & 2gh+u".

Example. There is a basin 65.62 feet long, 6.562 feet broad,
and 3.281 feet depth of water; at one extremity is a dam of
plank, with a rectangular opening 1.804 feet wide by 1.181 feet
high ; its sill or lower edge is 2.986 feet below the level at which
the water is constantly kept in the basin; it is supplied by a
stream arriving at the other extremity. What is the discharge ?

We have S=1.804)¢1.181=2.131 square feet ; k=2.986—1-481
=2.396 ; m, according to the table at No. 26, supposed to be
prolonged, will be about 0.600; as to u, it will be given by
one of the means to be indicated hereafter (147 to 154). In a
great number of cases, we can regard it as being the mean veloc-
ity of the water in the basin, a velocity to be determined as fol-
lows : the discharge Q, taken at first by neglecting u will be
0.600X2.131 A/64.364)<2.396=15.878 cubic feet. When the
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water runs in a canal, we have Q=S u (108) ; dividing then the
value of Q found, by the section (of the basin) 21.53, we find
u=.73748, the square of which is .54389. Putting this value into
the general expression of the discharge, we have 0.600X2.131
A/ 64.364X2.396-1.5439=15.906 cubic feet.® '

The difference between these two results may be entirely neg-
lected. The effect of the velocity u has been almost nothing;
in most cases, it will be so.

Orfces tn the 89, Very often, the water at the exit of the orifices
canats.  made in the side of a reservoir, is taken and conducted
by canals or channels, uncovered on the upper part, the
bottom of which, as well as the sides, agree with the
lower edge and sides of the orifice, which are thus in
the planes of the bottom and sides respectively. MM.
Poncelet and Lesbros determined, by a great number
of experiments, the coefficients of the discharge for
such canals, which they fitted to orifices on which they
had already made the fine observations whose results
we have recorded in No. 26; the canals varied in form,
inclination and position. The last of these philoso-
phers had the kindness to communicate to me a part of
the results given by a rectangular canal 3m=9.843 ft.
long and 0™20=.656 ft. broad, like all its orifices. The
reservoir in whose side the orifices were, was 3™68—
12.074 ft. broad. The canal was first placed at an
equal distance from the two sides of the reservoir and
0™54=1.772 ft. above the bottom; it was kept horizon-
tal; it is canal No. 1 of the following table. I here
give the coefficients m of the formula mS &/2gH,
which MM. Poncelet and Lesbros obtained, and I place
them opposite those which they had obtained previ-
¢ D'Aubuisson's book has an error in taking the section of the orifice, instead of the

pection of the basin, and also another error i solving the example. What is here
given is supposed to be what D'Aubulsson lntended. TRANSLATOR.
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ously with the same orifices, when the water flowed
freely into the atmosphere. (26)

COEFFICIENT.
Heightof ( Head on | “yyyppoqe WiTH CANAL
orifce. orifice. [ ynal. No.l ] No. 2
foet. feet.
.6562 | 4.2850 | 0.604 0.601 0.601
3.1235 | 0.605 0.602 0.599
1.3124 | 0.600 0.591 0.580
.7940 | 0.596 0.559 0.552
4003 | 0.572 0.483 0.482
3281 | 4.4490 | 0.643 0.614
3.3040 | 0.615 0.614
1.5814 | 0.617 0.615
5282 | 0.611 0.590
3740 | 0.608 0.562
.2887 | 0.602 0.523
1969 | 0.590 0.459
1640 | 4.7935 | 0.621 0.624 0.627
3.5468 | 0.627 0.626 0.628
1.6350 | 0.631 0.625 | 0.624
.6956 | 0.634 0.631 0.615
.3478 | 0.629 0.614 0.597
1542 | 0.617 0.495 0.493
1181 | 0.612 0.452 0.443
L0084 | 4.4261 | 0.622 0.622
1.5289 | 0.630 0.629
6792 | 0.634 0.632
2658 | 0.639 0.633
.2067 | 0.640 0.627
1870 | 0.640 0.610
1214 | 0.639 0.511
.0328 4.449 | 0.620 0.621 0.660
3.2580 | 0.627 0.631 0.665
1.6307 | 0.643 0.648 0.671
.6398 | 0.655 0.665
4167 | 0.664 0.669
2494 | 0.671 0.671 0.680
1378 | 0.684 0.640

By comparing the coefficients of the third and fourth
columns, allowing for the inevitable errors in observa-
tion, and excepting the orifice of 0.828 ft., we see that
so long as the heads taken above the centre of the ori-
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fice were from 2 to 2§ times greater than the height of
that orifice, the canal had no marked difference in the
discharge; the discharge was the same as if no canal
were there. But in small heads, the discharge dimin-
ished perceptibly, and as much more so as the head was
less; the diminution has reached a quarter, and even
more. '

This difference in great and small heads appears to
proceed from the fact, that with the former, the fluid,
rushing forth as into the air, is not influenced by the
resistance of the sides. ‘‘The canal,” says Lesbros,
‘‘has no influence, except when the head is not great
enough to detach the fluid jet at its exit from the orifice
entirely from the bottom (and sides) of this canal.”

The same canal was then placed, as is often done in
practice, in such & manner that its floor was at the
level of the bottom of the reservoir, and was, in fact, a
prolonging of it. It was natural to suppose, that the
contraction being then suppressed on the lower edge of
the orifice, the coeflicient of discharge would be greater
(82); but generally, and the orifice of .0328 feet still
excepted, it was less, particularly with small heads, as
was seen in the above table, where the canal, in its new
position, is designated by No. 2. Other circumstances,
perhaps the resistance of the bottom of the reservoir,
which may have diminished the velocity of arrival, per-
haps the less facility which the fluid sheet had in rais-
ing itself above the sill at the entrance of the canal,
will have more than compensated for the diminution in
the contraction.

In withdrawing the canal from the middle of the
reservoir, and placing it nearer one of the sides, this
diminution took place in part, and a small increase in
the discharge was obtained.
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The canal was then inclined, leaving it in other
respects in the position it last had. When the inclina-
tion was }; or 34, the coefficients were sensibly the
same a8 when the canal was horizontal. But when the
inclination was carried to Jj, or 5° 44’, the coefficients
were increased from three to four per cent., as seen in
the following table: —

Heightof | Head on | Coefliclents, with the Canal
orifice. orifice. ' Horizontal. Inclined.
feet. feet.
0443 | 1.1188 .660 691
0666 | 1.1123 .654 .681
.1555 .6890 .616 .639
1775 .6660 | .612 .636

2. CYLINDRICAL AJUTAGES.

40. Cylindrical ajutages, called also additional
tubes, as we have seen (19), give a more considerable
discharge than orifices in a thin side, the head and area
of the opening remaining the same.
But in order to produce this effect, it is necessary
that the water entirely fill the mouth of the passage; it
is commonly so, when the length of the tube is two or
three times its diameter. If it is less, it often happens
that the fluid vein, which is contracted at the entrance
of the tube, does not again increase and fill the inte-
rior; the flowing then takes place in all respects as
through a thin side; this is always the case when the
length of the tube is less than that of the contracted
vein, and consequently, is only half, or less than half,
the diameter.
41. The coefficient of reduction from the theoretic to Coemcient of re-
the actual discharge, through an additional tube, pre- “dschare.
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sents a few variations, as may be seen in the following

table: —
TUBE.
Observer. Diameter. Length. Head. Coefficient.
feet. feet. feet.

Castel, .0509 1312 .6562 827
Do. .0509 1312 1.5749 829
Do. .0509 1312 | 3.2478 .829
Do. L0509 1312 6.5620 .829
Do. .0509 1312 9.9414 .830

Bossut, 0755 1772 2.1326 .788
Do. .0755 A772 | 4.0684 787

Eytelwein, .0853 .2559 2.3623 821

Bossut, .0886 .0341 |12.6318 804
Do. .0886 1772 | 12.6975 804
Do. .0886 .3543 |12.8615 804

Venturi, 1345 4200 2.8873 822

Michelotti, .2658 .7087 7.1526 815

| uare.
Do. "658 | .7087 |12.4678 | .803
Do. .2658 L7087 | 22.0155 .803

Cylindrical tubes being little employed, I shall not
extend this table or discuss the experiments. I shall
confine myself to remarking, that the mean of the co-
efficients there given, abstracting the first two of Bos-
sut, manifestly anomalous, is 0.817; .82 is generally
taken, and we have

Q=828 o/64.36411="06.5786 S / [1=>5.1668 d*, /1.

Velocity 42. Since the jet in a full tube runs out in lines
ot parallel to the axis of the orifice, and consequently, its
section is equal to that of the orifice, the diminution
of the discharge can arise only from a diminution in
the velocity (16); and the ratio of the actual to the
theoretic discharge will also be that of the actual to
the theoretic velocity, as is seen by the following
results of three experiments cited in the above table;
one of Venturi and two of M. Castel: —
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JET. VELOCITY. | OEFFICIENT
Abscissa. | Ordinate. Real. | Theoretic. |of veloclty.,of discharge
feet. - l;;f feet. feet.
4.796 6.128 | 11.204 | 13.628 84 .822
1.791 2.208 6.6175] 7.959 .832 827
3.7402 | 5.803 | 12.037 | 14.481 .832 .829

Thus we may admit that the velocity of a jet, at its
passage from a cylindrical tube, is only 0.82 of that
due to the height of the reservoir; and the height due
to the velocity of the jet will be only .67 (=.82%) of
that due the height of the reservoir, since the heights
or heads are as the squares of the velocities. (12)

In the hypothesis of the parallelism of the sections, the prin-
eiple of the vis viva: that the quality of action developed by the
motive force, during a certain time, is equal to half the increase
or diminution of the vis viva during that time —this principle, I
say, gives for the velocity v of the water passing from a short
prismatic tube, of which S is the section, and which is terminated
by an orifice whose section s is smaller than the preceding, m
and m’ being the coefficient of contraction for these sections

respectively

2gH
~V o

and for the case of our additional tubes entirely open at their
extremity, and consequently, where s=S and m'=1

_ 2gH
14} L
If it be admitted that the contraction at the entrance of the tube
is the same as in the orifices in a thin side, that is to say, if we

make m=.62, we have v=0.8554/2gH and Q=.855 S A/2gH ;
with m=.65, it would be Q=.0885S o/Z¢gH.
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43. The fluid vein, after its contraction at the
entrance of the additional tube, tends to take and pre-
serve a cylindrical form, whose section would be that of
the contracted vein; and consequently, it tends to pass
out without touching the sides of the tube; but some
lines of water are carried towards the sides, either by
a divergent direction, by an attractive action, or by the
two causes united. As soon as they arrive in contact,
they are strongly retained by the molecular attraction,
that which produces the ascension of water in capillary
tubes; by an effect of this same force, they draw the
neighboring lines, and by degrees the whole vein,
which then rushes out, filling the tube, and passes
through the contracted section more rapidly. Such
appears to be the physical cause of the increase of dis-
charge due to tubes.

The immediate cause is the contact; and all the cir-
cumstances which cause the contact, or which favor it,
will produce that increase.

Among these circumstances we will notice :

1st. The length of the tube; the Ionger it is, the more chances
it will present for contact; there will be no contact when the
length is less than that of the contracted vein.

2d. A small velocity ; the fluid lines will then be less forcibly
retained in the direction of the primitive motion ; they will devi-
ate and approach the sides with more facility. M. Hachette, in his
experiments made on this subject, succeeded, by augmenting the
head and consequently the velocity, in detaching a vein from the
side it was following. On the contrary, by diminishing the head,
allowing it, however, a head of 0.9843 ft., he succeeded in making
the tube more full, the length of which was 0.01968 ft., and
its diameter 0.03117 ft.

3d. The affinity of the material of the tube, or rather, its dis-
position to be more readily moistened. Thus, by rubbing tallow
or wax on the sides, the water will not follow them as it did
before. Hachette, by covering an iron tube with an amalgam of
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tin, caused mercury to run out with a fall tube, which did not
take place before the coating. The interposition of air, or its
arrival in a tube, is sufficient to detach the fluid vein from it.

Venturi, after having fitted to a vessel full of water, a tube of

00406=.1332 ft. diameter and 0095=3117 ft. length, per-
forated near the middle and quite round its perimeter, with a
dozen small holes ; when the flowing took place, not a drop of
water passed through these holes, nor did the water touch the
sides. The holes were then successively stopped, and the same
results continued ; but when all were closed, the vein filled the
tube, and the discharge was increased in the ratio of 31 to 41.*
M. Hachette, on repeating the experiments and closing the holes
with caution, saw the vein continue to pass out without touching
the side ; but a slight agitation was then enough to produce con-
tact, and to produce a flow with the full tube.

44. It is more than a century since Poleni made known the
singular effects of cylindrical tubes, and the investigation of the
cause has been a serious study with philosophers.

It was generally said, since the convergence in the direction of
the fluid lines, on their arrival at the orifice, produces a contrac-
tion in the fluid vein, there will also be a contraction at the
entrance of the tube ; but in consequence of the attractive action
of the sides, the contraction will be less, and the discharge will
consequent]y be greater. The experiments of Venturi do not
allow us to admit of such a cause producing a less contraction.

That ingenious philosopher opened, in a thin side of a reser-
voir, an orifice, whose diameter AB (Fig. 11), was 0=0406=.1332
ft. ; and under a head of 0=88=2.8873 feet, he obtained 0===137
=4.8384 cubic feet of water, in41”. To this orifice he then fitted
the tube ABCD, having nearly the form of the contracted vein,
(he had CD=0~0327=.1073 feet, and AC =0=025=.082 feet);
under the same head, he obtained the same volume of water, in
42”. To the first tube he fitted the tube CDHGC, in which
GH=EF=AB, and the duration of the flowing, all else being
equal, was only 31”. Lastly, for all this apparatus, he substi-
tuted the simple cylindrical tube ABHG of the same length, and
also of the diameter .1332 ft., and the flowing of 4.8384 cubic feet
again took place in 31

* Rechérches Expérimentales sur la communication latérale du mouvement daus
les fluides. 1797. 8.e Expérience.

1

Fig. 11.

Fig. 12.
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Thus, in this simple tube, in which everything went on as in
the compound tube, there was or there may have been an equal
contraction ; and the contraction which necessarily took place in
the latter at CD, is very nearly equal to that of orifices in a thin
side. The effect of the cylindrical tube, therefore, was not to les-
sen the contraction, but to pass the fluid through the contracted
section CD, with a velocity increased in the ratio of 31 to 41 or
42. Hence alone the increase of discharge.

Venturi attributed it to an excess in the pressure of the atmos-
phere on the fluid surface contained in the reservoir, an excess
proceeding from a vacuum tending to arise in the part of the tube
where the greatest contraction took place. He sought to prove
this opinion by several examples, very interesting on other
accounts, but he has sometimes generalized the results too much.
For example, because in one of them the water ceased to flow
with full tube under the receiver of an air pump, he concluded
that the phenomena of additional tubes did not take place in the
vacuum, and yet Hachette is certain of having produced them
there. This single fact would overthrow an hypothesis, against
which other peremptory objections are also raised.

Negative pres- 45, Among the experiments of Venturi, is one which presents,
sureof fluld jp a very distinct manner, a very remarkable fact, which Bernoulli
'g“:;:‘:z‘: * had already made known. To a cylindrical tube 0=0406=.1332
ft. diameter and 0122=.4003 ft. long; at E 0=018=.0591 ft.
from its origin, he fitted a curved tube of glass, the other extrem-
ity of which was plunged into a vessel M, containing colored
water ; the flowing was caused by a head of 0=88=2.8873 feet;

and the water was raised in the tube 0=65=2.1326 feet.

In the hypothesis of Venturi, this elevation, joined to the head,
would be the height due to the velocity through the contracted
section, as the head alone is the height due when there is no addi-
tional tube ; if it were so, the ratio of the velocities must be as
A/2.8873; A/2.887312.1326, or as 31 to 40.9, and experiment
has actually given a similar result (31 to 41). But from this fact,
peculiar perhaps to the case taken for example, a general princi-
ple ought not to he deduced. Moreover, the true cause of the
ascension of the colored water in the tube was indicated more than
a hundred years ago, by Daniel Bernoulli (Hydrodinamica, p.
264). That celebrated geometrician, author of the chief part of
the theoretical principles of the flowing of water, established the
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law, that the pressure which a fluid exerts against the sides of a
tube in which it moves, is equal to the head minus the height
due to the velocity of the motion. It is necessary to remark, that
in speaking of absolute pressure, the weight of the atmosphere
should be added to the Aead properly so called ; thus, if K repre-
sents that weight, that is to eay, a column of water equal in
weight to that of the column of the barometer, H the head and
v the velocity of the fluid at a determined point of the tube,
K--H—.01553 +* will be the interior pressure at that point. For
the exterior pressure, we have K, as on all the other points. In
one example, at the place of greatest contraction, where v=$}
A/2gH and H=2.887 feet, the interior pressure is K--2.887—
5.050=K—2.163 in feet, it is less by 2.163 feet than the exterior
pressure ; the exterior pressure will therefore prevail, and will
cause the water to ascend 2.163 feet, and in general, a quantity
equal to its excess over the other.

By neglecting K, which is found both in the value of the inte-
rior and exterior pressures, the interior pressure on the same point
compared to the other is, H—.01553v* ; it will be negative, when-
ever the height due the velocity is greater than the head.

Venturi having placed the same tube 0=054=.177 ft. from the
reservoir, the colored water was not raised ; the height due, 0594
or 0.0510>—0.051 (0.82)'¢H in metres, or, .01553v*—.01553
(0.82)?2H in feet, was then smaller than the head 2.8873 feet ; the
interior pressure was positive, and consequently there was no
ascension.*

8. CoN1cAL CONVERGING TUBES.

46. Conical tubes, properly so called—that is to
say, those which slightly converge towards the exterior
of the reservoir—increase the discharge still more
than the preceding; they afford very regular jets, and

® Should the reader find difficulty as to the formation of this
formula, it will vanish in remembering that the velocity from cyl-
indrical pipes is but $#32; of that due to height of reservoir, (or
v=.824/2gH) and by substituting this value in the equation
H=.-;%. TRANSLATOR.
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throw them to a greater distance or height. They are
also almost exclusively employed in practice. How-
ever, their effects as to the discharge and velocity of
projection are much more varied; they change with the
angle of convergence, that is, with the angle which
the opposite sides of the truncated cone constituting the
tube, form by their extension.

They are, however, the tubes on which we have the
fewest documents. In reference to them, I know of
only four experiments of Poleni, published at Florence
in 1718, and which Bossut gives in his Hydrodynam-
iqgue (§ 530); notwithstanding the merit of their
author, and although made on a great scale, I have
very strong reasons for doubting their accuracy, and
shall not bring them forward again. Struck by the
gap which hydraulics presents in this important part, I
projected a series of experiments suitable to fill it; but
before reporting those that have been made, I state
briefly the condition of the question.

Coemetents ~ 47. According to what was said (16 and 19), there
o ot " are, or there may be, two contractions of the fluid
vein, in running through conical tubes: one interior,

or at the entrance of the tube, which diminishes the

velocity produced by the head; the other exterior, or

at the exit, by which the section of the vein a little

below the exterior mouth of the orifice is smaller than

the mouth itself. Consequently, if s is the section of

the orifice and V the velocity due to the head, the real
discharge will be nsX#'V=nn'SV (16); n and »’

being two coefficients to be found by experiment; = is

the ratio of the fluid section to the section of the orifice,

or the coefficient of the exterior contraction; »’ is the

ratio of the actual to the theoretio velocity, or the
cogfficient af the velocity ; and nn’ is the ratio of the
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actual to the theoretic discharge, or the coefficient of
discharge.

The knowledge of the two latter, for the different
cases which may present themselves, is sometimes
useful in practice, as we shall see in treating of jets of
water ; it is this utility, or rather neoessity, of having
their value, that is, of knowing the discharge and force
of projection of different tubes, which has induced me
to make researches on this subject.

48. To determine properly the different coefficients
in question, and, above all, to fix the angle of ¢onver-
gence giving the greatest discharge, I thought it neces-
gsary to subject many series of tubes to experiment; in
each, the diameter of the orifice of exit and the length
of the tube remaining constantly the same; but the
diameter of the entrance, and consequently the angle
of convergence, was gradually increased. The water
flowed through each under different heads. At each
experiment, the actual discharge was determined by
direct measurement, and the velocity of exit by the
mode indicated above (87); the discharge, divided by
8V, would give nn’, and the velocity, divided by v,
(v=a/2gH), would give n’. The series of nn’ would
show the discharge corresponding to each angle of con-
vergence, and consequently, the angle of greatest dis-
charge; and the series of #° would indicate the progres-
sion according to which the velocity increased.

The water-works of Toulouse offered all the desira-
ble facilities for executing such a plan, which I give in
some detail. M. Castel, the hydraulic engineer of that
city, a thorough experimenter, who introduces the most
scrupulous accuracy-in all his operations, was pleased,
on the invitation of the Academy of Sciences, to under-
take the execution.
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49. Already, in 1831, with a very small apparatus,
and under small heads, he had made a series of ex-
periments, the details and results of which were pub-
lished in the Annales des Mines of 1833.

In 1837, he resumed and considerably extended his
works, by the aid of the fine experimental apparatus
established at the water-works (see No. 72).

This apparatus consisted principally of a rectangular cast iron
box 0°41=1.345 feet long, 1.345 feet wide, and 0=82=2.69 feet
high ; it received at its lower part, and by means of a great tube,
the water coming from a reservoir established more than 29.529
feet above it and kept constantly full; on the front face of the
box is a rectangular opening, .459 ft. high by .328 ft. wide, it
was closed by a well finished copper plate, to which were fitted
additional tubes, in such & manner that their axes were horizontal.
When the box was opened at top, the fluid surface could rise there
to about .689 ft. above that axis. The upper opening is com-
monly surmounted with short tubes of .656 ft. diameter, the
first of which is .984 ft. high, and the rest 1.64 feet high, so that
heads of about .656 ft. 1.64 feet, 3.281 feet, 4.921 feet, 6.562
feet, &c., above the tube subjected to experiment, could be
obtained.

By means of two cocks, placed, one at the entrance of the
water into the box, and the other on the upper part of the tubes
which surmount it, a perfectly constant level was obtained.

The tubes which M. Castel used were of brass, as well turned
and polished as possible. He had two series of them; in one,
the diameter of the exit was .05086 ft. and the length about
1312 ft.; in the other, the diameter was .06562 ft. and the
length .164 ft.

The two diameters of each were measured and re-measured with
much care, but the want of an instrument proper to operate accu-
rately with such measures, did not permit of a measurement nearer
than 0"00005=0.002 inch (1), and such an error might give
an error of half a hundredth in the discharges and coefficients.

M. Castel rarely had them so large. He operated under heads
of .6562 ft. 1.64 feet, 3.281 feot, 4.921 feet, 6.562 feet, and
about 9.843 feet ; he measured them with very great exactness.
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He then gives, as very exact, the volumes of water obtained in a
certain time.

To determine the velocities with which the water passed from
the tubes, he erected, 3.74 feet below their axis, a horizontal floor-
ing, in the middle of which was a longitudinal groove .328 ft.
broad, into which the jet passed; its range was measured by
means of a graduated rule fixed on the flooring and quite near.
This range was the ordinate of the curve described by the jet;
374 ft. was its abscissa, and from these two ordinates was
deduced the velocity of projection (37). Finally, these velocities
could only be taken for heads of 6.562 feet and less ; beyond that,
the jets were broken, and passed beyond the plane where they
could be measured.

I refer, for all the details of the apparatus and the
experiments, to the paper inserted in the Annales des
Mines of 1838, and I confine myself here to commu-
nicating the principal results obtained.

50. The same tube, under heads which varied from
0.689 ft. to 9.941 feet, gave discharges always propor.
tional to o/H, and consequently, the coefficients were
sensibly the same. Perhaps they experienced a very
slight increase under the head of 9.941 feet. We here
give those which were obtained with the pipe of each of
the two series which furnished the greatest discharge.

'TUBE OF .05065 FEET DIAMETER. TUBE OF 06% FEET DIAMETER.
COEFFICIENT \ CORFFICIENT
Head, in ft. of discharge of vcloclty.l Head, in ft.[of dlschargelof velocity.

7054 | 046 963 \‘_39'23 956 | .966
15847 | .946 966 || 1.5847 | 957 | 968
32547 | 946 963 1

ik 3.2646 | ‘955 965
4.8952 | 947 966 49149 | .956 .962
6.5817 946 956 6.5782 | .956 .959
9.9414 947

9.9414 | .957

As to the coefficients of the velocity, it seemed that
they would have been sensibly constant, were it not for
the resistance of the atmosphere. But this resistance
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diminishing the range of the jet, and as much more so
as the head was greater, there must be, in the calculated
coefficients, a diminution varying with the head, al-
though, in reality, there was nome in the velocity with
which the fluid passed out or tended to pass out.
We will now compare together the coefficients, both
those of the discharge and of the velocity, obtained
with the different tubes of the same series; tubes which,
in other respects, differed only in the angle of conver-
gence; for each of them, the mean term was taken
between the six or five coefficients which were given
under the six or five heads nearly equal to those which
are noted in the preceding table.

AJUTAGE .05085 FT. IN DIAMETER. '|AJUTAGE .08 FT. IN DIAMETER.
ANGLE COEFFICIENT ANGLE COEFFICIENT i
of of of of
Convergence. | Discharge. | Velocity. || Convergence. | Discharge.| Velocity. '
0° 0| 0.829 0.830
1 36 | 0.866 0.866
3 10| 0.895 | 0.894 2 50| 0.914 | 0.906
4 10 | 0.912 0.910
5 26 | 0.924 | 0.920 5 26 | 0.930 | 0.928
7 52| 0.929 0.931 6 54 | 0.938 | 0.938
8 58 | 0.934 0.942 ’
10 20 | 0.938 0.950 1| 10 30 | 0.945 | 0.953
12 4| 0.942 0.955 || 12 10 | 0.949 | 0.957
13 24 | 0.946 0.962 || 13 40 | 0.956 | 0.964
14 28 | 0.941 0.966 || 15 2 | 0.949 | 0.967
16 36 | 0.938 | 0.971
19 28 | 0.924 | 0.970 (| 18 10 | 0.939 | 0.970
21 0| 0918 | 0.971
23 0| 0913 0.974 || 23 4| 0.930 | 0.973
29 58 | 0.896 0.975 || 33 52 | 0.920 | 0.979
40 20| 0.896 | 0.980
48 50 | 0.847 | 0.984 .

It follows, from the facts set down in these columns:
1st. That for the same orifice of exit, and under the
same head, starting from 0.83 of the theoretic dis-
charge, the actual discharge gradually increases, in
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proportion as the angle of convergence increases up to
13!° only, where the coefficient is 0.95.

Beyond this angle, it diminishes, feebly, at first, as
do all variables about the maximum; at 20°, the coeffi-
cient is again from 0.92 to 0.93. But afterward, the
diminution becomes more and more rapid; and the co-
efficient would end by being only 0.65, the coefficient
of small orifices in a thin side (26), these orifices
being the extreme term of converging tubes, that
in which the angle of convergence has attained its great-
est value, 180°. The angle of greatest discharge will
then be from 13° to 14°.

What can be the reason of this? In the conical tubes, the
theoretic discharge is altered by two causes, the attraction of the
sides, which tends to augment it (43), and the contraction, which
tends to diminish it, by diminishing the section of the vein a lit-
tle below the exit. From the experiments of Venturi (43), it
would seem that the fluid vein, at its entrance into a tube, pre-
served its natural form, that of a conoid of 18° to 20°; so that
the nearer the angle of the tube appreached such a value, the
nearer its sides will be to the vein, at the moment when, after
baving experienced its greatest contraction, it tends to dilate, and
when it is, as it were, left to their attractive action; this action
then being stronger, the discharge will be greater. But, on the
other hand, already at 10° of convergence, the exterior contrac-
tion begins to be sensible and to reduce the discharge; it has
reduced it 5 per cent. at 18°; and, after that, it will not be extra-
ordinary that the angle of greatest discharge is found between
these two values, about 14°,

The tubes of .0656 ft. diameter at the exit, gave coefficients
from one to two hundredths greater than those of the tubes of
.0509 ft. An error of 0.004 inch in the estimate of the diame-
ter of the first set, would afford reason, to a great extent, for that
difference ; and I was inclined to admit a cause of that kind.
The tubes of .0509 ft., examined several times since 1831, inspir-
ed me with more confidence.
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2d. In following the coefficients of the velocity, they
are seen, again starting from the angle 0°, to increase
like those of the discharge up to near the convergence
of 10°; then they increase more rapidly ; and beyond
the angle of the greatest discharge; while the others
diminish, these continue to increase and approach their
limit, 1; they are quite near it at the angle of 50°, and
even at 40°. The conical tubes, by their different
convergence, form a progression of which the first term
is the cylindrical tube, and the last is the orifice in a
thin side; their velocity of projection, increasing with
the convergence, will therefore vary from that of the
additional tube to that of the simple orifice, that is to
say, from 0.82 o/2gH to o/2gH.

3d. In comparing the coefficients of the discharge
with those of the velocity, or their successive values
nn’ and 7, and dividing the first by the second, we
shall have the series of 7, or the coefficients of the ex-
terior contraction. From the angle 0° to that of 10°,
we have sensibly =1, and consequently, there is no
contraction ; notwithstanding the convergence of the
gides, the fluid particles pass out very nearly parallel
to the axis. But beyond 10°, contraction is manifested :
it reduces the section of the vein more and more, and
it would end by rendering it equal to that which
passes from orifices in a thin side, as is seen in this
table : —

ANGLE.

80

SRB8EES

0
<
cooeocor
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Experience having taught that cylindrical tubes cer-
tainly produce all their effect, as to the discharge,
when their length equals at least two and a half times
their diameter; by analogy, and for the sake of not
complicating our results with the action of the friction
of the water against the sides, I have fixed the length
of conical tubes at about 2} times the diameter of exit;
thus it was .1312 ft. for those of .0509 ft. diameter,
and .164 ft. for those of .0656 ft. diameter. However,
to be able to determine the effect of their length, I
proposed for the tubes of .0509 ft. diameter, two
other series; in one, the common length would have
been .0984 ft., which I regarded as the minimum ; for
the other, it would have been .8281 ft., a dimension
quite common in practice.

But this work is yet to be done; still, M. Castel has
already made some primary trials. For the tubes of
.0509 ft. diameter, he took five .1148 ft. long, and,
taken together, they gave as the coefficient of dis-
charge, 0.938; next, with a length of .1312 ft., he
had as coefficient 0.936; another tube, .0984 ft. long,
gave 0.941 instead of 0.938; and one of .0787 ft. in-
dicated 0.931 instead of 0.926; so that here the dimi-
nution of length would have a little increased the dis-
charge. But with the tubes of .0650 ft. diameter, the
discharge, on the contrary, was increased with the
length; the length passing from .1640 ft. to 0.3281 ft.,
the coefficient under the angle of 11° 52" was 0.965;
under that of 14° 12, 0.958; and under 16° 34,
0.950. Thus the effect of the length of tubes is far
from being established; its determination demands
other series of experiments.

While waiting for M. Castel to perform such exper-
iments, we will assume, for each of the tubes to be
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employed, provided extraordinary lengths are not ta-
ken, the coefficient in the above tables corresponding
to the angle of convergence, without fear of introduc-
ing any error of moment.
Dischargs 51. As to very great conical tubes, or rather, to
ereat troughs. pyramidal zroughs, which in mills throw the water on
to hydraulic wheels, we have three valuable experi-
ments made by the engineer Lespinasse (*), on the
mills of the canal of Languedoc. The troughs there
are truncated rectangular pyramids, having a length of
9.5904 ft.; at the greater base, 2.3984 ft. by 3.199 ft.;
at the smaller base, .4429 ft. by .6234 ft.

The opposite faces make angles of 11° 88 and
15° 18’. The head was 9.5904 ft.

The first two of the three experi- | pw | coem |
ments, the. results of which are here !| charse | ctent
given, were made on a mill of two || §%6> 0.987:
stones, each having its wheel; in the g‘_}ggg gg?{g
first experiment, the water was let on |l —— """
to only a single wheel ; in the second, it was let on to
two at a time.

We see how little such tubes diminish the discharge;
the discharge given is only one or two hundredths less
than the theoretic discharge.

4. CoNicaL DiveEreiNg TUBEs.

tncrease of aw- 2. Of all tubes, those which give the greatest dis-
tese A jutasw. Charge are truncated cones, fitted to a reservoir by
their smaller base, and of which the opening for exit is

consequently greater than that of entrance. Although

* Anbtiens Mémolres de 1'Académie de Toulouse. Tom. I 1784.
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very little used, they present phenomena of too much
interest to be passed by.

Their property of increasing the discharge was
known to the ancient Romans; some of the citizens, to
whom was granted a certain quantity of water from the
public reservoirs, found by the employment of these
tubes, means of increasing the product of their grant;
and the fraud became such, that a law prohibited their
use; at least, they could not be placed within 52§ feet
from the reservoir.

Bernoulli had studied and subjected to calculation
their effects; in one of his experiments, he found the
real velocity at the entrance of the tube greater than

the theoretic velocity, in the ratio of 100 to 108; but

to Venturi is principally due our knowledge of the pro-
ducts they can give.

53. The tubes which he used had a mouth-piece
ABCD presenting nearly the form of the contracted
vein; AB=.1332 ft., and CD==.1109 ft.; the body of
the tube CDFE varied in length and flare, the flare
being measured by the angle comprised between the
sides EC and FD sufficiently prolonged. These tubes
were fitted to a reservoir kept constantly full of
water; the flowing took place under a constant head
of 2.8873 ft., and the time necessary to fill a ves-
sel of 4.8384 cubic ft. was counted as in the experi-
ments of the same author which we have already men-
tioned.

I give, in the following table, the result of the
principal observations, after having remarked that the
time corresponding to the theoretic velocity was
25"49: —

Experiments
of
Ventari.

Fig. 13.
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AJUTAGE. | Time Coem
—_— of oefll- OBSERVATIONS.
Flare. l Length. | running. | clent.

| feet.
30 30| .3642| 2775 | 0.93
4 38 11.0959 21 1.21 !Jet very irregular.
4 38/1.5093| 21 | 1.21 |Jet did not fill the ajutage.

43815003 19 | 1.34 {T" ﬁ“b:g“‘“ﬁe “P;f’fc‘insi

y introduced.
5 44| 5775 25 1.02
5 44 .1936| 31 0.82 | Exit mouth=that of entrance.
10 16| .8662| 28 0.91 |Jet did not fill ajutage.
10 16| .1476| 28 0.91 [Jet very regular.
14 14 .1476| 42 0.61 1Jet detached from sides. ‘

Venturi concluded from his experiments, that the
tube of the greatest discharge ought to have a length
nine times the diameter of the smaller base, and a flare
of 5° 6’; figure 13 represents it; it would give, adds
the author, a discharge 2.4 times greater than the orifice
in a thin side, and 1.46 times greater than the theoretic
discharge. Moreover, he observes, that the dimensions
of the tube should vary with the head.

54. Of all the experiments which he made on diverging tubes,
and for which I refer to his Recherches Erpérimentales, I shall cite
only the following :

To one of the above-mentioned tubes, that which gave 4.8384
cubic feet in 25”, he fitted three tubes, and plunged them into &
small bucket filled with mercury ; the first at the origin D of the
tube ; the second at one third of its length, and the third at two
thirds. The mercury was raised respectively .3937 ft., .1509
ft., and .0518 ft.; this would be equivalent to columns of water
5.348 feet, 2.067 feet, and .7054. According to the theory of
Bernoulli, the pressure at the point of greatest contraction D,
where the velocity is 43 A/2gX2.8873 ought to have been 2.8873
—R.8873 (43)"=—5.2618 ft.; the experiment of Venturi gave
—5.348 feet.

55. Eytelwein also used diverging tubes in experiments, the
results of which are directly interesting in practice.

He took a series of cylindrical tubes .0853 ft. diameter, and of
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different lengths, which he successively fitted to a vessel full of
water ; at first separate ; then applying to the front extremity the
mouth piece M, which had nearly the form of the contracted vein ;
then applying to the other extremity the tube M, of the form
recommended by Venturi ; lastly applying at the same time the
mouth-piece and the tube.

The flowing took place under a mean head of 2.3642 feet.®* The
principal results obtained are given in the following table :

Coeflicient of dlu(-l;nﬁie B Dll;'i\lrﬂé of the tube |

Length of the tube, only ac- alone being 1,
of cording tu Discharge
Tube—- Experiment Fg;l::gllﬁt:f wup‘:rco. § A}K:'l:e
feet. T ’ T
0033 | 0.62 0.99 ‘
0853 | 0.62 | 097 | 1.56 l
. .2559 | 0.82 0.95 1.15 1.35
10302 | 077 | 086 | 113 | 127 !
' 2.0605 | 0.73 0.77 1.10 124 |
3.0007 | 068 | 070 | 1.09 | 1.23 |
41176 | 0.63 0.65 1.09 1.21
5.147 0.60 0.61 1.08 1.17

;|
;

These experiments show :

1st. The rate according to which the length of the tubes dimin-
ishes the discharge ; and this, up to a point where the formula for
the motion of water in conduit pipes may be applied. The num-
bers of the third column indicate that this application can take
place, for small tubes, those under .0084 ft. diameter, when
their length exceeds 6.562 feet. These experiments thus in part

* Here the head was not constant. At each experiment, the
vessel was filled up to 3.0841 feet above the orifice, and the fluid
was suffered to fall until the surfice was-only 1.7389 fect above
the orifice ; the constant head, which would have given the same
discharge in the same time, would have been 2.3642 feet. Let,
generally, H' be that constant head ; H the head of the reservoir
at the commencement of the flowing, and A that at the end, we

shall have H’=(m )'.

The occasion to make use of this formula will be presented
quite often in practice.

Fig. 18.
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fill up the void which existed in our knowledge of additional tubes
and conduit pipes.

2d. That the increase of the discharge proceeding from the
flare given to the mouth of entrance of pipes, diminishes in pro-
portion as their length is greater. It were desirable that these
experiments had been carried further, for the purpose of knowing
what would have been the result of this diminution in large con-
duits ; until this is done, and however small may be the good
effect of the flaring at the cntrance, it is proper not to neglect it.

3d. The effect of the flaring at the exit also diminishes in a
ratio more rapid still, in proportion as the pipes increase in
length. Eytelwein having taken one 20.6 feet long and of .0853
ft. diameter throughout, found no difference in the discharge,
whether he did or did not use the tube with flaring end.

On fitting this tube immediately to the reservoir, the discharge
was 1.18, the theoretic discharge being 1.

On fitting it to the mouth-piece, but without the intermediate
tube, it rose up to 1.55. The mouth-piece alone gave only 0.92;
80 that the effect of the tube N added to the mouth-piece M, was
to augment the discharge in the ratio of 0.92 to 1.55, or of 1 to
1.69.

56. Venturi had that of 19” to 42", or 1 to 2.21. In the two
experiments which furnished the terms of this last ratio, the
velocities of the water at the passage through the section CD
(Fig. 13) were therefore as 1 to 2.21; and consequently, the
heights due as 1 to 4.89, since they follow the ratio of the squares
of the velocities.

In the experiment which gave the term 1, that where the
mouth-piece M alone was used, the actual velocity, which was
obtained by dividing the discharge by the section, was 11.9297
feet; it corresponds to a generating head of 2.2114 feet. The
head corresponding to the velocity in the second experiment will
then be 2.2114X4.89=10.8137 feet ; whence it follows, that the
discharge was equal to what would have occurred, if, instead of
adding the tube N to the mouth-piece M, the water had been
raised in the reservoir, above the level which it had during
the flowing, 10.8137—2.2114=8.6023 feet. Thus, the accelerat-
ing effect of the velocity due to the diverging tube is measured
by a column of water 8.6023 feet ; this is more than a quarter of
the weight of the atmosphere. This is a very considerable effect



UNDER VERY SMALL HEADS. 65

for a force which seems quite small ; for we see no other physical
cause of the augmentation in the discharge produced by the
tube, than the action of the sides, and, in short, the molecular
attraction.

ARTICLE THIRD.
On flowing under very small heads.

57. When the head over the centre of the orifice is
very small compared to the height (vertical dimension)
of that orifice, the mean velocity of the different lines
of the fluid vein, that is to say, the velocity which,
being multiplied by the area of the orifice, gives the
discharge, is no longer that of the central line. It
differs from the velocity of the central line as much
more a8 the head is smaller; it will be about a hun-
dredth less if the head is equal to the height, and a
thousandth less if the head is three times (3.2) greater
than the height. Let us see what theory teaches us in
this respect : and first, the law which it indicates for
the velocity of the fluid lines, in proportion as the point
from which they issue is lower than the level of the
Teservoir.

58. Let a vessel be filled with water up to A ; upon
its face AB, which we will suppose vertical for greater
simplicity, imagine below each other, a series of small
holes, of which B will be the lowest. Designate by H
the height AB; the velocity of the line passing out at
B will be A/2gH (8); and if BC be made equal to
that quantity, it will represent that velocity. For every
other point P, below the level of the reservoir, the dis-
tance AP or z, the line PM, which would represent
the velocity of the fluid at its exit from that point, would

9

Velocity
of any filet.

Fig. 16.



Discharges.

66 - FLOWAGE OF WATER

be A/2gz,and calling it y, we should have y=a/2gz.
If through the extremity of all these lines PM, a curve
be made to pass, they will be its ordinates, and the
heights AP or z will be its abscissas; and since
y'=2gz, this curve will be a parabola having 2g or
64.364 feet for its parameter.

Thus the velocity of a fluid line passing from a
reservoir at any point, is equal to the ordinate of a
parabola, of which twice the action of gravity is the
parameter, the distance of this point below the level
of the reservoir being the abscissa.

59. Suppose now, that instead of opening a series of
small holes on the face AB, there had been perforated
in it, from top to bottom, a rectangular slit, of the
breadth ¢; let us find the expression of the discharge.

Divide this opening, in thought, by means of hori-
zontal lines very near each other, into a series of small
rectangles. The volume of water which will pass from
each of these in a second, or its discharge, will evidently
be equal to the volume of a prism which shall have for
its base the small rectangle, and for its height the cor-
responding ordinate. The sum of all these little
prisms, or the total discharge, will evidently be equal to
another prism, having for its base the parabolic segment
ABCMA, and for its height or thickness, the width of
the slit. Now, according to a property of the parabola,
this segment is two thirds of the rectangle ABCK,
whose surface is ABXBC=HXa/2gH. Thus, the
discharge through the rectangular opening of which
H expresses the height and / the breadth, is

tlH &/2gH.

60. We now seek the discharge through a rectangu-
lar orifice open on the same side, but from B to D only,
and having the same breadth ; call 4 the head AD, on
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the upper edge of the orifice; the discharge of the slit
which we suppose from A to D would also be3 2 & o/2gh.
Now, it is evident that the discharge through the rec-
tangular orifice of which BD is the height, will be
equal to the difference of the discharges through the
two slits, and which consequently will be

1122 (H H—hA/R).

The first elements of the integral calculus lead in an extremely
simple manner to this expression. But I repeat, this treatise is
not a work of mathematics ; and from its nature, it appeared to
me, that synthetic demonstrations, keeping constantly before
the eye the object in question, were to be preferred.

61. Let us revert to the mean velocity; and first to
that which we have when the slit is quite open.

Let G be the point from which the fluid line animat-
ed with this velocity proceeds; if we make AG=z, it
will be o/2gz; being multiplied by the area of the
slit /X H, it must give the discharge. But we have seen
that this discharge was also expressed by 3! H o/22H;
we shall then have, I H o/2gz=1 ! H o/2gH; whence,
z=} H, and consequently, v—=a/2giH=ia/2gH.

Thus, the mean velocity will be two thirds of the
velocity of the lower line. In fact, GH, which repre-
sents the first, is, according to the above-mentioned prop-
erty of the parabola, two thirds of BC, which repre-
sents the second.

For the rectangular orifice of which BD or H—#, is
the height, 2’ being the height due to its mean veloci-
ty, we should in like manner have _ _

(H—h) 1 M2gz=} | V28 (HVE—ih);
whence, .
N A—AN I-u)ﬂ,

=t (T
4 H—A

Mean
Velocity.
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Example. There is a prismatic basin, at the bottom of which
is a rectangular orifice .82 ft. base, and .3937 ft. height; and
during the flowing, the fluid surface is constantly .7218 ft., above
the lower edge of the orifice. We then have, H=.7218 ; /=.7218
—.3937=.3281; thus

o (.7213 A/ 7218 — .3281 M.'aﬁl)z — 48 ft. -
L7218 — .3281 ’

consequently, the mean velocity will be A/2gX.48=>5.558 feet.

rhohead shoud  02. 1 make here an observation which applies more
o Particularly to the case of small heads.
ervoir. During the flow through an orifice, the surface of the
fluid in the reservoir, starting from certain points, is
curved, and inclines towards the side in which the ori-
fice is pierced ; so that the height or vertical distance of
the surface, above any part of the orifice, is greater on
the up-stream side of the points where the inflection
begins, than near to and touching the side. It is the first
of these heights or heads which must always be intro-
duced into the formulas of flowing ; we shall see reasons
for it hereafter (68 and following). The distance be-
tween the orifice and the line where the fluid surface
joins the side is very often introduced (into the formu-
lag); from this, there results an error in deficiency, in es-
timating the discharges which, in some cases, very rare,
to be sure, may extend even to a tenth of the discharge.
Such errors diminish when the head increases; and
according to the experiments of MM. Poncelet and
Lesbros, who have also fully explored this question,
they will be insensible when the heads exceed .4921 or
6562 ft., say six or eight inches. Yet, in very great
orifices, the depression of the surface is still percepti-
ble; I have seen it from 1} to 2 inches against the
sluice gates of the canal of Languedoc, when the two
paddle gates were open.
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63. If the orifice had a figure different from the rec- Orifices not rec-
tangle, the expression of the mean velocity, and conse- analst
quently of the discharge, would be more complicated ;
its determination would become a problem of analysis
of little utility in practice, where great orifices are
almost always rectangular. The solution of these pro-
blems can be seen in the Architecture Hydraulique of
Belidor, and in the Hydrodynamique of Bossut. I
will now limit myself to that which concerns the
circle. Designating by d the diameter, by % the
head above the centre, we have for the expression of the
discharge, »’ d* o/ 2gh (1— m—izme— &e.); this dis-
charge is that which corresponds to the velocity of the
central line diminished in the ratio indicated by the
complex factor. ‘

64. The discharges, of which we have just given the ~Coeficient
expression, are theoretic discharges; for reducing them Reduction.
to actual discharges, it is necessary to multiply them
by the coefficients deduced from experiment.

These, also, will be furnished us by MM. Poncelet
and Lesbros. I indicate them in the following table:

Head HEIGHT OF ORIFICES.

upon the

centre. 65621t | .32Lft | .1640ft | .0984ft. | .0646ft. | .0328ft
feet.

.03281 0.712
.0656 0.644 | 0.667 | 0.700
.0984 0.644 | 0.663 | 0.693
1312 0.624 | 0.643 | 0.661

.1640 0.625 | 0.643 | 0.660

.1968 0.611 | 0.627 | 0.642

2625 0.612 | 0.628 | 0.640

3281 0.613 | 0.630 | 0.638

.3937 0.592 | 0.614 | 0.631

4921 0.597 | 0.615 | 0.631

6562 0.599 | 0.616 | 0.631

L9843 0.601 | 0.617

1.6404 0.603 | 0.617

3.2809 0.605
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65. The numbers above are the true coefficients of the contrac-
tion of the fluid vein, or the coefficients of the reduction of the
theoretic discharge to the actual discharge ; for theory gives no
other general formula for flowing through orifices than § ! A/2g
(HA/H—ha/h).

That which was established (15) SA/2gh; where k'=} (H--h)
applies only to particular cases, very frequent, to be sure, where
¥ is three or four times greater than H—A. In the other cases,
it is erroneous, and the coefficients which are adapted to it and
which it has served to determine, are erroneous also; they are
the coefficients found above the transverse lines which divide the
columns. (The coefficients below the lines, although determined
by the aid of that formula, are accurate, coinciding with those
obtained by the general formula). Finally, in the first,
mSa/2gH, the error of the coefficient m is compensated by the
error of the formula, and the discharges which it gives are sen-
sibly identical with those of the other ; and as it is, besides, more
simple, it is commonly employed in all cases.

66. Example. What would be the discharge of & rectangular
orifice .9843 ft. wide and .49215 ft. high, under a head of only
.16405 ft. on its upper edge? Here H=.16405-{-.49215=.6562
ft. and /=.9843 ft. The head on the centre, therefore, is
410125 ft.; the coefficient which corresponds to this head,
according to the above table, is nearly .603 ; a mean term between
.593 and .614. Thus the discharge will be $X.603X.9843X
.8.02052 (.65624/ -6562—.164054/.16405)=1.476 cubic feet.
The ordinary formula, with its coefficient .592, taken from the
ordinary table in section 26, would have given .592).9843X
.49215%8.02052 A/ -410125=.1473 cubic feet.

67. We have a circular vertical orifice of .0888 ft. diameter,
with a head of .0592 ft. above the' centre. What will be the
discharge? Here d=.0888 ft., A=.0592 ft.; so that the
expression of No. 63 becomes .012086 (1—g5Yy—g7-5)=-011863
cubic feet. This is the theoretic discharge; and to have the
actual discharge, it is necessary to multiply it by the coefficient
indicated in the table of No. 64. We there find 0.667 for an ori-
fice of .6562 ft. diameter, under a head .0656 ft. (or of .0592) ;
under this same head, we then also have 0.644 for an orifice of
.0984 ft. from which we shall take 0.650 for the orifice of .0888
ft. The actual discharge will then be 0.65X.011863=.00771
cubic feet.
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Experiment gave Mariotte .008077 cubic feet, and Bossut
.007332 (with one line=.0888 in. head measured directly above
the summit of the orifice) ; the result of calculation would thus
be a mean term between the results of experiment.*

The discharge just determined, that obtained through an orifice
of one French inch diameter, under the head of one line (=4 in")
taken immediately above the summit of that orifice, is the pouce
deau of water-works agents, a measure to be investigated hereafter
(206). Mariotte, in the work which he wrote more than one hun-
dred and fifty years ago, to fix its value, observed, that to obtain a
height of water of one line immediately over the orifice, there
must be a height of two lines in the full reservoir, and conse-
quently, eight over the centre.t Thus the phenomenon of the
inflexion of the fluid surface toward the orifice, and its influence
upon the discharge, were well known to him.

THE FLoWAGE OF WATER OVER WEIRS.

68. If, at the upper part of the sides of a basin, a
rectangular opening be made, with a horizontal base, the
water of the basin, which we suppose kept constantly
full, will flow out in the form of a sheet, over this base
or sill. To such an opening is given the name of weir;
and we also extend the name to dams which entirely
close up the bed of a stream of water, in such a manner
that the water, on meeting with them, is obliged to rise
up and pass over the top or crown.

The surface of the water, before arriving at the weir,
and in starting from a point C, which is at a small dis-
tance from it, is inclined along the arc CD; so that its
height immediately above the sill is no longer AB, but
only BD.

69. Conformably to the ordinary theory, it is first
admitted that the particles which follow the curve CD

* The Pouce d'eau of France was determined by Prony to be 19.1963 cubic metres
of water in the twenty-four hours; this is equivalent to .0078463 cubic feet per second.
t Traité du mouvement des eaux. III.e partle, &c.

Nature
and formulm
of
Flowage.

Fig. 17.
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have, on arriving at D, the same velocity as if they had
fallen freely from the height AD, and that the particles
beneath go out also with a velocity due to their vertical
distance from the point A. We find, then, that for the
velocity of issue of the differen$ fluid threads, for their
number dependant on th.e height BD, and consequently
for their discharge, exactly the same case as if we had
a rectangular orifice closed by an upper edge which
might be at D, and as if the fluid were extended with-
out inflexion up to A. Therefore, representing by Q
the discharge or volume of water flowing in one second,
by I the breadth of the weir, by H and % the heads, one
of the lower edge and the other of the upper edge, and
by m the coefficient of reduction of the results of the-
ory to those of experiment, we have established (as at
No. 60),
Q=2g m | (HNH—hN}).

70. However natural this mode of treating the sub-
ject may appear, yet facts have shown that the dis-
charges were more exactly given by a calculation based
on the supposition that the flowing occurred under the
whole height AB, the fluid always extending, without
inflexion, up to A. We then find ourselves in the case
explained at No. §9: A=0 and

Q=:v2g m | HMV H=5.8484 m | HVH.

The flowing over weirs would be therefore only a par-
ticular case of flowing through orifices in general, that
in which the head upon the upper edge is nothing. MM.
Bidone and Poncelet had already shown that it was so,
and that the coefficient 7, which answered for ordinary
orificés, was suited for weirs also, when the flowing
occurred under analogous circumstances.

71. In establishing the above two formule, we have
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implicitly admitted that the fluid was at rest above
the weir, or rather, above the point where the surface
begins to incline towards the sill; but very often, the
water comes to this point with a certain velocity.

In this case, proceeding as we have already done in
the case of orifices, properly so called (38), we must
add the generating height of the velocity of arrival, to
the height due to the velocity of flowing for a fluid at
rest, which is in this instance § H only (61). Let u be
that velocity, .01554* will be the generating height,
and we shall have for the real velocity at the exit,
A 2g ($H+.0155364?%), which is reduced to 5.3484
A/ H+.03495642, and consequently,

Q="5.3484 m/H ~/'H+.034956.

The quantity » represents the mean velocity of the
section of water which goes to the weir; its exact
determination is nearly impossible, but as its value will
differ but little from that of the velocity at the surface,
a velocity which we obtain quite easily by means to be
investigated hereafter, we shall admit the equality, and
then, modifying the value of the coefficient to be deter-

mined by observation, if we designate by m’ this new

coefficient, and by w the velocity at the surface, we
shall have
Q=5.3484 m'IH V' H+.03495".

72. Let us put these formulas to the test of experi-
ment.

The expression of the discharge includes two varia-
bles, the breadth of the weir, and a function of the
velocity or of the head. In order that these formulae
be well established, it will be necessary that the dis-
charge be exactly proportional to each of the variables;
then only the coefficient would be constant. The degree
of its constancy will thus be the mark, as it were, the

_ M. Castel.
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measure, of its being well established. The numerous
experiments which M. Castel, engineer of the Toulouse
water-works, made in 1835 and 1836, at the water-
works of that city, with extraordinary care and exact-
ness, inform us with regard to this constancy and

(1) For the de- these proportionals. @

talls of theso ex-
periments, the
reader is refer-
red to Mémofires

The water-works of Toulouse, or building enclosing the
hydraulic machines which raise the waters destined for a hun-

de 1'Académis dred and more fountains of that city, was 61.027 feet in diameter,
des Bctences de gnd 49.215 feet in height, of which 26.25 feet were beneath the

Toulouse, t.IV.

1831,

* pavement surrounding it.

In the middle is raised a tower 26.25 feet in diameter, and
45.93 feet high ; in the upper part is a cistern, into which all
the water is conveyed ; the quantity of which is at a mean of
45 litres=9.9 gallons per second, and it can easily be raised to
60=13.2 gallons. At the foot of the tower, and on the body of
the building, extends a terrace 15.75 feet broad, which presents a
very commodious place for observations ; and consequently, they
permanently established here the great apparatus for hydraulic
experiments, already mentioned (49).

To this apparatus, M. Castel added a second for weirs. Tt was
a wooden box or canal, rectangular, 19.686 ft. long, 2.428 ft.
broad, and 1.805 ft. deep ; at onc end it receives the water of the
first apparatus, and to the other are fitted thin plates of copper,
in which the weirs were opened.

The breadth of these varied gradually from .03281 ft. to 2.428
ft.; the sill was constantly at .558 ft. above the bottom of the
canal. The water that flowed from it was received at pleasure,
and for a certain time, in a second box lined with zinc, with a
capacity of 113.024 cubic feet; this was the gauging basin; it
had been measured with the greatest care. The time occupied
by the water in arriving at a certain height was measured by a
time-piece, marking quarter seconds.

The heads or heights of water in the canal above the sill of the
weirs were increased gradually, from .09843 ft. to .3281 ft.,
and even to .78744 ft. for narrow weirs. The most important
and difficult point in the experiment, was to measure the heads
exactly. To accomplish this, M. Castel fixed upon the top and
middle of the canal, parallel to its length, a ruler, which he kept
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quite horizontal, and which bore, at intervals of .16405 ft., ten
vertical rods of brass divided into millimetres, and each capable
of being raised and lowered in a groove, on which was a vernier
indicating tenths of millimetres. When he wished to make an
experiment, after having admitted.a suitable quantity of water
into the canal, and satisfied that the regime was properly estab-
lished, he lowered the rods and placed their points as exactly as
possible in contact with the fluid surface. Then subtracting their
length from the vertical distance between the ruler and sill, he
had the ordinates of the curve described by the fluid particles
passing directly to the middle of the wecir. These ordinates
increased in proportion as they were distant from the weir; but
soon, at .6562 ft., or .9843 ft., or 1.3124 ft., the increase became
sensible, and they had the greatest of the ordinates, or the head
properly so called, H; the smallest, that raised vertically above
the sill, was H—#, or the thickness of the fluid sheet at the
moment of its passage over the sill. After having made all the
observations he could upon the canal of 2.428 ft. broad, M. Castel
provided himself with one 1.1844 ft. broad, by narrowing the
first by means of two plank partitions, only 7.35 ft. long. At
the entrance of this small canal, which was placed in the middle
of the large one, there was, during great discharges of water, a
slight fall, which could have produced some small modifications
upon the results which might have been obtained, if the parti-
tions had been prolonged to the extremity of the large canal.

Upon both, M. Castel effected a long series of experiments.
Each observation was repeated once or twice ; in all, there were
494. For each, the values of Q / and H being immediately given
by experiment, it was easy to deduce from them the value of the
coefficient m of the formula

Q=5.348 m I H A/H.

The mean values obtained for each head and breadth of weir
are given in the following tables. There were no observations for
the cases corresponding to the gaps which most of the columns
present. The heads and breadths which are there noted in an
exact number of hundredths, are not entirely those of the experi-
ments. It was not possible to obtain from the workman breadths
of a precise number of hundredths ; they differed but very slightly
from the truth. As to the heads, it would have required too
many adjustments, and too much time, to get rigorously at a given
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value ; but a close approximation was made. Hence, the differ-
ences between the values of the coefficients, with the heads and
breadths really employed, and with those which have been admit-
ted, are so small, that by means of the mode of interpolation
used, we have the coefficients of the tables as exact as though
they had been directly given by experiment. We shall, however,
find them in the memoir of M. Castel, with the breadths and
heads really observed.

CANAL 2.428~ BROAD.
Head COEFFICIENTS,
upon BREADTH OF WEIR BEING IN FEET.
(e sl 2.408, 220 L | ) 1312 004 11008 .28 . 164 1008 1
feet.
787 .595(.615 K
722 .594/.614 .
.656 .596/.594|.614|.629|.
.590 .595/.594|.613(.628|.
525 .595(.592(.613.628|.
454 .603).593/.592/.612/.628|.
.394 .621].604(.592|.591/.612|.628|.
.328 .657|.644/.631|.621.604/.593(.591|.612/.627|.
.262 (.662|.656/.644|.632|.620|.606|.595.592|.612|.627 .
.1971.662.656|.645/.632|.622/.610|.604(.595(.612|.628|..
.164|.662/.656/.644/.633|.626|.616|.611|.597|.613 |.629|.
.131/.662|.656/.645|.636|.632|.623(.619|.604/.614 .
.098.663(.660|.651|.642/.636!.631|.624!.618
CANAL 1.1811 BROAD.

Head J—
upon COEFFICIENTS,
the st BREADTH OF WEIR BEING IN FEET.

1.184 ft; .984 ft| .856 ft) .328 ft) .202 ft, .250 ft| .164 ft; .098 ft; .008 ft; e3Ift
feet. ’
787 619 624 |.620|.647 .
p .615|.613|.617 | .620 | .627 | .646
.656 .611|.608(.614|.618 | .626 | .645|.667
.590 .633(.608 | .606 | .610 | .616 |.626 | .644
025 .68 .605 |.603|.608 |.615 (.625 |.644 | .
454 .678|.624(.603 | .601.605|.614 |.624 | .644
394 |.700| .666 | .620 | .600 | .599 | .603 | .614 | .623 | .646|.674
.328(.684 | .656 | .617 | .598 | .598 | .600 | .614 | .624 | .648
262 (.672| .652|.616|.599 |.597 | .599 | .613 | .624 | .654
.197(.669 | .652 | .617 | .600 | .597 | .600 | .613 | .626
.164.667 | .653 | .620 | .605 | .604 614
.131(.668|.653 |.624 | .613 | .611 613
.098|.670 | .665|.632|.628|.625
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78. Let us analyze, first, the most simple and most fre-
quently employed of the formulee, Q=5.3484 / H &/ H.
Let us examine, in the first place, up to what point

the discharges Q are proportional to the function Ha/H
of the head. For this purpose, take the twenty-two
series of discharges obtained, each with the same breadth

of weir, but under different heads, (recollecting that

the discharges were directly given by experiment, and
that we can, besides, reproduce them by means of the
above formula, by assigning to each their respective
coefficients noted in the tables). Reduce the discharges

of each series to what they would have been, if one of

them, that obtained under the head of .2625 ft., for exam-

ple, had been taken for unity.

Reduce, in like manner,

the series of values of H o/H, and bring together all
these series, as has been done for the three concerning
the discharges; the first two have been given on the
canal of 2.428 ft., through weirs 1.969 ft. and .328 ft.
broad; the third belongs to the canal 1.1844 ft. broad,
with a weir of .164 ft.

SERIES of DISCHARGES. SERIES OF
Heaps, _ | HAMH
in feet. 1 3 3 HA/H —ArA/h
.6562 3.96 3.98 3.95 4.01
.5906 3.38 3.39 3.38 3.42
.525 2.83 2.84 2.83 2.87
459 2.31 2.32 2.31 2.34
.394 1.83 1.84 1.84 1.86
.328 1.40 1.39 1.40 1.40 141
.262 1.00 1.00 1.00 1.00 1.00
197 0.650 0.652 | 0.650 | 0.650 | 0.643
.164 0.494 | 0498 | 0.495 | 0.494 | 0.486
131 0.354 0.381 0.354 | 0.354 | 0.345

There results from the comparison of the twenty-

two series of discharges among themselves, and with
the series of Ha/H,

Usual
Formula.

Ratio
of discharge to
heads.
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1st. That, above the head of .1969 ft., or even of
164 ft., leaving out some great heads, the differ-
ences between numbers of the same horizontal line
are very small, they do not exceed a hundredth;
thus, confining ourselves to all the exactness which
is required in practice, they may be regarded as
nothing; and the ratio between the discharges is
the same as that between the correspondent values of
HW/H.

2d. That, for heads of .164 ft. and lower, the dis-
charges decrease in a less ratio than Ha/H, and as
much less as the head is smaller, but only in medium
breadths ; for when they are very small or approach that
of the canal, the equality recurs. Such irregularities,
and some other reasons, should cause us to avoid these
small heads in practice.

3d. In some great heads, especially with broad weirs,
we still see the discharges increase in a less ratio. This
fact, which was almost insensible in the canal of 2.428
ft., became prominent in that of 1.1844 ft., when the -
water with those heads and those breadths came to the
weir with a great velocity. Now, in these cases—and
they present themselves always when the fluid section
(IXH) at the passage of the weir exceeds the fifth part
of the section of the current in the canal—the discharges
should not increase as Ha/H, but as Ha/H-+.0349547;
and it is no longer the ordinary formula, but that given
in No. 71, which we must then use.

Hence it results, that so long as we have the case of
dams, properly so called, those where the water in the
upper level experiences a retardation which destroys or
remarkably lessens the velocity of arrival, Q will be
very sensibly proportional to Ha/IL; and in this respect,
the formula is well established.
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74. The formula will not be quite so well established
in what concerns the breadth of weirs; the discharges
in this case will no longer be so near the ratio of
breadths, however natural it may appear to suppose so.
Starting from the breadth of the basin, they will dimin-
ish with the breadth of the weir, but with greater rapid-
ity up to a certain point; beyond which, they will, on
the contrary, diminish less rapidly. The opposite col-
umns will fix our ideas on [ (i oF
this subject. On the canal | o 4oge. 1.1811n
of 2.428 f§., we have twelve -~ o
breadths, which are to each ||Breadt- charge. Breadth. charge.
other as the numbers placed || 1000 | 1000 | 1000 | 1000

i . 919 | 911
in the first column; in 811 | 788 | 831! so7

the second, -we see the pro- || 676 | 645
gression which the corre- %g 2(7)-1, 554 | 507

‘sponding discharges follow || 270 | 243 | 277 | 246
—discharges obtained un- ]gg lgé 138 | 125
der heads of from .1968 ft. 40| 40
to.3281 ft. For the carals i/; ﬁ
of 1.1811 ft., where we:

have ten breadths, we have here noted those only which
have something analogous to those in the other canal.
These series of ratios show that, in the two canals, the
discharges follow the same law comparatively to the
breadths of the weirs, but to the breadths relative to
that of their respective canal, and not to the absolute
breadths.

75. Since, extremes being omitted, the discharges
are sensibly proportional to H a/H, for the same
breadth of weir, the coefficients ought to be nearly
equal, and they are so in fact, as we see in the tables
which we have given (72). In strict rigor, and taking
the coefficients of the same vertical column in the

Ratlo of dls-
charge to width
of welr.

Cocfliclents.
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tables, we shall see them, starting from high heads,
decreasing, very slightly, to be sure, in most cases, down
to a certain head, beyond which they will augment rap-
idly; there will then be at this head, which genérally
will be near .3281 ft., a minimum.

Since, the heads remaining the same, the discharges
decrease, at first more and then less rapidly than the
breadths of the weirs, it follows, that under the same
head, reckoning from the breadth of the basin, the
coefficients will go on diminishing up toa certain point,
beyond which they will increase. Here will then still
be a minimum, and it will take place when the breadth
of the weir shall be nearly a quarter of that of the
basin.

76. Thus, in the horizontal lines, as in the vertical
lines of the tables of coefficients, we have a minimum ;
in each table there will then be a common minimum.
Near this, and up to a certain point, according to the
general law, as according to the result of experiments,
the variations are very small; the coefficients will vary
very little from each other, and they may be regarded
as constants. But beyond that distance, it is no longer
so, and the differences may be quite considerable ; they
exceed one eighth in the tables, so that the discharge
by weirs would not be exactly given, with a constant
numerical coefficient, by an expression of the form
! H &/H; in mathematical rigor, such an expression
would not be admissible. In practice, we could not
make use of it, except by aid of tables of coefficients
very extended, the reduction of which would require
many hundreds of experiments.

Yet the study of the progress which the coefficients
follow, affords the means of contracting this great
field, and of reducing to a small number of quite
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simple rules, the determination of those which agree
with the different cases which generally occur in prac-
tice.

(See further on details of this progress of the coeffi-
cients, in the papers of M. Castel, and in the notes
which I have added there.)

T7. We have seen (73), that the expression ! H o/ H , Sooncients |
must not be applied, on the one hand, when the heads  beused.
are below .1968 ft.; on the other, when the heads multi-
plied by the breadth of the weir exceed the fifth of
the section of the water in the canal. Between these
limits, the above expression can be employed, with a
coefficient, variable indeed, but which will vary only
with the breadth of the weir.

To reckon from that of the canal, the coefficients
diminish with the width of the weir, until it be about
one quarter of the first, and then they increase, although
the widths continue to diminish (75); and, what is very
remarkable, the diminution of the coefficients follows
that of the relative breadths of the weir compared to
- that of the canal, whilst the increase which follows
depends only on the absolute breadths.

We have, consequently, four cases to be distinguish-
ed relatively to the coefficients to be employed.

1st. Near the minimum, which we have just indicat-
ed, their variations are inconsiderable ; according to the
experiments made at the water-works of Toulouse, from
a breadth of weir almost equal to a third of that of the
canal supposed to exceed .984 ft., to an absolute breadth
of .1640 ft., the coeficients will vary only from .59 to
.61. Taking the mean term, remarking that 5.3485 X
.60=3.209, we shall have, between the limits which
we have just indicated, Q=38.209  H /H. This for-
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mula furnishes the best mode of gauging small courses
of water; we shall recur to it in treating of this gang-
ing (159).

2d. When the breadth of weir is at its mazimum,
i. e., equal to that of the canal, and it is thus in case
of a dam properly so called, the coefficients present a
remarkable constancy. M. Castel, in his experimentg
on the canal of 2.428 ft., with a dam .5576 ft. high,
had no difference between the coefficients obtained under
heads which varied from .0984 ft. to .2624 ft. (72);
and with a dam of .738 ft., the coefficients varied only
from .664 to .666, for heads from .10168 ft. to .2428 ft.
Taking a mean, he had .665; and since 5.3485X%.665
=3.5567, designating by L the breadth of the canal or
length of the dam, we shall have,

Q=3.5567 L H &/ H.

This formula will also be employed with advantage
in certain cases, even on great water courses, and with
heads of from .1312 ft. to .0984 ft. But to ensure full
security, it will be necessary that the head be less than
the third of the height of the dam.

3d. For breadths of weirs comprised between that of
the basin and that which would be a third of it, the co-
efficient of the expression 5.348 ! H ,/H will vary
with the relative breadth, i. e., with the ratio of the
breadth of the weir to that of the canal, and it will be
given in the following columns. We formed them by
taking proportional parts between the coefficients de-
duced directly from experiment, and what is seen in
the tables of No. 72; this mode of interpolation would
here give no error. We have noted separately the
coefficients deduced from the observations made on each
of our two canals, to show that for the same relative
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COEFFICIENTS (
POR CANAL
of 2.428 ft/of 1.181 f¢

breadth, the same coefficients sen- —
sibly correspond, although the real |Relative
value of the breadth be, in one of |~

the canals, more than double the lgg ggg ggg
other; evident proof that, above| .80 | .644 | .648
70 | .635 | .635

.8202 ft., or a quarter of the|' X

breadth of the basin, the coefi-|| 50 | 617 | ‘oi3
cients depend on the relative gg gg;‘; ggg
breadth, and not on the absolute \ 25 | 595 | .598
breadth of the weir. e

4th. It is quite different when that breadth descends
below one quarter that of the canal. Then, and when,
at the same time, it is less than .2624 ft. or .1968 ft.,
that of the canal has no influence, and each absolute
breadth of weir has its own coefficient; thus, on the
canal of 1.184 ft., as well as on that of 2.428 ft., the
breadths .1640 ft., .0984 ft., .0656 ft., and .0328 ft.,
have equally for thexr respectlve coeﬂiclents .61, 63

.65 and .67.

78. After having explained, in detail, what relates to
the most simple of the formulee of the discharge in
weirs, we pass to two others; and first to

Q=>5.348 mi (H ¥ H—h A/h),
in which % represents the quantity AD (Fig. 17), by
which the fluid surface is already depressed on its arri-
val at the weir.

A simple glance at the last column of the table given
at No. 73, shows that, although the series of quantities
H A/H — & A/ is not very remote from those which
belong to the corresponding discharges, it follows them,
however, less exactly than the series of values of
H o/H. Thus, in this principal point, this second
formula is not so well founded as the first.

Besides, it is much more difficult of application; it

Observations
upon the
Formulms of
No. 6.
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contains one term more, 4 A/%, a term whose exact
determination is a matter of great difficulty, as we shall
soon see (82). So that, although reasoning first led to
this formula, we make no use of it.

79. It is not entirely so with that which includes a
term which is a function of the velocity with which the
water running in the canal arrives at the weir.

At the time of the experiments made at the water-
works of Toulouse, we had frequent occasion to observe
the effect of this velocity. As soon as it became sensi-
ble, the greater it was, (and it became greater the
greater the head, and especially as the weir was made
broader,) the more the expression of the discharges
5.348 {H a/H, in which the running is supposed to
take place only in virtue of the pressure or head H,
failed through deficiency, and its coefficient of contrac-
tion m became greater. Such is, in part, but in part
only, the cause of the increase of the coefficients, in
proportion as the breadth of the weir, starting from
.1968 ft., increases. It is evident, that in the case of a
notable velocity, when the running is effected in virtue
both of the head and of a previously acquired velocity,
it is necessary to add to the head a term dependent on
that velocity; which leads to the equation (71)

Q=5.3484 m'IH a/H+.034952,

The experiments of M. Castel will give the values of
the coefficient 72". In these experiments, the velocity
w of the surface of the current in the canal was not
measured, it is true; but we can determine it from the
mean velocity (108), which is equal to the discharge
Q divided by the section of the current, which is here
L (H+a); L being the breadth of the rectangular
canal, and a the elevation of the sill of the weir above
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the bottom of this canal. In fact, according to the ex-

periments of Dubuat, which we shall by and by inves-

tigate (109), the velocity of the surface is, as a mean

term, a quarter greater than the mean velocity ; so that
1.25

13'(11"&)'

Even with this value of w, which, however, is the
greatest we can admit, the coefficient 7’ will differ
from the coefficient 7 of the ordinary formula, only as
the velocity in the canal will be sufficiently great for
the term .085w*, which makes the difference between
the two formulas to have a value comparable to H.
As it will generally be very small, and as it is under
the radical, it will scarcely influence the value of m’ by
half its own relatively to H; if it be two, four or six
hundredths of H, the coefficients, all things else being
equal, will only differ one, two or three hundredths.
In these three cases, the section of the fluid sheet at
the weir, or /XH, is respectively 5.8, 4.1 and 38.35
times smaller than the section in the canal, or
L (H+-a); whence we draw the conclusion, which we
have already used, that when the first of these sections
is less than the fifth part of the second, the coefficients
m and m’ will be the same, to a hundredth, nearly.
Such was the case for the weirs of M. Castel, as long
as their breadth was below half of that of the canal.
When it was considerably more, the term .035w* had
greater influence, and the differences became greater.
But the employment of this term is far from reducing
to equality the coefficients 7’ for different breadths of
weirs; it did not even reduce to half, the differences
which the values of m present; and the expression

5.348 m'lH A/ H+.035w?,
hardly more than 5.348 m/H a/H, can be employed

we should have w—
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with a constant coefficient, only in cases of a breadth of
weir equal to that of the canal. For this case, it will
exact less restrictions, and if it is less simple, and
even if it is not more exact, it will be more general and
more rational.

To obtain his coefficient, M. Castel barred the canal
of 2.428 ft. by dikes of copper, the heights of which
were successively dropped from .788 ft. to .105 ft., and
he obtained the coeﬂiclents| P
placed opposite. Those of! A fhe | g meap srva 1x resr. |
the first five dikes are gen-"n feet.| e | o | oo | ama
erally the same, although,|" .738 651 655 .657!. -
however, they do not pre-|i 558 | 640 | 617 | 650 | -

660
| 654
sent the regularity which! .426|.650|.649.652 .65
i.305|.635 ; .642 | .646 | .650
660
668

there was in those of ordi-| ‘946 647 | 652 | 655 6
nary weirs; their mean term | .134 667 | 664 | .665 | .668 .
is .650. As to the coeffi- 1% wlﬁso-
cients of the dikes of .134 ft. and .105 ft., they belong
to a peculiar class. These dikes were very low, and
the heads much surpassed their heights, so that we
were at least as much in the case of a water course
running in an ordinary bed, as in that of weirs; more-
over, the close approximation to equality between the
coefficients for the same dike testifies in favor of the
formula which gave them. The experiments on the
canal of 1.184 ft., with its dam of .558 ft. height,
indicated coefficients of which the mean was .654.
Admitting the mean term between this number and
.650, observing that 5.3485X.652=38.4872, we shall
finally have
Q=3.4872 LH »/H-}.03495x"

The velocity w in this will be dircctly determined
by observation.

In rectangular canals, such a determination is super-
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fluous, and, giving to w its value, as above, we have, as
long as H is smaller than ! a,

3.4872 LH /VH
TVEw
Weirs

80. Very often we apply to weirs, canals which are, ™ ? additionsl
as it were, exterior extensions of the sides of the weir.
The water, constrained to follow them, experiences
from their sides a resistance which retards the motion;
and this retardation being communicated to the fluid
which arrives at the weir, diminishes the discharge.
Experiments alone can make known this diminution for
the different cases which present themselves, and we
bave but very few. MM. Poncelet and Lesbros have,
it is true, made a great number of them, but they are
not yet published. However, the latter savant, in
communicating to me some of those which he made
upon the canals adapted to orifices closed on all their
periphery, and of which we already have the results
(39), bad the kindness to send me a series of those
which he also made with orifices open on their upper
pert, that is, with weirs. The additional canal was
always that of 9.84 ft. in length and .656 ft. broad,
like the weir, and it was kept horizontal. I here give
the results obtained, as well as ——

. COEFFICIENTS.

those previously had from the | |

With- Loss
same weirs and with the same | ““‘" out ca- W':‘: i

nal. | canal. .
heads. The diminution of the ||

product with the canal was as || .676.582|.479| 18

476 .590 | .471| 20
much less as the head was great- | 338|591 | 457| 23 .

er. From this fact, as well as || .197|.599 | .425| 29

from those which were obtained | \ (1)3§ ggg ‘;% 32 |
with closed orifices, might it not | : 2l

be inferred, for heads of 3.28 ft. and more, such as we
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often have at the head of great canals and raceways,
that the diminution of the discharge due to the pres-
ence of the canal would be but very small? After all,
we await the publication of the work of MM. Poncelet
and Lesbros before drawing, and especially before gen-
eralizing, such a conclusion.

M. Castel also made some experiments, on a kind of
canals, of a peculiar interest. It was required to as-
certain what was the discharge through channels of
navigation opened in the dikes of rivers. To answer
this question, he added to the weir of .656 ft. broad,
on the basin of 2.428 ft., a small canal, 0.67 ft. long,
and inclined 4° 18, or ;.

Here are the coefficients obtained with the formula
Q=>5.348 m/H a/H. They varied but _:_(oﬁivl
very little, although the heads were || "¢ | clent |
more than doubled; and the mode of | .364 | .526
experimenting pursued is a guar- gég gg-f il
anty that there was no error. The || .197 | .528 |
mean coefficient was .527; it would ,——__1_94:;—_9_|
probably have been raised to .58, if, as in our ordinary
channels, the inclination had been . For the weir
alone, the coefficient was .60; so that the additional
canal would not have diminished the discharge as much
as twelve per cent.

81. Let us say a few words concerning a kind of
weir to which Dubuat gave the name of demi-weirs,
or incomplete weirs. They are those in which the
level of the water in the lower reach is above the sill,
or the crest of the dam, as is seen in Fig. 33.
Dubuat, in thought, here divided the height of the
water AC ahove the sill into two parts, Ab and Cb.
In the first, the flowing takes place as in an ordinary
weir, where Ab (=H) would be the head; so that
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the volume of water discharged would be (79)
3.4872 IH a/H+-.03495%"
In the second part, it is admitted that the discharge is
the same as through a rectangular orifice, whose height
would be 4C, and where the head would equal the dif-
ference of height between the upper and lower level
(95); bC is the elevation of the latter above the sill of
the weir; and it will be a—b, if we designate by a the
elevation 4D of the surface above the bottom of the
canal, and by & the height of the sill above the same
bottom ; to the head Ad or H will be added, as in the
case of closed orifices (38), the height due to the ve-
locity % of the water of the canal, and the velocity of
exit will be found
A2g (H+.015536u%)=n/2g (H+.019420?),
since (79) w=1.25 u, consequently, we shall have for
the discharge (16),
8.0227x.62 I (a—b) &/ H+.01942:°;
uniting these two partial discharges, and designating by
Q the total discharge, it will become

Q=3.4872 IH A/ H-.034957144.974 I (a—b) o/ HF-01942:".

Let us terminate this article by a succinct examina~ Infiexion of sur-
tion of a remarkable circumstance presented in the n:;:x:“
flowage over weirs. The water, on approaching them,
and as soon as it has entered into their sphere of activ-
ity, precipitates itself in some manner towards the
middle of the sill, and its surface is inclined from all
sides towards it.

In the plane of the weir, the inclination commences Crom profie.
some centimetres (cent.=.03281 ft.) from the opening,
along the wings, (or parts of the partition in which the
weir is made comprised between the opening and the
lateral sides of the canal). This inclination, at first

12
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insensible, increases little by little; it is, at its maxi-
mum, at the edges of the arifice; it diminishes, then,
towards the middle ; sometimes it is nothing there, the
fluid remaining horizontal, to a certain extent; at other
times, it rises at this middle, to fall anew. Fig. 91
(PL. V.) shows two examples of the transverse section
of the surface of the water at the weir; at abc it is
simply concave; at defgh it presents the swell f;
sometimes there are two risings, one towards ¢ and the
other towards g ; the surface is then, as it were, undu-
lating.

M. Castel, with the view of furnishing for practice
an easy method of measuring the heads, took, upon his
canal of 1.181 ft. broad, fifteen transverse profiles, under
different heads and with different breadths. (See the
Memoirs of the Academy of Sciences of Toulouse,
tome IV., page 280.) It results from his observa-
tions :

1st. That the inflexion does not extend along the
wings, at least, in a sensible manner, at more than
.2296 ft. or .2624 ft. from the opening.

2d. That beyond this distance, in most cases, deduc-
tion being made of the effects of capillary attraction,
the water maintains itself against the wings exactly at
the same level as in the full basin; but that, with
broad weirs, and under great heads—that is to say, in
great velocities—the fluid surface rises against the
wings, and the rising has even been up to .00984
ft. As there will be none of this in the weirs to
which the formula Q=38.209 /H a/H is applicable,
to obtain in these cases the head H, it will suffice to
take on each of the two wings a point of the water
line, to stretch a line from one to the other, and to
measure its elevation above the middle of the sill of the
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weir. In these cases of rising up against the wings,
we should seek to ascertain its magnitude, or to be
freed from its action, for example, by fixing the two
extremities of the line against the lateral sides of the
canal, a little above the weir.

We may even disregard altogether the rising on the wings, and
treat it as if it did not exist, taking in all cases for H the height
of the water line above the sill ; for this rising above the level
being a consequence of the impulse of the fluid against the wings,
and therefore an effect of the velocity of the water in the canal,
will represent in part that effect; it will in part take the place of
the term .035w*; it will render the formula Q=3.209 /H A/H
exact, even for quite great velocities.

‘Whenever the rising above the level would wholly represent the
effect of the velocity, and would be the height due to w, some
have thought that it should be added to H throughout, and they
establish Q=5.348 ml (H4-.0155v*) A/HF.0I55¢". I am
assured, by experience, that such a formula gives too much infla-
ence to the velocity w.

As to the absolute quantity of inflexion %, that is to
say, the settling of the middle of the transverse profile
below the level of the water in full basin, we shall give
the value in the following number. It may suffice to
remark, here, that the form and variations of this pro-
file will render its exact determination very difficult, if
not impossible; this form is often undulatory, and the
summits of the waves are moveable, so that, from one
moment to the other, %, or the depression of the fluid
at the middle of the weir, may be found .0065 ft. or
.0098 ft. greater or less.

83. Different authors, who have studied the running
of water over weirs, have also given attention to the
inflexion of the fluid, in proportion as it advances
towards the orifice of exit; and they have given longi-
tudinal profiles. But no one has given so many as M.

Longitudinal
Pprofile.



92 FLOWAGE OF WATER OVER WEIRS.

Castel; each of his determinations of the head, (and he
made more than four hundred,) was made by means of
such a profile; the depressions below a horizontal plane
were taken at intervals of .164 ft., and measured in
tenths of millimetres, the millimetre being .00328 ft.

I shall ndt enter into detail upon these observations
and their consequences; they will be found in the
memoir of that observer, and I shall confine myself to
summing up the principal results.

1st. The appreciable length of the inflexion of that
which exceeds .000328 ft. varied only from .492 ft. to
1.3776 ft., and it never attained to 1.64 ft., reckoning
from the weir. It was naturally as much greater as the
head and breadth of the opening were more consid-
erable.

2d. The absolute quantity of inflexion, %, was about
.0164 ft. under the head of .0984 ft., whatever might
be the breadth of the weir; then it increased with that
breadth and the head. In the canal 1.181 ft. broad,
with a simple dam, and under the head of .3937 ft., we
had A=.055104 ft.; and .065928 ft. in the canal of
2.428 ft., with a breadth of weir of .656 ft.; and with
the head of .656 also, this was the greatest inflexion
that was seen.

8d. The inflexion compared to the head, or the ratio
%, was from .16 to .17, under very small heads, and in
all the weirs; this expréssion then diminished in pro-
portion as the head increased, and as much as the weirs
were narrowed. Thus, in the canal of 2.428 ft., and
under the head of .656 ft., we had .8182 ft. with the
weir of .656 ft., and only .0984 ft. with that of .164 ft.



FLOW WHEN THE RESERVOIR IS EMPTIED. 98

CHAPTER SECOND.

EFFLUX OF WATER, WHEN THE RESERVOIR EMPTIES
ITSELF.

When a vessel, instead of being kept constantly full,
receives no additional water, or receives less than it
discharges through an orifice in its lower part, the
fluid surface gradually sinks, and finally the vessel be-
comes empty.

The laws of efflux are in such circumstances different
from those which we have just explained in the preced-
ing chapter, and other questions are to be solved. We
will examine these laws and these questions; and first,
in the case of prismatic vessels or basins.

84. Suppose the fluid to be divided into extremely “hesa e on’
thin horizontal strata, and that they fall parallel to 2 2¢ 'n the
each other; each of their particles will be animated by
the same velocity; this is the Aypothesis of the paral-
lelism of the strata, admitted, perhaps too extensively,
by many geometers.

Let v be the velocity of the particles in the vessel,
V the velocity which they have at the orifice, A the
horizontal section of the vessel, S, or rather, mS, the
section of the orifice, allowing for the contraction; the
volume of water which will flow in an infinitely small
portion of time 7, will be sVZ. During this same
time, the fluid surface will have fallen the vertical dis-
tance vr, and the corresponding volume of water will
be Avr. These two volumes necessarily being equal,
we have Avr=mSVz, or v: V::mS:A. (A new ex-
ample, and a new proof that when a fluid mass is in mo-
tion, without destroying the continuity of its parts, tke
velocities are in the inverse ratio of the sections (19).
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85. The velocity of the issuing fluid is pot uniform,
and for a given moment is not a simple effect of
the pressure or of the height of the reservoir; it is also
a consequence of the velocity v, acquired during the
descent of the strata; the two actions, operating in the
same direction, downwards, their resultant will be
equal to their sum. Thus, if H' is the generating
height of the velocity of efflux, H always being the
height of the reservoir, we shall have

, v v oS , miS?
Whence

, H A?
H =1 m'S =H A—m St
—

Such is the famous rule given by Daniel and John
Bernoulli, the same as for the case of vessels always
full.

When mS is small compared to A, which is almost
always the case, m’S? will be very small compared with
A?, and may be neglected; then H'=H, that is to say,
the velocity of efflux, at any instant, is that due to the
height of the reservoir at the same instant.

We shall admit it to be so in what follows; and the
more readily, since the hypothesis of the parallelism of
the strata, which led to the above value of H', although
admissable before the strata, in their descent, have
arrived within the sphere of activity of the orifice,
cannot be admitted after having reached it; the circum-
stances of the motion of the fluid particles then become
very complicated, and are entirely unknown to us.

86. Let M be a prismatic vessel filled with water up
to AB; divide its height, from B to C, the place of the'
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orifice, into & very great number of equal parts, Ba,
ab, be, &ec.

Now, suppose that a body P be projected upwards
with a velocity such that it rises to the point H, PH.
being equal to CB, and divide PH also into the same
number of equal parts. As the body ascends, its veloc-
ity will diminish, in such a manner that when it arrives
successively at the points ', &', ¢, the velocities will
be, respectively, as is known in the first elements of
mechanics, as &/ Ha', &/H¥', o/Hc, ... 0.

As the fluid flows from the vessel M, its surface AB
will settle, and when it is successively at the points a,
b, c, the respective velocities of the effluent water will
be (85) as a/aC, a/bC, a/cC, .... 0, or, according to
the construction, as their equivalents /Ha', #/H?,
~Hc, ... 0.

So that, as the vessel empties itself, the velocity of
efflux will decrease till it becomes nothing, following
the same law as the velocity of a body projected
upwards, which is the law of uniformly retarded mo-
tion; the efflux, therefore, will take place with such a
motion. The same will hold respecting the descent of
the fluid surface, the velocity of the descent being to
that of the efflux, in the constant ratio of the section
of the orifice to the transverse section of the vessel.

87. According to the laws of uniformly retarded
motion, when a body starting with a certain velocity
gradually loses it till it is reduced to zero, it passes
through half the space it would have passed through, in
the same time, if it had constantly preserved the
velocity of departure. Moreover, the volume of water
which flows from a vessel, until it is quite empty, may
be regarded as a prism having for its base the orifice in
the vessel, and for its height the space which the first

Volume of
eflax.
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effluent particles would pass through, with a retarded
motion equal to that with which the eflux is made; but
if these same particles had always preserved their ini-
tial velocity, that due to the first head, the space
passed through in the same time, or the height of the
prism, and consequently the volume of water dis-
charged, would have been double.

Hence the theorem: the volume of water dis-
charged through an orifice, from a prismatic vessel,
which entirely empties itself, is only half of what it
would have been, during the time of emptying, if
the efflux had taken place constantly under the
same head as at the commencement.

88. Let H be the head, A the horizontal section of
the basin supposed to be always prismatic, T the time .
necessary to empty it. The volume of water dis-
charged during that time, that is, all the water con-
tained in the vessel (above the orifice) is AXH. The
volume which would have been discharged, under the
head H, according to the above theorem, would be
2AH; this same volume, or the discharge during the
time T, is also (16) mST &/2gH.

Equating these two values, we have

T— 220 _ g AVE
mS &/ 2gH m@'

If we represent by T’ the time which the volume AH
would have required to flow under the constant head
H, we should also have

9T ANVH
Thus
T=2T":
that is to say, the time in which a prismatic vessel

A



FLOW WHEN THE RESERVOIR IS EMPTIED. 97

empties itself is double the time in whick all its
water would have run out, if the head had remained
what it was at the commencement of the effluz.
89. To obtain the time ¢, in which the level of such Time requiredto

. N .. ald
a vessel descends a given quantity a, take the time re- e given qoan
5 tity.
quired to empty the vessel entirely, which is 2A M/H,
mS~/2g

 then take the time required to empty it, starting not from
the first level, but from that to which it will have descend-
ed, after having passed down the quantity @, the head

will then be H—a ; call it A, and we shall have 24 A/
mS A/2g°
The time required being evidently only the difference
between those of which we have thus given the expres-
sion, there results on
=y WH—E)

Example. There is a prismatic vessel, whose horizontal section
is a square of 3.199 ft. at its side, and which has in its bottom
an orifice .0889 ft. diameter ; it is filled with water up to a height
of 12.435 ft. above the centre of the orifice. What is the time
required to draw down the level 4.265 ft., reckoning from the
moment of opening the orifice?

‘We have A=3.199X3.199=10.2336 square feet ; S=n'(.0889)*
=.00621 square feet ; H=12.435 ft. ; A=12.435—4.265=8.17 ft.,
and m, according to the table of No. 26, will be 0.61; so that

2X10.2336 S
=‘W (A/12435—a/8.17) =450"=T' 30"
Bossut, operating with the above data, found =7’ 25”.5.
This author also made, with the same apparatus, the three

experiments presented in this table:
i Time of fall- | Tlme of fall-
|t X, o S
| | ments. mala.
.0889 9.5805 | 20°25” | 20’ 41”
A775 9.5805 5 6 §10”
1775 4.2653 152" 52

13
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Although the times.deduced from calculation are generally a lit-
tle greater, the excess is so small that it may be neglected : it is
probably the effect of some small error of observation.

I would remark, that the time which a vessel requires to empty
itself entirely, could not be exactly determined by the formule ;
when the water descending is near the bottom, it assumes the
form of a funnel, the middle of which is occupied by air, and it
thus diminishes the orifice of eflux. Besides, when the water is
only about } inch from the bottom, the molecular attraction
retains its particles, and the flow is checked, or rather, it pro-
ceeds only drop by drop.

90. The expression of the time required by a fluid
to fall a certain quantity, gives, by a simple transfor-
mation, the extent of the fall, as well as the volume of
water discharged during that time.

For the extent of the fall, H—A, we have

mS Mg T tmS “/2_6’) .
A (“/ H 4A

Multiplying this expression by A, (which merely
removes A from the incomplex factor,) we obtain the
volume of water discharged in the time z.*

Take, for example, a basin, the upper part of which is sensibly
prismatic, and having a surface of 10764.3 eq. ft.; the water
issues from it through a gate 2.133 ft. broad by 0.27888 ft. high.
How much will the surface fall in one hour? Here A=10764.3
square ft.; 8=2.1326)}.27888==.59474, H=8.8587 ft., t=Ib=

* Should the reader find any trouble in transforming this equa~
tion, he will readily understand the following :
NB— 5= NG o AR o/ H 1S &/ 75

Multiply first member by A/ H+-4/A, and second member by its
equivalent &/ H4-A/ H—mS &/ 2¢, and the result given in (90)
is produced. TRANSLATOR.
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3600”, and m for the openings of the gate is about .70; conse-
quently, the fall demanded will be

3600 3. 0D SHUX BRI o f o3 pumem 300D TOX5.8474 ) 8.02052

WX TN o (~8.8587 e 3. 01108

For the volume of water discharged in the time of this fall, we
should have 10764.3)3.0119=32421 cubic ft.

91. Admit that the prismatic basin, While emptying Buin receiving
itself, receives a current (furnishing less water than beingemptiea.
flows from the basin), and let us determine, in this
new case, the time required for the surface to fall
a given quantity. Preserving the above denomination,
call ¢ the volume of water coming to the basin in
one second z, and the descent in the time ¢; dz will be
the height through which the fluid will fall during the
infinitely small instant of time dz, at the end of
the time ¢. Adz will express the volume of water
discharged during that instant, if the basin receive no
water flowing in; but as it receives ¢ in one second,
and consequently gd? in d¢, the volume of water really
discharged will be Adz-{-gdt. This same volume, ac-
cording to the formula of the discharge through orifi-
ces (16), is also expressed by mSdt &/2g (H—z).
‘We shall therefore have,

Adz+-qdt=m8dt &/2g (H—2z);
making H—a=+, whence —dz=dh,
qdt—Adh=mSdt o/2g Mk;
which gives di—=_g ngsh'

To integrate this equation, I make

mS A/2g A h— g=y, and it becomes

—A d
dt——’;,s,} (dy-*—q-;'")’
of which the integral is

A
t=——rg; (¥+¢ byp log )+C.
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vamg to y its value above, determining the constant
for the ‘origin of motion, where #=0, 2=0, and A=H,
substituting the ordmary logarithms for the hyperbolxc
logarithms, by multiplying the latter by 2.803, we

shall finally have
2A . — - mS~/ ﬁ—q
hm g mSA/2g(A/H—a/h)+2.303 qlogm—_—q 2
When no water flows into the basin, q—O and we
have the equation of No. 89.%

A pond, reduced to the prismatic form, has a surface of 38751.48
square ft., and a depth of 11.483 ft.; it is fed by a stream afford-
ing 33.55 cubxc ft. of water per second ; when the gate is wholly
raised, the opening is 3.609 ft. wide, and 1.969 ft. high.
In what time will the pond draw down to .328 ft. above the upper
edge of the opening? (According to what was said in No. 89,
the formula would not give the time of descent, when the level of
the fluid is only at a small height above the orifice of eflux). We
have here, for the head above the centre of that orifice, at the
moment of raising the gate, H=10.4988=(11.483—1:342) ft. ;
and for the head at the end of the time, A=1. 312(=L-889{ 328)
ft.; S=3.609 ft.)X1.9685 ft.=7.10612 square ft.; A=38751.51
square ft. ; ¢=33.558 cubic ft. ; m=.70; eonsequent.ly, A2

mS A/2gH—q
> —— =log {§:$3}=log 7 .8792=89648.
mS A/ 2gh—g
From this the equation becomes
t= ’.z%’g;;“ {am (A 104388 — A/ [312) - 23.03 X 53.5%8 X m}
74407 =204,

This is the time required.

=39.907 and log ~

¢ I give the method by which D’Aubuisson has got this result.
Putting in S &/2g h—g=y, the equation stands thus :

NG
—Adh 2 ly
dt=_y_. ‘We have dh=- SV2= 2dy (v+y)

mS* 2g
Substituting in above, we have
—2Aydy—2Aqdy —2A dy
U= S0y — 2gmts-(3'”—)'

TRANSLATOR.
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92. If it were required to determine the descent of
the level in a given time, the question would be
reduced to determining the head % at the end of that
time, and we should subtract it from the head H at the
commencement of the discharge. To obtain £, we will
put successively, into the equation of the preceding
number, several values, until one is found to satisfy its
conditions.

Take the pond just investigated, and let us ascertaln how much
the surface will be lowered in one hour, H being always 10.4988 ;
we have also =3600", A=38751.51 square ft.; ¢=33.558 ocubic
ft., and mS &/ 2=39.907.

Putting these numerical values into the equation, and assum-
ing different values for 4, we shall, after a few trials, find the value
of h, which nearly satisfied the equation to be 3.99745; the reduc-
tion in this case gives +1.27 ft.=0.

Consequently, the fall required will be, 10.4988—3.99745=
6.5013 feet.

93. In case the water passes from a basin over a
weir, admitting that the basin received no fresh sup-
plies, we should have, from what has just been said,
and what has been explained elsewhere (70),

Adz =3ml (H—z) dt &/ 2g /H—z;
whence, by a method analogous to that before used, we
deduce

b= I~ vzg (v h vﬂ)

Take, for example, a basin with a surface of 1076.43 square ft.,
on one side of which is a weir 1.6411 ft. wide; the level of the
water is 2.6251 ft. above the sill. In how long a time will the
surface fall 1.97 1

Here £=2.625—1.97=.655; H—2 625; A=1076.43; =1.64
and m=.61; so that

_ 3X1076.43 1 -
BIXT.64X8.02 \ ¥ 655~ V. 625) =248 81" =48.81

‘When water

passes over
welrs.
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94. Thus far, we have considered only prismatic
vessels or basins; the determination of the time of
efflux for every other form would be much more com-
plicated; it is even impossible, in most cases which
present themselves.

The fundamental equation is still

— Adr

Adz=mSdt »/2g (H—z); whence d‘=W(H:€)'
But here A is variable, and the integration can be ef-
fected only after expressing A as a function of z; this
could be done only so far as the law of its decrease was
known, and consequently, only as the basin would be a
solid of revolution, the equation of the generating
curve of which was known. In all other cases, it
would be necessary to proceed by approximation and
by parts. For this purpose, we should divide the
basin into horizontal strata of small thickness; each
should be regarded as a prism, and we would determine
by the above formula the time required to empty it.
The sum of these partial times will be the time which
the water will have required to fall a quantity equal to
the sum of the height of the prisms.

For example, let there be a pond, with a fluid surface of 339075
square ft., which is kept at the level of 7.87 ft. above the oentre
of an opening at the bottom, provided with a pyramidal shaped
mouth-piece of 1.48 ft. square. In what time will the surface
fall 3.2809 ft., when that mouth is open?

Suppose the stratum of water 3.2809 ft. thick to be divided
into two strata, each 1.6404 ft. thick ; acoording to the plans and
profiles of the pond, to be made with care and detail, we should
determine the mean section of the first quantity; admit that it is
287407 square ft., and that of the second, 181917 square ft.

For the first, we have £=6.2337 ft. (=7.8741—1.6404) ; and
for the other, A=(6.2337 ft.—1.6404 ft.)=4.5933 ft.

Consequently, the time required to discharge tho first stratum,
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.98 being the coefficient of discharge through the pyramidal trough
(51), will be (89)
2287407 R
t= “9'8‘_(Xr“6r-_‘_' (A/7-8741 —A/6.2337) = 10375.7"=
2h 52 55.7”
For the second stratum, we have
2X 181917 _ .
= 09BX(14T64)" W 55 (W62357 — A/1.5933) = 7505.6"=
2h 05 5.6”.
Thus, the time of the descent of surface required will be 4h 58’ 01”.
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CHAPTER THIRD.

EFFLUX, WHEN THE FLUID PASSES FROM ONE RESER-
VOIR INTO ANOTHER.

If a reservoir, containing a fluid, instead of dis-
charging it into the atmosphere through an orifice ip
its lower part, should discharge it into a reservoir
already containing a certain quantity of the same fluid,
in such a manner that the orifice of communication be
covered by the fluid, we shall have to distinguish three
cases.

95. First, that where each of the two reservoirs sen-
gibly preserves its own level. This occurs when one
reach of a canal furnishes water to the reach immedi-
ately below, through a sluice-way placed below the

Fig, 1. surface of the lower level. The water is retained in
The level being the upper reach by a sluice-gate AB, at the bottom of
ooty Which is the opening of which BD represents the

ervolrs.  height.

To determine the quantity of water which will pass
out in the unit of time.

Let m be a fluid particle situated at any point of the
opening, the pressure or force which tends to make it
pass is represented by Am ; but on the other side is a
force Cm, tending to hinder its exit, and acting in the
opposite direction; so that the resultant or force in
virtue of which m will pass out is Am—Cm=AC.

For another particle, n, we should in like manner
have An—Cn=AC. Thus, all the particles will pass
out with equal velocities, those due to the difference of
level AC.

In general, when a fluid passes from one reservoir
to another, through an orifice covered by the fluid in
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the latter, the effective head on each point of the
orifice, and consequently, the head due to the velocity
of erit, at any instant, is the difference of level of
the two reservoirs at that instant.

Such is the fundamental principle of flowage consid-
ered in this chapter.

96. If & be the difference of level of the two reser-
voirs, S being the section of the orifice, m the coeffi-
cient of contraction for that orifice, and Q the discharge
in one second, we shall have Q=mS &/2g4’.

But, in this case, has m the same value as when the

eflux is made into the atmosphere? In other words,
is the fluid vein equally contracted in air and in water?
A hundred years ago, Daniel Bernoulli answered this
question in the affirmative. Having taken a cylindrical
vessel, with an orifice in the bottom, and filling it with
water, he remarked that the fluid surface descended
the same distance in the same time, whether the orifice
were in open air, or plunged slightly in still water.
(Hydro. p. 129.) Many experiments made on the
orifices of sluice gates indicate a discharge nearly
equal, whether these orifices were under water or out
of water. They give, in the two circumstances, 0.625
(28) for the coefficient of reduction from the theoretic
to the actual discharge. Thus, Q=0.625S &/2g/’".

97. Pass to the case where the lower reservoir, that A constant level
which receives the water, is limited, as a basin of less mt';,?:“':f,ﬂe:,.
size would be, whilst the upper reservoir is regarded of ™) 'n the
indefinite extent, or rather, as kept constantly at the
same level. When the orifice of communication is
open, the surface of the water in the lower basin will
rise; it is required to determine the time it will take
to attain a given height.

Let M be the basin, the water entering the orifice B Fig. 2.

u



106 FLOW WHEN WATER PASSER

has already arrived at C, what is the time requisite for
it to arrive at D?

This problem is exactly the inverse of that (89)
where, for a vessel which discharges freely into the
atmosphere, it is required to assign the time in which
the fluid will ascend a given quantity. In that case, as
the flowing takes place, the surface of the water above
the orifice will fall with a uniformly retarded motion.
In the present problem, the surface of the basin M,
driven upwards by a force, (the difference of level of
the two basins), which decreases in the same progres-
sion as the height of the reservoir in the other case
decreased, will rise with a motion equally retarded, and
will require the same time to pass through the same
space, under equal pressures.

If H is always the head AC at the commencement
of the time ¢, A the head AD at the end, A the area
of the section of the basin to be filled, S the section of
the orifice B, m the coefficient of contraction, we shall
here also have

zA — —
t=;.s—:/’2;(~/H — W),
and for the time of filling up to A,
2A —
T= T ~H.
These formulee are of great use; they serve to deter-
mine the time necessary to fill a lock chamber.

Let us make an application to the canal of Languedoc, or South-
ern canal. Admitting the middle chamber, such as given in the
history of that canal, by Gen. Andréossy, (tom. I., pp. 158 and
251,) we have,

Length of chamber from one gate to the other, 115.1 ft.

Breadth of chamber (swelled in middle) from 21.33 to 36.22 ft.

Fall from one level to the other, 7.46 ft.
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Horizontal section of chamber, 3504.86 sq. ft.
Section of an opening, 6.766 sq. ft.
Height of upper level above centre of opening, 6.395 ft.
From the same centre to the lower level, 1.066 ft.
The coefficient of contraction, the two openings of the

upper gate being open at a time, is (29) .548

Consider, first, the part of the chamber below the centre of the
orifice. The time of filling it, determined by the rule of efflux
into the open air (16), will be, observing that two orifices are
open,

3504.86X1.066 =247
BABXIXO.T66 o/2g A/6.305

For the part which is above the centre of the orifice, we have,
by the formula just established,

2X3504.86 A/6.395 "

SABXZX6.766 A/ 2g — 205
thus, the time for filling the whole chamber will be about 323", or
523",

The Historian of the canal gives for the time from 5’ to 6’; his
mean term, 5 30", scarcely differs from the result of the formulse.

98. Some experiments made in Germany, on a sluice of the
canal of Bromberg, and reported by Eytelwein, (Handbuch, § 120,)
will make us still better able to compare the results of calcula-
tion with those of experiment.

The chamber was 162.7 ft. long, its breadth from 21.62 fi. to
29.86 ft., and its section 4542.5 square ft. ; the orifices were 2.059
ft. (2 ft. of the Rhine) broad; the height of one was 1.373 ft.
and of the other 1.845 ft. The water was admitted first through
the former and then through the latter; thus there were two
series of experiments. In each, the water was previously suffered
to ascend in the chamber up to .197 ft. above the upper edge of
the orifice, then the edge of the first orifice was 7.294 below the
upper level, and the edge of the second was 7.208 ft. The num-
ber of seconds which the water required to rise a certain quan-
tity, (1 or 2 inches,) until the chamber was full, was counted.
The results obtained are here given :
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- Helght TIME OF RISING.
Number |thro' which

of the water |BY calcula-{ By experl-
openings. rose. tlon. ment.

feet. seconds. secends.
2.0595 2 p
2.0595 319 327
1 2.0595 458 491
1.1152 667 682

7.2037 | 1704 | 1763 |

1.0297 93 90
1.0297 102 102
1.0297 112 114
1.0297 128 128

2 1.0297 | 151 149 |
1.0207 | 197 197
1.0297 | 476 | 454 .

72079 | 1259 | 1234

The times of the partial elevations were also calculated, by the
formula

2A — _
t 5 % (WH—Wh)>
in which m was taken = .625.

The value of H in each of these partial experiments, is the sum
of the elevations noted in the second column, and taken by start-
ing from the bottom of the column, and comprising the elevation
corresponding to the time indicated opposite; 4 is the same sum,
but not comprising that elevation ; thus, for the second experi-
ment in the table, we have

H=1.1152+-2.0595-}-2.0595=>5.2342 and
h=1.11524-2.0595=3.1747.

" We see, by comparison of the last two columns, that the results

of calculation agree pretty well with those of experiment; if in
the latter observation we find a great difference, it probably pro-
ceeds from the extreme difficulty of taking the exact moment
when the water ceased to ascend in the chamber, the elevation in
the last moments increasing only by infinitely small degrees.

Thelevel of the  99. We come to the third case, presented by two res-

two reservoirs

ervoirs communicating with each other; that where
both being limited, and neither of them receiving new
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water, the surface of one descends while that of the
other ascends. Such is the case of the two basins K
and L, communicating by a great tube EF, having a
cock at G. Before the cock is opened, the level of the
water is at AB in the first basin, and at CO in the sec-
ond; at the end of a certain time, after the opening of
the communication, it descends to MN in the first, and
rises to PQ in the second; it is required to find the
relation between these two elevations; or, vice versa,
from the relation between the elevations, it is required
to ascertain the time of flowing.

Let t=the time, BE=H, CF=k, NE=z, PF=y,
A—the section of the first receiver, B=the section of
the second, s=the section of the pipe of communica-
tion; m will comprise the effect of the resistance of the
pipe. While the fluid is rising in the second basin, the
quantity dy, during the instant d¢, it will fall in' the
other dz, and, observing that z diminishes when y and ¢
increase, we shall have

Adzr=—Bdy,
and (16) Adz=—ms &/2g (z—y). d¢, or
G Ade

The first equation being integrated, (observing that
when 2=H, y=h,) becomes Az-}-By=—AH-{Bh.

Taking from this the value of y, and putting it into
the preceding, integrating, and observing that z=H
when =0, we have

24 A/B S e

=22 —h)—A/ (A+B)r—AH—BA
t rnS/\/QE(_ATi'F){}\/B(H h) N/(+)‘T— }
If it be desired to know the time which the fluid will
take to arrive at a certain level, in the two basins,

Fig. 21.
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we should make z=y=§f+i?—h, and this value, put

into the above equation, would give
1= 2ABVH—}
msa/2g (A1B)

Take, for example, in the double lock of a canal of navigation,
two contiguous lock chambers. When a boat ascending the
canal, has entered the lower chamber by its lower gate, the gate
is closed ; we then raise the paddle gates of the gate which sep-
arates the lower from the upper chamber, (the upper gate of
which is closed) ; the water descends in one chamber and rises in
the other, until they have a common level ; then the gate of sep-
aration is opened, and the boat is introduced into the upper cham-
ber. We require the time which elapsed from the moment of
raising the paddle gates, until the water stands at the same level
in the two chambers. Suppose the question to apply to the
double lock of Bayard, near Toulouse.* Count the time, from the
moment when the water, arriving into the lower chamber, has
attained the centre of the orifice of the paddle gates; then H
=13.583 ft., A=787 fi.; also, A=2206.68 square ft.; B=
2314.32 square ft. ; s==13.445 square ft. (for the two orifices), and
m==.548 ; we shall have

2X2206.68X2314.32X A/ 13.583—.787
- .548X13.4454/ 22X 4521

Experiment gave 2’ 20”. This excess of 12” proceeds from the
fact, that the paddle gates were not yet quite raised, when the
water attained the centre of their openings; and the formula
supposes that they were so.

Nore. Vessels divided into different compartments, by parti-
tions or diaphrams pierced with orifices, present, during the flow
of the fluids which they contain, diverse phenomena, which have
given rise to interesting mathematical considerations. But as
these questions are of greater interest as it regards analysis than
in respect to immediate application to practice, we shall not
dwell on them, but refer to the works specially treating of them,
and particularly to the Hydrodynamique of Daniel Bernoulli, sec.
VIII, and to that of Bossut, tome I., second part, chap. VII.

=137"=217".

* Histofre du Canal du Midl. Tome I., page 251; Tome 1I., PL III.



SECTION SECOND.

ON RUNNING WATERS.

100. Water running naturally on the surface of the
globe, forms rivulets and streams, which here will be
comprised under the general name of rivers.

Water also runs in canals dug by the hand of man.
Both canals and rivers are uncovered; but water is
sometimes inclosed in conduit pipes, for the purpose of
conducting it conveniently to a given point. It also
passes from these pipes under the form of jets d’eau.

The consideration of the different circumstances of
motion in these four states, will be the object of the
four chapters of the second section.

CHAPTER FIRST.
CANALS.

101. Canals differ in this regard from rivers, that
they have a regular bed, having throughout the same
inclination and the same profile; and they carry down
the same volume of water throughout their length. In
case one of these conditions is not fulfilled, where, for
instance, after a certain slope, another is assumed, there
will result two canals, the one succeeding the other.

Definitions.
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If from the point o, at the bottom of the canal, a hor-
izontal line op is drawn, its corresponding vertical gp
will be the slope of the canal for the length og. It is
called the absolute slope, if o and ¢ are at the extrem-
ities of the bed of the canal; and the relative slope, or
the slope per foot, if og is one foot long. Calling the
slope p, if L is taken for any length of a canal, D being
the difference of level between the extremities of this
portion, we have p=D; or, if e represents the angle of
inclination, p=sin. e.

The section of a canal, or any water-course, is the

" area of the section made by a plane perpendicular to

the axis of the current; in a rectangular canal, if /=
breadth and ~=depth, s or area of section is s=lk; if
it is trapezoidal, /=breadth at bottom, and n the slope
of the sides, or the ratio of the base to the height, then
s=(l+4n k) k or s=(l+-cos. f. k) k, where f is the
inclination of the sides to the horizon.

That part of the contour of the fluid section, in con-
tact with the bed or bottom, as well as sides or berms,
is called the wetted perimeter of the section. Desig-
nating it by ¢, for rectangular canals, we have c=I{-2% ;

for trapezoidal, c=I+2k A/ n’+1=1+ émgf

Dubuat gives the name of mean radius of the sec-
tion, for the ratio of the area to that of the wetted

perimeter, or ;

Let us now examine the nature of the motion of water
in canals, that is to say, the nature and expression of
the forces which produce it; thus establish the formulse
of this motion, with their various applications; and
finally, ascertain the quantity of water which canals
can receive at their heads or inlets.

A}
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ARTICLE FIRST.
Nature of Motion in Canals.

102. Gravity is the sole force that acts upon & mass
of water left to itself, in a bed of any form; it pro- o Motion.
duces all the motion which takes place.

Whenever its action upon each fluid particle (whether
it be that which it exerts directly downwards, or that
indirectly produced by the lateral pressure of the adjoin-
ing particles) is destroyed, so that the fluid mass is
brought to a state of rest, its surface will be horizontal.
Reciprocally, when the surface of a fluid is horizontal,
exception being made for any impulse before impressed
upon it, all action of gravity will be destroyed, and no
motion can take place. But a8 soon as this surface is
inclined, motion takes place, and continues, even if the
bottom of the bed is horizontal, and even if it should
have a counter slope for some distance. Whence, the
principle, admitted in Hydraulics, and of which we
shall give a geometrical demonstration, that ‘ tke motion
of particles in a water course, is due wholly to the
slope at the surface;” this slope it is, which is the
immediate cause of motion, and enables gravity to act.

103. Let us examine, now, the mode of action of this Mode of action
force, and what is its measure in the different cases of ity
that may occur, which are represented in Fig. 22.

Suppose then a canal, in which the surface of water is
parallel to the bottom of the bed, and consider the very
small section A. The fluid particles which are on the
bottom a’ &, will descend by the direct action of grav-
ity, as down an inclined plane. Those which are above,
up to the surface a b, forming, as it were, threads laid
upon the first, will descend in the same manner. The

15
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effective portion of gravity, that which is not destroy-
ed by the resistance of the bed, and which causes the
motion, will be represented by the height a ¢, and this
height will be g sin. i; ¢ being the inclination of the
surface @ b to the horizontal b c. The indirect action
of gravity, or the lateral pressure experienced by each
particle, being the same in all directions, by reason of
the parallelism of a b and a’ ', will not occasion any
motion. )

Let us admit, now, a current with a surface more
inclined than its bed, and represent a small section of
it by B. Take, then, into consideration, any particle,
m, traversing the section in the direction m n. This
particle, or rather, the linear system of particles m n,
will experience: 1st. The direct action of gravity,
which we represent, as before, by the height m of the
inclined plane m n, or by its equal ¢ @, m d being taken
equal to # 6. 2d. The indirect action due to the ine-
qualities of pressure upon the two extremes of the sys-
tem m and z; at the upper extremity m, conformably
to the rules of hydrostatics, the pressure is represented
by the height of the fluid column m a; at the lower
extremity, it is represented by n &; the resultant of
these two pressures, that which produces motion, will
equal then m a—n b=—a d; as for the pressures which
each particle of the system experiences at its sides,
perpendicular to m n, they will be equal to each other,
and reciprocally destroy each other, and have no effect.
Thus, the system m n will be urged downwards by
the two forces @ d and ¢ d, or by their sum a ¢,
which is g sin. i, ¢ being always the inclination of the
surface.

When the bed is horizontal, as in the section C, the
direct action of gravity upon the particles in contact
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with the bottom, will, it is true, be entirely destroyed
by the resistance of the bottom; but the indirect action,
or the inequalities of pressure, will amount to  ~
ad —bb'=ac=g sin. i.
For all other particles m, the moving force will be as
above
mf-+(ma—nb)=cd-}-da—=ac=g sin. 1.

Finally, if the bottom has a counter slope, as in D, the
particles upon it will be urged back or up stream, by its
relative gravity, £ a’=c d; but, on the other hand, they
will be urged downward by the difference of the press-
ing columns aa’ and b4, or by ad. Hence it follows,
that they will be impelled in this last direction by

ad—cd=—ac=g sin. 1.

104. It follows, from these different facts, that, in a
water course of any form, each particle, in traversing a
section having an inclination of surface equal to i,
receives from gravity an impulse represented by g
sin. %; that is to say, that if the impulse continues
during one second, it will produce a velocity equal to
g 8in. ¢; this, then, is the expression of the accelerat-
ing force, and is dependent solely upon the inclination
of the surface.

This slope, 8o to speak, may vary at every step, or
it may be constant for a long space, in which case, a
longitudinal seetion of the surface of the current forms
a right line. This is frequently the case in canals,
properly so called, of a constant slope and profile; the
surface lines and the bottom lines can neither converge
nor diverge, and must be parallel; the surface will then
have the same inclination as the bottom, and the sin.
i will be=sin. e or=p (102), and the aocelerating
force will be=gp.

Accelerating
force.
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Retarang  105. From what has been said, water running in a

fore canal is constantly subject to the action of an accele-

Resstance rating force; so that, if it encounter no other opposing

of bed. . . : .

force, it will descend with an accelerated motion, and

its velocity would never be uniform. Nevertheless, it

often attains this uniformity in a very short space of

time, after which, the acceleration is inappreciable.

Experience proves this to be a fact; it is to be seen

in most canals, even those of great slope. Thus,

Bossut, causing water to run in a wooden -canal

656 ft. long, with a slope of 1 in 10, and having divid-

ed the canal into spaces of 108 ft. each, has found that

each division, excepting the first, has been traversed in

the same time. There must then be, after a certain

period of time, a retarding force, which destroys at each

instant the effect of the accelerating force, and which

is equal to it. Thus, water will move along with a

velocity acquired in the first moments of its running;

a phenomenon similar to that produced in nearly all
motion ; in that of machines, for example.

But in canals, there can be no retarding force but
that which comes from the resistance of the bed. This
resistance cannot be called in-question; from experi-
ments made with a tube 2.06 ft. long, there was a dis-
charge of 5.22 cubic ft. in 100”; and when its length
was doubled to 4.12 ft., dimensions in other respects the
same, it took 117" to discharge the same volume. Thus,
the velocity in the tube was diminished in the ratio of
117 to 100; and it can only be that the canal, by rea-
son of its increased length, offered a greater resistance
to the velocity; it therefore resisted motion.

Natareorge.  106. Let us examine’the nature of this resistance.
sistance. When water passes over the surface of a body, there
being no repulsion, or negative affinity between the two
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substances, it wets this surface; that is to say, a thin
lamina of fluid is applied to it, penetrating its pores,
and it is retained there, both by this engagement of its
particles, and by the mutual attraction of the particles
for each other.

It is over such a revetment or watery covering, fixed
against the sides of the canal, that the water which it
conducts must pass. The thin sheet of this mass,
immediately in contact with this covering, by sliding
along and rubbing against it, mingles its particles with
those of the covering—it adheres, and its velocity is
retarded. In consequence of the mutual adhesion of
the particles, this stoppage, gradually diminishing, is
communicated from one to another of the adjacent lay-
ers, till it is felt by the most distant fillets. The mass,
in consequence, receives a mean velocity less than
would take place, without the action of the sides and
the viscosity of the fluid.

The cause of this diminution of velocity has often
been attributed to the friction of the water against the
sides of its bed. Such a friction, if it occurs at all, is
of a nature entirely different from that of solid bodies
against each other; it depends neither upon the pres-
sure, nor the nature of the rubbing surfaces. Dubuat
is convinced, by direct experiments, that the resistance
of water is independent of its pressure. He has
never yet found any variation in the friction of water
upon glass, lead, pewter, iron, woods, and different
kinds of earth. (Principes d hydraulique, $$ 84
and 36.)

This last fact might be accounted for, by observing, that in all
cases, the friction can only take place upon the aqueous layer
which covers the sides of the bed. But a friction independent of
pressure? It would seem quite natural to admit, that the resist-
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ance could proceed from no other source but the adhesion of the
particles of water in motion, both among themselves, and with
those of the fluid-covering of the sides of the bed.

This adhesion has been measured by weights. Dubuat found,
that to detach tin plates from tranquil water with which they
had been brought in contact, there was needed, beside their own
weight, an effort of .96 lbs. avoirdapois to 1.03 lbs. square ft. of
surface.

Venturi, by means of a remarkable experiment, affords a direct
evidence of the effect of adhesion, which enables the particles
of water in motion to catch up and carry in their train, those
which are contiguous to them in a fluid mass at rest. To a res-
ervoir A, kept constantly full, was fastened a box filled with
water, in which was placed a trough CD, open at its ends, and
its bottom resting on the edge D. A small tube was placed in
the reservoir, with its end at O. As soon as this was opened, the
jet which issued, passing through the water which had found its
way into the trough, drew with it the part adjacent; this was
replaced by that immediately next it, which in its turn was
replaced by the water in the box; so that, in a short time, the
water fell from the level of GD to gh.

107. Since the resistance is from the action of the
sides of the bed, the greater the extent of these sides,
that is to say, the greater the wetted perimeter for any
unit of length, the greater the amount of resistance.

But this resistance of the perimeter will be shared
among all the particles of the section, since their mo-
tion is connected by a mutual adhesion; thus, the
greater the number of particles, or the greater the
section, the less will the velocity of each, and conse-
quently their mean velocity, be changed. The effect
of resistance will be in the inverse ratio of the section.

On the other hand, the resistance will increase with
the velocity. The greater this is, the greater will be
the number of particles drawn at the same time from
,their adhesion to the sides; and, further, it must draw
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them more promptly, and consequently expend more
force; so that the resistance will be in the double ratio
of the velocity. The viscosity of the fluid occasions
still another resistance, which becomes more sensible,
compared to the first, as the velocity is smaller.
Dubuat has observed this important fact, and Cou-
lomb, through a series of experiments, made with his
characteristic skill and care, has found that it is simply
proportional to the velocity. Thus the expression of
ratio between the resistance and velocity involves two
terms; in one, the velocity is as the second power; in
the other, as the first; this last, which is but a small
fraction of the velocity, will disappear in great veloci-
ties ; it is always inferior to the other, when the veloc-
ity exceeds .23 ft., but below this, it preponderates.
In short, the resistance experienced by water from its
motion in a canal, is proportional to the wetted perim-
eter, to the square of the velocity, plus a fraction of
velocity, and is in the inverse ratio of its section.
Experience proves that this is very near the truth.
With the symbols already adopted, in calling bv
the fraction of the velocity in question, and a’ a con-
stant multiplier, the expression of resistance will be

@ (v + bv).

108. After what has just been said upon the resist-
ance of the bed and its effects, the different fillets of a
flaid in motion in a canal will have a velocity the
greater as they are more removed from the sides of the
bed ; thus they will have different velocities. Never-
* theless, in estimating the discharge of a canal, we may
admit that the whole mass of water in motion is
endowed with a mean velocity; which will be such as,
being multiplied by the section of the canal, will give

Mean
Velocity.
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the volume of water passed in one second. So that if
Q represents this volume, s being the section and v the
mean velocity, we have Q = sv.

Ratioofmean  109. From what has been stated above, it follows

"l:f:?,f':;:" *that the greatest velocity of a current will be at its
surface— in its middle, if the transverse profile is reg-
ular—if it is not, then in portions very nearly corre-
sponding with the greatest depths; it is there that is
generally found the thread of water, or fillet of the
greatest velocity.

This velocity of the surface, being that most easily
determined by experiment, the knowledge of its ratio
with the mean velocity is a subject of great interest in
practice ; it will enable us to determine this last veloc-
ity so as easily to calculate the discharge. The inves-

- tigation of this ratio has been the object of many
hydraulic observers, as we shall see in the article on
rivers; we confine ourselves here to what concerns
canals.

Dubuat is the only one, in my knowledge, who has
made precise experiments upon this subject. They
are in number thirty-eight. They were made with two
wooden canals 141 ft. in length ; the one of a rectan-
gular form 1.6 ft. wide—the section of the other a
trapezium whose small base was } ft., with its sides
inclined 36° 20’ to the horizon (making n=1.86); the
depth of water varied from .17 ft. to .895 ft., and the
velocity from 0.524 ft. to 4.26 ft. Dubuat concludes,
from these experiments, that the ratio of velocity at the
surface, to that of the bottom, is greater according as
the velocity is less, and that this ratio is entirely inde-
pendent of the depth; that to the same velocity of
surface corresponds the same velocity of bottom. He
has observed, also, that the mean velocity is a mean
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proportional between that of the surface and that of the
bottom. Calling u the velocity of the bottom, V that
of the surface, and v the mean velocity, he gives the
results of his observations by the formula

w=(A/V—.208868)* and v="""=(a/V—.149434)"1-.022332.

M. D. Prony, after discussing the experiments of
Dubuat, has thought this the more convenient for-
mula:

V-47.78188
v=V v11038508°

Here is a small table of some —

values of v corresponding to val- m:zm.! ,:._ " |
ues of V, as given by this for- | 8%50 ]'22433 '8%3‘
mula. M. D. Prony, taking a | 1. ia:geog 0.81V
mean term, has thought that, in F! é-w (45952}:; !8gg¥

practice, we may take »=0.8V; :
that is to say, in order to have the mean velocity of a
current of water, we may diminish that of the surface
one fifth.

ARTICLE SECOND.
Formule of Motion and Applications.

110. We have two kinds of motion to consider.
Most frequently, the surface of a current in a long and
regular canal assumes a constant slope, which is the
same as that of the bottom of the bed, and this surface
becomes parallel to this bed. Then all transverse sec-
tions are equal; the mean velocity is the same in each,
and the motion is uniform.

But it often happens, that the surface varies from
point to point, and is not the same with that of the
bottom ; so that, at different points of the canal, the

16

Two kinds
of
motlon.
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sections, and consequently their velocities, are no
longer equal.  Still, the quantity of water admitted in
the canal remaining the same, upon each isolated point,
the section of the fluid mass will be constantly the same,
and the velocity then will always have an equal value:
all, then, is constant, and the motion, without being
uniform, will be permanent.

1. Uniform Motion.

111. We have already remarked (105), that when
the water in a canal becomes uniform, the retarding
force equals the accelerating force; and that the ex-
pression for this last, in such kind of motion (104), is
gp; so that we have

gp=4a : (v*+bv);
or, making g =a, we have

p=a~(v+bv).

If, at a portion of the canal where the motion is uniform, we
take two points upon the surface of the fluid, whose distance
apart we represent by L/, and difference of level, or absolute slope
by D, we have p=3, and D=qa ‘—:i (v*4v). If we take the canal
throughout its entire length, which we called L, and H being
the difference between the head and foot of the same; from this
difference H, we must take a height due to the velocity v of uni-
form motion, as we shall soon see (127), and we have

v!

cL
H— =% ().

112. It remains to determine the two constant coef-
ficients a and b.

M. D. Prony, in combining the results of thirty
experiments made by Dubuat, has undertaken and exe-
cuted this determination. Some years afterwards,
Eytelwein following the steps of Prony, but extending
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his observations upon ninety-one canals or rivers, in
which the velocity varied from 0.407 ft. to 7.94 ft., and
the fluid section from .151 gquare ft. to 28.030 square
ft., found a'=.0035855, or @=.000111415 and
5=.217785, the English foot being the unit.

Thus, putting for 2 its value=2382.18 ft., the funda-
mental equation for the motion of water in canals will
be,

p=.000111415 £ »* 4-.0000242647 &,

or, observing that v=(—3- (108), Q being the discharge,
28=.000111415 ¢ Q*--.0000242647 cQs.

Of the four quantities Q, p, s, and ¢, or, remembering
that s=(I+nk) k and c=1+424 (&/n*+1), (101),
of the four quantities Q, p, % and !, three being given,
this equation enables us to ascertain the fourth. As for
n, the slope to be given to the banks, it will be indicated
by the nature of the soil in which the canal is dug.

113. It is seldom that the velocity is found among Expression
the list of problems to be resolved; still, for any case .o,
where its direct expression is required, the first of the
two equations above gives

v=—10.1088946 +|/ 8975.414% 4.01185803;

or, more simply, and with sufficient accuracy,

v=V 8975.414% _0.1088946.

c

114. Consequently, we have from Q=sv,

Expression

Q= s(—0.1088946 + l/ 8975.414 21 01185808), awcharee
or,

Q—s ( l/ 8975.414% — .1088946).
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115. In great velocities, those of 3.2809 ft. for in-
stance, or any above this, where the resistance is simply
proportional to their square, we have

v=94.7384/7, and Q= 94.738sa/7.

Let there be, for example, a caual, whose section is a trapezium
13.124 ft. wide at top, 3.2809 ft. at bottom, and 4.92 ft. deep;
with a slope of 0.001. Required, the quantity of water which
it will convey.

We have p=0.001; /=23.2809 ft. ; 1=4.9214 fi. With regard
to u, or ratio of base to height of banks, the height is that of the
trapezium, and the base is one half the difference between the

. 13124032809 11, _ :
two bases : so that n="=", 70 " =1. From this, s=(i4-nk) A

= (3.2809 - 4.9214) 4.9214 =40.366 sq. ft.; and c=I4-2h
A/n41=17.2 ft. Consequently, Q, the quantity sought, is
Q=10.366 (4/8975.414 “ 2 X W1_ 01185805—108895 }=180.87
cubic feet.

If we neglect the term .01185805 under the radical, we have
for Q = 180.843, which only differs from the above by .027.

The formula above for great velocities would give

Q=94.738 X 40.366 A/ %X _ 180,65 cub. ft.

116. The slope is directly given by the fundamental
equation which we have already established (112).

The canal de I’Ourcq furnishes both an example of
the mode of its determination, and some remarks worthy
of attention.

There were 106.61 cubic ft. of water per second to be disposed
of ; the projected navigation required there a depth of 4.9214 ft. ;
and in order that the water should always be at hand for the ser-
vice of the fountains in Paris, it was necessary that it should
have at least a velocity of 1.1483 ft.; the soil was such as to
admit of a slope of 1} base to 1 of height.

We have, then, Q=106.61 cub. ft.; v=1.1483 ft.; h=
4.9214 ft.; and n=1.50. Moreover, from the given terms

of the problem, s is known, for s=¢="%7 - —92.843

ot




-

FLOW IN CANALS. 125

8q. ft.; I will also be known, since from the expression s==
(I-nh) A (Sec. 101), we deduce

—nAt __ 92.803-180X 40148 .

= A =11.483 ft.:
consequently, we have c==/4-2h A/ n'41==29.227 ft.; whenco
the general equation,

p= 0001114155 ?-*-.oooomes',’i;
s

=

substituting the numerical ciunntitiea, gives p=0.00005502 :
such is the slope indicated by the formulad.

M. Girard, the engineer who planned the canal, arrived at very
nearly the same result. But he has observed, with reason, that
aquatic plants, growing always upon the bottom and berms of the
canal, augment very much the wetted perimeter, and consequently
the resistance ; he remembered that Dubuat, having measured the
velocity of water in the canal (du Jard) before and after the cut-
ting of the reeds with which it was stocked, has found a result
much less before the clearing. Consequently, he has nearly dou-
bled the slope given by calculation, and has carried it up to
0.0001056; the length of the canal being 314966 ft., this gives
33.260 ft. of abeolute inclination.

117. If the dimensions ! and % were the one
unknown, and the other one of the given quantities of
the problem to be solved, we take the values of c and s
as functions of these two dimensions, and substitute
them in the fundamental equation (112); ¢ would then
be deduced by the resolution of an equation of the
third degree, and % by that of an equation of the fifth
degree.

Let us determine, for example, the width to be given at the bot-
tom of a canal, appointed to conduct 123.60 cub. ft. of water, with
a depth of 4.9213 ft., the slope being 0.0001; and the soil of such a
character as to require for slope the base to be twice the height.
Thus, Q=123.60 cubic ft.; p=0.0001; »=4.2649 ft. and n=2.

‘We substitate these two last quantities in the expressions of s
and ¢ (No. 101), which in their turn are substituted in the gen-
eral equation. This will involve, then, only the unknown term

To determine
the width or
depth.
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l; and, making all reductions, and arranging according to the
Bee Appendix. powers of /, we have
$34-23.943 1*—46.578 1—3832=0.
Substituting for /, we find, on trial, =11.138 ft.

118. Most generally, Z and % are not given terms of
the problem; we have only Q and p, or the volume of
water which the canal ought to conduct, and the slope
which it should have, leaving the engineer to determine
the width and depth. To obtain these two unknown
quantities, there is but one equation; the problem, there-
fore, is indeterminate. The engineer then supplies the
gap, in giving such a figure as he deems best adapted
to the profile of the projected canal; this figure, indi-
cating the relation between the two dimensions, fur-
nishes the equation which was hitherto needed.

In the choice of this figure, regard must be had to
the object most important to be fulfilled, and that is
adopted which fulfils it with least expense of construc-
tion and of maintainance. When it is desired to convey
the greatest possible quantity of water to the point
where the canal empties, according to the formula of
discharge (114 and 115), the volume of water brought
down is so much the greater, as the section of the fluid
mass is greater, and as the wetted perimeter is smaller;
consequently, we must take a figure which, with the
same perimeter, presents the greatest surface.

Figuro 119. Geometry informs us that the circle has this
o e 4 property. The semi-circle, and therefore a semi-circu-
lar canal, has the same property, the ratio between the
semi-circle and semi-circumference being the same as

that between the circle and entire circumference.

Then follow the regular demi-polygons, and with the
less advantage, as the number of their sides is less;
and so among the most practicable forms we have the
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regular demi-hexagon, the demi-pentagon, and finally,
the half-square.

But these figures are not admissable for canals in
earth excavations; their berms, not having sufficient
slope, would cave in.

In order that they should be sustained without re-
vetment, they should have a slope of from 1.50 to 2
of base to height, as there is more or less consistency
in the soil; in the regular semi-hexagon, where the
slope is larger than the other named polygons, it is
only 0.58. A slope of 1 is only adopted in excavations
of small importance or for temporary use; but for
canals, the slope of 2 to 1 is usually adopted, and
sometimes 2}; such was the slope adopted at the canal
of Languedoc.

120. As the usual profiles of canals are trapezoidal,
the question of figure of greatest discharge is reduced
to taking, among all the trapeziums with sides of a
determinate slope, that which yields the greatest sec-
tion for the same wetted perimeter.

Since the section s, or (/4nk) &, should be a maz-
imum, its differential will be zero, and we have

hdl + ldh 4 2nhdh = 0.

Since the perimeter remains constant, the expression
c=14+2k A/n*+1(Art. 101) being differentiated, gives
us 0=dl+42dk o/n*+1. The value of dI, derived
from this equation, and substituted in the preceding,
gives

1=2h (/01 —n)

With this value of /, we have

s=m (2 M1+ 1 —n)=n'k,
by making 2 A/n*+1—n=n’; and
c=2h (2 M1 — n)=2n'h.
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Putting these equivalents of s and ¢ in the funda-
mental equation of motion (112), it becomes

e 0.0001114155Q2 4-0.0000242651Qn' .

Thls, and the preceding equation, give for / and %
the mazimum sought.

Let us take, for example, Q =70.6632 cub. ft., p=.0012, n=
1.75. The second of the above equations is reduced to

h®—1.2522h*—178.04 =0.
Making, by a first approxxmatlon,

h=2.82ft., we have . . . .. . . —9.6593 =0.
h=285f. . . . . . . . . . . . —0.1821=0.
h = 2.850567 ft. e .« . +0.0002=0.

So that the true value of h wﬂl be 2 850567 ft. This will give
for 1, which is 2k (o/n*41—n), =1.5107 ft.

These dimensions are those of the stream. But the depth of
the excavation should be greater. It would be well to increase

it to . . . .. . 3.937 ft.
The breadth at bottom remains the same . . 1.5105 ft.
The breadth at level of earth willbe . . . . 15.20 ft.
There will then be, per running foot of cut, an excavation

of . . . . 33.1cub.ft.

In homogenous eart.h 80 long as the depth of excavation does
not exceed 64 ft., and the upper width 16} ft., the expense of
digging will be proportional to the volume of excavation, and the
figure of least section will therefore be the most economical.

121. As for those canals where there is no fear of
caving in, such as those excavated in rock, or protected
with masonry, which are more particularly termed
Aqueducts, as well as those in wood and mill courses,
they most always have a rectangular form. Still, as
we have seen, the regular demi-hexagon of the same
section will conduct more water ; but simplicity, facil-
ity and economy of construction have prevailed. We
must remember, that the dimensions of the rectangle
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should have a width nearly double the depth of the
fluid mass it is destined to carry, and consequently it

should be &/ ?.

2. Permanent Motion.

122. We have seen (110) that permanent motion
differs essentially from uniform in this, that the mean
velocity in each section, remaining constant, is not the
same as in the adjacent sections; consequently, the
sections of water are no longer equal to each other,
their depth is not the same, the surface of the fluid is
not parallel to that of the bed of the stream, and its
inclination varies from one point to another. ‘We have
examples of such motion in canals too short for the
velocity to acquire a uniformity, at the head and foot of
long canals, and in those whose bottom is horizon-
tal, etc.

It is but lately that the attention of philosophers and
engineers has been directed to this subject; among
others, we may note MM. Poncelet, Bélanger, Saint-
Guilhem, Vauthier and Coriolis. I would refer to
their works for details and applications, and here con-
fine myself to establishing the equation of motion and
the indication of its uses.

123. Let there be a current endowed with perma-
nent motion, and let us regard that part of it comprised
between A and M. Through these two points of the
surface, and through N infinitely near to M, imagine
transverse sections AQ, MP and Np, made perpendic-
ular to the axis of the current. ¥rom the points A
and M, we draw the horizontal lines AE and M¢; EM
will be the fall of the surface from A to M, which we
designate by p’; ¢N, or the elementary increment of

17

Equation
of
Motion.

Fig. 4.
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the slope, will be dp’ or MN sgin. 1, i being always the
angle {£MN of inclination of the surface to the horizon.
Let us consider upon the section AQ, taken up stream
for the point of departure, the particle having the mean
velocity of the section, whatever else may be its posi-
tion, and let mm’ be the path which it describes as far
as MP. Call 2 the length of this path, ¢ the time
employed in traversing it, and v the velocity of the
particle on arriving at m. We have, then, m'n'=dz ;
dt will be the time in passing dz, and dv the incre-
ment of velocity during this passage (which will be
— dv, when motion is retarded).

The forces which act upon the particle m, while tra-
versing mm'n’ are : first, on one side, gravity, which
tends to accelerate its motion, and whose whole action,
according to what we have said in Sec. 108, is g sin. i;
second, on the other side, the resistance of the bed,
which tends to retard its motion, and whose expression

is (Sec. 107) @< (v*-+bv).

These two forces acting opposite to each other, their
resultant, or the effective accelerating force, will be
equal to their difference. But in all variable motion,

the accelerating force is also expressed by the incre-
ment of the velocity, divided by that of the time, or by

%’- ; we have then

%:g sin. i — d%(v’—{—bv).
Multiplying all the terms by dz, (remarking that
plying y g
'{;=v, the space, divided by the time, equalling the

velogity; remarking, further, that dz sin. i=dp’,
sinoe for dz or m'n’ we may take MN, which will not
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differ from it, save in extreme cases, but by an infinite-
ly small quantity of the second order, and that MN
gin. i=¢N =p’,) we have

vdv=gdp’ — & ~(v"+bv) dz.

Such is the equation established by M. Poncelet.
Integrating, determining the constant for the section
A, when p'=0, z=0, and v=v,, we have

gy — [+ bv) da.

But (Sec. 108) v=:—2; and if we designate by s, the
area of the section at the final point M, and by s, that
at the initial point A, which let us divide by g, and
remembering that % — a=0.000024265 (112), and
that $=10.000111415, we have finally

=§; ( é _%) + f(o.ooonmss ‘34-0.000024265 5;,9) 2

a formula which gives directly the slope of the surface
from A to M. .

In the application, the quantity under the sign f
may be integrated by approximation. For this pur-
pose, divide the arc AM or 2z into portions, AB, BC,
CD, etc., whose lengths are such that the divisions of
the arc may be taken, without sensible error, for right

lines. Designate these lengths by 2, 23, 25 . . . .. z,,
and the areas of the sections at A, B C....M by
89y S19 29 83 + -+ o o . sy, and by ¢5, ¢, ¢ . . . . .. Cny

their respective wetted perimeters. We measure or
take immediately these lengths, sections and perimeters
upon the given stream, and all will be known in tle
integral, which will become



Discharge.

132 FLOW IN CANALS.

0.0001114155 "—'-°-'+‘ 37+ Z52 ) Q140.000024265

ZAIC!+_2'IC‘+ . ~1gcv_» Q
Let us represent by M the multiplicator of Q? and
by N that of Q; let us make also ‘-,—lé (:—,——:,):D,

the equation will then be p'=(D+M) Q*4-NQ.
124. From this we deduce

N N ]
Q=— oy )/ v + (o) -

In the discussion of Rivers, in the following chap-
ter, we shall have occasion to apply this formula, with
its details, to streams whose form and delivery were
otherwise known, and we shall see that its deductions
are not far from the truth.

In canals where the slope of the bed and the profiles
are constant, the calculations are much simplified; the
depth of water at any one station will be sufficient to
know its section and wetted perimeter; moreover, the
depths, with the inclination of the bed, will give that
of the surface. .

As an example, let us determine the volume of water which a
rectangular mill course, 8.202 ft. wide, with a horizontal bed, will
oconduct to & mill. ;
At four points, |
distant 328.1 ft.a~ '
part, we take four |
depths, noted in i

z°c

1 ze |

z h | e s FEErE |
i

|

“
o

feet. .reet. | feet. ag. ft.
052!/ 18-306/41.44

328.09/4.901/ 18.004/40.20 3. 655 0909'
column 4 of table. || 2|398,09/4.845 | 17.89239.74| 3.717/.0935
Since the canal is || 9 |328. 09} 5f3l 17.348)37.51 4. 045' 0"8I
rectangular, and || | p | 479| I 417, 2022
1=8.202 ft., then !
5=28.2024 ft., and c=8.202-2A ft. We calculate these val-
ues for the different stations, and then, through these, those of

rjc and i'.—c All are in the above table.

WO |
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' The canal being horizontal, g/ = 5.052—4.573 = .479 ft.

We have D= g 1, (7i5i — irgm) =+ - - - - 0.000001995
M=sum of 7 X 0.0001114155= . . . . . 0.00003255
N=sumof 75 X 0.000024265= . . . . . . 0.0002770

N r N 2 .
m—4-0092: m—13866y (2_(1)—+—Sf)) =16.0742 ft.
So that Q ==—4.0092-} A/ 13806+4-16.0472=113.81 cub. ft.
With the formula for uniform motion in taking a mean height

between the extreme heights, and for a slope per foot, 479
divided by 984.27 ft., the sum of the z-, we have

Q=—4.299 + /15072418 478=118.54 cub. ft.

125. The equation (123) which gives the slope of the
surface of the current knowing some of the sections, will
further, by the taking of one depth only, enable us to
trace in its progress the curve described by a fluid
point of the surface of a water course in a canal, whose
slope, profile and discharge are otherwise known.

For the place, when the depth of water is given by
the aid of the profile, it will be easy to establish its
section and wetted perimeter; let us designate them by
8o and ¢, Take a second station, at a distance 2* from
the first, so small, that in this distance there shall be
but little variation in s, and ¢, and so that they may
be regarded as constant in the expression of the resist-
ance of the bed, and we have

2
13 —2% ES s’)""“"(Q’ 3 )z
We may neglect the first part of the second member
at the first trial, which amounts to supposing a uniform
motion throughout the whole length z-, and we shall
have the first approximate value of p’. This will ena-
ble us, knowing the slope of the bed, to assign very

Slope

Surface.
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nearly the depth of the stream at the second station,
and consequently gives us 8,. All will then be known
in the above equation, and we have a second and more
approximate value of p’ than the first. If it is thought
best, we are able from this to calculate a third, which
shall be still more exact. In the same manner, we may
determine the depth at the third and fourth stations,
and so arrive at all the ordinates of the curve required
to be constructed.

126. But this method involves much uncertainty,
and many suppositions, and often leaves us much em-
barrassed. We can avoid, in part, these inconveniences,
and go directly to the solution of the problem, by in-
troducing the slope of the bed in the problem, according
to the method of M. Bélanger.

For this purpose, let us take in hand the first differential equa-
tion of Sec. 123 ; and we remark, that the angle 3, or tMN, or
MNs (Fig. 24), is composed of two other angles: first, MNr,
which measures the inclination of the surface upon Nr, parallel
to the bottom of the bed Pp; designate this by j: second, the
angle rNs, which this bottom makes with the horizon, and which
we have already called e; so that i = j-}-¢, and consequently, sin
i=sin. j cos. e}sin. e cos. j. But sin. e=p (Sec. 101), cos. ¢
=A/1—7", and cos. j=1, considering the smallness of the
angle j; thus sin. i=sin. j A/I—p™}p, and the equation be-
comes

=g sin. j o/ 1—pitgp—a= (). (4)
The termg-;muy take a finite form, which will depend upon

the figure of the bed. When the canal is of small extent,
we usually consider the slope as uniform, with a mean width /.
From this supposition results s=12i and ¢ =1-{-2h; so that v=
(3' 3’,, and dv--%’ﬁ, moreover (Sec. 123), v=% or dt =
dz _lhdz dv Q‘Idh QY . dh Mr

>=q thenm Phds = AR sin. j, sin MN =—tang.

¢ or —gin. j.
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Substituting this value in the equation (A), neglecting p*,
which will always be small compared to 1, substituting for g, o’
and b their numerical values (112), and evolving sin. j, we have

sin.j==PIw_{ 0.0001114155 (-24)Q*4-0.0000242651(/--24) 1hQ}
.031073 1Q* — P&

We have taken for the curve of a fluid thread of the surface of the
stream, a polygon, each of whose sides has a finite length MN =
2+, and whose inclination relative to the bed is j: the difference
Mr between the depths of the two extremities of a side will be
its slope compared to this hottom ; designating it by p”, we have
sin. j =—’:~',’, and consequently,

pPE—{0.000111415 (IH-2hk) Q+-.0000242651 (I4-2h) 1hQ}z.
r= IR — 031073 1Q°
The series of values of p” will enable us to trace the polygon, or
required curve. )

Instead of comparing the slopes to the bed, we might compare
them with the horizon, and thus have their value g/, in observing

that ' = '+ 5.

ARTICLE THIRD.
Inlets of Canals.

Canals, with the exception of those for navigation at
their points of departure, receive their water from res-
ervoirs or retaining basins placed at their head, and
which most frequently are portions of the river whose
level has been raised for this purpose by dams.

The head of the canal, at the point for receiving
water, is either entirely open, or furnished with gates.
Let us examine these two cases.

1. Canals of open entrance.
127. Water, on its entrance in an open canal, forms , . =
a full, its level being lowered for a certain distance; of Cansls—
then it is elevated a little by light undulations, beyond ’
which the surface takes and maintains a form very
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nearly plane and parallel with the bed, its slope and
profile being always considered as constant. The
velocity is accelerated from the top to the foot of the
fall; it then diminishes during the elevation of its sur-
face, and soon after, its motion contirues in a manner
sensibly uniform. Dubuat, who has made a particular
study of the circumstances of motion at the entrance
of canals, and throughout their course, has found such
an order of things established, that when the motion
has become regular and uniform, the velocity of the sur-
face is very nearly that due to the entire height of the
- fall, and that the kead due to the mean velocity is
equal to the difference between the height of the res-
ervoir and that of the uniform section. So that if
H represent the height of water in the reservoir above
the sill of entry into the canal, / the height of the uni-
form section, that is to say, the constant depth of the
current after it has attained a uniform motion, and
v the velocity of this motion, we have H— A=

0.015536+%; or rather, 0.015536 2, m being the co-

efficient of contraction which the fluid mass experiences
at its entrance into the canal, a contraction which occa-
sions a greater fall.
Dubuat, from several experiments made with wooden
. canals (109), with heights of reservoir H from .394 ft.
to 2.887 ft., has found that m varies from 0.73 to
0.91; but he remarks, that in great canals, where the
height due to the velocity is small compared to the
depth, the contraction will be less, and he thinks there
would be no sensible error in taking m=0.97. Eytel-
wein assumes 0.95 for large canals, and 0.86 for the
narrow, such as is adopted for most mill courses. He,
as well as Dubuat, supposes, for these coefficients,
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that the bottom of the canal is at the same level with
the bottom of the reservoir, and that it is but a pro-
longation of it. If this were not the case, there would
be a contraction at the bottom, and the value of m
would be a very little smaller (32); however, the
experiments reported in Sec. 39 lead me to think it
would be but a very slight quantity.

128. The fall which takes place at the entrance of
a canal, by diminishing the depth £, lessens the dis-
charge Q, of which this depth is an element. So that,
in order that the canal should receive all the water
which it can afterwards convey, we must prevent the
fall.

Theoretically, to accomplish this end, we must en-
large the upper part of the canal, for a length some-

what beyond .015536 % ft., so that the mean widths of

the new profile should increase as they approach the
reservoir, with an inverse ratio to the velocity of the
stream at each of these widths, beginning with 0, its
value in the reservoir, till, by the uniform acceleration
of its descent, it reaches v ft. at the foot of the enlarged
part. According to this law, the width at the reservoir
should be infinite, since the velocity is zero. Such a
case would be impracticable, and any approach to it
would involve much labor and expense.

Consequently, the engineer who, without involving
himself in unnecessary expense, desires to obtain for
the canal all the sater that can reasonably be expected,
will be content to widen the approach, and in doing
this, must be governed by local circumstances. For
instance, if the head is to be laid in masonry, he will
give to the approach the form of the contracted vein;
that is to say, taking the width of the canal as a unit,

18
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we shall have for length of the enlarged part 0.7, and
1.4 for width at the mouth, as comprising the full sweep
to be given to the angles. But it is not worth while
to exaggerate the advantages from these widenings, as
the discharge by them will hardly be increased by
more than some hundredths.

129. Dubuat also concludes, from his observations,
““ that the velocity and section are uniformly estab-
lished at a certain distance from the reservoir, just
as if uniformity commenced at the origin of the
canal.’ ($ 177.) In this case, we may suppose the
fall to be made suddenly on its entrance to the canal,
and thence the fluid surface maintains a uniform slope.
Its value is obtained (101 and 111) by dividing the
difference of level of the two points by their distance
apart; one may be taken at the origin of the canal,
and according to our supposition, its level will be less
than that of the reservoir, by a quantity equal to the
height of the fall H—A. Consequently, if D is the
difference of level between the reservoir and any point
of the surface at the distance L from the reservoir, but
where the motion has acquired its uniformity, p being
always the effective slope, we have

__D—(H—h) __ D—0.0155360"
r= L = L .

130. With these given quantities, we can resolve
the various questions pertaining to a canal from a
reservoir, supposing always that the motion becomes
uniform, which will not be the case, unless the canal
has a certain length, or should it have no inclination,
or approach 90°, ete.

~

Let us resume the equation, H—h—0.015536 g,
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and in place of v substitute its value, given in Sec.
113, and we have

0.015536 PPNy 3
H—r=2" ( l/ 8975.414% .108895) :

Moreover, we have
— Iz
Q== ((|/8975.414% — 108895 )

By means of these two equations, in giving to s and
c their expression, as functions of the dimensions of the
canal, and substituting the preceding value of p, when
p is not directly given, we can determine either the
discharge, or the slope, or one of the dimensions; the
other quantities being known. I give an example.

Suppose we purchase the site where it is intended to locate the
entrance to the canal, with the condition that it shall be rectan-
gular in form, open to the height of the dam, with a width of
13.124 ft., and whose sill is to be 6.562 ft. below the ordinary
low-water line. We wish to conduct this water to a mill distant
869.438 ft., so that the surface of the stream, on its arrival there,
shall not be over 1.4436 ft. below the low-water mark of the res-
ervoir above. What will be the quantity of water conducted to
the mill !

The cutting being made in the dam, the rectangular canal
13.124 ft. by 6.562 ft. deep is fitted in; the clause of the grant
forbids any attempt to enlarge the approach ; and every altera-
tion within the appointed limits would diminish the discharge.

Since the canal is rectangular, and 13.124 ft. wide, we have

s=13.124h ft., and c=13.124"42k; moreover, p= 42

=231% ft., H being 6.562 ft. Although the canal is large, so
that the coeficient of contraction would probably be above 0.95,
yet, to be prudent, we will take a mean between those indicated
by Eytelwein, and call it m=0.905. With these values, the
first of the two equations above will be

6.562—h = 295 (/8975.414 L0 % SIE0 1085051,
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Reducing
T2r 477 (—5.118D)
6.562—h = .018969 ( A/135.47h 851 RERpTaes i .108895)1

gives us the value of . To obtain it, put successively for this
unknown quantity in the second member, several numbers ; first,
6.234 gives h=15.889 ft.; which in its turn gives 6.114. In
this manner, we obtain successively 5.968, 6.053, 6.001, 6.040,
6.014, 6.034, 6.020, 6.027, 6.0237 ft. Thus, the true value of A
falls between these two last numbers; let us take the smallest,
h=6.0237 ft. Then p=2"5T-311%_ 0 001041 .

All the quantities required to ascertain the discharge being
known, we introduce them into the second equation, and so
obtain Q=417.795 cub. ft. Such is the volume of water per
second which the canal will lead to the mill.

When the velocity of the current is required to be
3.28 feet or more, we substitute the expression for

velocity given in Sec. 115, and the two equations to be
used will be

—— H—h="204 7,14 Q=94.788 V .

or, supposing a mean wxdth l, and taking always m=
905,

plh

H—h=170 /75, and Q=94.7381h V oo
The slope p will be given either directly, or by the
expression
D— (H—h)
pP=—r§

In the above example, the values of H,  and p, put in the first
of these equations, which is of the second degree, will give read-
ily A=6.027 ft.; also, p=.001045 and Q=418.86 cub. ft.;
results nearly identical with the preceding.

Thegreatest ~ 181. Among the questions relating to the admission
dynamic force of of water in canals, there is one of too much interest to
ed by acanal. millwrights for us to pass it by without a notice in this

treatise.
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The force of a current to move machinery depends
not only upon the quantity of water which it conveys,
but also upon the height from which it falls; so that
this force will be measured by the product of the quan-
tity with the height of the fall of water. The greater
the slope given to the canal, the greater will be the
amount of water brought, and this is one of the
factors of the product; but, at the same time, the fall
(the other factor) is diminished, and it will be found
that the product having been at first augmented with
the slope, will after that be diminished, and then con-
tinue to decrease. There is then a mazimum of
power, which it is essential to determine and put in
use. Without employing analytical formule, this de-
termination can be arrived at in a simple manner, as
will be seen in the following example.

Let us resume that given in the last number, and let us sup-
pose the height of fall there to be 14.764 ft. The water taken
by the canal has arrived at the mill with a loss of level of 1.447
ft. ; consequently, the effective fall will only be 13.317 ft. In
multiplying this by the quantity of water brought down, 418.86
cub. ft., we have for the product 5577.9 cub. ft. ; the correspond-
ing slope was 0.001045. Let us increase this slope succes-
sively to 0.0015, .002, .0025 and .003 ; the respective products
of the quantity by the fall will be 1859.42, 1931.12, 1939.94 and
1907.45 cub. ft. The slope of .003 has already occasioned a
diminution ; in trying that of .0026, the product will be 1938.18
cub. ft.; whence we conclude that the mazimum of effect lies
between the slopes of 0.0025 and .0026. Finally, as the varia-
tions of the product are very small between 0.002 and 0.003, we
adopt, between these limits, those best suited to the locality and
nature of the machinery used; there may be some for which a
great fall will be preferred.

I will remark that the given solutions of all the problems in
question can be regarded only as simple approximations ; for in
order that they should be exact, the bases on which they rest,
that 1s to say, the conclusions which Dubuat has drawn from
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experiments, should be explicitly confirmed by observations made
upon great canals; and it would moreover be necessary to be
quite sure that the water, before it reaches the extremity of the
canal, has attained a uniform motion, and we have but limited
means of coming to a positive assurance.

If water which is in the reservoir of a river to which
a canal has been adapted, should arrive there directly,
with an acquired velocity, the height of fall which
takes place at the entrance will be less than that indi-
cated (127) by a quantity equal to the height due to
this velocity.

2. Canals with Gates.

When a canal receives its water through openings of
a system of gates, established at its head, which is gen-
erally the case with mill courses, either the upper edge
of the orifice will be completely and permanently cov-
ered by the water, already passed into the canal, or it

will not.
g Dicharwe 132. If the head above the centre of the orifice is
notcover the great, 8o as to exceed two or three times the height of
Speminée’  the orifice, its upper edge will ot be covered by the
water below, and the discharge will be the same as if
there had been no canal. Experiments with orifices in
thin sides and furnished with additional canals, which
have been already reported (39), leave no doubt upon
this subject; they justify an assertion, long since made
by Bossut, the exactness of which has been ques-

tioned.

This hydraulician fitted to an orifice .0886 ft. high
and .4429 ft. wide, made at the bottom of a reservoir,
a horizontal canal of the same width, and 111.55 ft. in
length ; he produced in it currents under heads of
12.468 ft., 7.802 ft., and 3.937 ft., and he received
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‘““at the extremity of the canal, the same quantity of
water that issued from the orifice when the canal was
taken away.” (Hydrod., § 750.)

The cause of this equality is apparent. When the
water is urged by a great head, and consequently issues
with great velocity, the contraction it experiences on
all sides renders the section smaller immediately be-
yond the interior plane of the orifice, so that, on issu-
ing, it touches neither the sides nor the bottom of the
canal; it acts as if it were projected in air, and the
discharge continues the same that it would if this were
really the case. Beyond the contracted section, the
vein dilates, it is true; it joins the sides of the canal;
it meets with resistance, and runs less swift; but then
it is too far from the orifice to react against what issues
from it, 8o as to reduce its discharge. This will always
be given by the formula mlA’ o/2gH, I and &’ being
the width and depth of the orifice; m will have the
same value as for orifices in thin partitions (26).

Baut if this is true in case of the canal adapted to an
orifice with sharp edges, opened in a side of the reser-
voir, does it follow that it will be equally so for a canal
furnished with a common gate, sliding in grooves made
in the middle of two posts of considerable thickness,
and gates, a8 is most generally the case, with canals
placed somewhat below their inlets? I have my
doubts. In experiments which I have elsewhere re-
corded, (Annales des Mines, tome IIL, p. 376,
1828,) where I believed the circumstances were nearly
similar to the case of orifices in thin partitions, and
where I expected to have coefficients of 0.65, I have
found those of 0.67 to 0.71. Generally, we take 0.70
for the ordinary gates of flumes, but without any pre-
cise fact to justify us in 8o doing. It is principally to
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procure such facts upon this important point, as well as
to afford correct ideas upon every thing pertaining to
the admission of water in'canals, that MM. Poncelet
and Lesbros have undertaken their great work upon
the flow of water; it is unfortunate that this under-
taking has not yet been completed.

In such a state of things, and without adopting
another coefficient for each particular case, the volume
of water which enters a canal furnished with large
gates, and under a great head, may be had approxi-
mately by the formula 0.704" o/2gH.

133. When the water, impelled beyond the gates by
a great head, falls into the canal, it meets a resistance
which diminishes gradually its first velocity, and so
increases the section of its current. If the width of
the canal is constant and equal to the opening of the
gate, it will be the depth which receives the gradual
increase, 8o that the surface of the fluid below the ori-
fice, or rather below the point of greatest contraction,
up to that where the increase of depth ceases, will pre-
sent a counter slope. Frequently, masses of water
will be detached from the summit, and will, rolling
back, return towards the orifice; usually, they will be
retained, being as it were repelled by the velocity of
the stream; though sometimes they will return even to
the gate, and re-cover the orifice, though but for a mo-
ment. Even in this case, the discharge will be the
same as if there were no canal, and it will be calculated
by the formula of the preceding number.

134. These phenomena do not occur when the head
is small. Water, on issuing from the gates, is in
contact with the sides of the canal; it experiences a
retarding force, which is communicated to the fluid at
the instant of its passage through the orifice; the dis-
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charge, and therefore its coefficient, is lessened; but
we have no further guide for its determination. There
may be some cases where, withs a very small head, the
gate is without sensible influence; thus Eytelwein has
found the same discharge, whether the gate was wholly
raised, or slightly dipped in the down-stream side.

But in case it is immersed any considerable depth,
and the fluid vein at its issue is entirely covered over
with still water, we are brought back to the case men-
tioned (95), and the height due to the velocity of issue
will be the difference between the elevation (above any
given point) of the surfuce above the gate and of that
below the gate. For the elevation below the gate, we
take the height or depth of water in the canal, when
its motion has become regular; as that immediately at
the gate would be found too small. Consequently, if
h is the height in the canal, H" the height up stream
above the sill of the inlet, the discharge of the orifice
of the gate, and consequently that of the canal, will be
expressed by

mlhk' A 2g (H — k).

But the discharge of the canal, the motion having be-
come uniform, is also (114) ‘

s (l/ 8975414 2 _ .108895).
c

We have, then,
mlk N 2g (H—h)=s (l/ 8975.414’:’—.108895),

an equation which enables us to solve the various
questions relative to canals furnished with gates at
their heads.

Suppose, for instance, we would determine the quantity ¥;

we must raise the gate, at the entrance of a long rectangular
canal of 4.265 ft. width and .001 slope, in order that the water

19
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may have a depth of 2.625 ft. ; the width of the gate is 3.609 ft.,
and the height of the reservoir 3.937 ft. We take m=0.70 (132):
we have then ¥=3.069 ft.; H'=3.937; h=2.625; 1=4.205; .
p=0.001; s=4.265X2.6%5=11.195 sq. ft.; c=4.26542X
2.625=19.515 ft. These numerical quantities, substituted in the
equation above, give us

23.209%' = 35.180 ; whence A’=1.514 ft.

CHAPTER II.

RIVERS.

Man establishes and excavates canals; nature has
established and excavated the beds of rivers: she has
accomplished this conformably to the laws from which
she never swerves, and by which she maintains her
work. We can in no wise change them, and but
slightly modify them; the engineer who has done all
for canals, can accomplish but little with rivers. His
role is confined to observing the circumstances of the
motion and action of their waters. Consequently,
after a few remarks upon the general formation of their
beds, we shall examine successively the nature of their
motion, its influence upon the form of their surface,
the respective velocities in different parts, and the
methods of gauging their waters; we shall then discuss
the subject of backwater, occasioned by dams and
bridges, and conclude with some observations concern-
ing the action of water upon constructions made in
their bed.

ARTICLE FIRST.
The Establishment of the Bed.

135. The surface of the globe, at its origin, or
immediately after its consolidation, was not entirely
smooth; it had elevations and depressions ; it presented
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undulations of different orders, the principal of which
have formed our great mountain chains.

The atmosphere, by its decomposing agency, rain-
waters, both by their currents and erosive action, have
quickly assailed this surface of rock. They reduced
this surface to earth; they abraded, cut through and
furrowed out valleys of variobs magnitudes, directed
generally according to the line of greatest slope of
those parts of the earth presented to their action.
The remains or debris of the elevated portions were
borne away and spread over the lower, covering them
with alluvial. All this work of nature was anterior to
the epochs of the last great flood, from which has
resulted the actual state of our continents, and which
has reduced our rivers and streams to the quantity
they bear this day.

136. The waters which now fall upon the surface of
the earth, unite and flow into the hollows, gorges and
vales excavated in primitive times. In passing over
the alluvial, they there open and shape new channels
for themselves.

In mountains with steep sides, they are constrained
to follow in ancient courses, and have produced and are
producing but slight changes. When running imme-
diately upon rock, which is indeed quite rare, their
tendency to excavate or enlarge their beds can have but
a scarcely appreciable effect in the lapse of some centu-
ries. Most generally, they flow over the blocks, frag-
ments and debris of rocks, fallen from the steeps and
ridges which border the channel. In great freshets,
they urge forward and bear these materials further,
away, whose place is afterwards refilled by others. They
move them the more easily, and carry them further,
according as the ground slopes more, and according as
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their volume and specific gravity are less ; the effects of
slope are barely appreciable, save at the origin of val-
leys; the specific gravity of rocks and rocky matter vary-
ing only from 2.2 to 2.7, will be without marked influ-
ence, except in the case of metallic particles, and some
peculiar stones: it is, then, the volume which has the
greatest influence as to the distance of the transport of
rocks and their debris. So, in general, when we descend
a great valley, we find at first, at a small distance from
its origin, in the bed of the torrent or the river occu-
pying its bed, angular pieces of rock; then, and in
succession, we find blocks rounded smaller and smaller,
round pebbles, gravel, and finally we meet with little
else but sand and earth. Finally, this decreasing pro-
gression in the volume of substances forming the bed
of a river is not solely the effect of the successive im-
pulses of great currents. There is still another cause,
which, though seemingly weak, is not less effectual in
its results, when we regard the duration of its agency,
often exceeding a long lapse of centuries; it is the de-
composing power of the atmosphere, conjoined with the
action of running water. The further distant these
materials are from their origin, the longer will be the
time since they were borne away; and consequently,
the longer will time have operated on them to have re-
duced their primitive volume. But it is only as a gen-
eral feature, I repeat, that the substances constituting
the bed of rivers is ascertained to be of less volume, the
further down stream they are found; for we very fre-
quently find sand in the elevated parts of the river, and
pebbles in the lower parts. Touching the matter of
pebbles found in these lower portions, I would remark
that most generally they were already present in the
transported earth or ‘‘alluvial”’ through which the
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stream has opened for itself a channel, and have been
exposed by the rivers, in times of freshets.

In regions slightly elevated, but where the river
runs between hills, its bed is still limited, and it can
be extended but little.

It will only be, then, in plains and large valleys,
whose soil is moveable, that rivers less constrained, and
finding fewer obstacles in their course, establish in
reality a channel whose dimensions bear a certain rela-
tion to the nature of the soil and the volume and
velocity of its water. If the earth has not tenacity
apportioned to this velocity and this volume, it will
yield to the action of the water, and its channel will be
deepened and enlarged. If otherwise, the depth or the
width is too great, the river will be reduced in its
dimensions by deposits on its bottom or at its sides of
stones and earths brought down in freshets.

137. When a proper relation is established, so that
the channel contains all the water brought down by the
river, in its great freshets, without injury, it is said to
have acquired stability, and the regime of the river is
established.

The velocity of the regime is strictly related to the species or
rather size of the substances which form its channel.

Dubuat has made some experiments upon this subject of great
interest. He has taken different kinds of earths, sands and
stones, which he placed in succession upon the bottom of a
wooden canal : hy inclining it differently, he has varied the
velocity of the water passed through it, and has verified how
much is necessary to put cach substance in motion ; he had for

Potters’ clay, . . . . . . . . .2624ft. per second.
Finesand, . . . . . . . . . .5249 « “
Gravel from the Seine, size of peas, . .6233 ¢ o
Pebbles from sea, one in. in diameter, 2.132 ¢¢ ‘“

Flint stones, size of hen’s eggs, . . 3.281 ¢ ¢

Establishment
of the
Regime.
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He then spread a bed of sand upon the bottom of the canal, and
caused the water to run over it with a velocity of .984 ft. ~After
a while, the surface of this sand presented a series of undula-
tions, or of transverse furrows, .394 ft. wide ; —the slope towards
the up-stream side was very geatle, that on the down-strcam was
very steep. The grains of sand, urged by the current, rose upon
the first ; arrived at the summit, they fell, by virtue of their
weight, along the counter slope, up to the foot of the next fur-
row, when they were again taken up by the current; they were
one half an hour in passing one ridge. They consequently would
have passed through about nineteen feet in twenty-four hours.

It is in this wise that the sands of Dunes travel onwards,
urged by a succession of impulscs from the winds.

Cause 138. All else being equal, the banks of the channel
sreater width. of a river resist the action of its water less than the
bottom; so that it has more width than depth. Inde-
pendent of this action, the banks are subjected to that
of their weight, which tends to produce a caving in of
the substances composing it; while this same force,
pressing the materials of the channel upon those which
are beneath, a pressure which increases the friction,
renders their displacement more difficult. Moreover,
when the masses of alluvial composing the banks cave
in, the water into which they fall dilutes them; it bears
away the earthy portion; the stone, gravel and sand,
which were mixed with them, remain upon the bottom,
and thus augment its stability by their greater resist-
ance. Thus, the channel of rivers will always be wider
compared to their depths, as the earth is more movea-

ble, and, at the same time, more pcbbly.
sortaceat mvem 189, The depth of rivers, being always quite small,
of wouna.  O1y @ few yards, in a length of a million or more,
the bottom of the channel will be very nearly par-
allel to the surface of the ground through which it
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was excavated. If its slope is found to be raised at its
sources, it is equally so in the adjoining lands.

140. When a river runs in a vast plain, of small
inclination, the fraction of gravity (pg) which moves
the fluid mass is small; this mass hag less force to over-
come the obstacles opposed to its direction, which, of
course, is the line of swiftest descent. The least obsta-
cle, a very little more of hardness or tenacity in the
earth, it meets, will cause the river to deviate. It will
be thrown sometimes on one side, sometimes on the
other; its course will be rambling, with continual bends,
which augment the length of the channel with the same
absolute slope, while the relative slope is diminished,
and, of course, its velocity. The fluid mass running less
swiftly, its width and depth will increase, and from this
cause may proceed inundations and damage, which
would not have occurred, had the direction of the chan-
nel been a straight line.

Sometimes, when the water-course is small, and the
nature and disposition of the locality admit of it,
attempts are made to alter the channel. The case is
similar to leading a canal from one point to another, a
problem which has already been solved in the preceding

chapter.
"~ While upon the subjects of these reforms, and upon
the general subject of works in rivers, great care must
be taken not to produce a greater evil than thc one we
would avoid, either above or below the locality of the
works, or at their site; thus, those who first designed
the Robine, a canal which goes from the Aude to the
Mediterranean, through Narbonne, caused it to take
great circuits both above and below this city; they
wished, by reducing the velocity of the current, to aug-
ment its depth and favor the ascending navigation. At

Observations
on the
Reforming of
Channels.
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the end of the last century, without any regard to the
original design, and supposing the sinuosities of the
stream a mere matter of chance, an attempt was made
to reform the channel, in order, as it was said, to shorten
the time of navigation. When the alignment was made,
it was found that there was not a good draught of water;
it became necessary to build locks, and to increase the
consumption of water.

The questions relating to all the changes of the chan-
nel, require a perfect knowledge of the localities, and
of the river in its different stages. It is experience,
and the genius of the engineer, rather than the rules or
general considerations laid down in a short treatise,
which is to guide to a suitable solution of them. I
refer, consequently, to the works of various savans,
Guglielmini, Manfredi, Frisi, Fabre, etc., who have
treated upon these subjects, and more particularly to
the Hydraulique de Dubuat, $$ 127—139.

This last author has offered various considerations
touching the bends of rivers, and the modes of easing
them. I will confine myself to remark upon this sub-
ject, 1st, that the resistance of elbows is generally
small: 2d, that the current bearing against a concave
bank will have a greater depth, while deposits and allu-
vions will be formed on the opposite banks.

ARTICLE SECOND.
The motion of water “in Rivers.
1. Kind of motion. Its influence upon the form of the surface fluid.
141. In rivers, from their most remote source to their
mouths, the volume of water is continually augmented

by the tributaries they receive. But from one tribu-
tary to another, the volume remaining sensibly the
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same, the motion is permanent, and the rules already
laid down in the preceding chapter are applicable.

Thus, for each transverse stratum of the fluid mass,
the accelerating force will be in the ratio of gravity
minus the resistance of the channel (128), or, ¢ being
the inclination of the surface of the stratum, g sin. 1 —

(LB
A’c %—}-—} .

So long as this quantity is positive, and continues to
have an excess of the first term above the second, the
motion will be accelerated. But, if this last predomi-
nates, the motion will be retarded. With much greater
reason will it be so, if the sin. ¢ should be negative,
which is the case when the surface assumes a counter
slope.

142. When the inclination ¢ goes on gradually
increasing, the fluid surface is convex; it is concave
when this inclination diminishes more and more. If
the bed is horizontal, and of a constant profile, to every
convexity of surface corresponds an accelerated motion;
and for every concavity we have a retarded motion. If
the bed is inclined, and of uniform inclination, it will
not have an accelerated motion, save when the succes-
sive values of 7 are found to be greater than the inclina-
tion of the bottom; if they are not, in spite of the
convexity, the motion will be retarded. So that, though,
ordinarily, concavity is a sign of retarded motion, still
there will be acceleration if the values of  exceed this
last inclination. Continual variations in the slope and
profile of the channel will increase still more the dis-
agreement between the curvature of surface and the
kind of motion.

To sum up all, the longitudinal section of the surface
of a river with a smooth bottom will present a series

20
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of lines sometimes straight, sometimes convex, some-
times concave, and without the same kind of motion
always answering to the same kind of line. Neverthe-
less, most generally, the right line will be an index of
the uniformity of velocity, the convex line that of
acceleration, and the concave answers to a retarded
motion.

148. Still more, or at least, in a manner much more

. apparent than the kind of motion, will the inequalities
of the bottom affect the form of the surface; they will
redippear in some measure at the surface of the stream.
For example, let a shelf of pebbles, narrow and deep,
be laid transverse or oblique to the bed of the stream :
the fluid will surmount it by virtue of its acquired
velocity; on meeting with the shelf, its surface will
be considerably raised, after which it will descend, so
as to present, in that part, an elevation like that of a
great wave; but its elevation above the general surface
of the stream will be less than that of the shelf above
the general plane of the bottom. Usually, the ine-
quality of the surface will be so much less, compared
to that of the bottom, as the depth and velocity of the
water is greater; so that in extraordinary freshets, the
presence of dykes from six to ten feet in height, is
sometimes without any effect upon the surface; and we
may see the water pass from the upper reach to the
lower, without a sensible elevation or depression.

Let us further remark, that although the inequali-
ties of the surface are produced by those at the bottom,
they do not correspond with them vertically, but are
generally to be found somewhat more down stream.

Figare acess  144. The transverse section of the surface of a river
presents, moreover, a remarkable form; it is a convex
curve, whose summit corresponds to the thread of the
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current ; from this point of greatest velocity, the level
is lowered from point to point till it reaches the sides,
and it is depressed, sometimes equally, sometimes une-
qually, towards each of them. The greater the veloc-
ity of the different parts of the stream, the more con-
siderable is their respective elevation. Figures 25 and
26 represent this state of things; the first applies to a
river, the second to a mill course.

_This form of current would be, according to Dubuat,
the consequence of a principle, the certainty of which
he has established by direct experiments, and which he
has enunciated in these terms: ‘““If, from any cause,
a column of water comprised in an indefinite fluid,
or contained between solid sides, begins to move
with a given velocity, the lateral pressure which it
exerts before motion against the surrounding fluid
or against the solid walls, will be diminished by all
that is due to the velocity of its motion.* Conse-
quently, the particles of the thread of the stream and
those adjoining it, moving more swiftly than those at
the sides, will exert a less pressure against them; and
they will therefore require a greater number of fillets,
that is to say, a higher column, to maintain their equi-
librium. I should remark, however, that this princi-
ple of Dubuat, and the justice of its application to the
case in hand, has been contested by different authors.t
Nevertheless, it may well be considered as an exten-
gion of another principle, of which mention has been
made (45), and which we shall consider in the follow-
ing chapter. ‘

¢ Dubuat, Princlpes d’'Hydraulique, sec. 453.

+ Bernard, Nouveaux principes d'Hydraulique, p. 172. — Navler, Architecture Hy -
draalique de Bélidor, p. 842
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2. The Velocity.

The knowledge of the velocity of a river is often
necessary, whether it be to appreciate the action of the
current against its channel, or whether, as is most fre-
quently the case, we wish to deduce from it the vol-
ume of water conducted by it. This velocity is usual-
ly determined, in a direct manner, by means of instru-
ments called Aydrometers. We begin with describing
the principal of them; and firstly, those which give the
velocity of the surface.

145. The most simple, direct, and the surest, when it is properly
used, is the float, which, placed in the water, partakes of its ve-
locity. In common practice, we employ bits of wood, or other
substances of a specific gravity nearly equal to that of water, and
count the number of seconds it takes to pass a distance previ-
ously measured. When greater exactness is required, we use tin
or hollow copper balls, or an apothecaries’ vial, ballasted with
shot, 8o as to be nearly submerged in the water. They are put
in the strongest part of the current, and far enough above the
point where we commence counting the seconds in which it runs
through the measured space, so that on their arrival they may
have acquired the velocity of the adjoining fluid. In this man-
ner, by repeating the operation two or three times, we expect to
obtain the velocity of the swiftest current with sufficient exact-
ness. But for the fillets contained between this and the sides,
this mode will not answer; the float will not maintain the neces-
sary direction.

I should observe that floats should not be sensibly elevated
above the surface, or their direction and velocity will be subject to
the influence of the wind. Further, if they project too much,
and the slope is considerable, like bodies placed upon an inclined
plane, their velocity would be accelerated, until it shall have ac-
quired uniformity from the resistance of the plane; if the plane
itself moves, their absolute velocity will be greater than that of
the plane ; that is to say, the velocity of the floats will be greater
than that of the surface fluid.

146. The velocity in a given part of the surface can be suita-
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bly determined by means of a very light wooden wheel, with
floats, and with slight friction upon its axis. Placing it in the
current so that the floats are sunk in the water, its centre of per-
cussion will partake very nearly of its velocity. Dubuat has
used successfully a wheel made of fir, 2.395 ft. in diameter, car-
rying eight square floats, .262 ft. each side ; the axis turned upon
two small iron pivots, retained in copper boxes; the whole
weighed only 1.52 pounds avoirdupois.

147. The hydrometric pendulum, which has been used for the
same purpose, consista of a hollow ivory or metallic ball, sustained
by a thread, whose end is fixed at the centre of a graduated quad-
rant. This is to be placed over the point where the velocity is to
be taken, 8o that the ball shall plunge into the water. The cur-
rent urges it forward, the thread inclines, and the square root of
the tangent of inclination, multiplied by some constant number,
gives the velocity sought.

Thus, let w be the absolute weight of the ball A ; construct the
parallelogram ABCD, where AD == w, and the angle of inclination
EOA=CAD=i. In the position of the ball, its effective
weight, the force with which it tends to descend, will be w cos i.
AB, which is that portion of the weight in equilibrium with the

action of the current, which measures its effort, will be w sin. ¢,
sin.

and w i =w tang. i, compared to the effective weight; this
effort, then, is proportional to the tangent of the angle of incli-
nation. It is also, as we shall see in the following section, pro-
portional to the square of the velocity of the current. This
velocity, then, will be proportional to the square root of the
tangent of inclination, and we shall have

v=n &/ tangi.

This multiplicator n will be constant for the same ball; and
prudence would suggest its direct determination by experiment.
For this purpose, the pendulum should be tried in a stream
whose velocity has been determined by some other means, as by
that of the wheel with floats ; and this velocity, divided by the
square root of the tangent of inclination obtained in this ex-
periment, will give the value of n.

A more general theory of the simple and compound pendulums
may be found in the Hydraulics of Venturoli.

Let us come now to those hydrometers made to measure the

Wheel
with floats.

Hydrometric
Pendulum.

Fig. 11.
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velocity below the surface. Many have been devised and used ;
I cite the three following. .

148. The most simple is the Pitot’s tube, so called from the
name of the author who first proposed its use. It is simply a
glass tube, bent at its lower end. It is immersed in the stream,
8o that the orifice of the bent part, turned against the current,
shall be at the level of the vein whose velocity is required. This
vein, pressing upon the water in the tube, causes it to rise in the
vertical branch ; and the height of its elevation above the surface
of the river is regarded as the height due to the velocity of the
current.

But it is not exactly so. This height measures indeed the
sum of the pressures exerted against the orifice of the tube ; but
the pressure against a body plunged in water 'is dependent upon
the form of the body, as we shall see hereafter ; moreover, that
of the different fluid veins is diminished from their centre to their
circumference ; so that we must isolate, by some means, a fillet,
(the central one, for example,) and, moreover, we must consult
experience as to the effects of the form of the tube. Dubuat, the
author of these observations, found that in giving to the orifice
the form of a tunnel, with its entrance closed by a plate pierced
with a small hole at its centre, that two thirds only of the eleva-
tion in the tube was the height due to the velocity, and that con-
sequently we have v=A/2g8h=26.55 A/h ft.; h being the
height of water in tube above the surface of the current.

M. Mallet, engineer, terminated the horizontal branch of the
tube with a cone having no where above two millimetres or .078
inches of opening at the summit ; the tube was made of iron,
nearly 0.13 ft. in diameter ; in it was placed a float, surmounted
by a stem; this tube was fastened to a pole, as is frequently done
with other hydrometers, of which mention will be made in
futare. When the instrument is in position, and at the point of
required velocity, the cone being exactly in the direction of the
current, and turned up stream, the height of the stem is observed ;
then the instrument is reversed down stream, and note is made of
the height of the stem. The difference of the two heights, mul-
tiplied by the particular coefficient of the tube, given by previous
experiments, will be the height due to the velocity of that part of
the current adjoining the cone.

Notwithstanding the simplicity of the instrument and of the
method, it is but seldonr used, as we cannot measure the height

’
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of the water with sufficient accuracy to deduce the precise veloc-
ity, especially when this velocity is small.

149. Trials for more delicate indicators have been made, in ex-
posing plates directly against the shock of that part of the
stream whose velocity is required ; the necessary weights used to
maintain them against the action of the current are the meas-
urers of its force, and the velocity will be determined by rules
which will be given in the following section. The form of these
balances, or Roman hydrometers, is much varied. I shall con-
fine myself to a description of one used by Briinings in numerous
experiments, which he has called the Tachometer (measurer of
velocity).

" It consists of a plate A, fixed to the extremity of a stem AB,
(which moves in a socket m,) perpendicular to the bar DE,
whose foot rests upon the bottom of the channel, and on which
the instrument is fastened, at the desired height. A cord is
fastened to B, which passes under the pully C, and reaches to
the ghort arm of a balance, whose other arm bears the weight P.
When the Tachometer is suitably placed for accomplishing its
object, the current, acting upon the disc, drives it from A towards
B; and the weight P is drawn back, till it holds it in equilibri-
um. From its position, we arrive at the effort of the current,
and so determine its velocity.

150. Preference is given above all these machines to the hy-
drometric mill of Woltmann, especially in Germany ; a descrip-
tion of it and its use was published by that philosopher in 1790.
It is simply a revolving axle, carrying four small wings, like
those of & windmill. The current causes them to turn, and the
number of revolutions made in a certain time, and recorded by
the instrument itself, furnishes us directly the velocity.

In reality, saving the slight resistance due to the friction of the
axle upon its bearings, the velocity of the current is proportional
to that of the wings, and the last is proportional to the number n
of turns made in a unit of time, or, what comes to the same
thing, to the number N madc in a time T. and divided by this

time ; so that we have v=an=a%‘:-;
cient for the same mill, to be determined hy experiment.

For this purpose, the mill is placed in a current whose velocity
has been ascertained by other means: the number of turns it

makes in & given time is recorded, and this number is divided by

a being a constant coeffi-

Tachometer
of
Briinings.

Flg. 29.

Woltmann's
Mill.

Figs. 30 and 31.
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the time ; we divide the velocity by the quotient thus obtained,
and thus have a. More simply still, admitting (and I believe it
to be the fact in this case) that the pressure exerted by a fluid at
rest upon a small plate in motion, is equal to that exerted by the
fluid in motion against the plate at rest, the velocity being the
same in both cases, we run the mill through a certain space of
stagnant water, a pond, for example, and we divide the space
run by the number of turns of the axle ; the quotient is the value

of a; for v=¥, also, E=aN or a=%.

The usefulness of this instrument leads me to make known the
disposition and dimensions of its principal parts, represented by
Fig. 31 at half its full size. The wings, four in number, are
square thin copper plates, .082 ft. each side ; their middle is .164
ft. from the axis of rotation; their plane is at an angle of 45°
with this axis. For small velocities, where greater delicacy of
instrument is needed, we double the size of the wings and their
distance from the axle. We have thus two sets of wings, and
place upon the axle those best suited for the purpose in hand.
The wheels have each fifty teeth ; the pinion which transmits the
motion of one to the other has but five, so that they can indicate
five hundred turns. They are supported on a frame moveable
about one of their extremities, which is kept clear of the revolv-
ing axle by a spiral spring. Upon the axis is a short spiral
screw, in which the teeth of the wheels are engaged, by pulling
up the cord fastencd at the moveable extremity of the frame.

In operating, the instrument should be free of all obstruction
to motion ; and the teeth of each wheel marked zero are placed
opposite their respective index, fixed upon the limb. Then, put-
ting a stick of wood or an iron stem into the socket, the machine
is secured at the desired depth. If this depth is small, we place
and secure the iron arm some yards in front of the upper end of
a skiff, moored to the place of operations. For great depths, we
use two boats, joined by strohg planks ; and upon this the instru-
ment is secured at the desired point; then the bar carrying the
mill is lowered, with its extremity in the bottom of the river.
All being rcady, at a given signal from the time-keeper, we draw
by a string the frame bearing the toothed wheels, and have them
thus pressed against the revolving axle, which communicates its
motion to them. At a second signal, the cord is dropped ; the
spiral spring repels the frame, the teeth are disengaged, and the
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wheels stop. The instrument is taken from the water, and
the index gives us the number of turns made between the inter-
vals of the signals: this number, divided by the time and multi-
plied by the proper coefficient of the mill, gives us the required
velocity.

151. It is by means of such instruments that We pimmation
have discovered the diminution of the velocity of the g *"rries =
current towards the bottom or the sides of the channel,
and that we have searched for the law of this diminu-
tion.

Previous to the eighteenth century, it was admitted,
that in rivers, the respective velocities of the different
fluid threads of a stream followed the same law with
that of fillets issuing from a reservoir through an ori-
fice made in the vertical sides, the circumstances of
which we have already discussed (58), where it is seen
that the velocity increases as the square root of the
depth of fillets below the surface of the stream; so
that the velocity in a river would have increased with
its depth, and very nearly as its square root. This
doctrine was admitted by Guglielmini, and other phi-
losophers of Italy, at that time the most profound in
Europe in all that pertains to running water. But
towards 1730, Pitot, by means of the hydrometrical
tube which he invented, and in experiments made upon
the Seine, found that the velocity diminished, instead
of being increased, with its depth. He published this
important fact, which a multitude of observations have
since confirmed and generalized, and whose cause and
effects have already been indicated (106 and 109).

We have there found the velocity of the different
fillets of the current to be greater according to the
amount of removal from the bed of the channel, and that
consequently, the thread of the stream, or that of great-

21
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est velocity, is found in that part of the surface answer-
ing to the greatest depth. This fillet is sometimes
designated under the German name of Thalweg (path of
the valley). In reality, the Zhalweg would be the
intersection of two slopes enclosing the valley; in
nature, the thread of the stream will be found above
this intersection, and will indicate its position ; so that
we sometimes use this as the boundary lines of estates
or territories separated by rivers; it is that which is
usually followed by the descending navigation.

152. Some observers have thought that the greatest
velocity of a river is not exactly at its surface, but a
little below it ; nevertheless, M. Defontaine, engineer,
has concluded, from his observations upon the Rhine,
that, allowance being made for the wind, it is found ex-
actly at the surface of the stream.

What is the law of its diminution, as we descend
downward? In the second half of the last century,
Ximenes, and other Italian hydraulicians, devoted
themselves to its investigation. In 1789 and 1790,
Briinings, for the same purpose, made eighteen series
of experiments upon different branches of the Rhine
which traverse Holland; at each of his stations, and
for every foot in the same vertical, he measured the
velocity of the river, by means of his tackometer
(149). From these observations, and some others,
Woltmann felt authorized to conclude that in descend-
ing from the surface, the velocities decrease as the or-
dinates of a reversed parabola. For example, if in
Fig. 16, where AMC is the common parabola, BC
represents the velocity at the surface, and GH that at
the bottom, DE will be the velocity at the depth BD.
Funk assumes a logarithmic function; that is to say,
while the depths increase in arithmetical progression,
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the velocities diminish in a geometrical progression.
M. Raucort, after a series of observations made by him
on the Neva, at Petersburg, thought that these veloci-
ties might be represented, upon the same vertical, by
the ordinates of an ellipse, whose lower summit is be-
low the bottom of the river, and whose minor axis is a
little below the surface of the same.*

Notwithstanding these scientific trials, the results of
observations present and will present too many anoma-
lies and contradictory facts, for any attempt at a math-
ematical deduction of the decrease of the velocity. The
only inference which can be drawn from known obser-
vations, and particularly from those of M. Defontaine,
made upon the Rhine, with Woltmann’s instrument, is
that, generally, in proportion to the depth below the
surface of a river, there is a gradual diminution of
its velocity; at first nearly insensible, then more
marked, and increasing rapidly on approaching
the bottom, where the wvelocity is nearly always
greater than one half that of the surface. Fig.
49, which represents the curve indicated | F—————=

pth. |Velocity
by the mean of two observations, in a |— -
part of the Rhine 4.92 ft. deep, will 0?,3 ggg?
give an idea of the manner of decrease; || 1.31 |3.931
we have opposite the coordinates of this || 1.97 | 3.829 ]

. .62 | 3.691
curve, which approach nearly the arc of 2,23 3.468

3
a parabola, whose ordinates are the ve- || 3.94 |3.117
o T 4.59 | 2.887
locities diminished by a constant quan- I'- " "————-

tity.t

* Annales des ponts et chaussées. Tome IV., p. 1,1832. It is hoped that the exper-
iments of M. Raucort may be published. At one of the points of observation, the
depth of stream was about 62 feet. This engineer, moreover, represents, by the ordi-
nates of an ellipse, the velocities of the surface, from the thread of the stream even
to the shores of the same.

t Vide, in the Annales des ponts et chaussées, Tome VI., 1833, the excellent work
of M. Defontalnc upon the régime of the Rhine, gnd upon constructions for the pro-
tection of its banks.
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153. The mean velocity, in the same vertical, will
be the sum of the observed velocities, divided by the
number of observations; the greater the number, the
nearer the approximation to the truth.

It is in this manner that Briinings has determined
the mean velocity of each of his verticals. He sought,
moreover, for the ratio of the mean velocity, with the
corresponding velocity at the surface, or rather, at
1.03 ft. beneath it; he found that this ratio varied
from 0.89 to 0.96 ; the velocities were from 2.19 ft. to
4.856 ft., and the depths from 5.15 ft. to 14.40 ft.
Ximenes, upon the Arno, for a velocity of the surface
of 3.294 ft. and a depth of 15 ft., has 0.92 for the
ratio of mean velocity of a vertical to that at surface.
M. Defontaine, in his observations upon the Rhine,
obtained only from 0.85 to 0.89. Nevertheless, for
great rivers, observations give oftener above than be-
low 0.90.

The fillet endowed with the mean velocity has usual-
ly been found a little below one half and towards three
fifths of the depth.

154. But the mean velocity of the particles of the

pared to that or 58me vertical is not the mean velocity of the compo-

thread of cur-
rent.

nent elements of the section. Since the velocity at the
surface decreases from the thread of the current up to
its sides, and the mean velocity of the verticals are near-
ly in the same ratio, the mean combined — that is to say,
the mean of the section — will be less than the greatest
of them, which corresponds to the thread of the stream;
and consequently, its ratio with the velocity of this
thread will be smaller than that given in the preceding
number, or than 0.90, the mean term. Briinings has
found it to be 0.85; but he has seen it go as low as
0.72, and again as high as 0.98. Ximenes found it to
be 0.83.
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Dubuat, in his experiments, made in small canals, of
which mention has been made (109), has obtained a re-
sult nearly similar, though by a very different process.
A direct gauging gave him the discharge of the canal, and
dividing it by the section, he had exactly the mean ve-
locity (108); he then determined readily, and with
sufficient correctness, the greatest velocity of the sur-
face. The ratio of one to the other varied from 0.71
to 0.88 (and even in two experiments, which it was
thought best to withdraw, it was raised from 0.95 to
0.96). Moreover, this ratio was increased with the
velocity, and in designating by V that of the surface,
and v for mean velocity, we can express it

_V (V4778188
= TVF10.34508

But can we admit a ratio entirely independent of the
depth? Can we extend the results of observations
made in small wooden canals, regular throughout their
length, with a depth of water not exceeding a foot, to
rivers whose channels are a series of great inequalities,
and with a depth often exceeding ten or fifteen feet ?
We should doubt it, if the experiments made directly
upon great streams did not seem to indicate the same
results. *

3. Gauging of Streams.

The estimate of velocity, whether of each part or of
the mean, which has been the subject of discussion, has
chiefly for its object the gauging of water courses;
that is to say, the determination of the quantity of
water which they bear, the knowledge of which is

*The translator, while employed under the United States Government, Iin some
obeervations made upon velocities at different depths of the Mississippl River, has
seen 1ts entirely at vari: with the law here laid down. At present, he Is not
authorised to publish.
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often a matter of great interest to the government, as
enabling it to decide with exactness how much water
can be spared from a river for canals, irrigation, etc.,
without injury to the navigation; and to divide, with
justice and fairness, between many mills or other ser-
vice, any amount of disposable water.

The gauging is effected in different ways.

155. The best method, for great rivers, is to take a
station at any point, to measure the area of its trans-
verse section as well as the mean velocity of this sec-
tion, by means of the hydrometer, and to multiply
these two quantities into each other. -

To operate in a suitable manner upon the whole
width of the stream, at the appointed station we take
many soundings, which divide the section into trape-
ziums, and we calculate the area of each of them.
Then, at equal distances between the points of sound-
ing, we secure the boat or pontoon, bearing Woltmann’s
mill, or other instrument (150); by means of this,
we determine five, six, seven velocities upon the same
vertical ; we take the mean of them, and multiply it by
the area of the respective trapezium. The sum of all
these products is evidently the discharge of the river,
and is equivalent to the total area of the section, multi-
plied by the general mean. As every thing is at the
disposal of the observer, so that he can multiply at
will the soundings and the determination of the veloci-
ty, and may take all necessary pains in the work, he is
enabled to give whatever exactitude may be wished for
the measurement, and thus obtain very nearly the real
discharge.

156. This mode, it is true, requires time and ex-
pense, and if approximation only is desired, we are
content with the following. We take a station near the
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middle of any reach, or portion of the stream whose
channel, for an extent of several hundreds of yards, is
sufficiently regular. By sounding, we have the area of
its transverse section. Then, by means of floats (145),
we determine the velocity of the thread of the stream,
corresponding to the measured section; by means of
the formula above given (154), we shall have the mean
velocity, which, multiplied by the area already found,
will give us the discharge sought.

157. The formulse of permanent motion (128 and Gensing
124) will furnish still another method of obtaining the calculation.
delivery of rivers.

For this purpose, we choose a locality where, for a
considerable length, the channel presents no marked or
abrupt inequalities. We take, then, from four to six
stations; at each, we determine, first, the area of the
section (s,,8,,S,, ... 8,); second, the perimeter, or that
part of section of bed in contact with water (c,, ¢,, ¢c,,

. ¢,); third, the distance from one station to the
other (2, , 2°,, 2°, . . . 2',); fourth, the slope of the
surface from one to the other.

By means of these given quantities, we have the de-
livery by the formula

Q=—swpw + )/ 5w + (o)’

or, 1 ) .
D = 5135 (;—s‘a)
M=.0001114155 (%% + %52+ .. )

N = 0000242651 (%37 4232 1 ..

' = amount of slope between the ﬁrst and last sta-
tions.




168 ON RIVERS.

We must remember that the integration which led us
to this formula requires implicitly that the quantities
to be integrated, especially the velocities, and so their
sections, should be subject to a law of continuity;
now, this could never be the case, if there are irregular
variations in the width and slope of the bed—and they
are to be found in nearly all parts of rivers. The for-
mula is not, therefore, rigorously applicable to them,
and the results given by it should only be regarded
as approximate. The following example serves to show
how we should-regard it.

From among a series of one hundred and five observations or
levelling stations made on the Weser, near Minden, in Westpha-
lia, and reported in the Hydrotechny of Funk, I select six consec-
utive ones, in a part of the river presenting the least irregularity ;
they give the distances, slopes, the wet perimeters, and sections,
found in the following table. For each of the respective sections,

zc

z°c
I add the values of -sTand o

zec
No. z 4 c s o @

feet. feet. feet. . feet. : l
o | O | .000000 324819 | 85541 | .0000] 0.0 |
1 | 522.98 | .564332| 363.534 | 794.84 | 3009100037860
2 | 215.23 | [232623| 325.147 | 480.88 | .2916,.00059524
3 | 200014 | 216218! 308.742 | 68945 | 1300.00018850
1 | 26149 | 279541| 300726 | 489.88 | .3376.00068888.
5 | 161.42 | [174211| 386.501 | 674.71 | .1371|.00020311

1361.26 |1.466925' 336411 | 660.70 | 1.1071.00205433

With these data we find
D= 1 1 1 _ )

= 54364 (674.71‘ - 825.41’) = 00000003716 ;
M =.0001114155 X .00205433 = .000000228884 ;
N =.0000242651 X 1.1971 = .0000290478.

These numerical quantities substituted in the above equation
give for the discharge sought Q = 2426.83 cubic feet. A measure-
ment made with & hydrometer gave 2652.28.
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So the formula has shown a deficit of about one tenth.

cubic feet.
The first five stations alone would give 2233
3 “ four “ ““ Y 1 2633
“ {3 thmo ‘" 113 [ 113 2254
The last four ¢ ¢ “ o« 2657

We see from this example, where the bed was as regular as
could be expected in large rivers, how great is the respective in-
fluence of the areas of the sections.

The formula of uniform motion, in taking the mean of the six
sections, and the six wetted perimeters noted in the above table,
would give 2813 cub. ft.; a quantity six hundredths greater than
the results of the gauging by the hydrometer.

158. Dams which bar the course of rivers, and over
which all the water flows, will sometimes afford us the
means of determining this quantity. But for this pur-
pose, the crest of the dam should have a projecting
edge, so that the water, in passing over, may fall freely
and suffer no reaction from the part already passed; it
is seldom that we meet with this arrangement. We
may supply its place, by putting upon the crest a plank
with the upper edge made thin and horizontal, with
sharp corners, and high enough for a free flowage of the
water; the height of the water H, above this weir,
should be over 0.197 ft., but less than one quarter of
the depth of the stream behind the dam. Then L,
being the length of the dam, the discharge will be given
by the formula (77)

Q=3.5567 LH &/ H.

In case H exceeds one quarter part of the depth, we
use the expression (79), as a function of the velocity w,
at the surface of the stream,

Q=3.4872 LH &/ H-+0.085051".

159. If the method of gauging by weirs is seldom

applicable to great streams, it will be found better suit-
2

Gauging
by
Dams.
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ed than any other for small streams. There are two
cases to be noted.

That where the current is small, and carries only
from thirty-five to seventy cubic feet of water per sec-
ond. We look for a place where we can easily con-
struct a weir with a width over 0.295 ft., but less than
one third of the width of the bed, and in such a man-
ner as to have a head upon the weir greater than 0.196
ft., but not so great that its product into the width of
the dam, or /H, shall exceed the fifth part of the sec-
tion of the stream immediately above the dam; then,
without the chance of one per cent. of error, we may
apply the formula (77)

Q=3.209 /H ~/H.

If the operation be found more easy, or if the quan-
tity of water exceeds seventy cubic feet, we might dam
up the entire bed of the stream; at each of its extrem-
cties we raise a small vertical partition, so that the
opening through which the water passes may be rectan-
gular, and we should then use one of the two formulse
referred to in the preceding number, after complying
with all the conditions to make them applicable.

Two examples will serve to show the method of pro-
ceeding, and will afford an opportunity to add some
practical details to what has already been said upon
weirs (68 —83).

I. It is required to gauge a small stream of water. A suita-
able place for the construction of a weir is sought ; this, for ex-
ample, will be at a narrow part of the bed, with steep banks,
immediately below a wide portion of the stream. Let the
width of the stream at the surface in this place be 11.8 ft., and
its greatest depth 2.6 ft. After a preliminary examination of
the section, and of the velocity, measured by some light bodies
thrown into the current, we find that it carries about 36 cubic



ON RIVERS. 171

feet of water per second. Since the breadth is 11.8 ft., the weir
can be made 4 ft. in length; the head on it will then be
about 1.988 ft. (for the formula Q=3.209 /H A/H gives H=

I/( 39000 ) 1.988 foet.) After this approximate estimate,

we should make a plank partition, about 15 ft. long at top, 5} ft.
high, and say from 1} to 1} in. thick, and with a shape conform-
ing to the bed of the stream ; fit it so as entirely to dam the
stream. For this purpose, insert its ends and bottom into the
sides and bottom of the bed ; by means of moss, sods and clods
of earth, we make the joints as tight as possible, especially a
short time before the gauging commences ; it must be supported
with cross pieces and struts. In the upper half, we cut a rec-
tangular notch, four feet wide by two feet deep ; so that the sill
of the weir shall be .50 ft above the natural level of the stream,
and that the water may fall freely over it. The section of the
fluid sheet at the weir (4 ft. )X 1.988 ft. ==7.95) not being one
fifth nor even one seventh part of the section of the stream, which
exceeds sixty square feet, all the conditions for the application
of the formula Q=3.209 /H A/H will be satisfied.

‘When all is ready, and there is but little leakage, and the new
regime of the current is well established, we take two points on
the partition, one on each side of the opening, and at a foot
or more from the vertical edges, and at the level of the water
line (making deductions for capillary attraction) ; then stretch
a thread between these points, and measure directly its eleva-
tion above the centre of the sill. It was found to be 2.008 ft.,
and the length of the weir, from careful measurement during the
flow, was only 3.986 ft. ; thus

Q=23.209 X 3.986 X 2.008 X A/2.008 = 36.395 cub. ft.

II. A suit at law requires the exact determination of the vol-
ume of water conveyed by a small river, when its level is at the
height of a given bench-mark. It is decided that the gauging
shall be made by means of a dam.

At 170 ft. above the mark, at a point where the river is a lit-
tle embanked, and presents a regular bed, where the current is
65 ft. wide at the surface, and 4.10 ft. mean depth, when the
water is at the height of the mark, we establish the temporary
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dam. It is capped with a well squared piece of wood, 1} in. in
width at the top, the upper face of which is quite smooth and
horizontal, and fixed at .66 ft. above the bench-mark. At eachof
its extremities, we raise a small vertical partition, so that the
interval between them, or the length of the dam, shall be 64 ft.
Adjoining these two partitions, and at right angles to the same,
we place two others, which are five feet wide; at 3.25 ft. from
the common intersection, we place a scale against the interior
face of each, whose zero point stands exactly at the level of the
crest of the dam.

These dispositions being made, wait till the water in the lower
reach is at the level of the mark, and then take, by the scales,
the height of the upper reach. It was found to be 2.339 ft. As
this height is nearly half that of the dam (4.10-{-.66=4.76
ft.), we cannot use with confidence the formula

3.5567 LH A/H,
but must have recourse to that of
Q= 3.4872 LH oA/ H+.035051x".

To obtain the velocity w of the surface on its arrival at the
dam, we should take, starting from a point where the water be-
gins sensibly to incline towards the dam, a distance of 164 ft. up
stream on each bank, and mark the extremities by stakes. At
65 ft. above this, cast into the strongest part of the current a suit-
able float, and, with a good watch, determine the time occupied
in its passing the 164 ft.; a mean of six observations gave 48}
seconds, whence we conclude w=23.38 ft., and .035051w*= .4004.

Q = 3.4872X64X2.339 A/ 2.339-1-.4004 = 864.00 cub. ft.

The formula 3.5567 LH o/ H would have given 814.28 cub. ft.
Thus we may safely affirm, that at the given height, the river
furnished at least 850 cub. ft. per second.

160. Before closing our remarks upon the velocity
and discharge of rivers, let us say a few words as to the
absolute magnitude of this velocity and discharge.

From the smallest brook of the plains, to the impet-
uous mountain torrents, even to the great river Ama-
zon, we have such a continued series of velocities and
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discharges, that it is impossible to take them as a basis
for the classification of rivers. Moreover, the different
regions of the surface of the globe, being unequally
divided, in a hydrographic view, what would be large
for one region would not be so for another.

We give an approximate idea of the difference in the size of
rivers, citing from geographers the developed length of some of
them.

Miles. Miles.

The Amazon, . . . 4281 The Senegal, . . . 1211
Mississippi, . . 4213 Rhine, . . . . 956
Nile, . . . . 3107 Elbe and Vistula, 826
Volga, . . . . 2485 Loire and Tagus, . 643
Euphrates, . . 2374 Rhone, . . . . 3553
Danube, . . . 2206 Seine and Po, . . 497
Ganges, . . . 1932 Garonne and Ebro, 466

St. Lawrence, . 1796 Thames, . . . 217

These lengths give no true measure of the size of the rivers, or
of the volume of water which they bear to the sea : thus, the
Rhone conveys more water than the Loire, though it is not so
long; the Garonne empties into the ocean nearly a third more
than the Seine, and its length is less. _

We confine ourselves exclusively to what concerns
France, and we shall call the velocity of any river small
when it falls short of 1} ft.; that of the Seine is about
2 feet in the vicinity of Paris; an ordinary velocity
will be from 2 to 3} ft.; above that it is great, and very
great if it exceeds 6j ft., which is nearly that of the
Rhone and of the Rhine; it is even double, in time of
great freshets.

As to the volume of water conveyed, or the size
properly so called, a water-course ranks among rivers,
when, in its ordinary state, it carries from 850 to 450
cubic ft. per second. With from 1000 to 1500 cubic
ft., it will be a navigable river, at least under some par-
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ticular circumstances. The rivers of France bear 8500
cubic ft.; thus, the Seine, with a mean width of 430 ft.
and a mean depth of 5 ft., carries about 4600 cubic ft. ;
the Garonne, at Toulouse, has about 5300 ft. in its ordi-
nary state; and the Rhone, at Lyons, has more than
21000 cubic ft.

The quantity of water conveyed by rivers undergoes
great variations; thus, in Lyons, we have noticed the
quantity as low as 9000 cubic ft., and even 7000 cubic
ft., and on the 12th of February, 1815, it rose as high
as 203770 cubic ft. The Registrar of the States of
the Rhine, opposite Strasbourg, where the slope was
.00061, gave M. Defontaine, even excepting extraor-

dinary cases,
Inlowstages mean and high.
For the discharge of the river, 13400 ft. 33700 164000

For the velocity, 5ft. Tft. -9.35ft.
At Nimégue, before its junction with the Meuse, and
in its ordinary stage, it carries about 60000 cubic ft.

ARTICLE THIRD.
Backwater, Eddies, §c. (Remous).

161. A remou, or eddy, in the strict acceptation of
the word, is water without progressive motion, in the
bed of a river, near one of its sides, which turns
upon itself, in consequence of the impulse of the adja-
cent part of the current, or from some other cause.
This name is also given to every return of water against
the direction of the river. Dubuat, extending this last
acceptation, has called every elevation of the surface of
the stream above its natural level a remou ; an elevation
due to the meeting with some obstacle, and which, ex-
tending up stream, seems to be a running back of the
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fluid or a true remow; it is in this sense that engi-
neers now use the word, and we shall adopt it here.

Such a remou or backwater, is produced either by
a dam, which bars up entirely the course of a river, or
by a construction, which, occupying only a portion of
the bed, contracts the passage of the water, as is the
case with bridges, dikes, &c.

1. Backwater produced by a Dam.

162. Let AB be the longitudinal section of the sur-
face of the stream of water, of which HD is the bottom.
The dam DE being raised, the course of the water is
intercepted throughout its whole breadth. The water
will rise up to flow over the crest of the dam; the fluid
mass CaaAFC thus raised, constitutes the remou,
and its upper surface will generally take the form rep-
resented by Fig. 82. (In this figure, the scale of heights
is 840 times greater than that of the lengths.)

We have now to consider, 1st, the rise or elevation
of level CF, near the dam; it is the height of the
remou, properly so called; 2d, the elevation or height
ab, at a given distance from the dam; 3d, the distance
CA to which the swell extends; this is the amplitude
of the fiow. .

163. The greatest elevation CF, which takes place
at the dam, depends principally upon the height of the
dam itself; it is composed of that height, minus the
primitive depth of the current FG, plus the elevation
Cg (H') of the water at C above the crest E of the
dam. This last quantity, according to the experiments
of M. Castel, which give

Q=3.5567 L ¥,

will be H'=.42917 |/( g) ; an expression in which

Flg. 32.

Helght near
the dam.
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Q is the discharge of the stream, and L the length
of the dam.

Sometimes the water, instead of flowing over the dam,
runs through openings made in the lower part of it.
In this case, the greatest depth of the water will be
equal to the distance between the centre of the orifice
and the bottom of the channel, plus the distance of this
same centre from the upper level, which is

Q=.039774 <,

a being the area of the orifice; this follows from the
equation Q=0.625a¢ o/2gH (29). Subtracting from
this depth that of the primitive current, we shall have
the height of the remou or flow. Although the raising
of the water is occasioned by the dam, it is not imme-
diately at the dam that the greatest elevation will be
found ; it takes place a certain distance above the dam.
We know that when water runs over a weir, the fluid
surface inclines before it reaches the same; in great
back flowage, the inclination, or a marked increase of
the slope at the surface, will sometimes commence at
quite a distance back.

164. The height of the flow, at a given distance, is a
consequence of the curve which the surface fluid takes
above the dam. Dubuat, who was the first hydraulician
to investigate this subject, has endeavored to ascertain
the nature of this curve. Observing that the depth of
the water continued to increase with its departure from
the extremity A of the swell, and consequently that
the velocity of the strata and the inclination of the
surface diminished pari passu, he concluded that this
curve was concave. He also supposed that it would
differ but little from the arc of a circle, which would
be tangent at one of its extremities to the natural sur-
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face, immediately above the end A of the flowage, and

at the other, to its origin at C; and the length would be

+2% H (==CF) being the height of the flow at C, ,

the slope of the surface at the same point, (it is given
by the formula of Sec. 112), and p the slope of the
natural stream, or very nearly that of the bottom of
the bed. The quantity p — p, expresses also the length
of the arc in degrees; so it will be easy to calculate its
radius. Its versed-sines at different distances z from
the dam, will be very nearly the elevations of the sur-
face fluid, above a horizontal drawn through the point
C; and these elevations, increased by H—pz, will give
the heights of the flowage. We shall dwell no longer
on this hazardous method of determination.

Funk, after having criticised this method, has substi-
tuted for it one not so well based. He admits that the
threads at the surface of the flowage are concave arcs
of a parabola, whose position and size he indicates; and
according to which the heights of the flowage v, at dif-
ferent distances z from the dam, will be given by the
equation

I have shown elsewhere how much these results differ
from those of observation; and I cite thls, as well as the
preceding hypothesis, only as matter of history.

165. In our day, Bélanger, Vauthier, Coriolis, &c.,
have applied to flowage the laws of permanent motion.
It would seem as if the formule (125 and 126) which
give the slope of the surface of a water course, when
one of the sections of its current is known, as well as
the declivity and shape of its bed, would solve effectu-
ally the problem, and determine the curve which the
flowage should take when its elements are known.

-]
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Induced by the example of authors whom I have quot-
ed, as well as by some peculiar observations of my own,
I at first thought it might be so; but I have since enter-
tained doubts respecting it.

The theory of permanent motion, as we have already
observed (157), requires, in the bed of the water course
to which it is applied, that there should be no abrupt
or marked change either in slope or width; and this is
rarely the case with rivers. Moreover, the water of
flowage seems only to be superimposed above the cur-
rent, and not to participate wholly with its motion; the
engineers who took the levels of the Weser, (a part of
which, touching the back-flowage of 21320 ft. in length, -
I have already reported, in a notice printed in the
Annales des ponts et chaussées, tom. XIII., 1837),
have observed that at a distance of 3884 ft. from the
dam, the velocity at the surface was nearly insensible,
while that of the bottom was quite strong. The water
of the flowage, especially near the dam, presents a sheet
slightly inclined, it is true, but its surface remains
nearly plane, and is not sensibly affected by great ine-
qualities in the bottom and width of the bed. All this
would lead us to believe, that the water of remous is not
similarly circumstanced with that of ordinary streams;
and that the théory, which can scarcely be applied to
these, can with still less safety be applied to remous. I
must say also of this formula, which has but very few
data, and where the first deviation affects all the rest
of the calculation, it is positive that the trials which I
have made with it have indicated slopes very different
from those actually taking place.

I here cite from my observations on the back-flowage of the

‘Weser (to which I have before referred), the form of which has
been determined by levels made with great care. The slope of
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the bed, for a length of 55775 ft., as well as on the 22960 ft.
occupied by the swell, was sensibly uniform, and equal to
.000454=p; in the same space, the mean width was 354.33 ft.=I;
the depth of the water immediately above the dam was 9.816 ft. ;
and as that of the natural stream, on the supposition of uniform
motion, would have been 2.467 ft., there remained for the sur-
elevation of the water 7.349 ft.==H ; at the time of levelling, we
had Q=2651.92 cub. ft. Thus the formula of Sec. 125, where,
in this case, ¢=354.348--2h, s=2354.348h, and where the
depths diminish as we go up stream, becomes

#=.00001762:- -+ 2 000000512512 7094 (%—%)
1

As far as 18074 ft. from the dam, I have taken for z- distances
of about 1500 ft., so that the extremities may coincide with the
levelled stations; beyond this 18074 ft., the, values of z- were
less. The results of calculation, as well as of observation, are
noted in the columns of the following table. The first indicate a
very regular curve, and asymp- ————

ORDINATES OR SLOPES.
totic to the natural (m.rrentI i — '
taken above the flowage. But ! § E By obser-|ghove g:;l-u ':):St.
the slopes resulting from that | § 5 | 8o | en. |Guilhem.
curve are much less than . reu.' " feet. | feet. feet.

those found by levelling ; most . 1637.1 23?334 gé;!,g{’ g(l)ggg
often, they wero not the ball. " 4067 | 59029 | 052494 062337
Only towards the extremity of 588 [.23204 |.082022!.14435
the flowage, the differences ' 8274.4)|.36746 |.12139 (.26903
were less, the two slopes then : ﬁg;f % ézggg %322
approaching nearly those of | 13136 |'84647 | 34777 |.69555
the natural current. In this : 14750 |1.1575 |.50525 |.85959
extreme part, those of obser- - }g?gg 1.3681 526539 1.0826
vation present great irregu- II 1 :

larities, the water of the swell I‘lgggg }65:7%; liggg ig;ge
having no great depth, being |20336 (2.4836 |1.8865 (2.1655
exposed to the action of great | 20837 (2.9954 (2.1391 (2.3720
inequalities of the bottom. 21621 (3.2579 |2.4803 |2.7165
The formula of 126 has given 22326 13.4974 12.7920 |2.9560

exactly the same slopes as those of 125.

166. Such differences existing between the results of
observation and those of the formuls, forbid my recom-
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mending their use; and were I called upon to indicate
approximately the elevations of water produced by a
proposed dam, I should use in preference an equation
which the engineer St. Guilhem has arranged, so as to
obtain a curve, like to the flowage of the Weser, of the
Werra, and others cited in the above named notice. The
elevations indicated by it are those which would really
occur, if the flowage in question was similar in all
respects to that of the Weser, etc.; and they appear to
be analogous to all those formed in ordinary rivers,
great or small, when dammed up in their course. This
equation,
( 3)3— —H..__ 3
y+p —Hn I 9x34.2a_n(p‘r)o +(P‘T) )

is that of a curve asymptotic to the natural current:
y representing the elevation above the natural surface
for a distance z. Its results for the Weser are placed
in the last column of the preceding table; they follow
very closely those of observation in the middle portion
of the flowage, where there is the greatest need for
recourse to calculation.

The size and form of the bed do not, it is true, enter
as constituents of its expression, but we have seen that,
to a certain extent, the flowage is independent of these
elements : as for the discharge, it is found in the value
of H. After all, this empirical and approximate for-
mula should be used no longer than until it can be
replaced by another, based upon a generally admitted
theory, and upon the results of observation.

167. If the flowage were simply water superimposed
on the primitive current, uninfluenced by its velocity,
its surface would extend horizontally from C to K, the
point where the horizontal line drawn through the
summit of the flowage meets the surface AB of the
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natural current. CK would be the Aydrostatic ampli-
tude, and would have% for its expression.

But the real or hydraulic amplitude is not the same ;

it is generally much greater. Dubuat (164) admits

I’lﬁ}: for its value: and as p,, the slope of the fluid '
1

surface near the dam, is always very small, the hydrau-
lic amplitude will be nearly double the hydrostatic
amplitude. Funk has seen that value to be too great,

and he fixed it at %I;; that is to say, that the real

amplitude will be one and a half times the hydrostatic
amplitude. As a mean term, it is nearly so; for in
other respects, this value is usually modified by local
circumstances, and sometimes to a great extent.

. The theory of permanent motion, according to the for-
mula of St. Guilhem, conducting to an asymptotic curve,
would give an infinite extent to the flowage ; its surface
would be continually approaching that of the natural
current without attaining it. But at a distance from the
dam nearly equal to the value of the amplitude, the
space which separates the two surfaces, according to
these theories, is so small as to be inappreciable, and
may be regarded as nothing. Moreover, the mutual
adhesion of the particles of water, and the greater ve-
locity of those of the primitive current, will tend to
diminish, and always will diminish, the extent of the
flowage which would have taken place were the fluid
particles entirely independent of each other; so that, I
repeat it, the extent will be very often less than that
agsigned it by Funk from his observations.

168. Let us apply our provisional formula to cases of the most Examples.
frequent occurrence.
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1. On a large river, discharging 2825.3 cub. ft. per second, at
the timo of low water, and whose slope is quite uniformly
.000264, we are about to establish a dam 9.8427 ft. in height,
and 705.39 ft. in length, and this in a place where the mean
depth is 3.1168 ft. ; what will be the rise 29528 ft. up stream !

Taking the value of y from the above equation (166), we have

+ (p2)* —po.

.8 i
y -V-H‘__‘_——‘
+o5¢3.29% (P2)
The value of H will be (163)
3
9.8427 — 3.1168 +- 42913 l/ ()

the last term, here expresses the height to which the flowage
is raised above the crest of the dam, and since Q =2825.3 cub.
ft., and L==705.39, this term will be 1.0859 ft.; thus H=
7.8118 ft. ; also, p == 0.000264, and z == 20528 ft. Consequently,

3
y=|/ TS gr3m1—17950=1.1124;
29091.2-4-30398 ) ' B

that is to say, that at the distance of 29528 ft. from the dam, the
raising of the water produced by it would be 1.1122 ft. The
depth of the current in this place, according to the level previous
to the construction, was 2.788 ft. ; it will therefore become 3.897
ft. We will admit it to be at most 3.6089 ft.

II. On the same river, and with the same data, we wish to find
at what distance from the dam the rise of the water above its
crest shall be only .16404 ft. ’

The equation of the curve, where y=.16404 ft. and H=
7.8118 ft., will be

(16404 pe)' — (pa)? — -

By 00
933,209

Now substitute 'suooessively for z different values, until the
equation is satisfied ; thus

It will be for r=44292 ft., - 31.43 cub. ft. =0.

¢ ¢« z=39371ft., — 15.186 cub. ft.=0.
¢ “  r=41011.2 ft., +2.52cub.ft. =0.

Thus, at a distance of about 40683 ft., the surface of the

0.
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flowage will again be at .164 ft. above that of the old currenmt.
‘We conclude from this, that beyond the 41011 ft., this difference
will be insensible, and consequently, that the amplitude is 41011
fi. ; this would not be 1.4 times the hydrostatic amplitude, which
is 30.8}21% =20593 ft.

III. In a river which conveys about 706.3 cub. ft., and the
slope of which is .00032; in a place where the mean depth is
1.3779 ft. and the breadth of the channel 393.7 ft., it is required
to establish & dam, which would procure a depth of 3.2809 ft.,
necessary for the navigation of boats, against the lower face of
another dam 47573 ft. above, and where there is only 1.476 ft.
in the deepest part. It is necessary, then, that the projected
dam should raise the water 1.8045 ft., at least. What should its
height be to produce this effect!

Designate this height, the quantity sought, by &. Since Q=
706.33 cub. ft. and L =2393.708 ft., the water will be raised
above the dam .63854 ft.

,

63854 = 42017 V ()"

thus (163) H==§—1.3779784-.63854 = £—.739438. We then
have y=1.8045 ft., +==47573 ft., and p=.00032; thus the
equation becomes

(§—.730438)

4936.8—3528.03— Tessizie — =0
(T 135438
Substituting 16.453 ft. for &, we have + 3=0,
. 16.46 ft. ¢« 6« —.63=0,

which gives for § the height of the dam, say 16.455 ft.

Bat is itwadvisable to build a dam of such a height? Those
engineers who have adopted the principle that, without unusual
motives, dams should not exceed ten feet in height, would answer
in the negative, and would conclude that, below the existing
dam, and in a given length of 47573 feet, there should be two
dams in place of one.

169. The flowage (remous) which we have just
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considered has a concave surface; it loses itself insen-
sibly at its extremity in the natural current, and its
extent far exceeds the hydrostatic amplitude. But
there are others, rarely met with, it is true, which are
characterised by wholly different and nearly opposite
qualities; their surface is slightly convex, and is very
much so at the ends; they are detached from the cur-
rent by an abrupt departure, and have a length less
than that of the hydrostatic amplitude. These differ-
ent circumstances are strikingly manifested in the ex-
periments made by M. Bidone at the hydraulic estab-
lishment of Turin. .

The canal on which Bidone operated was of ma-
sonry. It was 1.0663 feet broad and the same in
depth: the bottom was inclined, and for a length of
32.809 feet, that of the field of observations, the
inclination increased nearly gradually from .06238 ft.
to .1246 ft. Three currents of water, the quantities
of which were exactly known, were introduced suc-
cessively in it. When the regime of each was well
established, and all the circumstances of the natural
current, the depths, velocities, &c., were noted, it was
barred up, by means of small wooden dams, whose
heights were progressively increased. Then the
height, the amplitude of the flow, the hydrostatic
amplitude, &c., were carefully measured. The form
of the flowage, with the rebound, of one of these
experiments, is represented in Fig. 34. The result
of all these observations is placed in the following
table, for the details of which see the work of the
author.*

* Mémoires de 1'Académle des Scl of Turin. Tome XXV., 1820.
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0712 | 0,335 21.424(29.650
tis tuslaomsion
1.2396| 5.522| 0.203| 0.032| 0,820 | 0469 [17.126129.561 [12.238 12.172| 0.420 | 0.39¢
0.705 | 0.472(19 259!31.858
0.794 | 0.469 21.949(33.760
0.443 | 0.548(11.024(25.919
1.6483| 6.352( 0.243| 0.032| 0.528 | 0,551 |13.419(28.248 [14.961 [16.109| 0.508| 0.518
0.614 | 0.548/15.420/30.345
pr el sl el s e 7|89 [10|n]n

170. It follows from these experiments :»

1st. That the height of the flowage above the crown of the
dam is independent of the elevation of the crest above the bottom ;
and that it varies only with the quantity of water discharged.
For the three discharges it was .334, .466, and .548 ; the formu-

=
]
la 42917 ‘/(%) would have given respectively, .332, .4745

and .574 ft. Here, as in the experiments made at the water-
works of Toulouse, beyond a certain limit, the coefficient 0.64
fails by excess, and as much mere as the height of water on the
crest is greater compared to the height of the dam.

2d. Naturally, the extent of the amplitude increases with the
height of the dam, but not in the same ratio.

3d. In comparing the real amplitudes with the corresponding
hydrostatic amplitudes, I have observed, not without some sur-
prise and satisfaction, let their magnitude be what it would, that
their differences remained the same for a like discharge, or rather,
for the same velocity; but that it increased with the velocity.
The case is similar to that of currents, already mentioned (133),
which on issuing from a gate, enter a canal, where water previ-
ously passed is running, but with less velocity, and consequently
with greater depth ; the current drives this water before it a cer-
tain distance. So here, the natural current meeting the water of
the remou, which seems inclined to return up stream by virtue of
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its tendency to a level, drives it, and in some way compels it to
retrace its path. The force which it there exerts, like to that
which bends a spring, will be an active force, and its effect, the
length of the driving back, will be proportional to the square of
the velocity. This length, starting from a point where a horizon-
tal line, drawn through the summit of the remou, meets the
surface of the current, is the difference of the two amplitudes:
it will, therefore, be proportional to v*; and for the above exper-
iments, it will be quite accurately represented by .39928¢?, as
may be readily seen by a comparison of columns 9 and 10 of the
table, the numbers of the 10th column being calculated by
means of this formula.

The velocity being less at the sides than in the middle of the
current, the running back will be less near the sides, and the
flowage will extend farther; in fact, in all the experiments of M.
Bidone, its length was greater by from .065 to .131 ft. A mani-
fest proof that the running back is occasioned by the velocity of
the current, and that it should increase with it.

4th. Upon the length depends the height of the rebound which
takes place at its extremity. The surface of the remou at the
rebound being sensibly horizontal, that height will be the fourth
term of & proportion, of which the three first are the hydrostatio
amplitude (5 ), the height of the remou near the dam (M),
and the length of the running back (.39928v%), it will therefore
be .39928pv*. The numbers of the last column, calculated by
this expression, and which differ but little from those of experi-
ment, show that it is very nearly so.

In canals of great velocity, p=.0001127 ;; thus, for the

¢
height of the rebound, we should have .00004459 ';.—, A being the

depth of the carrent just above the rebound.

In most rivers, where generally v is less than 3.28 ft., and
P less than .001, the rebound would seldom exceed .00328 ft. ; it
would be insensible.

171. Notwithstanding the apparent difference between the
ordinary remou and those just discussed, M. Bélanger has
tried upon them the formuls of permanent motion; from
them we may efbctually deduce some of the most remarkable
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features of those remous, the height of the rebound, for example.
For this purpose we recur to the equation (123)

(ﬁ_ @) + f_( .000111420* - .00002426470) dz :
neglecting the last term, which expresses the resistance of the
bed, since, in the very short space dz occupied by the rebound,
this resistance is extremely small compared to the other quanti-
ties, we have simply

¢ o
N

if, in this expression, v and v, are the velocities taken at two
points, the one just above and the other immediately below the
rebound, p’ being the slope or difference of level between the
two points, will also be the height of the rebound required; a
and g, are the heights respectively due to v and v,.

Let & be the depth of water immediately before the rebound,
and A, that just after the same, we shall then have p’ = h, —A.
The velocities being in the inverse ratio of the sections, or the
depth of water in rectangular canals, the proportion

J— JE— e . L3 N
A/2ga,: A/2ga: : h: by, will give G =0 =0 e s
80 that for such canals the equation will become

L3
r=afl—rrap
whence is deduced the expression given by M. Bélanger,

The value p’ of the rebonnd will be positive only when & <3-

that is to say, there will be no rebound in a water course, save
when the depth of the natural current is less than half the height
due to its velocity : and as this is most generally very small, it
necessarily follows that the depth will be smaller still.

From what has been said, we see that remous, like
those described by M. Bidone will only occur in water
courses of great velocity, and of very small depth; and

such water courses, for any notable length, are rarely
found in nature.
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2. Remou or Backwater produced by contracting the Water-way.

172. If a construction in a river does not extend the
whole width of the bed, and obstructs but a part of it,
all the water obliged to pass through the other part,
that is, through a narrower space, must pass there with
greater velocity; the excess of velocity can only be pro-
duced by an elevation of the fluid surface above the con-
struction and contracted space, so that the fluid, at the
moment of its entrance into this space, experiences a
fall, the cause of its increase of velocity.

The height of this fall will also be given by the

equation p’ =2ig—%=2%;(;—% which has just in-
dicated the height of the rebound in a certain flowage.
Let z be the height of fall, L the mean breadth of the
stream above the contracted space, / the width of the
contracted part, and 4 the depth of the water in that

part; its section s will be /&, or rather mlh, m being

- the coefficient of contraction at its entrance; for the

Backwater
occasloned by
bridges.

section s, of the current immediately above the fall, we
have L (A+z), Az being the depth of the water there,
and L the breadth. Thus, observing that z is the slope
designated above by »’, we shall have
Q@1 1
o= e — )

Eliminating z, we shall have an equation of the third
degree, which would give directly its value; but it may
be obtained more simply by substituting in the above
equation different values for this unknown quantity,
until its two members are reduced to equality.

173. Bridges built on rivers, by contracting the
water-way, cause, immediately above them, a raising of
the level of the same nature as that just described,
and which is determined in the same manner.
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The sum of the intervals between the piers will be
the width of the contracted space through which all the
water passes; it is the width designated by / in the
above formula, and L will be the breadth of the river
above the bridge. Eytelwein takes for the coefficient
of contraction m 0.85, when the piers present their
up-stream face square against the current, and 0.95
when they are terminated by an acute angle. These
limits may, however, be exceeded; thus, the effect of
contraction may be diminished by giving to the cut-
waters of the piers a form such-that their horizontal
section may be an equilateral triangle, with sides curv-
ed in the arc of a circle, as seen in Fig. 48; or, still bet-
ter, in an elongated semi-ellipse AMCM'B; this last
form being that which, according to experience, affords
the least contraction. This should be employed when
we would give to a river the best possible discharge;
still, the semi-circular form is generally adopted, per-
haps because it gives less projections and more elegance
to constructions.

z by
Q i ) m observa- | calcula-
tion. tion.
cab. ft. feet. feet. feet. feet.

2048 | 241.80 | 4.675 .90 1640 | 0525
15256 | 310.37 | 8.248 .90 .6857 | .7386
27511 | 290.36 | 12.733 .90 .8563 | .8760
28853 | 299.55 | 12.139 90 T 9711 9908

25958 | 299.55 | 10.998 90 1.0302 | 1.0597
35175 | 320.22 | 14.570 .81 1.1319 | 1.1221
39660 | 311.03 | 16.106 .81 1.2369 | 1.2566
46546 | 314.97 | 17.622 .81 1.2312 | 1.3977
83700 | 434.39 | 18.429 .81 1.7717 | 1.8340

Let us apply the above formula to observations made at the
bridge of Minden, upon the Weser. Funk, who reports them,
says, ¢ immediately above the bridge, in 1804, very exact measure-

)
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ments were made at eight different heights of the water.”” Tadd,
in the above table, as a ninth observation, the relative measure-
ments of the extraordinary freshet of 1799. The values of m are
those which Funk himself has adopted; but nevertheless, he
remarks that much uncertainty exists upon this matter, ¢ be-
cause,” says he, ¢ of the works which surrounded the piers, of
the different forms of the cutwaters of the bodies placed on the
up-stream side to arrest and break the ice, and of the different
manner in which the water entered beneath the vaults of the
arches, in times of freshets.”’

In comparing the heights of the backwater given by calcula~
tion with those of observation, it is seen that our formula gives
the effects of contractions produced by bridges as well as could
be hoped, in a matter where all determination rigorously exact is
almost impossible.

In the example just given, we have a river carrying a very con-
siderable volume of water, and a bridge which contracts its bed
nearly one half, and yet the height of the back flow which it
caused was only from .6562 to .9843 ft. In high water, it once
exceeded 1.3124 ft.; and in an unusual freshet, it was not
1.8045 ft.

174. Not only is the surface of a fluid mass which
passes between two piers, and within any narrowing of
the bed in general, raised on the up-stream side, as we
have just seen, but it is also lowered in the narrow
space, and even a little beyond, as indicated in Fig.
35. In consequence of the total fall, the water a little
below the narrow space possesses a velocity sensibly
greater than before. With this greater velocity, a great-
er inclination and a less depth, it will more easily reach
the bottom, and will there exert a more powerful action.
It will, therefore, be below the contracted way that
the current will tend more particularly to hollow out
the bed, and to undermine the masonry which con-
fines it.

The contraction which occurs at the entrance of each
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of the arches of a bridge, occasions there not only one,
or, more often, two superficial converging currents, but
also, it causes inferior currents, thought to be more rapid
and injurious. Local circumstances vary their direc-
tion, as well as their action upon the bottom; for exam-
ple, we have remarked, after great freshets, that, in
small arches, those less than 25 ft. span, the two oblique
currents uniting before their exit, the bed had been
deepened most towards the middle, and that in large
arches, on the contrary, the deepening was found to be
along the piers, and especially near the shoulder angles,
at the down-stream ends.

Immediately behind the piers, the water is usually
nearly stagnant, and the river deposits there part of the
materials which it conveys. It sometimes happens,
however, that the currents coming from two neighbor-
ing arches converge and unite, wholly or in part, below
the intermediate pier; between the pier and the point of
junction, a whirling may be produced, which, acting
upon the bottom, may undermine the pier; it is proper,
for this reason, to lengthen it, and it is partly with
this view that a down-stream starling is added. The
shoulder angles on the up-stream sides are likewise
dangerously exposed; the fall above the bridge, which
causes the inferior currents above mentioned, forms, in
great freshets, when the starlings are very obtuse or
have plane faces, as it were, a cataract, the action of
which is exerted near the angles; the evil is prevented,
or at least considerably diminished, by giving to the
starlings the forms indicated in the preceding number.
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ARTICLE FOURTH.

Considerations relative to the action of water on
Constructions.

In continuation of my remarks on the subject of
bridges, I should be glad, in this fourth article, to dis-
cuss the reciprocal action of running waters, and of
constructions made in their bed upon each other, and
more especially, to point out the means of preventing
the ruin of these works; but there is nothing general
and precise upon this subject; and a series of local facts
would be out of place in this elementary treatise on
Hydraulics. I shall consequently confine myself to the
few following observations.

175. In great freshets, the water produces extraor-
dinary effects upon the bodies exposed to their action,
which are by no means, at least apparently, proportional
to those we commonly see produced; so that from the
ordinary effects, we cannot conclude what has or might
have been done by those freshets which hardly happen
once in a century. I cite two examples, which seem
worthy of remark; they are taken from the same local-
ity, from the Falls of the Sabo on the Tarn, a league
above d’Albi. The river there is, as it were, dammed

up by a mass of rocks, in the middle of which, at a dis-

tant period, and possibly in circumstances having no
analogy with the actual state of things, it opened a pas-
sage, like an enormous slit, where it falls in cascades,
having in all nearly a height of 65 ft.

The rocks are of micaceous or talcose schist, soft, and
containing quartz stones. Their surface, which is nearly
always above that of the water, yielding to the erosive
action of the atmosphere, is decomposed; the schist is
reduced to earth, and the quartz stones remain isolated.
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In freshets, some are driven into the depressions or cav-
ities of the surface. If the freshet increases, and the
velocity of the current becomes very great, it often pro-
duces whirlpools above these cavities; there the water
seizes the quartz pebbles, and, impressing on them a vio-
lent rotary motion round a vertical axis, like a drill, it
hollows out of the rocks, already softened by the mois-
ture, perfectly cylindrical holes, with smooth faces, and
sometimes 6} ft. deep; at the bottom of some are still
to be seen the stones which have served as borers. This
fact shows how great is the action of whirlpools in great
freshets upon the bottom of rivers, especially when the
current carries pebbles along with it; these are then
true whirlpools of stones.

At a period when, in the same place, the Tarn was
raised 40 ft. above its usual height, the water rushed
through the rift in the dam of rocks with frightful
velocity; on the right and the left of the principal cur-
rent, there was a counter current, which ran back along
the adjacent banks with such force as to overthrow, and
towards the up-stream side, the great poplars with which
one of the banks was covered; I was much surprised in
witnessing such an overthrow, some days after it occur-
red.

What engineer has not seen, after a great freshet, his
dams of masonry as it were furrowed by the stones
which have passed over them? Who has not seen his
pavements, &c., even when constructed of large cut
stone, worn down, and in some points turned upside
down? Few of our constructions resist the strong
freshets that take place in a century; perhaps there
is not to be found in France twenty great bridges
which have lasted four hundred years. Not that those
which have fallen had not a mass strong enough and
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well enough constructed to resist the shock of the
water, but because the fluid undermined their founda-
tions, and excavated the earth on which they were
established.

176. It will be, then, the chief care of the engineer
to guard against this undermining. What he should
do for this purpose has been explained in works on
hydraulic architecture, as well as in those concerning
the art of bridges and roads, chiefly in the works of
Perronnet, and Gauthey’s treatise upon the construction
of bridges; I shall say no more on this, but confine
myself to an observation which is more peculmrly in
my province.

The study of the soil on which the engineer pro-
poses to establish a hydraulic construction, should be
his chief duty. In the tertiary earths of the mineral-
ogists, we find frequently beds of stone alternating with
strata almost earthy, such as soft marls, and even with
sand banks. When, by sounding, we have reached a
layer of the first kind, or what is termed solid, it is
necessary to determine its thickness, and to be well as-
sured that there are not, at a small distance below, less
solid beds. As the layers of the same soil are not usu-
ally entirely horizontal, examination should be made in
places where the earth may have been bared, a little
above or just below that where the construction is to be
made. We should endeavor to examine the bed which

~ has been reached by the sounding-rod, as well as those

lying immediately beneath it; so that we may be well
acquainted with its character and thickness. But if the
locality does not admit of such an examination, it will
be necessary to continue the sounding still further; for,
I repeat it, the main object is to be well assured of the
solidity of the soil on which we have determined to build.
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177. The action of water is entirely different on bot-
toms of a different nature; and works which may pro-
duce a marked effect upon one river, or a certain por-
tion of it, may produce none upon another. For
example, in the moors of Gascony, where the rivers flow
with but a slight inclination, on a very fine and movea-
ble sand, M. Laval, by means of wicker dikes, between
which were thrust pines and other trees covered with
their branches, narrowed and deepened at his pleasure
the bed of these rivers; * whilst upon the Loire, works
otherwise quite solid, dams of masonry, transverse
and but slightly elevated above the mean level of the
water, fixed upon one bank, and jutting quite far into
the current, could not produce upon the opposite bank
a deepening sufficient for a channel of navigation; the
excavation which they occasion in one point is often fol-
lowed by a filling or deposit in the succeeding point.t
Since I have been led to speak on the subject of deep-
ening the channels of rivers for any great extent, I
will remark, that we can only secure our purpose by
enclosing the current between two longitudinal dikes,
beneath the surface or not, either continuous or formed
of a series of small dikes, with intervals between them
through which the water in time of freshets may pass,
to wash out the space left between the dikes and the
old banks.

The difference in the manner of operating, according
to the localities, is also found in the protection of a
bank exposed to a current, which bank might be injur-
ed, but for opposing some obstacle against it; this
defence is sometimes made by a stone jetty, sometimes

* Annales des ponts et chaussées. Juillet-Aodt, 1831.
t Idem, tome V., 1633.

Difference
in the
effects of water.
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by a revetment of fascines, such as was adopted with
great success upon the banks of the Rhine.*

178. Constructions, in all respects similar, not only
produce different effects, but sometimes such as are of
a directly opposite character. Thus, it is generally
admitted, that dikes properly established upon a bank
preserve and fortify it, by causing deposits in the vicin-
ity of the points where they are established. In fact,
during ordinary freshets, the water remains nearly
stagnant, or it turns feebly in the angle formed by the
bank and the dike, particularly on the up-stream side,
and makes deposits there. But in unusual freshets,
when the velocity is very great, this turning may
become a rapid whirlpool, to attack and wear away the
adjacent bank; it acts upon it not only by its mass, but
also by the centrifugal force of its particles, a force due
to the velocity of rotation; and here the construction
would occasion the ruin of the bank it was designed to
protect.

When a dike, or a series of dikes, is designed to
attack the opposite bank, or to destroy a deposit of sand
formed there, it is often directed down stream, so
as to make an angle of about 135° with the bank upon
which it is fixed.t It is thought that by this dis-
position, the current losing but a little of its velocity
against these dikes and being directed by them upon
the opposite bank, will act there with greater force.
But it has happened that in the up-stream angle of
which we have spoken, a sand-bar has been formed,
with its point presented to the current with an acute
angle; thus, the proposed effect did not take place, and

* Bélidor, Architecture hydraulique, tome IV. M. Defontalne, work already
quoted (152).
t Bossut et Violet: Recherches sur la construction des digues. 1764.
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it would have been as well to have located the dike per-
pendicular to the bank.

179. After this diversity in the effects of water,
according to the difference of soils and of local circum-
stances, we should not be surprised at the difference of
opinion entertained by skillful men, upon the most
ordinary constructions; for example, upon dams by
means of which we bar up entirely the course of rivers,
whether for an increase of depth for the purposes of
navigation or to procure a greater fall, and consequent-
ly a greater motive power in the establishment of
mills. I shall dwell a few moments on this important
question of dams.

In many countries, they are usually placed oblique
to the river. It is said.in this case, that the water has
a less destructive action upon them in times of freshets,
especially in the up-stream parts; as to the down-stream
part, where sluices, navigable ways and mills are usu-
ally built, they are, it is said, sufficiently protected by
the constructions which such establishments require.
Some prefer to give their dams a broken form, that of
a rafter presenting a salient angle to the current,
especially when it is intended to build mills at each
end. Others. build them as much as possible perpen-
dicular to the course of the river; observing that, being
shorter, they are less expensive; that also, contrary
to the common opinion, they have not to support a
greater hydrostatic pressure, and that the difference in
the action of the impulse is small. I will observe,
that whatever be the direction given to the dam, more
particularly when it is placed perpendicular to the
current, care must be taken to secure its extremities
well into the quays or other adjacent constructions, or
to found them safely in the banks.

Position
and form of
Dams.
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M. Borrel, engineer, on the subject of the position
of dams, has made a remark worthy of consideration,
especially whenever the points on which they are to be
built are not controlled by peculiar circumstances. In
every river with a gravel bottom, he observes that nat-
ural bars are formed in certain parts, which will be
re-formed soon after their removal; they are a necessa-
ry consequence of the form of the bed, and they denote
the place where the action of the water upon the bottom
is least destructive, and consequently, where the most
suitable location for the dam is to be found; the direc-
tion of the ridge of the bar, disregarding trifling irreg-
ularities, would be that which it would be well to
adopt.

180. The opinions of constructors are at least as
various in respect to the form and profile to be given to
dams. Most frequently, their thickness equals about
three times their height, and their upper surface is
inclined towards the down-stream side at an angle of
20°. The objection to this form is that it presents too
great a surface to the action of stones, drift and ice,
brought down in freshets, and on the breaking up of
the ice ; moreover, it preserves the whole force of the
water, and directs it against the bottom. To remedy
these defects, experienced engineers have given to their
dams a section nearly rectangular, with a breadth but
little greater than their height, the upper face inclining
slightly up stream, and the two side faces having a
slope at most of one in six; at their foot, on the down-
stream side, they construct a bank or berm. The
water which passes such dams, say their partizans, the
inspector M. Bertrand among others, falling in cascade
upon this bank, is deadened ; it loses its velocity, and
retains no longer the power to do mischief. But for
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this purpose, the berm should be broad, and of very
good masonry, otherwise the water will soon destroy it,
and so quickly undermine it. M. Girard, who has made
the effects of water upon these dams his peculiar study,
remarks that between the foot of the dam and the
bottom of the cascade a whirl is produced, with its
axis horizontal and parallel to the dam; and that this
whirl, whose destructive action is still more increased
by the bodies falling with it, wears with such force
both upon the foot of the dam and the ground beneath
it, that few berms, unless built upon the solid rock, can
effectually resist it.*

Finally, skillful men, giving to dams all their former
width, have made the upper surface of a curved form,
convex at top, and concave at the base: the nature of
the curve is of little importance, whether it be a
sinusoide, an arc of a circle, etc., provided there are no
sharp angles, and that its last element is horizontal and
nearly level with the bottom of the river. The objec-
tion to this form is, that it exacts more careful fitting,
consequently, greater expense; and, more especially,
that it impels the water in a horizontal direction, with
all the velocity due to its fall, consequently disturbing
the river at a great distance, to the injury of naviga-
tion. But, on the other hand, it is the form which
gives the least force to the water for undermining the
foot of the construction. I should observe, however,
that if the bottom affords slight resistance, and a part
of its surface should be washed away, there might be
formed beneath the lower surface of the current,
launched horizontally, a counter-current, which, join-
ing the first at the foot of the dam, would produce

¢ Annales des ponts et chaussées. tome X. 1835.
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there one of those whirls, with a horizontal axis, whose
destructive effects we have already pointed out. It is
probable that, to prevent these, Perronnet, the most
celebrated of our engineers, after having adopted the
form just investigated for a dam in the canal of Bur-
gogne, fixed many beds of fascines before its foot.*

Finally, this last kind of dam is little used, it is so
costly. The second spoken of, that with a nearly
square section and a berm, has prevailed lately, and for
some years, among skillful men. But it seems they
are now returning to the first, that with a plane inclined
to the down-stream side, particularly where the bottom
is easily washed away; some, however, substitute a
series of steps for the plane. ‘

CHAPTER III.
ON THE MOTION OF WATER IN CONDUIT PIPES.

181. In a long inclined pipe, as in a canal, the
simiarity ¢ WYBET Moves in virtue of its weight, or rather, by that
m| y of

motion In pipes part of its weight rendered active by the inclination of
smdemslt the pipe; the accelerating force in both cases is gp
(104). So that if, at the upper part of a reservoir, M
were fitted at AB, either a canal or a long pipe, admit-
Fig.%.  ting that no obstacle opposed the action of this force,
the fluid would pass from the point B with a velocity

due to the height EB.

In a canal open on the upper part, no pressure is
exerted on the fluid which enters it, whilst there is
commonly a pressure on the head of pipes. For exam-
ple, if we place the pipe AB at CD, we shall have at
C a force of pressure, in consequence of which the

* Lecreux, Recherches sur les riviéres, p. 266.
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water will enter into the pipe with a velocity due to
the height AC. According to the first principles of
accelerated motion, this velocity must be added to that
which the fluid acquires by the effect of the slope from
C to D; so that, abstraction being made of every ob-
stacle, it will pass out with a velocity due to AC+FD,
or to ED, a height which represents the force in virtue
of which the flow tends to take place. This last case
can also be referred to that of canals; if we prolong
CD to G, at the level of the reservoir, and construct a
canal from G to D, the water will tend still to go out
with a velocity due to ED. Thus in every case, in
pipes as well as in canals, the accelerating force and
the effects which it tends to produce are the same.

Under the influence of such a force, the motion in
pipes should be continually accelerated ; and yet, at a
very small distance from their origin, it is sensibly
uniform. It follows, therefore, that beyond that dis-
tance, at every instant an opposite force destroys the
effect of the first. This opposite force can only be the
resistance of the sides of the pipes, which, as in canals,
proceeds from the adherence of the fluid particles to
those sides and among themselves (106).

Thus in the pipes we have the same accelerating
force and the same retarding force as in canals; the
motion is of the same nature, and We might say that
the case of pipes is only a particular case of canals, the
case where the upper part of the canal is closed.

This difference, however, in the form of the bed,
occasions, during motion, peculiar circumstances, which
demand special considerations: these will be the object
of this chapter.
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ARTICLE FIRST.
Of Simple Conduits.

In hydraulics, and particularly in the art of foun-
tain-makers, the name of conduit is given to a long
line of pipes, exactly joined together. The conduit is
simple, in opposition to a system of conduits, when it
consists only of a single line of pipes, conveying even
to its extremity all the water which it receives at its
origin.

1. Straight Conduit, of Uniform Diameter.

182. For greater simplicity, unite in one the two
forces which tend to produce the velocity of exit, the
pressure AC at the head of the conduit, and that of
FD, which proceeds from the slope: for this purpose,
imagine that the given conduit CD is placed horizon-
tally, at HI, at the bottom of a reservoir whose depth
AH is equal to AC4+FD=ED. Nothing will be
changed in the data of the problem; we shall always
have the same force and the same resistance, this last
being independent of the position of the conduit.

The force of pressure in virtue of which the water
tends to flow out, or, more immediately, the vertical
height ED, the difference of level between the orifice
of exit and the surface of the fluid in the reservoir, is
called the head upon the conduit. We shall habitually
designate it by H.

If the conduit opposed no resistance to the motion,
making abstraction of all contraction at the entrance,
the water will flow out with a velocity due to all that
height, as we have just seen. But such is not the
case; the resistance of the sides, opposing an obstacle,
diminishes that velocity ; it absorbs, consequently, a
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portion of the motive head H. The flow takes place
only in virtue of the remaining part; this part only
is the height due to the velocity of exit, and also to the
velocity on all the points of the conduit, since the

motion in it is uniform, and since its section is through-

out uniform. Let v be that velocity, 2 will be the

8
height due, or the effective portion of the head ; H-—;—g

will therefore be the portion absorbed by the resistance ;
it will serve to measure it, it will represent it.

183. We have just represented by the height H the effort or the
force of pressure which urges the water in the pipe, by the

v’
height 2g the force which produces the flow, also by a linear

3
quantity H— ;—g the resistance or negative force ; and yet it is

a principle in mechanics, that the forces of pressure or the efforts
are equivalent to weights, and ought to be expressed by weights.
We will explain.

We have already seen (14) that the absolute pressure on a
horizontal fluid surface or portion of that surface designated by s
was psH™:, p being the specific weight of a cubic foot of the
pressing liquid. Since, according to the laws of hydrostatics,
the pressure is equal on all parts of that surface, it will be suf-
ficient and proper to consider only one ; thig will be an infinitely
small one, which may be supposed always of equal magnitude ;
then s being constant, the pressure will depend only on the
specific weight, or on the nature of the liquid and the height of
the column : it is in this sense that the height of the column of
mercury in the barometer expresses the pressure of the atmos-
phere. If the pressing liquid remain the same, as will always
be the case with water, in this chapter, we may neglect its
weight p, which is constant, and the pressure will be represented
only by H; it will be exclusively proportional to it.

If we adhere rigorously to the principle, we should regard H
as the weight of the fluid line which presses and urges along in
the conduit the particle which is immediately below it, and we

Observation.
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should represent it by a line, as, in elementary statics, we repre-

sent by lines the forces which are also weights.

184. Since the resistance proceeds from the action
of the sides, it will be proportional to their extent,
that is, to the length of the conduit and perimeter of
its section, which is here the wetted perimeter; for we
suppose that the flowing takes place with a full pipe,
otherwise we should have the case of a simple canal.
On the other hand, the greater the section, the more
the resistance of the sides will be distributed among a
greater number of particles; consequently, it will affect
each of them and the total mass less: it will therefore
be in the inverse ratio of that number, and consequently
of the magnitude of the section. Here also, as in
canals (107), it will be proportional to the square of
the velocity plus a fraction of the simple velocity.

According to this, if L is the length of the conduit,
S its section, C the contour or wetted perimeter, a and
b two constant coefficients, the expression of the resist-
ance will be

' a ' (v+bv),
and we shall have (as in Sec. 111),

o CL .,
H—-g-g—a—s— (v o).

185. It remains to determine the coefficients @ and &.
Prony, who first undertook their determination in a
proper manner, made use, for that purpose, of fifty-one
experiments made by our most skilful hydraulicians,
and which Dubuat had already employed for establish-
ing his formule. From them he deduced

a==.0001061473; 6=.1632T.
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Of the fifty-one experiments, eighteen were performed by
Dubuat himself, on a tin pipe of .0886 ft. diameter and 65.62 ft.
long ; twenty-six by Bossut, likewise on tin pipes 0.0886, 0.1181,
0.1772 ft. diameter, and of lengths varying from 31.96 to 191.84
ft.; and seven were made on the great conduits of the park of
Versailles, one of .443 ft. diameter and 7480.68 ft. long, and
another 1.608 ft. diameter and 3835.489 ft. long.

Twelve years after, Eytelwein treated anew the
question of the motion of running waters: he thought
proper to take into consideration the contraction of the
vein at the entrance of the pipes, and m being the co-
efficient of that contraction, he established

H— 2;:‘7.’;: = .000085434%[' (v + .27560).

But m, the effect of which is, however, insensible in
large conduits, is found implicitly in the value of a,
given by experiment. Consequently, having regard to
the most accurate observations, and particularly to those
of Couplet, I adopt the equation

H— 7 = 000104892 55" (v +.1804490).

For canals, we had (111 and 112)

o CL
H— 5 =.0001114155 - (¢ 4-0.217786).

These two equations are similar and very nearly identical, as
they should be (181). The small differences in the numerical
coefficients probably proceed only from errors in the observations.
If it is 8o, as the observations can be made with much more
accuracy on conduits than on canals or rivers, it is to be pre-
sumed that the coefficients of the equations for conduits are also
the more accurate.

186. The section of pipes being a circle, if D rep-
resent the diameter, we shall have S=='D* and
=nD; and, putting for =, n" and g their numerical
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value, the fundamental equation of the motion of water
in conduits will become

H — .0155860* = 000417568 - (v*-+ .180449%).

The velocity is rarely in the number of quantities
given or sought in problems to be solved; it is
almost always supplied by the discharge. Let Q be
that discharge, or the volume of water flowing per

second. We have Q=D or v=1.27324 —%; this

value of v, put into the above equation, transforms it
into

H — 025187 -& — 0006769 7 (Q: -+ .141724QD")

Such is the formula usually employed for the solu-
tion of questions relating to the motion of water in
conduit pipes; having regard, however, in its applica-
tions to practice, to the observations to be made in Sec.
205. Of the four quantities, Q, D, H and L, three
being known, the formula will give the fourth.

187. When the velocity is great, that is, exceeding
two feet per second, the resistance is sensibly propor-
tional to the square of the velocity; the term contain-
ing only its first power would disappear, and, accord-
ing to the experiments of Couplet, we should have

Lot
H —.01553660* = .0001333 Y
or, in terms of Q,

H— 0251817 5 — 0007089 .

It is to be remembered, that the second member of
the above equations is the value of the resistance pro-
ceeding from the action of the sides of the conduit.
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188. Taking the value of Q from the general equation,
it becomes

Q—— .070862L.D* ‘/ 1477.3HD? N {.07086‘2LD’}’
= L+37.20D L+37.20D L4-37.20D

In long pipes, where 37.20D is very small compared
to L, it may be neglected ; the second term under the
radical might also be neglected, and for ordinary cases
of practice we shall have

Q= V L7 30HD" . 070862D7;

or, o
Q= 38.436 ‘/ ?‘Ef — .070862D".

189. In great velocities,

—387.548)/ X0 or @=36.769 /",
If the velocity be required, we have its value by
dividing the discharge Q by the area of the section
.7854 D%
190. The diameter of conduit pipes is very often the
quantity to be determined. To undertake its determi-
nation most easily, put the fundamental equation (186)
* under the following form:

e Q£+ 0251817 - DQ " 1 0006769~ =o.

D— ( 000095938

Omit for a first approximation the first two terms in
the parenthesis, and we have

D— V 0006769 -1 — .2323 V Lz

This value will be a little too small; we should then
make small additions, until the first member is reduced

Expression
of
Discharge.
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for the
Diameter.
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to zero. The quantity which leads to this result will

" be the diameter sought.
For velocities above two feet, we have simply and

direct]y
D—.2349 V L‘f’ .

E

Nothing need be said concerning H and L. The
equation of Sec. 186 gives them by a simple transfor-
mation.

191. We give examples for the determination of the discharges
and the diameters.

I. We have a conduit 0.82022 ft. in diameter, and 4757.3 ft.
long ; required the volume of water it will deliver under a head
of 17.454 ft.

We have then, D=.82022 ft.,, H=17.45¢4 ft., L=4757.3
ft., and L4-37.2D=4787.812 ft. ; and consequently,

Q=— 070862(.82022)2 X 4757.3 A/xf{zﬁ NP {mmm.xzm EXATST3 2
= et o s T -

87.812 T dsTa
= —.04737+4 A/ 1.99944-.0022439=—.047374-1.4147=1.36733
cubic feet.

The simplified formula would give Q=1.4186— .04767 =
1.37093 cub. ft. That for great velocities (189), and otherwise
applicable to the actual case when the velocity is 2.588 ft., would
give Q=1.3568 cub. ft.

IT. Required the diameter of a conduit 2483.6 ft. long, which
is to conduct 3.1431 cub. ft. per second, under a head of
3.2809 ft.

Substituting these numerical quantities in the equation of Sec.
190, it becomes, every reduction being made,

D*— (0.22827D°4-0.075828D+-5.0624) =0.

Neglecting at first the second and third terms, we have

D = A/5.0624=1.3831 ft. This value being too small, after
several trials, is raised to 1.4127 ft., which is the diameter
sought.

The formula for great velocities, and here v = 2.0046 ft., would

6 __
have given D = 2349 o/ 2SGIGIT _ 3 3984 g,
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Equation when Pipes are terminated by Ajutages.

192. Thus far, we have supposed the pipes entirely
open at the extremity; but almost always, they are
terminated by mouth-pieces, cocks, or, in general, by
additional tubes, which contract the opening. In such
cases, the velocity of the fluid at its exit is not the
same as in the pipe, and consequently, the equations of
motion which are given in §§ 185 to 188, and which
are based on the supposition of that identity, cannot be
applicable. The first member of those equations, H—
.015553660%, presents the part of the head absorbed
by the resistance of the pipe; and this portion is the
head H, minus what remains at the extremity of the
pipe, to produce there the velocity of exit (182); if
this velocity is designated by V, the first member of
the equation will in general be H—.015655366V?.
The second member is the expression of the resistance
of the sides (187), which is a function of the velocity
in the pipe or of »; v must then remain as it was in
that member, which will not be changed in value.

- 193. In pipes, still more, if possible, than in other
cases of a fluid moving without breaking its con-
tinuity, the velocities are in the inverse ratio of the
sections; so that if & is the diameter of the additional
tube at the orifice of efflux, 7 the coeflicient of con-
traction applicable to it, D always being the diameter
of the pipe, we have V:v::#'D*:7'md?, whence V=

> 121824 5 x D 121304 ), Theequs-

tion of motion will then become

v

o L
H-f-.0251817m%i=.0006769 pr (Q*.141724QD?).

Of the five quantities which it includes, four being
given, the value of the fifth will be shown.

n
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Let it be required, for example, to determine the diameter to
be given to a circular orifice in a thin plate fitted to the end of a
pipe .26248 ft. diameter and 1745.493 ft. long; the quantity
of water discharged to be .706332 cub. ft. per second, and the
head being 14.764 ft.

The above equation will give

4

= V 0251817Q°D*
m*[HD*—.0006769L(Q-.141724QD") ]
Substituting the numerical values (m=1.62), reducing and ex-
tracting the fourth root, we find d=.076773.

194. For velocities above two feet, we have
B — 0251817 L= 0007089 %% ;

_HD*
Q=3T.548)/ | 135_47%; and

Yy
D =.2849 VH—.0251817 Q@
midt

I give two examples.

I. To the pipe already examined in Sec. 191 is fitted a coni-
cal tube of .098 fi. diameter; every thing else remaining the
same, it is required to assign the discharge,which will take place.

Here D = .82022 ft. ; L=4757.3 ft. ; H=17.45 ft.; and for
m, considering the convergence of the tube (50), take 90 Con-

sequently, m'd* = 000076022, and 35.47 "_f"ﬁ =173214.
X o = 2654 cub. f.

The complete equatlon of &c 192 would also have given
.22654.

It may be remarked that if, instead of an additional tube .098
ft. diameter, we had taken ome .4101 ft., (half the diameter of
the pipe,) the discharge would have been . . . 1.295 cub. ft.
‘With a diameter of .6151 ft., (§ that of pxpe,) 1360 «
Without additionsl tube, . . .. 1367



IN PIPES. 211

Which shows that when the diameter of an ajutage is great,
compared to that of the pipe, (80 as to be more than one half
thereof,) the discharge differs but little from that obtained from
the pipe being quite open.

In many of my experiments on the conduits of Toulouse, I
was struck by this fact ; the difference was even less than that
indicated by theory; it was insensible. For example, at the
extremity of a pipe .164 ft. diameter and 1391 ft. long, were
fitted, in succession, plates with gradually decreasing circular
orifices ; and under the constant head of 53.48 ft., we had the
following results. The diameter of the conduit being .164 ft.,
the first result was obtained without any plate, the pipe being
entirely open. It is to be remarked, that the results of calcu-
lation approach nearer to those of experiment as the velocity of
the water in the pipe was smaller.

DIAM. | DIAM.| DISCHARGE. |

of of By calcala- By experi-
orifice. orifice. v tion, ment.
inches. feet. cub. ft. cab. ft.

1.97 164 | .0756 | .0607
1.38 15 | 0742 | .0607
1.18 098 | .0731 0607
.79 .066 | .0646 | .0558
.59 .049 | .0519 | .0470

II. To determine the diameter of a pipe 2736.35 ft. long,
which, under 8 head of 21.326 ft., must discharge .3885 cubic
ft. per second, by many orifices situated near each other, which,
taken together, are equivalent in area to a circular orifice of
.13124 ft. (about 1.57 inches) diameter, the coefficient of con-
traction is estimated at 0.85.

We have mid*= (.85)? X .13124* = .0002143, and .0251817X

’3;-:- 17.732; and consequently,
¥
D=.2349 A/*,}";;:“ SR —.60795 f.

2. Pipes bent and contracted at some points.

195. We have just considered pipes as being rec- Tiree kins
tilinear, and of equal section throughout their length; Resistance.
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but usually they present bends; and sometimes there
are parts of less section, either for a very small extent
and forming a sudden contraction, or for a considerable
length.

The water moving in such pipes, on arriving at the
bends, is obliged to change its direction. In this
change, it loses a part of its velocity; the resistance
causing this loss is like an effort opposed to the motive
effort, or to the first head; it destroys a part of it.

At sudden contractions, the water experiences still
another loss; having to pass through a narrower section,
it must have a greater velocity; a new effort is neces-
sary to compel it to receive this velocity; this is a
new absorption of the total head. Thus, water moving
in pipes, experiences or may experience three kinds of
resistance; that due to the action of the sides, by far
the most considerable ; that proceeding from bends; and
that from sudden contractions. The forces or partial
heads employed to overcome these resistances, are sub-
tracted from the total head; it is in virtue only of the
remaining part that the flow takes place; this part alone
is the head due to the velocity of exit.

‘We have treated of the resistance of the sides in
detail (184 —188), and will now examine the two
others.

196. Every moving body, which, after having fol-
lowed one direction, suddenly changes it, loses a part of
its velocity, represented by the verse-sine of the angle
formed by the two directions. If, during its motion,
it follow a curved line, it changes its direction, it is
true, every instant; but the loss of velocity at each
change is only an infinitely small quantity of the sec-
ond order; and consequently, although the number of
losses is infinite, the total loss will be an infinitely
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small quantity of the first order, which may be consid-
ered as nothing; in other words, every body in motion
which arrives tangentially at a curve, and which follows
it any length, retains on quitting it the same velocity
it had on its arrival. Whence it follows, that if the
_curve of a pipe be well rounded, whatever be the
nature of the curve, and if the fluid exactly follow the
curvature, it will experience no loss of velocity, no
resistance. '

But such is not the case; the particles of which the
fluid is composed being independent of each other,
while those in contact with the sides follow the curva-
ture, the rest being directed against the sides, will be
reflected by them or by the particles interposed, at an
angle which may be quite large. For example, the
central fillet «C tends to strike at C the side ACB,
and then to incline along Cb, making an angle of reflec-
tion equal to the angle of incidence, which would be
half the supplement of the angle of the curve aCb.
The reciprocal action of the particles on each other will
cause, in the total fluid mass, a loss of velocity, which
loss will generally be less than that of the central fillet
taken separately, but always greater than that of the
fillets near the sides.

This diminution of velocity and consequently of dis-
charge, although real, will usually be very small.
Thus, Bossut having taken a pipe .088587 ft. diameter
and 53.2834 ft. long, extended it horizontally and in a
straight line; under a head of 1.0662 ft., he obtained
.786 cubic ft. in one minute; then, having bent it into
a serpentine form with six curves, well rounded, it is
true, he obtained, all else being equal, .720 cubic ft.
per minute. (Hydrodynamique, § 659). 8till, by

Fig. 8.
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increasing the number and abruptness of the curves,
the diminution of the discharge can be rendered quite
considerable, as seen in the following example: Rennie
made a lead pipe 15 ft. long and one half an inch diam-
eter; he fitted it horizontally to a reservoir, and under
a head of one ft., he obtained 1.921 cubic ft. in one
minute; then he bent the same pipe so as to form a
series of fifteen semi-circular cavities or convexities,
with a radius of about 33 inches; he fixed it in this
new state to the reservoir, and the product of the flow
was only 1.709 cubic ft; so that the fifteen curves
reduced the discharge in the ratio of 100 to 89;
under four times the head, the reduction was from 100
to 88.%

197. As to the laws followed by the resistance of
curves and the measure of that resistance, it is to
Dubuat that we are indebted for the first researches
made on that subject. He took different pipes, at first
straight, and he measured the head necessary for them
to discharge a certain volume of water in a certain
time; then he bent them in various ways, and in such a
manner that the central fillet tended to make angles of
reflexion of a determined number and magnitude; and
he again ascertained the head under which they dis-
charged the same volume of water in the same time.
The difference between the two heads for the same pipe,
when straight and when curved, was evidently the head
due to the curves, and consequently the measure of
their resistance. He thus made twenty-five experi-
ments, the principal of which are introduced into the
following table :

* Philosophical transactions of the Royal Society of London. 1831.
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PIPE. VELOCITY |RESISTANCE | Coefficient
Angles, of due to the| deduced,
Diameter. | Length. |xo ang value.| water. curves. for ft.
incbes. feet. ft., per sec. feet.

1.07 10.391 | 1 of 36° 7.546 .0666 .00338

1.07 10391 (2 36 7.546 1332 .00338

1.07 | 10391 |3 36 7.546 211 00375

1.07 10391 |4 24.57| 7.546 1332 .00338

1.07 10.391 10 36 6.362 543 .00375

1.07 | 12300 |4 36 5.158 1457 00396

1.07 12300 (4 36 2.605 .0364 .00387

1.07 | 65456 |4 36 2.546 .0348 .00387

213 | R671 |4 36 7.664 2576 .00302

213 | R671 |4 36 5.217 1181 .00314
6 4.57

213 | R.671 { 5 36.00 } 7.664 7674 .00378
1 56.23

Dubuat concluded from his experiments, that the
resistance of curves is proportional to the square of the
velocity of the fluid, to the number of angles of reflex-
jon, and to the square of their sine.

In this hypothesis, the coefficient varies within small
limits, the mean term being .00375. So that, if v be
the velocity, n, ', &c., the number of the angles of the
same magnitude; i ¢ the respective number of degrees,
the value of the resistance will be

.00875¢* (n sin’ i + n' sin’ ¢ .. .);
or, in fanction of Q, s* being the sum of the squares of
all the sines, .006079 &, .¢%

198. In applying this formula to a given pipe, it would be
neceseary to determine the number and value of the angles of re-
flexion for each curve. Now, a simple drawing shows, 1st, that
in a pipe bent into an arc of a circle, and there will be arcs of no
other kinds, the semi-diameter of the pipe, divided by the radius
of the are, gives the verse-sine of the angle of reflexion, and con-
sequently its cosine and its value in degrees; 2d, that the num-
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ber of degrees of the arc, (that is, the supplement of the angle
of the curve,) divided by double the angle of reflexion, indicates
the number of the angles.

Take, for example, a pipe .82 ft. diameter, conveying 1.766
cub. ft. of water, which has a curve of 95°, the radius of curva-
ture being 6.89 ft. ; demanded, the resistance occasioned by the
curve. From what has been said, the verse-sine of the angle of

reflexion will be —‘l =.0595, and its cosine equal 1—.0595 =

9405, which belongs to the angle of 19° 52': this is the angle of
reflexion. The arc of curvature =180°—95°=85°, divided by
double the angle of reflexion, 39°.73, will give the number : this
will be taken as 3, the quotient being 2.14. The sine of 19° 52
is .3398, and its square="1155; the resistance required will
consequently be

(1.766)*

.00608 82" X 3 X .1155 = .0145 ft.

& quantity extremely small ; and yet the curve is quite sharp and
the velocity considerable. For Rennie’s pipe of fifteen curves
(196), the above mode of calculation would have indicated a
resistance of .633 ft. ; and experiment even gave 1.161 ft., as we
shall soon see (which would raise Dubuat’s coefficient of .00608
up to .01115). But such a case is never presented in practioe,
and even with double the coefficient, the resistance rarely exceeds
one half or three quarters inch loss of head. It is diminished
still more, or rendered inappreciable, by taking a large radius of
curvature ; the greater it is, the more angles of reflexion we have,
to be sure, but they are smaller, and the sum of the squares of
the sines, and consequently the resistance, is less.

199. If the effect of well rounded curves is insensible, it would
not be so with angles properly so called. An experiment of
Venturi shows their influence. This savan made three tubes,
fifteen inches long and 1.3 inch in diameter; one was straight,
the second had a curve of 90°, gently rounded, and the third
had an abrupt angle of the same number of degrees: under
a head of 2.887 ft., they filled a vessel containing 4.838 cub. ft.
in 45", 50” and 70" respectively. The bad effect of angles is still
more manifest in the experiments of Rennie (196); with his
Pipe, fifteen feet long and one half inch diameter, under a head of
four feet, he had per minute a discharge from the straight
pipe . . . .. o« « « . . 4196 cub. fi.
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From the pipe with fifteen semi-circular bends, . .3694 cub. ft.
¢ ¢« onerightangle, . . . . .333¢ «

« ¢« o« & twenty-four right angles, . .1519 ¢

-So that a single angle of 90° reduced the discharge more
than the fifteen curves. This single fact shows with what
care all angles should be avoided in the establishment of con-
duits.

In seeking the head required to cause the three pipes with
curves or angles to give a discharge of .4196 cub. ft., equal to
that obtained when there was neither curve nor angle, we have
5.151, 6.332 and 30.546 respectively. Substracting four feet,
there remains for the resistance of the curves and angles (197),
1.151, 2.332 and 26.546 ft. Whence we conclude, that the re-
sistance of a single angle of 90° was more than double that of
fifteen curves, and that of twenty-four angles was only 11.4 times
greater than that of a single one. This last result shows that
the resistance of the angles or curves is not proportional to their
number, as Dubuat admitted. I had already remarked this want
of proportionality, in my experiments on the motion of air in
pipes. (Annales des Mines, 1828, p. 453.)

200. The sudden contractions referred to are occa-
sioned by a diminution of the section of the conduit,
for a very short extent.

To give an exact idea of the resistance which they
oppose to motion, suppose that in a pipe, we place, per-
pendicularly to its axis, a diaphragm or thin plate
pierced with an orific. When the fluid in motion
arrives at this, the vein will be contracted, and will also
be reduced to the size of the opening; it is through
such an opening, thus reduced, that it is necessary to
force its passage, by taking a velocity as much greater
as the opening is smaller; and this velocity will always
be superior to that which would take place in this part
of the pipe, without the diaphragm. The excess
of force necessary to produce the excess of velocity,
the direction of the motion remaining the same, will

Resistance
from
Contractlons.
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evidently be the effect of the sudden contraction; it
will be the resistance opposed.

Let B be the diameter of the orifice, m its coefficient
of contraction. The velocity through this passage
being necessarily greater than in the pipe, according

Ll ; the

m

force to produce it, or the head due, will then have for
its expresssion .0155866* D . The head belonging

m'B*’

to the velocity in the pipe was simply .0155366:%

The excess of head, or the force proceeding from the

sudden contraction, will therefore be

0155360 (;,?%4'— 1 )=.015536v’D‘ L _DL) .
In function of the discharge, this resistance will be

expressed by

.0251817Q? (F}? —1)

to the inverse ratio of their sections, will be »

M. Navier, admitting that the fluid vein, on passing from the
sudden contraction, quickly resumed the section and the velocity
belonging to the pipe, which is never the case, as we shall see
in the following number, instead of the difference between the

1
squares of the two terms ;‘1',7 and 57, took the square of their

1 1yt
difference (W—T);) . But can a result deduced from a
positively false supposition be adopted ?

We shall, however, very rarely have occasion to make
applications of the above formula, for in a conduit we
ought to have no sudden contractions; but if accident-
ally one should be presented, it will enable us to
appreciate its effect. The effect will generally be very
small; in my experiments made with the stop-gates
established on the conduits of Toulouse, having once

E—— g
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diminished the section of one of them .94, I had but
one hundredth diminution in the discharge.

201. If, on the same pipe, below the first sudden
contraction, there be a second, a third, &c., the resist-
ance of each will be determined by the above expres-
gion, and their sum must be taken.

But that these resistances be added thus together, it is neces-
sary that they be independent of each other ; that is to say, that
the fluid, after its passing the first contraction, must resume the
general velocity in the pipe before its arrival at the second.
If it were not so, which would be the case where the orifices
were very near each other, the fluid vein, after passing the first,
would preserve wholly or in part the excess of velocity which had
been impressed upon it in order to cause it to pass, it would
require a less effort to make it traverse the second, and as much
less as the distance is smaller.

Eytolwein made many experiments which put this fact to the
full proof. He took tubes about 14t inch diameter, and of the
lengths noted in the first column of the
opposite table ; at each of their extrem- || pisraxces. | piscranc.
ities was a thin plate of copper, pierced || —-——-—
with an orifice of about § inch diame- || Inches.

|

|

: 276 626 |

ter. They were fitted horizontally to a ‘512 622 |

reservoir, and the discharge of each|l 7y (94 614
ascertained : this discharge, compared | 2.047 .568

to the theoretic discharge, which is rep- || 3.110 .509
resented by 1, is placed in the second lg;g; ‘:g;
column; it gradually diminishes, and || 94 794 478

consequently the resistance inereases in \————————|
proportion as the distance between the two orifices is greater.
Eytelwein also placed in a tube of about 14 inch diameter, and
about one quarter inch apart, four small plates, pierced equally
with an orifice of about one quarter inch diameter ; the discharge
obtained was .622. Afterwards, the plates were put about 12§
inches apart, and the discharge was only .331.

202. What has just been said upon sudden contrac-
tions caused by thin plates pierced with small orifices,
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is equally applicable to those produced by very short
tubes, of smaller diameter than the diameter of the con-
duit. .

I cite an experiment of Venturi, (his 24th). This
ingenious philosopher composed his apparatus of two
kinds of tubes, placed alternately; one set, B, B, were
about 13 inch long, and about ; inch diameter; the
diameter of the others, C, C, was about 2.13 inches, and
their length sometimes 3.46 inches, and sometimes
6.77 inches. Venturi at first made use only of a sin-
gle tube C; then of two, of three, of four, and finally
of five; he fitted successively these various sets to a
reservoir, and caused an efflux under a head of 2.887
ft. The following are some of the discharges obtained:

With the single tube B, .04443 cubic ft.
¢ ¢ one ¢ Cadded, .03295 @«
¢ ¢ three “ C ¢ 02522 «
o« five ¢ C o« .02020 «

I have attempted to compare these results with those
derived from the methods of calculation above indicat-
ed; the differences were sometimes great and some-
times inconsiderable; thus, for the last case, I found
Q=.01854 cubic ft.

208. Notwithstanding the great irregularities pre-
sented by these experiments, they are very remarkable,
principally because they exhibit, in a very prominent
manner, the effect of enlargements existing in a con-
duit; an effect quite as prejudicial as that of contrac-
tions, taken above a certain limit.

The entire apparatus, which was 3.199 ft. long, may
be considered as a pipe of & inch diameter, having
the five enlargements C. It gave, as we have just seen,
a discharge of .02020 cubic ft.

Venturi then took a tube of the same length, but
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having throughout a uniform diameter of & inch, and
obtained a discharge of .08270 cubic ft.
The enlargements thus diminished the discharge in
the ratio of 100 to 62.
204. There is also one other contraction which ought .
to be mentioned, resulting from that which the whole  attne
. . . . . entry of Tubes.
fluid mass experiences at its entrance into a pipe of
smaller diameter than that of the pipe immediately pre-
ceding it. The resistance proceeding from this con-
traction will evidently be the same as if at the entrance
of the pipe were placed a plate pierced with an orifice
whose section should be to that of the pipe as m to 1,
m being the proper coefficient of contraction; its expres-
sion will therefore be

0251817 % (i —1);

a particular case of the general formula (200), in which
B=D.

The value of m can only be taken by approximation.
For a very short pipe, like cylindrical ajutages, it will
be .82 (41). But in pipes, properly so called, it will
nearly approximate to 1, and as much more as the pipe
is longer, and even, according to Prony, as the diameter
is greater; so that in large pipes, the effect of contrac-
tion is very small. It is rendered still less, by flaring
the pipe at the entrance, and by fitting the parts of less
diameter to those of greater diameter above them by
short conical pipes, gradually leading from one to the
other.

Finally, and as we have remarked (185), the effect
of contraction at the entrance of a simple conduit is
implicitly comprised in the values of the coefficients of
the fundamental equation; and its effect at the entrance
of a pipe which branches off from a larger conduit will
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be comprised in the determination of the head of such
branch ; so that in every case we may disregard it.

205. The coefficients of the formulse just given, particularly
that which concerns the principal resistance, that due to the
action of the sides, were determined by experiments made chiefly
on pipes of small diameter and quite short in length (185).
They were tubes well bored, well jointed and clean. Can such
formuls be applied without modification to conduits which are
not in the same condition, to such as serve for great distributions
of water? This question ought to be examined.

The pipes of which conduits are formed are almost always more
or less deformed in the process of moulding or of casting; their
section is not always circular, and consequently, all else being
equal, it is smaller than it ought to be. The interior surface is
covered with superfluous ridges and asperities, which retard the
motion. Where there are joints, the axis of the whole conduit is
not always an unbroken line ; the interior surface is not perfectly
cylindrical ; the edges of some of the pipes advance inward and
form projections ; the fluid lines which arrive at the projecting
parts are arrested, divided, and sometimes thrown back ; hence
disturbances in the motion, losses of motive force, and conse-
quently a diminution in the discharge. Even when the pipes are
of good calibre, and of an interior quite uniform and regular, at
every joint, at least, there will be a small annular void or break
in the continuity, which would produce, to a certain extent, the
effect of projections, and which, repeated at every step (so to
speak) on a conduit which has more than a thousand, cannot but
be attended with a sensible reduction in the discharge. M.
Gueymard, mining engineer, has with reason insisted on this
cause of reduction ; he sought to diminish its effect in the estab-
lishment of the fountains of Grenoble, and with success.

Moreover, when pipes are crooked in the vertical plane,
and almost all are so, if at the summit of the projecting parts
there are not vents, the air which the water always carries along
with it, and which is disengaged in greater or less quantity, will
rise to the more elevated parts; it collects and remains there,
and chokes up the passage : the bad effects have been observed.
The most limpid waters in appearance always carry foreign sub-
stances, and particularly extremely fine earthy particles, which
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are deposited in certain parts of the pipes; in process of
time, they narrow up the section and diminish the discharge.
Not to speak of calcareous and selenitic particles, which, though
dissolved in the water, are precipitated on the sides of the pipes,
and cover them with a stony crust, which, continually augment-
ing in thickness, will finally entirely obstruct them, if not
removed in time; that evil belongs only to some localities.
There are even ferruginous deposits made from point to point, in
the form of tubercles, in the pipes of Grenoble, and which, con-
tinually increasing in number and size, diminish the discharge,
until they have reduced it more than one half in less than eight
years ; the aérated water which runs in cast iron pipes, attacks
the substance of them, and forms an hydrate of iron, which is
deposited in long nipples, on lines parallel to the direction of the
current, and in a greater quantity on the lower part ; under these
nipples, the cast iron is, as it were, corroded to the depth of .08
to .12 inch. (See concerning these very remarkable phenomena,
which have attracted the attention of phllosophers, the Annales
des Mines, 1834, page 203, &o.)

Abstraction made of these local circumstances, and conse-
quently of general causes mentioned above, it has very often
happened in experiments made on conduits, supposed to be in
good condition, that the discharge has been found a quarter or a
third less than that indicated by the formuls ; scarcely ever has
it been equal to it. I have cited many of these experiments in
my Histoire de Iéstabli ¢ des fontaines & Toul

From these generally known facts, the hydraulic engineers of
Paris, when they make use of the formulse of discharge, dimin-
ish their numerical coefficient one third. I have adopted an
analogous method, by increasing one half the quantity of water
which a conduit about to be established must convey ; if, for ex-
ample, it be designed for ten cubic feet per second, I call it fif-
teen cubic feet per second, and make my calculations accordingly
in respect to diameters, &c. I advise engineers charged with
projecting or executing a plan for distributing water, to employ
the formule here given with such a latitude; they will in this
manner prevent the mistakes which they would often experience,
did they confine themselves to the results given by pipes made
with a precision which their own will never have.

206. In the great systems of distribution, and in all that re- Pouce d'cau.
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lates to public fountains, instead of expressing the discharges
and quantities of water to be conducted in decimal fractions of a
cubic metre per second, they are expressed in pouces d’eau
(water inches), a peculiar unit, independent of time, and more
suitable for such a purpose.

The old fountaineers, who introduced this unit and this de-
nomination, gave it, as we have seen (67), to the quantity of
water which runs from an orifice of one inch diameter, pierced in
the side of a basin against which the fluid is kept one line above
the summit of the orifice.

The exact determination of this quantity is necessary in a
great number of cases, and it is necessary to translate it into a
precise expression, which would lead to a verification in a case of
dispute. Mariotti first made an attempt for this purpose; his
estimation would correspond to 697.86 cub. ft. in twenty-four
hours. Afterwards, the water inch was estimated at 676.73 cub.
ft. Finally, of late years, in applying the metrical system of
weights and measures, it was raised to 20 cub. metres =706.33
cub. ft. Prony proposed to call it the ¢¢ double module ** of water.

Thus the pouce d’eau (water inch), as now established, and as
I bave exclusively employed it in the establishment of the foun-
tains of Toulouse, gives 706.33 cub. ft. in twenty-four hours, or
.008175 cub. ft. per second.

3. Pressure on the sides of Pipes.

After having treated of the circumstances of the
motion of water in pipes, let us now examine the
effects resulting from the pressure which the fluid exerts
against the sides of the pipes containing it; then we
will explain the most important consequences of this
examination.

207. Let a horizontal conduit AB be fitted to a res-
ervoir kept constantly full.

First shut the extremity B. Each of the points of
the conduit will experience a pressure measured by the
height or head AC; and if, on any of them, H, I, K,
&c., take at pleasure, be inserted vertical tubes, the
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water will rise until the weight of the columns HL,
IM, KN, is in equilibrium with the pressure exerted
on those points ; consequently, in each, it will rise to the
level of CD.

Open now the orifice B; suppose the sides of the
tubes oppose no resistance to the motion, a8 in the case
of a very short tube, and that there is no contraction
at the entrance A. The water will run in the pipe and
will pass out with a velocity due to the total head AC.
All the force of this head will therefore act parallel to
the axis of the pipe; there will result no action per-
pendicular to that direction, and consequently no pres-
sure on the sides; we shall then have the case of water
moving in canals where there is no pressure tending to
elevate the surface. The fluid of the tubes HL, IM,
will therefore descend to the upper part of the fluid in
the pipe.

208. If the orifice B be opened only in part, so that
it shall be less than the section of the pipe, the phe-
nomena will no longer be the same. The water will
always pass out with the velocity due to AC; but the
velocity in the pipe will be less, according to the inverse
ratio of the sections. Let v be that smaller velocity,
.0155366%? will be the force or part of the head AC
employed to produce it; still acting parallel to the
axis, it will exert no pressure on the sides. But the
remaining portion of the total force, or H—.01558667?,
by making AC=H, acting on all the particles, extend-
ing in all directions, will press the fluid upward in I,
K, &c.; and it will ascend in the vertical tubes to a
height equal to H—.0155366+*; which will be limit-
ed by the horizontal line EF, CE being equal to
.015536v*. Hence the great principle which Ber-
noulli established by calculation, which is confirmed by

29
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experiment, and which he made the base of his Hy-
draulico-statique ( Hydrodynamica, sectio XIL.); to
wit: The pressure which water in motion, in a pipe,
ezerts against any point of its sides, is equal to the
(effective) head on that point, minus the height due
- to the velocity in the pipe.

209. The resistance which the sides of pipes oppose
to motion, does not in any manner destroy this princi-
ple; it only diminishes H, or the head which would
have existed without the resistance on the point under
consideration. Let us enter into some details.

The resistance is proportional to the length of the
pipes (184); that is, to the length of the passage made
by the water; thus on the same pipe, it will increase
progressively from its origin A, where it is zero, to its

extremity B, where it is .0007089 v (§ 187). So

that if on BD we take FG equal to that expression as
representing the resistance at B, and draw the straight
line EG, the resistance at H, I, K, &c., will be repre-
sented by the lines ae, a’¢, a”¢’, &c. (since ae : a'e :
a’¢’:....FG::Ee:Ee¢ :Ee¢’ ....EF). Designate by
r,r,r".... R these resistances. At each of the points
just indicated, I for example, the column MI (measure
of the pressure in the state of rest) will fall 1st. Me¢’
(=.0155362%) ; for in this case, as in the preceding,
this portion of the motive force being directed along
the axis of the pipe, will exert no pressure on its
sides; 2d. a’¢ (=r"); this other part of the total force
having been absorbed, as it were annihilated, by the
resistance which the pipe opposed to the motion of
the fluid from A to I, can have no other action on this
last point; the pressure here will therefore be simply
measured by @’ I=H—+'—.015536»>. In general, the
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pressure on any point of a horizontal pipe, in which
r represents the resistance experienced from the origin
of the pipe, is expressed by H—r—.0155364°.

!

AtJthe extremity of the pipe, where the resistance is R, the
pressure GB=H —R — .0155360*. If this extremity were
entirely open, we should have (182) R=H—.015536v', and
consequently, GB=10; that is, the pressure at the extremity of
the pipe would be nothing, and the columns, measuring the
pressure at its different points, would have the line EB for their
upper limit.

210. We come at last to the case of an ordinary
inclined pipe. In the state of rest, the columns in-
dicating the pressure would rise to the horizontal
line CD, the level of the fluid in the reservoir;
this is the law of communicating tubes; these, and
consequently the pressures, will be unequal; each
will have for its measure the difference of level be-
tween the point where it is exerted and the surface of
the reservoir. In the state of motion, the columns
will undergo the same diminutions as in the preceding
number, and through the effect of the same causes;
their summit will only attain the line EG, which will
be the limit (they would be limited by EB, if the
pipe were entirely open); consequently, the pressure
on any point, of which H, is the distance below the
Yeservoir, will be expressed by H,—r-—.015536%".

The expression would be the same for a bent pipe
like AHTK'B. Only the summits of the columns
would no longer be on a straight line; the resistances,
being proportional to the lengths of the pipes, will
follow the ratios of AH', AI'; but not those of Ee,
E¢, a condition necessary in order that the points E,
a, ', be in a straight line.

\

Fig. 41.
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211. We have called kead on the pipe, and have
designated by H, the difference of level between the
surface of the fluid in the reservoir and the orifice of
efflux; it would be the height due to the velocity of
efflux, if the pipes opposed no resistance to the motion
(182). But the resistance diminishes this total head;
so that the effective head of the pipe, or the height,
in virtue of which the fluid really passes out, will be
less by the whole resistance which it will have experi-
enced, from the origin to the extremity of the pipes;
R being that resistance, the effective head will be
H—R.

By analogy, for every other point of the pipe, its
total head will be the height of the reservoir, H,,
above it; and its effective head will be that same
height, diminished by the resistance experiénced by the
fluid from the origin of the pipe to that point, or
Hy—r.

212. Since the pressure on this same point is H, —
r—.015536v?% .015536+* will be the difference be-
tween the pressure and the head. In general, the
height due to the velocity of the water, at any point of
a pipe, is the difference between the effective head,
or head properly so called, and the pressure on that
point. There will, therefore, be an error when one is
taken for the other; but in great pipes, where the
height due to the velocity is very small, the error is
almost always of no consequence.

213. The tubes which we have supposed to be placed
on the pipes, and which, by the height to which the
fluid rises in them, measure the pressure which takes
place on the parts to which they are applied, take the
name of piezometers (mizois, mizozos, pressure, and
ueTQWY, measure).
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They serve to give us a physical representation of what is
meant by resistance and loss of head.

Suppose one to be established at any point of a pipe, at H,
below the level of the reservoir. From what has just been said,
if the water were at rest in the pipe, it would rise in the tube
to the height H,; when the flow takes place, it will fall, and
will remain at the height Hy— r — A, A being the elevation due
the velocity v. The fall, or difference between the two heights,
will therefore be H,— (H,~—r — &) ; and desigpating it by «, we
have a=r--h, or r==a—h; that is to say, the resistance ezxpe-
rienced by the water from the origin of the pipe to one of its
points, will be represented by the difference of level between the sur-
Sace of the reservoir and the summit of the fluid column in a
piezometer applied to that point, (minus the height due to the
velocity in the pipe; a quantity always very small). If we
increase or diminish the volume of water which flows in a
pipe, and consequently its velocity, by enlarging or lessening
the orifice of eflux, the fluid of the piezometer will fall or
rise very nearly proportiona.lly to the square of that volume,
{the fall must bo Q (0006769 [+ 4 020187 .1.qr, 0000094},
and we shall be able to compare the results of theory with those
of experiment.

For a second point of the pipe, taken lower than the first,
for example, we should in like manner have v/ == a’ — A, since the
velocity and its height due A remain the same throughout the
pipe. Subtracting from this equation the first, r = a —#,
we have ¥ —r==o —a. Now, ¥ —r, the difference between
the two resistances, is evidently the resistance experienced be-
tween the first point and the second, and o — a, the difference
of the lowering in the piezometric columns below the reservoir,
will be the difference of level between the summits of the two
columns : thus the resistance which the water erperiences from one
point of a pipe to another, or the loss of head from the first to the
second, is equal to the difference of level between the summits of the
Sluid columns of two piezometers established on the two points. If
the diameter of the pipe on which the second piezometer is
placed be different from the first, then the height A’ due to its
velocity will not be equal to A, and we shall have ¥ —r =o' —
K — (e — h) = (¢’ — a) — (¥ — h) ; that is, the resistance from
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one point to another would be the difference of level between the
two piezometric summits, minus or plus the difference between
the two heights due to the respective velocities, according as
the velocity at the point lower down is greater or less than the
other.

We see by these examples how the piezometers place before
the eye the resistances of pipes and the variations which
occur in them ; and consequently, how these indications can be
rendered useful. Such an instrument, of glass, which I fitted up
on one of the pipes of the water-works of Toulouse, and which
rises in the Hotel de Ville, in front of the water engineer’s
office, indicates to him, at every instant, the state of his service,
and the perturbations which it suffers.

214. Upon the pressure which water running in pipes exerts
against their sides depends also the thickness to be given to
those sides.

Let H be the greatest pressure or head which a pipe will have
to sustain, D its diameter, ¢ the thickness sought, and f the
force capable of breaking the material of which it is composed ;
this will be the weight which, being suspended to a vertical bar
of the material of a square inch transverse section, would occa-
sion the rupture. The resistance which the pipe opposes, in the
unit of length, will be #f, or 2tf, if it be required to separate
entirely one part from the other, since 2t (=ad’ - b¥) is the
breadth of the part to be broken. Observe now the effort
exerted by the fluid to cause such a separation. Take a pipe
uniformly equal in length to the unit of length selected ; place it
horizontally ; imagine it divided into two halves by a horizontal
plane, that the Iower half is firmly fixed, and that the upper half
can only be separated from it by being driven vertically upward,
as would be done by the pressure of the water. Imagine the
interior surface of that half divided into a very great number of
longitudinal elements, of which the extremely small breadth will
be o ; each will experience from the fluid, in & direction perpen-
dicular to itself, a pressure or force equal to the weight of a
prism of water which would have 1 X o for its base and H for its
height, and which would consequently weigh woH (w being the
weight of the unit of water). This force, estimated in the
vertical direction, would be reduced to wo’H, ¢’ being the horizon-
tal projection of o; the sum of all these forces will then be wH,

— — e mn ot e e —
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maultiplied by the sum of the ¢/, and this is evidently equal to the
diameter ab or D : thus the total effort tending to separate the
two halves of the pipe will be wHD. In the case where it would
simply be in equilibrium with the resistance, we should have
wDH =2¢f, from which to deduce the value of ¢. For cast iron,
the material of which pipes are usually made, it is generally
admitted, that a bar drawn in the direction of its length is rup-
tured by a weight of 19919 1bs. avoirdupois per square inch ; thus
62.449HD
we have, per square foot, t=m=.0000109HD;
with such a thickness, the pipe would be on the point of burst-
ing. But it is necessary to keep far from such a minimum : the
custom is to give to materials employed in constructions such
dimensions at least that the effort which they will have to sus-
tain will cause no permanent alteration in them ; this effort is
estimated. for cast iron, at from two and a half to three and a
half times less than what would cause rupture : thus it would
be necessary to multiply the thickness already found by two and
a half or three and a half ; for greater security still, I multiply
it by 4.2, and have
t =.0000456HD.

It is not merely necessary that pipes be able to resist their
ordinary greatest pressure, but also extraordinary pressures, or
shocks of the water-ram (‘‘ coups de bélier”’), to which they are
exposed, when the mass of water which they conduct is suddenly
arrested, as by the too sudden cloging of a cock. Thus, although
the head on pipes rarely exceeds fifty or sixty feet, it is com-
monly supposed to be 328 ft.; and it is under such a pressure,
equivalent to that of nearly ten atmospheres, that pipes ought to

be tested : H then being 328 ft., we have #==.01496D.

" Such is the thickness to be given to cast iron pipes, if the
material be entirely compact and without defect, and if there are
means of casting it so thin. But this is not the case ; cast iron
is a porous substance, which permits the water to percolate
under great pressures ; it commonly contains flaws which consid-
erably diminish the thickness of the parts where they are found ;
when run too thin, it sets before entirely filling the mould ;
besides, rust attacks and corrodes the pipes, and at length may
reduce their thickness very much. So that there is a thickness
below which we should not descend, and a constant quantity
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ought to be added to 0.015D. Some add .01968 ft., others
.02624 ft.; I would avoid all objections, by taking into consider-
ation all the difficulties of the foundry, by raising the quantity
to .0328 ft., and definitely establish the formula

t=0.03289 - 0.015D.

However, there is no need of adding the second term to pipes
below .3937 ft. diameter ; they will all have .0328 ft. thickness.
That of the rest, expressed in feet, will be respectively for
pipes of

.3937, 4921, .6562, .8202, .9842, 1.3123, 1.640 ft. diameter,

.0351, .0393, .0426, .0459, .0492, .0525, .0590 ft. thickness.

Lead pipes offer less resistance than those of cast iron. M.
Jardine subjected to trial one of 0.166 ft. diameter and 0.0166 ft.
thick : it began to dilate under a head of 803.8 ft., and burst
under one of 1000.6 ft. This experiment, giving ¢=.0001244HD,
indicates a resistance which is not a ninth part of that presented
by cast iron. This less tenacity, and the more than double
price, has caused lead pipes, before generally employed, to be
given up, and the use of cast iron pipes has become almost exclu-
sive for all great establishments.

‘Wooden pipes resist a great pressure and they are not dear;
but they rot, they must often be changed, and they require pecu-
liar care.

As to pipes of potter’s clay, they can only be employed under
a small head ; it is difficult to lute the joints well, and they are
liable to break; consequently, their use is not to be recom-
mended.

ARTICLE SECOND.
Systems of Pipes.

It is very seldom that we have a simple pipe,
conveying to its extremity all the water which it
received at its origin; almost always, on different
points of its length, there are quantities of water taken
which are conveyed by secondary pipes; from them,
pipes of a third order branch off, &c.; so that, in
great distributions of water, such an assemblage or
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system of pipes presents, as it were, a trunk which
is ramified and sub-ramified in various manners.

215. To determine the circumstances of the motion
of water in the different parts of such a system, and
that by the simple knowledge of the dimensions and
the respective positions of these parts, is a complicated

Problem
to be
solved.

problem, of which no solution has yet been given; and

still, the determinations which the engineer has to
make refer almost always to an assemblage of pipes,
and not to a single isolated one.

To have a good idea of the bases on which I have
established the solution which I am about to submit,
and which is applicable at least to some questions, let
us imagine a system already existing, fitted to a reser-
voir kept constantly full, and delivering water through
mouth-pieces fixed at the extremity of each of its
branches; let it be required to determine, for example,
the quantity of water which passes through each
mouth-piece (though this is not my immediate object) ;
it is evident that we could immediately calculate that
quantity, if we knew the effective head at the extremity
of the branches, that head being the height due to the
velocity of efflux (211). Now, from what has been
said (211—213), the effective head is the entire head,
minus losses of head or resistances which the fluid
particles arriving at the mouth-piece in question have
experienced in their passage through the system from
. the reservoir to that mouth-piece. So that the pro-
blem is reduced to the determination of these various
losses of head.

216. These proceed, first, almost entirely from the
resistance which the sides of the pipes oppose to the
motion ; secondly, from the resistance due to bends;
thirdly, from change in the direction of the motion

N

The different
losses of head.
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when the water passes from the principal pipe into
a branch, and from a branch into a sub-branch ; fourth-
ly, from disturbances in the motion, occasioned by
diversions of water or érogations at the head of each
branch or sub-branch. As to the resistances proceed-
ing from obstructions, it is superfluous to mention
them; we ought not to admit a permanent obstruction
in a pipe; if there be one accidentally, we have
indicated the mode of calculating its effect (200). We
have seen that all resistance to the motion of the water
in a conduit is like an effort opposed to the motive
effort or entire head, destroying a part of it; it pro-
duces a loss of head; it is equivalent to a loss of head.

We have discussed in detail the first two of the four
losses which we have noticed, and we shall limit our-
selves to bearing in mind that they are given, for the
action of the sides, by the expression (186)

.0006769L (%’— + 5“—1];?“’);
for bends, by (197)
' .00608

Q’

Ds’.

It remains to examine the two other losses.

217. When a body which moves with a velocity v
in one direction, is constrained to take another making
with the first an angle 1, its velocity in the new direc-
tion is only v cos. i. So when a fluid, having the ve-
locity v in a pipe, passes into a branch, (abstraction made
of other forces which may act upon it,) it will have only
the velocity » cos. . The force or head due, which
was .015536¢” in the conduit, will be only .015586¢*
cos.? ¢; it will then have lost in height or head
.015686v* (1-—o08.2¢), or .015586%* sin.? ¢.
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Almost always the branches are fixed perpendicularly
upon the conduits, so as afterwards to be deviated by
bends more or less abrupt. In this case, i = 90°, sin.
i=1, and the loss of head, recollecting that v=

Q .
1.27324 i 18

025187

that is to say, the head or force proceeding from the
velocity which the water in the pipe has is entirely
lost; it has no component in the direction of the
branch; the fluid enters the branch only in virtue of
the pressure or piezometric height which is found in
the conduit, in front of the point where water is taken
out.

. 218. At this point, at the entrance of the branch,
there is still another loss of head. To measure its
magnitude, MM. Mallet and Génieys, hydraulic engi-
neers of Paris, placed a piezometer on a pipe of
9.8425 inches diameter, a little above the point where
a pipe of 3.189 inches branched off, and they estab-
lished a second on the 3.189 inch pipe, a short distance
from its origin. The column in the second was 4.7244
inches lower than in the first, when the discharge
through the pipe was .15862 cub. ft.; the velocity in
the pipe was 2.7789 ft., and the height due this veloc-
ity .11998 ft.; this last quantity being required over
and above the elevation of the first piezometer, to
tmpress the above-mentioned velocity, there remains
for the effect of the ‘‘érogation” only .2737 ft.; a
quantity 2.28 times greater than the height due, The
velocity in the branch being made 8.2907 ft., the dif-
ference between the two instruments was .502 ft.; the
height then due being .1688 ft., there remained for

Loss
due to éroga-
tion.
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érogation a quantity 1.94 times greater than that
height. It is concluded from these experiments, that
the loss of head occasioned by the érogation is equal to
about twice the height due to the velocity in the
branch.

Although the above results may have been influenced
by particular circumstances, the conclusion drawn from
them is admitted, until other observations shall have
introduced more light upon the matter.

All uncertainty in respect to the value of the loss of head due
to érogation, as well as those proceeding from bends and
changes of direction, are of but little consequence in practice,
these values being altogether minute compared to the other
quantities which enter into the equations, particularly when
compared to the loss resulting from the action of the sides, and
this was determined by the aid of more than fifty experiments
(185).

219. For some time, I feared that the érogations for the
branches might extend their effects to the conduit itself, below
the points where the érogations were made, and that the head
might suffer a considerable diminution. If it had been so, the
solution of the problem here given, and which was implicitly
given in my TYraité sur le mouvement de I’ eau dans les conduites,
published in 1827, would have been entirely defective. To
decide this important question, I made, in 1830, the following
experiments : — -

On a pipe of about 3.15 in. diameter and 2090 feet long, at
1414 feet from the origin, I placed a tube with a cock, through
which I made a greater or less quantity of water to pass; this
was the érogation. At 1.64 ft. above, as well as 2.30 ft. below,
was fitted up a large piezometer. The head at the origin of the
conduit remaining nearly the same (24.279 feet), and its extrem-
ity being entirely open, the volumes of water indicated in the
following table were allowed to pass; in the annexed columns
are noted the volumes passed at the extremity, as well as the
heights above the points of érogation at which the water stood
in each piezometer. As these heights correspond so nearly,
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it may be concluded that they
are the same above and below
At the At the

the éroga.tion. ) Thfs eqtfality of érogation. | extremity.| PBer. lower. \
pressure is maintained in many - '__ ‘

lwun PASSED IN 1”. | PIEZOMETER.

other experiments which I have r,Of)l(l}lb&)O .035.)8'363 6.3'34 6,r2t"67
executed with the same appa- |.0095002/.0526571|5.085'5.085
ratus. .0205247|.03605822.986,3.051
Thus the taking of water fro .04626471.0204483 .591‘ .558
hus the taking ol water from | 0437369| 0181527 .394| .328
a pipe does not sensibly di- ' ——————— e
minish the pressure, and consequently the head on the points
which are below the point where the opening is made ; and in a
system of pipes, there are no other losses of head except the
four which have been investigated.

220. Take now a branch or sub-branch of any order
n, discharging all its water into the air through an
ajutage fitted to its extremity.

Take d, = diameter of the ajutage at the orifice,
m, = its coefficient of contraction,

H,=the total head of the branch or the difference of
level between the orifice of its ajutage and the
surface of the reservoir,

D, =diameter of the branch,

. =its length,

Q,=quantity of water which it passes,

S} =the sum of the squares of the sines of the angles
of reflexion of the different curves,

[R]=the sum of the resistances or losses of head
experienced by the water which flows in the
branch, from the origin of the system to the
point of junction of the branch. If, in following
the course of the water which arrives at the
branch, we represent by r and 7/ the losses of
head due to the resistance of the sides and
curves on the principal pipe, but only up to
the point of the insertion of the first branch;

Equation
of motion in
branches.
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by r, r/, 7", ", the four losses of head on
this first branch and up to the second only; by
ry, vy, r3’, r;’”, the losses on this second up to
the third, and so on successively up to the n—1
branch, to which the branch n is fitted, we
shall have
[Rl=rr+rtr4n"+n"+. . ro o e n
This granted, since the sum of the losses of head,
subtracted from the total head, gives the head or height
due to the velocity of efflux (215), or since the entire
head is equal to the sum of the losses plus that height,
which is (193) .0251817 ?i,, the equation of motion
will be

H, = (R]+ 0251817 = = +-.0006769L (~t +M

2
- .00608 lQ)"-—: 514 .0503634 i)_:.+ .02518177%4—: .

When the branch is entirely open at its extremity,
there being no ajutage, mid=D}.

The above equation will enable us to determine,
directly or indirectly, either of the variables which it
includes, by a knowledge of the rest.

Expression 221. In its application, we very often have need of
lossorheaa  establishing explicitly the ratio between the loss of
from one b9t head and the quantities which are connected with it;
we shall recollect for this purpose, that the loss of head

between two points of a system of conduits is equal to

the sum of the resistances experienced by the fluid, in

its passage from the first of these points to the other.

* In the equation as I present it, I have followed strictly the laws and reasoning of
N the author, and feel justified in adhering to the results given by them.
TRANSLATOR.
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222. Let us apply the principles and the formulse just given
to the determination of the diameter of the pipes of a great sys-
tem of conduits. This application will enable us to examine
some cases not yet investigated, and to make some observations
of direot utility for practice.

About 260 water inches (‘¢ pouces d’ eau ’), or 183651 cub. ft.,
are to be distributed at different points of the city. These
points, as well as the quantity of water to be discharged at
each, are assigned by the government.

The engineer charged with the distribution will first determine
the level of the places indicated below the ordinary level of the
water in the feeding basin ; these differences of level will be the
total heads of the pipes and branches which must terminate at
these points. He will trace on a plan the pipes and branches ;
he will measure their length and also the angles and their bends;
and according to the observations made in Sec. 205, he will aug-
ment by the addition of one half the quantity of water appropri-
ated to each of them. These data of the problem to be solved,
for the portion of the system comprised in figure 43, are noted in
the following table: B, C and D are the knots or points of divi-
sion of the waters.

We have further, ai=623.371 ft.; ij=278.876 ft.; il=
1315.641 ft. ; op=364.180 ft.; and pg=>557.753 ft. . . . The
angles of the bends are at 7 130°, at k¥ 140°, at m 110°, at = 75°,
and at r 90°; the radius of curvature for all is 9.843 ft.

The descent cannot be made by a uniform loss of head from the
reservoir to each of the extreme points; and even could this be
done, it would scarcely ever be proper to do it; it will be for the
engineer to fix the proper loss from the reservoir to each of the
principal points of division of the waters to be distributed ; he
must do 80 in & manner to draw from these waters all the advan-
tages which they can afford, and with the least possible cost. If
in the first and consequently largest branches of the system, he
admits a very great loss, there might not remain in the branches
following head enough to convey the waters to their destination,
8o that in case of necessity a greater supply than ordinary may
be carried down : on the other hand, if the loss admitted be too
emall, the diameters of the first branches would be too large, and
would cost too much. For example, in the projected distribution,
or at one of the extreme points d, it is required to have a jet of

Example
of a great distri-
bution of
‘water.
Diameter
of
Plpes.

Fig. 43.
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water rising about 24.607 feet above the pavement, which in that
part of the city is 38.715 feet below the level of the reservoir,
and where, consequently, the loss of head from A to d could only
be 14.108 feet, it will be distributed as follows : 3.281 ft. from A
to B, the point of the principal division ; 6.234 from B to C,
another point of division ; there will consequently remain 4.593
ft. from C to d. From B to D, admit a loss of 7.218 ft.

These secondary data, added to those already had, either by
the disposition of the ground, or in consequence of a controlling
power, will suffice to determine the diameters.

POINTS OF DISCHARGE. PIPES.
WATER DISCHARGED. |
Designa-|Level below Water incs.| Cubic fi | Desigoa- S;‘;;“" |
tion. | reservolr. |( ’::: ”) 4 m:.':L | tlon. et eu:.m |
feet. ! feet. feet.
(B) AB |2483.641 1.45
a 26.575 4 04909 ' da [2103.056] .202
b 33.793 2 02472 b 836.629| .119
c 55.119 5 .06145 jc 853.034|.13379
©) 75 91964 ﬁC 1328.764| .8530
(38.714) .
d 14.108 63 77167 Cd |[2231.011| .7382
e 3B 35 | 42010|| Bo | 354.337].51156
N og | 921.933| .2467
S| ezl s | eusd | GUE Tres
| & |32153| 3 | .03673|] ¢¢ | 354.337| .1286
Il & | 31.168 2 02472 h | 160.764| .1004
(D) 67 .82146 §D 3979.731/ .7710
261 3.20003 ||

1) Begin with that of AB, the first of the principal pipes; it
is the trunk of the tree.

It receives at A all the water to be distributed, the volume of
which is supposed to be 3.1976 cub. ft. per second : at i and j
it leaves .1342 cub. ft. per second, and carries the remainder to
B. For rigorous accuracy, we should give each of the three
parts, Ai, ij and jB, an appropriate diameter ; but the difference
would be so small, that it is proper to make all the pipe of the
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same diameter, such as it should have if all the water taken at
A were conveyed to B. We shall then have
Q= . . . .« .« . 3.1996 cub. ft.;
L=the lengthAB— .+« . . 2483.641 feet;
D = the diameter sought ;
bearing in mind that the loss of head from A to B is 3.281 ft.
The pipe starts from a reservoir or gate-house (chateau d’eau) ;
it descends at first vertically, but soon takes a horizontal
direction ; it thus makes a curve of 90°, in which the water
suffers two reflexions of 22° 30’ each; and 2 X sin.? 22° 30/ =
2929 =51,

The resistance of the sides will be (216) 17, ]?)}—2‘:1 + 76;36 :
That of the curves will be _9_1%?% .

Equating these two remstsnoea with the loss of head, 3.281 ft.
(221), we have
(1_7‘2128 76_236 ) + 01823

=3.281,

from which we deduce D, by means of successive substitutions.
After several trials, it will be found that the value of D satisfying
this equation is 1.45 nearly.

I dwell for a moment on the principal pipes, and here point
out three arrangements which I made on the pipes of the
fountains of Toulouse, the good effoct of which an experience of
ten years had warranted ; they were taught to me by the first
principle of every great and good distribution of water: the in-
surance of the continuity of the discharge at all the principal points,
80 as, if possible, never to be interrupted.

Instead of a single pipe, or line of pipes, conveying a certain
volume of water, two have been established, side by side, each
conveying half the volume. Thus, in our example, instead of
the seventeen inch pipe, conveying 3.1996 cubic ft. per second,
we would have two, each with 1.5998 cub. ft., but always under
the condition of not losing more than 3.281 ft. of head ; their
diameter would then be about thirteen inches. Whilst one
might be undergoing repairs, the other could furnish the supply ;
it would, indeed, deliver less water, but not so much less as
might at first be believed ; thus, in one of my experiments, when
the volume of water delivered by two pipes side by side, starting
from the same reservoir and ending at the same box (oite), was

3
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4203 cub. ft. per second, it was found to be .4026 cub. ft. per
second when one of them was closed. The doubling of the pipes
increases indeed the cost of the first establishment ; it increased
the cost about thirty per cent. at Toulouse, where the three prin-
cipal conduits were doubled.

In order that double pipes may have all their advantage, it is
necessary, as in the case just mentioned, that their extremities
be fitted to a common reservoir. For this purpose, both of them
may end in a cast iron drum, or small distributing chamber, from
which the pipes for conveying the water may proceed. At the
principal point of distribution, at Toulouse, there was one of
3.281 ft. diameter and 1.969 ft. high; its convex surface had
seven tubes, to which as many pipes were fitted.

Finally, the principal pipes ought to be placed in subterranean
galleries. To inspect them then is very easy; every loss of
water is soon perceived and quickly remedied. As to sec-
ondary pipes, which are buried about 3} feet below the paving
of the streets, a loss in them is of less consequence ; when the
water fails at a fountain fed by one of them, temporary ‘recourse
is had to a fountain supplied by a neighboring pipe, which is
generally at only a short distance. But at the principal points
of the distribution, I repeat it, the water must never fail.

2) Let us return to the determination of the diameters, and
that of the branch ia. It must convey to /.07381 cub. ft. per
second, and then from ! to a only .04909 cub. ft. Here also, for
greater simplicity, as well as to gain the advantages of a large
diameter, we will determine this on the supposition of Q;=.07381;

The length iais . . . .« . . R103.056 ft.=L;

The diameter willbe . . . e D,,

The head or descent of the mouth of eﬂiux be-
low the reservoir is . . .« . . 26.575=H,;

That mouth is eqmvalent to a cylmdnca.l aju-
tage whose diameter should be . . . . . . .131235 ft.=d,;
its coefficient of contraction should be. . . . .82 =m,.

Take now the equation of the branch (220).

Its first member H, = 26.575 ft.

The first term of the second member will be the resistance
experienced by the water of the branch on the principal pipe
from A to i ouly, and consequently on a length of 623.371 ft.
For the resistance of the sides, we shall have
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1996) . 141724X3.1
0006769623, 37((31 45.’ + 7(2415'1(5). 996)=.73673

that of the curve ‘006‘”: f%—i’;lﬂ”—' % 2929 = .00412

74085

The second term, 0251817%, which indicates the height

due to the velocity in the pipe A4, a height or head entirely lost
for the branch, willbe . . . . . . 058321 ft.

The third term, or rather, the bmormal expressing the resist-
ance of the sides of the branch, will be

00067693¢2108.056 (T38LI" | .141724)(.73811).

— 0077558 .014891
D} D}
There will be no term relative to curves, since the branch is
straight.
For the next, giving the loss of head produced by érogation,
0503634 X .73811*  .00027438
we shall have .

D} T D
: 2
Finally, the last term, .0251817 ”—'Qi‘?if-’ representing the height
due to the velocity of effux, will be . . . . . . .88787ft.

So that the equation of the branch will become

26.575 = 74085058321+ ( 0077558+ 00012)‘7438+_(ll;.891

or

25, 08796—( 0077558+ 00027438 01489l)=0

D is obtained by the above method; 1t will be .202 ft.
3) We come now to the sub-branch, fitted to the above de-
scribed branch, at /, a distance of 1315.64 ft. from the origin.
Its lengthis . . . .. . . . 836.63ft. =L,
Its diameter we desxgnate by - .« Dy
The quantity of water it is to convey . 024721 cub ft.=Q,.
It is discharged through a conical nJutage ha.vmg a diameter at

its point of delivery of . . . .068899 ft. =d,.
Its coefficient of contraction wn]l be e e e o 090=m,
The extremity b is below the reservoir . . .33.793 ft. =H,.

There is a bend just after the point / of its junction, which we
will neglect.
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The first member of the equation of the sub-branch is 33.793 ft.
The first term of the second member ought to express all the
resistances experienced, both upon the principal pipe as far as 4,
and those upon the branch as far asl. The first are cqual (as we

have alreadyseen) to . . . . . . . . .74085
resistance of sides 15.6408 16.6111

On “‘;;b“‘i?“ érogation . . . .16553 b 158703

we have 1or (' change of direction .063977

The second term, the height due to the velocity in the branch,
is . . .082768 ft.
The thu-d term, or the res:st.ance of the sndes of the sub-branch,
.00034451  .0019796

is equal to . D i
The following, relating to the érogation, is —T-
2
Finally, for the last term, the height due to the velocity of
issue, we have . . . .. 83927 ft.

So that the equation of the sub-branch proper reductions being

made, is
16.960 — 00034451 00034451 , .00 0017996 oooosoa;s) —o.

‘Whence, by subatltutlon, we denve Dy=. . . . 0.119f.

These two examples which we have given will suffice to show
the manner of calculating in detail and with exactness the diam-
eter of every branch and sub-branch. In what follows, we shall
only dwell upon some circumstances peculiar to the case in hand,
and shall adopt abridged modes of calculation.

4) In the branch jkmnc, we devote our attention to the numer-
ous bends which it presents.

Here we have L=853.034 ft., Q=.06145 cub. ft., and H=
55.119ft. The branch is open at its extremity, so that the effact
of érogation is twice the height due the velocity of eflux, and the

loss of head arising from these two causes will be 3. 0251817%—:
The resistance experienced in the pipe from A to j is 1.2598 ft.,
and the equation becomes

0021804 , .0050287 , .00028549  .000023037s*
538592 P o T b T I

=0.
The last term expresses the resistance of the bends: but to
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\
have one of its factors, s* (197), we must know D, which is pre-
cisely the quantity sought. Neglecting the last term of the
equation, we obtain at first an approximate value, D ==.13379 ft.
With this diameter, and following the method given in Sec. 198,
we find that the bends present sixteen angles of reflexion, of
6° 41’ each, and consequently, that s*==0.2168. This number

gives for the last term of the equation - —ps 995 , & quantity

too small to influence the value of D; and this value may
remain . . e o . . 013379
With snch a dmmeter the res:stanee of the bends will be
.01557 ft. That of ¢ érogation,” comprising the height due to
the velocity of efflux, will be equal to .889 ft., and that of the
sides will be 52.953 ft. We see by this example how small the
action of bends is in itself, and compared to that of the sides;
and yet, we had here unusual bends, and a great velocity, as
high as 4.26 ft. Even when the radius of curvature, in place of
being 9.84 ft., had been only 1.64 ft., the resistance amounted
only to .574 ft.; even in this case, we might omit it without
sensible error. .

I have already observed (198), that the resistance may be
entirely neglected, by giving to the bends a great radius of cur-
vature. At Toulouse, I have made them as great as 12.53 ft.
Moreover, for pipes of a diameter in frequent use, that of .164 ft.
for example, I have had the pipes cast in pieces 3.28 ft. long, and
presenting an arc of 15°; at each bend is placed the number
proportioned to its magnitude ; six for a right angle.

5) The diameter of the pipe which extends from the chamber
B to the chamber C will be determined in & manner analogous to
that employed for AB : the sum of the reaistanoeqwill be equal to
6.23 ft., and we have D=, . e« « . 0.853ft.

6) We shall have, in adoptmg the same method for the pipe
Crd, where we admit a loss of head 4.59 ft., a diameter==0.738 f.

7) That of the pipe BD, with 7.22 ft. losa of head, will be =

. ..0.771 ft.

8) At e, qmte near to o,is a gmat founimn, allotted to dis-
charge through seven mouths 0.4291 cub. ft. of water, at 19.029
.ft. above the pavement, and consequently, 8.202 ft. below the
reservoir ; this will be the entire head at the points of delivery.
‘We must then deduct, 1st, the loss of head from A to B, which is
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3.2809 ft. ; 2d, the height due the velocity in AB, or .05832 ft. ;
3d, 2.69 ft., for the resistance of the seven lead pipes, which,
departing from the point o, conduct the water to the seven
mouths, and which are 39.37 ft. long, with a diameter of .1312
ft. Thus we can only reckon on a head of 2.172 ft. to convey
the .5509 cub. ft. of water, which should pass from B to o, a
length of 354.33 ft. Employing the second formula of Sec. 190,
we have for the diameter of Bo

* /35433 X (.5500)
D= 'ml/“—z“.m— )

9) The pipe is continued beyond o : it conducts .1229 cub. ft.
to p, a distance of 364.1799 ft.; and then .06145 cub. ft. to ¢, &
distance of 557.7530 ft. further. It is considered advisable to
give the same diameter to the pipe between the points ¢ and ¢,
throughout the distance of 921.933 ft.; for this purpose, we
suppose that it conveys such a quantity of water, that with this
quantity and the same diameter, the loss of head from o to ¢ will
remain the same as that which would have occurred with the above
quantities, and which has been already fixed at 9.8427 ft. Let x
be the mean quantity sought ; since the resistances, with an equal
diameter, are proportional to the lengths of the tube, and to the
squares of the volumes of water, we shall have

921.9332* == 364.1799 (.1229)* -~ 557.750 (.06145)*;
whence 2 = .090835 cub. ft.; and for the diameter we have

5
— o314} /21933 X (:090835) __ o4679 1.
D= 9.8427

==.51156 ft.

10) At the point p is a branch pf, 659.46 ft. in length, con-
veying .06145 cub. ft., and terminated by a conical ajutage, .0656
ft. in diameter ; we take .90 for its coefficient. From the entire
head, 28.8719 ft., we must deduct, 1st, the loss of head from A to
B, 3.2809 ft.; 2d, that from B to o, 2.16539 ft. ; 3d, that from o
to p, got by the usual calculation, 7.0211 ft.; 4th, that due to
the change of direction at p, .15748 ft.; 5th, finally, the height
due the velocity of issue, 6.3321 ft. The equation of motion, in
substituting then the resistance of the sides, expressed by a
single term (187), will be

09149 — (XD _ 0SB o,
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which gives, in substituting for L and Q their numerical values,
D = .1784 very nearly.

11) The branch gg has a conical ajutage .049213 ft. in diame-
ter. From the entire head of 32.1528 ft., subtracting the losses
of head from A to ¢ (3.2809 4-2.16539 -}~ 9.8427), there remains
16.8638 ft. for the head at commencement of branch, and the
formula of Sec. 194 will give

' 354.337 (.036729)"
D =230 (.o:;ém;* S 02513 =-12661 1.
16.8638— o) =

U0y (019213)

12) So for the branch gh, terminated by a thin plate, with an
orifice of .04593 ft., and whose head at the commencement is
31.16855 — (3.2809 |- 2.16539 - 9.8427) = 15.87956 ft., we have

160.76 (.02472)"
D=.%49V15 0351817 (02072 — 1004 &.
8795 — (0.62)7 (0.0459)"

In great distributions of water, the pipes are not usually cast
to the dimensions indicated by calculation. Thus, in the above
described project, I should only admit six calibres, to wit: 1.47,
.98, .82, 49, 26 and .16 ft. ; and I should refer to each of them
the nearest diameters given by calculation. I remark on this
subject, that we should never allow a calibre below that given by
calculation ; on the contrary, it would be better to adopt larger
dimensions. We must provide against earthy deposits, and
contractions ; moreover, we should be able to convey a larger
quantity than is required by the ordinary service, in case of fires.
Similar reasons forbid our going below a certain calibre ; at Tou-
louse, I never went below .164 ft., and I do not believe it well
ever to go below this limit.

As to the lengths to be given to pipes, they should be as
great as the founders can furnish them; 8.202 ft. if they can be
had, and 6.56 ft. at least, exclusive of jointage.

223. We have seen (205) that pipes seldom give the quantity
of water which they ought to furnish according to the formulse,
and which they would furnish, if they were established and
maintained in a perfect manner. We- have remarked that the
principal causes of this were, 1st, asperities or parts which
project into the interior, and breaks in the continuity at the

Practical
remarks.



248 MOTION OF WATER

Joints; 2d, air which ocollects and remains in the summits of
vertical flexures ; 3d, muddy deposits, which principally settle in
the lowest parts.

On the subject of the first of these causes, we cannot but re-
commend much severity in the reception of the pipes; those
should be rejected whose diameters are smaller even by a small
quantity than what was prescribed ; those which are deformed,
and those whose interior surfaces present superfluities, or are not
clear. All these conditions ought to be specified in the schedule
of clauses and conditions imposed upon the contractor. It is
also necessary to take much pains in laying the pipes after they
are received and approved ; to make the axis of the whole to form
exactly a straight line or a series of straight lines (curves excep-
ted), and that the interior sides be as closely united as possible,
so that the water will pass along on all its points without dis-
turbance. With more reason, all contractions, which proceed
either from the filling of the joints penetrating into the interior
of the pipes, or from the openings of the cocks having a less
section, must be avoided: as a first principle, there should be
no contractions in a pipe.

There should be furnished a vent for the air which is conveyed
to the higher portions, by placing at the culminating point a
pipe with a coupling, to which a leaden pipe rising higher than the
level which the water can attain, may be affixed, or a float-valve,
or a cock. The tube is the most sure vent, and should be espe-
cially employed where it can be fitted up without inconvenience
or without being exposed to damage, which is very rarely the case.
Float-valves are principally suitable for large galleries, where
they can be often visited. As to cocks, notwithstanding the sim-
plicity of the means, they require a great deal of attendance;
they must be frequently and regularly opened. The hydrants
(¢ bornes-fontaines’’) established on the culminating points of
streets of double slope, for the purpose of washing the two
declivities, very conveniently perform the office of vents.

At the lowest parts of pipes, in valleys or depressions, large
discharge cocks should be fitted, to be opened from time to time, to
clean out the pipes, by making as much water pass through them
as possible: the earth and mud deposited in the ordinary flow of
the current will be taken up and carried along by the water,
when animated with a greater velocity. The chambers for distri-

'
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bution, mentioned in Sec. 222, are very suitable for this cleansing ;
the fluid having there scarcely any velocity, naturally deposits
in them the substances which it brings along; at the bottom
of the lateral surface is a large tubular opening, closed up by a
plate retained in its place by bolts, which may be unscrewed
when it is desirable to wash out with much water. This method
is employed with much success for the pipes of Toulouse; the
mud and even sand, which the water deposits in great quantities,
notwithstanding its previous clarification, are entirely removed
from the tanks, and following along little scouring drains, are
delivered into the common sewers of the city.

The entrance of all the pipes starting from the reservoirs or
from the tanks, and that of the branches near the point of june-
tion, ought to be provided with stop-cocks, designed to shut off
or let on the water at will.

For pipes of more than four inches diameter, stop-cocks

(¢ robinets-vannes’’) are used, the opening of which is shut by
the aid of a conveniently arranged plate, raised or lowered by
means of a screw. For less than four inches, turning-cocks are
used.
‘We will not dwell on the form and construction of the differ-
ent cocks, vent holes, pipes, etc., upon their connection, on
the laying of pipes, nor, in general, on what pertains to the art of
the fountain-maker. For what concerns these subjects, which
would be out of place in a manual of hydraulics, the read-
er is referred to works treating specially upon them; among
others, to those of MM. Girard,* Mallet,t Génieys,} and Guey-
mard,) as well as the authors of the Histoire de I’ établissement des
Sfontaines de Toulouse.tt

* Description des ages A exécuter pour la distribution, dans Paris, des eaux
de 1’ Ourcq. 1808.

+ Bulletin universel des sciences, 5th section, 1826; et Notice sur le projet d'une
distribution générale d'eau dans Paris, avec des détails y relatifs, recuefllis en An-
gleterre. 1829.

$ Essal sur las moyens de condulre, d’ élever et de distribuer les eaux.

§ Sar la conduite des eaux dans tuyaux cylindriques. Annales des Mines, Tome
V. 1829,

1t Nouv. Mémoires de 1'Académie des Scl de Toulouse, Tome II. 1830.




Natural helght
of jets.

Real height.

250 MOTION OF WATER.

CHAPTER 1IV.
JETS D’EAU.

224. If on the upper part of a small chamber,
placed at the extremity of a pipe proceeding from a
reservoir kept constantly full of water, a hole be
pierced, a jet will pass out, which will rise, or rather
tend to rise, to the height which the water of a piezome-
ter placed on the chamber would attain during the flow.
This height, on account of the upward direction of the
motion in the tank, will be the effective head on the
orifice of efflux; and its value will be found by sub-
tracting from the entire head of the reservoir above the
orifice, the sum of the resistances experienced on the
whole length of the pipe.

225. The real height of the jet will be somewhat
less. Many causes contribute to diminish it. The
principal is the resistance of the air; its effect, it is
true, is insensible for heads below three feet; but above
that, it has an appreciable value, and greater in propor-
tion as the head augments, the resistance being propor-
tional to it. Besides, this resistance of the air pro-
duces in jets a separation of the fluid lines, which
considerably aocelerates the destruction of the ascend-
ing force. Among other causes of diminution in the
height, must be placed the obstacle which the upper part
of the spouting column opposes to the free ascension of
the lower part; this obstacle would be nothing, if the
fluid particles were entirely independent of each other,
since the velocity of all would decrease according to the
same law; but the adhesion which connects them, causes
them to exert an action on each other; the enlargement
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of the column in its upper part, which can only happen
in consequence of that action, proves the existence of it.
The falling down of the upper layers, after the extinc-
tion of their velocity, upon the lower layers, would con-
siderably diminish the elevation, if the enlargement just
spoken of, increasing very rapidly at the top of the col-
umn, in consequence of the law of its formation,* did
not impress upon the fluid particles an almost horizon-
tal impulse, which removes them, and causes them to
fall on the side; nevertheless, some fall back upon the
column, and hinder its attaining its natural height.
This can be shown by slightly inclining the orifice of
efflux; then the jet, receiving no shock from the parti-
cles which fall back, rises higher; thus Bossut, by
slightly inclining the apparatus which gave him a ver-
tical jet of 11.221 ft., had 11.885 ft. (nearly two in.
higher).

The effect of these combined causes can be determin-
ed only by experiment. Mariotte has investigated it.
(Traité du mouvement des eauz.) At the bottom

* This law is expressed by the equation y* = ,—;h"%‘, which be-

longs to an hyperbole of the fourth degree : A is here the effective
head on the orifice, d its diameter, m the corresponding coefficient

-of contraction, y the diameter of the column taken at the height
z above the orifice.

At the summit of the column, where r=4, the 