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CHAP. XVII

ON THE SOLAR THEORY.

Inequable Motions of the Sun in Right Ascension and Longi-
tude.—The Obliquity of the Ecliptic determined from Ob-
servations made near to the Solstices.—The Reduction of
Renith Distances near to the Solstices, to the Solstitial Zenith
Distance.—Formula of such Reduction.—Its Application.—
Investigation of the Form of the Solar Orbit.— Kepler's
Discoveries.—The Computation of the relative Values of the
Sun’s Distances and of the Angles described round the
Earth.—The Solar Orbit an Ellipse.—The Olyects of the
Elliptical Theory.

I~ giving a denomination to the preceding part of this Volume,
we have stated it to contain the Theories of the fixed Stars;
such theories are, indeed, its essential subjects; but they are
not exclusively so. In several parts we have been obliged to
encroach on, or to borrow. from, the Solur Theory ; and, in so
doing, have been obliged to establish certain points in that theory,
or to act as if they had been established.

To go no farther than the terms Right Ascension, Latitude, and
Longitude. The right ascension of a star is measured from the
JSirst point of Aries, which is the technical denomination of the
intersection -of the equator and ecliptic, the latter term de-
signating the plane of the Sun’s orbit: the latitude of a star is
its angular distance from the last mentioned plane; and the
longitude of a star is its distance from the first point of Aries
measured along the ecliptic:

The fact then is plain, that the theories of the fixed stars
have not been laid down independently of other theories : and it
is scarcely worth the while to consider whether or not, for the
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sake of a purer anangement, it would have been better to have
postponed certain parts of their theories till the theory of the

Sun’s orbit, and of his motion therein, should have been esta-
lished.

According to our present plan, indeed, (a plan almost always
adopted by Astronomical writers) we shall be obliged to go over
ground already trodden on. But we shall go over it more care-
fully and particularly. In those parts of the solar theory which
it was necessary to introduce, either for the convenient or the
perspicuous treating of the sidereal, we went little beyond ap-
proximate results and the description of general methods. For
iustance, in pages 137, 138, it is directed, and rightly, to find
the obliquity of the ecliptic from the greatest northern and
southern declinations of the Sun. But the practical method of
finding such extreme declinations was not there laid down; and
on that, as on other occasions, much detail, essentially necessary
indeed, but which would then have embarrassed the investigation,
was, for the time, suppressed.

Such detail is now to be given together with other methods,
that belong to the solar theory. But it may be right, pre-
viously to enumerate some of the results already arrived at.

In Chapter VI, which was on the Sun’s Motion and its Path,
it was shewn that the Sun possessed a peculiar motion tending,
in its general description, from the west towards the east,
almost always oblique to the equator, and inequable in its
quantity. These results followed, almost immediately, from
certain meridional observations made with the transit instrument
and mural circle. ‘

By such observations two motions or changes of the Sun’s
place are determined; oue in the direction of the meridian,
the other in a direction perpendicular to the meridian. The
oblique motion of the Sun, therefore, is, in strictness, merely .
an inference from the two former motions: or, if we suppose
the real to be an oblique motion, its two resolved parts will be
those which the transit instrument and mural circle discover to
us ; neither of which motions (see p. 126.) is an equable one.
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But although the two resolved motions are inequable, it does
not at once follow that the oblique or compounded motion must
be inequable. For, if it were equable, the resolved parts,
namely, the motion in right ascension, and the motion in decli-
nation, would be inequable. Some computation, therefore, is
necessary to settle this point, and a very slight one is sufficient.
Thus, by observations made in 1817,
Juy1, 0s R.... 640" 1°.7 .... Decl. 23° 8’ 44" N.
2, veetresssse B 44 9.7........ 23 4 85
Jan. 1, .00 0018 17 2.2........ 23 1 268,
2, ceesenes. 18 5127.0 ..,..... 2256 14
Compute the longitudes of the Sun by means of this formula,

1 X sin. ©’s long. = cos. ®’s dec. X cos. ©’s R,
and we have '

July1, ©’slong. .... 3° 9° 11’ 39"
2’ ‘.'...'.'...310 850

Jan. 1, veeeiieeees. 910 48 38
2, e o0 000000 00 911 49 48

The oblique daily motions then, instead of being equal, are
to one another as 3433 to 3670.

. Difference.
}. .. 0 87117,

}1 1 10.

Besides the results relating to the Sun’s path and metion,
there were obtained, in Chapter VI, other results, such as the
obliquity of the ecliptic, and the times of the Sun entering the
equator and arriving at the solstitial points. But the methods
by which the results were obtained require revision, or rather we-
should say, that these methods having answered their end, namely,
that of forwarding us in the investigation which we were then pur-
suing, may now be dismissed, and make way for real practical
methods.

We will turn our attention, in the first place, to the determi-
nation of the obliquity of the ecliptic.

If at an Observatory, the Sun arrived at the solstice exactly
when he was on the meridian, the observed declination would
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be the measure of the obliquity. But it is highly improbable
that such a case should happen : nor is it, indeed, on the grounds-
- of astronomical utility, much to be desired. A solitary obser-
vation, under the above-mentioned predicament, would not be
sufficient to establish satisfactorily so important an element as
that of the obliquity. It would be necessary to combine with
it other observations of the Sun’s declination, made on several
days before and after the day of the greatest declination, to
reduce, by computation, such less declinations to the greatest,
and then to take their mean to represent the value of the
obliquity. In such a procedure, it is clearly of little or no
consequence, whether the middle declination be itself exactly
the greatest, or whether, like the declinations on each side of .it,
it requires to be similarly reduced to the greatest.

The reduction of declinations to the greatest, which is the
solstitial declination, is an operation of the same nature, and
founded on the same principles, as the reduction of zenith
distances observed out’ of the meridian to the meridional zenith
distance : the formule of which latter reduction, together with
their demonstration, were given in pages 418, &c. - It is con-
venient, however, on the present occasion, to modify the result
of that demonstration, or to express it by a different formula :
which we will now proceed to do.

Let then,
" d(=8t) be the Sun’s declination, d’ (= XY the solstitial,

- X
§,

. 0(=8), ©'(=90° the corresponding longitudes,
w, the obliquity of the ecliptic,
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then, by Naper's Rules, we have

sin. d = sin. ©. sin. w,
sin.d’ = sin. @ . sin. w;
consequently,
sin. d — sin. d = sin. w (sin. 90° — sin. ©),
or (see Trigonometry, pp. 32, 42),
w—d - w+d

sin. ~ . CO8
2

=sin.w.sixi.’-g, ifu=90"— 0.
Letw(=d) =d + , then,

. @ P .

sin. ry cos. (w— '2-) = sin. w . sin.? g,
a

. o . . . .
and, sin. 2 {cos. w cos. - < sin. w sin. §} = sin. w. sin.?

o . O )
Substitute, instead of sin. 2’ cos. 2’ and 228’ and 1 — g
respectively, (suppressing for the present sin. 17, sin.3 1”, sin.* 17,
by which ¢, &%, &%, ought, respectively, to be multiplied), and we
shall have this approximate expression,

u
2
)

§_9® { 8“-l- i 3}~sinﬁsin’u
2~ ) 0% W —cos. w ot sin.wop = sin.w.sin o,
tan. w sin“-‘
3 y ) . . . 2
whence 5—4_8= = 3 ;

l— — + —~tan. w;,
8 2 ’

or, nearly,

10 19102
0105 -

. L u 3
-~ = tan. w.sin* =31 = ~ ¢ . - tan.?
2 2{ 2an,w-{v- 2t«an w}

+
D= Ol

L]
D02 0102

-

10> 1%

from which expression, approximate values of ~, of sufficient
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exactness may be obtained : for instance, to obtain a first
approximation, neglect the terms on the right hand side of the
equation, that involve J, and

(1st value) 2 = tan. w. sin.? ~

Again, retain the terms involving 8 and neglect those mvolvmg
8%, and

s .
(2nd value) * S = tan.w . sin.*

{l - tan. w.sin.? = . tan. w}

I o1
oI

= tan.w.sin.* ~ — tan.® w . sin.* -

Again, substitute this new value, and neglect those terms that

involve higher dimensions of sin. g than the 6th, and

LU . LU
~ = tan. w.sm.’é — tan.3 w.sin.* -

. gl 1 .
+ 2 tan.® w. sin.b 2 + A tan.sw.sm.sg .
© u 1 1 ub
But sin. & = % = —— o
Dutsm-5 =2 2.38+2345 32+&°

From this value find sin.? § , sin? -, &ec. and substitute

IR

in the preceding expression; and then
2

u 1
13=tan.w.z—2—4.tan.w(l-+vStan.’w)u‘

+7? .tan. w (1 + 30 tan.* w +45 tan.* w) u5,

which is sufficiently exact for all practical purposes, since u
rarely exceeds 10°. :

* This is the expression which Biot uses in his 4stronomie, pp. 31,
336. '

. ¥ This is the same expressmn as Delambrea, Tom, II. p. 244, but is
dxﬂ'erently obtgined.
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For the purpose of avoiding multiplicity of symbols, the
powers of sin. 1” (see p. 5. 1. 12, &c.) were omitted in the preced-
ing investigation. These, however, must be restored in order to
render the above expression for & fit for application. This is
easily effected : & being very small, § has been written instead
of sin. 8: whereas ¢ .sin. 1” should have been written; on the
right hand of the side, instead of u*, u*, u°, &c. u?.sin.* 1",
u'.sin.* 1”, u6.sin.%1”, &c. should have been written : sup-
plying then the omitted symbols, and dividing each side of the
equation by sin. 1”, we have

-

tan. w . tan. w .
8= 2 gin 1" — o (1 + 3 tan.® w) ut.sin3 1"
tan. w .
+ 720 (1 4+ 30 tan.*. w + 4-5. tan.* w) u5. sin.® 1”;

u is the difference betwen 90° (the longitude of the Sun at the
solstice), and the Sun’s longitude at the time of observation, If
the place of observation be Greenwich, u is known by the
Nautical Almanack, and from the value therein given, may easily
be computed for any other place of observation. Suppose, for
instance, . the Sun’s meridional distance either from the north
pole, or from the zenith to have been observed at Greenwich,
on June 18, 1812. By the Nautical Almanack,

O =2227°04"; ... u = 2°59 56" = 10796".

In this case the reduction to the selstice (3) will be expressed
with sufficient exactness by the first term. w, then, being taken
= 23° 27 54", we have

1 : '
= ; tan. 23° 27’ 54" . sin. 1”7 x (10706)* = ¢’ 2". 6 *.

* Computation.

Log. tan. 23° 27° 54" ...... = 9.6375760
arith, comp. of 2 .....uuuee = 9.6989699
log. sin. 1”7 ........eeeee veeer = 4,6855749

2log. 10796 . ....u0uvrerns.. = 8.0665258
2.0886466 = log. 122".64.
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If, therefore, the observed meridional zenith distance of the
Sun’s centre (after being corrected for refraction), were, on the
noon of June 18, equal to 28° 3’ 2".5 the reduced zemith
solstitial distance would be, nearly,

28° 8' 2".5 — ¢ 2".6, or 28° 0' 59".9.
This is an application of the formula to one instance : and
- like applications to other instances are easily made ; with greater
length of computation, indeed, if the Sun should be so far from
the solstice, as to render it necessary, by reason of the magni-
tude of u, to compute the second and third terms of the value
of 8. Now the obliquity of the ecliptic being an element of
great astronomical importance, the finding it by means of the
reduction is a frequent operation. It becomes worth the while,
then, to construct a Table from the preceding expression, and
for every ten minutes of the Sun’s distance from the solstice.
To obtain this latter end, instead of u write 10’ u = 600" u,
and '
S = tan. w

. sin. 1. (600)%. «*

tan. w

24
or, the value of the obliquity being assumed equal to 23° 27’ 54",

4=0".378812 u* — 0”.0000004181 u* 4 0"”.0000000000006217 u°.

From this expression a Table may be expeditiously con-
structed. The values of 8, most easily obtained, are those which
belong to u, when its values are, respectively, 1, 2, 3, 4, &c.
10, 20, 30, 100, &c. that is, since the value of the unit of
u is 10, when the distances from the solstice are 10/, 20/, 30/,
40', &c. 1°40, 3° 20/, 5°, &ec. 16° 40/, &c.

For instance,

. (1 4 3 tan.® w) sin2 1”. (600)* u* 4~ &e.

Distance | Values
from Solst. | of u. ~
0° 10’ 1 |[8=0"3788....c0e0ue.... 00 0".3788
20 2 [ 6=0.8788 X 4 eeeueu.n.. 0 0 1.515
30 3 |d=0.5788 X O ve.rvesee. O O 3.409
&e. v
1 40 | 10 | 8= 37".881 — .00418.... O 037.876
3 20| 20 |d= 151.524 — .0668.... O 231.457
16 40 | 100 | § = 3788 . 12 —41.814+.62171 226. 93
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This is a sample of a Table, to be constructed from the pre-
ceding expression. M. Delambre has given such a Table in
p. 269, of the second Volume of his Astronomy. In that Table
the expressed numerical values of & belong to an obliquity
= 23° 28,

o

Our values belong to an obliquity = 23° 27’ 54", and,
therefore, are somewhat smaller, as they need must be, than *
Delambre’s. But a very slight correction will reduce one set
of values to the other. And M. Delambre’s Table furnishes
the means of effecting this: since it contains, in a separate
column, a series of corrections due to a variation of 100” in the
obliquity, and corresponding to the several values of u.

In order to obtain the algebraical expression of the correction
just mentioned we must resume the original value of &, or,
which will be sufficient for the occasion, express it by its first
term : now, if

1 .

é = ~ tan. w.sin. 1", u?,
2

¢ W

d =~ .sin?1". sec?w.u’,
2

8w, expressing the corresponding variations of J and w.
If w = 100",

d = .000000001396 u?, the unit of u being 1”.
If, as in the former case, we make the unit of u equal to 10/,
8 = 000000001396 x (600)° u* = 0"'.000502812 *,

and from this expression the column of corrections,  to which we
alluded at 1. 11, may be computed.

We will now give an example of the computation of the
obliquity of the ecliptic, from observations of the Sun’s me-
ridional zenith distances observed during several’ days on each
side of the solstice. '
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1812, Refrac-|Zenith Distance by| Sun’s Semi- |Zenith Distance| Reduc- | Solstitial
June.| tion. Instrument. diameter. |of Sun’s Centre.| tion. | Zen. Dist.

4 ‘ " , ”“ o ”

7] o 1 (4 ‘ "
12 1 30.3 |28 1 58.9 15 47.2 |28 18 16.4 |17 15.5[28 1 O.
14 | 29.4 127 55 14.4 15 47.2 |28 11 31.0 (10 32.4(28 © 58.
18 | 29.6 (27 46 46.1 1546.8 (28 3 2.5 | 2 2.6(28 0 59.
19 |1 29.7 (28 17 13.4 15 46.8 (23 156.3 | 0 57.0{28 O 59.
20| 29.2 [27 45 0.2 15 46.8 |28 116.2 | 0 16.3[28 O 59.3

(=] afele)e)

23 [ 30.4 28 16 58.74 L| 15 46.6 (28 1 42.56| 0 42.7/28 0 59.

24 | 20.8 27 46 26.56 U} 15 46.6 (28 2 42.96| 1 41.1{28 1 1.

25 30.4 28 19 20.76 L| 15 46.6 (28 4 4.56]| 3 4.2/28 1 0.4
27 | 29.7 |27 51 58.76 U| 15 46.6 (28 8 5.06} 7 4.7/28 1 0.7
28 | 30.7 (28 25 56.76 L| 15 46.6 (28 10 40.86| 9 41.4{28 0 59.4]
29 | 30.1 |27 57 26.66 U} 15 46.6 (28 13 43.36(12 43.0/28 1 0.4
30 | 30.7 |28 32 24.76 L| 15 46.6 (28 17 8.86/16 8.9/28 1 O

The refractions in the second column are computed from the
heights of the barometer and thermometer, and the zenith
distances of the Sun’s limb, according to the Rules of Chapter X,
(see pp. 247, &c.) The zenith distances of the Sun’s centre
in the fifth column, are formed by adding the refractions to the
zenith distances of the observed limb, and by adding or sub-
tracting (according as the observed limb is an upper or lower
limb) the Sun’s semi-diameter. The reductions in the sixth
column are computed by the formule of p. 436 *, or may be
taken from a Table constructed from such formule: the
solstitial zenith distances of the Sun’s cemtre in the seventh

* In computing these reductions, the values of u are known by the
Nautical Almanack. Thus, we have from that book, »
@©’s long. June 12, being 2% 21° 16’ 22", u = 8° 43’ 38",
14 ... 2 23 10 59, ...... 649 1,
, 20 .o 2 28 54 32, ... 1 5 28;
therefore on the 12th u = 8° 43’ 38" = 52.3633, which being substitu-

ted in the value of 3 (see p. 436, 1. 21,)
3 = 17’ 15".46,

on the 20th » = 1° 5’ 28" = 6.54666, &c. and & = 16".23.
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‘column are formed by subtracting the numbers in the sixth from
those in the fifth column: the decimals being expressed by the
figures that most nearly represent their values *.

Th;a sum of the numbers in the last column, is
12 x 28° 12 1

-the 12th of which, in the nearest numbers, is
28° 1'0".1,

which represents the mean solstitial zenith of the Sun’s centre
deduced from twelve observations. But such zenith distance has
been corrected for refraction only. It is, therefore, for reasons
abundantly given in the preceding part, an apparent zenith
distance, and is affected with nutation, parallax, and another
inequality arising from the attraction of the planets, and ex-
plained in ‘Chapter X XII, of Physical Astronomy. With regard
to the first inequality, the nutation (the place of the Moon’s node
being 5° 2° 9) equals (see pp. 375, &c.) — 8".4, the parallax
also equals — 4", and their sum, accordingly, equals — 12".4.
The value of the third inequality, the Sun’s Latitude, as it is
called, caused by the Sun heing drawn from the plane of the
ecliptic by the action of the planets, is — 0".63.

So that we have (from 1. 7,)
Sun’s solstitial zenith distance .. « .. ... 28° 1/ 0".1
nutation and parallax ..o v.nveinn o —12.4

Sun’s mean solstitial zenith distance.. .. 28 0 47.7 °
if the co-latitude (SP)be..oeeess.. .. 38 31 21.5

Z.P-I-zO 000000000000’100000006632 9-2
therefore, solstitial declination . ....... 23 27 50.8
subtract Sun’s latitude . . ..o 0000 .63

_ mean obliquity of summer solstice. . . . . . 23 27 50.17

This is the determination of the obliquity from the summer
solstice, and is founded on a knowledge of the latitude of the

' For instance, decimals such as .86, .47, &c. would be represented
by .9, .5.
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place, which knowledge is founded on that of the ‘quantity
and law of refraction (see Chapter X.) Now, with regard to
this latter point, there is something that remains still to be deter-
mined by Astronomers. For, if we suppose the Sun, at the
winter solstice, equally distant from the equator as at the summer
solstice, the obliquity determined at the former season from
the expression,

z~P + z Ol_ 900:
ought té equal the obliquity determined, as it just has been, from
90° - {ZP+ 2 0};
if the theory of refractions were good, and the observations
accurately made. Now the fact is, as we have already stated
it at p. 138, the two values of the obliquity do not agree, when
the respective zenith distances of the Sun are corrected by that

formula of refraction which results from a comparison of the
observations of circumpolar stars, (see p.230.)

Let L be the latitude of the place, then, at the summer
solstice,
w=90° — {90° — L + 2}
=L -2,
at the winter solstice,
w=90°— L + 2’ — 90°
=2 — L. -

In the first case then, (supposing 2, 2', the solstitial zenith
distances to be correct)

dw = dL, in the second dw = -~ dL.

If we suppose then an error in the value of the latitude of
the place of observation, the obliquity, determined from the
summer solstitial distance, will be increased by 1it, and, if
determined from the winter, equally diminished. If, therefore,
we add the two values of the obliquity together, their half sum,
or mean, may, in a certain sense, be said to be free from the error
of latitude ; but the mean, thus determined, will not necessarily
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be the true value of the obliquity, since the zenith distances
(2, %) are corrected by the formula of refraction, and partake
of its uncertainties.

To illustrate the formula of the reduction to the solstice, and
the method of finding the obliquity of the ecliptic, an example
was taken of observations made at Greenwich with the mural
circle. Like observations made with a mural quadrant, would have
answered precisely the same end : and se, indeed, would ob-
servations made, as they are made (see pp. 417, &c.) at the
Observatory of Trinity College, Dublin, with Ramsden’s circle,
or by the repeating circle, according to the practice of the
French Astronomers. These latter observations, being made out
of the plane of the meridian, require, in order to be made to
bear on the point in question,” a previous reduction to the
meridian, founded, as we have already shewn, (see pp. 418, 432,)
on the same principle as the reduction to the solstice, and to
which the latter, as well as the observations made in the
meridian, are equally subject.

There is indeed a peculiarity, belonging to observations made
on the Sun with the repeating circle, and instruments so ysed,
which is this. In the interval between the observation and the
meridional transit of the Sun, the Sun changes his declination :
whereas, in the investigation of the formula of reduction to the
meridian, the declination of the observed body is supposed to
suffer no change. This change of condition, then, requires
some slight correction. Suppose the observations to be made
before the Sun has reached the solstice, then, in the interval (%),
between the ohservation and the ‘Sun’s meridional trausit, the
Sun’s morth polar distance is diminished. The Sun’s real
meridional zenith distance, then, is less than the reduced. Let
¢ be the change of declination answering to one minute of time,
then, if such change be uniform, the change in a time % equals
he. Consequently, if 2 be the zenith distance observed out of
the meridian, R the computed reduction (see p. 418, &c.) the
meridional zenith distance equals

2 —R—he,
if 2, R', K, &c. be other zenith distances corresponding re-

»
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~ductions and hour angles, the corresponding meridional zenith
distances will be '

R — R — Ke,
2~ R"— h//e,
&ec.

After the Sun has passed the meridian, the contrary effect,
with regard to the correction for the change of declination, will
take place. The reduced zenith distance will be less than the
real meridional zenith, because, after the passage of the meridian,
the Sun’s north polar distance (the Sun not having attained the
solstice) has decreased. If, therefore, 2, R, A, be the cor-
responding zenith distances, reduction and hour-angles, ‘the
corresponding meridional zenith distance will be

2, — R + he.

Hence, if n be the number of observations, the mean ‘me-
ridional zenith distance will be

1 {z'+' 2'+8&c. — (R4 R'+8c i 2, + 2, 48c. — (R, + R.‘+&c.>}

n —G' + B+ &) + B+ A, + &e)e,

and, consequently, the last correction of which we have been
treating, will be

l(W— E)e,
n

W being the sum of the hour-angles to the west of the meridian,
~and E of angles to the east, and e being the change of decli-
~ nation in one minute of time.

For instance, suppose the Sun’s zenith distances to have
" been observed on June 15, 1800, eleven times before it reached
the meridian, and seventeen times after it had passed, and
the sum of the hour-angles of the eleven observations to have
been 75™.6, of the seventeen, 187™ . 12. Now, by the Tables,
or the Nautical Almanack, it appears that e very nearly equals

- 0".1: consequently,
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since, W = 187™.12
E= 75.60

W—E=111.52 (W—=E)e= 11".15,

W-Ee 1115
and - =

= 0".3982.
n 28 98

In the preceding matter we have described the method,

such as is practised in Observatories, of finding the obliquity of .

the ecliptic. The parts of that method are founded, all save
one, on observation, or, rather we should say, on results that can
be deduced from observation. Such a result, for instance, is
the quantity of nutation. The excepted part of the process of
page 459, is the correction for the Sun’s latitude, which (see
Physical Astronomy, Chap. VI, and XXII.) is known from
Physical Astronomy.

But this is far from being a solitary instance of the aid of
this latter science. The solar theory is mainly founded on it:
at least it may be said that the solar Tables are indebted, for
their accuracy, to the computed results of planetary perturba-
tion.

Before, however, our attention is called to these results, there
are others of much less difficult enquiry, that must be considered.
The Sun, as we have seen (pp. 431, &c.) moves in some orbit, the
plane of which is inclined to that of the equator, and does not
move equably in that orbit. To find the laws of its inequable
motion, it would seem to he necessary, previously to investigate
its form, or the nature of its curvilinear path. And this, in fact,
" 18 the enquiry which, two hundred years ago, Kepler instituted, and
after mnany years.- of incessant study brought to an happy issue.
‘The orbit of the planet Mars was the object of his researches :
their result was the planet Mars moves in an ellipse round the Sun
placed in the focus of the ellipse. '

' If this result be extended to the other planets, of which the
Earth is one, then the Earth moves round the Sun in an ellipse,



A4

the Sun® being placed in its focus: or, to use the common
Astronomical language, the solar orbit is -elliptical *.

The elliptical form of a planet’s orbit was a truth not easily
arrived at. In endeavouring to reach it, Kepler had to strive
against, and to overcome, his own prejudices, which were also
those of the age. From some vague notions of simplicity the
antient Astronomers fancied that the motions of the heavenly
bodies must, of necessity, be performed in the most simple
curves, and that, for such a reason, a planet must move in a circle.
After Kepler had found, by his reasonings on observations, that
the orbit of Mars could not be a circle of which the Sun
occupied the centre, he did not altogether abandon his former
opinions, but tried whether the observations of the planet were
consistent with its movements in a circle, the Sun occupying
a point within the circle, but not in its centre. This conjecture,
like his former ones, proving fallacious, Kepler, at last, hit upon
the right one, or found the observed places of Mars consistent
with its description of an ellipse of certain dimensions.

This, like many other astronomical results, is now so familiar
to us, that we do not properly appreciate Kepler’s merit in
discovering it. If we view, however, the state of Science, and
Kepler’'s means and the inherent difficulty of the investigation,
we must consider it to have been a great discovery. And even
now, availing ourselves of all the facilities of modern science,
it is not easy, briefly to shew, from a comparison of the obser-

vations of the Sun, that the solar orbit is an ellipse.

The two kinds of observations, to be used for the above
purpose, are -those of distances and angles : the former to be
known, as far as their relative values are concermed, from
observations of the Sun’s diameter: the latter from the Sun’s
longitudes to be computed from the observed right ascensions
of the Sun-and the obliquity of the ecliptic.

* The Earth moves round the Sun, but an observer sees the Sun
to move, and to describe a curve similar to that which would be seen if
we imdgine the observer transferred to ‘the Sun,
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With these data we might -from a centre set off a series of
distances, Radii Vectores as they are called, and draw a curve
through their extremities, which, being of an oval form, might
be guessed to be an ellipse, and would, on trial, be verified
as such. This, in fact, was Kepler’s way, and modern mathe-
maticians have no other, except they ground their speculation
on Physical Astronomy, and shew, on mechanical principles, the
necessity of the description of an elliptical orbit.

It has just been said that the relative distances of the Sun
from the Earth may be known from the observed diameters
of the Sun: for, the Sun being supposed to remain unaltered,
the visual angle of his disk will be less, the greater his distance,
aud in that proportion. But there exists a better method of
determining the same thing, founded on a discovery of Kepler’s,
and which, in time, was antecedent to that of the elliptical form
of Mars’ orbit. The discovery was, that at the aphelion of the
orbit, the area comprehended within the arc described, and two
radii vectores, drawn from the extremities of the arc to the Sun,
was equal to a similar area at the Perihelion, supposing the two
arcs to be described in equal times. A like fact has since been
proved to be generally true: that is, areas comprehended, re-
spectively, within their arcs and two radii vectores, are equal,
provided the arcs are of such a magnitude as to be described in
equal times. Now this fact, or law, as it is now called, enables
us easily to compute the relative distances of the Sun from the
Earth. For by observing (see Chapter VII.) the transits of the
Sun and stars, the right ascension of the former may be determi-
ned; from which and the obliquity of the ecliptic the Sun’s
‘longitude may be computed. The difference of the Sun’s
longitudes on two successive noons is the angle described by the
Sun in twenty-four hours of apparent solar time, from which
(as we shall soon shew) the angle described in twenty-four hours
of mean solar time (which twenty-four hours represent an
invariable quantity) may be computed. Let v represent this
latter angle : then the small circular arc which, at the distance r,

measures the same angle, is 7v, and the corresponding small area
2

, or % . Suppose one of the values

3L

. r
will be, nearly, rv x 2
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of r to be 1, and A to be the corresponding value of v: then the

A , .
area = | X P and from Keplers Law of the equal description
of areas

o) A

2 T2

whence, r = \/A

and consequently, in order to compute r, we must be able to
determine 4 and v.

A is the angle corresponding to the mean distance 1, and,
therefore, in an ellipse of very small eccentricity (and such an
ellipse is the solar orbit) is nearly, the mean oi the greatest and
least angular velocities, or has for its measure half the sum of
the angles respectively described, in twenty-four hours, at the
perigean and apogean distances : which angles, as it has been
already explained, aie the daily increases of the Sun’s longitudes,
Now, by examining the longitudes, it will be found that their
greatest daily difference takes place at the end of December:
their least at the beginning of July : the value of the former is

1° 1 9".94
of the latter « . covoveceass 37 11.48
so that their meanis . .. o0t .59 10.7

and, if we take this latter angle to represent the value of A,

we have o
=/ (2 2y,

In order to determine v for any particular day, we must first
take the difference of the Sun’s longitudes on the noon of that
day, and on that of the day succeeding, and if (which will almost
ever be the case) the inteival between the two noons be greater or
less than twenty-four mean solar hours, we must, in computing
v, allow for such excess: for instance, let d represent the dif-
ference of two longitudes of the Sun on two successive noous,
and let 24 + r represent-the time elapsed, then, very nearly,
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d:v: 24+ a:24;
24d
=2 +z’
or, if we wish to eipress (and it is sometimes convenient so to
express it) the time in parts of sidereal time,
24".0657
Y067 2
and accordingly,

. \/(59' 1077 240657 + s
- s d 24.0657 /°

or, using mean solar time,
_ \/ (59’ 10”7 " 24 + z)
= d 24 ‘

It only remains to shew the method of exhibiting the nu-
merical values of 7: suppese, then, such values were required
on January 12, and April 1775. In order to find the values of
d and x on those days, we must have gecourse to recorded
observations. In those of Greenwich we find, on January 12,
the transits of the Sun’s first and second limb, and of the stars
a Ceti Rigel, 3 Tauri, @ Orionis, a Lyre : from which (see
pp. 102, 103, &c. Chap. VIL.) the riglt ascension of the Sun's
centre may be computed: if computed, it will be found to be

. 19" 36™ 2%.7936, or, in dégsees; ‘
9 24° o' 41".9.
If then we take the obliquity, as it is expressed in the

Nautical Almanack, to be equal to 23" 27’ 58”".5, we shall from
.this expression,

tan. @ .cos. w = tan. R,
(© being the Sun’s longitude and w the obliquity),.
find (@), the ldngitude équal to 9° 22° 18" 85",

Institute a like process for the next day, January 13, that
is, from the observed transits of the Sun and the fixed stars,
and the Catalogues and Tables belonging to the latter, deduce
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(see pp. 102, 103,) the clock’s error and rate, and then the Sun’s
right ascension : which right ascension, in the case we are
treating of, would be 9° 25° 5" 29".9 : from which the longitude
deduced as before (see p. 447,) will be
9* 23° 14’ 42",

the difference between which and the Sun’s longitude on the
12th (see p. 447, 1. 26,) is 1° 1’ 7", which accordingly is the value
of d. Again, since the difference of the Sun’s right ascensions
on the 15th and 12th

is 9 25° 5 20".0 — 9°24° 0’ 41”9,

or 1° 4’ 48", or in tyme, 4™ 19°.2;
consequently, the interval, in sidereal time, of the two transits on
the 12th and 13th is 24" 4™ 192 (= 24".072) and, accordingly,
(see p. 447, 1. 7,)

.= \/ (59 10".7 24.072 )
61 7" ]

24.0657
= .08418.

In like manner if we investigate the Sun's right ascensions
on April 28, and April 29, and thence compute his longitudes
and take their difference, it will be found to be equal to
58' 14”.34, whilst the interval between the transits, in sidereal
time, -is only 24" 3™ 47°.66 (= 24".06324), and therefore less
than a mean solar day. In this case then - o

, \/ ( 59' 10".7 24.06324)
58 14734 ~ 24.0657 7 *
= 1.00798.

We might thus compute the distance for every pair of suc-
cessive obsérvations made during the year. The value of r that
results from the computation should be made to belong to the
mean of the two successive longitudes from which it is com-
puted. Thus, the Sun’s longitudes being

on January 12, veessveo.. 9 22° 18’ 35”
onJanuary 18, cove.v.... 9 23 14 42
theirmeanis............ 9 22 44 8.5

. to which » = .98418 belongs; and if we apply this rule, and
computations like to the preceding, to certain of the Sun’s
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longitudes computed by M. Delambre from Maskelyne’s Ob-
servations (of 1775), and inserted by the former Astronomer iu
the Berlin Acts for 1785, (pp. 206, &c.) we shall have the
following results which may be arranged in a Table :

Times of Observation. | Longitudes of Sun. Distances from the Earth.

Jan. 12 to 18| O 22° 44'8".5 98418
Feb. 17 to 18 | 10 29 13 59.7 .98950
March 14 to 15 | 11 24 15 87.5 .99622
April 28t029 | 1 8 26 20.7 1 1.00798
May 151016 | 1 24 51 459 | = 1.01234
June 17 to 18 | 2 26 27 434 1.01654
July. 1t 8| 3 10 17 388.7 1.01658
August26 to 27 [ 5 3 27 46.6 1.01042
Sept. 22 t0 23 | 5 29 44 22.7 1.00283
Oct. 24t025| 7 2 24 24.2 .99303
Nov. 18t020 | 7 28 2 46.4 .98746
Dec. 171018 | 8 25 58 47.8 98415

" The above Table contains twelve longitudes and twelve
corresponding distances. Assume a centre C, and with a radius
= 1 describe a circle Bab. From a point B in this circle begin

b

to reckon the longitudes, and then, through the éxtremities of the
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arcs proportional to such longitudes draw radii and set them off
proportional to their values. Thus, if the angles BCA, BCM,
-BCI be proportional to

1* 8° 26’ 20", 1° 24° 51’ 46", 2* 26° 27' 49",

CA, CM, CI must be made proportional to 1.00798, 1.01234,
1.01654, and accordingly the points 4, M, I will fall a little
without the circle described with the radius CB.

If the remainder of the figure be formed in a like manner,
the points belonging to November, December, January, will fall
a little within the circle, so that a curve drawn through all the
points will be (very litle differing, however from a circle) an
oval, most drawn in about D, most going out near I: in other
words, in the oval representing the solar orbit, the apogean
distance will be near to I, the perigean near to D.

~ The distances (see the Table of p. 449,) for November 18,
December 17, January 12, bcing .98746, .98415, .Y8418, the
least or perigean distance is evidently between the first and third
dates. So, the apogean distance is between June 17, and
‘August 26. In order to discover whether the perigean distance
‘is between June 17, and July 2, or between July 2, and
*‘August 26, we must have recourse to the original observitions
which have already been used in forming the preceding Table;
and amongst these we find the following * : '

Sun’s Right Ascen. | Sun’s Longitude. | Diff. of R. A. | Diff. of Long.
June 30, | 6" 36™ 32°.6 |[9* s° 23’ 29”.3

m s ! all
Juy1, |6 40 40.5 |3 9 2035.5 * 79 | 0702

* This is not strictly correct. The right ascensions and longitudes
of the text are no¢ expressed in the Greenwich Observations, but are
deduced from them. We cannot do better, considering the object of this
Work, which is to teach the very methods of Astronomical Science, than
to subjoin the original observations, and the means of reducing them to
those forms under which they appear in the text.

. 1775.
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which are the Sun’s right ascensions and longitudes reduced,

according to the processes of the subjoined note, from the
original observations.

ws. | L | IL ‘ 111 Iv. V. Stars.
June 29, 0= 51° | 4b20m 2208 | o= 5405 Aldebaran.
32106 |6 32 43.9|38 17 O1L

June 30, 3128 |6 35 1.4|35 34.4 3L
36178|6 36 51 |37 2.7 O1L

July 1, 3835 (639 8.3(39 41.4 2L
165 048 |4 20 20 | 0 51.5| 283 | Aldebaran.
July2, |16 | 0468 (5 40 17.5| 0 48 19.1 | a Orionis.

If the intervals of the wires were all equal we could immediately take
the means of the times, as. is done in pages 86, 87, &c.: which means
would denote the transits of the stars and Sun by the clocks. But we
find from Dr. Maskelyne’s Introduction to these Observations (see p. iv,)
that in the year 1775, the equatoreal intervals (see p. 91, of this Work)
between the several wires of the Greenwich transit instrument were -

3040 | 30%.54 | 30%.36 | 30%.55 |
consequently, (see p. 90,) the intervals of a star, the north polar distance
of which iy A, would be the above intervals multiplied, respectively, into
cosec. A : and, if ¢ were the time at the middle wire, t—a, t — b, ¢ 4 ¢,
t4-d the times of an equatoreal star at the second, first, fourth, and fifth
wire, ¢, ¢ — a.cosec. A, ¢t — b.cosec. A, &c. would be the times of
a star distant from the pole by A : hence, the mean transit would be
t—}(@+ b— c— d)cosec. A = m (suppose)
consequently, ¢ =m 4 §{(a— d) + (b — c)}cosec. A;
or, the correction to- be applied to m the mean of the times, is
3 (@— d+b— c)cosec, A.
In
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. Hence, since 4™ 7*.9 = 0".06887, we have from the formula
of p. 447,

59' 10".7  24.06887 _
= \/(57' 672 * 24.0657 )= o

‘In the case before us @ = 30.40 4 30.54 = 60.94
d = 30.36 + 30.55 = 60.91

a—d= .03
b = 30.40
¢ = 30.36

b—c= .04

therefore.the correction, or § (¢ — d 4 b — c) = .014,

In the case of Aldebaran A = 74° nearly, and cosec.74 = 1.04
of Orion A = 82..cievienenicOsec. = 1,009
of @ atsolstice A = 6632.......... ..cosec. = 1.09,

and therefore the three corrections are 4- 01,0145, 0%.0141, 0*.0153,

Hence, the corrected transit of Aldebaran on June 30,is 4° 20’ 22".8
but (pp. 351, 372,) its AR by the Catalogue and Tablesis 4 23 1.74

clock too slow...... 0 2 38.94

Again, transit of Aldebaran by the clock on July 2, is 4° 20’ 19”.9
by the Catalogue ........... 4 23 1.82

clock too slow...... 0 24192

Again, transit of Orion by clock on July 2, is ......... 5h 40™ 175,53
by Catalogue .....cccevveunnnns .5 42 59.36

clock too slow......0 2 41.83

Hence, by a mean of Aldebaran and Orion, the clock was too slow on
July 2, at five hours, by ......... sentuernses cereereeanes ceesverensen 2m 41°.88
but on the June 30, it was t00 slow by ...cocecrvrrcrrencnneses 2 38.94

(see pp. 103, &c.) clock’s loss in two days 23h 20m .,.......... 0 2.94
and its daily rate was nearly .....,...... - 0.98

Having now ascertained the error and rate of the clock we can de-

termine the Sun’s transit or right ascension,
June 30,
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‘Hence, since the distances June 17, June 30, July ¢,
August 26, are
1.01654, 1.018, 1.01658, 1.01042,

it is plain that the Sun must arrive at his apogean distance
before July 2, and very nearly at that time. In like manner, if
we examine the observations and reduce them, we shall find
that the Sun’s increase of longitude between December 30, and
December 31, is 1° 1’ 15”.1 and the difference, in sidereal time,
between the two transits, is 24".07397, we have, therefore, (as ,
before, in pp. 447, &c.)

59’ 10”7 24.07897
= = .08309,
T \/(61’ 1571 * 24.0657 98309

which is, very nearly, the least or perigean distance.

If we take the means of the longitudes of June 30, and
July 1, and of December 30, and December 31, we shall have

June 30, transit of Sun’s centre by clock ......... 62 33™ 526

Error of clock ........... tesnrnnenseenene cerresiennnenn 0 2 40
Sun’s right ascension by observation ...........,... 6 36 32.6

Again, July 1, transit of Sun .....ovi-inieniienen..s 60 377 5055
Error of clock ......ccovvriieiiiniiniiniinenneeennns 0 2 40.99

Sun's right ascension by observation ............... 6 40 40.5 nearly,

which ‘right ascensions are those which are specified in page 450, at
the bottom line. '

In order to compute the longitudes, we have the above right ascensions,
and an obliquity = 23° 27’ 59”.5, from which, and by means of the
equation tan. L. cos. w=tan. right ascension, or by the formula or Table
of reduction to the ecliptic, the longitudes in the text (see p. 450,) may
be computed. ' : '

The above process may appear somewhat long ; but it is given, on the
grounds already assigned in p. 424, &ec. because it is the real and practical
Process by which original observations are reduced and made to become
tesults fit for the illustration or establishment of Astronomical Science.

S M
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Mean Longitude.  Distance from Earth.

;";‘e 130’} 3 8° 55 @4, 1.018
uly 1,

Dec.30, * Q° 14 113 0.08
e ke ia s, ).08309.

The difference of the longitudes is 6* 0° 19 8”.9, differing
from 6* by 19’ 8”.9, so that the two distances, which are, nearly,
the greatest and least, lie, very nearly, in the same straight line :
and consequently there arises a presumption, that the longitudes
of the apogean and perigean distances, if exactly found, would
exactly differ by 6°.

Now this is a property of an ellipse. Two lines drawn,
respectively, from the focus of an ellipse, to the extremities of
the axis major are the greatest and least of all lines that can be
drawn from the focus to the curve. The solar orbit then having
a general resemblance to an ellipse, and one of its properties, may
have all: and, on such a presumption, an ellipse would be as-
sumed and compared with the solar orbit.

The dimensions of the ellipse, so to be made trial of, would
be assigned by the preceding results. Its eccentricity, which is
half the difference of the greatest and least distances, would be
equal to 3 (1.018 — .98309), or .01745. The next step would
be to compute, from the properties of the ellipse, or by means of
analytical ®* expressions expounding those properties, the relative
values of the Radii Vectores as they are called, and the angles
included between those radii and a fixed line, the axis major,
for example. If the relations between these angles and radii
should be found to be the same, as the relations which have just
been made (see p. 449.), there would be established a proof of
the Earth’s orbit being an ellipse, the Sun occupying its focus.

Kepler’s investigations were directed not towards the Earth’s
but Mars’ orbit. His proof of that orbit being an ellipse rests,

*-The analytical expression between the angle (v) and the radius (r)
a.(1 —¢€)

is r= .
1 + cos. v
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in fact, on the same principle as the preceding: which is, the
agreement of the computed places in an assumed ellipse with
the places computed from observations. The process by which
Kepler established this proof is very long, and no process, even -
taking the most simple case, namely, that of the solar orbit, can be

very short.  Of which assertion, what has just preceded, is some
sort of proof.

The proof of the solar orbit being elliptical has been founded
on the equable description of areas: and, historically, - this latter
fact, or Law, as it is called, (only partially established, however,
by Kepler,) preceded the former. To the equable description of
areas, and the elliptical forms of planetary orbits, Kepler added
a third law, according to which the cubes of the greater axes
varied as the squares of the periodic times.

We must now consider the astronomical uses of these dis-
coveries. In the first place it is evident, that, since we know the
nature of the solar orbit, and one law regulating the motion in
that orbit, we have made some approach towards a knowledge
of the Sun’s real motion in: the ecliptic. If the latter motion
should be known, the Sun’s right ascension and declination would
thence be determinable by the Rules of Spherical Trigonometry.
The law of a body’s motion in an elliptical orbit is the first and
essential thing to be determined. Let the body begin to move
from one of the apsides of the ellipse, and let the time be
reckoned from the beginning of such motion, then, the problem
to be solved, is the assigning of the body’s place in the ellipse
after a certain elapsed time. ‘This, in fact, is Kéepler’s Problem,
_ asit has been called for distinction’s sake. And, by its solu-

tion, that great Astronomer, laid the first ground-work of Solar
Tables.

The enquiry, then, in the next Chapter, concerning the best
method of solving Kepler's problem, will be purely a mathe-
matical enquiry. A result being attained, the next step will be
to apply it. If we begin our reckonings for an apside, we must
know where the apsides of the Sun’s orbit (which, in other
words, are the apogee and perigee) are situated. That is,
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we must know the longitudes of those points. We indeed, by
what has preceded, already know them to a certain degree of
exactness, since in page 454, the longitude of the apogee
was found to be nearly 3° 8° 55’ 2”.4. After we have discussed
Kepler’s . problem, we will devise more exact methods for
determining the place of the apogee. The place of the
apogee being determined, there will arise a question coun-
cerning the permanency of that place in the Heavens. In the
preceding instance (see p. 447.) the longitude of the apogee
was found for the year 1775. Will it be the same for any other
epoch ? The obvious method of solving this question .will be to
find, for two different epochs, by the same process, the longi-
tudes of the apogee. The results will shew whether the apogee
be stationary, progressive, or regressive.

The place of the apogee being known for any given epoch,
and the law of its translation, the place may be determined for
any other epoch ; and thence, since Kepler’s problem determines
the body’s place in the ellipse, we shall be able to determine the
Sun’s place or longitude for any assigned epoch. This it is the
object of Solar Tables to effect. If their elements be correct,
they enable us to assign the Sun’s longitude for years that are to
come. But the elements of the Tables stand in need of frequent
revision : for, the dimensions of the solar ellipse, from the action
of the planets, are continually varying, and, which is a reason
of a different sort, our means of determining the dimensions
become, from the advancement of science and art, progressively
better. If, therefore, the construction of solar and planetary
Tables be our first object, their correction will be the second.



CHAP. XVIII.

On the Solution of Kepler’s Problem, by which a Body’s Place is
JSound in an Elliptical Orbit.— Definition of the Anomalies.

Lir APB be an ellipse, E the focus occupied by the Sun,
round which P the Earth or any other planet is supposed to
revolve. Let the time and planet’s motion be dated from the

apside or aphelion A. The condition given, is the time elapsed
from the planet’s quitting A ; the result sought is the place P ;
to be determined either by finding the value of the angle 4EP,
or by cutting off, from the whole ellipse, an area AEP bearing
the same proportion to the area of the ellipse which the given
time bears to the periodic time.

There are some technical terms used in this problem: which
we will now explain.

Let a circle AMB be described on 4B as its diameter, and .
suppose a point to describe this circle uniformly, and the whole
of it, in the same time, as the planet describes the ellipse in : let
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also ¢ denote the time elapsed during P’s motion from A to P:.
then if AM = t X 2 AMB, M will be the place of the
period

point that moves uniformly, whilst P is that of the planet’s ;
the angle 4CM is called the Mean Anomaly, and the angle 4EP
is called the True Anomaly.

Hence, since the time (¢) being given, the angle 4CM can
always be immediately found (see 1. 2.) we may vary the
enunciation of Kepler’s problem, and state its object to be, the
- finding of the true anomaly in terms of the mean.

Besides the mean and true anomalies, there is a third called
the Eccentric Anomaly, which is expounded by the angle DCA,
and which is always to be found (geometrically) by producing the
ordinate NP of the ellipse to the circumference of the circle.
This eccentric anomaly has been devised by mathematicians for
the purposes of expediting calculation. It holds a mean place
between the two other anomalies, and mathematically connects
them. There is one equation by which the mean anomaly is
expressed in terms of the eccentric: and another equation by
which the true anomaly is expressed in terms of the eccentric.

We will now deduce the two equations by which the eccentric
is expressed, respectively, in terms of the ¢rue and mean anoma-
lies.

Let ¢ = time of describing 4P,
- P = periodic time in the ellipse,
a = C4,
ae= EC, -
v= ¢ PEd,
u = £ DCA; (.. ET, perpendicular to DT, = EC x sin.u),

7 = 3.14159, &c
then, by Kepler’s law of the equable description of areas,

t=P x a_fea_@;‘_=.po L (DEC+ DC4A)
area of ellip. area @

* Vince’s Conics, p. 15. 4th Ed.
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. .DC\ P :
P(ETQDC+AD2 ) = 5= (EC .sia. u + DC )

e

='.vra2
) S . ! 1
=E(e sin. # + u): hence, if we put-é—w =;z’
we have
nt=e.8In. % 4+ Useoe..(a)

an equation connecting the mean anomaly % ¢, and the eccentric u.
In order to find the other equation, that subsists between the -
true and eccentric anomaly, we must investigate, and equate, two
values of the radius vector ps or EP.
First value of p, in terms of v the true anomaly ;
a.(1 —é)

—_— e (D
1— e.cos. v M

p —
Second, in terms of u the eccentric anomaly,

P = a(l + e-cos:u) n-to..oootoc(g).
For, p* = EN?*+ PN* _
= EN*+DN* x (1 — ¢€)
= (@e + a.cos.u)* + a*sin2u.(l — e
= a*{e’+ 2e.cos. u + cos.u} +a*.(1—e)sin.*u
=a*{14+ 2e.cos. u + € cos® u}.
Hence, extracting the square root,
p=a(l+ e.cos. u).
Equating the expressions (1), (2), we. have
(1—e)= (1 —e.cos.v).(l + e cos. u), whence,

e + cos. u . .
cos. v = ———————, an expression for v in terms of

1 + e.cos. u
u; but, in order to obtain a formula fitted to logarithmic compu-

. . v .
tation, we must find an expression for tan. E: now, (see' Trig.

p- 40.)

~ * Ibid. p. 23. Bridge, p. 93.



v 1 — cos. v (1 — e)(L — cos. w)
® tan. g \/(1 + cos. v \/ (1 + e)(1 + cos. u)
- \/(l—e )
1 + e

These two expressions (a) and (b), that 1s,

=e.sin. ¥ + u,

tan. -=\/(l_e) tan-

analytically resolve the problem, and, from such expressions, by
certain formulz belonging to the higher branches of analysis, may
v be expressed in the terms of a series involving nt *.

Instead, however, of this exact but operose and abstruse
method of solution, we shall now give an approxnmate method
of expressing the true anomaly in terms of the mean.

MO is drawn parallel to DC. (1.) Find the half difference
of the angles at the base of the triangle . ECM, from this ex-
pression,

tan. § (CEM — CME) = tan.  (CEM + CMB)x -,
(see Trig. p. 27.) in which, CEM + CME = ACM, the mean
anomaly. ‘

(2.) Find CEM byadding 5 (CEM+CME) and £ (CEM — CME)
and use this angle as an approximate value to the eccentric
anomaly DCA, from which, however, it really differs by 2 EMO.

* The following is the series for v in terms of n¢;

v=nt —
2e—1c’+ie5)'sin nt (5c’— .8 )sin. 2 nt
( 96¢) s nt+ 192
13 43 103 451 O\
12" . €8 -6 ) sin. 3nt-|-( — 280" ¢ .80, 4nt
_1 97 1223
960 in, 5 nt 4 —E—e‘sm 6 nt, in which the approximation is

carried to quantities of the order ¢°.
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(3.) Use this approximate value of ¢ DCA = ¢ ECT in
computing ET which equals the arc DM : for, since (see p. 458,)

t= PO x DEA, and (the body being supposed to revolve in the
circle ADM) = P x ACM; .".area AED = area ACM,
area ©

or, the area DEC + area ACD = area DCM + area ACD;
consequently, the area DEC = the area DCM,
and, expressing their values,

ET x DC _ DM x DC
2 - 2

Having then computed ET = DM, find the sine of the resulting
arc DM, which sine = OT': the difference of the arc and sine
(ET — OT) gives EO.

(4.) Use EO in computing the angle EMO, the real difference,
between the eccentric anomaly DCA, and the 2 MEC: add

and . ET = DM.

the computed 2« EMO to 2 MEC, in order to obtain ¢ DCA.
The result, however, is not the exact value of 2 DCA, since
¢ EMO has been computed only approximately ; that is, by a
process which commenced by assuming £ MEC, for the value
of the 2z DCA. : : :

For the purpose of finding the eccentric anomaly, this is the
entire description of the process; which, if greater accuracy be
3N ‘
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required, must be repeated ; that is, from the last found value of
¢ DCA= ¢ ECT,ET,EO,and 2 EMOmustbeagaincomputed.’

(5) A sufficiently correct value of the eccentric anomaly (u)
being found, investigate the true (v), from the formula (b)
of p. 460, that is, :

tan 2 —’\/(l —e) tan‘u
'2— l+e . .2‘

ExamprE 1.

The Eccentricity of the Earth’s Orbit being .01691, and the Mean
Anomaly = 30°, it is required to find the Eccentric and the
true Anomalies, .

(l.) log. tan. 15 S0 00 e s0 e 9-.4280525

log. (1 —e), oﬁg. .98309... _1_.9925933

arith. comp. 1 + ¢, orof 1.01691 1.9927218

log. tan. L (CEM — CME) .. 9.4133676 =log. tan. 14’ 31' 22",
(2.)%(CEM — CME) = 14° 31’ 22"
2(CEM +CME)=15 0 O
CEM = 29 31 22. 1" approx’.value of CDA. -

(8.) log. sin. 20° 31' 22" . . .. 9.6926438
log. 01691 coevseees. 2.2281436
+ log. (arc =rad’.) + ... . 5.3144251

log. DM in seconds . ... 3.2352125 = log. 1718.7.

DM = 28’ 38".7, and its sine expressed in seconds differs from
the arc DM by less than half a second.

(4.) The operation prescribed in this number(see p. 461, 1. 19, &c.)
is, in this case, needless, since the correction for the angle EMC
is_so small, that the first approximate value of the eccentric
anomaly may be stated at 29° 31’ 22",

(5.) log. tan. Z- ,orlog. tan. 14°45' 41" ... ....... 9.4207651

Llog. (1 — e), or § log. 98309 .. ..ceeto.. . 49962966
Flog.(1 + o), on'-% log. 1.01691 « veee e eee. . 4.9963608

v .
log.taq.é........ Cee 00 s e ee e 0 00 --00'9.4134225
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= log. tan. 14° 31’ 28";
.". the true anomaly = 29° 2’ 56".
The difference of the mean and true anomalies, or, as it is

called, the Equation of the Centre, equals 57" 4".

1f the eccentricity had been assumed = .016813, or .016791,
the equation of the centre would have resulted = 56’ 46".4, or
= 56' 41”.4, respectively.

Examrre 1L

Instead of .01691, suppose the Eccentricity of the Earth’s Orbit be
taken at .016803°, and the Mean Anomaly, reckoning from
Perigee, according to the Plan in the new Solar Tables, be
10° 12° 22' 12".4.

Taking out 6 signs, we have the mean angular distance from
apogee = 4° 12° 22’ 12".4. '
(1.) log. tan. 66° 11’ 6”.2 10.3552029

log. .983197 .. . ..% 1.9926406

arith. comp. .1016803 1.9927645

10.8406080 = log. tan. 65° 27’ 56" .4.

@)L (CEM~ CME) 65°27 56".4
I(CEM+CME) 66 11 6.2

181 39 2.6 approx®. value of CDA4 (u)
(3. log. tan. g, or log. tan. 65° 49’ 31".3 ...... 10,3478640

Llog. 983197 ciiiiiinn. ceeeesee . 49063208
L arith. comp. 1.06803 « ... cevveues. oo 4.9963816

v
Iog.tan-'é ® 0 s s 0 00 o0 e 000 ORI s s OB I 10.3405659;

= 65° 27’ 49".2, and v = 4* 10° 55' 38".4;

w1 e

*In 1750, the eccentricity was 0.016814, and, the secular variation
being .000045572, in 1800, it was 0.016791, and in 1810, (for which
epoch Delambre’s Tables are constructed) .0167866.
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.". the true anomaly, reckoning from perigee, = 10* 10° 55’ 38".4,
and difference of the mean and true anomaly = 1° 26’ 34",

This difference, or Equation of the Centre, is stated, for 1800,
in Lalande’s Tables, Vol. L. Astron. ed. 3. p. 23, at 1° 26’ 38”.6;
but, in the new Tables, Vince, Vol. I11. p. 38, at 11* 28° 32’ 44”.4.
Now the difference of this, and of 12 signs, is 1° 27’ 15”".6,
which is still greater than Lalande’s result by 45”. But, it is
purposely made greater; for these 45" are the sum . of the
maxima of several very small equanons. (See the explanation in
Delambre’s Introduction, and in Vince’s, p. 6.)

In the two preceding Examples, it appears that, by reason of
the small ‘eccentricity of the Earth’s orbit, the true anomaly and
equation of the centre are found by an easy and short process ;
no second approximation being found necessary. It appears
also, by the results, that a small change in the eccentricity makes
a variation of several seconds in the equation of the centre. Thus,
arranging the results in the preceding Examples :

Mean Anomaly. , Eccentricity. Equation of Centre.
30° o' 0" .016910 0° 57 4
80 0O .016813 0 56 46.4
80 0 O 016791 : 0 56 41.4

Now, by observation and theory, it appears, that the eccen-
tricity of the Earth’s orbit is diminishing. Hence, Tables of the
equation of the Earth’s orbit, computed for one epoch, will not
immediately suit another: but, they may be made to suit, by
appropriating a column to the secular variation of the equation of
the centre. Thus, in Lalande’s Tables, tom. I. ed. 3. p. 18,
the equation of the centre is stated to be 56’ 41”.2, and in a
column by the side, the corresponding secular diminution to be
9".36. Now Lalande’s Tables were computed for 1800* : (when
the eccentricity of the Earth’s orbit was .016791) consequently,
for the preceding epochs of 1750, 1500, the equations of the

* Delambre states, that' Lalande’s Tables answer better to the
epoch of 1809, or 1810, than to 1800. See Introduction to his mew
Tables.
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centre would be 56’ 41".2 + 4”.68, and 56' 41”.2 4 23".44, that
is, 56' 45”.9, and 57’ 4".6 respectively. These are nearly the
results previously obtained in p.463, which they ought to be,
since, the secular diminution of the eccentricity being .000045572,
the eccentricities corresponding to 1750 and 1560 will be, nearly,
.016813 and .016910.

By this mode we may also reconcile the two results in Ex-
ample 2, in p. 463 ; for, the equation of the orbit in Lalande’s
Tables is 1° 26’ 30", (that is, for an eccentricity, .016791) there-
fore, for 1760, when the eccentricity was .016803, the equation
will be, the secular diminution being 13".9, equal to

1° 26’ 30". 6 + 3".4, thatis, 1° 26’ 34",

Exawmere IIL
The Eccentricity of the Orbit (that of Pallas) being 0.259, the
Mean Anomaly = 45°: it is required to find the Eccentric and
true Anomalies.
(1) log. tan. 22° 30, . . ... 9.6172243
log. tan.741 .. ... ... 1.8608182
arith. comp. 1.259. . .. 9.8999743
log. tan. L (CEM — CME) 9.3870168 = log. tan. 13° 42’ 3".3.
@)L(CEM - CME)=13°42' 3".3 '
3(CEM+CME)=22 30 0
.. CEM =36 12 3 .3=1stapprox®.valueof z CDA,
and CME = 8 47 56.7
(8.) log. sin. 36° 12/ 8".3 ... ..... 9.7713071
108 259 e auen vuneennan. 1.4132998
log. (arc = radius)s e 0 0o seo.. 5.3144251 .
log. DM in seconds . . « .4+ .. 4.4900320 = log. 31552.4 ;
. DM = 3155¢".4 =8° 45' 52" 4;
codog. sinieeeeeest ovne... . 9.1820067
log. (arc = rad.) «.oe.vvon ., 53144251 .
4.4973318 = log. 81429 ;
.. since DM = 31552.4
and sin. DM = 31429

EO = 123.4

’
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(4 (@)10g. 50 « e v vt v aianane e aiaens 1.4132908
log sln 45% e ieeonr st s 0ncsesan s tesene 98494850
9.2627848
log. sm.8°47 5677 teevenenceenie s o0 9.1845968
.0781880
5.3144251
5.3926131

log.r c...cooo.occ.o..............;. 10

logo 128.400.0000l0000'0,.'00'.0..6-0 LN 2.@13152

12.0013152
(a) log. (arc = radius) + log. EM ... ...... 5.3926131

log- Sin..EMO e e 0080 s 00t s e O 6-6987021
-« EMO = 1" 48".1.
Hence, since CDA = 36° 12’ 3".8
and EMO = 0 1 43.1
corrected value of CDA = 36" 13 46.4, the eccentric anomaly.

log. tan. 18° 6’ 53".2 ... . 9.5147282

-%log. T4leeeenee e . 49340001
7 arith, comp. 1.259 .... 4.9499871

log. tan.-;3 cereeeeiee o 9.3096244 = log. tan. 14° 5’ 19”;

.. the true anomaly is 28° 10’ 38".

The eccentric and true anomalies being determined, the
radius vector p may be computed from either of the two ex-
pressions, (1) (2) p. 459, but most conveniently from the latter.

Examrere IV.

Requzred the Earth’s Distance from the Sun, the Mean Anomal_y
(reckoning from Aphelion) being 4° 12° 22' 12".4, and the
Eccentricity = .016803. See Ex. 2. p. 463.

p=1+e.cos. u, if a = 1,
and u = 131° 39’ 2".6.
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log. cos. 181° 89" 2°.6 ... ..iiiiiie.iiial. 0.8225503
10g0.016803-.cc,o..--oo...ooo.co.--ocq- 202253868

Assume then, e . cos. z =cos. 0, or, log. cos. = log. e+log.cos.u;
thence 6 is known : and, lastly,

log. p = log. (1+4e¢.cos. u) — 10 = log. (1 4~ cos. ) —
= log 2. cos.’g — 20
0 0
= log. 242 log. cos. = — 20=2 log. cos. ~ — 19.6989700.
g g: cos. o g. cos. o

" The sole object of this latter method, is compendium of
calculation,

* The Naﬁt.ical Almanack expresses the logarithm of the Sun’s
distance for every 6th day of the year.
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By means of the preceding rule, (see pp. 460, 461,) the true
anomaly (as in the Examples) may always be computed from the
mean, which is’ known, by a single proportion from the time.
The difference of the true and mean anomalies, is the equation of
the centre, or the equation of the orbit. And, the Solar Tables
assign to the mean anomaly, as the argument, this latter quantity,
instead of the true anomaly. It serves then as a correction or
equation to the mean anomaly, by means of which the inequality
between the mean and true places of a planet, at any assigned
time, may be compensated. It is additive or subtractive, ac-
cording as the mean is less or greater than the true anomaly :
subtractive, therefore, whilst the body P moves, from A the
aphelion to B the perihelion, or, through the first 6 signs of mean
anomaly, (reckoning anomaly from the aphelion) and additive,
whilst P moves, from B to A, or, through the last 6 signs of
mean anomaly.

These circumstances, Lalande’s Tables (ed. 3.) used to ex-
press, in the common way, by the algebraical signs — and +-.
But the new Solar Tables, (see Delambre’s Tables, and Vince’s
Astronomy, Vol. III.) adapted to the operation of addition only,
when the mean anomaly exceeds the true, express not the equation
of the centre, but its supplement to 12 signs (360°). The
12 signs, therefore, must be subsequently struck out of the
result. This is not the sole difference in the construction of the
Tables. In Delambre’s last*, the mean anomaly is reckoned
from the perihelion, and the equations of the centre are increased
by 45", the sum of several small inequalities: an arrangement
made for the same purpose as the former, 1. 20 ; that of avoiding
the operation of subtraction.

The greatest equation of the centre, it is plain, can mean nothing
else than the greatest difference between the true and mean ano-
malies ; which must happen when the body P moves with its
mean angular velocity. For, if we conceive a body to move
uniformly in a circle round E as a centre, with an angular velo-
city, the mean between the least of P at 4, and its greatest at B,

* Both Tables were constructed by Delambre.
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and such, that departing with P from 4B the line of the apsides,
it shall, in the same time, again arrive at it, together with P
then, it is plain, at the commencement of the motion, the first
day, for instance, P moving with its least angular velocity,
describes round E a less angle than the fictitious body does : the
next day, a greater angle than on the first, but still less than the:
angle described by the fictitious body : similarly for the third,
fourth day, &ec. : so that, at the end of any assigned time, the two
angular distances of the two bodies from the aphelion, will differ
by the accumulation of the daily excesses, of the angular velocity
of the fictitious body, above that of the body P. And this accu-
mulation must continue, until P, (always moving, till it reaches B,
with an jucreasing angular velocity), attain its mean angular
velocity, or, that velocity with which the body moves in the circle ;
then, this latter body can, in its daily rate, no longer gain on
P; and, past this term, it must lose : exactly at that term, then,
the difference of its angular distance from 4, or from the line of
the apsides, must be the greatest. '

The difference of the mean and true anomalies is teéchnically
called the Equation of the Centre. If we date the planet’s motion
from the uphelion, then, at the beginning of that motion, the planet
moves with its least angular velocity, and consequently the
imaginary point, or body that describes the circle with a mean
uniform velocity, precedes the planet. The true anomaly then is
less than the mean, and consequently the frue anomaly is equal
to the mean minus the equation of the centre. If the planet’s
~ motion had been dated from the perihelion (as it is now the
custom in the construction of Tables), then, in a similar position
of P, we should have had the true anomaly equal to the mean
plus the equation of the centre.

In order to determine this term, or the point in the ellipse,
at which the body is moving with the mean velocity, cenceive
a circle to be described round E as a centre, and to cut the
ellipse in some point P, of the figure of p. 457, then such circle
will cut the line EA in some point between E and A. Con-
sequently, if the angular velocities be inversely as the squares
of the distances from E, the angular velocity in the ellipse from

30
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4 to P will be, in every intermediate point, less than the angular
velocity of the body in the circle, in all points between EA and-
P. Now the angular velocities are inversely as the squares of.
the distances, if the areas described, respectively, by the body in
the ellipse and the budy in the circle, be equal®. This last
condition enables us to determine the value of TP, or the value
of the radius of the intersecting circle. For, if the small areas
be equal, the whole areas of the circle and ellipse must be equal,.
area in a given time x period
given time
period, by hypothesis is the same in the ellipse and circle.

since the whole area = , and the

* Tlie angle LTp, which expounds the angular velocity, is measured

n
by %’;,

if pn.Tp, which is twice the small area LT}u, be given.
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If, then, x be the sought for value of SP, 2a the axis major
and ae the eccentricity of the ellipse, we have, by equating the
values of the two areas, ‘

3.14159. 2 = 8.14159 x a X a V' (1 — €°);
whence,

3 . e“), nearly,

a x .99992942, nearly,

]
1S
—
I
|
I
8l
0

in the solar orbit.

From the above value of the radius vector, the true and ec-
centric anomalies, at the time of the greatest equation, may be
computed, and by the expressions (1), (2), p. 459, viz.,

a.(1 —e?)
= -i—_—e—.—m, P = a(l + e.cos.’u)-

Hence, the mean anomaly (n¢) is known by the expression

nt = u + e.sin. u, ,
and finally there results the greatest equation of the centre =
i (‘U - nto)

) ExampLE.
In the Earth’s orbit, e being very small (= .016814),

since (1 —= e’)* =1 + e.cos. u,

1 < 1+ :
-_— = €.COo8. U; .CO8.U = = —,
4 ’ 4
e . 3
and 1 — ::(1—e)(l + ecos. v); .'.cos.v=;e;

by the series for the arc in terms of the cosine, and by
neglecting the powers of e,

e
nt = quadrant 4+ 2 + e

_ 3
v = quadrant — 28
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. 8e
. nt — v, (the greatest equation) = vy = 2e, and consequently,
in the Earth’s orbit, the eccentricity = L the greatest equation.

This is one method of computing the greatest equation;
but it is usually determined from observations. For that pur-
pose we must observe the longitude of the body, when its
angular velocity is equal to its mean angular velocity ; thus, ac-
cording to Lacaille,

1751. Oct. 7, ©@’s longitude .......... 6 13°47 18".7
1752. Mar.28,.. ..cvieviinieeeiess O 8 9 25.5

difference of the two longitudes «....... 5 24 22 11.8
The mean motion proportional to the
interval of time Was . «.. v evt ceeveass 5 20 31 43.2

the diff. or the double of the greatest equation0 38 50 28.6

Hence, the greatest equation of the centre in the Earth’s
orbit is 1° 55’ 14”.3: and more nearly, by correcting the above
calculation, 1° 55' 83",

The difference of the longitudes of the two points in the
orbit, at which the real motion nearly equals the mean, is equal
to 5° 24° 22’ 11", or 174° 22/ 11”. This is a very obtuse angle
formed by two lines drawn from the above two points to the focus
of the solar ellipse. The two points thea are not very remote
from the extremities of the axis minor; they would be exactly
there, if the angle were 178° 4’ 28”. 'Hence, the greatest equation
happens when the body is nearly as its mean distance.

In the Example that has preceded, the Sun’s longitude was
taken on October 7, and March 28 ; because, at’ those times,
notions or increases of longitude were equal to his

»n. That circumstance was ascertained by first taking

ongitudes on two successive days, and then their dif-

rich is his angular motion. The mean angular motion

is nearly 59’ 8”.3 : the greatest, about the beginning of January,
be,ing ”l° 1/ 10”; the least, about the beginning of July, being
57 117, i
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We shall perceive the use of the equation of the centre,
when we treat of the equation of time. Astronomers have used
its greatest value in determining the eccentricity of the orbit®.

If E be th test tion, and ———— — b = K,
e the greatest equation, an 579.2057795 e put
then the eccentricity, or
K 11K 587K°
== - - — Xec.
¢=32 7 82 T 3s52° t

Hence in the case of the Earth’s orbit, the eccentricity of which
is very small, we have, retaining only the first term of the series,
and taking E = 1° 55’ 33",

¢ See Lacaille, Mem. Acad. 1757, p. 123.

+ This series was invented by Lambert. The reverse series for the
greatest equation is ‘

11 599
2et o €4 s e &e.

and according to M. Oriani, Ephes. de Milan. 1805.
1 5 .
= - (2e—;,c’+§5——e5+&c.) sin. z

—_— et i
+(2‘¢ 233e +&c)sm.2z,

%e’-——é e‘-{-&c.) sin. 3 z,

103
F3 =
_ 1097
22.3.5
not extending the series beyond terms containing e,

e‘) sin, 4 2z

s sin, 52,

In a Note to page 460, we gave the series expressing the true
anomaly in terms of the mean and the eccentricity. The following is
Delumbre’s expression for the equation of the centre, for the year 1810,
in terms of the greatest equation and of the mean anomaly z reckoned
from the perigee :

1° 55'.26".352 sin, z = 1’ 12”.679 sin. 2 z 4 1".0575 sin. 3¢
4 Q".018 sin. 4 2.



4
K 155338
2 2 x 57°.2057795

If E be taken = 1° 55’ 36".5, (the greatest equation in 1750),
e = .016814.

e =

= .016807.

1f E be taken = 1° 55' 26".8, (the greatest equation in 1800),
e = .016791.

From these two Examples, the diminution of the greatest
equation for 50 years appears to be 9”.7 : and, consequenlly the
secular diminution would be 19”.4. Lalande, in his Tables, states
it to be 18”.8. Delambre, 17”.18.

In the case of the orbit of Saturn, E = 6° 26’ 42"

=6%445; .. K = 6445 = .112486,
-2 57.2057795

and e = .056243 — 000031 = .056212.

We have, in the preceding pages, given only one solution
of Kepler’s Problem*: which solution is Cassini’s, and is an
indirect one. But there are several other solutions of the same
kind, besides those which may be called direct solutions, and are
derived from the simple consideration of the equations of p. 460.
The learned Astronomer of the Dublin Observatory, has con-
sidered, in a Memoir of the Irish Transactlons, these solutions
and appreciated their exactness.

In this subject the first object of investigation was strictly
a mathematical one. When we apply the result of that investi-
gation to the solar orbit, we find the Sun’s place therein cor-

# The reverse problem, by the solution of which the mean anomaly
-is found in terms of the true, being of little use, bas not been introduced
into the text. In order to solve it, find » from v by this expression,

] 14e v'
tan.E— \/(l - e)'tanv":

and then the mean anomaly (z ¢) from

nt=esin u-4u.
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responding to a given time: and this,_as we have stated, is the
first step towards the construction of Solar Tables. But it may
be asked cannot the investigations of the Sun’s elliptical place
(which are investigations of no slight intricacy) be superseded
by merely registering each day, his longitude. Will not, at the
same distance. of time from the equinox, .the Sun’s'longitude be
the same in 1800 as it was in 1750? Undoubtedly it would be
so if the solar ellipse remained fixed in the heavens and of the
same dimensions : and in such a case we could dispense, in the
solar theory, at least, with Kepler’s problem. But if the two
preceding circumstances should not take place, if, for instance,
the place of the apogee should not remain fixed, the intersection:
of the equator and ecliptic would not take place in the same
point of the solar ellipse. The angular velocity, therefore, of the
Sun, in his real orbit, would be variable at that point. It would
not be the same in 1800 asin 1750 : and, consequently, the Sun’s
longitude, after the elapsing of a certain time from his departure
from the equinox, would not solely depend on such elapsed time.
Predicaments similar to these would happen, if the dimensions of
the solar orbit (its éccentricity for instance) should be changed.
For the above reasons, then, we cannot rely solely on past
observations of the Sun’s longitude in predicting his future
longitudes.  Theoretical calculation must be combined with
observation. The former will enable us, as we have seen, to
assign a body’s place in an ellipse when the time from the apside -
(the mean anomaly, in fact) ‘and the eccentricity of the orbit are
given. But, for the purpose of application, we must know the
situation of the axis major, or the longitude of one of the apsides.
For such knowledge we may have recourse to observation: not
indeed to mere observation, but to observation combined with its.
appropriate method.

The methods then, of so using observatiouns, that from them
_we may conveniently and exactly deduce the place and motion of
the aphelion of a planet’s orbit, and the quantity and variation of
1ts eccentricity, will form the subjects of the ensuing Chapters.

— ——p—



CHAP. XIX.

On the Place and Motion of the Apl;élz'on of an Orbit.—Dura-
tion of Seasons.— Application of Kepler's Problem to the
determination of the Sun’s Place.

Ix follows from what was remarked in p. 445, that the Sun in
his perigee being at his least distance, and in his apogee, at his

greatest, his apparent diameter in those positions would be re-

spectively the greatest and least. If, therefore, we could, by

means of ingtruments, measure the Sun’s apparent diameter with

sufficient nicety, so as to determine when it were the least, the

Sun’s longitude computed for that time, would, in fact, be the
longitude of the apogee *.

Or if, computing, day by day, from the observed right ascen-
sion and declination, the Sun’s longitude, we could determine
when the increments of longitude were the least, the Sun’s lon-
gitude, computed for that time, would be that of the apogee :
for, the Sun’s angular motion in that point is the least.

The difference of two longitudes thus observed, after an in-
terval of time (¢,) would be the angle described by the apogee in-
that interval. And if the longitudes were not accurately those
of the apogee, still, if they belonged to observations, distant from
each other by a considerable interval of time, the motion of the
apogee would be deduced with tolerable exactness ; since, in such
a case, the error would be diffused over a great number of years.

* Apogee, if the Sun be supposed to revolve, dphelion, if the Earth ;
and, although, in reality, it is the latter body which revolves, yet, since
it affects not the mathematical theory, we speak sometimes of one revolv-
ing, and sometimes of the other ; and, with a like disregard of precision,
we use the terms apogee and aphelion.
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Thus, by the observations of Waltherus,

1496. Longitude of the apogee ........ cee. 88057 57"
In 1749, (by Lacaille) .............. e 383 O
.’ progressive motion in 253 years ............ 04 41 3

whence the mean annual progression® results equal to 1’ 6”:
differing, however, from the result of better observations and
methods by more than 1’ 2”.

. Thus, in the Berlin Memoirs of 1785, M. Delambre, in treating
of the Solar Orbit, compares the places of the apogee given by
Waltherus (by Lacaille’s Calculations) Cocheon King, La Hire,
and Flamstead, with Maskelyne’s.

Astronomer. Year. Longitude of Apogee.  Progression.
Waltherus . : .. 1496 .... 3% 3° 57 57" ..., 65".385
Cocheon King..1279 ....3 0 8 O .... 64.606
La Hire .....1684 ....3 7 28 0 ....62.116
Flamstead ... 1690....3 7 35 0 .... 61.584

————

4) 258 .691
Mean result . . ...... e eieeae teiese... 08.428

Hence, if the equinoctial year be estimated at 365 ‘5" 49" 6°.374,
the anomalistic year, since the time of describing 63".423

1" .
(= % X 24) = 25™ 42".4, is 365° 6" 7 24".307.
The more accurate method, however, of determining the pro-
gression of the apogee rests upon a very simple principle. Let
SEr be a right line, and draw TE ¢ making with the axis major
4B of the ellipse, an angle TEA = SEA: now, the time
through 7 B¢ S is less than the time through the remaining arc

* Progression is here meant to be used technically: a motion in
consequentia, or, according to the order of the signs.

Se
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SAT'r: for, the equal and similar areas SE¢, TEy, are described
in equal fimes, but the area rEt is < area: SET' ;. therefore, by

B’
Kepler's law (p. 445,) it is described in less time; therefore
rEt + SEt, which is equal to the area SErt S, is described in
less time than SET 4 TEr, which compose the area SErT'S;
therefore the body moves through the arc 7 Bts in less time than
through STr. And this property belongs to” every line drawn
through E, except the line A EB, the major axis, or, the line of
the apsides, that line which joins the aphelion and perihelion of
the orbit.

_Hence it follows, if, on comparing two observations of the
Sun at S and at 7, (that is, when the difference of the longitudes
is 6 signs or 180 degrees) it appears that the time elapsed is not
half a year, we may be sure, that the Sun has not been observed
in his perigee and apogee. If the interval should be exactly, or
pearly, half a year, then we may as certainly conclude, that the
Sun was, at the times of observation, exactly, or very nearly, in
the line of the apsides.

If the interval of time be nearly half a year, (which is the case
that will occur in practice,) then we must find the true position
of the apogee by a slight computation, which shall be first alge-
braically stated, and then exemplified.

The time from 7 to S = the time from r to B + the time
from B to A — the time from S to 4;

~
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. time from B to 4 — timefromrto $ = .. .. (@)
time from S to A — time from 7 to B.

Now the first difference is known, being the difference between
half an anomalistic year® and the observed interval of obser-
vation: and of the second difference, the second term may be
expressed by means of the first: thus, let the first term = ¢:
then by Kepler’s law, (see p. 445,)
arear EB
area SEA
—x Bx EB
T T S4Ax EA
—tx rB « Ed % EBR
EB "~ S4 7 EA?

time from 7 to B=1¢ x

(r and § being near the apsides)

A
EB rB S4
=t — 1 (smceEB._ ArEB—LSBA-ﬂ

-;t « angular velocity at 4 ( 4
" " angular velocity at B see p. 470.)

Now, the angular velocities at A and B, or the increments of
the Sun’s longitudes at the apogee and perigee, being known
from observation (see p. 431,) and the time from r to B being
expressed in terms of those velocities and of ¢, the quantity ¢ is
the only unknown quantity in the equation (@) 1. 1, and ac-
cordingly may be determined from it. But ¢ being obtained, we
can thence determine the exact time when the Sun (8) is at the
apogee A4 : and his longitude, computed for tbat time, is the
longitude of the apogee.

. ExaMpLE.
1743. Dec. 30, 0" 3™ 7* @’s longitude . . . 9* 8° 29’ 12".5
1744. June 30,0 8 O.......... c.+:. 88 51 1.5

.. difference of 2d and 1st longitudes ...... 6 0 21 49

therefore at the 2d observation June 30th, the Sun was past S.

* The time from the Sun’s ieaving the apogee to his return to the same.‘
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In order to find when he was exactly at S, that is, when the
difference of the longitudes was exactly 6°; or (supposing the
perigee to have been progressive through 31”), when the difference
of longitudes was 6° 0° 0’ 31”, we must find the time of de-
scribing the difference of 21’ 49”, and 31", that is, 21’ 18"
Now this time, since on June 30, the Sun’s daily motion in
l II
57 1:" X 24°, or 8" 56™ 13°: take
this from the time (June 30, O" 3™) of the second observa-
tion, and there results, June 29, 15" 6™ 47°, for the time when
the difference of the longitudes of the Sun at r and near S was
180° o 31~

longitude was 57’ 12”, equals

The interval hetween this last time, and Dec. 30, O" 8™ 7°,
the time of the first observation, is 182? 15" 3™ 40°, nearly the
time from 7 to S : but, this time is less than half an anomalistic
year, which is 182! 15 7™ 1°*: and see («) p. 479, L. 1,

t — time from r to B = 3" 21°.

But, see the same page, 1. 12,

) 57 19"
the time from » to B = ¢t X ——;
61’ 12"

/4
6_1'4;—2” = 8" 21°, and consequently,

t = 47" 54°.
Add this to the time, June 29, 15" 6™ 47*, when the Sun was
at S, and we have, June 29, 15" 54™ 41° for the time when the
Sun was in the apogee.

«*.» substituting, ¢ x

* In this method, which is to determine accurately the given place
of the apogee, the motion of the latter, and the length of the anomalistic
year are supposed to be known to some degree of accuracy. The one
is stated to be 62”; the other, 365¢ 6 14™ 2°. But, if both be sup-
posed unknown, if we take the difference of the longitudes of r and S to
be simply 6%, and the elapsed time to be half the tropical year, still the
method will give the place of the apogee very nearly, which may serve
as a first approximation to the true place.
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The Sun’s longltude at that time must be less than his
longitude (3* 8° 51’ 1”.5) on June 30, O" 3™ by the difference
due to the difference of the times, which is 8" 8™ 19° : the former -
difference thenis equal (since the increase of longitude in 24 hours
was 57’ 12) to

g" 8" 19*
24 )
hence the longitude of the apogee = 8511”5 —19'21" =
& 31' 40”.5, or 98° 81’ 40”5, or 8° 31 40".5, past the
summer solstice.

X 57 12" =19’ 21”;

We will now add another Example, the materials of which
are drawn from Delambre’s Memoir on the Solar Orbit, inserted
in the Berlin Memoirs for 1775.

June 30, 1776.

First Operation—1T0 find the Error of the Szdereal Clock at the
Time of the Sun’s passing the Meridian.

a Virginis. . Arctirus.
Rbyclock ............ 18" 10™ 0°.08 .... 14" 2" 11°.47
bycatalogue(seep.352,3w.)13 13 25.83 .... 14 5 27.88
0 8 16.75 0 3 16.41
clock slow .......... 31675 «vocat.e.. 18* 13®
ditto . .....iieeeenn 81641 .veeeer... 14 5

.". by a mean, clockslow 3 16.58 .% ... ... 13 39

But the Sun passed seven hours previously.

Second Operation—Clock’s Rate.

Now clock’s rate in 24" ............ — 1.716
soin 6 oLl — 042

m 1 ........ 07

m 7 ..., - 049

©’s transit by clock .......... 6" 36™ 23'.21
clock’s error . .. .... e, {0 3 16.58

O'’s right ascension ....,....... 6 39 39.3
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Third Operation—Conversion of the Right Ascension in Time
‘into Space.

By Zach’s Tables, Tab. X XIX, or Vince’A, vol. IL. p. 297,

6" ...... 30 o 0o
39 ...... 09 45 0
39 00 9 45
S 00 0 4.5

3 9 54 49.5 Sun’s right ascension in space.

The obliquity was 23° 28 4”, from that and the right ascension
find the Sun’s longitude by Naper’s Rule, or thus, by the Tables
of Reduction to the ecliptic. '

Fourth Operation— Reduction of Equator to the Ecliptic*.

See Zach’s Table XXI, in his Tabule Motuum Solis, or
Vince's Table, Astronomy, vol. II, p. 352.

Add 8.
Reduction. Difference for 1'.
- 6°9°50 0".0......00° 47 57".45 | 4".705
00 449.5......00 0 22.69 | 4
(obliquity being 23° 28') 0 0 48 20.14 | 18.812 for 4 0".0
addfor4” ......... 0 0 0 0.27 | 3.88 049.5

0 0 48 20.41 | 22.69 4 49.5
Sun’s right ascension. . 3 9 54 49.5

Sun’s longitude ...... 39 62.1

and this is the whole of the process for the actual finding of the
Sun’s longitude from his observed right ascension.

By a similar process performed on Maskelyne’s observation
of the Sun’s transit on the December 81, we have

@’s longitude = 9* 10° 31' 7".6.
Fifth Operation— Difference of Sun’s Longitude found.

The above are the Sun’s. longitudes when his: centre was on

. * See Chapter XXI. -
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the meridian: they belong, therefore, to apperemt naon: if,
therefore, we add the equations of time (which are 3* 18,
3" 58°, respectively) we shall have,

1776, June 30, OF 3™ 13*, ©@’s longitude = 8 9° & 29”.1
‘Dec. 31, 08 53.......c...... =910 31 7.6

difference of Sun’s longitudes . ... .. 6 1 24 38.5

If we take from this 33', the half yearly progression of the

apogee, we have the difference of the Sun’s longitudes equal to
‘ 6 1° 24 5"5; ‘

consequently, by reason of the excess 1° 24’ 5”.5 above 6, or
180°, the Sun at the times of the two mentioned observations
could not occupy, respectively, the extremities of a line drawn
through the focus of the orbit. If ¢ were his position on Dec. 31,
at 0" 3™ 53°, T' could not have been his position on June 30,
at 0" 3™ 13" : or, if s were his position at the former time, S
could not have been his position at the latter.

Suppose @ to be the place of the Sun at the former time,
then the difference between the longitudes of T' and being 6°,
aT will ‘be equal to 1° 24’ 5”.5: in order to find the time of
describing it, we have from the Solar Tables, or Nautical Almanack,
or by the reduction of observations made on the noons of June 30,
and July 1,

June 30, Sun’s longitude .................. 3* 80 28’ 27"
July 1, .. 3 9 20 40
0 0 57 13

Hence, in 24 hours, nearly, the Sun moved through 57’ 13,
consequently, he described ,
: 1° 24/ 5".5
57 18" ) >
and consequently, he was at T on July 1, at 1" 21™ 14%

1° 24’ 55 in 35" 187 1 (=24

But, the two opposite positions of the Sun, instead of being,
s we have supposed them to be, at T and ¢, might have been at
A and B, or at S and s. In order to ascertain this point, we
have the difference of the two times (Dec. 31, o" 3™ 53, and
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Julyl 11"21™ 14") equal to 182° 12" 42 30*. Now (see p. 480,)
the half of an anomalistic year is 182% 15® 7 1°*: consequently,
the time from ¢ to T is less than the time from A to B, which it
ought to be, since (as in p. 478,) the time from T to ¢ = time
from A to B — time from 4 to T + time from B to ¢ = time
from A to B — some quantity, whereas, if S and r had been the
points, we should have had the time from S to T' = time from
A to B + time from S to A — time from r to B, = time from
4 to B + some quantity.

The Sun, therefore, must have been at some such opposite
points as T and ¢, or, in other words, must, on July 1, 11" 21 14,
bhave already passed the apogee.

- What remains, then, to be done is the computation of the

times of describing AT, Bt.

Sixth Operation—Corrections of the Times of the Sun’s passing
the Apsides.

Let ¢, ¢, be the times of describing them,

" _ t'.area AET
then & = — s BE¢
_t'.AT. 4E
~  Bt.BE
_ VAR . a+er
- B E ( )‘z 2

e being the eccentricity.

(see p. 479,)

(the points T, ¢/, being near to the apsides)

4e
Hence, t — ¢! = ¢ . —— ), ,or = (l—_l_—e),; ;

(
1+ e?

consequently, ¢ = (t: —' ). —

N ) &
d=(—t) —

and ¢ — ¢ = half the anomalistic year — the time from T to ¢
in the case before us = 2" 25™ 3°.

H

* Or more exactly 1824 15b 6™ 5924,
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' Hence, if € be the eccentricity for 1776,

log. 2“25“‘3'=3939669............3939669
a+e? (1 - el
4e 4e

log. = 1.187047 log. = 1.157859

(log. 133880.5) 5.126716 (log. 125718)  5.007528

Hence, since .
time at T'is July 3, 11°21™ 14" .. .. at ¢t Dec. 31, 0" 3™ 53

=37 11 2.5....andt' = 3446 18

stimeatd June29,22 9 53.5 time at B Dec. 29, 13 17 35
which are, respectively, the times of the Sun’s passing the apogee
md perigee. _

'l‘he interval of these two times, or the half of an anomalistic
year is,

182° 158 7™ 41°.5.

The above methiods® of determiniug the place of the apegee
are due to Lacaille. That author, on the grounds of simplicity
and uniformity, suggested the propnety of reckoning the anoma-
lies from the perihelia of orbits, since, in the case of Comets, they
are necessarily reckoned from those points. In the new Solar
Tables of Delambreé this suggestion is adopted, (see Introduction :
aso Vince’s dstronomy, vol. II1. Introduction, p. 2.)

In these new Tables the progression of the perigee, and conse-
quently that of the apogee, is made to be about 61”.9; and the
mean longitudes of the perigee for 1750, 1800, 1810, are re-
spectively stated at 9* 8° 37’ 28"; 9° 9° 29 8”; 9° 9° 39’ 22",

The longitude of the winter solstice is 9°; therefore in 1810
the perigee was 9° 39’ 22" beyond it; at this time, the daily
motion of the Sunt was 61’ 11”; therefore, the solstice happening
on December 22, the Sun would be in his perigee about nine
days after, or about December 31. :

. * The method is explained, with singular clearness, by Dalembert,
in the historical part (L’Histoire) of the Memoirs of the Academy qf
Sciences for 1742.

3e
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From the longitude for any given epoch, and its anmual
progression, the position of the apogee and of the axis of the
solar ellipse, may, by simple proportions, be found for any other
epoch. Suppose, for instance, it were enquired when the axis of
the solar ellipse was perpendicular to the line of the equinoxes?
This, in other words, would be to enquire, when the longitude of
the perigee was 270°, or 9". Now, its longitude, in 1750, was
9* 8° 97’ 28”: the number of years therefore requisite to describe
the difference, or 8° 37’ 28", taking the annual progression at
8° 37° 28"
—s
was perpendicular to the line of the equinoxes in the year 1250.

62", equals , or about 500 years ; that is, the majdr axis

The major axis coinciding with the line of the equinoxes the
longitude of the perigee was 180°, or 6°. Between that epoch,
therefore, and 1250, the whole quantity of the progression of the
perigee was 9* 8° 37’ 28" — 6' = 3°8° 37 28”: and the time of

3 8° 37’ 28" '

5 27, = 5720 was 5720 years, The
epoch happened then about 4000 years before the Christian Era,
and is a remarkable one, inasmuch as chronologists consider it
to be that of the beginning of the world.

describing it since

The knowledge of the place of the perigee is necessary to
determine the duarations of seasons; which are perpetually

- n; from i@'progressibn. If W, S, in the Figure, rep}esent
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the winter and summer solstices, ¥ and O the vernal and autumnal
equinoxes, P E A the axis of the solar ellipse ; then, in the year 1250,
P coincided with W ; and, on ‘that account, the time from the au-
tumnal equinox O to the summer solstice ¥ was equal to the time
from W to the vernal equinox V. Past that year, P, by reason
of its progressive motion, began to separate from W; and in
1800, the separation, measured by the angle PEW, was 9° 29’ 8"..
By means of this separation, those parts of the elliptical orbit in
which the Earth’s real motion is the quickest, being thrown
nearerto ¥V and away from O, the time from the autumnal equinox
0 to the solstice W, became gradually greater than the time
from /¥ to the vernal equinox : and the time from V to § became
less than the time from § to O. In 1800, the following were
pearly the lengths of the seasons:

VoS tvevniniininnneenas. 920 21" 44m 28
StoO ciiiieneiearene.. 93 13 384 47
OtoW .eiviivviienienneaes 89 16 47 20
WtoV ceeseecsennsecnsanees 89 1 42 23
length of year.. c .o .. ccevee.. 365 5 48 58

This motion of the perigee also, as will be shewn in a sub-
sequent Chapter, continually causes to vary the equation of time.

What has been said concerning the duration, and change of
duration, of the Seasons, is, in some degree, digressive; the
main object of the Chapter being to explain the method of finding
the place, that is, the longitude of the perigee, in order that
Kepler’s problem -might be applled to the determination of the
Sun’s place -

By Kepler’s problem, we are enabled, from the mean anomaly,
to assign the true anomaly, or true angular distance, reckoning
from perigee®. The mean anomaly of the Sun, is his mean
angular distance computed from perigee : in the Figure, if & be
the Sun’s mean place, it is £ PEb. Now,

* The mean anomaly is stated to be reckoned from perigee, since the
succeeding extracts are from Delambre’s new Solar Tables.
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¢ PEb= ¢« PEV — ¢ VEb,
and, if ¥ be the first point of Aries,

¢ PEV = 12° — mean long. perigee,

and ¢ VE b = 12° — mean long. ©.

Hence, the mean anomaly is the difference between the mean
longitudes of the Sun and of the perigee. And the Solar Tables
assign the mean anomaly by assigning. these longitudes. And
then, in the same Tables, the mean anomaly is used as an argu-
ment for finding the equation of the centre. The process may be
illustrated by specimens from the Tables, and their application to

an Example.
From Table I.
M Longitud: Longitade of
Years. e:inthe mtll. € Sun?smlt":ar?g:e.
1809. 9' 10° 42’ 49".8 | 9" 9° 38’ 20"
1810. 9 10 28 30.¢2 99 30 22
1811. 9.10 14 10.5. 9 0 40 24
From Table IV.
Motion for Days. November.
Years.
Mean Longi
Com. | Bissex. ?fn‘be Sun. Perigee.
Days.
12 11 10" 10° 28’ 44" 53".5
1 13 12 10 11 27 52.8 53.6
14 13 10 12 27 0.7 53 .8
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Suppose now the Sun’s longitude were requlred for 1810,
November 13, 2 3™ ¢,

Table I. 1st, the mean longitude for the
beginning of 1810, is . ....ses.. .. 9" 10° 28 30".2
Table IV. Nov. 18. ¢ 4et veve coannen. 10 11 27 52.8
O ¢ T+ T A 1 2
TableV.gs“.................... 0.0 0 7.4
2 L iitiiiiiietesees 0 0 0 0.1

rejecting 12‘; mean long. at time required (@) 7 22 1 25.7
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The longitude of the perigee is to be had from the same
Tables ; thus:

Table I. Long. at beginning of 1810.... ¢* 9° 39’ 22”0
Table[v. NOV- ls--..v..oocuo-oooco 0O 0 0 53-6

longitude of perigee at the time required ... 9 9 40 15.6
subtract this from (a) increased by 12 signs,

} 10 12 21 10.1
there results the mean anomaly .. .... )

With this mean anomaly enter Table VII, and there results
the equation to the centre .+ .v«0... 11°28° 32' 42”2
' add to this the mean longitude (@) ...... 7-22 1 25.7

7 20 34 7.9

This result, 7° 20° 34’ 7".9, is (if no other corrections are re-
quired to be performed) the true longitude reckoned from the mean
equinox. But, as it has been shewn (pp. 353, &c.), the place of
the equinox varies from the inequalities of the Sun’s action, and
of the Moon’s action in causiyg the precession. Two equations,
therefore, must be applied to the above longitude, in order to
compensate the above inequalities, and so to correct the longitude,
that the result shall be the true longitude, reckoned from the ¢rue
place of the equinox. Now, it happens, by mere accident, that,
in the above instance, the lunar and solar nutations are equal to 1",
but affected with contrary signs. These corrections, therefore,
affect not the preceding result. The corréction for aberration
(see p. 307,) has, in fact, been applied ; for, since that, in the case
of the Sun, must be nearly constant, (and it would be exactly so,
if the Sun were always at the same distance from the Earth) the
Solar Tables are constructed so as to include, in assigning the
mean longitude, the constant aberration (20”). The variable part
of the aberration (variable on account of the- eccentricity of the
orbit) is less than the 5th of a second, = Let us see then, whether
the longitude that has been determined, from a knowledge of the
place of the perigee, and from Kepler’s problem, expressed by
means of Tables, be a true result :



491
" By the Nautical Almanack for 1810 ; we have

Nov. 13, Sun’s longitude «....cvvcuuuana. 7° 20029 87
Nov.l4’ .'.'..".................'..721 2936

increase in24 hours . . .... . cieeeveeees.s O 1,0 28

Now the Sun’s longitude 1s expressed in the Nautical Alma-
nack for apparent time : and the equation of time being — 15™ 38", .
the mean time is 11" 44™ 27. Hence, we must find the increase
proportional to 2" 18" 35°, which is about 5’ 47"; consequently
the Sun’s longitude, on November 13, 2P 3™ ¢°, (mean time) was
7 20° 34’ 55", which differs from the preceding result, p. 490,1. 11,
by about 47”; consequently, Kepler’s problem is not alone suf-
ficient to determine the Sun’s place, but some other corrections
are requisite to compensate this error of 47 seconds.

Such corrections are to be derived from a new source of
inequality ; the perturbation of the Earth caused by the attracting
force of the Moon and planets; the nature of which will be
briefly explained in the ensuing Chapter. '



CHAP. XX.

On the Inequalities of the Earth’s Orbzt and Motion, caused by
the Disturbing Forces of the Moon and Planets. On the
Methods of determining the Coefficients: of the Arguments of
the several Equations of Perturbation.

Thue discovery of Kepler relative to the form of a Planet’s Orbit
did not extend beyond the proof of its being an ellipse : and in
his problem he shewed the method of assigning the planet’s
place in such an ellipse.

If M be the mean anomaly and E the equation of the centre,
then, the planet’s elliptical place, or true anomaly is equal to

M + E.

Newton shewed, on certain conditions and a certain hypothesis,
that that must needs take place which Kepler had found to take
place. ' It appears from the third Section of his Principia, that
if a body, or particle projected, from A perpendicularly to EA,

7

B¢
(E being the place of a body attracting a particle at 4, and
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elsewhere with a force inversely as the square of the distance’
from E), would describe an ellipse, of which E would be the
focus.

The revolving particle or body A, is supposed to be attracted
towards E, or to be incessantly urged towards E, by a centripetal
force arising from a number of attracting particles, or from an
attractive mass, placed at E. The centripeta] force being the
greater, the greater such mass is, and in that proportion.

If in EA4 produced, we place, at an equal distance from 4,
another body of equal mass, and of equal attractive force with
the body at E, and again suppose the body at 4 to be projected ;
then, since it is equally urged to describe an' ellipse round the
Dnew mass, as round that originally placed at E, it can.describe
an ellipse round neither, but must proceed to move in'a direction
perpendicula"r to EA.

In thls extreme -case, the elliptical orbit, and the law of ‘
elliptical motion would be entirely destroyed.

If now we suppose the mass of the new body to be dimi-
nished, or its distance from 4 to be increased ; or, if we suppose
both clrcumstances to take place, then, the derangement or per-
turbation, of. the body that is to revolve round E, will still con-
tinge, but in aless degree. An orbit, or curvilinear path, concave
towards E in the commencement of motion, will be described ;
but, neither elliptical, nor of any other class and denomination.

In this latter case, the new body, being supposed less than
the body placed-at E, may be called the disturbing body ; disturb-
ing, indeed, by no other force than that of attraction, with which
the body at E is supposed to be endowed; but which latter,
from a difference of circumstance merely, is denommated a Cen-
tripetal force. In the first supposition, of an inequality of mass
and distance in thé two bodies, from the similarity of circum-
stancé, either body :mlght be pronounced to be equally attractmg
or equally disturbing. I

The disturbing body, whatever be its mass and distance, will
always derange the laws of the equable description aof areas, and .
3R
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of elliptical motioh. If its mass be considerable, and its distance

not very great, the derangement will be so much as to render the
knowledge of those laws useless in determining the real orbit, and
law of motion, of the disturbed body. In such case, Kepler’s
problem would become one of mere curiosity ; and the place of
the body would be requlred to be determined by other means.

If, hdwever, the mass of the disturbing body be, with refer-
ence to that of the attracting body, inconsiderable; then the
derangements, or perturbations, may be so small, that the orbit
shall be nearly, though not strictly, elliptical; and the equable
description of areas, - nearly, though not exactly, true. Under
such circumstances; Kepler's problem will not be nugatory. It
may be apphed to determine the place of the revolvmg body,
supposmg it to revolve, which is not the case, but which is nearly
so, in an ellipse. The erroneous supposition, and consequently
erroneous results, being afterwards corrected by supplying certain
small equations, that shall compensate the inequalities arising
from the disturbing body:

In the predicaments just described, are the bodies of the
solar system The mass of the Sun, round which the Earth
revolves, is amazingly greater than that of the Moon®, which
disturbs the Earth’s motion : greater also, than the masses of the
planets, which, like the Moon, must cause perturbations. - The
Earth, therefore, déscribes very nearly an’ ellipse round the
Sun.

_ As a first approximation then, and a very near one, we may,
as in the last Chapter, determine the Sun’s, or Earth’s place, by
. means of Kepler’s problem: and  subsequently. correct such
place, by small equations die to the perturbations of the Moon,
and of the planets.

But, how are these small corrections to be computed ? By
finding, for an assigned time, an expression for the place of a

" *-The Sun is 1300000 times greater than the Earth, and the Earth
more than 68 times greater than the Moon,
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body, attracted by one body, and disturbed by another; the.
masses, distances, and positians, of the bodies being given; that
is, by solving what, for distioction, has been called the Problem
of the Three Bodies.

The consideration of three bodies is sufficient : for suppose,
by the solution of the problem, the equation, or correction, for
the Sun’s longitude, to be expressed, by means of the Sun’s and
Earth’s masses, distances, &c., and of other terms denotmg the
mass, distance, &c., of a third. body ; then, substituting, for these
latter terms, the numbers that, in a specific instance, belong to the
Moon, the result will express the perturbation due to the Moon,
lnstead of the Moon, let the third body be Jupiter: substitute, as
before, the proper quantities, and the result expresses the per-
turbation due to Jupiter: and similarly for the other planets
The sum of all these corrections, separately computed will be
the correction of the longitude arising from the action of al] the
planets.

The above corrections are what are necessary to complete the
process of finding the Sun’s longitude, and to supply the de-
ficiency of several seconds, from the true longitude. The number
of corrections which it is Decessary to consider, and which the
latest Solar Tables enable us to assign, is five; arising from the
perturbations of the Moon, Venus, Mars, Jupiter, and Saturn.
Those of Mercury, the Georgzum Sidus, .Ceres, Juno, and Pallas,
are disregarded.

The computation of these perturbations has been attempted
in another place (see vol. II. on Physical Astronomy), by the
approximate solution (all that the case admits of) of the problem
of the three bodies. Even by the little explanation that has
already (see p. 494,) been given, it is plain that the results of that
solution are essential to the solar theory, and to the construction
of Solar Tables. They are. equally essential to the planetary
theory. TIn fact, they are as much a part of Newton’s System,
2 the elliptical forms of planetary orbits, and the laws of the
periods of planets. The perturbation of the planetary system is
as direct a consequence of the principle of "universal attraction,
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as the regularity of that system would be, on the hypothesis of the
abstraction of disturbing forces. The quantities of the pertur-
bations are, indeed, small and not easily discerned : but they are
gradually detected as art continues to invent better instruments,
and science, better methods, and they so furnish not the most
simple proof, perhaps, but the most irrefragable proof of the
truth of Newton’s Theory.

Observation, it is plain, must furnish numerous results, before
the formule of perturbations can be numerically exhibited, or,
what is the same thing, be reduced into Tables. The positions
and distances of the planets must be known : for, without any
formal proof, we may percelve, that, according to the position
of a planet, the effect of its disturbing force may be to draw the
Earth either directly from, or towards, the Sun, or, in some
oblique and transverse direction. In fact, the heliocentric longl-
tudes of the Earth and the planets form the arguments in the
Tables of perturbations.

Having thus explained, in a general way, the theory of per-
turbations, we will complete the Example of p. 490, by adding
certain correctlons, computed from that theory, to the Sun’s
longitude.

By p. 490, ©’s longitude ...cece0uee. . 7°20° 84" 8

correction due t0 D . ... cverese0-.0...0 O O 5.5
10 Q@ vvvevrernnsaeaaa. 0 O 0°17.49
"0 @ ceerieicainiiees. 0 0O O 4.32
0 A eeeecescccscsnnss O 0O 0'12.7
t0h civteeeesenese...0 O O 0.65

. Nov. 18, 1810. 2" 3™ 2'; ©’s true long®. . 7 20 34 48.86*

* This determination of the Sun’s longitude is less by about 7 seconds
than the longitude as stated in the Nautical Almanack. But, this latter
was computed, (see Preface to the Nautical Almanack) from Lalande’s
Tables, inserted in the 3d Edition of his Astronomy: which differ by a
few seconds from Delambre’s last Solar Tables (Vince’s, vel. III,) and
from which the numbers in the text were taken.
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By computations like these carried on by the aid of Tables
(see pp. 490, &ec.), the Sun’s longitude is computed for évery day
" in the year, and then registered; in the Nautical Almanack of
Great Britain, -the Connoissance des Tems of France, and in the
Ephemerides of Berlin, and of other cities. The use of registering

the Sun’s longitude is explained in the Nautical Almanack, at
p. 163, &c.

In page 495, 1. 5, it was said that the problem of the three
bodies was sufficient for the computation of all the mequalmes.
But this is rather, if we may so express ourselves, practlcally
than metaphysically exact : it is founded on this, that, if v and i
should be the perturbatlons of the Sun’s elliptical longitude (L)
by Venus and Jupiter, the resulting longitude will be

L+7+i
whereas ¢ ought, in strictness, to be computed for a lbngitudé

L + v, and v for a longitude L + i. The differences in the two
cases are, however, insensible : v and ¢ not exceeding 10”.

We may add too, some farther limitation to thé assertion, that
the perturbations of the solar orbit (the variations produced in
the Sun’s elliptical longitude and distance) are to be computed,
by means of the problem of the three bodies. Theory alone is not .
adequate to the above purpose. For, if the Earth be displaced
from its elliptical orbit (be made exorbitant) by the action of a
planet, the displacement, in a given position, will be the greater,
the greater the mass of the disturbing planet. We must, there-
fore, know that mass, if we would, a priori, compute the displace-
ment. Now, although the masses- of Jupiter and Saturn are
known from the periods of their satellites, the masses of Venus
and Mars and Mercury are not. We can, indeed, setting out
from certain effects of their action, indirectly approach, and ap-
proximate to, their values (see vol. 11, p. 477, &c.). But the method
is not a sure one; so that, in computing the perturbations of the
Earth’s orbit (of wlnch that due to Venus from her proximity to
the Earth is probably the greatest) we are obliged to look to
other aid than that of mere theory.
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'The method to be pursued on this occasion is similar to that
by which the corrections of the epoch, of the greatest equation,
and of the longitude of the apogee, will be investigated in a fol-
lowing Chapter. Thus the true longitude, or L is equal to

M+ E+ P,

P being the sum of the perturbations, due to the actions of
Mercury, Venus, the Moon, &c. : now the arguments of the per-
turbations are the differences between the longitudes of the dis-
turbing planet and the Earth, or multiples of those differences :
thus, if the symbols representing the Moon, Sun, Venus, &c.
be made to denote their longitudes, the argument for the Moon’s
perturbation will be > — ©; for Jupiter’s 24 — ©,2(% — 0);
for Venus’s (¢ — ©), 2( 92 — @), &c.: so that, assuming a, b,
¢, &c. to be the coefficients of the arguments, the lunar pertur-
bation will be denoted by a.sin. (D — ©); Jupiter’s by b.sin.
(4 — O)+ce.sin. (%4 —2 0), &c. and accordingly, the whole
perturbation or

P=a.sin.() — O)+b.sin. (Y —O)+c.sin. (24 -2 0)

+ d.sin. (2 — O©) + &e.

compute now the Sun’s longitude from the elliptical theory, then,
(supposing the epoch, greatest equation, &c. to be exact) the
- computed longitude will differ from the observed by an error C,
which error arises from the perturbations of the planets; ac-
cordingly,
C=a.sin.() —0O)+ b.sin. (4 — @)+ &ec.
+d.sin.(§ — O) + e.

~in which >, ©, %, the longitudes of the Moon, Jupiter,
Venus, &c. are known, since C is the difference between two
longitudes, one observed at a given time, the other computed for
the same time. Repeat the operation : or find C'; C”, C", &c. the
differences between certain observed and computed longitudes, and
there will arise equations similar to the one that has been just
deduced ; and, it is plain, we may form as nany equations as there
are indeterminate coefficients a, b, ¢, &c. from which, by elimi-
nation, the values of a, b, ¢, &c. may be deduced. Or, we may
form several groups or sets of equations, on the principle of forma-
tion which with be hereafter explained, and obtain, by addition,



499

equations that shall be, respectively, most favourable for the
deductions of the values of a, b, ¢, &c.*

If the Moon’s equation consist of one term, Venus’s of two,
Jupiter’s of two, Mars of two, there will be required, at the least,
seven equations’ for the determination of the seven coefficients.
Now the same method, which has been here described for determi-
ning these coefficients, will be, in the next Chapter, used for deter-
mining the corrections of the elements of the solar orbit: which
elements are here meant te be, the epoch of the mean longi-
tude, the eccentricity, and the longitude of the apogee. Three
equations, therefore, will be required for such purpose: conse-
quently, if, by one and the same operation, we seek to correct the
elements, and to determine the corrections due to the perturbations
of the Moon and the above-mentioned three planets, we must
employ, at the least, ten equations. We shall, however, soon see
that it is more expedient to employ and to combine one hundred
equations, in order to obtain, by virtue of the principle of mean
results, exact results. No one of the coefficients of the equations
of perturbations exceeds nine seconds +.

* The principle is this : if @ be the coefficient, select those equations
in which the values of the term (a sin. 4) is the greatest, make them all -
positive (by changing, if necessary, the signs of all the other terms of the
equation) and add them together for the purpose of forming a new
equation.

+ If v be the longitude and & v be the error or correction due to the
perturbations of the planets,
3v=8"9sin.() — ©)+7".059.8in.(Y — ©)—2".51.80.2(h — @)
+5".29 .5in. (@ — O)— 6".15n.2(9 — ©)
+0"4 sin. (8 — ©)+ 3"5sin. 2 (3 — O)
See Physical Astronomy, p. 311, M. Delambre, (Berlin Memoirs,

1785, p. 248), add one more equation for Jupiter, three for Venus, and
three for Mars.



CHAP. XXL

On the Methods of Correcting the Solar Tables. The Formula
of the Reduction of the Ecliptic to the Equator, &c.

WE have, in the preceding Chapters, explained and illustrated
the method, of finding a priori, or by theory and antecedent
calculations, the Sun’s longitude. The steps of the method are
several. The first is to find, from a given epoch and elapsed
time, the Sun’s mean longitude (L): the next, to find, from_the
posmon of the apogee, at a given epoch, and the quantity and
law of its progression, the longitude (4) of the apogee. The
difference of these two angles, or L — A is the mean anomaly
(M), which is the thlrd step: the fourt.h consists _in ﬁndmg
(see p. 490,) the equatlon of the centre (E) correspondmg to M.
The sixth and last step is to find, at the given time of the required
longitude, the sum (P)-of the perturbations caused by the Moon
- and planets : the resulting longitude (§) is equal to

" L-A+E+ P,
or M+ E+ P,

setting aside the effects of nutation, aberration and parallax.

-

The results of the preceding methods, (those by which the
equation of the centre and the perturbations of -the planets are
computed,) are registered in Solar Tables. From such Tubles
the national Ephemerides, the Nautical Almanack of England,
the Connoissance des Temps of France, are partly computed
The immediate results from the Solar Tables are the Sun’s Iongi-
tudes. The Sun’s right ascensions (which occupy the fourth

columns of the second page of each month) are deduced from the
longitudes and the obliquity ; not, in practice, by Naper’s Rules,
but, (because the thing can be so more conveniently effected) by
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the aid of a Table, entitled the Reduction of the Ecliptic to the
Equator. 'The construction of such a Table is effected by means
ofa formula which it is now our business to investigate.

Let AR, and O denote the Sun’s right ascension and longitude,
and let w be the obliquity of the ecliptic, then
tan, R = cos. w.tan. O,

tan. © — tan. R _ tan. O (1 — cos. w)‘
1+ tan. © tan.R™ 1+ cos. w.tan.* © ’

andtan. (0 —R) =

' 2 tan.® = 2
" but, (Trig. p. 39.) 1 — cos. w(n) = = <,
1+ tan2 2. 1+t
‘e
makingt=tan,'3.
2
Hence, tan.(o_B)=:-:”. lsm.:e '
" 1+ c08.2 O
: n
.sm. 2 O

=1 +£cos.20’

1428 cos.20 + ¢*
14+ tcos.20)
cos.20 +¢*

(14 tcos. 20)

the symbol d denoting the differential,

' d (tangent)

=~ “(secant) '

t*.(cos. 2 @ + t¥ )
+2¢cos.20 +t¢/°

and thence, sec.(® — R) =

Now d {tan. (0 — R)} = 230;

but, generally, d (arc)

d(e—R)=280 (l

. 1
Naw, if we assume 2¢0s. 20 =z + -,

e > l ey
1+ 28co8.20 +H* =0+t x)(l-l--;),
3s
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1
142t%cos.20 + t*

‘ lTlt"{l — 21 .c05.2 O + 2% cos. 4 © - &.};

multiply each side of the equation by #* cos. 2 © + #¢,
#cos. 20 + t*

1 4+ 2¢t%cos.2 @ + ¢*

= cos 20 — t*cos. 4 o + #5 cos. 6 @ — &e.

..(seep 501 L. 16,
Sa(Oo =R =Fsin20 —

and

and

t*.sin4 0 t°.sin. 6 ©-
2 3
' e .. 4 sin. 4 t6 .
or(© —.B)sm. 1"=¢sin.20 — s'"g o + sm36 (0] — &

or, very nearly, since 2 sin. 1” = sin. 2", &ec.

- &e.

qw 8in. 2 © LW 8in. 40

@ e 2 sin. 1” 2 sin. 2

w sin. 6 ©
tan.’ - ——&.
+ 2 sin. 8" <

In order to express the coefficients numerically, we have,
assummg the obllqulty equal to 23° 28/, :

, log. tan. -2-, or log. ¢t = 9.3174299,

whence, , o
Qlog.t.......o..oc....o--....=18.6348598
and log. sin. 1” .. .iuiiiiiinias = 46855749 .

logo(:ot.""nuoo"cottug000000010'809w2849

4log. ¢ ......'..;.............._372697196
logsm.g e @00 000 00088000009 = 49866049

10g- ¢ eveeniniiiiii it el .. 2.2831147

6]0gct ...u..o.............-f=55.9045794
log.sin. 8" . iivvvieitiiiiiiae. = 5.1626961

16g. ¢ v ues e eriineeieiie cear. ... 0.7418883
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we have thus the Ioganthms of the three coefficients ¢, ¢, c , by
means of which it is easy to compute @ — AR, when O is given.
The logarithm of the fourth: coeﬂicnent (log. '”) = 9.24518043.

Hence, the reduction (R) = ¢ .sin. 2 @ — ¢'.sin. 4 ©

+ " sin. 6 @ — ¢” sin. 8 © + XKe.

Ife = 3%, sin. 2 O, sin. 4 O, &c. = 0, and the reduction,
as it plainly must, is equal to 0. 4

If0'=45°,- sin. 20 =1, sin, 4 © =0,sm60 =—1;

. the reduction = 8897” 85 — 5".519 = 8892".33
= ¢° 28’ 12".33,

andconsequently,thenghtascenslon(ﬂ’(. 0 - R)=42°31 47” 67,
or, expressed in time, R = 2" 50™ 7°.17.

o =10° 20 =20° 40 = 4°, 60 = 60, ‘and,
accordingly, we have the following computation, -
log. sin. 20-. . 95340517
log.c «v.. .. 3.0492849 o

3.4833366, No. .... 30438.24
log. sin. 40 .. 9.8080675 -
bg.c ... 2.2831147 , .
2.%11822, ,NO. " e0 00009 0P Qe 123”.36

log. sin. 60 .. 9.9375306.
log. C”'t K] .7418333

.6793639, No. ...... 4.778 . .

log. sin. 80 . . 9.9933515,
log. ¢” ¢ evee. 9.2518043

902451558, NO- oooo.loocloouq&o‘-c-.v-l75

—————

3048.018 123 . 585
0123.535

Reduction . ... 2924.483
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Hence, the reduction = 48’ 44”.483
and consequently, R = 9° 11’ 15”.517.

In the two former instinces the terms of the reduction were
alternately positive and negative, and the reduction itself sub-
tractive, or the right ascension less than the longitude. The
contraries of these circumstances happen in the next instance.

Let © =9 5° 40, then
20 =18 11°20, sin.2 O = — sin. 11° 20
40 =36 22 40, sin.4 @ = sin. 22 40
60 =57 4 0, sin60 = —sin.3¢ 0
80 =73 15 20, sin.8 0O = sin. 45 20
Now,
sin. 11° 20’ . . .. 9.2933995
log.c e coe a0 8.9492849
8.2426844 ... ¢ e ... 1748755

sin. 22° 40’ .... 0.5858771
log. ¢’ ooeveve. 2.2831147

1.8680918 ¢ vaceesee.. 73.96

sin. 84° 0 «.... 9.7475617 RS
]og. C”c "I0 00 o0 .7418883

4804450 s e v vererave 3.86
sin. 45° 20 .... 9.8519970 '
log. e vrenss 9.2518043

9.1038013 . .evevvee..  .127
,  1826.497
" Hence, the reduction (@ — Ry = — 30’ 26".497,
and consequently, R = 9* 5° 40’ 4 30 26".5, nearly,
= 9 6° 10’ 26".5
and, in time, = 18" 24 41'.7. '
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" In the Nautical Almanack for 1775, we have very nearly,
this resnlt since,

Dec. 27, © =9 5° 39 59",
R = 18" 24™ 41°6;

but besides the difference of 1", between the above longitude and
the longitude used in our example, the obliquities are slightly
different. On December 27, 1775, the obliquity was 23° 27’ 59".7,
whereas in the preceding instance it was assumed equal to 23° 28'.

The correction in the above, and in like instances, corres-
pondmg to any change in the obliquity is_easily obtained : thus,
since.

. ———l?— - &.

0 — R = tan?

©l8

d(0 - R) = Sw.tan.gsec.’t—:..sin.ee - &¢.

which first term will be sufficient.

The Tables of reduction (see Zach’s Tab. XXI. of Ins
Tabule Motuum Solis, and Vince’s Astronomy, Table XXXVII,
vol. I1.) contain a column of variations for every ten seconds of
variation of obliquity.

A Table of reductions of the ecliptic to the equator is wanted,
when, in constructing a work like the Nautical Almanack, we
deduce from the Solar Tables the Sun’s longitude, and from
such longitude his right ascension. In examining and correcting
Solar Tables, or the longitudes deduced from them, by the test of
observations, corrections or reductions of a contrary nature are '
reqmslte. For, since the Sun’s right ascension is observed, we
stand in need of an easy process for reducing it to the longitude,
or, we stand in need of a Table of the reduction of the equator
to the ecliptic. We will now explam, by what artifice and rule,
the preceding formula (see p. 502,) and a Table comstructed
from it, may be adapted to this latter purpose, since {(see p. 501 »

_ tan. R = cos. w.tan. O,
tan. (90° — © ) = cos. w. tan. (90° — R),
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which equation is precisely of the same form as the preceding one of
p- 501, 1. 6: consequently, a similar formula must result from it,

on changing what ought to be changed that is, by writing
90° — @ instead of AR, and 90° — AR, instead of ©.

Hence,

90° — R) — (90° — O)=tg.sin. (180° — 2 R)
l”

sin.
t‘.sm (860° — 4 R)
sin. 2"

sin. 2 R sin. 4.&1
=t Yty TR

which is the formula required, and from whlch, as in the former
case, a Table might be constructed. But it is desirable to avail
ourselves of the former Table and to adapt it to this latter pur-
pose. In order to- find the means of so adapting it, make

+&e.

or, ® — R =

R =a - 90°
then,
in. — 180° in. (4 a — 360°)

O - R=p S@a=180) . sinGa—360 o

sin. 1 sin, 2

sin. 2 a sin. 4a

= — ., — . — &c.
sin. 1" +t sin. 2"

_ (tg sin. 2(B+90°) _ g S04 (R+90° sin. 4. (Al+go° )
- sin. 1" T sin. 2" ’

but, in the former case, see p. 502,

' sin. 2 @ sin. 4 ©@
- R=tv— -t —
© sin. 1” sin. 2"

+ &ec.

the two series then are similar. If two Tables then were con-
structed, the numbers in each would be the same, in every case
m which R + 90° and © should be of equal values: for
mstance, the number expounding the reduction to the equator when
© = 118° 4, would expound the reduction to the ecliptic, when
R = 23° 4. One Table then, would do instead of two. If the
Table of the reduction to the equator be already computed, we



- 507

may thence deduce the reduction to.the ecliptic corresponding to
a given right ascension, by this simple rule.. Increase the AR. .
by 8 and take out from the Table the reduction belonging to
the angle 3° + AR : which reduct:on, with its proper sign, is the
reduction .to the ecliptic.

The above-mentioned Table of the reduction of the ecliptic to
the equator * is not, it is to be noted, necessary, nor, indeed, does
it abridge the work of computation. The Trlgonometncal pro-
cess (rating. it by the number of figures,) is shorter. . But the
Table is more convenient because it is inserted, in the same’
volume, with other Solar Tables, and is alone sufficient to eﬁect
its purpose.

_If D be the declination of the Sun, then
' 1 x sin. D = sin. ©.sin. w,

accordingly, from the Sun’s longitude computed.from Solar Tables,
and from the obliquity (the apparent) of the ecllptlc, the declina-
tion may be computed: and, in point of fact, the Sun’s declination
inserted ‘in the fifth column of the second page (every month) of
the Nautical Almanack is so computed: not necessarily, indeed,
by the Trigonometrical formula just given: since, as in the
former case of the deduction of the right ascension, the declination
may be expressed by a series, and, in practice, may be computed
bya Table entitled  The Declination of the Points of the Ecliptic’.

(See Vince’s Astronomy, Table XXXVIII, vol. II, and Zach’s
Tab. XXII1, of his Tabule Motuum Solis). :

We will now return from this digression concerning the re-
duction of the ecliptic to the equator, and similar formule of
reduction, to the main subject of the Chapter, and which indeed

* The reduction of the ecliptic to the equator has been computed from
the formula of page 502. But it is plain that reductions of like nature,
but of different denominations, may be deduced from the same formula.
For instance, the longitude of Venus in her orbit may be reduced to her
longitude in the ecliptic : in which case w (see p. 502,) will be expounded”
by. the inclination of Venus’s orbit (about 3° 23'), and the series will
rapidly converge.
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is first announced in its title. ‘The subject is the correction of

the Solar Tables: or the method of so applying observations;

made eitber before or after the epoch of the computation of the

Tables, or hereafter to be made, as to correct, or to make more

exact, the conditions or elements of such computation ;-and, for

the more distinctly handling of the subject, we will recapitulate

the steps of the process by which the Sun’s longitude is taken -
from the Solar Tables.

(1.) The mean longitude (M ) of the Sun is taken out of tbe
Tables.

(2.) The mean longitude of the perigee () is also taken from,v
the Tables.

(8.) Thedifference of the mean longitude of the Sun, and of
the mean longitude of the perigee, is then taken, which gives the
mean anomaly (4).

(4.) To the mean anomaly thus obtained the corresponding
equation (E) of the centre is sought for in the Tables.

(5.) The equation of the centre thus obtained is, according to
the position of the Sun in its orbit, added to or subtracted from
the Sun’s mean longitude, and the result is the Sun’s elliptical
longitude. :

(6.) To the last sum or difference is added the sum (P) of
the several perturbations of the Moon and planets.

(7.) Lastly, the preceding result must be corrected for ab-
berration, and the two nutations, if the true apparent longitude of
the Sun be required.

Any error or errors, therefore, in the steps of this process
must, according to their degrees, vitiate the exact determmauon
of the Sun’s longitude.

The mean longitude, which is taken in the fifst step, is not
taken immediately from the Tables, but is found by adding to the
Epoch, as it is called, the mean motion during the interval between
the epoch and the assigned time of the required longitude.
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The epack (O) is the Sun’s mean longitude at a certain time.
For instance, the epock, or the Sun’s mean longitude, on the mean
noon of the first of January 1752, is -

9° 10° 31’ s2".¢,
the Sun’s nean lougitude, therefore, on April 3, 1752, is the
above longitude, or epoch, plus the Sun’s mean daily motion
(59' 8”.83) multiplied into 93 days, which latter product is
3 1° 39’ 54".69,
80 that, the Sun’s mean longitude is
- 12° 12° 11’ 26”.89,
that is, rejecting the 12 signs,
12° 11’ 26".89, v
and, if the longitude should be required at any time of the day of
April 3, other than its noon, we must add to, or subtract from, the
above longitude a proportional part of 59’ 8".33. Thus, if the

time should be April 3, 3" 5™ 25°, we must add to the former
longitude '

3h 5m 958

% 5 §".93),

7/ 3 5//.9 ( —
s0 that the Sun’s mean longitude will be
‘ 12 19’ 2".79°.

We must now consider whether there is likely to be any error in
the terms that compose the Sun’s mean longitude.

* The Tables from which the Sun’s mean longitude, &c. are taken, are
constructed for the meridian of Greenwich, but are easily adapted to any
other meridian. Thus the epoch of the Sun’s mean longitude for 1822,
in Vince’s Solar Tables, is 9* 10° 33’ 59”.6 : Dublin Observatory (to take
an instance) is 25™ 20° west of Greenwich, and the Sun’s motion in 25™.20°
o 1o 25720

Dublin is 9* 10° 35' 17.29.

x 59’ 8”.33, or 1’ 1”.69; therefore the epoch for

ST
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The Sun’s mean motion is, probably, known to a great degree
of accuracy. For, it is determined by comparing together distant
observations of the Sun’s longitudes and by dividing the difference
of the longitudes by the interval of time between them. Any
small error, therefore, made in the Sun’s longitude will, by reason
of the above division, very slightly affect the determination of the
Sun’s mean motion.

Thus, supposing the mean motion is to be determined by com-
paring the observations of 1752 and 1802, and the error of
Bradley’s observations at the former period to have been 5", the

corresponding error in the difference of the longitudes would
/4

amount only to —, or 0”.1.
50

But the case is somewhat different with the epoch. There is
no part of the process in determining it that has an effect, like
that we have just described, in lessening its errors. The mean
longitude at any epoch, 1752 for example, must depend for its
accuracy on individual observations made at that epoch, or, at the
most, on the mean of such observations. The Sun’s right ascen-
sion must be determined (according to the method described in
Chapters VII and XVI,) and the Sun’s longitude must be thence
deduced. The mean longitude, therefore, of the epoch is subject
to some uncertainty, and, consequently, the mean longitude of the
Sun at the proposed time will he alike subject to the same.
Hence, if ¢ be the time elapsed since the epoch, and m be the
Sun’s mean motion, since

M= 0 + mt,
dM =d0O = z.

Suppose, in the next step (see p. 508, 1. 9,) the longitude (%) of
the perigee to be taken. Now, it is plain, if we: revert to
pages 477, &c. that there is some uncertainty in that method, or
that there may be a probable error of several seconds in the
determination of its longitude : such error then will affect the
:mean anomaly (4), and exactly by its ‘quantity, since.

A=M- m;



b1}

therefore; if + x be the error in 7, — 2 will be the corresponding
error in A4 : but (see p. 468,) the equation of the centre (E) depends
on 4, and, according to the value of A, will be increased or de-
creased by a given error in' A.. Now any error in the equation:
of the centre, will affect, with its exact quantity, the true longitude,
since this latter equals M + E, the effects of planetary pertur--
bation and of the inequalities not being considered.

. This is one effect on the longitude produced by an error in the
equation of the centre : which error is derived, through the mean
anomaly, from the error of the longitude of the perigee. But
there is a second source of error of the equation of the centre
arising from an uncertainty or error in the determination of the
eccentricity, ,or [since (see p. 473,) the greatest equation of the
centre is expressed in terms of the eccentricity,] from an error in
the greatest equation of the centre. This error, according to. the.
value of the mean anomaly, that is, accordingly as the equation. of
the centre is ‘to be added to, or subtracted from the mean longi-
tude in the finding of- the-true longitude, will cause a positive or
negative error in the resulting value of the true longitude..

Hence, since the true longitude, or
L=M+ E+ P,

dL—dO+é£d1r+-d;Ede

Supposing P the sum of the perturbations ta be rightly deter-
dE
mined, and- denoting by — . —— d the error in E, arising from an

eror (d ) in the longitude of the perigee, and by %? de the error

in E, arising from the error in the eccentricity.

What now remains to be done is to find the means of stating
these variations (40, d, d E) under a form fitted: for arithmetical
wmputation. - The error d O may be (see p. 510,) expressed by z,
since if z (5" for instance,) be the error in the mean longitude, z
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(5" will be the corresponding error in the true longitude.
N dE d
ext, :i_v-r ™, or I,

affects the longitude by altering, through the mean anomaly,
the equation of the centre. Since (see p. 473,) we have an ex-
pression for the equation of the centre in terms of the mean
anomaly, we can find the error in the former correspounding to a
given error in the latter : but it is most convenient, for such pur-
pose, to use the Tables already constructed. Suppose then [for

it is necessary (see p. 511,) to take an instance] the mean anomaly
to be 6* 18°; we find in the Solar Tables,

anomaly 6 18° 0/, equation of centre 0° 35' 43".4

anomaly 6" 18 10, equation..... . 038 2.2
—_— = x 2
0O 0 10 0 O 18.8

Hence, to a variation of 1’ in the anomaly, there corresponds
1”.88 in the equation, and, accordingly,

. ) 18.8
60" : x :: 1”88 : x x - = 0318 z.

We illay make a like use of the Solar Tables in finding the
. d . .

numerical value of :lg de. If the eccentricity be changed, the
greatest equation of the centre is changed. Now in the Solar
Tables the secular variation of the greatest equation (when the
anomaly is of a certain value) is supposed to be 17”.18, and cor-
responding to such a variation, the proportional secular variation
of the equation of the centre, corresponding to a mean anomaly
= 6" 18° is 5”.15.

Hence, if y be the variation or error of the greatest equation,
UA

o .15
17"18 : 515 1 y - 71 XY= 2969 v,

which is the corresponding error in the equation of the centre-
belonging to an anomaly of 6 18°: we have now then, in this
instance, '

dL = z 4 0313 x — .2069 v,
d L is an-error of the computed longitudé arising from errors in
the epoch, the place of the perigee and the value of the greatest
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equation. In oider to find its value we must compare the com-
puted with the observed longitude (or rather the longitude computed
from an observed. right ascension and the obliquity of the eclip-

tic) : the difference of the two longitudes, on the supposition of
the exactness of the latter, is d L or C, then

C =z + .0313 2 — .2969 v,

and in order to determine z, & and y, there is need of two other
gimilar equations.

In page 482, from observations of the Sun’s right ascension
and the obliquity of the ecliptic, the Sun’s longitude was found
equal to ' '

3. 90 6’ Qgﬂ.l;
whereas, in the Nautical Almanack, the computed longitude is
8 9° 6 48"
the error of the Tables, then, or C is 13".9.

In the instance we have given, the anomaly was assumed equal
to 6° 18°, and the Solar Tables were, on grounds of convenience,
made use of to determine the coefficients of ¥ and z. That was
effected by merely taking from the Tables the secular variation cor-
responding to the given anomaly, or to the corresponding equation
of the centre, and the difference or variation of the equation of the
centre corresponding to a difference of ten minutes in the anomaly.
Itis plain, then, the coefficient of y will be the greater, the greater
is the secular variation, which is the greater the nearer the pro-
posed anomaly is to that anomaly to which the greatest equation
of the centre corresponds. Now the greatest equation of the
centre happens (see p. 472,) in points near to those of the mean
distances. The Sun is at his mean distance in March and
September. Hence, if we select from observations those made
towards ‘the latter ends of those months, and derive equations
similar to the above, the coefficients of y will be, nearly, as
great as they can be. The contrary will happen, in such obser-
vations, to the coeflicients of x : since these depend on the variation
of the equation of th¢ centre corresponding to a given variation
of the mean anomaly, they must needs be the smallest when the
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former variation is at its least; which happens near to the mean
distances, when the equation of the centre is at its maximum.
The reverse of this whole case will happen if we select observa-
tions made near to the apogee and perigee, the secular variation *
of the equation of the centre is then the least : but the variation*of
the equatton of the centre, corresponding to a given variation of
the anomaly, is the greatest. The coefficients, therefore, of z, in
this case, will be as great as they can be, and those of y as small.
Hence, if we possess a long series of observations, we have it in
our power so to_use them, that in the derived equations (such as
that of p. 512,) the coefficients of z and y shall be, respectively,
as large as possible.

For instance, on March 24, 1775, the Sun’s mean anomaly,
as it appears by the Tables, was

@ 92 42’ 44".7.

The secular variation is 17”.12, the difference 2".2 ; therefore
. 1
(see p. 512,) the coefficient of y = —;% (— .0965), of x
2" :
=5 = .0366, consequently, if the error of the Tables (the dif-
ference of the computed and observed longitude) were — 1".7,
we should have

-1"7=z4+ 9965 y — .0366 z.
Again, (about half a year afterwards, the Sun being again near
his mean distance) on September 23, we find
anomaly 8° 23° 4/, secular variation = 16".95, difference = 2".9;

* The secular variation of the greatest equation of the centre is its
variation, (arising from a change in the eccentricity of the orbit) in one
hundred years. - Its present value is 177,18, and whenever- the greafest
equation is changed, every other equation of the centre is changed. If
15", or 17".18 be the change in the former, there will be, in every case,
a proportional and calculable change in the latter. - But it is- convenient
to use the.change 17”.18 (denominated for the reasons above specified
the secular) because, in the Solar Thbles, we find the proportional change
affixed to every equation of the centre.
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16.95 .20

17.18° 6

error of the Tables were 5”.4, we should have this equation
5".4 = z — 9866 y + .0483 z,

and if we selected fifty observations, half made near to the end of
March, the other half near to the end of September, the former
would all resemble the first equation, the latter the second ; in
each the coefficient of y must be large, but in the former the

. coefficient must be positive, in the latter negative, since, when the
mean anomaly is about 2* 20°, the equation of the centre is addi-
tive, when about 8° 20° subtractive.

therefore 'the coefficients of y and x are , and, if the

In like . manner if W@ select two . observations made near the
apsides; on June 25, and December 28, 1784, we have
June 25, anomaly 5* 25° 1’ 33", ‘secularvar®. 1”.44. diff. 19".6
Dec. 28, . . ov 11 28 20 51.64u.v ceeees 0.5 ..., 20.5
and accordingly, the coefficients of x and y are
1”44 0"5 - 1796 2.05
—, —— and ——, —,
17.18 ° 17.18 6 . 6 .
and the two resultmg equations, if the errors of the Tables be,
respectively, — 3”.4, — 1".5
— 8’4 =2 4 .0838 y + .3266 =
- 1"5 =2 — .02913y — .3416 x,
and, in all pairs of equations so derived (from observations made
near to the apsides and distant from each other by about six signs)
the coefficients of x will be as large, as they well can be, and the
coefficients of y, as in the former pairs of equations, will be
respectively positive and negative.

Suppose then, we had, in all, one hundred equations, fifty
derived from observations near the mean distances, fifty from
observations near.the apsides, .and that we added the one hundred
equations together : then the coefficient of z would be one hundred,
and the coefficients of ¥ and x would be the excesses of the
positive coefficients, in the several equations, above the negative :
the equation divided by one hundred would be of this form,

A=z —ay '-l-bx-........v. (l)a



516

In order to obtain a second equation, take the fifty equations
derived from observations near to the mean distances, then
twenty-five of these equations (see p. 515,) must be of the
form,

—1".7 =z + .9965 y — .0366 z,
twenty-five of the form 5”.4 = z — .9866 y + .0483 z,

change the signs in every one of the latter twenty-five, then there
will be twenty-five equations such as

-1"7= z+ .9965y — .0366z,
twenty-five, such as — 5".4 = — z 4+ 9866 y — .0483 z.

2 dd now the whole fifty together and tM® 2’s will disappear ; the
coefficient of y will be the sum of such quantities as .9965,
9866, &c. the coeflicient of x will be result of combining several
positive and negative quantities: the resulting equation divided by
the sum of .9965, .9866, &c. will be of the form

B=y-m.‘l‘.....g....(2).

* Proceed in like manner with the fifty equations derived from
.observations made near to the apsides : that is, since the object is
to make the coefficient of z, in the resulting equation, as large as
possible, make the coefficients of z, in all equations, such as the
one of p. 315, 1. 20, positive, by thus writing it,

1”5 = — z + .02913 y + .3416 z,

then, in all the fifty equanons, the coefficients of x will be posmve
add together the ﬁfty equations, and the coefficient of x will be' the
sum of fifty quantities such as .3266, .3416, &c. and the co-
efficients of y and z will be the differences of certain quantities :
divide by the coeﬂicwnt of z, and the resulting equation will be of
the form

. C=pz +9y+z.ieiiiii. (3.

"And itis from these three equations {(1), (2), (8),} that the values
of z, y, 2, are to be derived by elimination, .

The principle in the above process of combining sets of equa-
tions in order to produce a mean equation is obvious : if z, or v,
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or z is to be determined, the larger its coeﬂicnent the more exact
will be its resulting mean value.

In what has preceded, we have, in substance, followed
Delambre’s method in the Memoirs of the Academy of Berlin for
1786.  Inthese Memoirs, which are on the Elements of the Solar
Orbit, one hundred equations are used, fifty from observations of
the Sun wear his mean distances, fifty from observations of the
Sun at his greatest and least- distance. The results (see Mem.
Acad. Berlin, 1786, p. 243,) of M. Delambre, are

correction of the epoch v+ ... .. .. = — 0".4002,
of the longitude of the apogee ..... = — 24".71,
of the greatest equation of the centre'. . + 0”.3227,

which corrections are to be applied to Mayer’s Tables, with which
Delambre compared Maskelyne’s Observations.

By means such as we have described, Mayer’s Tables were
corrected. The errors of the corrected Tables were found not to
exceed 9”. The sum of the hundred errors (of the positive
and negative together,) ‘amounted to 318".3, and, therefore, the
mean error was 3”183, which, as the learned author remarks % 1s,
considering all circumstances, a very small error.’

The method of correcting at one operation all the elements is
what is now generally practised. But, in a preceding volume of
the Berlin Memoirs (for 1785,) Delambre corrects the elements
individually, by the comparison of particular observations with
the results obtained from the Solar Tables. Thus, suppose the
longitude of the apogee, or the longitude of the Sun occupying
the apogee, to be found, on June 29, at 22" 37™ 37* to be

* <« Iz sil'on se rappele que ces erreurs si peu considerables sont
pourtant produites par trois 3 quatre causes differentes, comme les erreurs
des observations, celles des reductions, celles des catalogues d’étoiles, enfin
les quantities negligés ou peu connues dans la theorie, on s’etonnera peut-
&tre que les Geometres et les Astronomes aient pu les renfermer entre des
limites aussi etroites, et l’on ne pourra gueres se flatter d’ajouter beau-
coup 3 une parelle precision.”

3vu
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3 9° 3’ 8”. But, according to Mayer’s Tables, the longitude of
the apogee was 3* 9° 6’ 43", therefore — 8’ 35" was the cor-
rection of such longitude. The same observation corrects also
the mean longitude of the Tables: for, at the apogeé, the mean
and true longitudes are the same. The mean longitude, therefore,
was 3* 9 8’ 8”: but the Tables gave 3* 9° 8’ 20”. The correc-
tion, therefore, for the epoch of the Tables, according to the
above observation, was — 12",

But, whichever be the method employed, it is essential to
its accuracy that all the sources of inequality by which the Sun’s
true longitude is made to differ from its mean, should be known :
for, otherwise, the longitude of the apogee, or the equation of the
centre, might be wrongly corrected. Before the discoveries of
Newton, for instance, those differences of the observed and
computed longitudes which are due to planetary perturbation,
would, from ignorance of their causes, have been attributed to
errors in the epoch, equation of the centre, and longitude of the
perigee; and, had such a method of correcting those errors been
used as has been already (see pp. 512, &c.) described, its results
would have given wrong corrections.

It needs scarcely be observed that the assigning of the laws and
quantities of the perturbations caused by the planets is a difficult
operation. 'The arguments (see Physical Astron. Chap. VII, &c.)
may be derived from theory, but their coefficients must be deter-
mined from observations. M. Delambre has accomplished these
objects, by the comparison of 314 of Maskelyne’s observations, and
by Laplace’s Formulz. The learned Astronomer in his first cor-
rection of the Solar Tables reduced their errors within 15", whilst
the errors of Mayer’s Tables sometimes exceeded 23”. But, as
he found that the computed and observed longitudes could not be
brought nearer to each other, and as their differences did not
follow a regular course (in which case they might have been, in
part, attributable to the errors of observation) he suspected that
the solar theory was in fault, or rather, that part of it which assigns
the correction of the Sun’s elliptical place on account of the per-
turbations of the planets. In this emergency he had recourse to
Laplace, who, from his Theory, derived two equations due to
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Mars’ action, the sum of which might amount to 6".7 : the same
great mathematician also assigned 6" for the value of the principal
term of the lunar equation, and 9”.7 for the maximum of the
equation of Venus.

There are also some other points to be attended to in the
correction of the Solar Tables: for instance, the value of the
obliquity of the ecliptic. For the observed longitudes with which
the longitudes derived from the Solar Tables are compared, are,
in fact, (see p. 513,) computed from the observed right ascension
and the obliquity of the ecliptic, and, therefore, their accuracy
depends, in part, on that of the obliquity.

In the deduction of the equations of condition, the coefficients
of r and y (see pp. 512, &c.) were obtained by the aid of Solar
Tables : an operation, as we then stated, of mere convenieuce and
in nowise essential. If we had not been able to avail ourselves
of Tables, we should then have been obliged to have gone back
to the very formule used in constructing the Tables. And this
indeed, but with some loss of expedition, would have been the
most scientific proceeding.

We snbjoin these formule, some of which have been already
given.
If e be the eccentricity, and E the greatest equation,
11 587 .
=L Esin. 1" - — in?1”" = ———— E®sin% 1"
e=1 Esin. 1 68 E? sin 983040

40583
2642411520

If E = 1° 55' 26”.82 (its value in 1780) e = 0.016790543.

E’sin” 1" - &ec.

If 2 = nt, be the mean anomaly, the equation of the centre
is equal to '
— 1° 55’ 26".352 sin. &+ 1' 12".679 sin. 2 & — 1".0575 sin. 3 3
+ 0".018 sin. 4 2,
aud the true anomaly (a) is equal to @—1° 55’ 26".852 sin. Z+&e.
and the differential of the true anomaly, or da is equal to
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d2 — dZ.sin. 1" x 1° 55 26".8352.cos.
+ 2d 2Z.sin. 1" x 1'12".679 cos 2 3 — &ec.
letd 2 = 21—4 (59’ 8".2) = @' 27".8416 the Sun’s * mean horary
anomalistic motion :-d a is the Sun’s elliptical horary motion, and
da=2'27".8416—4".9645 cos. Z+0".1042 cos. 2 - 0.002 cos. 3 2.
In order to obtain the horary motion in longitude on the eclip-
. . 1 ..
tic, we must, since — (59’ 8".83) = @' 27".8471, write in the
above value of da, this latter quantity instead of 2’ 27".8416.

If v be the Sun’s true anomaly, 2 — v is the equation of the
centre, and the greatest value of (2 — v)

o4 17219
(2e + 5120 + 2293768 + ) sin. 17’
and (v) ,
09875
=0q0° — & > 1 .
90 ( e+ + +1835008q + c)sin. 7’

and the sum of these two equatlons gives that value (Z) of the
mean anomaly to which the greatest equation belongs, and,
accordingly,

1383

' 39877 1
— < =t 5 7
() = 90° +(4e+ss4 + 20060 ¢ +25b‘x71686) sin. 17

If we neglect the terms beyond the second, we have

‘ 5
(@ = 90° + = ;le,, =91° 12’ 9".51,

* The time and Sun’s motion being dated from the perigee, and the
perigee being progressive (see p. 486,) at the annual rate of 62”, the
horary motion is that same portion of 360° which 1 hour is of the time
of the Sun's leaving his perigee, to his return to the same : which timeis
an anomalistic year.

+ Log. 5¢ = 8.9240351
log. sin. 1” = 4.6855749

4.2384602 = log. 4329".5 = log. 1° 12 9”.5.
Now,
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in the solar orbit, in which, at the epbch of .1780,
e = .0167905483.
Since, in the Earth’s orbit (%, €%, &c. being extremely small),

=—(‘2e-——-)sm.z+—e sin. 2 3 — essm.SZ

2.3

dE= —de ((2 —75¢%)sin. Z+2.5es5m0.2 2 —.Te’ sin. 3 Z) ;

therefore, if we make d E to represent the secular variation of the
greatest equation of the centre, we have
d E being = 17".18,

17”18
de = — ?

2sin. () —2.5¢esin. (2 3) + l; e sin. (8 Q)

() being the anomaly (91° 12’ 9”.5) belonging to the greatest
equation.

From this equation the secular variation of the eccentricity may
be computed.

The variation of the equation of the centre is to be had from
the formula of 1. 5, and if, in that formula, we substitute for
de the secular variation of the eccentricity, the result will be the
secular variation+ of the equation of the centre corresponding to
the anomaly 2. By such an expression, then, we are able to
dispense with the Solar Tables, or, which amounts to the same, to
compute what is therein computed.

In the preceding pages of this Chapter frequent mention has
been made of the secular variation of the eccentricity, and (which

Now,

108, eueeeereressecererennnenaneenne 360° = 2.5563025
anomalistic year = 3659,25971 log. = 2. 5626017

9. 9937008 = 0°.9856
= 59 8".16,

and 23 th = 2 27.84.
* Expressed by 17".177 sin, Z—0".03606 sin, 2 Z- 0”.0078 sin. 3 Z
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depends upon it) on the secular variation of the greatest equation
of the centre. Now these are, as the terms themselves import
them to be, the variations effected in one hundred years, and the
terms are never applied except to the changes that happen in
quantities nearly constant. The method of determining their
values, is, in fact, contained in that process (see pp. 511, &c.)
by which thé elements themselves are determined. Thus, with
regard to the greatest equation of the centre, its value ought
first to be corrected by comparing the observed longitudes of
1752, for instance, with the computed longitudes. In a second
operation, by comparing, for instance, the observed longitudes of
1802, with the computed. The result of each operation would
be a corrected value of the greatest equation of the centre. The
difference between such values would be the variation in fifty
years, or would be half the secular variation.

There is a method *, other than what has been given, for cor-
recting the elements : it consists in making the sum of the squares
of equatlons like (1), (2), (8), (see P 515,) a minimum : for instance,
using, for illustration, the equations obtained in pp. 515, 516,
we should have

(1".7 4249965 y — .0366 2)*+(— 5".4+2z—.9866 y + .0483 z)*
+ (3".4 4+ z 4+ .0838 y -+ .3266 z)* + &c. = a minimum,
and, accordingly, making y to vary, o
9965 (1".7 + z + .9965 y — 0366 a)
— .9866 (— 5".4 + z — .9866 y + .0483 1)
‘ + &c. = 0.
In like manneér, make z to vary, and z to vary, and obtain simi-

lar equations : then, from the three resulting equations thus ob-
tained, eliminate r, y and z.

We have explained what ought to be understood by the
secular variation of an element: and there i 18, what is called, the
secular motion of the Sun, which is the excess of the Sun’s
longitude above 36000° in 100 Julian years: a Julian-year con-

* Laplace, Sur les Probabilités, Chap. 1V. Biot, Phys. Astron.
tom, II. Chap, X.
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sisting of 865 } days. Now, by comparing together the Sun’s
mean longitudes at different epochs, it appears that, in 100 Julian
years, or in 36525 years, the Sun’s motion = 36000° 45’ 45",
accordingly, in one Julian year of 365° 6", the Sun’s motion is
860° 0' 27".45, or 12° 0’ 27".45; accordingly,

in'1 Julian year of 365% 6" the Sun’s motion = 36(° 0’ 27".45
and, in 1 common year of 365 ........ = 359 45 40.37
in a Bissextile year of 366 ............ = 360 44 48.697

and, accordingly, to find the epochs of the Sun’s mean longitude
on years succeeding a given epoch, add, for common years, re-
peatedly, to the epoch, 11° 29° 45’ 40”.37, aud reject the 12,
or subtract 14’ 19".63.

When a Bissextile year occurs, add

12* 44’ 48".697, or 44’ 48".697.

Thus, 1781, epoch of Sun’s mean longitude 9* 11° 29’ 9.5
‘ 0 0 14 19.63

epoch for 1782 .......... 0 11 14 49.87
0 0 14 19.63

epoch for 1783 .. ........9 11 0 30.24 -
0 O 14 19.63

epoch for 1784 .+.eee....9 10 46 10.6
1784, is a Bissextile, therefore add .......0 O 44 48.697

epochin1785 ...ec00ee. 9 11 30 59.3

Thus the epochs are successively formed : but, if we wish to
deduce, at once, the epoch of 1821, for instance, from that of
1781, since in the interval of forty years* thirty-one are common,

* The year 1800 divisible by four, and, therefore, according to the
common rule, a Leap year, is, however not so, but, as a complementary
year, a common year of 365 days (see the Chapter on the Calendar).
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and nine Bissextile years, we must subtract from the epoch of
1781, the difference between

81 x 14’ 19".63, and 9 x 44’ 48".697, that is, 40’ 50".23,
accordingly,. since the epoch of 1781 is ......9" 11°29' 9.5
epoch of 1821, .........9 10 48 19.27

Before we quit this subject we vyfsh to say one word re-
specting the difference between the French and English Tables
of the Sun. The epochs in the former are for the first of
January, mean midnight, and the meridian of the Paris Observa-
tory: in the latter for the first of January, mean noon, and the
meridian of Greenwich. Now Paris is 2° 20’ 15”, or in time
9™ 21° to the east of Greenwich : consequently, the interval of the
two epochs, is 12" 9™ 21°, in which time, the mean increase of
the Sun’s longitude (59’ 8”.33 being the increase in a mean
solar day,) is 29’ 57”.2: consequently, the epochs of the Sun’s
mean longitudes, for the same years, are greater, in~the English
Tables, by 29' 57”.2. .

The knowledge of the Sun’s mean secular motion enables us,
most correctly, to assign the length of ‘a tropical, or equinoctial
year. But this point and others connected with the subject of
solar time, will be reserved for the ensuing Chapter.



CHAP. XXIL

On Mean Solar and Apparent Solar Time.— The Methods
of mutually converting into each other Solar and Sidereal
Time.— The Lengths of the several Kinds of Years deduced.
—On the Equation of Time.

It happens with. mean solar time, as it does with sidereal time.
We cannot obtain their measures immediately from phenomena,
but are obliged from phenomena to compute them.

The constant part, the unit, if we may so call it, of sidereal
time, is the time of the Earth’s rotation round its axis (see
pp. 106, &c.): and such time, in our computations respecting
portions of sidereal time, or of right ascensions, is supposed to
remain unaltered. The phenomena nade use of, are the transits
of fixed stars over the meridian: but the intervals between suc-
cessive transits of the sume star, are not (as it has been already
explained in pp. 106, &c.) exactly equal : they are, therefore, not
sidereal days, if such terms be intended to signify equal portions
of absolute fime. :

Besides the causes that equally affect the fixed stars and the
Sun, the proper motion of the latter, inequable from its proper
motion in the ecliptic, and inequable by reason of the obliquity
of the ecliptic, prevents the intervals between successive transits
of the Sun, over the meridian, from being equal portions of solar
time. We must consider then, by what means we are able to
compute mean solar time, and to know whether or not, a clock,
going equably, keeps mean solar time. :

The Sun’s motion (see p. 523,) in 365%.25, is 360° O’ 7” 45
consequently,

3 x
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360° 0’ 27".45

365.25
is the increase of the Sun’s mean longitude in one day, con-
sisting of twemty-four mean solar hours. A mean solar day,
therefore, must exceed a sidereal day, by the portion of sidereal

time consumed in describing 59’ 8".33. Now 360° are de-
scribed in twenty-four sidereal hours;

= 59’ 8".33,

59’ 8".33
360
= 236".555 = 3™ 56°.555 of sidereal time:

hence, twenty-four mean solar hours are equal to 24" 3™ 56°.555
of sidereal time : and a clock will be adjusted to mean solar
time, if its index hand makes a circuit, whilst that of the sidereal
clock makes one circuit and 3™ 56*.555 over: or, if each clock
beats seconds, the solar clock ought to beat 86400 times whilst
the sidereal beats 86636 £, nearly.

.. 360° : 24" :: 50’ 8".83 : 24 x

In order to find the number of solar hours to which a sidereal
day of twenty-four hours is equal, we must use this preportion,

86400
86636.555
= 23" 938447 = 23" 56™ 4°.092 of mean solar time.

86636.555 : 24 :: 86400 : 24 x

The difference between twenty-four hours and the last time, is
3™ 55°.908. Hence, subtract from twenty-four hours of sidereal
time 3™ 55°.908, and the remainder is the number of mean solar
hours, minutes, seconds, and decimals of seconds, to which twenty-
four hours of sidereal time are equal.

Hence, subtract 1™ 57°.954 from twelve sidereal hours, and
the remainder is their value in mean solar time; subtract
0™ 58°.977 from six sidereal hours, and the remainder is their
value in mean solar hours: and these subtracted quantities are
called the accelerations of the stars in mean solar time; a table
of which accelerations might, as it is plain from what precedes,
be easily formed (see Zach's Table XXVI, in his Nouvelles
Tables d’ Aberration, &c.)
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By means of these latter results and the Solar Tables, we
can now, from the sidereal time, . find the mean solar time.
Thus, suppose it were required to find the mean solar time at
Greenwich, on August 20, 1821, when the corrected sidereal
time by the clock was 20" 42™ 19°.4.

By the Solar Tables,

Sun’s epoch for 1821 «vv v v vu.... O 10°48' 10°.2
mean motion to August 20, .... 7 17 41 4.2

mean longitude of Sun on Aug. 20, 16 28 29 23.4

Reject 12°, and convert the remainder into time, and

428020725 4 0 tunrenanee.. =00 53° 57054
now equation of equinoxes (see p. 376,) .. .. 0 0 0.47

,@m’s mean longitude) on the meridian
at Greenwich on August 20, 1821,
but true sidereal time . . .. cevert veuea... 20 42 19.4

diff. of R between Sun and the point
. of* the heavens on the meridian
subtract (see p. 526,) the acceleration, or.... 0 1 46.216

}.....'9 53 58.01

}.....10 48 21.39

mean solar time when the sidereal

. oo.ooooolo46 35017
time was 20" 42™ 10°.4 }

Now one use of this operation (the conversion of time shewn
by the transit of a star, or by the sidereal clock, into mean
solar time) is the correction, or the means of ascertaining the rate,
of chronometers. For instance, in the above case, if the chro-
tometer, at the instant the sidereal time was noted, should mark

* The corrected time shewn by the sidereal clock, is technically called
the Right Ascension of the Mid-Heaven. By means of the transits of -
kuown. stars, the error and rate of the clock (see pp. 104, 105, &c.) are
determined. The clock so corrected, must shew at every point of time,
during the sidereal day, the right ascension of a star, (should there bs
any one) or of a.point in the heavens then dn the meridian.

Y / .7
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11" 10® 11*  of mean solar time, since
(seep.527,1.19,)40 46 85.17 was the true mean solar time, -

0 23 385.83 would be the chronometer’s error.

- If, on the next day, by similar observations and computa-tidns,

11* 12® 18*  should be the watch’s time,
10 48 38.5 the true mean solar time,

0 23 84.5 the error.

Hence, the watch would be 23™ 385°.83 too fast the first
day, 23" 34'.5 too fast the second day, accordingly, in the
twenty-four mean solar hours the watch would have lost, nearly,

1°.38, or, as far as these two observations shewed, its daijly rate
would be — 1°.33.

In illustrating the use of finding, by the Solar Tables and
the sidereal clock, the mean solar time, we have supposed the
place of observation to be Greenwich, for which our present
Solar Tables (those inserted in the third Volume of Vince’s
Astronomy) are constructed. For any other place of observation,
(Dublin Observatory, for instance) we must, in computing the
Sun’s longitude from the Solar Tables, allow for the difference of
the longitudes of the two observations of Greenwich and Dublia,
That difference, in time, 1s 25™ 20°, and the increase of the Sun’s
longitude in that time is

25" 20 ..
o % 59’ 8”.33 = 4°.15 in time,

consequently, we must add 4°.15 to the Sun’s mean longitude
expressed in p. 527, 1. 13, which will so become

9" 54™ 2°.16.

The secular motion of the Sun affords, as it was hinted at
the end of the last Chapter, a good method of determining
the length of the equinoctial year. Thus, jn 36500 days the
Sun describes 1200° 0° 45’ 45" : but in one hundred equinoctial
vears the Sun describes only 1200°: consequently,
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1200° y
1200 0° 45’ 45" * 36500°
= 36524%.2263096593684,

100 ‘equinoctial years =

consequently,
a mean equinoctial year = 365%.242264, nearly,
' = 365° 5" 48" 51".6.
We may hence deduce a sidereal year. In this year a
complete circle of 360° is described, whereas, in the equinoctial

year, an angle equal to 360° — 50”.1 (supposing 50".1 to be
the precession) is described.

Hence,
359° 59’ 9”.9 : 360° :: 365% 5" 48™ 51°.6 : 365 6" 9™ 115,
the length of a sidereal year exceeding the equinoctial by
20" 19°.9. This is the kind of year which Kepler’s Law speaks
of (see p- 455.).

The anomalistic year is the period from apogee to apogee.
The progression of the apogee (its increase of longitude) being
11.8, the anomalistic year is completed when the Sun has
described 360° 0’ 11”.8.

Hence, its length

_360°0' 11".8

n 360

longer than the sidereal by 4™ 47°.3 and longer than the equi-
noctial by 25" 7°.2.

x 365° 6" 9™ 11°.5 = 365° 6" 13™ 58°8,

The use of the anomalistic year consists, as we have seen
in p. 477, .in finding the exact place of the apogee. The horary
motion which we computed at p. 519, is a portion of the ano-
malistic motion.

By means of the preceding regults it is easy to convert one
species of time into another, and to assign the number of degrees,
minutes, &c. which the Sun and a star will respectively describe
in a specified portion of sidereal time, or in an equivalent portion
of mean solar time. For instance, the Sun describes an entire
revolution of 360° in 24" 3™ 56°.5554 of sidereal time.. In one



530
mean solar day the motion of the sphere, or of a star, is
360° 59’ 8”.33, consequently, a star, in one mean solar hour,
describes
360° 59' 8".33

= 15° 2’ 27".84708.
24 2’ 27".8470

*  But hitherto no method has been given of converting either
sidereal, or mean solar time, into apparent time, or of com-
puting, from the instants of apparent time, (which instants, as
we shall see, are marked by phenomena) the corresponding mean
solar times and sidereal times.

In apparent solar time, the term day means the interval be-
tween two successive transits of the Sun over the meridian:
which interval (see pp. 431, &c.) is a variable quantity®. There
cannot, therefore, be any simple rule for converting apparent
solar time into mean : since there cannot he a constant proportion
between the two, as there is between sidereal and mean solar
time.

The correction then to be ‘applied to apparent time, in order
to reduce it to mean tlme, is a variable correction: not to be
expressed by a simple term, but by several variable terms that
respectively expound the several causes that render inequable,
the Sun’s motion in right ascension.

This correction, or equation, by which apparent time is made
equal to mean time, is technically called the Equation of Time:
and our present concern is with the method of computing it.

For the purpose of elucidating such method, and of guiding
us in it, let us felgn mean solar time to be measured by a ficti-
tious Sun, movmg equably in the equator, with the real Sun’s -
mean motion in nght ascensxon, and consequently, (see p. 526,)
at the rate of 59’ 8”.33, in twenty-four mean solar hours.

If this motion begin to be ‘dated from the first point of Aries,
“the right ascension of the fictitious Sun, after an interval of time

* Not only variable according to the time of the year, but, in strict-
ness, variable on the same days of civil reckoning at different places.
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equal to ¢, will be equal to 59’ 8”.33 x ¢. The right ascension
of the real Sun depends upon, or may be computed from, his
true longitude, and the true obliquity of the ecliptic, of which
" latter computation we have given instances in pp. 504, &c.
In each case, the reckoning is made from the first point of Aries,
and the equable regression of that point is taken account of,
~when 59" 8”.33 is assigned as the mean increase of the Sun’s
right ascension in a mean solar day.

In the above case then (that of the equable retrogradation
of the equinoctial point), the difference between mean solar time
and apparent time, or the equation of time, is equal to the
difference between the true right ascension of the real Sun, and
the right ascension of the fictitious Sun, or, which is the same
thing, between the true right ascension of the Sun, and his mean
longitude.

But let us suppose, which indeed is the case, that the equable
retrogradation of the equinoctial point is disturbed by a dis-
placement of the pole of the equator (and consequently of the
equator itself) such as is caused by nutation: then the longitude
of the real Sun, and the right ascension of the. fictitious Sun
describing the equator will both be altered. The right ascension
of the latter will no longer be

59'8”.38 x ¢, but 59' 8”.33 x t + ¢ o' x cos. obliquity,

(see the figure of p. 357, in which ¢ o’ represents the effect of
nutation) whilst the longitude of the Sun, no longer measured
from oo but from oo’ will be affected with the whole quantity
o o’. But, wherever the point ¢ be, the true longitude is
always measured from it, and from such true longitude the right
ascension must be computed. In this latter case, then, the
equation of time is the difference of the Sun’s right ascension,
and of his mean longitude (59’ 8”.33 x t) + o . cos. obliquity.
But this last term (¢ o’ cos. obliquity) is the nutation in right
ascension of a star in the equator, or,-technically, is the equation
of the equinoxes in right ascension ; if, therefore, we use this
latter term, The equation of time is the difference of the Sun’s
true right ascension, and of his mean longitude corrected by the
equation of the eguinoxes in right ascension. v
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The equation of the equinores in longitude (the effect of
putation on the Sun’s longitude) is (see p. 376,) = 18".034 .sin.  :
the equation of the equinoxes in right ascension, (the effect of
nutation on the right ascension of the fictitious Sun, which is
supposed to describe the equator) is

18”.034 . sin. & . sin. obliquity = (see p. 375,) 16".544 .sin. ..

Hence, if
S represent the Sun’s true longitude,
A his true right ascension,
M his mean longitude,
E the equation of the centre,
R (see p. 501,) the reduction to the ecliptic,
P (see p. 511,) the effect of the several planetary perturbations,
S=M+E+ P+18"0%4.sn. 8,
and, A=SFTR=M+E+PFR+18".034sin. 8,
but the R () of the fictitious Sun = M + 16".544 sin. 8 ;
». A — A’ (the equation of time) = E + PF R + 1".49.sin. &,
and, expressed in time,
the equation of time = P—+'—F5—I—E + 0°.0993.sin. & .
The cosine of the obliquity (cos. 23° 28 is, nearly, equal to
9178 _ 11
10000 12~
the Sun’s.true right ascension, diminished by his mean longitude
and the equation of equinoxes in right ascension, we have

Hence, since the equation of time is -equal to

11

. 12’
which, essentially, is the form under which Dr. Maskelyne
expressed the equation of time (see Phil. Trans. 1764).

the equation of time = 4 — M F 18".034.sin. @ x

Since, the right ascension is derived from the true longitude,
which itself depends, in part, on the effect of the planetary
perturbations, we cannot, without the aid of Physical Astronomy,
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compute the equation of time. For such a reason the Astropo-
mers, who lived previously to Newton, were unable  to compute
it. They could indeed nearly assign its value, since the Earth
is not considerably disturbed by the action of the planets.

The Solar Tables, of the present day, enable us to compute
the effect of the planetary perturbations. They, in fact, assign
the Sun’s true longitude, when such perturbations are taken
account of. They enable us, then, (although this is mot the
most convenient mode) to compute the equation of time.

Thus, on March 12, 1822,

Sun’s mean longitude . . « v ov ... 11° 19° 38" 43".2
longitude of perigee « ... vevein... .9 9 50 54.9
_ mean anomaly........ cediee.... 2 O 42 48.3

(see p. 468,) ; .. equation of centre (£) O 1 48 18.2
sum of perturbations (P) .......... 0 0O 0 22.18
(see pp. 501, &c.) reduction (R),. ... 0 0 42 13.8

E+P+R....coci00e..0 2 30 53.68

Hence, the equation of time (see p- 532,)
_ 2 30'-53".68
15
but, & = 10* 23° 54’ and sin. & = — .5801;
.*. the equation of time = 10™ 3°.57 — 0°.058
' == 10™ 3.5, nearly *.

+ .0093 sin.  ;

* The equation of time may be computed from an observed right
ascension of the Sun, and from the Sun’s mean longitude known from the
Tables. For instance, by observatigns (reduced observations) at Green-
wich, June 11, 1787,

By Clock. By Cat. (see pp. 371, &c.)  Diff. =
R of Sun’s centre 5 17m 9.6 .
of Procyen .... 7 27 15.58 .........72 28™ 0%.820.........540.24
of B Pollux .... 7 31 22.82.........T 3217.089 .........54.249
’ : daily-

Sy
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In the above example, E, &c. were computed to a mean
anomaly belonging to the mean noon of March 12, whereas, in
strictness, the computations ought to have been for the apparent
noon of that day. In other words, since the equation of time is
nearly 10™ 8, the Sun’s true longitude ought to have been com-
puted from the Solar Tables (which are constructed for mean
time) for March 11, 23" 49™ 57* of mean solar time ; since such
is nearly the time of apparent noon, on March 12; and the
equation of time, on the apparent noon of March 12, is the dif-
ference of the Sun’s true right ascension at that time and of his
mean longitude (corrected by the equation of equinoxes in right
ascension) at the same time. The result of the computation,
however, thus conducted, will differ, very slightly, from that
which has been just obtained.

The equations of time are set down in the Nautical Almanack,
and in the foreign Ephemerides, for every day of the year.

daily rate of clock 0°.84 ; therefore, at the time of the transit of the Sun’s
centre, the error of the clock was

58.245 — 0.07 iivrereecercrccencnees. OB 0P 548,17
Sun’s transit ...ceeeeeceecrenceneneeeese 5 17 9.6

therefore Sun’s right ascension ...... 5.18 3.77

Again, Sun’s mean longitude 1787, 9* 11° 2’ 20"
motionto June 11, ...cceeeeeeneee 5 8 41 211

2 19-43 41.1 .,...5" 18™ 5474
equation of equinoxes in right ascension ............ 0 0 1.08

5 18 55.82
5 18 3.77

0 0 52.05
The difference then of the true right ascension of the Sun, and of the
Sun’s mean longitude corrected by the equation of equinoxes in right
ascension, on the mean noon of June 11, 1787, (for the Tables are con-
structed for mean time) was 52°.05, true or appareut time preceding mean.
The mean longitude then at the time of observation, or on true noon, was
less by the increase of the mean longitude during 52°.05, or by 0%.142:
* consequently, the equation of time was 52°.05 — 0", 142, or 51°.91.
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They enable us to convert apparent solar time into mean and
sidereal time, and also, which is the reverse operation, sidereal
time into apparent solar time. We will give some instances
of these operations taken from M. Zach.

ExamrrLE L

Sidereal Time converted into Mean Solar Time, and true Time.
Place of Observation, Greenwich.

Jan. 18, 1787, beginning of a solar eclipse by sid. clock 18" 4’ 59"

=

clock too slow .....cce00.0vee 00 3
beginning of the eclipse by sidereal time ......... 18 5 4

epoch of Sun’s mean longitude for the begin-
ning of 1787, and the meridian of Gothe . .
Sun’s motion to January 18 ......cee0c.... 1 10 57.996
Sun’s motion in an interval of time representing
the difference (42’ 55”) of the longitudes of§ 0 0 7.049
Gothe and Greenwich, « oo ecv e veon e

} 18 40’ 5".895

equation of equinoxes in right ascension...... 0 0 1.06

Sun’s mean right ascension ........0000... 19 51 12
R of the mid-heaven or sidereal time .....,.18 5 4

approximate mean solar time. . .+ ceeevon. .. 22 18 52
(see pp. 526, &c.) acceleration .. ... c00.... O 3 38.52

m%ntime ..’..‘.....‘....l......'...22'10 13.48
eqllationoftime.......................-— 11 15.08

true or apparent time of the} eereereeea.. @l 58 58.4
beginning of the eclipse.)

Examrre II.

Mean Time converted into Sidereal,

Marseilles, 217 29" east of Greenwich, ’
1787, mean time of Venus’ transit over the meridian O 17™ 25°.5.
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By Vince’s 'Ijables, epoch of Sun’s} L G0 ¢ e
mean longitude for 1787, .... '

motion to January 2, .eveve.. ... O O 59 8.33

fOl’1725'.5.......,.......,.9 O O 042.92

, 912 ¢ 11.25
Sun’s motion in 21" 29* .......... O 0O O 529

Sun’s mean longitude, or R of mean Sun 9 12 1 1835

andintime .. ......00 . 00ea. ... 18* 48" 5%.228
equation of equinoxes ¢« evveveve.... O O 1.055

Sun’s mean AR from true equinox . .. ..18 48 6.278
culmination or transit of ¢ «vev.. o000 O 17 25.5

sidereal time, or, apparent R of 2 ... 19 5 81.78
. or, if we convert time into degrees,
Rof 2 vvviiiina... 286° 22 50".1.

Exampre IIL
True or Apparent Time converted into Sidereal.

Greenwich, June 11, 1787, Sun on meridjan o o= o
equationoftime ‘Oo.ﬂ.b‘..to.(.‘.'.c 0 O 52.379

mean solar time of Sun’s transit .. .... 23 .5'9‘:‘ 7.621

Now, by Tab. I—III, Vmce, vol 111, convertmg the de-
grees, &c. into time, at the rate of 15° for 1"

Sun’s mean longitude on June 11, 1787, .. 5" 18™ 5474
equation of equinoxes in right ascension .. 0 0 1.08

5 18 55.82
correction on account of 52'.379 . eveeee. 0 0 0.14

distance of mean Sun from true equinox .. 5 18 55.68
distance of mean Sun from mid-heaven ...0 0 52.379

AR of mid-heaven or sidereal time ¢».... 5 18 8.8
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In computing the equation of time by the methods in the
preceding page, we are obliged, in fact, to compute the Sun’s
true longitude : which is a laborious computation. In order to
avoid or to lessen such labor, Tables and approximate methods
have been devised (see Delambre’s Astronomy,vol. II, pp. 207, &c.
Vince’s Astronomy, vol. III, pp. 20, &c.)

In the preceding reasonings, for the sake of simplicity, we
have supposed the noon of mean time to be determined, by the
aid of the noon of true or apparent time marked by the pheno-
menon of the real Sun on the meridian, But, if by means of
the Sun’s altitude observed out of the meridian, and a knowledge
of his declination and of the latitude of the place, or by other
means, we compute the hour angle measuring the time from ap-
parent noon, we may, as easily as in the preceding case, compute
the equation of time for such time, and thence deduce the cor-
responding mean solar time.

What has preceded contains the principle and the mode of
computing the equation of time ; all, therefore, that concerns the
practical Astronomer. But if, for the purpose of new and farther
illustration, we continue our speculations, we shall find that the
equation of time, relatively to its causes, depends on two cir-
cumstances ; the obliquity of the ecliptic to the equator, and the
unequal angular motion of the Sun in its real orbit.

The Sun moves every day through a certain arc of the ecliptic:
which, in other words, is his daily increase of longitude. If we
suppose two meridians to pass through the extremities of this arc,
they will cut off, in the equator, an arc which is the daily
increase of the Sun’s right ascension. This latter arc will not
remain of the same value, even if the former, that of the ecliptic,
be supposed constant. At the solstice it will be larger than at
the equinox : the reason is purely a geometrical one : let S o be
the ecliptic, and < y the equator, then by Naper s-rule, if I be
the obliquity, Z the longitude, A the right ascension, D the decli-

‘tan. 4

: tan, J ’
hence, tan. Z x cos. I = tan. 4, and, taking the differential,

nation, 1 X cos. J = cotan. ¢ § X tam. o t =
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cos. I~ dA

"(cos, O* = (cos. A or, since cos. ! = cos. 4 x cos. D

- X
8

q’
dl,cos. I = dA (cos. D, or dA = dl.cos. I.(sec. D).

Hence, I being the same, d A varies, if d I be given, as (sec. D¥;
.. is least at the equinoxes and greatest at the solstices, and its
value is easily estimated at the former, for since’ D = 0, d4 =
.dl. cos. I; at the latter, since

11 . _ 4l
v cos. D cos. I" ST cos. I
«*+ d A (equinox) : d A (solstice) :: (cos. I Y1
:: (cos. 28° 28 : 1°
:: 8414 : 10000.

sec. D =

Hence, even on the hypothesis of the Sun’s equable motion
in the ecliptic, the true right ascension will not increase equably;
but since, by the very definition of the term, the mean longitude
does, the equation of time, which is the difference of the true right
ascension and the mean longitude (disregarding the equation of
the equinoxes) would be a quantity, throughout the year, con-
tinually varying, and vanishing at the solstices.

The hypothesis, however, of the Sun’s equable motion is con-
trary to fact ; the Sun moves in an ellipse, and consequently, does
not move uniformly, or equably in it. If a fictitious Sun, moving
with the Sun’s mean angular velocity, be supposed to leave, at
the same time with the real Sun, the apogee, they will again
come together at the perigee : but, in the interval, the fictitious
~ Sun would constantly precede the real Sun: the latter therefore,
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would be first brought on the meridian; true noon, therefore,
would precede the noon of mean time, supposing, now, mean time
to be measured by the imaginary Sun moving uniformly in the
ecliptic.

If therefore, we hypothetxcally annul the first cause of the
equation of time, by supposing the ecliptic to coincide with the
equator, still from the second, (the elliptical motion of the Sun,)
there would exist a difference between true and mean time; in
other words, an equation of time, continually varying ; vanishing,
however, at the apogee and perigee.

But, both causes in nature exist; the Sun moves unequably,
and not in the equator. From their combination then, the actual
equation of time must depend. It cannot be nothing at the
solstices, except the solstitial points coincide with those of the
apogee and perigee, but, (see p. 486,) in the solar orbit, there is
no such coincidence.

At what conjunctures then, will the equation of time be
nothing? We have already, for the purposes of explanation,
introduced two fictitious Suns, one moving equably in the ecliptic,
the other in the equator ; let the former be represented by 8", and
the latter by ", and the true Sun, that which moves unequably
in the ecliptic, by §'; then, true time depends on §’, and mean
time on 8”'; and consequently, when the meridian, passing through
one, passes also through the other, then is mean time equal to
the true, theréfore no equation is requisite, or the equation of
time is nothing. Let us suppose the two fictitious Suns §”, §"”
to move from the autumnal equinox towards the perigee ;' 8", in
this case, must. constantly precede S”, till they arrive at the
solstice, where the meridian that passes through one will pass
through the other®*. Hence, the real Sun §’, which coincided

* We shall frequently use the expression of 8’ rejoining S, or,
coinciding with it. Nothing farther, however, will be meant by such
expression, than that the meridian, which passes through the former in
the ecliptic, passes through the latter in the equator; and when §' is
wid to precede S, nothing more is meant, than that the point in the
‘equator in which a meridian through §’ cuts it, is beyond the place
of §”, or,-to the eastward of it.

S



with 8 at the apogee; being constantly behind it (see pp. 460,
&ec.) till their arrival at the perigee, must certainly be behind
it, at and before the solstice, which is previous to the perigee
(see p. 485.). Hence; before the winter solstice, the order of
the Suns is

Sl SII S”,'.
1
At the solstice S’ { :,,,} ; for 8" then ceases to be preceded by

S”. Tmmediately after the solstice, S” takes the lead of §':
therefore, then, the order is }
S/ Slli S,
But, at the perigee, $' must rejoin $”: it cannot effect that, except
by previously passing S”: the moment of passing-it is that in
which true time is equal to mean time, in which, in other words,
the equation of time is nothing.

The equation of time then is nothing, between the winter
solstice and the time of the Sun’s entering the perigee : and, for the
year 1810, (when the-longitude of the perigee was 9° 9° 39' 22"
between Dec. 21, and Dec. 30. By the Nautical Almanack the
exact time was Dec. 24, at midnight: since the equation for the
noon of that day is — 15°, and, for the noon of the succeeding
day, 4 15°.

In the year 1250, when the perigee coincided with the winter
solstice (see p. 486,) the equation of time was nothing on the
shortest day.

Immediately after the passage of the perigee, S’, the true
Sun, moving with its greatest angular velocity (see p. 469,) pre-
cedes S”; therefore, sinee up to the vernal equinox S” precedes
§", the order is

. Sl/l SII S’;
and this order must continue up to the equinox ; consequently,
$” and $' cannot come together : and therefore between Dec. 24,
(fer 1810,) and March 21, the equation of time cannot equal
nothing.

* The symbol most to the right of the page denotes the preceding Sun.
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After the vernal equinox, S” precedes S”, and the order is
s s s,

§”, and §' are then, (see p. 472,) near the point of their greatest
separation, but 7 and S” begin to separate and reach the point
of their greatest separation®, about 46° 14’ from the equinox
that is, about the 8th of May. Now, this greatest separation, or,
technically, greatest equation, is 2° 28’ 20", or in time 9™ 52",
whereas the greatest equation of the centre, being only 1° 55’ 33",
(pp. 473, &c.) the greatest corresponding separation in the equator
cannot exceed 2° 6’ t, and that is already past. Hence, before S"

* 1 x cos. I=tan. 4.cot. /, by Naper, or cos. I x tan, / = tan. 4;
<17 4; .. if ¥ be supposed the place of §, so that, ¥ ¥ = 'S,
Y is beyond ¢, and the separation is tY (since on that the dlﬂ'erence
solely depends.)

To find ¢ Y, is & common prqb}em, (see Simpson’s Fluxions, vol. II,

p. 551. Vince’s Fluxions, p. 27.) SincetY = ¥Y = yt=1— 4

tan. ] —tan. 4 _ tan. 4 .(sec. I — 1)
14tan. l.tan. 4 ~ 1 4-(tan. 4)*.sec. [
Hence, since d (¢ ¥) = d tan. ¢ ¥ .(cos. t¥)*, which must = 0; if we
take the differential of the quantity equal to it, make it = 0, and
reduce it, there results

tan, 4 = 4/cos. I = A/(cos. 23° 27’ 58")

4 = 43° 43’ 50", and I (from equation, 1. 2 of Note) = 46° 14,
and / — A (in its greatest value) = 2° 28’ 20".

cotan. tY =

t By p. 538, it appears that the arc of the equator, included between
two meridians passing through the extremities of a given arc in the
ecliptic, is greatest when the latter arc is at the solstice. The arc of
the equator measures the separation of the Suns S” §”. Hence, putting
in the formula of p. 230, d{=1° 55" 33", and D=1, which it is at
the solstice, we have, very nearly,

dA=1° 55 33" x sec. 23° 27’ 58" = 2° 5 55",

The two common problems then of the maximum equation of time,
are not merely mathematical problems, exercises for the skill of the
student, or Examples to a fluxionary rule, but of use in the discussion
of the real problem of nature.

Sz
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is atits greatest separation from S", it is impossible that the order
S”- Slll SI

should not have heen changed. S’ must have come nearer to
$"” than S§” is: consequently, 8" must have passed $': but
at the moment of passage, mean and true time are equal, that
is, the equation of time is nothing : and this must happen between
March 21, and the end of April. In the year 1810, it happened,
according to the Nautical Almanack, on April 15, 11t 12=,

This second point, at which the equation of time is nothing,
being passed, the order of the Suns will become
SII Sl SIII.
At the solstice, S” must rejoin $”: but, previously to the solstice,
_it cannot effect that by passing §': since 8" does not rejoin §' till
their arrival at the apogee, which point is more distant than the
solstitial : the coincidence of $” and S” then can only take place,
by S previously passing S”: but, as before, the moment of
passage, is the time when the equation of time is nothing ; that
circumstance therefore, must happen, before the summer solstice :
therefore, between the middle of April and June 22: and, in 1810,
according to the Nautical Almanack, it happened on June 15, 14"

In the year 1250, the equation of time was nothing on the
longest day.
After this third evanescence of the equation of time, the order
of the Suns will become
. S’I SIN g
At the solstice on June 22, §” will reJom §”: immediately
afterwards, the order becomes .

s 8",
which will continue to the time of the Sun’s entering the apogee :
then, §” rejoins §': and, immediately after, S” moving with
greater angular velocity than 8’ will precede it, and the order
beeomes.

SII’ SII

Now § cannot rejoin 8” till their arrival at the perigee : but
S’ will rejoin S™ at the autumnal equinox, consequently, previously
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to that time, S must pass §': but, as before, the moment of
passage is, when the equation of time is nothing. [t must
happen then, between the time of the apogee and the autumnal
equinox : between (for 1810) June 30, and September 24 ; and,
by the Nautical Almanack, it happened August 31, 20°.

It is plain, from the preceding explanation, that the days of
the year in which the equation of time is nothing depend on the
position, or the longitude of the perigee and apogee : and con-
sequently, since those points are perpetually progressive, the
equation of time will not be nothing on the same days of any
specified year, as it was, of preceding years: nor, when not
nothing, the same in quantity, on the corresponding days of
different years. '

The preceding statement (beginning at p. 537,) is to be re-
garded merely as a mode of explaining the subject of the equation
of time. It is not essential, and might have been omitted ; for,
the two causes of inequality are considered and mathematically
estimated, in the processes of finding the true longitude and
true right ascension. But it has been inserted, since it serves to
illustrate more fully, and, under a different point of view, a
subject of considerable difficulty and importance.

With regard to results, very little is effected by the preceding
statement. Four points are determined, at which, mean time
is equal to apparent: in other words, four particular values
(evanescent values) of the equation of time. But, according to
the process in p. 533, we are enabled to assign its value for
every day in'the year : and accordingly, in constructing Tables of
the equation of time, the above four particular values would be
necessarily included amongst the 365 results.

If the question were, merely to determine when the equation
was nothing, it would certainly be an operose method of reso-
lution, to deduce all the values of the equation of time, and.
then, to select the evanescent ones. In such case, it would be
better to have recourse to considerations like the foregoing
(pp. 537; &c.). But, both these methods would be superseded,



" 544
if, which is not the case®, the equation of time could be ex-
pressed by a simple analytical formula.

The mere inspection of such formula, or some easy deduction
from it, would enable us to assign the times when the equation
of time vanished.

Instead of a formula, we must use a process consisting of
several distinct and unconnected steps, for computing the equa-
tion of time. And, in point of fact, the process is quite as
convenient as a formula could be; since the concern of the
Astronomical Computist is not with special, as such, but with
the general values of the equation of time.

If special values are sought after, it must be principally on the
grounds of curiosity. The method of aseertaining four such
values, independently of direct computation, has been already
exhibited. And, on like grounds, a similar method might be
used in the investigation of other special values : in determining,
for instance, when the equation of time is of a mean value; or,
when minute, the two causes of inequality counteracting each
other; or, when large, the two causes co-operating. We will
confine ourselves to two instances.

After the evanescence of the equation of time between the
winter solstice and the perigee, the order, as we have seen,
(p. 542,) is

: Slll Sl S”,
but §’ is gaining fast on $” in order to rejoin it at the perigee,
and 8”, after parting with S at the solstice, is‘preceding it, by
still greater and greater intervals. Consequently, both causes of
inequality conspire to make mean time differ from the true, and
the equation of time goes on increasing till the Sun is about 40°
distant from the vernal equinox, that is, past the point, at which
the equation arising from the obliquity is a maximum, (see p. 541,
and before the point at which the equation from the Suu’s ano-

* Lagrange, however, although by no ‘direct process, has succeeded
in assigning a formula for the equation of time. See Mem. Berlin, 1772.
So also has M. Schulze, Mem. Berlin, 1778. p. 249.
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‘malous motion is a maximum. For the year 1810, the time would
be about Feb. 10, and the maximum of the equation is 14™ 36°.

About the Summer solstice, on the contrary, between that
and the apogee, the order is

SIII S/I Sl
S$" is indeed separating from S”, but S$” is approaching ' to
reach it at the apogee: consequently, the two causes of in-
equality, in some degree, counteract each other, and the equation
between the two periods at which it is successively nothing,

(June 15, and August 31, for 1810,) never attains to the value of
seven seconds.

In a similar way, we may form a tolerably just conjecture of
the limits of the quantity of the equation of time, for other parts

of the year. .

The greatest quantity of the real equation of time can never
reach the sum of the greatest equations arising from the separate
causes. It must therefore be less than

2° 28’ 29" 4+ 2° 6/, or 4° 84’ 29",
or in time less than 18™ 15° of mean solar time.

The equation of time computed for every day in the year, ac-
cording to the method given in p..533, or, by some equivalent
method, is inserted in the Nautical Almanack ; and, for the purpose
of deducing mean solar, from apparent time. In order to regu-
late its application, the words additive and subtractive are inter-
posed into the column that contains its several values. And,
there will be no ambiguity belonging to that application; if we
consider, that the equation is to be applied to a certain time
marked by some phenomenon: which phenomenon is the real Sun
on the meridian : determined to be so, either by a transit tele-
scope, or by a quadrant, or declination circle that enables us to
ascertain, when the Sun is at its greatest altitude. Apparent
time, then, is what is instrumentally determined; and to such
time, the equation, with its concomitant sign, must be applied,
in order to deduce mean tlme, which, it is plain, is indicated by

. no phenomenon.
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Thus, Dec. 31, 1810, the equatior of time in the Nautical
Almanack is stated to be 3™ 12°.7 additive ; therefore, when the
Sun was on the meridian, at its greatest height, on that day the
mean solar time was 12" 3™ 1287, Again, Nov. 18, 1810, the
equation is stated at 15™ 33°.2 subtractive; therefore, on that
day, the Sun was at its greatest height at 12% — 15™ 38°.¢, that
is, 11" 44™ 26".8, mean solar time.

Independently of computation, very simple considerations will
shew that this procedure is just. In the first instance, the true
Sun precedes the mean; that is, is more to the east, or more
to the left hand of a spectator facing the south : consequently, by
the rotation of the Earth, from west to east, the meridian of
the spectator must first pass through the hinder Sun, which, in
this instance, is the mean Sun; 12® therefore of mean time
happens before the meridian has reached the true Sun, when it
does reach it, theu, the time is, in mean time, 12°® 4 the difference
of right ascensions, or 12" + the equation of time. In the second
iustance, the true Suun is behind the fictitious: therefore the
meridian of the spectator first passes through the former : true
noon therefore, or 12 hours apparent time, happens before the
meridian has reached the fictitious mean Sun ; before therefore
the noon of mean solar time. The time consequently is not
12 hours, but 12 hours —some quantity, which quantity is the
equation of time.

What has been given in the latter pages, has been for the
purpose of illustration rather than for settling the grounds of, and -
arranging the method of computing, the equation of time. It
may sujt some students : others, perhaps, will be satisfied with
the investigations that terminate at p. 537. :



CHAP. XXIII.

THE PLANETARY THEORY.

On the general Phenomena of the Planets: their Phases, Pomts
of Stations, Retrogradatzons, &c.

W e have now passed, in our course of enquiry, through the
theories of the fixed stars and of the Sun, and are arrived at the
Planetary Theory. This latter theory has many points in common
with the preceding ones. The planet Venus, by reason of the
Earth’s rotation, is transferred to the west, as Orion is and as the
Sun’ is. By reason of the same rotation, she rises and sets as
any fixed star is made to rise and set. But the points of the
horizon at which Venus rises and sets, do not remain the same,
which is a circumstance of distinction between that planet and
the fixed stars: and indicative of a peculiar motion in Venus,
whether such metion respects, as its centre, the Earth or the
Sun. .

The question, in truth, is not to be at once reduced to the
above alternative. We may conjecture, besides the Sun and
Earth, other points to be the centres of the planets’ revolutions.
But we shall here, as we have done before, avail ourselves of the
results of previous investigations and restrict the range of our
conjectures. Indeed, the restriction will be so ¢lose, that we
purpose merely to enquire whether the phenomena of the planets
(the phenomena of change of place and law. of motion) can be
explained on the hypothesis of the planets describing elliptical
orbits round the Sun as a centre, and of their mutual perturbatlon.,

We at once get rid of the suggested possibility of a simple
revolution of the planets round the Earth on this consideration :
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namely, that, in such a case, the motion would take place, and
" seem to take place, in one and the same direction : whereas, as
observation shews, the planets are sometimes stationary and
sometimes retrograde.

These apparent quiescences and retrogradations, are some of
the phenomena which it will be the business of this, and of the
ensuing Chapters to explain, on the principle of the combination
of the motions of the planets and of the Earth. In the first place,
these phenomena will be explained in a popular way, on the
principles of the Earth’s rotation round its axis, and of the
Earth’s and planets’ revolutions round the Sun. After this, the
phenomena will be more scientifically explained, or the times and
circumstances of their happening will be computed. But in
-order: to effect this we must know the elements, as they are called;
of the planetary orbits: such as their axes, the places of their
nodes and of their aphelia, and their inclinations to the plane of
the ecliptic. For this end we must have recourse to .observations,
and, according to modern practice, to observations of right as-
censions and declinations. The elements being obtained, we may
combine them according to Kepler's principles, and by means
of his problem and other aids, compute the planet’s longitude in
his orbit. From such longitude, and a knowledge of the incli-
nation of the orbit, and of the place of the node, we may compute
" the planet’s ecliptical longitude and his latitude, and thence
compute, by a Trigonometrical process, or by a Table of re-
‘ductions (see p. 501,) the planet’s right ascension and declination.
The last step in this process, would be to compare these pre-
viously computed longitudes and latitudes, with longitudes and
latitudes resulting immediately from observed right ascensions
and declinations: or, which is in fact the same, the previously
computed right ascensions and declinations, with the observed.
Such comparisons, as in the Solar Theory, (see pp. 508, &c.)
enable us to correct the elements of the orbit, from which the
planet’s longitudes and latitudes are to be computed.

The order then, briefly stated, is this : the explanation of the
phenomena : extrication of the elements from observations : the
subsequent correction of those elements by a comparison with
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observations : and, in pursuance of the first of these ob)ects, we

will begin with the planet Venus.

This brilliant star when seen in the west, at the time of the
setting of the Sun, is called the Evening Star*. It will be found,
by observing it on successive nights, to vary its distance from
the Sun : sometimes apparently moving away from the Sun, until
it reaches a certain term of elongation, at other times, having
passed such term, approaching the Sun. When the star begins,
it continues, to approach: and, at certain epochs, it approaches
8o nearly to the Sun, as by reason of the Sun’s effulgence, to be
no longer distinguishable by unassisted vision. There are other
epochs, rare, indeed, at which Venus passes over the Sun’s disk,
and is seen, during such transit, as a black spot on the disk.
After either of these two sorts of epochs Venus ceases to be the
evening star and will soon become the morning start, and will
be seen rising just before the Sun.

On successive mornings, Venus will rise still sooner: will
.continue to be separated from the Sun, till having reached an
angular distance of about 45, she will again approach, and finally
rejoin the Sun. She then again becomes the evening star, and
the same appearances, in the same order, are renewed.

These appearances prove, not decisively, that Venus describes
cither an oval, or a circle about the Sun, but that, at least, she
oscillates about the Sun: they prove too, that her orbit can
neither be round the Earth, as its ceatre, nor inclusive of the
Earth; for, she is never seen in opposition ; that is, in the pro-
duction.of a line drawn from the Sun through the Earth.

To the naked sight, or to unassisted vision, the disk of Venus
appears circular and nearly of the same magnitude. But, the
telescope and its micrometer{ prove both appearances to be de-
lusive. Viewed through the former, Venus, when the evening

¢ Eo=epos, Hespems, Vésper 1+ Pwsgpopos, Lucifer,:
1 An instrument for measuring small angles, and commonly attached -
to the telescope.
4 A
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star, at her greatest separation from the. Sun, assumes the form of
a crescent, the convex illuminated part being towards the Sun,
or towards the west. As she approaches the Sun, the crescent
diminishes. Having passed the Sun, she appears as the morning
star, and the crescent is turned the other way, or towards the
east. Day after day, the crescent .increases, till it is changed
into a full orb, just at the time when Venus is' about to rejoin
the Sun.

In this last situation the disk of Venus, though most illumi-
nated, is least in magnitude. It is greatest in magnitude, when
the disk is least illuminated, and Venus is about to rejoin the Sun.
These latter circumstances, relative to the magnitude of the disk,
are determined by the micrometer.

This last-mentioned instrument enables us to determine the
greatest and least apparent diameters of Venus to be about 60,
and 10".

If we now enumerate the circumstances relative to Venus, they
are as follow: '

Venus, whatever be the Sun’s place in the ecliptic, alwaysv
attends on him, and is never separated by a greater angle of
elongation, (technically so called) than 45°.

Venus is continually at different distances from the Earth: when
at her greatest, that is, whén her apparent diameter is the least,
she shines with a full orb: when seen at her least distance, that
is, when her apparent diameter is the greatest, her crescent is very
small; and there are conjunctures, as we have noted, when Venus
eclipses part of the Sun’s disk, and passes over it like a dark
spot.

Venus, when the évening star and separating from the Sun,
moves from west to €ast ; or according to the order of the signs,
or, as the phrase may still be varied, in consequentiz. Returning
towards the Sun, from her greatest elongation, she moves towards
the west, that is, in antecedentia, contrary to the order of the
signs. And, in like manuer, she moves, when the morning star,
alternately, according and contrary to, the order of the signs.
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These are the' phenomena of observation, that are proposed
for explanation, on the grounds of two hypotheses : the first, that
Venus is an opaque spherical body illuminated by the Sun: the
second, that Venus revolves round the Sun in an orbit which is
interior to the Earth’s orbit.

If Venus be a sphere, only half of it can be illuminated by the
Sun. And the illuminated hemisphere, called, for distinction,
the Hemisphere of Illumination, is thus to be determined. From
the centre of the Sun, to that of Venus, conceive a right line to
be drawn; perpendicular to this line, and passing through the
centre of Venus, conceive also a plane to be drawn ; then, such
plane will divide the body of the planet into two hemispheres,
the one luminous, the other dark.

But, a spectator, whatever be his distance from a sphere, can
never 8ee more than half of the same. The hemisphere which
he sees, called the Hemisphere of Vision, is thus to be deter-
mined : conceive the eye of the spectator and the centre of the
planet to be joined by a right line ; a plane perpendicular to this
live, passing through the centre of the plauet,. divides its body
into two hemispheres; the one towards the spectator, is that of
vision.

The two hemispheres, and their boundaries, the circles of
llumination and of vision, do not necessarily coincide : indeed,
they can coincide only when the Sun, which illuminates the
planet, is between' it and the spectator on the Earth’s surface.
In every other situation, part of the planet’s illuminated hemi-
sphere is turned away from the spectator ; and, when the planet
is between the Sun and spectator, wholly turned away : in other
words, the planet’s disk can either not be seen, or must appear
as a dark circle or spot on the Sun’s face.

When the spectator, Sun, and Venus (for of that planet we
are now speaking) lie not in the same right line, the delineation
of the illuminated disk, or phase, is reduced to a very simple
proposxtuon in orthographic projection. On the plaue of projec-
tion which is always perpendicular to a line joining the eye of the
spectator and the centre of the planet, it is required to delineate
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the ellipse into which the circular boundary of light and darkness
will be projected. The minor axis of the ellipse, will, as it is
well known, bear that proportion to the major, which the radius
bears to the cosine of the inclination of the planes. The incli-
nation is equal to the angle formed by two lines, one drawn from
the Sun to the centre of Venus, the other, from that same centre
and directly from the spectator. Hence, if 4FBA represent the

disk, and we take CF : CE ::rad. : cos. planet’s inclination, then,
describing, with the semi-axes AC, CE, the semi-ellipse 4EB,
we shall have the illuminated disk represented by AFBEA.

If KVuL be the orbit of Venus, S the Sun, E the Earth;
then, the angle of .inclination of the planes of illumination, and
vision at V, is the angle SVF, and at-u, the angle SuF. In the
latter, the angle is acute, in the former, obtuse ; consequently, if
CE in the above Figure be taken to represent the cosi.ne of the acute
angle, to the right of the line 4B, Ce must be taken to the left
of the same line, in order to represent the cosine of the obtuse
angle SVF. At K, when the planet is in superior conjunction t,
the angle SVF is equal to two right angles; consequently, the

® ruis the half of the projection of the or.rcle of iHumination, xu
of vision, and
trur=LFur — £ Fur=900— £ Fur=90°—(s Sur— zSuF)
=90°—(90°— SuF) £ = ¢ SuF.

+ An inferior planet is in superior conjunction, when it lies in the
direction of a line drawn from the Earth to the Sun, and produced
beyond the Sua.
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cosine (with a negative sign) becomes equal to radius, and the point |

K

E, falls in £ (Fig. p. 552,); or the whole orb is illuminated. At
L, when the planet is'in inferior conjénction* the angle, such ag
8uF, becomes nothing ; therefore the cosine becomes equal to

* We have, for simplicity’s sake, supposed the ecliptic and the plane
of the orbit of Venus to be coincident, Such is not the case in nature,
It will bappen, and commonly, that the planet at the time of inferior
conjunction will be above the Sun, in which case its bright crescent will
be visible: and exactly at the time of conjunction, the line joining thé
horns of the crescent, will be patalle] to the ecliptic.
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radius, and the point E falls in F: or the whole orb is dark.
From K to L, in the intermediate points, Penus exhibits all her
varieties of phases ; the full orb, near K ; the half illuminated
orb at N, where SNE = 90°, and then the crescent diminishing,
till its extinction at L*®.

......

"""""""""'E CEJe

These phenomena that would happen if Venus an opaque
- spherical body be illuminated by the Sun, and revolve in an orbit
round him, are strictly conformable to the phenomena that are
observed, and have been described in the preceding pages.

Thus far then the hypothesis of Venus’s revolution round the
Sun is probable, and seems to involve no contradiction ; it will be

* The phases which Venus at ¥, N, aud u, exhibits to a spectator
at E, are represented by the small circular Figures that are, respectively,
to the left of the points ¥, N, and u (see p. 553.) .
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still farther confirmed, if we can shew, that it affords an adequate
explanation of the. other phenomena which the planet exhibits.

Suppose emd to be the Earth, and two tangents dsk, es', to
the points d and e, to represent the respective horizons to a spec-
tator at d and e*. If the Earth’s rotation be according to the
order emd, when the horizon dsk of the spectator at d shall touch
the Sun’s disk, the Sun will set to that spectator; the moment
after, by the rotation of the Earth, the point & will be transferred
to some point between k and V, the line dsk will no longer touch
the Sun’s disk, or, the Sun will be below the horizon. But,
Venus, if at V, will be above the line of the horizon, and above
as an evening star, till the Earth, by its farther rotation, shall
have so transferred the line dsk, that its extremity k shall be in
some point between ¥ and U. In the interval between this and
the next night, ¥ will have moved forward in its orbit to some
point w ; therefore, the line dsk, after leaving the Sun’s disk, must
revolve through a greater angle than it did the preceding evening,
before it reachés V at w. The plaunet therefore, is now separated
from the Sun by a greater angle of elongation: and the elonga-
tion on succeeding nights will stlll continue, till ¥ reaches a point
T, where a line drawn from E touches her orbit. Hence from
superior conjunction at k, to the greatest elongation at T, Penus
is continually separating or elongating from the Sun; and, if we
refer her place to the fixed stars, will seem to move amongst
them in a direction kAVw T, that is, according to the order of the

Slgns.

From T to L the inferior conjunction, the line dsk, after quit-
ting thé Sun’s disk, will reach the plauet after the description of
angles still less and less, and the planet will be found approach-
ing the Sun : but, referred to the fixed stars, will be found to
change its place amongst them in a direction from T towards L,
contrary to the direction of the former change of place, and

* In this explanation, of a popular nature, Venus's orbit and the
Earth’s equator emd, are supposed to be projected on the plane of the
ecliptic, - (represented by the plane of the paper,) and, the spectatcr is
supposed to be placed in the equator. ’
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contrary to the order of the signs. In other words, the planet is
now retrograde. ‘

Suppose now the planet to have passed the inferior conjunc-
tion at L. Day breaks to a spectator at e, when the line es’/,
representing his horizon, touches the Sun’s disk. But, before this
has happened, the line s’/ has passed the planet, or the planet is
above the horizon, and has risen as the morning star: on suc-
ceeding mornings, the planet havig moved forward in its orbit
from L towards ¢, will rise before the Sun by greater and greater
intervals ; will continue, to appearance, separating from him, till
its arrival at its greatest elongation £. From L to ¢, the planet
will, as from T to L, still continue retrograde. From ¢ to [, it
will again approach the Sun, and move according to the order of
the signs.

These phenomena, then, that would happen if Verus revalve
either in a circular or elliptical orbit round the Sum, are in strict
conformity with the phenomena that are observed, and which

_have been previously described. '

In the preceding explanation of the phases and retrogradations
of Venus, we have, for the sake of simplicity, supposed the Earth
to be at rest at E. But, there is one phenomenon, that of the
seeming quiescence of Venus during several successive days,
which cannot be explained, except we depart from that suppo-
sition, and combine, according to the actual state of things, the
motion of the Earth with that of Venus.

If Venus be at L, and the Earth at e, and both describe in the
same time (24 hours for instance), two small arcs of their orbits,
such arcs will be nearly parallel to each other. If; then, they
were equal, during their description, Venus would be referred by
a spectator on the Earth, to the same point in the heavens. But,
Venus revolving round the Sun according to the laws of planetary
motion (see p. 557, 1. 16,) describes a greater arc than the Earth
does in the same time. She must, therefore, at the end of the
24 hours, be referred by a spectator en the Earth, to a point in
the heavens situated to the right of her former place. But, as
Venus advances from L towards ¢ in her orbit, the arcs of her
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orbit (or tangents to them) will become more and more inclined
to the arcs of the Earth’s orbit. There will then be somewhere
between L and ¢ an arc pq (see Fig. p. 553,) such that, its obli-
quity compensating its greater length, two lines. pa, ¢b, drawn
to the contemporaneously described arc ad of the Earth's orbit,
shall be parallel; when that circumstance happens, Venus must
appear stationary. ' .

We may determine the exact time of its happening by com-
puting the angle $ 8¢, which is, in the same time, the excess
of the angular mation.of Venus above that of the Earth *.

* bSq may be thus computed : (see Fig. p. 553,).
Draw from p and b; pn, bm perpendicular to the parallel lines g6,
pa, then pn=>bm: call Sb, r, and Sq, 7';
then pn = pg.sin. pgn=pq.cos. S¢b,
bm = ab.cos. mba—- ab.cos. Sbq;-

—— = —-'— = (Newton, Sect, II. Prop. 4. Cor. 6;)
ocos? Sbqg = cos."‘ Sqb x 1—, .

But, sin.? Sbg = sin.* qu x ’: (Trigonometry, p. 16,)
. adding these two latter equatxons, and putting for ¢:os2 Sqb,
l-sm" Sqb,
=; (1 — sin® Sqb) 4 = sin.’ Sgqb,
—rir r
and sin. qu_\/ p ﬂs) TEETFS"

Hence, sin, qu = m-

The twe angles Sg¢b, 8bg, being thus determined, $4¢ = 1§0° —
(Sqb 4 8bg) is known; and thence the time from eon,juscﬁon at L.
Thus, the mean daily motions of Vexus and the Earth being 1° 36" 7.8,
wd 59 8”33, the daily excess is 36 59".5; thereforg. if the angle

584 be 13*, the time from conjunction will be m “or about 21
days.

4B



558

It is plain that Venus will be retrograde whilst moving through
an arc such as NL¢, whether the Earth be supposed to be at rest,
or to be in motion. The case however, is different with a
superior planet®, which can only be shewn to be retrograde by
combining with its motlon, the Earth’s. Thus, let ab, be, cd,
be three equal arcs in the Earth’s orbit, a'b’, 4'¢, ¢'d’, three equal
arcs in Jupiter’s (for instance,) contemporaneously descnbed but
less (see | 2 557, 1. 16,) let also A, B, C, D, be four points in
the imaginary sphere of the fixed stars, to which ', ¥, ¢, d’ are
successively referred by a spectator at a, b, ¢, d. Now, if ABC
be according to the order of the signs, the body in the orbit
a' b ¢ &, is transferred in that direction or is progressive; whilst

the spectator moves from c to d, and the planet from d to d, the
latter, amongst the stars, is transferred from C to D towards B
and A, that is, contrary to the order of the signs. During the

* A superior planet includes within its orbit, the Earth’s; an in-
ferior planet’s orbit is included within that of the Earth’s.
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description then of the intermediate arcs cb, ¢’d’, the planet must
have been stationary. The retrogradation will continue from ¢
through opposition, where it will be the greatest, to a point f,
situated similarly to c; that is, such that the angle made by two
lives joining f' £, fS shall = the angle ¢'cS. From f through
conjunction to ¢, the planet will move according to the order of
the signs.

Here then is a material circumstance of distinction, in this
part of their theory, between mferior and superior planets. In
the explanation of the quiescences and retrogradations of the
former, the Earth’s motion is not an essential circumstance ;
it merely modifies their extent and duration. But, with superior
planets, the Earth’s motion is an indispensable circumstance,
The very nature of the explanation depends on its combination
with that of the planets.

In speaking of the stations and retrogradations of the planets,
we have been obliged to use a language and phrases by no means
descriptive of the observations by which those phenomena are as-
certained. But, the student must be reminded upon this, as upon
other occasions, to attend to the simple facts of observations.
When a planet is stationary, the fact of observation is, that the
right ascension continues the same: when retrograde, that the
right ascension diminishes. The right ascension being determined
by the bour, minute, &c. at which the observed body comes on
the middle vertical wire of a transit telescope.

Jupiter, in treating of his retrogradations, has been assumed
to be a superior planet.  One proof of his beipg such, as well as
that Mars, Saturn, and the Georgium Sidus are, is to be derived
from their phases; which have not as yet been described.

Now, Mars exhibits no such variation of phases as Venus
does; he is seen, indeed, sometimes a little gibbous, but never in
the shape of a crescent, nor as a black spot on the Sun’s disk.
I{we add to these circumstances, that he is seen at all angles of
elongation from the Sun, we may presume that Mars revolves in
an orbit round the Sun inclusive of the Earth’s ; that he is there-
fore a superior planet. He certainly cannot revolve round the
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Earth, for then he ‘would never be stationary, nor retrograde’; nor
can his orbit pass between the Sun and Earth. '

Jupiter, Saturn, and the Georgium Sidus do not appear
gibbous, but shine, almost constantly, with full orbs.

These phenomena can be accounted for, by supposing Mars,
Jupiter, Saturn, and the Georgium Sidus, to be opaque spherical
bodies illuminated by the Sun; and Mars to be the least distant:
and, if not very distant (relatively to the Earth’s distance), his
illuminated disk may, in some situations, be so much averted
from the spectator, as to give him the appearance of being a
little gibbous; and, he will be most gibbous in quadratures :
where, however, the breadth of the illuminated part will be to
that of the whole disk as 175 to 200.

If we were to increase the distance of Mars, the above pro-
portion would approach more nearly to one of equality. Hence
the reason, why Jupiter, Saturn, and the Georgium Sidus, much
more distant from the Sun than Mars, do not appear gibbous,
even in quadratures.

From ‘What has precéded, we may draw this conclusion ; that,
the adequate explanation of the phases, the stations, and the re-
trogradations of the planets, on the hypothesis of their revolution
round the Sun, renders, at least, that hypothesis probable. Buat,
since the explanation has been one, of obvious and general ap-
pearances, and not of phenomena precisely ascertained by accurate
observations, the mere fact of a revolution has alone been rendered
probable, without any determination of the nature of the curve
of revolution. It may be either circular or elliptical. The
system of Copernicus, therefore, is rather proved to be true, than
Kepler’s laws, or Newton’s theory. Their truth, however, is
intended to be shewn, and, that the planets revolve round the
Sun in orbits very nearly elliptical : the deviations from the exact
" elliptical forms being such, as would result from the mutual dis-
turbances of the planets computed according to the law of gpa-
vitation. For this end, phenomena, of a different kind from the
preceding, must be selected and examined, and explanation, from
being general, must become particular, and proceed by calcula-
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tion. The elements of the orbits and the motions of the planets
must be deduced from observations ; arranged in Tables; again
compounded according to theory; and, in this last state, as results,
‘subjected to the test of the nicest observations.

The elements of the orbits of planets depend on certain dis-
“tances, linear and angular, measured from the Sun. But, the ob-
servations, from which these elements are to be deduced, are
made at the Earth. The first step then, in the succeeding inves-
tigation, must be towards the invention of a method, for trans-
muting observations made at the Earth, into observations that
would be made by a spectator supposed to be placed in the
Sun; in technical language, for converting geocentric into helio-
centric angular distances.

_This method is necessary for the extrication of the elements.
For the examination of the system founded on those elements,
the reverse method is required; in other words, we must be
possessed of the means of converting heliocentric into geocentric
angular distances.



- CHAP. XXIV.

~

On the Method of reducing Observations, made at the Earth, to
Observations that would, at the same time, be made by a
Spectator situated at the Sun : or, on the Methods of extri-
cating, from the Geocentric Observations of a Planet’s Place,

* the Elements of the Orbit which it describes round the Sun.

IN the theory of the fixed stars, the spectator is supposed to be
placed in the centre of that sphere, which revolving, in twenty-
four hours, round an axis passing through the poles of the Earth,
produces the common phenomena of the risings, settings, and
culminations of stars. In the solar system also, the spectator is
supposed to be, very nearly, the centre of the solar motions. In
both these cases, the observations are of right ascensions and
declinations convertible, by rules already laid down, into longi-
tudes and latitudes ; in the case of the fixed stars, either geocentric,
_or heliocentric longitudes and latitudes ; in the case of the Sun,
its longitudes, seen from the Earth, differ from the longitudes of
the Earth, seen from the Sun by the constant difference of
180 degrees.

The case is very different with the planets. These respect
the Sun as the centre of their motions, which motions can only
be observed at the Earth. It is necessary, then, if we would
trace the orbit of a planet described round the Sun, and lay down
the laws of its motion, that we should be able, from geocentric
observations of a planet’s place, and change of place, to infer
what that place and change of place would be, were the spectator
at the centre of the planet’s motions.

The first steps, in this process, would be the same as in the
sidereal and solar theories. The planet is to be observed on the
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meridian, with the transit instrument and declination quadrant or
circle, and, then, from such observed right ascension and decli-
nation, the planet’s geocentric longitude and latitude are to be
computed by the formule of Chapter VII, (see pp. 160, &c.).

We will give an instance in the computation of the geocentrlc
latitude and longitude of Venus,

March 13,
8 R 22" 587, declination 2° 43' N : obliquity 25° 27’ 547,
Rieee... 344° 30
R-90 ... 254 80

L(R=90)..127 15 vuuuveos log. sin. 9.9000142
2

19.8008284
N.P.D..... 87°17 0" .... log. sin.  9.9995117
I........28 27 54....log. sin. 9.6000890
~ 2 log. r ~ 20.
" 2) 19.4014291
M.......30 7 59..(og. sin. M) 9.7007145

NP.D. + I

—

N.P.D. + 1
2

N.P.D. + I
2

55° 22’ 27"
+ M 85 30 26......log. sin. 9.9986635

— M 25 14 28..... log. sin. 9.6298461
2) 19.6285006

(IOg-Siﬂ.-.otco-4‘0041’38”)¢010-v0100 908142548
*. comp. of lat. = 81 23 16
and latitude...= 8 386 44
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To find the Iongitﬁde,
A veedr . 81°28 16" Vuutvven. .. log. sin. 9.9950753
Tueeeee. @3 27 54 uvnnuen....log sin. 9.6000890
S..... o877 17 0 tevscessnness s (d)19.5051643
2192 8 10
Lsum....96 4* 5............ log. sin. 9.9975598
%sum—s. . 847 5 ....... ceen. log. sin. 9.1339025
2 log. r 20
' 39.1814623
(d) 19.5951643
2) 19.5862980
0.7931490

Now 9.7931490 is the log. sin. of 38° 23’ 40", &c. aud of
360° + 38° 23’ 40" = 398° 28’ 40"
.90+ L = 796 47 20
L =706 47 20
= 360° + 346° 47' 20Y;

.“. rejecting 360°,
the geocentric longitude of &, or L = 11° 16° 47 20".

By these means, then, that is, by meridional observations of
the planet, and hy computations, may its longitude aod latitude
be determined. '~ Amongst the resulting values of the latitude,
there must be some either notliing or very small. Now when the

geocentris latitude is nothing, the heljpceptricialso is nothing,
or the planet 18 in the plane of the Earth’s orbit : or, technically,
the plauet is in its node: the node being the intersection of the
orbit of a planet, with the plane of the eclipticc. We are able
then, by examjning the seriey of the values of the geogentric
latitudes, (computed as above) to determine when a planet is in
its node, and we also know the geocentric longitude corresponding

to such a situation of the planet
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Some values of  the latitude will, it has been said, be either
nothinrg, or very small. The latter circumstance is likely to take
place : for, it is very improbable that the planet should be, at the
same time, on the meridian of the observer, and in the plane of
the ecliptic : in the same way, as it is very unlikely to happen
that the Sun should be, at once, in the solstice at noon, or in the
equinoctial at noon. But the same artifice, or method of com-
putation, which makes amends for the want of coincidence of the
two events in the latter case, applies to the one now under con-
sideration. "Find, for instance, the longitude and latitude of the
planet when just above the ecliptic (to its north) and, the next
day, find the like quantities when the planet (supposing it to be
descending towards the ecliptic) is just below, or to the south of,
the ecliptic. The Rule of Three, or some equivalent rule of
proportion, will give the longitude corresponding to a latitude
that is nothing, or, in other words, will give the geocentric longi-
tude of the descending node.

Before we proceed any farther we will just advert to a point
which will soon be more fully discussed. Since we are able to
compute the exact time of the planet’s entering its node, we
are able to determine the interval elapsed in its passage from the
descending to the ascending node, and also the interval of time
between two successive returns to the same node. The latter
interval must be (supposing the places of the nodes, and the
dimensions and positions of the orbit, not to have changed) the
periodic time of the planet. The former interval, should it be
exactly the half of the latter, would be a proof either that the
orbit of the planet was circular, or, if elliptical, so placed as to
have its axis major coincident with the line of the nodes.

We will now consider, on what conditions - the reduction of
geocentric longitudes and latitudes to heliocentric depends: or,
what points, relative to the place of a planet, the position and
dimensions of its orbit, are necessary to be settled previously to
the accomplishment of such reduction.

Let NP be part of the orbit of a planet (superior according.
tothe figure). N C part of the great circle of the ecliptic, E the
Earth, S the Sun. - Conceive P (part of a great circle) to be

4 c
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drawn from P perpendicularly to the plane of the ecliptic.
Now a spectator at E sees P distant from the ecliptic by an

angle PEm, which is, therefore, the geocentric latitude (G), and
P, viewed from S, would appear to be distant from the ecliptic
by the angle PS«, which is, therefore, the heliocentric latitude
(H). : ]
Suppose o to be, what is called, the first point of Aries:
then, since such a point is equally distant with the fixed stars,
or so distant that the diameter of the Earth’s orbit subtends at it
an insensible angle, a line drawn from E to o is to be held to
_ be parallel to a line drawn from S to ov. From this point «
longitudes are computed, therefore,
the geocentric longitude of P(L)is £ wEp,
the heliocentric longitude of P (P)is £ w S,
the longitude of the Sun (©).... is £ SE .

Hence,
) L=0 + 2SEr= 0 + E, .
E representing thé angle SE, which is technically called the
angle of Elongation.

This is the denomination of one of the angles of the triangle
SEwx. The angle ESw is called the Angle of Commutation (C),
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the angle Sar E, or rather, the angle SPE (the angle under which
the planet sees the radius of the Earth’s orbit) is called the
Adnnual Parallax.
The examination of the parts of the triangle SE =, will shew
us the conditions necessary for the deduction of heliocentric
~ longitudes and latitudes from geocentric.

In the first place
e S7(P)= £ SEy + 180° — ES~
. =0 + 180° — C. )
 Hence, we can determine P, the helioc'entric longitude, if C
e angle of commutation be previously determined.

SE is known from the solar theory,
SEw, or E, =L — 0, .
is known since (see p. 564,) L the geocentric longitude can be
computed, and the Sun’s longitude is known from the solar
| theory: comsequently, in order to determine the angle ES and

~ all the other parts of the triangle, it is only necessary to know
$x, which is denominated the Curtate Distance.

Now, S#w = SP.cos. £ PSw = r.cos. H,

’ cousequently, i order to determine S, we must know the
values of » and H.

~ Let I (equal to the angle PNa) represent the inclination of
~the plane of the orbit to the plane of the ecliptic, then, by
Naper’s Rule for circular parts

1 x sin. N# = cot. I.tan. P,

i or sin. Nx.tan. I = tan. H.

In order then to determine H, we must previously know I,
the inclination, and N, the distance of the reduced place of the
' planet from the node of its orbit, which distance is evidently
 equal to the longitude of the planet minus the longitude of the
node.

With regard to r (SP), its value may be determined, nearly,
(n the supposition of a small eccentricity in the orbit) from

’
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Kepler's law (see p. 455.). It is, however, the mean distance
which is determined by such law. SP, therefore, is not exactly
determined, except P move (which we have no reasonto suppose)
in a circle. If, therefore, we should be able to determime H
exactly, still there would be some uncertainty in determining
S# = r.cos. H, from the uncertainty respecting 7’s value, and,
accordingly, there would be a corresponding uncertainty re-
specting the value of the heliocentric longitude determined from
the angle ES .

For the above reasons, since the heliocentric longitude (we
are speaking of the original processes for determining the ele-
ments of a planet’s orbit) cannot, generally, be exactly found,
Astronomers have selected those particular positions of a planet
in which its heliocentric longitude is known with certainty.
Now such 2 position, if the planet be an inferior planet, such as
Venus and Mercury are, is the superior, or inferior conjunction :
in the former the planet’s heliocentric longitude is equal to (©)
the Sun’s longitude : in the latter, to 180° 4+ ©. In the case of
a superior planet (one whose orbit embraces that of the Earth) its
heliocentric longitude, in conjunction, is equal to ©, and in
opposition, equal to 180° + ©.

In such positions, then, the heliocentric longitude of a planet
is known independently of any computation of such a triangle as
SEm, and of a radius SP. It is necessary, indeed, to compute
its geocentric longitude by the method of p. 564. Suppose
Venus to be the planet, and near to her inferior conjunction, on
March 8, 1822. Compute from the passage over the meridian
(which will be near to noon) and the declination, the geocentric
longitude: it will be found to be greater than the Sun’s longi-
tude, which, by the Solar Tables, or the Nautical Almanack, is
11° 17° 28/ 89" on the 9th it will also be greater, on the 10th
less: so that, at some time on March 9, (when Venus is- on the
meridian of some other observer) which is easily found by simple

- proportions, the geocentric longitude will have the same value
which the Sun’s longitude has at the same time: and at such
a time, the geocentric longitude of the planet is the same as its
heliocentric.

.
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The diagram employed in p. 566, belongs to a superior
‘plauet : but what has been shewn applies equally to an inferior
planet. The angle of elongation of the latter can never exceed
a certain quantity : thus, if NV represent its orbit, the angle

r

SEu is the angle of elongation, which is greatest at that point
at which a line drawn from E becomes a tangent to NAu.

This greatest elongation is called Digression : its value in the
case of Venus is about 45° 42': not always of the same value,
because both the orbits of the Earth and Venus are eccentric,
and inclined to each other.

The angle SVE, the annual parallax, may in the case of an
inferior planet, be of any value between O and 180.

When, however, the planet is Mars, or Jupiter, or Saturn,
the angle of elongation may be of any value between O and 180°:
but the annual parallax can never exceed a certain limit: which
limit in the case of Marsis ...ce00s.. 53°

ofJupiter.....QIQOOQIQ
of Saturn ¢ cveee.ee.. 6
of the Georgium Sidus.. 3.

In the preceding disquisition we have endeavoured to bare to
the view the real difficulties of the planetary theory, for the pur-
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pose of pointing out the way of overcommg them. They are, in
many cases, to be got rid of by being eluded : and, indeed, always
so to be got rid of when that is the easier way, We here allude
to what has been just said respecting the particular positions in
which a planct is to be observed, which are those of its con-
junctions and oppositions. In such positions, the difficulties of
determining the heliocentric longitudes from the geocentric are
eluded ; or, all cause of uncertainty, respecting the exact values of
the former, rescinded. The principle of the method is to be
extended to other cases. In determining the inclination of the
orbit, its eccentricity, the place of the aphelion, observations of
the planet, when it occupies particular positions, are to be se-
lected, or rather, particular positions of the planet and of its
orbit: for instance, such would be the observations of a planet
in conjunction, and, at the same time, near to the line of its
apsides.

But, in these, as in most astronomical processes, there can be
prescribed no general and absolute rules. The circumstances of
the case must point out the method to be pursued. We must
arrive at the end as we can. The simplest way is the best. It
is frequently the real triumph of science to elude difficulties that
are not easily grappled with.

If we revert to what has been said in pp. 567, &c. we shall
easily discern the traces of the route we must pursue. The nodes,’
the inclination of the orbit, the period with the mean distance and
mean motion, are, in the first place, to be determined approxi-
mately, and on the supposition of*a circular orbit. In the next
place, the eccentricity and place of the aphelion, are to be deter-
mined by a comparison of the mean, with the true longitudes, or,
which is the same, by a comparison of the mean with the true
motions : the true longitudes being (see p. 568,) what we can
obtain, independently of the knowledge of the elements of the
orbit, from observations of the planet in its comjunctions or op-
positions : the mean longitudes being known from the period of
the planet and its longitude at a given epoch.

This, it is plain, is the description of a process which can only
give approximate results. But the approximate values of the

~
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eccentricity, and of the place of the aphelion being obtained, the
approximate value of the radius vector may be obtained, on which,
as we shall soon shew, the determination of the place of the node
depends. The place of this latter element may, therefore, by
repeating the process for finding it, be more accurately found:
or the approximate value of the radius vector may be applied to
new or other observations for the same purpose. And it is after
this manner, and not by the absolute results of any geometrical,
or algebraical theorems, that the knowledge of the elements of
a planet’s orbit are gradually to be arrived at.

We shall proceed to give, under their separate heads, the
methods of finding the elements of a planet’s orbit.

Method of finding the Periodic Time, Mean Motwn, and Mean
" Distance of a Planet.

From observations of the right ascemsion, and declination of
the planet, compute (see p. 564,) its geocentric latitude and find
when its latitude is equal to nothing. The planet is then in its
node. Again, observe the planet and find when it next returns
to the same node. The interval of the two computed times, is
the periodic time of the planet; which may be nearly determined
by one such process as has been just described, and exactly, by
the mean of several; exactly, if the retrogradation of the nodes
be not considerable.

The periodic time of Venus, found from the mean of several
passages between its nodes, is, nearly, 224! 16" 41™.

The periods of Mars, Jupiter, and Saturn, may also be con-
veniently found by this method. But if we possess only a limited
range of observations, the method loses some of its practical
exactness, from our not being able to take the mean of several
results. It is an excellent method for Venus, but nearly useless
in the case of the Georgium Sidus.

This method, if the entrance of the planet into each node be
observed, leads to something beyond the mere determination of
the periodic time. It shews, whether or not the orbit be eccen-
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tric, and to what extent at least it must be eccentric : and this
will appear from the following detail, which Delambre has given
us for finding the period of Mars.

(1) July 28, 1807. @ in his descending node ( ) and his
southern latitude increased till December 16. If we assume this
latter time to be that of his greatest latitude, and the interval
(145 days) between this greatest latitude, and his being in the
node, to be Zth of his period, the period will then be equal to
580 days.

(2) May 21, 1808. @ in his ascending node (Q ), and the
interval elapsed in the passage between node and node (between
B and Q) was 302 days. If that interval were half the period,
the period would equal 604 days.

(8) March 7, 1809. North latitude of Mars was 2° 49’,
and on June 8th, was O: at this latter time Mars had returned
to his orbit, after a period of 687 days, which must be, very
nearly, its true duration. The mean of several results, obtained
as above, makes the period equal to

686! 22 18™ 19",

Now, since the interval between node and node is not half
the interval between two successive passages of the planet
through the same node, it follows that the orbit is not circular,
and, moreover, that the major axis is not coincident with the line
of the nodes. Neither can the major axis be perpendicular to
the line of the nodes: for, in that case, the planet when at the
extremity of the axis, would have been at its greatest latitude,
and the time from the node to the greatest latitude, would have
been half the interval between node and node : whereas, (see
above) the time from & to the greatest latitude, was 145 days,
but the time from 8 to & was 302 days (= 2 x 151). This
same result, however, which proves the major axis not to be
perpendicular, shews also that it must be nearly so.

But we may draw farther inferences. The time from the de-
scending to the ascending node, (from ¥ to &) being less than
the other half of the period by the quantity 83 (= 385 — 302),
we have (supposing N7 to represent the line of the nodes),
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NAnw — NBn _ 2
NAr 3885’

A

7

]

since the areas are proportional to the times. Now when
Nn is perpendicular to AB, the difference between NAn aud
NBn is the greatest it can be. In such a position

Mw 1d ul“ earl
ThN ould equa 19s,n y,

or, the time from B to N would be nearly 152 days,
and the time from Nto 4 .. ... ¢coeess 198,

Now the period being, nearly, 687 days, in which the planet
describes  360°, the time of describing 90° would nearly equal
171 days, supposing the planet to depart from B, and to move
with its mean motion: but (see 1. 6,) the planet was really
at N nineteen days previously: im nineteen days, however, -
the amount of the mean motion is equal to 360° x 19 , or

687
nearly 10°.

At the time, therefore, the real planet was at N, the fictitious
planet or body would be, nearly, 10” behind. Now this dif-
ference, or angular distance is no other (see Chapter XVIIL.)
than the equatior of the centre. Such equation, at the point N,
is not exactly, although it is nearly so, at its greatest value. The

4 p
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greatest equation of the centre, then, in Mars’ orbit, cannot be
less than 10°. In fact, it must be greater, not only from the cause
just assigned, but because the difference of the times from B to
N, and from N to A, would be greater than observation shews it
to be, if Nz were (which it is not) perpendicular to AB the line
of the apsides.

The same \process for finding the period, and like inferences,
relative to the degree of eccentricity, are applicable to Jupiter
and Saturn. For instance, we have, according to M. Delambre,

in Oct. 18, 1794, (286 days) % in &,
May 18, 1800, (138 days) 2{ in & ;
therefore 5¥ 218Y, or 2043 days is half a revolution.

Again,
1806, 239" .« .iiiiiieeees Y in 8,
1794, 286+ ¢. v .. v .. ceees Y in B,
11¥ 318% or 4335 days is the period of Jupiter.

Hence, the difference between the two half revolutions, is
about 249 days: the fourth of which is 624, in which time

62.25
. . 0 4/ —
Jupiter describes about 5° 4 ( = 360 x 2355 ) The greatest

equation, therefore, of the centre in Juplter s orbit (see p. 575,)
cannot be less than 5° 4. The axis major of Juplter s orbit is
nearly perpendicular to the line of the nodes ; which circumstance,
as in the former case (see p. 575,) might be ascertained by an
observation of Jupiter, at the time of his greatest latitude.

In the case of Saturn, the two half revolutions from node to
node (from ¥ to & and from & to %) are nearly equal. The’
orbit of Saturn, therefore, is either nearly circular, or (whu.h by
other methods 1s proved to be the case) the line of its nodes is
coincident with the axis major. We cannot in this case, from
observations of the passages of the nodes, determine the quantity,
than which the greatest equation cannot be less.

Since the periodic time is an important element, we will give
sther methods of determining it.
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Second Method of determining the Periodic Time®.

Observe the planet in opposition, then its place, with regard
to longitude, is the same as if the observation were rhade at the
Sun. Amongst- succeeding oppositions, note that in which the
planet is in the same part of the heavens, as at the time of the
first opposition. The interval between the two similar oppo-
sitions is nearly the periodic time of the planet, or a multiple of
the periodic time.

Since the planet, at the last of the two similar oppositions,
will not be exactly in the place in which it was at the time of
the first, the error, or deviation, must be corrected and accounted
for, by means of a slight computation, similar, in principle, to
several preceding computations, and the nature of wblch will be
sufficiently explained by an Example.

Sept. 16, 1701, 2b K’s long. in § 353° 21’ 16” S. lat. 20 27 45"
(2) Sept. 10, 1730, 122 27™ F,’slong.in §347 53 57 S.lat. 2 19 6

Interv. 29y — 54 13h 33w, diff. of long. 5° 27’ 19",

Hence, it is plain, we must find the time of describing this
difference 5° 27’ 19”: and the means of finding it may be drawn
from other observations of the planet made in September 1731.
(3) Sept. 23, 1731, 15h 51m K’s long.in & 0° 30’ 50" S. lat, 2° 36’ 55"

Iuterval betw. (3) and (2) 1v 134 3b-24m, diff, of long, = 120 36’ 53"

Hence,
12° 386’ 53" : 5° 27/ 19" :: 1¥ 13 3" 24™ : time required,
which time = 163% 12" 41™.

Hence, adding this time to the former interval between op-
position and opposition, we have

20 7 o o (7 Bissex.)
+ 1638 12 41
— 513 83

29 164 23 8 -

h ’s periodic time =

* The periodic times of planets are important elements, and admit
of being very exactly determined; and when determined;-become the
best means of determining the mean distances, which by parallax, or
other methods, are very inaccurately found.
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And consequently, Satura’s mean motion for one year, or mean
17

annual motion = 360° x 20 168 39 55

= 12° 18’ 23" 50",

If the major axis of Saturn’s orbit be, like that of the Earth’s,
progressive, then the above determination of the periodic time
will not be very exact. And indeed, it ought rather to be re-
garded as a first approximation, and as the means of obtaining

the true value of the periodic time more exactly. Using it
~ therefore as an approximation, we may, by comparing oppositions
of the planet, distant from each other by so large an interval of
time, that the inequalities of the several revolutions will be
mutually balanced and compensated, determine the periodic time
to much greater, and indeed, to very great exactness. Thus,

228 4. C. March 2, 1* K's long.in § 98*23’ 0 N. lat. 2° 50"
(2) Feb. 26, 1714, 8® 15® Jy’slong.in § 97 56 46 N.lat. 2 3
* Interval 1943y 105¢ 7h 15m, diff. of long. 26 14,

In order to find the time of describing 26’ 14", as before,
p: 575, &e.

(8) March 11, 1715, 16" 55® K’s long. in @ 111° 3’ 14" N, lat, 2° 25’
Interval between (2) and (3) 378¢ 8b 40™; diff. of long. 13° 6’ 28"

264" o
'———-130 628" 13° 14",
Adding this to the former interval, we have 1945Y 118* 21" 15®
for the interval, during which, Saturn must have made a complete
number of revolutions. Now, if the periodic time (29" 164% 23" ™)
previously determined, bad been exactly determined, then, dividing
the interval by the periodic time, the result would have been an
integer, the exact number of revolutions. But, the period
having been only nearly determined, the result of the division
(the quotient) will be an integer and some small fraction : still
the number of revolutions which can only be denoted by an
integer, must be denoted by that same integer. And in the case

.. time of describing 26’ 4“ = 378" 8" 40™ x

* 11 days are snbtracted, in order to reduce it to the stile of the first
observation, and 485 days added on account of the Bissextiles.
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before us, it wilt be 66. The number of revolutions then being
exactly 66, the exact time of one revolution
19457 118¢ 21" 15"
= 66
Hence, according to this more correct value of the periodic

time, the mean annual motion is 12° 13’ 85” 14", and the mean
daily 2'.0007.

= 29% 162 4* g7m,

In the preceding method of determining the periodic time,
Saturn was reduced to the same longitude. And longitude is
measured from the first point of Aries, which point is continually
moving westward 50”. 1 annually, and therefore, in 29¥ 162° 4" 27®
moves through 24’ 35”. The period, then, of Saturn, which has
been determined (29° 162% 4" 27™) belongs to his tropical revo-
lution, and is shorter than that of his sidereal, by the time requisite
to describe 24’ 35", that is, about 12° 7. Hence, Saturn’s
period of sidereal revolution will be 29¥ 174 11" 27™.

It is equally easy to determine, directly from observations, the
period of the sidereal revolution. Since, instead of reducing
Saturn to the same longitude, we should have so to reduce his
place, that it should be at the same distance from a fixed star at
the end, as it was at the beginning of the period.

But suppose a new planet to be discovered more distant than
Saturn, must we be obliged to wait during a long term of years,
to observe the successive returns of the planet to its node, in order
to discover its mean period and distance, or, amongst the resources
of Astronomical Science, can we find some means of supplying
the defect of past observations, or of anticipating the results of
observations to be hereafter made? We shall find an answer to
this question by merely stating what has taken place with respect
to the Georgium Sidus (or Uranus as the Freunch call it). The
planet was discovered in 1781, and in 1796 the Tables of its
motions were inserted in the Nautical Almanack : indeed, so near
the time of its discovery as the .year 1782, the elements of its
orbit, (as we find by the Memoirs of the Academy of Paris for
that year) were computed by Lalaude, and, amongst such elements,
that of its period was stated to be 84 years. -
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This then is a sort of practical answer to the question just
stated, and a proof that some method, other than has been de-
scribed, was resorted to by Astronomers for discovering the
period, and other elements of a planet, endowed with so very
slow a motion.

The method of Lalande, one of trial and conjecture (of trial
indeed, which after a few times was sure of succeeding) will easily
be understood by adverting to what was said in pages 566, &c.

The angle of elongation (E) = L — ©, L being the geo-
centric longitude, and Ex E the angle of parallax, (w) is the

difference of the heliocentric and geocentric longitude, and, there-
fore, is equal to P — L.

Now E is known from L and © (see p. 566.), and since

Y

sin. 7 = sin. E.—— we can find 7, and thence P=L+ =,

S
if we can find S, or, which is the same thing, if we assume a
value () for So (S and SP are nearly equal) we shall have
from the above equation of a corresponding value of
. and thence of P: suppose its value to be P’. Use the same
process, -with the same assumed radius S#, with a second and

~
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third geocentric longitude, and let the two resulting hehocentrlc
longitudes be P” and P", then we have

P’ - P', P" — P" and P" — Pl,

and from knowing the three times of observations (¢, ¢/, t") we
know -
¢ — ¢, " — ¢ and " — ¢

Take any one of these three differences, the last, for instance,
then

P” — P' . " — ¢ :: 360° : period of the planet.

But 7 is the assumed mean distance, accordingly, by Kepler’s
law (see p. 455,)

1# : 78 :: 365.256384 : planet’s period.

The agreement of this value with the former would be a proof
that  had been rightly assumed. The disagreement, by its
nature and degree, would point out to us the manner and extent
of correcting the first assumption of r.

This is a description of the method which Lalande employed.
He possessed three geocentric observations of the planet ()
made in 1781, on April 25, July 31, and December 12, and he
found the period (according to the method just described) by
meaus of the first and third observation. The two values of the
period (as it was probable they would) were found to disagree.
Lalande, therefore, amended his first assumption : and ‘assigned,
partly by conjecture, and partly by the guidance of his first trial,
anew value of the distance, and then examined it, as the former.
By a repetition of like trials and examinations a radius vector was
at length_obtained, which agreed with all observations *.

* This method of M. Lalande’s, is a kind of sample and exemplar of
almost all astronomical processes. In these, at first, nothing is deter-
mined exactly. Approximate quantities are assumed and substituted, the
results derived from them, examined and compared, and then other ap-
proximations, probably nearer to the truth, suggested, Astronomy leans for
aid on Geometry ; but the precision of Geometry does not extend beyond

the
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We may state somewhat differently, but without any alteration
of principle, the above process of approximation.

Should the first, or any observations of the planet shew the
angle of elongation (= L — ©) to be obtuse, the planet must
be a superior one : in which case, 1 being the mean distance of
the Earth, » must be > 1.

Assume »r =1.5, ¢, 2.5 3, 3.5, &c.
and form the corresponding values of 7 from

sin. E

r

sin. T =

thence, write down the corresponding values of

P=L4 .

Repeat these operations on succeeding observations, and
then, by subtracting the heliocentric longitudes of one day, from
those of the preceding day, deduce the heliocentric motions of
the planet; suppose d P to represent this motion, and d©® the
Sun’s daily motion, then, since the angular velocity

area described in a given time
(dist.)?

_ whole area x 1
~  period (dist.)*’

I

and since the whole areas (if the orbits be circular) vary as the
squares of the radii, and the periods vary as (radii)}, we have

the limits of its theorems, In Astronomy scarcely one element is pre-
sented simple and unmixed with others. Its value when first disengaged,
must partake of the uncertainty to which the other elements are subject ;
and can be supposed to be settled to a tolerable degree of correctness, only
after multiplied observations, and many revisions, There are no simple
theorems for determining at once the parallax of the Sun, the right as-
cension of a star, or the heliocentric latitude of a planet.
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r 1
. dP : do ::;;x;;:l;

do\*
. .V r = ( d P )
from which expression, since d © is known from the Solar Tables,
or the Nautical Almanack, r may be computed, and its several
values corresponding to the several values of dP. Of the origi-
nally assumed values of r (see p. 580, 1. 7,) that which, most
nearly, approaches to one of these lastly deduced values of r, is
the value nearest to the truth. Thus suppose one of the values

from the expression .
doO\*
=Gp)"

should be 19.3, them, since 19.5 is, of the originally assumed
values, nearest to 19.3, we may conclude 19.5 to be nearly the
true value, and whether the true value is between 19 and 19.5, or
between 19.5 and 20, must be inferred from the two contiguous
values of r, namely, from

do\* , do\*
r—(:ﬂ;-',andr—(d—l;

The periodic time of a planet (P) being found, its mean daily
motion (M) may be thence derived from this proportion,
a0
. P . ’

P being expressed in days and parts of a day.

P:1:30: M=

Thus, in the case of Venus, P being 225° 16" 41™, the mcan
motion is
360 1°

= _ - = 19, = 1036, 7.
225 16" 41® ~ .62415319 1°.6027 9.7

The mean distance (a) may be found by Kepler’s law. Thus,
1 representing the Earth’s mean distance from the Sun, and
365°.256384 being the value of the Earth’s sidereal period,

4 E
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(365.256384)F : p* :: 1 a (365.256384

But although this is the best, it is not the only way of finding
the distance of a planet. The distance of Venus may be found
from her greatest elongation (technically called her digression).
Thus, by examining a series of angles of elongation (E) formed
from the expression .

E=+(L- o)
it is found, that the greatest value of E is about 45° 4¢', and

73

when E is the greatest, the angle Su E is a right augle, Eu being
a tangent to nud. In this case, then,
+Su = SE.sin. 45° 42' = 7157, if SE = 1.

These dzgresszons of Venus would all be of the same value, if
Venus and the Earth revolved in circular orbits. But, as we have
!

* This is not exactly true: let u = Sun’s mass <~ the planet’s mass, |
u'= Sun’s mass 4 Earth’s mass;

!
J
then (365 256384) _» (1) | |
is the exact equation from which a is to be deduced, (see Physical i
Astronomy, p. 30.)
+ I"u should have been more inclined to S¥, and then Su wou]d be
a line drawn from S to .
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seen (p. 449,) SE is a variable distance.  Still the differences in
the values of the digressions caunot be accounted for, by esti-
mating the effects of the eccentricity of the Earth’s orbit: the
inference from which circumstance is, that Venus’s orbit is also
elliptical. :

There are particular conjunctures from which, on the suppo-
sition of the orbit of Venus being elliptical, we could determine
the value of its eccentricity. Suppose, for instance, we possessed,
amongst our observations, two digressions (E and E’), one made
when Venus was at the aphelion of her orbit, the other at the
perihelion ; in that case, if e were the eccentricity, R and R’ the
distances of the Earth from the Sun, we should have (» being the
mean distance of Venus), :

r 4 re = R .sin. E,
r — re = R'.sin, E/,
R .sin. E — R’ sin. E’
er

whence ¢ =

R . . v/
e (sin. E — sin. E’),
if we suppose R = R'.

We might also, (could we rely on the accuracy of the measure-
ments) determine the relative values of the radii of the orbits of
Venus and the Earth, from the apparent diameters of the former
planet, at her greatest and least distances. Thus, should the
least and greatest apparent diameters be, respectively, 10" and 60",
we should have N

60 147
10 1 -7

, and r =

EN R RS

Method of determining the Nodes of a Planet’'s Orbit.

* The nodes of a planet’s orbit, are those two points in it in
which it is cut by the ecliptic. The node which the planet quits
in ascending towards the north pole of the ecliptic, is called the,
Ascending Node, and its symbol is-Q . The reverse or &, is the
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symbol of the descending node, or, of that node from which the
planet moves towards the south pole of the ecliptic.

Let N, n represent the nodes; now by observations of the
planet’s right ascension and north polar distance, we can com-
‘pute its geocentric latitude (see p. 563,) and thence determine

E

when the latitude is O, or when the planet is in its node: let
E, E' be the two positions, when the planet is respectively at
nand N, then we have (see p. 582,)
*SEn = geocentric longitude of planetatn — @,
SE'N= @'~ geocentric longitude of planet at N,
and from the last method we know S#n, or SN; thence we can
compute, in the triangles SEn, SE'N, the angles nSE SnE,
and NSE’, SNE’': and thence
~ heliocentric long. of » = geocentric long. of n + £ SnE,
or=180" 4+ @ ...... — < aSE,
and helioc®. long. of N = geocentuc long. of N — ¢« SNE'
or=0"—180° ...... 4+ <« NSE/,
© and O representing the Sun’s longitudes at the two times of
observation.
The angle ESE’ is proportional to the Earth’s motion during
the planet’s passage from n to N.

* Conceive two lines drawn from E and E’ to n and N, respectively.
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.

* Venus, of which the period is less than 225 days, may, in the
space of a year, be observed three times in the ecliptic; the
longitude of the node is, according to astronomical usage, to be
estimated from the mean of a great number of observations at

nand N.

In the above method, we have supposed the planet to be
successively at » and N : but one observation is sufficient, as far
as the principle of the method is concerned, to determine the
longitude of the node. For example, in May 14, 1747, Mars
was observed to be descending towards, and to be very near to,
his descending node. By continuing the observations, and by a
computation like that described in p.'575, Mars was found to be
in his node on May 14, at 14" 25™ 13°, whilst his geocentric
longitude was computed to equal 7° 6° 18 42",

Hence,
L =17 613 42"
by Solar Tables ® = 1 23 46 47
So(seep.384, 1.9,) L— 0 or E =5 12 26 55
but sin. 7 (Sn E) = sin. E x é—-;
. Sn
87 being taken equal to 1;35446, and SE to 1.008; ,

com= 0 11° 22 55"
but (see p. 584,1. 10) L'=7 6 13 42

-". heliocentric longitude of n, or # 4 L = 7 17 36 37

which is the longitude of the descending node of Mars, at the
_time of observation. :

SE
The angle = (see 1. 19,) depends on the value of -§’—‘-

The numerator SE is known from the solar theory: but the
preceding method of pages 580, &c. determines solely the mean
distance of Mars. If, therefore, from original osbervations, we
were about to deduce the elements of that planet’s orbit, we
could only, in the first steps of the deduction, approximate to the
longitude of the node : because we should, in such first steps, be
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obliged to consider the orbit of Mars as circular, or, which is the
same thing, we should be obliged to assume for Sz that value
of the mean distance, which would result from the expression
686.979619
365.256384

In this case then (see p. 585, 1. 19,), we should have
" log. sin. 7 = log. sin. 5* 12° 26’ 55” 4+ .00471 — .1828965
= 9.3011888 = log. sin. 11° 32’ 28".
Hence, the first approximate value of the longitude of the
node would be greater than the one deduced by 9’ 33": which is

the error caused by supposing Mars’ orbit to be circular, for the
value of Sz in p. 585, was taken from the Tables of Mars.

= 1.523694.

When we determine, as above, the longitude of the node,
from computing the time of the planet’s entering the ecliptic, we
do not require to be known the inclination of the planet’s orbit.
In a scientific arrangement, the determination of that element
would be placed, after that of the node. But if we suppose the
inclination to be known, or (which is the real astronomical usage)
if, in performing the circuit of revision and correction, we wish,
from an approxmate value of the inclination, to correct by means
of recorded observations, the elements of the orbit, we may com-
pute the place of the node, by slightly modifying the above
method. Thus, in the instance given, the observations of Lacaille
were as follow :

May 14, 1749, 10" 50™ 45". geo. long. @ (L) 7* 6° 15’ 20", lat. 25".5
i Sun’s long. .... 1 23 38 10

E....512 37 10
1.008 '

15446)"""'0 11 16 37
(heliocentric long. & ); . + L.... 7 17 31 57.

But this is the heliocentric longitude of Mars, when his
geocentric latitude was 25”.5. If we could thence find the helio-
centric latitude, and knew the inclination of the orbit to the
ecliptic, we could thence deduce (see Figure of p. 582,) nu.
With regard to the first. point, the deduction of the keliocentric

(from sin. r=3sin. E.
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from the geecentric latitude, since Vi is a tangent to the angles
VSu, VEu to the respective radii Su, Eu®,

Su.tan. VSu = Eu.tan. VEu,

but Su = sin. B —(C bemg ESu the angle of commutauon)
Eu sin.C
and since E = 5* 12° 37’ 10"
’ T = o 11 16 37
it is necessary that C=0 6 6 13
6 0 0 O

sin. 6° 6’ 13" _
sin. 17° 22’ 50"
tan.9”.2; ... 9" is nearly the heliocentric latitude, which being
very small, we may consider the right-angled triangle n Vu as right-
lined, and solve it accordingly : which we can do, if the angle
Vnu(the inclination) be known. Let it be 1°51’, then nu=4'41",
nearly, which being added to 7* 17° 31 57" (the heliocentric
longitude of @ decending towards and very near to, its node)
there results for the lieliocentric longitude of the node
7 17° 36’ 38",

which, within one second, is the result of p. 585, 1. 28.

Hence, tan. VS« = tan. 25".5 x

In these methods, the determination of the place of the node
18 the more difficult the less is the inclination of the planet’s orbit.
For that reason it is difficult to determine the nodes of the orbits
of Jupiter and the Georgium Sidus.

 Method of determining the Inclination of the Orbit of a Planet
to the Plane of the Ecliptic.

The longitude of the node being known by the preceding
methods, compute the day on which the Sun’s longitude will be
the same, or nearly the same. The Earth will then be in the
line of the nodes Nz, at some point e (fig. of p. 584,): observe;
on that day, the planet’s right ascension and north polar distance,
and deduce (see pp. 563, &c.) the geocentric latitude (G);

* The lines SV, Vu should have- been more bent to each other than
they are in the Figure. . :
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sin. { Se

tan. G

then tp = et.tan. G = St'sin. Sep
sin. Nt
sin. E
but, in the right-angled triangle N¢p, we have by Naper’s Rules,
sin. Nt = cot. tNp.tp, or tan. I.sin. Nt =tp,
I denoting the ioclination,

. tan. G,

sin. N¢

accordingly, tan. I.sin. N¢ = g e G,
tan. G
A=
and tan B

The diagram that has been referred to belongs to an inferior
~ planet : but, a like diagram, and the same process, will apply
to a superior planet.
As an instance of the method, suppose we possessd the fol-
lowing observations, on Jan. 12, 1747, 6* 6™ 33°:
long. b «o oo 6 26° 12 5¢”, lat. N. ° 29 18"

on the above day, ©, .
cete e (]
or the Sun’s long. } 92147 0

SLE.o... 2 25 34 8
Now, by Lalande’s Tab]e,}
2 or long. of node
or the Earth was, then nearly, in a position such as e.

...9 2181 0

Hence, from the expression of 1. 7,
log. tan. 2°29' 18" ,....c..i0., 8.6380591
log. sin. 85 34 8 ......00s....9.9986099

8.6393592

~and this result is the logarithmic tangent of 2° 29’ 44”.8, which,
accordingly, is the value of the inclination of Saturn’s orbit from
the above observation, and which must be very nearly its true

value. -

It is not its exact value, because the Sun’s longitude being
greater than the longitude of the node by 15, the Sun at the time
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of observation, had passed the line of the nodes. About 6 hours
previously, the Sun was in the line. In order, therefore, to
correct the above result, we must correct, proportionally to such -
time, the geocentric latitude, and the geocentric longitude, and,
consequently, (see p. 586, 1. 26,) the angle E. The corrected
place of the node is then to be deduced from the expression

tan. G

sin. E’

G and E being now the corrected values.

tan. [ =

But it is plain that this last result will differ very little from
the former : for, the angle of elongation being 85° 34’ 8”, and the
angle of parallax about 6° the vemaining angle of the triangle
formed by the Earth, Sun, and Saturn, or the angle of commu-
tation, will be 91° 34': consequently, Saturn will be nearly at the
sam¢ distance, both from the Sun and the Earth, and his helio-
centric latitude will not differ much from his geocentric : but the
latter is 2° 29’ 18"; therefore, since the inclination (which is
measured by the greatest heliocentric latitude) is 2° 29’ 44”.8,
the planet must be nearly at its greatest heliocentric latitude, and.
quantities, at or near to their greatest values, change very slowly.

The angle of elongation will vary with the geocentric longi-
tude, and accordingly, in the present case, very little: but the
mclination (see p. 588,) depends on the sine of the angle, which
angle is between 85° and 86°, and consequently not far from that
value at which the sine is a2 maximum. In this case then, as in
the former, scarcely any alteration will take place in the new
value of the sine of E. Hence, in the expression tan. I = t:i:' g,
the resulting value of I will be nearly the same whether we use
the original or the corrected values of G and E: or, which is
the same thing, the inclination was very nearly determined by the

first calculation.

* Log. sin. E ....ovuveunee ceriees 9.99870
log. B’s dist. vovviiniianienee. 97949

9.01921 = log, sin, 6°.
4 F
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The inclination may also be determined from observing the
planet ata conjunction, when it has considerable latitude. Thus,
suppose the planet to be Venus, at a point w of her orbit, (see
fig. of p. 582,) such that A the reduced place in the ecliptic is
n the same straight line with E and S : then, as before, we have

EA.tan. AEw = SA .tan. ASw.
Let SE=1, S4=p, Sw=1r, ASw=H,
then (1 — p).tan. G = p. tan. H.
But in the right-angled triangle Anw (right angled at A)
sin. n4 . tan. I = p tan. H;
‘tan. G

sin. n A

.1 =p = tan. I,

Now n 4 is the longitude of the planet minus the longitude of
the node. The latter quantity is supposed to be known by the
preceding methods, aud, the planet being in conjunction, its
longitude is the same as the Sun’s longitude : hence, if & denote
the longitude of the node =,

tan. G
= — — %
tan. I'=(1 = p) sin. (@ — 8) "
r r 1 .
=r.cos. I= = = — ~tan?1
but p =r.cos. I e I= VarmiDh rx(l gtan )

* The inclination of the orbit of Venus is about 3° 23': suppose such
an inferior conjunction to be observed, that the planet is 90° from its
node: then @ — Q = 90° and

sin, 3° 23’
tan, G = —276 = 214, nearly, and
G=12°%.

Again, suppose a like superior conjunction to be observed, then
’ tan. I tan. 3° 23’
14p~ 1723
and G = 1° 58’, nearly.

tan. G =

= .0343,

Hence, as Delambre observes, it would be necessary, in order that
Venus should be always seen in the zodlac, that the breadth of the zodiac
should be, at the least, 24°. .
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if (as is almost always the case) I be very small, hence,

T tan. G
tan. I = (l - r-l—é-tan. I) (o —8)
from which I may be obtained by approximation, or the solution
of a quadratic equation, or, in the expression of p. 590, if we
make p = r, we may thence deduce an approximate value of I,
which approximate value being substituted in p = 7 cos. I, we
may, from the same equation, obtain a new value of tan. I.

We have now obtained the mean distance, the longitude of the
node, and the inclination of the orbit of a planet: but, hitherto,
nothing has been determined respecting the form of the orbit:
indeed, in some of the previous determinations, we have been
obliged to suppose the orbit circular, or to assume for the radius
vector of the planet’s orbit, its mean distance as it results from
Kepler’'s law. We must now cousider whether the steps that
have been made good, will enable us to proceed farther, and to
find out, what probably, and by analogy, exists, the eccentricity
of the orbit; and then the place of the aphelion.

We have already seen, in a particular instance, from certain
differences in the digressions of Venus, that her orbit is eccentric :
but our present concern is, with some general method, of ascer-
taining and valuing .the eccentricity and place of the aphelion
of the orbit of any planet. It will not be difficult to find out the
grounds of such method. '

Suppose, for the sake of simplicity, the planet’s orbit to lie in
the plane of the ecliptic. Since, (see pp. 571, &c.) we know the
mean motion, and, by observing the planet in conjunction, or op-
position, the planet’s true longitude (see p. 568,) we can, after any
elapsed time, compute the planet’s mean longitude. Let the
elapsed time be the interval between two conjunctions: then, if
the orbit were circular, the computed mean longitude would agree
with the last observed longitude *; but a difference between
them would be an indication of the orbit’s eccentricity.

* Except, which is highly improbable to happen, the planet, at the
times of the two conjunctions, should be in the aphelion, or perihelion of
its orbit : for at those points the mean and true anomalies are the same.
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This difference must depend both on the eccentricity, and the
place of the aphelion. It must depend upon the former, because
if, in a given position of the orbit, the eccentricity ‘were increased,
the difference between the computed and observed longitudes
would also increase. It must depend on the place of the aphe-
lion, because, if the planet be there at the time of the observed
conjunction, the true and computed places of the planet will
agree. The differences then of the computed and obhserved
longitudes depend on the eccentricity, and the position of the
axis major of the orbit, and it is a fit subject of mathematical
investigation, to deduce the eccentricity and the place of the
aphelion, from such differences.

We will now consider what effect on the preceding reasonings
will be produced by restoring to the orbit its inclination.

Let N be the node of the orbit, then its longitude(see p. 583, &ec.)
is known. The longitude of the planet, when in tonjunction, is

known, since it equals 180°+ ©. Hence, deducting the longi-
tude of the planet from the longitude of the node, there remains
Nx. Now since the elliptical motion takes place in the orbit
NP, it is requisite to know NP, and like distances of the planet
in its orbit from the node. But N being known, and the angle
PN ; the distance NP may be determined, either by. the solution
of the triangte PN (right angled at 7) or (see pp. 505, &c.)
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by the formula of reduction : for, it is plain, the finding of NP,
from N7 and the angle PN, is analogous to the finding of the
longitude, from the right ascension and obliquity. In the for-
mula, therefore, of p. 506, 1. 8, write NP instead of ®, and
N7 instead of AR, and let ¢ be the tangent of inclination, then

sin. 4 N«
° gin. 2

NP = qu+t’w+t“ + &

'.l

If we set off, on the orbit of the planet, an arc (4)= N the
longitude of the node, we shall have A + NP, which is called
the longitude of the planet on its orbit: and, accordingly, we
shall have as many such longitudes, or as many such distances
as NP, as there are observations of the planet in conjunction,
or opposition. -

" Now three such observations are sufficient to determine the
two elements of the eccentricity, and place of the aphelion : for,
if we have three longitudes on the orbit (V, ¥/, V") we have, by
taking the differences of the second and first, and of the third and
second, two differences of longitudes, and, since the planet’s
- period i1s known, we can compute two portions of its mean
motion, corresponding to the two noted intervals of time, between
the second and first observation, and between the third and second
observation. The two differences of real longitudes compared,
according to the elliptical theory, with the coiresponding portions
of mean motion, will give us two equations for determining the
eccentricity and place of the aphelion.

Thus, suppose we have three observations of conjunctions
or oppositions, then we know the three corresponding longitudes
of the planet on the ecliptic, and, deducting from each the longi-
tude of. the node, we know three such arcs as Nz, and by the
formula of reduction, three such arcs on the orbit as NP, and,
lastly, by adding to each the longitude (4) of the node, set off on
the orbit, we know three longitudes on the orbit, such as 4 4 NP:
let these be, respectively, ¥, V', V", and let e be the eccen-
tricity (supposed to be very small), ¢ the longitude of the
perihelion, the place of which, suppose to be at some point (B)
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between N and P: let M, M’, M", be the mean anomalies
reckoned from B: then we have (see Chapter XVIIIL.)

BSP = M + 2e.sin. 2 M, nearly,
or V—¢ =M+ 2e.sin. (V — ¢), nearly,
similarly V' — ¢ = M’ + 2e.sin. (7' = ¢),
Vie¢p = M"+ 2e.sin. (F"— ¢

Hence, by subtraction
Vi V=M —M+2ec.{sin.(V —¢) —sin.(V — )},
V- V=M'—- M+ 2e.{sin. (V' — ¢) — sin.(V'—¢)},
or -

WV =V)=(M' = M)(=a)=2e {sin. (V' - ¢)—sin. (¥ — )},
@ (V"= V)—(M" — M')(=b)=2¢ {sin. (7" — ) —sin. (V' = p)}.
Now V, V', V" are known (see p. 568,) and M'— M, M" —M'
are known from the period of the planet, and the times elapsed:
thus, if ¢ be the interval between the observations of ¥V and ¥,

t

lanet’ jod : 360° :: ¢t : M' — M =—
planet’s perio t: M M period

x 360°.

Hence, since « and b are known, we have two equations'for
determining e and ¢.

Divide equation (1) by equation (2), then

' a _ sin. (V’ — @) — sin. (V — ¢)
b sin. (V'T— @) — sin. (V' — ¢p)’
the numerator of this fraction
. in. (V — ¢)

=sin (V=@ (1 = ™ =@

sm. ( ) (l sin. (V' — ¢))

. in. ¥V cos. ¢ — cos. V.sin. ¢
=sin.(V = ).(1 = "
sin. ( 2 ( sin. V'. cos. ¢ — cos. V. sin. ¢)

o " _sin. V — cos. V.tan. ¢ '
= sin. (7" = ¢). (l sin. V' — cos. V'. tan. (j))

. ' sin. V' —sin. ¥ — tan. ¢ (cos. V' = cos. V)
= sin. (V= ¢). ( sin. V! — cos. V'. tan. ¢

similarly, the denominator of the above fraction (I. 21,)

)
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] in. 7/ —sin. V"'~ tan. ¢ (cos. ¥’ — cos. V")
= —sin. ' — ). (™ ]
sin. ( 2 ( sin. ¥/ = cos. ¥/ .tan. ¢ )
Hence,

a sin. V' — sin. V — tan. ¢ . (cos. V' — cos. VY

b sin, V" — sin. V' — tan. ¢ (cos. V" — cos. V)
and, accordingly, L
tan. ¢ = a.(sin. V" — sin. V') — b.@sin. V' — sin. V)
. a.(cos. V' — cos. V') — b.(cos. V' — cos. V)’

which is an equation for determining ¢, the longitude of the
perihelion.

In order to determine the eccentricity, we héve, ¢ being
determined by the preceding equation,

- a.sn. 1"
T 2. [sin. (V' — @) — sin. (V—¢)]

I M n
Z 6.8 1

™ ‘
sin. Z (V' — V). cos. (T+ - ¢)

e

By these means ¢ and e* are approximately determined : and
if we use their approximate values, we may extend the series for
V — ¢, &c. (see Physical Astronomy, p. 32,) and obtain nearer
values for (F¥' — V) — (M' — M), &c. or for a and b, and
thence, by means of the equations of 1. 5, nearer values of ¢
and e. : ~

The eccentricity (¢), the longitude of the perihelion (¢), and

the axis major (2a), being determined, we are able to compute
the radius vector (r) from the expression

a.(1 —é%

= 14+e.cos. (V—¢)~

r

* The eccentricity and place of the aphelion are often mathematically
determined by the solution of a problem, of which the conditions are, three
given radii vectores, and three given longitudes : but it 8 plain, from the
preceding matter, that the first condition, (that of the gives radii vectores,)
is not easily to be obtained. The knowledge of the period, leads only to
the knowledge of the mean distance.
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and, since the place of the node, and the inclination of the orbit
are determined, we are able to compute (see figure of p. 592,) the
curtate distance S, on the supposition that SP, from which it
is deduced, is the radius vector in an elliptical orbit. If, there-
fore, in any of the processes for determining the elements, the
curtate distance S7 has been supposed to be derived from SP,
considered as a mean distance, or constant radius (see p. 567,)
we may now, with a truer value of Sm, repeat the _processes
and correct their results.

The elements of a planet’s orbit being now obtained, we will
proceed to consider' by what means those elements are to be
employed in forming Tables of the planets’ motions ; aud, then,
by what methods, either recorded or future geocentric observa-
tions may be applied to the correction of existing Tables. These
subjects will be briefly considered in the ensuing Chapters.



CHAP. XXV.

On the Formation of Tables of the Planets.—The Variations of
the Elements of their Motions.—The Processes for deducing
the Heliocentric Places of Planets from Tables.

Ix the planetary theory, as in the solar, the described orbits are
supposed to be elliptical. The same process then, which, in the
latter theory, gave us the Sun’s true anomaly and radius vector
from the mean anomaly, will give us (changing what ought to be
changed) a planet’s true anomaly, whether the planet be Venus,
or Saturn.

This regards the elliptical place to be found by Kepler’s
problem. But the Earth being, according to the doctrine of
universal gravitation, disturbed by the action of the Moon and the
planets, does not describe an orbit exactly elliptical. By parity
of reason, neither Venus nor Saturn can move in orbits exactly
elliptical. Each disturbs the other. Their places, therefore, like
the Sun’s place, require a small correction, or rather several
small corrections due to the several planets.

But as in no case these corrections for planetary perturbation
are large, so in some they are too small to be worth taking
account of. Mercury and Veunus are in the above predicament.
Their Tables are constructed solely by means of Kepler’s problem,
and are, therefore, much more easily constructed than the Tables
of the other planets. The longitudes of Mercury and Venus are,

4 ¢
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accordingly, to be had very readily from their Tables. For
instance, suppose it were required to find Mercury’s longitude in
his orbit.

Longitude. Aphelion.
Epoch for 1793, 2 28° 5 16" 8 14° 14’ 17"
‘Mean motion to June 3,| 9 O 13 34 0O 0 0 24

...........-.for-ﬁh (0] 0 51 9

Mean longitude ...... |11 29 9 59 8 14 14 41
Equation of centre . ... | — 23 39 58.5| 11 29 9 50

L

Longitude on orbit ....[11 5 380 05| 8 14 55 9
the mean anomaly.

This is a process precisely similar to that by which in pp. 489,
490, the Sun’s longitude was found: and, to a certain extent,
all other processes for computing the longitude of a planet, be it
Mars, or Jupiter, or Saturn, must resemble it, inasmuch as Kepler’s

~problem is, in all, the main instrument in procuring a result.

The result by Kepler’s problem solely, is the planet’s ellip-
tical place: which, in the case of the Earth, Mars, Jupiter,
Saturn, and the Georgium Sidus, requires a correction. We will
give an instance of Mars’ longitude taken from his Tables.
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Required the Heliocentric Longitude and Latitude of Mars,
Nov. 18, 1800, 11" 8™ 20%.

Longitude. Aphelion. Node.

JEpoch for 1800( 7* 22° 34’ 21”.8[ 5* 2° 23’ 17" | 1 18° 1 1"

Nov....|5 919 84|00 0558|0 0 0228
188, .../]0 6 48 465(00 O 240 00 1
1t....|0 0 14 24.7 '

8®....[0 0 0 105

20'..../|0 0O O 0.4

Meanlongitude] 1 8 56 47.3 [ 5 2 24 152 |1 18 1 24.8
‘fO)Sumofequa.,O 10 13 269 [ 1 8 56 47.8 [ 1 1910 14.2

|[Long. on orbit{ 1 19 10 14.2 | 8 6 32 32.1 |0 1 8 49.4
Reduction....|0 O O-—2.2 |the mean anom. [argument of lat.

Heliocen.long.| 1 19 10 12 . Heliocen. lat.
: =0°2 13".4N.

In this process, e, the sum of the equations, contains, besides
the equation of the centre (= 10° 18’ 18".5), three small equa-
tions arising from the perturbations of Venus, the Earth, and
Jupiter. 'The sum of these three equations is 13”.4, which added
to the equation of the  centre make e.

The reduction — 2.2, applied to the longitude on the orbit,
gives the heliocentric longitude, measured along the ecliptic, and
from the mean equinox. If this result be corrected for the effect
of nutation, (by applying the equation of the equinoxes) there
will be obtained, the longitude measured from the apparent
equinox.

In the fourth column, the argument of latitude is the dif-
ference of the longitude on the orbit (1* 19° 10’ 14".2), and of the
longitude of the node (1° 18° 1’ 24”.8). It is, in the annexed
figure, NP : and it is properly called the argument’of latitude,
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because, the inclination of the orbit being given, the latitude
depends upon it: for

1. sin: lat. = sin. NP .sin. NP=x*.

‘There are no direct corrections, from the theory of perturba-
“tion, of the longitudes of Mercury and Venus, in the Tables of
those planets. Still the Tables are not entirely coustructed
without the aid of such theory. If we revert to p. 598, 1. 6, we
shall see in the fourth column, under the head of Aphelion, 24"
to be added to the epoch of the aphelion, as a quantity due to
the change of the aphelion’s place, in the mterval between
January 1, 1793, and June 38, 1793.

Now such a change of place does not obtain in the elliptical
theory, but arises from the disturbing forces of the system.
Some, therefore, of the results of the theory of perturbation are
made use of in constructing the Tables of Mercury and Venus.

* If the inclination be taken equal to 1° 51’ 4", we have

log. sin, 1° 51' 4” .oieivienrennenns 8.5092343
108'. sin- 1 8 49-4 o‘nuun-nun 8-3014327
6.8106670

which is the log. sin. of 2’ 13"}
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But the changes of the places of the aphelia are phenomena,
or laws common to the orbits of all planets. We have another
instance in the second Example. These changes are ehanges of
progression: and their computation, on the principles of gravita-
tion, was the second great proof of the truth of Newton’s System,

(see Physical Astronomy, Chapters IX, XXII.)

In the second Example there is a small quantity to be added
to the place of the node, and indicative of a change of its place
in the interval between January 1, and November 13 : (see the
Chapters above cited).

The accounting for the progressions of the aphelia, and the
regressions of the nodes (for such is the general statement of the
laws of their motions), on the principle and law of gravitation,
proves, to a certain extent, the trdth of such law and principle.
But, in determining the exact quantities (and the quantities are
very minute) of such progressions and regressions, it is much
better to use observations, than computations from theory. And
observations are thus to be used : from those that are convenient
for the purpose, find for a certain epoch the place of the node :
repeat the process for another epoch : the differerice of the two
places is the change of the node’s place in the interval between
the two epochs : and the difference divided by the interval (if it be
expressed in years and parts of years) will be the mean annual
regression of the node. A like process will determine the pro-
gression of the aphelion.

We have now described and illustrated methods of deriving,
from observations of right ascension and declination, the elements
of a planet’s orbit, and the variations and annual changes of those
elements. - The elliptical theory enables us, then, to form Tables
of the planet : from which, at any epoch, its-heliocentric longitude
and latitude may be computed. The formula or Table of reduc- -
tion to the ecliptic, gives the planet’s longitude on the ecliptic.
But in order to know at what time, and in what part of the
heavens we ought to look for the planet, there is need of a
method of deducing the geocentric longitude and latitude from
the heliocentric. The geocentric longitude aud latitude being
known, the right ascension and declination of the planet may be
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deduced : and, accordingly, if we use instruments placed in the
meridian, we know at what time, and at what distance from the
zenith, to look for the planet on the meridian. If the predicted,
or computed, right ascension and declination should agree with
the observed, a presumption would then arise of the Tables being
right : and if, in many and various instances, the observed and
computed places should be found to agree, a proof would be
established of their being right. :

But even now, as formerly, there are to be noted some small
differences between the observed and Tabular places of the
planets : differences, however, too great to be imputed solely to
erroneous observation, and which must, therefore, arise, in part,
from the errors of the Tables. In order to render the Tables
more correct, the noted differences, just spoken of, must be used
(as like differences, or errors were used in pages 511, &c.) in
forming sets of equations, having indeterminate coefficients that
represent the errors of the several elements of the computation.
But this and the other matters, previously spoken of in this
Chapter, will form the subject of the ensuing.



CHAP. XXVI

On the Deduction of Geocentric Longitudes and Latitudes from
Heliocentric— Examples of the same: the Method of cor-
recting the Tables of Planets.

IN order to attain the objects, pointed out at the conclusion of
the last Chapter, it is necessary to be possessed of a formula, or
of rules for converting heliocentric longitudes and latitudes, fur-
nished by the planetary Tables, into geocentric.

It is required to determine, from the Heliocentric, the Geocentric
Longitude and Latitude of a Planet.

The heliocentric longitude of the planet, and the longitude of
the Earth being known, (from the solar theory and Tables) that
is, the angles formed by =S, ES, with So», E« being known,
the angle ES, the angle of commutation, is known.

Again, from the heliocentric latitude 2 PS, and SP, given

by the planetary theqry, (see p. 595,) the curtate distance Sar
may be computed, for '

Sm = SP x cos. PSw.

But, SE is also known by the solar theory (see p. 466,) there-
fore to determine £ SE =, the difference of the heliocentric and
geocentric longitudes, we have £ ESw, SE and S.

The angle SEx may be thus determined :

Assume (see Trig. p. 28, &c.) an angle 6, such, that

Sx SP .cos. PSw .
taq. Q=r x'ﬁ—r X——<p then (see Trig. p. 29, 30,
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¢SEm — Sk ES« R
r X tan. (—————2——~—- = tan. 2 tan. (0 — 45°)

from which formula SEx — SxE may be computed, and
SEx + S E being known, the separate angles SEx, S« E may
be determined.

The angle SEx, the ang[e of elongatnon, is the difference
(see p. 566,) of the geocentric, and of the Sun’s longltude
Hence,

geocentric long. planet = longitude of ® + £ elongation.

The geocentric latitude may be thus determined,

Pwr S« sin. ZSE~w
tan. PEx = e = Fx .tan. PS7 = mtan. ¢ PS8,
or,

sin. £ elong".

sin. Z commuts. x tan. heliocentric lat.

tan. geocentric lat. =

ExaMPLE. o

The Heliocentric Longitude and Latitude of Jupiter being, on
July 11, 5" 48™ 3¢°, 1800, 6' 29° o' 14".3, and 1° 138’ 42"
respectively, required the correspondmg Geocenmc Longitude
and Latitude.

Heliocenitric long. % ... cecveasnes.. 6°29° 9 14”3

(From Solar Tables) long. ® .¢cveveey. 3 19 52 28.3
A.ESW.-............S 9 16 46
..‘;—ESW..".‘.’.".IO‘ l 19 38 23

SP. cos. heli®. lat.

0 computed from tan. 6 = r SE (p.603, last llne)

From Tables of} _
. ceee 00 e o 1
the planet. log. SP 735582

log. cos. helio®. lat, . ........9.9999001
arith. comp. SE ............ 9.9928989

: (log. tan. 79° 24’ 48”). .. 4. ... 10.7283811 (rejects. 10)
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.0 = 79" 24’ 48"

9 —45° =34 24 48 .... log. tan. .... 9.8357262

LESw =49 98 23.... log. tan. ....10.0706464
19.9063726
SEx — SwE

therefore, rejecting 10, 9.9063726 = log. tan.

 SEw — SwE
—

. SEx + SwE
) 2

2 9
= 38° 52/ 16", : .

Bu = 49 38 23;

. SEx =88 30 39 = 2" 28° 30 39"
But (p. 604, 1. 17,) long. © .... =3 19 52 28.3
. (p. 604, 1. 8,) geocen. longitude = 6 18 23 * 7.3

To find the Latitude (from the expression, p. 604, 1. 12,)
log. sin. < elon. (S Ew = 88° 30’ 39") 9.99985
ar, comp. sin. £ com. (ESw = 99 16 46) 0.00573
log. tan, heliocentric lat. (lat.= 1 13 492) 8.33f26

.:, log. tan. geocentric lat. = 8.33684 (reject. 10)

.". geocentric latitude = 1° 14/ 39"
- 4 H
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Or, the computation may be effected by the aid of the fol-
lowing fermula, -
L denotes the -geocentric longitude,
P the heliocentric,
A the heliocentric latitude,
E the angle of elongation,
m the angle of parallax,
r the radius vector SP,
‘R the radius vector SE,

then, # = P — L,

.E — L b 0,
. r.cos. A . r.cos. X
then, sin. E = 7 snw= T n. (P - L)
_ r.cos. A

R (sin. P cos. L — cos. P sin. L),

but also sin, E=sin. (L— @ )=sin. Lcos. ® — cos. L.sin. 0.

Equate these two values of sin. E, and there results

rcos. A sin. P cos. L — 7 cos. A cos. P.sin: L
= R sin.-L cos. ® — R cos. L sin. ®,

and thence, (R cos. ® + 7 cos. A cos. P) sin. L
= (R sin. © + r cos. A sin. P) cos. L,

R sin. ® 4+ r cos. A sin. P

R cos. ® 4+ r cos. \ cos. P’

whichi is an expression for the geocentric longitude in terms of
quantities, given by, or capable of being computed from, the
planetary and Solar Tables.

and tan. L =

But this- expresswn is not adapted to logarithmic computation.
In order to adapt it, thus express the numerator and denommator, .

. .A.sin. P
the numerator-= (cs:; (; + I%cosc;: s(l: ) R .cos. o,
' P
the denominater = .(l -+ 7; cos. A cgs ) R.cos. ©.
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r cos. A .sin. P sin. &
—-———=tfan. 7 = ;
R cos. © cos. T

Let

T cos. P cos. P sw. x cos. P
So= €os. A = tan. r. — = - HE
R cos. ©@ sin. P cos. r sin. P

sin. © cos. x + cos. O sin. x sin. P
cos. z sin. P + sin. x cos. P "cos. ©
_ sin. (@ + 1).sin. P
= sin. (P 4+ 1) cos. ©

 We will apply this formula to the preceding instance, using:
the same numbers for r, R, &c. .

S.tan. L =

i First Operation. z compated.

log. 7 oo vue sonacneeaa. 7355821
arith. comp. B .......oo... .. 9.9928989
log. Co8. A ceereercne oasns. 9.9999001 .
log.sin. P...ecevennnnsns. 9.6876697
fog.sec.® «eavveeeeseeees11.4685705

(rejecting 30). . . . . .10.8846213

Second Operation. L computed.
r= 52° 34’ 8", nearly,
= lw 52 28.3 . ¢ ¢ v. e log. Sec ) 1104685705.
192 26 363...... sin. oo o000 9.3333974

P=209 9 14.3......sin. ......9.6876697
P4z =291 43 22.3 ..... arith.comp. 10.0319914

(rejecting 30) . . .". 10.5216290.

Now 10.5216290 is the log. tangent of 18° 23’ 8", and of
& 18° 28’ 8", which latter quantity is evidently. the true one in
the present instance ; therefore

L =6 18° 23 8",
nearly the same result as before.

By these means, then, the geocentric longitudes and latitudes
may be computed from -the heliocentric, such as the planetary
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Tables afford : the next step is to compare the computed geo-
centric longitudes and latitudes, with the observed, and from such
comparison to derive the correctious of the Tables,

Let C be the computed longitude,
L the observed,
O the epoch of the Tables,
m the mean motion,
- ¢ the time elapsed since the epoch,
" E the equation of the centre, corresponding to a mean
anomaly A, then
. "~ C= 0 + mt + E;
s dC=d0 +dm.t+dE,
but, as in p. 511, E varies both from the variation of the eccen-
tricity, and from the variation (d) of the longitude of the peri-
helion ;
dE " dE

SdE = :i—de - dr

. dC = dO-l-tdm+dEde+@d7r
Now dC the variation or error of the computed longitude, may be
considered as the difference between the computed and the
observed longitude : every comparison, therefore, of the two
kinds of longitudes affords an equation like the one of 1. 17, and
four such equations will be sufficient for the elimination and
determination of the errors of the eccentricity, epoch, &c.: but,
instead of confining ourselves to a barely sufficient number of
equations, it will be expediént to make use of a great number,
and by their combination to obtain mean results, (see p. 511, &c.)

In the above method of correcting the elements of a planet’s
orbit, the orbit is supposed to be strictly elliptical : but it must
deviate from such form, by the effect of perturbation. In order
to estimate the parts of such effect, or, in other words, the partial
effects of the several planets, it is necessary to assume a series
of terms with indeterminate coefficients, and arguments depending
on the angular distances of the disturbed and dlsturbmg planets

(see pp. 498, 519, &c.)
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In the next Chapter we will turn our attention to the synodical
revolutions of planets, and to the means of ascertaining, after what
intervals of time, we may expect those rare phenomena of the

\transits of Venus and Mercury, over the Sun’s disk : which indeed
can only happen. at peculiar conjunctions : such that the planet,
when it has the same longitude as the Sun, shall be near to the
node of its orbit : so near that its geocentric latitude shall either
be less than the Sun’s semi-diameter, or, in the extreme case,
shall scarcely exceed it.



CHAP. XXVIL

On the Synodical Revolutions of Planets.—On the Method of
computing the Returns of Planets to the same Point of their
Orbit.—Tables of the Elements of the Orbits of the Planets.

IN the preceding pages, the conjunctions and opposmons of
planets have been spoken of, but hitherto no method has been
given of computing the times between successive conjunctions, or
successive oppositions.

In the method also of determining the mean motions of planets
(see p. 375,) directions were given for observing the planet in the
same, or nearly the same point of its orbit, but no process or
formula given, of computing the time at which such event would
take place.

Towards these points then our attention will be now directed :
we shall find that they depend on:the same principles, and require,
in the business of computation, nearly the same formule.

The time between conjunction and conjunction, or between
opposition and opposition, is denominated, a Syrodical period.
Suppose we assume, at a given instant, the Sun, Mercury and the
Earth to be in the same right line : then, after any elapsed time
(a day for instance,) Mercury will have described an angle m, and
the Earth an angle M, round the Sun. Now, m is greater than

(p. 581,) therefore at the end of a day, the separation of

ercury from the Earth (measuring the separation by an angle
formed by two lines drawn from Mercury and the Earth to the
Sun) will be m — M : at the end of two days, (the mean daily
motions continuing the same,) the angle of separation will be
2 (m— M); at the end of three days, 3 (m— M); at the end of
s days, s (m— M).
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When the angle of separation then amounts to 360°, that is,.
when s (m — M) = 860°, the Sun, Mercury and the Earth must
be again in the same right line, and, in that case,

360°

=m—M

In which expression s denotes the time of a synodical revolu-
tion, m and M being taken to denote the mean daily ‘motions,
but, as it is plain, m and M may denote any portions, however
small, of the mean motions, and s will still be the corresponding
time, however reckoned, whether by days, or hours, or seconds. =

s cesenses (1)

Let P and p denote the sidereal periods of the Earth and the
planet ; then, since 1* : M° :: P : 360°
and1 : m ::p : 360,
360 360°

M= - and m = ——; .". substituting

= 360° - Pp
s (;—5) - F

and from either of these expressions, (1), (2), the synodical
revolution of the planet may be computed.

ceeeee(2),

We may differently express the synodic period ; thus, if 1 be
the Earth’s mean distance, and r be the planet’s mean distance,
we have, by Kepler’s law

P _ _
| P.p:1: .'.;=r A
P 365%.256384
and s = =3 = —j ,
r -1 r -1 "
365%.256984
or s = —————.
1 —r—%

The first .expression belonging to inferior, the second . to
superior, planets: and from these or the former expressions of
l. 4, 14, the synodical periods may be computed.
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For instance, in the case of Mercwry, p = 87°.969;
_365.256 x 87.969
277.287

In the case of the Moon, m = 138°.1763, and M (the Eartb’

mean daily motion) = 59’ 8".3;
360° 360 a
Ce s = = = 12", , -
S M T eagos 29 1% neardy

and the following Table may be formed by substituting in the
expression of p. 611, 1. 20, the respective values of r,

= 115% 21", nearly.

l"’lmets. Values of r. Values of s.
¥ 0.3871 . 115877
Q .7233324 | 583.920
& | _1.5286027 | 779.936
? 2.6 479.672
14 5.202792 398.867
) 9.5387705 | 878.090°
- 19.183305 869.656

It is upon this synodical revolution of the Moon, that its
phases depend. ,
' . Pp sP
Sln(je s P——p P =Ty P’

therefore, from the Earth’s period (P) known, and the synodic
(s) observed, we can determine the periodic time (P) of the planet.
This method will not be accurate, if only one synodic' period be
observed, since that will be affected with all the deviations of the
planet’s real from its mean motion. To obviate this, the return of
the planet to a conjunction nearly io the same part of its orbit,
“at which a previous one was observed, must be noted ; the inter-
val of time divided by the number of synodical revolutions will
give the time of a mean synodical period. For, in this case, there
will take place, very nearly, a mutual compensation of the ine-
qualities arising from the eliptical form of the planet’s orbit.
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By the above method, the sidereal periods of Mercury and
Venus may be accurately determined.

One reason-already assigned for the necessity of knowing those
particular conjunctions at - which the planet will be nearly in the
same part of its orbit, is the mutual compensation that will pro-
bably take place of the inequalities (relatively to mean motion)
arising from the planet’s elliptical motion. Another reason is,
that, on such coujunctions, depend observations of great import-
ance in Astronomy ; namely, the transits of Venus and Mercury
over the Sun’s disk. This will be manifest, if we consider that
Venus, in order to be seen on the Sun’s disk, must not only be in
conjunction, but near the node of her orbit: at the next con-
junction, after one synodical revolution, she cannot be near her
node, and can only be again near, (supposing the motion of the
nodes not to be considerable,) when she returns to the same part
of her orbit as at the time of the first observation. The import-
ance of knowing these particular conjunctions then is manifest,
and we shall be possessed of the means of knowing them, by
modifying the formule of p. 611, by which the times between
Successive conjunctions are computed.

. . . P
The time (¢) of a synodical revolution = P_-f-,; .
P
At the several times Pp SPp 4Pp and ——%

, there-
P—p’ P—p’ P—p  P-p’ ore

fore, the planet is still in conjunction : it will, therefore, be for
the first time in conjunction, and, besides, the Earth and planet

will be in the same part of their orbits, when P L s =P, or
P—-p N '
when n = —P—— Now, n must be a whole number, b~ut

P—

P may not be a whole number; in sych a case, therefore,

after one revolution of the Earth, the planet cannot be in con-
Junction, or, if viewed, about that time, in conjunction, it cannot
be in the same part of its orbit.

4 1
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But, the conditions of the planet in' conjunction, and in the
same part of its orbit, although they cannot take place in 1or2
or 3 years (P = 1 year), yet they may take place in \ m years : and
if such conditions take place, then must

nPp
Pap

=mP,

m p
d - =——,
and — =5 7
and the question now is purely a mathematical one, namely, that
of determining two integer numbers m and n, such, that
m P

;‘- — F_'—_p-.
Thus, in the case of Mercury, whose tropical revolution is
87 23" 14™ 32' (= 87.968),

m_ 87.968 _ 87.968
n  865.256 — 87.968  277.288°

consequently, in 87968 periods of the Earth, in which will happen
277288 synodic revolutions, Mercury will be observed in con-
junction, and in the same part of his orbit. But, this result is,
on account of the length of the period, practically useless: we
o 87.968
must find then the lowest terms of the fraction 277.288° and
if the lowest terms still give periods too large, we must investi-
gate some integer numbers, which are very nearly in the ratio of
87968 to 277288; so that we may know the periods at whxch

the’ conditions required will nearly take place.

Now, 27968 _ 1 1
* 277288 ~ 277288 s + 18384 °

87968 87968 -

1

S + 1
1

6 5726

1 4 —
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wd, by continuing the operation, there is at last obtained a re-
mainder equal nothing, the greatest common measure being 8,

1 .
and" the fraction in its Jowest terms *, which result, for

099
34661
obvious reasons, is of no practical use : we must therefore find
two near integer numbers ; and this we are enabled to do by the
preceding operation, which, as we take more and more terms of the
continued fraction, affords fractions alternately less and greater than

87968
the proposed (277288
and nearer, to its true value. Thus, the first approximation is
$: or, in one year, in which happen 8 synodical periods, the planet
will not be very distant from conjunction, nor from those parts
of its orbit in which it was first observed. Again, the second

) but, continually, approximating, nearer

approximation is = —
s+g 0

, or in 6 years, in which happen

19 synodical revolutions, the planet will be less distant than it
was before, from conjunction, and from those parts of its orbit
@ which it was in the former instance. The third approximation

.1 . .
15 = l, or, in 7 years, in which happen 22

| 22
8+6+1
synodical revolutions, the planet will be nearer to conjunction
than it was at either of the two preceding points of time, and so
o, This follows from the very nature of the process, by which
the successive approximations are formed from the continued
fraction (see Euler’s Algebra, tom. II, p. 410, Ed. 1774); but it
may be useful to exemplify its truth by means of the instance

* The operation in finding the continued fraction terminates, and gives
4 greatest common measure, because, since great accuracy is not requisite,
87968

we took
ok o77ass
Tatio of the mean motions of Mercury and the Earth. If we had taken

afraction more exact to the true value, then the operation would not have
bappened to terminate.

to represent, which it does nearly, but not exactly, the
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before us. Thus, at the end of 1 year, since the diurnal troplml
motion of Mercury is 4° 5' 32".5 = 4°.002, nearly, the angle
described by that planet is

865.25 x 4°.002 = 1494°.6, nearly,

=4 x 360° + 54°.6, and consequently, Mercury at the end of
1 year, is elongated (reckoning from the Sun) from, the line
joining the Sun and Earth, and beyond that line, by an angle
= 54°.6; agam, at the end of 6 years, the angle described by
the planet is equal.to

(4 x 360° 4 54°.6) x 6 = (rejecting 24 circumferences) 327°6;

or at the end of 6 years, Mercury is elongated from the line join-
ing the Earth and Sun, by 327°.6, or, not up to that line, by an
angle = 32°.4.

At the end of 7 years, the angle described by Mercury is
(4 x 360 + 54°.6) x 7 = (rejecting 29 circumferences) 22°.2:
or Mercury is then (observmg the analogy of the last expression,
1. 12,) beyond the line joining the Earth and Sun, by that angle.
At the end of 13 years, Mercury, (rejecting 54 circumferences)
is separated from the line joining the Earth and Sun, and not up
to that lme, by an angle = 10°.2.

The series of fractions, formed as those in.p. 614 were
formed, is
1 6 7 13 38 46 &
3’ 19’ 2’ a1’ 104’ 145’ O
The denominators denote the number of synodical revolutions,
corresponding to the number of years denoted by the numerators :
the number of periods of the planet must evidently be

341, 6419, 7+ 22 1S+ 41, &e.
that is, 4, 25, 20, 54, &c.
and therefore the series of fractions, in which the denominators
are the number of periods of Mercury, will be
1 6 7 13

=y Tm Ty T &c.
4" 25 20 54
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We may, on like grounds, and by like computations, determine
the probable epochis, on which we ought to look out for the
transits of Venus over the Sun’s disk: which are phenomena of
more practical importance than the transits of Mercury.

Thus, if Venus’s period (p) = 224%.7008240,
the Earth’s (P) = 365 .2563835,
P : i
P—-")P’ = 583°.92, nearly*, conse-
quently in one synodical period, the Earth describes an angle equal
to

the synodical period, or 5, =

5834.02
865.25°

consequently, in % synodical periods, the Earth describes an angle
equal to

360° x or 575°.51, nearly,

57551 x m,

and when 575°.51 x =, shall first become a multiple- of 360°
then there will first happen a conjuncticn of the Earth and Venus,
in the same line from which they originally departed. If, there-
fore, Venus in this original position, was so near to the node of
her orbit, that a transit took place, a transit will take place when

575°.51 x n = 360° X m,

and we must now find, as hefore (see p. 614,) the integer values
of 7 and m from the equation
m 57551

n - 36000 °
The series of quotients found as before in p. 614, are

1, 1, 1, ¢ 28, 1, 81,
and the series of fractions

* Log. P ..u..e... ceveeenreesnees 2.5625977

(17 N tereeeenne e 2.3516046
4.9142023 ‘

L ¢ R S vere 21478477

(log. 383.9)iereerrsieninsineene 2.7663545
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e 3 8 1 e
1’ et 57 142° 147’
from which series we are able to tell after what number of
synodical periods Venus and the Earth will be nearly in the same

1
1

parts of their orbits. Thus, taking the fourth fraction g, after

5 synodical periods, 8 circumferences will be nearly described,
and on trial we find 575°.51 x 5 = 2877°.55 = 360° x 8 = 2°.45,

. . . . 22 .
again, taking the next fraction, viz. ——7, we infer that, after
g 142

142 synodical periods, 227 circumferences will be nearly de-
scribed ; and more nearly described than the former 8 were in
5 synodical periods: or, which is the same thing, 142 synodical
periods are nearly equal to 227 years : on trial we find

575°%51 x 142 = 81722°.42 = 360° x 227 + 2°.42.
Again’ ' . .
575°.51 x 147 = 84599°.97 = 360° x 235 — 0°.03.

Hence, 235 years after a transit of Venus we may confidently
expect another; and also after 235 -4 8, or 243 years. In these
computations, the alteration in the place of the node, that will
happen in the interval of the transits, is not taken account of.

But, if we were guided merely by the preceding mathematical
results, we should be in danger of missing some transits : for those
results are founded on the probability of a transit’s happening
when Venus and the Earth are nearlyin the same parts of their
orbits, as they were at the time of a former transit. A transit,
however, may happen when the planets are in parts of their orbits
diametrically opposite, or, in other words, a transit may happen
should there happen to be a conjunction when Venus is, or nearly,
‘in the node of her orbit, opposite to that in which a transit has
already happened. In order to find the probable periods at which
the transits in the opposite node may happen, we must, instead of
the equation of p. 617, write this

575°.51 x n= 180" x (2s ~ 1),

since, it is plain, a transit must happen, whenever, after n synodi-
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cal periods, the angle described by the Earth shall be either 180°,
or, a multiple of 180°. Form then a series of fnctidns, as before
in p- 614, by dividing 57551 by 18000: which, since the suc-
cessive quotients are
3, 5 14, e, 40,

will be

S 16 227 460
i", <> 71 ’ 147 ’

5
and consequently, beginning with the third, in 71 synodical periods,
227 angles of 180° are described by the Earth : and on trial we
find

71 X 575°.51 = 40861°.21 = 180° x 227 4 1°.21,

so that after 71 synodical periods the Earth has descriped a little
more than 227 half circumferences, and, consequently, must be
very nearly in the line drawn from the Sun, through the opposite
node of Venus’s orbit.

Since the Earth describes 227 times 180°, in 113 years and an
balf, it follows, if a transit happens at the beginning of 8 years,
and not at the end, or, happening at the end of 8 does not (from
the increase of Venus’s latitude) happen at the end of 16 years,
that the next period for expecting a transit will be 113 years, and
that, agreeably to what has been before said, we ought to examine;
or compute the latitudes of Venus at the periods 113 F 8, that
is, 105 and 121 years, since transits may happen at these periods.

M. Delambre has calculated the transits of Venus, over the
Sun’s disk, for 2000 years, some of which are subjoined.

Years. Months. Mean time of Conjunction. Node.
1681 «o.. s Dec.6, cco. v 17028740 . ... 8
1639050000 Dec.4,.-'ooo 6 9 40-.....8

1761.0000- June5,......l7'44 34 ...-008
l769uooc'o July 3,.-0.0.]0 7 54 ¢ieiee B
1874.oo'.o Dec.8,......16 17 44 csce e &

188200'00' Dec'ﬁ,.avbo. 425 44.-..0.&
9(”4.....- Jllne7,......21 0o 4....;.8
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. We now subjoin Tables of the elements of the orbity of
planets, principally taken from Laplace, and reduced from the
new French measures which he has adopted.

Sidereal Periods of the Planets®.

Mercury ......... e . Peeeean 87%.969258
Venus ................ e, 224 .700824
The Earth .. ........c.cccivveiinnnnn 365 .256384
Mars ...t ..... 686.079619
1 . 1385.205
JUNO oot e 1590 .998
Ceres .o oottt 1681 . 539
Pallas .............. ... ..ot 1681 .709
JUPIEr +e v e 4332 . 596308
SAUMN < v v v cascssesecessasssss 10758.969840
The Georgian Planet . ......... .. 30688 .712687

Movements in 100 Julian Years of 365°.25.

Mercury .« sseeeeassoasassss 415° 2 14° 4' 20"

Venus e oovvevn e eeae 162 6 1913 O
The Earth . .o vvvveeneveeeees 100 O O 45 45
Mars....... teeeenas ceeeses 53 2 1 42 10
Jupiter .. ......... ceeenn ... 85 617 33
Saturn « vvcecvesssssscseessses 3 4 23 31 36
The Georgian Planet .. ......e0ec 1 2 9 51 20

-# The tropical periods may be deduced from the sidereal, by de-
ducting the times which the several planets require, respectively, for
the description of an arc of longitude equal to the precession.
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Mean Distances, or Semi-Azes of the Orbits.

Mercury ..coeeeceesssssssncscneess 0887098
Venus . . ... et e eseaasansass 0723332
The Earth « o .. vcvvvvevesseeerenss.. 1.000000*
Mars ccovecentsensenssencaonessess. 1.523604
Vesta oo ccovveessoesscrsssnnsssscss s 2373000
Jumo L.oiieiiiiiiiiereee e 2667163
Ceres . cvvvvvroncecnnneenns ceeie e 2767406
Pallas e e covrnniveecasenanannesess 2767502
Jupitere v civeet et ee it een el 5.202791
Saturn .. v v oo soosecscecnnecsassass 9538770
The GeorgianPlanet..A............'...19.188305

* The Earth’s distance is here assumed as a standard and=1: its
distance from the Sun, in statute miles, is reckoned to be 93, 726, 900. '

M. Bode of Berlin discovered the followmg curious law of the rela-
tive distances of the Planets:

Mercury T 4

Venus 7 coveveveersnnesssssnnnee =4 4 3.2°
Earth 10 .cccvevee.vveeeesennss =44 3.2
Mars 16 cuvvereereenee ceereees . =443.2°
Ceres 28 ...ccet cerees cerenee w=443.2
Jupiter 52 cciuviiiiiiiiiniinnens =44 3.2¢
Saturn 100 ..ceceveceencrannannans =4 +3 28
The Georgian planet 196 ............ cerreneean =44 3.2%

The distances of the next planets (should there be any) according to

this law would be
388 = 4 4 3.27

. 792 = 4 4 3.2°
&e. =
We need scarcely mention that this law is empirical. It is not easy
to see what led to the conjecturing of it.
4K

L3



Ratio of the Eccentricities (ae) to the Semi-Azxes at the beginning of
1801: with the Secular Variation of the Ratio, (see p. 464).
The sign — indicates a diminution.

the g:cti::'ifcity. Secular Variation.
Mercury ccooeeeees 0.205514 .0evo... 0.000003867
Venus «o.cevdeeses 0006858 ouu..ou.. 0.000062711
The Earth ......... 0.016853 ........ 0.000041632
Mars ...oceeseee.. 0.093134 ........ 0.000090176
Juno ...iieieeene.0.254944 ...,
Vesta ceoesoeeeese 0.003220 ...
Ceres cececeeessee 0078349 ...
Pallas .coovvvnnn.. 0.245384 .. .. v
Jupiter............ 0.048178 ........ 0.000159350
Saturm .......... 0056168 .......0.000312402
The Georgian Planet 0.046670 . . ... .. 0.000025072

not ascertained

Mean Longitudesat the beginning of 1801; reckoned from the Mean
Equinoz, at the Epoch qf the Mean Noon of January 1, 1801,
Greenwich.

Mercury «eceeeoaeeresocasecsss 166° 0 48”2
Venus ¢ ceoveoeeereroscssceasass 11 83 16.1
The Earth « ceeccvcevocssccceses. 100 30 10
Mars c.cviieeiarennncsseaas s 64 22 57.5
Vesta e o vveneeerenonnnnnnnesss 267 31 49
JUDO. v iieeeecenesenccenness 200 87 16
Ceres «ovvevsecainesnensnsssns 264 51 34
Pallas cocoveevsccenncececccess 252 43 32
Jupiter «eveveiiiiiiiiiieeaaes., 112 15 7
Saturn .« soesesessecsssanssesss 135 21 32
The Georgian Planet . ..... .o..0.. 177 47 38
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Mean Longitudes of the Perihelia, for the same Epoch as the

above, with the Sidereal

Long. Perihelion. -

Mercury e s oo e eveee 740
Venus «cveeeecoess 128
The Earth . cceeeee 99
Mars ceeeecncoe.. 332

and Secular Variations.

. Sec. Var.
246" c...c0.. 9 438"5
87 08......—4 28
30 5.000....19 39
24 24 ereeee. 26 22

Vesta. ecveeeeoes. 249
Juno ceesieenaess 53
Ceres.eooeseines. 146
Pallas ...c0000...121
Jupiter ... ... .0 11
Saturn ceecceeee.. 89
The Georgian Planet . 167

43 O:
18 41
39 39
14 1
8 85..000000 11 4
8 58 secenses 32 17
2] 42 ceeceres 4

not ascertained.

Incknations of Orbits to the Ecliptic at the beginning of 1801,
with the Secular Variations of the. Inclinations to the true
Ecliptic. ' :

Inclingtion.

. Secular Variation.
Mercury ........ 7° 0 1" ieoveeee.. 19"8
Vetus e evv coeeee 3 2332 L.iinienne =45
The Earthevve... O 0 O v

Mars coveeeeeee 1 51 86.0.uvne.e. — L5
Vesta ceeeeneses 7 846

G T e sy (ot wcenoed
Pallas.....c.... 34 37 7.6

Jupiter reessess. 1 18 51 00-.0.-0‘-_23
Satnm_.........,‘z 2934‘800'oo¢00~— 15.5
The Georgian Planet0 46 26 ¢ occcvvvee 3.7
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Longitudes of the Ascending Nodes on the Ecliptic, at the beginning
of 1801, with the Sidereal and Secular Motions.

Longitude of §). Secular and Sidereal
Variatian.
Mercury oooo..co.. 45°57°31"7 L. 1827

Venus «e.vocev... 74 52 98.64..... — 31 10
The Earth «cevee.. O 0O O

Mars cooovnseees. 48 14 38 .o0eo.. — 38 48
Junoeeveeeee....108 0 6
Vestaveeeseooe... 171 6 87
Ceres ..coovceeee 80 55
Pallas covvevesse. 172 32 35
Jupiter «oevu.oee. 98 25 84 ..., — 2617
Saturn cecveee o111 55 46 o0.. ..~ 37 54
"The Georgian Planet 72 51 14 ...... ~ 59 57

not ascertained.

The use of the secular variation of the eccentricity has been
already explained (see p. 464.) The secular variations of the
longitudes of the perihelia and the nodes are sidereal: consequently,
they cannot be immediately applied to find a longitude at an epoch,
different from that of the Tables ; but, in the first place, the pre-
cession of the equinoxes must be added, and then the result will
be a variation relatively to the equinoxes, or tropics. Thus, the
secular sidereal variation of the longitude of the perihelion of
Mercury’s orbit is stated to be 9' 43".5 ; therefore, if we assume
the annual precession to be 50".1, and consequently the secular
to be 1° 23’ 30", the secular variation, with regard to the equi-
noxes, is 1° 38’ 13".5; and, accordingly, the longitude of the
perihelion of Mercury’s orbit, for the beginuing of 1901, will be

74° 21’ 46" +1° 33" 18".5 = 75° 54’ 59".5.
For the beginning of 1821, it will be '
74° 21' 46" +0° 187 38".7 = 74° 40’ 24".7.

Again, the sidereal secular variation of the perihelion of Venus is
stated to be — 4’ 28" (~ indicating the motion of the perihelion
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to be contrary to the order of the signs); therefore the variation
with regard to the equinoxes, is
1°29' 30" — 428" =1°19' & ;

and accordingly the longitude of the perihelion for the beginning
of 1811, 1s :

128° 37/ 0".8 + 0° 7’ 54".5 = 128° 44’ 55".3; :
and for the beginning of 1781,

128° 37 0”8 — 0° 15’ 49" = 128° 21 11".8.

It is easy to see that, both for the nodes and perihelia, a
column of the tropical secular variations might be immediately
formed from the sidereal by the simple addition of 1° 28’ 30”".
The motions of the aphelia and nodes in Lalande’s (vol. L. p. 117,
&c.) and Mr. Vince’s Tables, (vol. IIL. p. 17, &c.) are motions
relative to the equinoxes,

-



. CHAP. XXVIIL. - )

On the Satellites of the Planets.—On Saturn’s Ring.

Tue planet Jupiter is always seen accompanied by four small
stars, which are denominated Satellites, and sometimes, Secondary
planets, Jupiter being called the primary.

The satellites of Jupiter were discovered in 1610, by Galileo :
they are discernible by the aid of moderate telescopes, and are
of some use in Practical Astronomy. Saturn also, and .the
‘Georgian Planet, are accompanied by satellites, not however,
to be seen except through excellent telescopes, and of no practical
use to the observer. The number of Saturn’s satellites is seven,
and of the Georgian’s, six.

The satellites are to their primary planet, what the Moon is
with respect to the Earth : they revolve round him, cast a shadow
on his disk, and disappear on entering his shadow : phenomena
perfectly analogous to solar and lunar eclipses, and which render
it probable that the primary and their secondary planets are
opaque bodies illuminated by the Sun.

That the satellites when they disappear, are eclipsed by passing
~ into the shadow of their primary, is proved by this circumstance :
that the same satellite disappears at different distances-from the
body of the primary, according to the relative positions of the
primary, the Sun, and the Earth, but always towards those parts,
and on that side of the disk, where the shadow of the primary
caused by the Sun ought, by computation, to be. When the .
planét is near opposition the eclipses happen close to his disk.

- There is an additional confirmation of this fact. The third
and the fourth of Jupiter’s satellites disappear and again appear
on the same side of the disk ; and the durations of the eclipses are
found to correspond exactly to the computed times of passing
through the shadow. .

The motions of Jupiter’s satellites are according to the order
of the signs. The satellites are observed moving sometimes
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towards the east, and at other times towards the west : but when
they move in this latter direction they are never eclipsed ; when
the eclipses happen, the satellite is always moving eastward;
when the transits over the disk happen, the satellite is always moving
westward : the motion therefore towards the east, or, according
to the order of the sngns, must be the true motion.

By the same proof it is ascertained, that the satellites of
Saturn perform their motions, round their primary, according to
the order of the signs. But the satellites of the Georgian Planet
may be thought to form an exception ; at least, the direction of
their motions is ambiguous ; for, motions performed in orbits

perpendicular to the ecliptic (and such, nearly, are the orbits of
the satellites of the Georgian) cannot be said to be elther direct
or retrograde.

The mean motions and periodic times of the satellites are
determined by means of their eclipses, and, most accurately, by
those eclipses that happen near to opposition.

The middle point of time between the satellite entering and
emerging from the shadow of the primary, is the time when the
satellite is in the direction, or nearly so, of a line joining the
centres of the Sun and the primary. If the latter continued sta-
tionary, then the interval between this and the succeeding central
eclipse would be the periodic time of the satellite. But, the
primary planet moving in its orbit, the interval between two suc-
cessive eclipses is a synodic period (see p. 610.) This synodic
period, however, being observed, and the perjod of the primary
being known, the sidereal period of the satellite may be computed*.
Instead of two successive eclipses, two, separated from each other
by a large interval, and happemng when the Earth, satellite, and
primary, are in the same position (in the direction of the ‘same
right line, for instance,) are chosen, and then the interval of time
divided by the number of sidereal periods, will give, to greater
accuracy, the mean time of one revolution.

———

. Pp P~
Slnce-r=P—:;, p=m.
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The mean motions of the satellites do' not differ considerably
from their true motions. Hence, the forms of their orbits, must
be nearly circular. The orbit, however, of the third satellite of
Jupiter has a small eccentricity : that of the fourth, a larger.

The distances of the satellites from their primary are ascer-
tained by measuring those distances, by means of a Micrometer,
at the times of the greatest elongations,

The distance of one satellite being determined, the distances
of others, whose periodic times should be known, might be deter-
mined by means of Kepler’s law, which states the squares of the
periodic times to vary as the cubes of the mean distances.

In order to obtain such results, we suppose Kepler’s law to be
true. But we may adopt a contrary procedure, and, by ascertaining
the periodic times and distances of all the satellites according to
the preceding methods, determine the above-mentioned law of
Kepler to be true. See Principia Phil. Natur'. lib. 3" p. 7, &ec.
Ed. La Seur, &c.

The eclipses of Jupiter’s satellites are used in determining the
longitudes of places, and, on account of this their practical use-
fulness, have been studied with the greatest attention. Thence
has resulted the curious and important discovery of the Successive
Propagation of Light, which is the basis of the theory of aber-

. ration (see pp. 254, &c.) The phenomenon that led to the
discovery of the propagation of light was, that an eclipse of a
satellite did not always happen according to the computed time,
but later, in proportion as Jupiter was farther from the Earth.
If, for instance, anseclipse happened, Jupiter being in opposition,
exactly according to the computed time, then about six months
afterwards, when the Earth was more distant from Jupiter by
a space nearly equal to the diameter of its orbit, an eclipse would
happen about 16 minutes later than the computed time. And by
similar observations it appeared, that the retardation of the time
of the eclipse was proportional to the increase of the Earth’s
distance from Jupiter. This fact, the connexion of the retarded
eclipse with the- Earth’s increaged distance from Jupiter, was first
noted by Roemer, a Danish Astronomer, in 1674 : who sug-

«gested as an hypothesis, and as an adequate cause of the retarda-
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tion, the successive propagation of light*. Subsequent observations
accord so well with this hypothesis, that it is impossible to doubt
of its truth : and it receives an additional, although an indirect,
confirmation from Bradley’s Theory of Aberration which is founded

thereon.

The following Table, exhibits the mean distances and sidereal
revolutions of the satellites of Jupiter, Saturn, and the Georgium

Sidus.

Mean Distances, According to Laplace, According to

the radius of the planet i)eing=1.) Sidereal Pi{evolutions. Delambre.
Jupiter. . Day. d b om s
Ist. Satellite . .| 5.81296| . 1.7691378 1 18 28 35.94537
2eeseveeess]. 0.24868 3.5511810 3 13 17 55.73010
3 ieieeeense| 1475240 - 7.1545528 7 3 59 35.82511
4eiineenesd] 25.04686 ]6.688;697 16 18 5 7.02008
Saturn.

- d h m 5
1st. Satellite . .| 3.080 0.94271 0 22 37 32.9
2 eeas] 8.952 1.57024 1 8 53 8.9
et o] 4.893 1.88780 -1 21 18 26.2
4...00..... 6.268 2.73048 2 17 44 51.2
Seeeaieeres 8.754 - 4.51749 4 12 25 11.1
6eeeeennees] 20.295 15.94530 1522 41 138.1
7ot seenes] 59.154 79.32060 79 7 53 42.8
Georgium Sidus. , A b om .
Ist Satellite . ..| 13.120 5.8026 521 210
2etineneaed 17.022 8.7068 ‘817 119
Siieeeenna] 19.845 10.9611 10 28 4
detviieens] 22,752 13.4559 11 11 5 1.5
Seiiiieiaae 45.507 38.0750 88 149
6........../91.008 107.6944 107 16 40

* Light is propagated through a space equal to the diameter of the
Earth’s orbit in 16™ 26,

41
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On the Ring of Saturn.

Besides his seven satellites, Saturn is surrounded by a flat and
thin ring of coherent matter. Dr. Herschel has discovered that
the ring instead of being entire is divided into two parts, the two
parts lying in the same plane.

The ring is luminous, by reason of the reflected light of the
Sun; it is visible to us, therefore, when the faces illuminated by the
Sun are turned towards us: invisible, when the opposite faces;
invisible also, when the plane of the ring produced passes through
the centre of the Earth; since then mno light can be reflected to
us ; invisible also in a third case, when the plane of the ring pro-
duced passes through the centre of the Sun, since, in that case, it
can receive no light from that luminary. The plane of the ring is
inclined to that of the ecliptic in an angle of about 31° 24/, and
revolves round an imaginary axis perpendicular to its plane in
- 10" 20™ 16*: and, which is worthy of notice, this period is that
in which a satellite, having for its orbit the mean circumference of
the ring, would revolve according to Kepler’s law ®.

. We have now gone through another great division of our sub-
ject. The Lunar Theory will next occupy our attention, which
might, indeed, have taken its place before the Planetary.

* The fact of the squares of the periodic times varying as the cubes
of the mean distances, is frequently called, the T#ird law of Kepler.



CHAP. XXIX.

ON THE LUNAR THEORY.

On the Phases of the Moon.—Its Disk.—lIts Librations, . in
Longitude, in Latitude, and Diurnal.

Or all celestial bodies, the Moon is the most important, by reason
of its remarkable and obvious phenomena: the iutricacy of the
theory of its motions ; and the usefulness of the practical results
derived from such theory.

Some of the phenomena admit of an easy explanation, and
require no great nicety of computation. Such are the phases of
the Moon. Others, with regard to their general cause, admit
also of an easy explanation ; but, with regard to the exact time
of their appearance and recurrence, require the most accurate
knowledge of the lunar motions. Of this latter description, are
the eclipses of the Moon.

If therefore with a view to simplicity, we arrange the subjects

_of the ensuing Chapters, we ought first to place the phases of the

Moon, next, the elements and form of the orbit, then, the lunar
motions and their laws, and lastly, the lunar eclipses.

The explanation of the phases of Mercury and Venus was
founded on the hypothesis, of their being opaque bodies illumi-
nated by the Sun, and, of their revolution round the Sun. A simi-
lar explanation, on similar hypotheses, will apply to the Moon.
We shall perceive the cause of its phases, if we suppose the Moon
to shine by the reflected light of the Sun, and to revolve round
the Earth: and, as in the case of the two inferior planets, the
explanation does not require a knowledge of the exact curve in
which the revolution is performed.
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" The Moon moves through 12 signs, or 360° degrees of lon-
gitude, in about 27 days. This fact is ascertained by observing,
each day, on the meridian, its right ascensxon and declination, and
thence deducing, by calculation, (see pp- 158, &ec.) the corresponding
latitude and longitude. Hence, in a period somewhat more than
the preceding, the Moon is on the meridian at all hours of the day,
and the angle, formed by two lines drawn from the Moon to the
Earth and Sun respectively, passes through all degrees of magni-
tude. The exterior angle therefore, (see p. 553,) on the magnitude
of which, the visible illuminated disk depends, passes also through
all degrees of magnitude : and the Moon accordingly, like Venus,
must exhibit all variety of phase ; the crescent near conjunction;
the half: Moon in quadratures ; and the entire orb illuminated, or
the full Moon in opposition.

Venus revolves round the Sun, and the Moon round the
Earth: but this difference of circumstance, in no wise affects the
principle on which the phases depend: they are regulated by the
inclination of the planes of the circles of illumination and vision :
and their magnitude depends, as it was shewn in p. 553, on the
versed sine of the exterior angle at the planet : that is, in Fig.
p. 553, on the versed sine of the angle Su F.

The angle, anaiogous to Su F, in the annexed Figure, will be

M., S

R,
.

-’
oo’

D s

contained between a line Ss drawn to the centre of the Moon at
M, and a line drawn from E and produced’ through the same
centre. This angle, by reason of the parallehsm of the lines drawn
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from E to the Sun, will equal the interior angle continued be-
tween ¢ E and a line drawn from E to the centre of the Moon ;
which angle, in other words, is the angle of elongation.

Hence, in delineating the Moon’s phases, we may use a simpler
expression, and state the visible enlightened part to vary as the
versed sine of the Moon’s elongation.

If we suppose the Earth to be illuminated by the Sun, and to
serve as a Moon to the Moon, the visible illuminated part of the
Earth, will to a spectator at the Moon vary as the versed sine of
the Earth’s elongation. Let e be the latter angle, E the former :
then by what has just preceded,

E+e= 180°, nearly ;
. cos. E = cos. (180° — €) = — cos. ¢,
and 1 — cos. E=1+4 cos. e, 1 4+ cos. E=1 — cos. e.

Hence, when the Moon's phase is D ’s radius x (1.~ cos. E),
the corresponding phase of the Earth

{D’s radius x (1 — cos. &)}, is @’s radius x (1 + cos. E),

the larger, therefore, the Moon’s phase is to us, the smaller, at
the same time, is the Earth’s phase to an inhabitant of the Moon.
Thus, near conjunction when E is nearly O, the Moon’s phase
18.) ’s radius x (1 — 1), nearly, whilst the Earth’s phase is
@’sradius x 2, or the Earth is nearly at her full, to an inhabitant
of the Moon, whilst the Moon is a new Moon to us. In such
a situation the Earth’s light is reflected towards the Moon, falls
on its dark disk, and feebly illuminates it, producing the phe-
nomenon called by the French lumiére cendre.

When the Moon is in opposition, E = 180°, the Moon’s phase
is ) ’s radius x. (1 4 1), or the Moon is at her Sull, and the
corresponding phase of the Earth is expounded by, @’s radius x
(1=1), which being nothing, shews that the dark side of the
Earth is then towards the Moon.

When E = 90°, cos. E=0; .1 + cos. E, and

1 — cos. E, are each = 1 : consequently, in such a position,
h =
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the Moon shews half of her illuminated disk to the Earth, while -
the Earth shews half of her illuminated disk to the Moon.

If E = 60°% cos. E =1, therefore the Moon’s phase is
D ’s radius X 3, or the Moon is at her third quarter ; the Earth’s

s £
? : R
phase is @@’s radius x (1 — %), or &sr_xﬁm: or, the Earth,

viewed from the Moon, is at her first quarter.

The period of the Moon’s phases, or the interval of time
which must elapse before the phases, having gone through all
their variety, begin to recur, must depend upon the return of the
Moon to a situation similar to that which it had, at the beginning
of the period. If we date then the beginning of the period from
the time of conjunction, (the time of new Moon,) the end of the
period must be when the longitudes of the Moon and Sun are
again the same. Now the longitude of the Sun is continually
increasing; when the Moon therefore has made, from its first
position, the circuit of the heavens, it will be distant from the
Sun, by the angular space through which, during the Moon’s
sidereal period, the Sun has moved. 1In order, then, to rejoin the
Sun and to be again in conjunction, it must move through this
space, and a little more; and when it does rejoin the Sun, a
synodic revolution is completed. And the period therefore of the
Moon’s phases is a synodic period. From the inequality of the
Moon’s motion, this synodic period, or lunation, is not always of

the same length.

If we conceive a plane passing through the centre of the Moon
and_perpendicular to a line drawn from the Earth to the Moon,
then on such a plane the Moon’s face will appear to be projected.
This face, since the Moon has ever been an ebject of the attention
of Astronomers, has been delineated, and a map made of its
seeming Seas, Mountains, and Continents. But, one map of the
same hemisphere has always served to represent the Moon’s face :
in other words, the same face of the Moon is always turned towards
us. This is a curious circumstance, and the immediate inference
~ from it is, that the Moon must revolve round its axis, with an
angular velocity equal to that with which it revolves round the
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Earth. For®, suppose in the position (1) a to be on the verge
of the disk, then, if in the position (2) we still see the point a,
in the verge, and in the same position, it must have been trans-
ferred, by rotation, through an arc a’a: since, in the case of

no rotation, 4'd’, parallel to ba, would have been the position
of ba. - Now, a being seen on the verge of the Moon’s disk,
¢ Em'a = a right angle = 2 Em'd’ + ¢ a'm'a. But since
EPm' is a right angle, £ Em'P 4 ¢ PEw' is one also: conse-
quently,
AEma+4ama AEmP(AEma)+LPEm,
A4 dm'a = ¢ PEm,

and the angle a'm' a measures the rotation of the Moon round
its axis that has taken place since it occupled the position (1),
and the angle PEm/, the angular motion of the Moon round E
from the same position.

If the angle PEm/, the measure of the Moon’s true angular
distance from one of the apsides of its orbit, increased uniformly,
and the Moon’s rotation round her axis were uniform, the above
result would always take place ; that is, the same face of the Moon
ought always to be turned to the spectator: and such phenomenon

* In the Figure, acb is supposed to represent the Moon’s equator,
and (which is not strictly true) to lie in the plane of the orbit: the axis of
rotation, then, is perpendicular at m to that plaune: perpendicular, for
instance, to the plane of the paper, if the latter be imagined to represent
that of the Moon’s orbit.
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ought constantly to be observed. But since, which is the case,
the Moon’s true motion differs from the mean, and the angle
PEw' does not increase uniformly, the preceding result will not
be precisely true, if we suppose, (which is a probable supposition,)
the Moon's rotation round her axis to be uniform. If after any
time, 3 days for instance, m Em’ should measure the Moon’s
angular distance from the position (1), then, by reason of the
Moon’s elliptical motion, in 6 days twice the angle m Em’ will cer-
tainly not measure the Moon’s angular distance : but, on the sup-
position of the Moon’s uniform rotation, twice the angle a'ma
would measure the quantity of rotation in 6 days. Hence, if
the Moon’s angular velocity should be diminishing from the
position at (1), at the end of 6 days the point a, previously seen
on the verge of the Moon’s western limb, would have disappeared,

and some points towards the verge of the Moon’s eastern limb
would be brought into view ; and such, by observation, appears
to be the case, and the phenomenon is called the Moon's Libra-
tion in Longitude.

Since this libration in longitude arises from the unequal angular
motion of the Moon in her orbit, it must depend on the difference
of the true and mean anomalies, in other words, on the equation
of the centre, or equation of the orbit; and would be proportional
to that equation, and its maximum value would be represented by
the greatest equation (6° 18’ 32”) in case the axis of the Moon’s
rotation were perpendicular to the plane of its orbit.

In the preceding reasonings, we have supposed the section
bca, representing the Moon’s equator, to be coincident with mm'd
the plane of the orbit : in other words, we have supposed the axis
of rotation to be perpendicular to the same plane. - Now, the axis
is not perpendicular but inclined to the plane at an angle of
5° 8’ 49”; the preceding results therefore will be modified by this
circumstance. For, take the extreme case, and suppose the axis
of rotation to be parallel to the plane of the orbit, and in the
position (1) to be represented by ce® : then it is plain, we should

* ¢, omitted in the Figure, ought to have been where cm produced
cuts the circle eba.
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at the position (1), see the pole ¢, and the hemisphere, projected
upon a plaue passing through ba perpendicular to the orbit; and,
half a month after, at d, we should see the opposite pole ¢, and
the opposite hemisphere, notwithstanding the equality between the
Moon’s revolution round the Earth, and her rotation round her
axis. In intermediate inclinations then of the Moon’s axis of
rotation, part of this effect must take place, or must modify
the preceding results. If in the position (1), the Moon’s
axis being inclined to the plane of her orbit, we perceive, for
instance, the Mooun’s north pole and not her south, we shall in
the opposite position at d, after the lapse of half a month, per-
ceive the Moon’s south, and not her north.pole ; and, this effect
is precisely of the same nature, as that of the north pole being
turned towards the Sun at the symmer, and of the south pole at
the winter solstice, (see p. 24.) The perpendicularity therefore
of the axis of rotation to the plane of the orbit is a condition
equally essential, with that of the equality of rotation and revolu-
tion, in order that the same face of the Moon should be always
turned to the spectator. '

This second cause, preventing the same face of the Moon from
being always seen, is called, with some violation of the propriety
of language, the Libration in Latitude. For, it is plain, from the
preceding explanation, that there are properly and physically no
librations, but librations only seemingly such.

There is a third libration, discovered by Galileo, and called the
Diurnal Libration. If the two former librations did not exist,
the same face of the Moon would be turned, not to a spectator
on the surface, but, to an imaginary spectator placed in the .
centre of the Earth. Now, two lines drawn respectively from
the centre and the surface of the Earth to the centre of the Moon,
(the directions of two visual rays from the two spectators) form, at
that centre, an angle of some magnitude ; and, when the Moon is
in the horizon, an angle equal to the Moon’s horizontal parallax.
Hence, when the Moon rises, parts of her surface, situated towards
the boundary of her upper limb, are seen by a spectator, which
would not be seen from the Earth’s centre. As the Moon rises,
these parts disappear: but as the Moon, having passed the

4™
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meridian, declines, other parts, situated near that boundary, which,
whilst the Moon was rising, were the lower, are brought into view,
and which would not be seen by a spectator placed in the centre
of the Earth. The greatest effect of this diurnal libration will
be perceived, by observing the Moon first at her rising, and then
at her setting.

This last libration, like the two preceding, is purely optical.

The description of general and obvious phenomena requires
only popular explanation, which is easily afforded. But the next
steps, the accounting for, on principle and by calculation, minute
phenomena, (if we may apply that term to effects detected only
by the aid and comparison of numerous observations) are more
difficult, whether those steps are {o be made in the solar, planetary,
or lunar theory: and we shall find them peculiarly so in the latter
theory.



CHAP. XXX.-

On the Methods of deducing, from Observations, the Moon’s
Parallax: the Moon’s true 2enith Distance, &c.

Accorpine to modern Astronomical usage, the same kind of
observations, namely, meridional observations, which are used in
determining the places of the fixed stars, and the elements of the
orbits of the Sun and the planets, serve also to determine the
position and dimensions of the lunar orbit. But, by reason of the
proximity of the Moon to. the Earth, and the irregularity Gf we
may use such a term) of her motions, the reduction of the Moon’s
observed right ascensions and declination requires more scientific
and longer computations. .

The orbits of planets round the Sun, and of secondary planets
round their primaries, would, if we abstract the mutual effects of
planets, be ellipticat. Now the elliptical is a regular motion. It
is, therefore, the disturbing forces that render the motions of
. planets irregular; and, since the mutual influence of planets must
be universally felt, there is no planet nor secondary, the motions
of which are not, in some degree at least, irregular. The degree of
irregularity depends on what may be called the peculiar circum-
stances of the planet, which are those of the vicinities and magni-
tudes of other planets. For instance, Jupiter and Saturn, (see
Physical Astronomy, Chap. XIX.) bodies of great bulk, and, in
a certain sense, not very distant from each other, mutually and
powerfully disturb each other, or prevent what, according to our
theories, would otherwise take place, namely, elliptical motion.
In like manner the Earth’s motion is rendered irregular, but not
considerably so (see Physical Astronomy, Chap. XVIIL.) by the
actions of Venus and Jupiter, &c. The Moon is near to the
Earth, but then its mass, relatively to the Sun’s mass, is very
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inconsiderable. It is, however, the Sun’s mass which 1s almost
the sole cause of the Moon’s not describing an ellipse round the
Earth, or, which, as we have explained it, prevents her motions
from being regular, and which, therefore, makes them by reason
of its largeness, very irregular.

The irregularities we are speaking of are real ones, and
would be observable in the daily changes of right ascensions, and
of north polar distances, even if the observer were placed in the
centre of the Earth. Or, if from the Moon’s right ascensions
and north polar distances, her longitudes and latitudes were de-
duced, and then, on a line such as MM’ representing the ecliptic,
ordinates M E, me, &c. proportional to the latitudes were erected,

! r Ka 72 M

the curve Eee/, &c. passing through their extremities would be
a curve less regular than when (see p. 145,) under similar con-
ditions, it represents the solar orbit. A consequence, or indica-
tion of such irregularity would be this, that from me, m'e/, &c.
representing latitudes, or declinations, computed or observed for
equal intervals Mm, mm', &c. an intermediate latitude or decli-
nation interpolated, for an intermediate interval, would be less
exact in the lunar, than in the solar orbit.

It is plain, when observations are made by means of instru-
ments placed in the meridian, that the north polar distances, and
right ascensions of planets can only be known, at times inter-
mediate of their meridional passages, by a species of interpolation.
In the case of the Sun, its north polar distance at midnight, on
March 1, is nearly the mean of his north polar distances on the
noons of March I and  : and six hours past the noon of March 1,
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is, nearly, his north polar distance on the noon of March 1,
minus the decrease of north polar distance, p.oportional to
six hours. This mode of computation, however, not exact even
in the case of the Sun, is less exact when applied to the Moon.

In order to determine the inexactness of the computation, or
of any other mode of interpolation, we must observe the heavenly
body when it is out of the meridian. In the case of the Sun, for
instance, observe its zenith distance, and note the distance in time
from noon : then if the co-latitude (P2) be known, we can from
PZ, the horary angle 2PS, and 2S compute PS, and then
compare PS, thus computed, with the interpolated value of PS.

But this brings us to the consideration of the second cause of
irregularity : that which arises from the proximity of the observed
body, and which proximity gives rise to the inequality of parallaz.
In the case of the Sun, its north polar distances, computed ac-
cording to the above methods, and compared, are found, very
nearly, to agree; which agreement is a proof of the smallness
of the Sun’s parallax. For parallax (see Chap. XII.) affects
the zenith distance, and is the larger the greater the zenith
distance. The north polar distances, therefore, found by adding
to the co-latitude of the place the observed meridional zenith
distances, would be incorrect, but would be less so than an
intermediate zenith distance, observed out of the meridian. In
the case, therefore, of a near heavenly body, it would be impos-
sible that the north polar distances, found according to the above
methods, should, on comparison, agree : and this we shall find to
be the case with the Moon.

We shall give to this statement greater distinctness, by examin-
ing some of the recorded observations of the Sun and Moon.

In the second Volume of the Greenwich Observations, we find
the following observations of the zenith dlstances of the upper
and lower limbs of the Sun.



642

178, | meter. |mometer|  Zenith Distance. Zenith Discance.
May 4,|29.95 | 481 |o L. L. 85°43' 8”9 | 85° 438’ 50".76
oU.L. 85 11 23.9 |35 12 4.92

5,/29.84| 49L |oL.L.35 25 56.9 |35 26 38.34
|oU.L. 84 54 12.4 34 54 52.95

6,]29.81| 51 |oL.L.35 9 0.2|35 9 40.82

: OU.L. 34 87 17.3 |34 37 57.16

7,129.9 | 472 |0L.L. 34 52 19.4 |34 55 0.46
©U.L. 84 20 37.17|34 21 17.96

“The last column contains the zenith distances, corrected or reduced

according to the principles and formule of Chapter X. If we
add together the respective corrected zenmith distances of the
lower and upper limbs, and take their half sums, the results will
be the values of the zenith distances (2) of the Sun’s centre.

Values of Z. First Diffs. d'. | Secd. Diffs, d”. [Third Diffs. d"/]
May 4, | 85° 27’ 57".89 | —17' 12".25 | + 15".60 | + 1".27
5,/ 85 10 45.64 | —16 56.65 | + 16.87
6,|34 53 48.99 | —16 39.78
7,/ 84 37 9.21

Here the several differences tend towards an equality, which is
a proof (should the several values be represented by the ordi-
nates me, m'¢e/, &c. of a curve Eee/, &c.) of the regularity of that
curve. The use of the Table of differences is to find an inter-
mediate value of 2, and by means of what is called the Differential
Theorem, (see Appendix to Trigonometry.) Thus, the intermediate
value of 2 corresponding to May 5, 8", would be, “making
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a=35° 10’ 45".64, & = — 16’ 56".65, d" = 16".87, d" =1".27,

35° 10/ 45".64 — 5' 48".88 — 17.87 + 0".13 = 35° 4’ 55".

This is not exactly the value of 2, since it has been obtained
on the ground, that the interval between two successive meridional
zenith distances, is exactly 24" : which, (see Chapter XX1I, on
the Equation of Time) is uot the case. In order to obtain an
exact result, we must refer to the Volume of Qbservations above
quoted, and examine the Sun’s right ascensions at his transits on
the 4th and 5th of May,

1784, Sun’s Right Ascension. d d".

May 4, | 2" 45m 539 | + 8 51
5| 2 40 44.9 | +3 514 +.4
6,| 2 53 36.3 |+3 519 | +.5
7, | 2 57 28.2

Here the increase of the Sun’s right ascension, between the
transits on the 5th and 6th, is 3™ 51%.4 : if, therefore, the eight
hours should be eight hours of sidereal time, we should have

8
T = h qm s
24" 3" 51°.4
from which value, as before, (see l. 2, &c.) we may deduce the

value of 2, corresponding to eight hours of sidereal time, after
the Sun’s transit on May 5. '

= .33244,

The values of £ are, in fact, meridional zenith distances. But,
it is plain, an interpolated value cannot belong to the meridian of
the place of observation ; it may, however, be conceived to belong
to the meridian of some other place, having a different longitude,
but the same latitude. In point of fact, the result that has been
obtained by the differential theorem is merely a mathematical
result. We may, however, by slightly modifying the preceding
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process, obtain a mathematical result, which, at the same time,
shall represent a real quantity. Thus, if to the four values of 2,
in the first column of the Table of p. 642, we add the co-latitude
of the place, we shall obtain four north polar distances of the Sun,
on the noons of the 4th, 5th, 6th, and 7th of May. An interpo-
lated north polar distance is independent of the place of obser-
vation : and if we deduce it, as we deduced the value of 2, the
deduced north polar distance, must be the same as the co-latitude
(PR) of the place added to that value of 2, because, in each
" computation, the differences d', d”, d”, are the same : since
PR+ —-PZ+RN=2-2 =4, &c.

If, therefore, in the above instance, the place of observation
be Greenwich, the co-latitude of which is 38°'31’ 0%, the Sun’s
north polar distance, on May 5 at eight hours of sidereal time, is
equal to 38° 31’ 20" + 35° 4’ 53", that is, to 73° 36’ 13".

But this determination supposes the observed zenith distance
to be the same, as if the observer were near to the Earth’s centre:
in other words, it supposes the angle, subtended by the Earth’s
radias at the Moon, to be inconsiderable. We shall hereafter, in
the Chapter on the Transit of Venus, see that the greatest angle
which can be subtended by the Earth’s radius, or, the Sun’s
horizontal parallax, does not exceed 9”.

A shorter and easier method of proving the smallness of the
Sun’s parallax has been already described in pp. 326, &c.

If S represent the Sun, 2, the zenith, P the pole, the triangle
ZPS can be solved if 2P, PS, and the angle ZPS be given or

known. Thus, in the above instance,
RP = 38%31' 20",
PS =73 36 13,
and in order to find the angle ZPS, we have
right ascension of mid-heaven .. .... 8" 0" ¢
Sun’s right ascension at noon ...... 2 49 44.9
. 5 10 15.1
acceleration (see p. 526,) « ¢ v v0us. . 50.824
A 5 9 24.276
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RS computed from these three values, and compared with 28,
found by observations made out of the meridian would shew, by
the agreement of the two values, the smallness of the Sun’s
parallax.

But we shall( ﬂnd results of a different kind, if we examine and
compare the Moon’s places determined from zenith observations.

In the Volunie of the Greenwich Observations above referred to,
we find :

. b
Baro- Ther- Zenith Distance. Right Ascension,
1784. meter. | mometer. Moon’s Limb. Moon’s First Limb.

Jan. 31, 30.35 | 3¢ | L.L.24° 48" 138".5 | 4" 35 34
Feb. 1, 30.08 | 815 | U.L.23 12 13.3| 5 51 35
2,3004| s2 | U.L 23 33 45.2 | 6 27 28
3,/%041| 32 |U.L.2519 0.9| 7 22 0
4,1 2999 | 333 | U.L. 28" 19 €7 8 14 20

Correct on account of refraction, as in the former instance, the
zenith distances of the upper and lower limbs, and add or subtract
the Moon’s semi-diameter : the regults will be the zeuith distances
() of the Moon’s centre, from which zenith distances we may,
as before, form a Table of differences.

Values of z. d. d". a”, aw,
2%4° 33’ 37" 0§ e

82735 | a6 +1° 27 28" 3 5

23 49 1 +1 45 18 +1 23 52 _s s -51"
25 384 19 +3 0 3 +1 15 15

28 34 52

Here the differences exhibit considerable irregularities, which
arise from two causes: one real ; the other, as it may be called,

4 N
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optical, originating, mainly, from the Moon’s proximity to the
Earth, but varying, in degree, with the Moon’s’ distance from the
zenith. But from whatever causes the irregular values of 2 arise,
they are, as phenomena or results of observation, blended together,
and it is necessary to institute an investidation, in order to dis-
tinguish the separate causes. Now, the first step in such investi-
gation, is similar to the one made in p. 643, that is, we must find
by interpolation, an intermediate value of the Moon’s north polar
distance, and from it and the horary angle ZPM, and the co-
latitude P2, we must compute the Moon’s zenith distance, which
is to be compared with the Moon’s observed zenith distance:

In order to find the value of x, or the interval proportional
to eight hours of sidereal time on February I, we must first
deduct the Moon’s right ascension on February 1, from her right
ascension on January 31: that is, we must take the difference of
5" 31™ 385°, and 4" 35™ 34°, which is 56™ 1°. This 56™ 1* is the
angle which the meridian, after having passed through the Moon’s
centre, must describe, in addition to 24", before it can again reach
the Moon’s centre. Unity, therefore, denoting the interval be-
tween two successive transits,

1:x 24" 56@ 1° : 8*; .. r = .3208.

Substitute this value for z, in the differential theorem, and the
value of Z corresponding to 8" (sidereal time) on February 1, is
23° 27’ 35" 4 (21’ 26") x .3208 +(1° 28’ 52") x .3208 x — .3306
—8' 37" x .3208 x .3396 x .59304 + 5’ 1¥ x .3208 x .3306

x .69304 x .6697 = 23° 24’ 59".033.

Hence the Moon’s north polar distance is the above quantity
added to 38° 31’ 20", or, is nearly equal to 61° 56’ 19”. It is,
however, the Moon’s north polar distance, only on the supposition
of the non existence of parallax. For if the Moon be so near
to the Earth, that the radius of the latter subtends some measur-
able angle at the former: then (see the Chapter on Parallax)
the . observed zenith distances are not, in a certain sense, the
true zenith distances: but every observed zenith distance will
require, proportionally to its sine, a correction to reduce it to
" a true zerith distance.
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If from observations contemporaneously made (see p. $25,)
in different parts of the Earth, we knew the Moon’s horizontal
parallax, we could, by means of such a series as is given in p. 324,
deduce such correction. But if, without quitting the place of
observation, we wish to ascertain the existence and quantity of
parallax, we must compute' @M (Z the zenith, M the Moon) from
the co-latitude (P2) an interpolated value of PM, and the horary
angle ZPM. Now this horary angle, must, like PM, be obtained
by interpolation.

In the case of a fixed star, and only in that case, the horary
angle (the angle 2Ps) is the difference of the right ascension of
the mid-heaven (in other words, the sidereal time) and of the star’s
right ascension. In the case of the Sun, we must, as we have
seen in p. 643, allow for the change of the Sun’s right ascension,
during his transit over the meridian, and the assigned instant of
 sidereal time. The computation for a like allowance, in the case
of the Moon, is a little more operose. On the 1st of February
(see the Table of p. 645,) the Moon’s right ascension, at the
instant of her transit, was 5" 31™ 35*, and since her right ascension
increases by unequal steps, we must find it at any time, inter-
mediate of her meridional transits, by the differential theorem.
If we form then a Table of differences, like the one of p. 645,

R toome | 4 o a aw,
4" 35™ 34° | .

+ 56/ ll/ . )
5 31 385 ~o g

+ 55 53 — 113 "
6 27 28 +-54 52 -1 21 o 51 4 22
722 O -~ 212 -

+ 52 20
8 14 20 | ’

we have a = 5" 51® 85°, d' = 55' 53", d"= — 1" 21",
d" = — 51", d¥ = 22" and (see p. 646,) = .32088,
and, accordingly, : ) ‘
R of D ’s 1st L. = 5" 49™ 85".48,



648

which is the right ascension of the Moon’s preceding limb, eight
hours after the Moon’s transit of the meridian. But the sidereal
time, at the time of the Moon’s transit (in other words, the nght
ascension of the mid-heaven at that time, or the right asceusion
of the Moon'’s first limb) was 5" 31™ 35°; eight hours, therefore,
after . the sidereal time, or right ascension of the mid-heaven,
must be 13" 31™ 35%, and accordingly, the horary angle must be
13" 31™ 85° — 5" 49™ 85°.48, or 7" 41™ 50°.¢ : from this must
be subtracted the angle at the pole, subtended by the Moon’s
semi-diameter. Now the Moon’s semi-diameter is 15’ 4",
and the polar distance (see p. 646,) of the Moon’s centre is
61° 56' 19”; therefore the angle at the pole is
15 4"

sin. 61° 56’ 19"

consequently, the horary angle is 7° 40™ 5(°.9; we have theun
' ZPM = 7" 40™ 50°.9 = 115" 12™ 43%5

ZP .. ivvevasns. = 88 81 20

PM ceovieneeaa = 61 56 19
whence, by the solution of a spherical triangle, according to the
formula of Trigonometry, p. 171, Edit. 3, there results,

*ZM = 8¢2° 13’ 6", nearly.

=17 4"4 = 1™ 8'.297;

* See Trigonometry, pp. 171, &c.

g = 57° 36" 21".7 weveerrenne. veee. 2 log. cos. 19.4599294
a =238 31 20 .ceovturriraraens eeeeess log. sin.  9.7943612
b=61 56 19 ........ cesesennnencaess lOg. sin. 9.9456872
a b ' T
5+5=150 13 49.5 19.1999778
. M =23 27 33.5 ...oeeuuunen. (log. sin. M) 9.5999889
“ \

3 +§ +M =73 41 28 ....eeveerennnnnene, log. sin. 9.9821604

a b ’
5F 5= M=26 46 16 .ccoovrrrersrrnerreniinnens 9.6536248
S =41 6 32,8 i, 2) 19.6357852

€=82 13 5.6 cvrrrne. (log. sin, %) 9.8178926
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Suppose now the observefl zenith distance to be 82° 4gtef,  ~ : -~

then the difference between the two, namely, 36’ 4”, would be
an indication of parallax and partly its effect. It cannot represent
the whole effect, because on the supposition of the existence of
parallax, the meridional north polar distances, (obtained by adding
the co-latitude to the observed meridional zemith distances), from
which PM was obtained by interpolation, would be all wrong,
and consequently PM, one of the given quantities in the triangle
ZPM (see p. 648,) would be so also, and cousequently, in the
last place, the result of the solution, or the value of 2M would
be incorrect. The difference 36’ 4" then being ouly in part
the effect, and not the measure of parallax, must be considered as
a first approximation towards the true value of parallax. Under
this point of view, if P (see pp. 323, &c.) should denote the

horizontal parallax, we should have (see p. 323,). .
sin. p

sin, (D + p)

U

=—2r =04 s

sin. (D 4 p)  sin. 82° 49" 10

With this approximate value we may partly correct the observed
zenith distances, and obtain more correct values of the north
polar distances deduced from such zenith distances. Thus, since
P = 36’ 21", and since the observed zenith distances on Feb. 1,
(see p. 645,) was 23° 27’ 85", we have (see p. 323,) the parallax -
of the meridional zenith distance

= 36’ 21”.sin. 23° 27’ 35" = 868".27 = 14’ 28", nearly.

With this, as a correction, the series of zenith distances should be
reduced (see p. 645,) and a new series of meridional polar
distances, from which, as before, we may deduce by interpolation,
or the differential formula, a more correct vilue of PM cor-
responding to 8". It is plain that this value of PM must be
vearly the former value (61° 56’ 19”) minus the parallax on the
meridian, that is, 61° 41’ 51”. Instead, therefore, of making
PM = 61° 56’ 19", make it, in the formula of solution of p. 648,
61° 41’ 51", and the resulting value of PM is 82° 1’ 16":
subtract this from 82° 49’ 10", the observed zenith distance, and

sin. P = » or, nearly,
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the difference, which is the second approximate value of the
parallax, is 47’ 54", and, therefore, as before

_ 47/ 54’/

™ sin. 82° 49" 10”
and the parallax on the meridian = 48’ 16”.sin. 23° 27’ 385"
= 19’ 138", and, as before, deducting this from 61° 56’ 19", the

new value of PM is equal to 61° 37 54”, with which new value
the side ZM is again to be deduced from the formula of p. 648.

= 48’ 16",

The resulting value of 2M, is again to be deducted from the
observed zenith distance, in order to obtain new values of p, and
P, and after three more approximations, we shall deduce a value
of P about 54’ 10”: which is nearly that of the Moon’s horizontal
parallax. This is the description of the process for ascertaining, -
ateiee same place of observation, the existence and quantity of
the' Moon’s parallax. But if we knew by means of the method
described in pp. 325, &c. and by the result of such observations
as were made at the Cape of Good Hope and Berlin, the Moon’s
horizontal parallax, we could, in the first instance, find the paral-
laxes corresponding to the several zenith distances, ‘(see p. 645,)
correct such distances, and then deduce a series of north polar
distances of the Moon, by adding the co-latitude of the place of
observation to the zenith distances so corrected.

In what has preceded, we have pointed out and described two
methods for determining the Moon’s parallax, neither of which
can be very conveniently practised. It was a rare occurrence
that gave observations, contemporaneously made at places so far
" distant as the Cape of Good Hope and Berlin, and there are
few Observatories provided, for observations out of the meridian,
~ with instruments equally good as their mural quadrants and circles.
The quantity and variation of the Moon’sparallax, now well
koown, has not been so known by one set of observations : but,
like other astronomical elements, has been determined by the
comparison of numerous observations, and with some small aid
from theory.

The large quantity of the Moon’s parallax, and its variations
arising from the situation of the observer, and the change of
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distance between the Moon and Earth, render it a subject of
considerable astronomical importance. We shall, therefore, con-
tinue its discussion before we proceed to deduce the elements
of the lunar orbit.

The Moon’s horizontal parallax (P), is the angle which the
Earth’s radius subtends at the Moon. The Moon’s apparent
semi-diameter (D), is the angle which the Moon’s radius subtends
at the Earth. Hence,

P = r?d. P ,
Y ’s dist. from @

. D ’s rad.
D = D ’s dist. from @’
P @’s rad. '
"D p’srad.’

the ratio, therefore, between the Moon’s horizontal parallax and
apparent semi-diameter, is a constant ratio, if the Moon and
Earth be spheres ; and, if the former be a sphere, is a constant
ratio at the same place, whatever be the figure of the Earth.

If P = 57" 4”.16844, and D = 15’ 33".8652*,
D 15 33".8652

P =57 ai68m . 2199

. . . 3 .
or, by the method of continued fractions, is nearly TR Hence,

from the observed apparent semi-diameter of the Moon, we may -

.

* The ratio of the greatest and least apparent semi-diameters, is the
same as the ratio of the perigean and apogean distances of the Moon,
the least apparent diameter 29 30" _1—e

and the greatest apparent diameter — 33’ 30" ~ 1 4e¢’

(if e be the eccentricity), whence e =.0635, whereas the eccentricity in the
solar orbit only = .0168. The equation of the centre then, in the lunar
orbit, must be about 7° 16’. If, therefore, we set off from a circular
motion, and call that the regular one, the Moon’s motion, besides the

causes already assigned (see p. 639,) will be still more irregular than the
Sun’s. : ~
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always deduce the corresponding horizontal parallax by multi-
11 ,
plying the former by 3 and vice versd.

The horizontal parallax of the Moon is the angle subtended
by the Earth’s radius at the Moon. Hence, the Earth not being
spherical, the horizontal parallax is not the same®, at the same
instant of time, for all places on the Earth’s surface. One proof
that the Earth is not spherical, is by reversing this inference,
namely, that the horizontal parallaxes computed for the same
time are found not to be the same. Hence, in speaking of the
horizontal parallax it is necessary to specify the place of obser-
vation. The Moon’s parallax computed for Greenwich is dif-
ferent from the equatoreal parallax. Several corrections therefore,
must be applied to an observed parallax, in order to compute,
at the time of the observation, the Moon’s distance from the
centre of the Earth. TFor, that distance, it is plain, ought to
result the same, whatever be the latitude of the place of obser-.
vation.

The greatest and least horizontal parallaxes of the Moon,
computed from observations at Paris, are, according to Lalande,
(Astron. tom. II, p. 197,) 1° 1’ 28”.9992, and 53’ 49”.728, and
the corresponding perigean and apogean distances respectively,
63.8419, 55.9164. The corrésponding apparent diameters are
33’ 31", and 29’ 22". :

The mean diameter, that which is the arithmetical mean be-

tween the greatest and least, is 31’ 26".5; but, the diameter at
the mean distance is smaller and equal to 31’ 7”.

Whatever be the quantity, which is the subject of their inves-
tigation, Astronomers are accustomed to seek for a constant and
mean value of it, from which the true and apparent values are
perpetually varying, or, about which they may be conceived to
oscillate. In the subjects of time and motion, the search is after

* At the same distance the parallax varies as the radius vector of
the spheroid. A Table, therefore, that gives the several values of the
radii.in a spheroid of a given oblateness, enables us to correct the equa-

toreal parallax. See Vince’s Astronomy, vol. 111, tab. XLV, p, 173.
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mean time and mean motion, and by applying corrections or equa-
tions to deduce the true. The Moon’s parallax not only varies
in one revolution, from its perigean to its apogean, but the
parallaxes which are the greatest and least in one revolution,
remain not of the same value, during successive revolutions : they
may not be the greatest and least, compared with other perigean
and apogean parallaxes. But all may be conceived to oscillate
about one fixed and mean parallax, which has been designated
by the title of Constant Parallax, (la Constante de la Parallaze).

We should obtain no standard of its measure, if we assumed
itto be an arithmetical mean between its least and greatest valies.
For, the eccentricity of the lunar orbit varying, and consequently,
the apogean and perigean distances, from the action of the Sun’s
disturbing force, the greatest parallax, if increased, would not be
increased by exactly the quantity of the diminution of the least
parallax ; the mean of the parallaxes, therefore, would not always
be the same constant quantity.

The constant parallax is assumed to be that angle, under which
the Earth’s radius would be seen by a spectator at the Moon, the
Moon being at her mean distance and mean place : such, as would
belong to her, when all causes of inequality are subtracted. But
then, even by this definition, the constart parallax would be
represented by the same quantity only at the same place; for,
although the Moon’s distance remains the same, the radius of the
Earth, supposing it spheroidical, would vary with the change of
latitude in the place of observation.

In order therefore, to rescind the occasion of ambiguity which
might be attached to the phrase of constant parallax, Astronomers,
in expressing its quantity, are accustomed to state the place for
which it was computed. Thus, the equatoreal diameter being
greater than the polar, the constant parallaxr under the equator
(as it is termed) is greater than the constant parallax under the
pole: the former, Lalande, by taking a mean of the results ob-
tained by Mayer and Lacaille, states to be 57’ 5", the latter
56' 53".2 ; the same author also states the constant parallaxes
for Paris, and for the radius of a sphere, equal in volume .to the
Earth, to be respectively 56' 58".3, and 57' 1" (see Astroromy,
tom, II. p. 815). ' '

40
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M. Laplace, however, proposes to deduce_the several constant
parallaxes from one alone : and to appropriate the term constant,
to that parallax, belonging to a latitude, the square of the sine of
which is 3*. This parallax, by theory, he has determined to
be 57' 4”.16844, the corresponding apparent semi-diameter of
the Moon being 31’ 7".7304, (= 57’ 4”.16844 x .27293.)

This parallax being reckoned the mean parallax, the true
parallax is to be deduced from it ; if analytically expressed, to be
80, by a series of terms : if arithmetically computed, by the appli-
cation of certain equations; the terms and equations arising, partly,
from mere elliptical inequality, and partly, from the perturbation
of the Sun.

‘The terms due to the first source of inequality are easily com-
puted : for, if we call P the horizontal parallax to the mean
distance (a), then since we have any distance (p) in an eHipse ex-
pressed (see p. 459,) by this equation,

_a.Q — €
T 1+ e.cos. 8’
and since, the parallax X p = P x @, we have the parallax =
1 . cos. 0 '
P x 1te.co? , and expanding as far as the terms con-

1—¢
taining ¢°, &c. = P (1 + e.cos. 0 4 €'
The terms due to the theory of perturbation are not easily

computed. In the extent of mathematical science, there is no
computation of equal importance and greater difficulty +.

The formula for the parallax, in which the constant quantity is
57" 4”.16844, belongs to a latitude, the square of the sine of which
" is 5. The corresponding formula for any other latitude is to be

* Laplace chose this parallel; since the attraction of the Earth on
the corresponding points of its surface, is very nearly, as at the distance
of the Moon, equal to the mass of the Earth, divided by the square of
its distance from the centre of gravity, Laplace, Mec. Cel. Liv.II,
p. 118,

1 The difficulty beloags equally to the formulz for the latltude and
longitude.. See Lalande, tom. I, pp. 180. 193, 314.
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deduced by multiplying the former by 1;,, or by applying a cor-

rection proportional to r — r; r and 7’ being the radii cor-
respopding to two latitudes, and computed on the supposition

1
that the Earth is a spheroid with an eccentricity = 300" [See

Tables XLV, and XLVI; in the collection (1806) of French
Tables, and the Introduction. See also Vince, vol. ILI 5 p» 50.1

The Moon’s equatoreal horizontal parallax and apparent semi-
diameter, are inserted in the Nautical Almanack, and, for every
12 hours ; the former is computed by the formula that has been
mentioned (p. 654) : the latter, by multiplying the parallax by
.27298.

The Moon’s distance may, as it has been already noted, be
determined from her parallax; her greatest and least distances from
her least and greatest parallaxes ; and her mean distance from her
mean parallax ; and, taking for the value of the latter that de-
termined by Laplace, we shall have

57°.2057795 _ 57.2057795

57°.2957795 @ = 2020TTS .
574716842 < 74O = Gosnisrg X D

= 60.23799 x rad.@; therefore, if we assume the Earth’s
mean radius to be 3964 miles, the Moon’s distance will be about
) 238763 miles.

) ’s distance =

The distances of the Sun and of the Moon from the Earth are
inversely as their parallaxes. Hence, if the parallax of the former
be considered equal to 8”.7, the dlstances will be to each other,
vearly, as'394 :

Lacaille’s method of determining the distance from the parallax
applies successfully to the Moon, on account of her proximity to
the Earth. It fails, with regard to the Sun, by reason of his
distance. - That distance is more than 24090 radii of the Earth:
consequently, a radius of the Earth bears a very small proportion
to it. The Sun’s apparent diameter then seen from the surface
of the Earth, is nearly the same, as if it were seen from the centre ;
and his diameter on the meridian cannot be sensibly larger than
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his horizontal diameter. But, with the Moon, the case is dif-
ferent : since her distance is not much more than 60 radii of the
Earth, her apparent diameter at its surface will be one 60th part
greater than her diameter viewed from the centre: and as she
rises from the horizon, and approaches the spectator, her appa-
renit diameter will increase and be greatest on the mieridian.
It is easy to assign a formula for its augmentation.

Let s be the Moon, p the parallax represented by the angle

o
» 7

msn, D the D ’s apparent distance from the zenith, A the ) ’s
diameter viewed from the Earth’s centre, a the augmentation of °
the diameter, then

D ’sreal diameter = A x Cs = (A + a) x 4s;
. Ata Cs_sin.C4As  sin.D
A As~ sin, ACs  sin.(D — p)’

Hence, a = 4 .sin. D — A.sin. (D "»P)
' sin. (D — p)
A p L
B 2 A {sm. 2.,(:08' (D s }
B sin. (D — p)

(sée Trig. p. 32.)
From this formula, in which p = P .sin. D, (P the horizontal
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parallax) @ may be computed ; but, in practice, more easily from
a formula, into which, by the known theorems of Trigonometry,
the preceding may be expanded. See Table XLV, in Delambre’s
Tables ; and the Introduction: also Vince, vol. III, p. 49.)

When the Moon is in the horizon, p = P, and D = 90°;
A (1 — cos. P)
cos. P

Hence, the D ’s horizontal diameter is greater than the dmmeter
(A) feen from the centre, in the proportion of the secant of P
to radius ; that is, if we assume P = 1° in the proportion of
1.0001523 : 1

With the preceding value of the parallax (1°) the diameter ( A )
see p. 655, will = 2° x ,27293 = 32’ 40”9, nearly, .and ac-
cordmgly the augmentation = 32’ 49".9 x (sec. 1° — 1)

= 32’ 49".9 x .0001523
= 0".3, nearly.

1t is plain, independently of any computation, that the Moon’s
horizontal diameter must appear- farger than it would do, if seen
from the centre: since the visual ray, in the latter case, is the
hypothenuse, in the former, the side of a right-angled triangle.
In order to find how much the Moon must be depressed, so that,
if it could, it would be seen under the same angle, as when viewed
from the Earth’s centre, draw a line from the bisection of the
radius joining the spectator and the Earth’s centre, perpendicularly .
towards the Moon’s orbit: the intersection with the orbit is the
Moon’s place, and the depression, below the horizom, is, as it is
plain, half the Moon’s horizontal parallax.

Soa =

= A.{sec. P = 1),

The Moon’s parallax is necessary to be known for the pur-
pose of determining, from its observed, its true zenith distance :
from the true zenith distance, the Moon’s north polar distance
is found by adding to it the co-latitude. Lastly, from the north
polar distance and right ascension, and the obliquity of the
ecliptic, the Moon’s longitude and latitude may be computed :
and thence the elements of the orbit may be computed, or being
computed, may be exainined and corrected. This subject of the
elements of the lunar orbit, will be briefly treated of in the .
ensuing Chapter.



CHAP. XXXI.

On the Elements qf the Lunar Orbit; Nodes ; Inclznatzon Mean

Distance; Eccentrzczty, Mean Motzon Apogec Mean Lon-
gitude at a given Epoch.

Tue longitudes of the nodes are determined; as in the case of
a planet. From the Moon’s observed right ascensions and decli-
nations, the corresponding latitudes and longitudes are computed :
when the latitude is equal nothing, the Moon is in the ecliptic;
in the intersection therefore of the ecliptic and its orbit: or, in
other words, in its node: the longitude corresponding ta such
latitude (= O) is the longitude of the node.

~ It will rarely happen (see p. 565,) that the latitude deduced
from the meridional right ascensions, and polar distances, is
exactly equal nothing : ‘we must then, by proportion, compute
the longitude corresponding to such latitude, if it may be called

such. The object may be easily arrived at by the following
method. :

Let N be the place of the node, n Nm a portion of the

w

a

ecliptic, am, bn (A, 2') two latitudes, one to the south, the other
to the north of the ecliptic : now by Naper’s Rules
tan. X tan. A’

tan. N = — = —
sin. Nm ~ sin. Nn’
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. sin. Nm  tan. A\
" sim. Nn _ tan. N’ :
, sin. Nm — sin. Nn _ tan. A — tan. A
" sin. Nm + sin. Nn _ tan. A + tan. X'’
tap, Y@ —Nn
) sin. A — A)
or Nm + Nu S+ A
e .
Nm — Nn nm sin. A — \’
Hence, tan. ————— = tan. - m,

from which expression, Nm — Nn is known, since Nm 4 Nu,
the difference of the longitudes on the two succeeding days of
observation, is known : and, from the sum and difference of two
quantities, we can determine the quantities themselves : in fact

Nm-+4 Nn . . Nm — Nn
) + s

2
Nm 4+ Nn Nm~— Na

2 ) :

Nm =

Nn

«This method is capable of determining, besides the longltude

of the node, the inclination of the orbit; for, since’
sin. Na _tan. N 41
sin. Nm tan. A . .. ..
tan. A tan. X +tan. N
sin. Nm ~ sin. Nm + sin. Nn’
consequently, .
A tan. A + tan. A
tan, N = .tan = an. A +
sin. Nm  sin. Nm + sin. N»n

sin. A + A
' . mn Nm —Nn\
cos. A cos. N . 2.sin, 2 .cos.( 2 )

In which fraction, after the determination of the value of Nm— Nn,
every thing is known.
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In order to determine, whether the place of the node be fixed
or not, or, if moveable, the direction and degree of its motion,
repeat the .above process for finding the lengitude, and the
difference between the two results will be, during the interval of
the two observations, the motion of the node. Thus, if at the
end of a month, we make a second computation of the place of
the Moon’s node, it will be found to have a longitude less than
what it had at the beginning, by 1° 28": at the end of two months,
a longitude less by 2° 55': and by like computations, or, rather
by the comparison of very distant observations, the annual regres-
sion of the Moon’s node, will be found to be 19° 19’ 43", and
the period of the sidereal revolution of the node will be 6798
days *.

If we take the difference of two longitudes of the same node,
we shall have, corresponding to the interval of time, the regression
or motion of the node : if the interval be 100 years, the result
will be the secular motion of the node. But, the mere difference
of the two longitudes will not give the whole motion of the node,
since the node may have regressed through several entire circuits
of the heavens. For instance, in 100 years the mere difference
of two longitudes is 4° 14° 11’ 15”: but, since the revolution of
the Moon’s nodes is performed in about 18¥ 7%, in 100 years,
besides this angle of 4° 14° 11’ 15", five circumferences must
have been described by the node : the proper exponent, therefore,
of the secular motion of the node is

* There are certain phenomena which very plainly indicate the re-
gression and its quickness. Forinstance, the star Regulus situated nearly
in the ecliptic, ‘(its latitude is about 27’ 35”,) was eclipsed by the Moon
in 1757: the Moon therefore, must have been nearly in the ecliptic, and
consequently, in its node. But, a few years after, the Moon, instead of
eclipsing Regulus, passed at the distance of 5 degrees from the star.
Again, if the Moon be observed at a certain time in conjunction with
a star, and passing very near it, after the interval of a month, it will pass
the star at a greater distance; after two months, at a still greater dis-
tance ; and having reached a certain point, it will, in its conjunctions with
the star, again approach it, and, at the end of about 19 years, pass it at
the same dlstance, as at the beginning.
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5 x 360° 4 134° 11’ 15" = 1934° 11’ 15, (= 1934°.1875.)
" Hence, the tropical revolution of the node
36000°
1934 1875

and since the equinoctial point in that time has regressed through
15' 34", the sidereal period is less than the former by nearly five
days.

= 6798%.54019 = 6798? 12" 57™ 52°.416,

The annual regression of the node has been stated to be
19°.341873. This, as is plain from the mode of deducing it,
is the mean regression. It will differ from the true annual re-
gression, (that which belongs to any particular year, 1810, for
instance,) by reason of several inequalities to which it is subject.
And, as we shall hereafter see, the regression, besidesits periodical
inequalities, is affected with a secular inequality, by which its
mear motion is, from century to century, retarded.

- Inclination of the Moon’s Orbit.

The inclination may be determined from the expression of
p. 659, 1. 17 : or thus:

Amongst the latitudes computed from the Moon’s right as-
censions and declinations, the greatest, at the distance of 90°
from the node, measures the inclination of the orbit. This,
sometimes, is found nearly equal to 5°: at other times; greater
than 5°. For instance, the greatest latitude of the new and full
Moon, when at 90° from the node, is found equal to 5° nearly ¢
but the greatest latitude when the Moon is in ql_mdrature, and
also 90" from the node, is found equal to 5° 18'. Hence the
inclination of the Moon’s orbit is variable: it is greatest in quad-
ratures and least in syzygies.

Major Axis of the Moon’s Orbit.

The Moon’s distance is to be determined by her parallax.
The method of Lacaille, described in Chap. XII, p. 325,
(which is inapplicable, in the case of the Sun, on account of his
great distance,) applied to the Moon, affords practical results of
great exactness.

4r
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The degree of exactness is known from the probable
error of observation, and the consequent error in the resulting
distance : now, a variation of 1” in the parallax would cause
a difference of about 67 miles in the determination of the dis-
tance®: therefore, as the Moon’s parallax can certainly be de-
termined within 4", the greatest error in the resulting distance
cannot exceed 280 miles, out of about 240,000 miles.

Since, generally, the Moon’s distance can be determined, her
greatest and least may : and consequently, supposing her orbit to
be elliptical, the major axis of the ellipse, which is the sum of
the greatest and least distances, may be determined.

Eccentricity of the Moon’s Orbit.

This is known from the greatest and least distances of the
Moon, the apogean and perigean. Or, it may be determined
from the greatest equation (see pp. 473, &c.) Its quantity, ac-
cording to Lalande, (Astronomy, tom. 1I, p. 312,) is 0.055036 :
which gives for the greatest equation 6° 18’ 32".076, M. Laplace
however, states the eccentricity for 1800 to be 0.0548553, which
gives the greatest equation of the centre, 6° 17’ 54".492. -

The Moon’s Mean Motion.

By p. 611, the time (7) of a synodic revolution equals

.

b 4

@'s rad.

®* Let p= D’s parallax then, see p. 651, D’s dist. =
Let e be the error ef parallax, then the corresponding errror in the Moon s

dismnce=@srad._@srad.=€Bsrad. (1_ 1 )
P P+e P l-|-f-

P
@’s rad. ( e) P’s rad. (e) :
= 1—14~)=>— (=), nearly,
p +P P P Y

(rejecting the terms involving €?, &c.) Hence, if e =17, and p= 1°,
and @' rad. , or the D’s dist. = 240,000 miles, the error = 0_015(.) X

. 240,000 = 67 miles, nearly. In the case of Mars, an error of 1” in-
cludes in the distance an error of 40,000 miles.
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Hence, if T be computed from observation, since P the Earth’s
period is known, p, the Moon’s, may be computed from the
expression

Pr
P+’ ot

p’.—"

If the Moon and Earth revolved equably in circular orbits,
the above method would give accurately the Moon’s period ; but,
since the Moon and Earth are subject to all the inequalities of
a disturbed elliptical motion, the result obtained, by the above
process, from one observed synodic revolution, would differ con-
siderably from the mean period. In order, therefore, to obtain a
mean period, we must observe and compute two conjunctions, or
two oppositions, separated from each other by a long interval of
time ; and then, the interval divided by the number of sypodic re-
volutions will give nearly the length of a mean synodic period, and
very nearly indeed, if the Moon’s apogee at the time of the second
conjunction or opposition should be nearly in the same place in
which it was, at the time of the first conjunction or opposition.
From this mean value of the synodic period (v), the mean period’
(p) may be computed from the above expression.

Now the phenomena of eclipses are very convenient for de-
termining certain epochs of oppositions. And great certainty is
obtained by their means. For, the recorded time of an eclipse
by an auntient Astronomer must be nearly the exact time of its
happening ; whereas, the assigned time of a conjunction or
opposition happening long since, might, from the imperfection
of instruments and methods, be erroneous, to a very considerable

degree.

If we use two oppositions indicated by two eclipses, separated
from each other by a short interval, we may deduce, but with
no great exactness, (as has been already observed in this page,)
the time of a synodic revolution. Thus, according to Cassini,
a lunar eclipse happened in Sept. g, 1718, 8" 4™ ; another eclipse
in Aug. 29, 1719, 8" 32 The interval between the two eclipses
was 354 O" 28™ : and in the interval, 12 synodical revolutions
had taken place ; consequently, the mean length of one of these
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3544 O 28™

n , equal to 29° 12" 2™,

twelve, is equal to

This result cannot be exact: it is affected by the inequalities
of the Moon’s elliptical motion: for, independently of other
causes, the place of the apogee of the Moon’s orbit at the time
of the second observation is distant from its place at the first by
about 40°. '

In order to obtain a true mean result, we must employ eclipses
very distant, in time, from each other. Such are, an eclipse
recorded by Ptolemy to have been observed by the Chaldeans in
the year 720 before Christ, March 19, 6" 11™ (mean time at Paris,
according to Lalande,) and an eclipse observed at Paris in 1771,
Oct. 23, 4" 28™. The interval between the eclipses, is 910044
days minus 1" 43™, and expressed in seconds, 78627795420".
In this interval 30817 synodic revolutions had happened ; the
mean length of one of these, then,

2 .. .
= % = 20% 12" 44™ 2'.2. Substltutln:g this

value in the expression, p. 663, 1. 4, we may obtain the value

of p.

The value of the synodic period, computed from different
observations, is not always of the same magnitude. Its mean
length therefore is subject to a variation, arising from a cause
called the Acceleration of the Moon’s Mean Motion, which will
be hereafter explained. ‘

According to M. Laplace, the mean length of a synodic revo-
lution of the Moon for the present time, is
20! 12" 44™ 2°.8032 (= 29°.530588).
The periodic revolution of the Moon computed from the
expression of p. 663,
o 365.242264 x 29.530588
T 865.25 + 29.530588
= 27° 7" 43™ 4°.6848.

= 274.321582
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This is the tropical revolutlpn of the Moon, or the revolution
with respect to the equinoxes, since the number which was sub-
stituted for P was 365.242264, which expresses the Earth’s
tropical revolution.

" The diurnal tropical movement of the Moon
360°

= —_— . = 13° : ”.86.
27521502 18°.17636 3% 10’ 34".89

The sidereal revolution of the Moon differs from the tropical,
for the same reasons, (see p. 198,) as the sidereal year differs from
the tropical : and the difference must be computed on similar
principles : thus, the mean precession of the equinoxes being
50".1 in a year, or about 4” in a month, the sidereal revolution
of the Moon will be longer than the tropicél, by the time which
the Moon, with a mean diurnal motion of 13°.17636, takes up in
describing 4": which time is nearly 7°. The exact length of a
sidereal revolution is 27¢ 7" 43™ 11°.510, (= 27°.321661)*.

* We may easily deduce a formula'of computation: thus, let p be
the Moon’s tropical revolution (= 279.321582,) and z the sidereal period
to be investigated ; then, the arc of the precession described in the time
_ 50”.1 x x :
~ 305.25 °

. N R . 50”.1
and the time of the Moon’s describing it = 36535 X 3008 X *
50"
.Hence, r =p + 7= 365 35 % 3600 X & and thence
— P
= 1 P 50".1°
~ 365.25 * 360°
= (expanding)
4 50".1 ( ) (50” )" & }
P {l +365.25 < 3000 T (365,25 so0s) &
P 5

in which, since is a very small quantity, two terms

365.25 300"
will be sufficient to give a value of x sufficiently near.

The same series may be used for determining the length of the
sidereal
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Since the equinoctial point (from which longitudes are mea-
sured) regresses, the Moon departing from a point, where its
longitude is = O, returns to a point at which its longitude is
again = O, before it has completed a revolution amongst the
fixed stars. In like manner, the node of the Moon’s orbit re-
gressing, and faster than the equinoctial point, the Moon, quitting
a node, will return to the same before completing a revolution
amongst the fixed stars, and in a period less than the ¢ropical.

" This period may be thus found ; the diurnal tropical movement
of the Moon is 13° 10’ 34".896, and that of the node (see p. 661,)
__19°.841875
T 865.242264
which is the sum of the above quantities since the node regresses,
= 13° 19’ 45".535% : and consequently,

13° 18’ 45”535 : 360° :: 1% : 27! 5" 5™ 35,6,
the revolution of the Moon with respect to'its node.

= 8’ 10”.6386. Hence, the diurnal separation,

This latter revolution may also be found by the aid of the
formula given in the Note to p. 665.

By like processes, from the ascertained quantity of the apogee
of the Moon’s orbit, we may determine the anomalistic revolution

sidereal from the tropical year, by substituting for p, 3654.25 : in that
case, the length of the sidereal year
50,1
=365.25 (1 + 355 -|-&c.)
angd a like series would serve to delermine the length of an anomalistic
year, substituting mstead of 50”.1, the quantity expressing the progression
of the apogee.

* The Moon’s motion with regard to its node may be found from
echpses for, when these are of the same magnitude, the Moon is at the
same distance from the node. Hipparchus, by comparing the .eclipses
observed from the time of the Chaldeans to his own, found that in 5458
lunations, the Moon had passed 5923 times through the node of its orbit :
thence he deduced the daily motion of the Moon with regard to its node,

to be 13° 13’ 45" 39”%. See Lalande, tom, II, p. 189. _
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of the Moon, M. Lalande (Astronomie, tom. 11, p. 185,) states it
to be 27¢ 18" 18™ 83°.9499, but M. Delambre, 27° 13" 18™ 57°.44
(= 27%.5546.)

There is another revolution, of some consequence in the lunar
theory, called the Synodic Revolution of the Node: this is com-
pleted when the Sun departing from the Moon’s node first returns
to the same. It is to be computed as the preceding periods have
been. Thus, since the mean daily increase of the Sun’s longitude
is 59’ 8”.33, and the daily regression of the node is 3’ 10”.638,
the sum of these quantities, which is the separation of the Sun
from the node in a day, is 1° 2/ 18”.96. Hence, 1° 2/ 18".96 :
360° :: 19 : 846° 18" 28™ 16°.032 (= 346%.61963*.)

We will now exhibit, under one point of view, the different
kinds of lunar periods and motions :
Synodic revolution . ..... 29 12" 44™ ¢'.8032 = 29%.530588
Tropical ....00c0eeee. 27 7 43 4.6848..27.321582
Sidereal. o ............ 27 7 43 11.510]..27.321661
Anomalistic « e eeees... 27 13 18 37.44....27.5546
Revol". in respect of node 27 5 5 85.6.....27.212217
Tropical revolu®. of node 6798% 12" 57™ 52°.416 6798.54019
Sidereal s e v eeevese... 6793 10 6 29.952..6793.42118
) ’s mean tropical daily motion .......... 13° 10’ 34”.896

) ’s sidereal daily motion ....cecec0eees 13 10 85.034
) ’s daily motion in respect to the node . ... 13 13 45.534

Place of the Apogee.

The Moon’s diameter is least at the apogee, and greates;t in
the perigee : and since the diameter can be measured by means

* This and the preceding periods are frequently found on like princi-
ples, but by different expressions, from the values of the secular motions.
Thus, in 100 Julian years, each consisting of 3654.25, the secular motion
of the Sun is 36000° 45" 45” (36000°.7624998) and the secular motion
of the node (see p. 661,) 1934°,1875: and the sum of these is 37934°.95

36000

nearly : thence 37934.95 : 360 11100t 'Pemd = 37934.95"
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of a micrometer, or can be computed from the time it takes up
in passing the vertical wires of a transit instrament, the times of
the least and greatest diameter, or the times when the Moon is
in her apogee and perigee, can be ascertained. Instead of endea-
vouring to ascertain when the Moon’s diameter is the least,
Lalande, Astron. tom. 1I, p. 162, says, that it is preferable to
observe the diameters towards the Moon’s. mean distances when
the diameter is about 31’ 30". If two observations can be selected
when the diameter was of the same quantity, then we may be sure
that, at these two observations, the Moon was at equal distances
from the apsides of its orbit. The middle time then between the
two observations is that in which the Moon was in her apogee.

By finding the places of the apogee, according to the pre-
ceding plan, and comparing them, it appears that the apogee of
the Moon’s orbit is progressive * : completing a sidereal revolution
in 3232? 11® 11™ 30°.4, and a tropical, in 3231¢ 8" 34™ 57°.1.
Laplace states the sidereal revolution of the apogee to be 3232%.579,
that is, 3232%. 18" 53™ 45°.6. (See Eaxpesition du Systeme du
Monde, Edit. 2, p. 20.) . o

Mean Lohgitude of the Moon at an assigned Epoch.

By observations on the meridian, the right ascension and de-
clination of the Moon are known ; thence may be computed, the -
Moon’s longitude. This resulting longitude is the true longitude,
differing from the mean by the effect of all the inequalities, ellip-
tical, as well as those that arise from the perturbations of the Sun
and planets. The mean longitude therefore, is the difference of
the true longitude and of the sum (mathematically speaking) of

_ the equations due to the inequalities. In order, therefore, to de-
termine the mean longitude, the lunar theory must be known
to some degree of exactness. Any new inequality discovered
will affect the previous determination of the mean motion: and.
accordingly, keeping pace with the continual improvements in
the lunar theory, repeated alterations have been made in the
quantity of the mean longitude. In the last Lunar French Tables,

* See Physical Astronomy, Chap. XIIL
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the epoch of the mean longitude for Jan. 1, 1801, midnight at
Paris, is 3* 21° 36’ 30".6 : which for Greenwich, Jan. 1, at noon,
is 3* 28° 16’ 56".1.

In order to determine the eccentricity of the Moon’s orbit,
considered as elliptical, and the deviations from the elliptical
form caused by the actions of the Sun and planets, it is necessary
to know the angular spaces described by the Moon, in her orbit.
Such spaces are not immediately given by observation. We must
make several steps to arrive at them. The first is the determi-
nation of the Moon’s parallax: the second, the observation of
the Moon’s right ascension and zenith distance : the third, the
correction of the zenith distance on account of parallax, in order
to obtain the true declination. The fourth, the computation of
the Moon’s latitude and longitude : the fifth, the reduction of the
Moon’s longitude to a longitude on her orbit, to be effected by
the same formula (see pp. 501, &c.) as that of the reduction of
the ecliptic to the equator.

The comparison of the reduced longnudes, or the companson
of the arcs of the Moon’s orbit, described in certain times, will
shew us how much such arcs, with respect to their forms and
laws of description, differ from elliptical arcs. This point will
be considered in a subsequent Chapter. In the next we will
advert to certain secular inequalities (arising, indeed, from the
same source as the Moon’s periodical inequalities) that affect
those elements of the orbit, which we have just considered.

4Q



CHAP. XXXII.

On the Secular Equations that affect the Elements of the
Lunar Orbit.

Tue correction, which is called a Secular Equation, is strictly
speaking periodical, but requiring a very large period, in order to
pass through all its degrees of magnitude before it begins to recur.
Its quantity, in general, is very small, and usually expounded by
its aggregate in the space of 100 years.

The nodes, the apogee, the eccentricity, the inclination of the
Moon’s orbit, the Moon’s mean motion, are all subject to secular
inequalities. And the practical mode of detecting these ine-
qualities is nearly the same in all.

If we subtract the longitude of the Moon’s node now, from
what it was 500 years ago, the difference is the regression of the
node in that interval : the mean annual regression is the above
difference divided by 500. 1f we apply a similar process to an
observation of the Moon’s node, made now, and to one made
1000 years ago, the result must be called, as before, the mean
annual regression of the node; and this last result ought, if the
regression were always equable, to agree with the former: if not,
(as is the case in nature,) the difference indicates the existence of
a secular inequality, requiring for.its correction a secular equa-
tion.

By a similar method the motion of the perigee of the Moon’s
orbit does not appear to be a mean motion, but subject to a
secular inequality. '

But the most remarkable iuequalitjY is that which has been
detected in the Moon’s mean motion, and which is now known
by the title of the Acceleration of the Moon’s mean Motion. The
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fact of such acceleration was first ascertained by Halley, from
the comparison of observations : the cause of the acceleration has
been assigned by Laplace®. Although the method of detecting
the existence of these inequalities does not differ, in principle,
from methods just described, yet, on account of its importance,
we will endeavour to explain it more fully.

As we have before remarked, eclipses are a species of obser-
vations on which we may rely with great certainty; quite distinct
from merely registered longitudes which must partake of all the
imperfections of methods used at the times of their computation.
Now, in the year 721 before Christ, with a specified day and
hour, Ptolemy records a lunar eclipse to have happened. The
Sun’s longitude then being known, the Moon's, which must at the
time of the eclipse differ from it by six signs, is known also. The
Moon’s longitude however, computed for the time of the eclipse
and by means of the Lunar Tables, does not agree with the
former+. In some part or other, then, the Tables are defective,
or, without some modification, are not applicable to ages that
are past.

The Moon's place computed from the eclipse is advanced
beyond the place computed from the Tables by 1° 26’ 24”; an
error too great to be attributed to any inaccuracies in the coeffi-
cients of the equations belonging to the periodic inequalities, and
which would seem rather to be the aggregate, during many years,
of a small error in some reputed constant element, such, for
instance, as the Moon’s mean motion.

On the hypothesis then of an acceleration in the Moon’s
motion, or, in other words, if we suppose the Moon now to move
more rapidly than it did 2000 years ago, the error of 1° 26’ 22"
can be accounted for. With a mean motion too large, we should

* See Laplace, Exposition di Syst. du Monde, Edit. 2, pp. 20, 214, &c.
also Mec. Celeste, pp. 175, &c. Lalande, tom. II, p. 185: Halley, Pkl
Trans. Nos. 204, and 218, Newton, p. 481, Ed. 2. and Woodhouse’s
Phys. dstron. Chap. XXII.

t The true longitudes are not compared, but the mean,
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throw the Moon too far back in its orbit. And, with the same
motion, but for a point of time less remote than the preceding,
we ought, if the hypothesis of the acceleration be true, to throw
the Moon less far back in her orbit: for that would produce
an error of the same kind as the one already stated, (p. 671).
Now this is the case, and has been ascertained to be so, by means
of an eclipse observed at Cairo by Ibn Junis, towards the close
of the tenth century.

The acceleration of the Moon’s motion therefore, discovered
by Halley, may be assumed as established : or, in other words, in
the former estimates of the quantity of the Moon’s motion, a
large secular inequality was included, which it is now neces-
sary to deduct, in order that what remains may be truly a
-mean motion.

The variation in the mean motion of the Moon, will, it is
plain, affect the durations of its synodic, tropical, and sidereal
revolutions.

With this secular equation in the Moon’s mean motion, the
equations in the motions of the nodes and of the apogee are
convected. 'The latter are subtractive, whilst the former is posi-
tive ; and, according to Laplace, Mec. Celeste, tom. III, p. 236,)
the secular motions of the perigee, of the nodes and mean motion,
are to each other, as the numbers 3.00052, 0.7385452, and 1.

The mean anomaly of the Moon, which is the difference of
her mean longitude and the mean longitude of the apogee, must
be subject to a secular equation, which is the difference of the
secular equations affecting the longitudes of the Moon and of the
apogee.

" All quantities, in fact, dependent on the Moon’s mean motion,
the apogee and nodes, must be modified by their secular equa-
tions.

The Moon’s distance from the Earth, the eccentricity and in-
clination of her orbit, are, according to M. Laplace, also affected
with secular equations connected with that of the mean motion.
But, the major axis is not. (See Physical Astron. Chap, XXIII.)
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We will, in the next Chapter, explain briefly the origins,
quantities, and variations of those inequalities, which during a
month, a year, and the periodical revolution of the nodes, render
the Moon’s true place different from its elliptical, or, more
generally speaking, from its mean place.



CHAP. XXXIII.

On the Inequalities qﬂ'ectir'tg the Moon’s Orbit.—The Evection.—
Variation.— Annual Equation, &c.— The Inequalities of
Latitude and Parallax.

By a comparison of the Moon’s longitudes and of her distances
deduced from her parallaxes, it appears that the lunar orbit is
nearly an ellipse with the Earth in one of the foci. It appéars
also, that the Moon not only wanders from the ellipse which may
be traced out as her mean orbit, and transgresses the laws of
elliptical motion, but, that the ellipse itself is subject, in its di-
mensions, to continual variation : at one time, contracted within
its mean state, at another, dilated beyond it.

In strictness of speech, neither the Earth’s orbit nor the Moon’s
are to be called ellipses. If they are considered as such, it is
purely on the grounds of convenience. It is mathematically com-
modious, or it may be viewed as an artifice of computation, first,
to find the approximate place of each body in an assumed ellip-
tical orbit, and then to compensate the error of the assumptions,
and to find a truer place, by means of corrections, or, as they
are astronomically called, Equations.

In a system of two bodies, when forces, denominated cen-
tripetal, only act, an accurate ellipse is described by the revolving
round the attracting body; and, in such a system, the apsides, the
eccentricities, the mean motions, &c., would remain perpetually
unchanged. The introduction of a third, or of more bodies, and
the consequent introduction of disturbing forces, destroys at once
the beautiful simplicity of elliptical motion, and puts every
element of the system into a state of continual mutation. Yet,
the change and the departure from the laws of elliptical motion,
are less in some cases than in others. The Earth’s orbit ap-
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proaches much more nearly to the form of au ellipse than the
Moon’s. The Sun’s longitude, as we have seen in p. 496, com-
puted by Kepler’s Problem, did not differ from the true place by
moré than seven-seconds : and that quantity, in those circum-
stances, represented the perturbations of the planets; and, the
equations representing the perturbations were only four. But,
in the case of the Moon, one inequality alone will require an’
equation nearly equal to two degrees, and the number of equa-
tions amounts to 28.

The quantity of perturbation, and the difficulty of computing
it, depend less on the number than on the proximity of the dis-
turbing bodies. - In the case of the Sun, one equation suffices
for the perturbation.of Venus, and another for that of Jupiter.
But, all the equations compensating the inequalities in the
Moon’s place, arise from different modifications of the Sun’s
disturbing force. It is not, however, solely the proximity, but
the mass of the disturbing body, that gives rise to equations.
The strictly mathematical solution of the problem of the three
bodies (see Chap. XX.) is equally difficult, whatever be the
mass of the disturbing body. The practical difficulty of merely
approximating to the true place of the disturbed body, is very
considerably lessened by supposing that mass to be small.

If we consider the subject merely in a mathematical point of
view, the Moon’s place, at any assigned time, results from the
compound action of the Earth’s centripetal force and the Sun’s
disturbing force ; and the deviation from her place in the exact
ellipse, arises entirely from the latter. We are at liberty to call
the deviation, or error, one uncompounded effect : yet, since the
quantity of the deviation cannot be computed from one, single
analytical expression, but must be so, by means of several terms,
we may separate and resolve the effect into several, (analogous
to the above-mentioned terms,) the causes of some of which we
may distinctly perceive and trace in certain simple resolutions
and obvious operations of the Sun’s disturbing force.

Long before Newton’s time and the rise of Physical Astro-
nomy, this separation, or resolution of the error of the Moon’s
place from her elliptical place was, in fact, made.- " And, the
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error was said to arise from three inequalities, distinguished by
the titles of Evection, Variation, and Annual Eguation.

These three inequalities were noted because they rose, under
certain circumstances, to a conspicuous magnitude ; and, were
distinguished from each other, because they were found to have
an obvious connexion with certain positions of the Sun and Moon
and of the elements of their orbits. Although their real physical
cause was not discovered, yet the laws of their variation were
ascertained.

The other lunar inequalities have not, like the three pre-
ceding, been distinguished by titles. This is owing principally to
their want of historical celebrity ; they were not detected like
the others, by reason of their minuteness and the lmperfectlon
of antient instruments and methods.

Some explanation has already been given, (Chaps. XIV,
XV,) of the principles and modes of detecting and decom-
pounding inequalities. The difference between an observed and
computed place, indicates the operation of causes either not
taken account of, or not properly estimated in the previous
computation.

. Take, for instance, the Moon: her mean place, computed
from her mean motion, differs from her observed place; and
the difference, if we suppose her to move in an elliptical orbit,
is the equation of the centre, or, of the orhit, called the First
Lunar Inequality.

Compute the Moon’s place from a knowledge of her mean
motion and of the equation of the centre, and then compare the
computed, with the observed, place. In certain situations, a
great difference will be noted beétween the places, ascending in
its greatest value to nearly 1° 18’ 8”. This difference is chiefly
owing to the Ewection discovered by Ptoleuu, and named the
Second Lunar Inequality.

In like 1nanner, we may conceive the Third Lunar Inequality
to be discovered. But, we will mow proceed to consider more
particularly the second inequality; the mrede of ascertaining its
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maximum ; its general effect; the formula expressing the law of
its variation ; and its cause, reckoning as such, some particular
modification of the Sun’s disturbing force.

Evection. (See Physical Astronomy, pp- 236, &c.)

This inequality has a manifest dependence on the position
of the apogee of the Moon’s orbit. Let us suppose the Moon
to quit the apogee, the line of the apsides to lie in syzygy, and
that we wish to compute the Moon’s place 7 days after her
departure from syzygy, when, in fact, she will be nearly in
quadratures. The Moon’s place, computed by deducting the
equation of the cevtre*, (then nearly at its greatest value and
= 6° 37’ 54”.492,) from the mean anomaly (see Chap. XVIII.)
will be found before the obsesved place by more than 80 minutes ;
in other words, the computed longitude of the Moon is so much
greater than the observed longitude. But, if we suppose the
apsides to lie in quadratures, the Moon’s place, 7 days after
quitting her apogee, computed, as before, by subducting the
equation of the centre from the mean anomaly, will be found
behind the observed place by more than 80 minutes; in other
words, the computed longitude of the Moon is so much less than
the observed.

It is an obvious inference, then, from these two instances,
that some inequality, besides that of the elliptic anomaly, and
having a marked connexion with the longitude of the lunar apogee,
affects the Moon’s motion.

What,.from the two preceding instances, would be an obvious
inference to an Astronomer acquainted solely with the elliptic
theory of the Moon? In the first case, the computed place being
before the observed, it would seem that the equation of the centre,
to be subducted from the mean anomaly, had not been taken of
sufficient magnitude ; in the latter case, it would seem that the
equation of the centre had been taken too large.

Let us take 4nother case: suppose, instead of comparing the
computed with the observed place, that it was intended to deduce

* The anomlay is here supposed to be reckoned from apogee.
4R
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the quantity of the equation of the centre from an observation
of the Moon in syzygy. In that case, the equation of the centre,
reckoned as the difference of the true and mean longitudes,
would result too small a quantity. And this circumstance has
really happened. For, the antient Astronomers who determined
the elements of the lunar orbit by means of eclipses, when the

Moon is in syzygy, have assigned too small a quantity to the
equation of the centre.

In the preceding instance, when the Moon is in syzygy and the
apsides in quadrature, the determination of the equation of the
centre would be too small by the maximum value of the Evection
(1° 20’ 29".5). But, in other positions of the apsides, the effect
of the evection is to lessen, though not by its whole quantity, the
equation of the centre. .

Astronomers, having found that the augmentation and dimi-
nution of the equation of the centre arose from an inequality,
soon ascertained the inequality to be periodical ; in other words,
that, after passing through all its degrees of magnitude, from O
to its maximum value, it would recur. Now, of such recurring
quantities the cosines and sines of angles are most convenient
representations ; for instance, + K. sin. E is competent to repre-
sent the Evection : its maximum value is K, when E = 90°: and
it is nothing, when E is. If then, the value of K could be
assigned and the form for E, the numerical quantity of the
Evection could be always exhibited. After the comparison of
numerous observations, and after many trials, it was found that

K=1°2020"5 and E=2() —0)— 4,
A representing the mean anomaly of the Moon, and ) — ©

signifying the angular distance of the Sun and Moon, or, the
difference of their mean longitudes viewed from the Earth.

In the equation
1° 20’ 29".5.sin. [2(D — @) — 4],
1° 20’ 29".5 is called the coefficient, and 2(D — ©) — A the
argument. )
If we represent the equation of the centre by
(6° 17" 54”.49) sin. 4,
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in which, the coefficient 6° 17’ 54”.49, is the greatest equation,
and A (the mean anomaly) the argument, the Moon’s longitude
expressed by means of the two equations, that of the centre®,
and the evection, would stand thus:

*D ’s longitude =
) ’s mean long. — (6° 17’ 54".49) sin. 4
—(1° 20’ 29".5) sin. [2(D> — @) — A]; -

now in syzygies ) — @ =0; .. sin.[2(D) — ©)—A]= —sin. 4;
consequently, in this case, the former expression becomes

D ’s longitude =

) ’s mean long. — (6° 17’ 54”.49) sin. 4 + (1° 20’ 20".5) sin. 4,
m which, the argument for the Evection assumes that form,
which is the general one of the equation of the centre; and on
this account, the former is sometimes said to confound itself with
the latter, in syzygies. It also seems to lessen it, since the pre-
ceding expression may be put under this form,

D ’s longitude =

) ’s mean long. — (6° 17’ 54".49 — 1° 20’ 29".5) sin. A4, in
which, the coefficient of sin. 4 would be the difference of the
two coefficients 6° 17’ 54”.49, and 1° 20’ 29”.5; and, accord-
ingly, A4 being the argument of the Eguation of the Centre, that
equation would appear to be lessened.

The Evection itself, and, very nearly, its exact quantity, were
discovered by Ptolemy in the first century after Christ, but the
cause of it remained unknown till the time of Newton. That
great Philosopher shewed that it arose from one kind of alteration
which the Moon’s centripetal force towards the Earth receives
from the Sun’s perturbation. Let us see how it may be ex-
plained : :

" * If 4 be the mean anomaly, the equation of the centre cannot be
represented by a single term such as a sin. 4, but by a series of terms,
such as a sin. 4 - b sin.2 4 4 ¢ sin. 3 4 -+ &c. in which, however,
. the coefficients &, ¢, &c. decrease vety fast,
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When the line of the apsides is in syzygies, the Equation of
the centre (p. 677,) is increased. The Equation of the centre
depends on the eccentricity ; (see pp. 662,) an increase there-
fore in the former would indicate an increase in the latter.
Hence, if it can be shewn that the Moon’s orbit must, when the
line of the apsides is in syzygies, be made more eccentric by the
. action of the Sun’s disturbing force, an adequate explanation
will be afforded of the increase of the equation of the centre
above its mean value; which increase is styled the Lvection.

Again, when the line of the apsides is in quadratures, the
Equation of the centre is lessened : the eccentricity therefore
(see expression, p. 473,) is lessened : and now, in order to afford
an explanation, it is necessary to shew that, in this position
of the line of the apsides, the Sun’s disturbing force necessarily
renders the orbit less eccentric.

The Sun’s disturbing force admits of two resolutions, one in
the direction of the radius vector of the Moon’s orbit : the other
iu the direction of a tangent to the orbit. The former sometimes
augments, at other times, diminishes the gravity of the Moon to-
wards the Earth, and always (see Newton, Sect XI, Prop. 66,)
proportionally to the Moon’s distance from the Earth. When
the Moon is in syzygy, it diminishes; consequently, in the first
case, when the line of the apsides is also in syzygy, the perigean
gravity, which is the greatest, (since it varies luversely as the
square of the distance) is diminished, and by the least quantity;
the apogean gravity, the least, is also diminished, but by the
greatest quantity : the disproportion therefore between the two
gravities is augmented ; the ratio between them becomes greater
than that of the inverse square of the distance : the Moon, there-
fore, if moving towards perigee, is brought to the line of the
apsides in a point between its former and mean place and the
Earth: or, if moving towards apogee, reaches the line of the
apsides in a point more remote from the Earth than its former and
mean place. The orbit then becomes more eccentric ; the equa-
tion of the centre is increased ; and, the increase is the Evection.

Thus is the first case accounted for. In the second, the
Sun’s resolved force increases the gravity-of the Moon towards
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the Earth, and, as it has been said, proportionally to the distance.
The perigean gravity, therefore, which is the greatest, is increased
by the least quantity; the apogean, the least, is also increased,
and by the greatest quantity. The disproportion, therefore, be-
tween these two gravities is lessened ; the ratio between them is
less than that of the inverse square of the distance. The Moon,
therefore, if moving towards perigee, meets the line of the apsides,
in a point more remote from the Earth than the mean place of
the perigee : if moving towards the apogee, in a point between
the Earth and the mean place of the apogee. The orbit, by
these means, becomes less eccentric ; the Equation of the centre
is diminished, and, the diminution is the Lvection.

We will now proceed to consider the third inequality called
The Variation. (See Physical Astronomy, pp. 217, &c.)

By comparing the Moon’s place computed, from her mean
motion, the equation of the centre, and the Evection, with her
observed place, Tycho Brahe, in the sixteenth century, discovered
that the two places did not always agree. They agreed only in
opposition and conjunction, and varied most, when the Moon
was half way between quadratures and syzygies, that is, in Octants,
At those points the new inequality seemed to be at its maximum
value (35" 41”.6).

It appeared clearly from the observations, that this new in-
equality was connected with the angular distance of the Sun and
Moon: and that its argument must involve, or, be some function
of, that distance. At length, it was found, that the equation
due to the inequality, was

(85’ 41".6).sin. 2 (» — O)
85' 41”.6 being the coefficient, and 2 (D — @) the argument.

According to the above form, the variation is O in syzygies
and in quadratures, and at its maximum (35’ 41”.6) in octants.

If now, by means of this new equauon, we farther corrept
the expression (p. 679,) for the Moon’s place, we shall have
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Y ’s longitude =

D ’s mean longitude — (6° 17’ 54".49) sin. A
— (1 20 29.5).sin.[2() — ©)— 4]
+ 85’ 41".6).sin. 2 (> — O).

We will now proceed to Newton’s explanation of the cause
of this inequality.

One effect, from a resolved part of the Sun’s disturbing
force, we have already perceived in the Evection. The Variation
is occasioned by the other resolved part, that which acts in the
direction of a tangent to the Moon’s orbit. This latter force will
accélerate the Moon’s velocity in every point of the quadrant
which the Moon describes, in moving from quadrature to con-
junction. The force will be greatest in octants and nothing in
conjunction ; and, when the Moon is past conjunctlon, the tan-
gential force will change its direction, and retard the Moon’s
motion. The greatest acceleration, therefore, of the Moon’s
velocity must happen in syzygy: exactly at the termination or
cessation of the accelerating force. At that point, therefore,
the Moon’s velocity must differ most from her mean, or, rather,
from that velocity which she would have, if the effect of the
accelerating tangential force were abstracted. When the Moon
moves from that point, her place at the end of any portion of
time, a day, for instance, will be beyond her mean place, or
beyond the place of an imaginary Moon endowed with a motion
from which the effect of Variation is abstracted. At the end of
the second portion of time, the real Moon will have described a
space less, by reason of the retarding force (see l. 15,) than the
space described in the first, but, still, greater than the space de-
scribed by the imaginary Moon ; so that, at the end of the second
portion of time, the two Moons will be distant from each other,
by the effect of two separations; and, for succeeding portions
of time, the real Moon will still continue describing greater
angular spaces than the imaginary Moon, and the separation of
the two Moons, which is the accumulation of the individual
excesses, will continue, till the retarding force, by the conti-
nuance of its action, and the increase of its quantity, shall have
reduced the Moon’s velocity to its mean state: at that term
which is the octant, the separation will cease to increase, and will
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be at its greatest. And this greatest separation, 35’ 41”.6, is the
maximum effect of the Variation: and the separation, previously
described, in any point between conjunction and octants, is its
common effect.

The preceding reasoning is precisely similar to that which
was used in p. 469, on the subject of the greatest equation of
the centre. At the apogee, the mean velocity differs most from
the true, and then the two Suns are together; and, they are
most separated, when the real Sun moves with its mean angular
velocity.

We will now proceed to a fourth inequality called,
The Annual Equation. (See Physical Astronomy, pp. 237, &c.)

The two former inequalities, of which the periods are short,
may be ascertained by observing the Moon during one revolution.
But, in order to detect this fourth inequality, it is mecessary to
compare similar positions of the Moon, computed according to the
" theory of the three preceding inequalities, in different months of
the year. If the computed place agreed with the observed place
in January, it would not in March, and it would most differ in
July. The inequality was soon found to have a connexion with
the Earth’s distance from the Sun, and its equation was at length
found to be

11 11".97 x sin. ©’s mean anomaly,
11’ 11”.97 being the coefficient, and ©’s mean anomaly the
argument.

- According to the preceding form, the maximum (11’ 11”.97)
of the annual equation happens when the Sun’s mean anomaly
is = 90°% or 270°. The equation is nothing, either when the
Earth is in the aphelion or perihelion of its orbit.
If now, by means of this new equation, we farther correct
the expression for the Moon’s longitude, we shall have
T D ’s longitude =
) ’s mean longitude — (6° 17’ 54”.49) sin. 4
— (1° 20’ 29".5)sin. [2 (D> — @) — A]
+ (85 41"6)sin.2(> - Q)
4+ (11" 11".97) sin. O’s mean anomaly,
(see Physical Astronomy, p. 239.)
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We will now proceed to an explanation of the cause of this
inequality.

The Variation has been explained from the effect of that
resolved part -of the Sun’s disturbing force which acts in the
direction of the tangent; the Evection, from the effect of the
resolved part in the direction of the radius vector, and which
effect alters the ratio of the perigean and apogean gravities from
that of the inverse square of the distance. The present inequality
depends not, on any immediate effect, either of the one, or of the
other resolved part ; but on an alteration in the mean effect of the
disturbing force in the direction of radius; and, which mean
effect lessens the gravity of the Moon towards the Earth.

By the mean effect, that is meant to be understood, which is
the result of the disturbing forces in the direction of the radius
in one revolution. The disturbing force does not always diminish
the Moon’s gravity to the Earth ; it does in opposition and con-
junction, but it augments the gravity in quadratures (see Newton
Sect. XI; Prop. 66). The augmentation however, is only half
the diminution (Newton, Prop. 66, Cor. 7). In the course there-
fore of a synodic revolution, there results, what may be called
a mean force tending to diminish the Moon’s gravity to the Earth,
the measure of the mean force being equal to (see Newton,
Prop. 66.) 4

©’s mass X rad. D ’s orbit
cube @’s dist. from ©

By reason of this diminution, the Moon is enabled to preserve
a greater distance from the Earth than it could do, by the influence
of gravity alone. Baut, since the disturbing force acts in the direc-
tion of the radius, the equal description of areas is not altered (see
Newton, Prop. 66). The area however varying as the product
of the radius vector and the arc (the measure of the real velocity)
and the former (see 1. 26.) being increased, the real velocity must
be diminished : so also must the angular, which varies inversely as
the square of the distance.

These results are derived from that effect of the disturbing
force of the Sun, which is a mean effect diminishing the Moon’s
gravity. If this mean effect of diminution be increased, similar

.
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results -will follow, but in_an, enlarged degree; the Moon’s
angular velocity will be still more diminished and.her distance
from the Earth increased : now the. measure of the mean effect is
©’s mass x rad. D s orbit
(9P’s distance from © )’

which- will. be increased, by.diminishing the denominator : and is,
therefore, .in -nature, increased when. the Earth approaches the
Sun. - That circumstance happens in winter. In winter, there-
fore, the. Moon’s gravity to the Earth is more diminished, by the
Sun’s disturbing force, than in summer. Her angular velocity
therefore is more diminished. A greater time is requisite to the
description of a complete revolution round the Earth: in other
words, a periodic month is longer in winter than in summer.
Now, as the Earth approaches the Sun, its velocity increases.
* An acceleration therefore of the Earth’s motion is attended, by
reason of this'new inequality, with a retardation of the Moon’s,
and revérsely. On this account it is that, the Annual Equation
18 said to resemble the equation of the Sun’s centre. For, sup-
posing the Sun to be approaching his perigee, then his place
(reckoning from apogee and neglecting the perturbations of -the
planets) is equal to the mean anomaly — the equation of - the
centre (E), E decreasing as the Sun approaches the perigee ; if
m be the Moon’s place independently of the annual. equation. (e),
then her place, corrected by that, is m + e, e increasing (since.it
varies as sin. © ’s mean anomaly,) and affected with a contrary sign.

When, the annual equation is + (11’ 11”.976) sin.. ©’s mrean
anomaly, the: corresponding Equation of the centre for the Sun
is (1° 55’ 26".3748) sin. @ s mean anomaly.

We have now gone through the. explanation of the three
principal lunar inequalities, which were discovered before the
time of. Newton and the rise of Physical Astronomy. . These
inequalities were, ; by reason of their magnitude, fished out, (as
a late writer, has significantly expressed it) from the rest. - The
discovery of. the rest, in number 28 *, is entirely due to Physical

L4

* Strictly speaking there are more than 28. But Astronomers have
confined themselves to this number, since other equations, that ana-
lytically present themselves, never rise to a numerical value worth con-
sidering.

4s




686

Astronomy. Without the aid of this latter science, it would
have been, perhaps, impossible, from mere observation and
~ conjecture, to have assigned the forms of the arguments. These
latter being ascertained, it is the proper business of observation
to assign the numerical value of their coefficients.

The three equations that have been explained are, with regard
to their magnitudes, eminent above the rest; but, it must not be
forgotten, the other equatxons, on the footmg of theory, are
of equal importance, and in practice, considering the use that is
now made of the Lunar Tables, of very essential importance.

The three equations, with all the others, are -derived -from
theory by the same process. And, as we have seen, the causes
of the former may, independently of any formal calculation, be
discerned in certain modifications of the Sun’s disturbing force.
The causes of the other equations are not so easily discernible :
yet, the sources of some of them may be pointed out in certain
changes, which the conditions or circumstances belonging to the
three principal equations must necessarily undergo.

For instance, suppose the Moon and the line of the nodes to
be in syzygies ; then, the Sun’s disturbing force, represented by
part of a line joining the Sun and Moon, lies entirely in the plane
of the Moon’s orbit ; and two resolutions of it, one in the direction
of the radius, the other of the tangent, are sufficient. But, the
nodes are regressive; in a subsequent position of them, then,
the line representing the Sun’s disturbing force, will be inclined
to the plane of the Moon’s orbit : consequently, a threefold reso-
lution of the force is requisite, the third being in a direction
perpendicular to the plane of the Moon’s orbit; consequently,
if the line representing the absolute quantity of the disturbing
force be supposed to be the same, the resolved parts in the
directions of the radius and of the tangent must be less than
they were before. The inequalities caused by them must there-
fore be less, and less, according to the position of the nodes.
Hence, if the equation of the evection

1° 20’ 29".5 x sin.2[(D — ©) — 4]
were adapted to the first position of the nodes, it could not
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suit the second, since the longitude of the nodes forms no part
of the argument[2 (D) — @) — A]. For this reason, therefore,
a correction would be wanting for the Evection, that is a new
equation, the argument of which should depend on the position
of the nodes®. The same cause, the change in the Sun’s dis-
turbing force from its direction being more or less inclined to the
Moon’s orbit, must introduce new corrections, that is, new equa-
tions, belonging to the variation and annual equation.

Again, the annual equation arises from the change in that
mean effect of the Sun’s disturbing force by which the Moon’s
gravity is diminished. In adjusting therefore the value of the
coefficient of the annual equation, the Moon’s gravity must be
supposed to be of a certain value : consequently, the Moon must
be assumed to be at a certain distance from the Earth. When
therefore the Moon is at a different distance, the Equation, if
adjusted for the previous distance, cannot suit this : a small cor-
rection, therefore, or a mew Equation will be necessary, the
argument of which must involve or contain, in its expression, the
Moon’s distance, or her mean anomaly, or some term connected
with these quantities . -

Again, the argument for the variation involves simply the
angular distance of the Sun and Moon; and its coefficient must
be supposed to be settled for certain values of the Moon’s gravity
and the Sun’s disturbing force ; and, consequently, when the Sun
and Moon are at certain distances from the Earth. The changes
therefore in those distances, which are continually happening,
must render necessary two corrections, or two new equations: one
for the approach of the Sun ta the Earth, the other for the elon-
gation of the Moon from the Earth. Generally, any equation

* The equation in Lalande, p. 180, is
60”.4 x sin. 2 dist. D’s §) from O .
1 The supplementary equation, according to Mayer, is
42" sin. (D’s mean anom. — @ ’s mean anom.)

which however is not the sole correcting equation due to this cquse, See
Lalande, Astron. tom. II, p. 178.
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furnished with its numerical coefficient on the supposition of the
Sun and Moon revolving round the Earth in circular orbits," will
require new supplemental or subsidiary equations due to the' real
and elliptical forms of the orbits®.

Again, the inclination of the Moon’s orbit is variable; there-
fore any equations adjusted to a mean state of inclination will
require subsidiary equations, to correct the errors consequent on
changes in that state.

From considerations like the preceding, the existence of the
smaller inequalities -is established : and, by an attentive consi-
deration of the circumstances that occasion them, the forms of
their arguments may be detected ; with much less certainty how-
ever, than by the direct investigation of the disturbed place of
the Moon. :

It is. one thing to prove the existence of an inequality, and
another to establish the necessity of its corresponding equation.
Whether it is expedient .to introduce the latter, is a matter of
mere numerical consideration. The correction of a correction,
the subsidiary equation to a principal equation, is, in the lunar
theory, very minute : and some equations, arising from the causes
that have been enumerated, are so minute, as to be-disregarded
by the practical Astronomer.

We have at present considered only the inequalities that affect
the Moon’s longitude : but the Sun’s disturbing force causes also
inequalities in the Moon’s latitude and in her parallaz.

The inequalities of the latitude -and of - the parallax lave

- nothing peculiar in them, nor distinct, (whether we regard their
physical cause or the mode of ascertaining the laws of. their vari-

ation,) from the inequalities of longitude. It is not necessary

therefore to dwell on them, since the latter have been explained.

* The evection, for instance, is variable from the variation of the
distances of the Sun from the Moon and Earth: and for the purpose of
correcting the evection, there-are 4 subsidiayy, or, as Lalande calls them,
accessary equations, which in his Tables are the 5th, 6th, 7th, and:9th.
See Astron. tom, 1I, p. 177.
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We will only mention, that the principal inequality in latitude,
and its law, were discovered by Tycho Brahé, and by the com-
parison of observations of the greatest latitudes of the Moon, at
different epochs, and when that planet was dlﬂ'erently situated,
‘relatively to the nodes of its orbit. The equation is

(8 47".15) . cos. 2 © ’s distance from D ’s §.

(See Lalande, tom. I, p.:193. Mayer, Theoria Lune, p. 57.
Laplace,” Mec. Cel. Liv. VII, p. 283, &c. French Tables, Intro-
duction.)

. If the Moon’s orbit coincided with the plane of the ecliptic,
the Sun’s disturbing force, resolved into the directions of a tangent
to the Moon’s orbit and of a radius vector, could only, by the
“first resolution, alter the law of elliptical angular motion, and, by
the second, the length of the radius vector (such as it would be
in an ellipse) ; in other words, it could only produce inequalities
in longitude and in parallax, for the parallax varies inversely
as the radius vector. But, the Moon’s orbit being inclined to the
ecliptic, the Sun’s disturbing force (represented by a line drawn
from the Moon towards the Sun) cannot be entirely resolved into
the two former directions: a third resolved part will remain per-
pendicular to the plane of the Moon’s orbit, which will cause the
Moon to deviate from that plane; in other words, will cause in-
equalities in the Moon’s latitude.

In order to correct these inequalities in the Moon's latitude,
eleven equations are necessary, according to Lalande, (see Astron.
tom. II. p. 193.) In the New French Tables an additional one
is inserted.

The Lunar Tables we now possess, and which present us,
under a commodious form, the results of the several preceding
Equations, and from which in fact the Moon’s place is computed
in the Nautical Almanack, are of great extent and accuracy.
It is almost unnecessary to observe, that they are the fruit of
long and laborious research : of some conjectures, many revisions,
and new helps from theory. The computers of the Nautical
Almanack, have, within the space of forty years, used four dif-
ferent sets of Tables: 1. Mayer’s Tables gorrected by Mason :
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2. Mason's Tables of 1780: S. Mason's Tables, corrected by
Lalande from Laplace’s Equations of the Acceleration of the
Moon’s Motion, &c: 4. Burg’s Tables edited by Delambre, and
published by Mr. Vince in the third Volume of his Astronomy.
The computers of the Connoisance des Tems, since 1817, have
used Burckhardt’s Tables.

The Moou's place, at any given time, is found by the addition
of a great number of terms technically called Equations. An
equation consists of its coefficient and its argument. The latter,
although it may be found out by a species of orderly and regulated
conjecture, is yet most surely obtained from theory, (see Physical
Astronomy, Chap. X1V, p. 240.) The numerical value of its
coefficient is best determined from observations. Now the Tables
being once formed, a question arises concerning the means of
examining ard correcting them : in the first place then we must
find their errors, and, in the second, from those errors find the
corrections. As this is a subject of some complication, and as
its development will afford an ilustration of- several of the. pre-

cedmg principles and processes, we will consider it fully in the
elmnng Chapter



CHAP. XXXIV.

Onr the Methods of finding the Errors and Corrections of the
Lunar Tables.

Tae Moon's places, that is, its longitudes, latitudes, &c. are
computed from the Lunar Tables, and then inserted in the
Nautical Almanack. To examine then the accuracy of the
longitudes and latitudes so inserted, is, in fact, to examine the
truth of the Tables from which they were computed.

The means of examining the truths of the results in the
Nautical Almanack, are, amongst other means, the observations
made at Greenwich.. Those observations are of north .polar
distances and right ascensions: but the immediate results of
computations, made from the Lunar Tables, are lunar latitudes
and longitudes : we must then, from the latter, derive the corres-
ponding north polar distances and right ascensions, and compare
them with the observed, or, we must institute a comparison
between the latitudes and longitudes, computed from the obser-
vations, and the latitudes and longitudes computed from the
Tables. We shall adopt the latter plan.

In the Greenwich Observations for 1812, p. 190, we find the
following results obtained by means of the mural cjrcle :

North Polar Distances.

1812. ‘Bar. Therm. In. N.P.D.
Nov. 18, | 29.38 40 » L.L. | 75°384' 9"7
20.58 38 Arcturus | 69 49 25.6
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" Transits over the Meridian.

*3h 57 066 » 2L. 12" 5™ 19°.8 mean time.
4 25 24.3 Aldebaran.

13 15 31.98 Spica Virginis.

14 7 18.43 | Arcturus.

The above observations are, if we may use such an expres-
sion, in their rough state. In order to fit them for the compu-
tations of the Moon’s longitude and latitude, they require several
reductions.

(1) In the first place the north polar distance must be cor-
rected on account of the index error (see pp. 112, &c.)

(2.) According to the zenith distance of the lower ]imb, and
the states of the barometer and thermometer, the north polar
distance must be corrected for refraction, (see pp. 213, &c.)

(38.) The north polar distance, corrected as above, must be
farther corrected, on account of parallax, (see pp. 311, &c.)

(4.) The north polar distance of the Moon’s centre must
be found by subtracting, from the dlstance of the lower limb,
the Moon’s semi-diameter.

(5.) If the computation be made for the time of the transit
of the Moon’s second limb, the above north polar distance, which
is a meridional north polar distance, must be corrected for its
change, during the Moon’s passing over a space equal to its
semi-diameter.

* These transits were made with the mural circle: the old tramsit
instrument being thought defective. They are called, in the Observations,
Corrected Transits, being corrected on account of some small inequalities
found to obtain in the intervals of the wires.

The mural circle not being a good transit instrument, it would be
hardly fair, if the question were one of great accuracy, to examine the
results of Lunar Tables by such an instrument. The observations, how-
ever, made with it, are sufficiently accurate for the purpose of illustration.
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With regard to the reduction of the fransit observations ;

In the first place the observed tramsit is to be corrected on
account of the error of the clock, (see pp. 104, &c.)

(6> Secondly, the right ascension of the Moon’s centre is
to be found by subtracting, from. the above right ascension of
the second limb, the angle subtended at the pole of the equator
by the Moon’s semi-diameter.

Moon’s North Polar Distance found.
PSL.L. NNP.D.uivveanie vnnees 75°34 0'7

IﬂdexErmr.--"'oouvoovv.---..oo +6.6
75 84 16.3

Co-latitude..........n.....u-..38 31 20
‘ 87 256.3
szmcm‘..-.....I."..Q.'...‘ 0 043075
. 37 8 40.05
Parallax .« v onnein et 0 36 36.3
86 27 3.75

D’ssemiﬁﬁameter......-......... 016«)
36 10 23.75

CO—laﬁtude..'.......o....o-..-.... 38( 31; 20

N.P.D. I’scentre e e e cceocueeeee 74 41 43.75

* The index error is derived by taking the mean of a great number of
differences between the tabulated or computed north polar distances,
and the instrumental distances, (see pp. 112, &c.). We will subjoin
instances of results afforded by twe stars; the proeess is precisely the
%ine for any other.

Nov. 18,
Bar. Therm. In. Stae. Inst. N.P. D. -
29.59 39 B Unsa Mineris \ 15° 5 o5 !
20,58 t 38 Arctures 69 49 25.6
Jan. 1,

4T
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Refraction. -

(See pp. 245, &c.): also Tables of Refraction, in Vol. I. of
Greenwich Observations, 1812,

Log.t037°3' 40" .. s evvit iivvtiven... 1.68327

Corr. barometer and thermometer. . . . . . . . 10.00774
(Log. 43.75) e e v vveeennenn .. eeee.. 1.64101
Jan. 1, 1812, N. P.D. 8 Ursz Minoris .............. 15° 4’ 34%.25
Corrections.
Refraction ....cc.ceveees veee (p- 243.)......4 25419
Proporl. Annual Variation (p. 407.)......412. 98"
Aberration ....ecceveecnneees (Pe 286.)ccecced 4.24 N.eeneenne.... 33. 869
Lunar Nutation — 8.33 .
- crevneens " . X1V, LTS '
Solar Nut,ation} (Chap. X1 ){—, 0.44
’ 15 5 8.119
Instrumental N.P.D. ...... 15 5 0.5
i Index Error.......coeeee. ceerennes 4 7.62
Again, :
Jan. 1, 1812, N.P.D. Arcturus ....... ceeveranenes 69° 50° 0".11
Corrections.
Refraction ................. .o 435".68)
Aberration ........ccovuvvenenne + 0.74
Lunar Nutation ............... + 7.64
........... . - -78
Solar Nutation ............... 4+ 0.46 27 7
Refraction .......ccc00uens veeee — 35.68 _
Variation .......... veieeeeenes .—16.74 69 49 32.33
Instrumental N.P.D........ veeennenenn09 49 25.6
Index Error ......... B, 4+ 6.73
From B Ursz Minoris ..... TN + 7.62
Mean...oiveinieeenrateernernracnesrsncanes 7.17.

This is the index error from two observations, one of each star: but’
the mean index error (6”.6) which has been used (see p. 693, 1. 10,) in
reducing the .observations, was obtained from 149-observations, made,
during 44 days, with 21 stars. Of such observations, 7 were made of
B Ursz Minoris, 10 of Arcturus. The mean of the 7 was 7”.16: of the
10, 6“.3.
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Parallax ,
Horizontal equatoreal parallax =61’ 7".7.# =3667".7, -

Iﬂg. 3667.7'-."-00».- o o ab o 0'0-000’0-00305643938
Correction e.coveveveveceninnnn ceces 8841

3.5635097
Log. sin. 36° 52/ 28".4 . ... ..cceceeen. 9.7781972

(Log.2196.3).........-......-..... 8.3417069

In order to make the correction (5), we must find the time
the Moon takes in describing its semi-diameter: now the angle
at the pole subtended by the semi-diameter is (see p. 90,)

16’ 40" x sec. 15° 18’ 26" = 1086".7 = 17 16".7,
but: whilst the meridian, by reason of the Earth’s rotation, is
describing this angular space (17 16".7) the Moon moves to the
eastward. We must find then the Moon’s retardation. If we
assume 13° 30/ for the mean angular retardation, we have
346° 30’ : 17/ 16".7 :: 24" : 71811+

Therefore the Moon is 1™ 11°.8 in describing its semi-diameter ;
but it appears. from the Nautical Almanack of 1812, (p. 126,)
that the Moon’s change of declination in 12" was about 1° 9,
and consequently in 1™ 11°.8, about 8".7." Deducting, therefore,
this quantity from.the above meridional north polar dnstance,
we have

N.P.D. D ’scentre = 74° 41 85'(.05.

'* There are two corrections in deducing the parallax from the hori-
wntal equatoreal parallax : one, on account of the diminution of the radius
of the Earth in an- oblate spheroid : this in the latitude of Greenwich is
efiected by subtracting the logarithm .0008841 from the logarithm of
the horizontal parallax. The second - correction is on account of the
angle, which a line drawn from the centre of the Earth to the place of
observation, makes with the direction of the plumb-line at the same
place. This correction is effected by subtracting 11’ 11”.6 from the
zenith- distance - when -its  sine - is to be mulnphed into the parallax, i
order to ‘deduce the.parallax.of -altitude. -

t See a Table for this and like computations in Wollaston s Fasczculus,
P-79.
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Moow’s Right Ascension found.
First, to fard the error of the'clock, (see pp. 101, &) On
Nov. 18, 1812, at the time of the Moon’s transit.

Computed Right Ascension. Observed R. A. |Clock too fast.
Aldebacan R, 1812, . .4" 25™ 8°.576
Aberr. prec*. 4°.30
Nutation —-0.65} r0 0 3.65

See Chaps. X1, XII, &c.4 25 12.226| 4" 25@ 24°.3| 12*.07

Spica Virgmis ... .. 18" 5™ 18°.1 |

Aberr. prec”. l"’“}.‘o 0 1.15
Nutation...~.56)

13 15 19.25(18 15 381.98| 12.78

Arcturus . ......... . 14% 7™ 5%.08
Aberr. prect. 1°.12

«s 0 O 0.38
Nutation . .. —.74}

14 7 566114 7 18.43] 12.77
Sum of times and errors 31 48 14.71| 37.57
Mean time and error 10 36 4.9 12.52
gain of clock * in 10" = 0.7, nearly.
Hence, at 8" 57™ 0°.66 the time of the Moon’s passage, the
clock was 12°.04 too fast, and, accordingly,

AR p’seLl..... .o, . 3" 56™ 48°.63 = 59° 12° ¢".45
(see p. 695,) angle subtended by ) ’s radius O 17 16.7

MR D’scentre........ 58 54 52.75

Hence, the elements and process for computing the longitude
and latitude of the Moon, at the time of the transit of its
second limb over the meridian of Greenwich, are as follow
(see pp. 158, &c.)

* There is no rate of the clock igiven in the Greenwich Gbservatinns,

- the clack having been tsken dewn and adjusted to sideneal &ime, on
the 18th. ’ '

.
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Latitude.
s R 58°54'52°75. .. . sin. £ (0 — R).... 0.4280638
2
18.8561276

NP Duore 74°41 385705 o c00eeses oo 8in. D.OB43187
I........28,27 35.1.. TR Y W Oila 9.599%70

Seeet...98 '910.15 2) 18.4404383
£8......49 435.07 9.2202196
9 33 28.1 . M=9" 38 28”1

18+ M, nearly,58 38 S.............. sin. 9.9313873
%S—-M,neﬂﬂy,ﬁg 31 7 eeececoensionns Sin. 9.80368]6

| 2) 19.7950689
(@in. 47°29 10”) s viveenseren s 9.8675345
.. the distance from the north Pole of the ecﬁptic.is 04° 58' 20"
and the latitude (south) . ... .. 4 58 20
Longitude.

A =04°58 20" ..eeveeve... sin. 9.9983626
T =23 27 85,1 .c.aseeees.. sin. 9.5099970

8 = 74 41 35.05 ooooooo sRewesnooe l9~59&3596
2)193 7 30.15

(ﬂm’)'!'sm..tvgﬁ 88 45. cevevionsesen.s Qiﬂn 94%7!450

%sum-— 8..21 52 10 caveeeen s oenee sim 9.5711180

(20 added) 39.5682630

19.59835096

2) 19.9699034

(sin. 75° 0’ 14") 9.9849517
». 90° + longitude = 150° 0’ 28",
and longitude = 60 0 28.

Such are the values of the latitude and longitude of the Moon,
computed from immediate observations. In order to compare
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such values, with the values of the latitude and longitude inserted
in the Nautical Almanack, we must reduce the latter, which are
computed for Greenwich at the apparent times of its noon and
midnight, to the observed time of the transit of the Moon’s limb.
In the record of the observations (see p. 692,) the mean time of
such transit is expressed. As we wish, however, to explain every
part of the present investigation, we will now deduce the mean
and apparent times of the transit. '

On the 18th the Sun’s transit was not observed at Greenwich :
we will, therefore, compute it after the manner of pp. 527, &c.

Sun’s mean longitude, 1812, ...... ¢ 9° 59' 50".9
Motiqn to Nov. 18, ¢ s .0evveen.. 10 17 22 42.2

Mean longitude Nov. 18, ......... 19 27 22 33.1

In time (rejecting 24") .......00ue.. .. 15" 497 30°.2

Equation of equinoxes. .. ...vvvuve s — .64
o .15 49 29.56

Right ascension Moon’s second limb.. .. 3 56 48.63

Apparent time of transit . ... ...... .. 12 7 19.07
Acceleration . .. ... veceeert e, 0O 1 50.15

Meantimeoftmnsit terecesseseans 12 5 19.9
Value of the Moon’s Latitude and Longitude, at 12" 5™ 19°.9

computed from the Nautical Almanack. : See the Nautical,
Almanack for Nov. 18, 1812, &c.

Moon’s Latitude. First Diff. d'. | Second Diff. d~. (Third Diff. d"",
18th Noon 4° 59’ 58"
. . . — ll 18”
Midnight 4 58 40 - 519" "
' = 631 + 16
19th Noon 4 52 9 — 4 57
Lo : - 11 28 + 20
Midnight 4 40 41 ' 6 '5‘ — 4 87

20th Noon 4 24 36

.
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Now the’intervals between these latitudes are 12 hours of ap-
parent time and, therefore, in applying the differential theorem,
we must find the value of r in such time. If, therefore, we
assume the latitude of the Moon, on the midnight of Nov. 18th
as the first term, we have

5™ 10°.9 4+ 14™ 27°.1
r =
12
. sinced= — 6 31", id = —10".74,

= .027476;

-1
and since &’ = — 4’ 57", z.z;—t—,-— d’" = + 3.97,

r—1 z2—2
e 3

- latitude = 4° 58’ 40" — 6".6 ... . = 4° 58'.33".4,

nearly, but the latitude computed from

immediate observations was, see p. 697,
the error of the Tables ......0 0 13.4

"= + 20, «r. d" = 40.17;

}4 58 20

Longitude.

Moon’s Longitude. &. a. aw,

18th Noon 1° 22° 12’ 25" ,
+7° 35" 25"

Midnight 1 29 47 50 - ¢ 54" - |
+7 32 31 =117
19th Noon 2 7 20 21 + o -4 11 s
7 28 -1
Midnight 2 14 48 41 -5 16

+7 23 4

PithNoon'Q 22 11 45

Here, the first term being 1° 29° 47’ 50"
d=0 7 32 81 = e7151",
& — 411 =—2g5,
d" - 1 5=— 65
and z = 027476,
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therefore we have, by substitution, from the differential theorsin
D "slong., on 18th at 12* 19™ 47°, = 1* 29° 47 50"
+ 12 26
+ 0 38.35
- 0 057

but (see p. 697,) the longitude computed} 2 0 o og”
. . A ces e e 0" 0 28
from immediate observations was. . . .

.. error of Laanar Tables ............ - 0".22

We subjoin two other imstances, in which the zenith distances
of the Moon were observed by the brass mural quadrant, and
the transits by the old transit instrument, (see pp- 33, 65, of
Greeawich Observations.)

=2'0°0/ 18”78

1811. Tramsits reduced. | Rate of Clock. Stars, &c.
19" 37" 41°.50| + 0.46 v
Sept. 27,119 41 58.78 + 0.48 , a%Aquilaa
19 46 26.80 B
20 11 47.08 Y 1L. 7" 48™ 37°.4
mean time
21 56 39.96 a Aquarii.
19 37 42.26| + 0.76 v
Sept. 28,19 41 59.56{ <+ 0.78 chquila
19 46 27.70] < 0.90 B).
20 35 25.396 a Cygni
21 12 55.32 > 1 L. 8® 45 88'.8
mean time
} . . .
Sept. | Bar. | Therm, In. | Refraction. Zﬁtf. gunv::o:f.‘ )
27, | 29.92| 51 | 223”3 | s L.L.| 68 44’ 18”2
28 | 29.36 53 2 4.7 | »sL.L.|65 53 23.8
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Moon’s North Polar Distance found.
27th, instrumental zenith dist. s L.L.. . 68° 44’ 18".2
Error of Collim. ...... cseentisesns -5

) ' 68 44 13.2
Refraction « « o s c e o ceneeosoos vee.. 0 2 23.2

' » 68 46 36.4
Parallax .o oooeeicsecieecctene. 0 55 26.2

_ 67 51 10.2
Moon’s 'emi'dia.meter'n Scsscscscocane 0 16 1507
. 67 34 54.5
Co-latitude......................38 31.20
North polar distance of Moon’s centre on} 106 6 14.5
the meridian o ccevvceccaanaenn
Change of north polar distance . .. ... - 4 6.23

North polar distance of Moon’s centre '
when 1 L. is on the meridian. .. } -+106 6 2078

The values of the parallax and change of north polar distance,
used in lines 5 and 9, are thus computed:

1st Parallax. Equatoreal horizontal parallax 59’ 40”,

Log. 8580. « v voeen cavannnnn teee.... 3.5538880
(See p. 50, Vince, vol. JII) cveveveeeees - 8841

o 3.5520089
Log. sin (68° 46’ 36".4 — 11/ 11".6). ... .. 9.0689466
(Log. 3826.18). + e covvveecnccunenens 3.5210455.

2d. Change qf the Moon’s North Polar Dzsl«mce during the time
of the describing its Semi-diameter.

. Time of describing Moon's radlus (p. 695,) .. 1™ 10°. 5
Change of decl®. S. (Naut Alm") in 12 hours —1°4'

in 127 . -4
: in 1™ 10'.5... - 6.23
Or, decrease of north polar distance........... - 6.23.

4 v
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Again on 28th, zenith distance L. L.. ... 65° 53’ 23".8

Collim,.oceeeecarssrceocscannnes -5

’ 65 53 18.8

Refraction ceecvevesecsccsscscccess 0 2 4.7
65 55 23.5

Parallax, (see belowl. 11,) ...cc0eee. O 54 58

, 65 0 25.5

Moon’s semi-diameter . . . ... seeseses O 16 27

Zenith dist. of Moon’s centre on meridian 64 43 58.5
Change of north polar distance (1. 17,) . « . +9.2
‘ : I 64 44 7.7
Co-latitude +vevvvvesacensssceccaass. 38 31 20.

North polar distance of the Moon.:... 103 15 27.7

Parallax.
Horizontal equatoreal parallax 60’ 25" =-3625"
LOg. 8625 vvurevrin vnnennennsoes.. 8.5593080
8841

3.5584239
Log. sin. 65° 44/ 11".9...000cevieene. .o 9.9508350

" (L0g. 3208) tietiiiriniaiatnceneanasss. 3.5182508

Change in North Polar Distance.
Time of describing Moon’s radius ...... cees 17 10°9
By Nautical Almanack, change in 12" ,...... — 1° 34/
- in1g” ...... — 1 34
In 1™ 10°9....... cesvessetsssseccsssnreesses 9.2
‘Moon’s Right Ascension found.

First, error of clock found on the 27th,
* R.A.from Theory and Tables. R. A. by Clock (p.700,)] Clock too fast.

v 19" 87" 18°.60 ......41'5 22'.9
Aquileda 19 41 35.88......58.78 22.9
(B 19 46 4.02......26.8 22.78

" a Aquarii 21 56 7.2 ......29.96 “e2.76
T sl 1 5.7 4)91.34

therefore at 20 15 16.4  mean error of clock 22.83

Moon’s transit by clock, p. 700,...... 20" 11™ 47°.08
True R Moon’s 1 L. on the 27th......20 11 24.25
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Next, gain of clock in 24" from three © -
- stars of the Eagle (see p. 700,) =
3(76+.78 +.9)=.82; ..in 25"....0" O™ 0.83, nearly,
ClOthoo‘fast on 27th-oeoeoa veeesess 0 0 22.83
too fast on 28th . .cecveev e oe O O 23.66
Moon’s transit by clock + coesvoeesse 2l 12 55.32
True AR Moon’s 1 L. on the 28th .... 21 12 31.66
Hence, expressed in space,
on 27th, right ascension Moon’s 1 L.
Angle subtended by Moon’s radlus}
® o0 0 16 55 . 4
(975”58 x co-sec. 106° 6') _3.__
'nght ascension of Moon’s centre ..... 303 7 59.15
On 28th, Right ascension Moon’s 1 L. 818 7 54.9

Angle of Moon’s radius
e e eceo s o0 o 16 54 . 03
(987". x co-sec. 103° 15’)} o

}. .302° 51' 8".75

318 24 48.9, nearly.

Computation of the Moon’s latitude and longitude, (see
pp- 159, &c.)

Latitude. Sept. 27th.
Moon’s R ....... 308" 7'59".15

90
2)213 7 59.15
106 83 59.57 ........ sin. 9.9815873
. 2
. 19.9631746
North polar distance 106° 6’ 20".73....... . sin. 9.9826106
I.oe'o..o-.%'g'? 42.5 ......... ‘sin.'9.6000333
2) 120 34 3.23 2) 19.5458185
8 ....64 47 1.61 9.7729092
, 36 21 21.8 M = 36° 21’ 21".8
IS+M.....101 8 23.4........sin. 9.9917392
Lo M., ..28 25 39.8............

43° 6' 45".8). .
Hence, complement of the latitude = 86° 18’ 31" 6
and latitude = 3 46 28.4.
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Longitude. Sept. 27th. : L
A= 86°13 31".6...sin. 9.9990567
I = @3 27 42.5...sin. 9.6000333
d =106 6 20.73 19.5990900
') 215 47 34.84
FoUm e . 107 53 47.42...sin. 9.9784604
zsum—&. .. .. 1 47 26.69...sin. 8.4948305
(20 added) 38.4732999
19.5990900
2) 18.8742099
-~ 0.4871049
which is the log. sine of 15° 52’ 41”.4, and of 375° 5¢' 41".4.
Hence, taking the last value, (which the value of the Moon’s
right ascension points out as the right one),
90° + longitude = 0 751° 45’ 22".8
and longitude 0 661 45 22.8
(rejecting 360% = 0 301 45 22.8
10 1 45 22.8.
Latitude. Sept. 28th.
Moon’s R ........ 318 24 48"9
90

2) 228 24 48.9
114 12 24.4...... sin. 9.9600290

/ 2
19.9200580

North polar distance 103° 15' 27".7 .. ...... sin. 9.9882684
: Cereeaen 23 27 42.5....... . sin. 9.6000333
2) 126 43 10.¢ 2) 19.5083597

£8....63 21 S5.1.cu..u.... .. 0.7541708

34 35 44 ........(M=34°35 44"

S+M....97 57 19.1 ........ . sin. 9.9958003
S—-M....28 45 51.1 s eeeeees Sin. 9.6823306
2) 19.6781309
(sin. 43° 39’ 26".3) .. .. .. 9.8300654
Hence, the complement of latitude is. . 87° 18 52".6
and the latitude, nearly...... ceee 2 41 7.3

e
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Longttude Sept. 28th.
Avesees 87°18' 52"6 ... .. sin. 99995168
T..ooeov 023 27 42.5 ..... sin. 9.6000333
8eeeeeesd103 15 27.7 19.5995501

2)214 2 2.8

Z8UM .eeeee e 107 1 1.4 ..e.e.... 9.9805574

feum—4......8 45 33.7 ......... 8.8166708
(20 added) 38.7972372

19.5995501

2) 19.1976871

9.5988435

which is the logarithmic sine of 383° 23’ 38”.6; therefore
longitude +90° .......... = 766 47 17.2
and(reject®. 12 signs) the long. = 316 47 17.2=10"16°47'17"2.

Latitudes and Longitudes deduced from the Nautical Almanack.

Since these latitudes and 4longitudes are expressed in the
Nautical Almanack, for apparent noon and midnight, it is
necessary to know the time of the passage of the Moon,

Sun’s epoch for 1811, 9* 10°14' 10”5
Mean motionto Sept.27,8 25 8 20.7

Mean longitudeon 27, 18 5 22 31.2 in time 12" 21" 30.08
Mean motion for 1day 0 0 59 8.333

Meanlongitude on28, 18 6 21 39.5 in time 12 25 26.63

but equation of the equinoxes in right ascéqsion is —.26.

Hence, on 27th sidereal time (see p. 702,) ... . 20" 11™ 24°.25
Sun’s mean longitude from true equinox ...... 12 21 29.82

Approximatetime.....................o 7 49 54.43
Acceleration, (seep. 526,). . «v. . ceveccees. . 0 1 16,98

Mean time of transit of Moon's first limb ..... 7 48 37.45
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On the 28th, Sidereal time, (see p. 703,) ...... 21® 12™ 31°.66
Sun’s mean longitude reckoned from true equinox 12 25 26.37

Approximate time, nearly cevvivvuecnetnee.. 8 47 5.8
Acceleration . . e evoeeveeeen seneesennnens..0 1 26.35

Mean time of transit of Moon’s first limb ......8 45 38.95

But these are the mean times: the apparent times may be obtained
by adding to them the equations of time. Now the equation of
time proportional to 7" 48™ 37°, on Sept. 27th, is 8’ 54” subtractive
of apparent time, and Sept. 28th, 9’ 14”.6. Hence, the times are
on the 27th, 7" 57™ 31°.45; .. x (see p. 699,) = .66322
~on the 28th, 8 54 53.55, andz ----...... = .74208.

o Mi)on’s Latitudes. d', d". dan,

27th, Noon 4° 3’ 36"

' — 27/ bll
 Midnight. .3 36 36 - 846" "
- 30 46 4 24
']28th, Noon 3 5 50 -3 22
L —34 8 + 29
—-37 0 | + 37
“129th, Noon 1 54 41 . — 2 16
" - 39 17
Mldnlghto o1 15 24 .
Hence, for the
Twenty-seventh. Twenty-eighth.
a =4 336" .............. eee. . 8 550"
d= -2 0..cc...... cereeiian -84 8
d'"= — 346 .. i - 2 58
d"=+ 02 .. ..., + o0 37
r = .66322 ....... Cettiaeeeann. 7429
. s
L g =-—-16839 ........ e, — 128547



01

Hence, the latitudes =, respectively,

4° 3 36" ~ 8 550" ,
-17 54 . o —25 erar(
+ 0 25.24 = 38468 +16 0.52 = 2° 40" 46%5
+ 0 119J : + 1 048)
, Moon’s Longitudes. d’. d, , d"’:
|e7th, Noon 9" 27° /32" | = 4”
. 7 71
Midnight...10 4 9 46 i 5 30" | W
N B 7 12 4 -
28th, Noon 10 11 22 30 R O T A 28
- , 17 51 C -
Midnight.. .10 18 40 21 4 4 39 0
i 7 22 30 -
29th, Noon 10 26 2 51 B 3 59
7 26 29

Hence, for the
Twenty-seventh. - Twenty-eighth,
=027°¢2 32 ... iiiiini. 10° 11° 22 30"

d= 7T 7Tlheiiiiiiiiiiiine 717 51

d’ 530 .. c00encsncecnsnes 439
‘ d"= = 28 .iiiiiiiiriiniieis—40
*and Moon’s longitudes =

9s 27° o 39 _

+ 4 43 21.2 .
— 36855 = 10 1° 45" 15".2 on 27th,
— 1.144J

10° 11° 22" 30"

+ 5 25169 o ot o »

- 2664 _.19' 16 47 18".6 '<.)n 2891,
- 16

* In order to place the whole of the detail under the eye of the
student, we subjoin the arithmetical computation. - What is here effected

by



708

If we now exhibit, under one point of view, the results ob-
tained from observations, and those results that are computed
from the Nautical Almanack, we shall have

Transit of Moon’s| Moon’s Latitude Moon’s Latitade Error of
Limb, Mean Time.| from Observation. from Tables. Table.
1811,
ept. 27, | 7" 48™ 37%.45| 3° 46' 28".4 3° 46’ 8" - zd’.j
f 28,8 45 38.95 2 41 7.8 2 40 46.5 —20.
1812, )

Nov. 18, [12 5 19.9 4 58 20 4 58 383.2 -I-lS.QW
Moon’s Longitade Moon’s Longitnde | Error of
from Observation. from Tables. Table.

1811,
ISept. 27, 10° 1°45'22".8|10° 1°45'15".2|—7"6
28, 10 16 47 17.2/10 16 47 18.6{+1.4
1812, '
Nov. 18, 2 0 0¢e8 2 0 018.8{—9.2*

by the differential theorem, might have been, and in practice is, effected,
but less accurately, by Tables of second differences,

veeneenene .8216628...... veeeernes .

L.z 9-8216628 o 9 8216628} ceerereerens 10.04798

.7° 7' 14"...4. 4 L. . -
L.7°7 14"...4.4088164 L 3 9.2263163 LY - 2...9.64894
4.2304792 L. 5 30" 2.5185139 L. 23"......1.36173
1.5664930 0.05865
No. = 4°43' 21”.2  No, =—36".855 No. — 17,1446

L.T.0eeereeeer.9.8709339 ............ 9.870933

¥ 9-8709339 § x_lg 709 9} verecenrennes 18.97999

" —
L.7017' 51°... 4.4194766 L. —— 9.1090629 e - 2 9.62295
4.2904105 L.4'39”2.4456042 L. 40" .... 1.60206
1.4256010 0.20430
No.=5°2516"9  No.=26".64 No.=1"6

* See Note in opposite page.



709

Results like those that have been just obtained serve, as we
have before observed, a double purpose: they become ‘tests of
the accuracy of the Lunar Tables, and means of correcting them.
It is obvious how they perform the first office. The mode of
performing the second has also been already explained in
Chapter X XI. The Moon’s place, previously to its insertion in the
Ephemerides of England, &c. is computed from the Lunar Tables
on certain conditions, as they may be caled : that is, the mean
epoch, the mean motion, the equation of the centre, the longitude
of the apogee, and the equations expounding the modifications of the
Sun’s disturbing force, &c. are all assumed of certain magnitudes:
which magnitudes may be erroneous: all, perhaps, inslight degrees,
some certainly erroneous: since, otherwise, the Moon’s computed
place ought to agree with the observed, the observations being sup-
posed to be exact. Although, in correcting the Tables, we may
be more assured of the exactness of some of the elements than of
others, yet it is the safer and the more scientific plan to suppose
them all erroneous : and to form equations such as

a.dL +b.dm +c.dE+ f.dp + &c. =C,

in which d L, dm, &c. shall represent the variations or errors of
the longitude, equation of the centre, &c. and C shall be such a
quantity as we have just deduced in p. 708, and there represented,

* The results do not exactly agree with the results obtained by the
computers of the Nautical Almanack, who, by order of the Board of
Longitude, and for the purpose of ascertaining the relative accuracy of the
several Lunar Tables, have compared the Greenwich Observations, from
1783 to 1819, with the Moon’s longitudes and latitudes set down in the
Nantical Almanack, and in the Connoisance des Tems. The disagree-
meats are found amongst the latitudes : which may arise from the Moon’s
parallaxes being computed from different Tables, or from Tables con-
structed on different oblatenesses of the Earth. Some differences must occur,
Since in the comparisons, the Moon’s. places, at the times of the transits of
itslimbs, were deduced by means of the Tables of second differences, whicl/
cannot give results so exact, (we are speaking of arithmetical exactness)
a8 the differential theorem is able to give.

4 X
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according to the case by — 7”.6,+ 1".4, — 9”2, &c. In order
to deduce the values of the errors of the elements we must form,
at least, as many equations as there are supposed errors: but in
practice, for reasons already assigned in Chapter XXI, a great
number of equations are selected and combined together to form
one equation. If the variations of the elements ate.in number 10,
10 sets of equations must be formed, and then ‘the values of the
variations or errors, ‘or, under a different name, the corrections of
the elements of the Tables, must be deduced by the ordinary but
laborious process of elimination. By such means the present
Lunar Tables have been advanced to their present state of per-
fection.

We must now pass on to other matters : and those will next
claim our attention, which are connected with, and depend on, the
lunar theory. Of sich sort are eclipses and the methods of
computing, at assigned times, the distances of the Moon from
the Sun and certain fixed stars. Both sub_]ects are of consider-
able extent, intricacy, and practical utility, since both, with dif-
ferent degrees however of accuracy, may be made subservient to
the determination of the longitudes of places.

By the latter term we mean, in the most general seuse, any
points on the Earth’s surface, whether such are permanent land-
stations, or the temporary places of vessels at sea. For the
determination of the longitudes of places of the latter descnptlon,
lunar eclipses are of no use: and indeed, of but small use in
fixing the longitudes of land-statlons not, however, from any
defect in the lunar theoty, but from the practical uncertainty of
marking the times when the phases of an eclipse commence and
terminate. L;mar ecllpses might be excluded from a work, the
scope of which should be strictly limited to subjects of merely
practical utility. A wider range, however, has already been taken
in the present Treatise ; and, acting en a like plan, we will, in the
next Chapter, treat of Lunar Eclipses: which .are _certainly
phenomena of great interest, of celebnty in the History of
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Astronomy, and of importance in settling certain of the lunar
elements *.

* The uncertainty of the ¢time of an eclipse, to the amount of a minute
of time, vitiates the determination of the longitudes of places. But an
error of that magnitude would be but of little consequence, when the
happenings of eclipses, distaut from each other by several centuries, are
employed in fixing such an element of the lunar theory, as the Moon's
mean motion.



CHAP: XXXV.

On Eclipses of the Moon.

Ix Chapter 1V, a lunar eclipse was shewn to arise from such an
interposition of the Earth between the Moon and Sum, as to
cause the shadow of the Earth to fall on part, or on the whole,
of the Moon’s disk.

This prescription of circumstance is necessary : since an
opaque body, interposed at a certain distance between the Sun
and Moon, does not necessarily cause an eclipse : for instance, if
the diameter of the interposed body should be below a certain
magnitude, its shadow would not reach the Moon.

The existence, therefore, of eclipses depends on the relative
magnitudes of the Sun and Earth, supposing the mutual distances
of the Sun, Earth, and Moon, to be assigned.

The Moon being in opposition, and at her mean distance, the
apparent diameters of the Sun and Earth, seen from the Moon’s
centre, are 31’ 59”.08, and 1° 55' 8”. Now, at the extremity, or
conical point of the Earth’s shadow, the apparent diameters of the
Sun and Moon are the same. The Moon, therefore, must be
considerably nearer to the Earth than the extremity of the Earth’s
shadow : or, what amounts to the same, the length of that shadow
must be greater than the Moon’s distance from the Earth. By
computation, it is found to be four times as great.

The eccentricity of the Moon’s orbit being very small, equal
only to 0.0548553, it would follow, if the above result, relative
to the length of the shadow, were established for any distance of
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the Moon from the Earth, that in all distances the shadow would
‘extend far beyond the Moon. In fact by an easy computation
we have the following results : ,
Length of Axes of Shadow.
© inperigee «oceven ... 212.896 rad. @
at mean distance . ... ¢ 0. . . 216.551 °

inapogee.. cessessnee .. 220.238.

Hence, the least length of the shadow is more than 212 radii of

the Earth; whereas the Moon’s distance from the Earth never
exceeds 64 radii.

Hence it appears a lunar eclipse must always happen
whenever the Earth is interposed between the Sua and Moon ;
understanding, by such expression, the Earth’s centre to ke in
a line joining the centres of the Sun and Moon. In this latter
situation of the three bodies, the Moon is in opposition, In such
kind of opposition, an eclipse must always bappen, and there
would be only that kind, if the plane of the Moon’s orbit coincided
with that of the ecliptic.

The Moon’s orbit being inclined to the ecﬁp‘tic, and, oppo-
sition meaning nothing more, than the difference, in longitude, of
a semi-circle, or of 180° the Moon may be in opposmon, and
still either directly above or below the right line joining the centres
of the Sun and Earth ; and, consequently, may either be above or
below the conical shadow, the axis of which lies in the direction
of the above-mentioned line.

Since the inclination of the Moon’s orbit, (see p. 661,) is
about 5° 9/, if the Moon in opposition should be either in its
greatest northern or southern latitude, that is, either 5° 9’ above
or below the ecliptic, no eclipse can take place, since the greatest
section of the Earth’s shadow at the Moon never exceeds 64
But, in the next succeeding opposition, after the lapse of a
synodic period, the Moon cannot be again in her- greatest latitude,
since, the synodic period being greater than the sidereal, the
Moon would, on that account, have approached the ecliptic, even
supposing the nodes to have been stationary. But the nodes,
instead of being stationary, are, during a synodic period, regressive
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‘to the amount of 1° 35'. For this reason, then, as well as for
the one just stated, the Moon approaches the ecliptic. In suc+
ceeding oppositions, the Moon, by the operation of both causes,
would approach nearer and nearer to the ecliptic, till at length
an opposition would eceur, in which the Moon would be either,
exactly, or very nearly, in its node: and if in its node, then it
would be in the ecliptic, and in such case, an eclipse must

happen.

An eclipse may happen, if the Moon be near to the node of her
orbit ; the least degrees of proximity are called the Lunar Ecliptic
Limits.

These limits are easily determined from the inchnation of the
‘Moon’s orbit, the Moon’s apparent diameter, and the apparent
diameter of a section of the Earth’s shadow at the Moon. The
two former conditions may be supposed to be known by previous
methods, (see pp. 661, &c.) and it is the latter only that now
requires to be investigated.

Apparent Digmeter of a Section of the Earth’s Slcddow at
the Moon..

Let S represent the Sun’s centre, E the Earth’s, and let the
circles described round the centres S, E represent sections of
those bodies. Draw 4¢C, at'C, tangents to the circular sections

A

a

of the Sun and Earth, and the triangular space included within
tC, ¢'C, will represent the section of the conical shadow of the
Earth. Let m Mm' be part of the Moon’s orbit, then the section
of the Earth’s shadow at the Moon is 7 Mm/, and its apparent
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semi-diameter at the Earth, which we have to estimate, is the

angle m EM *.
tmEM = £Emt — £ ECm,
= ¢ Emt —(£AES— ¢« EAp.

Let 2 Emt, the angle subtended at the Moon by the Earth’s

radius, or the Moon’s horizontal parallax, be denoted by....P,

D

2 AES, the Sun’s apparent semi-diameter, by « .. ...... 2

2 EAt, the angle subtended by the Earth’s radius at the Sun,

or the Sun’s horizontal parallax, by.................p¢

Hence,

The apparent semi-diameter of @’s shadew = p 4+ P — g

Hence, the distance of the centres of the Moon and of the
Earth’s shadow, when the Moon’s disk just touches the shadow,
will be the precedmg expressnon plus the Moons apparent semi-

daameter ( ) that 1s, ,
, D d
pEP-3+s o
If we take P = 57" 17, p = 8".8, and '1§')= 16' 1.8, we
shall have .
The mean apparent semi-diameter of @’s shadow = 41’ 8".5,

which is nearly three apparent semi-diameters of the Moon.

~ * We have, more than once, adverted to the necessary defect which
diagrams in Astronomy are subject to, in representing distances and
magnitudes according to their true proportion in nature. The Figure in the
preceding page isap instance of it. The Earth’s radius is there made not less
than one-third of the Sun’s, whereas it is about mth part. But, if it
bad been so drawn, we should have had a most inconvenient diagram, in
which it would have been difficult to discern the lines and angles, which
are the subjects of investigation.
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Hence, since the Moon in the space of an hour moves over a
space nearly equal to its diameter, the Moon may be entirely
within the shadow, about two hours, or a total eclipse may
endure that time.

In order to find the greatest value of the preceding expression,
we must take the greatest parallax of the Moon, and the least of
the Sun: for, since there is a constant ratio between the Sun’s
horizontal parallax and his apparent semi-diameter, the latter will
be the least- when the former is: and although in the expression
the parallax is additive, yet its diminution below its mean or even
its greatest quantity is trifling, relatively to that of its apparent
diameter.

Hence, since the ) ’s greatest horizontal parallax is 1° 1’ 29"
and the O ’s least semi-diameter cvcoeeceececscsess 15 4548
the cmsponding paral]ax Of the o eeee s0csssrsco e 0 8.6

We have, nearly,

the greatest semi-diameter of the @’s shadow . ... = 45" 52",
and the diameter ..vveveeveeenernrecnco.. ... =1°31 44"

Precisely after this manner, and by the same formula, namely,
D
(p + P - ;) may the apparent diameters of the Earth’s

shadow be computed, for other distances of the Sun and the Moon.
Thus,

Apparent Diameter of

. ) @’s Shadow.
D in apogee ....oeu ... ... 1915' 24”.3036
© in perigee. at mean distance . ... ... 1 23 2.31
in perigee . . ......... 1 30 40.3164
© at mean D u: apogeedi.t........... 1 15 56.8656
distance. s.n mea?n stance . . ..... 1 23 34.87¢2
: mperigee .. «....0.... 1 31 12.8784
D inapogee ............ 1 16 28.2936

© in apogee. at mean distance . ...... 1 24 6.3
inperigee . ........... 1 31 44.3064
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In p. 714, there is given an expression for the length of the
Earth’s shadow, in terms of the Earth’s radius obtained from the

D
value PR L of the angle Ect ; thus
Et _ rad. @
sin. £ Ect . /D T
. sin. (E —p)

Since there is a constant ratio (see p. 651,) between the Sun’s
semi-diameter and horizontal parallax, (which ratio is that of the
radius of the Sun to the radius of the Earth, and in numbers,
as 110 : 1 nearly), the denominator of the preceding fraction may
be expressed either, in terms of the semi-diameter, or of the
parallax ; thus,

rad. @
sin. (109 p)’
rad. @
109 D’
, 220
But to return to the investigation of the extreme cases in which
eclipses can happen. To the greatest apparent semi-diameter
of the Earth’s shadow (see p. 714,) add the greatest apparent
semi-diameter of the Moon, and the result will be the greatest
apparent distance of the Moon's centre from the ecliptic, at

Length of shadow =

or =

sin.

9,

which an eclipse can happen. Thus, in the Figure, if Ne be
part of the ecliptic, Nm part of the Moon's orbit, e the centre

4 v
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of a section of the Earth’s shadow ; if we take (see p. 716,) ea in
its greatest value, equal to 45’ 52, and ma, the greatest apparent
semi-diameter of the Moon, = 16’ 45”.5, then me, = 62’ 37".5,
is the greatest distance of the Moon at which an eclipse can
happen. If the distance be greater, there can be no eclipse, if
less, and less within certain limits, there may or may not be an
eclipse ; its happening depending on the relative proximities of
the Earth to the Sun and Moon.

The ecliptic limit Ne, corresponding to the greatest value of
me, may be thus computed:

By Naper’s Rules,
rad. x sin. me = sin. Ne x sin. ZeNm;

. taking me = 62’ 38", and the inclination of the Moon’s orbit,
(what it generally is, in these circumstances,) equal to 5°17', we
have

10 + log. sin. 62' 38" ... ..cuttersee.. 18.2605076
log. sin. '5° 17 e eeet e e o 8.06416097

olog.sin. Ne cavevnenvenenaas.oss 9.2063379

.-.Ne"—- D R A N I R ) 11025,40”', nea.rly-"

The species of eclipse represented in the above Figure, where
the two circular sections of the Moon and shadow are in contact,
is- called an Appulse.

The opposition of the Moon must have happened soon before
this appulse, if the direction of the Moon’s motion be supposed
from m towards N. For, the Moon moving more quickly * than
the Sun, and consequently, than the centre (¢) of the shadow,
cannot long have quitted a point o, such that the corresponding
position of the centre of the shadow would be at ¢. And in these
positions of the Moon and shadow, the former is in opposi-
tion.

* The diurnal motions of the Moon and Sun are respectively
13°10° 35".027, and 59’ 8".33.



%19

" In the computation of eclipses there are several expedients
employed for abridging its labour. .Eclipses are to be expected
when the Moon is near her node, and in opposition. But the
labour of a direct and formal computation may frequently be
spared, by roughly ascertaining certain limits, beyond which, it is
useless to expect an eclipse. Thus, as we have seen in the pre-’
ceding page, if Ne be greater than 11° 26', no eclipse can
happen. But Ne is the difference of the true longitudes of the
centre of the @'s shadow and of the ) ’s §1 at the time of the
appulse ; the time of appulse differs a little from the time of true
opposition, and therefore, for two causes, from the time of mean
opposition. . The mean longitude of the centre of the Earth’s
shadow differs from the true longitude, by reason of the equation
of the centre, and other small equations. If therefore, we com-
pute the mean longitude of the Earth’s shadow at the time of mean
opposition, it will differ from the longitude of e, (see Fig. p. 717,)
at the time of appulse for three causes; the difference, of the
times of appulse and of true opposition, of the times of mean
and true opposition, and of the mean and true longitudes. ~But,
notwithstanding these sources of inequality, the consequent error
in the value of Ne computed, from the mean longitude of the
Earth, and for the time of mean opposition, is within certain
limits ; and accordingly M. Delambre states that, if Ne be
> 12° 36/, there cannot be an eclipse, if < 9°, there must be
one. Between 9°, and 12° 36, the happening of the eclipse is
doubtful, and the doubt must be removed by a more exact cal-
culation. The time of mean opposition may be computed from
the Tables of the Sun and Moon. But, the computation is
facilitated by means of a Table of Epacts. The Epact for a year,
meaning the Moon's age at the beginning of the year, the age
commencing from the last mean conjunction ; and the Epact for
any month, meaning the Moon’s age at the beginning of the
month, supposing the age to have begun from the beginning of
the year. Delambre in his Astronomical Tables has given a new
method of computing the probable times of the happening of
eclipses. ~ (See Vince, vol. 1II. Introduction, p- 56.)

* In the preceding explanations we have supposed an eclipse to
begin when the Moon enters the Earth’s shadow at m’. A spec-'
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tator at the Moon in any point within m' and m, (see Fig. p. 714,)
would, by reason of the intervention of the Earth, be unable to
see any part of the Sun’s disk. But, before and after this eclipse,
properly so called, the Moon’s light would be obscured ; or, what
amounts to the same thing, the spectator, on the Moon’s susface,
previously to being entirely deprived of the Sun’s light, would
lose sight of portions of his disk. In order to determine, when
this obscuration first begins, and when it ends, draw two tangents
AC' ¢, aC'pl, to the Sun and Moon; then, the moment the
Moon enters I’ I, part of the Sun’s light is stopped ; or, a spectator
at the Moon situated any where between I'n’ sees part only of
the Sun’s disk. Entering m'm, the spectator loses sight of the
Sun entirely; emerging from m'm