


hrwricd Fo

07[)244“)( Cfvr'r—h /?ar_

A TREATISE ON "ASTRONOMY.



CAMBRIDGE,
PRINTED BY METCALFE AND CO. LIMITED, TRINITY STREET,



A

TREATISE ON ASTRONOMY

FOIL THE

USE OF COLLEGES AND SCHOOLS.

BY THE LATE

HUGH GODFRAY, M.A,

8T, JOHN'S COLLEGE, CAMBRIDGE ;
MATHEMATICAL LECTURER AT TRINITY HALL.

Fifth Gditiow,

London:
MACMILLAN AND CO.

1894,



PREFACE TO THE SECOND EDITION.

AstroNoMy is a science admitting of so many
methods of treatment, that a few words will be
useful to explain the scope and object of the
present work.

It is essentially a student’s book. Prepared
originally for the use of the Author’s pupils in
the University, it embraces all those branches
of the subject which have, from time to time,
been recommended by the Board of Mathematical
Studies; but the easier, and by far the larger,
portion, adapted to the first three days of the
Examination for Honours, may be read by the
more advanced pupils in many of our schools.

It is difficult to be original in an elementary
work, and on a subject which has occupied men’s
thoughts from the earliest times. The Author’s
aim has been rather to convey clear and distinct
ideas than to affect originality; and it is hoped
that where he has deviated from the beaten track
it has been at no sacrifice of simplicity.

Before the invention of clocks the work of
the practical astronomer was of a most weari-
some nature, Every observation to determine the
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position of a celestial body would require the
measurement of its distances from other bodies,
whose positions were known; and this, besides
being liable to a variety of instrumental and
other errors, would involve long and tedious
caloulations. The perfection to which clocks have
been brought has so greatly simplified this, by
enabling the observer to make use of the uniform
rotation of the earth as an element of observa-
tion, that the clock is almost as important an
instrument in the observatory as the telescope.
It was, therefore, thought that a short deserip-
tion of its construction and of the principles on
which its accuracy depends would not be out of
place in a Treatise on Astronomy.

In this seeond edition the whole work has
been very carefully revised, and numerous altera-
tions and additions have been made. Some are
merely verbal, others more important; but the
order of the chapters and the general arrange-
ment have been preserved.

The Author desires to express his thanks for
the valuable suggestions for which he is indebted
to the kindness of several friends.

CAMBRIDGE, May 1, 1874,
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ASTRONOMY., -

CHAPTER L

THE STARS,

~1. SurPosE an observer, on a clear winter evening,

to station himself on some elevation whence he may have
an unobstructed view of the heavens. He will see a large

)\ number of stars, of different degrees of brilliancy, scattered
. Wwithout apparent law over the celestial vault. He will
imagine the shape of the vault to be spherical, and alihough
the idea he may form of the size of this sphere will pro~
bably be vague and even different at different times, yet
the parts over head will not seem so far off as those near
the horizen, the effect being the same as if the visible
portion were a segment of a sphere less than a hemisphere.*

7 2. After some time the observer will netice that a change
has taken place ; some of the stars have disappeared below
the horizon on one side, and new ones have arisen in the

* That this spherical boundary has no real existence we shall have full proof
when we find that the sun, the moon, the planets, the stars, &c., which, to
us, all seem situated in the surface are at immensely different distances.
The blue vanlt is in fact nothing but an imaginary background formed by
the atmosphere that surrounds us; and the appearance of greater distance in
the parts near the horizon is an optical illusion, due probably to the fact that
the greater thickness of atmosphere through which the bodies there are seen -
absorbs more of their light, and gives them an amount of indistinctness, such
as we know to be the effect of greater distance in the case of those objects .
which- are accessible to us,

B
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2 v THE STARS. [cmAP. 1.

opposite quarter. But he will remark that there is no
alteration in their relative positions; and if, by means of
a sextant, or any other instrument for measuring angular
distances, he determines the angle between any two stars,
he will find it to remain constant, and this, not only
throughout that night, but after any interval of months
or years.* The motion is, therefore, a general one of the
whole system of stars, and in consequence of their fixed
relative positions they are called fixed stars, to distinguish
them from the planets, or wandering stars, a small number
of bodies, whose positions among the others are continually
changing.t »

# 3. To determine roughly the nature of this gemeral
motion, let the observer be furnished with a number of
threads or wires of equal lengths, and having a common
fixed extremity, and let one of these threads be directed
towards any arbitrarily chosen fixed star and there made
fast : after any interval of time let a second thread be
directed to the same star, a third after another equal in-
terval, and so on. It will be found that the ends of the

# Another curious illusion may here be noticed. Anyone watching the
night sky could not fail to perceive that the distance between two neighbouring
atars appears to become less as they rise higher; and the same illusion, but
much more striking, is observed in the case of the full moon, which seems very
much larger when rising than when high wp in the heavens. This illusion is
only another form or rather a consequence of that mentioned in the previous
note. We see the moon attached, as it were, to the spherical canopy that sur«
rounds us ; and, consequently, when near the horizon occupying that part- which
appears furthest from us, then coming nearer and nearer as it ascends. Sup-
posing, therefore, that its actual magnitude does not alter, we should look for
a corresponding increase in the angle which it subtends, but, contrary to ex-
pectation, this angle: remains almost unchanged; and we find it difficult to
resist the impression that the full moon near the horizon is 3 much larger body
than when high up. The same explanation applies of course to the apparent
change of distance between neighbouring stars.

+ Some of the stars have been ascertained to have a slow “proper motion,™
but to detect this, observations of the most delicate kind are required, extending
over a long interval of time; and there is every reason to believe that, as our
methods of observation still further improve, it will be found that no star can-
be strictly called fixed. (Chap. xvI). '
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threads will all be situated in the circumference of a circle,
or, which is the same thing, the threads themselves will lie
in the surface of a right cone with a circular base ; the -
angle of the cone will be different for different stars, but

- whatever star may have been chosen, the axes of all the
cones will always be found to have a common direction
inclined to the horizontal plane at an invariable angle, so
long as the observer does not change his place of obser-
vation.

-~4. Suppose OP to be the direction of this common axis
above the plane, then those stars which are furthest from
OP will only just appear above the horizon ; others will shew
but a small portion of the cone as A, and as we approach,

C ™.
' \\

Z
£

OP a larger portion of each cone is gradually obtained as
at B, C, and some of the stars will not set at all, but will
give a cone completely above the horizon as at D. In the
case of those stars whose direction is at right angles to the
axis OP, the cone becomes a.plane as at B. g

These observations point to the conclusion that the stars
have a motion of revolution round this axis OP. The re-
turn of day will, it is true, arrest the observations before
the circuits have been completed ; but night after night the

B2
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same stars will be found going over the very same courses,
except that each night they begin a few minates earlier than
the night before; and if the observations be repeated &
few months later, the stars will be then seen completing
* those parts of their orbits above the horizon which the
day-light had previously hindered us from following.

_ 5. Furthermore, it will be found that the consecutive
threads belonging to the same star, provided they be fixed, as
we have supposed, at equal intervals of time, are separated
by equal angles, and therefore the motion of each star is
uniform. The angular velocity about the axis will also
be the same for all the stars ; because, consistently with
what has been said before of their unaltered relative posi-
tions, they will all be found to accomplish their revolutions
in precisely the same time.

The observations here indicated are very rough, but
more accurate methods will fully confirm the results, if
proper allowance be made for the slight distortion of the
path caused by refraction, as hereafter explained.

Visible horizon, Dip of the horizon.

6. Before proceeding further it will be useful to ascer-
tain, at least approximately, the shape of the earth, from
which the observer has to make all his observations.

From the place he occupies he can see only a very
limited portion of the surface, but he will be able to remark
that the apparent boundary line where the heavens and
earth seem to meet, or the visible horizon, as itis called,
is circular, except where broken by hills or other irregu~
larities ; and if he has a calm sea for boundary, the circle
will seem perfect. This appearance he will find to follow
him in whatever direction, and however far, he may travel :
the visible horizon is circular in all places and for all heights
above the sea-level.
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Now & sphere is the only surface which has this pro-
perty of always giving a circle as the curve of contact of
a number of tangent lines drawn from any external point.
Therefore, so far as this rough test goes, the earth is a
sphere limited in extent.* :

Without leaving his first station, the observer would be
able to infer from the disappearance of some stars below
the horizon on one side, and their re-appearance the next
. night on the other, having evidently passed under the earth
in the interval, that the earth is isolated in space.
~ The fact also of its having been so often circumnavigated -
proves this, and proves its limited extent as well.

_ 7. Let DFC represent the earth regarded as accurately
a sphere, C its centre, A the eye
of the observer, DEF the visible
horizon. Let AB be the direction
of a plumb line, which will be
normal to the surface of still
water at B, and therefore will pass
through the centre C.

" ABC is called a vertical line at
B. A plane at right angles to this
vertical line through any point of
it is called the horizontal plane at that point. When drawn
through B it is called sensible, and when through C rational,

but the distinction will not be of any importance.

* We shall hereafter see that it is in reality an oblate spheroid, differing
however very little from a sphere, the polar diameter being 7899 miles long,
and the equatorial diameter 7926 miles.

To the above proof of the convex nature of the surface may be added the
way in which a ship, sailing in any direction, is gradually lost sight of as it
recedes from the observer : the hull first disappears, then the lower masts and
gails, and finally the top-masts. Again, the shadow of the earth, as projected
on the moon in a lunar eclipse, is that which would be-produced by a globular
body. :
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»~ 8. The angle which AD makes with the horizontal plane
through A is called the depression or dip of the korizon. It
varies with the height of AB and is the complement of the
angle DAC, and therefore equal to the angle at the centre
DCA.

If AB=hk, BC=r, ACD=0, and the arc BD=2z, we
find ‘

r .
0=——, 2=
cos Py X =rf,

whence the dip and the distance of the visible horizon will

be known when the height above the surface and the radius

of the earth are known.* 7-
If 4 is small, then approximately

’ €=«/<27}l) Aand x=4/(2rk).

Effects of a change of station.

+ 9. Let us now return to the observations on the stars,
and suppose that the observer proceeds to some new station,
and there recommences his series of operations as in Art. 3,
He may perhaps discover some new portions of the heavens
containing new stars, or he may lose seme which he could

see before, but he will find, however far he may have *

travelled, that all the stars previously observed retain their
relative positions unaltered ; that they generate cones of
exactly the same magnitude as before, in precisely the same
time as before ; and that the only change is in the incli-
nation of the common axis of those cones to the horizontal

* On account of refraction these results will not be exactly correct. Rays
from a point beyond D will be seen and reach 4 in a direction above D.A4. The
angle of depression @ will therefore be diminished, and the visible distance =

increased ; 6~ 140 is found to be the reduced value of the one, and 2+ g the

increased value of the other. See Art. 235.
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plane, which inclination may be either greater or less ac-
cording to the direction in which he has gone.

Therefore the axis about which the stars revolve seems
to pass through every place on the earth’s surface, and the
stars preserve the same position relatively to it and to one
another for every observer.

10. But this forces upon us another conclusion. If the
angular distances between the stars do not alter, however
‘much we may change our position on the earth, it must
be that the earth is a mere point, compared with the dis-
tances of the stars. For, if two stars A, A’ are seen
under the same angle from several points P, Q, R, S, ... ,
then Q, R, S, ... must all be situated in the surface gene-
rated by the revolution of the segment of the circle AP A’
about the chord A4’ ; and if a new star A" be observed
under the same conditions, the points Q, R, S, ... will be
also in the surfaces similarly described on the chords 44",
A'A" ; the same for a fourth star A", and so on; but P
is the only point common to all these surfaces, therefore
it is impossible that the angles subtended by the stars
ghould really be the same at all places. The explanation
" is that the distances of these-places from one another are
* too small, compared with the actual distances of the stars,
to produce changes in the angles large enough to be de-
tected even with the most refined instruments, and we
ghall hereafter see that angular changes due to displace-
ments many thousand times greater are still too minute
for our observation. :

The earth is, then, a mere speck in -space as regards
the distances of the fixed stars: from all points on or
within its surface, lines drawn to the same fixed star at
the same instant will be parallel, and all the axes about
which the heavens seem to revolve will remain fixed and

parallel to one another.
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Celestial sphere.

~ 11. Let the observer now surround himself with an
imaginary sphere, having a radius perfectly arbitrary—
whether a hundred yards, or a hundred times thedistance of the
furthest star, is immaterial, but perhaps his conceptions will
be easier with the smaller radius—this will be his celestial
sphere, which we must suppose to accompany him in all
changes of position in such a manner that he may always
occupy the centre. To this sphere he will refer the Places
of the heavenly bodies at any instant, by the points where
the lines joining them with the centre cross the surface.*
Thus if HZR N represent his celestial sphere at the station
of his first observations,
the centre O coinciding
with the vertex of the
conesinfig., p. 3, then the
paths of the stars which
lie respectively in the
surfaces of the cones A, B
B, C, D will be repre-
sented by the intersec-
tions of these cones with
the surface of the celes-
tialsphere, that is, by the
circles A'AA", B’ BB" &o.

* Tt has been generally customary to define the celestial sphere as one having
an infinitely large radius. The conclusions obtained will be just the same,, but
when finite magnitudes and this infinite space have hoth to be represented in
the figure the reasoning may seem somewhat obscure.

It is only for the convenience of substituting spherical triangles for solid
angles that this sphere is at all needed. There is in reality no bounding surface
in the sky, and therefore this sphere does not represent anything, not even the
apparent vault of the heavens, for that seems npearer to us in the portion near
the zenith than near the horizon ; whereas our sphere has the eye for its centre,
1t will be found that all problems of Astronomy, in which the Celestial sphere
1s used, concern only the plane and the dihedral angles which the objects sub-
tend at the eye. : i
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The axis of rotation OP, the common axis of all the
cones, will be perpendicular to the planes of these circles ;
these planes are therefore all parallel to one another.

The horizontal plane through O will give the great
circle HA'B'...R, which is called the Zorizon. The point
in the heavens vertically above the observer is called his
zenith and the opposite point the nadir. They are given
in the celestial sphere by the vertical line ZON.

The points P, P', where the axis meets the celestial

sphere, are called its poles ; that one which is above the
horizon in these regions being called the -north pole, and
the other the soutk pole.

The circles described by the stars are called parallels,
that one BB’ whose plane passes through the centre of the
sphere taking the name of equator. The equator is there-
fore the great circle whose plane is at right angles to the
axis of the celestial sphere.

» 12. The portions of the celestial sphere sitnated above
the horizon will correspond to the visible part of the heavens.
The stars sitnated in the equator B'BB" have their paths
bisected by the horizon, and are therefore as long above
as below it; those whose paths are further from the
elevated pole will be a shorter time above the horizon,
those which are nearer to it a longer time ; the duration
in every case being the same fraction of the whole dinrnal
period that the arc of the parallel above the horizon is of
the whole circumference of that parallel. Those stars whose
parallels are entirely above the horizon, and which conse-
quently never set, are called circumpolar stars.

The great circle HZPR which passes through the zenith
Z and the pole P is called the meridian of the observer.

The straight line HOR, in which the plane of the meri-
dian meets the plane of the horizon, is called the meridian
line, and the points K and H the north and south points.
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The horizontal line which is perpendicular to the north
and south line is called the east and west line, and its ex-
tremities the east and west points.
~ Since the meridian plane contains OP it will be per-
pendicular to the plane of the equator, and because it
contains OZ it will also be perpendicular to the plane of
the horizon, and therefore- B'B”, the intersection of these
planes, will be perpéndicular to the meridian plane, and will
coincide with the east and west line.

Hence theintersections of the equator and horizon determine
the east and west points.

Altitude, Azimuth, Zenith distance, Culmination. '

#13. Itis often necessary to describe the position which
a star or other heavenly body occupies at a given instant
on the observer’s celestial sphere. This may be done by
referring it to the meridian and horizon.

Let the figure represent the upper half of the observer’s
celestialsphere ; Z, Pthe z ’,
zenith and pole; HOR
the meridian line ; £, W

he east and west points.

very plane through 0Z
will be a vertical plane,
and its intersection with Z
the celestial sphere is T =
called a wvertical circle or, simply, a vertical.

Of these, the vertical which passes through the east and
west pdints, and is perpendicular to the meridian, is called
the prime vertical.

Let ZST be a vertical passing through a star S, whose
diurnal path is the circle ASMA'. It is obvious that the
position of the star will be known when we know the angle
MZS, between the meridian and the vertical, and the arc
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TS which measures the angle 708 between the star and
the horizon, ' :

The angle MZS, or -its equivalent the arc HT, is called
the azémuth, and is usually reckoned from the south towards
the east or west when the north pole is above the horizon,
and from the north in the other case.*

The other angle-FOS is called the altitude of the star.
The angle Z0S, the complement of the altitude, is called
the zenith distance, and may replace the altitude as one
of the coordinates of the star’s position.

_~14. The zenith distance diminishes as the star approaches
the ‘meridian ; for, if SP be joined by an arc of a great
circle, the spherical triangle ZSP will have the two sides
SP, PZ constant while the angle P diminishes, therefore
the third side ZS also diminishes, and the star attains its
greatest altitude in the meridian. It is then said to
culminate. Those stars which never set will cross the
meridian again below the pole, and have there their least
altitude. ’ v

The culmination of a celestial body is the instant of its
attaining its greatest altitude. In the case of a star this
coincides with -the meridian passage, but for a body whose
distance from the pole is changing the culmination may®
take place a little before or a little after, See Art, 215,

Declination and Right Ascension.

~» 15. The altitude and azimuth, which thus define the
position of a heavenly body, refer to one particular instant
and one particular place of observation. Not only are these
elements undergoing constant and rapid changes, owing
- to the diurnal motions, but they also differ, as we shall

* Sometimes the supplementary angle PZS is called the Azimuth, but all
ambiguity is avoided by specifying the point from which it is reckoned: thus
N. 80° E. iy the same as 8. 100° E,
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presently find, at the same instant, for observers at different
places. We may, however, by referring the places of the
heavenly bodies to the equator instead of the horizon, obtain
elements entirely independent of the observer’s position ;
and, as far as the fixed stars are concerned, nearly inde-
pendent of the time, their very slow change, to which we
shall have to refer hereafter, amounting to only a few
seconds of arc in the course of a year.

The declination of a star is its distance from the equator
measured by the arc of great circle which passes through
that star and the pole. This great circle is called the star’s ’
declination circle, and accompanies the star in its diurnal
course.

The declination is either north or south, according to .
the side of the celestial equator
on which the star is situated.

Thus if £Q be the celestial
equator, P the north pole,
P’ the south pole, A, B two
stars whose declination circles ¥
are PAaP', PbBP', then Aa,
Bb are the declinations of
these stars, the first being
north and the second south. 7

The polar distance is the complement of the declination,
therefore PA and PB are the north polar distances of the
two stars, the one being less, the other greater than 90°,

» 16. The right ascension of a star is the angle made
by its declination circle with that of some determinate point
in the celestial equator. It is measured hy the arc of
the equator intercepted between them, reckoned eastward
through 360°. '

Thus if M be the chosen point, P M P’ its declination circle,
then the right ascension of the stars 4 and B will be Ma, Mb
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respectively. The difference of right ascension will be
ab, which is independent of M.

Since the right ascension and declination of a star are
coordinates of its position at the time, a register of these,
together with their annual change, if any be found, will
enable us to identify a star once observed. Such a register
is called a Catalogue of Stars, and its correctness is of the
highest importance in Astronomy. The delicate instru-
ments and means of observation, which we shall have to
describe hereafter (Chaps. 1., 1v., v.), are especially intended
for the verification and extension of this register.

When very great accuracy is not required, the register
may bé a globe on which the circles corresponding to the
equator and the different declination circles and parallels
are traced at - certain intervals apart, and the stars are
marked on this globe in positions corresponding to those
they occupy in the celestial sphere.

Instead of a globe a plane surface may be used, on which
the positions are mapped according to certain rules of pro-
jection. This, though a less faithful representation of the
heavens than the globe, will be more convenient for many
purposes. .

Many of the stars have received particular names, but
their number precludes the possibility of doing this for afl
of them,—so the ancients very early divided them into

groups, or constellations, as they are called, to which they.

attached names, in some cases suggested by fanciful resem-
blances to figures of men and animals, but in others in a
very arbitrary and confusmg manner. The stars of each
constellation are named in order of brilliancy by letters of the
Greek Alphabet attached to them, as, a Tauri, 8 Orionis, &c.

" 'We must leave the particular declination circle, whence
the right ascensions are measured, to be chosen hereafter.
For reasons to be then explained, it will be convenient to
take it not passing through any particular star, but through
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a point which, though partaking of the general diurnal
motion, is really altering its position with respect to them,
although at a rate so slow that the whole amount of change
is only a few seconds annually.

. Sidereal Day, Sidereal Time, Hour Anylea

» 17. The uniform revolution of the whole system of stars
around the polar axis takes place from east to west, and
i8 accomplished in what is called a sidereal day. This
day is about 4 minutes shorter than an erdinary day, and
clocks adjusted to keep sidereal time are called sidereal
clocks. The whole day is divided into 24 hours, and the
sidereal clock reckons onward from 1.2.3.....t0 24.

The sidereal clock is so adjusted as to mark Oh. om. 0s.
when the selected point (Art. 16), from which the right
ascensions are reckoned, crosses the meridian of the observer.
This point is called the first point of Aries, so that the
correct definition of a sidercal day is “the interval between
two consecutive transits of the first point of Aries;” and
the sidereal time at any instant is “the number of sidereal
hours, minates, &c., since the last preceding transit of the
first point of Aries.” ;

It will be at once obvious that the different stars will
succeed each other across the meridian in the order of their
right ascension, and that, on account of the uniformity of
the motion, the right ascension of each star, when reduced
to time at the rate of 24 hours for 360°, or 1 hour for 15°,
will give the sidereal time when that star comes to the
meridian, /

18. The angle which the declination circle of a star
makes with the meridian, viz. the angle SPZ, is called the
hour angle.

. The hour angle SPZ and the polar distance SP may be
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employed as coordinates of
the star’s position on the
celestial sphere of the ob-
server instead of the altitude
and azimuth.

A knowledge of the hour ©
angle of a star will, on ac-
count of the uniform rate at
which it varies, at once give
the time the star will take to
reach the meridian if it be on the east side of it, or the
time elapsed since it crossed the meridian if it be on the
west side. : .

When a star i3 in the meridian one-half of its visible path
is accomplished. Thusif AMA' be the parallel described by
the star, 4, A’ being the points of rising and setting re-
spectively, HZPR the meridian, the two spherical triangles
APH, A'PH are right-angled at H, have the side PH
common, and PA=_PA’ since the star’s polar distance does
not change, therefore the hour angle APM at rising equals
the hour angle A'PM at setting.
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For the cq_nveniencg of refefence, most of the terms intro-
duced in this first chapter are here collected, and their
connection shown on a single figure.

- Observer’s celestial sphere.

O.. Observer. ...North point.

REHW...Horizon. ...South point.
Z...Zenith, ... Vertical of star.
S...Star. ...Prime vertical,
AMA'... Parallel of star. E...East point,
OP...Polar axis. W...West point.
P...North pole. EQW...Equator
HZR.. Meridian. PSK...Declination circle of star.
HR...Meridian line. Y...“ First point of Aries.”

The position S of a star at any instant may be determined
by either of the three following systems of coordinates, viz
(i) ST, the altitude (or 8Z, the zenith distance), and

- HT, the azimuth ;
(i) 8K, thedeclination (or SP,thenorth pola,rdlstance),a.nd
TK, the right ascension ; or
(iii) ~ SP, the north polar distance, and
SPZ, the hour-angle.
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CHAPTER 1L
THE EARTH,

19. We have already said that a change of inclination
of the polar axis to the horizontal plane will usnally ac-
company a change of the observer’s station. We shall
now enter more fully into the circumstances of these changes,
shewing how they are explained by the globular form of
the earth, and also in what manner they will enable us
to arrive at a knowledge of its size.

Axis of the Earth, Terrestrial Meridian, Equator.

, R0. Let the large sphere in the accompanying figure
tepresent the earth, C the centre, dand let 4 be the first
station of the observer, p’p the constant direction of the
polar axis, and the small sphere round A the observer’s
celestial sphere. * v

AP drawn parallel to p’p will determine the pole P, the
tangent plane HAR at A will determine the horizon, and:
the zenith Z will be found by producing C4 to meet the
observer’s celestial sphere.

Let HR be the meridian line, then PAR is the angular
elevation of the pole above the horizon, or the altitude of
the pole, and ZAP its zenith distance; and if we draw
the diameter. SCN of the earth parallel to p'p, the zenith
distance -of ‘the pole at A will also be measured by the
angle ACN. '

. Since the meridian plane at A4 contains 4P and passes
through C, it will contain the diameter SCV ; its intersection
c
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with the surface of the earth will therefore be the great
circle SAN.

, 21. Let the observer travel along this great circle towards
the elevated pole to some second station B.

The pole P being determined as before by means of a
parallel BP to p'p, and the vertical line CBZ giving the
new zenith Z, we see that the zenith has approached the
pole by an angle equal to the difference between ZAP and
ZBP, or between ACN and BCN, that is, by the angle
ACB. : :

By an observer ignorant of, or not attending to, the
curvature of the earth, the change would be attributed to
a motion of the pole which, carrying with it the parallels
of the stars, would seem to have moved towards the zenith
by that quantity. This way of considering the motion is
perfectly adequate to a mere description of the phenomenon,



CHAP, IL] THE, EARTH. 19

and, with this understanding, we shall occasionally make
use of it.

If we refer to the figure (p. 8) we shall see that the
effect of an approach of P to- Z will be that the parallels of
the stars will make a smaller angle with the horizon, the
number of circumpolar stars will increase, and some of those
which before remained a short time above the horizon will
now never be seen.

» 22, That diameter SN of the earth which is parallel
to the constant direction of the line about which the stars
revolve is called the awis of the earth, and the points N
and S the poles of the earth.

A terrestrial meridian is any great circle whose plane
‘passes through the axis of the earth.

This definition holds when we consider the earth as a sphere or as a figure
of revolution ; and in that case, the various stations 4, B, &c., along the curve
S ABN will obviously have their meridian planes coincident with the plane
SABN. But, supposing the earth not to be a figure of revolution, we shall give
the following definition: “ A terrestrial meridian is the locus of all points on
the surface which have their meridian planes parallel” The curve will not
necessarily be a plane curve,

The great circle QQ', whose plane is perpendicular to
the earth’s axis, is called the terrestrial equator, and all
small circles parallel to the equator as AA’' are called
parallels.

~ 23. Let the observer continue his journey along the
same meridian till he reaches the pole N. There Z and P
will coincide, and the diurnal paths of the stars will be
perpendicular to the vertical line, and therefore parallel to the
- horizon ; the horizon itself will coincide with the equator.
No star will ever rise or set, and the visible heavens will be
confined to those portions which are on the same side of

the equator as the elevated pole.
The observer has then what is sometimes called a parallel
Sphere, the different circumstances of which will be obvious

‘ c2
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from the examination of the
figure. There is mno definite
meridian, since the zenith
and pole coincide, or rather
every great circle through
the zenith is & “meridian. |-~
There . will be mno east or
west line, nor in fact any
other direction but south,
supposing N to be the north
pole.

»~ 24. Ifinstead of advancing from 4 (fig. p. 18) towards the
elévated pole, the observer travels in the exactly opposite
direction, a contrary effect will be produced,— the pole will
gradually recede from the zenith, and when the traveller
reaches the terrestrial equator at Q, the poles P, P’ will be
in the horizon, and the zenith will be a point of the celestial
equator. The parallels of z
the stars will all cut the
horizon at right angles and ' :
be bisected by it, so that I B
half their course will be / 8
above, and half below— # /
every part of the heavens i : / v
becoming = visible in each X : i
revolution. The sphere is 1
then called a right sphere. -

.~ 25, Continuing his journey in the same direction along
the meridian from Q towards S, the other pole will now
become the elevated pole, and the stars round it the cir-
cumpolar stars. The sequence of phenomena being precisely
the same as on the other side of the terrestrial equator, the
south pole gradually approaching the zenith, and the parallels
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of the stars about the north pole disappearing one aﬁ:er the
other below the horizon.

, 26. The observer has hitherto been supposed to move
along the same terrestrial meridian. Let us now take him
to a new station A' on a different meridian NA'Q'S, and
suppose A’ to be on the circle through A parallel to
the terrestrial equator.

The two radii CA4, CA’ make equal angles with the axis
of the earth, and therefore the zeniths of the two places
A, A, though having different directions in space, will be
equally distant from the pole of each observer’s celestial
sphere (Art. 20); but the phenomena of diurnal motion
depend on the altitude of the pole ; and consequently the
very same phenomena will be perceived at A" as at A4,
though not at the same time ; a star which passes through
the zenith of A will have passed through the zenith of A’
gsome time before, and through the zeniths of all places in
the parallel A'A in succession.
~ The horizons of the two places will also intercept different
parts of the heavens at the same instant, but the very same
portions will successively, and in the same order, present
themselves.

Magnitude of the Earth.

+ 21. We have seen (Art. 21) that the angle ACB sub-
tended by the arc AB of a meridian is equal to the difference
between the zenith distances of the pole at the two stations.
Hence, assuming the observer to have measured these zenith
distances, and also the distance travelled, he will know the
arc AB and the angle at the centre, and from these the
magnitude of the radins may be calculated.

Instead of the change of zenith distance of the pole he
may take the change of meridian zenith distance of any star ;
for, since the star’s angular distance from the pole is constant,
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the alteration in the meridian zenith distance of the former
will be equal to that of the latter.*

The length of the earth’s radius will by this means be
found to be something less than 4000 miles,

Latitude and Longitude.

+ 8. The different places on the surface of the earth are
distingnished from one another by their latitude and longitude.
The geographical latitude or simply the latitude is the
angle between the zenith and the celestial equator at the
place, or, which is the same thing, the angle between
the vertical line and the plane of the equator. Thus at
A (fig. p. 18) the latitude is the angle ZAE.

The geocentric latitude of a place is the angle subtended
at the centre of the earth by the arc of meridian intercepted
between the place and the equator. Thus AQ being the
meridian of A4, the geocentric latitude of A will be the
angle ACQ. .

Considering the earth as a sphere the angle ZAE will
be equal to the angle ACQ, and the geographical and
geocentric latitudes will be the same ; but the distinction
will be essential if we find the spherical shape not to be
the true one (see chap. xvI).

+ 29. Places on the equator Q@' have latitude 0°, and the
latitudes increase from 0° to 90° on each side of the equator,
being reckoned north or south, according as the place is
towards the north or south pole. The latitudes of two
places 4, A’ on the same parallel will be the same.

, 30. The angle PAZ, the complement of ZAE, is called
the co-latitude. '

* This method was employed by Hrastosthenes (230 B.C.), except that he used
the meridian zenith distance of the sun instead of that of a fixed star.
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It will be useful to remark that PAR, being the comple-
ment of PAZ, will be equal to ZAE ; that is, the elevation
of the pole above the horizon is equal to the latitude of the
place.

81. The longitude of a place is the angle made by its
meridian plane with some one fixed meridian plane arbitrarily
chosen, and is measured by the arc of equator intercepted
between these two meridians.

The longitudes are reckoned from the fixed meridian
through 180° on each side, one being east and the other
west.

The Phenomena of Diurnal Motion explained by a
Rotation of the Earth.

* 32. We have so far supposed that the motion of the stars
fs a real motion, and that the earth is the fixed stationary
body which it appears to us to be. We know, however,
that the appearances of motion are frequently deceptive, and
that it is often hard, when two things are in relative motion,
to determine whether either of them, and, if either, which
of them is absolutely at rest. Thus, when we are in a
railway carriage moving smoothly along, the houses and
trees appear to move in the opposite direction ; and it is
only our memory and our reason which tell us that it is we,
and not they, that move. But, on arriving at a
station whence other trains are departing, it 'is often difficult
to say, when looking at these from our own carriage, whether
we ourselves have stopped and the other trains have com-
menced moving, or whether the motion is entirely ours, or
partly ours and partly theirs.

» 33. Accordingly, let us now suppose the stars to be
stationary, and examine what kind of motion must be at-
tributed to the earth, in order that, on this hypothesis also,
the same appearances may be prodﬁced as we have already
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observed and recorded on the hypothesis of a stationary earth
and moving stars.

Suppose the earth to turn uniformly about its axis SN
from west to east, or in the
opposite direction to that of -
the diurnal motion of the Z P --------- - *\
stars ; and suppose it to accom- \JZ7X i
plish its revolution exactly in [ .. SgtX
that period which we found to @
be common to all the stars.

An observer at A will,
after a certain interval, be
carried to A'. His radins
CA' will make with CN the
same angle as before, and therefore the zenith of his celestial
sphere, determined by the prolongation of CA', will be at
a constant angular distance from the point found by drawing
A'P' parallel to CN. But A'P' will be in the meridian
plane NA'Q, which, turning with the earth, always passes
through the same places on its surface ; and therefore 4'P*
will not only always point to the same place in the heavens,
but will also retain a fixed direction relatively to the observer
and the terrestrial objects around him, :

This is exactly the phenomenon observed, and the points
of the celestial sphere determined by this fixed direction we
have called the celestial poles.

Again, the stars which were in the meridian plane NAQ
of the observer when he was at 4 will no longer be so when
he hag been carried to A’ ; but, on account of their immense
distance, they will all be found in a plane through A'P’
parallel to NAQ ; and they will therefore be on the west
of the observer’s present meridian plane, which has become
NA'Q, the angle between the meridian and the great circle
in which they lie being precisely the angle QCQ' through
which the earth itself has turned ; and, as we suppose the
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earth to turn uniformly, the stars will appear to move towards
the west at a rate which also is uniform.

34, Hence, whether we assume the stars to be in motion
as one connected system about an axis through the earth
at rest, or suppose the stars stationary and the earth to
revolve in the opposite direction with the same angular
velocity about this same axis, there is nothing in either
supposition inconsistent with the appearances presented, and
we have so far nothmg to guide us in our choice of the
* explanation.
~ If the stars move, their declination circles will, one after
the other, cross the meridian of the observer. If itis the
earth that moves, then the meridian plane of the observer,
carrying his zenith and horizon with it, will travel from
west to east across the stars, and coincide with each declina-
tion circle in turn, the zenith during revolution retaining
the same angular distance from the pole, and therefore
describing that small circle of the celestial sphere whose
declination equals the latitude of the place.

Although the solution of problems concerning the apparent
positions of the heavenly bodies will be correctly obtained
_on either supposition, and convenience alone need influence
our selection, we may proceed at once to shew which of
these two suppositions is the more probable.

Arquments in favour of the Earth’s Rotation.

85, 1°. If we suppose the earth to turn about its axis
in*24 hours, places at the equator will move through some-
thing like 25000 miles in that time, or about % of a mile
in a second. This velocity is great, but the other hypothesis
-will give to the stars, which we have reason to suppose to
be bodies of enormus magnitude compared with the earth, -
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velocities infinitely greater—velocities which can only be
reckoned by millions of miles in a second.

2°. The uniform period in which all the stars perform
their circnit is, as we have seen, easily explained if the earth
revolve ; but the stars must have some 7igid physical con-
nexion if the motion be theirs, as it is beyond the limits
of probability that an immense number of unconnected bodies
should all describe circles of various dimensions in exactly
the same time.

That the stars are not so connected is shown by what
are called double stars, which alter their relative position
as if revolving one round the other : moreover the sun, moon,
and planets partake of this general dlurnal motion and move.
independently of the stars.

Simplicity of explanation is therefore manifestly in favour
of the earth’s rotation.

3°. An argument may also be drawn from the shape of
the earth. Our rough measurements have told us that it
is spherical ; but & more exact determination will shew it
to be an oblate spheroid, whose equatorial diameter is some
261 miles longer than its polar diameter. This flattening at
the poles is just the kind of effect that would be produced
by rotation in a fluid, ar semi-fluid mass, such as the earth
is supposed to have originally been.

4°. The observations made on the sun and planets shew
that all these bodies, several of which are much larger than
the earth, have a motion of rotation about axes through
their centre,

Proofs of the Earth Rotation.

36. 5°. But we are not left to rely on probabilities only ;
proofs of the earth’s rotation can be obtained by direct
experiment,
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Let OA be a radius of a revolving sphere, B a point in
OA produced. Suppose a body
let fall from B to be attracted
towards O. The body will reach
the sphere at some point C, de-
scribing as it falls a curve BC,
because at B it has a velocity
of projection perpendicular to
O0B.

Let B’ be the point which
it would have reached, in the
same time, if not let fall. Join OB’ cutting the sphere in
A’ the new position of 4. Then, the force being central, and
the velocity and direction of motion the same at B for both
paths BB and BC, the area OBC will be equal to the area
OBB'; therefore C will fall beyond A'— the magnitnde of
A’ C depending on the height AB and on the angular velocity.

If then the earth be at rest, the vertical BA;as shewn
by & plumb line, is the direction which a falling body will
pursue ; but if there be any rotation of the earth from west
to east, the body will fall to the eastward of the foot 4
of the plumb line B'A".

The preceding investigation applies to an experiment
supposed to be made at the equator ; for we have assumed
the rotation to be about an axis perpendicular to the plane
OBB',

Let us next consider 4 a
place in north latitude, and let
the rotation: take place, as
indicated by the arrow, from
west to east. . -

A will describe the parallel
AA’, whereas the body Ilet
fall from B in OA produced
will be moving at right angles
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to the meridian plane NAH, and be acted on by a force
towards the centre of the earth; consequently its path
BC will be in the plane of the great circle MAC, which
touches the parallel in A. Therefore C should be, not
only east of A’ as before, but also south of it.

But BA and B'A’ will no longer be the directions of the
plumb line ; for the rotation about N¥O will cause the line
to diverge in the direction BP, south of BA, in such a
manner that the earth’s attraction and the tension of the
string acting on the plummet P may have a resultant per-
pendicular to NO.

If A be the latitude of the place,  the angular velocity
of the earth, 7 its radius, f the resultant acceleration,

S=ro® cos,

and if % be the height BP, and mg the tension of the string,
m being the mass of the plummet,

rhw’ 8in 2\

29

Now, let the meridian VA’ cut the great circle AC in Q, then
A'Q is approximately the southerly deviation of the falling
body ; and if ¢ be the time of falling, we have ANQ=wt.
Therefore, from the right-angled triangle NAQ,

-

AP=} sinABP=ﬁfs;n’” -

: tan—Nil.cotl—V—Q='coswt,
r r
. NQ-NA
gin ————
or _1—coswt
. NQ+NA ™ 1+4cosmt’
sm
r
sin———ji_Q ot
— t ated
Tman A 5
ro’t’

A'Q="——sin2\ approximately,

= AP, sincek =1 gt’,
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therefore, when B reaches B, the plummet P will be at Q3
that is, there will be no southerly deviation of the falling body
relatively to the actual vertical BP.

The resistance of the air has been neglected but when
this is taken into account the conclusion is still the same.*

If, on the one hand, the time of descent is increased which
would tend to make the body fall nearer the equator, the
impulses it receives from the particles of air, which are
describing circles about the axis, tend to bring it back towards
the pole, and one effect is found to counteract the other.

The easterly deviation measured by QC may be very
approximately obtained as follows : the area OBC described
by the falling body under the action of the central force
at O will be approximately equal to OBB'. Take away
the equals 404’ and A0Q, and we have

area BAA'B =Q0C+ ABC,
but the curve BC is approximately a parabola, therefore

h.AQ=%4r. QC+3%k.(4Q+QC),
2k
QC (5+%) =3-4¢
| ir.QC =1%krwt cos), néglecting % compared with 1,

QC =%hwt cos.

The experiments which have been made with the greatest
care by different persons all tend to confirm the results
here obtained, and the amounts of easterly deviation, though
small, agree closely with the theoretical values calculated
on the supposition that the earth revolves on its axis
once in 24 hours. In some of the experiments a small

* Vide La Place Méc, Cél, vol. 1. p. 98, and vol. 1L p. 104, Also The
‘Earth and its Mechanism, by H. Worms, FR.A.8,, F.G.8,, which contains a
full account of the various experimental proofs of the rotation of the-earth,

e e
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northerly and in others a small southerly deviation was
observed ; but these, like the small differences between
the observed and the calculated values of the easterly
deviation, are due to errors which cannot be avoided, such
as currents of air or slight vibrations of the ball when
set free.

37. 6°. Two experiments devised a few years ago by
Mons. Foucault are still more satisfactory, because the effects
are more observable. '

The first is known as the pendulum experiment, and may
be explained in the following manner : Assume the earth
to be in motion with an angular velocity () from west
to east ; and, first, suppose a pendulum suspended over
the mnorth pole of the earth and there made to oscillate.
There would be no force acting
on the pendulum out of the
plane of oscillation, and there-
fore that plane would retain
a fixed position in space; and,
the earth revolving under it
from west to east, the diffe-
rent meridians would, one

the plane of oscillation; the
apparent effect to a person :
at the pole, and not aware of his own motion, being a
gradual shifting of the plane of oscillation from east to
west ; a complete revolution being accomplished in one

day <EE) .
Next, Suppose the pendulum to be placed at the equator 3

the bob of the pendulum before the oscillations begin will
partake of the general motion of rotation round the axis

"of the earth parallel to the plane of the equator, and, in
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whatever direction the pen-

dulom be set in motion, there ¥ 8
is ‘nothing to cause a dis-
tarbance of the plane of os-
cillation relatively to  the
horizontal ~plane, since all
parts of the horizontal plane
in the immediate vicinity of I
the bob of the pendulum ;

will also have the same com-

mon velocity of rotation.

This will not be the case at a place off the equator,
because there those parts of the horizontal plane just under
the pendulum which are nearest to the pole will have
less velocity than those nearest the equator, and an apparent
motion of the plane of oscillation with respect to the plane L
of the meridian will be the consequence.

" Let A be a place in the north latitude A. The angular

velocity @ about the axis OP :
may be resolved into two;
the first w cos AOP, or wsin A
about OA, and the other
. @ cos POB about an axis OB
perpendicular to OA (Routh’s
Rigid Dynamics, p. 120).

Their effects may be con-
sidered separately ; the rota-
tion about OB will produce
no disturbance since 4 would ‘
be like a point in the equator with respect to that axis;
but the rotation about OA will have the same effect as
in the first case considered—that of a pendulum at the pole. -
The angular velocity being o sin A, the time of a complete

. . 27
revolution will be ———,
. @ sinM

but %:—r— is one day ; therefore
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the time will be 24 cosec A hours. In the latitade of Cam-
bridge this will be about 304 hours. '

Now a pendulum suspended _in this manner will not
oscillate long enough to make a complete circuit, but it
will do so during a sufficient time to emable us to verify
that there is a displacement of the plane of oscillation, and,
by a simple proportion, we can ascertain that if it con-
tinued at the same rate it would agree with the result
obtained.* ’

If the earth did not rotate we shounld have no means
of explaining this result.

38. The other experiment, imagined by Mons. Foucault,
is independent of the earth’s attraction.

If a body, symmetrical with respect to an axis through
its centre of gravity, be made to rotate about that axis,
the centre of gravity alone being supported and the axis
free to move in any manner round it, it may be shown
that no change will take place in the direction of the axis
in space, provided no force but gravity act upon the body
(Routh’s Rigid Dynamics).

By an ingenious contrivance, called a gyroscope, Mons.
Foucault obtained this permanent axis, and verffied that only
when parallel to the earth’s axis did it retain a permanent
direction with respect to surrounding objects. In all other
positions it moved just as the stars seem to move, and
would, in fact, if pointed towards any particular star, have
continued to point to this star during the whole time that
its rotation lasted. The stars therefore have permanent

* For the success of the experiment several precautions must be observed.
The pendulum must be as long as possible in order that the angle of vibration:
may be small, and the motion should originate by an impulse on the bob in:
the position of rest; for, if the motion is obtained by drawing the pendulum
out of the vertical, and when perfectly steady, setting it free, the projection of
the bob on the horizontal plane will be approximately a straight line, but
really an elongated ellipse, whose major axis, however, wonld have the east to
west displacement mentioned above.—(Quarterly Journal of Mathematics 1858.)
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directions in space, and thus we have another independent
proof that the apparent diurnal motion of the stars belongs
in redlity to the earth.

39. We shall, however, continue to speak of the rising
and setting of the heavenly bodies and of their crossing our
meridian, although we now know that strict astronomical
langnage would require us to say, in the one case, that the’
plané of the horizon is sinking below, or rising above, the
body ; and, in the other, that the plane of the meridian
is crossing it. But, as already stated in Art. 34, when
concerned with questions which involve only the apparent
directions, either supposition may be made use of,
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CHAPTER IIL
THE OBSERVATORY.

40. WE must interrupt our observations to explain the
construction and use of some of the instruments by means
of which the coordinates of the stars’ positions may be
ascertained with extreme precision. :

The ancient astronomers generally divided their instru-
ments to 10°, and although some observations are found
recording much smaller sub-divisions, they are not entitled
to much confidence. The latitude of Alexandria, as deter-

mined by Ptolemy, differs by about a quarter of a degree

from that which is given at present.* )

Tycho Brahé (1570), whose instruments and methods of
observation were greatly superior to those of former astro-
nomers, carried the division of some of his instruments to
every minute, and could still further estimate to 10", This
required instruments of a very large size, which conse-
quently became unwieldy and liable to derangement from
their weight. The precision besides was only apparent, for
the telescope was not yet known, and his only means of
pointing was by plain sights or projecting pinnules of metal,
having slits in them, through which the star was observed.
The uncertainty from this cause very far outweighed the
supposed accuracy of the division. It may be said, that
before the invention of the telescope the positions of the
stars could scarcely be asgcertained to within 5'.%

* Delambre, Astronomie Moderne, 1. 87.
+ Flamsteed found that the fixed stars in Tycho Brahé’s catologue were

generally were 5’ or 6 in error, and in some instances even more, (Baily’s Life of
Flamsteed, p. 125).

o
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41. The invention of the telescope (1609) did not at -
once get over the difficulty. The first telescopes made were
all on the principle of Galileo’s, and they offered no means
of fixing the direction of a star, since there is in them no
position where cross-wires could be placed so as to be seen
directly at the same time as the star.

The ' Astronomical telescope consisting of two convex
lenses was suggested by Kepler (1611), but Gascoigne (1640)
was the first to perceive its value in Astronomical observa~
tions. The common focus of the two lenses gave a place,
within the instrumient, where cross-wires of reference could
be fixed and seen distinctly with the celestial object. He
at once adapted telescopic sights to his instruments, and
was the first who did so with success, by the help of these
threads or wires, which enabled him to point the optical
axis of the telescope with the greatest nicety.

Improvements in the means of dividing snd graduating
the instruments have since then gone on at a pace commen-
surate with the requirements of Theoretical Astronomy, and
in the instruments now in use in all large observatories
the graduation is, by the aid of the micrometer (also an
invention of Gtascoigne’s) and of the microscope, estimated
to a fraction of a second.*

Clocks—The ¢ Balance’ Clock.

42. Another event which largely contributed to the
accuracy of observations, and was second in importance only
to the discovery of the telescope, wag the improvement
effected in the means of measuring time by the introduc-
tion of the pendulum as a regulator of clock mechanism.
The idea of employing the pendulum for this purpose was
'suggested by Galileo, who had remarked the apparent

* For a full and interesting account of the advance of practical astronomy, and
of the labours of those eminent men to whom its rapid progress in modern times
s due, see Grant's History of Physical Astronomy, p. 434, :
D2
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isochronism of the vibrations ; but Huyghens (1656) first
succeeded in constructing a clock on this principle.

The element of time had seldom been employed by any
observer, and by none with confidence ; the clocks previously
in use being liable to constant sources of irregularity.

43. The best form then known was the Balance clock,
constructed on the following principle: A cord wrapped
round a horizontal cylinder supported a heavy weight.- The
action of the weight tended to turn the cylinder, so that,
if not restrained, an accelerated motion would be produced.
But the cylinder was connected with a train of wheelwork
in such a manner that the last wheel, a vertical one, was
obliged to turn 60 times faster than the cylinder. To this
wheel, called a crown-wheel from its shape, was applied
the check or restraining power in the following manner :—
A vertical rod called a verge, placed in front of and nearly
in contact with the wheel, was moveable about pivots at
its extremities, and had two projecting pallets separated
by a distance equal to the diameter of the wheel. Firmly
fitted to the verge were two thin projecting arms carrying
small weights, forming with the verge a kind of cross which
was called the dalance. These arms were placed near the
top, so that when the verge turned upon its pivots they
passed clear of the wheel. The pallets were so placed
(their planes being 90° apart) that the highest tooth of the
wheel met the upper pallet and, in its effort to turn, pushed
it round, and with it the whole balance. As soon as the
highest tooth had passed, the lowest tooth found itself
opposed to the lower pallet, and the motion just before given
to the balance was thus checked and stopped. A reverse
motion now took place to allow this lowest taoth to pass,
when the upper pallet again came into play, and so on
alternately. Thus the wheel always turning the same way
gave the balance an oscillating motion, which moderated
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and regulated the velocity of the descending weight and of
the cylinder. The revolutions of the cylinder served to
measure time ; its axis projecting outside of the framework
was connected by other wheels and pinions, with hands
indicating hours and minutes on a clock face. By shifting
the weights along the cross arms of the balance, the rate
of the clock could be increased or diminished.

Fig. 1. shews a balance clock which was put up in the
palace of Charles V. of France, about the year 18%9, by
Henri de Vie, a Norman. The figure is taken from
Berthoud’s Histoire de la mesure du temps par les Horloges,
Paris, 1802 ; but all those parts of the figure which do
not refer to the action of the weight and balance have been
omitted. It will be seen that the balance B is suspended
by a cord M, in order to diminish the friction on the pivots.
P and Q are the two pallets on the verge PQ, forming

~with the crown-wheel A what is technically called the

escapement. The weight W acting upon the cylinder C turns
the wheel F of 64 teeth. This wheel acts upon the pinion
(¢ which has 8 leaves, and therefore makes 8 revolutions for
every one revolution of the cylinder. On the same axle
with G is fixed the wheel A, which therefore revolves at
the same rate as G. The wheel H has 60 teeth, and acts
upon the pinion K which has 8 leaves ; K therefore turns
7% times faster than M, or 60 times faster than the cylinder.
Now, if the weights s, s on the arms of the balance be so
adjusted, by trial, that the crown-wheel A, which is on the
same axle as K, may make one revolution exactly in a
minute, the cylinder will make one in an hour ; and the
axle D of the cylinder can be made to communicate this
motion by another train of wheelwork (not represented in
the figure) to the hour and minute hands of a clock face.

44, When the weight has run down, and it is necessary
to wind it up again, a simple artifice allows of this being

N
1739
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done without disturbing the hands or any of the wheels or
pinions which connect the cylinder with the crown-wheel.
The wheel F is rigidly attached to the axle D, but the
cylinder is not. A ratchet-wheel (not given in fig. 1, but
shewn in fig. 2) turning with the cylinder and rigidly attached
to it is in contact with F, and & click fastened to the face
of F catches in. the teeth of this wheel when the cylinder ig
turned by the action of the weight, thus producing motion
in the whole train. But when the clock is being. wound
up, and the cylinder is turned in the opposite direction, the
click slips over the teeth of the ratchet-wheel, and the
eylinder turns alone.

45. Ingeniqns as was this clock, there were several
defects in it which rendered it unfit for the delicate purposes

of Astronomy. In the first place, it is obvious that the least -

irregularity in the sige or position of the teeth of the wheel
which acted upon the pallets would allow some of them tq
slip by more rapidly than others, producing a corresponding
irregularity in the velocity of the descending weight. ' Again,
the rapidiﬁy with which the oscillations of the balance were
performed would depend upon the force with which the
wheel pressed against the pallets, and upon the distribution
of the mass of the balance relatively to its axis, This
latter was affected by every change of temperature ; and
the former, not anly by changes of temperature, but alsg
by the addition of the varying weight of the unwound
portion of the cord to the descending weight, however slight

the chord might be. Tycho had some of these clocks, but .

for the above reasons he never relied upon them as elements
of observations,

The Pendulum Clock.

46. Huyghens had the happy idea of substituting the
pendulum for the balance in such a manner that the down-
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ward motion of the weight was regulated by the isochronous®
oscillations of the pendulum. The mode of escapement was
the same as in the balance clock, but the verge with the
two pallets was horizontal, as also the wheel which acted
upon them, This will be easily understood from fig. 3,
which is taken from the same work as the former (some
parts being omitted as before).

The difference between the balance clock and that of
Huyghens seems slight, but it is essential. In the balance
clock the weight is the cause of, and, to a considerable
extent, commands the motion. In the pendulum clock the
weight has no longer the same influence ; the length of
the pendulum regulates the duration of the oscillations,
and any variation in the descending weight, or in the
action of the immediate wheels, may increase or diminish
the extent of the arc of oscillation, but has only a very
slight effect on its duration.

The weight, or some other source of power, is still neces-
sary however to turn the hands and wheels which measure
the time, and also to maintain the vibration of the pen-

* The oscillations of a rigid pendulum are not strietly isochronous, as waa
at first imagined by Galileo. Huyghens saw that in order to be so, the arc
described by the centre of oscillation must be a cycloid, and not an arc of a
circle, and his pendulum was constructed to preduce this effect. - The upper
part terminated in two threads, which during the oscillations wrapped upon
two cycloidal cheeks (as in fig. 4), and thus gave to the centre of oscillation
its cycloidal motion. (See Parkinson’s Mechanics). :

In practice, however, the cycloidal pendulum was not found to give resulis
80 satisfactory as had been expected :—the theory which shewed the oscillations
to be isochronous, contemplated a simple pendulum oscillating freely, and took
no account of the pressure which resulted from its necessary connection with
the escapement and ‘wheelwork. It was, therefore, soon rejected for the common
pendulum oscillating about a fixed axis. The oscillation of the latter would be
isochronous, if the arc described remained always the same; but it may be
shewn that the departure from isachronism will be inappreciable so long as the
oscillations do not extend beyond 2° or 3° on each side of the vertical; and
as a glight pressure or impulse is given to it each time to repair the loss of
motion due to friction, &c., this teuds to maintain the extent of oscillations
the same, and therefore to produce strict uniformity.

The cycloidal pendulum was altogether abandoned after the invention of the
anchor escapement described on p. 41, :
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dulum. This is done by causing the slight pressure on
the pallets to be transmitted to the pendulum by means of
the fork S, between the prongs of which, at 7, the pen-
dulum passes, and whose other extremity R is attached
to the verge PQ. Without this, the pendulum would,
sooner or later, be brought to rest by the resistance of the
atmosphere and by friction.

Instead of the cylinder, Huyghens substituted a pulley,
over which the cord passed, with a large weight on one
side and a small one on the other. The cord was hindered
from slipping by vcovering' the circumference of the pulley
with sharp projecting points.

47. We have seen how, in the balance clock, the weight
was wound up again without acting upon the train or
the hands. The same artifice will clearly apply to the
pendulum clock, but during the time of re-winding the
clock stops, and though the error would be unimportant
among the other irregularities of the balance clock, it could
not be overlooked in one intended for astronomical purposes,
To Huyghens is due the following simple means of winding
up the clock without interfering at all with its regular and
uniform progress :— )

Buppose V (fig. 5) te be the pulley of Huyghens” clock.
The cord passing over it, instead of being attached imme-
diately te the two weights, is an endless cord which passes:
‘under two smooth moveable pulleys from which the weights
are suspended, apd then over another pulley X fixed to the
framework of the clock. This last pulley is rough like the
first to hinder the cord from slipping. A click Z catches
‘into the teeth of a ratchet-wheel in the circumference of
the pulley X, so as to hinder it from turning in the direction
of the heavier weight, but allows motion in the opposite
direction,

When, by the slow and gradual turning of the pulley V,
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the weight W has descended, and requires to be again
drawn up, the hand must be applied ta the cord at . By
pulling downwards, the weight W will be raised, and w
Jowered, with little, if any, alteration in the tensions of the
strings on each side of V,* and therefore none whatever in
the going of the clock,

48. Among the numerous improvements which have been
" made in the construction of clocks since that time, we shall
only particularise a few of the more important.

The ¢ Anchor’ Escapement.

The anchor escapement, so called from its shape, is a
modification of the verge-and-pallet escapement, and was
substituted for it by Mr. William Clement, a clockmaker of
London, about 1680, though the celebrated Hooke claimed
to have invented it as early as 1666. '

Fig. 6 will explain the action of this escapement. The
verge AB is horizontal, and the fork S with its prongs T’
are attached to it, and act upon the pendulum just as in
Huyghens’ clock ; but the escapement wheel is vertical, and
the pallets P, Q are attached to a curved piece projecting from
the verge, and in the same plane with the escapement wheel,
of which it embraces a greater or less arc. With each
swing of the pendulum, one of the two pallets catches into
a tooth and stops the wheel ; then, on the return swing, the
tooth slips by and the wheel begins to turn, until stopped
by the palleﬁon the other side, and so on alternately. The
great advantage of this escapement was its requiring a
much smaller arc of oscillation in the pendulum, and there-
fore securing much better the isochronism of the oscillations.
(See note, p. 39), '

* Any slight alteration will be due to the want of uniform velocity in the
hand ; for instance, at the beginning and end of each pull.
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Compensating Pendulums.

49. The time of oscillation of the pendulum depends upon
its length ; it is obvious, therefore, that the expansions and
contractions due to heat and cold must interfere with its
uniform rate. Clocks will lose.in summer and gain in
winter. The amount of this loss or gain will vary with
the material of which the pendulum is composed, because
all substances have not the same expansibility ; but the irre-
gularity will exist in all. In Huyghens’ clock, U is & small
Weight; whigh, being moved along the pendulum, serves to
correct the rate of the clock.

Harrison’s gridiron-pendulum and Graham’s mercurial-
pendulum, both invented about the year 1726, are ingenious
and valuable means of counteracting the effect of changes of
temperature. They are compensating pendulums constructed
by taking advantage of the unequal expansions of different
substances, aud so arranging combinations of them as to
leave the distance from the centre of oscillation to the
centre of suspension unaltered at all temperatures, the pen-
dulum becoming thus self-adjusting.

50, The gridiron-pendulum consists of 5 steel and 4
brass rods, connected at top and bottom by cross pieces of
‘brass B, C, D, E, F, as in fig. 7, where the steel rods are
represented by dark lines,

The coefficients of expansion of steel and brass, ¢.e. the
quantities by which any length of these metals must be
multiplied in order to obtain the expansion for an increase
of temperature of 1° centigrade, are*

gteel 0000107912,
brass °0000187821,
‘or in the proportion of 4 to 7 very nearly,

Now, on an increase of temperature, the cross piece B

will be lowered by a quantity proportional to the length

e——

* Biot's Physique, Paris, 1824, vol. 1. p. 23 1.
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of the steel rod which connects it with the point of suspen~
gion A. C will descend by the same quantity, and, in
addition, that due to the lengthening of the steel rods from
B to C. Dis carried down with C, but the expansion of
the brass rods connecting them will bring D up again
through some space. The motion of £ downwards will be
the same as that of D, plus that due to the steel rods join-
ing them, and so on. '

The centre of the bob of the pendulum, which is
connected with 7 by a steel rod passing freely through the
cross pieges € and E, will therefore increase its distance
from A4 by a quantity equal to the expansion of the steel
rods, minus that of the brass rods. If,.therefor'e, the total
lengths of the steel rods and brass rods be as 7 : 4, or in
the inverse proportion of their expansibilities, the distance
between the'poi‘nt of suspension and the centre of oscillation
will remgin ﬁnchanged.* '

51. In Graham’s mercurial-pendulum (fig, 8),f a glass
cylinder containing mercury is suspended by a steel rod,
which supports the bottom of the cylinder. '

The coefficients of linear expansion for 1° centigrade are

mercury 0000600601 =1m,
glass *0000087572 =g¢.
Therefore the coefficient of expansion of mercury in a glass
tube is ‘
8m — 29 ="0001626659,
and that of steel is *0000107912,

* The centre of the boh is not necessarily, nor generally, the centre of
oscillation ; but in a seconds-pendulum, when the bob is heavy and the rods
light, the distance between them will be small and sensibly constant.

t For an accqunt of Graham’s invention, see Phil. Trans. 1726. See also
Routh's Rigid Dyngmics, 2nd Edition, p. 70, where a strict investigation is
given of the relative dimensions of the parts of a Graham’s pendulum, when
the mercury is enclosed in a cast-iron cylindrical jar, into the top of which
an iron rod is screwed.
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These are in the ratio of 15 to 1 nearly, therefore if the
cylinder of mercury have about % the length of the rod,
and a sufficient diameter to bring the centre of oscillation
near the middle of the mass of mercury, the fall of the
centre due to any expansion of the steel rod will be counter-
acted by its rise due to the expansion of the mercury.

52. In the gridiron and mercurial pendulums, the dura-
tion of an oscillation is made greater or less by moving the
bob in the one or the cylinder in the other by means of
screws which connect them with the rod ; but as they may
both be over-compensated or under-compensated for changes
of temperature, Graham’s will have an advantage over
the other, because it admits of easy correction, which the
astronomer himself can perform by merely withdrawing on
adding more mercury.

Conical Pendulum, Spring Governor.

53. It will be obvious that the motion of the hands
produced by the successive beats of the pendulum is inter-
mittent, the advance being by jerks and starts. The exact
termination of each second is well marked by the beat (sup-
posing the pendulum to be a seconds-pendulum), but the
subdivisions of the seconds can only be obtained by estima-~
tion. The perfection to which Astronomy has now attained
requires that even these fractions of a second should be
given accurately.

" To obtain a continnous uniform motion, Huyghens
suggested the use of a conical pendulum,* but it is only within
the last few years that it has taken a practical form. The
Astronomer Royal employs the rotation of a large conical
pendulum to govern the motion of a clock. The inclination
of the pendulum to the vertical soon adjusts itself, so that

* Horologium Oscillatorium, p. 157,
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the resistance of the air and the friction of suspension are
exactly balanced by the force which maintains the motion.
A motion without jerks and sensibly uniform is the result.*

A few years earlier (1849), the Messrs. Bond, in America,
invented the Spring Governor, “consisting of a train of
clock-work connected with the axis of a fly wheel. It has
an escapement wheel, into the teeth of which pallets play
by the oscillation of a pendulum, as in ordinary clocks, the
wheel being so connected with its axis by a spring as to
allow the axis to move while the wheel is detained by the
pallets.”t The contrivance produces continuous and very
approximately uniform rotation of the axis.

* For a detailed description, see Appendix to Greenwich Observations, 1856,
+ Loomis’ Practical Astronomy, p. 79.
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CHAPTER 1V.

THE OBSERVATORY CONTINUED.

The Transit Instrument.

» 54. THE transit instrument is one of the most important
in an observatory. Its object is to determine the precise

V"'l! -]

| | [ [
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instant at which a celestial body crosses the meridian, and
for this purpose it consists of & telescope moveable about
a fized horizontal transverse axis of rotation. This axis
points east and west, and the optical axis of the telescope
is at right angles to it. As the whole instrument turns the
optical axis never deviates from the plane of the meridian,
and may be directed towards any point in it.

The fixed axis of rotation is obtained by having a strong
tubular piece of metal whose ends terminate in cylindrical
pivots exactly equal in size resting in sockets. These sockets,
called ¥s from their shape, are firmly fastened to two stone
‘piers ; but, for the purposes of adjustment, the one admits
of a small vertical and the other of a small horizontal
motion by means of fine screws. The geometrical axis of
the two pivots is the fixed axis of rotation, and the frame-
work of the telescope projects on each side from the middle
part of the hollow tube.

In order to diminish the friction and wear of the Y3,
the weight of the instrument is almost wholly counterpoised
by two weights (see the figure) acting on levers over the
piers, care being taken that sufficient weight remains on
the Y8 to ensure that the direction of the axis shall be
determined by them.

The telescope used is an astronomical telescope, with
an achromatic object-glass and a Ramsden’s eye-piece. In
the focus of the object-glass is placed

a frame-work carrying, at equal in- d N
tervals, five or seven spider lines or \
wires in vertical directions, intersected 3
by two horizontal lines, between /
which the - star is observed. The d L/

frame-work admits of various small

motions for the sake of adjustment.

 To render the lines visible at night, the light of a lamp
placed on one of the piers is admitted through the hollow
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pivot, and directed to them by an elliptic ring reflector
placed diagenally at the junction of the axis and telescope.
The quantity of light admitted may be regulated by a
moveable plate, which enlarges or diminishes the aperture.
A Dbright field and dark lines will thus be obtained ; but
when very faint stars have to be observed, it will be
better to illuminate the lines and leave the field dark,
which may be done by means of a small lamp fitted to an
aperture in the telescope tube between the lines and the
eye-piece. ’

The eye-piece used is the positive or Ramsden’s.* This
has the advantage, that it may be changed for one of a
different power without disturbing the wires, which, being
situated beyond the field glass, are entirely separate from
the eye-piece. And the field glass, being plano-convex,
offers a flat surface to the image, so that the wires and all
parts of the field of view are distinet at the same adjust-
ment.

, 55. The object of having several vertical wires is to
seécure greater accuracy in the observation. We may always
expect a slight error in estimating the exact instant, as
shewn by the clock, when a star appears to pass behind
any one of the wires ; but, by noting the times across each
of the seven wires, and taking the mean, we obtain the
time over an imaginary wire nearly, if not exactly, coin~
cident with the middle one, and called the mean of the
wires. As the error of estimation across the different wires
is likely to be in excess for some and in defect for others,
the probable error of the mean will be much less than the
error of any single wire. )

The line of collimation is the straight line joining the
centre of the object glass, with the point of this imaginary
vertical wire mjdway between the two horizontal ones.

* See Parkinson’s Optics,
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56. Supposing the instrument perfect both in construction
#nd in adjustment, the line of collimation will be at right
angles to the east and west line about which the instrument
rotates, and will exactly describe the plane of the meridian ;
so that at the instant when any star or other object is on the
mean wire it will be crossing the meridiani The manmer
of the observation is as follows :—As soon as the star
enters the field of view, the observer writes down the hour
and minute shewn by the clock; then, taking & second
from the elock face and following the beats, he notes the
instant when the star appears on the first wire, writes it
down, and, continuing the reckoning, does the same for each
of the seven wirés. The mean will be the time of transit as
shewn by the clock. If the star is not on one of the wires
exactly at a beat of the clock, the observer must judge of
the distances of the wire from the positions of the star, one
on each side, when two successive beats are heard, and thus
estimate the fraction of & second. A practised observer
will estimate to tenths.

Of late years & method of observmg has been employed
by the Anderican astronomers, and is coming into general use;
" by which the instant of crossing each wire is mote accurately

determined : A cylinderordrum, covered with a sheet of paper,
is made to revolve about its axis with a uniform and jerkless
motion, by connecting it with clock-work having either a
conical pendulum or a spring governor for its regulator
.(Art. 53). At the begiiming of every second, .the clock
interrupts an electric circuit, and a corresponding dot or
niark is made on the paper. The cylinder hias a slow motion:
in direction of its length, so that the marks made, which are
. generally about an inch apart, arrange themselves without
confusion in a spiral curve on the paper. 'When the instant
arrives which the observer wishes to record, he presses a-
button near his hand, and an instantaneous mark is made:
on the paper, which, by its. position relatively to the adjacent
E.
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seconds’ marks, enables him to measure the fraction with
very great accuracy. As the mark made is a permanent
record of the observation, the measures need not be taken
till after the observation is wholly ceneluded ; the observer
has therefore not to interrupt himself in order to write
down the seconds and fractions ; thus the wires may be
much closer to one another and the whole observation
take less time. The observation of transits of two stars
which 'happen to be in the field together can even be
carried on without additional difficulty and without con-
fusion.*

» 57. The foregoing description of the transit instrument
shews that to be in perfect adjustment it must satisfy the
following conditions :

1st. The line of collimation must be perpendicular to the
geometrical axis about which the instrument revolves.

2nd. This geometrical axis must be exactly horizontal.

3rd. It must point accurately east and west.

By satisfying the first condition the line of collimation
describes a great circle ; the second makes this great circle:
vertical, therefore passing through the zenith ; and the third

_ ensures its passing also through the pole and therefore coin-

ciding ‘with the meridian.

‘When these adjustments are not perfect, which is seldom,
if ever, the case, there will be consequent errors called
respectively collimation, level, and deviation errors. It
is useless attempting to get rid of these errors alto-
gether ; they must be reduced as much as possible by
mechanical means as described below, and the residual
uncorrected errors must be carefully determined so that
their effect on the. observations may be calculated and
allowed for. ‘

_ * For a complete description of the process, see Loomis’ Practical Astronomy,
P Y
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Collimation Error (Mechanical Correction).

58. Place a-graduated scale horizontally, at a long
4ﬁsta‘,n69 off, in such a position that the telescope may be
directed upon it ; and, when it is fixed there, note the reading
intercepted by the middle wire. Then lift the telescope
carefully from its bearings and replace it with the axis
reversed, the left pivot being now in the right ¥ and the right
pivot in the left Y.

Direct again to the scale, and if the reading shewn by
the middle wire be the same as before, the adjustment is
correct ; if not, move the wires by the serews provided for
the purpose, until the reading opposite the middle wire is
the mean between the two previous ones. The error will
now probably be corrected, but to verify it, repeat the
operation by reversing the axis as before, and correct again
if necessary until in both positions the same reading of the
distant scale is obtained.

If the middle wire and the imaginary mean wire are not
coincident there will still be collimation error ; therefore all
that must be attempted in the previous adjustment is as
close an agreement as can be obtained without too much
tampering with the screws. The collimation error of each
of the wires, and thence of the mean wire, must be determined

- and allowed for afterwards. (See Arts. 74 and 80).

Level Error (Mechanical Correction).

, 59. “To make the next correction Wwe require & spirit level
of sufficient length to reach from one extremity of the axis
to the other, and furnished with legs terminating in inverted
¥s to ride on the cylindrical pivots.

The tube of the spirit level is a small arc of a circular

ring of very large radius placed with its convex side upper-

most in & brass framework. It is nearly filled with spirits
of wine or other quick fluid, a vacant space (called the bubble)
E2
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being left, which, owing to the gravitation of the liquid,

always occupies the highest part of the tube. A graduated
scale attached to the tube allows us to ascertain the position
of the bubble.

60. Place the level on the pivots, and read the gradua-
tions at each end of the bubble. Half the sum of these
readings, supposing the zero to be at one end of the scale,
will give the graduation at the middle. Now reverse the
level, i.e. place the east end on the west pivot, and the
west end on the east pivot; then, if the middle of the
bubble settles to the same pesition as before, the axis is
horizontal. If not, raise or depress that end of the axis which
admits of vertical motion, until the middle of the bubble
occupies the point midway between its two former positions.

- The axis will then be herizontal ; but, to ensure accuracy,

the operation should be repeated. (See Arts. 73 and 79).
Deviation Error (Mechanical Correction).

~61. Supposing the errors of collimation and level to have
been corrected, the line of collimation will describe a vertical
circle, and the remaining error—that of deviation—will be:
detected as follows: Note the times marked by the elock
when a circumpolar star passes the mean vertical wire,
first above the pole, then, some twelve hours later, below
the pole, and again above the pole after another such interval.
If the two intervals are exactly equal the line of collimation
describes a vertical plane which bisects the path of the star,

T A Y g e
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and therefore coincides with the meridian plane ; but if not,
it deviates from that direction, and the vertical circle which
it traces out does not pass thromgh the pole. The error
is corrected by means of the screw which gives a horizontal
motion to one end of the axis.

.~62. This method would not be available at places near
‘the equator ; the few stars which would be circumpolar stars
there would, in their lower transit, pass too near the horizon
to be observable. A method, which will apply in all cases,
will be given below. (Art. 77).
Setting Circles.

..63. A small graduated circle is attached vertically to one
gide of the telescope tube near the observer’s end, and has
a moveable diameter which carries a spirit level. This is
called the setting circle, and its use is to bring the telescope
rapidly to point to that part of the meridian where a star of
known declination is about to cross. The moveable diameter
is previously adjusted to the given declination on the
graduated rim, then the motion of the transit about its axis,
which is necessary to bring the bubble to the middle of the
level, will just point the telescope to a star which has the
given declination.

Sometimes there are two setting circles, one on each side
of the telescope tube ; and more, if thought necessary, might
be 50 attached, but two are generally found sufficient. They
are useful when it is requisite to take observations of two
objects which follow one another rapidly, but differ con-
siderably in declination.,

Collimating Telescopes.

_64. It was formerly considered essential in every obser-
vatory to have a distant meridian mark fixed due south of
the transit, to verify its adjustments at any time.
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The Observatory of Cambridge was built so that the
transit instrument might be due north of the tower of
Grantchester church, which happened to be in the required
direction, and between two and three miles distant.

The necessity for a distant mark is now dispensed with
by the following contrivance : The transit being perfectly
adjusted, a small telescope, having cross wires at its focus,
is fixed in a permanent position either to the north or south
of the transit, at any convenient distance, and in such a
position that, looking into its object glass through the transit
telescope, we may see the cross (which must admit of being
illuminated for the purpose) in exact coincidence with the
middle wire of the transit. The rays from the cross wires
will emerge from the small telescope in parallel directions,
and, falling upon the object glass of the transit, will answer
the purpose of a permanent mark at an infinite distance.

65. By using two such fixed telescopes, one on the north,
the other on the south side, the adjustment for collimation
may be made without the troublesome operation of reversing
the transit, provided the two collimators be so placed that
each may look into the other as well as into the transit.
To ensure their doing so, without removing the transit
from its supports, it must be turned to point to the zenith,
and through two openings or doors managed in the sides of
the tube, the one collimator may be adjusted on the other.

Then if the transit, after being adjusted on the south
collimator, be turned towards the north one and found to
be in adjustment with it also, the line of collimation will be
at right angles to the axis of rotation.

Collimating Eye-picce.
, 66. When the level error has been corrected, the colli-
matmn adjustment may be very simply and accurately made,

by pointing the telescope vertically downwards to a vessel
of mercury placed below it. The rays from any point of
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the wires will proceed in parallel directions trom the object
glass, and, after reflexion at the horizontal surface of the
mercury, will return to the object glass in parallel directions,
making with the vertical, on the other side of it, the same
angle as before. An inverted image of the system of wires
is thus formed at the focus, and when the middle of the mean
wire coincides with its image, there is no collimation error.
(See Art. 74).
In order to see the wires, an
eye-piece is used called the col- T
limating eye-piece, which has i é
a lateral opening between the
two lenses. Through this open- 1
ing, light is introduced and re-
flected towards the wires, whose
~dark side being towards the
mercury, the real wires will be
seen bright, and their reflection
dark. The light is reflected
towards the wires by means of
an elliptic ring reflector, or by
a piece of plate glass which,
without interfering with the
direct vision, reflects sufficient
light to render the wire visible.

y

Reduction of Observations to the Mean Wire.

, 67. We have said that five or seven vertical wires are
used, and the mean of the times taken for the time of
transit. A passing cloud or other accidental circumstance
may cause us to miss the star at the moment of its passage
across some of the wires, but the observation will not be
lost if the transit across one or more of the wires is secured,
provided the time be known which the star would take to
~ pass from each wire to the imaginary mean.
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This interval will not be the same for all stars, those
near the equator moving more rapidly than those near the
pole ; but there will be a simple connection between them,
80 that when the equatorial intervals are known, those for a
star of given declination will be readily obtained and may
be tabulated for use,

. 68. A star, its image, and the centre of the object glass, are
alyays in a straight line ; henge, as 4 star moves, the straight
line joining it with the centre of the object glass traces out,
by its intersection with the plane of the wires, the path
of the image across the field of view. Now, considering
the centre of the object glass as the vertex of the cones in
fig., p. 8, we see that for a star in the equator this path will
be a straight line, but for all others it will be an arc of &
circle having its concavity towards or from the north pole,
according as the declination of the star is north or south.

The telescope being an inverting one, let a, &, a’,
repregent the .apparent path of a
star crossing the meridian between
the zenith and the equator. The
arrow indicates the direction of motion
in north latitudes. Let a be the point
of intersection of the horizontal ama' ,
with the wire whose interval is required, » being the
Inean wire. ’ ) ' ’

Let 4, M, A be points
of the celestial sphere corre-
gponding {o @, m, a'. P

AMA" will be on a great [
circle perpendicular to the me- {
ridian PM, and the interval
required is the same fraction
of 24 hours that the angle
APM is of 360°,
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The right-angled triangle APM gives
sin AM =sin AP M sin PA ;
but AM depending on am is constant for all positions of the
telescope, and for a star in the equator sin PA =1; therefore
AM is the equatorial value of APM, that is AM is the
equatorial interval of that wire, Call it w, then
sinw=sin 4PM cosd

will give the value of APM when w is known,

When the star is on, or within a couple of degrees of,
the equator, cos 8 will be very nearly 1, and APM=w.

Except for stars near the pole, w and APM will be
both small, so that

w=APM cos § nearly.

, 89. To determine w: Observe the times of transit of
Py star of known declination 8 across each of the wires, and
take the mean. From this mean substract the time of crossing
‘the first wire ; this will give the angle AP M corresponding
to that wire, whence, by the above formula, the value of
w may be calculated. In the same manner determine
w,, Wy...w,, for the second, third, &c., wires. Those which
precede the mean are pos1t1ve, the others negative, and their
pum is obviously zero.
 Delambre (4st. vol. L, p. 416)* seemed to give the pre-
ference to stars on, or near, the equator ; but, in order that
an error in the observation of APM may have the less
influence on the value of w, it is usual to select a star near
the pole ; for, although the probable error in the observed
value of APM increases with the declination, on account

* Toutes les étoiles peuvent ainsi servir & déterminer intervalle équatorial ;
ie plus court est &’y employer les étoiles dans l'equateur, qui n'exigent aucun
calcul. Un gu deux degrés de déclinaison n’apportent aucune différence sensible.
Quelques Astronomes ont cru qu'il y avait de 'avantage & choisir les étoiles cir-
compolaires, parce gu'elles se meuvent beaucoup plus lentement, mais l'avantage
que procure cette lenteur est plus que détruit par Vincertitude de 'observation.
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of the more oblique and more sluggish motion of the star
across the wire ; yet, except for stars quite close to the pole,
this increase will be more than counterbalanced by the
advantage of a decrease in the cosine of the declination.

» 70. The equatorial intervals of the wires having been
determined as above from the mean of a large number of
observations on different stars, we shall proceed to shew
how they may be applied to the correction of an imperfect
observation. Suppose a star observed at the second, fifth,
sixth, and seventh wires at the times ¢, ¢, ¢, ¢. The
estimated time across the mean wire will, by adding the
corresponding APM to each, be

¢, +w, secd from the first wire observed,

b+, 856C8 cevunrins 8ECONA Lreniiniiiinnsy

f,+ 2w, 8600 vuueeene. third ....coevieiinns,

t,+w,8eC8 ceuunennn fourth ........ verrens
adding and dividing by the number of wires, we obtain
for the time of transit » '

tz+t51'ts+t7+wz+w51'ws+wysecs,

i.c. multiply the algebraical mean of the equatorial intervals,
corresponding to the wires observed, by the secant of the
declination ; the product will be the additive correction to
be applied to the mean of the times.

Determination and Ejfect of Residual Errors.

71. The errors of collimation, level, and deviation, having
been almost completely corrected by some of the mechanical
methods indicated in the preceding pages, we will now pro-
ceed to indicate the means of determining and allowing for
the small residual errors ; but as the angles we shall have
to consider are extremely small, we shall first explain the
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means employed for measuring such small angles with great
accuracy,

Spider Line Micrometer.

72. The instrument of greatest value for this purpose
is the spider line micrometer. It consists of a small rect-
angular frame-work, about three or four inches in length,
by one inch in breadth, carrying a wire or spider line, which
can be moved by means of a screw. The frame-work is
placed at the common focus of the object glass and eye-piece
of the telescope go that the spider line may be almost i in
contact with the fixed wires,

The threads of the screw should be perfectly uniform and

\ —\
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regular, so that each turn of the screw—head may carry the
gpider line over an equal space.

The value of one turn of the screw, i.e. the angle, sub-
tended at the centre of the object glass, by the distance
through which the line is shifted, can be measured by the
method explained for determining the equatorial intervals
of the wires (Art. 69). Make the spider line coincide with -
one of the wires, then separate them by one or more turns
of the screw-head, and divide the corresponding equatorial
interval by the number of turns.

In this way also may the regularity of the screw be
tested throughout, the head being divided into sixty or one
hundred parts to indicate the advance of the thread corre-
sponding to the sixtieth or hundredth part of a revolution.

- In order to check the number of turns, a row of teeth
or notches, called a comb, is visible at one side of the field
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of view. The line passes one of these at each revolution
of the screw-head, and every fifth one is cut deeper than
the others. The central one of all is distinguished by a
small circular aperture.*

Determination of Uncorrected Level Error.

73. In the description of the spirit level (Art. 59) we
said that a graduated scale is attached to the tube. If we
raise or lower one end of the tube, the bubble will move
along the scale, and the change of inclination corresponding
to each division may be easily determined experimentally,
and expressed in parts of a second.t

If we place the level on the pivots and take the reading
of each end of the bubble, then half the algebraic sum of
the readings will be that of the highest point.

Let A, B (fig. 1) be the two pivots, MN the bubble, P
its middle point, O the
zero of the scale, S the ZFig. 7
point corresponding to Oat o
the other end of the scale
(o that OS is parallel
to AB).

If A and B were on
the same level, P would
occupy the middle point of
OS. The inclination will
therefore be measured by
the difference between OP and 3 OS.

To determine OS, turn the level so that the east end
may be over the west pivot, and west end over the east

e cmmvemsarmemmeam o=

* Sometimes two parallel wires are used, each moveable by its own screw .
For a description of the method of using these, see Chauvenet's Astronomy, and
Loomis’ Practical Astronomy.

+ The simplest way of doing this, is by attaching the level to a mural circle:
The angle through which the level turns, as the bubble passes from one graduation
to the next, is at once given by the mural.
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pivot, as in fig. 2; S and O interchange places, and the
“middle of the bubble being at P’, the mean reading will
now give OP', which is equal to SP of fig. 1.

Let OP, or a be the reading of P in the first position,

OP', OF & wcvuevniceniiniennes P veeere8€CODdarennines }

‘therefore OS=a+4; and the inclination of AB to the
horizontal, that is the level error, is « (OP ~3058), that is
a (a—b), where a is the value in seconds of each division of
the scale.*

Determination of Uncorrected Collimation Error.

74. Apply the collimating eye-piece and the micrometer
to the transit. Then, turning the telescope vertically dowus=
wards to a trough of mercury, as described in Art. 66,
measure the angular distance between each wire and its
image. One half of this angle will be the inclination to
the vertical of the line which joins the wire with the centre
of the object glass.

Correct this for any level error there may be, and the
result will be the collimation error of the wire in question ;
that is, the angle which the line joining the wire with the
centre of the object glass makes with the line at right angles
to the axis of rotation.

Correct this again for the interval in seconds of arc
between this wire and the mean of the séven (Art. 69). This
will give a value of the collimation error of the mean wire.

Repeat the operation on each wire and take the mean of
the result for the collimation error of the transit.

75. If the level error be not allowed for, the preceding
result will be the swm or difference of collimation and level
errors. But if the transit be lifted off its ¥'s and reversed,

* The figure supposes O, the zero of the scale, to be near one end of the
instrument, and therefore S near the other. If O were at, or near, the middle, and
0 and 8 on the same side-of P, QS would be a— & and the level error ja (a+8).
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and the observation repeated, the second result will be the
difference or sum of the same two errors. and both errors
may thus be determined.

Determination of the Uncorrected Deviation Error.

76. First Method. By a known ecircumpolar star ob-
served above and below the pole.

Suppose the level and collimation errors to be known
and allowed for, as also the rate of the clock, then the upper
and lower transits should be separated by an interval of
twelve sidereal hours exactly (Art. 61). ~ ‘

When this is not the case the instrument does not trace
out the meridian.

Let ZD P H be the meridian,

ZBAH the vertical in which the transit moves,

CABD the small circle described by a star, 4 and B
being its positions at the in-~
stants of apparent lower and
upper transits.

Let # be the deviation
_ error AZP, A the known polar
distance PB of the star, ¢ the
known latitude PH of the
place, and 180°— @ the observed
sidereal interval BPA.

From P let fall PM per-
pendicular on ZBA. The triangle BPM gives

tan PM = cos BPMtan BP =gin g tan A.
The triangle ZPM gives
sin PM=sin ZP sin PZM = cos ¢ sinz,
and since z, 6, and P are small,

a:=PMsec¢=gtanA sec . »
This method can only be employed with advantage in
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the winter, because an interval of 12 hours must elapse
between the two observations; and a star must be chosen
which culminates about 6 o’clock in the evening in order
to be still visible at the next transit. At places near the
equator the method fails, as the few circumpolar stars are
too near the horizon to be observable at their lower transit ;
and besides, the length of the night, which varies very
little during the year, will be found, when diminished by
the duration of morning and evening twilight, seldom to
leave more than 10} or 11 hours during which the stars -
may, be seen.

. Second Method. By Transits of two known Stars.

Let A’B’ZP be the meridian,

ZNM the great circle described by the transit,

z the deviation error 4’ZM,
A, A’ the polar distances of two known stars 4 and B ;
AMA’, BNB’ their parallels.

From its present position the star A will reach the
apparent meridian ZNM in a
time measured by the angle
APM ; the star B will take
s time measured by BPN.
The difference between these,
that is, APB + MPN mea-
sures the time that -elapses
between the crossings of the
two stars over the mean wire
of the transit. But if the
instrument were in perfect adjustment the interval would
be APB, which'is the known difference of their right as-
censions. . :

Let 6 be the excess NP M of the observed over the known

true interval, ,
¢ =known latitude = 90° — ZP.
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The triangle ZPM gives
cot PMsin PZ= cotZsinP +cos PZ cos P,
cot A cos¢p =—cotx sinP + sin ¢ cos P,

but 2 and P are both small ; therefore
P=x{sing —cotA cosd}....cevrenven. (1),
So the triangle ZP.N gives
P —@=ux {sing —cotA’ cosp} ;
therefore 6=z {cot A"—cot A} cos ¢,

__ @sinAsgina’
Tcospsin(a—a’)’

78. In selecting stars for observation by this method,
which is always applicable, it will be desirable to take two
whose right ascensions are not widely different ; because
the time between the two transits being short, the chance
of érror in the observed values of 8, so far as it is due to
any irregularity of the clock, will be diminished. Again,
the larger § is, the less will an error in its value affect the
value of x ; but 6 varies as eot A'—cot A, therefore the two
stars should differ considerably in declination.

Corrections to be Applied to the Observed Time of Transit.

* +#79. Let u, v, z be the values of the uneorrected errors
of level, collimation, and deviation respectively, determined
by some of the preceding methods. We will now calculate
their effects on the time of transit of a star ; and in doing
this, we may suppose them to exist separately, the aggregate
correction being the sum of the partial corrections when the
errors are small.

Effect of Uncorrected Level Error.

Let RZP be the meridian, and
RAH the great circle traced out by the transit,
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« the level angle or error at R between the two circles,
A the polar distance of a star seen in the transit at 4,
3 the latitude = 90° — PZ,
6, the error APZ in the time of transm
The triangle PAR gives
cot PA sin PR
=ecot R sin P +cos PR cos P,

or cot A sin¢=%—cos¢,

gin (A + ¢
o=u 2 lrd,
This being the correction
to be added to the observed
time of transit, we see that % must be considered positive
when the western pivot is too high, and negative when too
lIow. For a transit below the pole the reverse would be

the case.

Efféct of Uncorrected Collimation Error.

.~ 80. Lt the transit trace out the small circle BAB’
parallel to the meridian RMPH, and let AM be a per~
pendicular from the star A4 to the meridian. Join 4P.
Let v=AM, the colli-
mation error,
0,= APZ, the error
in the time,
sin AM=sin APsin AP M,

v
0, = — = ¢
! gind

v is to be considered posi-
tive when the line of colli-
mation points to the east of the meridian, and negative
when it points to the west.

¥
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Effect of Uncorrected Deviation Error.
, 81. AsinArt. 77, the triangle ZP M will give the equation
cot PM sin PZ = cot Z sin P + cos PZ cos P,

whence © P=gz (sin ¢ —ecot A cos @),
or 6, =— x cos(a + <b)
sin A

The fig. of Art. 77 shews that « is to be reckoned positive
when the east pivot of the axis of the transit deviates towards
the elevated pole, and negative when it deviates in the other
direction.. '

_ 82. For the complete correction, therefore,

0.+ 0, +96, usm(A+¢)+v—wcos(A+¢)
= sin A

where #, v, and & are to be taken with their proper signs,
as explained above ; and the result being expressed in seconds
of arc will have to be divided by 15 to reduce it to seconds
of time. ‘

Personal Equation and other Errors.

_ 83. Besides the errors we have spoken of, which may
be called errors of adjustment, there are several other sources-
of error to whieh all instrumental observations are liable.

First, errors of comstruction arising from some imper-
fection of workmanship. These can only be detected by a
thorough study of each individual instrument, and by making'
repeated observations under varied circumstances; but a
knowledge of the theory of the instrument will often suggest
modes of eliminating these errors ; as, for instance, in the
case of the mural (Art. 93), where the using opposite micro-
scopes in pairs corrects a possible error in the position of the
eentre of graduation.

- Secondly, accidental errors due to extraneous causes, such
as sudden and unobserved changes of temperature, atmo-
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spheric indistinctness, looseness of screws, &c. The observer
has no means of correcting these errors, except by multi-
plying his cbservations, whereby he may hope that, as the
errors are accidental, they will sometimes tend ome way
and sometimes the other, and therefore that the mean result
will have a less error than any single observation.

Thirdly, & kind of error to which the name of personal
error, or persomal equation, has been given. It is often
found that two observers, though equally trained in ob-
gerving, will differ by a fraction of a second in their esti-
mation of the time of transit of a star, and that this differ-
ence remains pretty meaily constant for months or years.*
One of them is too slow or the other too precipitate, but
at any rate a discordance exists which, though small, must
not be neglected when we have to combine observations
inade by the two. In the same observatory it is usual to
gelect some one of the observers as a standard of reference,
and to reduce all observations made by the others to the
standard, by allowing for their personal equation as obtained
by comparison with him.

* Seoe Arago’s Mémoires Scientifigues, tome U. p. 233,

F2
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CHAPTER V.

THE OBSERVATORY CONTINUED.
The Mural Circle.

84. Tae mural circle determines the meridian zenith
distance of an object, and is a necessary complement of the
transit. It consists of a large graduated circle placed in
a vertical plane against the eastern tace of a wall which
runs north and south. This circle revolves in its own plane
about a strong axis which penetrates right through the wall,
and which, for purposes of adjustment, can be slightly moved
by screws on the western face. An astronomical telescope
is firmly attached to the face of the circle, so as to be
parallel to a diameter, and when the whole instrument is
in perfect adjustment the line of collimation (Art. 86) de-
scribes the meridian. The graduations of the circle are
made on the thickness of the rim, and read continuously
from 0° to 360° at intervals of 5°. These divisions pass suc-
cessively behind a small projecting piece of metal attached
to the wall, called the pointer ; and the pointer-reading, when
the telescope is turned exactly to the zenith, is called the
zenith-point. The difference between the zenith-point and
the pointer-reading, when the telescope is directed towards
some star, is the meridional zenith distance of that star.

85. The graduations are, as we have said, at intervals
of 5. The intermediate minutes and seconds are obtained
by means of six microscopes firmly fastened to the wall,
placed round the circle 60° apart and looking towards the
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graduated rim.. One microscope would be sufficient, but
six are used to counteract errors of graduation, centering,
and unequal expansion (Art. 93). They are lettered and

referred to as in the figure, 4, B, C, D, E, F. Each micro-
scope is furnished with a micrometer, similar to the spider-
line micrometer described in Art. 72. It is convenient,
though not essential, that the mieroscopes be so adjusted that,
when the pointer coincides with a graduation, all the micro-
meter wires, supposing each to occupy its zero position at
the middle of the field of view, should also coincide with
graduations. If the circle be then turned through a fraction
of a division, an equal portion of the limb will pass opposite
to each microscope :—the precise fraction of arc can be
obtained with extreme accuracy from the number of turns
and parts of a turn of the screw-head necessary to carry the
spider-line from the zero position till it coincides with the
image of the division that has passed away from it.
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Five turns of the screw-head should carry the spider-lines
from one division of the limb to the next, so that each turn
may indicate one minute ; a notched comb of metal at the
gide of the field will check the number of turns or minutes.
The screw-head being divided into sixty equal parts, the
reading off will give the additional seconds, and the mean
of the six readings, added to the integral number of 5’
shewn by the painter, will give the reading of the mural
for that position.

86. At the principal focus of the telescope is a frame-
work carrying one horizontal and five vertical wires ;—the
line of collimation is the line joining the centre of the object
glass, with the intersection of the horizontal wire by the
mean of the five.

All these wires are fixed ; but another horizontal wire,
called the micrometer wire, moveable across the field of
view, is necessary in certain observations for measuring
small distances of celestial objects from the fixed horizontal
wire. These measurements are made in minutes and seconds
of arc, by means of a graduated screw-head, which gives
motion to the micrometer wire, and whase graduations
have a known value, The minutes and seconds 8o obtained,
added to, or subtracted from, the mural reading given by
the pointer and microscopes, will give what the mural read-
ing would have been, if the fixed wire had Occupied the
position of the micrometer wire.

The values of the graduations for the m1crometer wire
may be found thus:—Direct the telescope towards some
distant mark which happens to be, or is purposely placed,
in the meridian of the mural, Move the telecope ‘micro-
meter, by giving the screw-head some exact number of
revolutions from its zero position, say ten for instance.
Then turn the mural gently till the micrometer wire just
bisects the mayk, and read off the pointer and the six
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microscopes. Repeat the operation with the micrometer wire
placed at ten revolutions on the other side of the zero, and
again read the circle. The difference of the two readings
will be the value, in arc,.of twenty revolutions of the screw.
Hence the value of one revolution, and of its fractions, will
be known. '

Clamp, Tangent Screw.

~ 87. In making an observation with the mural-—when it
has been turned so that the star is in the field of view, and
a very small additional motion is required to bring it to
the fixed wire—it will generally be found that the hand is
too abrupt in its movements, and that a slower and more
delicate means is necessary. This is obtained by a clamp
and tangent-screw, of which there are several, so that, in alk
positions, one may be within reach of the observer. ‘

The clamp consists of two lips of metal between which
the rim of the circle slides. These lips project from another
piece attached to the wall, and, by one turn of a screw,
they can be tightened on the circle so as to fix it. The
tangent-screw is another screw, with very fine threads, which,
acting on the piece that carries the clamp, moves it and
the circle with it at a slow pace in the direction of the arc,
thus modifying the too rapid motion of the hand.

Error of Runs.

88. When a change of temperature, or any other cause,
alters the distance of a microscope from the rim of the circle,
the distance, at the focus, between the images of two con-
secutive graduations, will alter ; and five turns of the screw-
head will no longer carry the micrometer wire accurately
from one division to the mnext. The error arising from
this is called the error of runs, and a corresponding cor-
rection becomes necessary.
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Suppose the interval between two graduations at the
microscope 4 to require a” more than the five turns, the
correction to be applied to a smaller interval, measured by
the microscope, must be obtained from the proportion

8’ + a” : @” : : measured interval ; correction.
This correction must be subtracted when « is positive and
added when a is negative,

In the same way may the reading of each microscope
be corrected ; but instead of applying the correction to each,
which wauld necessitate six proportions, it will be sufficient
to correct the average measured interval by means of the
average error ; and, as @ is always a small number of seconds,
we may further simplify the proportion by using &' for the
first term instead of 5' + ",

The errors of runs must be examined from time to time,
and if they become too considerable, they may he mechani-
cally reduced by moving the microscopes towards or from
the circle, ’

Errors of Adjustment of Telescope.

89. The line of collimation of the telescope should de-
scribé the meridian :—the instrument is therefore, like the
transit, liable to the three errors of collimation, level, and
deviation. But these errors have not the same importance
as in the case of the transit ; for, the object of the mural
being the determination of altitudes, a very small deviation
from the meridian will not produce an appreciable error in
the result ; and it will generally be sufficient to correct, as far
as possible, by mechanical adjustment,

90. Level error may be detected by means of a micro-
scope, projecting from the face of the mural, with its axis
parallel to the arc of the rim and revolving with it. Let
a fine plumb line, fastened to some point above, pass in front
of the circle just opposite its vertical diameter, and at such
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a distance from it that it may be viewed by the microscope
when near its highest position. Then turn the mural half
round, so as to bring the microscope to its lowest position,
and the thread should again occupy the same position in
the field of view. If it does not, we must correct the error
by means of the adjusting screws at the back of the wall.

91. Supposing the level error corrected, we may proceed
to correct the collimation error, if there be any. This will
be done by moving the framework, which carries the wires
of the telescope, so that a star near the zenith may pass
the middle wire at the same moment that it passes the
middle wire of the transit,

92. The deviation error is next corrected, by observing
a star near the horizon, and moving the axis by means of
the screws at the back of the wall, so that the star may
cross the middle wire of the mural and that of the transit
at the same instant.

Errors of Centering, Graduation, §c.

93. The mural is essentially a differential instrument, re-
guiring always two positions to complete an observation.
The angle through which the telescope turns is the quantity
we have to determine, and we can easily shew that, by using
reading microscopes in pairs, we may eliminate any error
which arises from the centre of graduation not coinciding
with the centre of rotation, or from irregularity in the form
of the pivots,

Thus, let the dark line in the figure represent the first
position of the graduated circle when Z7, K are the points of
the limb opposite the microscopes 4, B, and M the zero of
graduation, Let the fine line represent the second position
of the circle, O its centre, the line HK having come into the
position H'K’, and M moved to M". The telescope will have
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turned through the same angle as any line rigidly connected

with the circle ; therefore HCH' is the angle to be found.
The two readings of
A are respectively (MH or) M'H' and M'A,

) S (MHK or) M'H'K’ and M'H'k.
The difference of the readlngs at A gives AOH' =2 CkH',
vreneens N ceees RKOK'=2 CH .

The sum of these=2 {CkH "+ CH ’/z}
=2HCH’,
and the half sum is the angle between the two positions of
the telescope.

The centre of rotation, that is the point about which the
instrument is supposed to have turned in passing from the first
position to the second, is not shewn in the figure ; and the
investigation, being independent of this centre, shews that,
even when the pivots are not cylindrical, and when con-
sequently the centre of rotation is not a fixed point, the
readings of each pair of microscopes will give a value of
the angle free from errors of centering, and from irregularity
in the form of the pivots. The mean of the three pairs will
diminish the risk of errors of graduation and of unequal
expansion.
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Observing with the Mural. Zenith-Point. Polar-Point.

94. The difference of declination of two stars, or, which
is the same thing, the difference of their meridional zenith
distances, may be obtained as follows :—When the first star
is about to pass the meridian, turn the telescope so that it
may be in the field of view. Then clamp ?f;e maural, and,
by means of the tangent screw, move the circle, so that the
star may be on the fixed horizontal wire* at the moment
that it crosses the middle vertical one. Now read the six
microscopes, and add the mean of the six readings to the
pointer reading.

Repeat the operation on the second star and take the
difference of the results. This will give the difference of
meridian altitudes of the two stars.t

95. If, instead of a second star, we use the image of the
same star as seen by reflection the next evening in a trough
of mercury, we shall obtain the meridian altitude of that star.

Thus, if PQ be the direction of the telescope on the first
night, when we observe the star § directly, and P'Q’ its

direction on the second night when we observe it by reflection

* Some instruments, instead of a fixed horizontal wire, have two fixed wirea
separated by an interval of about 10”, and the star is kept exactly in the middle
of the space between the wires.

.+ These results will require correction for refraction. See Chap. Xv.
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at R, the surface of the mercury, then QOQ' is the angle
given by the difference of the two mural readings.

Now 08is parallel to RS, and if OH be drawn horizontal,
and consequently parallel to the surface @ Rb of the mercury,*
the angles SR and ORae being equal, QUH and HOQ'
will be equal, hence SOH=31QO0Q'; or, kalf the difference
of the mural readings will give the altitude of the star.

96. It is also obvious, that half the sum of the readings
will be the reading which the instrument would give if the
telescope coincided with the horizontal OH. This horizontal
reading, increased or diminished by 90°, as the case may
require, gives the zenith reading or zenith-point.

‘When the zenith-point is known, one observation of a
star is sufficient to determine its altitude :—Taking the dif-
ference between the zenith-point and the mural reading
corresponding to the direct observation of the star, we obtain
its meridional zenith distance,

97. One objection to the preceding method of observation
and of determination of the zenith-point is that, in the inter-
val between the observations, changes of temperature, &c.,
may oceur, altering the amount of refraction of the star, and
therefore its apparent direction ; and there is also this in-
convenience, that, in consequence of unfavourable weather,
several days may intervene before a complete observation,
can be obtained.

The following method, known as “a double observation
with the mural,” has been devised for observing both by
direct and reflected vision at one and the same transit.

Some time before the star (whose zenith distance is
supposed approximately known) comes to the meridian, set
the circle by the pointer, so that the image reflected from

* If the mercury were at a considerable distance from the mural, it might
become necessary to take account of the angle between the normals at 0 and R:
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the mercury may be sure to enter the field of view. Then
clamp the circle and read the pointer and the six microscopes.
‘When the star enters the field of the telescope, follow it with
the micrometer wire so as to bisect it just before it crosses
the middle vertical wire. Unclamp the circle and turn it
till the star, seen directly, is again in the field of view
(which can be rapidly done by the approximately known
pointer reading). Then, using the nearest clamp and its
tangent screw, bisect the star by the fized horizontal wire.
Finally, read off the pointer, the six microscopes, and the
micrometer of the telescope.

The former reading of the mural corrected by adding,
with its proper sign, the micrometer reading will reduce the
reflection observation to the fixed horizontal wire ; and we
shall thus have two circle-readings corresponding to direct
and reflection observations of the same star.

Half the sum of these readings will give the horizontal
point and half the difference the meridian altitude of the star.

98. We here suppose that the star is S0 near the meridian
at the two moments when it is observed that the error
of altitude is inappreciable. But, if the interval were con-
siderable, for instance, if the first observation were made
at the moment when the star is crossing the first vertical
wire, and the second when it is crossing the last, it would
be necessary to calculate the change of altitude to the
meridian. The formula for this correction is given in the
method of finding the latitude by circum-meridian observa~
tions. ,See Chap. IX.

99. The zenith-point may also be obtained independently
and very accurately by means of the collimating eye-piece.
We may, as was described in the case of the transit (Art. 66),
make the line of collimation exactly vertical by pointing the
telescope vertically downwards towards a trough of mercury,
and bringing the reflected image of the fixed horizontal
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wire to coincide with the wire itself. The corresponding
mural reading will be the nadir-peint, which, increased by
180°, will give the zenith-point.

100. To find the Polar-point,
i.c. the reading of the mural when
the telescope is directed to the
pole.

Observe a circumpolar star in
its upper and lower transits, and
note the readings of the mural
in the two positions.

Thus, if

Za Po’ be the meridian of the observer,
o the star at the upper culmination,

L TN lower .ooocueneneenn.
H the polar-pomt and A the polar d:ustance,
then Po=Pd' =

and one of the readings will be H+ 4, the other H— A

Therefore the pelar-point is given by half the sum of
the two readings.

Cor. 1. Half the difference of the two readings is the
polar distance of the star, which, subtracted from 90°, gives
the declination.

Cor. 2. The difference between the polar-point and the
zenith-point is the colatitude ZP, which, subtracted from 90°,
gives the latitude.

* These readings must be corrected for refraction and for instrumental errors.
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CHAPTER VL

THE OBSERVATORY CONTINUED.

The Transit-Circle.

101. ArrHoucH the transit and the mural have been
thus described as the two important instruments in an ob-
servatory, it is now found that a single instrument, com-
bining the functions of both, can with advantage be made
to take their place. Theoretieally, the mural would do so,
if the adjustment in the meridian could be relied on; but
its peculiar mounting, requiring the support to be all on
one side, makes it unable to bear the weight of a large
instrament, and renders it liable to deflections from the
meridian—deflections which are unimportant in their effect
on the altitndes, but which could not be tolerated in the
determination of the times of transit.

A Transit-circle has been recently mounted at the Cam-
bridge Observatory in the place of the former Transit
instrument. It is symmetrically made and supported.
The axis, resting on the two piers, carries, besides the
telescope, two graduated circles, one on each side, about
three feet in diameter, and revolving with the instrument.
Two other circles, firmly fixed to the piers, earry the
reading-microscopes, four on each, besides a pointer-micro-
gcope, which replaces with advantage the metal pointer
of the mural.

The telescope has a focal length of about nine and a half
feet and an aperture of eight inches. The instrument is
reversible, but there is little need for this provision, because
two collimating telescopes, with apertures of six inches, have
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been fixed on the north and south sides, and the adjust~
ments can be accurately made without reversion (Art. 65).

The counterpoises are not seen, being under the floor,
where they act on levers that thrust upwards and support
the weight. The graduations opposite the reading-micro-
scopes receive light by an ingenious system of glass prisms ;
and various other devices, too technical to be mentioned
here, combine to render this a most effective and valuable
instrument.

One observation with a transit-circle gives the two results
which, with the transit and mural, required two observers.
There is thus a great saving of labour ; and one source of
error, from which the separate instruments were not free
when observing small stars thickly clustered, is altogether
' impossible in the transit-circle :—the error, namely, of ob-
serving one star for altitude and, by mistake, a different
one for time, so as to create an imaginary star combining
the elements of two real stars.

The adjustments and corrections for level, collimation,
and deviation are made as for the transit, and need not
therefore be dwelt upon.

The Equatorial.

# 102. The only observations which can be made with
the instruments, so far described, are restricted to the plane
of the meridian ; but there are many occasions, such as
eclipses and occultations, where the phenomena to be ob-
served occur out of that plane.

It may also be desirable to have a means of fixing with
accuracy the position of an object at any moment when
visible, especially of those objects which, like comets, have
s rapid motion among the others. We therefore require
telescopes so mounted as to allow of being pointed in any
direction, and an especial advantage is secured when the
object can be followed with ease, and retained in the field
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of view, so as to afford sufficient time for micrometer
measurements and minute examination.

~ 103. One of the instruments devised for the purpose
consists of a telescope 4B in contact with a graduated cirele

M

CD, and turning about an axis through the centre O pet«
pendicular to the plane of the circle. One of the diameters
of this circle is produced, and constitutes an axis EF, whose
direction coincides with the axis of the celestial sphere: About
this axis the whole instrument turns, and the angles through
which it turns are measured by a second graduated cirele GH,
perpendicular to the axis.

_~104. If the telescope be directed towards a star, EOB
will be the angular distance of that star from the pole ;
the polar distance, or the declination, may therefore be
measured by the graduated circle CD, and, by merely
turning the plane of this declination circle, Without altering
the angle OB, we may follow the star during its diurnal
course, and thus verify the accuracy of the statement
“which the rough observations in Art. 5 suggested, viz.
that the stars move uniformly in circles round the axis
of the celestial sphere.* s

* Allowance must be made for refraction, as will be explained hereafter.
) G
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In most instruments the circle GH is connected with
clock-work, the motive power being a descending weight and
the regulator a conical pendulum or governor. A uniform

motion without jerks is thus communicated to the instru-
tnent, which, when properly adjusted, can retain in the
field of view a star or other object, so long as may be
required, without any attention on the part of the observer.

But the principal use of the instrument is for differential
observations :—to find the difference of declination or of
right ascension of two neighbouring bodies, the diameters
of planets, the distances of double stars, &c. These obser-
vations can all be made with the instrument in a fixed
position, and are therefore independent of errors of ad-
justment.

, 105. The above is the principal of all equatorials. The
mounting may be different in different instruments, but in
every one there must be—a fixed line coincident with the
polar axis, a means of measuring the angle which the
telescope makes with this fixed axis, and also of measur-
ing the angle described by the instrument in turning about
the axis.

There will therefore be six adjustments :

(1) The polar axis must have the same altitude as that
of the celestial sphere.

(2) The declination circle must mark zero when the line
{)f collimation is in the plane of the equator.
~ (3) The polar axis must be in the plane of the meridian.

(4) The line of collimation of the telescope must’ be at
right angles to the declination axis (the axis through O
about which the telescope turns).

(5) The declination axis must be perpendicular to the
polar axis.

~(6) The graduated circle GH must mark zero when the
telescope is in the meridian.,
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For the means of performing these adjustments we shall
refer to works on practical astronomy. Loomis’ Introduction
to Practical Astronomy, Challis’ Syllabus, &e.

106. The necessity for these corrections, and the liability
of a heavy instrument mounted in this inclined position to get
out of adjustment, render the equatorial somewhat uncertain
in the determination of absolute declinations and right ascen=
sions ; but the facility of pointing it in any direction makes
it a valuable means of determining the differences of right
ascension or of declination between objects which both pass
through the field of view while the telescope is in a fixed
position. ‘

There are, as we have stated, various ways of mounting
the equatorial, but the differences are points of detail which
can eagily be understood : forinstance,in the Northumberland
equatorial at the Cambridge Observatory, there is no decli-
nation circle, but a straight rod—which, by sliding in a tube,
can be shortened or lengthened at pleasure—connects the
eye-end of the telescope with a point in the axis of the
instrument, and thus determines the angle at which the
telescope is inclined to the polar axis. The angle itself is
shewn by graduations on the rod.

107. At the focus of the object-glass of the equatorial is
agystem of spider lines or wires, similar to those of the transit,
and respectively parallel and perpendicular to the plane of
the declination circle. Besides these, there must be move-
able wires for micrometer measarements, such as those of
the spider-line micrometer, already described in Art. 72.

Position Micrometer. It is often necessary when two
objects are in the field of view at the same time, to find
. the angle which the line joining them makes with the
declination circle passing through either of them and the

pole. For this purpose the eye-piece is furnished with a
G2



84 ' THE OBSERVATORY. [cHAP. VI.

spider-line which, by means of and rack a screw, admits
of circular motion in a plane at right angles to the line of
collimation. If the telescope be pointed towards onme of
the objects and the spider-line be turned to cover them both,
then the angle it makes with the fixed central wire is
the angle required, and will be given by the screw-head.

108. Finder of Equatorial. When the equatorial is a
large instrument of great magmifying power, the portion
of the heavens embraced by the field of view beeomes so
small that it is somewhat difficult to point the telescope.
A smaller telescope ealled the finder, whose line of collimation
is parallel to that of the equatorial, is usually attached to
the larger instrument : this embraces a much wider field,
and a star brought to the centre of the finder will be in
the field of the equatorial.

Altitude-Azimuth— Transit in the Prime Vertical.

109. The altitade and azimuth instrument, or alt-
azimuth, is another instrument intended, like the equaterial,
~ to make ohservations on ohjects situated out of the meridian
plane. As its name implies, it gives both the altitude and
the azimuth of a celestial body. It consists ef two graduated
circles—the one fixed in a horizontal plane, the other in a
vertical plane which admits of being turned about a vertical
axissa as to coincide with any azimuth. A telescope, parallel
to the plane of this vertical circle, turns with it in azimuth
and admits also of motion in altitude.

It is, in fact, an equatorial with the axis pointing to the
zenith, instead of to the pole ; and if we hold the figure, p. 81,
so that FE may be vertical, we shall have an alt-azimuth.
The circle CD will measure the altitude, and the circle GH
the azimuth of any body towards which the telescope is
pointed. v

An alt-azimuth has been in use at Greenwich since 1847,
with the special object of observing the moon off the meridian.
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A detailed description will be found in the Greenwich Obser-
vations for that year.

By clamping the horizontal circle, the alt-azimuth tele-
scope can only describe a vertical eircle. This vertical circle
may coincide with the meridian, in which case it becomes a
transitinstrument ; or, it may coincide with the prime vertical,
and, in this position, observations of such peculiar value can
be made that a special instrument called a Transit in the
Prime Vertical has, for some years, been in use in the
Pulkowa Observatory. TFor a description of it we shall
refer to Chauvenet’s Astronomy.

The Ring-Micrometer.

110. ‘All the instruments so far described require to be
mounted in a special manner for the purpose of observing ;
but very good observations of differences of declination and
right ascension can be made in a very simple manner with
an ordinary telescope fitted with the contrivance known as
a ring-micrometer. This consists merely of a flat ring of
metal with very fine edges, which is made perfectly cn-cular
and fixed at the focus of the telescope.

- When the difference of declination of two stars is so
small that both may pass through the field of the telescope
in a fixed position, let the telescope be so pointed that these
passages may take place, and note the
times when one of the stars passes
behind the ring at 4 and C, and
reappears at B and D. The mean of
these times will be the instant when
it passes the middle point of the chord ;
that is, it will be the instant when the
star i8 in the declination circle which passes through the
centre of the ring, for the path of a star will obviously cut
every declination circle at right angles,
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The same being done for the other star, care being taken
not to disturb the telescope, the difference of these two means
_ will be the difference of right ascension of the two stars.

To determine the difference of declination, we require the
angular diameter of the ring. This must be found previously
by observing the number of seconds that an equatorial star
takes to cross the diameter : let it be », then 15z is the
value of the diameter in seconds of arc.

Now if T and ¢ be the times required by the stars to
describe the chords BC and be, and if & be the known decli-
nation of one of the stars, the angular lengths of the chords
will be approximately (Art. 68)

15 T cos 8 and 15¢ cos d.

The chords and diameter being known, we can easily
obtain the angular distance of each chord from the centre 3
and their difference or sum, according as they pass on the
same or opposite sides of the centre, will be the difference of
‘declination of the two stars,

The Sextant.

111. The sextant does not properly belong to a fixed ob-
servatory ; but its simplicity, its small size, its accuracy,
and, still more especially, its requiring no fixed support,
render it of the highest value to the navigator. For a full
description of this useful instrument and its adjustments, we’
shall refer to Chauvenet’s Astronomy, and to Harbord’s
Glossary of Nawvigation.

The sextant determines the angular distance between two
visible points (as two stars), or the angular altitude of a body
above the visible horizon. The principle of its construction
depends on the known consequence of the law of reflection
that, “ when a ray is reflected in one plane at each of two
plane mirrors its deviation is double the angle between the
mirrors.” One mirror is attached to the moveable radius
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of a circular sector and another to a fixed radius, both
mirrors being perpendicular to the plane of the sector. Then,
if the moveable arm be turned until the image of a star
after two reflections be made to coincide with that of a
star seen directly (onme-half of the fixed mirror being left
unsilvered for the purpose), the angle between the mirrors,
and hence the angle between the two stars, can be indicated
by the position of the moveable arm among the graduations
of the arc. ' ‘ ’

Double Image Micrometers.

112. Asthe accurate measurement of small angular mag-
nitudes is of the highest importance, we shall describe twa
other instruments for the purpose, based on principles entirely

different from those of the spider-line micrometer described

in Art. 72.

113. Dollond’s Double Image Micrometer. "When a tele-
scope is turned towards a distant object, & circular disc for
instance, an image is formed at the focus. Each element

l d ‘ ]ﬁ
wnitllﬂll!“llll% A w

|
of the surface of the object-glass gives a complete imagé
of the object, the brightness only increasing with the number
of elements employed. If then the object-glass be cut in two,
and the two parts kept in their proper places (fig. 1), only one
image of the disc will be seen. But if one-half be made
to slide along the other, as in fig. 2, two perfect images
of the disc will appear, more or less overlapping or separated,
according to the distance through which the half-lens has

Fig.3
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moved. This sliding ‘motion of the half-lens is given by a
screw with a graduated head. Suppose the two images
of the disc to be separated till ‘they are Just in contact (as
A and B), the one image will & P 2

have moved from the other a

distance equal to the diameter of

the disc ; and if a new contact be f
established hy passing the move- il =

able image to the other side of the fixed one, the whole
change, as recorded by the screw-head, will correspond to
twice the diameter,

Therefore, supposing the values of the serew-head gradua-
tions to have been established, by measuring discs of known
sizes, placed at known distances, we shall be able to measure
the angular breadths of other bodles, such as the sun and
planets.

The angular distance between two stars a, 8, can be
measured in the same way, but the object-glass must first
be turned till the line of separation of its twq halves is in
the direction of the line joining the two stars.

Two pairs of stars, b, ap, will become visible by
turning the screw, and 1f coincidences be established
between e, and &, and again between a, and b,, the difference
between the two readings will be twice the angular distance
between the two stars,

114. Rochon’s Double Image Micrometer. Ttiswellknown
that when a pencil of common light passes through certain -
crystalline substances it undergoes a bifurcation, and two
pencils are produced. In uniaxal crystals, such as Iceland
spar, one of the pencils is refracted as it would be through
ordinary transparent substances, and is called the ordinary
pencil ; the other, called the extraordinary peneil, undergoes
a refraction which varies with its position relatively to a
certain line called the axis of the crystal. In one case the
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pencilsdo not separate : this is, when incident perpendicularly
. on a surface which is itself perpendmular to the axis of
the crystal. :
Now, if we take two triangular prisms of Iceland spar
ABCG and BCDE, which, by

juxtaposition, form a - rectangular

‘parallelopiped AFE, and if. they P

be cut in such a manner that the ' A -
axes of the two crystals may be I_///°
parallel to AB and DF respettively, 5 2
then the light, incident on the face

ACF@, will be parallel to the axis

of one crystal and perpendicular to that of the other. No
separation, therefore, will take place in thefirst crystal ; but,on
entering the second, the two pencils will proceed in different
directions inclined to one another at an angle depending on
the angle of the prisms.

115. Let A (fig. @) be the object-glass of a telescope,
PQ a distant object subtending a small angle, pg its image
formed at the principal focus. If between the object-glass
and the image we introduce the system of crystals above
described, with the first surface perpendicular to the axis,
the ordinary pencils will proceed without sensible interrup~

Fiy. a

4 . A4 P

Fig. ¢
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tion, and, provided the opposite faces be parallel, an image
2, (fig. 6) will be formed at the focus as before ; but,
on the pencils entering the second prism, the bifurcation
will take place, and a second image p,g,, formed by the
extraordinary rays, will be obtained.

The distance between the two images will increase or
diminish as the prisms are moved from or towards the
focus ; and therefore by sliding the framework, which carries
the crystals backwards or forwards, we can bring the two
images to be exactly in contact (fig. ¢).

It is clear then that there will be a connection between
the position of the prisms, when the images are just in contact,
and the magnitude of the image pg, and therefore also of
the angle PAQ which the distant object subtends. If then
we observe discs of known sizes, at known distances, we
may graduate the telescopic tube in such a manner that
the position of the prisms may at once give the angle
subtended.*

* M. Arago has suggested a modification of Rochon’s micrometer to obviate
some slight inconveniences which attend its use. (Arago, Ast Populaire,
vol. IL p. 77.)
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CHAPTER VIL

THE SUN.

The Ecliptic.

116. TeE observer may now be supposed to possess
insti-uments which will enable him to make observations
with any required degree of accuracy, and we shall proceed
to examine the movements of the sun, and of those other
heavenly bodies which, unlike the stars, have, or seem to
have, a motion of their own, independent of the diurnal
motion. This diurnal motion, common to all the bodies,
is, as we have seen’ (Chap. 11.), only apparent, and belongs
to the earth alone.

If we take a celestial globe (Art. 16) on which the stars
are all marked in their proper relative places, as also the
poles, the equator, and some of the parallels and declination
circles, the paths of the sun and of the planets will be con-

veniently traced by marking their positions on this globe

each day.

To the ancients the determination of the exact position
~ of the sun, relatively to the stars, was a problem of con-
siderable difficulty, because the strong light of the sun
hinders the stars from being seen at the same time, and
the stars become visible only after the sun has disappeared
below the horizon. ,

Hipparchus employed the moon as a link to connect the
sun with the stars:—While the sun was above the horizon
he determined its position relatively to the moon, and as
soon after -sunset as the stars became visible, he, in the

T
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same manner, connected the moon with them ; then, making
allowance for the change of position of the moon during
the interval, he was able to deduce the sun’s place among
the stars. Tycho Brahé substituted the planet Venus for
the moon with great advantage, not only an account of its
slower and more uniform motion, but especially because
the greater distance of the planet considerably lessened the
chance of error.

With the transit, the mural, and the clock, we avoid
all these difficulties, and obtain results not only with greater
facility but also infinitely more accurate.

117 Very rough observations will soon shew that the
sun’s daily path is constantly changing. This will be seen
by noting the points where he rises and sets, the time he

“1s above the horizon, and the greatest height he attains.

These vary day by day, and hence the sun’s declination
varies also; for otherwise, like the stars, he would rise
and set always in the same points, and attain the same
meridian altitude every day. ‘

That the sun has a progressive motion from west to
east among the stars may be inferred from the following
facts :—Those stars which are seen near the western horizon
shortly after sunset on any evening will, each successive
day, remain a less time visible, and after a few evenings .
will disappear altogether in the strong sunlight, other stars
more to the eastward having taken their ‘places. On the
other hand, a star in the east, which rises a little before
the sun, so as just to be visible, will, each succeeding morn-
ing, be seen for a longer time, and attain a greater altitude
above the horizon, before the sun’s rays overpower it and:
render it invisible.

" We shall see further on that this motion of the sun,
like the diurnal motion of the heavens, is only apparent,
and is-also due to an actual motion of the earth—a motion
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of translation—which carries the earth round the sun, inde-
pendently of the earth’s rotation on its own axis.

Sun’s Semi-diameter.

~118. When we speak of the path of the sun, we mean
the path of the centre of his disc, which is a definite point,
whereas the disc itself is a circle subtending an angle of
about half a degree. As there is no mark by which the
centre can be recognised, we are obliged to observe some
point in the perimeter, and allow for the difference between
that and the centre. We, therefore, here require the sun’s
semi-diameter, that is, the angle subtended at the eye of
the observer by two lines, one directed to the centre of
the sun, the other to a point in the edge. This may be
determined by observations with some one of the instru-
ments for measuring small angles, the spider-line micro-
meter or the double image micrometer, as described in
Arts. 72 and 112.

The magnitude of the semi-diameter is found to be the
same in all directions round the centre,* which shews that
the disc is circular ; but if the observations be made at
different times during the year, the values obtained will
be different ;/a slow decrease taking place from the 31st of
December to the 1st of July, and a slow increase durmg
the secoud half of the year.

The maximum value (on the 31st of December) is 16'1778.

The minimum value (on the 1st July) ... 1574575,

The changes are continnous throughout the year, but at
corresponding dates in different years the same values recur.
These values have been observed with the greatest care,
and tabulated so as to be available for future use. (Nawt.
Alm., p. 11. of each month).

* Provided the sun have sufficient altitude to free it from the effects of
the large refractions to which it is subject when near the horizon,
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To find the Sun’s Declination by Observation.

~119. At the moment when the sun’s centre is crossing
the meridian, let the mural telescope be turned to it so as
to make either the lower or the upper limb run along the
fixed horizontal wire. The corresponding reading of the
circle, increased or diminished by the semi-diameter, is the
reading of the sun’s centre. The difference between this
and the polar-point (Art. 100) gives the polar distance of
the sun, the complement of which is the declination.

Instead of the polar-point, we may use the zenith-point
when the latitude of the place is known. The difference
between the reading of the sun’s centre and the zenith-point
gives the zenith-distance, and the difference between the
latitude and zenith-distance when the zenith and pole are
on the same side of the sun, or their sum when they are
on opposite sides, will be the dechnatlon

To find the Difference of Right Ascension between the Sun
and any fixed Star. '

-120. On reference to Arts. 16 and 17, it will be seen
that the difference of right ascension of any two bodies is
measured by the interval in time between their transits
across the meridian, as given by the sidereal clock.

Hence, if, by means of the transit and sidereal clock,
both the times be observed when the first and second limbs
of the sun cross the meridian, the mean of the two times
will give the instant when his centre is on the meridian ; and
if this be compared with the time when some chosen star
is crossing, the interval, reduced to degrees, will be the
difference of their right ascensions, that is, the angle be-
tween their declination circles.

If the clock gain or lose uniformly, we must multiply

24 .
the interval so found by %13’ where 24 + x is the number

of hours marked by the clock between two successive transits
of the same star.
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Determination of the Sun’s Annual Path. Ecliptic.
First Point of Aries.

_ 121. Now, on the globe which contains the representation
of the starry hieavens, let us mark, day by day, the position
of the sun at noon by mieans of his declination, and of the
angle his declination circle makes with that of a known
star, as determined by the preceding cbservations.

" Thus, supposing o to be the star selected, P the pole,
EQ the equator, make an
angle aPA equal to the first
difference of right ascension
and mark off PA equal to
the corresponding polar dis-
tance of the sun. A will re-
present the first position of
the sun. Let B, C, D, &c.,
obtained in the same manner,
be the successive positions on
the second, third, fourth, &e. days of observation. It will
be found that all these points will arrange themselves on
a great circle cutting the equator in two opposite points
T and o, and inclined to it at an angle (o) of about
28° 27" 30",

122 This great circle, the plane of which contains the
sun’s yearly path, is called the ecliptic, and the angle () it
makes with the equator is the 0bliquity of the ecliptic.
 Its intersections with the equator are called the égui~
noctial points, one (V) the first point of aries, the other (=)
the first point of libra.
~ The sun will be found in the first of these points about
the 21st of March, and in the other about the 23rd of
September, his declination being then 0° and his polar
distance 90° ' ’ v

The two points M, IV of the ecliptic, equidistant from the
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equinoctial points, are called solstitial points ; and if K be the
pole of the ecliptic, the great circle through X and P will
pass through the solstitial points, and be perpendicnlar both
to the equator and to the eeliptic. It is called the solstitial
colure.

When the sun reaches the solstitial points, he has his
greatest declination 23° 271’ north or south. This occurs
about the 22nd of June and the 22nd of December. There-
fore, from the 21st of March, when the declination is 0°,
to the 22nd of June, the sun has an increasing north decli-
nation ; from the 22nd of June to the 23rd of September,
the north declination decreases to zero ; from the 23rd of
September to the 22nd of December the declination is south
and increasing, and it then decreases until the 21st of March.

Variations in the Length of the Day.

123, The combination of this annual motion of the sun,
with the diurnal motion of the earth, will explain all the
phenomena of the seasons, and of variations in the length
of the solar day at particular places. This we shall pro-
ceed to show. ' ,

Let fig. o be the globe on which are delineated the stars,
the pole, the equator, and the ecliptic; and let fig. & re-
present the celestial sphere of an observer.

We shall find it convenient thus to use two distinct
figures ; on fig. @ we shall trace the annual motion, and
on fig. & the apparent diurnal-paths due to the earth’s
rotation ; fig. @ will be common to all observers, but fig. 6
will vary with the observer’s latitude.

If the sun were fixed among the stars, he would, by
the effect of the earth’s rotation, describe a parallel—
higher or lower above the horizon, and visible for a greater
or less time, according to his declination and to the position
of the observer—but.in his progress along the ecliptic he
changes his declination continually ; and not only is the
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apparent path of each day different from that of the day
before, but it ceases to be circular ; and all the daily paths
together, if we include those portions which are hidden
below the horizon, form one continuous spiral curve.

The sun describes 360° in 365} days—his advance along
the ecliptic is therefore about 1° per day ; and the daily
change in his declination is still slower, since it only varies
in the same time from 23}°'south to 23}° north, and back
again. In the following explanation it will be sufficient
to assume that, throughout each day, the sun’s declination
is constant, retaining the value which it has at sun-rise;
that is, we shall consider his daily paths to consist of a
series of parallels instead of a spiral.

A24. The first case we shall consider will be that of
an observer in the northern hemisphere, whose latitude is
somewhere between 23° 27)' and its complement 66° 32}’.
Fig. 6 is adapted to this supposition: Z is the zenith, P
the pole, EQ the equator, and AR the horizon. The latitude
is ZQ or, its equal, PR.

Let us begin on the 21st of March, when the sun is at

7 (fig. @) and his declination is 0°. He will rise at E,

the east point of the horizon (fig. ), his hour angle heing

then EPZ, or 90°; during the day he.will describe the

equator EQW, and will set at W, the west point, where
"
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his hour angle will again be 90°. The day and night will
then be of equal duration, whence the term equinox applied
to this epoeh of the year. As marking the commencement
of spring, it is further distinguished as the vernal equinox.
On that day the sun attains an altitude Q equal to the
co-latitude.

A few days later, the sun will have advanced to S (fig. a),
having a north declination ST or 8 ; and if the parallel FF”
be drawn (fig. 8) at a distance & from the equator on the
north side, this will be the diurnal path of the sun on that
day. At sun-rise the sun will be at F to the north of east,
his hour angle will be #PZ, which > EPZ, that is, > 90°;
therefore the day will be longer than the night. His alti-
tude at noon will also have increased, being HZF”, which
= co-lat. + decl. o

The length of the day and the meridian altitude will
thus go on increasing until the 22nd of June, when the
sun reaches the solstitial point M (fig. @). Here his decli-
nation=MFE=/ MYE=w. If we make QG equal to o
(fig. 8), the parallel GG will represent the sun’s path -on
that day, the meridian alt.=co-lat. + w, the hour angle at
sun-rise is GP G, and the azimuth H§. ,

These are their greatest values ; for, after this, as the
sun continues his course along the ecliptic, fig. @ shews
that his declination begins to decrease, and therefore his
daily path (fig. 4) will re-approach the equator. For several
days before and after the maximum, the change of decli-
hation will be very slight, and during this time there will
be no perceptible change in the diurnal path—to the eye,
he will rise at the same point of the horizon, reach the
game meridian altitude, and set at the same point. Hence
the term solstice applied to this period of the year, and
solstitial point to the point M of the ecliptic. This is the
summer solstice.

During the next three months the sun will pursue his




CHAP. VIL] THE SUN. 99

course from M to ~ (fig. aj, his distance from the equator
gradually diminishing. His diurnal paths will therefore be
a repetition, but in an inverse order, of his paths during
the preceding three months.

We thus reach the autumnal equinox, the sun betng
again in the equator, and the night and day of the same

length. After this the sun will pass to the south side of -

the equator ; his daily paths, such as CC’, BB, (fig. 8) will
be on the further side of the equator from the elevated pole,
his points of rising and setting will more and more recede
from E and W towards H, the hour angle at sun-rise will
be less than a right angle and decreasing, and the altitude
at noon each day less than the preceding, until the sun
reaches his furthest distance from the equator on the south
side at the solstitial point N (fig. @). If BB’ be the corre-
sponding diurnal circle, the meridian altitude

HB = HQ— QB =co-lat.— an
~ From the winter solstice, which occurs about the 22nd
of December, the sun returns to his starting point T, the
south declination gradually decreasing, and the sequence of
diurnal circles from the 22nd of December to the 21st of
March being, in an inverse order, the same as from the 23rd
of September to the 22nd of December.

125, Suppose we travel towards the north pole until
our latitude exceeds 66°324. Let fig. ¢ be the celestial
sphere adapted to our new position, fig. ¢ remaining the
same as before. -

The pole will be here at a distance ZP from*the zenith
less than 23° 27} or w. For the latitude ¢ is the comple-
ment of ZP. Therefore ZP (which=H& or RU) > w.

At the vernal equinox the sun, being in the equator, will
describe EQ, the hour angle EPZ at sunrise being, as
before, a right angle ; and, consequently, the night and the
day of equal length. o

H2

R T
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‘The increase in the length
of the day will be mare rapid
than at the previous station,
and when the sun has reached-
a point & (fig. @) in TM,
where his declination is
90°—¢ or RU (fig. ¢), he
will not set at all, but at
midnight will just graze the
horizon at R, and then re-
ascend, remaining now continually above the horizon during
the whole time he takes to move from §" to the corre-
sponding point S” on the other side of the solstice M.

At the solstice itself the path, during twenty-four hours,
is the small circle GG, the greatest altitude being HG',
or o + co-lat., and the least R, or w — co-lat. v

After passing S” the sun will again begin to set, an
at ~ the day and night will be of equal length. The
days will continue to decrease until the sun’s south decli-
nation at S” is 90°—¢. Then his diurnal path will only
just graze the horizon at H, and a period of continuous
night will set in from S to §"”, corresponding to that of
continuous day about the summer solstice.

The subsequent re-appearance of the sun above the
horizon, and the gradual increase of daylight, will be easily
understood without further explanation.

126. The points S’ and §”, which have a declination
90° — ¢, will recede from M as ¢ increases, and therefore

" the period of perpetual day will increase with the latitude,

attaining its maximum when the observer is at the pole ;
for there the equator and the horizon coincide, the sum
remains visible while on the north side of the equator
from the vernal to the autumnal equinox, and this day of
six months is followed by six months of perpetual night.
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127, If we travel towards the equator until our lati-
tude ¢ is less than 23° 27}, the phenomena will again be
different. Fig. d, where ZQ or PR is this lower latitude,
will be adapted to this case ; and we must, as before, take
fig. @ in connection with it.

At the equinox the sun will describe the equator EQ,
and the day and night be twelve hours each as before. Also
as the sun’s declination increases, his meridian altitude will
increase until he has reached that point § of his orbit
(fig. @) where his declination is equal to ¢ the latitude.
On that day his diurnal path Fy. @

‘will pass through Z the
zenith, and the sun at noon
will be vertical.

On the next and subse-
quent days, his declination
still increasing, his path will
cross the meridian between
the zenith and the pole ; the
hour angle at sun-rise, and
therefore the length of the
day, will still increase, but his meridian altitude will decrease,

The solstice M being passed, the days will begin to
decrease, and once again the sun will culminate in the
zenith ; then, until he has his greatest south declination,
his meridian altitude will decrease, and the days get shorter.
The return to T will be attended with corresponding varia-
tions, which need not be traced.

128, At the equator itself the pole will be in the
horizon, and the hour angle at sun-rise a right angle;
therefore the days will always be twelve hours long ;
and as the celestial equator passes through the zenith, the
meridian altitude will always be the complement of the
declination.
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129. It will be obvious, by an examination of figs. b, ¢, d,
tﬁ,at the variations in the duration of daylight throughout
the year will be greater the higher the latitude ; and it
can also be easily inferred from these figures, that the longest;
summer day and the longest winter night, at any place,
are of equal lengths (see Chap. x1v.).

In the southern hemisphere the phenomena of mght and
da,y will be the exact counterpart of those in the northern.

» 130, The foregoing articles explain the gradual change
in the diurnal phenomena observed at particular places on
the earth’s surface—the general explanation for the whole
earth will be best understood by an examination of the
accompanying figure, where 4, B, C, D, E represent suc-
cessive positions of the sun in his yearly path.

The arrow represents the direction of the sun’s motion,
and the earth at the centre turns in the same direction
about its axis, Once a day, each terrestrial meridian comes
in its turn opposite to the sun, and it is noon at all places
in that meridian. To one-half of the earth there is day-
light, to the other, night. If the centres of the sun and
earth be joined by a straight line, the point where this line
meets the earth will at that instant have the sun in its
zenith, and will obviously be the centre of the illuminated
part of the earth ; and the line of demarcation between light
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and darkness will be approximately* the great circle, of
which this central point is the pole. It will be easily seen,
that at the time of the equinoxes, when the sun is at 4
or D, the boundary passes through the two poles; and
that at the solstices when the sun is at C or E, one pole
with 23)° around it in all directions will hayve contmuous
dayhght and the other continuous night.

Annual Motion of the Sun replaced by a Motion of the Earth.

, 131. We shall, in the next place, proceed to shew that
this daily displacement of the sun—this shifting of his
position among the fixed "stars, which constitutes what we
have called the annual motion—may be explained by a
corresponding motion of the earth round the sun at rest,
provided that we assume the distance of the stars from the
earth to be mﬁmtely great in comparison with that of
the sun.

Let K and S represent the earth and sun. An observer

at F sees the sun § in the direction of some star @. ¥f the
sun move to &, the observer will then see him in the -
direction of some other star 4. But the very:same star &
would also be the sun’s direction, if we suppose the sun to
have remained stationary at S, and the earth to have

moved to E’, found by making SE’, in the line &S pro-

* We say approximately, because, on account of the sun being much larger
than the earth, the cone which envelopes the two bodies will touch the earth in
a small circle beyond this great circle. The effect of refraction will still furthex
diminish the dark portion, . .
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duced, equal to S’E. Moreover, if the stars are so distant
that the two lines £, E'S, which lead to the same star,
may be considered parallel as well as equal, the path EE’'
round S will be exactly equal and similar to the path S§’.
Hence, whichsoever supposition be the true one, it is obvious
that the apparent motion may nevertheless be explained as
8 consequence of the other. If we adopt the hypothesis
of the earth’s motion—and we shall see presently the argu-
ments in its favour—we must suppose that during its annual
motion about the sun its axis remains parallel to itself, in
order that the polar distances of the stars may remain
constant. : '

The figure below will exemplify this motion of the earth,
and will account for the observed ehanges of right ascension
and deelination of the sun.

Let ABC.., be the path which the earth would have

to describe about & the sun, in a plane inclined at 23° 273!
to the earth’s equator, PP’ the earth’s axis, 2. the north
pole.
Let A be the position of the earth on the 21st of March
when the plane of the equator QQ’ passes through the sun.
The line joining the centres of the two bodies at any
time will, by its intersection with the surface of the earth,
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determine that place which has the sun in its zenith at that
moment. This will be some place in the equator when
the earth is at 4, and it would happen in turn to every
- place on the equator as the earth revolved about its axis,
if we neglected the motion of translation of the earth during.
the twenty-four hours. Neglecting this motion would be
the exact equivalent of the supposition we made, for sim-
plicity of explanation, in Art. 123, where we assumed the
sun’s declination to remain constant during twenty-four hours.

Some few days or weeks afterwards suppose the earth
to have arrived at B. The plane of its equator, which is
always perpendicular to PP’, will now be below the sun,
the line joining the centres will make an acute angle with
the axis BP, and the sun will be vertical to a place north
of the equator, whose latitude is equal to the declination
of the sun, each being the complement of the angle PBS.

If SC be drawn at right angles to SA, when the earth
reaches C, the line CS will make a greater angle with the
plane of the terrestrial equator than in any preceding or
succeeding position, and the sun’s north declination will
have attained i1ts maximum 23° 271'. This will be at the
summer solstice, about the 22nd of June.

From C to D the declination will decrease, and at D
be zero, the plane of the equator again passing through S.
This will be the autumnal equinox. £ will be the position
of the earth at the winter solstice when the sun attains his
greatest south declination.

132. The series of changes in the sun’s declination is
thus seen to be a consequence of the earth’s motion, and
it will also be easily seen that the same motion produces
the gradual increase of right ascension.

At A the earth sees the sun in the direction ASY, and,
in all subsequent positions, the plane of the earth’s equator
remaining parallel to itself, the lines-of intersection with
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the plane of the ecliptic, viz.- BT, CTY, &e., will all have
parallel directions, and the sun will seem to have moved
throngh the angles TBS, TCS, &c., which exactly cor-
respond to the angles which the arcs 4B, AC, &c., in the
supposed motion, fig., p. 102, subtend at the centre of the
earth. :

Arguments in_favour of the Earth’s Motion.

» 133. The following are the chief arguments in favour
of the supposition that it is to the earth, and not to the sun,
that the motion of translation belongs.

(1) It furnishes a simple explanation of the stationary
points and of the retrograde motion of the planets (see
Chap. xx11). These may also be explained on the other
hypothesis ; but the ancient astronomers, who assumed the
earth to be stationary at the centre, were driven to a com-
plex system of epicycles to account for the phenomena.

(2) It is in accordance with observation that the dis-
tance of the sun and the length of the year have just that
relation to one another which they should have if we sup-
pose the earth to be a planet revolving round the sun and
subject to the same laws as the other planets.

(8) The strongest proof is furnished by the “aberration
of light.” This admits of easy explanation if we suppose

. the earth to Have a motion of translation, but no ex-

planation has been given on any other hypothesis (see
Chap. xvIL). :

»~ 134. Although the annual motion really belongs to the
earth, and not to the sun,* we shall sometimes find it con-

* When we say not to the sum, we do not mean that the sun is absolutely
fixed, for we shall have occasion to conclude that the whole solar system—the
sun with its attendant planets—has a motion of translation in space. But the
motion we are considering in the text is the mtemal relative motxon of the parts
of the system, .
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venient to retain the latter supposition when it simplifies,
without vitiating the validity of, the reasoning. This we
shall do in Chap. x11., when explaining the “equation of
‘time,” where we shall attribute the annual motion to the sun
and the diurnal motion to the earth,
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CHAPTER VIIIL

THE SEASONS.

<135, Tar two equinoctial and the two solstitial points

divide the ecliptic into four equal parts, but, owing to
inequalities in the sun’s velocity, they are not described in
equal times. See Chap. xI.

These unequal periods are called Seasons, and are dis-
tinguished as Spring, Summer, Autumn, and Winter.

Spring commences when the sun is at T (fig., p. 95), and
lasts till he reaches the solstitial point M ; the summer, while
he goes from M to =, automn from = to N, and winter
from ¥ to Y. Their lengths are at present—

Spring 92 days 21 hours
Summer 93 ,, 14 ”
Autumn 89 ,, 17§
Winter 89 ,, 1 .

> 136. The discussion in Art. 124 shews that for an
observer in the northern hemisphere, hetween the parallels
of 238° 271’ and 66° 32}', the days in spring and summer
are longer than the nights, and the reverse in autumn and
winter ; but spring differs from summer, and autumn from
winter, in the mode in which the duration of daylight

.changes—increasing in the first and last, decreasing in the

other two.

The four seasons are still further characterised by their
temperatures. The amount of heat received from the sun
depends on the time he remains above the horizon, and,
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in a still greater degree, on the altitude he attains during
the day. Hence spring and summer must be warmer than
autumn and winter.

But the heat of summer must be greater than that of
spring, although the same altitudes and the same lengths
of days occur ; because, for some time after the solstice, the
quantity of heat received each day, though decreasing, will
Dbe in excess of the quantity lost or used up, and the tempera-
ture will go on increasing ; just as the greatest heat of any

“day is not until about two hours after noon, for only then is
an equilibrium obtained between the gain and the loss.

For a similar reason the winter quarter will be colder
than autumn, just as the coldest hour of the night is about
two or three hours after midnight.*

All this is in exact agreement with what is observed in
England, and in all places between the parallels of 23° 273’
and 66° 324’ of north latitude.

$187. If we go to higher latitudes (Art. 125), the rays
of the sun impinge more obliquely upon the earth, their
heating power is weakened, and the mean temperature of
the year is lowered. During the summer months, the con-
tinual presence of the sun for many days above the horizon
compensates to some extent for this loss of heating power,
50 that in some places there is a warm, though brief, summer.
On the other hand, the long winter nights reduce the tem-
perature so as to produce that intense cold which covers the
seas with ice, and renders the land unfit for permanent
habitation beyond the latitude of 70°.

{ 138. Between the equator and the parallel of 23° 27}’ we
have a belt or zone where the conditions are very different.
On the equator itself the days are always 12 hours long,
but the sun at noon is never more than 23° 271’ from the

* The differences (hereafter to be noticed) in the sun’s distance from the earth
have but slight influence on the amouut of heat we receive from him.
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zenith, and twice a year, that is at the equinoxes, is exactly
vertical at noon. We have here the main conditions for
a high temperature during the whole year, and the seasons,
instead of being marked by contrasts of temperature, as in
the regions distant from the equator, are marked by contrasts
of humidity, and consist of two rainy reasons and two dry
seasons. A

To places off the equator, but within 23° 271’ from it,
the same remarks will apply—twice a year, but at unequal
intervals, the sun will be vertical, and his distance from
the zenith at noon will, even at midwinter, be less than 47°.
The climate is characterised by extremely elevated tem-
perature at all times.

w139, It is obvious that what has been here said of
the northern hemisphere will be equally applicable to the
-southern hemisphere, except that the phenomena in seuthernh
latitudes, though precisely the same, occur at exactly opposite
epochs of the year. When it is summer in the north it is
winter in the solith ; the beginning of autumm in one hemi-
sphere is the beginning of spring in the other.

Zones of the Earth.

RS 140 The part of the earth included between the parallels
of 23° 271" south and north of the equator is called the Torrid
Zone, and the bounding parallels are called Tropics: the
Tropic of Cancer on the north side and the Tropic of Capri-
corn on the south.

The parallel of 66° 321’ north latitude is called the
Aretic Circle, and the corresponding one in south latitude
the Antarctic Circle.

The regions round the two poles, bounded by the arctic
and antarctic circles respectively, are called the Frigid Zones.

The two belts of the earth comprised between the limits
of the torrid and the fmgld zones are called the Tempemte
Zones.
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The reasons for these names will be understood from
the previous explanations, but it should be remembered
that as we approach the limits of the temperate zone, the
character of the elimate differs less and less from that
peculiar to the neighbouring torrid or frigid zone.

Additional Remarks on the Temperature.

. 314:1. The temperature has been spoken of as varying
with the duration of the sun’s presence above the horizon
and with his meridian altitnde ; but if these were the only
causes of disturbance, we ought to find exactly the same
temperatures at all places in the same latitude, which we
know to be far from being the case.

The sea is found to preserve a much mere uniform
. temperature than the land, and therefore islands and places
on the coasts will have their extremes of heat and cold
much nearer to each other than places in the interior of con-
tinents. The cold of winter and the heat of summer depend
more on the greater or less distance from the ocean than on
the latitude. Thus, London and Irkutsk (Siberia) are nearly
in the same latitnde, but while London has a mean range
of only 243 Fahrenheit, Irkutsk has 61°.

Mean Temperature. Mean of Year.
Winter. Summer. Diff,
London Tat. 511°N. | 37°8 F. 6291 F, 24°-3 F. 4996 F
Irkutsk 524°N. | — 0°2 60°:8 61° 1 81°6

This great difference is almost wholly thrown on the winter
temperature, for summer heat of London is only abeut.
1° higher than at Irkutsk, whereas the winter cold of the
latter place is 38° more severe than that of the former, and
- the mean temperature of the year is 18° lower.

Probably the principal agent in the mitigation of the
cold of our winter is to be found in the prevalent S.W. or
~ Anti-Trade Winds which come to us charged with the
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warmth and moisture they have taken up in the inter-
tropical regions of the Atlamtic. The condensation of the
vapour in the form of raiu or snow restores the heat which
had been expended in raising the vapour -in those distant
seas.

Ocean currents will also have & very powerful influence
in modifying the temrperature. To whatever cause it may
be due, it appears certain that there is a constant interchange
of water between the Tropics and the Arctic regions. The
large number of observations made by Dr. Carpenter during
the last few years have led him to adopt the doctrine of
a general oceanic vertical circulation sustained by opposition
of temperature alone.* He infers that there is a continual
bottom eutflow of Polar water, due to increase of density
and pressure, along the deepest channels of communication
with other Oceanic basins. And as a necessary consequence
of the reduction of level which must result from this outflow
in the Polar area, there will be a continual surface indraught
for its restoration ; and thus a movement will take place in
the surface-water from the Tropics towards each Pole.

The rotation of the earth from west to east must be
considered in connection with this movement of the waters.
The nearer the equator, the greater will be the eastward
velocity of a body ; the warm surface current will, therefore,
as it moves towards the Poles, travel eastward more rapidly
than the parts of the earth which it successively reaches,
thereby acquiring an eastward direction ; while for a like
reason, the cold Polar current will flow towards the equator
and westward. :

A north-easterly drift of this character is found carrying
the waters of the mid-Atlantic towards the British Islands,
and its warming influence is felt even as far north as Spitz-
bergen and Nova-Zembla. A. cold Arctic current on the

* See an article by Dr. Carpéntel‘ in Good Words, Jan. 1878,
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other hand, with a westerly tendency, sweeps along the
eastern coasts of Greenland and of North America as far
south as 40°; go that while the harbour of Hammerfest
(Norway), in 701" north latitude, is free from ice all the
year round, the opposite coast of America is blocked up
as far south as 50° north latitude during the whole winter,
and a great part of the early summer.

The same remarks will apply to the west coast of America
and the opposite shores of Asia, but in a much less marked
degree, for the shape of the continent. gives rio outlet for
the cold current from the Arctic Ocean through Bebring’s
Straits, although the north-easterly warm current from
Japan is felt along the west coast of British Columbia, and
even beyond the Straits, further up on the north coast of
America. The opposite east coast of Asia has, however, a

higher temperature than the corresponding latitudes of the

east coast of America.

The northerly drift above spoken of does riot begin near
the equator. Between the parallels of 40° north and south
of the equator, surface eurrents are found describing circuits
of immense extent, with central expanses of quiescent water
. covered with marine vegetation, and undisturbed except by
winds and tides. These equatorial currents are probably
due to the propelling action of the trade and anti-trade
wipds ; but, whether due to these alone or to these combined
with other forces, the result is a continuons motion of an
enormous body of water. If we follow the equatorial cur-
rent of the North-Atlantic, we find it travelling westward
from the coast of Africa towards the north coast of South
America, where, being driven by the conformation of the
land into the Gulf of Mexico, it is turned northward, and the
Gulf-stream, as it is now called, flows through the Florida
channel and outside of Cuba, a warm current with a speed
of from two to four miles an hour.- Taking now a north-
easterly course it gradually leaves the American shore, and,

1
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propelled perhaps by the anti-trade winds, a portion of it
joins the N.E. drift spoken of before, and adds its warmth
to the other canses which render our winter climate milder
than that of the corresponding places in the same latitude.
There is now reason to believe that the larger portion of
the Gulf-stream, after reaching the meridian of the Azores,
turns southward and completes the circuit by rejoining the
current off the coast of Africa.

In south latitudes, the immense expanse of water keeps
the temperature much more nearly dependent on the lati-
tudes alone.

Trade Winds.

%142 What has been said about the ocean currents will
prepare for the explanation of the Trade Winds.

The air in the torrid zone, being heated by the Jand
and sea, expands and rises, forming an upward current which
must be fed by the lower air of the higher latitudes, and
a current therefore sets in towards the equator from the
temperate zones. The warm air which has risen spreads
over the other, and thus a constant interchange takes place,
causing an upper current from the equator towards the poles;
but this upper current being gradually cooled will sink again
to the earth somewhere in the temperate latitudes.

There will, therefore, be, in the torrid zone, an under
current of air setting towards the equator; but this air,
having less easterly velocity of rotation than the portions

- of the earth which it successively reaches, will lag behind,
and the current which starts from the northern hemisphere
as a northerly wind will, as it advances sonthwards, gradu-
ally pass into a north-easterly wind, and in some cases
even become an east wind.

This constant current, which blows nearly all the year
round, is called the N.E. trade-wind ; and -a corresponding
curreut, called the S.E. trade-wind, advancing from the
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southern hemisphere towards the equator, veers gradually
round, becoming more and more easterly.

The upper current of air, which sets north and south
from the equator, having the same easterly velocity as the
equator, becomes, where it again reaches the earth, the anti-
trade wind, the prevailing south-westerly wind of our lati-
tudes, and a north-westerly wind in the southern hemisphere;
but the position of the sun, mountain ranges, and accidents
of country, will modify these general results.*

A 143. The trades do not, however, meet and combine in
a common easterly direction near the equator. They are
separated by a belt some 600 miles in breadth, characterised
by heavy rains and calms. In the Atlantic, the N.E. trade~
wind is felt from about 25° to 8° of north latitude, and the
S.E. trade-wind from about 25° to 2° of south latitude, but
these limits vary with the season.

At its southern limit the N.E. trade loses its easterly
tendency, and the wind gets gradually more northerly; and
so at the northern limit of the S.E. trade, the wind shifts
into a more southerly instead of easterly direction. Basil
Hall, who notices this fact (Fragments of Voyages, 2nd series,
vol. 1., p. 289), gives the following explanation: The friction
with the surface of the water destroys the velocity of the
trade-wind, so that its westward motion is diminished. The
motion towards the equator would also diminish from the
salne cause, but the original pressure which produces this
motion is still acting, and the particles progress towards the
equator, and as the successive parallels of latitude do not
now increase so rapidly-as at first, the westerly motion will
be less.

This equatorial belt, where the winds from the north and
the south meet and counteract one another, is not stétionavry,

* The explanation of the Tra,de ‘Winds, given above, was first proposed by
Halley (Pkil. Trans, 1686, p. 167).

12
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the interior limits of the trades shifting north or south as
the sun’s declination alters. In the Indian Ocean, the S.E.
trade crosses the equator in the summer, and extends as a
S.W. monsoon to the foot of the Himalayas. In the same
way the southern limit of the N.E. trade, during the winter
months of the northern hemisphere, not only reaches the
equator, but crosses it and appears in the southern hemi-
sphere as the N.W. monsoon (Dove’s ¢ Law of Storms”).

In the 6th vol. of the Smithsonian Contributions to Know-
ledge, Prof. Coffin hag collected and discussed an immense
number of observations on the winds of the northern hemi-
sphere. From these it may be inferred that the proximity
of large continents has considerable influence on the winds.
Thus, in the North-Atlantic and in the North-Pacific the
trade wind veers gradually round to the east, except close
£o the west coasts of Africa and of America, where the land
draws as it were the wind to it, and gives it a more northerly
direction. Along the coast of California, following the trend
of the land, it even becomes north-westerly.
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CHAPTER IX.
FINDING THE LATITUDE BY OBSERVATION.

-344. Tar determination of the latitude is & problem of
primary importance in an observatory, and the greatest
accuracy, both of calculation and of observation, must be
brought to bear upon it.

At sea it becomes a problem of daily mecessity, but the
same precision is neither requisite nor possible. The ship’s
place is constantly changing, and the delicate instruments
and methods of observation in use in an observatory must
be replaced by others adapted to. the unstable position of
the observer. V

A second of latitude corresponds to. a distance of abont
thirty-four yards, and the latitude of a fixed observatory is
determined to within a few tenths of a second ; but this is
after a series of observations extending probably over a
number of years. At sea the latitude can seldom. be relied
on to within a quarter of & mile, and the nearest half-mile
is generally considered sufficient.

+145. The methods may be classed under three heads:
meridian observations, ex-meridian observations, and circum-
meridian observations. . Of the following methods the first
is the simplest, and in a fixed observatory the most accurate,
but it is not adapted to general use at sea, on account of
the twelve hours’ interval betweeri the. observations, which
will frequently require one of thém to be made in the day-
time, when only the powerful fixed telescope of an obser-
vatory can perceive the star. o
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The second method is that in common dally use on board
ship.

The third, fourth, sixth, and seventh methods are sea
methods, especially useful when clouds or other circum-
stances interfere with the meridian altitudes.

The fifth method can only be practised in an observatory
fitted with a transit in the prime vertical, .

Meridian Observations.

~146. First Method. To find the latitude by observations
of the two meridian altitudes of a cu‘cumpola,r star,
Let Z be the zenith, P the ,
pole,

'HR the horizon,

a the altitude AR of a
star. at upper transit,

B the sltitude BR of
the same star at lower transit ;
then, PR=1 (AR + BR),
or, lat.=% (a+8).

In this method no previous knowledge of the star’s de-
clination is required,

147, Second Method. To find the latitude by observation
of the meridian altitude of the sun, a star, or other body,
whose declination is known.

Let S be the sun or star in
the meridian, Q the equator,
8 the known declina-
tion 8Q, ,
atheobserved meridian
altitude SH,
2=90°—a, the zenith
distance ZS ;

then ZQ=2Z8+8Q, or, lat. =z + 9,
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If the object crossed the meridian between Q and H, the
formula would be lat.=z—98; and if between Z and P,
lat.= 85—z These are all included in the single formula
lat.=z+ 8, provided = be reckoned + when the zenith is
north of the object, and — when south ; and gimilarly, north
declination +, and south declination —. The latitude will
be north or south, according as the result is + or —.

If the altitude is observed when the object is crossing
the meridian below the pole, that is, between P and R, it
will be easily seen that lat.=180°—2z—3&, and that it must
necessarily be of the same name as the declination.

In the praetice of this methed at sea, it is impossible
to ensure that the observation shall be made exactly in
the meridian ; but the change of altitude being then very
slow, no practical difficulty arises. Tne altitude of the sun
or other body is taken a quarter or half-an-hour before the
meridian passage, and the observation repeated at short
intervals until the maximum is passed, which maximum is
then taken for the meridian altitude. The observations are
of course made with a sextant, the image of the star or
of the sun’s' limb being brought into coincidence with the
visible horizon and the instrumental reading corrected for
dip, refraction, &c.

Ezx-meridian Observations.

v148. Third Method. To find the latitude by simultaneous
observations of thealtitudes of two Zz

Nz

known stars. /
Let S, 8’ be the two stars, ,
2, z' their zenith distances,

A, A’ their known polar dis-
tances,
o the known difference
SPS’ of their right ascensions.
In the triangle SPS’, the two
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sides PS, P8’ and the contained angle are known, whence
the third side SS' and the angle PSS’ may be calculated ;-

08 88" =cos A co8 A’ +8in A sin A’ €08 &...... (i),
. sin A’ sin «
81 PSS’:* .............. sessersrsenrsane ii),
n S ST ittt (if).

The three sides of the triangle ZSS" are now known, and
the angle ZSS' may be computed

sind (Z88) = M {smé (' +z—-SS’) smg (2’ +SS'—z)}m (iii)",

sin 8S” sin 2

then PSZ = (PSS —Z8S') will be known,

Finally, in the triangle ZP.S we have two sides and the
contained angle, and the third side ZP = co-latitude may
be computed  ° ,

#in fat.=cos ZP =008 A 008 z +sin A sinz cos P8Z.,.(iv).

This method i8 not so extensively nsed by seamen as it
deserves to be. It is susceptible of great accuracy, because,
during the morning and evening twilight, the horizen is
generally well defined, and the altitudes of bright stars can
be readily observed. Moreover, so long as the same two

stars are used, the values of 8§ and PSS’ are constant, and
may be tabulated for certain pairs of principal stars, leaving

only two quantities, ZSS' and ZP, to be determined from the
formulee (iii) and (iv).*

The observations must be simultaneous ; but when there
is only one observer, proceed as follows —Take the alti-
tude of &, then the altitude of S’, and again the altitude
of S, noting the corresponding intervals of time. During
the few minutes that this will occupy, the changes of
altitude may be supposed to be uniform, and therefore
the altitude of S, corresponding to the instant of the ob-
gerved altitude of &', may be easily found.

o

¥ This iy done in the ¢ Star Tables ” publshed by Capt. Shadwell, R.N.
! p
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: \N149. Fourth Method. To determine the latitude by two
observations of the altitude of the sun and the elapsed time.

"This is in reality the same problem as the last, the
declination of the sun at the two times of observation re-
placing the declinations of the stars, and the elapsed time
reduced to degrees, at the rate of 360° for 24 hours, giving
the angle SP.§, which was the difference of right ascension
-of the two stars, ,

A modification, however, arises in the case of the sun,
from the fact that his declination changes very little in
the interval between the observations, and may be con~
sidered the same at each as it is at the middle time be-
tween the two.

The triangle SPS’ thus becomes an isosceles triangle,
and, bisecting it by a perpendicular from P (not drawn in
the ﬁgure), the two formule (i) and (if) are replaced by

sin 1 88 =sin A sin {a,
cot PSS’ = cos A tan 3o ;

the remainder of the solution will proceed as before.

The same solution will obviously apply to two altitudes
of the same star and the elapsed time, provided this elapsed
time be reckoned in sidereal hours.

150. At sea, when two observations are taken, ag in the
fourth method, separated by an interval of time, allowance
must be made for the change of the ship’s position during
the interval. , _

This is practically a very simple operation, because the
distance run always subtends a small angle at the centre
of the earth.

Let Z and Z* be the zeniths of the two places, and
S the sun or star, whose
zenith distance ZS was ob- /}
gerved at the first place of 5 xz' '

observation. We have to
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determine Z'S, the zenith distance which would have been
observed at the same instant at the second place.

Let the ship’s course by compass, and distance run during
the interval, be measured by the usual methods practised
at sea. Also let the compass-bearing of S, at the first ob-
servation, be noted. The angle 6, between the ship’s course
and the bearing of S, will be the angle SZZ‘, and the
distance run by the ship in nautical miles will be the number
of minutes in the arc ZZ".

Draw Z'X perpendicular to SZ. Then ZX will be very
approximately the difference between 87 and SZ, and, the
sides of the triangle ZZ’X bheing small,

ZX=77"cos 0 ;
therefore SZ'=8Z—27" cos 0,
and the first observation is reduced to what it would have
been if made at the second place.

"+151. In order to determine the most favourable circum-
gtance for the success of the third and fourth methods, let
us examine the graphical solation of the problem.

‘We shall assume that the declinations and right ascen-
sions of the two bodies, or the declinations and elapsed time
in the case of two positions of the same body, aré accurately
known ; and we wish to ascertain under what conditions of
observations, errors in the altitudes will have the least weight
in the determination of the latitude.

_Let P be the pole; S, S the two bodies, or the two
positions of the same body.

With S as pole and a spherical
radius SZ, or z, the zenith distance
of §, describean arc ZX. Similarly,
with 8" as pole,and a spherical radius
=2/, describe the arc X'Z, cutting
the former in Z ; then Z will be the
zenith and PZ the co-latitude.
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When the two observations are made with different
instraments, the errors of observation not only being un-
known, but having no necessary connection, it will be
best to select the time when the angle between the two
arcs ZX, ZX approaches nearest to a right angle; for,
if the possible error in each observation be 6, the greatest
possible error in the value of the latitude will, when the
angle is a right angle, be the diagonal of a square, whose
gide is 6 ; whereas, if the two arcs cut each other obliquely,
the greatest possible error will be the longest diagonal of the
parallelogram, whose angle is the same as that between the
arcs, and the perpendicular distance between the opposite
pides of which equals 6.

The two bodies should therefore be observed when their
azimuths differ by about 90°,

But when the two observations are made with the same
instrument, so that the errors of altitude, though unknown,
are likely to be the same at both observations, and in the
same direction, that is, both in excess or both in defect,
let RV and RV’ be two arcs, having S and & for poles,
and for spherical radii the erroneous zenith distances = —8@
and 2’ — 6 respectively, then R will be the erroneous zenith
8o determined ; and it is obvious that, if the meridian ZP
be perpendicular to ZR, the co-latitude given by PR will
not sensibly differ from the true one PZ.

Now ZV and ZV' being supposed equal, ZR bisects the
angle SZS', therefore the most_favourable condition of obser-
vation will be when the verticals of the two bodies are on the
same side of the meridian, and equally inclined to the prime
vertical, the difference of azimuths being at the same time
near 90° if possible.

~152. Fifth Method. To determine the latitude by ob-
servations made with the transit in the prime vertical
(Art. 109). ‘
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Let S be the star in the prime vertical Z8, P the pole.
Let the instant of the star’s Z '
crossing the mean wire be
noted by the sidereal clock.
The difference between this
and the right ascension of 4
the star will be the angle
SPZ=a suppose.

Let A he the polar distance
of the star.

The right-angled triangle
SPZ gives cos P=tan PZ cot PS.

cot. lat.=cosa tan A.

The nearer the star passes to the zenith, the less will be

the effect of an error in the time of transit,

4 153. If the same star be observed in the prime vertical
both on the east and on the west side of the meridian,
we shall require neither the right ascension of the star
nor the sidereal time, and shall thus be independent of the
error of the clock provided its rate be known. The angle
a of the formula will be one-half the elapsed sidereal time
between the two ohservations,

When the transit instrument admits of reversion on its
bearings, all instrumental errors may be eliminated by
observing a star on opposite sides of the meridian on one
night ; and, after reversing the instrument, again observing
the same star on another night; but for a fuller discus-
sion of the method and of the various refinements which
render it valuable, we must refer to Chauvenet’s Spherical
Astronomy.

Circum-meridian Observations.

- M54. Siwth Method. To determine the latitude by the
altitude of the heavenly body observed very near the meridian.
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Let % be the hour angle ZPS of the sun or star,
S the declination = 90°— PS,
¢ the latitude=90°— PZ,
2 the observed zenith distance ZS ;
2 — x =the meridian zenith distance=PS—PZ,

= ¢—38.
=

The triangle ZPS gives
cos ZS=cos PZ cos PS+sin PZ sin PS cos ZPS,
‘= cos (PS— PZ)—2 sin PZ sin PSsin"}ZPS,
cos z=cos (2 —&) —2 co8 ¢ cosd sin’}A,
2 sin (2 —32) sindo=2 cos ¢ cos 3 sin’}4,
x cosd cosd sin’th

B S =" sin (x—3i)

?

and approximately, since & is small,
_2 cogd> cos 8 in’é,
sln 2 2
and lat.=z—x+38.
It will be observed, that the value of « is obtained in terms
of ¢, the unknown latitude, but we may there replace ¢ by
‘its approximate value z + 8.

fl 155, The following modification of the method would
be found useful at sea. The observations being made
within a short distance from the meridian, % is small ; we
may therefore write 34 for sin /%, and, if we suppose x
expressed in seconds of a degree and % in minutes of time,

. 2.co8 ¢ cos 8 (A sin15"\?
17 = ]
@8 " sinz ( 2 ) ?

__cos¢ cos 8 sin’15” ,,
2 sinz sin1”
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The multiplier of 4 may be considered constant, and equal
to its meridian value, which we shall call ¢ ;

__ 08¢ cos & sin’ 15’

therefore C= m,
and e=C.A,

C is the change of altitude during the first minute before
or after passing the meridian, and, being a function of the
latitude and declination, its values may be conveniently
tabulated. These values change very slowly, so that we
may use that which corresponds to the roughly estimated
latitude.*

All that the observer has to do, therefors, is to multiply
the square of the number of minutes which elapse between
the observation and the meridian passage by the proper
factor C, and the result, added to the observed altitude, will
give the meridian altitude, whence the correct latitude may
be found.

The precision of the method is really much greater than
might at first be supposed, especially when the body does
not pass near the zenith. Thus, in latitude 50°, when the
declination is 0°, the error will not exceed 1’, 8o long as the
hour angle is less than 40 ; it will be less than 30” when
the hour angle does not exceed 33 ; and for about a
quarter of an hour on each side of the meridian the error
will be less than 1”, and consequently much within the
probable errors of observation.

Passing clouds may hide the sun at the very instant
when it is exactly on the meridian, and yet allow very
good observations to be made on each side. But even
when no clouds interfere with the meridian altitude, the
mean result of several observations taken near the meridian,

* See Mendoza Rios's Tables for Navigation and Nautical Astronomy. See
also Lieut. Raper’s Pragtice of HNavigation, Third Edit., which contains methods
analogous to the above, - .
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and corrected by this method,* will be of greater value than
that of any single observation, even a meridian one.

1156. The method just given supposes the hour angle
known with tolerable accuracy. When this is not the case,
we may proceed as follow :

Let two observations be made, and the interval ¢ be
noted ; ‘
Let 2, 2’ be the two observed zenith distances,
z, &' the corrections to reduce them to the meridian,
k, & the corresponding hour angles,
z=Ck,
a’'=Ch*;
therefore z2—2' =&z —a&'=C (B —=k")=C (h—F) h+%);
2~z is the change of altitude, and one of the two factors
h—Fkérh+# will be ¢, the known interval of time. This
equation will, therefore, furnish the other factor,
Ak =t,

,_2—=2

z—2
therefore h=1 (t + -‘C't—) )

whence z = CA* ; and z — &, the meridian zenith distance, will
be known.t

3157, Seventh Method. To determine the latitude by an
observation of the pole star. ‘
This method is especially valuable at sea, because the
observation may be made at any time when the star is
visible ; and, on account of the proximity to the pole, the

* Fach observation must be corrected separately, for the arithmetical mean of
the altitudes will not correspond to the arithmetical mean of the times.

+ See Dubois’s Cours de Navigation et &’ Hydrographie. Chauvenet’s Spherical
and Practical Astronomy.
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motion is always slow, so that an error in the estimated
time has little influence on the result.

Let ¢ be the co-latitude of the place,
_ / the hour angle of the star,
A its polar distance,

“ K the zenith distance = 90° — a, where @ is the observed
altitude corrected for refraction, &ec.

r q" .
. s g
If ¢ — z=altitude — latitude =z, then # and A will be
small quantities.
cosz=cosc cos A +sinc sin A cos’
=08 (2 + ) cos A +sin (2+2) sin A cos’
= (cos z— & sin2—}&” cos 2+}a’ sinz+...) (1—ad+...)
+ (sinz+x cosz—4a" sinz +...) (A—3 A%+ ...)'Ezoskt
We shall proceed to express « in a series of ascending
powers of A. Dividing by sinz, and neglecting the fourth
and higher powers of small quantities,
cotz=cotz —z+ A cosk—ix’ cote—4 A’ cot 2+ Az cotzcosh
+ 42"+ 3o A" — 12°A cosh— A% cosh ;
therefore x=A cosk—3 cotz (@ + A*—2Az cosh)
+ % (" +38xA"—32’A cosk— A® cosh) ;
whence z=A cos/ is a first approximation,
and, substituting this value in the terms of the second order,
~ &=A cosh—3%A” cot z sin’k is a second approximation.

- This second approximation being used in the terms of
the second order, and the first approximation in those of
the third order, we obtain

x=A cosh—}A cotz sin’% + 3A°® cos/ sin'k ;
or, if # and A be expressed in seconds,
&=Acosk—3A%sin1” cot 2 sin’k + 3A° sin' 17 cos 4 sin'.
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The maximiim value of the last term corresponds to
3 cos’h—1=0,
and its valie is then —9_:/%@ Asin’1”. Now &isat present
less than 1° 30', and the value of this term is, therefore, less
than 075 We may, therefore, neglect it, and we have
lat:=a— A cosh+ 34’ sin1” tana sin’A.

The Nautical Almanac contains tables for facilitating the
computation. The first table gives the values of A cos 4, the
argument* being the sidereal time of observation, which
differs from /4 by a constant quantity. This first correction

“applied to & gives an approximate latitude @ — A cosZ:

The second table gives the value of the term
1A’ sin1" tan e sin’,
the arguments being the sidereal time and the altitude.

A third table is also given, to allow for the difference
between the actnal value of A and that value which is
employed in the construction of the first table. The argu-
ments are the date¢ and the sidereal time:

* The argument of a table is the known quantity which serves to determine

_ the value of some dependent function.



( 130 )

CHAPTER X.

THE ECLIPTIC.

- Determination of the First Point of Aries.

~158. THE first point of aries (Y)—that point of the
celestial aquator which the sun’s centre occupies when
crossing from the south to the north side—is the zero point
from which all right ascensions are reckoned (Art. 16), On
account of its importance, it is necessary that we should
know with great accuracy its position among the fixed
stars, or, which amounts to the same thing, the position
of the stars relatively to it, as expressed by their right
ascensions. (See Chap. viL, Arts. 121, 122.)

First Method. To determine the instant when the sun
isin Y. Let us find by observation the sun’s declination
at noon on two successive days (Art. 119), selected so that
it may be south on the first and north on the second of
the two, having crossed the equator in the interval.

Let 8 be the south and &’ the north observed declina-
tions, and let «, B be the
corresponding differences of F
right ascension between the = -
sun and some chosen funda- 'ﬂ/
mental fixed star (Art. 120),
then 8+ &' the change of declination,
and U—B ceeiiriinrnenas . right ascension,
may be considered.as taking place uniformly during the
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interval of twenty-four hours ; so that, if « be the change
of right ascension between the first position and 7,
x 8
a=g " 8§+8°
Therefore, the star’s right ascension
(a—R) 8
8+é&

Hyg—r=q—

_ad' + 83
B T A

169. Second Method. Flamsteed’s. Let ¥Ma be the
equator, Y'Sa the ecliptic, and o a fixed star.

Let the zenith distance 2 of the sun be observed at nogn
on some day near the vernal equinox, and also the

Egquator

difference a between the time of its transit and that of the
star o, and let 8 be the declination of the sun.

Thus, if S be the sun’s place at noon, SM and o H the
declination circles of the sun and star,

: SM=8, MH=a.

Now, when the sun is approaching the autumnal poinf o,
let P and Q be two of its positions at noon on successive
days, when the zenith distances 2z’ and 2” are—the one less
and the other greater than 2.

Suppose these to have been observed, and also the cor-
responding intervals P'H=p, @ H=1, between the transits

" of the sun and the same fixed star o.

We may assume that, during the motion of the sun from:
P to Q, the changes of declination and of right ascension
K2
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proceed at a uniform rate ; so that if §” be the sun’s position
when the declination "M equals SM, we have

PM _PP—-SM _ ¥-3

-t‘/Q’ - PP/_QQI - 8/_8/1 2
z—2

P & =9 .
or PM:W(B_Y)':M(B_V);
" z—2
therefore MM =a—8+ m (/8"')') ’

and sun’s right ascension at S is
TM=90"—I MM
—90°—} (a—8) —} 27% (8-
=90°—3 @~ 8)~} S, (B—v),
star’s right ascension
2—2

= = ° 1 —_1
a+TM 90 +2 (a+ﬁ) 2 z//_z

3 (/3'.—'7) .

160. Third Method. Both the right ascension and the
inclination e of the ecliptic to the equator, or the obliquity
of the ecliptic, as it is called, s —
may be determined by two ob-
servations of the sun’s declina-
tion and of the change of right
ascension in the interval.

Let S, 8" be the two positions
of the sun on the ecliptic 78§ ; 8, & the observed decli-
nations, and

TM, or R, the sun’s right ascension at first observation,

VM, OF B+ Ourvenrrrenenrenennananns ereenens second............
d being the change of right ascension, determined, as in
the previons methods, by comparison of the times of transit
of the sun and some star.

The right-angled triangles YMS, Y S’ give

sin R = cot @ tan§,
sin (R +a) =cotw tan &,
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sin(B&+a) tan¥
sin®k  tand’

therefore

cosa + sina cot R=tand cot?d,
whence cot R =tand cotd coseca—cota.
 This determines the sun’s right ascension, and from it
may at once be found the right ascension of the star. The
obliquity will be given by
cot @ =sin R cotd.

~161. This method is exact, but there are practical advan-

tages in Flamsteed’s which render it valuable, although only

approximate. If we compare the formul, we shall see that
Flamsteed’s does not require the absolute declinations of the
- sun, but only the changes of declination, or of zenith distance
between the first and second, and between the second and
third observations ; so that any uncertainty in the latitude
of the observer, or any instrumental or other errors* which
would affect each observation equally, will not influence the
result.

The right ascension of a fundamental star being thus
found, that of any other celestial body will be obtained by
observing the interval between its transit and that of the
star.

162. In the chapter on precession, we shall see that T
is not a fixed point as we have hitherto supposed it, but
that it has a slow—very slow—motion among the stars.
There will in consequence be a slow change in their co-
ordinates, determined at different epochs. Tables of the &
and decl. of 100 of the principal stars are given in the

Nautical Almanac for every tenth day, and those of the snn

for every day at Greenwich noon. The rate of change
during the intervals being nearly uniform, we may ealculate

* Such as uncertain values of parallax or refraction,—because in this method
the sun has nearly the same altitude at the different observations.

L AT AT
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the & or decl. for intermediate times. The & is generally
tabulated in hours, minutes, and seconds ; but it will be easy
to convert it, if desired, into degrees at the rate of 15° for
every hour,

Determination of the Obliquity of Ecliptic,

~163, Perhaps the most accurate method of determming
the obliquity (o w) is by qbservations of the meridian zenith
distance of the sun at the two solstices, At these epochs the
sun’s declination is exactly equal to the obliquity ; and if
#, # be the observed zenith distances at summer and winter
solstices respectlyely, and A the latitude, we have

A=@ =z,
At o=2"}
therefore w=4% (2 —2).
The same gbservations give us also the latitude of the place

164. 'We must remark, however, that the sun is not likely
to. be exactly 90° from Y when he crosses the meridian ;
because, as he occupies the solstitial point only for an instant,
he may at that instant be far from the obgerver’s meridian,
if not actually below the horizon,

A correctipn will be necessary to allow for thesmall change
in declination in the interval,

Let YSa be the ecliptic,

S the sun near the solstice,
SM the decl,=8=w -2,
TM the right ascension
= 90° +a, 3
where « and a are small quantities ;
§in (90°+a) = tan § cot w,
tan &
tan (3 +x)’

eosa =
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‘1—cosa _ tan (8+a) —tand
1+coso. tan (8+) +tand’
2 @ _ sin x
2 sin(20+)°
this determines z, and it may be expanded in the form

.

tan

w=tan’ §s1n28+ tan* §sm48+ e

where the first term will be sufficient when the observations

are made within five or six days on either side of the solstice.
Let 2 be the observed zenith distance and A the Iatitude,

then if A is accurately known, 8 =X —z will also be knowmn,

and thence w = & + 2 may be obtained by observations near one

solstice only. But any uncertainty in the value of A will

attach to & and, through it, to @. The value of x will also,

be affected, but the error will not be appreciable, and we

may consider 2 — # as accurately known ;

therefore A—w=2—2.

Similar observatmns at, or near, the winter solstice will give:

Moo=z —2,
whence . 2= (2" —a") — (2 —x),
with an accuracy depending on that of z and 2%,

Celestial Latitude and Longitude..
_165. The position of a celestial body may be referred
to the ecliptic instead of the equator:
 Thaus, if K be the pole of the ecliptic, K’aN a great
circle through. a star o, meeting:
the ecliptic in NN, the position:
of the star will be known when
YN and No are given ; these
are called the longitude and
latitude respectively..
The latitude is the arc of &

great circle drawn from the body:
perpendicular to the ecliptic.
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The Z,angitude is the portion of the ecliptic intercepted
between this circle and the first point of Aries,

- 166. The latitude takes its name north or sowth from
that pole of the equator which is on the same side of the
ecliptic as the body. .

Those stars which are situated in the acute angles, formed
by the ecliptic and the equator, will have their latitude and
declination of opposite names ; that is, one north, the other
south ; but for all other stars they will be of the same name.

The longitude is measured eastward from « through 360°,

The ancients, who always referred the places of bodies
to the ecliptic, subdivided the 860° of longitude into twelve

equal parts called Signs, and to these they gave the names

of the constellations which occupied those signs in the early
days of astronomical science, Thus, the first 30° from w
was called Aries, the next 30° Taurus, and so on, the names
and symbols of the twelve signs being—

Ai’ias, Taurus, Gemini: Cancer. Leo. Virgo.
7 s o > a LU
Libra. Scorpio,  Sagittarjus. Capricornus. Aquariug Pisces,

o~ m- ¥ v & *

These have fallen inta disuse, and the constellations have
so far shifted, that the appropriateness of the names has
been lost. The first signis no longer in the constellation
Aries, but in that of Pisces, This_shifting we shall explain
in Chap. xvII. v

Transformation of Coordinates.
_ 167, The obliquity of the ecliptic being known, we can

‘readily convert & and decl. into latitude and longitude, and

pice versd,

Thus, let o be a star, oM and oV arcs of great circles
perpendiculap to the equator and ecliptic respectively ; join
o by an arc of great circle. '
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Let V.34 the rt. ascension = &,
Mo ... declination =3J,
TN ... longitude =/,
No ... latitude =2,

NTM ... obliquity =,

. M
First. Suppose R and & given, then the right-angled
triangle oY M gives

€OSTa=COS R 008 8..ceuerruennnnnn(a),
cot oYM =sin R cotd..cccvvrrnrninrnns (8).
Therefore in the right-angled triangle oYY, we know Ta
and VN =0T M~ w, thence
sinA=sin Yo gin (6T = 0)..0crieeeen (),
tan/=tanYo cos (e TM — w)....... veeee(8),
(a) and (B) give the auxiliary quantities Yo and oYM, then
(v) and (8) determine A and 2.*
Secondly. Suppose M and [ given. The steps will ob-
viously be the exact counterpart of those we have just
described, thus

€0sVa=co87 COSN.eqerenns e (),
eot oY N=sin?l CotAevrerenennnenns (B,
determine the auxiliary quantities Yo and 0TV, then
sind=sinTo sin (GTN+ @).uuvrernnnn. (v),
tan R =tanTo cos (a'Y‘N+w)y......., ..... (8"

determine the declination and right ascension.

168. In the case of the sun, whose latitude is zero, the
connection between the right ascension, declination, longitude,

* These formulze may be modified so as to require only one of the auxiliary
quantities, viz. the angle gY M. If we represent it by ¢, it may be easily shewn thak

cot ¢ =sin Reot g,

_sin(¢p —w)sing

sinA sin ¢ ’
_cos (¢ — w) tan &
t&r\l*‘_“m'v S—¢ 3

engd a similar modification may be applied to the second set of equations,
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and obliquity, is given by the solution of the right-angled
triangle STM (fig., p. 132), whence

¢osl{ =Ccos.R 0080,

8iné =sine sin/,

tand =sinAR tana,
7 tan & =cosw tan/.
‘When two of the four quantities &, 8, /, @ are known, these
equations will determine the others, ’

169. From the last of the equations above, we get

dR dl
2 R 27 77,
sec’ R 7 = COS @ SeC ldt’

therefore i = cosw sec’d Z_f ;

dt

therefore corresponding small increments of the sun’s & and
longitude will be in the ratio of cosw : cos®d.

Right Ascension of the Meridian.

~170. By the right ascension of the meridian is meant
the & of those stars which are in the meridian at the instant
considered. It is, therefore, the sidereal time expressed in
degrees (Art. 17), and is equal either to the hour angle
of the first point of T, or to its defect from 24", according
as T is on the west, or on the east side of the meridian.
Thus, if ¢ be a star in the
meridian, YMFE the equator, T
being on the west of the meri~
dian, then YM is the & of the
meridian, and is obviously the
same as TPM, which is the
hour angle of T
But if ¥ be on the east
side of the meridian as at ¥,
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the & of the meridian would be the whole circumference
minus ¥ M, that is, the whole circumference minus the hour
anglé of V.

The right ascension of the meridian may also be found
a8 follows :—Take from the Nautical Almanac the sun’s &
for the given time, and add to it the time past noon, deducting
24* from the result if it exceeds that sum,

Position of the Ecliptic at a Given Instant.

—~171. If the equator were a bright visible band in the
gky, it would occupy a fixed position, of which we may
readily obtain an idea hy means of some of its points, viz,
the east point with its opposite the west point, and a point
in the meridian at s distance from the zenith equal to the
latitude,

- The position of the ecliptic is not so readily oconceived,
on account of its constant shifting. We must determine
the point where it crosses the eastern horizon, called the
ascending point, which at the same time gives the opposite
or descending point ; these, with some third point or with
the inclination of the ecliptic plane to the horizon, will be
sufficient,

‘When the sun Is above the horizon, his centre, which
is always in the ecliptic, will give us the third point we
want ; or, we may find the point called the culminating point,
where the meridian is cut by the ecliptic ; or, again, we
may find the nonagesimal, which is 90° from the ascending

point, and is the highest point of the ecliptic above the
horizon,

172, Let the ecliptio, equator, and horizon be as repre~
sented in the figure on the next page, the meridian being
ZCM. Let ™M be the right ascension of the meridian
(®alculated as in Art. 170), which we shall call M,
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Let Z be the zenith, P the pole, K the pole of the ecliptic.
Let KZ meet the ecliptic
in &V and the horizon in N7,
then XN is the nonagesimal,
and VN’ its altitude is equal
to the inclination of the eclip-
tic to the horizon.
Let ZM, the latitude of the place, = ¢.
In the triangle TEO, we know
TE=90°+ M,
L E=MR=90°+ ¢,
/T =obliquity of the ecliptic = e,
whence EO and the angle O can he found.
eot EO sin Y E ==cot Y sin F + cos V' E cos E ;

therefore cot EO =cot @ cos ¢ sec M+ tan M sin d......(a),
co8s O=—cosT cos F+sinT sin £ cos ¥ ;
‘therefore cos O = cos w sin ¢—sinw cos ¢ sin M..... v (8),

(a) gives the ascending point, and (B) the mchnatlon or its
equivalent, the altitude of the nonagesimal, and thus the
position of the ecliptic is determined.

178. If C be the culminating point of the echptlc, we
have from the right-angled triangle TMC,
tan MC =sin M tan o,
and - . ZC=¢—MC,
whence the culminating point is known, and this, with the
ascending point glven by (a), will also fix the position of the
ecliptic.

174. E and O being the poles of ZP and ZK respectively,
EO is equal to the angle PZK.

In the course of #wenty-four hours K describes a small
circle round P, and the angle PZK varies between certain
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limits—the greatest value corresponding to the position when
ZK is a tangent to the small circle, and consequently the
angle at K a right angle. I e

‘\
e sin PK _sine’ ‘

SlIlPZK—'-‘-gin—l—)—'Z—m-

Hence, the greatest value of EO is sin™ <21(:1T::> , and the

ascending point oscillates to this extent from one side to
the other of the east point; but the time from the most
northerly to the most southerly position will inot be the
same as the time back again ; for the angle ZPK 1s acute,
and the ratio of the two times will be 7"—}1«%?{(

When K is in the meridian above the pole, o rises, and
the three points v, O, and E all coincide ; also KZ has its
least value =90°—¢ —w, which is therefore the least in-
clination of the ecliptic to the horizon.

‘When K is in the meridian below the pole, o rises at E,
and the angle between the ecliptic and the horizon has
then its greatest value =90°—¢ + w.

At a place within the frigid zone the result will be some-
what different. There, Z will fall within the small circle
described by K, and the point O will travel completely round
the horizon, the ascending suddenly becoming the descend-
ing point, and vice versd. The greatest and least values
of the inclination will be o + (90°—¢) and © — (90° — ¢).

175. The longitude of the nonagesimal is an element
gometimes wanted in the calculation of eclipses. Its value
is easily inferred from the triangle YEO, for TN="70-90°

cotTO sinTE=cot E sinV+cosTE cosT ;
therefore tan "N =tan ¢ sinw sec M + tan M cos w.

*

oy
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CHAPTER XI.

FORM OF THE EARTH'S ORBIT.

7176. THE orbit of the sun round the earth, or of the
earth round the sun, lies, as we have seen, in one plane ;
but what particular curve is described in this plane we have
not yet ascertained: We shall proceed to an examination
of this question, which, until the time of Kepler, remained
without a satisfactory solution. ;

It is very easily perceived, that the distance of the earth
from the sun is not a constant quantity. For, by taking
accurate measurements of his apparent diameter at different
times,* we find that it varies from 31’ 31”:0 on the 1st of
July to 32" 35”6 on the 31st of December, and as we
cannot suppose the magnitude of the sun to vary periodi-
cally, we must infer that his distance changes, and that the
earth’s orbit is not a circle with the sun at the centre.
The angles subtended by the sun being small, must be
very nearly inversely proportional to the distances.

Again, if the angular motion of the sun in his orbit be
observed, that is, his angular motion in longitude, its daily
value will be found to vary from 0° 57" 1175 to 1° 1’ 9”9,
these minimum and maximum values occurring at the same
epochs of July 1st and December 31st.

- 177. In the first place we shall remark, that the change
in angular velocity is greater than that in apparent diameter ;

* An instrument called a, Heliometer is specially adapted to this purpose.
It is a telescope with a divided object-glass on the principle of Dollond’s
double-image micrometer (Art. 112). See Chauvenet's Astronomy, vol, 11,
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for, the change of the former is about 5 of its mean value,
that of the latter only 4. Or, while

the apparent diameter changes in the ratio of 1 : 1+ 4,
the angular velocity ....cevverereesensiesniennnnn. 1:14+7,
which latter is the same as 1 : (1 +3Y)” nearly,

and, at whatever times the numerical values be compared,
it will always. be found that

angular velocity oc (appt. diam.)

2
b

1
| * (disty
Now let E be the earth, S the .
sun at any time, and ST the arc <
described in one day. T
Let 8’T” be the arc also de- = {

scribed in one day at any other time.
Then sector SET : sector S"ET”

=/ SETx (SE)*: LtS’ET’ x (S’E)’ ,
= angular vel. at 8 x (dist.)’ : angular vel. at 8 x (dist.)",
therefore the sector SET'=sector S’ ET".

Or, the areas, described in equal times by a radius vector I

!

joining the earth and sun, are equal in all parts of the orbit. |

This is one of Kepler’s famous laws discovered after
long and laborious calculations. This law tells us how the’
orbit is described, but says nothing about its form.

_A78. Another of Kepler’s laws, also the result of many
years’ study and observation, is, that the orbit is an ellipse,
of which the earth occupies one focus, and this we may
verify in the following manner :

Let the apparent diameter of the sun, and his corre-
sponding angular distance from the position of the 31ist
of December, that is, his change of longitude, be observed
day by day throughout the year.
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Let E be the earth,
A the sun’s place on the 31st of December;
B ceivedseisiinennass 18t Of July,«

when it has described 180° of longitade.
1 1
327356 * 31" 3170°
AE : AB=31"31": 64 6”6,

AE : EB =

and if AB=2a, AC=a,

we find AE=098321a,
EB=101679¢ ;

therefore EC= -01679a.

Then, if an ellipse be described with 4B for major axis,
and F for one focus, any radius vector ES, making with
AE an angle 6, will be numerically ealculated from the
formula

a(l—eé) _. .
Es=m, Where e="01679 H
1
therefore ok 14ecosé,

hence, if the sun describes this ellipsé, we ought to find
apparent diam. o¢ 1+ 01679 cos AES,

a relation which is verified by the observations. Therefore

the sun describes an ellipse about the earth in one focus,

or, according to the more correct statement, the earth describes
an ellipse about the sum in one of the foci (Art. 133).
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~179. The points of the orbit where the sun is at his
greatest and least distances are called respectively Apogee
aud Perigee, when, to conform our language to appearances,
we attribute the motion to the sun ; but, when we employ
the more correct supposition and regard the earth as the
body moving round the sun in the focus, the corresponding
points of the earth’s orbit are called Apkelion and Perikelion,
and the line joining them the Zine of Apsides.

.A80. . The laws of elliptic motion having been thus estab-
lished by observation, it will now be easy to explain why
the seasons should be of different lengths, asstated in Art. 135.
‘Let us make the earth revolve about the sun.

Let S be the sun in the focus of the orbit,
AP the apse line.
The earth will be at P on the 31st of December, and
at 4 on the 1st of July.
Let CD be the line of equinoxes,
MN at right angles to it, the line of solstices.
T

The earth is at V on the 22nd of December, only 9 days
before reaching P.

A simple inspection of the figure shews that the winter
quadrant NSC, which contains the least radius vector SP,
must be the smallest, and the opposite summer quadrant
MSD, the greatest. Of the two others, the spring quadrant
CSM is larger than the autumn one DSN. The areas of
the quadrants being unequal, so also will the times of
describing them be. .

L
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 #"181. At present the lengths of the seasons are as given
in Art. 135. We say—at present—because any change in
the position of AP relatively to CD will obviously affect
these lengths ; and our observations will shew that both the
line of equinoxes and the line of apsides are in motion, and
in opposite directions ; so that the angle PSC is annually
diminishing by about 617°47. "When, in about 2100 years,
the line SP bisects the angle NSC, summer and winter

will have respectively their greatest and least possible

values, and spring and autumn will be of equal lengths.
When, after 2650 years longer, SP coincides with SC,
summer and autumn will be equal, and longer than winter
and spring, which will also be equal to one another. The
subsequent changes can be easily followed. '

Of the 61”47 of annual change in the angle PSC, 50”22
are due to a retrograde motion of SC (see Chap. xvmL). -
The remaining 117-25 are due to a progressive motion of
the Apse-line, which we proceed to determine.

To determine the Position and Motion of the Apse-line.

_.182. We may remark that when the sun is in perigee,
its distance from the earth is least, and consequently its
apparent diameter greatest; and then also it attains its
greatest angular velocity. But the changes in these quan-
tities are so slow for several days before and after, that it
is impossible to detect, by direct observation, the precise
instant when this occurs. It may, however, be done with
tolerable accuracy by determining points on each side of
perigee or apogee, at which either the diameters or the
angular velocities are equal ; then the apse line will bisect
the angle formed by the radii drawn to these positions.

_A83. A more accurate method of determining the instant
and the position of perigee consists in observing the interval
of time between two positions of the sun separated by 180°
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‘When this interval is exactly half the time required to
describe 360°, the two positions must be perigee and apogee,
since no other line through the focus but the apse line bisects
the area.*

By a comparison of the position of the apse line at present
with those which it has occupied at different times separated
by long intervals, it is found to have a progresswe motion of
11”25 & year.

Position of the Earth in its Orbit at any Time.

_A84. When the instant of perihelion is known, and also
the time required to make a complete revolution in the
orbit, it is clear that there must be some means of ascertain~
ing the position of the body corresponding to a given time.
This we proceed to explain : '

Let S be the sun at the focus, P the penhehon, E the
earth at time ¢, mea- '
sured from perihelion,
PSE being the angle
described.

We have already
said that the radius
vector. joining the sun
and earth does not revolve at & uniform rate. Let us
conceive a uniformly revolving radius SR to start with the
actual radius SE from perihelion, and let the angular velocity
of SR be such that the two radii accomplish their revolution
in exactly the same time; then they will coincide at
perihelion and at aphelion, and there only. The angular

velocity of SR is called the mean angular velocity of
 the earth.

* For other methods of determining the position of the line of a.ps1des ses
Delambre’s Astronomie, vol. I p. 158,

L2
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The angle PSE, described by the true radius from peri-
helion, ig called the ¢true anomaly ; the angle PSR, described
in the same time by the uniformly revolving radius, is called
the mean anomaly ; and the angle ESR between them is the
equation of the centre. Therefore ‘

True anom.= Mean anom.+ Equation of centre.

There is yet another angle connected with the position
of E which we shall find it useful to consider. It is the angle
QCP at the centre of the ellipse, formed by the apse line CP
and the line joining € with Q, the point of the auxiliary
circle which corresponds to Z. This is called the excentric,
anomaly. l

To find the Relation between the Mean and the Excentric
Anomalies. :

 _-185. Let n be the mean angular velocity of the earth,
so that if T be the periodic time
or
=55 .
Then, mean anomaly at time ¢ = PSR =unt.
And, if we suppose SQ joined, we have, by a property of
. the ellipse, and by Kepler’s law, »
area of PSQ  area of PSE ¢
area of circle  area of ellipse 1 2m°
but, area of PSQ=sector PCQ —triangle SCQ

=}a’u—3a’esinu,

nt

where  is the excentric anomaly, ¢ the semi-major axis, and
e the excentrieity ; therefore
NE=U—€ BINU cvvevrrrereareasnannnn ().

To find the Relation between the True and the Excentric
 Anomalies.
. ,186. Referring to the figure, we have, 6 being the true

aﬁomaly,
SE cos@=CM—-CS;
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' a(l—e'
therefore e(l—e) cos 0 =a cosu— ae,
1+ecost
(1—é") cos = (cosu—e) (1 +ecosb);
cosu—e
whence cosf=——"—-,
1—ecosu

1—cosf _ (1+e) (1 —cosu)
1+cos@ (1—e) (1+cosu)

1+e .-
an——-\/l_e ;3 SRR €1 ) R

87. The excentric anomaly is thus, by means of (i) and
(i), a link between the mean and the true anomalies. When
6 is given, ¢ can be readily found ; but the more usual
problem is the inverse of this, and requires us to find the
value of @ corresponding to a given value of ¢ This might
be done by employing a succession of trials to approximate
to the value of « in (i) and then determining 6 by (ii). But,
the duantity ¢ being small, the plan adopted is to express »
and thence @ in a series of ascending powers of e, by
Lagrange’s Theorem (see Differential Calculus), and retain
only the important terms. We shall refer for the investiga-
tion to Tait and Steele’s Dynamics (Chap. vi.). The result
to the third power of e is

3

0 = nt + 2¢ sinnt + §¢’ sin 2n¢ + 122 (13 sin 3n¢ — 8 sinnt),

and  Eguation of centre =2¢ sinnt + ¢’ sin 2n¢ + &c.

1—¢*
T+ecosf
may be determined ; or it may also be expressed, in terms
of the time, in a series of ascending powers of e,

SE e
—-=1—ccos nt+% (1 — cos 2nt) + — (cos nt — o8 3nt).

~188. If the longitude of the apse be added to the true
anomaly, we get the true longitude of the sun ; and if added

‘When 6 has been found, the value of SE =



150 FORM OF THE EARTH'S ORBIT. forAP. XI.

to the mean anomaly we get what is called the mean
longitude, therefore

True long. = Mean long. + Equation of centre.

~89. Besides the two laws, given in this chapter, which
were found- by Kepler to hold in the case of each planet,
he, a few years later, discovered a tAird law, which establishes
a remarkable connection between the periodic times of the
different planets. This law, which furnishes one of the
arguments for the earth’s being a planet (Art. 133, (2)), is
that « The squares of the periodic times vary as the cubes of
the semi-major axes.”

. Kepler’s three laws, and the other results of this chapter,
can be shewn to be necessary consequences of the law of
universal attraction—Newton’s great discovery; but that
method of investigation belongs to Physical Astronomy,
whereas we are concerned with Astronomy considered as
a science of observation.
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CHAPTER XIL

UNITS OF TIME. EQUATION OF TIME. 7

)90 For astronomical purposes the sidereal day is one
of the principal units of time. It begins at the instant when
the first point of aries is on the meridian ; a correct sidereal
clock should then mark 0® 0™ 0%, and at any other instant
the sidercal time will be the hour angle of T reckoned
westward from 0" to 24* (Art. 17).

- A solar day is the interval between two successive transits
of the sun’s centre over the meridian. - The sun changes
his right ascension, advancing eastward among the stars, att
the rate of about-1° a day ; therefore the earth will have to
turn nearly 361° about its axis to complete a solar day, whick
will consequently be about 4™ longer than & sidereal day.

The solar time at any instant is the hour angle of the
_ sun’s centre reckoned westward from 0" to 24°. This is
called the apparent. solar time, and is the time indicated
by a sun-dial.

If the sun’s motion in right ascension were uniform, the
solar days would be all equal to one another, but this is
not the case. In the first place, the sun’s motion in its own
orbit is not uniform ; and secondly, even if it were, the
corresponding motion in right ascension would not be uniform
on account of the inclination of the orbit to the equator.

_191. The solar day, marking the recurrence of light
and darkness, is obviously that on which man, in civil life,
must regulate his time, although the want of uniformity
mentioned above hinders us from employing it as & measuring
unit. We may, however, obtain a uniform measure of time
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depending on the sun in the following manner. Conceive
an imaginary body, called the mean sun, to move along the
equator with the mean angular velocity of the true sun.
The days marked by this mean sun will be all equal, and
exactly the average of all the solar days during the year.
Therefore a clock, whose motion is necessarily uniform, may
be regulated on the mean sun. To complete the connection
between the two suns, we must establish the starting point of
the mean sun ; and it will be convenient so to choose it that
the meun solar time and the apparent solar time may never be
widely separated. The following hasbeenadopted : Conceive

-another imaginary body, say a star, to have the same uniform

angular velocity as the mean sun, but tomovealong the ecliptic

instead of the equator, and to pass through perigeeat the same-

time as the true sun ; then the motion of the mean sun is so
adjusted that it may passthrongh ¥ at thesame time as thestar.

By referring to Art. 188, it will be seen that the connection
between the two suns may be expressed by saying that e
right ascension of the mean sun is equal to the mean longitude
of the true sun ; because the mean longitude of the true sun
is the longitude of the supposed star. '

~192. Mean noon is the instant when the mean sun is on
the meridian ; and the mean time at any instant is the hour
angle of the mean sun reckoned westward from 0 to 24
These twenty-four hours constitute the astronomical mean
day ; but for civil purposes it is found more convenient to
begin the day at midnight and complete it at the next
midnight, dividing it into two periods of 12 hours each.
The two reckonings only agree in the afternoon of each

day, thus
Aug. 26 at 9 p.u. civil time is Aug. 26 at 9* astro. tifne,
but Aug. 27 at 9 AM................ Aug. 26 at 21%.............. .

,:193.; The equation of time is the difference between
apparent and méan timeatany instant ; itis usually considered
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as the correction to be applied to the former to obtain the
latter, and is therefore called positive when mean noon
precedes true noon, and vice versd.

It is obviouys that the equation of time is the value,
expressed in time, of the angle between the declination
circles of the true and the mean suns.

In order to examine the variation in the equation of time,
we may consider separately the two causes to which it is due,
and the algebraic sum of the two effects will be approxi-
mately that due to their joint action. '

)94.' First. Neglecting the elliptic motion, let us
suppose the sun to describe his orbit YM a N with uniform
angular velocity, the
mean sun describing
the equator V"M a N’
with the same velocity,
_ thetwo passing through
T at the same instant,
and the earth at the
centre turning about its
axis PP’ in the same
direction (marked by the arrow) once a day.

When the true sun is at B, the mean sun will be at C,
where TC'=725, and, if the declination circle BD be drawn
through B, CD will measure the angle between the declina-
tion circles of B and C, and therefore the equation of time.

It is obvious that C and D will coincide only at the
equinoxes and solstices. From equinox to solstice, C will
be in advance of D, and behind it from solstice to equinox.
Hence, while the sun is between T and M, any given
meridian will, as the earth revolves, overtake first the true
sun B and then the mean sun C, i.e. apparent noon will
precede mean noon, and the equation of time will be sub-
tractive. In the same way it may be shewn to be additive

- from solstice to equinox.
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«195. Secondly. Neglecting the obliquity of the ecliptic,
let PBA be the sun’s elliptic path, B the place of the true
sun between perigee and apogee, C the corresponding place
of the star or mean
sun, the two coinciding
at perigee and apogee
only.

At perigee the true
sun has its greatest
velocity, and will, therefore, shoot ahead of the mean, the
interval between them continuing to increase so long as the
sun’s angular velocity exceeds its mean value. This will
be at somewhat more then 90° from perigee (Art. 198) ;
after this the interval will begin to diminish and the two
will again coincide at apogee. Therefore, from perigee
to apogee the successive meridians of the earth will over-
take the mean sun before the true, i.e. mean noon will
take place before true noon, or the equation of time will
be additive. '

A similar reasoning will show that from apogee to perigee
the equation of time will be subtractive.

This gives merely the general character of the equation
as due to this cause ; its actual value will be obtained by
multiplying the angular interval by cos o sec’s, which is the
factor requisite to reduce a small arc from the ecliptic to its
corresponding projection on the equator (Art. 169). Since
the multiplier varies with the declination, it follows that the
greatest equation of time, due to this cause, will not neces-
sarily correspond to the greatest equation of the centre.
Moreover, the position of the apse line with respect to the
first point of aries is (Art. 181) changing by about 61747
annually, and therefore the same equations of the centre will

B

not recur with exactly the same declinations, and this also .

will slowly affect the maximum equation of time due to the
ellipticity of the orbit.
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_196. It remains now to combine the two parts of the
equation of time into one sum, and when this is done we
find that it vanishes four times a year, on or about the
following dates :—April 15th, June 15th, Angust 31st, and
December 24th. The following graphical method of effect-
ing the combination will perhaps shew the changes, and
speak to the eye, more forcibly than tabulated numbers
alone would do :

Draw a horizontal line—the upper one in the figure—
to represent the time, the successive days being supposed
represented by equal successive intervals.

oo ©
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~ Let the cuarve BBBB be drawn, so that its ordinates,

corresponding to each day, may represent that part of the
equation of time, on that day, which is due to the obliquity
of the ecliptic, positive values being set off on one side
of the line and negative values on the other; the curve
will cross the straight line at the equinoxes and solstices,
the maximum value at intermediate times being about 10™

(see Art. 197). , ; '
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Again, draw the curve CCCC to represent in a similar
manner that part of the equation of time due to the elliptic
form of the orbit, and whose greatest value is now about
7= (see Art. 198). This will cross the straight line on the
81st of December and on the 1st July.

To avoid confusion, draw another horizontal line—the
lower one in the figure—equal and parallel to the former,
to represent times as before ; and let the curve DDDD be
traced by making its ordinates equal to the algebraic sum
of the ordinates of the two former curves; this curve will
represent the equation of time due to the combination. The
figure shows the four vanishing positions specified above,
and likewise the intermediate maximum values, viz. :

+ 14°5 min. about February 11th,

— 39 iririnns May 14th,
+ 62 iiiiiene July 25th,
— 16°3 eevirnenen . November 1st.

+ 197, If we refer to Art. 169, we have

IR osw.sects ™
dt ’ dt’
. . AR
but, when ! — & is a maximum, G
therefore cosw.sec’d=1,

cos 8=4/(cos w),
which value of & will, by the formulse of Art. 168, lead to

sin (I —R) =ta|Jn”g3 ,

and therefore the maximum value of this part of the equa~
tion of time=7— MR =2° 28"=10 min. in time nearly. The
separate values of / and & will be found 46° 14" and 43° 46
from the equations

sec

1 oo ?
MOMES

sinl/=cos R=
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_198. Again, the equations in Art. 187 will enable us
to obtain the maximum value of the equation of the
centre ; and this, when powers of ¢ above the second are
neglected, is found =2e nearly, the corresponding value
of 0 being about 90°. But e=<4y (Art. 178); therefore
maximum equation of the centre =gly=1°55" nearly ; and,
as this takes place at present near the equinoctial point
where 8=0, the factor cosw.sec’S becomes cos23° 27%, or
1} nearly, and the corresponding part of the equation of
time will be }3 of 1° 55" =1° 46’="7 min. in time.

The equation of time should also take account of other
disturbances, such  as—those due to precession, which pro-
duce unequal changes in the longitude and right ascension
of the sun (Chap. xvus). But for this and for the effect
of planetary disturbances we shall refer to Delambre’s
Astronomie, vol. 11.

Equinoctial Time.

_199. In addition to the three kinds of tune——mdereal
apparent or solar, and mean solar—there is another, some-
times used by astronomers, and called equinoctial time, which
has the advantage of being independent of the observer’s
‘meridian. When a phenomenon is observed at different
places, the time of its occurrence will be registered differ-
ently, although the absolute instant may be the same for
all. This, as we know, is due to differences of longitude ;
"noon being reckoned, and the astronomical day beginning,
at each place, at the moment the mean sun crosses the meri-
dian of that particular place. Therefore, in order to institate
. comparison between the observations, it is necessary to
‘specify the place as well as the time of observation.

The equmoctml time is the time, expressed in mean days,
that has elapsed since the preceding mean vernal equinox.

The equinoctial time is therefore reckoned from an epoch
which is common to all observers. ‘
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Different kinds of Years.

~200. A year is the period of the earth’s revolution about
the sun, from some determinate position back again to the
same. A

If the starting point be a star or some point fixed among
the stars, the interval is called a sidereal year.

If we start from the first point of ¥, which, as we
have already stated, has a retrograde motion of 50722
annually, moving as it were to meet the earth, the period
will not be so long. This is called the tropical year, and,

a$ it determines the commencement of the seasons and all
‘the important phenomena of vegetation and life, it is the

unit marked out by nature for the use of man. By obser-
vations, separated by a long interval, it is found to consist
of 365°242216 mean solar days.

A third year is obtained by taking for our starting point
the perihelion of the earth’s orbit. Observation shews that
the apse line has a progressive annual motion of 11725
(Art. 183) ; the earth will therefore have to move through
this quantity, in addition to the 860° in order to complete
this period, which is called the anomalistic year.

The relative magnitudes of the three years will there-

fore be

tropical ~_ sidereal _ anomalistic
360°—50722 360°  360°4117°25°

and the tropical year having been found 365-242216 days,
the sidereal year will be ............... 365°256374......,
the anomalistic year will be ..... eees 365°259544....... .

The civil year contains an exact number of days, either
365 or 366. Its adjustment and dependence on the tropical
year will be explained hereafter (Chap. xxmr.).
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CHAPTER XIII.

REDUCTION AND CONVERSION OF TIME, FINDING THE TIME
BY OBSERVATION,

201, Astheearth turns uniformly on its axis, one meridian
aﬁer the other is brought opposite to the sun, and the different

places have their noons in succession, according to their

longitude (Art. 31). The solar time at a given place being
the angle made by the sun’s declination circle with the
meridian of that place, it follows that the difference between
the solar times at two different places, at the same instant,
will be exactly the angle between the meridians of those
two places ; that is, their difference of longitude. The same

‘will be true of the mean solar times or of the sidereal times ;

and, generally, the difference of longitude will be equal to
the difference of the hour angles of any, the same, celestial
point at the same instant. '

202, Therefore, “to find the time under any meridian
corresponding to a given time at some other meridian,” we
must convert the difference of longitude into time, at the

‘rate of 15° per hour, and add to, or substract from, the given

time: bearing in mind that, as the earth turns from west to
east, the more easterly meridian will have its noon first, and

‘must therefore reckon a more advanced time.

For example, the longitude of the Paris observatory is
2° 20’ 9°45 east ; that of the observatory at Pulkowa is
30° 19’ 39”9 east ; what is the mean time at Paris when it
is 12 5™ 12¢ of September 3rd at Pulkowa ?
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s.

h. m.
1 512

Long. of Pulkowa 3019’ 39”9 E. Mean time at Pulkowa, Sep.t. 3rd
“  Paris 2° 20" 945 E.
Diff. of Longitude 27° 59’ 30”45 = in time 1 51 5803
to be substracted, Pulkowa being the more easterly ; there-
fore mean time at Paris....c.ccceveeverrerriererneneres ceoven Sept. 2nd 23 18 1397

,203. A curious consequence of this difference of local
times will be the gain or loss of a day to a person travelling
right round the world.

We see from the above example that, supposing it possible
for a person starting from Paris at noon to reach Pulkowa
the next day at the noon of Pulkowa, he would have com-
pleted a day according to his own estimation, the sun having

returned to his meridian, whereas the inhabitants of Paris

would only reckon 22t 8= to have elapsed ; the traveller
would thus have gained 1* 52= on those he left behind, and
if he continued to travel eastward, it is easy to see that
this gain would go en increasing. ,

The general explanation of the gain or loss of a day may
be easily given as follows: Every time that a person is
carried completely round the axis of the earth, relatively to
the sun, he reckons one day to have elapsed. Therefore,
supposing him to start from any place and to travel eastward
until he returns to his starting-point, whatever number of
turns the earth may make in the interval, that is, whatever
number of days may be reckoned by those persons who have
remained stationary, he will have made one turn more by
his own motion, and therefore reckon ene day more. If, on
the contrary, he travel westward, or in the direction opposite
to the earth’s rotation, ke will, as it were, cancel one of the
turns which the earth has made, and reckon one day
less.

For a similar reason, two ships starting from England,
and meeting, say in New Zealand, the one having gone
round Cape Horn, the other round the Cape of Good Hope,
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will also differ in their reckoning by one day. The practical
iiconvenience of using two different days in the same place
would oblige the settlers there to select between the two ;
and it seems that in New Zealand, Australia, and Polynesia
generally, that day has prevailed which was brought round
the Cape of Good Hope, probably from the earliest settlers
baving gone by that route.

Ships usually change their reckoning at some point in
the Pacific between New Zealand and America.

Equivalent Sidereal and Mean Solar Intervals.

,204. The sun advarces smong the stars in the same
direction—west to east—as the earth revolves about its
axis; any given meridian, therefore, in the coutse of a
tropical year, crosses the first point of aries exactly once
oftener than it does the suti. Now, the number of mean
gsolar days in a tropical year is 365-242216, Art. 200, there-
fore the number of sidereal days in the same time is
366-242216. Hence, if M and 8 be the measures of the
same interval expressed in mean and sidereal times respec~
tively, we have
M given time _ S

865242216  one year 366242216
M_ 365242216
S~ 366242216 =’
S 3866242216
M~ 365242216
k=-00273043, & ="00273791,

To facilitate the reduction, the Nautical Almanac contains
tables which give the values of M corresponding to any
number of hours, minutes, seconds, tenths, and hundredths
of S, and conversely.

In some tables the values of kS and &M are reglstered
opposite to the values of S and M respectlvely, then S—£§
gives M, or M+ £ M gives S.

whence,

=1+,

M
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One sidereal day contains 23" 56m 450906 of mean time,
* one mean solar day ..... . 24F 3m 5655554 of sidereal time.

Conversion of Time.
LR05. 1°. To convert the apparent solar time at a given
place into mean solar time, and conversely.

Here the equation of time only is required. The Nautical
Almanac gives this equation for the apparent noon, and also
for the mean noon of each day at Greenwich, on pages
I. and 11 of the successive months. If then, by applying
the longitude as in Art. 202, we obtain the Greenwich time
corresponding to the given local time, and, according as
it is apparent or mean time which is given, refer to the tables
on page I. or page 1L of the month, and make the necessary
correction for the change since noon, we shall obtain the
équation of time : this equation, applied with its proper sign
to the local time, will convert it from apparent to mean,
or from mean to apparent.

: 206. 2°. To convert the mean solar time at o given meri-
dz’/an into the corresponding sidereal time..

Let PZN be the given meri-
dign, S the mean sun, and T
the first point of aries.

Then, NPS, the hour angle
of the mean sun, reckoned west-
ward, is the mean time ; NPT,
the hour angle of T, is the
sidereal time ; and TPS is the
right aseension of the mean
sun. Hence i

gid. time = mean time + mean sun’s right ascension...(i).

Now the value of the mean sun’s right ascension is
registered for the instant of Greenwich mean noon, on page 1.
of each month in the Nautical Almanac, under the heading
of “Sidereal Time.” This we shall denote by &,.
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We must, therefore, determine the Greenwich mean time
corresponding to the given local time, by Art. 202, and
correct the value of &, for the change in the interval, by
maultiplying this interval by the factor £ of Art. 204, that is,

by allowing a uniform change at the rate of 3= 56% 555 in

24 hours, or 98565 in 1 hour. The corrected right ascen~
sion, added to the local mean time, will, according to the
above formula, give the sidereal time.
If M be the mean time at the given place ;
L ...... west longltude of the place in time ;
R,...... mean sun's right ascension at previous Green—
. wich noon, from page 11. of Nautical Almanac,
then M+ L =mean time at Greenwich,
R + & (M+ L)=mean sun’s right ascension ;
therefore, by (i), - : T
sidereal time, or S, =M 46— M L) oo (id).
Ex. At Madras, in longitude 80° 1819”5 gast, an observa-

tion is made on September 6th, 1865, at 9" 21™ 12'8* mean
time ; find the corresponding sidereal time.

h m. s
Mean time at Madras, September 6th 9 21 12'8
Long'ltude in time, east =5 20 57'3 .

—— i

~ Mean time at Greenwich, September 6th 4 0 155

h
& or sidereal tinze at noon, Sept. 6th,
page 1. of Nauntical Almanac 11 2 2145

Change in 4" 0™ 15'5° + 0 39:47
Mean sun’s & ' 11 8 092
Mean time at Madras 9 21 128

Sidereal time 20 24 13 72

, 07, 3% To comvert the sidereal téme at any meridian
into U corresponding mean time.

M2
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Tﬁe solution of this problem is at once given by equation
{ii) of the last article. From it we obtain
M= S—m, —KL
1+ £

= (1—4) (§— &) —~ AL, because (1 +4) = .1.._1__.

k
=S—R ~k (S—&B +L);
where it must be remembered that L is positive in west, and
negative in east longitude.
The factor £ produces a change of 3™ 559094 in 24
houts, or 958296 per hour. 7
Ex. Suppose the sidereal time at Madras, September 6th,

1865, to be 20* 24™ 13-72s, find the corresponding mean time.
: h m . h. m. s.
S= 20 24 1372

& =11 2 2145
S—& = 9 21 5227=9 21 5227
L=—5 20 578

S—& +L= 4 0 5497

which, multiplied by 4, gives @ — 0 39:47
therefore mean time 9 21 128

‘When a star is in the meridian, its right ascension is equal
to the sidereal time ;—the above rule will therefore enable us
to determine the mean time of transit of a known star.

2208, &°. To convert the apparent time at any meridian
into the corresponding sidereal time, and conversely.

Following the rules of the preceding articles, we may
convert the apparent time into mean time, and then the
mean time into sidereal time ; or inversely.

Or, we may proceed directly by using the formule of
Arts. 206 and 207, taking M to represent apparent time,
provided that, instead of A&, we employ the apparent right
ascension of the sun at apparent noon, as given on page I.

of the month in the Nautical Almanac ; although the change
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for one hour is no longer constant, its value, as given in
the Almanac, may be considered constant during that day. |

Finding the Teme by Observation.

209. First Method. By meridian observations.

In a fixed observatory, fitted with a transit instrument,

the readiest and most accurate way of finding the time is by
noting the time of transit of a known star. By observing
it at the different wires, and making the corrections and
reductions explained in Chap. 1v., Art. 79—83, the exact
instant marked by the cloek when the star is in the meridian
will be determined, and the known right ascension of the
gtar will be the corresponding sidereal time, which may
be reduced to mean time if necessary (Art.207), and thus
the error of the clock on'sidereal or mean time will be.
known. :
If the clock error be found in this manner at two different
dates, separated by a few days, the change in the error
divided by the number of days elapsed will give the average
daily rate during that interval. With a good clock this,
daily rate will remain nniform for a considerable time.

Having thus found the error and rate of & clock, .. how
much it was too fast or too slow on a given day, and how
much it gains or loses daily, we may easily find the true
time at any instant corresponding to a given elock time.

/210 When the sun is observed, if the times of transit

‘of both limbs be noted, the mean of these will be the time

of transit of the centre, Z.e. apparent noon ; but if only one.
limb be observed, allowance must be made for the time
(given on page 1. of the month in the Nautical Almanac)
that the semi-diameter takes to cross the meridian. '

This will determine the error of the clock on apparent
time, and thence the error on mean time, by applying the
equation of time.
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~211. Second Method. By a single altitude of a known
star, or of the sun, moon, or planet.

‘When the body is at some distance from the meridian,
let its altitude be observed with a sextant or alt-azimuth
instrument, and let the corresponding clock-time be noted.

In the case of the sun, moon, or planet, the altitude
observed is necessarily that of the lower or upper limb, and
the semji-diameter (given in the Naut. Alm.) must be added
or subtracted to get that of the centre. A star has no
appreciable semi-diameter.

Corrections must also be made for any known instrumental
errors ; for refraction (Chap xv.); for dip when the obser-
vation is made at sea with a sextant (Art. 8) ; and finally
for parallax (Chap. xvI).

1n the case of a star there is no parallax correctien.

If a be the corrected alt.,

zthe zenith dist.=90°—a,

& the decl® (from Nant.
Alm.)

A the polar digt.=90°—3,

¢ the latitude,

¢ the co. lat.=90°— ¢,

% the hour angle of the
star,

z, 8, and ¢ being the three sides of the triangle SPZ, the
value of % will be given by

smg ;\/{Sin% (¢+c—a) sind (z+A—c)}

since sin A

/\/{cos% (P+A+a) sm2 (¢+A—a)}

cos¢ sin A

Ccos s SID
—\/{ cos ¢ smA )} , Where s=1} ($+A+a).

‘When the body observed is the moon, a planet, or a star,

the Naut. Alm. will give its right ascension B then R+ lk g
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will be the sidereal time of observation, the upper or lower
sign being used according as the star is west or east of the
meridian. ,

If the sun be the body observed then the epparent tz'me‘

W111 be R if on the west s1de, or 24 hours — %, if on the

east &de, of the meridian.

Instead of a single altitude it will be best to observe
a series of altitudes in quick succession, and consider the
mean of the altitudes as corresponding to the mean of the
times. If the altitudes do not change at a uniform rate,
calculate the error of the clock corresponding to each alti-
tude, and take the mean of the errors for the clock error.

.~ 212. The more rapid the change of altitude, the less
will an error in the observation affect the time deduced from
it ; let us therefore examine for what position of the body
this change-is quickest.

We have cosz=cosc cos A + sine sin A cosh,

therefore, £ and z being the variables,

ginz - =sine sin A sin#
dh >
dz sine sinA sink . .
L = T —gincsind,
dkh sinz

where A is the azimuth PZS.
Therefore the altitude changes most rapidly When A is
" a right angle, 7.e., when the object is on the prime vertical ;
and the nearer the body is to the prime vertical the more
favourable will be the position for determining the time,
provided, however, that the altitude of the object be not
less than 8° or 10°, for otherwise, the uncertainty of the
atmospheric refractions so near the horizon would more
than counterbalance the previous advantage.
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. R13. Third Method. By two altitudss of the sun and the

elapsed time, or by simultaneous observations of two stars.
This method will be available when the Ilatitude is un«
known. Proceeding, as in Art. 148, we shall determine the
latitude and the angle PSZ. This angle, withthe co-latitude
PZ, and the zenith distance Z8, will detérmine the hour

angle SPZ,

sinZ8 sin PSZ

sin PZ ?
and from the hour angle we deduce the time, as in the
second method.

214, Fourth Method. By equal altitudes.

If the times 7"and 77, marked by a clock, be noted when
a star has the same altitude before and after crossing the
meridian, then & (7'+ T") will be the time of its meridian -
transit, and the error of the clock on sidereal time, or on
mean time, may be found in the first method.

One of the advantages of this method is, that any error
of graduation of the sextant, or other instrument with
which the observations are made, will have no effect on
the result, because the two altitudes are taken at the same

gin hour-angle =

graduation,

By taking several pairs of observations, the mean result
will be probably freed from other age,idental errors.

R15. If; instead of a star, we employ the sun, a slight

correction will be required for the change of declination,

Let zbe the common zenith distance of the two observations,
¢ +vs... latitude of the place,
A .,.... polar distance at apparent noon,
0 ...... small horary decrease of polar distance,

T.... half-sum, or mean, of the two clock-times,
2 eenen elapsed time between the observations,
X oeienen small correction to be subtracted from 7 to

obtain the clock-time of apparent noon ;
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-therefore
t—x is the hour angle before noon at first observation,
|2 o N vorseenens after ..o second coveaainiin,
A +1¢0......polar distance at first observation, neglecting 6,
A —t‘q....u....n...........-....SeCODd....................u.u....... ’
z and ¢ are the same at both observations, and if 4 be the
hour angle corresponding to a polar distance A’, we have
cos 2= 8in ¢ cos A’ + cos ¢ sin A’ cos 4,
therefore differentiating,
0={(sin¢g sin A" — cos ¢ cos A" cos 4) dA’ + cos ¢ sin A’ sin Adh,
but , dA'=—2t0, dh=2x;
tang  cot A') y
sink  tank/ ’
0 being expressed in seconds of arc, # will be so too, but
dividing it by 15 will reduce it to seconds of time. We
may also write ¢ for 2 and 4 for A’, and the clock-time of
apparent noon will be approximately

_ (tan¢ cot A) 10

whence &= (

—— e T

sin¢  tant

The corresponding mean or sidereal time may then be cal-
culated, and the error of the clock on either of them
determined.* R
The correction « is called the equation of equal altitudes.
It must be remembered that € is the hourly decrease
of polar distance, and therefore when the polar distance is
increasing, & becomes negative.

~216. At sea, the first method is not applicable ; the
second, by a single altitude, is that in general use ; but the
fourth method, by equal altitudes, may be employed advan-

* See Delambre’s Astronomy, vol. 1., p. 569, where the value of the quantities
we have here neglected is shewn to be extremely small. See also Chauvenet’s
Aastronomy, which contains tables for facilitating the computation of .
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tageously, provided a correction be made for the change .
of the ship’s place during the interval. This correction
may be made in the same manner as in Art. 150, where
the altitude of the body at the first station is reduced to
what it would have been if made at the same instant at
the second place ; but, as the altitudes wodld no longer be
equal, a further correction becomes necessary, and this is
most simply effected by making, at the second place, a couple
of observations in quick succession, so as to find the rate
of change of the altitude, and thence the time when the
altitude is the same as the reduced altitude of the first
station. The error of the watch is thus found on the local
time of the second station. ‘

In the case of the sun, this may be done without moving
the index of the instrument—and therefore without interfering:
with the principal feature of the method—by observing the
times when the lower and upper limbs respectively attain
the given altitude ; the time the sun takes to move through
an altitude equal to his diameter thus becomes known.

Another method consists in finding the equation of equal
altitudes and the error of the clock, as if there were no
change of place, and then determining the correction of the
time due to the change. The error of the clock found
in this manner is the error on the local time at the meri-
dian midway between the two stations. For details see
Chauvenet’s Astr., vol. 1., p. 220, and Rapier’s Navigation.

There are various other ways of determining the time
by observation, but the preceding are the only ones in
constant use. For an account .of other methods the reader
is referred to Delambre’s Astronomy..
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CHAPTER XIV.
VARIOUS PROBLEMS CONNECTED WITH THE DIURNAL MOTION.

Time of rising or setting of a known body.

{217, This is really only a particular case of finding the time

by a single altitude (Art. 211), z
but, on account of its sim-
plicity, we shall give a separate
investigation, '

HSR being the horizon, Z =
the zenith, P the pole, and S
the body, the right-angled tri-
angle PSR gives

cos SPR=cotSP tan PR;
therefore

cos (hour angle SPZ) =—tan (decl.) tan (lat.);

and the hour angle being known, the time, apparent or
sidereal, may be found as in Art. 211,

The hour angle of setting will obviously be the same as
that of rising.

{ 218. We have here neglected the refraction which, as we
shall see in the next chapter, has the effect of making objects
appear higher than they really are, especially near the
horizon, where its value amounts to more than 36'; so that,
when seen in the horizon, the body is really below it by
that amount,
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We have also neglected the dip (Art. 8), which still
further increases the error, by depressing the visible horizon.
The value of the dip, depending on the height of the eye,
is variable.

‘When we wish to take these into account, we must treat
the problem as in Art. 211, taking for zenith distance
90° + refraction + dip. In the case of the sun, moon, and
planets, there will be a further correction for parallax,
Chap. xv1., which, acting in the opposite direction, has to
be subtracted. The hour angle thus found will be that of
the visible or apparent rising or setting.

The problem, however, is not one of much practical value,
on account of the uncertainty of the refraction near the
horizon; and it will generally be sufficient to consider the
above solution of it, which determines what is called the
true rising or setting.

The true rising of the sun occurs when his lower limb
is rather more than half his diameter above the visible
horizon. :

In the case of the moon, the parallax so much exceeds
the refraction, that a contrary effect is produced, and the
true rising has already taken place even before the upper
limb appears.

As to the stars, their light is absorbed by the atmosphere,
‘and they do not become visible until they have attained an
altitude of from 5° to 10° above the horizon.

2219, To find the time occupied by the sun in rising at &
given place on a given day.

The sun’s rising is accelerated by refraction, &c., but
the times of rising of the upper limb and of the lower
limb will be accelerated hy nearly the same quantity, and
the number of seconds occupied by the sun in its visible
rising may be calculated with respect to the rational horizon.

If D be the diameter of the sun in seconds, 4 the hour
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angle when the zenith distance is 2, & and ¢ the declination
and latitude, # the number of seconds in the interval,
cos z =sin ¢ sin & + cos ¢ cos 8 cos 4,
A sinzdz = cos ¢ cos dsinkdh,
and 2=90" nearly, cosz=0, sinz= 1; therefore
cosh=—tan¢ tansg,

dz
dh= cos ¢ cosdsink’
or 15n = D H
: ~ cos¢ cosd /(1 —tan’p tan’s) ’
15D

therefore

"= Tcos (@ + 0) cos (p— )}

determines the number of seconds the sun takes to rise.

Lengths of day and night.

4 220. If 4, or 15¢, be the hour angle of sun-rise or sunsset,
3 the declination, and ¢ the latitude, then (Art. 217),
cos s =—tand tan ¢, :

and 2t=?—2 will be the length of the day in hours,

‘ 180 — 4
2(12—¢) =2 <T>
221. If the change of declination during the day be

taken into account, the morning and the afternoon will be
of different lengths : thus, suppose the declination between
sun-rise and sun-set to change from & to & + 6", and the hour
angle from 4 to & + dh,

cosh=—tandtan¢;

therefore' sin 4 dh = sec’d tan ¢ 8, approximately,
, dhe sec’Stan ,  sec’dtand
o T sink ~ (1 —tan’® tan’¢)
secdsing .

{éos (¢ + 8) cos (p— 5)
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When @ is positive, i.e. from winter solstice to summer
solstice, the afternoon will be longer than the morning by

#/{cos (; -e: g)sclft)]s(lz¢ —9)} 1—05 seconds of time, and shorter by

that quantity during the remainder of the year.

1 222. If the equation cos/=—tan8tang be discussed to
determine the length of the day at different places and at
different times, we shall find results in exact accordance with
the statements of Art. 123...129.

Thus, at a place on the equator, ¢ = 0, therefore cos /=0,
and £2=90°. Therefore 2¢=12 hours for all values of S, or
the days are always equal to the nights.

At the time of the equinox, 8 =0, therefore cos/=0 for
all values of ¢: and the day is then equal to the night all
over the earth. .

When 8 =90°—¢, cos h=—1, £=180°, and the day is 24
hours long.

When 8§ =— (90°~¢), cosh=1, =0, and the sun does
not rise, . ,

When 8>90°—¢, % is imaginary, and the sun neither
rises nor sets, but remains entirely above the horizon ; and
so on for other cases.

223, To find the hour angle of & body when it has its
greatest altitude.

If the declination be constant, the greatest altitude will
be when the body is in the meridian; but when the decli-
nation increases, the fall, immediately after passing the
meridian, will be more than counter-balanced by the rise
due to the increase of declination, and a still greater altitude
than the meridian altitude will be attained. If the declination
decrease, the greatest altitude will precede the meridian
passage.
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Let 8 be the meridian declination,
a its hourly increase in seconds of arc from Naut. Alm.,
0 the circular measureof increase in one second of time,
B the circular measure of 15", ’

0
whence a='60’ x 15—,

B
Let 2 be the zenith dist. at ¢ seconds past meridian,
- Y latitude,

cos z=sin (8 + 6¢) sin ¢ = cos (8 + 6¢) cos ¢ cos B¢;

. dz
when z is least, = 0,

6 {cos (8 + 0t) sin —sin (8 + 0f) cos p cos BE}] _
—Bcos(8+ 6f) cospsinBr)
Expanding, and retaining the important terms,
6 {cos 8 sin ¢ —sin & cos p} — B cos S cos p=0,
=§ . —IB (tan ¢ — tan 3)
o 180 x 60°
T60'x15 " 16w

t

(té.n ¢$—tan?d).

4a
= (tan ¢ — tan 8).

Tn the temperate and in the torrid zones this will always be
a small quantity, except in the case of the moon, whose
* declination sometimes changes rapidly.

Twilight.

-\ 224. When the sun disappears below the horizon, dark-
ness Jdoes not come on instantaneously, because the rays of
the sun, though not coming to us directly, still illumine
_the atmosphere above us; and the light, reflected and
scattered in all directions by the particles of vapour, &e.,
-which are held in suspension, reaches us with an intensity
~ which gradually diminishes as the sun sinks lower.
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Observation has shewn that some portion of this diffused
light is brought to the observer so long as the sun is not
more than 18° below the horizon; after that, darkness
begins. A corresponding period also precedes sunrise. The
subdued light which thus separates night from day is known
as twilight.

4 225. The duration of twilight will vary with the lati-
tude and with the declination. Within the tropics, twilight
is always short; because the sun’s diurnal path is nearly
vertical, and the 18° of depression after sunset are soon
attained. At the equator, an interval of 72 minutes sepa-~
rates daylight from complete darkness; but the impression
conveyed is that night follows day almost immediately. In
high latitudes, the sun’s path is so inclined to the horizon °
that a long interval elapses after sunset before the depres-
sion reaches 18%; and at midsummer, in all latitudes
exceeding 484°, it will not, even at midnight, be so much as
18° below the horizon, and there will be no real night.

% 226. To find the duration of twilight is, therefore, to find
the time the sun'takes to alter his zenith distance from 90°
to 108° in the evening, or from 108° to 90° in the morning.

With the ordinary notation,
€08 108° =sin & sin ¢ + cos 8 cos ¢ cos %, ;
determines % the hour angle of the end of twilight, and -
cos/'=—tand tan ¢,

gives %’ the hour angle of sunset; whence % — /4’ the duration
of twilight will be known.

2227, If 8>72°—¢, then 90°—8 < ¢ + 18", i.c. the polar
distance of the sun <latitude+ 18°; the sun at midnight
will be less than 18° below the horizon, and there will be
no real night.
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Thus, at Cambridge, in latitude 52° 18’, there will be no
night while the declination exceeds 72°—52° 13'=19° 47
north, or from about the 19th of May to the 24th of July.

1228, To find the time of the year when twilight is shortest
at a given place.

Let, Z be the zenith, P the pole, S the sun at the com-~
mencement of morning twilight, when Z§ =108°,

Instead of giving the diurnal motion to the sun, let us
make the earth revolve; and, when twilight ends, let Z have
come to Z’, where Z’S=90°; then the meridian PZ will have
described the angle ZPZ’, which will measure the duration
of twilight.

If ZZ’ be joined by an arc of a great circle, a triangle
ZS8Z’ will be formed, of which two sides are respectively 90°
and 108° and therefore the third side ZZ’ cannot be less
than 18°. If, on any day, the three points Z, Z’, and S prove
to be on the same great circle, ZZ’ will be exactly 18° and
twilight will be shortest.

Let Z, X, and V be their positions on that day. Join
PV, and draw P W at right angles to ZX.
PZ=PX=90°~¢; PV=90°-35;

WZ=WX=9° WV=99.

The right-angled triangles
PWV, PWZ, give

co8s PV=cos PWcos WV,

or sin 8 = cos P W cos 99°;
cosPZ =cos PWcos ZW,

or sin¢ = cos P Wcos9°;

therefore sin 8 =—tan 9°sin ¢,

which determines &, and thence the time of the year when
twilight is shortest.

Also sin WZ =sin PZsin ZP W,

e a e ek o
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or sin9°=cosp sin{ ZPX,
determines ZP X, the duration of shortest twilight.

Azimuths.

229. The determination of the sun’s azimuth has always
been of great importance at sea as a means of determining
the error of the compass, but the introduction of iron ships
has made it a problem of almost daily occurrence. These
ships introduce new disturbing causes, and complicate the
indications of the compass needle, by combining their own
influence with that of the earth, in such a manner that the
deviation .of the compass not only changes as we pass
from one place to another, and from one ship to another,
but even in .the same ship and at the same place the
amount of deviation will often change by many degrees with
the direction of the ship’s head (see Raper’s Navigation, and
also Admiralty Manual, by Com. F. J. Evans, R.N,, F.R.S.,
and A. Smith, Esq., F.R.S.).

If the sun’s compass bearing be observed and his true
bearing calculated, the difference will be the correction or
error of the compass. This error is the algebraical sum
of the variation of the compuss, or that part which is due
to the earth’s action, and of the deviation which is the part
due to the accidental position of the compass with respect
to neighbouring masses of iron, &c.

- 230. To find the azimuth of the sun at sun-rise or sun-set.
In the triangle SPR (fig. p. 171), right-angled at R,
SR=PZS is the azimuth (Art. 13, note),
€08 SP =cos SR cos PR, or sind=cos A cos ¢ ;

therefore cosd= sind
cosd’ _
which determines 4, the azimuth measured from the north

in north latitudes, and from the south in south latitudes.
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This is the azimuth at the true rising, that is, the azimuth
which the sun has when his lower limb is about midway
between his centre and the visible horizon (Art. 218).

231. To find the sun’s azimuth by observation of his altitude.
With the usunal notation in the triangle SPZ,
co8 SP =c08 ZScos ZP +sin ZSsin ZP cos SZP,
sin & =cos 2 sin ¢ + sin 2 cos ¢ cos 4,

8in 8 — cos z sin
cos d= ———2
, sinz cos ¢

f)r Bin‘g:\/{cosél (p+2z+9) sin%(¢+z-—-8)}.

cos¢sinz

b

232. To find the sun's azimuth at o given time of a
given day.

The time reduced to apparent time determines the hour
angle SPZ, or 4,
then cot PSsin PZ=cot PZSsinSPZ + cos PZ cos SPZ,
tan 8 cosd —sin ¢ cos’

sink
which may be adapted to logarithms by assuming
tanz = cot 8 cos %,

then cob A = cothcos (@ +¢)

sinz

whence cot A=

b

This method has the advantage of being free from errors of
atmospheric refraction, and also of being available on many
occasions when the altitudes cannot be observed on account
of the indistinctness of the horizon.

In actual practice at sea, it is sufficient to calculate to
the nearest 4 degree, because the azimuth by compass, with
which we have to compare the calculated azimuth, can
scarcely be ascertained to within a degree.

On account of the importance of the problem, the author
will probably be excused for referring here to his method

N 2
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of solving it by means of a diagram, which he has called the
Time-Azimuth-Diagram. This has been engraved by the
Hydrographic Office, Admiralty, and is now used extensively
at sea. It gives the azimuth—without calculation—to within
one-eighth of a degree, in much less time than caleulation
would require, and with scarcely a possibility of error, as
* the operation is of the simplest character and has no variety
of cases.

283. To find the azimuth and the hour angle of a star
when its motion is vertical, the declination being greater than
the latitude of the observer.

Since the declination is greater than the latitude, the
polar distance will be less than z
the co-latitude ; therefore the :
small circle described by the
star will pass between the
zenith and the pole. If, then,

a vertical ZSN be drawn to
touch the diurnsal circle of the
star, the point of contact S will
be the position of the star at
the moment when its motion is vertical. The triangle ZSP,
right-angled at S, gives

sin PS=sin PZsin PZS, or sin A=cos S sech,

cos P=cot PZtan PSS, or cosk=cotdtang,

which determine the azimuth and the hour angle.

There will be a similar position on the other side of the
meridian.

Sun-Dials.

1234, The general explanation of the principle of dialing
will be easily understood from the following construction,
the idea of which is taken from Ferguson’s Lectures,
Edinb. 1806, '
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Conceive a transparent cylinder, having an. axis AB
parallel to the axis of the earth. On the surface of the
cylinder let equidistant generating lines be traced 15° apart,
one of them xm—x11 being in the meridian plane through
AB, and the others I—1, 11—1, &c., following in the order
of the sun’s motion,

Then the shadow of the line AB will obviously fall on

the line xm—xm at apparent noon, on the line 1—1 at one.

hour after noon, on 1—ir at two hours after noon, and
so on. If now the cylinder be cut by any plane M repre-
genting the plane on which the dial is to be traced, the
shadow of 4B will be intercepted by this plane, and fall
on the lines Axi1, 41, A1, &e. '

The construction of the dial consists in determining the
angles made by A1, A, &c. with Axm; the line Axir
itself being in the vertical plane through 4B may be sup-
posed known. Supposing a sphere to be described about A
as centre, there will always be sufficient data afforded by
the position of the plane, and the latitude of the place, to
enable us to solve the problem.
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Thusg, if we wish to construct a dial at B on the horizontal
plane PQ. First, determine the xur o’clock line BK, and
let a sphere described about B cut the axis in H, and the
% o’clock line in R. )

The triangle HKR is right-angled at K, HK is the
elevation of the pole or latitude of the place=¢, KHR (the
angle between the planes through the axis of the cylinder
and the lines x1—x11, % — 7, respectively) =# 15°, and KR is
the required angle & between Bxit and Bn,

sin HK =tan KR cot KHR ;
therefore tan 6 =sin ¢ tann15°

where, giving to » the values 1, 2, 3, &c., in succession, we
shall obtain the angles which the 1 o’clock, 11 o’clock, &e.
lines make on the plane of the dial with the x1r o’clock
line. :

It scarcely requires to be stated, that the shadow is cast
by a rod or style which occupies the position of the axis
of the cylinder.

For other positions of the plane, the investigation will
proceed on similar principles, but there is no need to dwell
on a problem which has lost nearly all its interest and value
since the perfection and cheapness of clocks and watches
have brought them into general use as measurers of time,
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CHAPTER XV.
ASTRONOMICAL REFRACTION.

1235. WE have, on several occasions in the foregoing
chapters, had to refer to refraction ; and we have always
supposed that our observations were freed from the errors
arising from it, in those cases where it affected the observed
values. We shall now proceed to examine what refraction
is, and what corrections are necessary on account of it.

It is a well-known principle of optics that a ray of light
moves through a transparent medium in a straight line so
long as the density of the medium remains uniform ; but
that in passing obliquely from one such medium to another
its course will be bent at the point of incidence in such
a manner as to satisfy the following conditions : the two
directions before and after incidence will be in one plane
with the normal to the surface at that point; the angles
formed with the normal will have their sines in a constant
ratio 8o long as the media remain the same.

When the ray passes from vacuum into a medium, the
constant ratio of the sines is called the coefficient of refrac-
tion for that medium ; and when the ray passes from one.
medium into another, it is easily shewn that the sines of the
angles will be inversely as the coefficients of refraction.

Thus, if 4 and B be the two media,

Hogeasass - -their coefficients of refraction,

& voee.o 8. the angles made with the normal,
sine _ p, |
sinB  p, "

Now, the atmosphere which surrounds the earth may be
considered as formed of a series of concentric layers, tha

then
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density being uniform throughout each layer, but diminishing
rapidly as we recede from the surface. Any plane through
the centre of the earth and through a star will intersect these
layers in concentric circles, and radii drawn in this plane will
all be normals to the surfaces of the Iayers.

By the preceding laws, therefore, a ray SPQR.,. which
commences its path inthis »
plane will, on account of
the increasing density
near the surface, describe
a broken line or curve
concave to the centre of
the earth., Let A4 be
the point where it meets
the surface. To an ob-
server there, the star will
appear in the direction of
the ray when it reaches -
the eye, that is, in the direction A7 of the tangent to the
path at A,

The Astronomical refraction is the angle between this
apparent direction and that in which the star would be
seen if there were no atmosphere.

If SP, produced, meet the vertical AZ in M, SMZ will
be the true zenith distance of the star, and 7'4Z the apparent
zenith distance.* ‘

Refraction, therefore, diminishes the zenith distances of
all celestial bodies, but does not affect their azimuths,

General Differential Equation.

2 236. If ¢, ¢' be the angles made by two consecutive
elements PQ, QR of the path with the normal OQ, whose

* In strictness, we ought to join A with the star, to obtain the true zenith
distance ; but, on account of the immense distance of all heavenly bodies, the
line go drawn would be sensibly parallel to M8,
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length, measured from the centre, is #; p, u' the coefficients
of refraction of the two strata, and p, p” the perpendiculars
from the centre on the two directions, then
pip sing’ :sing
2P,

s . 1)

x x

therefore  pp=p'p’=p”p” =...=constant,

a result which is independent of the thickness of the strata ;
and, when the path becomes a curve, ¢tke perpendicular on the
tangent at any point, multiplied by the coefficient of refraction
at that point, is constant throughout the whole curve.

This result may be written

pe Bind=pa sin2...c0veerenn.. cenenes (4),
gy @, and z being the values of u, 2, and ¢ at the surface
of the earth,

Again, ¢ — ¢, the elementary deviation of the ray at Q,
may be represented by &, if » be the whole refraction. Let
# =p=2=0u. Then

@ 8in ¢ = (u+ 8u) sin (¢ —38r)
= (u+ ) (sin p— &r cos¢),
0=20u sin ¢ — udr cos ¢,

dr _tang
37& -—T..o.-oq.n.o..-qo-ono.oono----oc-q(.B)c
Eliminating ¢ between (4) and (B), we get
dr 1 p,a sinz

dp =~ p Y (WT —pld’ sin'z)
the general differential equation of refraction. This equation,
however, cannot be integrated, as we do not know the con-
nection between « and u,

{ 237. All that can now be done, in order to complete the
solution, is to assume hypothetically a relation between u and
z, then integrate the equation, and, having made a sufficient
number of direct observations of refraction to determine the
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constants involved, consider that hypothesis as most nearly
representing the true state of the case which gives results
most in accordance with all other observations.

-Bessell’s hypothesis satisfies this condition, but the inves-
- tigation is too intricate for an elementary work.* We shall
consider Simpson’s hypothesis, which is much simpler, and
from it we shall deduce Bradley’s formula, which gives very
correct values so long as the zenith distance does not ex-
ceed 85°,

Sitmpson’s Formula.
38. Simpson assumed that some power of the coefficient
of refraction varies inversely as the distance from the centre
of the earth, or

g 1
~ 2’
P’Hl z = C,
where # is a constant to be determined ; therefore
nillde_
ko vdp
1 1ldr 1 dé
and from (4) ;+5@+m%__ 5
) 1 do
therefore = Tang du’
dr 1
whence, by (B), a6 =n

To determine the limits of integration, we remark that the
earth’s atmosphere, at a few miles distance from the surface,
becomes so rarified that its action on the path of the ray
may be neglected, and we may consider it as bounded by
a limiting sphere where the density is so small that the
coefficient of refraction is 1.

* We may refer the student to Chauvenet’s dsironomy, vol. 1., and to
Briinnow’s Spherical Astronomy. i
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Let 4 be the value of ¢ at the limiting sphere, and 2’
the value of « ; then
2 siny=p sinz, and 2" =au ™",
whence ' p, sinyr=sinz,

and , rr=j;(%b-=z—%k,

. . (sinz
- z—sin

this is Simpson’s formula of refraction.

Bradley's Formula.

239. From Simpson’s formula we get
sing

sin (z—nr) 0
sinz—sin (z—nr)  p—1

therefore - - =
or sinz+sin (g—nr)  wl+1’

. _2p—1 ( m')
o;‘, approximately, r=_ et tan {2 2)°

nr
r=a ta.n< ——2—) )

which is Bradley’s formula.
The numerical values given by him were
r=577036 tan (z—37),
corresponding to a mean state of the atmosphere, when the
barometer stands at 29:6 inches, and the thermometer at
50° Fahr.
For zenith distances not exceeding 45° we have very

approximately
ref. oo tan (zenith dist.).
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Cassing’s Formula.

4 240. A formula of refraction based on the supposition
of a homogeneous atmosphere was obtained by Dominique
Cassini. Although not representing the actual state of
nature, it gives tolerably satisfactory results for zenith dis-
tances not exceeding 80° and is interesting as being the
first attempt to determine refractions theoretically.

Cassini assumed that if the atmosphere were replaced
by one of the same uniform density as at the surface of
the earth, and of such a definite height as to produce the
same pressure at the surface, the refractions would be ap-
proximately the same.

On this supposition the ray is bent only. at its entrance
into the spherical shell, and the formula is easily obtained.

Let SPA be the ray bent at P, z

0OA =qatheearth’s radius,
OP =g (1 +n) where n i8

very small,
¢’ +r==8PN the angle of

incidence,
¢'=OPA,
2= DPAZtheapparent
zenith distance.
By the laws of refraction

sin (¢"+7) =p sing’,

or, » being small,
sing’ +7 cosd’'=p sing’ ;

therefore r=(u—1) tang¢’ ;
and, from the triangle OAP,

sin 2
147’

sing’ =

sin 2
therefqre r= (l“ - 1) 1\/{ (1 T ,312_ sin“’z} )
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_ (u—1) sinz
~ W(cos’z+2n)

_ (u—1) tanz
T N(1+2nsec’z)’

r=(u—1) tanz (1 —n sec’z).

neglecting 7%,

4 241. The preceding results have all been obtained with-
out taking into account the changes in the state of the
atmosphere, and the refraction has been considered as de-
pendent only on the apparent zenith distance ; whereas the
density of the air, which is continually changing, must have
considerable influence.

The values given by the formuls must be considered as
applying to some mean state of the atmosphere, and we
must make corrections for alterations in the height of the
thermometer and barometer, by assuming that the refraction
varies as the density.

Let 7 be the tabulated refraction corresponding to a zenith
distance 2, the barometer standing at some definite height ,
the temperature of the mercury as shown by the attached
thermometer being ¢, and the temperature of the air given
by an external thermometer 7.

Suppose that the refraction 7 is required when the same
zenith distance 2 is observed, the values of the quantities
being respectively #’, ¢/, and 1",

Let d and p be the density and pressure of the air for

the tabulated values 4, ¢, 7,

d’ and p” for the observed values %, ¢, T".
Then ' :7:; d : d,

did:: PP
14 BT 1+ ETC )\ (Besant’s Elementary
, o Kk Hydrostatics)
PPy i Tra’

S 4 . 13
therefore »" :7r; : @+ ET) (5 (T ED) e’ }
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and rer 1 B(T=T) ¢ (=),

where E is the coeff. of expansion of air for 1° Fahr. =-002036,
€ vieas cetnnescesateienns ceerees IMErcury .eoeee... =0001001.

Coefficient of Refraction Determined by observation of a
Circumpolar Star.

A 242. We shall consider that the refraction » is of the
form au, u being a known function of the observed zenith
distance, and of the barometer and thermometer readings,
and « the constant coefficient of refraction.

Observe a circumpolar star at its upper and lower tran-
gits ; and let 2, 2’ be the two zenith distances obtained, ¢
the co-latitude of the place.

Then e=3{z+7) + (& +7)}

=} {(z+2) +a w+u)).
A second circumpolar star will, in the same manner, give
c=4 {(z1+'z1,) t+a (ul+u1/)} 5
therefore z+2 +a w+u)=2+2+a @+,
o atE) =)
T ) =t

Terrestrial Refraction.

7 243. Let A4, B be two places on the surface of the earth,
~ each visible from the other, '
and let APB be the curved
path of the ray which con-
nects them, A B the chord.
Thenif AT, B Tbethetan-
gents to the path at A and B,
and AZ, BZ' be verticals,
the apparent zenith distances
of the two places as seen
one from the other will be
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ZAT=z, and ZZBT=2"; and the refractions, due to the
atmosphere, will be 7AB=r, and TBA =7".

The arc APB being a small portion of a curve of finite
curvature, the angles » and 7 are approximately equal;
therefore
‘ 2r +z+2 =180°+ C,

180°+ C—z—2

re————

which determines » ; 2 and 2" being known by observation,

and C by measurement of the distance 4B and the known
radius of the earth.

According to Biot,

r=aC,
where a depends on the state of the atmosphere ; therefore

180°+ C—2z—2' .
o= cenenennenenn(id)e

2C

A large number of experiments has given 0:078 for the mean
value of the cofficient a. The extreme values being 0:05
in summer and 0-15 in winter.

J244. In Art. 8 (note), it was stated that refraction
diminished the dip, and in- z
creased the distance, of the visible ’
horizon.

Let A be the observer at a

level, A B the curved ray by which
the horizon is seen at B, C the
corresponding angle at the earth’s
centre, =aC the refraction at B
and A.

Draw the straight line BA.

~ Then Z’BA=90°+17r;
therefore ZAB=90°—7r+ C,
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and, calling o the radius of the earth,
a+h_ sin(90°+7) _ cosr
a 8in(90°—r+C) ~ cos (C—7)°
k _cosr—cos (C—r) 2 singC sin (3C —r)
e cos(C—r) cos (C—r) ’

and, C and 7 being small angles,
2 _ _C(C—2) _ ( 27«)

s-ige=n=- "7

)= el=5) oo

If C, be the value of C, supposing no refraction,

ci= /()

therefore C'= C,(1 + a) = C,(1:078) = C,+ 15, approximately.

245. Let D, D, be the corresponding values of the depres-
gion : we find, AT being the tangent to the visual ray at- 4,
D=ZAT—90°=ZAB —~r—90°=C—2r
=C(1—2a),
but D=C=C(1—a);

therefore D=D, %= =D, (1—0) =D, — f5D;

There are, however, considerable irregularities in these
values from day to day ; and errors in the altitude of the
sun or of a star, at sea, may frequently be traced to an
“unknown, and therefore uncorrected, change in the dip of
the sea-horizon from which the altitudes are measured.

Other Efects of Refraction.

A 246. If we examine a table of refractions, we shall find
that with the barometer at 30 inches, and Fahrenheit’s
thermometer at 50°—
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At apparent zen. dist. 45° the refraction is 0’ 582,

virrnrnnnninsiesineineeees 80°  aiviiieeeeenanns . 51972,
..... tereereennnnnnnnnnenes 85° iiiiiiiiiiinn, 97 527,
errerrrinniniienennenniees 88%  tiiiiiiiieeiiinns 18’ 26",
........ bevientniiinnes 90°  Liiiiiiiiiieeen.. 367 297,

The change is very rapid near the horuon and a consequent
contraction of the vertical diameters of the sun and moon
takes place, giving them a sensibly oval shape just after
rising or before setting, the lower half being somewhat
more flattened than the upper half. For example : suppose
the true altitude of the sun’s lower Limb to be 5° and his
diameter 32', we find

. IOWe’r Iimb.-’ ugper limb; o
Truse altitude 5° 0 0" ......
Refraction 9 527 ... 8 52"

Apparent alt. 5° 9' 52" ...... 5° 40' 52"
the difference of which gives an apparent vertical diameter
of 31, or a contraction of 1. When nearer the horizon
" the contraction may extend to 5’ or 6'.

\ %47, To find the contraction, produced by refraction, of
@ semi-diameter which makes an apparent angle 6 with the
vertical.

Let ACA’' be the horizontdl diameter of the oval disk,
BCB' the vertical one,
CP the semi-diameter making
an angle 6 with CB,
P M the ordinate of P.
The contractions of the ordinates atre
approximately proportional to their
magnitudes.
Produce CB, CP, MP to meet the auxiliary circle in D,
Q, and R,

PR:BD:: MP: CB, .
2t MP: CP approximately ;
0
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therefore PR=BD cos®.

Again, the small triangle PQR right-angled at Q gives
: . PQ=PFPR cos,

therefore PQ=DBD cos’d,

or, the contraction of any semi-diameter is equal to that of
the vertical semi-diameter multiplied by the square of the
cosine of the included angle.

'3 248, The horizontal diameter itself will be slightly
diminished by refraction. This is obvious, without special
investigation, seeing that the extremities of the horizontal
diameter are equally raised by refraction, each in its own
vertical, and these verticals meet in the zenith—therefore the
breadth must contract. The contraction is nearly constant for
all altitudes of the sun or moon, and is about 0"*5.

Ejfect on the Rising and Setting of Heavenly Bodies.

) 249. Another effect of refraction is to accelerate the
fising, and to retard the setting, of all bodies. The exact
amount of this effect may be calculated by solving the usual
spherical triangle SPZ, where SZ=90°+r, and comparing
the hour angle with that obtained when 8Z=90°.

‘In the same way, the azimuth at apparent rising and
setting will place the body more to the north (in our hemi-
sphere) than if there were no atmosphere ; but the great
irregularities in the values of r, for these low altitudes,
render the investigation of little practical value.
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CHAPTER XVL

FIGURE OF THE EARTH. PARALLAX.

3 250. THE determination of the exact figure of the earth
is a problem of considerable difficulty, but of great import-
ance. As stated in Art. 27, if a small arc of a meridian
be measured on the surface, and also the difference of latitude
of the two extremities of the arc, or, which is the same thing,
the change in the meridian zenith distance of a star, we shall
thus have an arc and the angle it subtends at the centre of
the earth, whence the radius may be found.

This, however, supposes the earth to be spherical ; and a
miore correct statement would be, that the value so obtained
is the radius of curvature of the meridian at the middle point
of the small arc. Now, by actual measurement of such arcs
in various latitudes, it has been found that the radius of
curvature increases, or, in other words, that the curvature
diminishes, and the earth becomes more flattened, as we
approach the poles.

The figure of the earth is fonnd to be very approximately
an oblate spheroid formed by the revolution, about its minor
- axis, of an ellipse whose semi-axes are respectively

@ =3962'8 miles,
b=23949'6 miles,
the axis of figure coinciding with the polar axis of the earth.

These values of @ and 4 are mean values ; for, différent

-meridians present slight discordances,-—so slight, however,
that we may here neglect them. Ior an account of the
02
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niceties and precautions required in the measurement of the
ares and angles, and for an explanation of other methods
which have been employed in the determination of the figure
of the earth, we must refer to works on geodesy.

\ 251. The fraction a_;_é is called the compression. If we
represent it by ¢, and the excentricity by e, we shall have

b
—=1—¢
@ )

3
2 2
e =1——3=2¢c—c".
a

The value of ¢ is 5} nearly, and ¢=-0816.

"\ 262. Let BOA be the meridian of a place O on the
surface of the earth,

BCB' the polar axis, CA the
equatorial radius, and OG the
normal at 0. Then (Art. 29),
" OGA is the geographical lati- [

* _tude, or ¢,
OCA is the geocentric lati-
~ tude, or ¢,.
and CO@ is the reduction of the latitude=¢—¢".
" If z, y be the coordinates of O,

tan ¢’ _— ta ¢>— e’)

therefore tang' = (1—¢°) tang = 2; tand...cieeenn. V() -

is the connection between the geocentric and the geographical
latitudes ;

tang — (1 —¢’) tand ¢’ sing cos ¢
tan (¢ —¢) = 1+(1—¢°) tan’p ~ 1—¢° sin’gp ’

or, approximdtely, P—¢'=csin2¢..coereernenn (i),
which gives the reduction.
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N 253. We shall also determine the distance CO. From
above

/3
Y= tang,
y T
b a

5s1n¢> acosd:

G 6 _

Tsing  acosp @ cosp+osin'g’

therefore :
_ b* sin*d e a' cos’d
y'= a’ cos '+ sin’p’ T a’cos’d + b sin’p’
., a'cos’d + b'sin’d
therefore CO= oo 6+ Fsin’e’
whence CO=a (1 —csin’p), approximately.

Parallaz.

\' 954, There are some bodies so remote from us that,
whether seen from the centre or from any point on the
surface of the earth, the two directions will be so nearly
parallel that no instrument we at present possess can measure,
or even detect, their inclination. There are others within,
what may be termed, a measureable distance, in which the
difference of direction is, although small, a quantity which
may be determined. It is therefore essential, in order to.
make the registered right ascensions, declinations, &c., avail-
able to all persons, that they should be referred to some
definite point; and it will obviously be advantageous to
gelect the centre of the earth for point of reference, because
the apparent motions of those bodies, as seen from the centre,
are of & much more simple character than as seen from any
point of the surface, and also because we can much more
readily reduce the observations from any point to the centre
than to another point. The declinations, &c., of all bodies
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registered inthe Nautical Almansac, are thosethey would have
as seen from the centre of the earth ; and when we make
an observation at any place we must, when there is need,
know how to transform it to what it would be at the centre.

This is called the correction for parallax.

The parallax of a heavenly z 5
body is the angle between the
directions of two lines drawn
to it, one from the observer,
the other from the centre of
the earth ; or, in other words,
the angle subtended at the
celestial body by that radius of
the earth which is drawn to the
observer.

Thus, if C and O be respectively the centre and the
observer, S a distant object, the angle CSO is the parallax
of 8.

N 255. We shall first consider the earth as a sphere ;
then €O produced will pass through the zenith of O, and the
effect of parallax will be wholly in the vertical plane Z0S ;
it will change the zenith distance from ZCS to ZOS, the
difference between them being the parallax itself CSO,

If a be the radius of the earth, D the distance CS,
2 the zenith distance Z0S,
2 the parallax CSO,

sinp :sinz::a: D,
sinp=2 sinz
P - D .
When 2=90° p becomes the horizontal parallax ; let us
represent it by I, then
| sinll =2,
=7
therefore sinp =sinII sin 2.
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Except in the case of the moon, whose paralla,x sometimes
exceeds 1°, we may substitute the angles for their sines
and write

p=Isinz.

1958, The effect of parallax on any coordinate of the
body’s position is generally spoken of as parallax in that
coordinate, thus :—parallax in declination, parallax in hour,
angle, &c. The foregoing article shews that parallax in
altitude or in zenith distance is the whole parallax 1tself
and that parallax in azimuth is zero. C

To find the Parallax in Declination and Hour-angle. - 'v

Let P, Z, S’ be the pole, the zenith, and the body, on the
celestial sphere of the observer
at the surface of the earth.
Supposetheobserver transferred
to the centre, and let S be the
new position of the body in the
vertical Z§', then

SS =TI sinZ§';
and if 4 and & be the hour-
angle and declination, referred to the centre ; h+a 8—8
the same, referred to the surface ; draw the arc SR per~
pendicular to P.S’, then

SPS' =a, SR=8.
SR SS'sinSSR MsinZS sinSS'E

C=Sn PSS snPS sin PS »

. ,_IsinZPsinZPS
— co sin PS ,
_Dcos¢sin(h+a)

- €08 &

¢ being the latitade of the observer.

9
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Again, in §'P, produced if necessary, take &'Q=90°
therefore PQ =8B, then
B=8R=_88 cos SSR=M sin Z cosZS’Q
=TI cos ZQ)
=1II (cos ZP cos PQ +sin ZP sin PQ cos ZP Q)
= I {sin¢ cos (8 —B) —cos ¢ sin (§—B) cos (% + a)}.

A 257, When the spheroidal form of the earth is taken
into account, the problem is only slightly altered.
When the observer is transferred to the centre the appa
rent displacement S'S of a body & z
no longer takes place towards the
geographical zenith Z, but towards
the geocentric zenith Z’ where
ZZ' =¢— ¢ the difference between
the geocentric and geographical
latitudes (Art. 252).
The value of SS will be given
by

8in.§'§= —CEOSiDZ,’S’, a8 in Art. 255,
=% (1 —c sin’¢g) sin Z'S’ (Art. 253),

since @ is the equatorial radius, < is the sine of the equatorial

korizontal parallax, which is the element registered in the
Nautical Almanac, and the parallax [ in the geocentrlo
horizon of the place will be given by

sin IT =ﬁ (1 —c sin’¢).

The figure shews that, except when the body is in the
meridian, there will be parallax in azimuth as well as in
altitude ; and a comparison with' the figure in the previous
article shews that these parallaxes may be determined
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by means of the formule which give « and 8 in that article,
if we use 90°—Z2Z" for ¢ and the observed azimuth for
k+a. ) :

And again, the parallaxes in hour-angle and in declination
will be given by the same formule, if we use the geocentric
instead of the geographical latitude,

4258. The formula sin (equat. koriz. par.) =% ,in whicﬁ
a is the known equatorial radius of the earth, shews that
the determination of the parallax of a body is the same
problem as the determination of its distance.

For all bodies, except the moon, the distance D is very
great as compared with @, and the parallax consequently
very small ; so that all the refinements of which modern
astronomy is capable are necessary to determine it by obser+
vation. So much is this the case, that the parallax of the
sun, which was supposed to have been determined with great
accuracy by the transit of Venus in 1769, has recently been
found to be in error by about 4;th of itself.

1259, To determine the parallax of a heavenly body by
meridian observations.

Let A, B be two stations in opposite hemispheres, on the
same meridian but in widely different latitudes, and S the
body whose parallax is required. '

. We must first remark that in the figure, for the sake of distinctness, th:a
earth is immensely exaggerated in comparison with thé distance of S; so that
the lines A8, BS are nearly parallel, and the apparently large angle 48B is in
reality a very small angle not exceeding 1', except in the case of the moon where
it may reach from 1° to 2°.

The small angle ASB is obviously the change in the
declination of S, as seen from A and from B. We have to
find its value with the greatest accuracy, but we cannot do
this by a comparison ofsthe absolute declinations deduced
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from observed zenith distances, because the observed directions
of S will be affected by refraction, and the correction from
the refraction tables will always be somewhat uncertain.
To avoid this source of error and also any errors of the
divided ecircle, a star is selected whose declination is so
nearly the same as that of S, that both may pass through the
field of view of the mural or transit circle in a fixed position
of the instrument, and the difference of declination may then
be measured by means of the micrometer.

The very small difference of refraction due to the slight
difference of zenith distance of the two bodies may be
accurately found and allowed for ; and thus, both § and the
star will be affected with the same errors with the exception
of parallax which does not affect the star, and the angle
obtained will be the true difference of their declinations as
seen from that station.

If at the other station similar observations be made, and
the position of S be
compared with the same
. 8tar on the same day
and therefore at the
same time, the differ- /
ence of their declina- .
tions as seen from that
station will also be
found, and the change
in that difference will be the angle ASB.

Let m be the value of ASB thus obtained,

¢, ¢, the geographical latitudes of 4 and B,
¢', ¢, their geocentric latitudes,

r, r, the radii C4, CB,

a the equatorial radius, ¢ the compression,
D the distance CS,

11, the equatorial horizontal parallax,

2, z, the observed zen. dist. ZAS, Z BS.
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Produce CA, CB to V, V,, then
sin ASC=7; sin VAS= 7 (1—c sin'¢) sinVAS

D
=sinll, (1—e¢ sin’¢p) sin (2—¢ + @) ceuerenrenn. @),
sin BSC=sinIl (1 —¢ sin*¢p)) sin (2, — ¢, + ¢,') cevevenn. (i),
and ASC+BSC=M.ceuvernennnnn (iii).

Eliminating ASC and BSCbetween these three equations,
the value of H‘; will be obtained in terms of known quantities.

Except in the case of the moon, we may replace the
sines of the small angles by the angles themselves,

m
= T —=csin’e) sin (¢— p+ ')+ (1—¢ SI0’,) 81D (&,—py+ ) °
260. We have taken the two places 4 and B on the

same meridian, but this condition could with difficulty be
secured, and is moreover not essential. For, by taking
account of the change of declination of § during the interval
between its transits over the two meridians, we can, by
simply adding or subtracting this change, reduce the dif-
ference of declination between S and the star, observed at
either place, to what it would have been had the meridians
coincided.*

I1

261. By this method the parallax of the moon has been
determined, and recently that of the planet Mars when in
opposition. The sun and the other planets are foo far away
to allow us to apply the method directly to them, but by
Kepler’s third law (Art. 189), if the distance of one planet
from the earth be known, that of the sun and of the other
planets may be inferred.

The planet Mars was in a favourable position for the
determination of its parallax in 1862, and the result of the
observations then made necessitated a change in the previously

* For further development of this and other methods, we shall refer to
Chauvenet's Astronomy, vol. I, the Rev. R. Main’s Practicel and Spher tcal
Astroromy, and Woodhouse's Astronemy.
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received value of the sun’s parallax, altering it from 8”57 to
8":93. The value 8”57 was founded by the transit of Venus in
1769, and any error must be attributed to the imperfection of
the instruments, &c., then in use; for, the method is .so
much better adapted than any other to the calculation of
the sun’s parallax, that the determination by observations
of Mars would not have led to the rejection of the former
value, if the new one had not been confirmed in a remark-
able manner by independent observations made on the
velocity of light. The transits of Venus, which took place
in 1874 and 1882, afforded opportunities of further verifying
the correctness of this new value, and the results then
obtained have shewn it to be somewhat too great ; but the
discrepencies between the results deduced from the various
observations of these two transits make astronomers hesitate
to name any particular value as undoubtedly correct. It is
cléar, however, that the true value cannot be very far from
8780 ; and this is taken by many astronomers as a
convenient round number in calculating the various con-
stants whose values depend upon that of the sun’s parallax.
‘We shall, in a future chapter, give a brief sketch of the
method of determining the sun’s parallax by the transit of
Venus.*
Distances of the Sun and Moon.

\ 262, The parallax being known, we may deduce the
distance by the formula (Art. 258),
radius of earth
sin (hor'. par.¥) °
radius.of earth 206265

sing”80 880

=23439 (earth’s radius),
= 92884000 miles,

distance =

Sun’s distance=

(radius),

* See an article on “Celestial Measurings,” by Sir John Herschel, in Good
Words for June, 1864.
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In the case of the moon whose mean parallax is 57" 178,
mean distance = 60 (earth’s equatorial radius),
=237800 miles.
The moon’s distance from the earth is therefore only ;5 of
the sun’s distance. , "

Magnitudes of the Sun and Moon.

J263. If we measure the angular semi-diameter of a
heavenly body whose parallax is known, we can determine

' 1ts magnitude,

sin (semi-diam.) = M

distance °
. radius of earth
sin (parallax) = Tistance
radius of bedy _ sin (semi-diam.)
therffqre radius of earth ~  sin (parallax)

In the case of the sun, semi-diameter = 16’, parallax=8"80,
' radius of sun=109 (earth’s radius) = 432000 miles. *

Inthe caseof the moon, semi-diam.=15"39"+9, parallax 57'1"8,

radiuns of moon = #; (earth’s radius) = 1080 miles,
Since the moon’s distance from the earth is only sixty times
the earth’s radius, we see that the magnitude of the sun is
such that, if it were concentric with the earth, it would include
the moon’s orbit and extend nearly as far again beyond.*

Distances of the Stars. Annual parallaz.

4264. The stars are too far off to allow of any measure«
ment of their distances being made by the foregoing means.

* The mass of the sun is determined as follows: If @ be the radius of the
earth, £ its mass, and g the acceleration of gravity at the surface; also, if D be
the distance of the sun, § its mass, and if-ene year be 7, then '

g =E2, T= 2D} (Newton, Sect. 111.),
a P
8 _ 4m2D8
therefore BT

whence § may be expressed in terms of E, and is found about 322000.E.
The mass of the moon is obtained by its effect on the earth’s nutation, and is
estimated at about g%5Z,
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But we have now got the distance of the sun, and although a
globe of 8000 miles diameter subtends no appreciable angle
at the nearest star, we may expect that a displacement of
186,000,000 miles—which, being the breadth of the earth’s
orbit, is the distance that separates two positions of the
observer at six months’ interval—will be sufficient to cause
a measurable change in the apparent direction of some
of the stars.

The maximum angle which the radius of the earth’s orbit
subtends at any star is called the annual parallax of that star.

d R65. The annual parallax of a star being given, to de-
termine the parallax in longitude and latitude, at a given time,
that is, the difference between these coordinates, as observed
from the earth, and as they would be, if observed from
the sun.

,Let £ be the earth S the sun, 8 a star whose annual
parallax p is known.

About E describe the observer’s celestial sphere (Art. 11).
Let TMO be the ecliptic, K its pole, O and o' the places
of the sun and star.

Draw Eo parallel to
Ss, and therefore meet-
ing the sphere in the
great circle through O
and o'

Draw also the quad-
rants KoM, Ko'M'.
Then oo’ is the displace-
ment of the star owing
to parallax, MM’ will
be its effect on the lon~
gitude, and Mo~ M'o’
on the latitude of the

star.
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Let SE=r, and Ss=A,
. ro.
sing =+ sin SEs,
or oc’ =p sina’ 0,
r . . . k
where p, or Ao s the annual parallax, i.c., the maximum

value of oo, corresponding to that position of & where SEs
is a right angle. From this we obtain

' N
oo’ sino _ p sing’ O sine
MM =

= s Mo — cosio , since ¢’ =g, very nearly,
_psinM'O_psin(VO—="M")
T cosM'a T cosM'a’ ’

. . _ psin(0—x) .
therefore parallax in longitude = Gos (Tat. of star)" """ ),
where © is the longitude of the sun,
and g veeerareearnacaes ceensesess Star.

: Again, para,lllax in latitude

=—oc0c cosa’

=—p sine’'O coso’

=—psinaM cosM'O
, =—p sin (lat. of star) cos (@ —#)....ceuunena (i)
Equations (i) and (ii) shew that, owing to annual parallax,
the displacement of a star from a mean position will extend
from—p to+ p in a direction parallel to the ecliptic, and
from — p sin (lat.) to + p sin (lat.) in a perpendicular diree-
tion ; the apparent path of the star, during the sidereal year,

being a small ellipse which has the above displacements
for major and minor axes respectively.

3 266. Such is the immense distance of the stars that, out
of a large number that have been attentively examined,
only a very few shew any sensible parallax. For the
nearest of these, the annual parallax p is less than 1" ; and
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the determination of such a minute quantity requires the
best instruments and the greatest precision. On account of
the interest of the subject, we shall here briefly describe
the two methods by which this measurement has been
effected.

To determine the annual parallax of a fized star by
observation.

First Method. Let the star’s longitude be observed when
that of the sun differs by about 90° from it ; and let the obser-
vation be repeated six months later, when, the earth having
moved to the opposite side of its orbit, the sun’s longitude
again differs by 90° from that of the star.

.Equation (i) shews that the parallax in longitude at the
two observations will be respectively
p sec (star’s lat.) and — p sec (star’s lat.).

Therefore, if the two observed longitudes of the star differ
by 28, we shall have

28 =2p sec (star’s lat.) ;
therefore p =2 cos (star’s lat.).

As the accuracy of 8 depends on the accuracy with which
the longitude is determined at each observation, and this
again depends on the perfection of the instruments, on their
stability, and on the care with which all corrections are made
and all sources of error guarded against or taken into
account, it can obviously only be after multiplied obser-
vations of the most delicate kind that a star can be asserted
to have, or not to have, a measureable parallax.

The star a Centauri, a bright star in the southern hemi-
sphere, was, by direct observations made at the Cape of Good

‘Hope during the years 1832 (by Mr. Henderson) and 1839

(by Sir T. Maclear), found to have a parallax which was

estimated at 0798,
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| 267. A Second Method, due to Bessel, is free from many
of the difficulties inherent to the first :—If two neighbouring
stars differ very much in brightness, we may presume that
they are at very different distances from us; and if we
assume the smaller star to be so remote as to have no
appreciable parallax, we may attribute any observed changes
in the angular distance between them to the parallax of the
nearer star—provided such change go through a yearly
cycle aecording to the parallactic law—and, from these
changes, we miay obtain the parallax itself.

The comparison star must be so situated that both may
be seen it the same timie in the field of view, and the angular
distance between them may then be measured with very great
accuracy by using the double image micrometer (Art. 112).

The great advantage of this methed over the former
is the fact of its eliminating all uncertainty of refraction,
all errors from a want of stability of the instrument, and
its avoiding a number of corrections which have to be made
for the determination of the absolute longitude.*

Bessel applied this method with success to the star 61
Cygni, not & very bright star, being only of the fifth mag-
nitude, but having near it, at distances of about 8’ and 12"
respectively, two much smaller stars between the ninth and
tenth magnitudes. These were well sitnated also as to direc-
tion, being from 61 Cygni nearly at right angles toone another.
Bessel found nearly the same parallax from each of these,
and gave as the result of his observations 0”35, Messrs.
Auwers and Struve, with more perfect instruments, have re-
peated the observations, and the mean of their results, which
agree very nearly, gives 054,

This is unquestionably the best determined star parallax.
It corresponds to a distance 382,000 times that of the sun.

* For a full investigation of the method we may refer to Chauvenet’s Astroe
nomy, vol. 1, p. 693,

P
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A R68. The following are some of the stars whose parallaxes
have been determined by one or other of thése two methods.
These are our nearest neighbours, and to convey a better
idea of the enormous distances which separate us from them,
we have given the time that their light takes to “travel
to us; it being known that light travels at the rate of
184,000 miles in a second, and takes 8 18 to come from
the sun to the earth (see Chap. xvIL).

Distance from earth in Time the light takes
Parallax. radii of earth’s orbit, to reach the earth.
o Centauri 0"+98 210,000 83:315 years.
61 Cygni 0”54 382,000 6029
a Lyre 026 793,000 12:518
Sirius 015 1,375,000 21:706
Arcturus 0"-127 1,624,000 25637
Polaris 0106 1,946,000 30720

Secular. Parallaz.

\ 269. Many of the stars are found to have a proper motion
which must not be confounded with the displacements due
to annual parallax, or to those other causes of disturbance
which we have yet to speak of. The essential distinction is,
that these disturbances are periodic and the proper motion
is mot, A star which has proper motion is carried by it
among the other stars at a uniform rate in a definite
direction.

Sir W. Herschel found that these motions could, in nearly
every case, be explained by supposing the sun, with its
accompanying system of planets, &c., to be sweeping through
space towards some distant point.

1t is obvious, that if such a motion of the solar system
exist, the stars, in the region towards which it is moving,
must seem to open out and separate more and more, while
those in the opposite direction must close up.
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The point determined by Herschel was near the star A
Herculis, but, by the investigations of subsequent observers,
and by employing a large number of stars, a more accurate,
though not widely different, position of the point has been
obtained.

“The motion of the solar system in space is directed to
a point in the celestial sphere, situate on the right line
which joins the two stars of the third magnitnde = and w
Herculis, at a quarter of the distance between them measured
from the former.”*

N 270. Astronomers have carried their speculations on the
character of the sun’s motion still further, and, reasoning
from analogy, have supposed that his path in space is not
a straight line, directed towards the point above determined,
but a curve to which this line is a tangent; and that, in

~countless ages, the solar system describes & gigantic orbit
round some central position or body.

Midler, discussing the proper motions of the stars, assigns
the position of central sun to Aleyone, one of the group of
the Pleiades. Many ages must elapse before the confirmation

of this statement can be received with certainty.

Supposing such a centre—then, the secular parallaz of
a star belonging to a yet more distant system would be the
angle which the radius of this immense orbit would subtend
at the star.

* Struve,

P2
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CHAPTER XVIL

ABERRATION.

3271. Tar light of the celestial bodies is not brought
to the observer by instantaneous transmission, but by suc-
cessive propagation ; and this motion, combined with that
of the earth in its orbit, is the cause of an apparent dis-
placement of the bodies, to which the name of abderration
has been given.

The existence of aberration is, as we shall presently shew,
a necessary consequence of the velocity of the earth being
comparable with that of light ; but the ratio of the former
velocity to the latter is so small (about 1 :10000), that the
resulting aberration—whose magnitude ‘depends on this
ratio—had remained hidden and unsuspected until detected
and explained by Bradley about the year 1729,

\272. The gradual propagation of light had been dis-
covered by Roemer in 1675. He remarked that the eclipses
of Jupiter’s satellites always preceded their predicted times
when the earth and Jupiter were on the same side of the sun,
and happened later when on opposite sides. This he satis-
factorily accounted for, by supposing light to require time
for its transmission :—the predicted times—being deter-
mined from a large number of observations—would corre-
spond to the mean distance of the planet from the earth ; and
therefore, in the first case, if the earth and planet were at
their nearest distance, the extinction of the light would
be known to the observer earlier than if he occupied his
mean or average distance, by so much time as light would
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take to move through the radius of the earth’s orbit ; and,
in the second case, when at their furthest distance apart,
it would be just as much later.

This important fact has been confirmed of late years by
direct observation. Mons, Fizeau, by a most ingenious
apparatus, has succeeded in measuring the actual velocity of
light (see Arago’s Astronomy, vol. 1v.) ; and Mons. Foucault,
with improved instruments, has repeated the observations
and obtained results in close agreement with those obtained
indirectly by other means.

| 273. Bradley, about the year 1729, when observing
certain stars, found apparent displacements which he could
not account for by attributing them to any known cause.
These displacements were periodical, and, as the periods
were the same—one year—for all the stars observed, it was
obvious that the orbital motion of the earth was in some
manner concerned in producing them. After some failures,
he hit upon the only hypothesis that seems able to account
for the phenomenon. ,

The phenomenon itself is this: “All the stars seem to
be displaced from their mean position towards that point
of the heavens to which the direction of the earth’s motion
tends at the moment ; and the amount of the displacement,
varies as the sine of the angle between the earth’s direction

and the line joining the earth and star—the constant multi- -

plier, or cogflicient of aberration, being the same for all stars.”

\ 274. To explain how this effect is produced by the com-
bination of the motions of the earth and of light, suppose
E to be the earth, AZB a part of its orbit, £S the true
direction of a star.

Draw VET a tangent to the orbit at E. Take ET to
represent the velocity of the earth in magnitude ; and EK,
in SE produced, to represent the velocity of light on the
same scale.
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Now, the relative motion will not be altered if any common
velocity be given both to light S
and to the earth. Let a velocity '
EV, equal and opposite to £7, be

be brought to rest at £, and light
will have a velocity compounded
of EV and EK, that is, a velocity
E W, thediagonal of the parallelo~
gram VK. ”

Hence the star instead of being
geeninits true direction £S1is seen ‘
in the direction ES, and the dis- g
placement SES istheaberration,* ‘

4275, The aberration takes place in the plane SET, and
towards the point to which the earth tends. The triangle
WEK gives :
sinSES :sinSET= WK : EK,
vel. of earth .
vel. of light >

The aberration being small, we may write the circular
measure for the sine, and also sin SET for sinS’E7. The
angle SET is called the earth’s way, therefore

or sin (aberration) = S ET,

vel. of earth
vel. of light

=/ sin (earth’s way),
where £ is the constant of aberration.

aberration = sin (earth’s way),

* The effect of aherration may also be illustrated in several ways: A man
walking in a shower of rain when the rain drops fall vertically must hold his
umbrella a little forward; the effect of his own motion being to make the rain
beat in upon him, and this effect is the greater the faster he walks.

Again, suppose a shot from a battery to enter one side of a ship which
is moving at right angles to the line joining the ship and the battery, and to go
out at the opposite side. The two shot holes will not be immediately opposite one
another,—the distance advanced by the ship during the passage of the shot
through it will cause the exit to be further astern than the entrance; and a
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\ 276. The value of £ is found as follows : By comparing
numerous observations of the eclipses of Jupiter’s satellites, it
is inferred that light takes 8™ 18¢ to travel from the sun to
the earth ; and during that time the earth will have described
an arc of its orbit—supposed circular—whose length will bé

8m 18°
5651 days

Therefore k=

27 R, where R is the radius of the orbit.

498 x 27 |
3651 x 24 X 60 x 60’
ar, if expressed in seconds of are,

498 x 360 x 60 x 60 498 x 20
T365] x 24 x 60 x 60 487
This mean value of % is subject to small variations (not
exceeding 0"-35) due to the different velocities of the earth
at different points of its orbit.

= 20”45,

~ 277. The effect of aberration will be to make the stars,
when referred to the celestial sphere, describe small ellipses
about their true places.

Let the accompanying figure represent the celestial sphere
of the observer ; YOS the ecliptic,
Il its pole; A a star and S the
sun; O a point on the ecliptic
90° behind S.

Since the direction of the
earth’s motion is at right angles
to the line joining it with the
sun (neglecting the excentricity
of the orbit), it is obvious that
O is the point of the ecliptic
to which the earth tends, and therefore A0 will be the
earth’s way for the star A. In AO take AA4'=%sinAO,
A’ will be the star’s apparent place.

person on board, not allowing for the ship’s motion, but judging of the position
of the battery by the direction taken by the shot, would imagine it to be in
advance of its true place.

T
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If A’M ke drawn perpendicular to ITAH, and if A/ M=z
and AM =y,
g=A'M=AA sin A'AM=%gin AQ sin A/ AM=Fsin OF,
y=AM=A4'cos A’ AM=%sinAOcos A’ AM=ksinAH cos OH,

thverefoxfe, ('—z:)‘ + ( ksir+4ﬂ> ’ =1;

therefore the star describes an _ellipse about its mean place,
the semi-major gxis being parallel to the ecliptic and equal

%0 2045, the semi-minor axis 20”45 x sin (star’s lat.).

278. This may also be shewn geometrically : Referring
to the figure (p. 214), the line KW is parallel and equal to
ET, which represents the earth’s velocity ; therefore, neglect-
ing the small variations of velocity, W describes, round K as

. centre, a circle parallel to the plane of the ecliptic, and

S’ EW describes an oblique cone on a circnlar base round
theaxis SEK* The intersection of this cone by the celestial
sphere of the observer will be approximately a plane curve,
and therefore an ellipse. 4

R19. Todetermine the aberration of a star in latitude and
longitude.
Let TS the langitude of the sun= 0 (fig. Art. 277),
7 H the longitude of the star =/, '
AH the latitude of the star =2,
then, as above,
aberration in latitnde =— AM =—20"45 sin AH cos OF
=—20""45 sin\ cos (! —70)
=— 20"-45.sin7\ gin (@ — 7).
A'M 2045 sin OH
sSinlIA~  cosAH
=—20""45 sech cos (© —1),

Aberration in longitudes —

* The curve described by W is the hodograph of the earth’s path, and therefora
accurately a circle, but K is not the circle except on the supposition in the text—
that the motion is uniform.
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280. To determine the aberration qf a star in right
ascension and declination.
Let TOS be the ecliptic, YRT the equator, P its pole,
S the sun, 4 the star, O the
point 90° behind S as before.
From A’, the apparent
place of the star, draw A'N.
at right angles to PAT. Join
PO cutting the equator in
R, and in AP produced make
AQ=90° and join OQ.
Let T the star’s right ascension = &,
AT,...ouer.. tevees . declination =8,
OT R the obliquity of the ecliptic = o,
Then A'N=AA sin A=F%sin OA sin 4
=/ sin OP sin P
=/ cos OR sinRT
=% cos OR (sin & cos YR —cos R sinTR)

=4 sin R cosTO—% cos R cosT sinTO

and  aberration in right ascension=— A’ sec?,

=—/ secd{sin R sin @ + cos R cosw cos O},

281. Again, aberration in declination=—AN -
=—AA cos AAN=F sin OA cos OAP =% cos 0Q
=k {cos OP cos PQ—~sin OP sin PQ cos OPA}
=% {sin OR cos 8 —cos OR sind cos (R —TR)}
=% {sinTO sinT cosd
—.8in & (cos R cos OR cos TR +sin R cos OR sinTR)}
=/ {8in T O sinT cosd—sin & (cos R cos T O+sinR cosT sinT0)}

&— /% {00s O sin wcos 8+ sin & (cos & sin © —sin Recos w cosO)}.



218 ABERRATION. [cHAP. XVIL

282. It was a change in the polar distance of the star
ty Draconss which first drew Bradley’s attention tothe subject,
and ultimately led to the discovery of aberration.

This star was most favourably situated, because it passed
80 near to the observer’s zenith that he had not to fear any
errors of refraction, Moreover, its right ascension was nearly
270° so that, at the time of the vernal equinox, when ® =0°,
the ablerration in declination is — £ sin (w + 8), and, at the time
of the autumnal equinox, when © =180°, it is + £ sin (o + 8).

These results follow immediately from the formula above,
or they may be very simply deduced from a figure by means
of the expression for aberration * £ sin (earth’s way).”

The polar distance of ¢ Draconis is therefore greatest
about the end of March, and least about the end of Sep-
tember ; the variation amounting to 24 sin(w + 8), or, since
@ + 6 =75° nearly, the change of declination is

40”9 8in75°=39""5.

Solar, Lunar, and Planctary Aberration.

. 1 283. On account of the motion of the moon and of the

planets, the light by which each is seen comes from a point
of space which the body no longer occupies when its rays
reach the observer.

" Thus, if PQ be a portion of the actual path of a planet
in space, @ its true place, and B that P _w=— g
of the earth at the same moment, the
planet will not be seen by rays coming
from Q, but from a point P which the
planet occupied at a time ¢ before the
observation ; ¢ being the time light
takes to move from the planet to the

observer.
The rays therefore reach the earth
in the direction PB, but the earth’s own. . 4 B

velocity causes aberration, as in the case
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of the stars, and if 4 be the position of the earth at the
time ¢ preceding the observation,

AB : PB=vel. of earth : vel. of light ;

therefore, completing the parallelogram BAPP', BP’ will be
the apparent direction of the planet when its true direction
is BQ. The angle between the two directions B and BP'
is called the planet’s aberration,

J 284. Since BF’ is parallel to AP, and A and P were
corresponding positions of the earth and planet at a time ¢
preceding the positions Band Q, we have the following simple
rule for determining by calculation the apparent place at a
given instant, the true path being supposed known : find the
time ¢ which the light will take to reach the earth (the ratio
of the planet’s distance to that of the sun is supposed known)
and calculate the true place for a time ¢ preceding the given
instant, this will be the apparent place at the given instant.

By reversing this rule, if we wish to find by observation
the true place at a given instant, wait till a time ¢ has elapsed:
and then observe the apparent place, this will be the true
place required, '

Thus, if »=pa be the distance of the planet from the
earth, where ¢ is the mean distance of the sun, the light of
the planet will take p (8™ 18%) to reach the earth, and the
apparent geocentric direction of the planet at any instant will
be the direction it actually had p (8™ 18%) previously.

In the case of the moon, p =k5, and the aberration will
always be very small (less than 0"5).

The same rules will obviously apply to the sun ; but, in
this case, the body being fixed, Q will .coincide with P, and
all rays which reach the earth come from the point which the
sun really occupies, and are therefore affected with stellar
aberration only. The sun’s true place in the ecliptic is
always in advance of its apparent place, and we may calculate
the amount of aberration as follows :
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Let » be the velocity of the earth, and ¥ that of light,
0 the angle which the direction of the earth’s motion makes-
with the radius vector , then

pr 8in@ constant

aberr. =2 sin 6= -—— (Newton, See. 1. Prop.1.)

vV Vr

2045 s
= > where p is always near 1,

20”45 corresponds to the mean distance a.

Diurnal Aberration.

1 285. We have hitherto considered the veIocity of the
observer as being the same as that of the centre of the
earth ; there will, however, be in addition another aberration
due to the rotation about the axis. A person at the equator
will describe 27 x 3960 miles in a sidereal day. During that
time the earth will be carried A X 92884000 : 62: f 4000
. 4
Therefore, if £ be the coefficient of diurnal aberration at
the equator, '

miles in its orbit.

£ 3960 x 3661
k£~ 92884000 °’

whence A =0"319

For an observer in latitude ¢, we must use the coefficient
of aberration £ cos ¢.

The east point of the horizon is that towards which the
observer is being carried, and which therefore will replace
the point O of the previous general investigation (fig., p. 215).

The effect of diurnal aberration is so small that it may
generally be neglected, except for a star very near the pole,
whese right ascension, when on the meridian, will be
increased by

Q""319 cbs¢ secd=0%0213 cos ¢ secd.
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CHAPTER XVIIL

PRECESSION AND NUTATION.
Precession.

. 286. WaEN catalogues of the true places of the stars,
‘corrected for refraction and aberration, are formed at different
epochs, as explained in Chap. 1., Art. 16, it is found that the
coordinates are all undergoing continnal variations. Now,
these variations may be due either to actual motions of the
stars themselves, called their proper motions, or to a displace-
ment of the planes and circles to which they are referred.
The former cause would obviously produce special disturb-
ances which would vary from one star to amother, whereas
any general displacement, affecting all the stars, must be
attributed to the latter.

Long continued observations have shewn that the latitudes
of all stars are very nmearly counstant, while their longitudes
increase at & mean rate of 50”2 per annum. From this we
infer that the ecliptic is very nearly a fixed plane, and that
the plane of the equator has a gliding retrogade motion which
causes the first point of Aries to move backwards along the
ecliptic at this mean rate of 50”2 per annum.

When the right ascensions and declinations are examined
in a similar manner, their variations are found to lead to
the same conclusion—a gradual shifting of the plane of the
equator ; but we learn moreover from them that the incli-
nation of the plane of the equator to that of the ecliptic,
or what we have called the obliquity of the ecliptic, has an
almost invariable value.
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287. The investigations of physical astronomy shew that
these results are accounted for by the action of the sun and
moon on that portion of the earth’s mass which, owing to
its spheroidal shape, bulges out beyond the inscribed sphere.
This attraction does not affect the mean value of the obliquity,
but causes the line of the equinoxes to move backward on
the fixed ecliptic, and thus to increase the longitudes of all
the stars by a common quantity, the yearly value of which
(50"-38) is called the luni-solar precession.

288. The latitude of the stars have been stated above
to be only “very nearly” constant. They have, in fact, a
general change which indicates a motion of the plane of the
ecliptic itself ; and here again physical astronomy furnishes
an explanation, by shewing that the attractions of the planets
tend to disturb the earth’s path, that is, to alter the pla,he
of its orbit, but have no effect on the plane of the equator.
The effect is a diminution of the obliquity amounting to 48"
in a century, and a slow progressive motion of the first point
of T along the equator, causing an annual decrease of the
right ascensions of all the stars. This is called the plane~
tary precession.

Effects of Precession.

289. Theluni-solar precession and the planetary precession
¢ombined give the general precession 50”2 yearly ; but, in
examining the effects of these changes, we shall neglect
the planetary precession, and consider the plane of the ecliptic
as fixed, and the 50”2 as due to the motion of the equator
alone.*

Let IT be the pole of the ecliptic,

P ... that of the equator,
T ... the point of intersection of the two circles.

© * For a complete investigation we may refer to Chauvenet's Astronomy,
vol. 1., p. 605,
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Precession, as we have said, carries T backward along the -
ecliptic without altering the obli-
quity; but the obliquity is measured
by [P the distance between the
two poles, therefore the effect of
precession is to carry the pole P
backward along the small circle
PP parallel to the ecliptic. IfY
be the position of the first point of
" Aries at the beginning of any
tropical year, then ¥ will be its position at the beginning of
the next, ¥¥' being 50”2 measured backward, i.e. in a
direction opposite to the sun’s motion; and a complete re-
volution will be accomplished in 25,800 years. It is obvious
that, by this regression, the tropical year is shortened, and
the return of the equinox takes place earlier than it would
otherwise have done, whence the term precession of the
equinoxes, and the name precession applied to this motion.

Another effect of precession will be the gradual shifting
of the constellations with respect to the equinoctial points
(Art. 166). Hipparcus, about 120 B.c., discovered the pre-
cession and pointed out some of its necessary consequences.
The first point of Aries was at that epoch in the constellation
whose name it bears, but, though it has retained the name,
it has shifted through nearly 30° and is no longer in the
constellation Aries but in Pisces. In the course of time,
the stars seen at certain seasons will give place to others,
our present winter constellations becoming summer ones,
and vice versd, until 25,800 years have elapsed, when the
pole and the first point of Aries will return to their present
positions.

The present polar star will, in-about 18,000 years, be 46°
from the pole ; and, long before that, will have lost its claim
to the title. At present it is still approaching the pole, and
will do so yet for abont 150 years; but the small circle PP,
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which the pole describes, passes by other bright stars which
will become the polar stars in turn.

Precession will also produce a slight alteration in the
lengths of the seasons, as explained in Art. 181, but this effect
is not so striking as those just described.

- 290. When the right ascension and declination of a star
are known at any epoch, we can calculate its latitude and
longitude (Art. 167). Adding 50"°2¢ to the longitude will
give the new longitude after the lapse of ¢ years, owing to
precession. With this new longitude, and the same latitude
and obliquity, we can obtain the new right ascension and
declination. For a complete investigation of these changes
we shall refer to Woodhouse’s Astronomy, vol. 1., or Chau-
venet’s Astronomy, vol. 1., and shall here give only the pte-
cession in declination, obtained by differentiating the equation
which connects it with the longitude.
If 7 be the longitude, A the latitude of a star,
R...its right ascension, 8 its declination,

and o the obliquity, we have, from the triangle [1P.S, where
S is a given star,

sind=cosw sin X + sin @ cos X 8in/,

8 and [ are the only variables, and diﬁ'erentiating with
respect to ¢,

ds . , dl
cos & Z;=tine coshcoslc%
. dl
=sine coschosBZt,

by formulae (a) and («'), Art. 167,

as . /s

therefore the annual precession in declination

=50"2 sin @ cos AR.
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Nutation.

~ 291, In treating of precession we stated that 50”2 was
the mean value of the yearly motion of T, and that the
obliquity of the ecliptic was very nearly constant. Bradley,
when discussing his observations after the discovery of aber-
ration, found that the changes of declination of the stars
could not all be accounted for by precession and aberration
alone. . His results led him to infer that there exists a small
subordinate motion, by which the pole of the equator is
carried sometimes before, and sometimes behind, the mean
place to which a uniform motion in the small circle would
have brought it ; at the same time the distance from the pole
of the ecliptic is sometimes more, and sometimes less, than
the meah value ; so that the ¢rue path of the pole is of a
wavy form. He also found that these changes were periodic,
and that they completed their cycle in about 19 years.

Bradley found an intithate connection between these oscil-
lations of the earth’s axis, to which he gave the name of
Nutation, and the inclination of the moon’s orbit to the plane
of the earth’s equator. This inclination varies with the
position of the moon’s node, #.e. of the line where the -
plane of the moon’s orbit crosses the ecliptic, and this
line describes a complete revolution in 18 years 220 days.
The researches of physical astronomy have fully confirmed
Bradley’s suggestion, that the cause of nutation is to be
found in the variable action of the moon in causing pre-
cession.*

The complicated motion of the pole of the equator may
be expressed as follows :—Suppose pp’ to be the small circle
described by the mean pole p. About p as centre, describe
an ellipse with a major axis 18”5 directed towards I1 the
pole of the ecliptic, and a minor axis 13”7 on the small
circle. Then, as the mean pole p moves uniformly along

rn

* See Airy’s Tracts, “Precession and Nutation.”

Q
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the small circle in a retrogade direction, carrying the ellipse
with it, the ¢rue pole P will move along the circumference

of the ellipse, completing a revolution in 18 years 220
days.

The ¢rue first point of Aries being the pole of ITP will
differ frem its mean position which is the pole of Ip, except
when P is at the extremities of the major axis of the moving
ellipse. The difference between the true and the mean
position of ¥ is called the equation of the equinozes.

¢ R92. We cannot better conclude this chapter than with

an extract from Woodhouse’s Astronomy, giving an account
of the means by which Bradley separated nutation from
aberration : _

“The star ¢ Draconis, passing the meridian very near
the zenith of Bradley’s observatory, and being consequently.
very little affected by refraction, was the chief star of his
observations. This star, in March, passed more to the
south of the zenith by about 39” than it did in September.
...Other stars also changed their declinations. The changes
of declination ot a smallstar in Camelopardalus, withan oppo-
site right ascension to that of y Draconis, were observed at
the same time as those of the latter star; and, it was
Bradley’s argument, that, if these phenomena (changes of
declination) arose from a real nutation of the earth’s axis, the
pole must have moved as much towards y Draconis as from
the star in Camelopardalus; but this not being the case,
the hypothesis of a nutation of the earth’s axis would not
account for the observed phenomenon : more strictly speak-
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ing, it would not completely account for it, for, in fact, some
part of the observed changes of declination was due to the
effect of nutation.

“Bradley, as we have seen, solved the above phenomens
by the theory of aberration. Now, if such theory, with the
known one of precession, would account for all observed
change of zenith distances, or, of north polar distances, then
there could be no changes but what arose from precession
and aberration. Hence, since the aberration is the same at
the same season of the year, the distance of y Draconis;
in September, 1728, ought to have differed from its distance,
in September, 1727, only by the annual precession in north
polar distanee ;. the distance, in September, 1729, from the
distance in September, 1727, by twice the annual precession
in north polar distance ; and so on. Such, however, was not
the observed fact. In 1728, after the effect of precession
had been allowed for, y Draconis was nearer the morth by
about 0”8 than in 1727. In 1729, nearer than in 1727, by
¥5, In 1730, by 4”5. In 1731, by nearly 8”. Here then
Wwa¥ a mew phenomienon, a change of north polar distance,
indicating an inequality not yet discovered.

“Bradley observed other stars besidesy Draconss ; amongst
others, the small star above mentioned of Camelopardalus,
and, it is not a little worthy of notice, this same star, which,
in the case of the former inequality (that of aberration),
directed him to reject the hypothesis of a nutation of the
earth’s axis, here determined him to adopt it. For within
the same periods, the changes in north polar distance of
v Draconis and of the star in Camelopardalus were equal
and in contrary directions ; that is, whilst the former, through
the years 1728, 1729, 1730, 1731, was approaching the zenith,
and consequently the pole, the latter was, by equal steps,
receding from the zenith, and consequently from the pole.
These phenomena then of the changes in the north polar
distances could adequately be explained by supposing a

Q2
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nutation in the earth’s axis ‘owards y Draconis, and from
the small star in Camelopardalus.

« After 1731, Bradley observed contrary effects to happen ;
that is, ¢ Draconis receded from the zenith and north pole,
and the star in Camelopardalus, by equal steps, approached
these points ; and this continued till 1741 (a period of more
than nine years) ; after which the former star again began
to approach the zenith, and the latter to recede from it.
These phenomena then, between 1731 and 1741, could be
adequately explained by supposing, during that term, a
nutation in the earth’s axis, from y Draconis and towards
the small star in Camelopardalus.

* * * *® *

« By examining various and numerous oioservations, and by
discriminating those that happened at particular conjunctures,
Bradley found abundant confirmation of the truth of his two
theories—aberration and nutation. During a period of more
than twenty years, he accounted for the phenomena of obser-
‘vation, that is, the changes in the declinations of various
stars, by making those changes or variations consist of three
parts—the first due to precession, the second to aberration,
and the third to nutation ; the quantities and laws of the
two latter being assigned on the principles and by the
formulae of his theories.

«We cannot sufficiently admire the patience, the sagacity,
and the genius of this astronomer, who, from a previously
unobserved variation not amounting to more than 40 seconds,
extricated, and reduced to form and regularity, two curious
and beautiful theories.”
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CHAPTER XIX.

THE MOON.

J 293. NExXT to the sun, the moon is, to the inhabitant
of the earth, the most important of the heavenly bodies.
Tts size, its rapid motion among the stars, its influences both
real and supposed, must, from the earliest times, have given
it a prominent place in the observations of astronomers.

Like the sun, it advances among the stars in a direction
opposite to that of the diurnal motion, but about thirteen
times faster ; & complete revolution being performed with

respect to 7
the fixed stars in.........27d. 7h. 43m. 11-4618.*
... first point of T ......27d. 7h. 43m. 4614s.
ver SUDNeceseesencnnn vieeeeae20d. 12h, 44m. 2878,

The difference between the first and third of these periods
is due to the advance of the sun itself. During the 27} days
of the moon’s sidereal revolution, the sun will have moved

through some 27°, which it will take the moon about 2 days

5 hours to gain.

~ The difference between the first and second periods is
accounted for by the small regress of the first point of T
in 27 days. : )

* These are the values at present, for, comparison with ancient observations
led Halley to the conclusion that the moon’s mean velocity is being accelerated,
and the period of a revolution shortened, La Place proved theoretically that this
acceleration is confined within very narrow limits, and will be followed by a
retardation. ‘
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294. The period of a revolution with respect to the sun
is called & lunar month or a lunation, and also a synodical
period ; and the commencement of the period is the instant
when the bodies have the same longitude, It is obvigus
that they have not necessarily the same right ascension at
that instant, ’

‘When two bodies have the same longitude they are said
to be in conjunction, when their longitudes differ by 180°
they are in opposition, and when by 9q° they are in quadra-
ture. The pomts distant 45° from these four paositions are
called octants. The two pos1t1ons ¢ conjunction * and ¢ oppo-
sition,” when spoken of jointly, are called syzygies.

¥295. If the apparent diameter of the moqn be measuped
at different times, it will be found to vary within certain
narrow limits ; its distance from the earth will therefore alsq
vary in a corresponding, but inverse, manner, Observatijons
of the parallax (Art. 262) shew that the mean distance is
about 238,000 miles, or 60 times the earth’s padius, and
that the variation is about &; of this mean value, making
the distance sometimes 57 radii, and sometimes 63.
The moon may, therefore, be considered as a companion
of the earth in ité orbit round the sun, and is, in fact, called
the earth’s satellite,

1296, One of the most striking phenomena connected with
the moon is the change of its visible outline, or its phases,
as the succesgive appearances are called. '

The mpon being an opaque spherical body, which receives
its light from the sun, becomes visible to us by reflecting this
light. Tt is obvious that the hemisphere, which is turned
towards the observer, will not generélly be all lighted up,
and that consequently the appearance presented will seldom
be a complete circular disc, but will vary with the relative
Posmons of the sun, the moon, and the observer.

The phenomenon of the phases will be understood from

L
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the accompanying diagram, which represents one synodical
revolution of the moon about the earth, the sun being sup-
posed to remain stationary in the direction 7'AS. The
distance of the sun from the moon being so great, in com-
parison with the dimensions of the bodies themselves, we
may consider that one-half of the moon is always illuminated
and the other half dark.

‘When the moon is in conjunction at 4, the dark side

is turned towards the earth, and no portion of it is then
visible. It is new-moon.

About a week later, the moon is at C, 90° from A4 ; the
plane of separation of its bright and dark parts passes through
the earth, and the visible portion appears like a bright semi-
circular disc as ¢. This is the first quarter.

In intermediate positions, such as B, the illuminated
portion appears as a crescent (5), gradually expanding into
the semi-circular form at C.

After passing C, a greater portion of the illuminated half
becomes visible, and the bright disc swells out at the centre,
and presents the appearance (d) which is called gibbous.
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About 14} days after conjunction, the moon will be in
opposition at E, and, the illuminated face being wholly
turned towards the earth, presents a complete circular
disc (¢) called full-moon. From full-moon the sequence of
changes will be precisely the same, but in a reverse order ;
the disc being gibbous at F, half-full at the third quarter
G, less than half at H, then dlsappearmg altogether at the
next new-moon.

4 297. During the first half of the month, the moon will
be less than 180° east of the sun, and will cross the meridian
between noon and midnight. The western limb is the bright
limb during that period, as figured in the diagram, from &
toe. In the second half the moon will cross the meridian
between midnight and the next noon, and the eastern limb
becomes the bright limb (figs. ¢ to 4).

Although, strictly speaking, the crescent is formed as
soon as the moon leaves A, it only becomes visible when
at an angular distance of 30° or 40° from A ; the thin line
of light which it presents being overpowered by the strong
light of the sun.

For the recurrence of the moon’s phases, in accordance
with the days of the calendar month, see the explanation
of the golden number, Chap. xxir.

1298. A simple inspection of the figure will shew that
the earth must present phases to the moon—the exact coun-
terpart of those which the moon presents to the earth.
Thus, when it is new moon, the illuminated side of the earth
will be towards the moon, which will then have full-earth.
‘When the moon is a crescent at B, the earth will appear
gibbous, and so on.

This will explain a phenomenon which is often observed :
After sunset, when the moon is a crescent, the remainder
of the circular disc is frequently visible, shining with a pale
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grey light.* This faint light is due to the strong earth-light
which then falls on the moon, and which the moon reflects
back again to the earth.

As the moon increases its angular distance from the sun,
the amount of earth-light received by it diminishes, and the
effect disappears.

J 299. The line joining the two cusps is a diameter of the °

circle which separates the dark from the bright hemisphere ;
it is therefore perpendicular to the line which joins the
centres of the sun and moon. Again, it is ‘a diameter of
the circle which separates the hemisphere turned towards
the observer from the opposite one, and is therefore per-
pendicular to the line joining the observer with the centre
of the moon. It is therefore perpendicular to the plane
which passes through the observer and the centres of the
sun and moon ; or, in other words, the great circle joining
the centres of the sun and moon will bisect the line of
cusps at right angles.

The angle this great circle makes with the horizon is

very variable, so that in corresponding positions of the.

crescent moon in different months the line joining the cusps
will be very differently inclined, being sometimes nearly
horizontal, and at others nearly vertical.

4 800. The bright portion of the visible hemisphere of the
moon is bounded by two semi-circles ; but as the inner one
is seen obliquely, it is projected into a semi-ellipse, whose
major axis is the diameter of the moon, and whose minor
axis is constantly varying. The following investigation will

# Qalled ¢ lumitre cendrée’ by the French. The faintly luminous portion of
the moon will appear as if belonging to a smaller sphere than the bright
crescent does; but this is an illusion due to érradiation. The phenomenon
jtself is sometimes popularly spoken]of as, ¢ The old moon in the armsof the
new.
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shew how the magnitude of the phase is connected with
the positions of the sun and moon.

Let O be the centre of the moon, OT the direction of
the observer, BAC the plane 4
through O perpendicular to RS
this direction ; OS the direc- h
tion of the sun, and BDCthe i P i3
plane perpendicular to 08; V- A -3
then the lune comprised be- NYRY/4
tween BAC and BDC con- ot
stitutes the visible luminous o
portion ; and if BDC be pro-

Jected orthogonally on the plane of BAC, the projection
BMC will be the semi-ellipse forming the inner boundary
of the luminous disc.

Now OM=0D cos DOM
= 04 cos SOV,
where OV is the prolongation of 70 ; therefore
AM=0A- 0OM

= 04 versine SOV.
The area of the illuminated disc varies as AM, ie. as the
versine of the exterior angle of elongation SOV,

3301. When SOV=190°, BMC becomes a straight line,
and conversely. Hence, if the angular distance OTS be-
tween the sun and moon, as seen by the observer 7, be
measured at the moment when the moon’s dise is Jjust half
illuminated, two angles of the triangle O.ST will be known,
and thence the ratio of S7 to O7 can be found, and the
parallax of the sun determined in terms of that of the moon.

This method of finding the solar parallax is not prac-
tically available, on account of the difficulty—we may
say impossibility—of fixing upon the precise instant when
the moon is dichotomised, as this phase is sometimes
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called.* The regularity of the inner boundary is disturbed
by the lunar mountaing, and, when examined with a teles-
cope, the line is found broken and jagged, with detached
points of light here and there encroaching on the darker
part ; these detached points are the mountain tops which
receive the sun’s light while the intervening valleys are
still in the shade,

1302. Age of the Moon. We have said that new-moon
is the instant when the centres of the sun and moon are
in conjunction. The age of the moon, at any instant, is
the time, expressed in days, that has elapsed since the
previous new-moon., When only integral values are em-
ployed, the moon is said to be one day old when less than
24 hours have elapsed since new moon, two days old during
the next 24 hours, and so on. The moon’s age is given,
in the Nautical Almanac, to the nearest tenth of a day
for_\each Greenwich noon (see Chap. XXIII.).

Moor’s Orbit. Nodes.

4 803. When observations are carried on for a long period
in order to ascertain the path of the moon, as was done in
the case of the sun (Chap. viL), it is found that its motion
is much more complex. The right ascensions and declina~
tions being determined day by day, and the positions marked
on the globe, it is found that the curve described during each
revolution, though approximately, is not accurately, & great
circle, nor even a plane curve,

We shall refer the motion to the ecliptic, the resulta
being simpler than when referred to the equator :—If at
any instant a great circle be drawn through the direction
of the moon’s motion, this great circle will intersect t]}&

* Aristarchus, employing this method, found that the line of separation was
a straight line when the moon was 87° from the sun, whence he inferred that
the sun’s distance from the earth was 19 times greater than the moon’s, instead of
400 times, which modern observations, by more correct methods, have given.
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ecliptic in two opposite points called the moon’s nodes ;
the ascending-node being that where the moon crosses from
the south to the north side of the ecliptic, and the other
the descending node. The observations shew that these
points are not stationary, but that, while the plane of the
orbit itself remains inclined at a constant* angle of about
5° 9" to the plane of the ecliptic, the nodes regrede along
the ecliptic at an average rate of 3’ 10”6 per day, or 1° 27
in each sidereal revolution of the moon. In one year the
node is carried about 19° 20" back, and in about 186 years
returns to its first position. ‘

The greatest latitude is therefore always 5° 9" in every
revolution ; but the greatest declination will vary, according
to the position of the line of nodes, from 18° 18, when the
plane of the orbit lies between the equator and ecliptic,
to 28° 36’ when outside ; the first value being the difference,
and the second the sum, of the obliquity of the ecliptic and
the inclination of the orbit to the ecliptic.

3 304. The variation of the moon’s apparent diameter in-
dicates changes in her distance from us. If we pursue the
same method of observation as for the sun (Chap. x1.) we
shall find (disregrading the shifting of the plane of her orbit,
which during one revolution is less than 11°) that the moon
describes an ellipse, the earth occupying one of the foei.

The excentricity of the elliptic orbit is about Jl;; the
greatest and least distances being respectively 251,700 miles
and 225,600 miles.

‘When the moon is at her greatest distance, she is said to
be in apogee, and when at her least distance in perigee. Those
points of the orbit are jointly spoken of as the apses, and the
line joining them the line of apsides.

- 4305. We found in the case of the sun (Art 182) that the
apses advance along the ecliptic. The moon’s apses also

* Approximately constant,—there are small periodical flactuations.
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progrede, but much more rapidly, nearly 40° in one year, or
3° in each revolution, so that in about 4} years the perigee
arrives where the apogee was before.

There are many other fluctuations and disturbances to
which the moon is subject. The largest of these were
known to ancient astronomers, and the most important of the
small inequalities had been detected by observation before
their physical cause was known. A complete account of
them, however, is beyond the scope of the present work,
and the investigation of all the perturbations can only be
effected by the most refined analysis of physical astronomy.

Librations.

1 808. The moon always presents the same, or very nearly
the same, face to an observer ; the mountains and valleys
which cover the surface of our satellite are seen occupying
nearly constant positions relatively to the centre of the disc,
and relatively also to the plane of the orbit. We infer,
therefore, that the moon revolves about an axis nearly per-
pendicular to this plane, that the time of a rotation about
this axis and of a revolution round the earth must be very
nearly equal, and that the average of a large number of
these periods must be exactly the same for both.*

* A controversy seems to be periodically arisiﬁg as to the proper words to be
used in describing this motion of the moon, There is no question about the
phenomenon itself: both parties understand clearly what the character of the
motion is, and would probably, if asked to represent it by a model, make use of
the very same contrivance; but the one asserts that (neglecting librations and
deviations from a circular path) the motion consists of rotation reund the earth’s
axis only, while the other describes it, as is done in the text, as a rotation about
its own axis combined with a revolution round the earth.

In the supposed case of circular and uniform motion, both modes of
expression are correct; but the mathematician would adopt the latler form in

- preference to the former, because the usual—and often the only practicable—way
of investigating the motion of a free rigid body is by determining, first, the
motion of its centre of gravity, and next, the motion of certain lines fixed in
the body and moving with it. It is a curious fact that the eguations for
determining these two parts of the motion are independent ; and this separation
of the two sets of equations becomes so familiar, that the mind may bring itself

1
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The angular velocity of the moon about its own axis is
uniform, but its angular velocity about the earth is not so ;
hence we shall sometimes see a little more of the eastern
limb, sometimes a little more of the western. This consti=
tutes the phenonienon called libration in longitude.

Again, the axis about which the moon rotates is not quite
perpendicular to the plane of her orbit, though very nearly
80, and hence a little beyond each pole will come alternately
into view. This is the libration in latitude.

A third libration is the diurnal or parallactic libration
which arises from parallax. When we said that the moon
always presents the same face to the observer, it was under-
stood that the observer was supposed at the centre of the
earth. It is obvieus that at the rising and setting of the
moon, portions become visible beyond the upper limb which
disappear as the moon’s altitude increases.

43807, To the inhabitant of the moon, if any, the days
and nights will be approximately equal, and each about 144
of our days. The earth is, however, a moon to the meon,
and will, to one half of our satellite, present the remarkable
appearance of a globe, about 2° in diameter, fixed (except for

to look upon the corresponding physical facts—the translation of the centre of
gravity and the rotation about an axis through the centre of graviby —as the only
natural expressions of the motion.

But we may also proceed in a different manner; we may determine the motion
of the instantaneous ais, and then the angular velocity about that axis. ﬁov?’,»
when the instantaneous axis is fixed, this is perhaps the simplest way of conceiving
the motion; and it is the view taken by those who hold that the moon rotates
about the earth and has no other motion. For, if we neglect librations and
deviations from a eircular path, the instantaneous axis will be a fited axis passing
through the earth’s centre.

‘When, therefore, a discussion has arisem, the error committed by both parties
has been that of denying any other conception of the motion to be possible besides
their own. Each, finding that his own idea would perfectly ezplain the pheno~
menon, has taken it for granted that every other must be wrong.

‘When the librations and departure from circular motion are taken into
account, the actual phenomena can no loxger be represented by a rotation about
the earth’s axis; whereas, they are still accurately shewn by the other mode of
representation,
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small librations) in the sky, and having phases like those of
the moon, but, on account of its size, giving about 13 times
more light.

Path of the Moon round the Sun.

v308. That motion of the moon, which we have hitherto
considered, is relative to the earth, and would be her abso-
lute motion in space if the earth were fixed ; but as the
two bodies move together round the sun, the actual path of
our satellite, relatively te the sun, will be due to a combi-
nation of her own menthly motion round the earth, and of
the earth’s yearly motion about the sun.

The orbit of the earth is eIllptleal almost eircular, and
as there are about 12} lunations in a year, the moen’s path
must—neglecting’ the small inclination of the two orbits—
cross that of the earth about 25 times. We might, perhaps,
from this be led to expect that the curve described by the
moon would consist of a series of loops or waves, as im
figs. (@) and (8). Such, however, is not the case. Te moon’s
orbit is everywhere concave to the sun. The strict investiga-
tions of physical astronomy are necessary to prove the
correctness of this statement,* but the following calculation
will shew its probability : Let the curve ACB represent

a part of the earth’s orbit, 4 a point at which it is crossed
by the moon when coming within, and B the next intersection

* See the Author’s Elementary Treatise on the Lunar Theory, 4th Edit. p. 85.
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when going ontside. If the moon’s path is anywhere convex,
it should be between 4 and B.
Draw the chord AB and the sagitta CD. AB is about

o' of the orbit, and therefore subtends an angle g—g at the

sun ; and, if R be the radius of the earth’s orbit, we have
approximately, :

: T
. CD=R <1 —cos 2—5)
2
=1 (%) R
=335 R nearly
=3 times the moon’s distance from the earth,
The moon’s path, therefore, lies between the chord ADB
and the arc ACB, and we may conclude, with great pro-

bability, that it is everywhere concave to the sun, as repre-
sented by the dotted line.

Lunar Mountains.

4309. To Galileo is due the discovery that the strface of
the moon is covered with mountains and valleys. He also
concluded from his observations that several of the mountains
rise to an altitude of between four and five miles above the
surrounding plane, and his results have been confirmed by
the researches of Messrs. Beer and Midler (1837). As the
moon’s diameter is only £ of that of the earth, we see
that her mountains are comparatively very much loftier.

When viewed through a telescope, the lunar mountains
project shadows on the side opposite to the sun, and the
lengths of these shadows, when measured by a microscope,
will serve to determine the heights of the mountains above
the planes on which the shadows are cast, proper account
being taken of the inclination of the sun’s rays. This is
the method pursued by Messrs. Beer and Midler.
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J 310. Another method, which we shall proceed to describe,
consists in measuring the distance of the small detached
points of light which sometimes appear on the dark por-
tion of the moon’s disc, from the line of separation of
light and shade. These points of light are the mountain
tops, which catch the sun’s beams over the edge of the
spherical surface while the intermediate plane is still in
shade. ‘ )

Let the figure represent the visible disc of the moon, P
the projection of the bright summit of &
mountain peak seen on the dark portion
at the time when the sun’s light just
reaches it.

The distance of P from the edge M
 must be measured with a micrometer
in a direction PM perpendicular to the
line of cusps and the distance AB between the cusps
must also be measured. Let m be the ratio of these
measures.

Then PM is the projection of a tangent to the sphere,
parallel to the sun’s rays, and therefore making with PM/
an angle the complement of the exterior angle of elongation
SOV of figure, p. 234.

Let PM=e¢, and AB=2r, and let the height of the
mountain =x.

Then z (2r + #) =sq. of tangent
==35q. of line of which P M is the projection
=c*cosec’0,

where O is the exterior angle of elongation ; therefore
2
%:m’ cosec’ O, neglecting the fraction (%) .

‘Whence the height of the mountain will be found, since r, 7,
and O are known. -
R
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Harvest Moon.

4311. The moon crosses the meridian about 50 minutes
later every day. This value is obtained as follows : In one
synodical revolution the sun crosses the meridian exactly
once oftener than the moon, therefore 291 solar days are
equivalent to 28} lunar days, and the average length of a
lunar day

= Z%i solar days=140"501m,

If the moon moved along the equator, and at a uniform
rate, we should find that the times of rising or setting would
get daily later by precisely 504= ; but its path nearly coin-
cides with the ecliptic, and this fact causes considerable
variation in the daily retardation. These variations depend
on the latitude of the place : at Cambridge the retardation
may amount to 1* 15, and at other times be only 18 or
20 minutes.

Now, it has been observed that at the full moon nearest .
to the antumnal equinox, the times of rising on three or four
successive evenings will follow sun-set at a small interval ;
and the farmers, * not doubting that it had been so ordered
on purpose to give them an immediate supply of moon-light
for their greater conveniency in reaping the fruits of the
earth,”* gave the name of harvest moon to this particular
full moon.

To explain this phenomenon, let us remark, that if a body
approaches the elevated pole without altering its right ascen-
gion, its stay above the horizon is increased, but the sidereal
time of crossing the meridian is unaltered ; therefore the
time of rising is accelerated, and the acceleration will be
greater, the greater the change of declination.

If, on the other hand, the right ascension be increased

* Ferguson’s Astronomy,
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without any change of declination, the time of rising will

be retarded in proportion to the increase of right ascension.

When both circumstances exist, the retardation due to
the increase of right ascension will be modified by the change
of declination.

For simplicity, we shall suppose the moon’s orbit to
coincide with the ecliptic. Then, supposing its daily motion
in the orbit to be uniform (about 13}°), it will be easily seen
that the change of declination is most rapid when crossing
the equator, and that at the same time the change of right
ascension is slowest. When 90° from these points, the de-
clination changes very slowly, and the right ascension in-
creases by considerably more than 131° in one day, since
the arc described being nearer the pole will subtend an
enlarged angle..

In northern latitudes it will therefore be when the moon
crosses T that the conditions for a small retardation will
arise ; and, as the moon passes through this point at each
revolution, the phenomenon of a small retardation must recur
every month. It is, however, only at the autumnal equinox
that the effect is noticed ; for, the sun being then in =, the
moon, when in T, will be full, and the rising take place near
sunset. .In other months the moon, when in 7, is only partially
illuminated, and rises either during the day or late at night.
After two or three days the increase of declination is slower,
and that of right ascension faster, and the daily retardation
soon increases till it attains, and then exceeds, its mean value.

In southern latitudes the same phenomena will take place
at the other equinox, which also will -correspond with their
harvest.

If we take the actual orbit of the moon, which is in-
clined 5° to the ecliptic, the effect will be greater or less in
different years, according as the position of the nodes makes
the angle between the orbit and the equator greater or less,
the cycle being completed in 186 years (Art. 303).

R2
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]

The accompanying figure will serve to illustrate the ex-
planation we have given above :— . z
Let AB be the horizon, 4 the ?
position of the moon at its rising \
on any day, PA the polar dis-
tance, and PAM the angle made \
by PA with the moon’s orbit B/
AMQ. The values of PA and ‘?‘
PAM will vary from day to day.

Draw the declination circle
P K making with PA an angle equal to the average change
of the moon’s right ascension (about 13}°) in a lunar day,
and draw the parallel AK. Then if the moon changed its
right ascension only it would move to K, and the next day
the retardation of the moon’s rising on that of the point A
would be about 543m measured by the angle APK. [The
retardation with respect to the sun is only 504™, because
the sun advances 1° in the same direction as the moon].
But the moon will move along its orbit to some point M
about 18}° from A, and if the parallel MB be drawn, the
moon will rise at B, the retardation on the rising of 4
being measured by the angle BPM. The difference be-
tweenthe values of AP K and BP Mwill measure thedifference
between the average and the actual retardation on that day.

A simple inspection of the figure shews that the nearer
AM is to AB the smaller will be the angle BPM, and the
smaller the daily retardation.

In high latitudes, where AB would come between AM
and AK, the moon would rise earlier on the second day
than on the first,
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CHAPTER XX.

ECLIPSES AND OCCULTATIONS.

¥312. TEE moon, being nearer to us than any other
celestial body, will often, in its monthly revolution, interpose
jtself between us and some of these. When the moon thus
hides a star from our view, the star is said to be occulted, but
when it comes between us and the sun, the sun is said to
be eclipsed.

Solar Eclipse.

\813. An eclipse of the sun may be partial, total, or
annular. The moon’s diameter, as seen by us, subtends an
angle which varies from 28’ 48" to 33’ 32", the sun’s diameter
varies from 31’ 32" to 32" 36", their mean values being very
nearly the same ; so that, although so much smaller than the
sun, the moon may, on account of her proximity to us, some
times subtend a larger angle.

According, therefore, to the magnitudes and positions of
the two discs relatively to the observer, the sun may be
partially or wholly eclipsed ; or it may appear like a bright
ring of light surrounding a dark centre.

.314. It is obvious that an eclipse of the sun can only
occur at, or near, conjunction. If the moon’s orbit actually,
or very nearly, coincided with the ecliptic, solar eclipses
would recur at every new moon ; but the inclination of the
moon’s orbit (about 5° 9) gives to the moon a latitude which,
at the instant of conjunction, is sufficient to keep the two
discs apart, unless they, at the same time, happen to be
near a node. . )
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The magnitude and the general character of a solar
eclipse vary with the position of the observer, because the
moon’s parallax being large (nearly 1°), and the sun’s small,
a change of place on the earth will alter the apparent place
of the moon and scarcely affect the sun’s. Thus, the sun
may be totally or annularly eclipsed to one observer, and
only partially so to another, while, at the very same time,
a large portion of the earth will have no eclipse at all. An
eclipse may even be total to one observer and annular to
another :—this would happen if, during the progress of the
eclipse, the two apparent diameters became exactly equal ;
then, two observers, to each of whom the eclipse happened to
be central, the one before and the other after this instant of
equality of the diameters, would have, the one a total, and
the other an annular, eclipse.

Lunar Eclipse.

1315. Since we have no celestial neighbour nearer than
‘the moon, it is obvious that an eclipse of the moon cannot
arise from the same cause as an eclipse of the sun. But
the moon’s light is derived from the sun, and when the earth
interposes itself between the two, it cuts off the sun-light,
and thus a part, or the whole, of the moon becomes dark,
and a partial, or total, eclipse of the moon takes place.

The eclipse cannot be annular ; for, the cone of shadow
projected by the earth is always, where the moon crosses,
about three times as broad as the moon itself. The appear-
ance of the edge of the shadow on the disc is an arc of this
circular section of the cone.

An eclipse of the moon can only take place at, or
near, opposition, that is, at full moon ; but the latitade of
the moon may be such as to enable it to pass the shadow
without entering, which explains why there is not a lunar
eclipse at every full moon. As in the case of solar eclipses,
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a lunar eclipse will occur only when the moon, being full, -
is near a node of its orbit.

J 816. An essential distinction between the solar and the
Iunar eclipses is this :—in the one, the luminary is merely
hidden from us ; in the other, it actually loses its light. So
that, as stated above, the character of a solar eclipse will
vary from one observer to another, whereas in a lunar eclipse
all parts of that hemisphere of the earth which is turned
towards the moon will see the eclipse, and in precisely the
same phase.*

Ecliptic Limits.

( 817. It is found that, in order that a solar eclipse
may be possible, the angular distance of the sun’s centre from -
the node, at the instant of conjunction, must not exceed
18° 36" ; and that an eclipse will certainly happen if this
distance be less than 18° 42'. These are called the solar
ecliptic limits. Between these values the eclipse is doubtful.

It is also found that there will certainly be a lunar eclipse,
provided the distance from the node, at the moment of full
moon, be less than 9° ; and that the eclipse will be impossible
if this distance exceed 124°. These are the lunar ecliptic
limits.

Synodic Revolution of the Moon’s Node.

318. The moon’s node has a daily retrograde motion of
3’ 10”64, and the mean motion of the sun is 59" 8”+33. The
relative motion is therefore 62’ 19" daily, and the sun will
return to the same node in

360 x 60
6213

* The parallactic libration will produce a small change, but the want of
definiteness about the edge of the shadow renders it unnecessary to consider this.

= 34662 days.
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Hence, 173 days after passing through one node, the
sun will come to the other.

If the line of nodes retained a fixed position in the ecliptic,
the sun would return to it year after year at the same or at
very slowly changing dates, and the eclipses of the sun and
moon would recur in the same months for a very long period.
The retrograde motion of the nodes hastens the return of the
eclipses and causes a constant and rapid shifting of their
dates, a complete circuit of the calendar taking place in
about 18 years (Art. 303).

Number of Eclipses at one Node.

V319. In 14% days, which is the interval between new-
moon and full-moon, the sun and node will separate by
143 (62' 19") = 15}°.

If, then, a full-moon happen exactly at the node, the
preceding and the following new-moons will happen at 151°
from it, and therefore within the superior limits of a solar
eclipse, so that three eclipses may occur at that node—two
solar and one lunar.

But, if & new-moon occur exactly at the node, the pre-
ceding and the following full-moons will be beyond the
lunar ecliptic limits, and only one eclipse (a solar one) will
take place at that node.

The same results will follow if a full-moon or a new-moon
happen, not exactly at the node, but within a couple of days
on either side of it ; the preceding and the succeeding syzygy
will both be less than 18}°, and both more than 121° from
the node.

Hence, at every passage of the sun through a node, there
will be at least one eclipse, and there may be three.

Number of Eclipses in a Year.

320. The sun takes 173 days to pass from one node to
the other, and six lunations occupy 177 days ; so that a lunar
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eclipse happening exactly at one node will give a lunar
eclipse 4 days after the sun passes the next node, and
therefore too far from it to produce three eclipses at that
second node.

If, however, the lunar eclipse at the first node happens
two days before the sun reaches it, the lunar eclipse at the
- next node will be two days only after the sun has passed it,
and there may be three eclipses at each of the nodes. The
sun going on will meet the first node again, and another
lunar eclipse will occur six days after passing through ; this
secoud passage through the first node can, however, produce
only two eclipses, viz. the lunar eclipse just spoken of and a
solar eclipse at the preceding new-moon. The solar eclipse
occurs 12 lunations later than the first solar eclipse of the
two groups of three, and 12 lunations occupy 354 days, so
that these seven eclipses may all be comprised in the same
year, provided the first of the seven occur early in January.

12} lunations oceupy 368% days, and therefore the eighth
eclipse, the lunar, cannot come in. In order to Jbring it in,
it would be necessary to shift the whole system back some
. days, but then the first solar eclipse of the first group would
find itself in the December of the previous year, and the
number of eclipses would still be seven.

Therefore, in one year there cannot be more than seven
eclipses, five of the sun and two of the moon, or four of the
sun and three of the moon.

In a similar manner it may be shewn that a single (solar)
elORpse near one node may be followed by a single (solar)
ecfpse near the next node.

"Therefore, there cannot be fewer than two eclipses every
year, both of the sun.

¥ 321. Speaking generally, there are more eclipses of the
sun than of the moon ; thus, in a period of eighteen years
there are oh an average seventy eclipses—forty-one of the
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sun and twenty-nine of the moon—that is, roughly, in the
same ratio as their ecliptic limits.

But more eclipses of the moon than of the sun are seen at
any given place, for the reasons already stated, that a lunar
eclipse is visible to a whole terrestrial hemisphere at once,
whereas a solar eclipse is visible to only a small portion
of it. )

Total or annular eclipses of the sun are phenomena of
very rare occurrence in a given locality, although there are
on an average twenty-eight for the whole earth in every
period of eighteen years. In London, according to Halley,
no total eclipse had been observed between the 20th of
March, 1140, and the 22nd of April, 1715, a period of
575 years.

The Saros of the Chaldeans.

1322, The ancients, who had no correct tables of the sun
and moon to enable them to predict the eclipses with the
precision to which modern astronomy has arrived, had never-
theless discovered a method of extreme simplicity, by the
use of which they foretold these phenomena with very con-
siderable accuracy. This method is still used to determine
at what new-moons, or full-moons, eclipses will occur—
the strictly accurate modern methods being afterwards
employed to calculate the character and details.

From what has been stated in the previous articles, we
infer, that when the sun, the moon, and the node, return to
the same relative positions, the same eclipses must recur.

Now 1 lungtion occupies......... 29'53059 days,
and 1 synod. revol. of node ... 34662 days ;
therefore 223 lunations occupy ......... 6585°32 days,
and 19 synod. revol. of node ... 6585-78 days.

Hence after 223 lunations, that is, a period of 18 years
11 days, or 18 years 10 days, according as 4 or 5 leap years
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are comprised, the sun, the moon, and the node will return
approximately to the same relative positions.

If, therefore, during one of these cycles of 18 years
11 days, a record be made of all the eclipses which occur,
they will be found approximately to repeat themselves.

This period was known to the Chaldeans and called Saros.

Conditions necessary for a Solar or Lunar Eclipse.

y323. We shall proceed to investigate the circumstances
of solar and lunar eclipses in a more particular manner.

Let AVB be a cone which envelopes both the sun S
and the earth 7, the vertex V being beyond the earth ;
then the portion between 7' and V will receive mo light
from the sun.

About 7 as centre, describe a sphere passing through the
centre M of the moon and cutting the cone in two circles
whose diameters are EF and HK.

There will be an_eclipse of the sun at some place on the
earth if any portion of the moon come within £ ; and there
will be an eclipse of the moon if it enter HK.

The figure shews that EF is greater than HK, and would
lead us to expect, as we have already seen & greater number
of solar than of lunar eclipses. Y

Let a second cone envelope both the sun and earth,

but on opposite sides, having its vertex V' between the two
bodies, and let it cut the sphere about 7 on the further side
in a circle whose diameter is PQ ; then, as soon as the moon
enters PQ, it will receive light from a portion only of the
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sun’s surface. The space comprised between the two cones
PQand HK is called the penumbra, the dark part CVD
being the umbra or shadow.

When the edge of the moon enters the penumbra, it is
not eclipsed, but its light begins to diminish until it reaches
the shadow, and the diminution is so'gradual, that it is ex-
tremely difficult to ascertain by observation the exact instant
of the commencement of the eclipse. :

324. A solar eclipse will take place at, or near, con-
junction, if the angular distance between the centres of the,
sun and moon, as seen from the centre of the earth, is less
than the semi-diam. of » + angle STE,

i.e. <> ’s semi-d. + TEC+ TVC,
<p’ssemi-d.+ TEC+ATS—TAC,
<(»’s semi-d.+ » "s paral.)+(@’ssemi-d. —©’s paral.).
A lunar eclipse will take place at, or near, opposition,
if the angular distance between the centres of the moon and
of the shadow is

<D ’s semi-d. +angle HTV,
<>»’s semi-d. + THC—TVC,
<(» ’s semi-d.+ D ’sparal.)—(©’s semi-d.—O’s paral.).

\ 325. The values of the semi-diameters, parallaxes, &c.,
for any epoch may be calculated from solar and lunar
tables,* but it is found necessary in calculating lunar eclipses
to increase the diameter of the earth’s shadow at the dis-
tance of the moon by about Jyth part, in order to make
the result agree with observation. We may explain the

* The Nautical Almanac is always calculated for about three or four years in
advance, and was commenced in 1767. When the eclipse falls in a year for which
the Nautical Almanac exists, we may use the elements registered there. These
are calculated for instants of time separated by regular intervals, sufficiently close
to enable us to obtain the values for intermediate instants by simple rules of
interpolation.
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necessity for this, by remarking that HK (fig., p. 251) is
determined by lines ACH, BD K which just graze the earth’s
surface ; but such rays as AC and BD are probably absorbed
by the lower strata of the earth’s atmosphere, and the first
rays which pass through and proceed to HK will, as it were,
touch a sphere somewhat larger than the earth.

To determine the Time, Duration, and Magnitude of @
Lunar Eclipse.

v 326. Let SN represent a portion of the ecliptic,
S being the centre of the earth’s shadow)  at the
Moaeniieniiiieiiaiineiniannns moon } instant of

and SM, or A, the latitude of the moon/ opposition,
and let the sum of the semi-diameters of » and shadow=c.

~—
~a.
..

RS

Let MBN be the »’s path, and N the node,
MA, or m, the D ’s horary motion in longitude,
AB, OF Py ceeeneeenesenssnnsnnnnanoseasens latitude,
S8, or 8, the @8 coiviiiirenreniinnaenne longitude:.
On AM set off A4'=SS, and draw A'B’ equal and parallel
to AB, then MB'V will be the relative path of the » —the
earth’s shadow being supposed stationary at S.
Draw SP perpendicular to MV, this will be the nearest
approach of the two centres. And if, with S as centre and
radius=¢, we describe a circle cutting MV in two points
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Q, Q' these will be, on the relative orbit, the positions of
the moon at the beginning and end of the eclipse; the
corresponding points on the actual path may be obtained
by drawing parallels through Q and Q' to MA.

{327, Let LAMB=0 and A’MB'=¢, then 6 and ¢ will
be known from the equations

cot =" , cot€’=m—s,
P P
and SP=MS8 cos MSP =X cos¥'.
If this value A cos 8’ be greater than ¢, there will be no
eclipse.

If X cos & be less than ¢, the eclipse will be partial or
total :—partial, when ¢ — A cos 6’ which expresses the breadth
of the portion of the moon eclipsed is less than the whole
diameter ; and total, when greater.

If N cos 6 =¢, there will be no eclipse, the disc of the
moon will just graze the shadow, and the corresponding
value of VS will be :

NS=MS cot N=2xrcot 8
=c cotf sect,

the greatest and least possible values of NS will be the
superior and inferior ecliptic limits.

¥328. At the time ¢ after opposition, the latitude of the »
will be A — p¢, and the difference of longitude of the shadow
and > will be (m—s) ¢&. Therefore the distance of the centres
will be '
r=v{A—pt)’+ (m—8)'}. ,

The different circumstances of the eclipse may be all
deduced from this formula.

If we make r equal to ¢, the two values of ¢ obtained from
this equation will give the times ot the beginning and end of
the eclipse. If the two values of ¢ are imaginary, there will
be no eclipse ; if equal, the beginning and end of the eclipse



. CHAP. XX.] ECLIPSES AND OCCULTATIONS. 255

will be simultaneous, or, which is the same thing, the shadow
and the moon will just come into contact, and no eclipse will
take place.

If we make r equal to the difference of the semi-diameters
of the moon and shadow, we shall obtain the times of the
beginning and end of the fotal eclipse ; but if the two values
of ¢ so obtained are imaginary, the eclipse will not be a
total one.

Any value being given to 7, the middle of the eclipse will
correspond to the half-sum of the two corresponding times,
and will be given by the formula

2y Y
t=%————%j{-—? =§ sin’é’.

{829, Solar eclipse. The computation of a solar eclipse,
with reference to the whole earth, will be of the same character
as that of a lunar eclipse, using the semi-diameter of the
section EF of the cone (fig., p. 251) instead of that of HK
the shadow. We can thus determine the time of beginning
and ending of the eclipse generally on the earth.

But the problem becomes much more complicated when
we wish to ascertain the different phases of the phenomenon,
as seen at a particular place on the earth’s surface. The
following is a rough outline of one of the methods of pro-
ceeding :—Having found the times of the beginning and end
of the general eclipse, fix upon some intermediate instant,
and, for that instant, determine (by means of tables or by the
Nautical Almanac) the latitudes, longitudes, parallaxes, and
gemi-diameters of the two bodies.

Calculate the effects of parallax on the latitudes and longi-~
tudes of each body as seen from the given place, and, by
means of these reduced latitudes and longitudes, determine
the apparent angular distances of the centres of the two
luminaries.

This distance, compared with their apparent semi-diameters
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(also corrected for parallax), will determine the magnitude of
the eclipse at that instant.

‘We must, however, refer to other works for the detail and
various modifications of the caleulation (see Appendix to
Naautical Almanac for 1836, by Woodhouse).

Vv 830. The occultation of a fixed star by the moon is
determined by the very same methods as the solar eclipse,
except that, the star having no parallax and no semi-diameter,
the caleulation is somewhat simplified.

B31. Every phase of a lunar eclipse is visible to all parts
of that hemisphere of the earth which is turned towards
the moomn.

When the Greenwich time of the beginning of the echpse
is known, we can find what terrestrial meridian will at that
moment reckon midnight ; and that place on this meridian
which has its north or south latitude equal to the sonth
or north declination of the sun will have the sun in its
nadir, and therefore the moon in its zenith. If we find this
place on a terrestrial globe, and desecribe a great circle about
this place as pole, the hemisphere so marked out will see
the beginning of the eclipse.

In the same manner, the hemisphere which sees the end
may be determined, and the space common to the two
hemispheres will see all the circumstances of the eclipse.
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CHAPTER XXI.

FINDING THE LONGITUDE BY OBSERVATION.

{ 332. THE latitude and longitude of a place on the earth’s
surface are the coordinates of its position. The importance
of a correct determination of these elements is obvious,
because, when they are known, the position of that place
relatively to other known places becomies determined, The
latitude is readily found by observation (Chap. 1x.), but the
longitude has always presented difficulties, which have only
been overcome by the imtroduction of more delicate in-
gtruments and more refined modes of observing. '
 In Art. 201 it was shewn that the difference of longitude
of two places is connected with the difference of the times
reckoned at the two places at the same instant ; and, although
the problem of finding the longitude has been attempted in
a great variety of ways, it will be found that they ultimately
resolve themselves into finding what time is reckoned at some
initial meridian (that of Greenwich for instance) at a moment
corresponding to a known local time-at the observer’s place.*

Now, the local time is easily found by observation (Chap.
x1r) ; the difficulty is to obtain the corresponding time at
the other meridian.

There are two ways in which this may be done :—The
first consists in the observer’s carrying with him the time of
that other meridian, by means of a watch or chronometer,

* There is an exception in a method practised at sea and known as “dead
© seckoning,” where the ship's place is found by noting the courses and distances
run since leaving some known position. The results are, however, only rough
approximations, and are neglected as soon as celestial observations can be made,
8

T—
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whose error and rate are known. The second method requires
an observer at each station, who shall note the local time of
the occurrence of some celestial phenomenon, or of a pre-
concerted signal which can be siniultaneously seen at the two
places ; a comparison of the two times will determine the
difference of longitude. In the case of most of the celestial
phenomena, the Greenwich time of their occurring may be
calculated and tabulated beforehand, so that the observer,
with the Nautical Almanac in his possession, has, as it were,
the simultaneous observation of the Greenwich observer.

To ﬁnd the Longitude by Chronometer.

V333, Let an observation be made for finding the local
time by any of the methods of Chap. x1iL., and let the cor-
responding time marked by a chronometer be noted.

Then, supposing the chronometer to have a known error
and rate, that is, supposing that on some previous occasion
it had been compared with Greenwich time and its error
_ ascertained, and also its daily gain or loss, there will be no
difficulty in obtaining its present error on Greenwich time,
and thence the Greenwich time itself, corresponding to the
local time of observation. The difference of these two times
will be the longitude in time, which may be converted into
degrees at the rate of 15° for every hour. The longitude
will be east or west, according as the local time is greater
or less than the Greenwich time.

The value of this method depends on the accuracy of the
chronometer, which is assumed not to have changed its rate
in the interval. As the best instruments are liable to irregu~
larities, the danger is lessened by the employment of several
chronometers, and the longitude is then deduced by taking &
mean of the results ;—more or less weight being given to the
indication of each instrument according to our previous
experience of its accuracy. The method by chronometers is
especially valuable at sea.
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By Electric Telegraph.

334. The difference of longitude between two places P
and Q may be very accurately determined when these places
are connected by an electric telegraph.
~ Let a signal be made at P, the more easterly station, at
the time 7', of P ; and suppose tlhe signal to be received at
Q at the time 7}, of Q (7', and 7, being both solar, or both
sidereal, times obtained from the clock times at the two
stations by correcting for the errors of the clocks).

If the transmission of the electric current were instan-
taneous, the difference of longitude would be

rN=T,—T,
but if 2 be the time required for the transmission of the
signal, 7'+ will be the time at P corresponding to the time
T, at Q, therefore the difference of longitude is
A= (T +2)=T,=\+2. :

To eliminate tlie unknown quantity « :—Let a 51gna1 be
made at  at the time 7, and received at P at the tinie
T/ ; then '

A=T/= T' _
wOuld be the difference of longitude if no time were lost in
the transmission. Assuming this time to be again 2,
A=T= (T +2)=M\—2,
whence - A=3 (A, +2,) is known.

335. In the practice of this simple method, when we
wish to obtain from it the very great accuracy of which-
it is capable, we have to take into account certain small
possible errors. Such are—

The errors of the assumed clock corrections,

The personal errors of the observer who gives, and of him
who receives, the signal (Art. 83), -

- The error due to neglecting the small fraction of time
82
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required to complete the galvanic circuit after the finger
touches the signal key,
&e. &e.

For a full examination of these errors, and of the means
of eliminating them, or of reducing them to a minimumn,
we shall refer to Chauvenet’s Astronomy. vol. 1., whete the
student will also find a description of the method called by
star signals,” which is a slightly modified way of employing
the electric telegraph.

336. For places which are not connected by electric
communication, the difference of longitude may be obtained,
when the stations are not too far apart, by observing simul-
taneously the time marked by the clock at each station when
some signal, such as a flash of gunpowder, or the disappear-
ance or reappearance of some fixed light, is made either at
one of the stations or at some intermediate point. The
method may be extended to find the difference of longitude
of distant places when they can be linked by intermediate
stations. '

By Celestial Signals.

\ 337, Some celestial phenomena are of such a character
that they may be observed at the same instant of absolute
time by different observers. Such are—

1. The eclipses of Jupiter’s satellites,

2. The beginning or end of a lanar eclipse,

8. The bursting of a meteor.

Any one of these being observed at two stations, the
difference -of the corresponding local times will give the
difference of longitude.

The exact instants of the disappearance of Jupiter’s
satellites into the shadow of the planet, and of their re-
appearance, are predicted in the Nautical Almanac for
Greenwich time ; so that an observer noting /s local time
of either phenomenon, has at once a means of inferring his
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absolute longitude. But the method is not susceptible of
very great accuracy ; for, the disappearance of a satellite
taking place gradually, the apparent instantof disappearance,
and therefore the longitude inferred, will depend on the power
of the telescope employed ; and, at sea, the motion of the
ship renders it impossible to keep the planet in the field of
view of a telescope of sufficient power to shew the satellites.

The method by lunar eclipses is still more uncertain ; for,
the boundary of the earth’s shadow on the moon is so in-
definite, that observers, at the same place, will differ by two
or three minutes in their estimation of the time of beginning
or ending of the eclipse.

The bursting of meteors, or shooting stars, might be useful
if it were possible to anticipate them, and also to identify
them when observed.

By Lunar Distances.

V 838. The moon has a rapid motion among the stars,
altering its position by more than 18°in 24 hours. Certain
bright stars and some of the planets are selected, which lie
almost directly in the moon's path, and the angular distances
of the moon’s centre from these and also from the sun (as
they would appear to an observer at the centre of the earth),
are given in the Nautical Almanac for every third hour of
Greenwich mean time.

It will be easy to understand how this is made available
for finding the longitude,' whether at sea or on shore :—
Measure, with a sextant, the angular distance between the
moon’s bright limb and a star, and correct this observed distance
for instramental errors. Then add or subtract the moon’s
apparent semi-diameter according as the bright limb is to-
wards or from the star ; this will give the apparent distance
of the centres.

When the sun is the body whose distance from the moon is measured, the
apparent semi-diameters of both bodies are always to be added, because the
bright limb of the moon is turned towards the sun, and the observed distance
is that of thie mearest limbs.
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The apparent distance so found must be further corrected
for the effect of parallax and refraction, as explained below,
to determine the geocentric or ¢rue distamce. This true
distance, compared with the distances registered in the
Nautical Almanac, will determine the time at Greenwich,
and thence, by comparison with the local time of observation,
the longitude of the place.

J 839, Only one observation has been supposed made, that
of the distance ; but we want the local time to compare with,
the Greenwich time, therefore an altitude also must be
simultaneously observed (Chap. vimr). Moreover, the opera-
tion of clearing the distance, as the computation of the true
distance is called, requires both the altitudes to be known.
There should therefore be three observers, one measuring:
thedistance, and the others, at the same moment, the altitudes
of the bodies.* The local time may be obtained from either
altitude.

{ 340. Let Z be the zenith of the observer, §’ the apparent
place of the star or sun, and M’ that of
the moon. We shall assume that the
effects of parallax and refraction are
wholly in the vertical planes Z§ and
ZM,t and that the true places are §
and M. The parallax of the moon
exceeds its refr-é,ction, therefore M’ is

#* When there is but one observer he may proceed as follows :—Take the
altitude of the sun or star, then the altitude of the moon, next the distance
between the luminaries, again the moon’s altitude, and finally that of the sun or
star. The intervals of time having been also noted by a watch, the observed
changes of altitude may, for a short time, he assumed to proceed uniformly, and
will enable him to calculate what the altitudes would have been at the moment
when the distance was taken.

+ Strictly, parallax acts in a plane through the geocentric zenith, and re-
fraction in a plane through the astronomical zenith, but the error introduced ig
very much less than the probable error of observation, and may therefore be
pafely neglected.
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below M, and the contrary for the sun, a planet, or a star,
therefore S’ is above S.

The apparent zenith distances ZS, ZM' are observed
at the same time as the distance S'. From these the
true zenith distances ZS, ZM must be found by correcting
for parallax and refraction.

In the triangle ZS' M/, the three sides being known, the
angle Z may be calculated.

Then, in any triangle ZSM, the two sides Z8, ZM and
the contained angle Z will be known, and the true distance
SM may be obtained. -

J341. The solution of these two triangles is a simple
application of the rules of Spherical Trigonometry.
Let 7', 8’ be the apparent altitudes of the moon and star,

My § coeven true vereetserstartmesenas eseesaiaennne ceeny
d ... apparent distance of their centres,
d ... . true eenerresarraseniraesnraes ceren
If the angle MZS be called ¢, we have
cosd =sinm’ sins +cosm’ coss’ cos ¢,
cosd = sinz 8ins + COSm COSS CO8 ¢,

cosd—sinm sins cosd —sinm’ sins’
whence = (4)-

cosm coss:  cosm coss T
This determines &, but the equation is not in a form adapted

to logarithmic computation. To prepare it for this purpose,,

add 1 to each side,

cosd + cos (m +5) _ cosd’ +cos (m' +8'(

COS 7 COS 8 cosm coss' >
(t —2 &in’}d) + {2 cos’} (m+ ) — 1}
COS7 CO8 S
_2cos} (m +8"+ d) cos} (m +8 —d)
- cosm’ coss" ’
sin*}d=cos’} (m+s) —‘Z—Oo—z%z%—::,cos% (m'+8"+d')cosd (m’+§’—d') .
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Let sin?g — 5087 o8 cosd (m' + 8 +d') eos ) (m'+s'~d')
" cosm’ coss €08’y (m + s)
..,..,..,.1,,..(B);,

therefore sinyd =cos"} (m +s) (1 —sin’d),
sinfd=cos} (m +8) 050 .....ooevurense (O)s

The formulee (B) and (C) determine d, and are adapted to

logarithms. The above is Borda’s solution, which is perfectly

general and requires no distinction of cases.

342. We shall give another solution which has found
great favour with mariners on account of its simplicity.
It requires a table of natural versed sines.

Subtract 1 from each side of equation (),
cosd—cos (m~38) _cosd —cos (m' ~s)

COSM COS 8 cosm’ coss’

therefore

CO8m COS 8

m=2 COS0....-...-.....-...(1)) H

Assume

therefore cosd=cos (m~s) + 2 cos 8 {cosd — cos (m' ~ &)}
=co8 (m ~ §) + cos (d + 6)
~+ 08 (&' — 0)—cos{ (m/'~s")+6} — cos | (m'~s")—6)},
whence, versd = vers (m —s) + vers (d' + 6)
+ vers (d' — 6) —vers (m' — ' + 0) —vers (m' — &' — 0)...(E).

343. Many other transformations have been proposed,
but the above are among the simplest. Instead of obtain-
ing the true distance ¢ directly, which, on account of its
being a large angle, will require extended tables and great
care in working for the proportional parts, we may employ
approximative methods which find the difference between
dand d. As this difference will always be a small angle
seldom exceeding 1°, the work will he less troublesome,
without being practically less correct. The value of d—d"
will be found by successive approximation, or by development,
in a series in which the smaller terms are neglected.
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344. The true distance having been found, we have to
compute the corresponding Greenwich time. Referring to the
Nautical Almanac, we find the calculated distance comprised
between some two of those registered there; and, on the
sesumption of a uniform variation of the distance during
~ those three hours, a simple proportion will give the correction
to be added to the first hour,

" If d be the true distance; d,, d, the distances, given
in the tables, separated by three hours ; the correction
in hours,

d,—d :d—d ::3:2,

logx =1log 8 + log (d—d)) —log (d,—4)).

345. Proportional logarithms. This calculation is very
much simplified by the use of a special table, called table
of proportional logarithms, the idea of which is due to
Dr. Maskelyne, the Astronomer Royal, at whose suggestion
the yearly publication of the Nautical Almanac began in
1767. The above proportion may be written

3_d—=d_ 3 . 8
v=d—d, d—d, " d,—d,

Now the table of prop. logs. is so constructed that opposite

to any number @ stands log P therefore

prop. log z = prop. log (d—d,) — prop. log (d,—d).

The Nautical Almanac gives not only o, and d, but also
in & column between them prop. log (d,—d)) ; therefore at
the same time that we take out d,, the distance which pre-
cedes the true distance d, we take out prop. log (d,—d),
and we only have two inspections of the logarithmic tables
instead of four,

348. We have supposed the distance between the moon
and a star to increase or decrease uniformly ; but this will
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not generally be the case, and the result obtained has
to be further corrected by the usual rules of interpolation.
The Nautical Almanac contains a table which gives the
necessary correction for second differences in a convenient
form. See Boole’s. Finite Differences, Chap. 11, on *In-
terpolation,’

347. The horizon at night is frequently so ill-defined
that there is a large probable error in the altitude of the
star, and the local time determined from it will have a
corresponding uncertainty, although the altitude would be
sufficiently accurate for clearing the distance. But as all
vessels engaged in distant voyages are furnished with one
or more chronometers, we may employ the observed lunar
distance to determine—not the longitude of the ship—but
the error of the chronometer on Greenwich time at the
instant of observation ; then, at any convenient time after-
wards, determine the longitude by an abservation of the sun
and chronometer.

We may even dispense with the observation of the alti-
tudes altogether at the time of taking the distance ; because,
the supposed Greenwich time, given by the chronometer and
the estimated longitude, will be sufficiently accurate to deter-
mine the time at ship, and thence the hour angle, which,
with the known latitude and the declinations of the star
and moon, will lead to the altitudes with sufficient accuracy
for clearing the distance.

The reader who is interested in the problem may consult
Delambre’s Astronomy, Chap. xxxvi. ; Mackay on Longi-
tude, Bk. 3, Chap. 1v. ; Chauvenet’s Astronomy.

The method of lunar distances for determining the
longitude owes its value to the rapid motion of the moon
among the other heavenly bodies. If it moved twice as:
fast, the accuracy would be twice as great. The inhabitants
of Jupiter must therefore, with their rapidly revolving moons,
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be able to determine their longitudes with as great accuracy
as we can our latitudes. )

By Moon-Culminating-Stars.

J 348, The preceding method for the determination of the
longitude depends for its success on the rapid change of the
moon’s distance from certain fixed stars: The change in
its right ascension, which is equally rapid and sometimes
even more 80, is the basis of anothér method, not available
at sea, but which, on land, leads to very accurate deters=
minations.

A transit instrument being mounted in the meridian plane,
the instant is noted by an astronomical clock when the bright
limb of the moon comes to the meridian, and also the time
~ of transit of a selected star, taken from the list of moon-
culminating-stars in the Nautical Almanac. These moon-
culminating-stars are chosen, for each day, so as to have
pearly the same declination as the moon, and not to differ
very widely from it in right ascension.

The difference between the two times so observed is the
difference of the right ascensions of the star and of the moon’s
bright limb, at the moment when the latter is in the meridian
of the observer.

If similar observations be made at Greenwich, we shall
have the difference of right ascensions of the star and of
the moon’s limb when the latter is in the meridian of
QGreenwich.

We can thus find the change in the right ascension of the
moorn’s limb while it passes from the one meridian to the
other ; and if this change be divided by the variation corre-
sponding to one hour of longitude,* which is nearly uniform,

* The column is headed ¢Variation of (;’s right ascension in one hour of
longitude,” but it is calculated for the bright limb, and therefore includes the
gffect of a change of the semi-diameter, (See Nautical Almanac Explanation).




268 LONGITUDE BY OBSERVATION. [CHAP. XXI

and is given in the Nautical Almanac for the instant of the
passage over Greenwich, we shall obtain the difference of
lIongitude in time.

N 349. Instead of corresponding observations at Greenwich,
we may take the right ascensions of the moon’s limb and
of the star as registered in the Nautical Almanac, the com-
puted places being now given with such accuracy that they
may be considered the same as if they had heen observed.
When the two places differ considerably in longitude, we
must use for our divisor, not the variation for one hour given
in the tables, but one obtained by interpolation corresponding
to the middle of the interval between the two observations.
Let T, T, be the observed clock times of transit of )’s
limb and star,
A,, 4, be the registered right ascensions of same at
Greenwich transit,
C be the registered change in one hour of longi-
tude corresponding to the middle time.

Then, longitude = (1~ 1T) 2 (4,-4) .

Both numerator and denominator must be expressed in
seconds, and the result will be the longitude expressed in hours
and fractions of an hour—west, if positive ; east, if negative,.

1 350. The advantage of selecting stars which have nearly
the same declination as the moon is, that the instrumental
errors will affect both the bodies equally. The longitude so
determined must yet be corrected for the known errors of the
transit (Chap. 1v. Art. 82) ; for, if we suppose the star to be
observed ¢ too soon, we are in reality observing the transits
across the meridian of an observer # to the east of ours, and
the longitude obtained above will be his longitude, which
must therefore be increased by #.
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351. The longitude of & place may also be found by an
eclipse of the sun, or by an occultation of a star or planet, but
the operation is much too intricate for an elementary work,
and the rare occurrence of these phenomena renders the
methods of less practical value than those we have here con-
sidered. For a complete investigation of these, and of some
other methods of determining the longitude of a place, we
shall refer to Chauvenet’s Astronomy.
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CHAPTER XXIL

THE PLANETS.

352. We have already, on several occasions, spoken of
the planets—those wandering stars whose brilliancy and
motions among the other stars must from the very earliest
times have attracted attention. Five planets were known to
the ancients :—Mercury, Venus, Mars, Jupiter, and Saturn ;
and the motions of these five were all found confined within
a narrow zone of less than 8° on each side of the ecliptic.
To this zone they gave the name of zodsac.

No additions were made to the planetary system before
the end of the 18th century. On the 13th of March, 1781,
Sir W. Herschel discovered Uranus, “in the course of 4
review of the heavens, in which every star visible in a tele=
scope of a certain power was brought under close examination,
when the new planet was immediately detected by its dise,
under a high magnifying power.”

On the 1st day of January, 1801, another planet Ceres
was added. This was the first of a series of very small
telescopic objects, the number of which, now exceeding a
hundred, seems likely to go on increasing with the increase
of magnifying power of our telescopes. They are not, like
the other planets, confined to the zodiac, and it has been
conjectured that they are probably fragments of some larger
planet, blown to pieces by an explosion.

A still more remarkable planetary discovery was made
some years ago almost simultaneously by Professor Adams
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and Mons. Le Verrier. The history of this belongs to
physical astronomy, and we shall refer the reader to the
full account given in Grant’s valuable work :* a few words,
however, will explain the peculiar circamstances which led
to the discovery, and which mark it as one of the most
wonderful in the whole range of astronomy. The planet
Uranus discovered, as we have said above, by Herschel, was
carefully observed for a series of years ; and, these observa-
tions serving for basis, the subsequent path of the planet was
calculated and registered, taking carefully into account all
Jnown causes of disturbance. In a few years it was found
that the positions of the planet did not exactly agree with
the calculated positions, and it was surmised that the unknown
cause of disturbance was probably an undiscovered planet,
Adams and Le Verrier proposed to themselves, and successfully
achieved, the solution of the inverse problem : Given the
unaccounted-for disturbances of the Planet Uranus, to find
the position, &e., of the unknown disturbing body.” The
indications furnished by their calculations led to the discovery
of the planet Neptune.

353. When a planet is attentively observed, and its posi~
tion marked down on the celestial sphere or map, night after
night, it is soon found that its path differs essentially in
character from those of the sun and moon. These luminaries
have a motion which, though not strictly uniform, departs but
little from uniformity ; but, in the case of the planets, we
find, not only a want of uniformity, but an actual change of
direction. The planet, after advancing for some time from
west to east in the same direction as the sun and moon,
gradually relaxes its speed, then stops, and begins to retro~
grade. After retrograding, with a velocity at first increasing
and then diminishing, it again stops, and then recommences

* History of ‘Physical Astronomy.
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its onward motion. The time of regression is, however, much
less than that of progression, and there is on the whole an
advance from west to east.

The ancients, who started with the fixed idea of an im-
moveable earth, found these retrogade motions and stationary
positions a source of much petplexity, and, to explain them,
were driven to complicated systems of epicycles. The
planet was supposed to describe a circle uniformly, the
centre of this circle itself moving on another circle, and so
on. But, however ingenious these systems were, they could
not completely reconcile the observations.

354. We shall not enter into a description of the various
hypotheses which preceded that of Copernicus (1543). This
celebrated astronomer shewed that all these different and
complicated planetary phenomena could be easily and satis-
factorily explained by supposing the earth to be itself a
planet, circulating round the sun in the same direction as the
other planets. According to this system, which has long
ceased to meet with the antagonism which its supposed con-
tradiction of experience and revelation originally excited,
the sun occupies the centre, and the planets succeed one
another in the following order, reckoning from the sun out-
wards. The mean distance of the earth is taken for unit,
and the period is expressed in days.

Mean Distance from Sun, Period.

Mercury ) 03871 87°969
Venus 0:7233 224:700
Earth 1-0000 865256
Mars : 1-5237 686-980
Minor Planets (average) 2:6 1531°

Jupiter 52028 4332+585
Saturn 9:5389 10759220
Uranus 19-1827 30686-821
Neptune 300370 60126°720
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The two planets, Mercury and Venus, whose orbits are
within that of the earth, are called inferior planets, all the
others are superior planets.*

355. By a careful and elaborate study of the motions of
the planet Mars, Kepler was led to the discovery of his three
laws (Chap. x1.), which proved that the idea of circular
motion, with its attendant epicycles, must be discarded for
the much simpler one of motion in a conic section round the
sun in the focus ; and Newton confirmed Kepler’s discoveries
by shewing them to be necessary consequences of his law of
universal gravitation.

In order, then, to see the motions of the planets in their
greatest simplicity, we must conceive the observer stationed
at the sun. But it is obvious that the positions which the
planets would then occupy, relatively to the stars, wounld
be very different from those which they seem to have when
geen from the earth. The two positions are known as the
heliocentric and the geocentric places of the planet ; and,
when the dimensions and positions of the elliptic orbits
both of the earth and of the planet are known, as also
the places the bodies occupy in them at any assigned time,
it will be a simple application of the rules of plane trigo-
nometry to convert heliocentric into geocentric latitudes and
longitudes, and vice versd. )

* The distances of the principal planets from the sun may be roughly obtained
by a somewhat curious law, known as Bode’s law, given by him in 1778.

Write down the series of numbers, 0, 3, 6, 12, 24, 48, 96, 192, 384 ; where, after
the secound, each is formed by doubling the preceding ; next, add 4 to each and
divide by 10. We get values approximately coinciding with the planetary
distances, viz,— ’

Mer. Venus Earth Mars Mi. Pls. Jupiter Saturn Uranus Neptune
4 7 10 16 2:8 52 100 196 388
When Bode’s law was first given, there was a gap between Mars and Jupiter,
which the minor planets subsequently occupied. The discovery of Neptune,
however, disturbs the series too much to allow us to attach any great value to
the law, beyond that of being a simple meauns of remembering the distances.

T



R4 THE PLANETS. (cmAP. XXIL

Thus, suppose S to represent the sun, AB the plane of
the ecliptic, EF G the earth’s orbit, and E the earth’s place 3
NPQ a planet’s orbit and P the place of the planet at the
same time ; ST and EY’ parallel lines in the direction of the
first point of Aries. Then, drawing PM perpendicular to
the plane of the ecliptic,

PSM and ¥SM are the heliocentric lat. and long. of P,
PEM and VEM......... GEOCENETIC vuverrernerereniarennennns
The heliocentric longitude of the earth (VSE) differs by 180°
from the geocentric longitude of the sun (V' ES, measured in

direction of the arrow).

The heliocentric distance SP and the latitude P.SM being
known, the right-angled triangle PSM will furnish M and
the curtate distance SM.

SE and SM being known, and the angle ESM (the
difference of heliocentric longitudes of planet and earth), EM
and the angle SEM may be obtained, and thenee the angle
o' EM, which is the geocentric longitude.

The geocentric latitude will also be readily obtained from
the right-angled triangle PEM, of which PM and EM have
been calculated.

In a somewhat similar manner may a geocentric position
be converted into a heliocentrie one.

356. The heliocentric place of a planet can be calculated
by the rules of elliptic motion, when certain quantities are
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known which determine the dimensions of the elliptic orbit ;
its position with reference to the ecliptic, and the position of
the planet itself in the orbit at some known instant.

These necessary data are called the elements of the planet,
and are six in number.

The semi-axis of the ellipse,

The excentricity,

The heliocentric longitude of the node,
The inclination, '

The longitude of the apse,

. The epoch.

The line of nodes is the intersection NQ of the plane of
the orbit and the ecliptic, the point IV, where the planet passes
from the south to the north side of the ecliptic, being the
ascending node (&), the other Q the descending node ().
The heliocentric longitude of the node is always the longitude
(TSN) of the ascending node, therefore (3) and (4) fix the

" position of the plane of the orbit.

The position of the apse line, given by (5), indicates the
direction of the major axis ; the magnitude of the ellipse is
completely determined by (1) and (2). The epoch (6) is the
longitude of the planet at a certain definite instant, and this
being known, we may, by the rules of elliptic motion (Chap.
XI., Art. 184), obtain the position of the planet in the orbit
at any subsequent instant.

AR L e

357. Before the place of a planet can be predicted, it is
therefore necessary to determine its elements.. Three complete
observations of right ascension and declination will be suffi~
cient ; for from each observation can be inferred the corre-
sponding geocentric latitude and longitude, and these will
furnish two equations connecting the elements of the orbit.
But although theoretically sufficient, it will be found practi-
cally more accurate and more simple to make observations
at particular times, when the planet occupies selected positions

T2
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specially favourable for finding each element in turn. We
shall refer the reader to Delambre’s Astronomy.

858. To find the planet’s periodic time. Let T be one
year, and ¢ the periodic time of a planet. Let the synodical
period S be observed, that is, the interval of time from con-
junction to conjunction, or from opposition to opposition, or,
generally, from any one position relatively to the sun to the

same position again. Then 27 a.nd =T are the true angular

velocities of the earth and planet and S 7 their relative
angular velocity, therefore

2w 2w 211'

--~—_

T S’
theref L1 _1 for a superior planet,
therefore i=T S,ora.s perior plane
1 1 1
i =7+3 for an inferior planet,

whence, the periodic time of a superior planet is SS_I;,,

and of an inferior one ~iT—, .
S+ 1

Stationary Points.

359. We shall proceed to shew how the stationary posi-
tions and the retrograde motions of planets are necessary
consequences of the earth’s own motion.

If we consider elliptic orbits, the problem of the determi-
nation of the stationary points becomes a very complicated
one ; but, as these points are now objects of interest only
from the fact of the ancients having been so puzzled to explain
them, it will be sufficient to investigate their positions, con~
sidering the orbits ag circles uniformly described round the
sun as a centre.
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Let S be the sun, P and Q two planets in conjunction,
the direction of motion being indicated by the arrows.

T E ki
By Kepler’s third law,
period of P : period of Q :: (SP)}: (SQH,
and if Pp, Qq, be small arcs described in the same time,
Pp : Qg :: vel, of P :vel. of Q
:: SP x ang. vel. of P : SQ x ang. vel. of Q

L sp___ .8
** periodic time of P * periodic time of Q
1 1

H m H W 5
therefore, Pp > Qq.

Let P,, Q, be positions of P and Q before conjunction,
at the moment wheu the line joining them is a tangent to
the inner orbit, and let P,, Q, be the correspondlng positions
after conjunction.

First, take the case of an inferior planet. Let P repre-
sent it, and let Q be the earth.

‘While the planet moves from P, to p,, let the earth move
from Q, tog,. Takea fixed point O to represent the supposed
fixed position of the observer, and draw OA parallel to QP
Oa parallel to ¢, p,. The apparent direction of the planet’s
motion will therefore be Aa, in the direction of the arrow,
i.e.direct. When the planet arrives at P and the earth at Q.
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draw OB to represent the apparent direction ; then, since
Pp > Qq, the direction will change to 0b parallel to gp, and
the apparent motion is retrograde,

Again, in the position Q,7, to which OC is parallel, the
motion of the planet alone, from P, to p,, would cause no
change. in the direction, but the earth moving to ¢, at the
same time determines an apparent direction Oc parallel to
4, and the motion is again direct.

‘While the earth, then, is passing from Q to Q,, the appa-
rent motion of the planet changes from retrograde to direct ;
at some intermediate point, therefore, as M, the retrograde
motion, ceases in order to become direct, and the line
MN, joining the two bodies, moves parallel to itself—the
great velocity of IV being compensated by its moving more
obliquely. The planet is then stationary. In the same way,
it may be shewn, that there must be a stationary point before
conjunction, between @, and Q.

Secondly, consider a superior planet, and take P (same
figure) now to represent the earth, and Q the superior
planet.

When 8, P, Q are, as in the figure, in one straight line,
the planet Q is in opposition. Make the same construction
as before, and produce the lines 40, BO, COto X, Y, Z;
then OX, OY, OZ are apparent directions of the planet, and
a simple inspection of the figure will shew that at Q the
apparent direction of motion will be retrograde, but direct
at Q, and Q,; that is, the motion of each planet, as seen
from the other, will be exactly the same af, the same time—
both retrograde, both direct, or both stationary,

@

360. We may determine the stationary position analy-
tically as follows :

Let ¢ be the time from the positions @, P to the stationary
points M, N. Join SM and SN (these lines are not drawn
in the figure). Let SM=a, SN=54, and let ¢, ¢’ represent
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the angles M and N of the triangle SMN. Also let B
be the angular velocities of the bodies,

QSM=at, PSN=pt, MSN=(8—a)¢.
In a small time 7, N moves to mn parallel to itself,
Mm sinmMN = NnsinnNM,
or, aat cos p=—bBT cos .
By Kepler'slaw  a:8::b8:ai;
therefore bt cosp=—atcos .
Also asing=>0sing,

a’+ ab . b
cos = \/ a+ab+b’ ’Sln¢=\/(’a"+a'b‘+bx)’ ,
cot = \/{(%) +%} ........... @,
ab+6’ a
, cos ¢'= /\/ a+ab+b’ , sing'= '\/(W)’

cot¢'=\/{(%)2 + g} ..... (i),

N pe n_ N (ab) {a+ A (ab) + b}

cos (B—a) t=—cos (p+¢) = a1

_ - N(eb) e
= T b—v@h (iif) 3
(i) and (i) determine the elongation of each planet as seen
from the other at the moment when they appear stationary,
and (i) gives the difference of their heliocentric longitudes
and the time from conjunction. The angles QSM and PSN
can of course be found when ¢ is known.

Transit of Venus.

361. Since the orbit of the planet Venus is within that
of the earth, it will sometimes happen that the planet will
find itself immediately between the sun and the earth, and a
phenomenon analogous to an annular eclipse of the sun will
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take place, except that the planet will hide only a very small
part of the sun, and will appear like a dark spot moving
across the sun’s disc. The motion also, contrary to that of
the moon in a solar eclipse, will be from east to west, because
the planet is then retrograding. This, which is called a
transit of Venus, furnishes the most accurate method for the
determination of the sun’s parallax.

The phenomenon, being caused by the interposition
between us and the sun of a nearer opaque body, will,
as in the case of a solar eclipse, present local features
which will vary from one observer to another. Neither
the beginning nor the end of the transit -will happen at
the same absolute instant of time for all observers, nor will
the chord of the sun’s disc, which Venus seems to describe,
be the same for all. These variations are due to the dif-
ferent distances of the two bodies. Venus being then at
only about §ths of the sun’s distance, a displacement of
the observer will cause a much greater apparent displace-
ment of the planet than of the sun.

The non-simultaneous occurrence is the basis of Delisle’s
method of determining the parallax; the non-coincident
path is the basis of Halley’s. We shall give a slight
outline of the principles of these two methods. The neces-
sary calculations for strict investigations are long, being
of the same character as those for a solar eclipse, and we
shall refer the reader to Chauvenet’s Astronomy or to
Delambre’s Astronomy, vol. 1L.*

362. Delisle’s Method. Consider a cone enveloping both
the sun and the earth with its vertex beyond the earth.
That generating line of the cone which is first touched

* Mr. Proctor’s valuable papers on the transit of Venus are in the highest
degree suggestive, and shew not only a complete mastery of the problem, but
a power of putting it in a clear and simple light, which but few writers possess, .

‘Mr. Proctor’s writings on astronomical subjects deserve, and will well repay,

careful study.
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by Venus will determine on the earth the place of first
contact. Consider a second cone enveloping the sun, and
with its vertex at the centre of the earth; the transit
will begin for the centre of the earth when Venus first
touches this cone. Lastly, consider a double cone enve-
loping the earth and sun, and baving its vertex between
them (the distance of this vertex from the earth will be
only 11 of the sun’s distance) ; the first contact of Venus
with this cone will determine that place on the earth’s
surface at which the beginning of the transit is most
retarded. .

For intermediate stations the transit will begin at inter-
mediate times, the ingress being accelerated for some and
retarded for others. The interval between the earliest
ingress and the latest will, when the transit is a central-
one, amount to about 12 minutes ; in other cases it will
be longer—in 1874 it was 25 minutes. During this
interval the earth will have turned on its axis through
only a small angle, and the places of most accelerated
and of most retarded ingress will be nearly the antipodes
one of the other. At both places the sun will be just in
_the horizon.

If now, at any two stations situated as near these points
as will be most practicable and convenient, the instant of
ingress* be observed, and if the longitudes of these stations
are accurately known then the difference of absolute times
will be known, Since this difference is entirely owing to
the excess of the parallax of Venus over that of the sun,
it will be possible to calculate this excess, and the ratio of
the parallaxes is known from the known ratio of the dis-
tances, therefore the parallaxes themselves can be found.

The parallaxes will also be similarly determined by

* The contact here spoken of must be the internal contact of Venus and the
sun ; the external contact of ingress could scarcely be determined with accuracy,
since Venus would be perceived only affer having encroached on the sun’s disc.
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observations on the egress of the planet at places near
where the egress is most accelerated and where it is most
retarded.

363. Halley's Method. Instead of consideringtheabsolute
interval between an accelerated and a retarded ingress, let
us take two stations in opposite hemispheres, at each of
which both the ingress and the egress can be seen, but
such that the chords of the sun’s disc which the planet
seems to describe may be widely separated.

These chords, having different lengths, will be described
in different times; and if the instants of ingress and of
egress be observed at each station, the difference of duration
of the two transits will be known. This difference is again
owing to the difference of the parallaxes, and will furnish
an equation for determining it, which, with their known
ratio, will, as in the former method, lead to the parallaxes
themselves.

364. The advantage of Halley’s method consists in its
requiring only the duration of the transit to be accurately
measured, and an ordinary chronometer whose rate is known
will do this ; so that no lengthened stay on what would
probably prove an uninhabitable land is necessary, nor any
delicate observation for the determination of the longitude.

The advantage of Delisle’s method consists in its requiring
only the beginning or the end of the transit to be observed ;
50 that many more stationg will be suitable to the application
of the method, and the difficulty of ascertaining the longitude
of each station with the necessary accuracy will probably be
more than compensated by the multiplied observations which
can be made.

365. The following additional remarks will explain a
little more fully how the sun’s parallax is deduced from the
observations. We shall consider Delisle’s method ;
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Let T be the Greenwich time, approximately known, at
which the first internal contact takes place for an observer
at the centre of the earth. Suppose an accelerated ingress
to have been observed at the time T'—¢ at some place
whose position is accurately known. Let @, & be the dif-
ferences of right ascensions and of declination of Venus and
the sun at the time 7 and let «, 8 be the relative horary
changes, so that @ + af, b + B¢ are the values at the instant
of observation.

Let = be the sun’s parallax, 4= that of Venus ; £ being
the known ratio of the distances at the moment of obser-
vation. The effects of parallax on the right ascension and
~ declination (8) of the sun for the given place at the instant
of observation will be =X and =Y, where X and Y are
certain functions of the hour angle, declination and latitude.
Since the positions are nearly coincident, the corresponding
corrections for Venus will be 4= X and A=Y, and the
apparent differences of right ascension and of declination at
the moment of observation are

et+at—{k—1) =X, 0+ Bt—(k—1)=mY.
If ¢ be the difference of semi-diameters of Venus and the
sun,
a® cos?d + 0’ =7,
{a+at—(k—1)wX| cos’8+{b+Bt—(k—1) =Y} =c";
whence, subtracting, and neglecting squares and products
of the small quantities af, B¢, and w,

_aX cos’S+6Y
T “aa cos®S + 68

80 t = Mz,

(—1) = Mw,

M' being the value of M at the second station, where a
retarded ingress is observed at the time 7T'+¢' ; then

b+t
T E ML

’

will be known,
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because ¢4 ¢, the absolute time interval, is known from the
observations, when the longitudes of the two places are
accurately known.

366. There will also be transits of the planet Mercury,
and they will recur much more frequently than those of
Venus ; but, on account of Mercury’s proximity to the sun,
the intervals between the accelerated and the retarded
ingress or egress will be much less, and the durations of
transits be much more nearly egnal than in the case of
Venus ; and as it is especially on the magnitudes of the
intervals and on the differences of the durations that the
accurgey of the methods depends, the transits of Mercury
are comparatively valueless for the determination of the
sun’s parallax.

367. The transits of Venus take place at irregular and
distant intervals. The last occurred in 1882, and only five
have yet been seen, viz. in 1639, 1761, 1769, 1874, and 1882,
That of 1769 was observed from a great number of different
stations on the surface of the earth, and the results of the
observations gave the parallax of the sun 8”-57. This value,
however, was shewn by observations of an entirely different
character, made some years ago, to be considerably too
small, and astronomers of all nations looked forward with
special interest to the transits of 1874 and 1882, as likely to
afford a certain solution of the question.

With the view of obtaining the largest possible number
of observations, the leading governments of the world estab-
lished stations at widely separated points of the earth’s surface,
to which duly accredited observers were sent. Various
modes of observation were adopted, all resolving themselves,
however, into the two methods of determining the sun’s
parallax, to which reference has already been made.

The results of the numerous and careful observations
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thus taken shew the parallax of the sun to be about 8"-80* ;
probably somewhat greater, and, with our present knowledge,
it seems hardly possible to approximate more closely to the
exact value.

A transit does not recur at every conjunction, for the same
reason that an eclipse of the sun does not take place at every
new moon. The inclination of the orbit gives to the planet
a latitude which places it beyond the sun’s disc, and thereby
avoids the transit, except when the conjunction happens near
one of the nodes.

The intervals between the transits are alternately a short
one and a long one. The short ones are always of 8 years’
duration, and the long ones alternately 121} and 105} years,
as the following table from Delambre’s Astronomy will shew :

Dec. 6, 1631 June 7, 2004...121% years.
Dec. 4, 1639... 8 years. | June 5,2012... 8 ......
June 5, 1761...121% ...... Dec. 10, 2117...105% ......
June 3, 1769... 8 ...... | Dec. 8,2125... 8 ......
Dec. 8, 1874...105% ...... | &e. &e.

Dec. 6, 1882... 8 ......

The list, continued according to this law, must be looked
tipon as giving the years when a transit may be expected ;
but an exact investigation must be made of the positions of
the Sun and Venus before we can assert that a transit will
or will not happen.

To account for the intervals which separate the transits :—
'We must know that the periodic times of Venus and of
the earth round the sun are respectively 2247 days and
365256 days, so that the synodical period .S, obtained from
the equation -
1 1 1
ST 2247 365256°
will consist of 584 days,

* Professor Harkness of the U.8. Naval Observatory, in his Memoir, “ The
Solar Parallax and related consbants,” has made the only published attempt to
summarize our present knowledge on the subject : and he gives, as the result of
Tis calculations from all available data of every kind, the value 8”:8091 £ -0057.
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5 synodical revolutions will therefore require 2920 days,

8 revolutions of the earth.............ccon........ 2922 days ;
therefore eight years after a transit another conjunction will
recur in the same part of the heavens very nearly, and where
the planet will be again near its node.

‘We might thus almost expect to have a transit of Venus
every eight years ; but it is found that at the second of two
such consecutive transits the latitude of Venus will differ
from its former value by from 20’ to 24'. Another interval
of eight years will bring a conjunction, at which the latitude
of the planet will differ by from 40’ to 48’ from the first.
This being greater than the sun’s diameter, no third transit
can take place ; and we must wait until the conjunctions
occur near the other node, which, it appears, will require
a period of 105 or 121} years.

Phases of the Planets.

368. Like the moon, the planets are opaque ; and the
light we receive from them is reflected sun-light. They will,
therefore, present phases analogous to those of the moon.

It will be easily seen that, in the case of the inferior
Planets Mercury and Venus, the exterior angle of elongation
SOV (fig. p. 234) may have all values from 0 to = ; and,
therefore, the phases will range through all values from a
full round disc to a thin crescent, which itself vanishes at
inferior conjunction. But, in the case of the superior planets,
the angle which the radius of the earth’s orbit subtends at
the planet will always be very acute, and the supplementary
angle, on the versine of which the phase depends (Art. 300),
will always be very obtuse, so that nearly the whole of the
disc will at all times be illuminated.

The inferior planets will present a half-disc when at their
greatest elongation or angular distance from the sun, that
is, when the line from the earth to the planet touches the
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planet’s orbit. The greatest elongation of Venus varies from
45° to 473°, that of Mercury from 16° to 283°.*

369. To find when Venus appears brightest. The varia-
tions in the brightness of Venus are due, not only to the
alteration in the phase of the planet, but also to the
change in its distance from us. When approaching the
earth, the diminution of illuminated area tends to diminish
the brightness, but the distance is decreasing, and as the
brightness varies inversely as the square of the distance,
this latter cause will, at first, more than compensate for the
loss due to the former, and Venus is found to be brightest
when between its greatest elongation and inferior conjunction,
at about 40° from the sun.

We shall investigate the position of greatest brightness
on the supposition that the orbits both of the planet and of
the earth are circular.

Let S, E, V be the sun, the earth, and Venus.

Let SE, or a, and
8V, or r, be the radii
of the two orbits.

EV,or x, the vari-
able distance of Venus
from the earth. Then

N a y

- r!_‘__xﬂ e
area of phase 1 +cosV T
2 o« 2 *x
x x
1 a7 1
5T oyt

brightness oc

x? 2rx

_ Therefore, equating to ¢ the differential coefficient with
respect to z, ‘
2 8(@-r) 1 —0
z 27zt 2rx®
'+ 4rz—3 (@ —7") =0 ceerririiniens 4,

* These variations are due to the elliptic forms of the orbits. The excentricity
of the orbit of Mercury is much greater than that of Venus.
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whence =N+ 7)) =27 ciivririrrannnn. (B),
determines the distance of the planet from the earth when
the brightness is a maximum.

Again, substituting in (A4) for the sides the sines of the
opposite angles, to which they are proportional, we have

sin’ (V'+ E) +4sin (V+ E) sin E=3 (sin’V —sin’E)

=3 sin (V4 E) sin (V—E),
sin(V+ E)+4sin E—3sin(V—E)=0,
—2s8inV+4cos Vtan E +4 tan E=0,

sin V' V
2tanE=m,=tan—é~ ............ ...(C),
an equation given by Halley.
) . sinV _a
By means of this and E= We. may deduce
m s E=t .
cos’ 42 SCOSE=q i, (D),

which determines the corresponding elongation of the planet.

370. We shall not enter into a description of the
different planets. They vary considerably in size, from
Jupiter, whose equatorial diameter exceeds 90,000 miles, to
the minor-planets, some of which are probably less than
100 miles in diameter. Some of the planets have several
moons or satellites, others have none. One of them, Saturn,
in addition to eight moons, is surrounded with several flat
rings ; but for a full account of these and other interesting
details we shall refer to The Solar System, by J. R. Hind,
Herschel's Outlines of Astronomy, Lardner’s Handbook of
Astronomy, &e.
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APPENDIX.
THE CALENDAR.

871. WHAT we mean by the date of aiy event is the
interval of time that separates that event from some definite
epoch or era. For more than five centuries after the birth
of Christ, the era in use was still, as before, the foundation
of Rome: In the year 532 a Scythian monk, Dionysius
Exiguus, proposed that all Christians should thenceforward
take the Saviour’s birth as thestarting point for the expression
of dates ; and, from the result of his researches, he inferred
that the birth took place on the 25th of December in the year
753 U.c. ; but, as the beginning of the Roman civil year was
on the 1st of January, ¢.c. only seven days later; it was found
more convenient to make the Christian year begin on the
same day. It was, therefore, decided that the year 1 of the
Christian era should coincide with the year 754 of the
foundation of Rome:

It must be remarked that there is no year 0 A.p: reckoned
by chronologists—the year of the birth, that is, the year
753 U.c. being called by them the year 1B.c.; the year pre-
ceding that, the year 2 B.c., ete. ; so that to find the number
of years between corresponding days of two years, the one
B.C. and the other A.D., we must subtract 1 from the sum of
the two. »

We must refer to other works for the history of the
various kinds of years which have, at different times and
by different nations, been adopted, and we shall confine our
attention to the Julian and the Gregorian calendars.

v
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372. For the measure of intervals of time connected with
civil life there are two natural units—the solar day and the
tropical year. The solar day as indicated by the successive
returns of light and darkness, and the tropical year by the
periodical changes of the seasons.

But it is obviously an essential condition of a unit that
it shall be invariable, and the solar day is not so; and
another necessary condition, when several units are employed,
is that they shall be commensurable, which is not the case
with the solar day and the tropical year.

The first difficulty is got over by taking for our unit the
average of all solar days, or the mean solar day, as it is called
(Art. 191), which answers the eondition of perfect uniformity,
and whieh, from the fact of mean noon being never very
distant from apparent noon, is also in accordance with the
recurrence of light and darkness. The mean day, therefore,
with its subdivisions into hours, minutes and seconds, is the
chronometric unit for short intervals of time.

The difficulty connected with the larger unit is of a
different kind, and cannot be obviated in the same way.

" The tropical year is very nearly uniform,* but unfortunately

it does not contain an exact number of days ; and it would
be an obvious inconvenience that a fraction of one day
should belong to one year and the remaining portion of
the same day to another year. Whatever length is adopted
for the civil year, it must consist of an integral number of
days, and must, moreover, retain a close connection with the
tropical year, which contains 365-242216 days.

This can be managed by having civil years of two different
lengths, the one less and the other greater than the tropical
year ; and the object of the calendar is to give definite rules

* Tt is found that the ecliptic changes its pesition in space under the influence
of the planets. This change is very slow—about 48” in a century—and produces
a slow variation in the length of the tropical year, which iz now about 4:21s
ghorter than in the time of Hipparchus. .
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for the order of succession of these two years of 365 and 366
days respectively, so that the connection may be preserved
in the simplest manner. -

373. Sosigenes, an Alexandrian astronomer, employed by
Julius Caesar to correct the confusion into which the calendar
was perpetually falling, proposed the ingenious contrivance
of bissextile or leap year. Three common years of 365 days
were to be followed by a year of 366 days, thus giving to
the average civil year a value of 36525 days, which is a
little more than the tropical year, the difference ‘007784 days
amounting to 1 day in about 128 years, or rather more than
8 days in 400 years. This important change came into
operation in the 44th year B.c.

The next correction was made in 1582 A.p. by Pope
Gregory XIIIL., with a view to take into account this dif-
ference of 3 days in 400 yeats ; and, by this means, to avoid
a change which was gradually bringing the festival of Easter -
more and mote into the summer season, whereas the ecclesias-
tical regulations required that it should be celebrated just
after the spring equinox.

The Gregorian calendar, which is now adopted by all
Christians, except the Russians and the Greeks, is established
on the following rule :—Three common yéars of 365 days
are to be followed by a year of 366 days, as in the Julian
calendart (the leap years being those whose mumber is divisible
by 4 without femairider), except when the fourth year termi-
hates a century, as 1700, 1800, &c., and then it becomes a
eommon year ; except, again, when the hundreds are divisible
by 4, as 2000, 2400, &c., when it remains a leap year, as the
Julian calendar would make it.

In 400 civil years, therefore, as determined by the
Gregorian rule, there will be 97 leap years instead of 100, and
the average length of the civil year will be 36527 days or

8652425 days. The tropical year contains 365:242216 days,
v2
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so the Gregorian rule makes the average civil year too long
by 0-000284 days, producing an error of 1 day in about 4000
years.* .

In the year 1582, when Pope Gregory made this reforma-
tion, he also omitted 10 nominal days of the month of October,
the day after the 4th being called the 15th. This was done
for the purpose of bringing back the vernal equinox to the
21st of March, which was the date of its occurrence in
325 A.D., when the Council of Nice was held and a rule was
framed for the observance of the festival of Easter.

The new style, as it was called, was not adopted in England
until the year 1752, when 11 days had to be omitted, and the
month of September in that year contained only 19 days,
which were numbered 1, 2, 14, 15, &. In Russia the old
style is still maintained, and the year 1800 has added another
day to the difference of styles, so that the dates in Russia
are now 12 days behind ours. Traces of the old style still
linger with us in our ¢ Old Christmas-day,’” ¢ Old Lady-day.’

Golden Number.

374. In connection with the calendar and its arrange-
_ ments, we cannot pass over Meton’s lunar cycle, which is the
basis of the ecclesiastical rule for the determination of the
moveable feasts—Easter, Whitsunday, &e. 7

In the earlier stages of astronomical science, when the
festivals connected with the worship of the gods were
dependent on the lunar phases, the difficulties attending the
prediction of the days on which these festivals should be

* The Persian method of interpolation deserves to be mentioned. It was
introduced in the 11th century, that is, five centuries before the Gregorian
reformation, and is even more exact :—Three years of 365 days are followed by a -
year of 366 days, as in the Julian calendar; this is done seven times in succession,
but the eighth period consists of five years—four common years followed by a
year of 366 days. 'Thus in 33 years there are 8 leap years, Therefore, the average
length of the Persian civil year is 865, days or 365-242424 days, which is in excess
of the present length of the tropical year by ‘000208 days, or 1 day in about
5000 years. R .
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celebrated, were very great. About 4328.c.,, Meton, an
Athenian astronomer, discovered a -relation between the
length of the lunar month and the tropical year, which gave
a simple rule for the solution of the problem. He found
that after nineteen years the phases of the moon will recur
on the same days of the same months ; so that, without any
calculation, it was only necessary to observe and to record
the days of full moon during one of these cycles, in order
to know them for all subsequent periods of nineteen years.
These dates were ordered to be inscribed in letters of gold
upon the public monuments, and in the modern use of the
cycle of nineteen years, the number which marks the rank
of any one of the-years in the cycle, is still called the golden
number of that year.

To shew how closely the Metonic cycle brings back -the
same phase of the moon to the same day of the year :—We
know that the mean length of a lunation is 29:5306 days, and
therefore 235 lunations occupy

235 % 29°5306 d. = 693969 days,

the length of the tropical year is 365-242 days, and 19 tropical
“years consist of ’

19 x 365:242 d.=6939-60 days,

and the difference in 19 years is only about 2 hours.

The first year of a cycle may be chosen arbitrarily, and
it is found that the year 1 B.c. would begin the cycle now in
use ; therefore, to determine the golden number : Add 1 to

. the date and divide by 19, the remainder is the golden number.
‘When the remainder is zero, the golden number is 19.
Thus, the golden number for 1894 is 14.

Moow’s Age. Epact.

375. The moon’s age at any time is the interval that
has elapsed since the last new moon, that is, since conjunction
(Art. 302). ‘ ‘
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The moon’s age on the 1st of J. anuary is called the epact
for that year. Now it happens, whether by accident or by
design, that the first year of the cycle of golden numbers,
that is, the year whose golden number is 1, has new moon
on the first of January ; therefore, the epact is 0 when the
golden number is 1.

A tropical year consists of 365:242 days.

12 Iunations occupy 295306 x 13 or 354:367 days.

Therefore a tropical year contains 12 lunations and 10875
days.

At the beginning of the first tropical year of a golden

eycle the moon’s age will be........cceuuueeunse, 0:000 days,
At the beginning of the second it will be.., 10875 .....,
At the beginning of the third................., 214750 ..... .
At the beginning of the fourth .., ....32,'625} 094 .o
or, subtracting one lunation ...29:531}
and so on. A

If the civil year and the tropical year were of the same
length and began together, we should have the following:
rule for finding the age of the moon at the heginning of each -
year :—Subtract 1 from the golden number, multiply by
10-875 and divide by 29°531, the remainder would be the
moon’s age. But the lunations are not always of the same
length as we have here supposed ; and, besides, the necessity
for making the civil year consist of an exact number of days,
and the consequent adjustment, by means of leap year, would
interfere with this, and the following is the rule adopted ;
Diminish the golden number by unity, multiply by 11 and

* djvide by 30. The remainder is the epact.

In some years of each cycle of 19, the difference between
the epacts so found and the moon’s age on the first of January
may exceed one day ; hut the rule, besides heing simple and
sufficiently approximative, gives a definite law for the deter-
mination of the moveable feasts of the calendar, which ig
pow the only important use of the epact,
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THE TIDES.

376. The waters of the ocean, even in the calmest
weather, and without any perceptible cause, rise and fall at
nearly regular intervals; covering and uncovering broad
expanses of sand along the coast, and otherwise changing
the depth of the sea, in some instances by forty or fifty feet,
and even more. This phenomenon is too striking and too im-
portantnot tohave, from the earhest times, attracted attention.

The rise and fall takes place twice every day, or, rather,
twice in every lunar day, which occupies about 24" 50}™ ;
and the obvious connection between the tides, as these phe-
nomena are called, and the motion of our satellite, led
philosophers to attribute them to the action of the moon,
long before the true nature of that action was known to them.

The explanation of the tides has been found in the theory
of universal gravitation, which proves them to be necessary
consequences of the joint attraction of the sun and moon
combined with the rotation of the earth on its axis; and
it may be shewn that the variations in the character of
different tides are fully and satisfactorily accounted for by
changes in the distances and relative positions of those lumi-
naries. But the prediction of the circumstances of high and
low water at any particular place becomes a problem of
extreme difficulty, owing to local causes of disturbance which
are unknown, or which we know not yet how to introduce
intotheinvestigation. Suchare—obstaclestothefluid motion
in the shape of headlands and islands, the varying depths
at the bottom of the sea, the friction of the particles of
water among themselves and against the shores, &e.

377. Itis a strictly hydrodynamieal problem, and as such
was treated by Laplace, who, the first, attempted a general
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solution on mathematical principles; but the difficulties
attending this method of investigation are so great that he
could not solve it in its generality, and he limited it by
starting “with two suppositions which are inapplicable to
the state of the earth, These are—that the earth is covered
with water ; and that the depth of this water is the same
through the whole extent of any parallel of latitude.” The
late Astronomer Royal, in his valuable paper on “Tides and
Waves”in the Encyclopedia Metropolitana, has fully discussed
Laplace’s Wave—tﬁeorg, and has further advanced the problem
by considering the motion of the tidal wave in a canal, under
a variety of different circumstances as to depth, friction, &c.
This supposition cannot apply to all cases, and leaves the
general theory still imperfect,

Newton, in the Principia, Lib. 1., Prop. 66, Cor. 19, con

sidered an equatorial belt of water forming a canal round
the earth, and inferred that there would be low water under
the moon. Sir G. Airy’s investigation confirms this con-
clusion, but shews also that its truth depends on the depth
of the canal; and that if the depth exceeded a certain
amount (about 12 miles), there would be high water under
the moon instead of low.* The problem of the tides is
one of the most difficult in the whole range of mathematical
subjects, and any further account of it would be foreign
to, and beyond the scope of, the present work,
- We shall, however, say a few words on what is known
as the equilibrium-theory of Bernouilli, a theory confessedly
inadequate and even based on erroneous principles (giving
high water under the moon, irrespective of the depth) ; but
yet, before Laplace’s time, it was the only really successful
attempt to determine the laws of tidal action and to reduce
them to numerical computation,

o=

* See an interesting paper by Mr. D. D. Heath in the Phil. Mag., March, 1867,
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378. Bernouilli supposed the earth to have a spherical
solid nucleus surrounded by a shell of water of uniform
depth ; then he demonstrated that if one of the bodies—
say the moon—were always vertically over the same point of
the surface, the waters would take the shape of a prolate
spheroid pointing to the maon.

With this suppasition let 4B represent the solid earth
surrounded by a shell HK of water, AH being the part
just under the moon 7, and BK the part most remote.
The attraction of the moon, varying inversely as the square
of the distance, will be greater on the parts of the earth

and on the waters about A than en the centre C, and this
last greater again than on the parts about B. But the
coehesion of the solid nucleus hinders any deformation,
whereas the body of fluid may take a new form, and &
disturbance of the water relatively to the earth will take
" place owing to the difference of attractions. The waters
at H, and over all the hemisphere 7AG, which is nearest
to the moan, will be more attracted than the solid earth,
and, flowing from the sides as far as the boundary IG
towards A, will pile themselves up just under the moon
and produce high water. )
A similar effect will take place on the exactly opposite
side of the earth at B, from the attraction on that half of
the waters being less than on the earth itself, so that they
are, as it were, left behind, and the waters flowing from IG
towards B produge high water there at the same time as
at 4. V
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The heaping up of the waters on two opposite sides of
the earth is due, then, not to the absolute attraction of the
moon, but to the inequalities in the value of this attraction
at different distances. There is, however, one point which
deserves notice, because a misconception may easily arise ; it
is, that although the attraction on the waters differs from that
on the earth by a greater quantity at 4 than at any other
place, this attraction will not draw the water away from A.
Its only effect will be to diminish in an imperceptible degree
the gravitation of the water towards the earth; and if a
ridge of land separated the waters at A from those which
cover the rest of the earth, that is, if a small lake existed
at 4, the waters of this lake would not be drawn from the
earth, and there would be no high tide.* The high water
at A is due to the action of the moon on those parts of the
hemisphere TA@, at a considerable distance from A, where
the inequality of attraction mentioned ahove, although of
less intensity than at A, acts in an oblique direction, and does
not find itself entirely counteracted by gravity. Exerting
a tangential action which has no opposing force, it causes the
waters to flow towards 4. The same remarks will apply to
the high water at B.

But the moon does not remain eonstantly over the same
place. The rotation of the earth about its axis PP’, inde-
pendently of the motion of the moon itself, changes the
relative positions rapidly ; and the theory, in order to
adapt itself to the actual case, is obliged to make the
supposition that the spheroidal form of the waters is in-
stantaneously assumed in each new position of the earth.
So that an observer situated on any meridian will have

* In the same manner, and for the same reason, the weight of a man is
diminished as the moon approaches his zenith; and the effect of the sun being:
of the same kind, though of less intensity, we may say that at the time of new and:
full moon, when the two luminaries act together, the weight of a man is less at
poon and midnight than at sumrise or sunset.
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high water when his meridian comes into the position PAP",
and again, some twelve hours after, when it comes into the
position PBP’, having in the interval passed through a
position of low water. This explains the two tides observed
in each lunar day, Another consequence also, which is
evident from the figure, is that, except when the moon
is in the equator, the apex of the waters will pass nearer
to the observer, and the tide, therefore, will be higher at
one of these transits than at the other.

As the earth rotates about its axis from west to east,
the tide wave will obviously travel from east to west.

379. All that has been said about the effect of the
attraction of the moon in raising the waters will equally
apply to the sun, but the sun’s action will be only five-
elevenths of the moon’s ; the enormously greater mass of
the sun being more than compensated by the increased
distance,

There will then be two solar tides in each solar day,
but the lunar tides being so much more powerful will
override the solar ones ; and the tides actually observed
will be those due to the moon, hastened or retarded, in-
creased or diminished, as the case may be, by combination
with the solar ones,

Thus, at new-moaon the sun and moon are in the same
meridian, and at full-meon in opposite meridians ; and, in
either case, the two tidal waves coincide and a joint tide
is produced, which is the sum of the two separate ones.
These are called spring tides.

" But in the quarters, the two bodies are 90° apart, and
high water from the sun corresponds to low water from the
moon, and vice versd, The tide, therefore, has a diminished.
height, being the excess of the lunar over the solar tide,
These are called neap tides.

From new-moon to the first quarter, and from full-moon
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to the third quarter, the crest of the solar wave will be to
the westward of the lunar wave, and the combination will
produce a crest a little to the west, that is, in advance of
the lunar wave, and high water will be hastened. In the
same way during the second and fourth quarters, high water
will be more or less retarded. This advance and retardation
of the time of high water on the mean or average interval
1s called the priming and lagging of the tides.

380. Whether we suppose the crest of the tidal wave to
be formed under the moon, or 90° from it, or in any other
relative position, its advance will be modified by the inter-
ruption of the land, by the varying depth of the sea, and
by a variety of other causes which will delay the formation
of the wave, and the erest will follow the moon at a greater
or less interval. This interval is widely different at different
places, and even in the same port it varies considerably,
owing to the priming and lagging described above. ,

The interval between the instant of the moon’s transit
across the meridian on the day of new or full-moon, and
the subsequent high water, is called the vulgar establishment
of the port.

The name corrected establishment has heen given by
Dr. Whewell to the mean of all intervals taken every day,
under all circumstances ; and this mean is found not to be
the same as the interval taken on the day of new or full-
moon alone.

Cotidal-lines are curve lines which connect all those places
‘which have high water at the same absolute instant of time ; 3
that is, all those places through which the crest or ridge of
the tide-wave passes at the same instant. . »

381. In the motion of the tidal wave, we must remember
that it is no bodily translation of the waters, but only an
alteration of their form which produces the wave. There

‘will, however, be currents caused by the tide, especially in
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parrow channels : and it is found that these currents change
their direction at different states of the tide, but not gene-
rally at the same time that the waters cease to rise and fall.
Thus the current which flows forward at the time of high
water continues to flow in the same direction for some two
or three hours longer, and is called the food. The return
eurrent, which accompanies low water and continues to flow
back for two or three hours after, is called the ebb. The
change from flood to ebb, or from ebb to flood, is called
slack water.

382. We have said that the effect of the moon in
producing tides is about 2} as great as the sun’s. The
following investigation will shew this, referring to the
fig., p. 297 :

Let the mass of the moon be represented by M, that of
the earth by E, and let 7 be the radius of the earth, and
p x r the distance of the moon from C. Then, ¢ being the
acceleration of gravity at the surface of the earth,

attraction of moon on C: g :: J‘T[; : l—E; .
pirt o
Therefore, attraction of moon on C =JLE[ ]%7 5
M q .
E(p-1)""
M2
E

80, attractlon of moon on H=

hence, dlsturbmg foree of moon on waters = - pproxi-s

‘%ulig

mately.
Similarly, if S be the mass of the sun, and 7 its distance
from the centre of the earth,

. the disturbing force of sun on waters =% f—g .

Now E=80M, and S=322000E (see note, p. 205),
p=60, and n=23000 (see Art. 262) ;

action of moon _ (23000)*
action of sun_ = 80 x 322000 x (60)°

therefore =22,
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GREAT-CIRCLE AND MERCATOR'S CHARTS.

883. At sea, the problem the sailor has constantly pre«
sented to him is,—how to shape his course so as to arrive
at his destination. For this he must be furnished with
maps or charts on which the coast line of continents and
islands is correctly traced, and all rocks and dangers pro-
perly indicated, together with the meridians and parailels.
Then, day by day, he must determine the position of his
ship, by finding his latitude and longitude according to the
rules of Nautical Astronomy, some of which have been
given in Chapters 1x. and xxi. He must mark the place
so found on the chart, and then determine the course Or
courses to be steered from this point to the port to which
he is bound, or to those intermediate places where he must
pass in order to avoid ebstacles and dangers.

Of the various curves or lines by which he may go from
one point to another on the surface of the sphere, there
are two which deserve special attention. One is the shortest
track, that is, the arc of a great circle passing through the
two points ; the other is the curve, called a lozodrome, which
meets every meridian at the same angle,

In the great circle track, the course or the angle which
the great-circle makes with the various meridians is not
eonstant, and the lengthy caleulations necessary for finding
these courses have always proved a drawback to its use
among seamen ; whereas the simplicity of keeping ofi one
eourse, and the facility with which the loxodrome is drawn
on the chart invented by Mercator, have eaused the universal
adoption of the method, notwithstanding the greater distance
which it was well known the ships would have to go over.
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Of late years, the great extension of our commerce, the
introduction of steam vessels, and our inereasing intercourse
with Australia and other distant parts of the earth, have
revived great-circle sailing, by the use of which the Australian
journey can be shortened 1000 miles or more.

384. It is obvious that, since a spherical surface canmnot
be developed into a plane, a chart, however constructed,
must give a distorted representation of the surface, some
parts being unduly enlarged or contracted in proportion to
others ; and it is also obvious that the nature of the curve
which represents the ship’s intended track will depend on
the character of the projection en which the chart is con-
structed. .

If we suppose the eye at the centre of the sphere and
the projection to be made by drawing lines through each
point of the surface to meet a tangent plane, then every
great-circle will be projected into a straight line, and the
shortest route from point to point will, on the map, be the
straight line which joins them. These are evidently the
simplest kinds of charts for the purposes of great-circle
sailing, but we must refer elsewhere for a full description
of their construction and use.* ‘

385. Mercator’s chart is constructed on the principle that
every loxodrome shall be represented by a straight line.
Perhaps the simplest idea of the eonstruetion will be obtained
as follows : Conceive a sphere representing the earth with
all the meridians, parallels, coast-lines, &c., traced upen it
to be made of elastic material, and let a cylinder surround
this sphere touching it along the equator. Now, imagine

* See a paper by the author in the Fransactions of the Cambridge Philosophica¥
Society, vol. X. part II., on “A chart and diagram fer facilitating great-circle
sailing.” By means of this, the determination of the track, with its various
courses and distances, is rendered as easy as Mercator’s sailing.
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the sphere to expand so as to fill up the cylinder, the expan-
sion at each point ceasing as soon as ‘that point comes into
contact with the cylinder. Suppose also that the expansion
is uniform in all directions ; then, obviously, the relative
proportions of all small parts will be maintained, but the
scale will increase rapidly as we recede from the equator.

Let all the lines which were traced on the sphere now
impress themselves on those parts of the cylinder with which
they are in contact, and then let the cylinder be unrolled into
a plane ; this will be a Mercator’s chart.

From the fact that each individual small element of the
surface retains its form, we see that all angles will remain
unaltered, and the meridians become parallel straight lines
perpendicular to the equator, therefore a loxodrome, cutting
all meridians at the same angle, will also become & straight
line. 8o that the track of a ship which keeps on a constant
course Wwill be represented by a straight line, and this ig
the principle which renders Mercator’s chart so useful to
the navigator.

386. To find the distance from the equator to any parallel
of latitude on the Mercator’s chart.
Let @ be the radius of the equator,

T oeveens radius of the parallel in latitude ¢,

§ ween . length of the arc of the meridian betiween
the equator and that parallel,

2 ...... corresponding distance on the chart,

4As and Az small increments of s and 2.

By the method of expansion explained above, the circle,
radius x, becomes a circle, radius @, therefore each small
element of that parallel is increased in the ratio z:a.
Hence As, which is changed to Az, must ultimately be in
the same ratio. Therefore

dz a
ds  z°
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The earth being a sphere, #=a cos ¢, s=ag ; therefore

z
—~ =0 8ec,

d¢
z::’afjsecdudqb:a.lﬁg {ﬁan (45°+g>} ‘

387. If we take into account the spheroidal shape of
the earth, and call e the excentricity of the ellipse, then,
by Art. 253,

o= @ cos ¢ _a(l—e)sing
T (1= sin’p)t’ y“m?@?’

-1+ @)} =

As before, dz =¢ ,
ds x
dz _ a(l=e) N
dep — cos¢ (1 —¢’sin’ep)

_ aée’ cos b
Teosp  1—e'sin’gp’

* whence z=a log tan (450+<E) _ %e log <1 +e sm¢>

2 l—¢sing
=a log tan (45° + %) —ae’sin¢ approximately.
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EXAMPLES AND PROBLEMS.

CHAPTERS Is-VI

- 1. Shew that if a, 8 be the angles subtended between a star and

the horizon at two heights, @, b, in the same vertical line, the radius
2

of the earth = (V—_(sza— ‘(/‘(2’;)) very nearly.

2. Given the right ascensions and declinations of two stars, to find
their distance.

3. The least angle which can be made with the horizon, by any
great circle passing through the place of a star at a given time, is
measured by the star’s altitude, ’

4. The sun is at the same altitude at equal intervals of time before
and after its passage over the meridian, supposing no change of declina-
tion to have taken place during the interval.

5. Find the declination of a star which, in a given latitude, rises in
the north-east point.

6. Two declination circles P4, PB make with each other a small
angle ¢ at P, and from a point 4 (declination §) in one of them an
arc 4B of a great circle is let fall perpendicularly on the other. Shew
that the difference of declination of 4 and B = sin 24 sin*}¢ nearly.

. 7. Given the distance of a planet from each of two stars, whose right
ascensions and declinations are known, find the right aseension and
declination of the planet.

. 8. If a ship be proceeding along a great circle, and the observed
latitudes be Ny, Ag Ng, the distance traversed between the observatiens
being in each case s, shew that
S8in A 4 sin A,

28in A, ’

# denoting the earth’s radius; and shew that the changes of longitude
may also be found in terms of the three latitudes.

9. Given the latitudes and longitudes of two places where the
inclination of the mugnetic needle is nothing; to find the point of
the terrestrial equator, which is cut by the magnetic equator, supposing
it a great circle of the earth, -

8=17CO08
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» 10. Two places in latitude 45° and whose difference of longitude
is 90° are at two-thirds of the distance of places on the equator
with the same differeuce of longitude,

11. If the same two stars rise together at two places, the places
w1ll have the same latitude. And if they rise together at one place
and set together at the other, the places will have equal latitudes,
but the one north and the other south.

12. Prove that all stars which rise at the same instant ata place
within certain limits of latitude will, after a certain interval, be in a
vertical great circle; and determine those limits.

13. Given the altitude of a known star when it is on the prime
vertlcal find the latitude of the place.

14. A known star rises in the north-east Doinl:, find from this
circumstance the latitude of the place. &

15. Two stars, whose right ascensions and declinations are known,
were observed to rise at the same moment. Required the latitude
of the place of observation,

16. It is observed that two stars whose rlght ascensions and ’
declinations are known pass the prime vertical at the same instant.
Required the latitude of the place of observation. T

17. Two stars, whose right ascensions and declinations are given,
have the same azimuth, and the altitude of one of them is known;
the latitude of the place is required.

18. In a given latitude and longitude a vertical plane declines
a° from the south towards the west, Find the place to whose horizon
the plane is parallel.

. 19. Two known stars are seen at a given place 4 on the same
vertical when at another place B they are rising together. Find the
latitude and longitude of B.

20. Given the latitudes and longitudes of three places on the
earth’s surface, find the latitude and longitude of one equally distant
from them all,

21. If C,, C,, C; be the lengths of the meridian shadows of three
equal vertical rods on the same day at three different places on the
same meridian, prove that the latitudes A, A, A, of the places are
connected by the equation

GGG G(G-C) G (G- CY
tan (A;—Ag)  tan (Ag—Ny)  _tan (A —A,)

22. How would an increase in the earth’s velocity of rotation
affect the latitude of a given place, supposing the form of the earth
to remain unaltered ?

23. How is it inferred that the axis of the earth’s rotation always
coincides sensibly with the same line of particles in the earth, and
thatdit does not rapidly change its direction in space?

=0.

X2
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24. If the western pivot of a transit be ” higher and 8” more to the

north than the eastern, a star is unaffected whose north polar distance is
colat+tan“<w> .
sin 3

25. If the head of the micrometer screw of the mural telescope be
divided into sixty parts, and a whole turn of the screw carry it
through 0.01 inches, what will be the correction of the reading
when the screw-head indicates 15, and the focal length of the object-
glass is 5 feet ?

26. In obtaining the zenith distance of a star with the mural by
reflection, the normal to the surface of the mercury at the point of
reflection is slightly inclined to the vertical through the axis; shew
that, on this account, the zenith-point, inferred from a double observation,
is too great by the angle which the horizontal distance of the point
from the axis subtends at the earth’s centre, and the zenith-distance
of the star deduced from the reflection obversation is less than that
from the direct observation by twice that angle. ~

CHAPTERS VII.—XIII.

,27. When does the sun set at the point of the horizon opposite
to that at which he rose?

28, Prove that, in the course of the year, the sun is as long above
the horizon of any place as below it.

.29. State some of the more striking differences in the phenomena
p:esented by the sun on June 21st to observers in lat. 45° N, and
45° 8. respectively.

80. Find the deelination of the sun when, for a given place within
the Arctic circle, the sun at mid-day just appears above the horizon.

31. If the equator were perpendicular to the ecllptic, describe the
apparent diurnal motion of the sun throughout the year to an observer,
first, at the pole, secondly, at the equator, and thirdly, in some inter-
mediate position.

32. Which of the following great circles are fixed, and which of
them would, if visible, appear fixed to an observer not aware of his
own motion —ecliptic, equator, megidian, solstitial colure ?

33. Orion’s belt being in the equator, and having about 5 h. 33 m.
right ascension, during what part of the night will it be visible at
the verna! and antumnal equinoxes ?

34. Given the sun’s meridian altitude and his midnight depression
below the horizon, find the latitude of the place and the sun’s
declination, :

-



CHAPS, VIL—XIII.] EXAMPLES AND PROBLEMS,. 309

35. At a certain place within the Arctic circle the sun did not
set for two months; what was the latitude?

36. When the sun has a given north declination, shew at what
parts of the earth he is visible, (1) during 24 hours, (2) during 12 hours.

37. At a place (lat. ¢) in the Aretic circle, the sun will remain
1

. . 36
above the horizon at the summer solstice for 4

cos™ {cos ¢ cosec w}

days, neglecting the excentricity of the earth’s orbit.

38, If A be the latitude of a place at which, a month before the
autumnal equinox, the day is as long as the longest day at a place
in latitude N, shew that tanA=tan\ /(1 +3 sec’w) approximately, w
being the obliquity of the ecliptic.

39. Giveu the latitudes and longitudes of Cork and Rio Janeiro,
ghew how to find on what days the sun is on the horizon of both
places at the same instant.

40, Shew that, neglecting the change of declination, the curve
traced out by the extremity of the shadow of a vertical rod on a
horizontal plane will be a conic section.

41. Tf the angle between the equator and the ecliptic were 15° what
fractional part of the earth’s surface would be included in the torrid
zones, the temperate zones, and the frigid zones respectively ?

-~ 42, The true zenith distance of the polar star when it first passes
the meridan is 46° 50’ 4075, and at the second passage 50° 25" 50"-30.
Required the latitude of the place.

43, 'The sun’s meridian altitude was found on November 23rd to be
62° 41’ 15, The chronometer indicated 7 h. 43 m. 14 s. The sun’s
declination at the preceding noon at Greenwich (as given by Nautical
Almanac) was 20° 23’ 367, and his hourly motion in declination 30™7.
From these data find the latitude of the ship.

_44. At noon on March 25th, 1858, the sun’s declination was
1° 42’ 297, and the differences of the right ascension between the sun and
astar 13h. 1 m. 49s. At noon on September 18th, the sun’s declina-
tion was 1° 59’ 437, and it was distant from the star 1 h. 36 m. 0 s. in
right ascension. At moon on September 19th, the declination of the
sun was 1° 36’ 287, and the difference of right ascension 1h. 32 m. 24s.;
find the right ascension of the star, and that of the sun at the time
of the first observation.

_45. If the right ascension of a star be equal to its latitude, prove
that its declination must be equal to its longitude.

46. Indicate on a celestial sphere the points which have equal
longitudes and &R, and a latitude double their declination.,

47. By observation it is found that the predicted place of a planet is
erroneous in A and declination by the ‘quantities @ and B. Find
from these the error in longitude and latitude.
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48, Assuming the sun’s motion in longitude to be uniform, shew
that if @, 8 be the horary increments in right ascension and declination
(expressed in circular measure), and o, B’ the horary variations of
a and B3, then @' = 243 tan 3, B’ = - 4a* sin2s,

49. Trace the variations of the inclination of the ecliptic to the
horizon of a given place, find its maximum and minimum values,
and shew within what limits of latitude it can be a right angle.

~90. Represent by a figure the position of the ecliptic relative to
the meridian and horizon of Cambridge, at noon, on the autumnal
equinox; under what circumstances, of place and time, would the
ecliptic coincide with the prime vertical ?

51. Assuming that the intensity of heat for different distances varies
as the inverse square of the distance, shew that equal amounts of
heat are received by the earth from the sun during the time of
describing equal angles round it, in whatever part of the ellipse
those angles may be situated.

- 62, Bhew that the lengths of the four quarters of the year,
beginning with the spring quarter, are approximately Q + 4 sin (B + i),
Q-4 cos(B+3m), Q-4 sin (B +17), Q+ A cos (B+37); Q being
one-fourth of the year, B the angular distance of the solar perigee
from the autumnal equinox, and 4 a certain constant such that
A:4Q ::e /2 : 7, where ¢ is the excentricity of the earth’s orbit.

-83.  Shew that the time occupied by the sun in passing through the

7tk sign of the zodiac, reckoning Aries the first, is approximately
24e sin 15° ;
M{1 + 00 08 (B4 16°- r30°)}

where Jf is the 12th part of the year, B the angular distance of the
solar perigee from the autumnal equinox, and e the excentricity of
the earth’s orbit. '

54. 'The times of the sun’s rising and setting on November st are
found from the tables to be 6 h. 56 m. and 4 h. 32 m. respectively ;
find approximately the equation of time.

55. Shew that the time of sunset is earliest some days before, and
the time of sunrise latest some days after, the shortest day.

56, Assuming that the maximum amount of the equation of time due
to the obliquity exceeds the maximum of that due to the excentricity,
shew that the equation of time vanishes four times a year. How many
times in the year would it vanish were the magnitudes of the two
maxima reversed ?

87. If the earth’s perihelion coincided with a solstice, prove that,
assuming the sun’s true anomaly to be equal to nf+ 2esinnf, and
veglecting the square of the excentricity, the equation of time would
vanish at the solstices, and when

€ cos w + cos nt sin*3w =0,
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the true and mean suns being supposed to start with the same right
ascension when the true sun is in a solstice.

58. When the sun’s longitude is /, if « be the equation of time (ex-
pressed in angle) due to the obliquity of the ecliptic (w) alone, shew that

cot & =~ cot 21 - cot*}w cosec 20 :

59, Supposing the earth to describe a circle uniformly rouud the
sun, the mazimum value of the equation of time would be very nearly
3mn® seconds, assuming the obliquity to be small and equal to »°.

60. At the head of the column for equinoctial time in March in the
0356624 d. ,,
0-114007 d.
days 21, 22, and 23, the days in the column are marked 364, 0, 1.
Explain this clearly.

61. The mean time being 4 hours, find the corresponding sidereal
time, baving given the sun’s mean daily motion 59’ 833, and the &
at the preceding mean noon 144°.

- 62, If the sidereal time at mean noon were 16 h. 20 m. 48 s., what
was the error of your watch at 2 o’clock, when a sidereal clock was at
18 h. 21 m., the sun’s mean motion in longitude being 59 8”33 in a mean
solar day?

63. The sun’s apparent right ascension at mean noon Greenwich
time, on June 1st, 1860, was 4 h. 38 m. 18'96 5. and on June 2pd,
4h. 42m. 2473 s. Find the sun’s apparent right ascension at
11 h. 20 m. A.M. on June 2nd, at a place 54° east.

And if the sun’s right ascension at apparent noon on June 2nd be
4 h. 42 m. 2434 5., find approximately the equation of time.

 64. If the time be found by a single altitude, shew that a small
error in the latitude will have no effect on the time when the body is in
the prime vertical. )

65. A ship leaves London at noon on a certain day, and arrives at
New Orleans (90° W. long.) at noon, local time, on the thirtieth day
afterwards. What is the actual time of passage?

66. The right ascensions of two stars which crossed the meridian of
Greenwich at mean noon yesterday and to day respectively are
79° 23/ 21”15 and 73° 51’ 297-55; find the mean time at which a star-
whose right ascension is 317°21' 0”6 crossed the same meridian yesterday.

67. If Jupiter revolves round the sun in 4320 of our days and round
his axis in 10 hours, find by how much his mean solar day exceeds his
sidereal day. :

Nautical Almanac for 1848 was given “ adding and for the

CHAPTER XIV.

J 68. Given the sun’s altitude at 6 o’clock, and also when due east,
find the latitude of the place.
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N 89. Given the sun’s declination, and that he is due east when half
the time between his rising and 12 o’clock has elapsed, find the
latitude of the place.

170. Find the latitude of the place at which the sun sets at 3 o’clock
on the shortest day.

71. Two rods, the one 6 the other 8 feet high, are placed, on a given
day, perpendicularly to the horizom, at a distance of 20 feet from each
other. During the forenoon the extremity of the shadow of the first
rod falls at the base of the second. In the afternoon the extremity of the
shadow of the second falls at the base of the first. Required the latitude
of the place and the azimuth of one rod seen from the other.

A 72. Given the point of the horizon at which the centre of the sun’s
disc rises, and the altitude of the point at which it crosses the meridian ;
find the time of year and the latitude of the place.

73. Given the sun’s altitude gnd azimuth, and the latitude of the
place; to find the declination and the hour of the day.

74. In a given latitude determine the vertical in which the difference
of the altitude of the sun in any two given days shall be a maximum.

75. The right ascension and declination of a star being given, and

"also the time of the year when it rises with the sun; find the latitude
of the place.

A76. Find the latitude of the place at which the sun sets at 10 o’clock
on the longest day.

77. Given the latitude of the place and the sun’s declination; to find
his azimuth at 6 o’clock. '

78. Given the latitude of the place and the sun's declination find
the time when the hour angle from noon and the sun’s azimuth from the
south are equal. . ‘

79. Given the sun’s altitude and declination, and the sum of the
azimuth and hour angle; to determine the latitude.

80. Given the latitude of the place and the sun’s declination; find
at what time of the day the agimuth of the sun increases most slowly.

81, Ata certain place in a given north latitude the sum of the sun’s
declination and altitude is known at a given hour in the morning; find
the altitude and declination.

82. The length of the longest day at a given place is 141 hours,
Find the latitude, supposing the obliquity of the ecliptic 23° 28",

log tan 23° 28’ = 9-63761,
_ log cos 71° 15’ = 9:50710,
log tan 36° 31’ = 9-86949.

83. The latitudes of two places on the earth’s surface are comple-
mentary to each other, and.on a given day the sun rises () hours earliep
at one pla,ce than the other; determine the latitude of each place.
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J 84. A sphere of given radius is suspended in the air at a given place
Determine the figure of its shadow on a horizontal plane at a given day
and hour; and shew that the length of the shadow varies as the secant
of the sun’s zenith distance.

) 85. Given the latitude of the place and the declination of the sun,
the former being less than the latter, find at what time of the day the
shadow of a vertical rod would have no angular motion.

86. Given the sun’s diameter and the latitude of the place, determine
the declination when the time the sun takes to rise is a minimum.

O 87. The direction of a street is 6° to the west of south; given that
this street and the one at right angles to it are .each exactly covered by
the shadow of the block of houses between them, shew that if the
breadth of the first street be a, the height of the houses 4, and the altitude
and azimuth of the sun ¢ and v respeotively,
atang-Asin’ (Y~ 0) =0,
and find the breadth of the second street.
) 88. There are two walls of equal known height at right angles to
each other, and running in known directions, shew how to find the
" sun’s altitude and azimuth by observing the breadth of the shadows of
the two walls at any given time. And prove that the sum of the squares
of the breadths of the shadows will be the same whatever be the direc-
tions of the walls.

89. A person starts at sunrise to travel round the earth’s equator.
The sun crosses his meridian » times and he reaches the point of starting
at sunset. Given the earth’s radius, find his speed.

' 90. Prove that the perpendicular ascent of a star is always quickest
in the prime vertical.

91. If the altitudes of a star be taken at the same place, on the same
day, when it is in the same vertical on opposite sides of the meridian,
shew that the sum of their tangents will be to the sum of their secants
as the sine of the star’s declination is to the sine of the latitude of the
place.

92. Find the lowest latitude at which twilight lasts all night. Why
is the mean duration of twilight shorter at the equator than elsewhere,
and when is its duration the shortest ?

93. Shew that the duration of twilight at the equator is
1;21 sin™ (sin 18° sec &) hours.

J 94. Shéw that the time at which the sun is south-east may be deter-
mined by means of the expression 2 {6 - sin™ (cos® cosp tand)}, where &
is the sun’s north declination, ¢ is the latitude of the place, and
tan 0 =sing.
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95. The altitudes of a star when it crosses the meridian and the
prime-vertical of a place are a and a'; shew that if & be the declination
of the star, and ¢ the latitude of the place,

cotd = sec a cosec @’ — tan g,
cot@ =tana - secasina’

96. If two stars rise simultaneously in azimuths which are supple-
mentary, shew that one is as long above the horizon as the other is below
it; and if 2z be the difference of their azimuths, and 2¢ hours the differ-
ence between their times of setting, shew that the latitude ¢ of the
place is given by

sing = cotz tan (74¢°).

97. To a spectator in the northern hemisphere, the sun, whose decli-
nation is 15° south, rises just two hours before noon; prove that the
latitude of the place of observation

1 1 1+3/0)
=tan'3 /(3) \/ T 1/6) ;

98. To a spectator on the deck of a vessel, sailing due west at the
equator, at the rate of 10 miles an hour, the time occupied by the sun
in rising on the day of the equinox is 2154 m. Given that the angular
breadth of the sun is 32, find approximately the earth’s radius.

99. Obtain the alteration in the length of the shortest day in lati-
tude M, corresponding to an alteration in the inclination of the earth’s
axis to the ecliptic.

100. At a place, the north latitude of which is 54° and at a time of
the year when the sun’s north declination is 18°, shew that if A is the
hour angle (ZPS) which the sun makes with the meridian at the moment .

of sunrise, then cosk = «7—(13) » and the sun rises shortly after 4 o’clock.

101. Give formule for determining how long the sun shines on a
south wall, and how long on a west wall, in a given latitude on the
shortest day.

102. Shew how to graduate a horizontal sun-dial, and find the limits
beyond which it is useless to graduate it.

103. Find the length of the shadow of a man six feet high in latitude
60” at 8 A.M. on the 21st of March; find also the direction in which the
shadow points.

104. In latitude 45° at the equinox, find the time occupied by the
sun in rising, assuming his diameter to be 30",

105. Prove that in certain parts of the earth the ecliptic is perpen-
dicular to the horizon every day, and find at what hour each day.



CHAPS. XV.—XVIIL.] EXAMPLES AND PROBLEMS. 315

106. If % be the hour angle, and A4 the azimuth of a star at the
instant when its altitude is equal to the lantude (@) of the place of
observation, shew that

cosh = tan¢ tan(45°- 19),
sin 3.4 =sec¢ sin (456°-}9),
8 being the declination.
107. Shew that the velocity in azimuth at nsmg is the same for all
stars at a given place.
108. At a place in latitude ¢, a wall of height % has an azimuth
of a° to the east of south, shew that at the time of the equinox the

wall casts no shadow at /A tan™(sing tana) hours before noon, and at
noon the breadth of the shadow is 4 tan¢g sina.

CHAPTERS XV.—XVIIL

109. What would be the effect of refraction on a fixed star as seen
by an observer on the moon’s surface when the star is in the plane of the
moon’s orbit and passes behind the earth? The horizontal parallax
being 60/, and the horizontal refraction 36"

«110. If » be the horizontal refraction, shew that the pomt of the
compass where the sun rises is shifted by it,

sin @
v{cos (¢ - 9) cos (¢ + 3)}

where ¢ is the latitude. /
d 111, Calculate the alteration produced by refraction in the distance

“of two stars which has been taken by a micrometer.

112. It has been argued that since 2 degree of latitude increases in
proceeding from the equator towards the poles, the whole circumference
of the terrestrial meridian must be greater than 360 times a degree at the
equator, that is, greater than the whole circumference at the equator,
and that consequently the earth must be elongated instead of flattened
at the poles. Shew the fallacy of this.

113. The moon’s apparent declinations, as observed on the same day
at stations in the southern and northern hemispheres respectively, were
D and D'; the computed parallax corrections were p and p’, and the
increment in the moon’s geocentric declination between the observations
was d.

The previously determined equatorial horizontal parallax is slightly
inaccurate; shew that the real value of

the constant : the value already obtained :: D'-D-d:p+p’,
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<4114, The annual parallax of a double star is 0”307, the apparent
angular distance between its two parts 157, and the mean angular annual
motion of revolution 40.  Shew that the mass of the whole double star
is nearly % that of the sun.

1 115. Why is it not strictly true that the azimuth of a heavenly body
is unaffected by parallax ?

116. Assuming the distance of a body from the earth to be so great
that the sine and circular measure of the parallax may be considered
equal, shew that the locus of all bodies which, at a given instant and
place, have their parallax inright ascension equal will be in a circular
right cylinder touching the plane of the meridian along the axis of the
earth.

3 117. What will be about the distance of a star of which the parallax
is 2P

:118. Find the right ascension of a star for which the aberration in
right ascension vanishes at the summer solstice.

119. Find the coefficient of aberration in decimals of a second when
objects are viewed from a railway carriage travelling 60 miles an hour,
the velocity of light being 200,000 miles a second.

If two planets describe circles in the same plane, when will the
aberration in the position of one, as seen from the other, be greatest
and least ?

120. Find those stars for which, on a given day, the time of rising
is not affected by aberration,

121, The apparent longitude of a star is recorded at various seasons
of the year; how may it be ascertained whether the small changes, after
eliminating any changes from other causes, are due to aberration or to
parallax? and if due to both, what are the parts of the change separately
due to the one and the other? Shew that the difference between
apparent and mean longitude, arising from both causes combined,
vanishes four times a year.

- 122. If f(r, p) =0 be the equation to the earth’s orbit, shew that

2 2y
J (01—0, fr-)=0 will be the equation to the path which a star appears to

describe in consequence of aberration.

123. Calculate the velocity of light when it is found that the difference
between the declination of a star at the pole of the ecliptic in March and
September is 40", the radius of the earth’s orbit being 92 millions of
miles, and the year consisting of 365 days.

~ 124, If light moved but twice as fast as the earth in her orbit, in
what part of the heavens would the pole star appear, at a place in north
latitude 60°, at the time of the summer solstice ?

=125. At what season of the year is the aberration of a star in the
position of the first point of Y greatest ?



CHAPS, XV.—XVIIL.] EXAMPLES AND PROBLEMS. 317

<126, If the aberration of a star in longitude be the same as its
aberration in latitude, prove that
gin 2 =2 cot (© - 1),
where [, \ are the longitude and latitude respectively of the star, and &
is the longitude of the sun.

127. A man runs a race starting with velocity », the direction of the
wind appears to him to jmake an angle & with his eourse. It then
appears uniformly to veer round through an angle a during the race.
Now the wind blows throughout uniformly, at right angles to his course.
Shew that if = be the time of the race, the length of the course is

or ta__;g log (2 cosa).
..128. Shew that at any given time all stars which lie ina certain
great circle have no aberration in R.

129. Prove that all stars, of which the aberration in declination at
any instant is zero, lie in the intersection of the celestial sphere with a
cone, of which the circular sections are parallel respectively to the
equator and to the great eircle drawn through the sun’s place perpen-
dicular to the ecliptic.

130. ‘What limit is there to the position of a place in order that,
at some time in the day, a star in the ecliptic may have its error of
aberration in a vertical plane ?

131, Can a star be found whose real position is unaffected by perallax,
refraction and aberration ?

132. The star  Draconis has rt. ascen. 17 h. 53 m. and NPD 38°30°

' 31 Camelopardali » 5h. 41 m. ” 30° 9
explain how Bradley, by observation of these stars, was able to separate
the effects of aberration and nutation, and refer them to their real causes.

133. 1f a small change 4w in the obliquity be due to nutation, shew
that the corresponding ehanges in a star’s right ascension and declination
will be

AR =-tané cos R Aw,
A3 =sin R Aw.

134. Explain why on account of precession the intervals between the
passages of the meridian through the same star differ from a mean
sidereal day.

If the colatitude of the star be less than that of the pole, this differ-
ence will vanish when the difference of longitudes of the pole and star is

_, tan (colat of star)
tan (colat of pole) ’
135. What is the present longitude of a star which was the polar star
in A.D. 667
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CHAP. XIX.-APPENDIX,

3136. At what seasons of the year will the crescent moon, when
setting soon after the sun, have the line joining her horns most, and
least, inclined to the horizon ?

137. Shew that the full moon remains above the horizon of a
place during nearly the whole of the night.

138. What must be the approximate age of the moon that she
may be seen in the south at 7 o'clock in the morning? Will the
convexity of the crescent appear to a spectator on his right hand or
his left ?

139. When the moon is a quarter old, what will be the earth’s
appearance to a spectator at the centre of her disc? At what points
of his sky will the earth and sun respectively be seen? and what
time of his day will it be?

140. How much should the moon’s velocity of rotation -about its
axis be increased, in order that its whole surface might be seen in
the course of an orbital revolution ?

141. Find the least possible inclination to the horizon of the line
joining the cusps of the moon. )

142. The sidereal month being 271 days, find approximately the
time at which the moon will rise to-morrow night if she rises to-
night at 8 o’clock.

Find which side and, roughly, what proportion of her surface will
be illuminated.

143. Find the length of the sidereal period of the moon, having
given the synodic period and the length of the sidereal year.

144. If the moon’s orbit be inclined at an angle » to the equator,

shew that when the moon rises at the same sidereal time,"on two

successive nights, the latitude is 90° - w,
4145. Prove that when the harvest-moon is most observable it will be
accompanied by a central lunar eclipse.

146. In what parts of the earth may the rule that the moon’s rising
becomes later on successive evenings be reversed as regards the
harvest full-moon P

2147, If n, n’ be the angular velocities of the moon about the earth,
and of the earth about the sun, in orbits supposed circular, and if
@ be the moon’s greatest elongation from the earth as it might be
seen from the sun, shew that the times between the successive greatest
T—2a T +2q

— and - .
n-n n-n

% 148. In an eclipse, does the obscuration begin on the eastern .or
western limb of the body eclipsed? In a solar eclipse, does the shadow
of the moon move eastward or westward on the earth’s surface ?

149, If the moon’s period were shortened to half its present

elongations are alternately
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length, the other elements of her orbit remaining unchanged, what
would be the result on the frequency and duration of eclipses ?

150. Shew roughly that the duration of a total eclipse of the sum,
for a place at the earth’s equator, is doubled by the diurnal rotation of
the earth.

J151. If the inferior ecliptic limits are + ¢, and if the satellite revolves
n times as fast as the sun, and its node regredes 6 every revolution it
makes round its primary, prove that there cannot be fewer consecutive
solar eclipses at one node than the integer next less than w.

nt + 2w

J152. The angular diameters of the earth’s shadow and of the
moon, as seen from the earth’s centre, being respectively 1° 30" and
31’ nearly, and the apparent motion of the moon about the earth
being 30’ per hour, find (1) the entire duration of a lunar eclipse,
(2) the duration of the totality of the eclipse, the moon being in
the node of her orbit when in opposition to the sun.

153. Find, roughly, the greatest latitude the moon can have at
opposition in order that an eclipse may take place; given the distances
of the sun and moon 24000 and 60, their radii 100 and %, the earth’s
radius being 1.

Having also given the moon’s period 27} days, find the greatest
duration of an eclipse for the above values of the distances.

1 154. If 0 be the circular measure of the inclination of the moon’s
relative orbit to the ecliptic, #° the angle between its line of nodes and
the axis of the earth’s shadow, u', o0 the semi-diameters of the moon,
and the section of the umbra; shew that, roughly, the duration of the
eclipse =4 y/{(¢ + p)' - 2*6% hours, and that (‘I-————+ ;,; no
diameter are eclipsed. . )

2155, If = and 2 be the semi-vertical angles of the cones of shadow
and penumbra, 0 the sun’s apparent semi-diameter, then

) of the moon’s

2sinf=sinZ 4 sin ¥,

156. The angular distance of Aldebaran from the moon’s centre was
observed at a certain place at 3 h. 40 m. to be 66° 14'; at Greenwich, at
noon and at 3 h. the distances of the same objects were 65° 9’ 30", and
66° 41’ 30” respectively; determine the longitude of the place.

4 157. Supposing that the earth and a planet describe circles about
the sun in the plane of the ecliptic, determine the geocentric motion of
the planet. Also find when this motion is greatest and when it vanishes.

2158, If a be the angle of elongation of an inferior. planet when
observed to be stationary from another planet, shew that cota= A/ (n*+m),
where 7 is the ratio of the distance of the superior planet from ‘the sun
to that of the inferior; the orbits of the planets being supposed circular
and in the same plane. '

e
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1159. Supposing the paths to be circles in one plane, and the planet’s
distance to be 16 times that of the earth, find for how long its motion
will be retrograde, having given cos™ & = 72° nearly.

160. Given that the periodic time of Venus is nearly two-thirds of
that of the earth, find roughly what time of the year is indicated in these
eonsecutive extracts from an almanac:

First month. Venus is an evening star this month. Enters Libra.

Next month. Venus is too elose to the sun to be easily seen.

A161. When a superior planet is stationary, shew that its angular

distance from the sun is w-tan"vt—{:_—”), where n is the ratio of the

radius of its orbit to that of the earth.

%162, If 6 be the angle subtended at the earth by the sun and a
stationary point of a planet’s orbit, and ¢ be the greatest elongation of
the planet, prove that

2 cotf = sec 1¢p + cosec 1.

163. Supposing the orbits of two planets to be circular and to lie
in the same plane, shew that the longitude of the interior, as seen from
the exterior, will change more rapidly at the superior than at the inferior
conjunction, but that its angular distance from the sun will change more
rapidly at the inferior than at the superior conjunction.

164. A comet moving in a parabolic orbit, and a planet moving in a
circular orbit, are in syzygy when the comet is in perihelion. Determine
the ratio of. the perihelion distance of the comet to the distance of the
planet, in order that each may then appear stationary when seen from
the other.,

165. If the diameter of a planet’s orbit, supposed circular, be to
the diameter of the earth’s orbit as 1: v(8), find the synodic and
sidereal periods.

Compare the phases of the earth and planet when the difference of
their heliocentric longitudes is 30°. Also when it is 90°,

Shew that the brightness of the planet in the first case is to that in
the second as 4 : 3,

166. The synodic period of Jupiter and the earth is 398 days. Find
the periodic time of Jupiter.

167. Jupiter and Venus are evening stars, and stationary ; find which
way tbey will begin to move,

168. A ship has to sail from a place A to a place B, which is due
east of 4.

(a) Shew that the shortest course will not be due east.

(8) Find the direction in which the ship must sail to make the
shortest course,

(¢) Ex.: The lstitude being 45° and the difference of longitude 90°,

-
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