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Preface

ArtoN B. Mooby,
former President of the United States Institute of Navigation

In this fast-moving age, characterized by a rapid increase in
knowledge sometimes referred to as an ‘information explosion’,
it is easy to succumb to the temptation to limit one’s reading to
new developments in one’s own specialty. With the plethora of
books and technical periodicals that come to the attention of the
professional, it becomes a problem even to keep informed of these.
As a result, a certain superficiality pervades much of the thinking
of those who exhibit interest in professional subjects.

Navigation is particularly susceptible to this danger because of
the broad scope of disciplines it encompasses. As a result, a great
amount of effort is expended by talented individuals who lack
perspective regarding the problems they seek to solve, as attested
by the many solutions that look good on paper but do not find a
ready acceptance by those who would seem to be beneficiaries
of the work.

The history of nautical astronomy is a fascinating subject
involving the hopes, fears, superstitions and thoughtful observa-
tions of many individuals over a very long period of time. Early
man sensed the value of celestial observations as a means of
providing guidance at sea, where no landmarks were available
and electtonic signals were unknown, but lacked the knowledge
and instruments needed fully to utilize this source of guidance.
There was something frightening about putting to sea under
these conditions, and a widespread fear of what might happen if
one reached the physical boundary of the earth offered little
comfort to those with sufficient curiosity to set forth into the
unknown. As a result, only the more intrepid adventurers
deliberately attempted long voyages out of sight of land.

But there were hardy individuals in various periods who sought
to widen the horizon of man’s knowledge. Little by little nature
grudgingly yielded to these attempts, and the story of this
struggle is the story of the progress of man. Certainly there is no
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more captivating story than that relating to man’s attempt to
‘discover’ the longitude at sea, and many there were who
despaired of a practical solution ever being found. As late as 1594,
nearly two centuries before the problem was solved but many
centuries after man had ventured beyond the sight of land, Davis
wrote: ‘Now there be some that are very inquisitive to have a
way to get the longitude, but that is too tedious for seamen,
since it requireth the deep knowledge of astronomy, wherefore 1
would not have any man think that the longitude is to be found at
sea by any instrument, so let no seamen trouble themselves with
any such rule, but let them keep a perfect account and reckoning
of the way of their ship.’

This book is a history of nautical astronomy. But it is more than
that. Captain Charles H. Cotter has done more than trace the
sequence of events leading to man’s present extensive knowledge
of celestial navigation. With discerning care he has delved into
representative solutions of various stages of man’s developing
knowledge, and gives the reader the mathematical as well as
philosophical explanations of methods which are now generally
known only by name—or not at all by many members of a
rising generation who have been too absorbed in finding solu-
tions to today’s problems to take time to learn of those of other
ages.

What then is the value of this book? As a reference, it brings
together a wealth of information that would require extensive
searching to find, and puts it in perspective. As a source of
inspiration to those who may be discouraged at the difficulty of
conquest over the unknown, it stands as a beacon on a hill. As a
repository of cultural information on man’s emergence as the
master of his environment, it is a worthy addition to any gentle-
man’s library.

Washington, D.C., 1967 AvrtoN B. Moobpy



Author’s Foreword

The several factors, including wind and hidden current, which
operate during a voyage to set a vessel from the desired path
make it imperative for a navigator frequently to check the pro-
gress of his ship. Without accurate knowledge of his latitude and
longitude a navigator is unable to rectify the course of his ship
with confidence. In this present work I have attempted totrace the
fascinating story of the development of the astronomical methods
used for finding a ship’s position at sea when out of sight of land.

Few would deny that astronomical navigation, or nautical
astronomy to give the subject its time-honoured name, is an
obsolescent craft. The perfected astronomical methods used at
present mark the culmination of an evolutionary process which
began even before the first of the Phoenician sea-traders navi-
gated their craft in Eastern Mediterranean waters, using the
heavenly bodies to guide them, some three thousand years ago.
The ancient craft of the nautical astronomer is now rapidly being
replaced by sophisticated navigational systems born of that ad-
vanced technology which is the distinctive feature of the
marvellous age in which we live.

My principal aim in writing this history has been to present
in broad outline an historical account of the diverse problems of
nautical astronomy and the ways in which they were solved. I
have been conscious of a strong desire to associate with these
problems the philosophers, scientists and navigators, who pre-
pared and sometimes found the paths which led to their solu-
tions. These men occupied prominent positions in a series of
actions, events and purposes which, considered collectively,
possess a remarkable dramatic unity.

The history of nautical astronomy spans a long era of many
millennia. It had its beginnings when sea-venturers first learnt the
rudimentary use of the stars to guide them in their exploratory
and commercial voyages. The era is ending in our own times
when the applications of radio and electronics are superseding
the relatively simple techniques of the nautical astronomer.



xii AUTHOR’S FOREWORD

My own intense interest in the history of navigation was
sparked off during my formative years as a pupil at Smith Junior
Nautical School, Cardiff. From my wise and inspiring teachers I
learnt that mere technical mastery of navigation and nautical
astronomy, however important this may be to an officer on the
bridge of a ship at sea, does not in itself make a complete and
educated navigator. This indeed is a valuable lesson to learn, and
I too am firm in the belief that no practitioner can have complete
respect for the science or craft he practises without having some
acquaintance with the historical development or evolution of his
subject. Moreover I hold the view that men of general culture
can have little regard for a science they know all too little about.
With these sentiments it is my sincere desire that this work will
serve usefully to fill a gap in the literature of the history of the
science of navigation.

I owe a debt of gratitude to several assistants, past and present,
at the libraries of the British Museum and the National Maritime
Museum in London, and the Public Library of Newcastle upon
Tyne, for their kind help during the many years during which
I was engaged in making researches. I wish also to record that
I have been appreciative of the friendly interest shown by some
of my colleagues in the progress of this work.

It is a very real pleasure for me to place on record my thanks
to the staff of the publishers for much advice and many valuable
suggestions which have helped considerably in clarifying and
otherwise improving my original text.

Cardiff 1967 CuarrLes H. CoTTER



CHAPTER 1

The development
of nautical astronomy

I. INTRODUCTORY

John Seller, Hydrographer.to the King during the late 17th cen-
tury, declared, in his popular work on Practical Navigation, that
the part of navigation

‘.. .which may properly bare the name and principally deser-
ves to be entituled the art of Navigation, is that part which
guides the ship in her Course through the Immense Ocean to
any part of the known World; which cannot be done unless it
be determined in what place the Ship is at all times, both in
respect of Latitude and Longitude: this being the principal
care of a navigator and the Masterpiece of Nautical Science.’

“To the Commendable Accomplishment of this knowledge,’
Seller added, ‘four things are subordinate Requisites. Viz:
Arithmetic.
Geometry.
Trigonometry.
The Doctrine of the Spheres.’

The Doctrine of the Spheres covered the necessary spherical
or mathematical astronomy, a knowledge of which was essential
for guiding a ship across the pathless oceans, for finding her
position, and for estimating her progress towards her destination.

The history of Ocean Navigation, or la Navigation Grande of
the old French navigators, began when astronomy became scien-
tific, that is to say, when men first began to reason about, and
speculate upon, the nature of the celestial bodies and their
movements,

Astronomy, which literally means the law of the stars or ‘star
distribution,’ is a branch of knowledge probably as old as man-
kind itself; and our most ancient ancestors must have, as we
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have, gazed upon the firmament, rejoiced in its splendour, and
pondered about its nature.

The knowledge, acquired by painstaking observations, of the
relative movements of the Sun, Moon, Planets and stars was,
little by little, built into a tradition which provided early man
with the means for finding direction, time and season. The earli-
est civilizations found it essential to have compass, clock and
calendar; and the orderly movements of the heavenly bodies,
relative to the Earth, provided for their needs.

There is reason to suppose that the flourishing civilizations of
at least three thousand years ago possessed good practical know-
ledge of astronomy. The earliest astronomical observations, and
the most primitive cosmogonal ideas, belong to an extended
period of astronomical prehistory for which no written records
exist. During this period the stars were grouped to form the con-
stellations, eclipses were observed, and the apparent paths of the
Sun, Moon and planets across the backcloth of fixed stars were
delineated.

The Greek philosophers of the 5th century before the begin-
ning of the Christian Era appear to have been the first to enquire
into the causes of celestial phenomena. They are, therefore, to
be honoured as being the founders of scientific astronomy.

The astronomical science of the Ancient Greeks of the period
between the 5th and 3rd centuries Bc, was based upon observa-
tions made by earlier philosophers, notable amongst whom were
those of Babylon and Egypt.

2. BABYLONIANS AND PHOENICIANS

The Babylonians, who occupied the seaboard of Syria, formed a
branch of the Semitic race who cultivated a love for the sea.
Some historians have argued that the Phoenicians—as these
people are called—originated on the eastern shore of the Red
Sea in the ‘Land of Edom’; and certain it is, as we shall see, that
Phoenician seamen voyaged in the Red Sea as well as in the
Mediterranean.

The notable sea ports of the Phoenicians included Tyre and
Sidon. Numerous references are made in the Old Testament to
Tyrians and Sidonians, and to Phoenicia and its seamen, and to
their nautical-—as well as their commercial—skill.

The earliest biblical account of a long sea voyage appears in the
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First Book of Kings, where we learn that King Solomon made a
navy of ships in the land of Edom; and that Hiram, king of Tyre,
sent shipmen who had knowledge of the sea to join the servants
of Solomon. And the navy, we are told, voyaged to Ophir—be-
lieved to be Ceylon—the voyage occupying three years. And from
Ophir were brought gold, silver and great plenty of almug trees,
as well as apes, peacocks and precious stones.

There is every reason to believe that the ancient Phoenician
seamen used astronomical methods for navigating their vessels.
Reference to Homer’s Odyssey, the epic poem which describes
the adventures of the mythical hero Odysseus, reveals that the
stars were used for navigational purposes before the days of
Homer. The period during which Homer flourished is not known
with any degree of certainty, but classical scholars date it between
the 12th and 7th centuries BC.

In Book Five of The Odyssey, which describes how Calypso
helps Odysseus to build a craft and gives him sailing directions
for his voyage, it is related of Odysseus in Pope’s translation that

‘Placed at the helm he sate, and mark’d the skies,
Nor closed in sleep his ever watchful eyes.

There viewed the Pleiads, and the Northern Team,
And great Orion’s more refulgent beam;

To which, around the axle of the sky,

The Bear revolving, points his golden eye,

Who shines exalted on th’ ethereal plain,

Nor bathes his blazing forehead in the main.’

It was the Bear—the Great Bear—which the fair Calypso bade
Odysseus to keep on his port side as he traversed the sea.

From the time of Solomon, who lived about ten centuries
before the birth of Christ; there is little recorded in respect of
navigation until the year 610 Bc when, as we are informed by
Herodotus, some Phoenician ships, by order of Necho, king of
Egypt, sailed down the Red Sea and, after rounding the African
continent, entered the Mediterranean through the Pillars of
Hercules after a voyage lasting three years. It was during this
voyage that the Phoenicians, it is thought, discovered the Canary
Islands.

From the time of Necho, navigation on the western coast of the
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African continent was neglected until the rise of the Portuguese
in the early 15th century under the sponsorship of Prince Henry
the Navigator.

That the Phoenicians were great seamen there can be no doubt;
and for many centuries the ships and mariners of Tyre and Sidon
were indispensable to the great powers of the Eastern Mediter-
ranean, including Persia, Greece and Rome.

Modern historical research has revealed that Phoenician sea
power in the Eastern Mediterranean sprang from an earlier
Cretan or ‘Minoan’ sea power during the 12th century Bc. The
rise of the Phoenicians, and the decline of Cretan sea power, coin-
cided with considerable disorder in the region due principally to
invasions of people from the north, and the weakening of Egyp-
tian power in the lands on the seaboard of the Eastern Mediter-
ranean, '

The wide extent of the commercial relations of the Phoenicians
during their ascendancy, by both land and sea, may be appreci-
ated from what is written in Chapter 27 of the Book of the Prophet
Ezekiel. Colonies of Phoenicians were planted in commercially
strategic points in the Mediterranean littoral, as well as on islands
within the Mediterranean. Colonies of Phoenicians were to be
found in North Africa, Spain, Cyprus, Malta and Sicily. Trade
with Spain was of the greatest importance, because it was from
here that silver and lead, and other important metals, were ob-
tained. There is no doubt that Phoenician ships traded in the
Atlantic, and the shipmen of Tyre and Sidon certainly voyaged
to North-west Spain and possibly to Southern Britain in their
quest for sea trade. It was the important trade with South-east
Spain, however, that doubtless led to the colonization of the
Western Mediterranean littoral by Phoenicians as early as the
9th century BC.

With the rise of Greek culture in the Aegean Sea, the power of
Tyre and Sidon declined. The Phoenician colonies, therefore,
turned for their protection to Carthage. Carthage, the great
Phoenician trading emporium in Tunisia, established during the
8th century Bc, emerged as a major power in the 6th century BC.

Let us now consider briefly the observational astronomy of the
Babylonians. The astronomers of Babylon recorded lunar eclipses
from as far back as the 8th century BC. Systematic observations
of the Moon’s apparent movement against the background of
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fixed stars reveal the Moon’s periodic motions. The same applies
to the planets. Moreover, observations of the fixed stars which lie
on or near to the Sun’s annual apparent revolution on the celestial
sphere enable the determination of the length of the year.

The appearance of a fixed star for the first time in the eastern
sky after sunset is known as the achronychal rising of the star; and
its setting at the time of sunset is known as its achronychal setting.
A star rising or setting respectively at the time of sunrise or sun-
set is said to rise or set cosmically. When a star first becomes
visible in the morning before sunrise, or in the evening after sun-
set, it is said to rise or set heliacally. Observations of the achrony-
chal, cosmical and heliacal risings and settings of selected stars,
or star groups, were obvious ones to have been made by an
ancient astronomer who studied the stars systematically.

Systematic observations, made by the early astronomers, were
related to the practical problems of timekeeping, so necessary for
agriculturist and administrator alike. Records of such observa-
tions enabled astronomers to predict astronomical events. Nowa-
days the astronomical measurement of time is not related to the
rising or setting of celestial objects, but to their meridian
passages.

For convenience of civil life a method of fitting days into peri-
ods such as months and years to form a calendar is necessary. The
carliest use to which astronomical observations were put was re-
lated to the forming of calendars. Three astronomical periods
were of importance in ancient calendar-making. These were: the
diurnal rotation of the Earth; the monthly motion of the Moon,
in which a complete sequence of phases from New Moon to the
next New Moon is exhibited; and the orbital motion of the
Earth around the Sun, a reflection of which is the apparent
annual motion of the Sun around the celestial sphere. It is the
incommensurable nature of these three periods that made the
problem of devising a satisfactory calendar one of great com-
plexity to the Ancients.

The most important astronomical periodic cycle is that of the
Earth’s revolution around the Sun, this regulating, as it does, the
seasons and, therefore, the times for sowing and harvesting. The
monthly cycle of the Moon is extremely erratic, so that the Moon
is unsuitable for calendar-making despite the fact that the orga-
nization of much of the religious and civil life of the ancient

2
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peoples, especially that of the Egyptians, was related to the Moon
- and her phases.

The astronomical observations made by the Chaldeans—the
priestly caste of Babylon—led to the discovery of an important
eclipse cycle known as the Saros. The discovery of the Saros,
which is a period of 223 lunations, made it possible to predict
the times of eclipses.

The observations which enabled astronomers to predict astro-
nomical events, particularly those observations related to the
planets and the Moon, resulted in astronomers being regarded as
having magical powers. It is not surprising, therefore, that the
earliest astronomers, in taking advantage of their knowledge and
skill, practised astrology. Events on Earth were regarded as being
related to such astronomical events as occultations, eclipses, con-
junctions and oppositions. The forecasting of rain and wind—
phenomena which are related to the seasons (and these are clearly
foretold by astronomical methods), as well as the prophesying of
such events as victory or defeat in battle, illness or prosperity
(which are unrelated to astronomical events), became the business
—and a very lucrative one no doubt—of the astronomer-
turned-astrologer.

The grouping of the stars into asterisms or constellations is of
great antiquity, and the present names of many of the constella-
tions suggest that the Babylonians were responsible for forming
and naming them.

The star groups of the Ancient Greeks were manifestly bor-
rowed from the Phoenicians. The figures or shapes of the con-
stellations were, doubtless, initially simple, and were derived
from commonplace things; but the Greek poets metamorphosed
these simple figures so that they became hardly recognizable in
their original forms. The figure of the constellation Chimah, for
instance, which is mentioned in the Old Testament books of fob
and Amos, is that of an armed man; and this immediately directs
our attention to Orion the hunter, so prominent a figure in Greek
mythology. The figure of the constellation Aish, referred to in
the Book of Job, signifies a cluster; and it appears obvious that it
is associated with the Pleiades of the Greeks. There are many
similar examples of Babylonian constellations having been re-
modelled by the Ancient Greeks to link their fabulous history
with the stars.
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'The term Mazaroth refers to a broad zone of the celestial
sphere on which the tracks of the Sun and Moon are traced. As
different star groups within this zone rise heliacally on different
months, we may comprehend what is meant by the statement
‘bringing forth Mazaroth in its season.” which appears in Chapter
9 of the Book of Job.

- Observations of the fixed stars laid the foundations of astro-
nomy, because, by these alone is it possible to determine the
lengths of the year and month and the periods of the planets, as
well as other astronomical quantities such as the rate of the pre-
cession of the equinoxes*; the celestial positions of the stars,
Sun, Moon and planets; and the irregularities in the apparent
motions of these bodies.

We are expressly told by Herodotus that the Greeks borrowed
from the Phoenicians the gnomon and the method of dividing
the day into twelve parts. The gnomon, which in its simplest
form is merely a rod planted vertically in the ground, served to
mark the passage of time during the daytime by the movement
and length of the shadow it cast. It also served to mark the suc-
cession of the seasons, from the varying length of the shadow cast
by successive noonday Suns. The Babylonians are credited with
the invention of the so-called sexagesimal system of measuring
angles, in which the circle is divided into 360 parts.

In the year 330 Bc Babylon was conquered by Alexander the
Great, the founder of the great Egyptian city and centre of learn-
ing, Alexandria. It was a direct result of Alexander’s conquests,
after which the lands of the entire eastern part of the Mediter-
ranean were welded together into one great palitical unit, that
Babylonian influence upon Greek science became possible.

3. THE GREEKS

The ascendancy of Greek science may be regarded as having
coincided with the time of Thales, who flourished during the end
of the 7th and the early part of the 6th centuries Bc. Thales of
Miletus travelled to Egypt and learnt much from the Egyptians.
He learnt from the priests secret information such as the length
of the year, the signs of the Zodiac and the positions of the sol-
stices and equinoxes. Thales is said to have been the inventor of
the theorem which is usually known as Pythagoras’ Theorem,
* See p. 123, Chapter V.
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and to have ascertained the heights of the pyramids by measuring
the lengths of their shadows when the Sun’s altitude was 45°.

Thales, according to the poet Callimachus, is said to have
formed the constellation of the Lesser Bear; but this constella-
tion was undoubtedly used by Phoenician navigators before the
time of Thales. It is very likely, however, that Thales introduced
this constellation to the Greeks. Although Thales left nothing in
writing, it is believed that he explained the correct causes of
eclipses and the cause of the phases of the Moon.

The suggestion that the Earth has the form of a sphere, ap-
pears to have been first advanced in the 5th century BC by
Parmenides. The idea that the Earth is spherical may have sug-
gested that the firmament of heaven is also spherical; and this
may have led to the explanation of celestial phenomena by
circular motion.

Some twenty or so years after the death of Thales, during mid-
6th century Bc, the famous Pythagoras was born. His name is
closely linked with the study of geometry; and he is said to have
been the inventor of many of the propositions which form the
first book of Euclid. Pythagoras and his followers invented a
celestial system in which the Earth was regarded as revolving
around a central fire called anlichthon, which was believed to be
located at the centre of the universe.

The cosmology of Pythagoras was based on fantastic principles.
The Pythagoreans were convinced that the total number of
moving objects in the heavens must be ten—the perfect number,
as they thought. The Sun, Moon, Earth, and the five planets,
Mercury, Venus, Mars, Jupiter and Saturn, together with the
sphere of the fixed stars made nine. The tenth moving body was
a supposed counter-Earth which revolved around the central
fire. Because the central fire and the counter-Earth were not
visible from the Earth, the Pythagoreans supposed the part of
the Earth on which they lived to be directed away from both.
When sea voyages were extended, and observers failed to see
either the central fire or the counter-Earth, the hypothesis fell
out of favour.

The deductive methods of the early Greek philosophers, in
which ideas of the universe were formulated from general prin-
ciples rather than from observations and knowledge, are exempli-
fied in the writings of Aristotle (384-322 BC) and Plato (b. 429
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BC). Plato’s ideas on the universe were based on what was
thought to be appropriate. The universe he believed to be model-
led on a perfect plan and, therefore, because the most perfect
shape is a sphere and the most perfect curve is a circle, the uni-
verse must be spherical, and the motions of the heavenly bodies
must be circular about the Earth which he believed to be fixed
at the centre of the universe.

Aristotle pictured the universe as comprising a number of con-
centric spheres with the Earth reposing at the centre. Surround-
ing the sphere of the Earth were the spheres of water, air and
fire. Water, air and fire, together with earth, were the four elem-
ents. Surrounding the sphere of fire were the spheres of the
Moon, Sun, and each of the five ancient planets; and beyond
these was the sphere of the fixed stars. Aristotle believed that a
force was in operation which kept the spheres of the planets,
stars, Sun and Moon moving, each at its own allotted speed.
The force necessary to do this was thought to reside in an addi-
tional sphere outside the sphere of the stars. This was the Primum
Mobile which was identified with the Creator of the universe.

Eudoxus of Cnidus (408-355 Bc), in reply to Plato’s postulate
that a set of circular movements would explain the observed
planetary motions, devised what is regarded as being the first
mathematical theory of planetary motion. To fit his theory with
observation Eudoxus regarded the Earth as being at the centre
of the universe, Surrounding the Earth he postulated a number
of revolving spheres the outermost one corresponding to the
sphere of the fixed stars introduced by Aristotle. Secondary
spheres were regarded as revolving around points on the inner
spheres; and it was these secondary spheres which carried the
Sun, Moon and planets. The rotation periods of the many spheres
which belonged to the system were made to fit the observations
of the movements of the heavenly bodies. The planetary theory
of Eudoxus was a geometrical conception designed to facilitate
the compilation of tables of eclipses: there is no suggestion that
he thought the universe was constructed in this way. The irregu-
larities of the motions of the heavenly bodies, particularly those
of the Moon, which were manifested when observations of astro- '
nomical events did not coincide with predictions, resulted in
more spheres being added to the system of Eudoxus in an attempt
to improve the mathematical laws of prediction. Callippus, a
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follower of Eudoxus, used thirty-four spheres, compared with
twenty-seven in the system of Eudoxus, in order to explain the
motions of the Sun, Moon and planets.

The problems of calendar-making were tackled by the Ancient
Greeks, and many calendar reforms were suggested by them.
The common year of the Greeks consisted of 360 days. It is
obvious that had this period been adopted without correction the
months and seasons would have fallen out of step with one
another. To prevent this from happening it was necessary to
intercalate days. The astronomer Meton, who flourished about
430 BC, introduced a calendar reform based on a nineteen-year
cycle of 235 lunations. The Metonic Cycle is a period at the end
of which the Sun and Moon occupy the same positions in the
celestial sphere, relative to the fixed stars, as they did at the com-
mencement of the cycle. The Metonic Cycle is still used for es-
tablishing the date of Easter in the ecclesiastic calendar, the
Golden Number of the prayer book being the number in the
cycle used for fixing the date of Easter Sunday.

Contemporary with Plato and Eudoxus was Philolaus, who
asserted that the Earth revolves around the Sun once in a year.
It is not known, however, by what arguments or observations he
made this assertion.

A Syracusan named Nicetas, who lived at about the same time
as Philolaus, believed the Earth to rotate once per day—a hypo-
thesis put forward, it is supposed, to overcome the difficulty
arising from the common belief which required the celestial
sphere to rotate diurnally around the Earth at a fantastic speed.

Immediately following the vast conquests of Alexander the
Great, the principal centre of learning in the Mediterranean
region was established in Alexandria; and it was the Alexandrian
Greeks who became the foremost scientists, and who were to
occupy the focal point of learning for nigh on a millennium, until
the year AD 642, when the famous city was sacked by the Arabs,
and its splendid library destroyed.

Before entering upon a discussion on the improvements in
astronomical knowledge made by the Alexandrian school, men-
tion must be made of Pytheas of Marsala who, at about the time
of Alexander the Great, determined the lengths of the midday
shadows cast by the gnomon at the times of the solstices, and
found, in effect, that the latitudes of Marsala and Byzantium
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were roughly the same. Although the latitudes of these places
differ by about two degrees, Pytheas’s observations are interesting
and original.

Pytheas is credited with being the first to distinguish climates
by the varying lengths of day and night. He is remembered
mainly on account of his voyage in the Atlantic, and for his ‘dis-
covery’ of Iceland. It was during this voyage that Pytheas found
that the Sun was just circumpolar on the day of the summer sol-
stice at Thule, located at the northern limit of his Arctic voyage.
It seems clear from this that a change of latitude was recognized
by a change in the so-called Arctic Circle—the circle centred at
the celestial pole, or axis of the heavens, within which the celestial
bodies were circumpolar and did not, therefore, rise or set.

On his death in 323 Bc Alexander’s great kingdom was divided.
The western part, including Egypt, fell to Ptolemy—one of
Alexander’s generals. Ptolemy chose for his capital the city foun-
ded by Alexander and not yet completed at the death of its
founder. The first Ptolemy was no less ambitious than Alexander
in making Alexandria a great centre of commerce and a great
seat of learning and, during the Ptolemaic dynasty—which ended
with the death of Cleopatra in 30 Bc when the Romans defeated
the Egyptians—Alexandria was the cultural centre of the
world.

The first amongst the Alexandrian Greeks who applied them-
selves to the study of astronomy were Timocharus and Aristyllus.
Instruments were set up by Timocharus and Aristyllus, who
fixed the positions of the zodiacal stars relative to the ecliptic.
This marked a great stride forward in the development of astro-
nomical observations. Hitherto, stars were ‘fixed’ by determining
their heliacal risings and settings, and the determinations of these
gave rise to considerable mathematical difficulties.

The division of the celestial sphere into two hemispheres,
using the ecliptic, facilitated the determination of planetary
motions. The visible planets could now be fixed relative to the
ecliptic and to certain fixed stars near their paths.

To the poet Aratus, who flourished about 270 BC, we are in-
debted for the description of the constellations in elegant verse.
We are reminded by Aratus that the Ancient Greeks used the
Great Bear to determine direction in their voyaging, whereas the
more skilful Phoenicians used the Lesser Bear. Although Helice
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—the Great Bear—is bright and conspicuous, the Lesser Bear
is: ‘better for sailors, for the whole of it turns in a lesser circuit,
and by it the men of Sidon steer the straighest course.’

It was in the 6th century Bc that Thales is believed to have re-
commended the Phoenician practice of using the Lesser Bear to
the ancient Greek navigators.

Navigation is related closely to geography; and the foundation
of geography is based on astronomy. One of the earliest attempts
to determine position on the Earth’s surface consisted in ob-
serving, by means of a gnomon, the lengths of the longest and
shortest days. We have had occasion to mention the observations
made by Pytheas by means of which he determined the ratio be-
tween the length of the midday shadow at Marsala, and the
length of the gnomon, on the day of the summer solstice. Pytheas
is credited with being the first to establish the latitude of Marsala
by using this method.

It is Eratosthenes (276-196 Bc) who is credited with being the
first to reduce the problem of terrestrial position-finding to a
regular system. He based his system on the gnomon, and imag-
ined a line linking places at which the longest day had the same
length. Such a line is a parallel of latitude; and the parallel that
was delineated by Eratosthenes passed through the island of
Rhodes. This line was always used as a basis for ancient maps.
Other parallels were traced, one through Alexandria and another
through Syene in southern Egypt. Eratosthenes also traced a
meridian line which he regarded as passing through Rhodes,
Alexandria and Syene.

Eratosthenes, in pursuing his geographical studies, sought to
determine the size of the Earth by using a measured length of the
arc of a meridian between Alexandria and Syene. He noticed that
on the day of the summer solstice the midday sun was at the
zenith at Syene, whereas on the same day, at noon, the gnomon
cast a shadow at Alexandria. He argued that the remote Sun’s
rays at the two places were parallel, and that the angle at the
centre of the spherical Earth between radii terminating at the
two places was equal to the zenith distance of the noon Sun at
Alexandria. Knowing this angle and the distance between Alex-
andria and Syene, he was able to estimate the Earth’s circum-
ference. How near to the truth was the determination of the
Earth’s circumference by Eratosthenes is not known, owing to
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uncertainty as to the length of the unit of distance—the stadium
—which he used.

Eratosthenes is also credited with making a very accurate esti-
mation of the obliquity of the ecliptic, that is, the angle of in-
clination of the Sun’s apparent annual path with the plane of the
equator. His value for this angle is 11/166 of a circle, which is
23° 51’—a matter of 5’ too large for the true value at the time.

4. HIPPARCHUS

We come now to the prince of ancient astronomers—the great
Hipparchus—who flourished about 160 Bc. Hipparchus under-
took the arduous task of making a star catalogue, having been
prompted to do so by the appearance of a new star or nova. This
event, according to Pliny, led Hipparchus to wonder if the stars
were fixed, and whether or not they had motions peculiar to
themselves.

‘Wherefore,’ as Pliny says, ‘he attempted the task of number-
ing the stars for posterity and the reduction of the stars to 2
rule, so that by the help of instruments the particular place of
each one may be exactly designed, and whereby men might
discern, not only whether they disappear or newly appear, but
also whether they change their stations; as likewise whether
their magnitudes increase or diminish; leaving heaven for an
inheritance for the wits of succeeding ages, if any were found
acute and industrious enough to comprehend the mysterious
order thereof.’

Pliny remarked further that this was the first time that the
fixed stars were catalogued according to their latitudes and longi-
tudes.

The ends of the axis around which the celestial sphere per-
forms its diurnal rotations are the poles of the equinoctial. The
equinoctial is a great circle* on the celestial sphere which is co-
planar with the Earth’s equator. A semi-great circle extending
between the celestial poles is a celestial meridian; and the arc of
a celestial meridian between the equinoctial and a star is a meas-
ure of the declination of the star. The points of intersection of the

* A great circle of a sphere is a circle on the sphere’s surface, on whose plane
the centre of the sphere lies.
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equinoctial and ecliptic are known as the spring and autumnal
equinoxes respectively. When the Sun is at the spring equinox it
occupies a point in the sky which, at the time of Hipparchus, was
occupied by the zodiacal constellation of Aries. At the time of the
spring equinox the Sun entered this constellation, when he is
said to be at the First Point of Aries. At this time the Sun’s de-
clination changed from southerly to northerly. The arc of the
equinoctial, or the angle at the celestial pole between the celestial
meridian of the First Point of Aries and the meridian of the star,
is known as the star’s Right Ascension.

Declination and Right Ascension on the celestial sphere cor-
respond to latitude and longitude on the terrestrial sphere; and
it was declination and Right Ascension that Pliny meant when he
mentioned that Hipparchus was the first to make a star catalogue
based on latitude and longitude.

It was upon this principle of arranging the stars that rested the
great improvements which Hipparchus introduced to the prob-
lem of terrestrial position-finding. The rule for defining terres-
trial positions was the same as that for defining celestial positions;
geography and astronomy were henceforth firmly linked, and
this marked an important event in the history of astronomical
navigation.

The determination of latitude is a relatively simple matter,
and it has been possible to do so since long before the time of
Hipparchus. The problem of finding longitude, however, was one
of exceptional difficulty to the Ancients. This problem is related
to that of finding time, the difference of longitude between two
places being a measure of their difference in local times, reckon-
ing 15° of difference of longitude to one hour difference in local
times.

Hipparchus was the first to suggest 2 method of determining
longitude by eclipses of the Moon. If the times of eclipses are
predicted for a particular meridian, the difference between a pre-
dicted time and the time of the eclipse at some meridian different
from the one for which the predictions apply will give the
difference of longitude between the two meridians.

Eclipses are relatively rare occurrences and it is small wonder
that the longitudes of only a few places were determined by the
method suggested by Hipparchus. The longitudes of places
were determined largely from reports of travellers; and the diffi-
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culties of estimating distances resulted in large discrepancies in
all ancient maps.

Hipparchus determined the obliquity of the ecliptic, and
agreed with the figure for this deduced by Eratosthenes. He de-
termined the length of the tropical year, which is the interval
between successive instants when the Sun is at the First Point of
Aries, to be 365 days 5 hours 53 minutes. This is about four
minutes short of its true length. The tropical year is slightly
shorter than the time taken for the Sun to make one apparent
revolution around the Earth relative to a fixed star in its path—a
period known as a sidereal year. The difference between the
lengths of the tropical and sidereal years arises from a westward,
or retrograde, movement of the equinoxes known as the precession
of the equinoxes. The discovery of the precession of the equinoxes
belongs to Hipparchus, who compared his star positions with
those of Timocharus and Aristyllus, which had been determined
some 150 years before the date of the catalogue of Hipparchus.
The discovery of the precession of the equinoxes was necessary
for the progress of accurate astronomical observations.

Another great feat of Hipparchus was the discovery of the
irregular apparent motion of the Sun and the measurement of the
equation of time. To comply with Plato’s demand for uniform
circular motion, he supposed the circular orbit of the Sun to be
centred at some distance from the Earth. The line from the
Earth to the point about which he imagined the Sun to revolve in
a circular path he called the apse line; and the point, the ex-centric.
A circle centred at the ex-centric and radius of length equal to the
apse line he called the equant; and he supposed that the radius
from the ex-centric to the Sun sweeps out equal areas in equal
intervals of time. On this basis he computed tables for predicting
the celestial positions of the Sun.

The plane of the Moon’s orbit around the Earth makes an angle
of about 5}° with the plane of the ecliptic. The points of inter-
section of the two planes are known as the nodes. Hipparchus is
credited with discovering the retrograde motion of the nodes—a
motion similar to that of the precession of the equinoxes. He also
observed that the Moon’s motion is irregular, and accounted for
this by inventing an ex-centric and apse line and an equant for the
Moon, with the aid of which he was able to compute tables of the
Moon’s motion.
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In addition to the remarkable catalogue of discoveries made by
the prince of astronomers, Hipparchus is credited with being the
inventor of trigonometry—the mathematics of triangles. He con-
structed a table of chords, and is believed to have been the first to
express the most important theorem of trigonometry:

sin (A + B) = sin A cos B+ cos A sin B

This theorem is usually known as Ptolemy’s theorem.

Hipparchus is credited with being the inventor of spherical
trigonometry as well as of plane trigonometry; and the solution of
spherical triangles was to play a most important role in the practice
of astronomical navigation of a later age. Hipparchus occupies a
prominent place amongst those who were responsible for bringing
the science of navigation to its state of excellence.

Hipparchus died about 120 Bc. For a space of two centuries or
more after this date we find no record of a philosopher of import-
ance emanating from the Alexandrian school. The great wealth of
knowledge and discovery which was assembled in Alexandria
during the reigns of the first Ptolemy’s was not to be repeated in
human history for about fifteen hundred years. The decline in
Alexandrian learning was not due to any one cause; but the fact
that the professors were appointed by the Pharaohs and paid by
the State meant that when the Pharaohs lost interest in the pro-
gress of science the professors and scholars did likewise, and the
spirit of enquiry, so necessary for the advancement of learning, be-
came stifled. A feature of the Alexandrian school of learning was
the wide gap between scholar and artisan. Much of the knowledge
acquired by the philosophers was never put to practical use. The
researches and discoveries of the scholars were, however, recor-
ded; and the vast library of Alexandria became a storehouse of the
world’s knowledge. This great assemblage of knowledge was not
to bear fruit for many centuries: the world of the practical man,
including the seaman, went on its way without knowing that the
seeds of science and technology had been sown.

5. PTOLEMY

Following the period of relative inactivity which began soon after
the death of Hipparchus, the first philosopher of note whom we
encounter is the famous Claudius Ptolemy. Ptolemy, who must
not be confused with the Pharaohs of the same name, flourished
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during the middle part of the 2nd century Ap. We are indebted to
Ptolemy, not so much for the part he played in the advancement
of science, but for systematizing the astronomical and geographical
knowledge of his time. His most well-known and important book
is the Syntaxis or General Composition of Astronomy, commonly
called by its Arabic name the Almagest. This work is a veritable
cyclopaedia of astronomy.

In addition to the Abmagest Ptolemy wrote an important treatise
on optics, in which he made a study of atmospheric refraction. He
knew that light passing from one substance to another of different
optical density was bent at the common surface of the two sub-
stances. He rightly assumed that light from celestial bodies, on
passing downwards through the atmosphere, would be refracted
in the same way. Ptolemy is credited for introducing a law of re-
fraction of light in air which, although not true, gives fairly good
results for small zenith distances.

Ptolemy was the first to introduce a form of astrolabe and, as
we shall see later, this instrument, in a modified form, was adapted
for the use of seamen. In the hands of an astronomer the astrolabe
was a valuable instrument for determining time, as well as alti-
tudes, azimuths and amplitudes, of heavenly bodies.

Although the name astrolabe (from Greek dorpolafov meaning
star-taker) has been used for a variety of astronomical instruments,
the astrolabe described in Ptolemy’s Almagest is of a type known
as an armillary astrolabe. Ptolemy’s astrolabe consisted of a series
of concentric rings, the innermost one carrying a pair of sights.
The outer rings were designed so that when a heavenly body was
observed in the sights of the inner ring, the celestial latitude and
longitude of the body could be read off, thus saving the consider-
able mathematical labour of converting altitude and azimuth into
ecliptic coordinates. The so-called plane astrolabe, or planisphere,
employs the stereographic projection for solving astronomical
problems, and is believed to have been invented by Hipparchus.

Ptolemy discussed the principles of map-making; and, in his
monumental Geographia, which was to have a marked influence
on seamen during the Great Age of Discovery, a long list of lati-
tudes and longitudes of places, for the purpose of constructing maps
of the world, or mappa mundi as these maps were called, was presen-
ted. Ptolemy repeated the advice of Hipparchus in respect of the
advisability of fixing terrestrial positions by astronomical methods,
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and pointed out, as did Hipparchus before him, how eclipse
observations could be used for the determination of longitude.

We owe a great debt of gratitude to Ptolemy for it is through
him that we learn much about the work of Hipparchus, most of
whose writings are lost. Certain it is that the star catalogue found
in Ptolemy’s Ahnagest is that devised by Hipparchus.

It is the system of the universe bearing his name for which
Ptolemy is widely known. The Ptolemaic system of the universe
consists of a fixed Earth at the centre of the system, with the plane
of reference for the supposed circular orbits of the Sun, Moon and
planets, being the ecliptic. Ptolemy replaced the spheres of Eudo-
xus and Callippus by a system of circles. In his system, the Moon
and Sun were regarded as moving in circular orbits around the
Earth. The orbits of the planets were regarded as comprising a
system of deferents and epicycles. The deferent of a planet is a
circular orbit which carries the so-called fictitious planet, the real
planet being regarded as moving in a circular orbit, known as the
epicycle of the planet, centred at the fictitious planet. The centres
of the epicycles of Mercury and Venus—the inferior planets—
were supposed to lie on a straight line joining the Earth and the
Sun; and these planets were supposed to revolve in their epi-
cycles in their own periodic times and to revolve in their deferents
around the Earth in a year. This was in contrast to the superior
planets, Mars, Jupiter and Saturn, which were regarded as re-
volving in their deferents in their periodic times and in their
epicycles once in a year. »

Ptolemy’s scheme, although it was wildly erroneous, provided
a suitable means for predicting astronomical events. The cum-
brous system of deferents and epicycles survived for no less than
fifteen hundred years and, until the time of Tycho Brahe and
Kepler, there seemed little for astronomers to do except to ob-
serve and endeavour to improve the knowledge of the periods of
the Moon, Sun and planets, and the diameters of their deferents
in relation to those of their epicycles. The principal object of
Ptolemy’s geometrical system was to facilitate the preparation of
tables for predicting the places of the Moon and planets. He viewed
the problem of astronomical prediction, not as a problem of
mechanics and a law of forces, but as a purely mathematical ab-
straction. His solution to the problem held the field until the time
when the accurate observations of Tycho Brahe, in the hands of
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the illustrious Kepler, demanded a new approach to the problem
of planetary motion.

6. THE ARABS

During the 6th century AD, a new, and what was to become a
powerful, religious movement sprang up in Arabia. This led to the
ascendancy of the Arab people, with their vision of world con-
quest for Islam. With incredible speed a great Arab Empire was
formed by Mohammet, the self-proclaimed prophet of the one
God. A holy war was preached and millions of Arabs became
converted to the cause.

The Arab Empire extended from the boundaries of China in the
east to Spain in the west, and it gave the world a new culture.
Following the early stage of Arab conquest, when the Koran was
considered to contain a complete code of conduct and an all-
embracing philosophy—a belief which was responsible for the
destruction of the remnant of the library of Alexandria when the
city was sacked by the Arabs in AD 642—learning was pursued
throughout the Arab world and centres of culture were established
in Baghdad, Cairo, Cordoba in Spain, and Samarkand in Turke-
stan. The Jewish communities of the Mediterranean region readily
assimilated with their Semitic cousins the Arabs, to the benefit of
the learning which was to follow. Moreover, the influence of the
Indian philosophies and mathematics, brought about by contact
between Arab and Indian in South-west Asia, was profound.

Notable amongst the Arabs for the encouragement he gave to
the progress of science, and in particular astronomy, was the Caliph
Al Mamun. Al Mamun flourished during the 8th century Ap, and
was the successor to the famous Harun al Raschid who was largely
instrumental in having many of the works of the Greeks—Avristotle
and others—translated into Arabic. Ptolemy’s Syntaxis was to
form, in its Arabic translation, the foundation of Arabian astro-
nomy. In the mid-9th century Al Battani (Albategnus), a Syrian,
produced astronomical tables of the motions of the Moon and the
planets which were an improvement in accuracy on those of
Ptolemy.

The great interest in astronomy during the brilliant period of
the Arabs is reflected in many of our present-day star names:
Aldebaran, Algol, Mizar and Alphard, to name but a few. In
the study of optics the names of Al Kindi and Al Hazen are
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noteworthy. Al Hazen (965-1038) found that Ptolemy’s law of
atmospheric refraction holds good for small angles only, and
expressed the view that the refraction for small zenith distances
varied directly as the zenith distance. In fact the refraction for small
zenith distances varies as the sine of the zenith distance; but it is
to be noted that for small angles the angle in radians and the sine
of the angle are very nearly equal to one another.

Not the least of the important contributions to science made by
the Arabs was their introduction to the West of a simple numera-
tion system. The Indian, or Arabic, figures, which are now uni-
versally used, have done infinite service in mathematics; and
mathematics, of course, is the handmaiden of astronomy. The
cumbersome Roman numerals were superseded by the Arabic
figures; the zero sign was introduced; and a notation in which the
value of a digit depended upon its place in a line of digits made the
rules of arithmetic accessible even to a child.

By the 10th century, the great Arab Empire began to crumble.
In the eastern part many provinces seceded. The focus of Arab
learning was transferred to the Western Mediterranean area, and
academies and libraries were set up at Cordoba and Toledo in
Spain. It was mainly through, and from, these centres that Arabic
learning spread over Western Europe. The Greek works which
had been translated into Arabic were now translated from Arabic
into Latin. Moreover, the secret of the manufacture of paper had
been acquired by the Arabs from the East. This, in due course,
was to make possible the printed book. Fortunately the Arab
impact on Western Europe was made before the great upsurge of
Christian religious fervour, manifested by the Crusades, which
was to sweep Islam and the infidels from Europe.

7. EARLY RENAISSANCE SCHOLARS

The legacy of the Arabs paved the way for a great flowering of
learning in Western Europe, and many of our own countrymen
were to play important roles in this scientific awakening. The
Jewish communities in Spain, in particular, were active in the field
of mathematics, astronomy and instrument-making. The mediae-
val universities of Paris, Oxford and many others were established
in the early 13th century; and the so-called schoolmen engaged
themselves in philosophical discussions. In addition to the Euro-
pean universities, the monastic orders known as Franciscan and
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Dominican respectively, were founded at about the same time;
and these religious bodies had a great influence on western science.

The Franciscans and Dominicans devoted a great deal of their
energies to the acquisition of knowledge in order to refute the
numerous heresies of the time. The giant among many monastic
scholars was the Franciscan friar Roger Bacon (1214-1294). His
principal contribution to science was his insistence upon experi-
menting in order to further scientific knowledge. Roger has often
been regarded as being the founder of the scientific method, a
method by which scientific laws are discovered by experiment.
The seeds which Roger had sown were not, however, to bear fruit
until about two centuries after his death: but important it is that
seeds were sown and fruit was to be borne.

The year Ap 1252 saw the publication of a set of astronomical
tables which were sponsored by the Castilian King Alphonso X
(the Learned). The Alphonsine Tables were computed by a team
of fifty Jews of Toledo from Arabic observations. The Arabic nota-
tion was used in the Alphonsine Tables; and the wide use of the
tables was, in no small way, responsible for the Arabic notation be-
coming widely known and generally adopted. At about the time
of the publication of the Alphonsine Tables an important textbook
on spherical trigonometry and astronomy, the Sphaera Mundi,
was published. This book, by our compatriot John Holywood—
known as Sacrobosco—remained the standard textbook on the
subject for many centuries.

Purbach (1423-1461) and John Miiller, or Regiomontanus as
he is familiarly known (1436-1476)—both of Nuremberg—dis-
covered errors in the Alphonsine Tables. They set to work to im-
prove observational instruments, so that faithful observations
could be made with the aim of improving the tables. This aim
was, unfortunately, not brought to fruition, both men dying in the
flower of their lives. Bernard Walther, more usually known as
Waltherus of Nuremberg (1430-1504), devoted much of his great
wealth in furthering the study of astronomy. He was instrumental
in having an observatory built at Nuremberg for the use of Regio-
montanus. Waltherus also established a printing press which gave
birth to numerous calendars and ephemerides. These were to be
of great value in the hands of the leaders of the voyages of dis-
covery which were initiated by the Portuguese under the sponsor-
ship of Prince Henry the Navigator.

3
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It is interesting to note that mechanical clocks were used for the
first time for astronomical observations at the observatory at
Nuremberg. This marked a great stride forward in the science of
astronomical observations.

The German geographer Martin of Bohemia (Martin Behaim)
was largely responsible for introducing the ephemerides of Regio-
montanus to the Portuguese. It was Martin Behaim who is believed
to have first suggested the astrolabe for nautical use. We shall have
more to say about this, as well as about the Portuguese navigators,
in a later chapter. In the meantime, let us return to our discourse
on the progress of astronomy as it affected, or was to affect, the
art of astronomical navigation.

8. COPERNICUS, TYCHO BRAHE

The years 1473-1543 mark the birth and death respectively of the
Polish scholar Copernicus. After a prolonged education at the
universities of Cracow, Bologna and Padua, his knowledge had
great breadth, embracing, as it did, mathematics, astronomy, medi-
cine and theology. His readings of the classical works of the Greeks
made him familiar with the views of the universe presented by
Pythagoras, Hicetas and Aristarchus, amongst others, who postu-
lated a revolving and/or rotating Earth.

The apparent diurnal and annual movements of the heavens
could be explained, according to Copernicus, by the real rotation
of the Earth about her polar axis, and the real revolution of the
Earth around a centrally located Sun.

Copernicus’ great work is entitled De Revolutionibus Orbium
Coelestium. In the dedication of his book, which was addressed to
the Pope, he pointed out that any observed change of position of
a heavenly body is due to the motion of the observed body or of
the observer, or both; and that if the Earth possesses motion it
should be noticeable in a body outside the Earth, the apparent
motion of which would be equal to magnitude but opposite in
direction to the real motion of the Earth.

Copernicus firmly planted the Sun at the centre of a system
consisting of circular planetary orbits, the Earth being regarded
as a planet. Although the germ of the idea was simple, the grand
simplicity of a moving Earth and a fixed Sun was masked by a
complexity of details which the author of the system introduced
in an attempt to fit the observed movements of the members of
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the Solar system to his plan. Great difficulty was experienced in
endeavouring to achieve compatibility between the plan and the
observed motions. The attempt to achieve this was due largely to
the deep-rooted belief that circular motion was the natural
motion.

The Copernican system, although simple in essentials, was com-
plicated by the elaborations of epicycles and ex-centrics; and it is
for this reason that many writers have regarded Copernicus as the
supreme exponent of the epi-cycle theory, and that his system was
designed, as were the earlier systems of planetary motion, merely
to facilitate the computation of astronomical tables. There is every
reason to believe that Copernicus’ system was not simply a mathe-
matical abstraction: it was evolved along logical lines of argument,
and there is no doubt that he believed implicitly in his proposed
system. He refuted Ptolemy’s argument for a fixed Earth in the
clearest and obvious manner; and he proved beyond doubt that
man’s home in the universe did not, as was generally supposed,
occupy the important place which man, in his self-glorification,
had believed.

Copernicus is regarded as having been responsible for the first
great change in scientific outlook which came after the Renais-
sance, the great movement of intellectual development in science
as well as in the arts, which swept through Western Europe during
the period between the 14th and 17th centuries.

The method of experiment, advocated by Roger Bacon, was
brought to fruition by William Gilbert of Colchester. Gilbert
(1540-1603) is the founder of the science of magnetism and elec-
tricity. In his famous book De Magnete, Gilbert pointed out the
value of the results of his experiments with magnets for the pur-
pose of navigation.

John Werner of Nuremberg is considered to have been the
greatest astronomer of his time. He is credited with the introduc-
tion of the cross-staff, an instrument adapted specially for seamen
for observing altitudes. It is believed that Werner was the first to
suggest that longitude could be determined by measuring the
angle between the Moon and a fixed star lying in the Moon’s
monthly path around the celestial sphere. In making this sugges-
tion, in 1514, he argued that the angle between the Moon and a
star in its path changes relatively rapidly with time; and that if
accurate predictions of the Moon’s celestial position could be
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furnished for a particular meridian, the time at this meridian
could be found and the difference between this and the local time
would be a measure of the difference between the longitudes of the
local meridian and that for which the predictions were given.
This method of finding longitude was tobecome astandard method
as soon as accurate tables of the Moon’s motion became available.

Gemma Frisius (1510-1555), in a tract entitled De Principiis
Astronomiae et Cosmographiae, which was printed in Antwerp in
1530, recommended the use of a clock or watch set to the time of
a standard meridian, to facilitate finding the difference of longi-
tude between a given meridian and the standard meridian. His
suggestion was not to bear fruit until the practical problems re-
lated to chronometer-making had been solved; and this was not
to be achieved until the time of John Harrison (1693-1776).
Gemma is credited with recommending for the use of seamen an
improved cross-staff which he had contrived. In his De Principiis
he delivers several nautical axioms, as he called them, and we shall
discuss these in due course.

The year 1545 marked the appearance of an important manual
on the subject of navigation. This was the Arte de Navegar, a
Spanish treatise which was published in Valladolid by its author
Pedro de Medina. Six years later, in 1551, another navigation
book, which was composed in Cadiz in the year 1545 by Martin
Cortes, was published in Seville. This was Breve Compendio de la
Sphera y de la Arte de Navegar con nuevos Instrumentes y Reglas.

At about the time when these early textbooks of navigation
appeared, the most distinguished, diligent and skilful astronomi-
cal observer of all time was born. This was the renowned Tycho
Brahe (1546-1601), whose birth took place three years after the
death of Copernicus. Tycho, after studying mathematics and
astronomy at Copenhagen, Leipzig and Basle, received the patron-
age of Frederick II of Denmark. Tycho was granted a pension
and an island in the Danish archipelago on which the famous
observatory Uraniborg was built. He was possessed of great
mechanical skill and many of the observational instruments with
which his observatory was equipped he designed and made. Tycho
lived before the days of telescopes and accurate clocks, yet his
observations of the celestial bodies were incredibly accurate. He
recognized that the best instrument is imperfect, and was the
first observer to realize the importance of averaging the results of
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several observations to arrive at a value in which observational
errors were virtually eliminated. His marvellous, ingeniously-
contrived instruments, and his method of eliminating errors, re-
sulted in new determinations of the constants of astronomy and
stellar positions having an accuracy hitherto unsurpassed.

The appearance of a nova, or new star, in the constellation
Cassiopeia in AD 1572 gave occasion (as a similar event did for
Hipparchus) for Tycho to compose a catalogue of the stars.
During the preparation of this catalogue he used accurate values
of atmospheric refraction deduced from his own observations. On
comparing his observations of the Moon’s position with the values
tabulated in the lunar tables of Copernicus he discovered errors in
Copernicus’ tables of as much as 2°.

Tycho maintained that observations should precede theory. He
opposed the Copernican theory, being influenced by the Ptole-
maic objection that the stars did not change their positions, which
would be the case if the Earth moved. The great distances of the
stars from the Earth are such that stellar parallaxes, being so
minutely small, could not be detected by the relatively crude in-
struments of the early astronomers. Many philosophers, including
Ptolemy, believed that if parallax could not be detected it did not
exist: therefore the Earth is fixed ! False and illogical reasoning to
be sure.

Tycho’s great service to astronomy was due to his skill as an
observer rather than to his mathematical ability and powers of
reasoning. The most important and most fruitful work of this
marvellous astronomical observer was his record of his observations
of the planets—especially those of the planet Mars. This record
laid the fotindation of the important work of the famous Kepler.

9. KEPLER, GALILEO, NEWTON

Johannes Kepler (1571-1630) of Stuttgart, at the age of twenty-
four years published a defence of the doctrines of Copernicus. He
was convinced that the plan of the universe was grand but simple;
and his work entitled Prodromus Dissertationum Cosmographi-
carum seu Mysterium Cosmographicum was drawn to the attention
of Tycho Brahe who, recognizing the author’s intellectual powers,
invited Kepler to become his assistant at Uraniborg. Kepler, no
doubt, was quick to see that, with Tycho’s accurate observation
records, any planetary theory advanced could be put to the test.
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Kepler was entrusted with the compilation of a new set of astro-
nomical tables—the Rudolphine Tables—named after the Emperor
Rudolf who had authorized their publication. While engaged in
this work Kepler, using epi-cycles, deferents and ex-centrics,
found that calculations did not agree with the corresponding ob-
served values as determined by Tycho. Having complete confi-
dence in Tycho as an observer, he refused to accept the basis of
uniform motion for any theory of planetary motion.

It is recorded that Kepler, in trying to fit the observations of
Tycho to the Copernican doctrine, was left in respect of the planet
Mars with a discrepancy of 8'. ‘Out of this eight minutes,’ he is
reported to have stated, ‘I will devise a new theory that will explain
the motions of all the planets.’

Kepler’s discovery that the orbits of the planets are elliptical,
and that the Sun is located at one of the focal points of each plane-
tary orbit, was of great moment in the progress of astronomy.

Although the significance of the laws of Kepler could not be
understood until they had been explained by Newton’s dynamics,
it is clear that Kepler saw more than the mere geometrical facts
of his discovery. He realized that the planets move in their orbits
under the action of a force which is directed towards the Sun;
and he wondered if this force was similar to the force under which
a stone falls to the ground. He postulated universal gravitation
which he described as ‘a mutual affection between bodies.” He
likened this to magnetism and referred to the work of Gilbert,

The first two laws of planetary motion discovered by Kepler,
applied to the planet Mars, are:

1. Mars moves in an elliptic orbit which has the Sun at one of
the foci.

2. The line joining Mars to the Sun sweeps out equal areas in
equal time intervals.

These laws were announced in Kepler’s famous work entitled
Astronomia Nova, published in 1609. In 1618, in another book
entitled Epitome Astronomiae Copernicae, he announced the ex-
tension of the laws to the other planets, to the Moon, and to the
four newly-discovered satellites of Jupiter. In the following year
—1619—in his Harmonicis Mundi, the third law of planetary
motion was published. This law is:
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3. The square of the orbital period of a planet is proportional to
the cube of its distance from the Sun.

Kepler's three laws contain the law of universal gravitation
which was propounded by Newton, the mathematical genius who
was born in 1642, twelve years after the death of Kepler.

Galileo (1564-1642), who died in the year of Newton’s birth,
devoted his energies mainly to the subject of mechanics. He dis-
covered the isochronism of the pendulum; and this knowledge,
in the hands of Huyghens in the mid-17th century, led to the in-
vention of the pendulum clock—an instrument of great benefit to
astronomy. Galileo’s close attention to astronomy resulted from
his use of the telescope—an invention of a Dutch spectacle-maker
named Lippershey in the first decade of the 17th century. Galileo
was first to use a telescope for observing the sky. His discoveries
were no less amazing than were their consequences far-reaching.
Jupiter’s satellites proved that the Earth was not alone in having
an attendant Moon: Jupiter was seen to have four. The phases
of Venus proved conclusively that the Ptolemaic hypothesis was
wrong. The Moon’s surface was observed to be rugged; and a
vast multitude of stars, which were invisible to the unaided eyes,
were observed. Sun spots were observed, and these were to prove
that the Sun rotated about a diameter.

In response to the offer of a handsome prize by King Philip III
of Spain to anyone who invented a method of fixing a ship when
out of sight of land, Galileo gave much thought to the problem.
He pointed out that if the positions of Jupiters’ satellites could be
predicted for a standard meridian, a seaman provided with these
predictions would, in effect, have a means for determining the
time at the standard meridian. This, compared with local time,
would give a measure of the difference of longitude between the
standard meridian and the meridian of the observer.

The practical application of the process of reasoning in astro-
nomy was greatly facilitated by the invention of logarithms.
Logarithms are the incontestable invention, in the year 1614, of
Baron Napier of Merchiston.

What has been regarded as having been the most important
event in the history of astronomy, was the publication, in 1687, of
Newton’s Principia. Sir Isaac Newton (1642-1727) was born in
Lincolnshire. After early school at Grantham, he entered the
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university at Cambridge in 1661. Newton was the genius of his
age, and it was his brilliant investigations that led to the formula-
tion of the laws of motion and the law of universal gravitation.
After establishing the law of gravitation Newton proceeded to
investigate some of its consequences. He explained: Kepler's
laws of planetary motion; the precession of the equinoxes; the
ellipsoidal shape of the Earth before the fact was verified; and a
theory of tides, all based on the so-called Newtonian principle.

The dynamical period of astronomy, which was initiated by
Galileo, Kepler and Newton, was one in which astronomical
tables of the motions of the Moon and the planets were brought to
a stage of high accuracy, thus making possible the determination
of accurate positions at sea, as well as on land.

I0. THE DPAWN OF MODERN NAUTICAL ASTRONOMY

We have already mentioned the need that existed for a suitable
method of finding longitude at sea, and the offer of a reward by
Philip III of Spain, in 1598, for the invention of a method. The
method of finding longitude by lunar observation had been pro-
posed many times, but imperfections of lunar tables rendered the
method unworkable. In 1674 the English King Charles II was
pressed by Sir Jonas Moore and Sir Christopher Wren to establish
an observatory for the benefit of navigation, and particularly for
the making of careful observations of the Moon’s motion so that
accurate lunar tables could be drawn up for a year in advance.
Flamsteed, who was to become the first Astronomer Royal, had
pronounced that lunar tables extant were almost useless. Flam-
steed also pointed out that the star positions published in the
almanacs of the time were erroneous, and that navigators could
derive little benefit from them for finding position at sea. The king
decided to establish an observatory, mainly for the improvement
of navigation, in Greenwich park, and in 1675, Flamsteed was
appointed astronomical observer. Signal work was done by Flam-
steed and his successors, and we shall deal in some detail with this
significant part of our history.

Lunar tables were improved to a degree sufficient for the needs
of ocean navigation, largely through the efforts of Tobias Mayer
of Gottingen. Mayer’s tables were used by Nevil Maskelyne, who
was appointed Astronomer Royal in 1765, for the Nautical Alma-
nac and Astronomical Ephemeris, which was published for the first
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time in 1765 for 1767 by order of the Commissioners of Longitude.
The Nautical Almanac, which is published annually, provides the
seaman with astronomical data of use for finding position when
out of sight of land. The principal table contained in the earlier
Nautical Almanacs was one in which angular distances between
the Moon’s centre and certain fixed stars and the Sun were given
against Greenwich time. By measuring the angle between the
Moon and one of the given stars or the Sun, and comparing it—
after first calculating the angle between the Moon’s centre and the
star or Sun at the Earth’s centre (a process known as clearing the
distance)}—the difference between the local time and Greenwich
time could be found by inspection. This difference in time corres-
ponded to the difference between the longitude of Greenwich and
the longitude of the ship at the time of observation.

The method of finding longitude by timepiece, which had been
suggested by Gemma Frisius as far back as 1530, was perfected by
John Harrison, the ingenious Yorkshire clockmaker, at about the
same time as the method of finding longitude by lunar distance
reached a state of perfection. We shall discuss these methods of
finding longitude in detail in Chapter VI.

With the introduction of relatively complex mathematical
methods of finding longitude at sea grew the need for the better
education of seamen ashore. Nautical academies sprang up at
many ports at which seamen could receive instruction on how to
find the ‘place of the ship’ when out of sight of land. Numerous
astronomical problems were reduced to complex rules which
were to tax the memories of seamen of the 18th and 19th centuries.
In particular the necessary rules and calculations in the lunar
problem of finding longitude were considered to be most tedious
and difficult, and many efforts were made to reduce the labour of
calculation. Several of the methods which were designed for the
attention of the seamen will be discussed in Chapter VI.

The early timekeepers designed for finding longitude at sea
were costly and unreliable. These factors were responsible for the
long-standing popularity of the lunar method of finding longitude.
Towards the close of the 19th century improvements in techniques
of chronometer manufacture, resulting in increased reliability
and reduction in price, spelt doom for the lunar method, and
lunar tables were tabulated for the last time in a British Nautical
Almanac for the year 1906.
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The principal defect in the method of finding longitude by
means of a chronometer was related to the difficulty of finding
the local time at the place of the ship. This, as we shall see later,
depended upon the solution of a spherical triangle, one side of
which was the complement of an estimated latitude of the obser-
ver. The accuracy of the calculated local time was dependent upon
how close to the actual latitude of the ship was the estimated lati-
tude used in the calculation of the astronomical—or PZX—
triangle,

Largely as a result of a far-reaching discovery made by an
American sea-captain named Thomas Sumner, the longitude-by-
chronometer problem was systematized and simplied. It was due
to Sumner that the seaman was introduced to the concept of posi-
tion-line navigation, whereby he is able to fix his position by what
are regarded as cross bearings of celestial objects. Sumner’s
method, which we shall explain in Chapter VII, was discovered
in 1837. An improvement in Sumner’s method was made by a
French naval officer, Marcq St Hilaire, in 1875.

Notable features in the progress of astronomical navigation,
which stemmed from the so-called New Navigation of Sumner
and Marcq St Hilaire, were the increasingly popular practice of
observing stars for the determination of position at sea, and the
standardization of the methods of computation of the astronomical
—or PZX—triangle.

To relieve the navigator of the tedium of calculation, many
navigational tables were invented to facilitate the solution of the
longitude problem. Many of these tables are based on original
and ingenious ideas. In addition to the so-called short-method
tables, many mechanical devices have been invented to facilitate
astronomical navigation. We shall have occasion to discuss the
more important of the short method tables and mechanical
navigation machines in Chapter VIII.

During the present century, the application of electronic prin-
ciples to the requirements of the seaman has resulted in rapid and
significant changes in the art of practical navigation. The radio
time-signal, first used in 1908, has virtually superseded the
mechanical chronometer. Radio direction-finding, which was in-
troduced in 1911, aids the navigator, particularly when he makes
his landfall in thick weather. Hyperbolic navigation systems, such
as the Decca Navigator, Consol and Loran systems, provide the
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navigator with the means of fixing his ship’s position when out of
sight of land with an accuracy hitherto thought impossible. Iner-
tial and doppler systems of navigation are being developed; and
these, when they are available, will enable a navigator to pinpoint
his ship almost to the nearest yard.

We live in a technological age when the artist of nautical astro-
nomy is fast becoming a part of history. Few would deny that
astronomical navigation is a decaying craft. The story of its de-
velopment through past ages to the present epoch, when the per-
fected methods of astronav are being cast aside for more accurate
electronic methods of navigation, is a story that surely can never
fail to excite the student of the history of science.



CHAPTER 11

Astronomical methods
of time-measuring at sea

1. THE UNITS OF TIME

The passage of time for technical and scientific purposes is per-
ceived by ever-repeating astronomical phenomena which recur at
regular, or nearly regular, intervals. The most important recurring
astronomical phenomena in respect of time-keeping are events
such as: sunrise and sunset; cosmical risings and settings of plan-
ets and bright stars; star, Moon and Sun culminations. All of these
phenomena are the direct results of the Earth’s rotation.

The period of the Earth’s rotation is, for all practical purposes,
regarded as being constant. The time taken for the Earth to make
one rotation of exactly 360° about her polar axis is known as a
sidereal day, because it is manifested by the apparent diurnal revo-
lutions of the fixed stars. The appellation ‘fixed’ is used because
the stars are imagined to lie on the inside surface of a sphere of
infinite radius. This imaginary sphere is the celestial sphere
and, because it has infinite radius, the distance between the Earth
and Sun, for some purposes, is regarded as being of no conse-
quence. For many purposes the Earth is regarded as being located
at the centre of the celestial sphere, but sometimes the Sun is
assumed to occupy the central position.

The Sun, because of his light and heat, governs, to a large ex-
tent, the workaday lives of men; and for ordinary purposes a
period of time known as a solar day is the fundamental unit of
time. A solar day is the rotation period of the Earth relative to the
Sun. Because the Earth moves along her orbit in the same direc-
tion as that of her axial rotation, the interval between successive
culminations* of the Sun at any position on the Earth is slightly
longer—about four minutes—than the interval between succes-
sive meridian passages of a fixed star. That is to say, the day by
the Sun, or solar day, is slightly longer than the sidereal day.

* A celestial body culminates when it is at meridian passage, at which time the
body bears due north or south and attains its greatest daily altitude.
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A great circle on the celestial sphere which lies in the plane of
the Earth’s rotation is the equinoctial. The plane of the Earth’s
spin and, therefore, the plane of the equinoctial, is inclined to the
plane of the Earth’s orbit. During the course of a year, during
which time the Earth makes one circuit of her orbit, the Sun ap-
pears to describe a great circle on the celestial sphere. This great
circle is the ecliptic; and the angle between the planes of the equi-
noctial and the ecliptic—which is about 234°—is known as the
obliguity of the ecliptic.

On two occasions each year the Earth occupies positions in her
orbit when the Sun appears to be on the equinoctial. As the name
equinoctial suggests, on these occasions the lengths of daylight
and darkness all over the Earth are each twelve hours. During the
half year when the Sun lies north of the equinoctial he is said to
have north declination. For the other half year the name of the
Sun’s declination is south. Great circles on the celestial sphere
which cut the equinoctial at right angles meet at two points which
lie at the projected positions of the extremities of the Earth’s spin
axis. These points are the celestial poles, and the semi-great circles
which meet at the celestial poles are celestial meridians. The de-
clination of a celestial object is the numerical value of the arc of a
celestial meridian intercepted between the object and the equinoc-
tial. The maximum declination of the Sun is numerically the same
as the obliquity of the ecliptic, and is 234° N, or S. When the Sun’s
declination ceases to increase and commences to decrease he is
said to be at a solstitial point. The two solstitial points—one in
each of the northern and southern celestial hemispheres-—are
known as the summer and winter solstices respectively.

The points of intersection of the ecliptic and the equinoctial are
known as the spring and autumnal equinoxes respectively. The
spring equinox marks the position of the Sun when his-declination
changes from southerly to northerly; and the autumnal equinox
marks the position when the Sun’s declination changes from
northerly to southerly. It is the spring equinox—a fixed point in
the celestial sphere more commonly called the First Point of
Aries—which serves as a datum point for the measuring of sidereal
time. A sidereal day is defined as the interval that elapses between
successive transits, or culminations, of the First Point of Aries.

Two factors combine which result in the length of the solar day,
as determined by successive transits of the Sun over any given
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meridian, being a variable period of time. The two factors are:
first, the apparent annual path of the Sun is along the ecliptic and
not along the equinoctial because the planes of the Earth’s rotation
and revolution are inclined to one another at an angle of 234°; and
second, the Earth’s orbit is an ellipse having the Sun at one focus:
this resulting in the Earth’s rate of motion around the Sun varying,
being greatest when she is at perihelion (the point in the orbit
nearest to the Sun), and least when she is at aphelion (the point in
the orbit most remote from the Sun).

Mechanical clocks, for ease of both manufacture and use, are
made to keep uniform or regular time. A fictitious body, known
as the Mean Sun, was invented to facilitate this. The Mean Sun is
a celestial point which moves, during the course of a year, along
the equinoctial at a uniform rate.

There are four instants each year when time by the Mean Sun
coincides with time by the real or True Sun. At all other instants
time measured by a clock set correctly to Mean time differs from
True Sun time. The difference between Mean time and True Sun
time at any instant is known as the equation of time; and this is
essentially the correction to apply to Mean time to give True
solar time. Its value lies between + 15 and — 18 minutes.

The units of time so far discussed, namely the sidereal and
solar days, form the basis of a highly accurate system of time-
keeping which demands astronomical observations of star and
Sun transits. It appears from historical evidence that accurate
time-measuring, for which star-transit observations were used,
began with the Chaldean astronomers of Babylon in the 3rd
century BC.

Just as the solar day is the most important unit of time marked
by the Earth’s rotation, the most important period of time marked
by the Earth’s orbital motion is the solar year. The solar year is
defined as the period which elapses between successive instants
when the Sun occupies a particular point on the ecliptic. To the
nearest day, a solar year comprises 365 days. The cycle of the
seasons is considered to commence when the Sun is at the
spring equinox; so that the solar year is usually defined as being
the interval of time which elapses between successive instants
when the Sun is at the spring- or vernal-equinox. This period
is 365 days 5 hours 49 minutes, that is, about 6 hours or a quarter
of a day in excess of 365 days.
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In ancient times, the phases of the Moon must have been re-
garded as being spectacles of great interest, and it is little wonder
that the period of the Moon’s recurring phases—a period known
as a lunation—was used as an important unit of time.

To the mediaeval seaman, as well as to seamen of later ages, a
knowledge of the phases of the Moon (which are related to the
rising and falling of sea-level and the related flood and ebb of the
sea) was of great importance.

The solar day, the solar year and the lunation are often regar-
ded as being the natural units of time; and all other divisions, such
as hours, weeks and civil months, are considered to be artificial.

2. THE CALENDAR

The problem of calendar-making, in which attempts are made to
fit the days and months into solar years so that with the passage of
time the seasons do not fall out of step with the Sun, was one of
great complexity on account of the incompatible nature of the
periods involved.

The earliest method of describing positions of the Sun, Moon
and planets—bodies which have comparatively complex motions
relative to the background of the fixed stars—was to relate posi-
tions in respect of bright zodiacal stars or constellations which lie
on, or near to, the apparent paths of the wandering members of
the solar system. This method of describing positions is not con-
ducive to numerical computation. An improvement in the method
of describing celestial positions came with the introduction of the
ecliptic as a circle of reference. It is unknown, when, and by
whom, this improvement was made; but it is believed to have been
due to Chaldean astronomers of a period five hundred years before
the birth of Christ.

Associated with the civil calendar of the ancient Egyptians were
certain bright stars (or star-groups) which collectively formed a
star-clock system. These stars are located on the celestial sphere
in the vicinity of the ecliptic; and each star or group belonging to
the system rose heliacally ten days before or after the adjacent
member of the clock-system. The ten-day period was known as a
dekade, and the star associated with the commencement of each
dekade was known as a dekan—to use the Greek names.

Now the Earth rotates about 365} times relative to the Sun
during a solar year; but relative to the fixed stars the number of
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rotations is 366. In other words 365} solar days are equivalent to
366% sidereal days. As the Earth revolves in her orbit the Sun
appears to move eastwards across the background of fixed stars at
an average rate of 360/3651° per day. It follows that the fixed stars
appear to move westwards across the sky relative to the Sun at the
rate of about 1° per day. And so it is that stars rise, culminate, and
set, about four minutes earlier on successive days.

A particular clock-star or dekan, which rises heliacally to mark
the commencement of 2 dekade, rises at the end of the dekade,
about forty minutes earlier; and, to mark the beginning of the
succeeding dekade, another dekan would, at this time, rise
heliacally.

The consecutive heliacal risings of dekans were used to mark the
passage of uniform periods of darkness; and, because the night
was marked by the passage across the sky of about twelve dekans
between dusk and dawn, the whole day was divided into twenty-
four units of time, each unit being an hour. The origin of the
twenty-four-hour day is of great antiquity and clearly belongs to
the Egyptians. The sexagesimal system, which originated in Baby-
lon, was later combined with the Egyptian twenty-four-hour day.
Each hour was divided into sixty minutes, each minute being
subdivided into sixty seconds. And so the system of time-keeping
used at the present time owes its origin to the combination of
important aspects of two very ancient cultures. )

3. THE GNOMON

The simplest method of marking the passage of time during the
daytime, when the Sun is not obscured by cloud, is by means of a
shadow cast by a rod which is planted vertically in the ground.
The length of the shadow cast by this simple gnomon decreases
as the Sun approaches meridian passage (at which instant the
shadow is shortest), and increases as the Sun’s altitude decreases
during the afternoon. Not only does the length of the shadow
change during the course of the day, but its direction changes as
well; and the changing direction of the shadow may be used to
mark the passage of the hours of daylight.

As well as for measuring time during the day the gnomon was
used for measuring the march of the seasons. Polewards of the
tropics, the midday shadow of a gnomon is shortest and longest
on the days of the solstices.
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The simple means afforded by the gnomon for time-measuring
led to the invention of Sun-dials of numerous designs. In ancient
times there was no great demand for a high degree of accuracy in
time-measuring; and the fact that the Sun is a very irregular time-
keeper did not detract from its value as a great natural time-piece.
Of course, Sun-dials were useless unless the Sun was shining; and
when the sky was clouded or during night, water- or sand-clocks
were used.

4. THE DIVISIONS OF THE DAY

For astronomical purposes the ancients made use of horae equinoc-
tales or mean time hours.

We find mention of the term ‘watches’ as early as the time
when, as recorded in the Old Testament Book of Exodus, the
Israelites left Egypt. In Roman times the nights were divided into
four watches. It was during the fourth watch, it may be remem-
bered, when the disciples saw Jesus walking on the Sea of Galilee,
as we are told in St Mark’s gospel.

On board the Spanish vessels of the 15th century watches were
set by ‘half-watch’ glasses, which ran for two hours. It is clear,
therefore, that at this period the seaman’s day was divided into
six watches of four hours each. Glasses, both half-hour, as well as
two-hour glasses, were used for time-measuring in the British
Navy, down to the middle of the 19th century. The best ‘sand’
glasses contained not sand but finely-ground eggshell; and the ex-
pressions ‘warming the glass’ and ‘ warming the bell’ arose from
the belief that if the glass was nursed and kept warm, the ‘sand’
ran more quickly than would otherwise be the case; and if this
were done the watch would be shortened. The end of each half-
hour after the commencement of the watch was (and still is)
marked by ringing the bell-—one stroke for each half-hour, so that
eight bells marked (as it still does) the end of one watch and the
beginning of the next.

Time-keeping at sea in ancient times followed the same general
lines as did time-keeping on land. The stars and Sun provided the
principal means of checking the running times of sand glasses.

The star clock of the earliest European navigators involved the
use not of the zodiacal stars but that of the constellation of the
Lesser Bear (Ursa Minor) or the Cynosure of the Phoenicians.
The most important star of this constellation is Stella Maris—the

4
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sailor’s star, also known as Polaris on account of its proximity to
the celestial pole, or hub of the celestial sphere. The extent and
location of the Lesser Bear are such that it is circumpolar in all
but very low latitudes; and in places where it is circumpolar it is
always above the horizon, never rising or setting as do constella-
tions or stars which lie near to or on the equinoctial.

During the course of the year, because of the motion of the
stars relative to the Sun, the positions of the constellations, rela-
tive to the meridian and horizon of an observer, change by swinging
in circular paths centred at the celestial pole at the rate of 360°
per year: that is, at the rate of about 1° per day. The change of
position of any particular star, because of this, may be interpreted
as an angular motion of the celestial meridian on which the star
is located, the rate of motion being about 1° per day. If, therefore,
the position of a particular star relative to the meridian and horizon
(or relative to the celestial pole) is known for a particular time of
the year, that star, provided that it is visible, may be used for
determining the time of day on any day of the year.

The annual retrograde revolution of any fixed star results in the
time at which it occupies a given position relative to the horizon
and meridian—that is, when it has a given altitude and azimuth—
being earlier to the extent of four minutes per day. This is equiva-
lent to two hours per thirty-day month. Thus, for example, if a
star crosses the meridian of a place at say 3 a.m. on January 16th,
it will cross the same meridian at 2 a.m. a fortnight later; and at
1 a.m. on February 15th.

The manner in which the star clock was used by early seamen—
probably as early as the 13th century AD—was to employ the two
stars of the Lesser Bear. These are known as the Guards. The
brighter of the two—the foremost guard as it is called—is Kochab,
which has a magnitude of 2-2* and is only slightly less bright than
Polaris. It was necessary to remember the positions of the Guards
relative to the celestial pole for midnight on the days which
mark the beginnings of the months. To facilitate time-telling by
the Lesser Bear without instrumental aid, a human figure was
imagined to stand vertically in the heavens looking down on the

* The magnitude of a star is an expression of its apparent brightness. Magni-
tude numbers increase as apparent brightness diminishes. A star which is just
visible to the naked eye has a magnitude of 6:0 and has one-hundredth of the
apparent brightness of a star of magnitude 1-0.
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observer, having the Stella Maris in the region of his midriff. The
head of this figure was above, and the feet below, the celestial pole,
and his left and right forearms were imagined to extend to the east
and west respectively of the celestial pole. By relating the mid-
night position of the Guards of the Lesser Bear to this figure, the
time of night could be ascertained with reasonable accuracy. For
example, the Guards are in the head at midnight during mid-
April; and they are in the right arm at midnight in mid-July,
so that at 6 a.m. in mid-April the Guards are in the left arm,
and so on.

5. THE NOCTURNAL

In the 16th century an instrument was invented by the use of
which the time by the Lesser Bear could be ascertained with an
accuracy greater than that possible by using the eye alone. This
instrument is the nocturnal, which was first described by Coignet
in 1581. The earliest nocturnals consist of two concentric plates
of wood or brass. The outermost plate is divided on its circum-
ference into twelve equal parts corresponding to the months, each
part being subdivided into sixths representing five-day periods.
The circumference of the inner plate is divided into twenty-four
equal parts, each part corresponding to an hour of the day. The
outer plate carries a handle, the axis of which corresponds with
the date on which the Guards of the Lesser Bear have the same
Right Ascension as that of the Sun. On this date the Guards cross
the observer’s meridian at noon, that is at the same time as the Sun
crosses the meridian. The inner plate carries a long index, one end
of which is pivoted to the centre of the plate. To ascertain the time
by means of the nocturnal, the projecting tooth marking 12 o’clock
on the inner plate is turned to coincide with the date on the outer
plate. The instrument is then held at arm’s length and the Pole
star is observed through the hole at the centre. The long index bar
is then turned until the bevelled edge coincides with the line join-
ing the Guards. The time of night is then read off the scale of
hours on the inner plate.

In latitudes where the Great Bear (Ursa Major—the Hellice of
the Greeks) is circumpolar, the two stars known as the Pointers—
Dubhe and Merak, may be used in the same way as the Guards of
the Lesser Bear for finding the time of night. Nocturnals of the
17th century had two scales—one for use with the Guards of the
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Lesser Bear and the other for use with the Pointers of the Great
Bear. (See Plate 3.)

Nocturnals, as well as providing the means for ascertaining the
time of night, provided the means for computing the time of High
Water at any place for which the establishment was known. The
‘establishment of a port’, otherwise known as the HW.F. & C.
constant (High Water Full and Change constant), is the interval
of time which elapses between the time of meridian passage of the
Full Moon or New Moon (midnight and midday respectively) and
the time of the following High Water.

The Full Moon bears south in European latitudes at midnight,
and it crosses the meridian of a stationary observer later each day
to the extent of about fifty minutes or four-fifths of an hour. It fol-
lows, therefore, that the Moon at the end of the Third Quarter,
that is at about a week after the time of Full Moon, bears south at
about 6 a.m. At the end of the First Quarter, that is about a week
after the time of New or Change of the Moon, the Moon souths at
about 6 p.m. It is a simple matter to relate the time of the Moon’s
southing and the age of the Moon—that is the number of days
since New Moon occurred—by means of circular scales on the
nocturnal. By applying the establishment—which was obtained
from tide tables—to the time of the Moon’s southing, the approxi-
mate time of High Water, or Full Sea as it was called, could readily
be found.

To find the time of the Moon’s meridian passage for any day of
the year without instrumental aid demanded knowledge of the
epact—this being the age of the Moon on January 1st. Because
twelve lunations amount to 354 days, which is eleven days short
of a year, the epact increases by eleven days each successive
year.

A period known as the cycle of Meton, named after its discoverer,
is one of nineteen years consisting of 235 lunations, after which
the phases of the Moon recur on the same day of the solar year.
The number of the year in the Metonic cycle is known as the
Golden Number.

An interesting description of how to find the time of the Moon’s
meridian passage is contained in Compendium Artis Nauticae,
written by John Collier and first published in 1729—a book in
which each problem of navigation, according to the author, is
‘rendered intelligible to the meanest capacity.’
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‘Rule: divide the Date of the year by 19, add one to the remain-
der, and you have the Golden Number; multiply that Golden
Number by 11, and divide the product by 30, the Remainder is
the epact:... To the epact add, in the month of January 0,
February 2, March 1, April 0, May 3, June 4, July 5, August 6,
September 8, October 8, November 10, December 10, and the
Day of the Month, if this sum is less than 30 it is the Moon’s
age; if greater than 30, take 30 from it, and the Remainder is
the Moon’s age. Multiply the Moon’s Age by 4 and divide the
product by 5, the quotient are the hours, and the remainder are
the minutes of the Moon’s southing.’

The author adds laconically:

‘Note: While the Moon is in the increase she souths before
midnight; whileshe is decreasing she souths before noon. These
things are known by every Cabbin-Boy, Collier’s Nag, and
Waterman’s Servant, therefore needs no farther explanation.’

During the daytime, the Sun, when visible, was used to ascer-
tain the time of day. The Sun crosses the meridian of any observer
at midday; and when he is on the meridian he bears north or
south. North of the tropic of Cancer the Sun crosses the meridian
bearing south on every day of the year. Northern seamen, there-
fore, could readily find the time of noon by means of a magnetic
compass. Near the time of noon, the rate of change of the Sun’s
bearing, or azimuth, is greatest, because his rate of change of
altitude is small, being zero at the instant of noon.

6. SUN TIME AND THE RING DIAL

On the days of the equinoxes the Sun rises bearing due east and
sets bearing due west; that is to say, his bearing amplitude is 0°.
The time of sunrise on the days of the equinoxes is 6 a.m.; and
the time of sunset is 6 p.m. Sunrise and sunset observations on the
days of the equinoxes provided, therefore, the means for finding
time. By assuming that the length of daylight changes at a uniform
and known rate after the days of the equinoxes, the times of sun-
rise and sunset could be estimated. It was the practice of some
mariners in the 16th century to divide the outer margin of the com-
pass card into twenty-four equal parts which they reckoned as
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hours, so that time could be estimated by compass bearing of the
Sun, This was an extremely rough-and-ready method of time
reckoning, but it gave reasonably accurate results in high latitudes.

The common instrument for reckoning time during daytime,
before the advent of mechanical clocks and watches, was the ring
dial. The invention of the ring dial is sometimes attributed to
Gemma Frisius, although Gemma himself, in his dedication of
his ‘astronomical ring’ to the secretary of the king of Hungary,
admitted that it was not entirely his own invention.

Gemma’s ring dial, which was introduced in 1534, consists of
three brass rings. One of these represents the meridian; and one
quadrant of this ring is graduated with a scale of latitude from 0°
to 90°. A second ring, fitted at right angles to the plane of the first,
represents the equinoctial, and the upper surface of this is divided
into twenty-four equal divisions representing hours. On the inner
side of this ring are marked the months of the year. A third ring is
fitted within the first, this being free to rotate about a polar axis.
The third ring is fitted with a groove which carries a movable sight.

To find the hour of the day using Gemma'’s ring, the instrument
is suspended from a point corresponding to the latitude of the
observer on the meridian ring. The sights on the inner ring are set
to the angle of the Sun’s declination, and this ring is turned freely
to point to the Sun. When this has been done, an index opposite
the equinoctial circle will indicate the hour of the day. The plane
of the meridian ring, at the same time, will indicate the directions
of north and south.

A universal ring dial described in Seller’s Practical Navigation,
which was published towards the end of the 17th century, was
thought by the author to have been contrived by Edward Wright
a century before Seller described it; and certain it is that Wright
described the construction and use of this dial in his Certaine
Errors of Navigation . . . first published in 1599.

Ring dials, despite the ingenuity of their inventors, are not re-
liable indicators of time, especially when used on a lively ship at
sea; but no better instrumental means for measuring time was
available until mechanical timepieces came into general use.

7. MECHANICAL CLOCKS

Mechanical clocks were first devised in the 13th century. They
were weight-driven and were, therefore, fixed. An invention of
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the 15th century, in which the driving mechanism of the clock
employed the use of a coiled spring instead of a falling weight,
made possible the portable clock. The earliest portable watches
were called Nuremberg eggs—a name due to mistranslation of
uhrlein (little clock) for eferlein (little egg).

To equalize the force transmitted from a clock spring to the
gear train of a watch, a mechanism known as a fusee was invented
in 1477.

It was not until the early 18th century, when the pendulum
was first applied to clock-making (first done by the Dutch scientist
Huyghens), that the notice of people generally was brought to the
difference between the lengths of the apparent and mean solar
days. Tables were, therefore, pasted on the insides of clock-cases
by means of which the necesssary correction could be lifted in
order to find true solar time from the mean solar time registered
by the clock were it set correctly and working perfectly.

Dr John Dee, a figure famous in the history of navigation,
produced in 1570 an English translation of Arte de Navegar by
Martin Cortes. This was the first textbook on navigation printed
in the English language. In the preface to his translation Dee men-
tions, as part of the art of navigation, the subject of ‘ Horometrie’,
which he described as

‘...an arte mathematical which demonstrateth how, at any
times appointed, the precise usual denomination of time, may
be knowen, for any place. ...

Dee also gave a list of nautical instruments and devices, the use
and construction of which should be understood by the pilot.
Among these, he included ‘. . . Clocks with springs, houre, half,
and three-houre glasses.’

8. ARITHMETICAL NAVIGATION

Now the mathematical arts—to use Dee’s phrase—including horo-
metrie, were arts unknown to seamen by and large. In fact,
simple addition and subtraction and the golden rule of three con-
stituted the whole of the mathematical knowledge of the generality
of seamen until Elizabethan times when, through necessity, geo-~
metry and trigonometry were introduced to—or rather forced
upon—the seaman who would navigate his ship across the ocean.
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The learned doctor played a part of signal importance in
introducing to the English seamen of his day the elements of
mathematics beyond the stage of the golden rule of three. The
application of mathematics—trigonometry in particular—to
navigational problems, both terrestrial and celestial, owed much
to Dr Dee, who may rightly be regarded as being the founder of
arithmetical navigation. His teaching paved the way for the later
Elizabethan scholars, including Edward Wright, Richard Hues,
Thomas Hariot and Edmund Gunter, who devised methods for
calculating navigational problems of importance hitherto impos-
sible of solution by the non-mathematical sailor.

Although the invention of trigonometry is attributed to Hippar-
chus, who used a table of chords for calculating the unknown parts
of triangles, modern practical trigonometry dates from the time
of the introduction of sine tables in the 15th century. The sine of
an angle is equivalent to half the chord of twice the angle in a
circle of unit radius; and it is clearly equal to the ratio between
two sides of a right-angled triangle which contains the angle: the
sides being respectively the side opposite to the angle and the
hypotenuse. The ratio between the adjacent to an angle in a right-
angled triangle and the hypotenuse of the triangle is equivalent to
the sine of the complement of the angle. This is so because the
two non-90° angles of a right-angled triangle together make 90°.
This ratio is known as the cosine of an angle. Other ratios of sides
of right-angled triangles include tangent, cotangent, secant and
cosecant. Tables of these ratios, or trigonometrical functions as they
are called, simplify practical computations of the unknown parts
of triangles ; and the introduction of trigonometrical tables to sea-
men played a most important part in the advancement of the
science of navigation.

The first systematic trigonometrical tables of sines was intro-
duced by Purbach (1423-1461) and his pupil Miiller—better
known as Regiomontanus because he came from Konigsberg.
Miiller (1436-1476) and Purbach were mathematicians of the
University of Vienna. Their sine tables were constructed on the
basis of a radius of 10,000 units, and were designed to facilitate the
solution of astronomical problems. Regiomontanus, after the
early death of Purbach, published tables of tangents and secants
on the same basis as those of the sines.

The first set of trigonometrical tables published in England
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were those of Blundeville, and were printed in his well-known
Exercises . . . necessarie to be read and learned of all young Gentle-
men . . . first published in 1594. Blundeville was responsible, in
no small way, for drawing the attention of practical seamen to the
relative ease with which certain navigational problems could be
solved arithmetically by using the table of sines.

Before the introduction of mathematics to seamen, many
nautical astronomical problems were solved by means of globes.
Several works on the use of globes were published. The first work
on the globes was written by Thomas Hood and was published in
1592. Two years later, in 1594, a learned treatise in Latin on the
same subject was published under the authorship of Richard
Hues. Hues declared, in effect, that although the astronomical
problems of navigation could be solved by mathematical methods,
the use of the celestial globe provided the essential practical solu-
tion without the need to labour with tedious calculations.

“The use of the Globe,” wrote John Davis in his famous work
The Seaman’s Secret, ‘is of so great ease, certainty and pleasure,
as that the commendations thereof cannot sufficiently be ex-
pressed: for of all instruments it is the most rare and excellent.’

And certainly true it is that the globe enables a navigator to
see in his mind’s eye the triangles to be solved, and this facili-
tates their solution. However, with the introduction of tables
of sines and other trigonometrical functions, the costly, cumber-
some and fragile globe, as a practical instrument of navigation—
despite its rarity in the eyes of John Davis—naturally became
obsolescent.

One must not be led to believe that by introducing mathematical
methods to them, seamen became skilful mathematicians. Nothing
of the sort: the mathematical solutions to their problems were
reduced to rules, which were learnt by rote and applied with little
or no understanding of the problems themselves. For a long period
of time this applied ; and it is only within recent times that seamen
have gained some little understanding of the mathematical prob-
lems which, by using rules, they have always, since arithmetical
navigation was introduced in the 16th century, been able to solve
mechanically.

Mathematical navigation did not gain momentum until the
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invention of logarithms by Napier of Merchiston in 1614. Loga-
rithms to base 10-—common logs as they are called—are due to
Henry Briggs, a Gresham Professor of Geometry. Edward
Wright, the discoverer of the Mercator principle, and the first to
compile tables of meridianal parts, was instrumental in translating
Napier’s work into English for the benefit of navigation. Napier
wrote:

‘... It appears that some of our countreymen well affected to
[mathematical] studies. .. procured a most learned mathe-
matician to translate the same [Napier’s great work Mirifici
Logarithmorum Canonis Descriptio] into our vulgar English
tongue.” Wright’s translation was found by Napier to be °. ..
most exact and precisely conformable to my mind and the
originall.’

Wright’s work on logarithms was published posthumously by
his son Samuel in 1616.

Edmund Gunter was the first to publish, in 1620, a table of
common logs of trigonometrical functions. Gunter, who was a
Gresham Professor of Astronomy, was the inventor of the scale
which bears his name. Gunter’s scale and the ‘Plain’ scale de-
scribed and popularized by John Aspley in his Speculum Nauticum
in 1624, were instruments of great value in the hands of seamen
right down to the beginning of the present century for facilitating
the solution of trigonometrical and other mathematical problems.

Before the end of the 17th century, collections of nautical
tables included logarithms and natural and logarithmic trigono-
metrical functions, as well as the traditional tables of Sun’s de-
clination, amplitudes, Right Ascensions of stars, and tide tables;
and these tables were in general use amongst seamen.

The ‘Doctrine of the Sphere’, together with his navigational
tables, enabled the mariner to solve any of the numerous astro-
nomical problems involving spherical triangles, provided that he
memorized, or had access to, the appropriate rule. Not the least
important of these astronomical problems were those related to
finding the hour of the day or night. Problems such as:

1. Given latitude, Sun’s declination, and Sun’s altitude, find
the time of day.
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2. Given latitude, Sun’s azimuth, and Sun’s altitude, find the
hour of the day.

3. Given latitude, Sun’s Right Ascension, and star’s altitude,
find the hour of the night;

are all relatively simple problems of spherical trigonometry, which
may be solved readily using the logarithmic trigonometrical
functions tables.

Many nautical astronomical problems involved right-angled
spherical triangles, and Napier’s mnemonic rules for solving right-
angled spherical triangles were popular devices amongst seamen.

9. THE AZIMUTH cOMPASS (See Plate 4)

The azimuth compass, in contrast to the steering compass, as its
name implies, was used for observing the Sun’s azimuth. The in-
strument, of which there were many designs, consisted of an ordi-
nary magnetic compass, the box of which was fitted on its upper
surface with a broad brass circle which carried a shadow pin, and
which was graduated in degrees.

The principal use of the azimuth compass was for observing the
Sun’s magnetic azimuth in order to discover the variation, or the
north-easting or north-westing, of the needle, as it was sometimes
called. This was necessary in order to rectify the course. But the
Sun’s azimuth at any time, together with the observer’s latitude
and the Sun’s altitude, enabled the mariner to compute the time.

10. NAUTICAL TABLES FOR DETERMINING TIME

An interesting table appears in Wakeley’s Mariner’s Compass
Rectified, first published at about the middle of the 17th century,
by means of which the exact hour of the day could be determined,
the Sun being upon any point of the compass, *. . . fitting all places
upon the earth and sea that lie between 60 degrees of latitude
either north or south.’

Wakeley’s book, which ran into many editions, and which was
published after his death by his apprentice James Atkinson, was
evidently a very popular work with seamen of the day. Each page
of Wakeley’s table covers a particular degree of latitude, and the
table on that page is described as ‘ A sundial for that latitude’.

Tables often included in collections of navigational tables, by
means of which time at night could be ascertained, included:
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1. Table of Star’s Right Ascensions.
2. Table of Sun’s Right Ascension for noon.

These two tables, used in conjunction with one another, ren-
dered it possible to find the time of meridian passage of a given
fixed star. This is so because the interval between the times of
meridian passages of the Sun and the star on any given day is
equivalent to the difference between their Right Ascensions ex-
pressed in time. The Right Ascension of a heavenly body, it will be
remembered, is the arc of the equinoctial between the spring
equinox (First Point of Aries), and the celestial meridian of the
object, measured eastwards from the spring equinox. Thus, if the
Sun’s R.A. is less than a given star’s R.A. the star will transit later
than noon by an amount which is equal to the difference between
the R.A.’s of the Sun and the given star. A star whose R.A. is
3 hrs. 20 mins. will cross an observer’s meridian on the day of the
spring equinox (at which time the Sun’s R.A. is 00 hrs. 00 mins.)
at 3 hrs. 20 mins. p.m., whereas a star whose R.A. is 20 hrs.
40 mins. will cross an observer’s meridian on the same day at
8 hrs. 40 mins. a.m., that is 3 hrs. 20 mins. before noon.

A useful table found in many 17th- and 18th-century naviga-
tional manuals was the Table of Southing of Selected Stars at
Midnight. This table was constructed from tables of star’s R.A.s
and Sun’s R.A. for each day of the year.

Another table useful for time-measuring at night was one
showing the time when a pair of selected stars had the same azi-
muth. This table, of course, was drawn up for a particular latitude,
and was, therefore, not ideally suited for sea use.

11. THE NAUTICAL ALMANAC

In almost every astronomical computation for nautical purposes,
the seaman is dependent upon an ephemeris, or table of astrono-
mical data such as the daily celestial positions of the Sun, Moon
and planets, and the R.A.s of the stars. The first official nautical
ephemeris, or almanac, was that published by the French—Con-
noissance des Temps—which dates from 1678. The first British
Nautical Almanac appeared in 1765 for the year 1767; but ephe-
merides of the Sun, Moon, planets and stars, for the use of sea-
men, were published privately long before this time.

Those elements of nautical astronomical computation which
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are in perpetual change, such as the Sun’s declination and Right
Ascension, are given in a nautical almanac for times corresponding
to a particular standard—or prime—meridian; and it is generally
necessary to apply corrections to the tabulated elements when the
almanac is used in any longitude other than that of the standard
meridian.

The standard time used in the early British Nautical Almanac
is that of the Greenwich meridian, and the times given are
described as astronomical time.

The civil day at sea commenced at midnight, and any time
(described as the angle at the celestial pole measured westwards
from the observer’s lower celestial meridian to the meridian of
the Sun) was designated a.m. (ante meridiem) if the Sun were east
of the observer’s meridian. If the Sun were west of the observer’s
upper celestial meridian the time (in this case described as the
angle at the celestial pole between the observer’s upper celestial
meridian measured westwards to the meridian of the Sun) was
designated p.m. (post meridiem). The astronomical day, in con-
trast to the civil day, commenced at the instant the Sun crossed
the observer’s upper celestial meridian, that is, at noon. The civil
day commenced, therefore, at the midnight preceding the noon
which marked the beginning of the astronomical day.

The Mean Solar Day is the interval between successive transits
of the Mean Sun across the same celestial meridian. The civil day
commenced when the Mean Sun culminated at noon. Itis divided
into two parts each of twelve hours; and a clock whose dial is
divided into twelve divisions, and which is regulated so that
the hour hand makes one circuit of the dial in half a mean solar
day, and which is set so that the hour hand corresponds to the
12 o’clock position at noon or midnight, is a perfect indicator of
civil time.

Since the civil mode of time-reckoning was always twelve
hours in advance of astronomical time-reckoning, the seaman
found it necessary to be able to reduce civil time to astronomical
time at the same instant. If the civil time at ship were p.m., the
astronomical time would be the same with the p.m. omitted.
Thus, March 3rd at 6 p.m. civil time was the same as March 3rd
06.00 hrs. astronomical time. If the civil time were a.m. the astro-
nomical time was found by adding twelve to the hours and sub-
tracting one from the day of the month. Thus, 4 a.m. on March
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15th civil time was the same as 16.00 hours March 14th astrono-
mical time.

The problem of finding the astronomical time and date at
Greenwich, in order to extract astronomical elements from the
Nautical Almanac, involved expressing the ship’s time (civil mode)
astronomically, and then applying the longitude expressed in time
reckoning 1 hour for each 15° of longitude.

For the first time in the 1925 almanac, and in every Nautical
Almanac published since that year, times styled G.M.T. are
reckoned from midnight as in civil usage; and the seamen, since
1925, has no longer been confused by having to use both civil and
astronomical times.

In order to ascertain the ship’s longitude when at sea, it is
necessary to know both the local and the corresponding Green-
wich Mean Time. Longitudes have, since 1884, been reckoned
almost universally from the meridian of Greenwich, the Green-
wich meridian having been adopted as a prime meridian by the
members of an international conference held at New York during
that year. The French member of the conference dissented, but
in 1911 the French adopted the Greenwich meridian.

Longitudes are now reckoned eastwards and westwards from
the Greenwich meridian to the 180th meridian, which latter is the
antipodal meridian to the prime meridian. Thus, if the Greenwich
Mean Time (G.M.T.) at any instant is greater than an observer’s
Local Mean Time (L.M.T.) at the same instant, the observer is
located in the western hemisphere. If the G.M.T. is less than
an observer’s L.M.T. at the same instant, the observer is in the
eastern hemisphere. This is a direct consequence of the Earth’s
spin towards the east: a motion which is manifested by the appar-
ent diurnal revolution of the celestial concave towards the west.
And so it is that diurnally recurring astronomical events, such as
sunrise, sunset and Sun’s culmination occur on the Greenwich
meridian later than they do at places to the east of the Greenwich
meridian, and earlier than in places which have west longitude.
Hence the seaman’s rule:

Longitude west, Greenwich time best.
Longitude east, Greenwich time least.

If the L.M.T. at a certain instant is 9 hrs. 20 mins. and the
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G.M.T. at the same instant is 10 hrs. 20 mins., the longitude of the
local meridian, reckoning 360° per 24 hours, is 15° W. If, on the
other hand, the L.M.T. is 10 hrs. 20 mins. and the corresponding
G.M.T. is 9 hrs. 20 mins., the longitude of the local meridian is
15°E.

12. COMPUTING LOCAL TIME

It should be clear, from the foregoing remarks, that the problem
of ascertaining longitude by astronomical observations is essen-
tially a problem of finding Local Time and time at some prime
meridian for the same instant. We shall discuss, in a later chapter,
the methods available to the mariner since the earliest navigations,
by means of which he could find the time corresponding to a par-
ticular astronomical event at a particular reference, or prime meri-
dian. The problem of finding Local Time of a particular astrono-
mical event, such as the Local Time at which a star or the Sun has
a particular altitude, is primarily a problem of spherical trigono-
metry involving knowledge of the values of arcs and angles of a
spherical triangle known as the astronomical- or PZX-triangle.

Fig. 1 illustrates a typical astronomical triangle. The pairs of
adjacent sides of the triangle meet at: the celestial pole (P), the
observer’s zenith (Z), and the observed heavenly body (X). It
should be evident from the figure that a similar triangle may be
projected on to the Earth’s surface. If the Earth-triangle is denoted
by opx, then:

arc PZ = arc op = (90°—latitude of o, the observer)
arc PX = arc px = (90°—declination of X)
arc ZX = ox = (90°—altitude of X)

The three angles of the PZX triangle are:

P which is known as the Local Hour Angle of X

Z which is known as the Azimuth of X

X which is known as the Angle of position or Parallactic
Angle

If three of the six parts of the PZX triangle are known, it is
possible to calculate the unknown parts by spherical trigonometry.
For calculating Local Time, the angle P is required. If the ob-
served body is east of the observer’s meridian, the angle P is a
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measure of the time that must elapse before the body culminates.
If, on the other hand, the bedy is west of the observer’s meridian,
the angle P is 2 measure of the time that has elapsed since the body
culminated. In the case of Sun observations, the angle P expressed
in hours, minutes and seconds, is the interval of solar time before
or since noon. Thus, if angle P is 30°, and the Sun is east of the
meridian, the Local Time is 10 a.m., that is two hours before

FIGURE 1

noon. If the angle P is 30°, and the Sun is west of the observer’s
meridian, the local time will be 2 p.m., that is to say two hours
will have elapsed since noon.

13. THE MARINE CHRONOMETER

In the 18th century, when they were first used on ships for the
purpose of finding longitude at sea, chronometers were instru-
ments of great rarity. The high cost of manufacture and the rela-
tively small number of reliable pieces produced were factors that
brought chronometers within reach of only the wealthy. It was not
until the middle of the 19th century that the mechanical construc-
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tion of these timekeepers had attained an unexampled and high
standard of efﬁmency, the improvement in manufacture having,
at the same time, been accompamed by a reduction in the cost of
production. After this time it was not unusual for ocean-going
ships to have three, or even more, chronometers on board. The
British Admiralty provided all sea-going men-of-war with three
chronometers, although a little more than a century ago ships of
the Royal Navy were furnished with only one. If, however, a cap-
tain supplied a private chronometer the government provided a
third. It was argued that if a ship had only one, it would be unwise
to trust in it implicitly, and, therefore, great caution would have
been necessary. If a ship had two, and they differed in their rates,
it would be impossible to determine which one (if either) was cor-
rect. If, however, three were carried, then the coincidence of any -
two would suggest the truth of their results. Moreover, by com-
paring the three, anirregular one could, in some cases, be detected.

The essential feature of a marine chronometer is the ingenious
device known as the compensated balance: compensation for tem-
perature changes being achieved by means of a bimetallic balance
wheel.

The rate of a chronometer is closely related to temperature. An
increase in temperature causes the rate of an uncompensated
chronometer to be retarded, whereas a decrease in temperature
results in an accelerated rate. The object of the compensated
balance is to correct this defect.

The effects of a change in temperature are, first, a change in the
tension in the balance spring and, second, a change in the moment
of inertia of the balance wheel due to change in the distribution of
the mass of the wheel. The tension in the balance spring varies
directly as the temperature, whereas the moment of inertia of the
balance wheel varies as the square of the temperature. Accordingly
there are two, and only two, temperatures at which the tempera-
ture compensation is correct. The aim of a chronometer-maker is
to construct instruments which are correctly compensated at two
standard temperatures—which are usually 45° F. and 75° F. At
temperatures between the standards, a compensated chronometer
should gain, and at temperatures above the higher, or below the
lower, standard temperature, it should lose. A century ago, Cap-
tain Charles Shadwell, R.N., in his classic study on the Manage-
ment of Marine Chronometers, observed that the time and trouble

5
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expended on compensating a chronometer for temperature was a
big factor in the cost of its production. No doubt the same applies
at the present time. The author of the 1928 edition of the Admiralty
Manual of Navigation stated that,

“The marine chronometer is simply an enlarged watch . . . and
its mechanism is by no means complicated, although its con-
struction demands the most accurate workmanship, and its
adjustment requires a high degree of skill.’

Cases have been recorded of elaborate attempts having been
made to keep the temperature of the air in the chronometer box as
nearly uniform as possible. In a French vessel, for example, during
a voyage of survey in the year 1816, the air in the chronometer box
was maintained at a uniform temperature of 30° C. by means of
an oil lamp, the admission of air into the box being regulated by
an aperture, the size of which could be adjusted by a sliding
shutter. Such precautions were rewarded, wrote Shadwell, ‘by
the watches performing their functions with extreme regularity.’

It has also been noted that artificially keeping the chronometers
at a uniform temperature ensures not only their being kept in dry
air, but also the maintenance of their lubricating oils in a state of
uniform fluidity.

The rigorous routine relating to the management of a chrono-
meter on board a ship, which was formulated during the early
history of the instrument, has persisted, at least in part, to the
present time. The winding of the chronometers on board is still
regarded as something of a ritual, and to forget to wind them at
the proper time is a crime which all self-respecting navigating
officers live in fear of committing.

The adoption of a systematic routine for winding the chrono-
meter favoured the uniformity of its rate, as well as reducing the
chance of it being accidentally allowed to run down. If more than
one chronometer were carried they were wound in the same order
at the same time each day. The habit of so doing provided a safe-
guard against the caprice of memory. In winding, the turns or
half-turns were counted, and the last turn or part of a turn made
gently but deliberately until the key butted. An oft-told story is
related to the case of the over-careful winder who, for fear of in-
jury to the chronometer, never wound up to the butt. This re-
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sulted in a little being lost each day, until after a time the chrono-
meter was found to be stopped at the time it was due to have been
wound. There is, of course, an indication on the face of a modern
chronometer, by means of which the state of winding may readily
be seen, so that it is unlikely for a chronometer to run down if a
daily check is made on the indicator.

To ensure that the daily duty of winding the chronometer was
always carried out, it was the practice in men-of-war for a sentry
to report to the captain and the officer-of-the-watch when the
time had come for the duty to be performed. The sentry subse-
quently was not allowed to be relieved until the corporal of the
guard had ascertained from the officer in charge of the chrono-
meters that the operation had been performed, and had duly re-
ported the same to the officer-of-the-watch and the captain. The
corresponding arrangement in merchant ships normally involved
a simple inscription afforded by the magic letters CHRON scribbled
—usually with a soap tablet on the mirror fitted in the cabin of
the officer in charge of clocks, the inscription serving to remind
him of an important daily duty.

When at sea, the regular routine of the ship rendered it relatively
difficult to overlook the duty of attending to the chronometers; but
when in port, distractions due to a variety of causes, often resulted
in the chronometers not being wound, with the consequent
possibility of their running down and stopping.

A chronometer which has an irregular rate is not suitable for
the purposes of astronomical navigation, unless its rate can be
checked by radio time-signal soon before or just after an observa-
tion has been made. Before the days of radio time-signals, if the
daily rate of a chronometer, even if it were regular, exceeded six
or seven seconds a day, it was considered to be unfit for naviga-
tional use.

After radio communication had become possible the first elec-
tronic aid to navigation was introduced to the seaman in the form
of the radio time-signal. At the present time radio time-signals are
available, on request, at any time of the day.

Since ships have been equipped with radio gear, the need for a
chronometer hardly exists. In fact, a reliable wrist watch, having
a sweep seconds hand, may be used to measure the G.M.T. of an
astronomical event, provided that its error on G.M.T. may be
ascertained at a time not much different from the time of the
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observation of the event. In other words, the importance of the
chronometer as an instrument of navigation has diminished since
the advent of radio telegraphy.

Now that the need is almost non-existent a new type of marine
chronometer has been produced. This new chronometer is repu-
ted to have an accuracy of one part in a million. This means that
its rate is within a little more than a second per month. This type
of chronometer, the functioning of which is no way depends upon
the memory of the clock officer, employs electronic techniques
and a quartz crystal. It marks a significant advance in the con-
struction and degree of accuracy of the marine chronometer.



CHAPTER 111

The altitude-measuring
instruments of navigation

I. INTRODUCTORY

In this chapter we shall be concerned with the instruments used
by the seaman down the ages for taking sights as a preliminary to
calculating the latitude or longitude of his ship when out of sight
of land. The earliest of these altitude-measuring instruments were
adapted from those used by astronomers and surveyors ashore.

The most important astronomical observation made at sea—in
ancient as well as in modern times—is the altitude observation, in
which the arc of a vertical circle contained between an observed
celestial body and the sea horizon vertically below it is measured.
The problem of measuring vertical angles ashore is comparatively
simple; but at sea, with an unsteady deck from which to observe,
the difficulties of making an accurate altitude observation were
not entirely overcome until the advent of Hadley’s reflecting
quadrant in the 18th century.

The earliest instruments used by navxgators for observmg
altitudes were the seaman’s guadrant and the mariner’s astrolabe.

2. THE SEAMAN'S QUADRANT (See Plate 5)

It appears that, chronologically, the seaman’s quadrant was the
first altitude-measuring instrument used by navigators. The in-
strument is simply a quadrant of wood or metal provided with a
plumb-line suspended, when the instrument is in use, from the
centre of the arc of the quadrant. One radial edge of the instru-
ment is fitted with two pinnules or sights.

The portable seaman’s quadrant was, in all likelihood, adapted
from the surveyor’s quadrant; this, in turn, was adapted from the
fixed astronomer’s mural quadrant used for measuring altitudes
of celestial bodies, and from the astronomer’s hand quadrant
which, by means of the Sun’s altitude and curved lines engraved
on the instrument, enabled the observer to find the time of day.

The mural quadrant of the early astronomers was supported,
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against a wall of masonry, in the place of the meridian. One radial
edge of the quadrant was plumbed vertically. The shadow of a pin
at the centre of the quadrant was cast on a plate held close to the
graduated arc, so enabling the observer to measure the altitude of
the Sun or Moon.

One disadvantage of the mural quadrant was the difficulty of
graduating the arc. The ease with which a straight line could be
divided, compared with the difficulty of dividing an arc of a circle,
resulted in the triguet um being an instrument of greater popu-
larity than the mural quadrant.

The triquet um, otherwise known as Ptolemy s Rules, consists
of a vertical post at the top end of which, on a horizontal bearing
pin, is pivoted an alidade or sighting rule fitted with upper and
lower pinnules. The lower pinnule is provided with a tiny hole,
and the upper pinnacle, or backsight, is provided with a large hole.
A thin lath, which is pivoted at the lower end of the graduated
post, provides the means of measuring the length of the chord of
the angle equal to the altitude of the celestial body observed in the
sights.

To make an observation with a triguet um, the celestial body is
sighted through the holes in the pinnules fitted to the sighting
rule; and a pin on the alidade, fixed at a distance from the upper
pivot equal to the distance on the vertical post between the alidade
pivot at the top and the lath pivot at the bottom, is used to make a
mark on the lath. After the mark has been made the lath is swung
up to the graduated post, and the chord, corresponding to the
measured altitude, is read off. A table of chords is then used to
ascertain the required angle.

Al Battani, the celebrated Arab astronomer of the 9th century
AD, is credited with being the first to suggest graduating the lath
to avoid the necessity of transferring the reading of the lath to the
scale on the post, so eliminating one source of possible error.

Fig. 1 illustrates a triquet um.

When a celestial body is observed through the sights of a triguet
um, the zenith distance of the body is equivalent to the angle be-
tween the vertical post and the alidade. Both Copernicus and the
famous Tycho Brahe observed with a triquet um.

The arcs of the earliest quadrants used by the Portuguese sea-
men, during the early part of the Golden Age of Discovery, were
not graduated in degrees of altitude (or zenith distance). Angular
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measure was not to play a part in practical navigation until the
mathematical ability of seamen had advanced to a stage beyond
that possessed by the first ocean navigators. The earliest practice
appears to have been to mark the arc of the seaman’s quadrant
with the names of important coastal—or island—positions corres-

FIGURE 1I

ponding to the positions of the plumb-line when the Pole Star
was observed. In their voyages along the West African coast,
during the 14th and 15th centuries, Portuguese navigators knew
when they were due west of each of several coastal stations by
noting when the plumb-line on the quadrant corresponded with
the name of the station engraved on the arc of the quadrant, when
observing the Pole Star through the sights.

The first use of the quadrant appears to have been for measuring
altitudes of the Pole Star as a means of finding distance south of
Lisbon or other port of departure. With the introduction of the
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table of Sun’s declination for navigational purposes, the seaman
was taught to find his latitude in degrees north or south of the
equator by meridian altitude observation of the Sun. It is not un-
likely that at the time when this method became available to the
seaman, angular units were introduced to him, the Sun’s declina-
tion in the table being given in degrees and minutes of arc north or
south of the equinoctial. The seaman’s quadrant was, from this
time onwards, graduated in angular measure. .

The seaman’s quadrant demanded two observers; one to sight
the Sun or star, and the other to note the position of the plumb
line. It was an altitude-measuring instrument quite unsuitable for
observations at sea unless the sea were smooth and the air calm.
The degree of accuracy of the measured altitude was coarse—al-
though this could have been improved by employing instruments
of larger radius. It was a simple instrument and one that could be
made, without difficulty, by the mariner himself. Using the
plumb-line to define the vertical, the quadrant could be used for
measuring altitudes even when the sea horizon was obscured
because of darkness or thick weather.

3. THE ASTROLABE (See Plate 2)

In about 1480, the astronomer’s planispheric astrolabe was adap-
ted for sea use. The word astrolabe (dorpoAeBov) has been used to
designate a variety of instruments used by astronomers. Included
amongst these are the armillary spheres. An armillary sphere con-
sists of a number of concentric rings, each representing one of the
principal great circles of the celestial concave. Armillaries were
designed to ascertain celestial positions and celestial angles with-
out having to resort to tedious calculations. Equatorial armillaries
were used to determine declinations and Right Ascensions of celes-
tial positions; and zodiacal armillaries were used to determine
celestial latitudes and celestial longitudes—the coordinates of the
ecliptic system. The armillary sphere is said to have been the in-
vention of Eratosthenes in about 250 BC and they appear to have
been used by Hipparchus, Ptolemy and Tycho Brahe, amongst
others, for mapping the heavens. '

The term planispheric astrolabe applies to a ‘compendium of
instruments’ as R. T. Gunther describes it in his Early Science in
Oxford. The planispheric astrolabe consists of an evenly balanced
metal disc fitted with a ring or shackle at a point in its circumfer-
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ence from which the instrument may be suspended. Centrally
pivoted to the metal disc is an alidade or diametrical sighting rule
fitted with a pair of pinnules. By means of the alidade a celestial
body may be sighted and its altitude measured, the metal disc
being provided with a scale of angles extending from 0° to 90°,
one radial edge of the alidade providing the fiducial line or index.

The metal disc of the astrolabe is recessed to accommodate one
of a series of thin metal plates, each engraved with a stereographic
projection of the celestial sphere appropriate to a particular lati-
tude. Covering the plate is a metal disc in the form of a star map
designed in fret work. Below the rete, as this openwork star map
is called, the interchangeable plate is clearly visible.

The planispheric astrolabe is essentially an astronomer’s in-
strument employed for measuring time, using the Sun’s altitude
during the day and that of one of a small number of bright stars
and planets by night.

The great Hipparchus of Bithynia is usually credited with the
invention of the planispheric astrolabe. It is almost certain that
the planispheric astrolabe could not have been used before the
time of Hipparchus, since scientific astronomy had not advanced
to the stage when such an instrument could have been put to
profitable use. If, in fact, Hipparchus did invent the planispheric
astrolabe, the instrument of his invention could have been but a
primitive form of the complex astrolabes of a later age. It is to the
astronomers of India, Persia and Arabia that honour is due for
the perfecting of the planispheric astrolabe.

The oldest surviving treatise on the astrolabe was written in the
~ 7th century ap by Severus (Sebokht). It was not until the 13th
century, when Ancient Greek learning was revived, that the astro-
labe was re-introduced into Europe by Arab scholars. The first
treatise on the astrolabe written in Britain was that of Geoffrey
Chaucer (c. 1340-1400) which he made ‘to his sone that callid
was Lowis.” This treatise was written in 1390 and appears to be a
re-statement of an Arabic work of the 8th century.

Unlike the astronomer’s astrolabe, which is essentially a time
piece, the mariner’s instrument (which has no real right to the
appellation astrolabe) is a device used simply for measuring the
altitude of Sun or star. The varied uses of the astronomer’s astro-
labe—or mathematical jewel as it was called—were responsible
for its popularity. And with increased popularity we find that
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astrolabes increasingly became objects of rare beauty reflecting
the highest degree of art and skill of the instrument-maker. The
exquisite and elaborate astrolabes of the period between the 16th
and 19th centuries rank with the finest examples of the art of
metal-working. The mariner’s astrolabe, of which no more than a
dozen or so examples are known to exist, is an instrument having
but little beauty, ornamentation or precision. Itis simply an astro-
nomer’s astrolabe shorn of its astronomical appendages, leaving
only the graduated metal ring and alidade.

According to Ramond Lull, the famous alchemist and astrono-
mer of Majorca, the astrolabe was in use among the Majorcan
pilots as early as 1295; but Purchas, in his Pilgrims, states that
Martin Behaim was the first to apply the astrolabe to the art of
navigation in the year 1484.

Martin of Bohemia was commissioned by John II, king of
Portugal—who was active in advancing scientific navigation—to
teach the pilots of Portugal the rudiments of nautical astronomy.
There is no doubt that Martin introduced the astrolabe to the
Portuguese seamen who initiated the Golden Age of Discovery.

The earliest record of a description of how an astrolabe is made
and used for sea purposes appears in Arte de Navegar by Martin
Cortes. The earliest seaman’s astrolabe was a massive open ring,
usually of metal, so that it would hang vertically and steady. It was
of relatively small diameter so that, when in use, it offered but
little resistance to wind. It was held vertically by means of a metal
ring or shackle, or by a thread fitted to the top of the instrument.
An alidade, having two sights, completed the instrument. One of
the quadrants was graduated in degrees of altitude (or zenith
distance).

Master Thomas Blundeville, in his Exercises ... informs us
that the astrolabes of the Spanish were: . .. not much above 5
inches broad and yet doe weigh at least 4 pounds. . . .’

On the other hand, Blundeville mentions that:

‘English pilots . . . that be skillful, do make their sea astrolabes
6 or 7 inches broad and therewith verie massive and heavie, not
easie to be moved with winde, in which the spaces be the larger
and thereby the truer.’

The astrolabe was used for measuring altitudes of the noon-day
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Sun by day, and the Pole Star by night. Each of the sighting vanes
described by Cortes carried two holes: one, a relatively large hole
for use when observing the Pole Star; and the other, a tiny hole,
for use when observing the Sun. For observing the altitude of the
Sun the ring was held lined up with the plane of the vertical circle
through the Sun. The alidade was then turned to a position so

FIGURE 2

that a beam of sunlight passed through the hole in the upper
sighting vane and fell near the corresponding hole in the lower
sighting vane. At times when the Sun was partially obscured by
thin clouds, it was necessary to observe him direct through the
larger holes in the sighting vanes, as was done when sighting the
Pole Star.

An improvement on the earliest type of astrolabe was the en-
graving of a second quadrant, thus providing a means of checking
and eliminating errors due to faulty graduation and centering of
the alidade. The degree of accuracy of altitudes obtained from
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astrolabe observations made at sea was coarse, and was unlikely
to have been better than to the nearest degree of arc.

The seaman’s astrolabe was often called an astronomical ring,
although the latter name is often used to describe a modified form
of mariner’s astrolabe. The astronomical ring was used solely for
measuring the meridian altitude of the Sun, and was preferred
to the simple astrolabe because the divisions on the ring were

‘larger, and, therefore, more accurately cut than those on the
astrolabe.

The astronomical ring consisted of a metal ring of about nine
inches in diameter fitted with a ring, shackle, or thread, so that it-
may be held vertically. At a point on the outer side of the ring, 45°
from the point of suspension, is the apex of a conical shaped hole.
This lies at the centre of a quadrant which is projected on to the
inner surface of the ring as illustrated in Fig. 2.

When making an observation with an astronomical ring the in-
strument is held at the point of suspension and lined up with the
Sun when he is on the meridian. The sunbeam falling through the
conical shaped hole appears as a bright spot on the graduated scale
of altitude (or zenith distance) on the inner side of the ring.

The seaman’s astrolabe was a clumsy instrument and ill-adapted
for sea use. One may appreciate how impossible it would be to
measure, by its means, the altitude of the Sun or a star from a
rolling ship, with any degree of precision.

4. THE CROSS-STAFF

An improvement on both seaman’s quadrant and astrolabe was
the seaman’s cross-staff, known variously as baculus Jacobi or
Jacob’s staff, virga visoria, radius astronomicus, and by the Portu-
guese and Spanish as balkestila, meaning cross-bow.

The invention of the cross-staff is often attributed to Levi ben
Gerson (1288-1344), a Jew of Provence. It is doubtless true that
Levi was first to describe the instrument in writing; but the inven-
tion appears to belong to Jacob ben Makir, who flourished during
the 13th century.

In its simplest form the baculus Facobi described by Levi ben
Gerson consists of a square-sectioned graduated staff having a
cross-piece, or transom or transversary, set at right angles to the
staff, along which it could be slid. One end of the staff was held at
the eye and the two ends of the transom, when correctly set, pro-
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vided lines of sight termmatmg respecuvely at the two objects
between which the angle is required.

In 1470, Regiomontanus described the cross-staff under the -
name radius astronomicus. Pedro Nuiiez also described the instru-
ment in an essay published in 1537. Our own countryman William
Bourne described the use of the cross-staff in his Regiment for the
Sea, first published in 1574. Bourne described the cross-staff
under the name balla stella, and his remarks on its use are inter-
esting:

‘... that it is beste to take the height of the Sunne with the
crosse staffe, when the Sun is under 50 degrees in heigthe above
the Horizon, for two causes. The one is this: till the Sunne be
50 degrees in heigthe the degrees be largely marked uppon the
crosse staffe, but after (the Sunne being above 50 degrees high)
they are lesser marked. The other is, for that the Sunne being
under 50 degrees in heigthe, you may easily take the height, be-
cause you may easilie see or viewe the upper end and the nether
end of the crosse staffe bothe at one time: but if it doe exceed
50 degrees, then by the meanes of casting your eye upwardes
and downwardes so muche, you may soone commit error, and
then in like manner the degrees be so small marked, that if the
Sunne dothe passe 50 or 60 degrees in heigth, you must leave
the cross staffe and use the Mariner’s Ring, called by them the
Astrolaby which they ought to call the Astrolabe.’

Bourne goes on to say:

‘The Astrolabe is best to take the height of the Sun, if the Sunne
be very high at 60, 70, or 80 degrees, and the cause is this: the
Sunne coming so neere unto your zenith, hathe great power of
light, for to pearce the two sights of the Alhidada of the Astro-
labe, and then it is not good to use the crosse-staffe, for that the
Sunne hurteth the eyes of a man, and besides that it is to high to
occupy the crosse staffe (as before is declared) so that this way
you may very well preserve your eyes. If you have not glasses
upon your staffe (to save your eyes when taking the heigth of
the Sunne) but be unprovided of them, do thus: take and cover
the Sunne with the end of the transitorie of the crosse staffe,
unto the very upper edge or brinke of the Sunne (so shall you
not need to beholde the brightnesse of it), and with the other end
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of the transitorie to take the horizon truely, and that being done,
and that the Sunne is 30 or 31 minutes in diameter or breadth,
therefore you shall rebate 15 minutes from the altitude or
heighte of the Sunne.’

The cross-staff does not appear to have been used by seamen
until the early 16th century. It is interesting to note that neither
Columbus nor Vasco da Gama used it, both having navigated by
of astrolabe and quadrant.

Martin Cortes, in his Arte de Navegar, first published in 1551,
and translated into English by Richard Eden in 1561, appears to
have been the first to describe the cross-staff specifically for the
seaman’s use, and to give instructions for making, graduating and
using it. :

The principal defect of the cross-staff rested in the fact that un-
less the eye were placed in the exact position for observation, an
error known as éye- or ocular-parallax affected the observation.
To avoid or reduce this error many a navigator had his staff
specially shaped so that the observing end fitted snugly over his
cheek-bone when the instrument was held in the correct attitude
for observing. Bourne, in his Regiment for the Sea, had given this
advice; but later writers drew attention to the possibility of this
recommended cure making matters worse instead of better.

Richard Hariot, the famous Elizabethan mathematician, wrote
on ocular parallax as it applied to the cross-staff, and found that
an error of as much as 14° may result because of it.

A difficulty in measuring an altitude with a cross-staff is due to
the need for seeing in two directions simultaneously; and the
greater is the angle to be measured the greater is this difficulty.
When used for measuring the altitude of the Sun, the glare of this
luminary, unless he happened to be partially obscured by a veil of
cloud, resulted in the temporary blindness of the observer. This
could be overcome by the use of smoked glass, as had been ad-
vised by Bourne; but this remedy often resulted in error due to
the composition of the glass not being uniform, or through the
surfaces not being ground parallel. Hariot, like Bourne, suggested
covering the Sun with the top part of the transom so that, by
measuring the altitude of the Sun’s upper limb, the temporary
blindness, which would otherwise result, is prevented.

One advantage of the cross-staff over both quadrant and astro-
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labe lies in the relative ease with which the straight staff may be
graduated. The distances of the graduations from the zero position
on the staff are equivalent to the natural cotangents of the corres-
ponding half altitudes, the half cross being equivalent to the radius
or unity. Fig. 3 illustrates the method of graduating the cross-staff.

The distance d from the eye end of the staff, and the graduated
mark corresponding to the altitude of a heavenly body (<, B, ¥,
etc.) is given by the formula:

d =rcot (af2,B[2,v/2, etc.)
where r=half the length of the transom.
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FIGURE 3

The cross-staff was most suitable for measuring altitudes of
more than about 20°, and of less than about 60°. For altitudes
greater than about 60°, not only was it difficult to set the transom
properly on account of lining up the ends with the horizon and
Sun’s limb simultaneously, but the distances between the succes-
sive graduations become increasingly smaller as the altitude in-
creases. For altitudes of less than about 20°, the length of the
transom would have to be abnormally small, or that of the staff
abnormally great. The cross-staff by itself, therefore, was not
sufficient for the navigator’s needs.

Michel Coignet is credited with being the first to describe and
illustrate, in 1581, a cross-staff having more than one transver-
sary, From the beginning of the 17th century it became common
to provide the cross-staff with three transoms designated the 15°,
30° and 60° transoms respectively. Each transom belonged to one
of three scales engraved on each of three sides of the square-sec-
tioned staff. The 15° transom belonged to the side graduated up
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to 15°, and this, the longest transom, was used for measuring small
altitudes. The 30° transom was used with the scale that extended
from about 10° up to about 35°; and the smallest, or 60° transom,
was used with the scale that extended from about 55° upwards to
about 80°.

It appears that John Davis, the famous English navigator, was
the first to explain how to deal with ocular parallax as it applied to
a cross-staff provided with more than one transversary. The prob-
lem of avoiding this error is one of finding the exact spot on the
cheek-bone at which to place the eye-end of the staff when obser-
ving. To find this position, Davis explained that the navigator had
merely to take two transoms and to set them on the staff at the
correct positions for a common angle that could be measured by
either transom; and then to sight along a line to a star or other
suitable object using the ends of the two transoms. The position
of the eye-end of the staff on the cheek bone is then to be noted
and remembered for future observations.

Many an illustration of a cross-staff shows all the transoms
belonging to the instrument set on the staff, thus leading to the
mistaken idea that more than one transom is used to make an
observation. It is to be noted that the cross-staff was used with one
transom at a time, the selection being made according to the
altitude of the object to be measured.

Robert Fludd of Christchurch, Oxford, designed a cross-staff of
novel design in 1617. The staff was three feet long; and the tran-
som, which was one foot in length, had a three-inch slot or groove
at each end, so that the central part of the transom—of length six
inches—could be used for measuring small altitudes.

In 1624, Edmund Gunter of Oxford published a work entitled
De Sectore et Radio, in which he described a cross-staff. His cross-
staff—a yard long so that it could be used as a convenient linear
measuring device—provided a convenient instrument on which
to engrave his famous scales for facilitating the solutions of
navigational problems.

Although, in many respects, the cross-staff is a better instrument
than either the seaman’s quadrant or astrolabe, the problem of
measuring altitudes accurately was recognized as a difficult one;
and the attention of many astronomers and navigators was directed
towards improving the seaman’s altitude-measuring instruments.

A noteworthy step forward in the technique of measuring the
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altitude of the Sun came with a novel cross-staff designed by
Thomas Hood, a mathematician who was engaged to lecture on
navigation in London in 1588. In 1590 Hood published a small
work in which he described his measuring staff.

Hood’s staff consisted of a staff and transom, square sectioned
and of equal length. A specially designed socket with two thumb-
screws provided the means for setting staff and transom at right
angles to one another. The staff was graduated from 90° to 45°,
and the transom from 0° to 45°. To measure the Sun’s altitude
when less than 45°, the staff is held horizontally in line with the
direction of the Sun, with the transom standing vertically above
the staff. The transom is then lowered (one of the thumb-screws
in the socket allowing this to be done) until the edge of the shadow
cast by a vane fitted at the top of the transom strikes the end of the
staff. In this position the reading on the transom is the Sun’s alti-
tude. For measuring the Sun’s altitude when greater than 45°, the
transom is set to 45° and, with the staff horizontal and pointing in
the direction of the Sun, the transom is slid along the staff to a
position at which the shadow cast by the vane at the top of the
transom strikes the end of the staff. The reading on the staff is then
the Sun’s altitude. Two observers are needed to make an obser-
vation using Hood’s staff: one to hold the staff horizontally, and
the other to manipulate the transom.

Hood appears to have been the first to have employed an instru-
ment for measuring the Sun’s altitude using a shadow cast by a
vane. This idea was used by many other inventors during the
decades following the publication of Hood’s description of his
staff.

5. THE KAMAL

A navigational instrument of great antiquity, the principle of
which is the same as that of the cross-staf, is the kamal (= guide).
In its simplest form the kamal consists of a rectangular board to
the mid-point of which is fastened a thin cord. The cord is knotted
at points corresponding to the positions of trading stations lying
on a navigator’s route. If, when holding a particular knot at the
eye, and holding the tablet at arm’s length, the upper and lower
edges are coincident with the directions of the Pole Star and the
horizon respectively, the navigator knows that his latitude is the

same as that of the trading station which lies due east or west of
6
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his ship, and which corresponds to the particular knot. The kamal
provided the ancient Arab navigators of the Red Sea and Indian
Ocean with the means for navigating by the Pole Star. The instru-
ment became known to European navigators through Vasco da
Gama, after he had rounded the African Cape in 1497.

The ancient kamal, in a modified form, is used by Arab navi-
gators of the present time for navigating the dhows often to be seen
in the Red Sea and off the East African coast.

6. THE BACK-STAFF

The most fruitful attempt made during the 16th century to over-
come the difficulties of taking sights at sea was that of John
Davis, the inventor of the back-staff. Two variations of a back-
staff were described by Davis in his famous Seaman’s Secrets, first
published in 1595.

The more simple of Davis’s back-staves consisted of a gradu-
ated staff to which is fitted a sliding half-transom in the form of
an arc of a circle. At the fore end of the staff is fitted a horizon vane
with a slit through which the horizon may be observed. The back-
staff could be used for measuring the altitude of the Sun only when
the horizon was visible. It was an instrument essentially for day-
time use for measuring the meridian altitude of the Sun. To take
asight of the Sun the staff is held horizontally, the observer having
his back to the Sun (hence the name back-staff). The half-cross,
which is held vertically above the staff, is then moved along the
staff to a position at which the shadow of the top end of the staff
cast by the Sun struck the horizon vane and made coincidence
with the horizon viewed through the slit in the vane.

Not only did Davis overcome the difficulty associated with the
temporary blindness of the observer when observing the Sun
directly; he also achieved the means of measuring the Sun’s alti-
tude without having to look in two directions simultaneously, as
is the case when using the cross-staff.

The simple back-staff described above was graduated up to 45°,
and was useful for observing the Sun at small altitudes only. For
the northern Atlantic voyages of the English explorers of Eliza-
bethan times, this was sufficient; but for southern voyaging, in
which the Sun’s altitude may reach 90°, Davis suggested the use
of a different type of back-staff. The 90° back-staff—as this type
was called to distinguish it from the 45° staff described above—
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comprised two half-crosses: one straight and the other arcuate.
The straight half-cross is fitted perpendicularly to the staff and is
designed to slide along the staff in the same manner as the half-
cross fitted to the 45° staff. The arcuate half-cross is fitted to the
lower side of the staff, and is provided with a sighting vane. The
fore end of the staff is fitted with a horizon vane through which
the horizon is viewed when making an observation.

The principle of the 90° back-staff is demonstrated in Fig. 4.

In Fig. 4, AH represents the graduated staff fitted with the
horizon vane at H. VB represents the transom or half-cross, de-
signed to slide along the staff, and which is fitted with the shadow

FIGURE 4

vane V. CD represents the fixed arcuate half-cross fitted with a
sliding eye vane at E.

To take a sight with the 90° back-staff the half-cross VB is set
at a graduation on the staff corresponding to a few degrees less
than the Sun’s altitude. The observer then holds the instrument
vertically, and, with his back to the Sun and eye at the sighting
vane, he slides the sighting vane to a position on the arc so that he
may view the horizon through the slit in the horizon vane at the
same time as he sees the shadow of the edge of the shadow vane
coincident with the slit.

From Fig. 4:

Sun’s altitude = VHE
=

=0+¢

0 is read off the graduated staff and ¢ is read off the graduated
arc.
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As time passed Davis’s 90° back-staff was modified, and before
the end of the 17th century it had all but replaced the cross-staff
(or fore-staff as it was often called) and other primitive measuring
instruments. Davis’s back-staff in the modified form became
known as the Davis quadrant, and by the French and other Euro-
pean seamen as the English quadrant. It was not superseded for
nautical astronomical purposes until the reflecting instruments
had made their appearance in the middle of the 18th century.

The Davis quadrant that was in common use during the early
part of the 18th century consists of two arches, together making
90° (hence the name quadrant). The two arches are fixed in a com-
mon plane, one above and the other below a straight bar corres-
ponding to the staff. The length of the straight bar is a little more
than the radius of the lower arch and about three times the radius
of the upper arch. The upper arch is called the greater arch and it
contains 65°. The lower arch is called the smaller—or lesser—
arch, and it contains 25°. The greater arch is divided to degrees,
and the lesser arch, by means of a diagonal scale, is subdivided to
minutes of arc.

The instrument is fitted with three portable vanes known re-
spectively as the horizon vane, the sight vane, and the shade vane.
The horizon vane is fitted at the end of the straight bar close to the
centre of the two arches. In the horizon vane is a long slit through
which the sea horizon may be observed. The shade vane is fitted
to slide on the greater arch. The upper edge of the shadow cast by
this vane is made to fall coincident with the slit through the horizon
vane when making an observation. Some observers used a glass
vane instead of the shade vane for measuring altitudes of the Sun.
The glass vane is simply a lens which focuses the Sun’s rays to a
bright spot on the horizon vane when taking a sight.

The sight vane is fitted to slide along the lesser arch. It has a
sharp edge to cut the graduated scale of the lesser arch, to facilitate
reading off the measured altitude. The sight vane is provided with
a sighting hole through which the horizon and shadow line (or
bright spot when using the glass vane) are observed.

To take a sight with the Davis quadrant, the shade vane is set to
an exact number of degrees on the greater arch, about 10° or
15° less than the Sun’s altitude, and the sight vane is placed near
the middle of the lesser arch. The observer holds the instrument
with the arches in the vertical plane, and with his back to the Sun.
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Then, with his eye at the sight vane, he raises.or lowers the quad-
rant, keeping the eye at the sight vane, until the shadow line is
coincident with the slit on the horizon vane, adjusting the position
of the sight vane if necessary, until the horizon is also sighted
through the slit. The altitude of the Sun is obtained by adding the
readings on the two arches. The principle of the Davis quadrant
is illustrated in Fig. 5. (See also Plate 6.)

To Sun

FIGURE §

In Fig. 5: H represents the horizon vane; E the sight vane; and
S the shadow vane. AB represents the lesser arch and CD the
greater arch.

Sun’s altitude = SHE

o
0+¢

¢ is measured on the greater arch and 8 on the lesser arch.

The Davis quadrant is not capable of adjustment, so that it was
necessary for the observer to ascertain the instrumental error of
his quadrant. This was usually done by making meridian altitude
observations at places of known latitude, or by comparison with
angles measured with an instrument the error of which was known.
Having found the error of his quadrant, the observer would apply
it to all altitudes measured with it. According as the error tended
to increase or decrease the ship’s northern latitude the quadrant
was, therefore, said to be ‘northerly’ or ‘southerly’ respectively
by its corresponding error.
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7. THE REFLECTING QUADRANT

The Davis quadrant and all other forms of altitude measuring
instruments were superseded by the reflecting instrument that
became known as Hadley’s quadrant.

Although John Hadley is usually credited with the invention of
the reflecting quadrant, others before him had designed instru-
ments for measuring altitudes using mirrors.

FIGURE 6

It appears that as early as 1666 Robert Hooke described to the
Royal Society of London such an instrument. At the request of the
society Hooke constructed the instrument and exhibited it before
his fellow members later in the year. Hooke’s reflecting instru-
ment is illustrated in Fig. 6.

Hooke’s instrument consists of three straight arms labelled a,
b and c in Fig. 6. Arms a and b are pivoted at joint d. A mirror M
is fitted to arm a, one edge of the mirror being coincident with the
centre of the pivot d. Arm b is fitted with a telescope T, the axis
of which lies in line with the inner edge of the arm. The eyepiece
of the telescope is at E in Fig. 6. The third arm c is divided with
equidistant graduations so that the angle between arms a and b
may be found using a table of chords. This angle is equivalent to
half the altitude of an observed object, as demonstrated in Fig. 7.

To measure the altitude of a celestial body using Hooke’s
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instrument, the arms of the instrument are held in the vertical
plane and the telescope is used to sight the reflected image of the
celestial body in coincidence with the horizon vertlcally below it as
illustrated in Fig. 7, in which the altitude of the body is shown to
be 26, the angle 6 being equal to the angle between the two arms
jointed at M.

The principal disadvantage of Hooke’s instrument rested in the
fact that the part of the horizon vertically below the observed ob-
ject is hidden by the mirror unless the image is at the limit of the
reflecting surface. There is no evidence that Hooke’s instrument
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FIGURE 7

was tried at sea; and it appears that his idea of the use of a mirror
fitted to an instrument for measuring altitudes at sea was forgotten.

Sir Isaac Newton gave some thought to the question of im-
proving on the nautical quadrant; and he seems to have been the
first to suggest the use of two mirrors as Hadley was later to
employ for his reflecting quadrant. Little attention was given to
Newton’s suggestion; and it was not until some fifteen years after
his death that Newton’s design for a reflecting instrument for
measuring altitudes at sea received some publicity. It was Edmund
Halley who had remembered Newton’s suggestion at the time
John Hadley had made public his own invention. Newton’s design
for a sea quadrant is illustrated in Fig. 8.

Newton’s design called for a plate of brass in the form of a
sector, the 45° arc of which is graduated from 0° to 90°, each divi-
sion representing 1° of arc. Pivoted at the centre of the sector or
octant is an arm denoted by a in Fig. 8. The fiducial edge of this
arm is used to read off the altitude of an observed heavenly body
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in degrees and minutes of arc. Fitted to one radial edge of the
octant is a telescope, T, three or four feet long. Two specula A
and B—A fitted to the plate and B fitted to the arm—are parallel
to one another when the fiducial edge of the arm indicates zero on
the graduated scale. Both specula are fitted perpendicularly to the
plane of the graduated arc. The speculum fitted to the plate is set
at an angle of 45° to the axis of the telescope.

To take an observation with Newton’s octant the instrument is
held vertically with the arc held towards the observer. The horizon
is then viewed below the edge of the fixed speculum through the

FIGURE 8

telescope. The arm is then swung downwards to a position such
that a ray of light from the observed object reaches the observer’s
eye after having been doubly reflected from the index speculum
B and the fixed speculum A,

The geometrical principle of Newton’s octant is precisely that
of the present-day sextant. Fig. 9 illustrates this principle, viz. the
angle denoted by the fiducial edge of the index bar, which is
equivalent to the angle between the two reflecting surfaces of the
two specula, is equal to half the measured altitude of a celestial
body. It follows, therefore, that the 45° arc is divided into 90 divi-
sions each representing 1° of altitude or measured angle.
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In Fig. 9 A and B represent the fixed and index specula respec-
tively. A ray of light from a celestial body X enters the observer’s
eye at E after having been doubly reflected, the zig-zag ray
denoted by XYZE.

YN and ZL are normals to the reflecting surfaces at points Y
and Z respectively.

By the first law of optics:

XYN = NYZ (let this be )
YZL = LZE (let this be 4)

! - E
H— 22 y — yrysfomXandH_

FIGURE ¢

The angle between the reflecting surfaces is equal to the angle
between the normals NY and ZL; and this is equal to (¢ — 6) (ex-
terior angle LZY of triangle ZNY is equal to the sum of the interior
and opposite angles).

The altitude of the body is denoted by «, and this is clearly
equal to 2(¢ — 6) (exterior angle EZY in triangle CZY is equal to
the sum of the interior and opposite angles). Therefore, the angle
between the reflecting surfaces of the specula is equal to half the
altitude of the body X.

8. THE HADLEY QUADRANT

The first account of the reflecting insfrument invented by John
Hadley (1682-1744) was read before the Royal Society of London
on May 13th 1731. The paper was published in Volume 37 of the
Philosophical Transactions of the Royal Society. Hadley described
two reflecting instruments, the design of one of which is very



78 A HISTORY OF NAUTICAL ASTRONOMY

similar to Newton’s design described above. Hadley’s first instru-
ment is illustrated in Fig. 10.

The instrument illustrated in Fig. 10 consists of a frame in the
form of an octant of a circle. The 45° arc is divided into 90 divi-
sions, each representing 1° of arc. An index bar, denoted by I in
the figure, which provides for measuring observed angles, is
pivoted at the centre of the graduated arc. Fixed to the index bar,
perpendicularly to the plane of the arc, is a speculum A. This, the
index speculum, is set so that when the pointer on the index bar
coincides with the zero graduation on the arc scale, it is parallel to

FIGURE 10

a second speculum B, which is fixed to the frame of the octant. A
telescope T is fitted to one edge of the frame of the octant. This
is set so that, when taking a sight, light from a celestial body is
received at the eye after double reflection from the specula A and
B, simultaneously with light from the horizon.

To take an observation with this type of Hadley’s octant, the
instrument is held with the plane of the arc in the vertical plane,
with the arc towards the observer. The index bar is then set to a
position so that rays of light from the observed object and from
the horizon vertically below the object, are received at the eye
simultaneously.

The geometrical principle of the octant is the same as that of
Newton’s instrument. Fig. 11 illustrates the manner in which the
octant is used.
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The second type of octant described by Hadley was that
adopted by seamen generally. (See Plate 7.)

The telescope in Hadley’s second octant is fitted across, instead
of parallel to, the radius of the instrument, as is the case with the
first type. This type of octant is illustrated in Fig. 12.

The speculum fitted to the index bar is called the index specu-
lum; and that fitted to the frame, the horizon speculum. To use
the octant the instrument is held with the arc in the vertical plane
and directed downwards. The index bar is moved away from the
observer along the arc to a position where the rays of light from
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the observed celestial body and from the horizon vertically below
the body are received at the eye simultaneously. The reading on
the arc is then the observed altitude of the body.

The reflecting surfaces of metallic specula, fitted to the original
Hadley octants, suffered the serious disadvantage of tarnishing
quickly under the influence of sea-air and salt water. In due course,
therefore, they were substituted by silvered plates of glass. Good
glass mirrors were scarce at the time Hadley invented his octants.
Caleb Smith designed an instrument on Hadley’s pattern using
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glass prisms instead of specula, but Smith’s octants did not become
nearly so popular as those of Hadley’s design.

Nevil Maskelyne is credited with being the first to suggest a
novel use of glass reflecting-surfaces instead of specula. Maske-
lyne suggested that the under-surface of the glass block should be
ground and painted black. In this event light would be reflected
only from the polished surface of the block; and the possibility of
double reflection (as is the case with a silvered mirror) with the
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possibility of prismatic error due to the two surfaces of the mirror
not being perfectly parallel to one another is, thereby, avoided.
The great advantage of Hadley’s quadrant over those of Hooke
and Newton rests in the fact that the direct image of the horizon
and the reflected image of the observed celestial object may be
brought into coincidence—both the body and the horizon verti-
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cally below it being in full view during the time the observation is
being made.

Hadley’s quadrant was tried at sea in 1732 by James Bradley,
the Astronomer Royal, in the presence of John Hadley and his
brother. The tests were successful and Hadley’s sea octant rapidly
became popular with navigators. The instrument is especially
suited for use at sea. And even when the ship is unsteady, an ob-
server, with but little practice, is able to make an accurate obser-
vation. For its purpose it was ideal; and it was not without reason
that the instrument has been described as ‘the most perfect
appliance that has ever been invented.’

The two mirrors of glass fitted to later Hadley octants are known
respectively as the index mirror and the horizon glass. The horizon
glass is half-silvered, the half farther removed from the plane of
the instrument being clear glass. When observing, therefore, the
reflected image of the observed celestial body is brought into coin-
cidence with the direct image of the horizon at the line separating
the silvered from the unsilvered part of the horizon glass.

Hadley’s original instrument was suitable for measuring angles
up to 90° and, for this reason, was sometimes described as a
quadrant. Hadley did, however, provide the means for measuring
angles greater than 90°, a third mirror being fitted to the instru-
ment for this purpose.

The great need at the time Hadley’s instrument appeared was
for an instrument suitable for measuring lunar distances which
often exceeded 90°. Captain Campbell of the Royal Navy, who
often observed with James Bradley, was prompted to suggest, in
1757, enlarging the arc of the octant to 60°, so that angles up to
120° could be measured. It is to Campbell, therefore, that we owe
credit for the introduction of the nautical sextant.

At about the time when John Hadley described his ‘new astro-
nomical instrument for making observations of distance (lunar)
by reflection,” an American optician Thomas Godfrey was en-
gaged in the problem of measuring altitudes and lunar distances
atsea. Godfrey is credited with the invention of a reflecting instru-
ment similar in all respects to the first of the two octants described
by Hadley to the Royal Society in 1731.

Hadley’s quadrant, unlike Davis’s quadrant, was capable of
adjustment, so that instrumental errors could be removed. When
the instrument is in correct adjustment, the two mirrors are
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perpendicular to the plane of the instrument and are parallel to
one another when the index is set to zero on the arc.

Following the introduction of Hadley’s quadrant the seaman
relied entirely on having his altitude-measuring instrument made
for him by an instrument-maker ashore. No longer was it neces-
sary for him to be provided with instructions in his manuals for
making them himself. The mariner, in his role as a prospective
purchaser of a quadrant, was advised to pay particular attention
to the construction and accuracy of the instrument before parting
with his money. He was advised to examine carefully the joints in
the several parts of the wooden (usually mahogany, teakwood,
ebony or fruitwood) frame; to see that the graduations on the
ivory arc and vernier scale were accurately cut; to ensure that the
surfaces of the mirrors were plane; and to see that the coloured
shades were free from veins. :

The index bar of the quadrant is provided with a rectangular
aperture through which the graduated scale may be seen. One
edge of the aperture carries a dividing scale by means of which
angles may be measured to a relatively high degree of accuracy—
usually to the nearest minute of arc.

The dividing scale on the earlier Hadley instruments was a
diagonal scale, but this was soon superseded by a vernier scale.

The principle of the vernier scale was described by Pierre
Vernier in a small tract entitled La Construction, I’ Usage et les
Propriétés du Quadrant Nouveau de Mathématique, printed at
Brussels in 1638. Vernier is usually credited with the invention of
the scale which bears his name; but it appears that Clavius, in a
treatise on astrolabes, explained the method in 1611.

The vernier scale on the earlier Hadley quadrants was divided
into 20 equal parts, this being equivalent to the space occupied by
21 or 19 equal divisions on the arc. It follows, therefore, that the
difference between an arc division and a vernier division is +%°.
Each arc division represents 4°; so that angles, therefore, could be
measured to the nearest minute of arc.

The Portuguese mathematician Pedro Nuifiez (Petrus Nonius)
described a method for measuring angles accurately which ap-
peared in print in his De Arte atque Ratione Navigandi, in 1522.
The name Nonius is sometimes given to Vernier’s scale, although
the principle of the dividing scale described by Nufiez is different
from that of Vernier’s.



ALTITUDE-MEASURING INSTRUMENTS OF NAVIGATION 83

Nufiez’ method consists of 45 concentric equidistant arcs de-
scribed within the same quadrant. The outermost arc is divided
into 90 equal parts; the next into 89 equal parts; the next into 88,
and so on. When observing, the radial index (or plumb-line in the
case of a mural quadrant provided with a nonius scale) would
cross one or other of the graduated arcs at or near a point of divi-
sion, thus enabling the observer to obtain a very accurate measure-
ment of the observed angle. Nufiez’s method of dividing an arc
was superseded by the diagonal scale, which was described by
Thomas Digges in a treatise entitled Alae sui Scalae Mathe-
maticae published in London in 1573. Digges gives credit for the
invention of the diagonal scale to Richard Chancellor. The diago-
nal scale was used for dividing the arc of the Davis quadrant.

Q. THE REFLECTING CIRCLE

An instrument designed for measuring lunar distances accurately
was invented by Tobias Mayer, a figure famous in the history of
the method for finding longitude at sea known as the lunar
method. Mayer’s instrument, called the simple reflecting circle,
was improved by the French naval officer Borda and by others.

The principle of the simple reflecting circle—familiarly called
the circle—is the same as that of the reflecting quadrant. The in-
strument consists of a circular limb with the index bar pivoted at
the centre of the graduated circle and fitted with a vernier scale
at each extremity. The simple reflecting circle is illustrated in
Plate 8.

The manipulation of the simple reflecting circle is similar to that
of the sextant. The mean of the readings of the two diametrically
opposite verniers, taken at each observation, will be completely
free from error of eccentricity. This error, which results when the
pivotal point of the arm of the instrument is not coincident with
the centre of the circle of which the arc forms part, was particu-
larly troublesome in the early octants and sextants. One great ad-
vantage of the reflecting circle over the sextant, even for measuring
angles of less than 90°, is therefore the elimination of error of
eccentricity. At the same time, effects of errors in reading and
accidental errors of graduation were diminished, since every result
is derived from the mean of two readings at two different divisions
of the arc.

Some simple reflecting circles, such as those made by the
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instrument-maker Troughton, have three verniers at distances
of 120° apart: but, as the eccentricity is fully eliminated by having
two verniers, the third increases the accuracy of a result only by
diminishing the effect of errors of reading and graduation.
Chauvenet, in his Astronomy, points out that if €, is the probable
error of the mean of two readings, and 3 is that of the mean of
three; then:

€& = €2V% = 08¢,

So that if two verniers reduce the error to say 5”, the third will
only further reduce the error to 4”, an increase of accuracy which
for a single observation is not, according to Chauvenet, worth the
additional complication and weight, and the extra trouble of
reading.

Some simple reflecting circles employed glass prisms instead of
specula or glass mirrors. The prismatic reflecting circle construc-
ted by the Berlin firm of Pistor and Martins is illustrated in Fig. 13.

In Fig. 13, ABC represents the arc of the instrument. M is a
central mirror on the index arm. m is a glass prism two faces of
which are at right angles to one another. The third face of the
prism acts as a reflector. The height of the prism above the plane
of the arc is half that of the object glass of the telescope T there-
fore the direct ray from one observed object passing over the prism
can be brought to the same focus as that of the reflected ray from
the second observed object. When the central mirror is parallel to
the longest side of the prism, the two images are in coincidence
and the index error is found as with a sextant, except that every
reading is here the mean of the readings of the two verniers.

The repeating reflecting circle is an improvement on the simple
reflecting circle. In the repeating circle, the horizon glass is not
attached to the frame of the circle as it is in the simple instrument..
It is attached to a separate arm which may be rotated indepen-
dently about the centre of the instrument. The telescope, which
must always be directed through the horizon glass, is also fitted to
this arm. In addition to the arm which carries the telescope and
horizon glass, a second arm, on which is mounted the central- or
index-mirror, may be turned about the centre of the instrument.

To use the repeating circle, the instrument is held with the
plane of the arc in line with the two objects whose angular distance
is required. The index on the index mirror arm is clamped to the
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arc. The right-hand object is then observed direct through the
unsilvered part of the horizon glass. The instrument is then rota-
ted, keeping the right-hand object in sight, until the reflected
image of the second object is observed through the silvered part
of the horizon glass. A fine adjustment is then made to bring the
true and reflected images into coincidence. This completes the
first part of the observation. The index armis then unclamped and,

FIGURE 13

leaving the horizon-glass arm in its clamped position, the telescope
is directed to the left-hand object. The index-mirror arm is then
rotated to a position in which the reflected image of the right-hand
object is brought into coincidence with the direct image of the
left-hand object. This completes the second part of the observa-
tion. The difference between the readings of the index on the
index-mirror arm in the two positions is twice the angle between
the observed objects. For let R and R, be the readings of the index
of the index-mirror arm before the first, and after the second,
7
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contact. Ateach contact the angle between the index- and horizon-
mirrors is equal to one half the measured angle; and it is evident
that the points R and R, are at equal distances on each side of that
point on the arc at which the index of the index-mirror arm would
have stood had its motion been stopped at the instant the mirrors
were parallel. It follows that the angle between R and Ry, in the
direction of the graduations from R, is equal to twice the angle
between the mirrors at either contact. If the measured angle is
denoted by y, we have:
2y =R;—-R

If the observations are now recommenced, starting from the
last position of the index on the index-mirror arm, this index will
be found, after the fourth contact, at a reading R,, which differs
from R, by twice the angle v, so that we have:

Z'y = R2 - Rl
But,
2y = R;—R
It follows, therefore, that:
4'y = R2 — R

Continuing the process, we shall have, after any even number 7
of contacts, a reading R,,. Thus:
ny = R,—R
and
R,~R
n

For any number of contacts, it is necessary to read off only
before the first, and after the last, observed contact. This led to the
great advantage of this instrument, for use on board ship, for
measuring lunar distances.

When using the repeating reflecting circle for lunar distance
observations, the difference between the first and last readings is
the sum of all the individual measures, and the value of the ob-
served distance is found by dividing this sum by the number of
observations. This distance corresponds to the mean of the times
of the first and last observations, provided that the angular
distance is changing uniformly.

The errors of reading and graduation, as well as error of eccen-
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tricity, are all nearly eliminated by taking a sufficient number of
observations.

In theory, the repeating circle is very nearly a perfect instru-
ment, capable of eliminating its own errors. This theoretical
perfection is, however, impossible, owing to the mechanical

perfections arising from the centering of the axes of the two
rotating arms one within the other.

The most important improvements in the reﬂectmg circle are
due to Chevalier de Borda whose work, Description et Usage du
Cercle de Réflexion, was first published in Paris in 1787.

The reflecting circle was ideally suited to the lunar distance
observations. It provided the highest degree of refinement for this
purpose; and many navigators provided themselves with both
circle and sextant: the latter for altitude observations, and the
former for observing lunar distances.

I0. PERFECTED ALTITUDE~-MEASURING INSTRUMENTS

Improvements in sextant design and manufacture, coupled with
the redundancy of the lunar problem, spelt doom for the reflecting
circle during the early part of the 20th century.

The modern sextant (see Plate 9) is an instrument of precision.
Some of the numerous improvements made to the early sextants
are of great interest and importance.

The manner of making a fine adjustment of the index bar when
taking a sight was facilitated by fitting a tangent screw to the index
bar. The index bar was clamped to the arc when the true and re-
flected images were observed through the sights or the telescope,
after which the tangent screw was used to make a fine adjustment.
The clamping of the index bar to the limb, in sextants of the last
century, was usually effected by a screw and block piece which
travelled over the smooth surface at the back of the limb. This
clamp block was attached to the tangent screw in such a way that
movement of the vernier is possible when the index bar is clamped.
A disadvantage of the early arrangement is due to the limited
travel of the tangent screw, rendering it necessary, before ob-
serving, to ensure that the tangent screw is not at or near the
end of its travel. An improved form of tangent screw was made
with a spring on each side of the clamp block, so that when the
clamp is released the vernier automatically takes up a central
position, and the likelihood of the tangent screw-thread being
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used up at a critical moment is obviated. This form of tangent
screw was ousted during the early part of the present century by
the endless tangent screw. The endless tangent screw led to the
invention of the micrometer tangent screw which is common to
almost all present-day sextants. Amongst the features of this type
of tangent screw, not the least important is that it can be read at
arm’s length,

Many early reflecting instruments were fitted with sight vanes
instead of telescopes. Improvements in sextant telescopes have
been of great significance. It is not uncommon nowadays for a sex-
tant to be provided with a single all-purpose telescope or mono-
cular. From the middle of the 19th century until the eve of the
Second World War most sextants were provided with two tele-
scopes. One, of small magnification and big object glass, was de-
signed for star work. The other, of large magnification and small
object glass, was for daylight observations. The star telescope was
an erecting telescope, whereas the high-power telescope was an
inverting telescope. The slight difficulty of using the inverting
telescope is doubtless the reason why it fell into disuse,

Hadley, the inventor of the reflecting quadrant, directed that
the line of sight should be parallel to the plane of the instrument;
and, for ensuring that this was so, he proposed that two parallel
wires should be fixed in the telescope parallel to the plane of the
quadrant, and that the contact of the observed objects should be
made in the middle of the field of view of the telescope between
the two parallel wires. These circumstances have never sufficiently
been attended to, although in the inverting telescopes of days gone
by, cross-wires were fitted for this purpose and for checking colli-
mation error—error resulting from the line of sight not being
parallel to the plane of the sextant arc.

As soon as it became easy to furnish good glass mirrors, these
replaced the metal specula of the older reflecting instruments. As
every glass mirror gives two reflections, one from the face and the
other from the silvered back surface, double reflections may cause
confusion with the reflected rays and error may result in the obser-
vation. Moreover, if the front and back surfaces of the mirror are
not perfectly parallel to one another, the observation may suffer
prismatic error. It was to overcome these difficulties that the Rev.
Dr Nevil Maskelyne suggested a reflecting surface of plane glass,
the back face of which is rough ground and blackened. By this
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means only rays falling on the polished surface of the glass are
reflected.

The glass shades, used when observing the bright Sun, owing
to their want of uniformity of colour density, often caused error.
In some sextants of the last century it was not uncommon to pro-
vide a coloured eyepiece for use when observing the Sun. In
others, the coloured screens were designed so that they could be
instantaneously reversed, so that, by taking half a set of observa-
tions with the shades in one position, and the other half with them
reversed, error due to non-parallelism of the surfaces of the shades
was eliminated.

The graduations on the earliest instruments were cut in an arc
of ivory. Later arcs were of silver, gold or platinum. The most
important operation in sextant manufacture is, undoubtedly, the
cutting of the arc. The difficulty of graduating an arc of a sextant
or other similar astronomical or surveying instrument was not
overcome until after the middle of the 18th century. The famous
English engineer Jesse Ramsden (1735-1800) invented a remark-
able machine, based on the worm and wheel principle, for dividing
circular arcs as well as linear scales with precision. Ramsden’s
dividing engine employed principles that had been published by
the French academician Duc de Chaulnes (1714-1769), who was
the first to use a tangent screw drive for this type of machine.

Names famous in the history of the development of the manu-
facture of quadrant and sextant, in addition to Hadley and
Ramsden, are George Adams (d. 1773), John Bird (1709-1776),
and the opticians Troughton and the Dollonds.

George Adams specialized in making quadrants for seamen and,
soon after Hadley’s invention, Adams was producing instruments
at a price well below those of other instrument-makers. John
Bird, who had been trained by the famous George Graham (1673
1751), devoted considerable attention to the determination of the
most suitable shapes of the several parts and fittings of the quad-
rant and the best methods of assembling them. Up to about 1760
the frames of quadrants were made from a combination of iron,
brass and wood. It was recognized at about this time that accuracy
of measurement was impaired largely on account of differences in
expansion coefficients of the materials used. Reflecting instru-
ments having brass frames were manufactured long before the
dawn of the 19th century, but metal frames were not common
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until the middle of that century. To facilitate the dividing of the
arc of the early instruments the radius of the limb was kept as
large as conveniently practicable, and this was often as much as
20 inches. With the introduction of the metal frame and the
dividing engine invented by Ramsden, the length of the radius
was reduced to a mere 8 inches or even less: that of most modern
sextants being no more than about 6 inches.

John Dollond (1706-1761) was the optician who is credited
with the invention of the achromatic lens. The firm of Dollond’s
still exists; and this firm, as well as that of Troughton’s, produced
many fine sextants, circles and other scientific instruments,
especially during the 19th century.

As far back as 1894, Lecky described an electric lighting system
using a small dry cell and incandescent lamp, for use with a sex-
tant for star observations. This appears to have first been fitted to
a sextant by the instrument-maker Cary of the Strand in London.
Cary was also instrumental in first using an interrupted thread in
order to facilitate the fitting of sextant telescopes.

The fitting of a Nicol prism for eliminating horizon glare ap-
pears to have first been suggested by a merchant seaman named
Mackenzie who communicated his idea to the Royal Astronomical
Society. This device is simply a polarizing prism used like a tele-
scope eyepiece, and so placed that when the telescope is screwed
home in its collar the polarizing plane of the prism is parallel to the
plane of the sextant and, consequently, perpendicular to the hori-
zontal when the sextant is being used for measuring the altitude
of a heavenly body. It is used when the glare of the Sun (or Moon)
renders it difficult to define the horizon. The prism allows only
the ‘extraordinary’ ray to be transmitted to the eye, the intense
glare being refracted upwards out of the prism.

Another device of great value when observing star altitudes is
the Wollaston prism. This is a pair of prisms in the form of two
wedges of different thicknesses or different refractive indices so
that two distinct images of an observed star are formed. The
Wollaston prism is fitted between the index mirror and the horizon
glass. When using the prism the observer brings the reflected
images of the observed star to a position where the true image of
the horizon lies centrally between them.

A similar, but cheaper, device designed to facilitate star obser-
vations is the lenticular or elongating lens. This, like the Wollaston
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prism, is fitted between the index mirror and the horizon glass and,
being a cylindrical lens, the reflected image of an observed star
appears as a line, instead of a point, of light.

To eliminate the uncertainty of the effect of refraction on the
dip of the sea horizon, Commander Blish of the United States’
Navy invented, in the early part of the 20th century, an attach-
ment for a sextant known as the Blish prism. This device has the
top and bottom faces bevelled at 45°. It is fitted to the sextant so
that the longer of the front and back surfaces faces the observer.
This face is provided with two polished surfaces, the lower of
which is directly opposite the top of the index mirror, and the
higher of which faces over the observer’s head towards that part of
the horizon 180° away from the part the observer is facing. With
the index of the sextant set to zero on the arc the observer looks
directly at the sea horizon in front of him and sees, at the same
time, the back horizon reflected from the prism. When the fore and
back horizons are brought into line, the sextant reading is twice the
angle of dip, assuming that the sextant is free from index error.

II. THE ARTIFICIAL HORIZON

To take a sight with a sextant, the sea horizon vertically below the
object whose altitude is required must be clear and distinct. With-
out the horizon, or a horizontal (or vertical) reference, a sight
cannot be taken. ‘ The frequent want of a horizon,” wrote Robert-
son in his famous 18th-century Elements of Navigation, ‘is one
great inconvenience that mariners have to struggle with at sea.’

Many attempts have been made to provide a means whereby
the visible horizon may be dispensed with when taking sights.
Hadley himself was the first to provide a remedy for an indistinct
or invisible horizon, in the form of a simple spirit level attached
to his quadrant.

In 1732, a description of an improved artzﬁaal horizon appeared
in the Philosophical Transactions of the Royal Society of London
under the name of John Elton. Elton’s device consisted of two
spirit levels at right angles to each other fitted to the frame of a
quadrant. The principle of Hadley’s and Elton’s bubble horizon
is simple, but the difficulty of holding the instrument steady and
perfectly vertical during observation rendered it, in its earliest
form, impracticable.

The problem of taking a sight with a sextant on dry land without
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a visible horizon is solved by using an artificial horizon in the
form of a calm liquid surface such as a puddle of water or a con-
tainer of tar, treacle or oil. The more sophisticated artificial hori-
zon of this type, used extensively during the last century for the
purpose of finding longitude ashore with the object of checking
chronometers, consisted of a trough of mercury, the surface of
which provided the reflector. The mercury artificial horizon ap-
pears to have been invented by the London instrument-maker,
George Adams, in about 1738. The equipment consists, in addi-
tion to the trough and mercury, of a glass roof designed to prevent
the troublesome tremulous motion of the mercury due to wind.
The principle of the mercury artificial horizon is based on the
first law of optics, which states that the angle of reflection from a
mirror is equal to the angle of incidence. When using the artificial
horizon the sextant is employed to measure the angle between the
Sun and his image on the mercury surface, this angle being equal
to twice the Sun’s apparent altitude. The apparent altitude is the
arc of a vertical circle between the apparent direction of the ob-
served object and the plane of the sensible horizon or horizontal
plane on which the observer’s eye stands. .,

The mercury horizon is useless on board ship unless the ship is
perfectly steady. The slightest movement of the ship would cause
the mercury surface to tremor and become useless for observa-
tional purposes.

Robertson, in his Elements, gives the following description of a
mercury horizon for use on board ship:

‘Into a wooden, or iron, circular box, of about 24 or 3 inches
diameter, and about 4 inch deep, pour about a pound or more
of quicksilver; and on this lay a metal speculum, or a piece of
plain glass, the diameter of which is about a third of an inch less
than that of the box; this will float in the quicksilver, and shew
the image of the Sun very steady. This apparatus being slung
in jimbals will preserve a tolerable good horizon.

‘The speculum, or glass, should be homogeneous, and have
parallel sides. There are some workmen who can work the two
planes of a piece of glass, so that they shall be demonstrably
parallel.

‘Or the fine surface of the quicksilver will do of itself, when
the motion is not great.’



1. Rev. Nevil Maskelyne D.D.: the Father of Nautical Astronomy. From a painting
by T. Downman at the National Maritime Museum.
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A century or so after Robertson had written the above descrip-
tion, John Merrifield, the headmaster of the navigation school at
Plymouth, described his attempt at using a mercury artificial
horizon on the roof of the school building:

‘We found it quite impossible to take observations with the
artificial horizon . . . owing to the shaking of the walls of the
building by wind or passing vehicles. At the suggestion of the
late Commander Walker, R.N., we had a horizon constructed,
so that a piece of glass, whose surfaces were perfectly plane and
parallel to one another, should float on the mercury, and fit so
close to the sides of the trough as to prevent any great motion,
yet not so close as to prevent its free action. At first we found
very great discrepancies, owing to the glass not being homo-
geneous, and thus floating slightly deeper at one end than the
other: but the idea occurred to us of taking two sights with the
instrument reversed, using the means of the altitudes and of
the times of the observations. Thus the error due to want of
homogeneity was eliminated, and we have since found this to
be a very efficient instrument.’

A compact mercury horizon was patented by Captain George,
a merchant service officer, during the seventies of the last century.
This consists of a circular iron trough containing mercury on which
a disc of glass having parallel faces is floated. Before floating the
glass, a piece of thin paper was placed on the mercury surface;
then the glass was pressed lightly on top of this, the piece of paper
being removed at the same time to ensure a perfectly clean mer-
cury surface. The chief advantage of Captain George’s instrument
is that the whole surface of the artificial horizon is available for
observation.

A form of artificial horizon was introduced into the Royal Navy
during the early part of the 20th century. This consisted of a
shallow trough of metal gilt which was amalgamated, after a first
cleaning of the surface with a drop or two of dilute sulphuric acid,
by the rubbing into it of a small quantity of mercury until the
whole surface was bright. The trough was mounted on three
adjustable screws and was provided with a bubble for levelling.

In a very interesting and valuable dissertation on the history of
the art of navigation, written by Dr James Wilson, and which
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appeared in the first edition of Robertson’s Elements of Naviga-
tion of 1772, mention is made of a horizontal top, invented by
Serson who was, Wilson informs us ... ‘unfortunately lost at sea
aboard the Victory man of war.’

Serson’s horizontal top employed the properties of a spinning
body. The upper surface of the top was polished metal which
formed, when the top was spun, and in obedience to its gyroscopic
inertia, a horizontal reflecting surface which could be used as an
artificial horizon.

John Smeaton, the renowned English engineer, 1mproved Ser-
son’s top, and described his spinning artificial horizon, and how to
use it, in the Philosophical Transactions of the Royal Society for
the year 1752. Smeaton’s top had a polished speculum surface of
about 34 inches across. The top was fitted with a brass ring placed
at right angles to the axis of the top. The sharp spinning point of
the top rested on a cup of a hard substance such as flint or agate.
Friction was kept to a minimum, and the top could be made to
spin for upwards of about fifteen minutes. There is no evidence to
suggest that Smeaton’s gyroscopic horizon met with any success in
practical use.

Raper, in his famous Practice of Navigation, refers to the use of
a mirror attached to a pendulum which, hanging vertically, pro-
vides an ‘artificial vertical’ which serves the same purpose as an
artificial horizon. Raper pointed out the difficulties of using such
a device on a rolling ship.

In about 1838 Lieutenant A. B. Becher R.N. invented an arti-
ficial horizon attachment for a sextant, which was subsequently
made and sold by Cary of the Strand. Becher’s horizon met with
some success. The inventor pointed out that ships are not always
in violent motion, and that there are many circumstances of
weather and sea in which an instrument such as his artificial hori-
zon has its value. In particular, he referred to the mouth of the
English Channel in a southerly wind with a sea horizon obscured
by fog and the importance, in these circumstances, of getting a
sight for latitude.

Becher’s artificial marine horizon was fitted outside the horizon
glass in line with the telescope axis. It consisted of a small pendu-
lum the bob of which was suspended in a small cistern of oil, so
that the observer could control its movement; which, from the
extreme delicacy of its suspension, would otherwise be impossible.
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Fitted to the pendulum and at right angles to it (and to the plane
of the instrument when a sight is being taken) is a small arm.
Beyond the pendulum, a line for the horizon is formed by the
upper edge of a slip of metal at right angles to the plane of the
instrument. The pendulum has free motion in any direction; and
the observer was required to bring the upper edge of the arm
attached to the pendulum, in exact contact with the horizon line
formed by the slip of metal. At the same time he was to make his
observation by bringing down the image of the reflected object
which he observed upon the line of contact.

As the observer has thus to form his horizon at the instant of
observation, he was advised, when observing on board, to get into
that part of the ship where there is the least motion, and especially
into a place screened from the wind.

Becher’s marine horizon was fitted with an oil lamp so that
observations of stars could be made during hours of darkness.

Admiral F. W. Beechey invented an artificial horizon attach-
ment based on similar principles to that of Becher’s. Beechey’s
device consisted of a balance carrying a glass vane which was fitted
in the sextant telescope. The lower half of the glass vane was
coloured blue, the horizontal line of demarcation between the
coloured and uncoloured parts representing the sea horizon. The
reflection of the observed object was brought into coincidence
with the artificial horizon. The amount of oscillation above and
below the artificial horizon was indicated by divisions on the glass
vane, the values of which were determined by the makers. When
taking a sight and using Beechey’s horizon the observer brings
down the reflection of the Sun’s limb to the artificial horizon and
leaves it there; and then, as the ship rolls, he catches, with his eye,
the upper and lower divisions reached by the Sun’s limb, and
calls them out to an assistant who notes them and records the
corresponding times by chronometer. After two or more readings
have been taken, the altitude is read off and a correction is made
according to the mean of the readings of the vane. Beechey’s artifi-
cial horizon attachment, like that of Becher’s, was fitted with a
lamp which could be used to illuminate the telescope tube for star
observations.

In the early part of the present century, Paget patented an arti-
ficial horizon for attachment to a sextant. The Paget horizon con-
sists of a short, curved spirit level mounted in a tube with a prism



96 A HISTORY OF NAUTICAL ASTRONOMY

above it designed to throw the image of the bubble into the field
of view of the telescope. This type of horizon had the advantage
of not being affected by vibration or wind.

Another ingeniously contrived artificial horizon using a small
gyroscope was invented by Admiral Fleurais. This was manufac-
tured by the well-known firm of Henry Hughes and Son.

All the artificial horizons described above, and many others
besides, were not entirely satisfactory; and they were, accordingly,
short-lived.

It was not until comparatively recent times that efficient arti-
ficial horizon attachments became available for marine sextants.
Amongst these, the Booth bubble horizon is noteworthy. The Booth
horizon is commonly fitted to air sextants, and good results are
obtained by its use.



CHAPTER IV

The altitude corrections

I. INTRODUCTORY

The fundamental process in position-fixing at sea by astronomical
methods is the measuring of the altitude of a celestial body. To
find the latitude from a meridian altitude observation, for example,
the complement of the altitude of a heavenly body at meridian
passage, that is to say, the body’s meridian zenith distance, is
combined with the declination of the body to give the required
latitude. Moreover, in the general nautical astronomical problem
in which the astronomical- or PZX-triangle is to be solved, one of
the sides of this spherical triangle is the true zenith distance of the
observed object at the time of the observation. The true zenith
distance of a heavenly body is the complement of the true altitude
of the body, and this is obtained from the measured—or observed
—altitude by applying certain altitude corrections. It is the his-
torical account of these several corrections with which we shall be
concerned in this chapter.

2. REFRACTION

In astronomical navigation, as in many other scientific activities,
the nature and behaviour of light—the phenomenon by which
nautical astronomical observations are made possible—are of
great importance.

To the query ‘What is light?’ there is no simple explanation.
The physicist regards light as being electromagnetic radiation—a
form of energy which travels at the prodigious speed of 300,000,000
metres per second.

Many of the Ancient Greeks and other early peoples considered
light to be a fundamental property or accident of nature and
usually associated it with the Sun, ‘the giver of light and life.’
Among many speculations relating to the nature of light made by
Ancient Greek scholars, that of Empedocles, who flourished
during the 5th century Bc, is interesting. The theory of light
propounded by Empedocles was described by Aristotle, who
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flourished during the following century. ‘Light is a streaming sub-~
stance,’ stated Empedocles, ‘of the movement of which, because
of its high speed, we are not conscious.’ That light generally travels
in straight lines is a fact which has been known since earliest times.
The famous Euclid (c. 330-c. 275 BC), in a work on light, laid
down the foundations of geometrical optics. Hero of Alexandria
(. c. 100 BC), amongst many of his scientific activities, produced
a work on mirrors. He considered the physical conditions of re-
flecting surfaces and mentioned the desirability of a polished
surface to obtain optimum conditions for light reflection. Hero is
often credited with being the author (albeit unwittingly) of the
important scientific law known as the ‘principle of least action.’
This was expressed in relation to the equality of the angles of inci-
dence and reflection of a ray of light striking a point on a reflecting
surface. Hero expressed this observed fact by stating that a ray of
light makes the shortest route between object and eye.

When light travels through a transparent medium of uniform
density, it travels in a straight line. If, however, light travels
obliquely from one transparent medium to another, its path is
bent at the surface of contact. This phenomenon is known as
refraction. The remarkable effects of refraction, such as the appar-
ent bend in a straight stick partly immersed in water, have excited
the curiosity of men of all times. There is no doubt that Hero, and
scholars before him, understood something of this optical pheno-
menon. Sarton, in his History of Science, describes the ancient
study of refraction as having been the most remarkable experi-
mental research of antiquity.

Ptolemy, who flourished during the 2nd century ap, in his
Optics, a work known through a 12th-century translation in Latin
which had been translated from Arabic, elucidated certain optical
phenomena, amongst which was an approximate law of refraction.
According to Ptolemy, the angles which the incident and refracted
rays of light make with the perpendicular to the plane separating
the two transparent media are directly proportional to one another.
This relationship holds good only for small angles of incidence
and refraction.

The refraction of hght from a celestial body in its passage
through the Earth’s atmosphere is known as atmospheric- or
astronomical-refraction. Ptolemy explained atmospheric refrac-
tion as being due to changes in air density. He also concluded that
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the apparent position of a star did not always correspond to its
true position on account of atmospheric refraction.

After the fall of Alexandria the works on light and optics pro-
duced by the Ancient Greek philosophers were developed by the
Arabs. Notable amongst the Arab scholars was Al Kindi (c. 800-
873), who made a special study of refraction. But the most famous
of the Arab physicists who pursued the study of light and optics
during the Dark Ages was Ibn al Haithan, better known as Al
Hazen (945-1039). Al Hazen demonstrated that the angle of
refraction was not proportional to the angle of incidence as had
been stated by Ptolemy. Although Al Hazen disagreed with
Ptolemy in this respect, he did not give a better law of refraction.

It is believed that Roger Bacon (1214-1294), a disciple of the
famous Franciscan Robert Grosseteste (1175-1253), whose dis-
covery of double refraction of light through a lens doubtless paved
the way for the invention of spectacles and the telescope, was led
to a study of optics through the work of Al Hazen.

The Polish philosopher Vitello (born c. 1230) experimented
with the refraction of light passing through air and water, and
through air and glass, and determined new values for angles of
refraction. Vitello showed that the scintillation of the stars is due
to atmospheric effects.

The Arabian physicist Al Farisi (d. c. 1320) gave an interesting
explanation of refraction, attributing the phenomenon to a change
of speed of light when passing from one medium to another of
different optical density.

The renowned Tycho Brahe (1546-1601) is often held to have
been the first to have employed atmospheric refraction for correc-
ting astronomical observations. He found the value of atmospheric
refraction of light from a celestial body on the horizon to be 33/,
and set out to draw up a table of refractions for all altitudes.
Tycho was not too clear as to the cause of atmospheric refraction,
attributing it to ‘the gross vapours that float in the atmosphere.’
According to Tycho, the refraction of light from the Sun was
different from that of starlight. The former he supposed to extend
to an altitude of 45°, and the latter to 20°,

Johannes Kepler (1571-1630), disagreeing with Tycho, stated
that atmospheric refraction is the same for all celestial bodies at
the same altitude. He also disagreed with the view that refraction
is zero for altitude 45°.
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The discovery, in 1621, of the true law of refraction is due to
the Dutch physicist Willebrord Snell (1591-1626). Snell’s law
asserts that when light passes from one medium to another the
planes of the angles of incidence and refraction and the perpendi-
cular or ‘normal’ to the common surface of the two media are
coincident, and that the sines of the angles of incidence and refrac-
tion are in a constant ratio for any two media, this being the
refractive index for the two media.

The law of refraction was published in 1637, after Snell’s death
in 1626, by René Descartes, the French philosopher, who may
have made an independent discovery of the same law. The French
mathematician Fermat (1601-1665) argued that the law of refrac-
tion conformed with the idea that the path of light refracted at the
common surface of two media was described in the least time.
Snell’s law implies, therefore, that the velocity of light in a med-
ium is inversely proportional to the refractive index of the
medium.

The famous Italian philosopher Dominic Cassini (1625-1712),
like Kepler, showed the fallacy of Tycho’s refraction doctrine.
He proved that atmospheric refraction diminishes from a maxi-
mum at the horizon to zero at the zenith. The 18th-century French
academician Abraham de la Hire produced a table of atmospheric
refraction, and also confounded the idea that refraction of light
from the Sun differed from that of light from a star.

The law of refraction propounded by Cassini was based on the
hypothesis that the atmosphere is spherical and homogeneous. In
the simplest investigation of atmospheric refraction, the Earth is
regarded as being flat and the atmosphere is considered to be
composed of an infinite number of horizontal parallel layers of air
the density of which decreases uniformly with height above the
Earth’s surface. On this assumption it is readily proved that the
effect of atmospheric refraction is the same as if light entering the
atmosphere were refracted directly into the lowest layer of the air
without traversing the intervening layers.

From Snell’s law, a ray of light passes through the atmosphere
such that u sin Z is constant for every point in its path; p being
the refractive index at any point, and Z the angle the path makes
with the vertical. If Z, be the value of Z when the ray enters the
atmosphere then, since in vacuo the refractive index of light is
unity:
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psin Z = sin Z,

If 4 and Z are now taken as referring to the position of an
observer’s eye; and if r is the atmospheric refraction, then:

Zo = Z+1’
Hence:

psin Z = sin (Z+7)
ie.
psin Z = sin Z cos r+cos Zsinr

Since 7 is a small angle (never more than about 1°)

cosr =1
and
sin r = r radians

We may, therefore, write:

psin Z =sinZ+rcos Z
From which:
r = (u—1)tan Z
ie.
r=U.tan Z
where U = (u—1) or coefficient of refraction.

This result holds good for small zenith distances; but for small
altitudes, by treating sin r and cos r as r radians and 1 respectively,
significant error results. Moreover, light from celestial objects at
small altitudes has to travel through a considerable length of
atmosphere, and we are not justified, therefore, in regarding the
layers of air as being bounded by horizontal parallel planes.
Cassini recognized this and, accordingly, took into account the
Earth’s spherical form.

Cassini’s formula for atmospheric refraction is explained with
reference to Fig. 1.

Fig. 1 represents part of a vertical section through the Earth’s
centre C and an observer O. X0, O represents a ray of light from
a celestial object X entering an observer’s eye at O.

Cassini’s hypothesis is that the light undergoes a single refrac-
tion on entering the atmosphere at O,.

Let the apparent zenith distance of the celestial body be 8; and

the true zenith distance 6,. Let the refraction be 7 radians.
8
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C

FIGURE 1

If r is small,
r = (u—1)tan 6,

Cassini expressed tan 6, in terms of tan 6. This he did by first
drawing CT perpendicular to O,0 produced; and O,V perpen-
dicular to COZ. Then:

O,Ttan 0, = OT tan 0

i.e.
tan 6 o, T
tan 9, OT
00,
= 1+6—T—
1+ OV sec 8
OC cos 8

= 1+-8%sec2 9
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Now OV is approximately the vertical height of the atmosphere
OW, and is, therefore, x- OC, where x is the ratio between the
height of the homogeneous atmosphere and the Earth’s radius.
Therefore:

tan 6

— L epe2
tand 1+x-sec® @
or
tan 0. — tan 8
MO = T x-sec? 6

Expanding the denominator (1+x-sec? 6)~! by the Binomial
Theorem, we have:

tan 6, = tan 6(1 —x-sec? 0+x%-sec* 6...)

Since x is a small quantity, powers of x greater than 1 may be
ignored without introducing material error.
Thus: ;
tan 6, = tan 6 (1 —x-sec® 6)
and
r = (p—1) tan 6 (1 —x-sec? 6)
which is Cassini’s formula.

If the value of x is accurately chosen, Cassini’s formula gives
good results for altitudes not less than about 10°.

Newton, Hooke, Grimaldi, Roemer and Huyghens were the
more notable of the 17th-century philosophers who devoted con-
siderable attention to the nature and behaviour of light. To New-
ton we owe the theory of the spectrum, and to Hooke and Grimaldi
the discovery of the phenomenon known as diffraction. The
Danish physicist Roemer is credited with being the first to measure
the speed of light by comparing the computed and observed times
of the eclipses of Jupiter’s satellites, and the Dutch physicist
Huyghens is credited with being the founder of the wave theory
of light.

The table of refractions given in the early editions of the
Connoissance des Temps, which was first published under royal
patents in 1678, was compiled by Jean Picard. The values given
in Picard’s table agree closely with the tangent law of refraction
r = U tan zenith distance.

One of the best 18th-century tables of refraction is that of de la
Caille (1713-1762). De la Caille’s table is based on observations
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of circumpolar stars made at Paris and the Cape of Good Hope.
He recognized that atmospheric refraction varies with air pressure
and temperature, both these properties affecting the air density
and, therefore, the refractive index. De la Caille’s table gave mean
refractions computed for a standard atmosphere having a specified
pressure and temperature at sea level.

Tables of astronomical refraction were compiled by many
astronomers during the 18th century, but perhaps the table that

N

X

S
FIGURE 2

was esteemed the best was that of James Bradley (1693-1762).
Doctor Bradley’s mean refraction table applied to a standard
atmosphere having a sea-level pressure and temperature of 29-6
inches of mercury and 50° F. respectively. Bradley furnished an
auxiliary table for correcting the mean refraction for use when the
atmospheric conditions differed from those for which the mean
refractions were tabulated.

It will be of interest to discuss the methods by which atmos-
pheric refraction may be ascertained. The usual method involved
the observations of circumpolar stars, and is explained with
reference to Fig. 2.
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Fig. 2 represents the projection of the celestial sphere on to the
plane of the horizon of an observer whose zenith is projected at Z.
N and S are the projections of the north and south points of the
observer’s horizon respectively, and P is that of the celestial pole.
X and X, are the projections of a circumpolar star at lower and
upper meridian passage respectively.

Let = and z; be the apparent zenith distances of the star when
at lower and upper transit respectively. Let p be the polar distance
of the star and the coefficient of refraction (u —1)= U. Then:

i PZ = ZX-PX
ie.

PZ = z+U-tanz—p» B ¢ )]
Similarly:
) PZ = ZX; +PX,
ie.

PZ =z+Utanz,+p . . . . (II)
Adding (I) and (II):

2.PZ = z+#,+ Ultan 2+tanz) . . (III)

In a like manner, if £ and %, are the apparent zenith distances of
another circumpolar star whose declination differs materially from
that of the first, we have:

2.PZ = 5+%+U(tanZ+tan %) . . (IV)
From (III) and (IV) we have:
2+ 2, + U(tan 2+ tan 2,) = £+ %, + U(tan £+ tan %)

From which:
U= (2+2) ~ (F+5)
~ (tan £+tan %) ~ (tan 3+tan 3;)

By repeated observations of circumpolar stars, James Bradley
found the value of U to be 57-54 seconds of arc.

Bradley, who was elected a Fellow of the Royal Society in 1718,
was appointed Savilian Professor of Astronomy at Oxford in 1721.
He made many important contributions to the science of astro-
nomy. He devoted considerable attention to the investigation of
stellar parallax.

The philosopher Robert Hooke, who had invented the zenith
sector for the purpose of measuring or detecting stellar parallax,
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had attempted to detect the annual parallax.* of the star A Dra-
conis. This star transits in London near the zenith, so that its
meridian altitude is not affected by atmospheric refraction. The
effect of annual parallax on the apparent position of A Draconis
when at meridian passage should be an annual fluctuation in its
meridian altitude about a mean value, the maximum departure
from the mean value occurring in December and June. Hooke, in
his investigations, discovered a fluctuation; but it was regarded
as being due to instrumental error and/or faulty observation,
rather than as proof of the star’s annual parallax. Half a century
after Hooke had made his attempt Bradley, and his collaborator
Samuel Molyneux, set about tackling the same problem. Their
observations showed incontestably that the meridian altitude of
A Draconis did fluctuate with an annual period, but the maximum
departure from the mean value occurred, not in December and
June, but in September and March. In 1728 Bradley, who was
then Astronomer Royal, demonstrated that the phenomenon that
he had discovered was due to the fact that the speed of light from
the star bears a finite ratio to the speed of the Earth in her orbit.
When approaching the star its meridian altitude, therefore, is
greater than the mean value for the year; and when receding from
it, it is less than the mean. This phenomenon, often regarded as
being Bradley’s greatest discovery, is known as aberration of light.
Another of Doctor Bradley’s great discoveries is the nutation of
the Earth’s axis—a movement similar to the precessiont of the
Earth’s axis, but due to the effect of the Moon instead of the Sun.

Bradley’s work on atmospheric refraction is often linked with
the later work, in the same field, of Friedrich Bessel.

Bessel (1784-1846) started work at an early age in the old Hansa
city of Bremen, where he developed a desire to sail abroad as a
supercargo. The fulfilment of his desire led him to a study of
navigation, mathematics and astronomy, branches of science in
which he became so renowned that, in 1818, he was appointed
Director of the new Kénigsberg observatory. Bessel was instru-
mental in reducing the valuable, but neglected, astronomical ob-
servations of Bradley; and it is to Bessel that the discovery of
stellar parallax is due.

* That is, the angle at a star contained between diametrically opposite points
of the Earth’s orbit,
1 See Chapter v, p. 123, for a brief discussion on precession.



THE ALTITUDE CORRECTIONS 107

A formula for astronomical refraction, more exact than the
simple tangent law, was formulated by Bradley. The rule, often
stated in navigation and astronomy books of the late 18th century,
is:

‘“The refraction at any altitude is to 57 seconds, in the direct
ratio of the tangent of the apparent zenith distance lessened by
three times the estimated refraction, to the radius.’

Expressed in the common mathematical way, this rule is:
r, = 57"-tan (2—3.7,)

In applying this rule, if the calculated refraction 7, differs
materially from the estimated refraction 7,, it is necessary to
repeat the calculation using 7, in place of 7,.

An interesting method of measuring refraction, due to Bradley,
involves observing the Sun’s apparent zenith distance at noon on
the days of the solstices. If 7, and z,, are the summer and winter
solstitial zenith distances of the Sun at noon respectively, then the
true zenith distances are respectively:

2+ (pn—1) tan 2,
and
Zp+(u—1) tan 2,

Now the declination of the Sun, when he is at a solstitial point,
is equal to the obliquity of the ecliptic . Therefore, the observa-
tions being made north of northern tropic, in latitude A:

z,+(p—1)tanz, = A-e¢
and
Zy,+(p—1)tan 2, = A+e
From which:
2) = 2+ 2, +(p—1)(tan z,+tanz,) . . . . (V)
and
2)‘—(23"'310)
tan 3;+tan 2,

(r-1) =

Alternatively, A may be eliminated from formula (V) by com-
bining it with formula (III) or (IV), so that (u— 1) may be found
from combined observations of the Sun at each of the solstices and
the zenith distances at upper and lower transit of one circumpolar
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star. Eliminating A in this way, using formulae (III) and (IV), we
have:

I+2 —2—2,
tan z,4tan 2,,—tan 2 —tan 2,

(w-1) =

Experiments made in the 18th century—notably by the instru-
ment-maker Francis Hauksbee who flourished during the first
decade of the century—showed that atmospheric refraction is pro-
portional to the density of the air. The density of the air varies
directly as its pressure and inversely as its heat. Since the pressure
and heat of the air are shown by barometer and thermometer
respectively, it follows that the mean refraction may be reduced
to the actual refraction by allowing for the difference between the
actual and mean pressures and temperatures of the air.

The difference of refractions arising from a given difference of
temperature may be ascertained by observation. De la Caille
made the change of refraction corresponding to a change of 10°
on Reamur’s thermometer to be 1/27 of the whole. Mayer made
the change 1/22 of the whole. According to Bradley:

‘The true refraction is to the mean refraction in a direct ratio of
the altitude of the barometer to 29-6”, and in an inverse ratio of
the altitude of the thermometer increased by 350 to the number
400,

In other words:

H 400
296 (T—350)

where H is the height of mercury in inches and T'is the tempera-
ture on Fahrenheit’s scale. Bradley’s auxiliary table to the table of
mean refraction was based on this rule.

Andrew Mackay, in his Theory of the Longitude of 1793, ex-
plained the physical cause of refraction in a curious, but interesting
way:

true refraction = mean refraction -

‘It is demonstrable,” he wrote, ‘that every body is endowed
withanattractive power, which reaches to some distance beyond
its surface, as that of cohesion, magnetism, etc. Now a ray of
light from a heavenly body will, at its entrance into the terres-
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trial atmosphere, be attracted towards the denser parts: and
since the density of the atmosphere increases the nearer the
Earth’s surface, therefore the ray, as it approaches the observer,
will be more and more attracted, its velocity accelerated, and of
course its rectilineal direction changed. Hence that portion of
the ray contained between an observer and the extremity of the
atmosphere will be a curve, except in that case when the ray is
perpendicular to the refracting medium.’

Let us now turn our attention to atmospheric refraction as a
correction to a measured or observed altitude of a celestial body.

It must be appreciated that with the earliest instruments em-
ployed by the seaman for measuring altitudes—instruments such
as the seaman’s quadrant, astrolabe and cross-staff—it was not
possible to obtain altitudes to anything but a coarse degree of
accuracy. In those circumstances, therefore, the application of
altitude corrections amounting to a few minutes of arc to crude
observed altitudes measured perhaps to the nearest degree of arc
would have been unworthy of consideration.

Edward Wright, in his Certaine Errors of Navigation, first pub-
lished in 1599, brought to the notice of seamen the effect of re-
fraction on altitudes of celestial bodies. He explained the cause of
refraction in the same way as did Tycho Brahe; and, in fact, the
tables of refraction which he included in his famous work were
based on Tycho’s observations. Like Tycho, he believed refrac-
tion to be different for the Sun than for the stars; and his table of
refraction for the Sun extended from 0° to 45° altitude, and that
for the stars from 0° to 20°.

Thomas Hariot (1560-1621), the brilliant Elizabethan mathe-
matician who devoted considerable attention to navigational
matters, and who was adviser to Sir Walter Raleigh on mathe-
matics and navigation, was of the opinion that atmospheric re-
fraction was trivial, and need not, therefore, be considered by
seamen.

An early, and interesting, observation made at sea with the
specific object of finding refraction, was made by William Baffin
off the west coast of Spitsbergen in 1614. The account of the voy-
age, during which this observation was made, appears in Purchas,
His Pilgrims. 1t was the type of observation in which the famous
explorer showed his acute inventive genius. His observations of
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refraction were based on exact knowledge of the latitude of the
place of observation, the declination of the Sun, and the angular
diameter of the Sun. Baffin observed the Sun at lower transit at a
time at which he estimated that a certain fraction of the Sun’s
diameter was above the horizon. Knowing his latitude and the
declination of the Sun, he calculated the proportion of the Sun’s
diameter that should be above the horizon. From his results he
demonstrated that the angle of atmospheric refraction applicable
to his observation was 26’.

The table of refractions given in Maskelyne’s Requisite Tables,
the first edition of which was published in 1781, was based on
Bradley’s law. This table was reproduced in most of the navigation
manuals of the late 18th and 19th centuries—in particular, in
those of John Hamilton Moore, J. W. Norie, Mrs Janet Taylor,
Andrew Mackay, Edward Riddle and John Riddle.

From about 1825, refraction tables in some navigation manuals
were based on a refraction formula due to James Ivory of double
altitude fame. An able investigation into the subject of refraction
was made by Ivory, and a comprehensive account of the work was
printed in the Philosophical Transactions for 1823. Ivory’s mean
refraction table was based on a standard atmosphere having a sea
level pressure and temperature of 30 inches of mercury and 50° F.
respectively. The celebrated Henry Raper, as well as James In-
man, used Ivory’s refraction rules in their collections of naviga-
tional tables.

It may be remarked that the actual refraction of light from a
heavenly body whose altitude exceeds about 10°, is never more
than about half a minute of arc different from the mean refraction.
It is for this reason that the table of corrections to mean refraction
is seldom used by seamen for correcting altitudes. In bygone days
however, although the table was of little consequence when find-
ing latitude, it demanded the attention of the seaman who would
find longitude by the method of lunar distance.

Refraction of light from heavenly bodies within a few degrees
of the horizon can never be known with exactitude. Neither the
most refined mathematical investigation nor the most careful ob-
servations can remove the uncertainty of refraction at small alti-
tudes. Temperature changes—and therefore density changes—of
the air along the line followed by a ray of light from an object near
the celestial horizon, are almost always taking place. These
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changes can never be known with certainty, and no refraction law
has yet been formulated which will hold good at all times for alti-
tudes less than about 5°. Testimony to this fact is provided by the
frequent investigations made in recent times into the question of
refraction at small altitudes.

3. DEPRESSION OR DIP OF THE SEA HORIZON

The depression, or dip, of the sea horizon is a measure of the angle
contained between the plane of the horizontal surface on which
rests an observer’s eye, and the direction of the visible- or sea-
horizon, in the vertical plane through the observer’s line of sight.
The angle of dip is clearly a function of the elevation of the obser-
ver’s eye: the greater is the height of eye above sea level, the greater
is the angle of dip. Moreover, the greater is the height of eye of
an observer the greater is the range of his sea horizon. These facts
have been recognized since very early times; and they provided
simple and compelling evidence of the Earth’s rotundity. It is
recorded that the notable Pythagoras, who flourished during the
5th century BC, gave as clear proof of the spherical shape of the
Earth the changing appearance of a ship as she heaves into the
sight of, or sails away from, an observer standing on the shore.

During the 16th century, when the first of the ‘modern’
attempts at determining the size of the Earth were made, one
method suggested, and in fact employed by the Elizabethan
mathematician Edward Wright, was related to the height of an
observer’s eye above sea level and the corresponding range of his
sea horizon. The uncertain effect of terrestrial refraction, that is
the bending of light in its passage from a point on the visible
horizon to an observer’s eye, rendered the method unreliable and
inaccurate. The principle of the method is described with refer-
ence to Fig. 3.

Fig. 3 illustrates a section of the Earth in the plane of which lies
the Earth’s centre at C and the observer’s eye at O. A is a point
vertically below O at sea level; and AB is the Earth’s diameter.
The observer sighting a point on his theoretical horizon lying in
the plane of the section would be sighting along the straight line
OH, which is a tangent to the circle ABD at D.

The observer’s theoretical horizon, the radius of which is AD,
is a small circle which limits the observer’s view, assuming that
terrestrial refraction is non-existent.
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Because the height of the observer’s eye—# units—above sea
level is small compared with the distance of the theoretical horizon
AD, it may be assumed that tangent OD is equal to arc AD. From
a well-known geometrical theorem:

OD2 = OA.OB
i.e.

AD? = OA.OB
and

AD = +0OA-OB
or

distance of theoretical horizon = 4v/2-R-%2 (OB = 2R approx.)

It follows, therefore, that if the Earth’s diameter and the height
of the observer’s eye above sea level are known, AD, the distance
of the observer’s theoretical horizon, may be computed. Con-
versely, if the distance of the theoretical horizon and the observer’s
height above sea level are known, the Earth’s radius may be
computed.
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It will be noticed from Fig. 3 that the dip of the theoretical
horizon, denoted by A, is equal to the angle at the Earth’s centre

contained between radii terminating at D and A respectively. We
have, therefore:

R
sl = R+%
Since the angle of dip is a small angle:
A2 h
1- - =1- R

where A is expressed in circular measure, and

2
A=Jﬁ

The effect of atmospheric refraction is for light coming from
the actual horizon, the visible- or sea-horizon as it is called, to
follow a path concave to the Earth’s surface as illustrated in Fig. 4.

X (8) Plane of
dip ' A sensible horizon

A

theOretica] horizon

2€a or yisibld horizon

B
FIGURE 4
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Refraction, therefore, causes the sea horizon to have a greater
range than that of the theoretical horizon. It also causes the angle
of dip to be smaller than that of the theoretical dip.

The effect of terrestrial refraction on dip and distance of the sea
horizon received the attention of many 18th-century physicists
and astronomers, but there was never general agreement as to the
exact effect of refraction. Dr Nevil Maskelyne, under whose direc-
tion the first British Nautical Almanac was published in 1765,
stated that 1/10 of the theoretical dip should be subtracted from
the theoretical dip to give the true dip. Other investigators gave
fractions generally between 1/9 and 1/15; but according to Gene-
ral Roy (Philosophical Transactions, 1790) it varies from 1/3 to
1/24 of the ‘comprehended arc’.

Andrew Mackay, in his Theory of the Longitude, points out that
because the Earth is an oblate spheroid the radius of curvature is
variable with the latitude. It follows, therefore, that no single
table of dip can answer in all places. Mackay wrote:

‘Tables of dip should be calculated for the latitude of the place
and the azimuth of the observed object. It however may be
observed that the difference of dip arising from the above cause
is so inconsiderable as to have been hitherto neglected.’

In the same book, Mackay gave the following rule for com-
puting dip:

‘To the constant logarithm 0-4236 add the proportional loga-
rithm of the height of the eye above sea level, in feet; half the sum
will be the proportional logarithm of the dip of the horizon.’

When observing the altitude of a heavenly body at sea the
measured angle is that contained between the apparent direction
of the body and the direction of the point on the visible horizon
vertically below the body. This latter point, as we have seen, does
not coincide with a point on the true horizon, falling, as it does,
below it by an amount which is dependent upon the height of the
observer’s eye above the sea surface. The angle of depression of
the sea horizon must, therefore, be subtracted from the measured
altitude to give what is called the apparent altitude. The apparent
altitude of a heavenly body is defined as the arc of a vertical circle
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contained between the apparent direction of the observed body
and the true or sensible horizon.

The dip varies as the square root of the height of eye of the
observer. For a height of eye of 50 feet above sea level, the dip is
about 7’ of arc: for a 100 feet it is about 10’ of arc. For the same
reason as the atmospheric refraction correction was not heeded by
the early mariners who used relatively crude instruments for their
observations, the dip also was ignored. Both refraction and dip
corrections are subtractive; but even though they are to be applied
in the same direction as each other, the combined correction of
dip and refraction for an observation taken from a position on the
ship often less than about 15 feet from the sea surface was never
more than about 10’ of arc for altitudes greater than about 10°.

It appears that the first dip table designed and printed for the
use of the seaman was that given by Edward Wright in his remark-
able Certaine Errors in Navigation, Detected and Corrected, the
first edition of which is dated 1599. Wright’s table extended from
5 feet to 90 feet height of eye above the sea surface with corres-
ponding dip corrections of 2’ and 11’ of arc respectively. These
corrections compare favourably with those to be found in a
modern dip table in which:

dip for 5 feet = 2.57'
dip for 90 feet = 10-91’

Thomas Hariot regarded dip as being sufficiently large to be
worth considering for navigational purposes. His table of dip,
although ante-dating Wright’s table, was never published.
Hariot’s values for dip are consistently a little too large.

The dip table in Maskelyne’s Reguisite Tables allowed for the
effect of terrestrial refraction based on Maskelyne’s rule quoted
above. Samples of dip taken from this table are:

Height of eye Dip
10 feet 3-01’

50 feet 6-44'
100 feet 9-33’

Maskelyne’s dip table, in which the refraction allowance is 1/10
of the theoretical dip, was given in many of the navigation manuals
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of the late 18th and early 19th centuries. These included those of
Robertson (1788), Norie (1802), John Hamilton Moore (1780),
Andrew Mackay (1796) and Janet Taylor (1830).

Edward Riddle’s dip table which appears in his Treatise on
Navigation (1828) is based on an allowance of 1/13 of theoretical
dip, the factor 1/13 being that suggested by the French physicist
Biot.

Raper, in his Practice of Navigation (1840), gave a dip table
based on an allowance for refraction amounting to 1/14 of the
theoretical dip.

Raper drew attention to the facts that the running of the sea in
bad weather causes the sea horizon to be in continual vertical
motion; and that the rising and falling of an observer due to
rolling, pitching, and heaving of the ship, causes the dip to be in
perpetual change. To overcome errors due to these causes the sea-
man was advised to make a series of observations, instead of a
single sight, and to take an average of the results.

Raper also pointed out that the height of eye should be ascer-
tained with some precision, that is to say, within two or three feet;
because an error in dip causes a corresponding error of the same
amount in altitude. This is of greatest importance when the ob-
server’s eye is near the sea surface, because the rate of change of
dip with height above sea level is greatest when the height of eye
is zero.

In general, the greater the height of the observer’s eye the more
distinct will be the sea horizon, provided that the air is clear. In
misty weather, however, when celestial observations are possible,
it is better to observe from a position as near to the sea surface as
practicable so as to ‘bring’ the sea horizon as near as possible to
the observer. ‘

It is interesting to note that Raper gave a true dip table as well
as a table of apparent dips. The true dip table gives the depression
of the theoretical horizon, and it is based-on the formula:

True dip = 1-063V%
where & is the observer’s height of eye in feet.
A footnote to the explanation of the true dip table is interesting:

‘ As the lower latitudes are more frequented by shipping than
the higher, 40° has been assumed as the average latitude. Also,
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as the curvature of the Earth is different on the prime vertical
and on the meridian, the circle of curvature, crossing the
meridian at 45° of azimuth has been employed. The depres-
sion is accordingly, computed to the radius 20,909,577 feet
which gives the length of the average nautical mile 6082 feet
nearly.’

When star observations became popular during the closing
decades of the 19th century it became common to provide, in
collections of nautical tables such as those of Norie, Inman, etc.,
a combined table of dip and refraction for star altitudes. This
table is called the Stars’ Total Correction Table, no altitude cor-
rections, other than those for dip and refraction, being required
for reducing a star’s observed altitude to its true altitude.

4. THE SUN’S SEMI-DIAMETER

The correction called Sun’s semi-diameter is applied to a measured
altitude of the Sun, when his limb is observed. It is simply half
the angular diameter of the Sun and is to be added to the altitude
of the lower limb and subtracted from the altitude of the upper
limb, in order to find the altitude of the Sun’s centre.

The Sun’s semi-diameter varies during the year, being least
when the Earth is at aphelion, when its value is 15-8’, and greatest
when the Earth is at perihelion, when the value is 16-3’. The
traditional value for the Sun’s semi-diameter is 16’, and this is the
angle which the seaman was recommended to apply to the
measured altitude of the Sun’s limb. In fact, some Davis quad-
rants were graduated on the back edge of the smaller arch in such
a manner as to eliminate the need for applying the semi-diameter
correction arithmetically.

Before the cross-staff was introduced to the navigator, the only
instruments used for measuring altitudes were the seaman’s
quadrant and astrolabe. When either of these were used for
measuring the Sun’s altitude, the angle given on the graduated
arc—by the plumb-line in the case of the quadrant, and the spot
of light in the case of the astrolabe—required no correction for
semi-diameter, the measured angle being the altitude of the Sun’s
centre. Similarly, when using a Davis quadrant fitted with a glass
vane instead of a shade vane the same applied.

It was not until the closing decades of the 17th century that

9
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observed altitudes of the Sun were corrected for refraction, dip
and semi-diameter. Although the errors due to not applying alti-
tude corrections were understood, it was realized that the degree
of error associated with the measuring instruments used—especi-
ally the seaman’s quadrant and astrolabe—was considerably
coarser than the small angular values of the corrections. Following
the introduction of Hadley’s quadrant, the question of altitude
corrections sprang to the fore, and altitude correction tables were
provided, with corrections often to an unnecessarily high degree
of accuracy, in most nautical tables.

The Sun’s semi-diameter, and that of the Moon as well, was
required when clearing a lunar distance between Sun and Moon;
and for this purpose accurate values of semi-diameter were re-
quired, because a small error in the cleared distance results in a
relatively large error in the calculated longitude.

From the early part of the 19th century, it became customary to
provide in nautical table collections a table giving Sun’s total
correction. This gives the combined corrections for refraction,
dip and semi-diameter, against observed altitude of Sun’s lower
limb and height of observer’s eye. The table was constructed
using 16’ as the semi-diameter correction, although in later tables
an auxiliary table giving a monthly correction for the variation in
Sun’s semi-diameter was provided. In Norie’s Nautical Tables,
the first edition to include a Sun’s total correction table was that
of 1828. Robertson, in his Elements of Navigation, gave a com-
bined table of Sun’s semi-diameter, dip and refraction, but left
the user to combine the separate corrections.

5. THE MOON’S SEMI-DIAMETER

The Moon’s semi-diameter is sensibly affected by her altitude.
This follows because the radius of the Earth is a significant pro-
portion of the Moon’s distance from the Earth. The Moon’s
semi~diameter is least when she is at apogee and has an altitude
of 0°. It is greatest when she is at perigee and is in the zenith of
an observer. The tabulated values of the Moon’s semi-diameter
are given for altitude 0°, so that a small correction, known as the
augmentation, is to be applied to the tabulated value. The aug-
mentation of the Moon’s semi-diameter is given by the formula:

Augmentation = Moon’s semi-diameter x sine apparent altitude
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Although the maximum value of the augmentation is no more
than about 0-3’ of arc, it formed an important correction when
using the method of finding longitude by means of the lunar
distance method.

6. PARALLAX

The point in the heavens which a celestial body occupies when
viewed from the Earth’s surface, is called the apparent place of the
body. The point which it would occupy were it viewed from the
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Earth’s centre is called the true place of the body. The angular
difference between the apparent and true places of a celestial body
at any given instant is equivalent to the angle at the centre of the
body contained between lines terminating respectively at the ob-
server’s position and the Earth’s centre. This angle is called the
body’s parallax-in-altitude. Fig. 5 illustrates how parallax varies
with altitude and distance.

It should be clear from Fig. 5 that parallax-in-altitude for any
given body such as X, is greatest when the body lies on the horizon
of the observer, This maximum value is called horizontal parallax.
Parallax-in-altitude varies as the cosine of the altitude, being zero
when the altitude is 90°. It should also be clear from Fig. 5 that
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parallax-in-altitude varies inversely as the distance of the body.
That for body Y, which has the same apparent place as that of
body X, is smaller than it is for X, the nearer body.

For the fixed stars, on account of their great distances compared
with the Earth’s radius, parallax-in-altitude is infinitesimally
small, and is regarded as being zero. For the Sun the value of hori-
zontal parallax varies during the year, being greatest when the
distance between the Earth and Sun is least, but it is is never more
than about 9” of arc. In practice it is generally ignored when
correcting the Sun’s altitude, although for clearing a Sun lunar
distance Sun’s parallax was considered to be a correction of some
small importance.

The Moon’s parallax-in-altitude is a correction which is of
great importance. The horizontal parallax of the Moon is greatest
when the Moon is in perigee and least when she is at apogee, the
corresponding values being 62’ and 53’ respectively.

In the early British Nautical Almanacs, the Moon’s horizontal
parallax was given at intervals of twelve hours. The value of hori-
zontal parallax given in the almanac is described as equatorial
horizontal parallax, for it is the value applicable to an observer
located on the equator. For an observer at any latitude other than
the equator, the horizontal parallax of the Moon is less than the
equatorial horizontal parallax. This is so on account of the spher-
oidal shape of the Earth. Horizontal parallax is the angle whose
tangent is the ratio between the Earth’s radius and the distance
between the Earth and the centre of the observed object. The
Earth’s equatorial radius being the maximum results in the equa-
torial horizontal parallax being maximum. The tabulated value of
the Moon’s horizontal parallax must be corrected by an amount
known as the reduction. The reduction of the Moon’s horizontal
parallax for the figure of the Earth* is found from a table included
in most nautical collections. The reduction is never more than
about 0-3' of arc.

Parallax is often regarded as being an error due to observing

* The term figure of the Earth is a mathematical expression for the ellipsoidal
shape of the Earth. This is given in terms of a quantity called compression (c),
where ¢=(a—b)/a in which @ and b are the Earth’s equatorial and polar radii
respectively. The compression is approximately 1/300, this small fraction indi-
cating that, for most practical purposes, the Earth’s shape may be taken to be
that of a perfect sphere.
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from the wrong position. The term ocular parallax applies to the
error due to not placing the eye in the exact position when observ-
ing with a cross-staff. Ocular parallax is discussed in Chapter III.

As far back as the beginning of the 19th century correction
tables were available in which refraction and Moon’s parallax
were combined. Mendoza del Rios included such a table in his
nautical tables which were published in 1802.

Fig. 6 serves to demonstrate the relationship between Moon’s
horizontal parallax and Moon’s semi-diameter.
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In Fig. 6, O and M represent the centres of the Earth and Moon
respectively. ‘
The Earth’s radius = 4000 miles (approx.)
The Moon’s radius = 1000 miles (approx.)

Because MOX and AMO are small angles:
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Because the Moon’s horizontal parallax and her semi-diameter
always bear a constant ratio one with the other, it is easy to con-
struct a Moon’s altitude correction table in which refraction, semi-
diameter and parallax are combined.

7. IRRADIATION

When a bright object, such as the Sun, Moon or star, is viewed
against a darker background such as the sky, the bright object
appears to be larger than it actually is. This phenomenon is known
as srradiation. Moreover, the sea horizon, because the sky is
generally brighter than the sea, appears to be depressed on
account of irradiation. The resulting effect is that altitudes of the
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Sun’s lower limb are not materially affected by irradiation, be-
cause the apparent lowering of the lower limb tends to neutralize
the apparent depression of the sea horizon. For upper limb obser-
vations, however, the two effects combine to produce an error,
the magnitude of which depends upon the relative brightnesses of
Sun and sky, and sky and sea. It is only within recent times that
an irradiation correction has been made available to seamen.

8. PERSONAL ERROR OR EQUATION

The timing of an event such as the instant when a star, or the Sun’s
or Moon’s limb makes exact contact with the horizon, is affected
by the temperament and nervous and physical condition of the
observer. Any error due to this cause is called personal error or
equation.

Personal error varies not only between observers, but may vary
for different observations made by the same observer.

At the present time little attention is given by practical naviga-
tors to the question of personal error. During the last century,
however, when great accuracy of observed lunar distances was the
aim of all keen navigators, personal equation in nautical astronomy
was regarded as a matter of great moment.



CHAPTER V

Methods of finding
latitude

I. INTRODUCTORY

Because the Earth spins she possesses, in common with all spin-
ning bodies, the property of gyroscopic inertia. The gyroscopic
inertia of a spinning body is related to the tendency it has to main-
tain its plane and axis of spin.

Because of the Earth’s gyroscopic inertia, the celestial poles—
which are the projections of the Earth’s poles from the Earth’s
centre on to the celestial sphere—tend to be fixed points on the
celestial sphere. The celestial poles do not, in fact, remain fixed,
because the rotating Earth is acted upon by a resultant external
couple due to forces between the Sun and Moon and the Earth.
This couple results in a phenomenon known as the precession of
the equinoxes. The effect of precession is for each of the celestial
poles to describe an approximately circular path centred at one of
the extremities of the axis of the ecliptic.* The radius of each of
these circular paths is equal to the maximum declination of the
Sun: that is, about 234°. The movement of the celestial poles
around the poles of the ecliptic results in the declination and
Right Ascension of every fixed celestial point changing with time.

The precession of the equinoxes, which was discovered by the
renowned Hipparchus, is an extremely slow motion amounting to
about 50” per year. It takes about 26,000 years for the equinoxes
to swing through 360° of the ecliptic. It is because of the slowness
of the precession of the equinoxes that, for most practical pur-
poses, the celestial poles are regarded as being fixed points in
space.

pThe latitude of a place is its angular distance north or south of
the equator. It is equivalent to an arc of the meridian between the
equator and the parallel of latitude through the place. All places
which have the same latitude lie on a small circle which is parallel

* The ecliptic is the celestial great circle, co-planar with the Earth’s orbit,
traced out by the Sun during his apparent annual orbit in the celestial sphere.
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to the plane of the equator. These circles are known as parallels of
latitude.

In sketch (a) of Fig. 1, the celestial sphere is projected on to the
plane of the celestial meridian of an observer, the larger circle
representing the observer’s celestial meridian.
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In sketch (b), the celestial sphere is projected on to the plane of
the celestial horizon of the observer. The larger circle, in this
sketch, represents the celestial horizon. The smaller circle in both
sketches represents the Earth.

o represents the observer and Z his zenith; p represents the
Earth’s pole and P the celestial pole; N, E, S and W are the pro-
jections of the cardinal points of the horizon; wqe represents the
equator; and WQE is the projection of the equinoctial.

Observer’s latitude arc qo = arc QZ

Altitude of celestial pole = arc NP

Now ‘ ;

arc PQ = arc NZ = 90°
and

arc QZ = (90-PZ)
Also,

arc NP = (90—PZ)
Therefore:

arc QZ = arc NP
or

Latitude of observer = altitude of celestial pole

During the course of a day the slow spin of the Earth towards
the east results in an apparent revolution of the celestial sphere
towards the west. As a consequence of this, the celestial objects
tend to describe circular paths which are parallel to the equinoc-
tial, and which are centred on the axis of the equinoctial. These
circular paths are known as diurnal circles.

The nearer is a star, or other celestial object, to either celestial
pole, that is to say, the greater is the declination of a celestial
object, the greater is the proportion of its diurnal circle above the
celestial horizon of an observer whose zenith lies in the same
celestial hemisphere as that in which the object is located. At any
place in the northern hemisphere celestial bodies which have
north declination are above the horizon for more than twelve
hours each day. Celestial objects which have south declination
are, correspondingly, above the horizon for less than twelve hours
each day. At any place on the equator, all celestial objects, regard-
less of the name or magnitude of their declinations, are above and
below the horizon for exactly twelve hours each day.

A celestial object whose diurnal circle lies wholly above the
celestial horizon of an observer is said to be circumpolar for the
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observer’s latitude. It should be evident that at the equator no
celestial object is circumpolar. Likewise, at the North Pole, all
celestial bodies which have north declination, and at the South
Pole all celestial bodies which have south declination, are circum-
polar.

For a celestial body to be circumpolar at the place of an observer,
the polar distance, that is the complement of the body’s declina-
tion, will have to be less than the observer’s latitude. This fact
should be clear from Fig. 2.

N
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FIGURE 2

Fig. 2 is a projection of the celestial sphere on to the celestial
horizon of an observer in the northern hemisphere, whose zenith
is projected at Z. The observer’s latitude is equal to arc NP. All
celestial objects whose north declinations exceed arc QY lie within
the parallel of declination (or diurnal circle) centred at P and
having a radius equal to arc PY.

Now,

arc PY = 90—arc QY
and

arc PY = arc NP
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Therefore, the limiting declination for an object to be circum-
polar in the latitude of the observer is arc QY. In other words, for
an object to be circumpolar its polar distance (complement of
declination) must be less than the latitude of the observer, and the
names of the declination and the latitude must be the same.

An important adjunct to the needs of the ocean navigator is a
chart on which his ports of departure and destination are plotted,
and on which the position of his ship, at any time during the
voyage, may be plotted so that her progress may be checked and
her course, if necessary, rectified.

The earliest ocean voyagers relied on knowledge of latitude and
estimation of courses and distances made good in order to deduce
the ship’s longitude. This method of navigation by dead reckoning
(D.R.), or by ‘guesstimation’ as it has so aptly been described,
gave unreliable results because of the difficulty of making accurate
estimations of courses and distances made good.

The early navigators, and the ancient geographers as well, were
able to find the latitude of a place from astronomical observations;
but the practical determination of longitude, apart from that by
the method of D.R. navigation, was to remain a mystery until
comparatively recent times.

The chart of the early navigator, on which he plotted his D.R.
positions and observed latitudes was, like all maps, a representa-
tion of part of the spherical Earth’s surface on a plane surface,
requiring the use of a projection. The earliest forms of map pro-
jection, which were geometrical and simple in principle, date
from the 4th century BC.

During the 4th century BC the activities of land- and sea-
traders led to a great expansion of knowledge of the Earth’s sur-
face and of the distribution and positions of the major population
centres and trading stations. We have, in Chapter I, referred to
Eratosthenes, and noted his attempt to reduce the problem of ter-
restrial position-fixing to a regular system employing a network of
parallels of latitude and meridians. The principal parallel of lati-
tude used by Eratosthenes—a parallel which passes through Gib-
raltar and Rhodes—was first suggested by Dicearchus, who
flourished during the closing decades of the 4th century .BC.
Eratosthenes established a meridian line on his world map, this
passing through Rhodes and Syene.

The terms latitude and longitude, which mean respectively
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breadth and length, sprang from the notion that the habitable part
of the Earth is broader in the east-west direction than it is in the
north-south direction. This is certainly true of the Eastern Medi-
terranean region in which the ancient Greek and earlier civilized
societies flourished.

The latitude of a place may be ascertained without reference to
the latitude of any other place. In order to find the latitude of a
place in this way, recourse must be made to astronomical observa-
tion.

When it became known that the Earth’s shape is spherical, and
that the Sun’s annual path across the celestial concave is inclined
at an angle of approximately 234° to the plane of the Earth’s rota-
tion, it became possible to compare the latitudes of places from
the lengths of the midday shadows cast by gnomons set up at the
places.

Essentially, a gnomon provides the means whereby the passage
of time during sunlight hours may be measured. Because of the
changing declination of the Sun, due to the obliquity of the eclip-
tic, the gnomon may also be used for measuring the march of the
seasons. ‘

Pytheas of Marsala, who flourished during the 4th century Bc,
bestowed considerable attention upon the measurement of latitude
by means of the gnomon. He found the latitude of his native city
with great accuracy; and during his famous Atlantic voyage the
most northerly land reached, according to Pytheas, was located on
what we would describe as the parallel of latitude of 664° N. or
the Arctic Circle.

The term Arctic Circle has not always had its present-day
meaning. To the ancient astronomers and geographers the term
was used to describe a small circle on the celestial sphere which
enclosed all the circumpolar stars for any particular latitude.

To the ancient Greeks the word climata was used to describe
zones bounded by parallels of latitude.

It appears that Hipparchus was the first to suggest that parallels
of latitude on world maps should-be projected at regular intervals.
On the map of Eratosthenes’ the parallels of latitude were not
plotted systematically and were placed at irregular intervals.
Hipparchus introduced the idea of fixing the interval between
successive plotted parallels of latitude with reference to the longest
—or solstitial—day.
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Although Hipparchus referred to the latitudinal zones as
climata, later writers, including Strabo, referred to the boundaries
of the zones as climata. On this basis climata are parallels of
latitude.

The Earth’s surface was divided by ancient geographers into
twenty-four climatic zones in each of the northern and southern
hemispheres. The lengths of the solstitial days on the two boun-
dary parallels of each climatic zone differed by half an hour. The
ancient geographers knew no more than nine climatic zones, all of
which are located on the northern side of the equator. These nine
climatic zones, or climates, were named after the principal cities
situated within them. The third climate from the equator, for
example, was named after Alexandria, the metropolitan city of
Egypt; the fourth was named after Rhodes; and the fifth after
Rome; and so on.

We have shown that the latitude of an observer is equivalent to
the altitude of the celestial pole; and we have explained how the
diurnal circles traced out by the celestial objects, due to the
Earth’s rotation, are circles centred at the celestial pole. Now the
stars which, for purposes of navigation, are regarded as being at
an infinite distance from the Earth, maintain their declinations
over relatively long periods of time, so that it is an easy matter to
find latitude from an observation of a star when it culminates.

The culminating altitude of a star is known as its meridian alti-
tude. This is so because the greatest daily altitude of a star at any
place is attained when it bears due north or south, that is when it is
at meridian passage.

We have noted, in Chapter III, that the Arab navigators of the
Red Sea and the Indian Ocean have used the kamal for finding
latitude from very early times. It is not without significance that
the Red Sea, in contrast to the Mediterranean Sea, has great lati-
tudinal extent. It must have been evident to the early Semitic sea-
men that the meridian altitudes of the visible stars changed
appreciably during a voyage extending the full length of the Red
Sea. Moreover, it occurred to these seamen that the meridian alti-
tudes of selected stars gave a guide to the positions of certain har-
bours located on the Red Sea coastlands. Star meridian altitudes
were used, and still are used, by the Arab traders of the Red Sea,
and provided, as they still do provide, valuable aids to their navi-
gations.
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There is every reason to believe that the Polynesian seamen of
the past navigated their craft for hundreds of miles between the
widely-spaced islands of Polynesia by using star observations.
These intrepid voyagers used the important fact that the latitude
of an observer is equivalent to the declination of a star which
culminates at his zenith; or, as D. H. Sadler puts it in a tribute to
the late Harold Gatty, ‘a star in the zenith is a heavenly beacon
lighting up the latitude circle which revolves beneath it.” ‘This
assuredly,” Mr Sadler goes on to say, ‘is the simplest principle of
all position-finding methods.’ The pattern of stars in the vicinity
of the zenith provided the Polynesian navigators with the neces-
sary astronomical information which enabled them to set their
courses and make their desired landfalls,

During the period of the discovery of the Atlantic coastlands of
Africa by the Portuguese seamen under the sponsorship of Prince
Henry the Navigator, it was customary to make astronomical ob-
servations ashore for the purpose of finding distance south of
Lisbon. Instrumental aid for performing this task on a lively ship
at sea was, at the time, not available to the navigator.

2. LATITUDE BY THE POLE STAR

An early method for finding latitude was afforded by the Pole
Star—the Stella Maris of the early seamen. The Pole Star, on
account of its large declination describes, during the course of a
day, a tiny circle of angular radius which is equal to the small polar
distance of the star and which is centred at the celestial pole. On
two occasions each day the altitude of the Pole Star is equal to an
observer’s latitude ; but never does its altitude differ by more than
a small angle from the latitude. Henry’s navigators were taught to
observe the altitude of the Pole Star at the place from which they
departed for their voyages of discovery, at a time during the night
when the bright star Kochab, the foremost of the so-called Guards
of the Lesser Bear, was in a particular position relative to the Pole
Star. On sailing southwards the altitude of the celestial pole
decreases in proportion to the change in latitude. In order to ascer-
tain how far south of the departure point he had sailed, the navi-
gator would observe the altitude of the Pole Star at a time when
Kochab occupied the same position relative to the Pole Star as it
had when the departure-position observation was made. The
difference between the two altitudes in degrees, when multiplied
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by the number of leagues in a degree—16% according to the
Portuguese reckoning—gave the distance in leagues between the
present and departure positions. The earliest observations were
made ashore using the seaman’s quadrant and a plumb-line,
instruments which have been described in Chapter III.

After the West African coast and the Atlantic islands of the
Azores and Madeiras had been discovered, the Portuguese made
a practice of marking the arc of the quadrant at points correspon-
ding to the positions of the plumb-line for latitudes of certain
islands and important coastal stations. From the time when this
practice began, navigators employed the method of ‘running
down the latitude.’ By this is meant sailing southwards or north-
wards until the parallel of latitude of the destination is reached,
and then sailing along the parallel, that is due east or west, until
the required landfall is made.

The charts used by the early Portuguese navigators did not
have a scale of latitude, and the terms altura (altitude or height)
and ‘running down the altitude’ were used in reference to the
latitude of a particular place. When seamen became accustomed
to using the degree as an angular unit it became convenient to
provide a scale of latitude on the maritime chart. When this stage
of development had been reached, seamen began to use a Rule,
or Regiment, of the North Star, by means of which they could
translate the altitude of the Pole Star into latitude.

To use the North Star for finding latitude the seaman was
required to memorize, or have access to, the corrections necessary
to apply to the altitude of the Pole Star, according to the position
of Kochab relative to the Pole Star itself.

When the Pole Star is on the celestial meridian of an observer
above the celestial pole, the latitude of the observer is equal to the
altitude of the star minus its polar distance. When it is on the
meridian below the pole, the latitude is equal to the altitude plus
the polar distance. When the local hour angle* of the Pole Star is
more than six hours and less than eighteen hours its altitude is
less than the latitude; and when the hour angle is more than
eighteen hours or less than six hours its altitude is greater than
the latitude. The correction to be applied to the altitude of the
Pole Star in order to obtain the latitude is clearly dependent upon
the position of the Pole Star in its diurnal circle. This, in turn,

® See Appendix 2. o
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affects the position of Kochab relative to the position of the Pole
Star.

Martin Cortes, in his Breve Compendio de la Sphera, based his
Rule of the North Star on the erroneous assumption that the polar
distance of the Pole Star was 4° 9. This value was too great, the

&

FIGURE 3

correct value at the time (1556) being 3° 30’. Cortes devised a
simple instrument by means of which the correction to apply to
the altitude of the Pole Star to find the latitude could readily be
found. The instrument is similar to a nocturnal, and consists of a
circular plate having a hole in the middle through which the Pole
Star could be sighted. Pivoted at the centre of the plate is a mov-
able indicator in the shape of a hunting horn—*The Horn’ being
the equivalent of the Portuguese name for the Lesser Bear. The
instrument was to be held at arm’s length and the Pole Star
sighted. The horn indicator was then turned to a position corres-
ponding to the positions of the stars of the Lesser Bear, where-
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upon the mouthpiece end of the horn indicated the correction to
apply to the altitude of the Pole Star to find the latitude of the
observer. Fig. 3 illustrates the instrument.

In the commonly-used Rules of the North Star, the position of
the foremost guard was described in terms of a compass direction
from the Pole Star. Edward Wright devoted Chapter 12 of his
Certaine Errors in Navigation Detected and Corrected—first pub-
lished in 1599—to a discussion on the position of the North Star
and the Guards. This chapter runs as follows:

‘Among the 48 constellations which the astronomers place in
the heavens the neerest unto the Pole of the World is that
which they call the lesser Beare, and

the Mariner’s Bozina or ye Horne, ORI K
in regard to the shape thereof: : :
which Constellation consisteth of 7

Stars, which are placed after this ; ;
manner: and of these Stars the three **
greatest marked A B C doe serve :

especially for our purpose. And so N

A is called the North Starre; B the .,.*

foremost Guard, and C the Guard

behinde. And they are so-called *

because by that force of the motion A

of the first moveable Heaven the A .~

star B goeth alwaies before and the X

starre C behinde.

‘Every of these Starres, as well as
al others in the Heavens besides, describe their circles round the
Pole with the motion of the first or highest moveable Heaven;
in which motion; sometimes the two Starres A B are iust of
one height above the Horizon; and when they are said to be
E and W one from another. Sometimes they are in a perpen-
dicular line to the Horizon according to our sight; and then
they are said to be N and S. And sometimes also the two Guards
B C are E and W one from another, and then the foremost
Guard beareth from the North Starre NE and SW. And when
these two Guards be in a perpendicular line one above another,
the foremost Guard beareth from the North Starre SE and
NW. In so much that from the foure Positions do arise eight
I0

*D
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Rules for the eight Rhumbes, wherein the foremost Guard may
stand, being considered in respect of the North Starre. And so
presupposing that the North Starre is distant from the Pole
three degrees and a halfe (according to the opinion of some
mariners, who love numbers that have no fractions) sometimes
the North Starre shall bee as high as the Pole it selfe, some-
times three degrees and one halfe lower or higher than the
Pole, and sometimes three degrees, and sometimes halfe a
degree.’

It will be noticed that Wright used 3° 30’ as the polar distance
of the Pole Star. The same value was used by William Bourne in
his Regiment for the Sea, a work which was designed to supplement
the work of Cortes, and which was first published in 1577. Other
writers, following Cortes, used the erroneous value of 4° 9'.

The declination and Right Ascension of the Pole Star change
comparatively rapidly, on account of the precession of the equi-
noxes. The use of an out-of-date polar distance in the Rule of the
North Star, therefore, resulted in an error in the latitude obtained
from an observed altitude of the Pole Star. Edward Wright in-
cluded as one of the errors of navigation, that caused by using a
false Rule of the North Star. Wright advised seamen to use a polar
distance of 3° 8’, although in his rule, given above, he used 3° 30".
Seller, whose Practical Navigation appeared in the late 17th cen-
tury, used 2° 9" in his ‘ Rule of the North Starre’.

Chapter 15 of Wright’s book is entitled ‘Other Things to be
noted in Observing the Height of the Pole’. It reads thus:

‘Next unto the Constellation of the Horne there is a Starre
which is called by the Spaniards el Guion signified before [in
the accompanying diagram] by the letter D, which standeth
east and west from the North Starre giveth you to understand
that it and the North Starre, and the very Pole, are east and
west. And so taking the heigth of the North Starre when it is
thus situate in regard of the Guion, without making any other
account, you have the iust heigth of the Pole and the Distance
from the Equinoctial.’

Accurate Pole Star tables of the type published in seamen’s
almanacs, were first published in the British Nautical Almanac for
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the year 1834. These tables were calculated using a formula
supplied in 1822 by the astronomer Littrow.

The formula used for finding the latitude from an observation
of the altitude of the Pole Star is:

l=a—pcosh+4sinl”(psinkh)®tana

where /is latitude, a is altitude, & is local hour angle and p is polar
distance of Polaris.

The local hour angle 4, is found by combining the Local Sidereal
Time of the observation and the Right Ascension of the star. That
is:

h=LST.—RA.*

Both the polar distance p and the Right Ascension of Polaris
change rapidly because of precession and nutation, so that aver-
age values of p and R.A. are used in compiling Pole Star tables.
For the year 1941, for example, the average polar distance of
Polaris was 61’ with a maximum deviation from this value of 0-3’.
The corresponding values for the Right Ascension were 01 hrs.
44 mins. and 2 seconds.

The First Correction, giving values for —p cos A, were tabu-
lated in Table 1, and the Second Correction, giving values for
+% sin 1” (p sin )® tan a, were tabulated in Table 2, assuming
average values for p and R.A. A Third Correction, given in
Table 3, allowed for the differences between the true and assumed
values of p and R.A.

The earliest Pole Star tables gave only the First Correction,
thatis — p cos k. This was sufficient for the early navigators whose
instruments were not accurate enough to measure altitudes to a
very high degree of accuracy.

The Portuguese mathematician Nuiiez pointed out, in the early
15th century, that an error in the Rule of the North Star results
from the assumption that the area bounded by the diurnal circle
of the Pole Star is a plane circle. The error, however, amounts to
no more than a couple of minutes of arc; and it is interesting to
note that, as late as 1824, Edward Riddle, in his Treatise on Naviga-
tion, stated that the distance of the Pole Star from the celestial pole
is so small that the circle which it describes may, without causing
material error, be considered as a plane. His solution to the Pole
Star problem involves the First Correction only.
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The famous Elizabethan mathematician Thomas Hariot used a
Pole Star table, which was not published for general use, in which
he incorporated a correction for the effect of latitude. This correc-
tion corresponds to the Second Correction, and it will be noted
from the formula given above, that the Second Correction varies
as the tangent of the altitude (or latitude).

We are informed by Staff Commander W. R. Martin in his
Navigation and Nautical Astronomy, which was first published
in 1888, that good Pole Star tables were published in 1810 by
Mr J. Stevens of the East India Company’s Service.

The Regiment of the North Star formed part of the stock-in-
trade of ocean navigators of the 15th-17th centuries. It is a note-
worthy fact that the navigation manuals of the 18th century and
the early 19th century give no instructions for finding latitude
from an observation of the Pole Star. Robertson, whose Elements
of Navigation was probably the most well-used navigation manual
of the 18th century, makes no reference to the Pole Star. Neither
does Mackay in his well-known navigation manuals; nor does
J. W. Norie in the first edition of his Epitome. It is not without
significance that the period when the Pole Star seems to have
been out of favour was one during which the double altitude
problem became popular.

It is interesting to note that Carl Zeiss invented an instrument
in 1938 designed for finding position at sea by means of an obser-
vation of Polaris. The Pol Fernohr, as the instrument is called is,
in some respects, similar to the ancient nocturnal. It employs a
small pane of glass on which are engraved two marks correspond-
ing to @ and B Ursa Minoris (The Guards of the Lesser Bear). The
instrument is held pointing to the north celestial pole and then
adjusted so that the two marks correspond with the appropriate
stars, whereupon the latitude and Local Sidereal Time may be
read off the instrument. ‘

The Regiment of the North Star and Pole Star tables are applic-
able to the northern hemisphere only. So that after the Portuguese
navigators, in their voyaging southwards along the West African
coast, had crossed the equator, an alternative method for finding
latitude became a necessity. As early as 1484, Prince Henry’s
royal father, King John of Portugal, was instrumental in forming
a commission to investigate the problems of position-finding,
especially in the southern hemisphere. From the investigations of
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the astronomers and mathematicians who formed this commission,
the method for finding latitude by meridian altitude of the Sun
was introduced to seamen,

3. LATITUDE BY MERIDIAN ALTITUDE OF THE SUN

Finding latitude from an observation of the Sun on the meridian
demands knowledge of the Sun’s declination. Solar Tables were,
therefore, prepared for sea use. These tables contained the Sun’s
declination for every day of the year. Henry’s navigators were
taught how to apply the Sun’s declination to the midday height

FIGURE 4

of the Sun, in order to obtain the latitude, or height of the pole,
as it was generally called.

The latitude of an observer, which is equal to the altitude of the
celestial pole at the observer’s position, is equal to the angular
distance between his zenith and the equinoctial measured in the
plane of the observer’s celestial meridian. It follows, therefore,
that the latitude of an observer is equal to a combination of the
declination of a heavenly body and its meridian zenith distance.
Fig. 4 illustrates this.

Fig. 4 is a projection of the celestial sphere on to the plane of the
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celestial horizon of an observer whose zenith is projected at Z.
N, E, S and W are the projections of the cardinal points of the
horizon. P is the projection of the elevated celestial pole, and
WQE is that of the equinoctial. X, represents a celestial body
which is culminating north of the observer’s zenith ; X, represents
a celestial body which is culminating south of the observer’s
zenith but north of the equinoctial; X, represents a celestial body
which is culminating south of the equinoctial.

Latitude of observer = NP
= ZQ

Now,

Z2Q = QX,-ZX,
also,

Z2Q = QX,+ZX,
also,

ZQ = ZX3;-QX;
In general:

ZQ = QX3 ZX
or:
Latitude = Meridian Zenith Distance * 3 Declination *

The Rules, or Regiment, of the Sun were more complex than
those of the North Star. The navigator, when using them, had to
consider whether the declination of the Sun was north or south;
and whether the Sun crossed his celestial meridian to the north or
the south of his zenith. In addition to the general cases—three for
each hemisphere, making six—there were special cases applying
when the Sun’s declination was 0°, and when the Sun had a meri-
dian altitude of 90° to make confusion doubly sure for the
non-mathematical navigator.

The Rules of the Sun required knowledge of the meridian
altitude, the declination and the ‘shadow’. Chapter 3 of Wright’s
book is entitled ‘Of the Shadowes’. He tells us:

‘The shadows being compared with the Sun, may be of three
sorts: for at high Noon the shadow falleth either towards that
part of ye Worlde to which the Sunne declineth, or towards the
contra part, or else we make no shadow at all. The first and
second sort are, when the heigth of the Sunne is less than 90°,
and the third is when it is iust 90°. . . . The rule of the Shadowes
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is that wee looke well to the lower fane of the Astrolabe when
we are taking the height of the Sunne at Noone. . ..

The earliest Rules of the Sun used meridian altitude instead of
meridian zenith distance for finding latitude. Typical of the meri-
dian zenith-distance rules were those of John Seller, which
appeared in his Practical Navigation, first published in the late
17th century.

‘Rule 1. If the Sun comes to the meridian in the South, and
have South Declination, subtract the Declination from the
complement of the Meridian Altitude. The Remainder is
the Latitude of the Place of Observation Northerly. But if
the Declination exceed the Zenith Distance, then subtract the
Zenith Distance from the Declination, the Remainder is
the Latitude Southerly.

‘Example 1. Admit you are at Sea, and the Sun being on the
Meridian in the South is 37 degs 30 mins distance from the
Zenith, and at the same time hath 12 degs 00 mins South
Declination ; I demand the Latitude of the Place.

‘The Operation:

‘Complement of the Meridian Altitude . . 37° 30

The Sun’s Declination south subtract . . 12° 00’

The Latitude of the Place . . . . . 25° 30’ North

‘Rule 2. If the Sun be upon the Meridian in the South, and
hath North Declination, then add the Declination to the Zenith
Distance, the Sum is the Latitude Northerly.

etc. etc.’

The quadrant, with its plumb-line, was not a suitable instru-
ment for measuring altitudes at sea from the deck of a heaving
ship. The need for a more suitable altitude-measuring instrument
resulted in the adaptation of the cross-staff and astrolabe for the
seaman’s use. Wright informs us in his Certaine Errors . . . that
the Portuguese seamen of his time marked their astrolabes ‘in
reverse,’ so that the angle given on the arc was the zenith distance.
Hence the need for alternative rules for finding latitude by meri-
dian altitude of the Sun.

4. LATITUDE BY MERIDIAN ALTITUDE OF A STAR
The method for finding latitude by meridian altitude of the Sun
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applied equally well to the stars, provided that the navigator was
provided with a table of stars’ declinations.

William Bourne, in his Regiment for the Sea, explained how
star observations could be used to find latitude. Tables of stars’
declinations were drawn up for the seaman’s attention and these,
in due course, made their appearance in navigation manuals. Pro-
vided that a mariner could measure the meridian altitude of one
of the tabulated stars during morning or evening twilight, he had
the means of finding the latitude of his ship. The quadrant and
the astrolabe were quite useless for star observations, relying as
they did on a shadow being cast. The cross-staff, therefore, be-
came the normal altitude-measuring instrument for star sights.

In the northern hemisphere, at least to the north of the tenth
parallel of latitude, the Pole Star is always available for observa-
tions made during twilight so long as the sky and horizon areclear.
The North Star, therefore, was regarded by seamen up to the end
of the 17th century as being superior to other stars for finding
latitude.

5. LATITUDE BY THE SOUTHERN CROSS

The constellation of the Southern Cross was used by seamen in
southern waters to find latitude. As early as 1505, the Portuguese
navigators were provided with a rule for doing so. This rule was
copied, in its essentials, by many writers of navigation manuals.
Edward Wright’s remarks on the use of the Southern Cross, or
Crozier as he called it, are interesting. He regarded the polar
distance of the star at the foot of the cross (the Cocke’s Foot as he
called it) as being 30°. He pointed out that when the stars at the
head and the foot of the Cross are perpendicular to the horizon,
at which time, Wright informs us, they have their greatest alti-
tudes, the latitude may be found by measuring the helght or alti-
tude. The rules are:

‘For if the said Heigth be thirtie degrees, then wee are in the
very equinoctial, and if it be more than thirtie degrees then we
bee so much past the equinoctial towards the South. And if it
be less than thirtie degrees, so much as it wanteth are we to the
north of the equinoctial.’

The Right Ascensions of the stars at the head and foot of the
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Southern Cross are approximately equal to one another. This is
the reason why they cross the meridian, or culminate, at about
the same time. The values of the declinations of these two stars
used by John Seller are 28° 45’ and 34° 45’ respectively. These
values are those determined by Edmund Halley. The latitude was
found by subtracting 28° 45’ or 34° 45’ from the meridian altitude
of the Head of the Cross and the Crow’s foot, as Seller called the
Foot of the Cross, respectively. The seaman was advised, in order
to ascertain the exact time for observing, to hold up a thread and
plummet: if the thread cuts both stars simultaneously, they are at
meridian passage and suitably placed, therefore, for a latitude
observation.

Observation of the Southern Cross stars for latitude could be
used north of the equator as well as in the southern hemisphere.
In fact, between the parallels of about 10° and 20° north, the Pole
Star and the Southern Cross could be used for this purpose. With-
in these parallels of latitude the navigator was, therefore, afforded
a means of checking his observations.

6. DECLINATION TABLES

An advantage of the method for finding latitude by meridian alti-
tude of a star over that for finding latitude by a noon-day Sun sight
is that a star’s declination is constant (or, at least, practically so)
for both time and longitude. The Sun’s declination, on the other
hand, varies with the time of year and also with longitude or local
time of an observer’s position. The earliest tables of declination
of the Sun gave declination for noon on each day of the year for a
standard—or reference—meridian that of Lisbon or London for
example. Because the Sun crosses any given meridian at local noon
(which differs from noon at any other meridian by an amount
which is proportional to the difference of longitude between the
local and standard meridians) it is necessary to apply a correction
to the tabulated value of the Sun’s declination in order to find the
declination for the time of local noon. Edward Wright referred to
this correction as the ‘aequation of the Sunne’s Declination.’ It is
interesting to note that he remarked that: ¢ They which sail in the
moneth of Iune and December, need not much to make an aequa-
tion.”

John Davis, the famous English navigator, in his Seaman’s
Secrets, explained how to correct the tabulated declination for
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longitude. Davis also repeated the method described by William
Bourne for finding latitude from an observation of the Sun when
it crossed the observer’s celestial meridian below the pole. This
method is applicable only in latitudes where the Sun is circum-
polar, and this can be so at no place on the equatorial side of the
Arctic (and Antarectic) circle. It was a method of great importance
to the polar navigators of Elizabethan times, during their searches
for a northern route to the fabulous spice islands of the East.

The table of the Sun’s declination, so essential for finding lati-
tude from an observation of the Sun on the meridian, reached a
stage of perfection only after Kepler had discovered the true form
of the orbit of the Earth, and the manner in which the Earth re-
volves around the Sun. Following the careful observations of the
fixed stars by astronomers—notably those of the renowned Tycho
Brahe who is generally esteemed as being the most skilful astro-
nomical observer of all time—tables of declinations and Right
Ascensions of the fixed stars were improved and perfected.

The apparent motions of the Moon and the planets relative to
the background of fixed stars perplexed astronomers, and it was
not until the 18th century, after the illustrious Newton had formu-
lated, and given to the world, his law of universal gravitation, that
tables of declinations and Right Ascensions of the Moon and the
visible planets became part of the stock-in-trade of the navigator.

Martin Cortes, in his work on navigation, gave a single table of
the Sun’s declination for every day of a leap year. In addition to
this, a secondary table of corrections was provided, by means of
which the declination of the Sun for any day in a non-leap year
could be found. During the 17th and 18th centuries it was the
common practice of writers of navigation textbooks to provide
four tables of Sun’s declination: one for leap years; and a second,
third and fourth for the first, second and third years after leap
years respectively. The seaman, in order to know which of the
four tables to use, required a rule for finding whether the year in
question was a leap year, or first, second, or third year after leap
year. It is interesting to note the curious and ponderous instruc-
tions given by Edward Wright, pertaining to this simple problem.

‘... I will set down a rule whereby you may know whether the
present year be leape year, or whether it bee the first, second or
third yeare after the leape year.
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‘And the rule is this, that taking from the yeeres of our Lord
(which run in our common account) the number of 1600, if the
_remainder thereof be an even number, and halfe of the remain-
der an even number, then that yeere is leape yeere: and if the
remainder be even, and the halfe thereof odde then that yeere is
the second yeere after the leape yeere. But if the remainder of
the yeeres number be odde we must trie the yeere next going
before, to see whether the remainder thereof, and halfe the
remainder be even numbers, for then the present yeere is the
first yeere after the leape yeere. And if the remainder of the
yeere going before be even, and the halfe thereof odde, then the
present yeere is the third yeere after the leape yeere.’

Pedro Nuiiez (Nonius), the famous Portuguese mathematician,
is credited with being the first to suggest providing tables of the
Sun’s declination for a four-year period.

7. THE DOUBLE-ALTITUDE PROBLEM

Nuiiez, in his book De Arte et Ratione Navigandi, proposed a
method for finding the latitude from two observations of the Sun’s
altitude together with the intermediate azimuth. Nufiez’s solution
to the double-altitude problem (as it later became known) was
published in 1537. It involved the use of a globe, as did the solu-
tion to the same problem put forward by our countryman Richard
Hues in his Tractatus de Globis, published in 1594. An English
version of Hues’s book on the globes was published in 1638 under
the hand of John Chilmead M.A. of Christchurch in Oxford.

At the time when Hues published his treatise on the use of the
globes mechanical watches, which kept time with a fair accuracy,
had become available. Hues’s solution to the double-altitude prob-
lem—a problem which was to engage the attention of numerous
mathematicians and astronomers in later centuries—required two
altitudes of the Sun together with the elapsed time between the
observations.

John Davis, in his Seaman’s Secrets, repeated Hues’s method.
The method consisted in drawing two circles on the celestial
globe. The first is centred at the Sun’s position on the ecliptic, its
radius being equal to the complement of the first observed alti-
tude. The second circle is centred at the intersection of the parallel
of the Sun’s declination and the hour circle which made an angle
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with the celestial meridian at the time of the first observation
equal to the elapsed time between the two observations. The
radius of the second circle is to be equal to the complement of the
Sun’s altitude at the time of the second observation. The declina-
tion of one of the points of intersection of the two circles of zenith
distance is equal to the observer’s latitude. Which of the two
points of intersection is equal to the observer’s latitude is obvious
from knowledge of the latitude by account.

Blundeville, in his Exercises . .. which was first published in
1594, described a method for finding latitude from simultaneous
altitudes of two stars, one on each side of the meridian. Master
Blundeville’s method involved adjusting the globe so that the
altitudes of the two stars corresponded to the two observed alti-
tudes, whereupon the latitude could be measured on the globe:
the altitude of the celestial pole, which is equal to the observer’s
latitude, indicating this.

The use of globes for navigational purposes was short-lived.
Not only were globes cumbersome and expensive, but the degree
of accuracy of the problems solved by their use was crude—even
for standards of the time. With the improvements in mathematical
methods for the seaman’s use, a new breed of navigator developed.
Methods of computation for the several astronomical problems
related to position-finding at sea were devised and these were
adapted for the use of seamen, usually in the form of complex
rules. The navigator, having access to the rules from his manual or
his memory, was able, therefore, to solve the relatively complex
astronomical problems without it being necessary for him to
understand the principles involved. Seamen, it appears, at no time
in the history of navigation have taken kindly to the mathematical
arts—the Black Arts, as they were sometimes called. The appli-
cation of mathematical principles of position-finding at sea were
forced upon the non-mathematical mariner; and it is only within
comparatively recent times that navigators have had some little
understanding of the principles of the processes involved in
nautical astronomy. By and large, seamen at all times have been
content to ‘proceed according to the Rules.” They are concerned
more with finding the answer than with knowing the underlying
principles of the methods they use for finding it.

In the preface to his well-known Elements of Navigation, which
was the principal English navigation manual of the 18th century,
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John Robertson F.R.S. who wrote his very fine book for the use
of ‘the children of the Royal Mathematical School,” drew atten-
tion to the fact that:

‘The common treatises of navigation, which on account of their
small bulk and easy price, are vended among the British mari-
ners, seem not to be written with an intention to excite in their
readers a desire to pursue the sciences, farther than they are
handled in those books; so that it is no wonder our seamen in
general had so little mathematical knowledge; for the person
who could keep a trite journal, formed on the most easy occur-
rences, has been reckoned a good artist; but whenever those
occurrences have not happened, the journalist has been at a loss,
and unable to find the ship’s place with any tolerable degree of
precision; and such accidents have probably contributed to the
distress which many ships crews have experienced, and which
a little more knowledge among them might have prevented, or
at least have lessened.’

The problem of finding latitude from two observations of the
Sun or star, using mathematical devices other than a globe, received
the attention of many scientific men and writers on navigation
during the 18th and 19th centuries. The so-called double-altitude
problem is one of great interest, and one for which many ingenious
solutions were furnished. The name double altitude was given to a
method of finding latitude. In modern navigational practice the
term applies to the method of fixing the ship, that is to say, finding
her latitude and longitude from astronomical observations.

The meritorious Raper, the author of the 19th-century classic
The Practice of Navigation, objected to the name double altitude.
¢, ..it is defective,” he wrote, ‘inasmuch as the word double
means twice the same.” He suggested the use of the term combined
altitudes.

The calculations involved in the solution to the double-altitude
problem are more complex than those for finding latitude from
an observation of the meridian altitude of a heavenly body. Prac-
tical seamen never favoured the double-altitude problem until
relatively recent times, when the method was perfected for finding
both latitude and longitude.

Given two altitudes of a heavenly body and the interval of time
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between the observations, the latitude may be computed by the
so-called direct method of double altitude. In using the direct
method, the latitude is computed by the rigorous process of spheri-
cal trigonometrical calculation. Many writers, including the
famous French astronomer Lalande, whose excellent writings on
navigation are well known, preferred the rigorous process and
advocated its use in preference to any of the many indirect
methods that were devised.
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The earliest double-altitude problems were related to the Sun.
Nicholas Facio Duillier F.R.S. is credited with being the first to
devise a mathematical method for solving the problem. In 1728
Duillier published a pamphlet entitled Navigation Improved. He
discussed the double-altitude problem in some detail and, in his
solution, he took into account the movement of the ship during
the interval between the times of observation. Duillier’s method
required a considerable amount of tedious computation and,
although it was improved by several writers and teachers of naviga-
tion, it was not generally considered as providing a practical solu-
tion to the problem. The method is explained with reference to
Fig. 5.
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Fig. 5 is a projection of the celestial sphere on to the plane of
the celestial horizon of an observer whose zenith is projected at
Z.N, E, S and W, are the projections of the cardinal points of the
horizon. WQE is the projection of the equinoctial and P is that of
the elevated celestial pole. X and Y are the projections of the ob-
ject at the times of the first and second observations respectively.
The arc XY is a great-circle arc through X and Y. Arcs PC and
PD represent the hour circles through the body at the times of the
observations. _

The following arcs and angles are known:

PX = polar distance of observed object
PY = polar distance of observed object
ZX = first zenith distance
ZY = second zenith distance

XPY = elapsed time

The successive steps in the computation in order to find PZ,
which is the complement of the observer’s latitude, are as follows:

In triangle PXY Using P, PX and PY, find XY.

In triangle PXY Using PX, PY and XY, find PXY.
In triangle ZXY Using ZX, ZY and XY, find ZXY.
From PXY and ZXY find PXZ.

In triangle PZX Using PX, ZX and PXZ, find PZ.
Latitude = 90 —PZ.

ok wLwiNe=

Duillier’s method, which is described in Leadbetter’s Astro-
nomy of the Satellites of Jupiter, published in 1729, although in-
volving tedious calculations, provided a direct and unambiguous
solution. Moreover, only two common rules of spherical trigono-
metry were required, these being the rules for:

1. Finding an angle given the three sides.
2. Finding a side, given the opposite angle and the other two
sides.

John Robertson, in his Elements of Navigation, describes
Duillier’s method—which he calls Facio’s method—but states
that his solution requires too many trigonometrical operations to
make it of ready use,

A solution to the double-altitude problem was published by
Richard Graham in 1734. Graham'’s solution is ingenious, despite
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the remark made by the author of the article on navigation in the
ninth edition of the Encyclopaedia Britannica to the effect that it
was published in the Philosophical Transactions ‘with much
boasting.” Graham’s solution was an instrumental operation re-
quiring the use of a beam compass which could be fitted to the
meridian ring of the celestial globe. The beam compass, which
was to be fitted so that it could be made to slide along the meridian
ring, was used to describe arcs of circles of radii equal to the Sun’s
zenith distances at the times of the observations. Graham claimed
that his method was capable of giving the latitude to within a few
minutes of arc of the truth and, according to John Robertson,
‘.. . with ease and expedition.’

In 1740 Cornelius Douwes, an examiner of sea officers and
pilots under the College of Admiralty at Amsterdam, devised a
method for finding the latitude by double altitudes. Douwes’s
method became very popular among British navigators.

W. R. Martin, in his Navigation and Nautical Astronomy of
1888, regarded Douwes’s method as providing the first practical
method for solving the double-altitude problem for the use of
seamen.

According to Robertson, manuscript copies of Douwes’s
method fell into the hands of English officers who, holding the
method in high esteem, caused it to be published in 1759 without
any demonstration. However, Dr H. Pemberton examined the
method and the solar tables devised by Douwes for use with his
method. Pemberton communicated his investigations to the
Philosophical Society, in whose Transactions it was published.
Pemberton demonstrated the method and showed its limitations
in 1760.

Douwes’s method requires the use of an estimated latitude. If
the latitude yielded by the calculations differs materially from the
estimated latitude used in the calculation, it is necessary to re-
solve the problem using the calculated latitude in place of the
estimated latitude.

As a result of investigations into Douwes’s method, improved
auxiliary tables were published under the direction of Nevil
Maskelyne, Astronomer Royal, in his Tables Requisite to be used
with the Nautical Ephemeris, second edition, 1781. Maskelyne
stated in this work that Douwes transmitted his method to the
Lords Commissioners of the English Admiralty, and that he was
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rewarded with £50 by the Commissioners of Longitude. Douwes’s
method was again investigated in 1797 by Mendoza Rios whose
results, together with improved auxiliary tables, were published
in the Philosophical Transactions of 1797.

Douwes’s method is described with reference to Fig 6.
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Fig. 6 represents the projection of the celestial sphere on to the
plane of the celestial horizon of an observer whose zenith is pro-
jected at Z. N, E, S and W, are the projections of the cardinal
points of the horizon, and P that of the elevated celestial pole.
X and Y are the projected positions of the Sun at the times of the
first and second observations respectively.

The following arcs and angles are known:

XPY = elapsed time
PX = polar distance of Sun
PY = polar distance of Sun (assumed to be equal to PX)
ZY = second zenith distance
ZX = first xenith distance
In triangle PZX:

cos ZX = cos PZ cos PX +sin PZsinPX cos ZPX . . (1)

1z
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In triangle PZY:

cos ZY = cos PZ cos PY+sin PZsinPY cos ZPY . . (2)
Subtract (2) from (1):
cos ZX —cos ZY =
sin PZ sin PX(cos ZPX —cos ZPY) . . (3)
that is:

2sin } (ZX+ZY) sin 4 (ZX-ZY)=
sin PZ sin PX 2 sin { (ZPX + ZPY) sin 4 (ZPX — ZPY)

From which:

sin }(ZPX + ZPY) = sin Y ZX +ZY) sin H(ZX - ZY)

sin PZ sin PX sin $(ZPX —~-ZPY) *~ ° )

The term (ZPX — ZPY) in the denominator of (4), is equal to
the elapsed time XPY. Thus, having found (ZPX + ZPY) from
equation (4), it is an easy matter to find ZPY.

From (2), we have:
cos ZY = cos PZ cos PX +sin PZ sin PX cos ZPY

ie.

cos ZY = cos PZ cos PX +sin PZ sin PX(1 —2sin?1ZPY)
ie.

cos ZY = cos (PX —PZ)—2 sin PZ sin PX sin? $ZPY
Le.

cos (PX~-PZ) = cos ZY +2 sin PZ sin PX sin? }ZPY

Using the latitude by account to give an assumed PZ, (PX — PZ)
can be found. From this, PZ—and hence the latitude—can be
determined. If the calculated latitude differs materially from the
latitude by account, the problem must be re-worked using the
latitude found from the first calculation.

The auxiliary tables provided by Maskelyne (and others) gave
the logarithms of quantities significant in the computation for
10-second intervals of time. Douwes’s original solar tables were
given for intervals much coarser than this, thus.necessitating
troublesome interpolation.

Should the ship’s position at the time of the second observation
be different from that at the time of the first observation, it is
necessary to adjust the first observed altitude to what it would
have been had it been observed at the second position. That is to
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say, an allowance for run would have had to have been made.
The correction in minutes of arc to apply to the first measured
altitude is equal to the distance in miles sailed either towards or
away from the Sun during the time which elapsed between the
instants of the two observations. Moreover, a change in longitude
between the times of observation necessitated a correction to the
elapsed time.

A figure famous in the history of astronomical navigation is
Samuel Dunn, one-time teacher of mathematics in London.
Dunn wrote several works on navigation amongst which were 4
New Variation Atlas, and A New Epitome of Navigation, which
were published in 1776~1777. In both of these works, which were
dedicated to the Honourable East India Company, Dunn intro-
duced a new solution to the double-altitude problem. The prob-
lem was entitled ‘Of a general method whereby the latitude may
be found, having any two altitudes of the Sun and the time
elapsed.’” The method is as follows:

1. Assume two latitudes differing about a degree or less, and
not widely different from the latitude by account.

2. For each co-latitude, together with the co-declination and
the co-altitude of the Sun, calculate two hour-angles, making
four calculated hour-angles in all.

3. The latitude is then found using the following proportional

statement:
‘As the difference of the elapsed times computed from the
latitudes is to the difference of those latitudes so is the
difference between the true elapsed time and either of the
computed elapsed times is to the number of minutes which
added to or subtracted from the corresponding assumed
latitude (as the case requires) gives the true latitude.’

Dunn’s solution was a remarkable discovery, and it formed the
basis of the so-called ‘ Trial and Error’ method for finding longi-
tude. It also paved the way for the development of position-line
navigation, which we shall deal with in Chapter VII.

James Andrew A .M. described a solution to the double-altitude
problem in his Astronomical and Nautical Tables, which were
published in 1805. Andrew dedicated his work to the Honourable
the Court of Directors of the United Company of Merchants of
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England trading to the East Indies. The principal feature of his
tables was the inclusion of a table of squares of natural semi-
chords, that is to say, a table of sin? /2 or Haversine 6, for values
of 6, at intervals of 10 seconds of arc, from 0° to 120°. In his pre-
face, Andrew declared that the table, which occupied the space
of 120 pages, was entirely new. It was designed primarily with
the object of facilitating the computation of lunar distances by
means of a new method of his invention. He was quick to realize
that the table could be employed for solving astronomical prob-
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lems besides that for which it was specifically designed. In par-
ticular, precepts were given for solving the double-altitude prob-
lem using the table of squares of natural semi-chords.

An ingenious solution to the double-altitude problem was
furnished by James Ivory, Professor of Mathematics at the Royal
Military College at Sandhurst. Ivory’s method which was well
received by seamen, was published in the Philosophical Trans-
actions of the Royal Society in 1821.

Ivory’s rule applies strictly to bodies whose declinations do not
change in the interval between the times of the two observations.
In practice, it is available for Sun sights by using the mean of the
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two polar distances proper to the times of observation, The
method is described with reference to Fig. 7.

The circle in Fig. 7 represents the projection of the celestial
horizon of an observer whose zenith is projected at Z. WQE is the
projection of the equinoctial, and P is that of the elevated celestial
pole. PX and PY are the projections of the hour circles through
the Sun at the times of the first and second observations respec-
tively. PM is perpendicular to the great-circle arc through X and
Y. ZR is a great-circle arc at right angles to PM.

In triangle PMX:
sin MX = sin XPMsinPX . . . (1)
cos PM = cos PX sec MX N ¢4

In triangle ZMY:
cos ZY = cos ZM cos YM +sin ZM sin YM cos ZMY
ie
cos ZY = cos ZM cos YM +sin ZM sin YM sin ZMR . (3)
In triangle ZMX:
cos ZX = cos MX cos ZM +sin MX sin ZM cos ZMX
ie.
cos ZX = cos MX cos ZM —sin MX sin ZM cos ZMY
i.e.
cos ZX = cos MX cos ZM —sin MX sin ZM sin ZMR  (4)

Add (3) and (4):
cos ZY +cos ZX = 2cos ZM cos YM(YM = MX) . (5)
Subtract (4) from (3):
cos ZY —cos ZX = 2 sin ZM sin YM sinZMR . . . (6)
In triangle ZMR:
cos ZM = cos ZR cos MR N ()]
sin ZR = sin ZM sin ZMR A ()
Substitute cos ZR cos MR from (7) for cos ZM in (5):
cos ZY +cos ZX = 2cos ZRcos MRcosYM . . (9)

Substitute sin ZR from (8) for sin ZM sin ZMR in (6):
cos ZY —cos ZX = 2sin YM sin ZR . (10)
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Using complements of ZY and ZX in (9) and (10) we have:

sin HY +sin HX = 2cos ZRcos MRcos YM . (11)
sin HY —sin HX = 2sin YMsinZR . . . . (12)

From (12), by transposition, we have:
sin HY —sin HX

sinZR = —5= 3w

From which:
. - cos $(HY + HX) sin 4(HY — HX)
sin ZR = S YM . (13)
From (11), by transposition, we have:
sin HY +sin HX

2cos ZR cos YM

cos MR =

From which:

cos MR = 4(HY + HX) cos {(HY — HX)

cos ZR cos YM
From solutions to (2) and (14), PR may be found thus:
PR = PM-MR

Finally, in triangle PZR:
cos PZ = cos PR cos ZR (ZR found from (13))

(14)

or
sin Lat = cos PR cos ZR (15)

The above method is described in The Theory and Practice of
Navigation published in 1900 and written by W. G. Tate, Exa-
miner of Masters and Mates at Tyne and Wear ports.

The following solution is given in The Extra Master’s Guide
Book written by Thomas Ainsley, and published in 1867:

Referring to Fig. 7, in triangle PMX:

sin MX = sin XPMsinPX . . . . . (1)
cosPM=c£(%( Y )
sin ZR = % }(ZX+§;') l\s&i)r; HZX ~ZY) .0
cos MR < SNIEXHZY) cos HZX~ZY)

cos MX cos ZR
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Arc PR is then found by combining PM and MR found from
(2) and (4) respectively. Finally, arc PZ which is the co-latitude,
is found from PZR. By Napier’s rules:

cos PZ = cos PR cos ZR
or
sin Lat = cos PR cos ZR N )

It will be noticed that Ainsley’s formulae (1), (2), (3), (4) and
(5) correspond essentially with those given by Tate and num-
bered (1), (2), (13), (14) and (15) respectively.

It is interesting to note that Ainsley remarked that the formulae
derived above are essentially the same as those given for this case
by M. Caillet in his Manuel de Navigateur, first published in 1818,
that is, three years before Ivory’s method made its appearance in
the Philosophical Transactions of the Royal Society.

The practice of dividing an oblique spherical triangle into two
right-angled triangles, as Ivory (and James Andrew) did in his
method for solving the double-altitude problem, is one of great
antiquity and is, in fact, almost as old as trigonometry itself. It
provided the only practical solution for solving oblique spherical
triangles up to the time of the invention of the fundamental cosine
formula which for any spherical triangle ABC is:

cos BC —cos AB cos AC
sin AB sin AC

This formula was known to Bategnius, the celebrated astro-
nomer of Batnae, who died in Ap 930.

In the practice of navigation, from the beginning of the second
half of the 19th century to the present time, the use of auxiliary
right-angled spherical triangles to facilitate the solution of oblique
spherical triangles—and especially in its application to the con-
struction of the so-called short method tables—has been of prime
importance.

Ivory’s method was improved in 1822 by Edward Riddle, the
master of the mathematical school at Greenwich (formerly the
master at the Trinity House school at Newcastle), the year after
it was published. Other teachers of navigation, including Mrs
Janet Taylor, Lieutenant Henry Raper, and John Riddle, the son
of Edward Riddle, who succeeded his father as master at Green-
wich, also published modified versions of Ivory’s method.

cos A =
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- John Riddle is credited with being the first to recognize that an

error in the solution to the double-altitude problem may arise
through using the polar distance of the Sun for the middle time.
He accordingly devised a method for correcting error due to this
cause. This was published in his revision for the sixth edition of
Edward Riddle’s Treatise on Navigation, which appeared in 1855.

In 1824 Edward Riddle in his treatise noted that the latitude by
double-altitude method could be employed in respect of two alti-
tudes of the same fixed star. Hitherto, Sun altitudes alone had
been used for the double-altitude problem. Riddle pointed out
that were a star used for this purpose, it was necessary to convert
the elapsed interval into sidereal units of time. He supplied a
simple rule for doing this. ‘ Increase the observed interval of solar
time,” he wrote, ‘by one second for every ten minutes.’

Graphical methods of solving the double-altitude problem
were devised, although these did not find favour among practical
seamen. As early as 1659 John Collins, in his Mariner’s Scale new
Plained, gave a solution using the stereographic projection.
P. Kelly, in 1796, published an ingenious solution by construction,
again employing the stereographic projection.

The use of simultaneous observations of two stars for finding
latitude was suggested by John Brinkley whose method was first
published in the Nautical Almanac for 1825.

The great value of the method for finding latitude by simul-
taneous observations of two stars rested in the fact that the differ-
ence between the Right Ascensions of the stars supplied the place
of the elapsed time in the case of the normal double-altitude
problem in which the Sun is observed. The method is, therefore,
independent of the need for measuring time.

If the two star altitudes are measured by the same observer it is
necessary to reduce the altitude of the first star observed to the
time of the observation of the second star. This is a simple matter,
especially if a table giving the rate of change of star’s altitude is
provided. Ideally two observers should make the observations
simultaneously.

A second advantage of the star double altitude applies in cases
where the angular distance between the observed stars is known,
this arc being required in the solution to the problem.

We find, in Thomas Lynn’s Astronomical Tables which were
first published in 1825, two tables of angular distances between
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pairs of selected stars for facilitating the problem of finding lati-
tude from simultaneous star observations. One of these tables was
designed for use in the northern hemisphere and the other for use
in the southern hemisphere. The same tables were published in
the 1825 Nautical Almanac, in which Brinkley made the following
observations:

‘Captain Lynn’s tables, lately published, in which the Log
Rising is given to seconds of time, will be found extremely
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convenient for the practice of this method [star’s double alti-
tude]. In fact it was his [Lynn’s] remarks relative to the oppor-
tunities of taking exact altitudes of the brighter stars during the
time of twilight, that induced me [Brinkley] to endeavour to
investigate an easy process of finding latitude from the altitudes
of two stars.’

Three tables, in addition to the two mentioned above, were
given by Lynn to facilitate the solution to the double-altitude
problem. These tables are similar to those published by Maske-
lyne (and others) to facilitate the solution to the problem using
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the modified Douwes’s method. Values were given to every second
of time so that interpolation, when using the tables, was not
necessary.

Commander (later Admiral) Charles Shadwell R.N. favoured
the star double-altitude method, and he published tables of
angular distances between selected stars in his Star Tables which
first appeared in 1839, and which were extended in 1849.

The principle of the star double-altitude method is explained
with reference to Fig. 8.

The circle in Fig. 8 is a projection of the celestial horizon of an
observer whose zenith is projected at Z. N, E, S and W are the
projections of the cardinal points of the horizon. WQE is the pro-
jection of the equinoctial and P that of the elevated celestial pole.
X and Y are the projections of two stars whose zenith distances
at the time of the observations are ZX and ZY respectively. Arc
ZY is the great circle arc joining X and Y. In triangles PZX and
PZY:

Given:
PX, PY (polar distances from Nautical Almanac)
ZX, ZY (co-altitudes of X and Y)
XPY (difference between R.A’S of X and Y)
To find:
PZ and hence the observer’s latitude (90 - PZ)

In triangle PXY:
Using PX, PY and XPY find XY (arc 1)

In triangle PXY:
Using PX, PY and XY find PXY (arc 2)

In triangle ZXY:
Using ZX, ZY and XY, find ZXY (arc 3)
From arcs (2) and (3) find PXZ (arc 4)
In triangle PZX:
Using PXZ, PX and ZX, find PZ.

Then:
Latitude of observer = (90 —PZ)°
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* Should the stars X and Y be a ‘selected pair’ which appear in
the Star Tables (of Lynn’s or Shadwell’s) arcs (1) and (2) may be
found by inspection, and the labour of computation thereby
effectively reduced.

An interesting method of finding latitude based on the principle
of the star double altitude was given by Thomas Lynn in his
Navigation which was published in 1825. Lynn’s ingenious
method is explained with reference to Fig. 9.
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Fig. 9 represents the celestial sphere projected on to the plane
of the celestial horizon of an observer whose zenith is projected at
Z. WQE is the projection of the equinoctial and P that of the
elevated celestial pole. X and Y are the projections of two stars
whose R.A’s differ by a small angle YPX, Y lying to the west of X.

The altitude of the westernmost star Y is observed and, after an
interval equal to the difference between the R.A’s of X and Y, the
star X is observed. At the time of observation of X, the star will
occupy the same hour circle as was occupied by star Y when the
first observation was made. The altitude of Y at the time of the
first observation is arc BY ; and the altitude of X at the time of the
second observation is arc AX,.
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In the spherical triangle ZX,Y, the arcs ZX, and ZY are known
—these being the zenith distances of the stars observed. The arc
X,Y is also known—this being the difference between the de-
clinations of the two stars. Given the three sides of the triangle
ZX,Y the angle ZYX, may be calculated.

In the spherical triangle PZY, given PY, ZY and PYZ, the arc
PZ—which is the complement of the observer’s latitude—may be
found.

The accuracy of Lynn’s method, as pointed out by Commander
W. R. Martin in his Navigation and Nautical Astronomy of 1888,
is greatest when the difference of bearings of the two stars is 90°,
a condition which may be approximated to by selecting stars
which have a small difference of Right Ascensions and a big
difference of declinations. Martin also pointed out that:

‘in order that errors of altitude may affect the latitude least, it
is desirable that, when practicable, one of the stars should have
a small altitude near the meridian and the other a large altitude
near the prime vertical circle; the altitude of the star first
observed requires the usual correction for run in the interval.’

The reliability of the calculated latitude obtained from the nor-
mal double-altitude problem in which the Sun is employed de-
pends entirely upon the change of bearing of the Sun between the
times of the two observations. The Rev. James Inman is credited
with being the first to point out this very important fact. The most
dependable result from the Sun double altitude applies when the
change in azimuth between the times of the two observations is
90°. This condition was stated by Inman in the first edition of his
Navigation which appeared in 1826.

Many writers on navigation gave complex rules and advice on
limiting conditions for the double-altitude problem. These rules
and conditions were, in many cases, related quite mistakably to
time from noon. Lieutenant Raper, in his review of Captain
Sumner’s newly-published book, which appeared in the Nautical
Magazine of 1844, remarked:

‘Projection [of Sumner lines] therefore, affords evidence of the
simplest and most convincing kind that the value of a double
altitude depends altogether on the difference of azimuth. This
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condition, first pointed out by Dr. Inman, has nothing to do
with time from noon, which more popular works reiterate as
the proper limiting condition of the double altitude, to the great
detriment of the extensive and successful practice of this
important observation.’

It is interesting to note that in a critique of Bowditch’s Practical
Navigator, which appeared in the Nautical Magazine of 1842, the
reviewer pointed out that: ‘Bowditch does not once allude to the
difference of azimuth as the criterion of the value of the double-
altitude observation.’

He also stated that:

‘Bowditch gives no case of latitude by meridian altitude of a
star, and yet he does the double altitude of a star—an observa-
tion not taken once in a whole servitude.’

Captain J. Trivett, a contributor to the Nautical Magazine of
1850, and one of the early Examiners of Masters and Mates,
described a method for solving the star double-altitude problem
by using a table of angular distances between selected stars. The
method, which appears to have been popular at the time, was
known as the I O U method. The star nearer the meridian was
referred to as the Inner star. The other was referred to as the
Outer star, and the angular distance between the two stars was
known as U. To facilitate the computation, and at the same time
render the method easy to remember, the solution was commenced
by writing down:

Inner altitude
Outer altitude
arc U from Star Tables [Lynn’s or Shadwell’s]
in this order. Hence the mnemonic I O U.

A practical seaman, L. T. Fitzmaurice, contributed a brief
article to the Nautical Magazine of 1854 entitled ‘On Finding
Position by Double Altitudes with only one Latitude.” The
method was described without a proof. In the following number
of the magazine, a letter appeared under the signature of John
Riddle, the master at the Greenwich Hospital school. Riddle
wrote:
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* ‘I believe the writer [L. T. Fitzmaurice] to have been a pupil at

Greenwich Hospital about 25 years ago. I am sorry that he
[Fitzmaurice] should have forgotten his old school habit of

demonstrating the propositions which he advances. The modi-

fication to which his letter refers was in full practice by our

little navigators here in 1852, and since then must have spread
. far and wide.’

Riddle then gave a demonstration of the method which is, in
effect, an adaptation of the newly-discovered Sumner method,
but using only one latitude (instead of two) and calculating two
hour angles and two azimuths (instead of four hour angles). (See
Chapter VII.)

Staff Commander J. Burdwood, the pioneer of Azimuth Tables,
described a method for finding latitude from the altitudes of two
stars observed at the same instant. The description of his method
appeared in the Nautical Magazine for 1865. It is interesting to
note that Burdwood’s Tables of Sun’s True Bearing (for latitudes
48°-56° N. and S.) were published the year before, in 1864. In a
review of these tables it was written:

‘If J. Burdwood had really desired to leave a monument behind
him of his labour for the benefit of navigation, he could have
done no better than compile these valuable tables.’

8. MERIDIAN AND MAXIMUM ALTITUDES

In normal circumstances at sea it is usual to regard the meridian
altitude of a heavenly body as being identical with the maximum
altitude. The usual practice of measuring the meridian altitude of
the Sun is to commence observing a little before noon, noting that
the Sun’s altitude is increasing; and then, when the Sun ceases to
increase and starts to decrease his altitude—at which times the
Sun is said to dip—the angle read off the sextant is taken as the
meridian altitude.

A celestial body of fixed declination culminates or attains its
greatest altitude when it crosses the upper celestial meridian of a
stationary observer. Should, however, the observer be changing
his position towards the north or south, and/or the object be
changing its declination the maximum altitude attained is not the
meridian altitude. In other words, a celestial body attains its
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maximum altitude when it lies off the meridian, that is before it
crosses or after it has crossed the meridian, should the observer
be moving northwards or southwards, or should the declination
of the body be changing. The hour angle of a celestial body when
it is at maximum altitude is dependent upon the rates of change of
declination of the body and the latitude of the observer.

For practical purposes, the rate of change of a star’s declination
is zero, and that for the Sun, which varies (being zero at the sol-
stices and maximum at the equinoxes) is usually very small. The
rate of change of declination of the Moon, however, may be con-
siderable and, as early as the beginning of the 19th century, the
Moon, because of this, was regarded as being an unfit object for
meridian altitude observations.

Chauvenet, in his Astronomy of 1896, demonstrates that the in-
terval between the times of meridian and maximum altitudes of a
celestial body, when observed by a stationary observer, is given by
the formula:

d sin (L— D)

T = §70,000 sin 17 cos L cos D

where T is the interval in seconds of time,
d is the rate of change of declination D in seconds of arc
per hour and
L is the observer’s latitude.

It is easy to see that if the declination of a celestial body is
changing in the direction of the bearing of the body at meridian
passage, the maximum altitude will occur, to a stationary observer,
after the meridian altitude, and vice versa. Should the observer be
moving meridianally, his rate of change of latitude will have an
effect. It is the algebraic combination of the rates of change of
declination and latitude that determines whether the meridian
altitude will occur before or after the time of maximum altitude.

With the advent of fast steam vessels during the last century
the problem of the maximum altitude became one of significance.
Latitude by maximum altitude became, in effect, a special case of
the problem known as latitude by ex-meridian altitude.

To overcome the error that may have arisen through treating
the maximum altitude as the meridian altitude, seamen have been
advised, since the middle of the 19th century, to compute the



164 A HISTORY OF NAUTICAL ASTRONOMY

time of meridian passage using the elements of the Nautical
Almanac together with the longitude by account; and to observe
the altitude of the body at the computed time, instead of waiting
until it dips, which was, and still is, the traditional method.

A formula from which the difference between the meridian and
maximum altitudes may be found is:

_(157)%sin 1” cos L cos D
N 2sin (L £D)

Consider a navigator observing the Moon at a time when this
body’s declination is zero and its hourly change of declination is
17’ to the north. If the observer’s ship is in the northern hemi-
sphere and it is steaming due south at the rate of 20 knots, the
combined movements of the observer’s zenith and the Moon, at
the time of meridian passage, would produce the same effect as if
the observer were stationary and the declination of the Moon
were changing at the rate of (20 +17)’, i.e. 37’ per hour towards
the north.

When a heavenly body’s geographical position and an obser-
ver’s position are opening, the time of maximum altitude occurs
earlier than that of meridian altitude. But when these positions
are closing, as they are in the case described above, the time of
maximum altitude occurs later than the time of meridian passage.
In the example, the Moon’s maximum altitude would be reached
at about eleven minutes after noon and it would be about 33’ of
arc greater than the Moon’s meridian altitude.

After the invention of position-line navigation following Cap-
tain Thomas Sumner’s discovery in 1837 (see Chapter VII), astro-
nomical navigation was brought to a state of excellence in 1875 by
French astronomers and navigators, notably Marcq St Hilaire of
the French Navy. Thereafter the problem of finding latitude at
sea by astronomical navigation became merely a special case of
the general method of obtaining an astronomical position line,
The end product of every observation or sight, as the seaman calls
it, is a position line which may be drawn on the navigation chart.
A position line is defined simply as a line on the chart somewhere
on which the ship’s position is represented. The point of inter-
section of any two position lines is the projected position of the
ship on the chart,

The astronomical position line obtained with the least effort is
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that which results from an observation of an object on the meri-
dian. The position line, in this case, lies east—~west along a parallel
of latitude. The meridian altitude observation for latitude became
available to European seamen, as we have demonstrated, as soon
as tables of the Sun’s declination, and a Regiment or Rules for the
Sun were devised for the Portuguese navigators of five centuries
ago. Since that far-off time the altitude observation of the culmi-
nating Sun has been a tradition amongst seamen. There is a dis-
tinct sense of lost hope, even in these enlightened days, should a
cloudy sky or an indistinct horizon preclude the observation of
the Sun’s meridian altitude. There has always been something
sacrosanct about the so-called noon position by observation; and
this position cannot be obtained unless the noon-day height of the
Sun is measured.

Q. LATITUDE BY EX-MERIDIAN ALTITUDE

The troublesome disadvantage of the midday Sun-sight is that
the Sun and the horizon vertically below him must be visible at

one particular instant of time during the day. In tropical waters it

is seldom that these conditions are not satisfied ; but in the seas of
middle and high latitudes, where rain, fog and cloudy skies are

common, it is often impossible for the seaman to find his latitude

by meridian altitude of the Sun. It is not surprising, therefore,that

in pre-position-line days the enterprising navigator aimed to pro-

vide himself with alternative methods for finding latitude. Lati-

tude, together with the lead, log and look-out, formed one of the

four L’s of the early mariner’s creed.

The method for finding latitude which we are now about to
describe, and which is known as the ex-meridian method, is still
practised extensively by seamen. The history of the method,
which dates from the middle of the 18th century, is full of interest,
and the ex-meridian problem is almost as celebrated in the history
of astronomical navigation as that of the double altitude.

Considerable attention was devoted to the ex-meridian prob-
lem during the 19th century—a period which was, in truth, a
golden era of astronomical navigation. Many ingenious solutions
were contrived and a diversity of ex-meridian tables were fur-
nished, all aimed to facilitate the problem of finding latitude at sea.

It may be argued that the ex-meridian method became obso-
lescent as soon as it had been invented. The increasing use and

12
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reliability of chronometers—which were scarce instruments for a
long time after Harrison had produced his famous timepiece in
the 18th century—and the introduction of position-line naviga-
tion in the mid-19th century, brought astronomical navigation to
a state of near perfection. Had logic prevailed in the chart-room,
all the existing methods of astronomical navigation would have
been swept away as soon as the ‘New Navigation’ of Marcq St
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FIGURE 10

Hilaire had made its appearance. This, however, was not the case;
many of the old methods of navigation remain with us, even to
this day. Old-established practices die hard at sea, and modern
navigators tend to manage their navigation in the same way as did
their sea-faring ancestors.

The essential problem in the ex-meridian method for finding
latitude is the comparison of the altitude of a celestial body at a
place where the body is culminating (the latitude of the place
being the same as that of the observer), with its altitude at the same
instant at the observer’s position.

In Fig. 10 the celestial sphere is projected on to the plane of the
equinoctial. Z is the projection of the zenith of an observer, and



METHODS OF FINDING LATITUDE 167

Z, is that of the zenith of a place whose latitude is the same as that
of the observer, and over whose meridian the body X is passing.
P is the projection of the celestial pole and the circle is that of the
equinoctial.

If the arc Z;X can be found, the latitude of the place whose
zenith is at Z, and, therefore, the observer’s latitude, can also be
found.

If /, d, z and k denote the observer’s latitude, the body’s declina-~
tion, the body’s zenith distance, and the time of the meridian
passage of the body, respectively, we have, from the triangle
PZX:
cos g—sin /sin d

cos lcosd

cosh =

when / and d have the same name, and:

cos z+sin lsind
cos [ cos d

cos h =

when !/ and d have different names.
When / and d have the same name:

cos z—sin lsind = cos [ cos d cos k

ie.

cos ¥ —sin Isin d = cos [ cos d(1 - vers h)
i.e.

cos z—sin lsin d = cos I cos d—cos I cos d vers k
i.e.

cos z4cos I cos d vers b = cos [ cos d+sin Isin d
Le.

cos z+4cos [ cos d vers k = cos (I~ d)
ie.

cos 2+cos lcosdvers h = 1—vers (I~d)
ie. '
) vers (I~d) = 1—cos z—cos lcos dvers h
ie.

vers (I~d) = vers z—cos I cos d vers h

Similarly, when ! and d have different names:

vers (I+d) = vers 2—cos I cos d vers h
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In general:

vers (I£d) = vers z—cosIcosdversh . . (1)

Now (/1 d) is the meridian zenith distance of X at the place
whose zenith is at Z,. Let this be denoted by 2;. The latitude of
this place and, therefore, the observer’s latitude, may thus be
found:

Latitude of observer = (I1d)+d

that is
l = zlid

The above treatment is a modified form of that first given in
1754 by Cornelius Douwes, a figure famous in the history of the
double-altitude problem. Douwes’s investigation was modified by
the Rev. James Inman D.D., whose famous nautical tables were
first published in 1821. Inman’s modification, used above, consists
in adapting the formula to the tables of natural versines and
haversines.

The ex-meridian method described above requires the use of a
latitude by account, which should approximate to the observer’s
actual but unknown latitude. If the latitude found differs materi-
ally from that used it is necessary to repeat the computation, this
time using the calculated latitude in place of the one initially used.
Moreover, it is necessary for the observer to know his longitude;
knowledge of this being required to find k, which figures in the
computation.

It may readily be shown that:

Error in z, (and therefore error in calculated latitude) is pro-
portional to cos latitude sin azimuth x error in 4.

It follows, therefore, that the smaller the latitude or the nearer
the azimuth to 90°, the greater will be the error in latitude conse-
quent upon an error in h. Knowledge of correct time is all
important in the ex-meridian problem.

It was early realized that when using stars for finding latitude
in accordance with the ex-meridian method, those with big de-
clinations gave the best results, this because of their relatively
slow rates of change of altitude. The Pole Star, therefore, is ad-
mirably suited for the purpose; and accurate Pole Star tables have
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been available for the seaman since the early 19th century,
although they were not included in the British Nautical Almanac
until 1834,

A method for finding latitude by ex-meridian observation of
the Sun, using ‘direct spherics,” was given in the later editions of
James Robertson’s Elements of Navigation. This method is ex-
plained with reference to Fig. 11.

N
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S
FIGURE 1I
Fig. 11 is a projection of the celestial sphere on to the plane of
the celestial horizon of an observer whose zenith is projected at Z.,
P is the projection of the elevated celestial pole; WQE that of the
equinoctial; NZS the observer’s celestial meridian. Arc XM is a

perpendicular from X on to the observer’s celestial meridian at M.
In triangle PMX:

tan PM = tan PX cos P e (@)

cos PX = cos MX cos PM N &)
In triangle XMZ:

cos ZX = cos ZM cos MX N ()

Divide (3) by (4) to eliminate MX:
cos PX _ cos PM
cos ZX ~ cos ZM




170 A HISTORY OF NAUTICAL ASTRONOMY

ie.
.cos PX cos ZM = cos ZX cos PM
and
cos ZM = cos ZX cos PM sec PX .o (5)

From (2) and (5), arcs PM and ZM may be found: and these,
when combined, will give arc PZ which is equivalent to the
complement of the observer’s latitude.

The direct method is independent of the latitude, and may be
used to good effect even when the observed object has a large
hour angle and azimuth, provided that the angle P is known with
accuracy. A disadvantage of the method applies to cases in which
the object’s declination is small. In this event the arc PX is nearly
90°. Because the tangent of PX is required in (2), it is necessary,
in this case, to extract the logarithm with great care. Moreover,
any small error in the polar distance used will cause, in this cir-
cumstance, a relatively large error in secant PX used in (5), and
this will lead to error in arc ZM.

An interesting case of the above method, described by W. R.
Martin in his Navigation and Nautical Astronomy, applies when
the declination of the observed object is less than about 1°, and
the hour angle (P) is less than about half an hour. In this case:

PM = PX
XM =P
and
cos PM =1

Therefore, for practical purposes:
cos ZM = cos ZX sec P

The latitude is found by combining the computed arc ZM with
the object’s declination.

A method alternative to the direct method described above is
known as the Reduction to the Meridian Method. This method in-
volves the calculation of a correction to apply to the altitude of
the body when out of the meridian to find its altitude when it is
on the meridian. The reduction method, like that attributed to
Douwes, requires the use of a latitude by account. If this proves
to be materially different from the computed latitude it is neces-
sary to repeat the computation using the computed latitude in-
stead of the latitude by account.
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The reduction to the meridian method is attributed to the re-
nowned French astronomer Delambre, who published it in 1814.
The method is described with reference to Fig. 12.

Fig. 12 represents the celestial sphere projected on to the plane
of the celestial horizon of an observer whose zenith is projected at
Z. X is the projection of a celestial body whose declination is d and
whose hour angle is k. Y represents the body’s position when it is
at meridian passage relative to the observer. The arc ZA is drawn
equal to arc ZX.

PX = PY
ZX = ZA
) YA = (ZA-ZY)
i.e.
YA = (ZX-ZY)
The arc YA is referred to as the reduction. Let this be denoted
by r.
In triangle PZX:
cos ZX = cos PZ cos PX +sin PZ sin PX cos P
or
cos 3 = sin Isin d+cos [ cos d cos h
Now,

cos h = 1—-2sin? 42
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Therefore:
cos z = sin /sin d+cos I cos d (1 — 2 sin? A/2)

i.e.
cos 3 = cos (/£ d)—~2 cos I cos dsin? hf2 6)
Now,
ZX = ZA = (ZY +7)
Therefore:

cos ZX = cos ZY cos r—sin ZY sin r

Since 7 is a small quantity and ZY = (/1 d) we have:
cos 2 = (1—-72/2) cos (I £ d)—7 sin (I 1 d) .

By equating the values for cos = from (6) and (7) we have:
(1—-72/2) cos (I d)—r sin (I d)
= cos (I d)—2 cos I cos d sin? h[2
From which

r3[2cos (Itd)+rsin(ltd) = 2coslcosdsin?h/2 . . (8)

The first term in (8) is small when the object is near the meri-
dian. It may, therefore, be neglected. Hence:
rsin (I£d) = 2 cos [ cos d sin? h[2)
and for practical purposes:

2coslcosd . ,
= W - Sin h/2 . . . . (9)
Formula (6) may be transposed thus:
cos (I1d) = cos 2+ 2 cos I cos d sin? /2 . (10)
ie.
cos 2; = cos 2+ 2 cos I cos d sin? h[2 . (11

2, may, therefore, be found using a latitude by account provided
that £ is known accurately.

John Hamilton Moore, in the twelfth edition (1796) of his
Practical Navigator, described a method for finding ‘latitude by
one altitude of the Sun when the time is not more distant than one
hour from noon.’ He gave one rule for finding the time from noon,
based on formula (10); and another rule, based on formula (11),
for finding the meridian zenith distance, and thence the latitude.
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The expression 2 sin? 2/2 was known as the rising. The rising
figured in the double-altitude problem, and existing tables of log
risings, therefore, were adapted to the ex-meridian problem.

Moore pointed out that the rule for finding time from noon
should be applied to sights taken only when the Sun’s altitude did
not exceed 18°. He also noted that:

‘an error in the supposed latitude can make very small differ-
ence in the change of altitude; and the nearer is the altitude
taken to noon the better to find the change of altitude.’

He also warned against using the method when the time from
noon exceeded one hour, and stated that in cases where the Sun’s
meridian altitude exceeds 60°, or when the latitude is small, good
results were not to be expected unless the time from noon was
much less than one hour.

Norie, in the 1814 (fourth) edition of his Complete Epitome of
Navigation, gave the same rule as Moore’s for finding latitude from
a single observation of the Sun; but he did not specify any limit to
time from noon. In the 1828 (ninth) edition of the same work,
Norie specified that: ‘in this method. ..the time from noon
should not exceed 30 minutes.’

In the 1877 edition, the rule given in Norie’s epitome was: ‘ The
number of minutes in the time from noon should not exceed the
number of degrees in the Sun’s meridian zenith distance.’

This, the common rule quoted by seamen of our time, appears
‘to have stemmed from the celebrated Raper.

After the ex-meridian method had become established among
practical seamen, rules gave way to tables giving limits of time
from meridian passage. In Rosser’s Self Instructor in Navigation,
published in 1885, we find a table similar to those in other text-
books of the time, giving limits of time from meridian passage
(meridian distances) computed to give the number of minutes of
meridian distance, when an error of half a minute in the time will
produce an error of one minute of arc in the reduction. This is a
reminder of Raper’s definition of the term ‘near the meridian.’
According to Raper:

“The term implies a meridian distance limited according to
latitude and declination, and also the degree of precision with
which the time is known.’
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The treatment on limits for ex-meridian by reduction given by
J. Merrifield in his Treatise on Nautical Astronomy, first published
in 1886, is interesting. After showing that:

Error in lat. = error in mer. dist. (%) sin Az, cos lat.
he concludes that:

‘... as a rule, altitudes for latitude by circummeridional alti-
tude (ex-meridian observations) should be taken within 20
minutes of the body’s transit or when the object’s azimuth is
not more than one point.’

He then quotes the practical rule given by Norie (and others)
quoted above.

Merrifield, in his discussion on ex-meridian sights, also pointed
out (as others had also done) that, by finding latitude by observa-
tions of an object near the meridian both when it is east and when
it is west of the meridian, and then meaning the results, *. . . the
method is susceptible of very great accuracy.’

The books of Andrew Mackay, published during the early part
of the 19th century, were among the more comprehensive works
on astronomical navigation. In neither his Theory of the Longitude,
in two volumes (1793), nor his The Complete Navigator, second
edition 1810, do we find mention of the ex-meridian problem.
Mackay did, however, describe a method for finding latitude by
equal altitudes of the Sun. In this method half the elapsed inter-
val between the times of the observations is equal to the time of
either from noon (if the observer is stationary). From formula (11),
putting half elapsed time equal to 4, it is possible to find the
meridian zenith distance, and hence the latitude.

The ex-meridian method for finding latitude became in-
creasingly popular with the ever-increasing number of ex-meri-
dian tables which appeared from the middle of the 19th century
onwards.

If r in formula (9) is expressed in seconds of arc the formula
becomes:

coslcosd 2sin2 h/2
= sn(zd s - - - (12

Values of (2 sin? 4/2)/sin 1” were tabulated for suitable values
of k: and by means of these tabulated values the computation of
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the reduction 7 may be performed with great facility. The table
‘Reduction to the Meridian’ which appears in Riddle’s Treatise
on Navigation, sixth edition (1855), gives values of the expression
for values of 4 at every second of time up to twenty minutes.

An alternative solution was to use the log sine squared table and
to add the constant 5-615455, which is the log of 2/sin 1”. Another
similar solution was to use the log rising table and to add the
constant corresponding to the log of 1/sin 1”.

It will be noticed that 2 sin? #/2 is equivalent to versine A.
Inman’s rule for the ex-meridian problem, which was given in his
Practical Navigation and Nautical Astronomy (1855), was based
on the formula:

vers 2; = vers 2—vers 0
in which
hav 6 = hav A cos Il cos d

One of the earliest of numerous ex-meridian tables was that of
Captain J. T. Towson (of great-circle sailing fame), first pub-
lished by the Hydrographic Office in 1849. The principles of

Towson’s tables are explained with reference to Fig. 11. In tri-
angle PMX:

sin MX = sin Psin PX (sine rule)
cos PM = cos PXsec MX (Napier’s rules)

In triangle ZMX;
cos ZM = cos ZX sec MX (Napier’s rules)

From these three formulae we have:

sin MX = sin & cos d
cos PM = sec MX sin d
cos ZM = sec MX cos 2

Values of MX are tabulated in columns labelled ‘Index Num-
ber.’ Table 1 contains values of (PX~PM). Table 2 contains
values of (ZX —ZM). To use the tables, Table 1 is entered using
arguments d and 4 to extract Index Number and Augmentation 1.
Augmentation 1 is added to the declination. Table 2 is then en-
tered, using arguments altitude and Index Number, to extract
Augmentation 2, which is the required reduction.

Towson’s tables were designed specifically for Sun ex-meridian
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observations, as were others such as those of James Bairnson
(c. 1880).

The ex-meridian tables of Brent, Walter and Williams, first
published in 1886, provided for star sights as well as for Sun
sights. When 6 is small sin 6= 0 radians nearly. Formula (12),
therefore, may be expressed thus:

_ cos I cos d A2 sin? 15 13
, "= Sin(td)2snl’ - (13

where 7 is in seconds of arc and £ is in minutes of time. The tables
of Brent, Walter and Williams were based on this formula.

It follows, from formula (13), that the change of altitude of a
body when it is near meridian passage varies as the square of the
meridian distance. That is:

r oc h?

This is the principle of an ingenious method for finding the
reduction to the meridian graphically. The curve of 7 against cor-
responding meridian distance & is a parabola, which became
known as Foscolo’s parabola, after Professor Foscolo of Venice
who devised this graphical method for solving the ex-meridian
problem. Foscolo’s parabola was published by the British Hydro-
graphic Office in 1867.

‘Cloudy Weather’ Johnson, in his Brief and Simple Methods
Jor Finding Latitude and Longitude (third edition 1895), gave a
table for finding latitude by ex-meridian observations based on
formula (1). He used the term ‘reduced versine’ for the natural
versine corresponding to the log versine of %, diminished by the
sum of the log secants of /and d. Three small tables—all at a single
double-page opening—were provided for finding the reduced
versine,

Johnson’s rule for finding the meridian zenith distance was
simple: ‘The natural versine of the ex-meridian zenith distance
diminished by the reduced versine is the natural versine of the
meridian zenith distance.’

In the same work, Johnson introduced his methods for finding
longitude by ex-meridian altitudes, and latitude and longitude by
double ex-meridian.

Johnson’s explanation of the reduction to the meridian, given
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in his well-known On finding Latitude and Longitude in Cloudy
Weather, concludes with the formula:

r = 2C hav & cos [ cos d sec altitude

where
C = 1 radian

The upper part of Johnson’s ex-meridian table in this work
gives values of cos [ sec altitude or N. The lower part gives values
of 2 C hav Ax N. The factor cos d was ignored (presumably
because, when used with the Sun, cos d approximates to unity).
Johnson justified himself by stating: ‘A further correction (for
the declination) may be applied when both the reduction and
declination are considerable.’

Formula (13) may be written:

r=AhR?

where .
cos ! cos d sin® 15’

sin (I £d)2sin 1"

where [ and d may be considered to have their meridian values.

The ex-meridian tables in present-day nautical tables are based
on this relationship. The principle of the method was described
by H. B. Goodwin as a kinematic principle applied to navigation.
The kinematics in this case is related to the distance travelled by a
body in any time ¢ when it is accelerating at the rate of a. The same
mechanical principle is used in the method for finding latitude
known as the short double altitude.

Raper, in his Practice of Navigation, informs us that the first
work in which a method occurs of finding the latitude by two
altitudes observed near the meridian (but restricted to the same
side) with an interval of a few minutes, is Cours &’ Observations
Nautiques by Ducom.

Robertson, in his Elements of Navigation, drew attention to the
fact that during the 18th century the problem of finding latitude
by three ascending or descending altitudes of the Sun . . . exer-
cised the talents of many ingenious persons.’

Numerous solutions to the problem were given, but the only
case of practical value applied when the intervals between the first
and second, and the second and third, observations are equal, and
the observed object is near the meridian. The Abbé de la Caille
is credited with giving a solution to this problem as early as 1760.

A=
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Let a be the meridian altitude and a,, @, and a4 the ex-meridian
altitudes observed at intervals of ¢. If 4 is the time from meridian
passage at which the middle of the three ex-meridian observations
are made:

@ = ay—k(h+t)?
a = a2 - kh2
a= aa b k(h :F t)2

where
cos I cos dsin? 15’

T sin(lfd)2sin1”

From these relationships, the meridian altitude, and hence the
latitude, may be found algebraically.

In an interesting paper by John White on the ex-meridian
problem, published in the Nautical Magazine in 1896, the fol-
lowing formula for the reduction, based on a formula by Godfray,
was given:

jx:
T= 2(tan /+tan d) sin 1’ cosec? 15’

This formula suggested the construction of a table giving values
of 2 tan Isin 1’ cosec? 15, and 2 tan d sin 1’ cosec? 15', against
arguments 4 in minutes of time from unity to 60. By means of this
table the denominator of the formula given above could readily be
found and the solution to the ex-meridian problem thereby
facilitated.

The Admiralty published, in 1895, a diagram devised by White
for obtaining the reduction in an ex-meridian altitude observation.

The well-known nautical publishers, Messrs J. D. Potter of
the Minories, published a diagram for solving the ex-meridian
problem. This first appeared in 1897, when the inventor, F.
Kitchin, a naval instructor on H.M.S. Britannia, described his
diagram in the Nautical Magazine in 1901.

Notable among a profusion of ex-meridian tables published
during the present century are those of Captain H. S. Black-
burne. In a gentle rebuke, Captain Blackburne stated in the 1918
edition of his Tables for Asimuth, Great-Circle Sailing, and Re-
duction to the Meridian, first published in 1905, that: ‘the only
ex-meridian tables which are at present allowed to candidates for
the B.O.T. examinations are those of Towson and Raper.’ This
restriction doubtless limited the use of other ex-meridian tables.
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Blackburne devised several ex-meridian tables, each designed
for a special purpose. He was a great advocate of star sights and,
in his Excelsior Ex-meridian and Position-Finding Tables first
published in 1917, he gave a comprehensive set of tables giving
azimuths and reductions for 29 of the brighter stars.

The ex-meridian method for finding latitude has, since its in-
troduction, been a firm favourite with seamen and ex-meridian
tables are still widely used.

When a heavenly body is on the prime vertical circle its rate of
change of altitude is proportional to the cosine of the latitude. It
follows, therefore, that:

cos latitude oc rate of change of altitude
and
_change of altitude 4 in time ¢

cosl =k 7

If a is in seconds of arc and ¢ is in seconds of time, £ = 1/15.
Therefore:
1

1oL,
COosS ¢ = Sxt

b

This relationship provides a method for finding latitude. It was
described in some textbooks of the late 19th century. Some
writers recommended observing the time taken for the Sun, when
its true bearing was east or west, to rise or fall an angle equal to its
own diameter, this requiring only one setting of the sextant. The
change in altitude, in this case, could be checked against the value
of the Sun’s semi-diameter given in the Nautical Almanac.



CHAPTER VI

Methods of finding
Longitude

I. INTRODUCTORY

Anaximander is often venerated by geographers who regard him
as being the father of their subject. Credit for the invention of the
map is due to this philosopher of Ancient Greece.

Anaximander, who flourished during the 6th century Bc, noted
that the stars appear to revolve around the celestial pole—a mani-
festation of the Earth’s axial rotation. He concluded that the
Earth must lie at the centre of a vast sphere on the inside
surface of which the stars are fixed. Anaximander, therefore,
may rightly be claimed to be the father of mathematical astro-
nomy, as well as of geography, by virtue of his invention of the
celestial sphere.

The Greek philosopher Democritus (fl. 450 BcC) is credited with
being the first to construct a rectangular map. His map was based
on his personal travels which led him to the conclusion that the
habitable part of the Earth is one and a half times as long in the
east—west direction as it is broad in the north-south direction.
This notion, which became the common view, is perpetuated by
the very names we give to the two coordinates used to describe
terrestrial positions, the words latitude and longitude being de-
rived from latus and longus signifying, respectively, breadth and
length.

The longitude of a place is a measure of the angle contained
between the plane of the meridian of the place and that of a stan-
dard meridian from which longitudes are measured east or west.
The datum meridian commonly used is that of Greenwich, so
that the meridian of Greenwich and its antipodal meridian divide
the Earth into the eastern and western hemispheres in much the
same way as the equator divides the Earth into the northern and
southern hemispheres.

We have noted, in our discussion on the history of the latitude,
that finding the latitude of a place was but a trivial problem to the
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Greeks of antiquity. Finding longitude, on the other hand,
presented considerable difficulty.

The difference between the longitudes of two places is equiva-
lent to the difference between their local times, reckoning 15° of
difference of longitude to one hour difference of local times. The
problem of finding longitude, therefore, is one in which the local
time at a particular instant is to be compared with the local time
at the datum or standard meridian, for the same instant. If, for ex-
ample, the local time is 6 a.m. at the instant when it is 8 a.m. at
the Greenwich meridian, the local longitude is two hours or 30°.
The name of the longitude, in this instance, is west of the Green-
wich meridian, because the spin of the Earth to the east results in
clock times at the Greenwich meridian being in advance of those
at places in the western hemisphere and behind those in the
eastern hemisphere.

Apart from the rough method of dead reckoning, in which
estimations of the ship’s courses and distances are made, there are
two principal methods by which the longitude of a terrestrial
position, east or west of a given meridian, may be found. One is
an astronomical method, and the other is mechanical.

The astronomical method of finding longitude involves the use
of a predicted time of an astronomical event, such as an eclipse or
occultation, the predicted time being given for a particular datum
meridian. If the local time of the event may be found, the longitude
of the place east or west of the datum meridian may also be found
by comparing the local and predicted times.

The mechanical method of finding longitude involves the use
of a timepiece..If the rate of gaining or losing is known, and if the
error of the timepiece on the time at some datum or prime meri-
dian is also known, the correct standard time may be found. This,
compared with the local time of any given moment, will give a
measure of the local longitude east or west of the standard
meridian.

The ancient philosophers of the Mediterranean world used as a
datum line, from which longitude was measured eastwards, the
meridian through the ‘Fortunate Isles’—believed to be the
Canaries. These islands were believed to be the westernmost part
of the habitable Earth. Throughout classical times, and during
the period of the Renaissance, the meridian through the ‘Fortu-
nate Isles’ continued to be the first or prime meridian.

13
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Following the Golden Age of discovery, when the peoples of
Western Europe emerged as sea-traders, almost every European
nation used as a prime meridian one that passed through its State
territory. The French, for example, used the meridian of Paris;
the Dutch, that of Amsterdam; the English, that of London; and
so on.

It is interesting to note that as far back as the late 17th century,
when so many prime meridians had already been established, we
find a Spanish professor writing to the Royal Society in London
proposing a new place for the first meridian. The comment on his
proposal was no less plain than it was lamentable. ‘. .. a thing
which never could be accomplished.’

The difficulties related to the profusion of prime-meridians—
difficulties thought by many to be insurmountable—were not
brought to an end until the closing decades of the 19th century,
when it was decided by international agreement to adopt the meri-
dian through Greenwich as the prime meridian from which
longitudes should be measured.

2. LONGITUDE FROM ECLIPSE OBSERVATIONS

Ancient maps were constructed on the basis of observed latitudes
and estimated longitudes. East-west errors, therefore, were in
many cases considerable. We have noted in Chapter I the im-
provement which the great Hipparchus introduced in relation to
mapping the Earth’s surface. He is credited with being the first to
suggest the use of eclipses of the Moon for finding the longitudes
of places. Hipparchus explained how the difference of longitude
between two places could be found from a comparison of the times
at the two places of the occurrence of a lunar eclipse. It appears,
however, that during the following three centuries very few
eclipse observations had been made for this purpose; and we find
the famous Ptolemy complaining about this in ap 150.

During the period of the Great Discoveries, Columbus, on his
second voyage in 1494, had recourse to the method of finding
longitude by observation of an eclipse of the Moon. It is recorded
that the result of his observation, which marked the first attempt
to find the position of a place in the New World using astronomical
principles, was in error to the extent of about 18°. This error was
due to inaccurate predictions of the time of the eclipse through
imperfect knowledge of the motion of the Moon, and to the error
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in the determination of the local times of the precise stages of the
eclipse.

Some interesting accounts of finding longitude from eclipse
observations are to be found amongst the early Transactions of
the Royal Society of London. One writer describes how the
method was employed for finding the longitude of Moscow in the
year 1688. Observations of a lunar eclipse were made at Leipzig
and Moscow, the local times being 8.54 p.m. and 10.40 p.m.
respectively. This showed that Moscow lies 1 hr. 46 mins. of time
or 26° 30’ of longitude east of Leipzig. From an earlier eclipse
observation it had been shown that Leipzig is 49 mins. of time or
12° 15’ of longitude east of London. It was concluded, therefore,
that Moscow is 38° 45’ east of London.

In 1719 the astronomer Edmund Halley found the longitude of
the Cape of Good Hope from an observation of an eclipse made at
sea in latitude 34° 23’ S., at a position 180 leagues east of the
Cape. From his observation he concluded that the Cape of Good
Hope lies 11° east of London.

With the improvements in accuracy of eclipse predictions con-
comitant with the advance of astronomical knowledge, it became
possible to estimate very accurately the path of the Moon’s shadow
across the Earth’s surface during a solar eclipse. Eclipses of the
Sun, therefore, as well as those of the Moon could be used for
longitude determination. Perhaps the most noteworthy of these
observations was that made by the famous navigator Captain
James Cook. The account, part of which is extracted from the
Philosophical Transactions of the Royal Society, is of considerable
interest.

‘Mr. Cook, a good mathematician and very expert in his busi-
ness, having been appointed by the Lords Commissioners of
the Admiralty to survey the sea-coasts of New Found Land,
Labrador, etc., took with him a very good apparatus of instru-
ments, among them a brass telescope quadrant by Mr. John
Bird.

‘Being August 5th 1766 at one of the Burgeo Islands near Cape
Ray Latitude 47° 36’ 19”, the south west extremity of New
Found Land, and having carefully rectified his quadrant, he
waited for the eclipse of the Sun.... [He] considered the
eclipse to have begun at 00 h 04 m 48 s apparent time [astro-
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nomical time] and to have ended at 03 h 45 m 26 s apparent
time.

‘Mr. George Witchell had exact observations of the same
eclipse taken at Oxford by the Rev. Mr. Hornby, and . . . from
the comparison the difference of longitude of the places of ob-
servation, making due allowance for parallax and the Earth’s
spheroidal figure, was computed. . ..

Cook’s place of observation became known as Eclipse Island
and, according to his eclipse observations, its longitude was found
to be 57° 36" 30" W. In 1874 the longitude of the same spot was
found by means of electric telegraph to be 57° 36’ 52", which
speaks highly of the accuracy of the observations made by Cook
and Hornby.

We are informed by Andrew Mackay, in his Theory of the
Longitude of 1793, that the method of finding longitude from solar
eclipse observations is:

‘.. . the most accurate of any that has hitherto been employed.
The difference of the meridians of two places may be found to
the nearest second of time by comparing corresponding obser-
vations of the same eclipse.’

3. LONGITUDE FROM OBSERVATIONS OF JUPITER’S

SATELLITES
A second astronomical method for finding longitude employed
the satellites of Jupiter. Jupiter’s four principal satellites were
first observed in 1610 by Galileo, the famous mathematical pro-
fessor of Padua.

The orbits of the satellites of Jupiter* are very nearly co-planar
with the equator of Jupiter. The length of Jupiter’s shadow cast
by the Sun is about 600 times his diameter, whereas the distance
of the outermost satellite is a mere 13 diameters from its parent
planet. Consequently the satellites, in their orbital movements,
are eclipsed. Jupiter’s distance from the Sun is about five times
the Earth’s distance from the Sun; and the plane of Jupiter’s
orbit makes an angle of only about 13° to the plane of the ecliptic.
Therefore, the times of eclipses of the satellites are almost un-
affected by the location of an observer on the Earth.

* Jupiter has at least twelve satellites although only four are relatively bright
ones which are plainly visible through a ship’s long glass.
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The satellite nearest to Jupiter is called the First Satellite; the
next the Second Satellite, and so on. The First Satellite makes one
orbital revolution in 42 hours. The periods of the Second, Third
and Fourth Satellites are 85, 170, and 400 hours respectively.

There are four different effects visible from the Earth: eclipses,
occultations, transits of satellites, and transits of satellites’
shadows. An eclipse occurs when a satellite enters Jupiter’s
shadow, and an occultation occurs when Jupiter himself hides a
satellite. A transit of a satellite occurs when the satellite comes be-
tween the Earth and Jupiter, in which event the satellite appears
as a tiny dark spot on the face of the planet. The entrance of the
spot on the disc of Jupiter is called its ingress, and its leaving the
disc, its egress. The transit of a shadow of a satellite occurs when
the satellite lies on the straight line joining the satellite and the
Sun.

There being four principal satellites and four effects for each
satellite, the frequency of occasions when observations of the
satellites may be made for the purpose of finding longitude is
high.

Galileo, on discovering Jupiter’s satellites, was quick to realize
that the orbital movements of the satellites conformed to the
planetary laws that had been enunciated by his famous contem-
porary Johannes Kepler. This demonstration provided compel-
ling evidence in support of the Copernican view that the Earth
and the other planets revolved around the Sun, for Jupiter and
his attendant satellites could be regarded as being a small-scale
model of the solar system.

Galileo seized upon the idea that tables of the eclipses and
occultations of Jupiter’s satellites could provide a method for
finding longitude—especially at sea. In response, therefore, to
the handsome reward offered by King Philip III of Spain to any-
one who invented a practical method for finding accurately the
position of a ship when out of sight of land, Galileo set about the
task of preparing suitable tables for the purpose.

Galileo’s tables of predictions were insufficiently accurate for
the intended purpose; and it was not until after knowledge of the
perturbations of the satellites, due to their mutual interactions,
had been acquired that predictions were sufficiently accurate for
finding longitude.

The famous Italian astronomer J. D. Cassini applied himself
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to the problem of finding longitude by astronomical means and,
in 1675, he prepared tables of predicted times of occultations and
eclipses of Jupiter’s satellites. ‘The method was found to give good
results for finding the longitudes of places on land.

The Danish physicist Roemer (1644-1710), in observing
Jupiter’s satellites at the Paris Observatory with the object of
drawing up eclipse tables, discovered that predicted—and obser-
ved—times' disagreed. He observed that the eclipses of the satel-
lites were early compared with predicted times when Jupiter was
relatively near to the Earth, and late when he was relatively re-
mote from the Earth. This led him to the conclusion that light
travels at a finite speed: and, moreover, he was able to make an
approximate estimate of this speed.

In our own country Robert Hooke devoted some attention to
drawing up tables of predictions of eclipses of Jupiter’s satellites;
but perhaps the most important work done in this connection was
that of the celebrated Flamsteed.

John Flamsteed (1646-1719) acquired an interest in astronomy
at an early age. Some papers he had written on the subject attrac-
ted attention, and he was appointed a member of a committee set
up to report on a proposed method for finding longitude at sea.
He became the first Astronomer Royal after the establishment of
the Royal Observatory at Greenwich in 1675; and he is often re-
garded as being the first of the great English astronomical obser-
vers, being instrumental in introducing many improvements in
observing methods. His Historia Coelestis Britannica, in three
volumes published in 1725, some six years after his death, contains
Flamsteed’s catalogue of 3,000 stars. :

Flamsteed drew up tables of eclipses and occultations of
Jupiter’s satellites, and contrived an instrument

“. . . whereby with the sole help of the usual catalogue and the
table of parallaxes of Jupiter’s orbit, their [the satellites] dis-
tance from the axis of Jupiter may be found, to any given time
within the compass of the year, and for any future year by the
like tables.’

Numbers 151, 154, 165, 177, 178 of the Transactions of the
Royal Society of London appear under Flamsteed’s name; and all
pertain to the problem of finding longitude from observations of
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eclipses of Jupiter’s satellites. Flamsteed confessed it as part of his
design to make

‘...our more knowing seamen ashamed of that refuge of
ignorance, their idle and impudent assertion that the longitude
is not to be found. ...

He goes on to say:

‘Such of them as pretend to a greater talent of skill than others,
will acknowledge that it might be attained by observations of
the Moon, if we had tables that would answer her motions ex-
actly: but after 2000 years we find the best tables extant erring
sometimes 12 minutes or more in her apparent place which
would cause a fault of 4 hour or 73° longitude. I undervalue not
this method for I have made it my business to get a large stock
of lunar observations for the correction of her theory and as a
groundwork for better tables, but the examination will be a
work of long time and if we should afterwards attain what we
seek, that it will be found much more inconvenient and difficult
than that I propose by observing the eclipses of Jupiter’s
satellites.’

Flamsteed anticipated the seaman’s objections to the method
he proposed—and very real objections they were. The long tele-
scope required for the observation would be almost unmanage-
able on board a lively ship at sea; and the difficulty there would
be in distinguishing the satellites from one another: these were
the principal faults of the method from the seaman’s viewpoint.
Flamsteed pointed out the success the French had accomplished
using the method, and they managed with telescopes of ‘14 feet
long at most’! He also remarked that *. .. difficulty cannot be
known until the method is tried. . .." and that ‘. .. use renders
many things easy which our first thoughts conceived impractic-
able.... :

Transaction number 214 of the Royal Society is entitled New
and Exact Tables for the Eclipses of the First Satellite of Fupiter
reduced to the Yulian Stile and the Meridian of London. This was
the work of Cassini who remarked that the method of finding
longitude from observations of eclipses of Jupiter’s satellites had
been used for all the principal ports of France. Cassini had
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employed his skill to make easy and obvious to all capacities the
calculations for finding longitude by this method.

Tables of eclipses of Jupiter’s satellites were provided in the
very first British Nautical Almanac, which made its first appear-
ance in 1765 for the year 1767. Maskelyne, in his explanation to
the tables, stated that:

‘The eclipses of Jupiter’s satellites are well known to afford the
readiest, and for general Practice, the best Method of settling
the Longitudes of Places at land; and it is by their means prin-
cipally that Geography has been so much reformed within a
Century past.’

It had been hoped that means might have been found for pro-
viding a telescope suitable for use on board ship for observing the
eclipses of Jupiter’s satellites. Maskelyne described the trial he
made, during a voyage to Barbados under the direction of the
Commissioners of Longitude in 1763, of a marine chair designed
by a Mr Irwin for the purpose of facilitating the observations. He
wrote:

‘.. . but I could not derive any advantage from the use of it . . .
and considering the great power requisite on a Telescope for
making these observations well, and the Violence as well as the
Irregularities of the Motion of the Ship, I am afraid the com-
plete Management of a Telescope on Shipboard will always
remain among the Desiderata.’

Maskelyne hastened to add, however, that he would not be

understood to mean to discourage attempts founded upon good
_principles to get over this difficulty.

Many inventors, besides Irwin, attempted to provide the means
of a steady platform suitable for use on board a rolling ship from
which observations of Jupiter’s satellites could be made. Com-
mander Gould, in his work on the history of the marine chrono-
meter, mentions several of these inventions. He also describes the
steam-driven gyroscopic platform which was proposed in 1858
for the Great Eastern—that ill-fated leviathan of Brunel’s.

The inclusion of tables of ‘Eclipses of Jupiter’s Satellites,” and
diagrams of ‘Configurations of the Satellites of Jupiter’ in the
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Nautical Abnanac was aimed to induce keen nautical observers,
in the interests of geography, to ascertain the longitudes of foreign
places they visited from observations of Jupiter’s satellites at a
time when better methods were not available.

The method for finding longitude by eclipses of Jupiter’s satel-
lites involved observing the times of immersions (signifying the
instants of disappearance of a satellite on entering the shadow of
Jupiter), and emersions (signifying the reappearances of satellites
on emerging from Jupiter’s shadow). Comparisons of the times of
observation with those given in the Nautical Almanac yielded the
longitude of the place of observation.

For practical use at sea the method suffered, not only from
difficulties of observing, but also because the eclipses do not occur
instantaneously, this being due to the apparent diameters of the
satellites not being inappreciable. Atmospheric effects also may
affect the observations. Moreover, Jupiter is often near the Sun
on the celestial sphere; and for long periods the method is not
available owing to the planet not being favourably placed for ob-
servation. Many writers advocated the method for sea use; but
practical seamen, and others who appreciated the difficulties of
observing from a ship at sea, held little esteem for the method.

The French astronomer Lagrange (1736-1813) is credited with
founding the dynamical theory of Jupiter’s satellites; and the
famous Laplace (1749-1827) is credited with the discovery of a
remarkable numerical relationship between the satellites resulting
from their mutual attractions.

The Swedish astronomer Wargentin, Secretary to the Royal
Academy of Sciences at Stockholm, is noted for his tables of
eclipses of Jupiter’s satellites. His tables were published in the
British Nautical Almanac for 1779 and for many succeeding
years. From 1824 the predictions of the eclipses of Jupiter’s satel-
lites were from Delambre’s tables; and from 1836 they were
derived from Damoiseau’s Tables Ecliptiques des Satellites de

Jupiter.

4. LONGITUDE FROM OBSERVATIONS OF MOON
OCCULTATIONS

The next astronomical method for finding longitude at sea,
which is to demand our attention, is that in which star occultations
by the Moon are employed.
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The Moon, because of her real motion around the Earth, ap-
pears to move across the celestial sphere at a relatively rapid rate
towards the east. This retrograde motion of the Moon is, on an
average, about ° per hour. Her angular diameter is also about 4°;
so that a star which lies within ° of the Moon’s path will be hidden
by the Moon—a phenomenon known as a star occultation. The
fact that the Moon has no atmosphere results in an occultation of
a star taking place instantaneously.

The interest which ancient astrologers gave to occultations,
particularly of planets by the Moon, must surely have led to the
suggestion of the use of occultations for finding longitude.

The accuracy of predictions of occultations of stars or planets
by the Moon depends largely upon knowledge of the complex
motion of the Moon. It was not until the Moon’s motion had been
reduced to a reliable rule that accurate predictions became
possible.

The method of finding longitude from an observation of an
occultation of a fixed star is reckoned as the best means of finding
longitude by astronomical means. The usefulness of the method
is increased by the high frequency of star occultations; but the
complex computations associated with the method renders it
impracticable for finding longitude at sea.

The parallels of latitude between which particular stars cannot
be occulted by the Moon were recorded in the early Nautical
Almanacs. From this information an observer could ascertain
whether or not the phenomenon would occur at his position.

During the time when the Moon is waxing, that is to say from
New Moon to Full Moon, a star lying in the Moon’s path will be
occulted on the darkened limb of the Moon, because the en-
lightened edge, which faces the Sun, will be directed to the west,
that is in the opposite direction to that in which the Moon is
moving across the sky relative to the fixed stars. Similarly, when
the Moon is waning, that is during the fortnight from Full Moon
to Change of the Moon, a star lying in her path will be occulted at
the enlightened limb.

To find the longitude from an observation of an occultation,
the latitude of the observer and the local mean time of the
observation must be known. The local mean time was usually
ascertained before or after the occultation observation from an
observation of the Sun or other object on or near the prime
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vertical circle. The G.M.T. of the observation was also to be
estimated as accurately as possible. '

The problem is one of finding the Right Ascension of the Moon
at the time of the occultation. It is a problem of great complexity,
chiefly on account of the effects of refraction, semi-diameter of
the Moon, and parallax of the Moon. After the Moon’s R.A. has
been computed—the star’s R.A. being known and facilitating the
operation—it is a simple matter to find the G.M.T. of the obser-
vation by interpolation, using the nearest tabulated values of the
Moon’s R.A. from the Nautical Almanac. Should the computed
G.M.T. differ materially from the estimated G.M.T. of the
observation, the problem should be re-worked.

5. LONGITUDE BY LUNAR TRANSIT OBSERVATION

Another lunar method for finding longitude involved finding the
local time of the Moon’s transit, and comparing it with the time of
transit at a prime meridian. This method appears to have been
first suggested in 1678 by Herne in a book entitled Longitude
Unveiled.

The Moon, because of her retrograde motion across the celestial
sphere relative to the fixed stars, crosses the meridian of a station-
ary observer later each day by a variable amount of time known as
the Moon’s retardation. Predictions of the times of the Moon’s
meridian passage for a standard meridian would facilitate finding
longitude east or west of the standard meridian if the local time of
meridian passage could be found. The unsuitability of this method
for finding longitude is due to the difficulty of finding the exact
local time of the Moon’s transit. Numerous suggestions have been
made for ascertaining local time of Moon’s transit, chiefly using
equal altitudes on opposite sides of the meridian; but the method
has never been brought to a state whereby accurate longitudes
could be found.

An interesting method for finding longitude by means of com-
bined altitudes of the Moon and a fixed star was described by
John Maurice of Chicago as late as 1900. Maurice’s method in-
volved measuring the altitudes of the Moon and a fixed star and
finding therefrom their local hour angles. The sum or difference
of these is equivalent to the difference between their Right Ascen-
sions. The R.A. of the star being known, that of the Moon at the
time of the observation may, therefore, be found. Having found
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the Moon’s R.A., the G.M.T. may readily be found from the
table of the Moon’s R.A. given in the Nautical Almanac,

The method proposed by Maurice is an extension of that pro-
posed by Lemonnier in 1771. Lemonnier proposed finding the
longitude from the hour angle of the Moon. The hour angle, ob-
tained from an altitude and the latitude, enables the observer to
find the sidereal time of the observation from which the Moon’s
R.A. may be found.

6. REWARDS FOR DISCOVERING THE LONGITUDE

The problem of the longitude, until it was solved in the 18th cen-
tury, engaged the attention of many able astronomers, mathema-
ticians and physicists. The problem of ‘east-west’ navigation, as
it was sometimes called, was one which was kept to the fore, largely
as aresult of the handsome rewards that were offered from time to
time to anyone who solved the problem. To stimulate competition
for the prizes offered, sums of public money were disbursed in
order to give financial support to experimenters and investigators
of this problem of the age. We have mentioned the reward offered
by King Philip III of Spain in 1498. Other rewards were offered
by the governments of France and Venice; and some private indi-
viduals offered prizes for the discovery of the longitude at sea as
well. The most valuable, and the most famous of the prizes, was
the considerable sum of money offered by the British Parliament
in 1715. This prize appears to have been the only one that was
ever paid for the discovery of the longitude.

Shortly before the passing of the Act of Parliament (12 Anne,
Cap. 15), in which a reward was offered to any person who should
invent or discover a practical method for finding longitude at sea,
a committee was set up to investigate a petition submitted to
Parliament in March 1714 by ‘ Several Captains of Her Majesty’s
Ships, Merchants of London, and Commanders of Merchantmen.’
The petition, which was engineered by William Whiston, a dis-
senting clergyman who had held the Lucasian Chair of Mathe-
matics at Cambridge, and Humfrey Ditton, who was a teacher of
mathematics at Christ’s Hospital School, set forth:

“That the discovery of longitude is of such consequence to
Great Britain, for the safety of the Navy, for Merchant Ships,
as well as for improvement of trade, that for want thereof many
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ships have been retarded in their Voyages, and many lost; but
if due encouragement were proposed by the public, for such as
shall discover the same, some persons would offer themselves
to prove the same before the most proper judges, in order to
their entire satisfaction, for the safety of men’s lives, her
Majesty’s Navy, the increase of Trade, and the shipping of
these Islands, and the lasting Honour of the British Nation.’

Whiston and Ditton had proposed an impracticable method
for finding longitude at sea which was set out in a pamphlet en-
titled 4 New Method for discovering the Longitude published in
1714. Their proposal was to use pyrotechnic sound signals fired
from vessels permanently moored at precisely defined positions
along the oceanic trade routes. Following the publication of their
proposal, and probably in order to give it publicity, Whiston and
Ditton were instrumental in causing the petition to be submitted
to Parliament.

A committee, which was appointed to examine the petition,
consulted the eminent mathematicians and astronomers of the
day, amongst whom were Sir Isaac Newton, John Flamsteed and
Edmund Halley.

Newton, in his evidence, reviewed the several methods for
finding longitude at sea that had, up to the time, been proposed.
He did not favour the use of Jupiter’s satellites, and held out
little hope that the Moon could be employed for finding longi-
tude. He also pointed out that the proposal made by Whiston and
Ditton was merely a method of keeping an account of, rather than
finding, the longitude at sea.

The famous bill which was passed following the adoption of the
resolution formulated by the committee states

. that nothing is so much wanted and desired at sea as the
dlscovery of the longitude.’

Under the terms of the Bill, commissioners for examining,
trying and judging all proposals, experiments and improvements
relating to the problem of finding longitude at sea, were to be
appointed. The commissioners, who became known as the Board
of Longitude, were empowered to grant sums of money for ex-
periments, and to determine the degree of exactness of any pro-
posal. The reward offered for the discovery of the longitude was:
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* £10,000 for any method capable of determining longitude to an
accuracy of 1°
£15,000 for a method capable of determining longitude to an
accuracy of 40",
£20,000 for a method capable of determining longitude to an
accuracy of 30’ or 3°.

12 Anne, Cap. 15 stimulated not only eminent men of science
but also numerous cranks and crackpots who put forward imprac-
ticable, and sometimes ridiculous, proposals. The several pam-
phlets published in 1714 soon after the Act had been passed, on
methods of finding longitude at sea, bear testimony to this. There
were many who believed that the wit of man would never reach a
stage rendering it possible to find the longitude at sea. The phrase
‘discovery of the longitude’ entered common speech at the time,
and was used to describe any practical impossibility. Nevertheless
the discovery was to be made. Two methods, both of which had
been proposed at least as early as the beginning of the 16th cen-
tury, were brought within the bounds of practical utility at about
the same time during the 18th century. These methods for finding
longitude at sea are referred to as the methods of ‘longitude by
timepiece’ and ‘longitude by lunar distance,’ respectively.

We shall say little about the development of the mechanical
timepiece which made possible the solution to the longitude-by-
chronometer problem. The method of using a clock which keeps
accurate time for finding longitude had first been suggested by
Gemma Frisius, the famous Flemish astronomer. The proposal
had been made, not as a practical suggestion, but as a theoretical
possibility, in a work entitled De Principiis Astronomiae et Cosmo-
graphiae which was published in Antwerp in 1530. In this same
work Gemma gave several nautical axioms, included amongst
which was a description of a nautical quadrant. At the time
Gemma proposed the use of a timepiece for finding longitude,
portable watches, using a spring as a prime mover, were of recent
invention. His proposal was to lie dormant for about two hundred
years before the art and science of clock-making had been per-
fected to render possible the production of a portable watch that
could keep time on a moving ship with an accuracy sufficient to
find the longitude with a reasonable degree of accuracy. The credit
of the invention of the marine chronometer belongs to John
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Harrison, the Yorkshire carpenter who carried off (although not
without a great deal of trouble on his part) the £20,000 prize
offered by the British Parliament.

The history and development of the marine chronometer has
been studied in great detail by the late Commander R. T. Gould,
the fruits of whose painstaking researches appear in a work pub-
lished in 1923. More recently, in 1966, Colonel H. Quill in his
book, fohn Harrison: the Man who found Longitude, has provided
his readers with a penetrating study of the life of John Harrison
set against the background of the fascinating story of the develop-
ment of the marine chronometer.

7. LONGITUDE BY LUNAR DISTANCE
() HISTORICAL SURVEY

We now come to a discussion of the method for finding longitude
at sea by lunar distances. To open our discussion we shall quote
part of the foreword to Gould’s Marine Chronometer, contributed
by Sir Frank W. Dyson, the Astronomer Royal at the time the
work was published.

‘The problem of making an almanac of the Moon’s position,’
wrote Sir Frank, ‘is most difficult, as may be seen from the fact
that in spite of the attention devoted to the lunar theory by
some of the world’s greatest mathematicians, it was not until
1767 that the Nautical Almanac was able to give predictions of
the Moon’s place with sufficient accuracy for them to be of use
for purposes of navigation. From that time to the present day,
distinguished mathematicians of England, France, Germany
and America have given large portions of their lives to lunar
theory. More arithmetic and algebra have been devoted to it
than to any other question of astronomy or mathematical phy-
sics, but, in the end, the problem has been solved so that
observed positions agree very closely with those predicted. Un-
fortunately, even with perfect tables, it is found that the most
skilful navigator cannot obtain a very accurate position of his
ship in this manner. With great pains and sometimes elaborate
calculation he can be correct to within 20 miles.’

Three important points emerge from Sir Frank’s comments.
First, the difficulty of predicting the Moon’s place; second, the
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diffculty of observation, which limits the degree of accuracy of
the method even when perfect predictions are available; and third,
the elaborate calculations associated with the method.

The difficulties of observation were largely overcome by the
invention and development of the reflection measuring instru-
ments which have been discussed in Chapter III. Our main pur-
pose in the pages that follow immediately will be related to an
historical account of, and the computations involved in, the lunar
method for finding longitude at sea.

The Moon’s motion across the background of the fixed stars is
more rapid than that of any other visible celestial body. She com-
pletes her circuit of the Heavens in a sidereal period of about
27% days. She moves, therefore, at an average rate of 33” of arc in
every minute of time. When she is at perigee her rate of travel is
greatest and is about 36” per minute: when she is at apogee
her rate of motion is slowest and is about 30” per minute. It is the
Moon’s rapid motion relative to the stars which provides 2 method
for finding longitude. The navigator may regard the Moon as the
hand of a celestial clock, so that the ‘mechanism of the Heavens’
provides him with a method for measuring absolute time.

The principle of the method of finding longitude by lunar dis-
tance is simple. The angle at the Earth’s centre between the
Moon’s centre and that of the Sun, planet or any star, may be pre-
dicted if the motion of the Moon is known completely. A measured
angle between the Moon and Sun (or other heavenly body), or
lunar distance as it is called, may be reduced to what it would
have been at the Earth’s centre at the time of the observation. The
reduced measured distance, when compared with the predicted
or geocentric distance, provides a measure of the longitude of the
observer east or west of the meridian for which the predictions
apply.

The principle of finding longitude from an observation of the
angular distance between the Moon and Sun, planet or zodiacal
star, could hardly fail to suggest itself to an astronomer possessing
a clear notion of the longitude problem and an understanding of
the character of the Moon’s motion relative to the fixed stars. The
credit for being the first to suggest the method in print is given to
Johannes Werner of Nuremberg who mentioned it in the first
volume of Ptolemy’s Geography which Werner edited in 1514.
Werner not only suggested the method but also suggested the use
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of the cross-staff ‘as a very proper instrument for observing lunar
distances.’ A century later, in 1615, a lunar observation was made
by the English explorer William Baffin with the express purpose
of finding the longitude of a ship at sea.

Baffin is credited with being the first Englishman to make a
lunar observation at sea. Baffin sailed in 1615 as ‘mate and associ-
ate’ of Robert Bylot, who commanded the Discoverie on a voyage
in quest of the North-west Passage. When the ship was beset in
ice off the Greenland coast Baffin took a complete lunar observa-
tion using the Moon and Sun. The altitudes of the two bodies
were measured by means of a cross-staff, and the angle between
them was found by means of azimuth observations. This method
of finding the lunar distance does not lend itself to great accuracy
but, doubtless, was employed in the absence of a suitable instru-
ment capable of measuring large angles. It is not unlikely that the
method of longitude by lunar distance was in the minds of many
of the more enlightened navigators and astronomers of the period.

Peter Apian, in the tenth chapter of his Cosmography published
in 1524, and the famous Gemma in his De Principiis, mentioned
above, described the method of longitude by lunar distances.

Werner, Apian, and Gemma Frisius, treated the problem of
finding longitude by lunar distance as more of a speculative,
rather than a practical, method. At the time when they wrote,
neither lunar tables of sufficient accuracy nor suitable angle-
measuring instruments were in existence to make the problem one
of practicable possibility.

Gemma Frisius, in his description of the method, discussed the
refraction and parallax corrections that are necessary to apply to
the observed lunar distance before it can be compared with a pre-
dicted distance in order to find the longitude of the place of obser-
vation. He pointed out that the method of making allowances for
refraction and parallax is a trigonometrical process far too com-
plex for practical seamen. There is no doubt, judging from his
descriptions, that Gemma had a perfectly clear understanding of
the lunar problem. Two centuries, however, were to elapse before
the lunar method became practicable for finding longitude at sea.

The principal factor responsible for the delay in the solution to
the lunar method for finding longitude was the rudimentary state
of lunar theory. This was brought to a state of near-perfection in
the middle of the 18th century.

14
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The celebrated Kepler regarded the lunar method for finding
longitude in favourable light and, in his Rudolphine Tables, he
gave directions for observing the distance between the Moon and
a star. He also gave directions for making the necessary computa-
tions. The method was also recommended by Christian Severin
(Longomontanus) (1562—1647), the Danish astronomer and assis-
tant to Tycho Brahe. Master Thomas Blundeville, in his famous
Exercises . . . for Young Gentlemen . .. first published in 1594,
also mentioned the method of the lunar distance, attributing it to
Peter Apian.

We find in 1633 the French professor of mathematics at Paris,
Jean B. Morin, proclaiming with much boasting that he had found
the solution to the longitude problem. Morin requested Cardinal
Richelieu to appoint a commission before whom he [Morin] could
have the opportunity of establishing his claim to the honour of
finding the solution to the problem and also of establishing his
right to any reward that might have been forthcoming. The com-
mission was appointed and, in 1634, Morin demonstrated the ob-
servations and mathematical computations necessary for finding
the longitude by lunar distance. Morin is credited with being the
first to provide detailed mathematical rules requisite for the solu-
tion to the problem; but, of course, he did not bring the problem
any nearer to a practical solution. The remarks made by Capitaine
de Frégate M. E. Guyou, a member of the French Bureau of
Longitude, are interesting and relevant: .

‘The solution,” wrote Guyou in 1902, ‘required nothing less
than the genius of Newton, Clairaut and Euler, and the mass of
observations patiently collected for three quarters of a century
by Flamsteed, Halley, Lemonnier, and others. . . .’

Morin had simply limited himself to an investigation of the
spherical trigonometrical computations necessary for the solution
of the lunar problem. These calculations, although complex in
character, presented no real difficulty and had, hitherto, been
passed over on account of their entire want of utility.

In a work on geography by Carpenter, printed at Oxford in
1635, notice is taken of a method of finding longitude by lunar
distances. This is noted by Andrew Mackay in his Theory of the
Longitude, where he quotes Carpenter as saying:
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‘This way, though more difficult may seeme better than all the

rest, for as much as an Eclipse of the Moon seldom happens,

and a Watch, Clocke, or Hour Glasse cannot so well be pre-
served, or at least so well observed in so long 2 Voyage, whereas

every Night may seeme to give occasion to this Experiment, if
80 bee the ayre be freed from Clouds, and the Moone show her

Face above the Horizon.’

The first effectual step made to promote the solution to the
problem of finding longitude at sea by astronomical methods was
the establishment of the Royal Observatory at Greenwich in 1675,
and the appointment of Flamsteed as the first Astronomer Royal.
Flamsteed’s commission enjoined him:

‘. . . to apply himself with the utmost care and diligence to the
rectifying of the tables of the Motions of the Heavens and the
places of the fixed stars, in order to find out the so-much desired
longitude at sea, for perfecting the art of navigation.’

Up to the time of the setting up of the Royal Observatory at
Greenwich the lunar tables in use were compiled entirely from the
results of observations, and astronomers despaired of ever being
able to predict with certainty the Moon’s celestial position, her
motion being so complex. With the great work on celestial mech-
anics, rendered possible by the illustrious Newton whose famous
Principii was published in 1687, undertaken by several eminent
17th-century astronomers, the theory of the Moon’s motion was
gradually brought to a state of perfection. Newton himself under-
took the construction of tables of the Moon’s position founded on
the theory of gravitation combined with the observations of Flam-
steed. And Professor Hoyle, in a recent book, Astronomy 1962,
recalls Newton’s declaration that working out the future motion
of the Moon . . . is difficult, and it is the only problem that ever
made my head ache.’

Edmund Halley, who had had valuable sea-going experience
and who was, therefore, admirably qualified to talk on the matter,
recommended observations of the Moon as providing the most
certain method of finding longitude at sea. He had found, from
experience, that all other methods were impracticable; but he also
pointed out to the Royal Society the defects of the lunar tables
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extant. Halley published an empirical method for reducing the
errors in the existing tables. This method he evolved after making
careful comparisons of the Moon’s positions by observations with
those given in the tables. Halley found, as he had expected from
his application of the principles of gravitation, that the errors of
the tables recurred with regularity after a period of eighteen years
eleven days—a well-known eclipse cycle known to the astrono-
mers of antiquity as the Saros. Halley’s paper on the subject
appears under No. 420 of the Philosophical Transactions.

Being encouraged by his discovery of the recurrence of error
after a period of eighteen years eleven days, he examined what
error might arise in a period of nine years less nine days, during
which period 111 lunations occur. In this manner he deduced a
rule for correcting the Junar tables. Unfortunately, Halley was un-
able to extend his lunar observations over the whole of the eight-
een-year period until he succeeded Flamsteed as Astronomer
Royal in 1720. The fact that he was well over sixty years of age
at the time did not, in any way, deter him from undertaking the
long series of lunar observations with the object of improving
lunar theory. In 1731 he announced to the Royal Society that he
had taken

‘. . . with my own eye without any assistant or interruption . . .
1500 observations of the Moon . . . more than Tycho, Hevelius
and Flamsteed had taken altogether.’

He lived to see the completion of his tremendous project.

Halley discussed in detail the lunar method for finding longi-
tude at sea in his Astronomical Tables in which he gave two com-
plete examples using the distances between the Moon and two
different stars. He mentioned, in the same work, that the method
is applicable to a lunar distance using the Sun, instead of a fixed
star, during the First and Last Quarters of the Moon.

The French astronomer Lemonnier undertook the task of mak-
ing an eighteen-year period of lunar observations from which he
drew up a table of corrections for the Moon’s motion based on
Halley’s principle.

The Abbé de la Caille recommended the lunar method as being
the only practical method for sea use. In the course of a voyage
to the Cape of Good Hope in 1751, de la Caille had used the
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method for finding longitude. During the same year a French
merchant captain, d’Apres de Mannevillette, in the service of the
Compagnie des Indes, employed the lunar method using lunar
tables based on Halley’s principles.

Halley’s empirical rule for correcting the Moon’s position was
not entirely satisfactory; and it was generally believed by astro-
nomers that the inequalities of the Moon’s motion were so com-
plex that perfection in the lunar theory was not possible. Some
argued, falsely, that the principle of gravitation was insufficient to
explain the inequalities that affected the Moon’s motion.

In 1750, the Academy of St Petersburg projected a competition
the object of which was related to lunar theory. The French philo-
sopher Clairaut presented a new theory of the Moon’s motion
accompanied by skeleton tables. But, because the work had to be
submitted before a fixed date, the tables were not only incomplete,
but they had a degree of accuracy less than that for which Clair-
aut’s theory was susceptible. The comparison of Clairaut’s tabu-
lated lunar positions with observations made by Cassini and
others exhibited errors of up to as much as 5 of arc.

The famous Swiss mathematician Leonhard Euler (1707-
1783), whose work on lunar theory Theorice Motus Lunae was
published in 1753, in an appreciation of the work of Clairaut,
published in the Philosophical Transactions of the Royal Society
for 1753, wrote:

‘. .. Itis Clairaut we have to thank for this important discovery
which adds fresh lustre to the theory of the great Newton, and
now for the first time, we may hope to have good astronomical
tables for the Moon.’

Clairaut corrected his lunar tables in 1765, the year of his
death; but ten years before this date, Johannes Tobias Mayer had
compiled lunar tables which were submitted to the British Parlia-
ment, the author claiming at the same time some reward which
he thought he might merit. '

Tobias Mayer (1723-1762) was a self-taught German mathe-
matician who, in 1751, was appointed Professor of Mathematics
at Gottingen. His fame rests primarily on his skilful development
of Euler’s work in connection with lunar theory. His lunar tables
were communicated in 1752 to the Royal Society of Géttingen.
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Three years later he submitted an amended table in manuscript
to the English Board of Longitude.

Mayer’s lunar tables fell into the hands of Dr James Bradley,
who had succeeded Edmund Halley as Astronomer Royal in 1742,
Bradley, after examining the tables and comparing them with a
large number of observations of his own, was convinced of their
accuracy. In his report to the Admiralty dated February 10th 1765
Bradley wrote:

‘... In obedience to their Lordships’ commands I have ex-
amined the same, and carefully compared several observations
that have been made (during the last five years) at the Royal
Observatory at Greenwich, with the places of the Moon com-
puted by the said tables. In more than 230 comparisons which
I have already made, I did not find any difference so great as
13’ between the observed longitude of the Moon and that which
I computed by the tables; and although the greatest difference
which occurred is, in fact, but a small quantity, yet as it ought
to be considered as partly arising from the error of the observa-
tions, and partly from the errors of the tables, it seems probable
that, during this interval of time, the tables generally gave the
Moon’s place true within one minute of a degree.

‘A more general comparison may perhaps discover larger
errors; but those which I have hitherto met with being so small,
that even the biggest could occasion an error of but little more
than half a degree in longitude, it may be hoped that the tables
of the Moon’s motions are exact enough for the purpose of
finding at sea the longitude of a ship, provided that the obser-
vations that are necessary to be made on shipboard can be taken
with sufficient exactness.’

Long before Bradley had submitted this report he had shown
the utility of Mayer’s tables from investigation of the trials of the
tables carried out by Captain Campbell on board the Royal
George cruising within sight of Cape Finisterre in 1757, and again
in sight of Ushant in 1758 and 1759. Observations made on board
the Royal George were accurate to within 0° 37’ of longitude. The
lunar distances on these occasions were measured by means of
Hadley’s quadrant.

With the completion of the trials of Mayer’s tables the problem
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of finding longitude at sea, to a degree of accuracy within the con-
ditions of precision laid down by the Act of Parliament, had been
solved. It might, therefore, be thought that Mayer was entitled to
the reward. It was argued, however, that the method of calculating
the longitude by the lunar method was far too complex for practi-
cal use; and since the solution was not given in a form available
for the non-mathematical seaman, the practical conditions of the
Act were not fulfilled. For this reason the Board of Longitude
were led to postpone the granting of the prize. '

The Board of Longitude existed from 1713 until 1828. It was
empowered to grant half the reward for the discovery of the longi-
tude as soon as a majority of the Commissioners agreed that a
proposed method was practicable and useful. The remainder of
the reward was to be paid as soon as a vessel, on which the method
was used, sailed from Britain to a port in the West Indies and back
without erring in the longitude more than the amount specified
in the terms for the prize. It was not the lunar method that was
instrumental in gaining the reward, although those who were
responsible for perfecting the method did receive rewards. The
prize was carried off, as we have already noted, by John Harrison
for his ingeniously-contrived chronometer.

The perfection of lunar tables in itself was not sufficient for
finding longitude at sea by the lunar method. Accurate measuring
instruments and, perhaps more important than even this, methods
of computing which could be reduced to relatively simple rules
for the seaman were essential before the method was to become
practicable.

(b) MASKELYNE AND THE NAUTICAL ALMANAC

Before entering upon a discussion of the methods of computation
of the lunar problem, we shall first describe the development of
that essential instrument of nautical astronomy known as the
Nautical Almanac and Astromomical Ephemeris, with special
reference to its founder Nevil Maskelyne.

The earliest of the principal astronomical ephemerides is the
Connoissance des Temps ou des Mouvements Celestes, founded by
Jean Picard in 1679 and published at Paris under the auspices of
the Bureau de Longitude. From 1761 onwards the Connoissance
des Temps gave the celestial positions of the Moon at twelve-
hourly intervals, these positions being calculated by Mayer’s
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method. Lunar positions were given using coordinates of the
ecliptic system, that is, celestial latitude and celestial longitude
respectively.

A considerable amount of computation is necessary in order to
find the longitude from an observation of a lunar distance when
the only assistance provided by an ephemeris consists of predicted
celestial latitudes and celestial longitudes of the Moon at twelve-
hourly intervals. The general practical method, in which much of
the computation is dispensed with by providing the seaman with a
special ‘ nautical’ almanac, was first proposed by Abbé de la Caille.
This almanac gave angular distances between the Moon’s centre
and that of the Sun and planets and certain zodiacal stars, for
short equidistant intervals of time. A specimen of this type of
lunar table, specially designed for the seaman’s use, appeared in
the 1761 Connoissance des Temps, in which lunar distances were
given for four-hourly intervals. Guyou, in his article of 1902,
mentions this important fact, and adds:

‘But as has too often happened in our country [France] in con-
nection with the application of science to the art of navigation,
this proposal failed to bear fruit. It was the English astronomer
Maskelyne who had the honour of carrying out the idea.’

Nevil Maskelyne, the ‘ Father of the Lunar Observation’, was
born in London in 1732. He was educated at Westminster School
and Trinity College, Cambridge. He graduated in 1754 and in the
following year was ordained. In 1761 he was deputed by the Royal
Society to observe the transit of Venus at St Helena. He took
with him a reflecting quadrant of Hadley’s made by the famous
instrument-maker Bird with the glass ground by Dollond; and a
set of Mayer’s tables. During the voyage out and home he deter-
mined the longitude of the ship using the lunar method. From St
Helena he sent a letter to the Royal Society in which he described
his observations (Philosophical Transactions, Vol. 52, 1762). He
considered that his observations yielded the longitude, in each
case, to within 14° of the truth. On his return to England he set
about the task of publishing a work which was to play a prominent
part in the development of practical and scientific navigation. This
work, entitled The British Mariner's Guide, was published in
1763.
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Maskelyne spoke in high praise of the lunar method for finding
longitude at sea. He induced the Commissioners of Longitude to
grant the concession that a collection of lunar distances between
the Moon and certain bright zodiacal stars, along the lines sug-
gested by de la Caille, should be prepared for the use of seamen.

In 1765 Maskelyne succeeded Nathaniel Bliss as Astronomer
Royal and, in his new position of authority, was able to put his
proposal into effect. Under Maskelyne’s guidance the first British
Nautical Almanac and Astronomical Ephemeris was published in
1765 for the year 1767. The method of finding longitude by lunar
distance was to become the standard astronomical method for
finding longitude at sea and was to remain so for the whole of the
19th century.

Manuscript tables of the Sun and Moon, drawn up by Tobias
Mayer, were received by the Board of Longitude in 1763, the year
following Mayer’s death. These tables were more accurate and
more extensive than the original tables that had been submitted
in 1752. Under Maskelyne’s superintendence Mayer’s lunar tables
were published in 1770.

The Board of Longitude awarded the sum of £3,000 to Mayer’s
widow for his lunar tables. The celebrated Euler, who had fur-
nished the theorems used by Mayer, was granted a reward of £300.

At the same time as the first Nautical Almanac appeared,
Maskelyne published a set of tables entitled Tables Requisite to be
used with the Nautical Ephemeris for finding the Latitude and
Longitude at Sea. In the Requisite Tables—as this work familiarly
became known—two excellent methods, with examples, for find-
ing longitude by the lunar method, were described.

(c) PRINCIPLES AND PRACTICE

We shall now describe in some detail the principles and practice
of the lunar method for finding longitude at sea.

In order to take a set of lunar observations in a regular and
accurate manner, three assistants, in addition to the principal
observer, are required. The principal observer measures the angle
between the Moon’s enlightened limb and a star, planet, or the
Sun’s limb. The first assistant measures the Moon’s altitude; the
second assistant measures the altitude of the second body; and
the third assistant, armed with a watch, records the times of the
observations. The three required angles should be measured



206 A HISTORY OF NAUTICAL ASTRONOMY

simultaneously: the principal observer shouting ‘stand-by’ a
little before each observation is to be made; and ‘stop’ when he
obtains perfect coincidence of the enlightened limb of the Moon
and the star, planet, or Sun’s limb. The observations should be
repeated so that four or five sets are obtained, each set being ob-
served at approximately equal intervals within the space of six or
eight minutes. The mean of each particular series of observations
is then found: that is to say, the sums of the lunar distances, each
of the two sets of altitudes, and the times should be divided by the
number of sets. By so doing, small errors of observation are
eliminated or reduced.

An expert observer might be capable of makmg, with a tolerable
degree of accuracy, all the necessary observations himself. The
normal way in which a single observer would operate would be to
take several altitudes of the Moon and the second object in quick
succession. Then several lunar distances would be observed; and
finally several altitudes of the Moon and second object observed
again. The mean of each set of observations would then be found,
and the mean of the altitudes reduced to the time of the mean of
the distances.

The altitudes of the Moon and the second object are required
in order to ascertain the exact values of refraction and parallax-in-
altitude for the Moon, and refraction for the second body. More-
over, the time of the observation must be known with tolerable
accuracy in order to ascertain the declination and Right Ascension
of the Moon (and the Sun if he is the second body). In circum-
stances when it is not possible to measure the altitudes of the
Moon and second object at the time the lunar distance is measured,
these angles must be computed by solving the appropriate PZX
triangles.

In Fig. 1, Z represents the zenith of an observer, and HO repre-
sents that part of his horizon contained between the vertical circles
through the Moon and second body (assumed to be a star).

arc MO true altitude of Moon’s centre

arc ZM true zenith distance of Moon’s centre

arc SH true altitude of star

arc ZS  true zenith distance of star

arc MS great-circle arc through true positions of Moon’s
centre and star: that is true lunar distance
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The effect of atmospheric refraction on light from a star is to
make it appear to have an altitude greater than its true altitude.
Because of the star’s immense distance from the Earth its parallax-
in-altitude is considered to be nil. The elevating effect of refrac-
tion causes the star S to appear to lie at s, a point on the same
vertical circle as that through its true position. The apparent
position of the star is represented in Fig. 1 ats.

Refraction has an elevating effect on the Moon but parallax-in-
altitude of the Moon is always greater than refraction: so that the

observers horizon

FIGURE 1

depressing effect of parallax is greater than the elevating effect of
refraction. Hence the apparent position of the Moon has a smaller
altitude than that of the Moon’s true position. The apparent
position of the Moon is represented in Fig. 1 at m.

arc mO apparent altitude of the Moon’s centre

arc Zm apparent zenith distance of Moon’s centre

arcsH  apparent altitude of star

arc Zs  apparent zenith distance of star

arcms great-circle arc through the apparent positions of
Moon and star: that is the apparent lunar distance

The apparent lunar distance of a star or planet is found by
applying the Moon’s semi-diameter to the measured lunar dis-
tance. The apparent lunar distance of the Sun is found by applying
a combination of the augmented semi-diameters of the Moon and
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Sun: the combination being dependent upon which limbs of the
Moon and Sun are observed. If the adjacent limbs are observed,
the apparent lunar distance is found by applying the sum of the
semi-diameters of the Moon and Sun to the observed distance,
etc,

(d) METHODS FOR CLEARING THE DISTANCE

When finding longitude by the lunar method, the most tedious
part of the process is that which is known as clearing the distance.
This involves reducing the apparent lunar distance to the true
lunar distance or, in other words, clearing the apparent distance
from the effects of parallax and refraction in order to ascertain the
angle at the Earth’s centre between the directions of the Moon’s
centre and the star, planet or Sun’s centre. Many eminent astro-
nomers and mathematicians, and many lesser men too, have given
compendious rules, table or diagrams, to facilitate the problem of
clearing the lunar distance. Among the numerous methods that
have been popular at different times, are those given by Chevalier
de Borda, Abbé de la Caille, Maskelyne, Delambre, Lyons,
Witchell, Dunthorne, Krafft and Airy. As long ago as 1797 Men-
doza del Rios, in a paper published in the Philosophical Transactions
of the Royal Society, described forty different methods of clearing
the lunar distance; and during the following hundred years
numerous other methods were proposed, and many of the earlier
methods were modified,

The multitude of methods available for clearing the lunar dis-
tance reduce themselves into two principal types; and the several
rules given by different investigators are obtained by using differ-
ent trigonometrical transformations of the common fundamental
spherical trigonometrical formulae.

The first type to be described provides a rigorous solution to the
problem and no approximations are used in the process. The solu-
tion is obtained as follows. Referring to Fig. 1, using arcs Zm, Zs
and ms, all of which are deduced from observations made on the
Earth’s surface, the angle at the zenith contained between the
vertical circles through m and s is calculated. Using the calculated
angle mZs, and the true zenith distances ZM and ZS, the true dis-
tance MS is readily found. Typical of the methods based on this
type of solution are those of Borda, Delambre, Krafft, Young and
Airy, each of which we shall describe.
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Borda’s Method for Clearing the Distance

Chevalier Jean Borda, the French mathematician and astronomer,
was born at Dax in 1733. He entered the French Navy and busied
himself with nautical astronomical investigations for which he
became well known. It was in his On the Reflecting Circle, pub-
lished in 1787, and to which we have made reference in Chapter I11,
that Borda described his method of clearing lunar distances. At
the time of its introduction to navigators, and for many decades
afterwards, Borda’s method was considered by competent autho-
rities to be the best.
Referring to Fig. 1:
In triangle ZSM:

cos SM ~cos ZS cos ZM

€08 Z = —— = S e ZM

ie.
cos SM --sin HS sin OM

cos Z = cos HS cos OM - - (D)

In triangle Zsm:
cos sm~—cos Zs cos Zm

cos Z = - .
sin Zs sin Zm

i.e.
cos sm—sin Hs sin Om

cos Z = cos Hs cos Om - - ()

Let M be the true altitude of the Moon
m be apparent altitude of the Moon
S be true altitude of Sun or star
s be apparent altitude of Sun or star
D be true lunar distance
d be apparent lunar distance

Equating (1) and (2), we have:

cos D—sin Ssin M  cos d—sin ssinm
cos Scos M - COS 5§ COS m

Add unity to each side we have:

cos D—sin Ssin M 1_*_cosd—sin‘s-sinm

1+ =
cos Scos M COS 5 COs m
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i.e.
cos S cos M +cos D—sin Ssin M

cos S cos M
__ €08 s Cos m +cos d-—sin ssin m
- COS § COs Mm
ie.
cos D+cos (M+S) cos d+cos (m+s)
cos Scos M . CoS 5 COS M
ie.
1-2sin%? D/2+{2 cos? (M + S)/2—1}
cos S cos M
= 2 cos (m+s+d)[2 cos (m+s5s—d)[2
COS § COos m
From which:

sin? D/2 = cos? (M+S)/2

_cos Scos M cos (m+s+d)[2 cos (m+s—d)[2

cos § cos m
Let:
cos S cos M
cos? 0 = <os s cos m <°8 (m+s+d)2cos(m+s—d))2 . (X)
Then: .
sin? D/2 = cos? (M + S)/2—cos? 6
i.e.
sin? D/2 = 3{1+ cos (M + S)} —3{1+cos 26}
i.e.
sin? D2 = 4{cos (M + S)— cos 26}
i.e.
sin? D[2 = sin{(M+ S)/2+ 6} sin{(M + S)[2—- 6}
ie.
sin D/2 = [{sin (M +S/2+ 0)} sin{(M + S/2— O)}]} . (Y)

Equations (X) and (Y) are used in the problem after being
adapted to logarithmic computation as follows:

log cos 8 = }{log sec m+log sec s+log cos (m+s+d)/2
+log cos (m + s — d)/2 +log cos M + log cos S}

log sin D[2 = }{log sin (M + S/2 + 6)+log sin (M + S/2— 6)}

A desirable feature of Borda’s method is that it is simple and



METHODS OF FINDING LONGITUDE 211

direct and gives the true lunar distance without embarrassment
of algebraic signs. It also has the advantage, when using it, that
no special tables are required, apart from those of the common log
trig functions.

The rules for solving the problem of clearing the distance using
Borda’s method are as follows:

1.
2.

3.

Find M, S, m and s.

Correct the observed distance d for index error and semi-
diameter.

Place under one another the apparent distance d and the

- apparent altitudes m and s: and take half their sum, L. From

the half sum L subtract the apparent distance d. Under this
place the true altitudes M and S.

Take from tables log secant m, log secant s and log cosines of
L, (L—d), M and S. Add these six quantities and divide the
sum by 2. The result is the log cosine of 6.

. Take half the sum of the true altitudes M and S. Call this ¢.

Find the sum of and difference between 6 and ¢. Add the
sines of the sum and difference. Divide by 2. The result is
the sine of half the true lunar distance, that is D/2.

A typical problem and its solution by Borda’s method is
Ex. 519 taken from Merrifield’s Nautical Astronomy of 1886.
Ex. Given the undermentioned data to compute the true distance
between the Moon and the Sun.

Apparent Altitudes True Altitudes Apparent Distance
m = 13° 29’ 27" M= 14°18"32" d=107°52'4"
s = 31°11' 34" S = 31°10' 07"

-] ! ”

d 107 52 04
m 13 29 27 sec 0-012151
s 31 11 34 sec  0-067815

2 y152 33 05
L 76 16 325 cos 9-375207
(L~d) 31 35 3155 cos 9930337
M 14 18 32 cos 9-986314

S 31 10 07 cos 9932295
¢ 22 44 195 2)19-304119
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[/ 63 19 083 cos 9:652059
0+4¢ 86 04 178 sin 9998978
0—¢ 40 35 388 sin 9-813378

2119812356

Dj2 53 40 432 sin 9906178
x2

D 107 21 264 True Distance

With the assistance of an auxiliary table, the operation of
clearing the distance using Borda’s method may be simplified.
The auxiliary table alluded to gives values called logarithmic differ-
ences which are tabulated against arguments ‘ Apparent Altitude
of Moon’s Centre’ and ‘Moon’s Horizontal Parallax.” The log-
arithm of the expression (cos S cos M)/(cos s cos m) is the log-
arithmic difference; and, unlike some auxiliary tables used for
abridging the calculations involved in clearing lunar distances,
tables of logarithmic differences may be used with confidence.

Delambre’s Method for Clearing the Lunar Distance

Delambre (1749-1822), the famous French astronomer who
served on the French Bureau of Longitude, succeeded Lalande
in 1807 as Professor of Astronomy at the Collége de France. He
devoted considerable attention to nautical astronomical problems.
The following method of Delambre’s for clearing the distance is
not dissimilar to that of Borda’s.

Equating (1) and (2), as in Borda’s method, we have:

cos D—sin Ssin M cos d—sin s sin m

cos S cos M - Cos § COs m
From which:
cos d—sin s sinm) cos Scos M )
cos D = ( ) +sin Ssin M
COS § COS Mm

_ (cos d+cos (m+s)—cos s cos m)
n oS § oS m

cos S cos M —sin S
sin M
because cos (m+$) = cos m cos s—sin m sin s,

cos D = {cos d+cos (m+s)_ 1} cos S cos M+sin Ssin M

cos scCos m
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cos d+cos (m+5)
- COS § COS 7m

cos S cos M —(cos S cos M —sin S sin M)

cos S cos M —cos (M +S)

_ [cos d+cos (m+5)
- COS § COs m

B [Z cos 3{(m+ ) + d} cos L{(m+s) ~ d}]
- COS § COS m
cos S cos M —cos (M+S)

The logarithm of the first expression is calculated, and the
natural number answering to this logarithm is extracted from log
tables. The natural cosine of (M + S) is then subtracted from this
to give the natural cosine of the true distance D.

A notable feature of the above method is that tables of natural-
and logarithmic-cosines are all that are necessary.

“An example, taken from Professor J. R. Young’s book on
Practical Astronomy etc. published in 1856, illustrates the opera-
tion of clearing the distance using the above method of Delambre’s.
Ex. Find the true distance if:

d=83°57"33";m = 27° 34’ 05"; s = 48°27' 32"
M = 28°20' 48"; S = 48° 26’ 49".

d= 83 57 33 . . ArCompcos 01783835

m= 27 34 05 . . ArCompcos 00523390

s= 48 27 32 log 2 0-3010300

2)159 59 10

4 sum 79 59 35 . . logcos 9-2399686
$sum~d 3 57 58 log cos 9-9989587
M 28 20 48 log cos 9-9445275

S 48 26 49 log cos 9-8217187

log 0-3442921  9-5369260
(M+S) 76 47 37 nat. cos. 0-2284595
D 83 20 54 nat.cos 0-1158326

It will be noticed that Ar Comps of cosines are used in the above
example. These obviously correspond to secants. ‘ Ar Comp’ is the
15
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abbreviation of ‘Arithmetical Complement.” The Arithmetical
Complement of a logarithm is the number it wants of 10-0000000.
. . . This artifice was used extensively in the practice of navigation
in the 18th and 19th centuries, and was designed to facilitate
problems on proportion, and for trigonometrical calculations. In
the example above the divisor ‘cos s cos m’ is dealt with by taking
the arithmetical complements of the logs of the cosines of s and
m; and the solution is thereby facilitated in that the required log,
viz. 9:-5369260 is obtained by addition only. The problem of find-
ing an arithmetical complement is quite easy of solution. Starting
at the left hand every figure is subtracted from 9 except the last
which is subtracted from 10, Thus, the Ar Comp of the cosine of
27° 34’ is 0-05233 to five places of decimals, because the log cosine
of the angle is 9:94767, which, of course, is the log secant of
27° 34",

Young’s Method for clearing the distance
Young, whose work we have quoted above, gave the following
method for clearing lunar distances.
From equations (1) and (2), in the development of Borda’s
method, we have: '
cos D—sin Ssin M

cos Z = cos S cos M SRR
and )
cos Z = cos d—sin s sin m R
COS § COS m

By adding unity to each side of equations (I) and (IT) we have:

1 7 - cos D+ cos M cos S ~sin M sin S
tcos £ = cos M cos S

_ cos D+cos (M +S)
- cos M cos S

(111)

and
cos d+cos m cos s —sin m sin s

COS M Cos §

l1+cos Z

_ cos d+cos (m+5) av

COsS m COs §
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From (III) and (IV) we have:
cos D+cos (M+S) _ cos d+cos (m+5)

cos M cos S COS 7 COS §
From which:
cos M cos S
cos D = {cos d+cos (m+ s)}m —cos (M +S)

The computation of cos D, using Young’s method, is shortened
considerably if a table of logarithmic differences is used to evaluate
(cos M cos S/cos m cos s).

Young pointed out that the altitudes of the objects are not
required to such a high degree of accuracy as that for the lunar
distance; and he remarks:

“This is a desirable circumstance, because, from the frequent
obscurity of the sea horizon, it is more difficult to get the
altitudes accurately than the distance.’

It is evident that, for a given distance d, small changes in the
values of m and s, and the same changes in the values of M and S,
cannot produce any sensible effect upon the value of D. It is
obvious that the logarithmic difference is always nearly unity;
and this is the principal reason why small errors in the altitudes do
not sensibly affect the distance. Young goes on to say that it is
important that the proper corrections be carefully applied to
the observed altitudes to obtain the true altitudes, even though
the former should not have been taken with precision—the
relative values of the observed and true altitudes must still be
preserved.

Krafft’'s Method for Clearing the Distance

Krafft’s method was published in St Petersburg in 1791. Like
Borda’s, it is a rigorous method based on the common formulae of
spherical trigonometry. As in Borda’s and Delambre’s methods,
the spherical cosine formula is applied to triangles ZMS and Zms

for finding Z; and the two expressions for cos Z are equated
thus:

cos D—sin SsinM  cosd—sinssinm
cos Scos M - COS § COS m
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From which:
cos M cos S
cos D = —cos (M+S)-m {cos d+ cos (m +5)}
Let
M
s MeosS _ peosd . . . . (X)
COS 7 COS §
Then:

cos D = ~cos (M+ S)+2 cos A{cos d+ cos (m+s)}
ie.
cos D = —cos (M+S)+2cos 4 cos d+2 cos A cos (m+s)
ie.
cos D = —cos (M+ S)+cos (d+ A)+cos (d~ A)
+cos {(m+ )+ A} + cos {(m+s)~ A}

Multiplying both sides by — 1 and adding 1 to both sides we get:

1—cosD = {1+cos(M+S)}+{1—cos (d+ A)}+{1 —cos (d~ A)}
) {1—cos (m+s)+ A} +{1—cos (m+s)~A}—4
ie.
vers D = suvers (M + S)+ vers (d+ A) + vers (d~ A4)
+vers {(m+s)+ A} + vers {(M+s)~A}~4
and:
vers D = vers (sum zen. dists)+ vers (d+ 4)+ vers (d~ 4)
+vers{(m+s)+ A}+ vers{(m+s)~A4}—-4 . . (Y)

Equations (X) and (Y) give the full solution to the problem.
The rules for Krafft’s method are as follows:

1. Find M, S, m, s and d.

2. Find the sum of the apparent altitudes and of the true
zenith distances.

3. From the sum of log cos M, log sec m, log cos S and log secs,
subtract the log of 2; the remainder is the log cos of A.

4. Add vers (d+A4), vers (d~A), vers {(m+s)+ A} vers
{(m+ )~ 4}, and vers sum, (Z+ z), of the true zenith dis-
tances, and subtract 4 from the sum; the remainder is the
versine of the true distance.

Krafft’s method for solving the problem on p. 211 is given
hereunder.
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cos A = % cos M secmcos Ssecs
M= 14° 18 32" logcos 9-986314

m = 13 29 27 logsec 0-012151

S = 31 10 07 logcos 9-932295

s = 31 11 34 logsec 0-067815

- 9-998575

log2  0-301030

A = 60° 06' 30" logcos 9-697545
d =107 52 04
(m+s) = 44 41 01
(Z+2) =134 31 12

vers D = vers (Z+2)+vers (d+A)+vers (d~ A)+vers
{(m+ )+ A} + vers {(m+s)~ A}

(Z+2) =134° 31" 21" vers 1701117 + 73
(d+4)=167 58 34 vers 1978026 + 36
(d~A4) = 47 45 34 vers 0-327633 + 121
{(m+s)+A4} = 104 47 31 vers 1255165 + 145
{(m+s)~A} = 15 25 29 vers 0035982 + 37

parts for secs 412 i—l:i
D =107 21 27 wvers 1-298335

The interesting feature of Krafft’s method is that no logarithmic
tables are required, and the true distance is deduced from addition
of natural versines only

The method given by Dr James Inman in his Navigation of
1821, is a modified version of Krafft’s method. The angle 4 in the
equation is called, by Inman, the ‘auxiliary angle’ and, being pre-
computed, is extracted from Inman’s tables.

Although the use of the Auxiliary Table given by Inman is
often called the Inman method for clearing the distance, the
method is due, not to Inman, but to Mendoza del Rios.

Mendoza del Rios became well known to navigators during the
early 19th century through his collection of nautical tables—a
massive collection in quarto and containing over 600 pages. Some
300 pages of these tables were designed for facilitating the clearing
of lunar distances. Rios undertook the considerable amount of
labour of calculating values of vers {(m+s)+ A} +vers {(m+.S)
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~A}; and vers (d+ A)+ vers (d~ 4), for every minute of arc.
The Rev. William Hall, a well known naval instructor remarked,
in an essay written in 1902:

‘It was a matter of 300 pages quarto containing 150,000 figures.
I know nothing to equal it except a folio volume by the Board
of Longitude containing the correction of the distances for
every degree of distance, and of the two apparent altitudes with
differences for each and corrections for parallax.’

We shall have occasion later to refer to the folio volume
mentioned by Hall.

Airy’s Method for Clearing the Distance

Sir George Bidell Airy (1801-1892) was born at Alnwick. He was
educated at Hereford and Colchester before entering Cambridge
where he had a brilliant academical career. He was appointed
Astronomer Royal in 1835 in succession to Pond. To seamen
Airy is well known for his work on ship magnetism and the cor-
rections for deviations in iron ships. His work on lunar theory was
of great importance; and it is interesting to note that Hansen’s
Tables of the Moon are dedicated to Airy.

Airy’s method for clearing a lunar distance dates from 1882, .
from which time it became customary to place a copy of the
method in the chart boxes supplied to H.M. ships. The method is
direct, simple in application, requires logarithms to five figures
only, and gives results with an accuracy sensibly perfect. It is
described by Airy as follows:

‘The characteristic circumstance upon which this treatment

depends is the use, in the factors of corrections, not of each

apparent element nor of the corresponding correcting element,
- but of the mean between the two.

‘The elements which we require are—the apparent altitude
and the corrected altitude of the Moon, the apparent altitude
and the corrected altitude of the Sun, and the apparent and
corrected distance. The first five of these are known accurately.
The last (the corrected distance between the Sun and the Moon)
must be estimated. There is no difficulty in doing this with
accuracy abundantly sufficient for this investigation. With
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Greenwich time by account, the distance may be rudely com-
puted from the distances in the Nautical Almanac. Or, without
time or calculation, a navigator accustomed to lunar distances
may form a shrewd guess of the probable amount of correction.
(The effect of a possible error will be exhibited hereafter.) We
have now all the six elements required for the investigation.

‘Let Moon’s corrected altitude + Moon’s app. alt. = 24
Moon’s corrected altitude — Moon’s app. alt. = 2a

Sun’s apparent altitude + Sun’s corr. alt. = 2B
Sun’s apparent altitude — Sun’s corr. alt. = 2b

Corrected distance + apparent distance =2C
Corrected distance — apparent distance = 2

‘Then:

Moon’s apparent altitude = 4—a

Corrected altitude =A+a

Sun’s apparent altitude = B+b

Corrected altitude = B-b

Apparent distance =C-c

Corrected distance =C+c

‘ The essential circumstance which directs the further investi-
gations is the equality of the zenithal angles and consequently
of the cosines of the zenithal angles. The corresponding
equation is:

cos (C —c)—sin (4 —a) sin (B +b)
cos (A —a) cos (B+b)

cos (C+c)—sin (4 + a) sin (B—b)
cos (A +a) cos (B—b)

or, multiplying out the denominators:
(First side) cos (C—c)-cos (4 +a)-cos (B-1D)
—sin (4 —a)-sin (B +b)-cos (4 +a)-cos (B-b)
= (Sec’d side) cos (C'+¢)-cos (4 —a)-cos (B+b) -
—sin (4 + a)-sin (B —b)-cos (4 —a)-cos (B+d)

‘For development of these terms it must be remembered
that:

sin (4 +a) = sin 4 cos a+cos A sina
sin (4 —~a) = sin A cos a—cos Asina
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cos (A+a) = cos A cos a—sin A sina
cos (A—a) = cos A cos a+sin A sin a
and similarly for B and C.

‘We now proceed to develop the first side. Making the sub-
stitutions just stated, the first large product gives:

Line 1, not containing sin a or sin b or sin c:
+cos A cos B cos C cos a cos b cos ¢

Line 2, containing simply sin g, or sin b, or sin ¢:
+cos A cos B sin C cos a cos b sin ¢
—sin A4 cos B cos C sin @ cos b cos ¢
+cos A sin B cos C cos asin b cos ¢

Line 3, containing sin a sin b, or sin b sin ¢, or sin a sin ¢:
—sin A sin B cos C sin a sin b cos ¢
+cos A sin B sin C cos a sin b sin ¢
—sin A cos B sin C sin a cos b sin ¢

Line 4, containing sin « sin 4 sin ¢:
—sin 4 sin B sin C sin a sin b sin c.

‘And the second large product gives:

Line 7:
—sin A cos A sin B cos B

Line 2:
—sin A cos 4 sin b cos b+sin B cos B sin a cos a

Line 3:
+sin @ cos a sin b cos b.

There is no line 4.

‘We now examine the second side of the equation:

‘The difference between the first side and the second side is
this: that in every place where 4 occurs in the equation, or sin @
in the development, of the first side, —a, or —sin a occurs on
the second side; and similarly for b, sin b; ¢, sin ¢. And, more-
over, these changes occur simultaneously; so that wherever
sin @ .sin b occurs on the first side there will be —sin a¢. —sin &
on the second side; and where sin a.sin b, sin ¢ occurs on the
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first side there will be —sina. —sin b. —sin ¢ on the second
side. And thus we see that:

‘For line 1 the first side and the second side are the same.

‘For line 2 the first side and the second side are equal but have
opposite signs.

‘For line 3 the first side and the second side are the same.

‘For line 4 the first side and the second side are equal but
have opposite signs.

‘There transferring the second side with sign changed to the
first side, the equation becomes the following:

+2.cos A.cos B.sin C.cosa.cos b. sinc.
—2.sinA.cos B.cos C.sina.cosb. cosc.
+2.cos A.sin B.cos C.cos a.sinb.cosc. -0
—2.sin 4.sin B .sin C.sina.sin b.sinc¢. -
—2.sin A.cos A.sinb.cosb.
+2.sin B.cos B.sina.cos a.

“This equation is rigorously accurate.

‘We will now consider what simplification it will admit,
preserving the character of practical accuracy of the highest
order.

‘a, which is half the correction of the Moon’s altitude, can
never exceed 30’. Cosine of a can never differ from one by
1/20,000 part, sin a/a can never differ from one by 1/60,000
part; and therefore for cos a and sin 4 we may put 1 and a.
The same applies to b and ¢. In the product sin & .sin b.sin ¢ the
factor of sin ¢ can rarely or never amount to 1/50,000, and that
term may be neglected. The equation now becomes:

4+cos A.cos B.sinC.2.c.
~sinA.cos B.cos C.2.a+cos A.sinB.cos C.2.b.} =0
~sin A.cos A.2.b. +sin B.cos B.2.a.

‘Remarking that 2a, 2b, 2c are the corrections of Moon’s
altitude, Sun’s altitude, and distance, the result of this equation
is:

(+tan 4 .cot C—sec 4 .sin B.cosec C)
Cort'n of x correction of Moon’s altitude
Distance (—tan B.cot C. +sin A .sec B.cosec C)
x correction of Sun’s altitude
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‘The only opening in error in this formula is in the estimated
value of C, as depending on error in the estimated Nautical
Almanac distance, or in the estimated correction to the observed
distance. Suppose that the time by account was 4 m. in error (im-
plying error in longitude of 1°). The approximate correction of
distance would be taken out about 2’ in error, and C would be
about 1’ in error. If the value of the distance was about 60°, and
error of 1’ would produce in cot C an error of about 1/1400 of
that term of the computed correction, and in cosec C the error
would be 1/6000. These would be hardly sensible. But if, with
C corrected by this approximation, the calculation be repeated
(requiring only a few minutes), the error of result wll be totally
insensible.

‘The following is offered as a form proper to be used with
this method:

‘Prepare this table, inserting numbers instead of the printed

words.
See Table 1.

*Then proceed with the following calculations, using 5-figure

logarithms: :
See Table 2.

‘This form supposes that C is less than 90°. When C exceeds
90°, the supplement to 180° is to be taken, the cosec and cotan
of that supplement are to be used, and the signs of the first and
fourth numbers, which are produced by cotan C, are to be
changed; the first number will become subtractive, and the
fourth number additive.

‘The second approximation will very rarely be required. If,
however, the final ““correction to apparent distance” differs
from that assumed at the beginning by 2 or 3’ it may be satis-
factory to use the second approximation; it is very easy.’

Airy’s method has been given in full to illustrate the remarkably
clever manner in which the lunar problem was analysed and the
ingeniously-contrived solution made possible.

The Approximate Method of Clearing Lunar Distances

The alternative type of solution to the problem of clearing a
lunar distance is often referred to as the approximate method, of
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First Approximation

Second Approximation
(if necessary)

Additive terms
log tan 4
log cot C
log cor. to Moon’s alt.

Sum and number

log sin 4

log secant B

log cosec C

log cor. to Sun’s alt.

Sum and number

Sum additive terms

————

Subtractive terms
log sec 4
log sin B
log cosec C
log cor. to Moon’s alt.

Sum and number

log tan B
log cot C
log cor. to Sun’s alt.

Sum and number

Sum subtr. terms

Additive terms
(Repeat) log tan 4
log cot C
(Repeat) log cor. to Moon’s alt.

Sum and number

(Repeat) log sin 4

(Repeat) log sec B

log cosec C

(Repeat) log cor. to Sun’s alt.

Sum and number

e e

Sum additive terms

Subtractive terms
(Repeat) log sec 4
(Repeat) log sin B
log cosec C
(Repeat) log cor to Moon’s alt.

Sum and number

(Repeat) log tan B
log cot C
(Repeat) log cor. to Sun’s alt.

Sum and number

Sum subtr. terms

=

Combination of additive and
subtractive = correction to
apparent distance

Combination of additive and
subtractive = correction to
apparent distance

TABLE 2
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which there are many varieties. The principles of the approximate
method are described in relation to Fig. 2.

Perpendiculars are drawn from M and S, the true places of the
Moon and Sun (or star or planet) respectively, on to the arc
joining the apparent positions m and s. The difference between the
apparent- and true-distances is found from the small triangles
Mma and Ssb, either by successive approximations (hence the
name approximate method), or from a development of an alge-
braic series of which the smaller terms are neglected.

Z

FIGURE 2

The invention of the approximate method for clearing a lunar
distance is attributed to the English astronomer Israel Lyons.

Israel Lyons (1739-1775) was born at Cambridge. He showed
great aptitude for mathematics; and the Master of Trinity, Dr
Robert Smith, offered to provide for his education. He studied
botany as well as mathematics, and read a course of lectures on
botany at Oxford in 1764. Lyons was engaged by the Board of
Longitude to calculate the Nautical Almanac—a task for which he
received £100 per annum. In 1773, he was appointed by the
Board of Longitude as astronomer to Captain Phipps during a
polar voyage of discovery.

Lyons’s method for clearing lunar distances was described in
the Nautical Almanac of 1767. An alternative method for clearing
lunar distances was given in the same work: this being Mr
Dunthorne’s method.
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Dunthorne (1711-1775) of Cambridge, although not fortunate
enough to have had an academic education, became an expert in
many branches of learning, and particularly in astronomy. Both
Lyons and Dunthorne received £50 each as a reward from the
Commissioners of Longitude for their methods for clearing lunar
distances.

In the Nautical Almanac for 1772 Maskelyne and George
Witchell each contributed a method for clearing lunar distances.
An improved version of Dunthorne’s solution was also given. The
same methods were described in the second edition of Maskelyne’s
Requisite Tables, which were prepared by William Wales and
published in 1781.

Among the many successful attempts made to shorten the neces-
sary calculations for clearing lunar distances, a notable effort was
that made by Witchell, the mathematical master of the Royal
Naval Academy at Portsmouth. Witchell conceived the idea of
devising a table of corrections, based on the approximate method
of clearing a lunar distance. In 1765 the Commissioners of Longi-
tude awarded him £100 to enable him to complete and print 1000
copies of the tables. Later, they advanced a further £200. The
work was continued by the Plumian Professor of Astronomy at
Cambridge, and they thus became known as the Cambridge Tables.
These are the tables referred to by the Rev. William Hall, men-
tioned above. They were published in 1772 and formed a pon-
derous folio volume containing the corrections for every degree of
lunar distance, and for the two apparent altitudes, with differences
for each degree, and corrections for parallax. It was a costly
production—over £3,000 having been spent on it—and was ill-
adapted for sea use.

Those varieties of the approximate method for clearing lunar
distances, which are based upon accurate formulae, require a con-
siderable amount of computation. More usually tables were em-
ployed. Such tables are based on the use of a mean refraction—no
method being available for correcting the actual refractions which
affect the observations. The approximate method, however, is
capable of giving correct results; and, in fact, for the same amount
of computation, the approximate method gives better results than
the rigorous method.

Referring to Fig. 2: in the small triangles Mma and Ssb, which
are right-angled at a and b respectively, the angles at m and s may
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be calculated using three given sides in triangle mZs. The arcs
Mm and Ss are also known, these being the corrections respec-
tively to the Moon’s and Sun’s (or planet’s or star’s) altitudes; the
triangles are small, the arc Mm never being more than about 1°,so
that they may be treated as being plane right-angled triangles. In
this case: '

arc ma = correction to Moon’s alt. x cos m
arc sb = correction to second body’s alt. x cos s

When the angles at m and s are acute, as they are in the figure,
ma is subtractive from, and sb is additive to, the arc sm in order to
obtain arc SM. The contrary applies when the angles are obtuse.
This principle is sometimes modified by calculating the effects
of refraction and parallax-in-altitude of the Moon separately.

We shall now describe a selection of the approximate methods
for clearing a lunar distance, commencing with a relatively
modern one to best illustrate the method.

Merrifield’s Method for Clearing a Lunar Distance

Dr John Merrifield, L1.D., was headmaster of the Navigation
School at Plymouth for many years during the last century. It is
interesting to note that his son W. V. Merrifield, B.A., became
headmaster, in succession to Mr J. Gill, of the Navigation School
at Liverpool which had been established in the closing decade of
the last century.

John Merrifield was a well-known author of works on naviga-
tion and, at the time of publication of his Treatise on Nautical
Astronomy, published in 1886, the author had been engaged in
teaching navigation for nearly a quarter of a century. In his treat-
ise, Merrifield described a method for clearing lunar distances
which he had invented, and which had appeared in the Monthly
Notices of the Royal Astronomical Society for April 1884. The
method is direct in its application, requires no special tables, and
is claimed to be a very close approximation well adapted for sea
use. The method is described in relation to Fig. 3.

In Fig. 3: ,

M and S are the true positions of the Moon and Second body
respectively; and m and s are their apparent positions.

Arcs MS and ms are the true- and apparent-distances respec-
tively.
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Q is the point of intersection of arcs MS and ms.

With centre Q describe arcs Mp and Sq. SqQ and QpM are,
therefore, right angles.

observer’s horizof
FIGURE 3

Let d be the apparent distance
D be the true distance
m the Moon’s apparent altitude
s the second body’s apparent altitude
y the Moon’s apparent zenith distance
z the second body’s apparent zenith distance

,_ y+z+d _m+s+d

S’ = —— and S = 5

C = Moon’s correction for altitude
= parallax in altitude — refraction

¢ = second body’s correction

= parallax in altitude — refraction
0 = Zms, and ¢ = Zsm

Then:
D = arc MS
= arc qp
= sm—pm +sq
=d—C.cos f+c.cos ¢
= d—C(1-2sin? 0/2)+¢(1 -2 sin? ¢/2)
ie.

D =d—(C—-c)+2(C.sin® 6/2—~c.sin2¢/2) . (1)
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Now:
. sin (S’ —d).sin (S —y)
sin® 0/2 = sind.siny
_ sin(y+2—~d)[2.sin (s +d-y)[2
- sind.siny
_ sin (90— (m+s5+d)/2) .sin (m+d—s)/2
- sin d.cos m
i.e. :
. g __cos S.sin (S—5s)
sin® 0/2 = sin d.cos m
Similarly:
. cos S.sin (S —m)
sin $/2 = sin d.cos §
Therefore:

C sin? 0/2 —csin? ¢/2
cos S {C.sin (S—s) c.sin (S-m)}

sind cos m cos §

= cosec d.cos S(M —N)

where M = Csec msin (S—5),
and N = c¢secssin (S—m).

Then, from formula (1):
D = d—(C—c)+2 cosec d.cos S(M—N)
Merrifield’s rule is as follows:

1. Place the Moon’s apparent altitude, the second body’s appar-
ent altitude and the apparent lunar distance under one
another, and take half their sum (S); from which subtract the
second body’s apparent altitude (S—s), and the Moon’s
apparent altitude (S—m). Under these place the Moon’s
correction for altitude (C) and the correction for altitude of
the second body (c).

2. Add together log secant Moon’s apparent altitude, sin (S —s)
and Moon’s correction reduced to seconds; the sum is log
the number of seconds in M.

M = Csecm.sin (S—s)
16
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3. Add together log secant second body’s apparent altitude, sin
(S —m), and second body’s correction reduced to seconds;
the sum is log the number of seconds in N.

N = csecs.sin (S—m)

4. Find difference between M and N, and add together log co-
secant apparent distance, cos S, and (M — N); the sum is log
C .sin? /2 —c.sinZ ¢/2 in seconds.

5. Double the result in (4), and add to the apparent distance d,
from which subtract the difference of corrections for alti-
tudes; the remainder is the true distance D.

The solution of the problem given on p. 211, using Merrifield’s
method, is as follows:

Apparent Altitude True Altitude  Apparent Distance

Moonm = 13°29’ 27" m' = 14° 18’ 32" d = 107°52'04"
2nd s =31°11"34" & = 31°10° 07"

correction for Moon’s altitude
(m—m’)

49’ 05"

2495"

correction for second body’s altitude
(S-5)

= 01’ 27"

= g”

D = d—(C—c)+2(C .sin? 6/2—c.sin? $/2)

Here C

o

and ¢

m  13° 29" 27" sec 0012151

s 31 11 34 sec 0-067815
d 107 52 04 cosec 0-021470
2)152 33 05

S 76 16 325
(S—+) 45 04 585 sin 9-850113 cos 9-375207
(S—m') 62 47 055 sin 9-949046

C 29 45  log 3-469085

¢ 87 log 1-939519
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M 21446 - log 3-331349
N 904 log 1966380
- (M~-N) 2054-2"log 3-:312642
C.sin? §/2 —c.sin? ¢/2 512-2 log 2:709319
= § 32.1"
x2

17" 04-2"
(C—c) -47 38

Correction for app. dist. —30 33-8
d= 107° 52" 04"

True Distance D 107° 21" 30-2”

Dunthorne’s Method for Clearing a Lunar Distance

Dunthorne’s method for clearing lunar distances was reproduced
in many navigation manuals of the last century, and in particular
in Norie’s Epitome, the firm favourite of seafaring men of the
Merchant Service for almost the whole of the 19th century. In
the earlier editions of Norie’s Epitome, of the four solutions for
clearing a lunar distance, that of Dunthorne’s formed Method 1.

Itisinteresting to note that tables of ‘ Logarithmic Differences’
appeared in textbooks of nautical astronomy as early as the end
of the 18th century. Mackay gave them in his Theory of the Longi-
tude published in 1793; and so did Norie in the earlier editions of
his famous Nautical Tables. Norie, in explaining these tables re-
fers to their use in connection with Mr Dunthorne’s method for
clearing a lunar distance. We shall state Dunthorne’s method as
given by Norie. No demonstration of the rule was attempted,
this being a common feature of works such as Norie’s, which
were aimed for the instruction of the unfortunate navigational
practitioners who had no desire to understand the methods they
used, being content merely to work ‘according to the rule.” Com-
pared with many of the rules for clearing lunar distances, that of
Dunthorne’s is about the least complex.

Rule: 1. Tothe correction of the Moon’s altitude, add the correc-
tion of the Sun’s or star’s altitude; their sum, added to the
difference of the apparent altitudes when the Moon’s altitude is
greater, or subtracted from it when the Moon’s altitude is less
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than the Sun’s or star’s, will give the difference of their true
altitudes.

2. From the natural cosine of the difference of the apparent
altitudes subtract the natural cosine of the apparent distance,
when the apparent distance is not less than 90°; but when it is
greater add together the natural cosines; and to the logarithm
of their sum or difference add the logarithmic difference (Table
31): then the difference between the natural number of this
sum and the natural cosine of the difference of the two altitudes
will be the natural cosine of the true distance, when the natural
number is less than the natural cosine of the difference of the
true altitudes; otherwise the remainder will be the natural co-
sine of the supplement of the true distance or the natural sine
of the excess of the true distance above 90°.

William Hall’s Method for Clearing a Lunar Distance

What is probably one of the last methods proposed for clearing a
lunar distance is that described by the Rev. William Hallin a paper
printed in the Nautical Magazine for the year 1903.

Hall wrote at a time when the lunar problem clearly had out-
lived the limits of its usefulness. It had been announced at about
this time that the 1906, and subsequent Nautical Almanacs would
not contain tables of lunar distances. A considerable amount of
correspondence appeared in the pages of the Nautical Magazine
over a period of several years during the early part of the 20th
century, the writers being divided in their opinions of the lunar
method for finding longitude at sea. Captain Lecky, in his famous
Wrinkles, had been accused—not without justification—of bury-
ing the lunar in an unbefitting manner, in view of the great service
it had performed to seamen for well over a hundred years. A hand-
some obituary notice of the lunar’, to quote Hall, had prompted
him to write on the subject in the August issue of the Nautical
Magazine for 1903. Hall, in common with numerous other so-called
‘lunarians’, were genuinely sorry that the time had come when the
lunar problem for finding longitude was beyond resurrection.

Hall’s interesting method is described in relation to Fig. 4.
Referring to Fig. 4:

Mm = Moon’s correction in altitude
= parallax in altitude—refraction
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FIGURE 4

Ss = second body’s correction in altitude
= refraction—parallax in altitude
Mim is plus, and Ss is minus to apparent altitude.
MX and SY are arcs perpendicular to ms produced, so that
corrections to apparent distance are —mX and —sY.

Let:

m = apparent altitude of Moon
3m+ = correction to apparent altitude of Moon
s = apparent altitude of second body
8s— = correction to apparent altitude of second body

= apparent distance
sY—-mX = 8d+
= correction to apparent distance
= Moon’s horizontal parallax
= second body’s horizontal parallax
Now:
8d = 8s.cos YsS—8m cos MmX

Applying the fundamental cosine formula to triangle Zms:

cos Zm—cos Zs.cos ms
sin Zs .sin ms

COS § =

ie.
sin m—sin s.cos d
cosssind

Cos s =
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Similarly:

sin s—sin m.cos d
cosm.sind

cos m =

Considering only that part of the correction due to 8s we have:

8s = Refraction—parallax in altitude
= Ref.—p.cos s
= cos s(Ref. sec.s—p)

Hall tabulated the quantity Ref. sec alt. It is obtained by adding
to the ordinary tables of refraction the following correction to
obtain what may be called ‘ Horizontal Refraction’ on the analogy
of ‘Horizontal Parallax.’

To obtain Hor. Ref. add to Tabulated Refraction

App. Alt. 0° 1° 2° 3° 4° 5° 6 7° 8 9°

0° 0o 0 1 1 2 2 3 3 4 4
10 5 5 6 7 7 8 8 9 910
20 10 11 11 12 12 13 13 14 14 15
30 15 16 17 17 18 18 19 19 20 21
40 21 22 22 23 23 24 25 25 26 26

50 27 27 28 29 29 30 31 31 32 33
60 34 34 35 36 36 37 38 38 39 39
70 40 41 42 43 44 45 45 46 46 47
80 48 49 49 50 51 52 53 54 55 56

Take the Hor. Ref. and its difference from the Hor. Parallax,
Call this difference y for second body.

8s = y.cos s
and

Correction to distance due to

ds = 8s.cos §

sin m—sins.cos d
= 3§ .
cos s.sind
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@

y(sin m—sin s.cos d)
sind

Correction due to 3s =

Now consider that part of the correction due to 3m.
Again:

Take the Hor. Ref. and its difference from the Hor. Parallax of
Moon. Call this difference x for Moon.

om = x.cos m,
and
Correction to distance due to dm = dm.cos m

=

sin s—sin m.cos d
om -
cos msin d

. x(sin s —sin m .cos
Correction due to om = ( nd 9) .. (1D

By combining (I) and (II) we may find the correction to distance

Now,
8d = 8s.coss—dm.cosm

_ y(sin m—sins.cos d) x(sin s—sin m cos d)

3d sin d sin d

ie. .
dd sin d = y(sin m—sin s.cos d) — x(sin s —sin m . cos d)
From which, because 8d is small:

sin (8d) = sin y(sin m .cosec d—sin s.cot d)
—sin x(sin s.cosec d—sin m . cot d)

This formula, for a lunar distance, according to Hall, is fairly
simple. The footnote to the paper in which he described his
method is interesting and relevant to the position of the lunar
method at the beginning of the 20th century.

‘Footnote: Since this article was penned, an official memoran-
dum has been issued in which notice is given that the lunar is
no longer to be included in the course of instruction for junior
officers of the Navy. . . . Hence my contribution must be read
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in the light of pure mathematics, and the lunar can no longer be
included in the sphere of practical navigation. Nevertheless I
am unable to cancel my expression of opinion that the lunar
must remain the supreme test of powers of observation and of
computation. . . . The midshipman of the future will doubtless
find some other problem to trouble him in place of the lunar.

‘I have a certain satisfaction in the thought that this article is
probably the last which will be written on a problem which has
engaged the attention of mathematicians and navigators for
hundreds of years . . . which in the hands of early pioneers of
exploration was the one and only means of fixing longitude,
which will be remembered in the future by the coming race,
who—smile as they may at our rough methods—can hardly
grudge a modified approval of the industry and ingenuity
displayed by oldfashioned ‘‘Lunarians.” _

*The Lunar is dead; let us bury it with due respect!’

Several graphical methods were devised for clearing lunar dis-
tances. The Abbé de la Caille devised a graphical method for this
purpose as early as 1759. De la Caille’s method, by which it was
claimed that distances could be cleared graphically with an accu-
racy of 20" of arc, was published in Connoissance des Temps for
1761. It also appeared in the later editions of Bouguer’s Traité de
Navigation—a well-known French manual of navigation which
the Abbé revised.

Andrew Mackay, in his Theory of the Longitude, not only refers
to a ‘Parallactic Rotula’ invented by James Ferguson and con-
structed on the same principles as de la Caille’s ‘Chassis de
Reduction,’ but he also describes a graphical method of his own
invention for clearing lunar distances. Mackay’s method is similar
to dela Caille’s, and consists of four scales which provide the means
for finding the various quantities used in the process of clearing
the distance. By means of Mackay’s (and similar) graphical
method, lunar distances could be cleared accurately and expedi-
tiously without resort to tables or calculations.

In 1790, the English mathematician Margetts published tables
expressed graphically in curves. Margetts’s graphical method for
clearing lunar distances was similar in plan to that of the Abbé de
1a Caille.

John William Norie devised and published a set of ‘linear



7. Hadley Octant. By Benjamin Martin, ¢. 1760.

e T el
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9, Sextant. By Kelvin Hughes, 1967.
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tables’ for use with Lyon’s method of clearing lunar distances.
‘These tables,’ claimed Norie, ‘render Liyons’ method one of the
easiest and shortest [methods] that have been proposed.’

Norie, in the preface to the sixth edition of his treatise on
practical navigation refers to the generous and valuable assistance
given to him by Mr George Coleman, F.R.A.S., who for many
years had been an officer in the Honourable East India Company’s
ships. This gentleman, a former Christ’s Hospital boy, who suc-
ceeded Norie as teacher at the Nautical Academy, published a set
of Nautical and Lunar Tables. The lunar tables followed the pat-
tern of Norie’s, and were designed for use with an improved
Lyons’s method for clearing distances. Arthur B. Martin, who
succeeded Coleman at Norie’s Nautical Academy, and who edited
the twenty-first edition of Norie’s Epitome and Tables gave, as the
third of five methods for clearing the distance ‘Lyons’s method
improved by Mr Coleman.’

8. FINDING G.M.T. FROM A LUNAR OBSERVATION

Having discussed some of the numerous methods that have been
used for clearing lunar distances, we shall now turn our attention
to the final part of the lunar problem, in which the G.M.T. of the
observation is found.

Predicted angular distances between the Moon and Sun and
the nine bright zodiacal stars—o Aguilae, Fomalhaut, « Arietis,
Aldebaran, Pollux, Regulus, Antares, Spica, and a Pegasi—were
given for Noon, III hrs., VI hrs., IX hrs., etc., G.M.T.

The stars whose distances from the Moon were tabulated in the
Nautical Almanac are, with one exception, those whose declina-
tions do not exceed the maximum declination of the Moon. The
exception to the rule is Fomalhaut, whose declination is slightly
greater than the Moon’s maximum declination of 283°. Fomal-
haut was chosen for it is a bright star located in a large part of the
heavens in which no other bright star having a smaller declination
is to be found. ‘

The angular distances given in the Nautical Almanac for every
third hour of G.M.T. are described as geocentric distances: that is
to say, they are angular distances between the true direction of the
Moon’s centre and that of ‘second bodies’ at the Earth’s centre.
After a lunar distance has been observed and reduced to the
Earth’s centre by clearing it of the effects of refraction and
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parallax, it remains for the observer to compare the cleared
observed distance with predicted angular distances given in the
Nautical Almanac.

The arrangement of predicted lunar distances to be found in
the earlier Nautical Almanacs is illustrated in the accompanying
plate (11), which is a facsimile of a page of lunar distances from
the 1797 Nautical Almanac.

In later almanacs, the arrangement of predicted distances is
different from that in the earlier almanacs. A facsimile page from
the 1897 Nautical Almanac is reproduced (Plate 12). It will be
seen from this reproduction that the predicted distances are
arranged from west to east commencing each day with the object
which is at the greatest angular distance west of the Moon, in the
order in which they appear—W mdwatmg that the object is west,
and E, east of the Moon.

The rule for finding the G.M.T. is as follows:

For the given date take from the Nautical Almanac the dis-
tances between which the calculated distance lies, and find their
difference. Find the difference between the distance tabulated
for the earlier time and the observed distance. This is the change
in distance for the required interval, assuming the Moon’s
motion to be uniform. This ‘change in distance’ may be calcu-
lated by simple proportion as follows:

Let A = difference of distances between which the computed
distance lies '
8 = difference between the earlier of these and the true
distance found from observation
t = time elapsed since the time corresponding to the
earlier distance

Then:
z_&_ _3hrs
8t
3.8
t=—A-hrs . . . . (I)

= 10800 A secs

The laborious calculation entailed in finding the interval ¢,
using this formula, led to the invention of an artifice in the form
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of a Table of Proportional Logarithms. Proportional logarithms
are the invention of Dr Nevil Maskelyne, and they were first given
in his Tables Requisite to be used with the Nautical Almanac.

The proportional logarithm (prop. log) of a time interval ¢ is
defined as the common log of 10800 diminished by the common
log of ¢ seconds (less than 10800). Thus the prop. log of 1 hr. is
log 10800 —log 3600, i.e.

4-0334—3-5563 = 0-4771

which is tabulated as 4771.
Similarly, the prop. log of 2 hrs. is log 10800 —log 7200, i.e.

4.0334—-3-8573 = 0-1761

which is tabulated as 1761.

Proportional logarithms are given to four figures, this being
sufficiently accurate for their purpose. It will be noticed that prop.
logs decrease as the numbers of which they are logarithms in-
crease.

From equation (I) above, we have:

t.A=3.3
and
log t+log A = log 3 hrs.+log 3
or
log t = log 3 hrs. —log A+log &
from which ' :

log 3 hrs.—log ¢ = (log 3 hrs. —log 8) —(log 3 hrs. —log A)

That is:
prop. log ¢ = prop. log 8—prop. logA . . (II)

In deducing the time corresponding to a given true lunar dis-
tance by simple proportion, four entries in log tables are necessary
for finding the elapsed time from a tabulated time given in the
almanac. By using proportional logs, as will be evident from
equation (II), two entries only are sufficient—prop. log & being
given in the almanac.

Users of the earlier Nautical Almanacs normally provided them-
selves with Maskelyne’s Requisite Tables, included amongst which,
as we have noted, was the table of proportional logarithms. This
table eventually found its way into other collections of nautical
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tables, the latter gradually superseding the Requisite Tables, the
last (third) edition, being published in 1811.

In later Nautical Almanacs, tables of lunar distances gave,
abreast of each tabulated distance, the corresponding prop. log
of difference. These figures, which appear in columns labelled
prop. log. of diff. (see facsimile of page from 1897 Nautical Almanac)
correspond to prop. log in equation (II) above.

An example, taken from Ainsley’s Extra Master’s Guide of 1888,
illustrates how the G.M.T. of a lunar observation was found using
prop. logs.

Example: 1888, January 20th. Required to find the Greenwich
Mean Astronomical Time at which the true distance between the
Moon and « Pegasi was 40° 18’ 40”.

From Nautical Almanac (an extract appears below) it is seen
that on January 20th the star « Pegasi was west of the Moon, and
its distance from that object as under:

hs"é Star’s name P.L. P.L. P.L.
% £ and Position. Noon of I of Vi of
fag:| Diff, Diff. Diff.

20 «Pegasi W 38° 38 19”7 4107 39° 48’ 14”7 4045 40° 59’ 09* 3990

It appears, by inspecting the distances in the Nautical Almanac,
that the given true distance 40° 18’ 40" lies between the two con-
secutive distances viz. 39° 48’ 14” the distance at III hrs., and
40° 59’ 09", the distance at VI hrs.: whence it is evident that the
time must be January 20th between III hrs. and VI hrs., the
nearer distance preceding in order of time, the given distance is at
IIT hrs.

The given distance is . 40° 18’ 40"

At III hrs. the distanceis 39 48 14 — P.L. = 4045
Difference . . . . 30 26 — P.L. = 7719
Intervale . . . . O01* 17™ 158 «— P.L. = 3674

Time corresponding to
distanceat . . . 03 00 00

G.M.T. January 20 04 17 15 (approximate)

[ e



METHODS OF FINDING LONGITUDE 241

Owing to want of uniformity in the motion of the Moon, it is
necessary to apply a correction for the ‘inequality of the Moon’s
motion,’ to the interval ¢ found by simple proportion as in the
preceding example, It is for this reason that the G.M.T. found in
the above example is designated (approximate). The correction
for the Moon’s inequality is referred to as the ‘correction for
second differences.’

In extreme cases an error of 50" of longitude results when the
correction for second differences is ignored. For any given angular
distance the correction is least when the direction of the ‘second
body’ from the Moon is perpendicular to the line of the cusps of
the Moon.

Second differences are found by taking the difference between
successive or (first) differences of any varying function. By taking
the difference between successive ‘second differences,’ [third
differences] are found. An example will make this clear.

If a, b, ¢, d, etc. are the successive values of a varying function,
we get:

Successive
values of First Second Third Fourth
varying Diffs. Diffs. Diffs. Diffs.
function
a
a-b
b a-2b+c¢
b—c a—3b+3c—-d
¢ b—2c+d a—4b+6c—4d+e
c—d b—3c+3d—e
d c—2d+e
d—e

e

It will be found in practice that if differences be carried far
enough they tend to equality. When this is attained the value of
the function may be found for any given intermediate quantity.
The so-called ‘method of differences’ was of importance in inter-
polating between tabulated elements such as the Moon’s, planets’
or Sun’s declination or Right Ascension given in the Nautical
Almanac for uniform time intervals—the time being referred to as
the ‘independent variable.’ ‘
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The Moon’s rate of motion towards, or away from, a second
body used in the lunar problem varies with time; and, therefore,
the exact position of the Moon relative to a ‘second body’ at any
instant between the time given for those in the almanac cannot be
found exactly by simple proportion. It will be found, however, that
by carrying the interpolation to second differences, a result suffi-
ciently accurate for practical purposes is obtained. The second
differences, therefore, are the rates at which the change of motion
varies. ,

A table for finding the correction for second differences is in-
cluded in the later Nautical Almanacs, and also in the popular
collections of nautical tables such as those of Norie, Raper and
Inman. The arguments in the table are: interval ¢; and mean
differences of prop. logs (P.L. of Diff.). In the example given
above, the prop. log following the distance taken from the Nautical
Almanac at 111 hrs. is 4045: the prop. logs to the right and left of
this are 3990 and 4107 respectively. The differences between
these last two prop. logs and that at III hrs. are 55 and 62; and
the mean difference is, therefore, 4 (55 +62), i.e. 58; and, it will
be noticed, the prop. logs are decreasing. Entering the table of
corrections for second differences, with =01 hr. 17 mins. 15 secs.,
and mean difference P.L. 58, the correction for second differences
is 18 secs. This is to be added to the approximate G.M.T. found
above, because the prop. logs are decreasing.

Proportional logs served to indicate which of the tabulated
stars, etc., used in the lunar problem, was most favourably placed
for furnishing the most exact measurement of the lunar distance.
That object was to be preferred which had the least proportional
log opposite to it, because the greater velocity of the Moon towards,
or away from, the second body, the greater is the reliance to be
placed on an observation of the distance. Because proportional
logs decrease as the natural numbers increase, the smaller is the
proportional log abreast of a tabulated distance, the greater is the
Moon’s velocity towards, or away from, the body whose distance
is tabulated, and the greater the change of distance between Moon
and body in the interval. It is upon this change of distance that the
value of the observation depends.

We now take leave of the lunar problem in order to discuss the
‘longitude by chronometer’ method which superseded the
‘longitude by lunar’ method. S ‘
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9. LONGITUDE BY CHRONOMETER

(a) METHODS
Although the marine chronometer was perfected by John Harri-
son in the middle of the 18th century, the instrument never came
into popular use at sea until the middle of the 19th century.

Finding longitude by means of a chronometer requires know-
ledge of the observer’s latitude and certain astronomical data in
order to define the observed object’s celestial position at the time
of the observation. The exact error and daily rate of the chrono-
meter must also be known. We have already discussed, in Chapter
III, the problems relating to estimating the chronometer error in
the days before radio time signals became available. During a
voyage the careful navigator missed no opportunity of checking
his chronometers by means of time-ball observations used at
places the exact longitudes of which were known, or by calcu-
lating his longitude very accurately when in port using the exact
latitude of the place of observation. At sea the lunar problem was
often used in the latter part of the 19th century, not as a means for
finding longitude, but as a means for checking the chronometer
error and rate. :

In all astronomical methods for finding longitude it is necessary
to compare local time with a standard time for a particular instant.
The difference between these times is a measure of the difference
of longitude between the local and standard meridians. In the
longitude by chronometer method the standard time is provided by
the chronometer the accumulated error of which is known. The
local time may be found after observing the altitude of a heavenly
body—or taking a sight as the seaman would say—and solving a
celestial triangle known as the astronomical or PZX triangle. The
method of finding local time of sight is explained with reference to
Fig. 5.

The circle in Fig. 5 represents the celestial horizon of an obser-
ver whose zenith is projected on to the plane of his horizon at Z.
N, E, S and W are the projections of the cardinal points of the -
celestial horizon. P is the projection of the celestial pole and WQE
is that of the equinoctial. dd, is the projection of a parallel of
declination on which an observed object, denoted by X in the
figure, is located. NZS is the projection of the observer’s celestial
meridian. ZXA is the projection of the vertical circle through X,
and PXB is that of the hour circle through X.
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arc NP = observer’s latitude = [/
arc AX = true altitude of X = @
arc BX = declinationof X =4d

In the spherical triangle PZX:

arc PZ = co-latitude of observer = (90-1)
arc ZX = zenith distance of X = (90—a)
arc PX = polar distance of X = (90+d)
N
d, d
/
w E
X\ o~ A
B
Q
S
FIGURE 5

It will be noticed that the arc PX is (90 + d) or (90 — d) according
as to whether latitude and declination have different or equivalent
names respectively.

If the three sides of the spherical triangle PZX are known, it is
an easy matter to find the angle ZPX. This angle, which is referred
to as the ‘meridian distance’ of the body X, the ‘hour angle’ of the
body or, more familiarly, angle P, is a measure of the time that
will elapse before, or has elapsed since, the body X will be, or was,
at meridian passage.
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If the body observed is the Sun, the angle P is a measure of the
time interval from apparent noon, so that if P can be found the
Local Apparent Time (L.A.T.) may also be found. To the L.A.T.
the equation of time (given in the Nautical Almanac) is applied to
give the Local Mean Time (L.M.T.).

If the body observed is a star or celestial body other than the
Sun, the problem of finding the L.M.T. of the observation is
more complex than with the case for the Sun. By applying to the
local hour angle of the observed object its Right Ascension (R.A.)
the Local Sidereal Time (L.S.T.) may be found. The L.S.T. is
equivalent to the Right Ascension of the observer’s meridian
(R.A.M.). Having found this, the Sun’s Right Ascension is ap-
plied to it to find the L.A.T., and to this the equation of time is
applied to give the L.M.T.

Because of the relative complexity involved when finding the
L.M.T. of an observation of a star, Moon or planet, the Sun was
normally employed for finding longitude. To a large extent this is
true even for today when Sun observations for longitude are still
regarded, in many instances, as providing the best fixes.

If, at the time of a sight, the chronometer time is recorded, the
G.M.T. of the observation is known; and this, when compared
with the L.M.T. of the observation, enables the observer to find
his longitude, for:

Longitude = G.M.T.~L.M.T.

Longitude is named West when G.M.T. exceeds L.S.T. and
East when L.M.T. exceeds G.M.T. Hence the well-known aid
to memory:

Longitude west, Greenwich time best.
Longitude east, Greenwich time least.

Given the three sides of a spherical triangle, any of the three
angles may be calculated by using the fundamental cosine formula
of spherical trigonometry. Thus, in the astronomical triangle of
nautical astronomy, we have:

cos ZX —cos PZ .cos PX
sin PZ .sin PX

cos P =

from which:
cos z—sin I.sin d

cos P =
cos [ cos d

17
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when ! and 4 have the same name, and

cos #-t+sinl.sind
cos [.cos d

cos P =

when ! and d have different names.

The cosine formula is not suited to logarithmic computation,
so that the calculation of angle P by its use is tedious. This defect
prepared the way for other formulae, derived from the fundamen-
tal cosine formula but which do not suffer its principal disadvant-
age. :
There is a singularly wide variety of trigonometrical rules for
finding an angle in a spherical triangle, and many of these have
been used for solving the PZX triangle. A layman well may be
surprised that seamen were not provided with a standard method
for solving the PZX triangle.

The methods used at different times for solving the astronomi-
cal triangle have seldom provided the shortest, or the simplest, or
even the most accurate solution. The method employed often
depended upon which set of nautical tables a seaman was accus-
tomed to using, and the number of collections of tables available
during the 19th century was legion. Moreover, once a specified
method of sight reduction had been accepted, mastered and com-
mitted to memory, a seaman tended to use it, to the exclusion of
all others, throughout his sea-going career. This applies generally
to the mathematically-minded seaman of today, and doubtless
applied more so to the non-mathematical mariners of the past.
Seamen of all times have been content to work according to the
rule, caring little for the derivation of the rule. We shall discuss
some of the many methods used for calculatmg angle P in the
astronomical triangle.

Since cos P=1-2.sin? P[2, by substitution in the spherical
cosine formula for solving P in the PZX triangle, we have:

cos ZX —cos PZ .cos PX
sin PZ .sin PX

1-2sin? P/2 =

i.e.
sin a —sin [ cos PX
cos Isin PX

1-2sin?P[2 =
and
sin a—sin / cos PX

28in® P2 = 1 -—Cor e PX
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- cos Isin PX+sin l.cos PX —sin a
= cos /sin PX
sin (PX+/)—sina
=~ T cos I.sin PX

Now,
sin A—sin B = 2.cos (A +B).sin (A—B)
so that
) 2.cos 3(PX+1+a).sin {(PX +!—a)
2 —
2sin® P2 = . cos [.sin PX
Therefore:

sin P/2 = V/sec l.cosec PX.cos #(PX +/+a) sin }(PX +1/—a)

let
s = 3(PX+1+a)
Then:

sin P/2 = V/sec l.cosec PX .cos s.sin (s—a)

This formula was derived by the French naval officer Jean
Charles de Borda (1733-1799), who published it in his On the
Reflecting Circle in 1787.

Borda’s method for finding angle P was popular during the first
half of the 19th century. It was described in many manuals of the
period, including those of Andrew Mackay (1793), and Edward
Riddle (1824).

- Henry Raper improved Borda’s method by adapting it for use
with haversines. Now:

hav 8 = } vers 8 = (1 —cos 0)
Also,
cos 0 = 1—2sin? 6/2
Therefore: '
hav § = sin? /2
so that

hav P = V/sec I.cosec PX .cos s. sin (s—a)

‘Raper provided a table of logarithms of sin? 6/2, which he called
the Table of Log Sine Squares. By using this table the method he
suggested, for solving P in the PZX triangle, was shortened com-
pared with Borda’s method. The method suffered the disadvantage
in that five tables of different log trig functions were required.
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The trigonometrical function the versine was adapted to the
needs of nautical astronomy during the latter part of the 17th
century. Now versine 6 is equal to (1 - cos ), so that the spherical
cosine formula may be reduced to:
vers ZX —vers (PX + PX)

sin PZ .sin PX

The quantity (PZ 1+ PX) is equivalent to the Meridian Zenith
Distance (M.Z.D.) of the body, disregarding any change in the
body’s declination during the period of time equal to P. Thus:

vers ZX —vers M.Z.D.
sin PZ .sin PX

vers P =

vers P =

Now,

vers ZX —vers M.Z.D. = (1-cos ZX)—(1-cos M.Z.D.)
cos M.Z.D. —cos ZX

sin mer. alt. —sin alt.

nu

Therefore:

vers P = (sin mer. alt. —sin a) sec /.sec d
or,
vers P = (sin mer. alt. —sin @) sec d.cosec co /

This is the basis of the rule given by Nevil Maskelyne in his
Requisite Tables. Included in these tables are those of natural and
artificial- or logarithmic-versines, the latter being referred to as
log risings. The layout of the solution to the longitude problem
recommended by Maskelyne is illustrated in the following ex-
ample which is extracted from the second edition of the Requisite
Tables.

Example: Sun’s declination 22° 23}’ N. Latitude 34° 55’ N.
Corrected altitude 36° 593'. Find the Sun’s meridian distance.

Dec. 22° 233" N. — log sec 0-03405
Co-lat. 55° 05" ——> log cosec  0-08619
Mer. alt.  77° 281 > nat. sin 97620
Cor’d. alt. 36° 593’ — nat. sin 60176

4-57338—log diff. 37444
Log rising 4-69363
Mer. dist. 3 hrs. 58 mins. 23 secs,
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It will be noticed that in the example above, log- and natural-
functions are given to no more than five places of decimals. It was
Maskelyne’s considered opinion that, for purposes of astronomical
navigation, this was abundantly sufficient.

Andrew Mackay, in his Theory of the Longitude of 1793, gave a
method for finding longitude by chronometer based on the spheri-
cal cosine formula. His method required the use of three special
tables (numbered in his collection 27, 28 and 29 respectively), in
addition to tables of natural- and logarithmic-sines. Mackay’s
rule is:

‘Enter Table 27 with latitude and declination, and take out
corresponding number to which prefix the index 4; and add to
it the log sine of the corrected altitude. Find the natural number
answering thereto, to which apply the number from Table 28,
by subtracting or adding, according as latitude and declination
are of same or contrary name. Now find the above difference or
sumin Table 29, and the corresponding time will be the distance
of the object from the meridian.’

The rule appears to have been derived in the following way:

cos P = (cos ZX —cos PZ.cos PX) cosec PZ.cosec PX

From which:
cos P = sina.sec.l.secd+ tan l.tand

By adding unity to each side, we have:
14+cos P = 1+sina.secl.secd+sinl.tand

Now,
1+ cos = suversine 6
Therefore:
suvers P = 1+sin a.secl.secd+tanl.tand
and

suvers P—1 = sina.sec l.secd+tan l.tand
A [ — “~ —

Table 27 gives values of sec /.sec d multiplied by 10,000.
Table 28 gives values of tan /.tan d multiplied by 10,000.
Table 29 gives values of suvers P — 1 multiplied by 10,000.

The rule of Mackay’s would appear to provide for a shorter
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solution than either Borda’s or Maskelyne’s. This, however, is not
the case, because Tables 27 and 28 give tabulated values for each
whole degree of latitude and declination; the necessary tedious
interpolation, therefore, made the method unwieldy.

It is an easy matter to derive the following four formulae from
the fundamental cosine formula by expressing cos P in terms of
sin P, sin P/2, cos P/2 and tan P/2 respectively:

2/sin PZ sin PX
Vsin s .sin (s — ZX).sin (s — PZ).sin (s — PX)

. __ /sin (s—~PZ).sin (s — PX)
sin P/2 = A/ sin PZ .sin PX

. [sins.sin (s, — ZX)
cos P/2 = ~/ sin PZ .sin PX

_ [sin (s—PZ).sin (s — PX)
tan Pf2 = '\/ sin s.sin (s — ZX)

sinP =

All of these formulae are adapted for logarithmic computation.
To which of the four preference ought to be given over the others
should depend on the value of angle P. It can be demonstrated
that the first is suitable for cases in which P is near 90°, It is ex-
pedient to use the second or fourth when P is acute; and to use the
third when P considerably exceeds 90°.

Rules based on these formulae for solving angle P in the PZX
triangle are given in many of the 19th-century navigation manu-
als. Mrs Janet Taylor, a prominent teacher of navigation who had
an academy in the Minories in London gave, in the 1837 edition
of her book The Principles of Navigation Simplified, rules based
on all four: and, in addition, she gave seven additional rules,
making twelve in all, for solving an angle in a spherical triangle,
This celebrated lady, in common with most other manual writers
of the time, made no attempt to advise seamen on the relative
methods of the several rules given. A rule was given, invariably
without demonstration, and the seaman was expected to accept it
without question. Navigation manuals of the 18th and 19th
centuries are crowded with rules—many of them extremely com-
plex and often shrouded in mystery. It was not until the dawn of
the present century that the written rules gave way to the more
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comprehensible trigonometrical formulae to be found in the
manuals of the present day. ‘

Of the half-angle formulae suitable for solving angle P, those
giving sin P/2 and cos P/2 were most commonly used. John
Hamilton Moore’s single rule for finding meridian distances was
based on the formula for cos P/2. The formula for sin P/2 was a
favourite during the latter part of the 19th century seemingly
because sines alone were employed in the computation.

The principal stumbling-block in most of the above formulae,
from the seaman’s point of view, is related to the difficulty of
handling trigonometrical functions of angles over 90°. An inter-
esting method, designed to overcome this difficulty, was suggested
in 1860 in a letter to the editor of the Nautical Magazine. The pro-
posed method involved working from the nadir of the celestial
concave instead of from the zenith, and using the object’s nadir
distance instead of its zenith distance.

The formula:

sin Aj2 = A/sin (s—2)sin (s—¢)

sin b sin ¢

may be simplified by squaring both sides and substituting haver-
sine A for sin? A/2, thus:
sin (s— ) .sin (s —¢)

sin b.sin ¢

hav A =

By using this formula the need for dividing the sum of the logs by
two and then having to double the angle A/2 to find A—which is
unavoidable when using the formula for sin A/2—is eliminated.

An interesting method used for finding P is derived from the
cosine formula as follows:

cos ZX —cos PZ .cos PX

cos P = —— 5 n PX

from which:

cos ZX —cos PZ .cos PX
sin PX .sin PZ

_cos (I~d)—cos ZX

- cos [.cos d

_ 2.sin $(ZX +1~d) sin Y(ZX - I~d)
n - cosl.cosd

2.8in?Pf2 = 1-
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Therefore:
hav P = sec l.sec dVhav{ZX + (I~ d)} hav {ZX — (I~ d)}

This was the formula used by British naval officers during the
closing decades of the last, and the opening decades of the present,
century.

Tables of versines from 0° to 180°, log haversines, and half log
haversines were provided in Inman’s tables. These tables were
used almost exclusively in the Royal Navy during the greater part
of the last century.

James Inman D.D., who was Senior Wrangler at Cambridge
in 1800, became Professor of Mathematics at the Royal Naval
College at Portsmouth. During a long and distinguished career
Inman devoted considerable attention to promoting nautical
astronomy. Although versines and haversines had been used for
navigational purposes during the 18th century, it is chiefly to
Inman that we owe the popularity of these functions which has
lasted to the present time.

The significant feature of the versine is that it has a unique
value for every angle between 0° and 180°: so that angles in the
second quadrant present no difficulty in respect of algebraic sign
when versines, instead of the basic trigonometrical functions
cosine, tangent, cotangent and secant, are used.

We have noted above that the cosine formula for angle P in the
PZX triangle modified for the use of versines is:

vers ZX —vers (PZ + PX)

. vers P = sin PZ sin PX

or

vers p = Yers —vers (Itd)

cos [cos d

i.e.

vers P = {vers 2 —vers (/1 d)} sec Isec d
i.e.

vers P = vers @seclsecd
where

vers § = vers z—vers (/£ d)

H. B. Goodwin, who edited the second edition of William
Hall’s adaptation of Inman’s tables in 1918, proposed, in 1899,
the above formula for finding angle P. Goodwin pointed out that:
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‘. .. since in Inman we have no logarithmic versines, but only log
haversines, we must divide each side by 2.’
If follows, therefore, that:

hav § = hav z—hav (I1d)
and
hav P = {hav z—hav (/1 d)} sec Isecd

Goodwin demonstrated that all practical astronomical prob-
lems of navigation could be solved by the application of versines
(or haversines) to the spherical cosine formula.

The formulae for the Ex-meridian and the Marcq St Hilaire
problems are respectively:

hav M.Z.D. = hav ZX —hav P cos I cos d
hav ZX = hav P cos I cos d+hav M.Z.D.

Goodwin’s comments are interesting in view of the general be-
lief that Percy L. H. Davis was responsible for the introduction
of the so-called cosine-haversine method of sight reduction com-
monly employed at the present time. It is true that Davis, in his
Requisite Tables of 1905, published the haversine table in its pre-
sent form for the first time: a form in which natural and logarith-
mic haversines are tabulated in adjacent columns to facilitate the
solution of the PZX triangle by the cosine-haversine method.
The following statement made by Goodwin in the paper referred
to above is, however, important:

‘... The conclusion to which a comparison of the various
methods employed today in practical nautical astronomy
appears to point may be summed up briefly as follows:

‘Firstly that a table of natural versines and another of log
haversines, or better still, versines, should be included in every
collection of nautical tables. . . .

It is interesting to note that in Goodwin’s edition of Inman’s
tables, Davis’s haversine table appears with a note by Davis
dated 1932. The note clearly indicates the jealousy with which
Davis regarded his table and the contempt he held for those
whom he regarded as being pirates of his copyright.

Had Goodwin’s recommendation been carried out it is
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doubtless that present-day navigators who use the so-called
‘longitude by chronometer’ method in preference to the superior
intercept method, would use Goodwin’s formula:

vers P = vers @ seclsecd

In view of this, tables of haversines would have fallen into
disuse. ’ ’

The importance of the chronometer for finding longitude at sea
using astronomical methods was, in olden times, paramount. At
the present time the costly and delicate chronometer, although
carried on almost every ocean-going craft, no longer ranks as a
vitally necessary aid to navigation. A good pocket watch with a
sweep second hand is sufficient for navigational purposes; this on
account, not only of the availability of good and inexpensive time-
keepers but also because of the frequency of radio time-signals by
means of which the error and rate of a watch may be checked.

(b) OBSERVATIONS FOR CHECKING THE CHRONOMETER

Before the days of radio time-signals the longitudes of numerous
shore stations were determined by electric telegraph. Before the
invention of the telegraph, chronometric differences and other
methods were used to establish longitudes. The celebrated Henry
Raper played a prominent role in compiling tables of maritime
positions with the principal aim of providing the means whereby
a seaman could check his chronometer. Raper’s first table of mari-
time positions was published in the Nautical Magazines of 1839
and 1840, and gave details of upwards of 200 maritime positions.
Raper’s communication to the Nautical Magazine consisted of
five sections as follows:

1. An abstract of the principal scientific voyages and surveys,
from which he obtained his data.

2. Remarks on the different modes of determining longitudes.

3. Remarks on the necessity of adopting a uniform method of
placing on record chronometric determinations in order to
be immediately available for the construction and examina-
tion of charts.

. Remarks on the necessity of adopting secondary meridians.

. A discussion of the principal maritime positions and the
methods employed to determine their positions.

TN
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In the first section, the abstracts begin with Cook’s voyages:

‘Cook. 1st voyage. H.M.S. Endeavour, left Plymouth Aug. 26.
1768. Madeira, Rio, Straits le Maire, Tierra del fuego, Lagoon
1., Bow 1., Bird I. Discovered Chain I., Society 1., Otaheite,
where he observed the Transit of Venus. New Zealand, which
he sailed around. Coast of Australia, Rotte I., Sava, Java Head,
Batavia, Cape, St. Helena.

‘2nd voyage. In the Resolution and Adventure. Capt. Fur-
neaux took 4 chronometers (one of these was the first chrono-
meter made by Kendall upon Harrison’s description, and Cook’s
favourable report procured to Harrison the additional £10,000
from Parliament. The first trial of Harrison’s own watch had
been made on a voyage to Jamaica in 1761, and his son’s voyage
to Barbados in 1764). Left Plymouth July 13th 1772. Madeira,
C. Verds, C.G. Hope. Searched for Southern Continent. New
Zealand (Dusky Bay) Resolution I., Doubtful 1., Marguesa,
Society I., Friendly I., New Hebrides, N. Caledonia discovered.
Discovered Norfolk I. Corrected his former position of N.
Zealand. Tierra del fuego, Georgia, Fernando, Azores.

‘3rd voyage. Resolution and Discovery. Capt. Clarke Sailed
from Plymouth July 12th 1776. Teneriffe, C. Verds, Cape,
Prince Edward 1., Kerguelens I. V.D. Land, New Zealand,
Discovered Mangeea I and Wateoo. Friendly Is. Otaheite.
Bolabola, Discovered Christmas I. Sandwich I. New Albion,
Nootka Sound, Coast of Oonalashka and thence to northwards.
C. North, Discovered Owhyee where he was killed. Capt.
Clarke Kamschatka in search of N.W. passage died. Coast of
Japan. Sulphur I. Discovered, Prata, Macao.’

Other abstracts included those of French, Spanish, German,
Russian, Danish, Dutch, as well as British voyages.

In his discussion on methods of determining longitude, Raper
pointed out that, although the most common astronomical obser-
vation employed for the purpose was that of the lunar distance, it
was well known that no results differed more widely from each’
other than those of lunars taken at different times, and often at the
same time. He quoted the Rev. G. Fisher, who was the Astro-
nomer to Captain Parry’s second voyage (1821-1823). Fisher
stated that:
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‘... the mean of 2500 observations in December differed 14’
from the mean of 2500 observations in the following March;
and that the mean of a great many observations made on board
both ships (Griper and Hecla) in the following summer differed
10’ from the last or 24’ from the first.’

Most experienced navigators of the time considered the result
of a lunar observation as serving only to correct gross errors in the
chronometer.

Raper discussed the deficiencies in the methods of finding
longitude from observations of Jupiter’s satellites, eclipses of the
Sun, Moon culminating stars, and lunar transits. He concluded
his remarks by suggesting the use of steam vessels carrying several
chronometers (fifty or sixty) to measure chronometric differences
for ascertaining the longitudes of places.

Captain (later Admiral) Charles F. A. Shadwell, R.N., followed
up Raper’s labours and produced, in the middle of the 19th cen-
tury, a classic work entitled Notes of the Management of Chrono-
meters and the Measurement of Meridian Distances.

In his preface to this work, Shadwell mentions the important
services rendered by chronometers in the ordinary course of navi-
gation at sea, and then points out that:

‘. . . they are susceptible, when placed in intelligent hands, of
being applied to higher scientific uses; and, when rightly em-
ployed, are capable of affording valuable contributions towards
the gradual perfection of Maritime Geography.’

The treatises on navigation used by seamen of the last century
contained ample rules and directions for using chronometers for
determining longitude at sea, but little or no instruction was nor-
mally to be found on how to measure ‘chronometric differences’
or ‘meridian distances.” Shadwell’s aim was to overcome this
defect of the seaman’s manual.

At the time he wrote, the invention of the electric telegraph
and the successful accomplishment of its submarine connection,
had already been used for astronomical purposes of measuring
differences of longitude. Shadwell, however, never fully realized
that this marvellous device was soon to prove of inestimable value
in settling terrestrial longitudes. In this connection the American
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Government, from the year 1874, played a prominent part. Under
the direction of the Bureau of Navigation, longitude chains of
meridian distances connecting many parts of the world were
measured. One of the first of these, which was determined in
1878-1879, embraced Greenwich, Lisbon, Madeira, St Vincent,
Pernambuco, Rio, Montevideo, Buenos Aires and Para (Brazil),
and was later continued to Cordoba. It was found from this tele-
graphic investigation that the longitude of the observatory at
Lisbon was in error to the extent of no less than 2'.

In 1883-1884, another telegraphic chain embraced Vera Cruz,
(previously connected telegraphically to Washington), Lima,
West Africa, Valparaiso and closing, as did the 1879 chain, in
Cordoba. The two independent longitudes of Cordoba, found in
this way, differed by no more than about 0-2’ of arc.

The longitudes of numerous maritime positions having been
established, it became possible for mariners to check their chrono-
meters by time signals which were made at most of the principal
harbours of the world for the express use of shipping. The time-
signal at the Royal Greenwich Observatory, for example, consisted
of the dropping of a black ball from the mast on the Eastern turret.
The ball was hoisted half-mast as preparatory at five minutes to
1 p.m. G.M.T. At two-and-a-half minutes to 1 it was hoisted
close up, and dropped at 1 p.m. G.M.T. precisely. At Dover, a
gun was fired at noon G.M.T. precisely. At Hobart (Tasmania),
a ball was dropped simultaneously with the firing of a gunat 1 p.m.
local time (15 hrs. 10 mins. 39-6 secs. Astronomical G.M.T.)
precisely.

(c) ABSOLUTE-ALTITUDE AND EQUAL-ALTITUDES
OBSERVATIONS

In the event of there being no local visual or audible time-signal,
the navigator who wished to check his chronometer had to fall
back on astronomical methods. The problem involved is simply
one of finding the G.M.T. by either absolute-altitude, or equal-
altitudes, observations.

The term absolute altitude, in this context, means observations
on one or both sides of the meridian worked out as ordinary longi-
tude by chronometer problems. In contrast, the term equal alti-
tudes applies to a method in which the times when the observed
body has equal altitudes east and west of the meridian are noted,
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the G.M.T. of meridian passage of the object bemg computed
from these times.

The three kinds of observations which came in the category of
absolute altitudes were:

1. Absolute altitudes of the Sun or a star on one side of the
meridian,

2. Mean of the results of absolute altitudes of the Sun taken
before and after noon.

3. Mean of the results of absolute altitudes of stars taken east
and west of the meridian.

The normal method of observation included the use of an arti-
ficial horizon ashore at a place whose exact latitude and longitude
are found from the chart or sailing directions. At many harbours
special ‘observation spots’ were provided for this purpose. The
position of an observation spot was accurately known, the spot
having been used in the survey of the area, and was to be found in
the title of the chart. - :

A series of an odd number—usually seven, nine or eleven—of
altitude observations were made and the chronometer times of
each observation noted. The mean of the altitudes together with
the known latitude were used to compute the apparent time, and
hence the G.M.T. of the observation at the position of observa-
tion. In the case of the Sun

GM.T. = L.M.T. +longitude
where :
L.M.T. = L.A.T. + equation of time

In the case of a star:
GM.T. = LHA*+RA*-RAM.S. tlong

The equation of time or the Right Ascension of the Mean Sun,
as the case may be, was extracted from the Nautical Almanac.
The comparison of the calculated G.M.T. of observation with
the chronometer time gave the chronometer error for the time
of the observation.

The observations were made ashore in preference to on board,
because of the unreliability of altitudes measured above the sea
horizon on account of the unknown refraction effects on the dip
of the sea horizon.
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The errors involved in absolute altitudes taken on one side only
of the meridian included instrumental error, shade error, roof
error, error due to irradiation, error due to abnormal refraction,
and personal error.

Shade error was due to the two rays from the horizon glass and
mercury surface, respectively, passing through different-coloured
shades before entering the observer’s eye, and the possibility of
these shades having different errors. Shade error was obviated by
using the coloured eyepiece, with which most sextants were pro-
vided, instead of shades, when making observations with an
artificial horizon.

Roof error was due to want of parallelism of the faces of the
glass used in the roof of the artificial horizon. This error was
eliminated by reversing the roof half-way through the set of
observations.

Irradiation error, due to the optical illusion in which bright
objects viewed against a dark background appear to be larger than
they really are, was eliminated, when observing the Sun, by
taking two sets of observations, one of the Sun’s upper limb, and
the other of his lower limb, working each set separately and taking
the mean of the results.

Instrumental error, and error due to abnormal refraction cannot
be eliminated in observations of absolute altitudes observed on
one side only of the meridian. They do, however, tend to cancel
out when absolute altitudes are taken on both sides of the meridian
when the Sun has the same, or nearly the same, altitude at both
observations.

The most accurate results are obtained from observations of
absolute altitudes of two stars, one east and the other west of the
meridian, the two stars having approximately the same altitude,
and the interval between the observations being made as short as
possible.

' The second, and more accurate, method of finding the chrono-
meter error is by equal altitudes.

If the times T, and Ty, marked by a chronometer, be noted when
a star has the same altitude east and west of the meridian, then
it is clear that, provided that the observer is stationary, the time
of the star’s meridian passage is 4(Ty + 7). If this be known, the
error of the chronometer may readily be found. This is the basis
of the method of equal altitudes for finding the chronometer error.
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One of the advantages of the equal-altitudes method over the
method of absolute altitudes is that any error of graduation of the
sextant will have no effect on the result, because the two altitudes
are taken at the same graduation.

The method of finding the time of meridian passage of a
heavenly body by equal altitudes was employed in astronomical
observations ashore as early as the 17th century. It appears that
the French astronomer Jean Picard was the first to employ the
method at sea in 1671.

When the Sun’s centre is on the meridian of any place, the local
apparent time (L.A.T.) is noon (or midnight). To obtain the
Local Mean Time (L.M.T.) of meridian passage, it is necessary
to apply the equation of time to the L.A.T. After this has been
done the G.M.T. of meridian passage may be found by applying
the longitude in time to the L.M.T.

For a stationary observer, the error of his chronometer may be
verified from equal altitudes of the Sun. Half the interval between
the observations of the Sun with equal altitudes east and west of
the meridian, added to the time by chronometer of the first obser-
vation, will be the time by chronometer when the Sun is at meri-
dian passage, assuming that the Sun’s declination does not change
in the interval. The comparison between chronometer time and
G.M.T. of meridian passage gives the error of the chronometer
at the time of meridian passage.

When using the Sun for finding the chronometer error by
equal-altitudes observations, a correction must be made to
3(T, + T,) on account of the Sun’s declination not being invari-
able. This correction, which normally amounts to no more than
about a few seconds of time, is called the equation of equal alti-
tudes. The equation of equal altitudes is least at the time of the
solstices, and it is greatest when the Sun’s declination is changing
most rapidly, that is, during March and September.

In its original form the formula for finding the equation of
equal altitudes consisted of two terms involving latitude, polar
distance, elapsed time, and change of declination in elapsed time.
In dealing with it, attention had to be given to a variety of details
often perplexing in the extreme to the practical navigator. The
two quantities making up the equation ¢ were denoted by A and
B (or M and N) and the usual form of the relationship, probably
introduced by the brilliant French astronomer Delambre, is:-
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€ = c(tanlatcosec h—tandeccoth) . . (I)
where

¢ = half change in polar distance in interval,
k = half elapsed time.

Separating the two parts in equation (I), we have:

A (or M) = ¢ tan lat cosec A
B (or N) = ctandeccoth

From which:
€ =A+B (or M+N)

To combine A and B correctly, the observer has to consider:
whether the polar distance of the observed body is increasing or
decreasing; whether the declination and latitude are of the same
or different names ; whether the elapsed time is greater or less than
twelve hours; and so on. Goodwin, writing in the Nautical
Magazine (‘New Applications of the Burdwood, Davis, and
Johnson’s Azimuth Tables,” 1894) described the formula in the
following terms:

‘The expression is open to many objections. It is a troublesome
one to establish, and it is not easy to retain it permanently in the
memory. It has two terms, each of which may have either of
two signs: the determination of the appropriate sign is by no
means a simple matter, and commonly involves continual refer-
ence to the more or less intricate precepts furnished for the
purpose.’

Mrs Janet Taylor, in the third edition of her Principles of Navi-
gation Stmplified, made use of an ingenious method for finding the
equation of equal altitudes. She employed an auxiliary angle 8,
and obtained the formula:

€ = ¢ cot h cosec p cosec 8 sin (p— 6)
where
tan § = cotlcos k

in which [ is the latitude, & half the elapsed time and p the polar
distance.
The principal advantage of this method over the usual method
of finding the equation of equal altitudes, is the simplicity of the
18
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rule for determining the sign of e. Mrs Taylor’s rule is: ‘ Additive
to middle time when polar distance is increasing, and subtractive
when it is decreasing.’

John Riddle, in his Navigation and Nautical Astronomy of 1871,
also introduced a formula for finding the equation of equal alti-
tudes consisting of one term only, but using the parallactic angle,
or angle of position, PXZ in the PZX triangle.

In 1874, W. H. Bolt of Norie’s Nautical Academy adapted the
A and B Tables used for finding error in longitude consequent
upon error in latitude (see Chapter 8) for use with the equal-
altitudes problem.

The Nautical Magazine of 1889 contained an interesting paper
by H. B. Goodwin entitled ‘On the Connection between the
Equation of Equal Altitudes and the Angle of Position.” Goodwin
defined the equation of equal altitudes as the change in hour angle
due to the change in the value of the Sun’s polar distance during
one half of the elapsed time between the two observations. He
then proceeded to find an expression for this change. He showed
that the error in hour angle resulting from a small error in the
co-latitude (PZ) is given by:

E in h le = ! i lat
rror in hour angle = ——Fm——7= error in co-lat.

Goodwin then argued that: by symmetry, error in hour angle
due to a small error of, or change in, polar distance (PX) is given
by:

. 1 .
Error in hour angle = SnPX tn PXZ .change in p.d.

This is the expression sought for the equation of equal alti-
tudes. Expressed in seconds of time instead of arc, the equation ¢
is:

€ = sec dec cot PXZ .E}—la—llg-%g-—pi

The beauty of this expression, like that of Janet Taylor’s, is the
simplicity of the rules for determining the sign of e. The equation
is additive for an increasing polar distance, and subtractive for a
decreasing polar distance.

Goodwin pointed out that the value of PXZ, which may be
solved by trigonometry or lifted from azimuth tables, is required
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only to the nearest degree. On the other hand, the change in the
polar distance during the interval must be found very accurately,
since any error in this amount will frequently cause a much larger
error in the value of the equation e deduced from it.

It is interesting to note that Goodwin’s form for the equation
of equal altitudes was used in the first Admiralty Manual of
Navigation of 1914.

. When using the equal-altitudes method for finding the error of
the chronometer, a small error in the latitude is not important.
W. R. Martin, in his Navigation and Nautical Astronomy of 1888,
points out that in the most unfavourable circumstances an error of
5’ in the latitude will affect the value of M (tan lat cosec &) by only
the hundredth part of its value. This provided one good reason
why equal altitudes should be employed for finding the error of
the chronometer, in preference to the absolute-altitude method,
when the latitude of the place of observation is only approximately
known.

In high latitudes the value of M—which depends on tan lati-
tude—is not so accurate as in low altitudes,

Lecky, in his Wrinkles in Practical Navigation, first published
in 1881, declared that the method of equal altitudes of the Sun
was open to many objections. Amongst these he cited:

1. The operation cannot be completed at one time.
2. During the interval the conditions which existed in the
morning may be considerably changed in the afternoon.
(a) Refraction may be different on account of a shift of wind,
etc.
(b) Personal equation may be different at the two times of
observation.
(c) Effect of heat or cold may cause divisions on sextant to
alter.
3. Settmg in of cloudy weather in the afternoon may render the
morning’s work useless.
4. Inconvenience of double journey to and from ship and the
repetition of chronometer comparing.

Better than Sun equal altitudes were star equal altitudes; but
these observations were not without their disadvantages. Best of
all methods, perhaps, was the observation of stars east and west
of the meridian, within a few minutes of each other. In this
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method all systematic errors, whether atmospheric, instrumental
or personal, were practically neutralized in the mean result.

For rating a chronometer, in contrast to finding its error on
G.M.T., the common and useful method was to note the chrono-
meter time of successive diurnal disappearances of a fixed star be-
hind a straight-edged board set up truly vertically. The observer’s
eye was to be at the same point for the observations, either to the
north or south of the board, depending on which star is observed.

The interval between the successive instants when a fixed star
disappears behind the vertical board is a sidereal day. This is
shorter than a mean solar day by 3 mins. 559 secs. of mean solar
time. If the difference between the times by chronometer noted at
the instants of disappearance is not equal to this, the chronometer
is gaining or losing.

The method of equal altitudes observed from a ship at sea pro-
vided a method for finding longitude. The principle of the method
involves using a chronometer for finding the G.M.T. of meridian
passage of the observed object. The G.M.T. of this event, when
compared with the L.M.T. of the same event, gives the longitude
of the ship at the time of the meridian passage of the object.

If the observed object is the Sun, and the observer is stationary
and the change in the Sun’s declination during the interval
between the times of observation is ignored, the mean of the
chronometer times of observation will be the chronometer time of
apparent noon at ship. If the chronometer error is applied to this,
the result will be the G.M.T. of apparent noon. The difference
between this and the L.M.T. of apparent noon will be the ship’s
longitude at noon. This is equally true if the movement of the
ship in the interval is due east or due west. By taking the equal-
altitude sights shortly before and after noon the necessity for
applying a correction for the change in the Sun’s declination in
the interval is obviated, since any such change will be trifling.

Had the course of the ship been northerly or southerly it would
be necessary to apply a correction for the change in latitude in the
interval between the times of the equal-altitudes observations.
Taking into account the meridianal motion of the ship and the
declination motion of the observed object, the object may be
assumed to be at its maximum altitude at the mean of the chrono-
meter times of the observations. The interval between the times
of meridian- and maximum-altitudes, therefore, is the correc-
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tion to apply to the mean of the chronometer times to find the
chronometer time of meridian passage, and hence the G.M.T. and
longitude of the ship.

The general expression for this interval ¢ in seconds, is:

t = 15-28y(tan I+ tan d)(1+ x/450)

where ¥ = combined movements of ship in latitude and object in
declination in minutes of arc per hour,
x = rate of change of longitude towards the west in minutes
of arc per hour.

Tables giving values of 15-28 tan lat (or dec) were provided for
facilitating finding longitude by equal altitudes.

The value of this method of finding longitude rested in the
speed with which the longitude could be found, the interval elap-
sing between the times of the observations being small. Moreover,
as a result of the small interval of time between observations, re-
fraction effect, in all likelihood, is the same at both observations.
The method is particularly valuable in low latitudes when the
Sun, near the meridian, is almost always suitable for observation.

Navigational textbooks of the last century usually ignored the
problem as not being susceptible of great accuracy, and too
complex for the practical seaman.

The Rev. William Hall, well known for his writings on naviga-
tion and nautical astronomy, proposed, in 1902, a solution to the
problem having extreme brevity and a theoretical accuracy of 1%,
in the correction used. The investigation of Hall’s rule is as
follows:

Let k = half elapsed time
! = latitude '
d = declination
8d = correction in seconds of time to reduce the mean of
the chronometer times to the chronometer time of
meridian altitude

Then, the equation of equal altitudes, 3k, is:

8h = '115 h&d(tan [ cos h—tan d cot k)

Hall assumed, instead of 8d accounting for change in declina-
tion alone, for 3d to account for meridianal motion of the ship as
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well. He then assumed (with justification when % is small):

1
cos h = cot.h = et

which is true to within 1%, for values of % up to thirty-two minutes
of time. He then argued thus:

‘Let (V1 v) be the relative velocity of Sun and ship: V being
change in latitude and v variation in declination per hour ex-
pressed in seconds of arc. Then, making the substitutions and
cancelling, we have:

oh = 1—15- (V £ o)(tan [+tan d) cosec 1”
‘A most remarkable result in that it is independent of 4.’

Hall proposed the construction of a table giving values of tan
lat (or dec) cosec 1”.

In 1847, Commander Weston of the Indian Navy proposed a
method for finding longitude at sea from an observation of the
time of sunrise or sunset.

Weston’s method was announced by the Editor of the Nautical
Magazine in 1848. The Editor remarked that:

‘All that was wanted was to know at the instant when the Sun’s
centre was in the horizon of the observer what is the altitude of
either limb, and then to make the observation. Now, as this de-
pended merely on the height of eye and refraction, it became a
mere matter of calculation; and, accordingly, Captain Weston
has presented to the Admiralty his method accompanied by the
necessary tables.

*The seaman has only to place on his sextant the minutes of
altitude of either limb depending on his latitude and the Sun’s
declination: watch for the observation and note the time by
chronometer. The tables give him the ship’ s time and thence
the longitude.

‘The tables are preparing for publication by the Admiralty,*
and we shall soon have the pleasure of congratulating our
nautical readers on the important addition to their astronomical

* resources.
* They were published in 1851.
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‘Captain Weston has been rewarded by the Admiralty for
his ingenuity.’

In commenting upon Weston’s method, W. R. Martin men-
tions that it is very unreliable in latitudes greater than 45°; and
even in low latitudes the method is liable to a probable error of
half a minute of time. In low latitudes the Sun rises out of the
horizon at a large angle—90° at the equator—and the interval of
time taken for him to rise out of the horizon is, therefore, com-
paratively short. In consequence of this the method is susceptible
of accuracy. In high latitudes, however, where the angle between
the Sun’s diurnal path at the time of sunrise or sunset and the
horizon is relatively small, the time taken for the Sun to rise out
of the horizon is relatively long; so that a small error in the altitude
of the Sun’s limb at the time his centre is on the rational horizon
results in a large error in the time.

The method of finding longitude from an observation of the
Green Flash which occurs in favourable meteorological conditions
when the upper limb of the Sun sinks below the visible horizon
has been suggested on many occasions during the present century.
This method, like that of Weston’s, suffers from the uncertain
effects of refraction on the angle of dip of the sea horizon. More-
over, the timing of the event is liable to error, especially in high
latitudes, on account of the relatively long interval which the
phenomenon may occupy. An interesting article by R. E. G.
Simmons on ‘ Observations of the Green Flash’ appears in Vol. 4
(1951) of the Fournal of the Institute of Navigation.



CHAPTER VII

Position-line navigation

I. INTRODUCTORY

The common method of describing a position on a surface, either
plane or spherical, is by means of a system of coordinates related
to a point of reference on the surface. To define a position on the
celestial sphere three systems are in general use. These are the
ecliptic system, in which the coordinates are celestial latitude and
celestial longitude; the equinoctial system, in which the coordinates
are declination and Right Ascension (or hour angle); and the horizon
system, in which the coordinates are altitude and azimuth. To de-
fine a terrestrial position, the coordinates most commonly used
are latitude and longitude. Associated with the latitude and longi-
tude of a particular terrestrial position are two lines on the surface
of the globe which intersect at right angles. One of these lines is a
parallel of latitude, which defines the position relative to the
equator; and the other is a meridian, which defines the position
relative to some datum- or prime-meridian.

A method of describing the position of a ship at sea, of great
practical utility to the seaman, is one in which the coordinates
used are related to circles of equal altitudes which intersect at the
ship’s position.

The centre of a circle of equal altitude lies at a point which is
now known as the geographical position of the observed body.
The geographical position of the Sun is sometimes called the
sub-solar point, and that of a star as the sub-stellar point. The
geographical position of a heavenly body is a point on the Earth’s
surface at which the body occupies the zenith; that is to say, the
point at which the altitude of the body is 90°.

Because the Earth rotates, the geographical position of every
heavenly body changes with time. It may readily be shown that
the latitude and longitude of the geographical position of a celestial
body at any time is equal to the declination and Greenwich Hour
Angle of the body at the instant. Fig. 1 serves to illustrate this.

In Fig. 1, the smaller circle represents the Earth, and the larger
circle the celestial sphere; p represents the Earth’s North Pole
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FIGURE I

and P the celestial pole; wxge and WXGE represent the equator
and equinoctial respectively. pg and PG represent the Greenwich
meridian and the Greenwich celestial meridian respectively; * is
any celestial body whose geographical position is at a.

Xxa = X*
Therefore:
Lat. of G.P.* = dec.*
gpx = GPX
Therefore:

Long. of G.P.* = Greenwich Hour Angle.*

. A circle of equal altitude of a celestial body is a circle on the

Earth, at every point on which the altitude of the body, at any
given instant of time, is the same. Fig. 2 illustrates a circle of equal
altitude related to a celestial body *.

In Fig. 2, O represents the Earth’s centre and P the North Pole.
A, represents the geographical position of celestial body *. At
every point on the circle ABC the altitude of * at the instant for
which the diagram applies, is o°. It will readily be seen from the
figure that the radius of a circle of equal altitude which passes
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through an observer’s position is equal to the zenith distance of
the body; and that the direction of the circle of equal altitude at
any point on it is at right angles to the direction of the observed
body, or that of its geographical position, at that point.

A small part of a circle of equal altitude in the vicinity of an
observer’s position forms, when projected on a chart, a position
line. If a navigator is able to project two arcs of circles of equal
altitude as position lines, he clearly is able to fix his ship’s position
at the intersection of the two position lines. This method of fixing
a ship forms the basis of position-line navigation.

FIGURE 2

The discovery of position-line navigation rightly belongs to the
American sea captain Thomas H. Sumner, who is credited with
being the first to systematize the problem of finding position at
sea by means of chronometer, sextant, and Nautical Almanac.
Although Sumner is to be honoured for the discovery, the idea of
position-line navigation evidently had been in men’s minds for a
long period before the time of Sumner’s discovery. As early as the
beginning of the 19th century, officers of the British Royal Navy
used a method of fixing from two altitudes of the Sun which was
known as the method of Cross Bearings of the Sun. This, and other
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early methods, was developed with the growing realization that
azimuth is a fundamental element in every navigational problem.

2. HISTORICAL DEVELOPMENT OF POSITION-LINE
NAVIGATION

Position-line or intersection-navigation, as it was sometimes
called, stemmed from the method of finding latitude known as the
double altitude. The germ of position-line navigation is contained
in a work entitled The Theory and Practice of Longitude at Sea
written by Samuel Dunn and published in 1786. In this work,
which was dedicated to ‘ The Honourable the Court of Directors
of the United Company of Merchants of England trading to the
East Indies,” Dunn introduced a problem entitled:

‘Of a general method whereby the latitude may be found having
- any two altitudes of the Sun and the time elapsed between the
observations.’

By assuming two latitudes differing about 1° or less, and not
widely different from the latitude by D.R., Dunn showed that the
two altitudes give four hour angles, two of which appertain to each
of the assumed latitudes. He then proceeded to make the following
statement:

¢ As the difference of the elapsed times computed from the as-
sumed latitudes is to the difference of those latitudes: so is the
difference between the true elapsed time to a number of minutes
which, added to or subtracted from the corresponding assumed
latitude, as the case requires, gives the true latitude required,
when the latitudes are assumed near enough for the truth.’

Chronometers were scarce in the days when Dunn introduced
his novel problem. Had they been common, it is likely that Dunn
would have extended his method for finding longitude as well as
latitude. But, at the time, the only practical general method for
finding longitude at sea was by the lunar distance method.

Although Dunn’s resolution of the double-altitude problem
had been discussed, in 1786, in all its aspects by Lalande in his
Astronomie and Abrégé de Navigation, there is every justification
for stating that the development of position-line navigation from
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Dunn’s time was carried out on the basis of his double-altitude
method.

In 1812, Commander Owen, R.N., published a pamphlet in
which he described a practical method for finding latitude and
longitude based on Dunn’s method for the double altitude for
latitude. Another publication of importance in the same connection
is the pamphlet published in 1833 by Commander Thomas Lynn
of the East India Company. Lynn’s pamphlet is entitled  Practical
Methods by Trial and Error for finding Latitude and Time at sea
by the Observed Altitudes of Sun, Moon, and Stars, and the
Elapsed Time between the Observations, originally submitted by
Samuel Dunn.’ At the time Lynn’s pamphlet first appeared,
chronometers had come into general use, and the time was ripe
for the advent of position-fixing by astronomical position lines.

The principle of the method of making observations serve for
longitude at the same time as for latitude is as follows. If observa-
tions for longitude are made, either of different heavenly bodies
made at the same time, or of the same body at two different times
—the correction for any run made in the interval enabling the
navigator to consider both observations as having been made at
the same place—then, if the two hour angles calculated with an
assumed latitude agree, the ship’s actual latitude is the assumed
latitude. Alternatively, if the L.M.T. at each observation is
calculated, both results being reduced to the place of the second
observation, and it is found that the difference between the two
L.M.T’s corresponds with the difference between the chrono-
meter times of the observations, the ship’s latitude is the assumed
latitude.

If, therefore, the intervals between chronometer times and
computed times do not agree, the latitude used in the computa-
tions is NOT the ship’s latitude. In this event, the method of trial
and error was adopted in an attempt to find the ship’s true lati-
tude. If successful, the ship’s longitude could be found provided
that G.M.T’s of observations were known.

The earliest solution to this valuable problem, which was
known as the double-chronometer problem, was given by Lalande.
Lalande’s rule is based on the effect of an error in latitude on the
hour angle of a body deduced from it, viz:

Ah = Ad cot Zsec ¢



POSITION-LINE NAVIGATION 273

in which 4, ¢, Z indicate hour angle, latitude and azimuth respec-
tively. If Ak is expressed in minutes of time and A is expressed
in minutes of arc, then:

_Adcot Z

~ 15cos¢

Suppose that two altitudes of a heavenly body, both west of the
meridian, are observed at chronometer times C; and Cj, at which
instants their corresponding azimuths are Z; and Z; (both less
than 90°). Suppose that the calculated L.M.T’s, using D.R. lati-
tudes ¢, and ¢, are T and T,. If the correction for run in longi-
tude be applied to T, to give T, we have T, and T, the two results
of the observations reduced to the instant when the second

observation was made.
If:

Ah

(Te—T) = (C2—Cy)

then the ship’s true latitude at the time of the second observation
is .

The effect of an error Ad in ¢, will be, in this case, to alter the
L.M.T. reduced to the time of the second observation to:

Ad cot Z;
*+15cos 1

and that of the L.M.T. of the second observation to:

A cot Z,
15 cos ¢,

T.

T,+

Therefore:

A cot Z, Adcot Z,\
(T2+ 15 cos ¢2) - (T°+ 15 cos ¢, ) =(G-Cy)

From which:
A (Ca=C)—(Ta—T)
5 ~ cot Zz/cos ¢y —cot Z;[cos ¢,

1

Had both observations been made when the heavenly body was
east of the meridian, the quantity on the right-hand side of the
equation would have a minus sign. Had the observations been
made when the body was on opposite sides of the meridian or
prime vertical circle, the denominator would be a sum instead of
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a difference. In general, therefore:

Ap_ ,_ {(Ca=C)-(Ty=T)
15 cot Zy[cos ¢y + cot Z,[cos ¢y

This is a complex formula, and the problem is one in which
there are so many cases, that it is small wonder that the non-
mathematical seaman found little practical use for the method.

In 1847, M. Louis Pagel of the French Navy simplified the
method by considering the effect on the error in longitude due to
an error in latitude of 1’ of arc. Pagel published tables to simplify
the problem. So also did A. C. Johnson, R.N., who improved
Pagel’s method. Johnson’s double-chronometer method, which
became exceedingly popular in both the British Royal Navy and
the Merchant Service, was published in the famous pamphlet On
Finding Latitude and Longitude in Cloudy Weather, a title which
earned for its author the name ‘Cloudy Weather Johnson.’
Johnson’s pamphlet was first published in about 1880.

As late as 1892 we find Captain Philip Parker, R.N., proposing
an improvement on the existing methods of the double-chrono-
meter problems. By this time, however, although the double
chronometer in its modified form was still in use at sea, it was fast
becoming redundant, to be replaced by the improved methods of
astronomical navigation.

Admiral Charles Bethune, writing in 1871, stated that in
the 1820’s the method of finding latitude and longitude using
position-line principles was regularly in use:

‘. . . by those who felt the responsibility devolving on the person
charged with the safe conduct of a ship and who were well
aware that latitude by D.R. was subject to error.’

The Admiral also suggested that:

‘It should be a standing order that sights be obtained as early as
possible (for choice when the Sun bears due east), and again at
6 bells [11 a.m.]. Getting the time from these with two latitudes,
the calculated intervals of time may be compared with the ob-
served, and thence the latitude be determined either by simple
proportion or from the altitude nearest noon. You then become
independent of the noon observation.’
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Henry Raper, in his Practice of Navigation, pointed out that
Captain Sullivan, R.N., on entering the River Plate in 1843,
found a line of position and got a sounding on it, and then shaped
a course up river. It is certain that the concept of position-line
navigation had been in a state of evolution for many years before
the idea became crystallized by Captain Sumner.

3. SUMNER’S DISCOVERY

Sumner’s discovery was made in 1837, and the details of his
discovery are given in his famous pamphlet on the subject, which
was first published in Boston in 1843.

Sumner pointed out that when knowledge of latitude is un-
certain, there are only two instants in a day at which the Sun’s
altitude can be taken to find the ship’s longitude by chronometer;
and that there is only one instant in a day when a single observa-
tion of the Sun may be used to find latitude, unless the apparent
time at ship is accurately known. At all times when the bearing of
the Sun is not north, south, east or west, errors of latitude or
longitude, proportional to the angular distance of the Sun from
these points, may be great. Sumner goes on to say:

‘To remedy this defect, and render a single altitude of the Sun,
taken at any angle from the meridian, or from the east or west
points, available, when the latitude and longitude are uncertain
(the time by chronometer being given) the method of observa-
tion affords a substitute for a parallel of latitude or a meridian
of longitude; namely, a line diagonal to either of these, and
which is called a Parallel of Equal Altitude, which, when pro-
jected on a Mercator’s chart, shows a ship to be on such pro-
jected line, corresponding to the observed altitude, . . . con-
sequently, the projected line shows the bearing of the land, in a
similar way as a parallel of latitude.’

Before the introduction of position-line navigation the general
method of finding position at sea was to observe the Sun on the
prime vertical (or as near thereto as latitude and declination per-
mitted) for longitude using a D.R. latitude; and to observe the
Sun on the meridian to obtain the latitude at noon.

When the Sun (or other heavenly body) bears due east or west;
that is, when he is on the prime vertical circle, his altitude,
declination, and azimuth may be used to compute his hour angle;
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from which the longitude of the observer may be found, provided
that he has a chronometer, the error on G.M.T. of which is known.
In other words, the longitude obtained from an observation of the
Sun on the prime vertical is independent of the latitude. The
longitude obtained from an observation of the Sun when his
bearing is not 090° or 270° will be in error if the latitude used in
the computation is not the ship’s true latitude. Herein rested the
importance of using a latitude which was as near as possible to the
ship’s true, but unknown, latitude, for calculating the hour angle
of the Sun from an a.m. observation.

The latitude used in solving the longitude by chronometer from
a Sun observation was generally obtained by dead reckoning from
some previously known position, and may have been, therefore,
greatly in error. In many cases the error was ascertained from the
noonday Sun observation, after which the chronometer problem
was re-worked using the correct latitude. If the latitude at noon
could not be found, because of a cloudy or overcast sky, the sights
for longitude taken in the morning were often discarded as being
useless.

Sumner discovered that a single observation of the Sun (or
other celestial object), even if the latitude is uncertain, is of value.
He demonstrated that a single altitude taken at any time is avail-
able for determining a line on a chart at some point on which the
ship’s position lies. It seems, from what Sumner subsequently
wrote, that his discovery was something of an accident. He relates
how, after having sailed from Charleston, South Carolina, in
November 1837 and bound for Greenock that, after passing the
meridian of 21° W., no observations were made until near the
land. He goes on to say that:

‘... arriving about midnight, 17th December within 40 miles
by dead reckoning of Tasker light, the wind hauled S.E. true,
making the Irish coast a leeshore: the ship was then kept close
to the wind, and several tacks made to preserve her position as
nearly as possible until daylight; when, nothing being in sight,
she was kept on E.N.E. under short sail with heavy gales: at
about 10 a.m. an altitude of the Sun was observed, and the
chronometer time noted; but, having run so far without any
observation, it was plain that the latitude by D.R. was liable to
error, and could not be entirely relied on.
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‘Using, however, this latitude, in finding the longitude by
chronometer, it was found to put the ship 15’ of longitude E.
from her position by D.R.; which in latitude 52° N. is 9 nautical
miles; this seemed to agree tolerably well with the dead reckon-
ing; but feeling doubtful of the latitude, the observation was
tried with a latitude 10’ further north; finding this placed the
ship E.N.E. 27 miles of the former position, it was tried again
with a latitude 20’ north of the dead reckoning; this also placed
the ship still further E.N.E., and still 27 nautical miles. These
three positions were then seen to lie in the direction of Small’s
light. It then at once appeared, that the observed altitude must
have happened at all the three points, and at the Small’s light,
and at the ship, at the same instant of time; and it followed that
Small’s light must bear E.N.E. if the chronometer was right.
Having been convinced of this truth, the ship was kept on her
course E.N.E,, the wind bearing still S.E., and in less than an
hour, Small’s light was made, bearing E.N.E. 1 E. and close
aboard.’

Sumner illustrated his discovery with a diagram which forms
plate 3 of his pamphlet. This historic diagram is reproduced
(Plate 10). The * Arc of the parallel of Equal Altitude tending
E.N.E. for Sun’s true central altitude A.M,’ as Sumner described
it, forms the first position line found from an astronomical
observation using Sumner’s method.

Captain Sumner summed up the advantages of his method of
projection in the following way:

‘1. When the latitude etc., are uncertain, one altitude of the
Sun, at any hour, with the chronometer time, is available in
a similar manner as a meridian observation, which can be
taken only once a day.

‘2. The errors of longitude by chronometer, consequent to any
error in the latitude, are shown by inspection.

‘3. The Sun’s azimuth is found at the same operation.

‘4. In addition to these results, found by one altitude, two
similar altitudes give the true latitude, and also the longi-
tude by chronometer. By the common methods of double
altitudes, the longitude must be found by a subsequent
calculation, which circumstance renders this method much
the shortest.

19
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‘5. The usual simple calculation for finding the apparent time
at ship is known and daily practiced by every shipmaster
who uses a chronometer. No other formula is used.

‘6. Double altitudes of the Sun are, therefore, within the reach
of all persons who use chronometers, and who are un-
acquainted with the various formulas laid down in the
books.’

In addition to describing how to use position lines—or Sumner
lines as they later became known—obtained from Sun sights, the
Captain demonstrated the application of the principles of his
method to the fixed stars, the planets and the Moon.

Sumner published his important pamphlet A New and Accu-
rate method of Finding a Ship’s Position at Sea by Projection on
Mercator’s Chart in 1843, Sumner’s method was first described
in print in England in the following year when Lieutenant Harry
Raper, R.N., communicated a detailed account of the method to
the Editor of the Nautical Magazine. Raper described the method
as ‘... highly ingenious and very useful when the ship is near
land.’

After describing Sumner’s method of laying down a position
line on a chart, Raper stated:

‘... aline perpendicular to the above-mentioned line [position
line] towards the side on which the Sun is, shows the true
azimuth of the Sun. This is so because the several latitudes and
longitudes constitute a curve of equal altitudes.’

Raper pointed out that it is shorter to compute the hour angle
of the Sun and thence the longitude by chronometer using the
latitude by account; and then, instead of working out a second
hour angle for a second latitude, to find the azimuth by means of
the sine formula. He also remarked that: '

‘The effect of an error in altitude is easily shown by considering
the place of any point of the circle of equal altitude on the chart
which moves one mile for each 1’ of error of altitude, and thus
the corrected position of the line will be parallel to that already
laid down and the distance from it the amount of the error in
altitude.’
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This contains the germ of the intercept method resulting from
the remarkable French investigations into nautical astronomy
made at a later date.

Raper also included in his extended notice of Sumner’s work,
an observation to the effect that it is obvious that the ship’s place
may be obtained by projecting two Sumner lines instead of em-
ploying the calculations of the double altitude (double chrono-
meter).

‘It is obvious,’ he wrote, ‘that the place of the intersection is
more decisively marked as the two lines lie more nearly at right
angles to each other, and as each line is perpendicular to the
direction of the Sun at each observation, they will cross at near
90° when the Sun’s azimuths at the two observations differ by
near 90°. Projection, therefore, affords evidence of the simplest
and most convincing kind, that the value of a double altitude
depends altogether on the difference of azimuth. This condition
was first pointed out by Dr Inman in his Navigation of 1826,
and has nothing to do with time from noon, which more popular
works reiterate as the proper limiting condition of the double
altitude to the great detriment of the extensive and successful
practice of this important observation.’

Itis interesting to note that the review (in all probability written
by Raper) of Bowditch’s book on navigation, which appeared in
the Nautical Magazine of 1843, contains the statement:

‘In the double altitude Bowditch does not once allude to the
difference in azimuth as the criterion of the value of the obser-
vation. Yet this was pointed out by Dr Inman many years ago.’

In reply to an article by L. T. Fitzmaurice entitled, ‘ On Finding
Position by Double Altitudes with only one Latitude,” which was
printed in the Nautical Magazine of 1854, John Riddle, the Master
at the Greenwich Hospital school, demonstrated the rules given
by Fitzmaurice.

Fitzmaurice’s rules are:

¢ Assume a latitude less than latitude in and compute hour angle
and azimuth (calling that furthest from meridian A and the
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other B). Find the longitude by hour angle farthest from meri-
dian. Also the difference between the computed and true inter-
vals, which difference reduce to miles. When both altitudes are
on the same side of the meridian, take difference azimuths, and
when on the opposite sides take sum. To the difference or sum
add sine azimuth B and the common log of difference of inter-
vals. Place this sum down twice. Then for correction for latitude
to this sum add sine azimuth A and cosine latitude assumed,
and the sum will be the common log of the correction, always
positive: and to the sum of the three logs add cosine azimuth A
and sum will be log of correction of longitude. When azimuth
A is less than 90° and the least altitude is east of the meridian
add in east longitude and subtract in west; and when greater
than 90°, subtract in east and add in west. When altitude is west
of the meridian apply correction in the reverse way.’

This rule, which is typical of the numerous rules of navigation
to be found in manuals of the period, was demonstrated by John
Riddle. Riddle rebuked Fitzmaurice (who had been a former pupil
at the Greenwich Hospital a quarter of a century earlier when
John Riddle’s father Edward had been the headmaster) for not
demonstrating the propositions he advanced. (See Chapter V,
p- 162.)

The proof given by Riddle is as follows:

Referring to Fig. 3.

Let MN be assumed parallel of latitude and m and n represent
computed places upon it. Through m and n draw mQ and nQ in
directions of computed bearings and draw mP and nP perpendicu-
lar to mQ and nQ. Then P is the place of the ship. PR, the meridian
difference of latitude between P and m, and mR, the d. long.
between m and P.

Proper difference of latitude between m and P is PR cos lat m.

Pmn and Pnm are bearings of observed object. Let these angles
be denoted by 6 and ¢.

In mPn:
PR = mn sin ¢ sin 8 cosec (0 +¢)

Therefore correction of assumed latitude, viz. that of point m,
which is PR cos lat, is:

mn sin 8 sin ¢ cosec (6 + ¢) cos lat. o)
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Correction of longitude of m, viz. mR is:

mR = PR cot 6
cos 6
sin ¢
= mncos Osingcosec(0+¢) . . . (2)

Bearings supposed one east and one west.

When both east or west (6+ ¢) must be changed to (§~¢) in
formulae (1) and (2).

A graphical solution to this problem, using a simple plotting
sheet, is considerably simpler and speedier than the trigonometri-
cal solution given by Fitzmaurice and Riddle. Despite this, the
method of ‘figuring’ instead of by drawing seems to have been
preferred by seamen until relatively recent times. Even Captain
S. T. L. Lecky, that great merchant seaman of the last century,
seems to have had a predilection for tables and mathematics, and
frequently ignored practical graphical methods. This, often to the
detriment of navigators who were not aware of the existence of
simple geometrical solutions to some of their relatively complex
astronomical problems.

= PR
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Sumner’s method applied to fixing a ship by crossing position
lines was often referred to as the chord method, because a straight
line joining two points on a circle is a chord of that circle. Sumner’s
method was the popular method of obtaining a position line and,
to a large extent, it was employed in the Merchant Service until
relatively recent times.

As pointed out above, a position line may be obtained by
assuming one latitude and computing a longitude and the azimuth
of the observed body, instead of using two latitudes and calculating
a longitude for each. This method became known as the tangent
method, as opposed to the chord method. The generality of sea-
men used the chord method in preference to the tangent method,
until the beginning of the present century.

About five years after the publication of Sumner’s famous book,
a naval instructor of the Royal Navy, J. N. Laverty, published a
pamphlet apparently for private circulation, in which he dis-
cussed, in some detail, a method of finding a ship’s position by
means of position lines. Laverty’s pamphlet is entitled 4 Few
Remarks on the Finding of Latitude and Longitude from Observa-
tions at Sea. In the opening chapter, Laverty defines his position
as follows:

‘If two sets of sights be taken at sea with an interval of time of
about an hour or more between them, but at such times as both
may serve for finding the longitude with a chronometer—say
for instance, the first at eight or half-past eight, and the other at
ten, even as late as half-past ten in the morning—the latitude,
and hence the longitude may be found by following a simple
rule.’

Laverty’s development of the problem follows along lines simi-
lar to those followed by Sumner, although he was hampered by
the restriction of times of observations. He pointed out the valu-
able use of a single position line when combined with a terrestrial
bearing or a sounding, and included among his examples, one
involving simultaneous altitudes of Sun and Moon:

‘Example: Ship’s time 8 a.m. April 26, 1848. Latitude by ac-
count 49° 38’ N. True altitude Moon’s centre 20° 49’ bearing
S. 29° W. True altitude Sun’s centre 29° 21’ bearing S. 85° E.
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Longitude from altitude of Moon latitude :
49°30' N. = 4°21' W.
Longitude from altitude of Moon latitude

49°40’' N. = 4°50' W.
Longitude from altitude of Sun latitude

49° 30’ N. = 4° 00" W.
Longitude from altitude of Sun latitude

49°40' N. = 3°50' W.
True Position of the ship: 49° 23’ N. 4° 02’ W.’

H. B. Goodwin, in describing Laverty’s pamphlet, pointed out
that Sumner’s method, on first being introduced, was confined to
longitude observations. Goodwin suggested that, in the above ex-
ample, the observation of the Moon, whose azimuth was only 23
points, would have given better results had the ex-meridian
method been used.

Laverty, in his pamphlet, made the following interesting state-
ment: -

‘Note: These remarks were already in the press when the
writer received from a friend, a Master in the Royal Navy, to
whom he had communicated them, a paper by which it appears
that an American Captain had, in 1843, published “ A Method
of Determining the Position of a Ship”’. The writer must waive
his claim to priority of invention, but he hopes, by the present
publication, to lead many to adopt a method which, with the
addition of the remarks attached to it, will be found of great
utility at sea.’

Laverty did not confine himself to remarks on the position-line
problem only. He included in his small pamphlet an ex-meridian
table and also a table of corrections from which the error in longi-
tude due to an error in latitude could be lifted. These corrections
are based on the formula:

Error in longitude = error in latitude x cot Az sec lat.

By means of this correction table, an observer who has worked
out his morning Sun sight with a wrong latitude is able to find the
longitude correction immediately the correct latitude by Sun’s
meridian altitude is determined, without having to re-calculate
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the hour angle from the morning sight. This is the original long;-
tude factor or longitude correction table as it is now called, forming
Table C of the A, B and C Tables.

Goodwin concludes his description of Laverty’s pamphlet as
follows:

‘And, indeed, the author’s style in dealing with the Sumner
principle is so easy and lucid, and his mathematical artifices are
so neat and concise, that one cannot but feel some sentiment of
regret that his works have come down to us only in a fragmen-
tary form.’

4. AZIMUTH TABLES IN POSITION-LINE NAVIGATION

The tangent method of position-line navigation is facilitated by
azimuth tables. The earliest azimuth tables were designed for
use with the Sun, and were used in particular for finding the Sun’s
true azimuth for measuring time. (as was the case with Wakeley’s
tables), or for finding or checking the variation or compass error
(as in the case of Lynn’s, Burdwood’s and Davis’s tables).

(a) BURDWOOD AND DAVIS

Staff Commander John Burdwood is credited with the distinction
of being the first to produce an azimuth table in a form suitable
for facilitating position-line navigation. It was Burdwood’s tables
of 1852, enlarged by him in 1858, 1862, 1864 and 1866, that
formed the basis of the comprehensive azimuth tables of Captain
J. E. Davis, R.N,, and his son Percy L. H. Davis, which are in
common use at the present time.

(b) HEATH AND A, B AND C TABLES

Perhaps the most popular tables used in connection with position-
line navigation are the A, B and C Tables to be found in collec-
tions of nautical tables such as those of Norie’s and Burton’s.

Tables of the A and B type were first published in the Nautical
Magazine of 1846. These tables were sent to the Editor from
H.M.S. Iris at Hongkong on June 27th 1845 by Lieutenant (later
Admiral Sir) L. G. Heath, R.N.

William Allingham, a teacher of navigation well known to sea-
men during the early part of this century, informs us in an article
that appeared in the Nautical Magazine for 1903, that at the time
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of the first appearance of Heath’s tables, tables of the A and B type
had already passed their majority. The prototype of A and B
correction tables appears to have been invented by M. Mazure
Duhamel who published them in his Mémoire sur I’ Astronomie
Nautique in 1822.

Duhamel’s table is based on the formulae:

%=sec¢cosecz N 0

and
t
%=—seC¢COtZ N ()]

in which ¢, k, ¢ and Z denote hour angle, altitude, latitude and
azimuth respectively. These tables, a facsimile of which is here
reproduced (see p. 286), appeared in the Nautical Magazine of
1832.

Heath’s tables were accompanied with instructions for using
the tables:

¢First, for finding a line upon which the ship must be at the
time of the morning sights; and second, for finding the ship’s
position immediately the true latitude at noon is known.’

In his communication to the Editor of the Nautical Magazine,
Heath stated that he had

‘. ..been informed that something of the same sort had pre-
viously appeared in the Nautical Magazine but not pointing
out the uses to which it [the table] may be put.’

The table to which Heath referred is clearly the table of
Duhamel’s which was reprinted in the 1832 Nautical Magazine.

With the object of ‘contributing all that he could’ to make
Sumner’s method known, the Editor of the Nautical Magazine
reprinted Heath’s tables in the Nautical Magazine of 1860.

In 1873, Captain J. F. Trivett, the first headmaster of the train-
ing ship H.M.S. Worcester, and later the Board of Trade Principal
Examiner of Masters and Mates, contributed an article to the
Nautical Magazine in which he described Heath’s tables, asking
the Editor to reproduce them again.
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In 1878, Captain Trivett, in a letter to the Editor of the Nautical
Magaszine, stated that Heath’s tables were used extensively by the
officers of the P, and O. Company and other services. By this time
the tables had become known as A and B Tables.

In his letter, Captain Trivett described how a former * Worcester
boy,” W. G. Hutchinson, had devised a method for finding azi-
muth using the A and B Tables. Hutchinson had written to
Captain Trivett, his former teacher, asking him to check his
method.

Hutchinson’s rule is:

“With the correction for longitude (sum or difference of A and
B) take away the decimal point (i.e. treat it as a whole number)
and find the corresponding departure. With this departure as
diff. lat. and 100 as departure, enter Traverse Table, and the
degree corresponding to the course, as generally styled, is the
azimuth.’

After giving an example, Hutchinson gave a very interesting
. demonstration of his method. It was the demonstration that
prompted Captain Trivett to induce ‘Old Worcesters’ not to lay
aside that mathematical knowledge which they once possessed.
‘A knowledge of the theory of navigation,” wrote the Captain,
‘confers an advantage on those who aspire to be called navigators.’

A well-known teacher of navigation, W. H. Bolt, a former
Christ’s Hospital boy, and a successor to Norie’s Nautical Aca-
demy, wrote a paper on the equation of equal altitudes which
appeared in 1874. Bolt drew attention to Trivett’s article of 1873,
in which Heath’s tables were reproduced for the third time, and
stated that the division of the error in longitude consequent upon
an error in latitude into two parts—one part from Table A depen-
ding on latitude and hour angle, and the other from Table B
depending on declination and hour angle—suggested the com-
puting formulae, viz.:

tan ¢.cot ¢ for Table A
and _
tan dec. cosec £ for Table B

In other words:

Error in longitude for 1’ error in latitude
= tan ¢.cot Z+tan dec. cosec ¢
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Bolt’s object in writing this paper was to describe a method in
which the A and B Tables could be employed for finding the
equation of equal altitudes.

The original tables of Heath’s did not extend sufficiently for
this purpose. Bolt, therefore, extended Table B from 24° to 60°,
and altered the headings of both A and B Tables so that they could
be used for the equal-altitude problem, as well as serving their
original purpose for finding the longitude correction.

The rules given by Heath for using the tables were, according
to Bolt, difficult to remember. To Bolt is due the credit of simpli-
fying the rules.

‘In my teaching,” wrote Bolt, ‘I use:

latitude and declination SAME name—Diff. A and B
latitude and declination DIFF name—Sum A and B.

These rules were certainly shorter and less complex than those
of Heath’s.

An interesting note appears at the foot of Bolt’s paper, in which
he points out that the original computer of Table B made a
curious error in the column for six hours in which every result is
zero, and that the column should be filled in with the numbers
expressing the natural tangents of declinations.

In another paper published in the same year—1874—Bolt de-
scribed a method in which A and B Tables could be used for cor-
recting the middle time in the old double-altitude problem.

In 1878, R. W. Espinasse published a little-known but extended
version of Heath’s tables. Espinasse informs us that he was in-
duced to enlarge Admiral Heath’s tables and publish them for
general information in consequence of the total loss of the Loch
Ard on the Victorian coast of Australia. In publishing this table
the author was particularly careful in choosing the title: Admiral
Heath’s Tables—reprinted and enlarged by R. W. Espinasse.

In 1883, being unaware of the work of Espinasse, H. S. Black-
burne, then an officer in the P. and O. Company’s service, had
published by R. H. Laurie: 4 and B Tables for Correcting the
Longitude and Facilitating Sumner’s Method on the Chart, etc. As
the work of a young man who evidently had the desire to be of
service to his brother officers, Blackburne’s tables are a credit to
his industry.
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Blackburne laboured unnecessarily hard in producing his A
and B Tables. He informs us that he occupied, in calculating his
tables, all the spare time he could afford during several years of
busy sea-life as a junior officer. He computed the values for his
A and B Tables using the methods of oblique trigonometry. His
task would have been infinitely simpler and far less time-con-
suming had he used the less troublesome formulae of right-angled
trigonometry. At a later time Blackburne admitted his earlier
ignorance of the more concise methods for computing A and B
values.

As far back as 1878, when Blackburne was a junior officer in the
Venice line of the P. and O. Company, he had been in the habit of
using that part of his manuscript tables suitable to the route.

W. H. Rosser, Principal of Norie’s Nautical Academy and one-
time editor of Norie’s Epitome and Nautical Tables, had published
in 1875 a book entitled How to Find the Stars and their Use in
determining Latitude, Longitude, and Error of Chronometer. The
second edition of this work appeared in 1883, some weeks after
Blackburne’s A and B Tables had been published. To the original
title of his book Rosser added: With A, B, and C Tables for finding
Azimuth and Correction to Longitude. In the same year, 1883,
Rosser published: Stellar Navigation with new A, B, and C
Tables for finding, by easy methods, Latitude, Longitude, and
Azimuth: Latitudes and Declinations ranging to 68° N. and S.
Rosser’s A, B and C Tables were printed in the Norie collection
for the first time in 1889.

Laverty’s table of corrections for finding the error in longitude
due to an error in latitude was extended by A. C. Johnson, the
naval instructor; and it first appeared in Johnson’s well-known
pamphlet On Finding Latitude and Longitude in Cloudy Weather.

Captain Lecky obtained Johnson’s permission to insert his
table in the first edition of Wrinkles in Practical Navigation, pub-
lished in 1881. Rosser also published Johnson’s table in his Stellar
Navigation of 1883.

The combination of Heath’s table extended by Blackburne,
Rosser and Lecky, and Laverty’s table extended by Johnson and
Lecky, now form the celebrated A, B and C Tables.

Captain Lecky’s name is, perhaps, the most closely connected
with A, B and C Tables, although credit for being first to combine
them ought rightly to go to Rosser.
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Lecky re-calculated and extended A, B and C Tables with the
help of Captain Alfred Fry of Liverpool; and these tables form
the greater part of Lecky’s General Utility Tables first published
in 1897. These tables were designed to replace the monumental
azimuth tables of Burdwood’s and Davis’s. In this respect they
were unsuccessful.

Extract’s from Sumner’s work were first published in France
by M. Joseph Barthet, in the Annales Maritime of 1847. Sumner’s
method became popular among British seamen before it took hold
on the Continent. However, the most significant advance of all in
the history of modern astronomical navigation was due to the in-
vestigations made by French naval officers and astronomers
during the period c. 1865-1875, when the so-called ‘New Navi-
gation’ and the méthode du point rapproché were introduced.

Before discussing the methods of the Nouvelle Navigation
Astronomigue we shall deal with the practical aspect of deter-
mining position lines using the Sumner method.

In the extended title of his book, Sumner states:

‘When the Latitude and Longitude and Apparent Time at the
Ship are Uncertain, one altitude of the Sun with the True
Greenwich Time, determines:

First
The True Bearing of the Land.
Second

The Errors of Longitude by Chronometer
consequent to any error in the Latitude.

Third
The Sun’s True Azimuth.’

A fault which often brought unwarranted severe criticism of
Sumner’s method is that the bearing of the land is not determined
unless the land is near enough to assume that the rhumb line* and
the circle of equal altitude between the ship and the land are
coincident. The postion line on the chart was (and still is) invari-
ably plotted as a rhumb line arc; and this may lead to material
error in the solution. The distance over which a Sumner line and

* A rhumb line is a line of constant course and therefore makes a constant
angle with the meridians it crosses.



POSITION-LINE NAVIGATION 291

rhumb line may be considered to be coincident, depends upon the
radius of curvature of the projected circle of equal altitude on the
Mercator chart. This, in turn, depends upon the latitude of the
observer, and the azimuth and zenith distance of the observed
body.

What surely must be one of the earliest of numerous criticisms
of the Board of Trade examinations is that made in 1862 by James
Gordon, a teacher of navigation. Gordon contributed an article
entitled ‘On Sumner’s Method’ which appeared in the Nautical
Magazine of that year. Either through cussedness or false national
pride, the author, after first proclaiming that Sumner’s method
was not original, stated that:

‘ American writers have boasted so much about this Sumner’s
method that we deemed it necessary to clear it of the halo of
originality before proceeding to show its utter uselessness as a
practical problem.’

Gordon’s criticism of Sumner’s method appears to have
stemmed from the fact that it was ‘patronized by the Board of
Trade,’ as he put it; because candidates for the Extra Certificate
at the time were required to verify the double-altitude problem by
Sumner’s method. Gordon’s criticism arose from the fact that an
arc of a circle of equal altitude is not a rhumb line.

In view of his remarks on Sumner’s method, it is interesting to
note that James Gordon, A.M., published a little book in 1850
entitled A New and Easy Method of Finding a Ship’s Position at
Sea. In the preface to his book Gordon remarks:

‘The method of finding a ship’s position at sea by means of
what is termed by Captain Sumner a parallel of equal altitude
having attracted considerable notice in America, the author has
thought it proper to present to British mariners what he con-
siders to be an improvement on the method as originally
proposed.’

The proposed improvement consisted in using a construction
method on a plotting sheet instead of a Mercator chart. This per-
mits a scale of any convenient size to be used; and, as Gordon
puts it:
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‘... consequently the result may be obtained to the required
degree of accuracy; whereas by using a common chart the scale
may not be sufficiently large to give a correct result.’

Sumner’s method became exceedingly popular in British ships;
so much so that later improvements in position-line navigation
were overlooked, and the older Sumner method retained its popu-
larity, and is used extensively, in a modified form, even at the
present time.

Several years after the great French contribution to nautical
astronomy had been presented to the world we find W. H. Bolt,
the well-known teacher of navigation, writing, in 1880, a long
series of articles on the ‘New Navigation and Sumner’s Method.’
Although Bolt described the French investigations, the greater
part of his series of papers was devoted to Sumner’s problem;
and, according to M. le Comte du Boisy, who contributed to the
Nautical Magazine of 1881 a valuable paper on the ‘New Astro-
nomical Navigation,” Bolt had made a poor attempt at describing
the new methods from France. However, that part of Bolt’s
articles dealing with the Sumner method was well thought out
and undoubtedly proved valuable to some seamen of the time.

After discussing the importance of carrying chronometers, and
handling and managing them so that G.M.T. is always available,
Bolt declared that simultaneous altitudes of two stars are un-
questionably the best for determining a ship’s position. With a
good knowledge of the stars and planets, two objects may be
selected at pleasure and in such relation to each other that the
angle between their vertical circles shall be suitable; that is to say,
between 60° and 120°. If there is any doubt, a third object will
give, with the other two, a space or triangle of certainty within
which the ship must be. Bolt quoted Raper, who stated that, in
respect of star observations: ‘ The observer should make it a matter
of special practice.’

Bolt dealt at length with the effects on position lines of errors in
altitude and time. He recommended, as Sumner had done, calcu-
lating four hour angles using two latitudes embracing the ship’s
D.R. latitude, and suggested checking the directions of the posi-
tion lines obtained by finding the bearings of the observed objects
from time azimuth tables. He mentions the fact that although the
circle of equal altitude is, at every point on it, perpendicular to the
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true bearing of the observed object at that point, this is not so for
the line of position. The bearings at the ends of a position line are
different; and, for this reason, according to Bolt, working two
hour angles for each observation instead of an hour angle and an
azimuth, is to be preferred.

The projection of a circle of equal altitude on a Mercator chart
is a curve having a complex form. The smaller is the zenith dis-
tance of an observed object, the smaller is the projection of its
circle of equal altitude which tends to be circular.

When the declination of a heavenly body is equivalent to the
latitude of an observer, the body crosses the meridian of the ob-
server at the zenith: so that at the time of meridian passage of such
a body the observer is at the geographical position of the body. If
the latitude of an observer and the declination of a body are within
a few degrees of each other, then the observer readily may find his
position from two observations of the body when it is near meri-
dian passage, by plotting the curves of equal altitude on his Mer-
cator chart as circles centred respectively at the projections of the
geographical positions of the body at the times of observations,
This method of fixing by means of Sun’s altitudes was suggested
by Captain Angus of the P. and O. Company in 1884, and was
known as Angus’s method. But the problem had been investigated
a decade or more before Angus described it.

5. MARCQ ST HILAIRE AND THE NEW NAVIGATION

In 1875, a paper in the Revue Maritime, written by a French naval
officer named Marcq St Hilaire contained in its title the term ‘la
Nouvelle Navigation.” The names of Marcq St Hilaire and Lieu-
tenant Hilleret, also of the French Navy, were mentioned in a
classic work entitled Nouvelle Navigation Astronomique, written
by Yvon Villarceau and Aved de Magnac. Villarceau was an emi-
nent astronomer of the Paris Observatory, and de Magnac a
Commander in the French Navy.

Captain Marcq St Hilaire who, according to du Boisy, was
endowed with a profoundly acute mathematical mind, was the
inventor of the method known to the French as the méthode du
point rapproché, and by British navigators as the intercept method
of position-line navigation.

The work of the French astronomers and naval officers who

introduced the methods known as the New Navigation, marked a
20
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collective, and very fruitful, attempt to study the problems of
astronomical navigation in a systematic and scientific way.

Commander de Magnac, while serving as a navigating officer in
about 1867, found himself in circumstances similar to those in
which Captain Sumner found himself on that eventful day in
1837 when position-line navigation was born. Circumstances
were such that it was very important for de Magnac to find his
ship’s position with great accuracy. In a clear spot near the zenith
during twilight a star appeared and de Magnac succeeded in
getting its altitude. Because the altitude was so great, none of the
known methods of nautical astronomy afforded him the means of
obtaining a reliable result from this observation; and thus the
observation was useless. This observation appears to have led de
Magnac to undertake the improvement of nautical astronomy.

De Magnac was aware that the theory of nautical astronomy
was incomplete and that, in order to rectify the matter, the united
efforts of astronomer and navigator were required. In particular,
de Magnac considered that, above all, the scientific management
of chronometers at sea must be settled.

On returning to France de Magnac consulted Villarceau with
the object of finding out the most systematic and mathematical
method for determining the algebraic formulae representing the
rates of chronometers at sea. After lengthy investigations into the
matter, de Magnac obtained formulae suitable for rating chrono-
meters. He communicated his results to the Académie des Sciences
in November 1868.

After further investigations de Magnac arrived at a rational
scientific theory of employment of chronometers at sea. In 1874
he published a pamphlet entitled Recherches sur Uemploi des
Chronometres d la Mer, in which he described his theories. Later,
de Magnac collaborated with Villarceau to produce Nouvelle
Navigation Astronomique, referred to above.

Having settled the scientific and practical management of
chronometers at sea, Villarceau and de Magnac set about im-
proving the methods of finding a ship’s position at sea.

Du Boisy, commenting on the work of Villarceau and de
Magnac, remarked that:

‘. .. no books treating on nautical astronomy written prior to
the publication of Nouvelle Navigation Astronomique exactly
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defined the problem of the determination of the place of a ship
at sea, that is to say, [mathematically] the problem of the deter-
mination of a point: all those works give merely the problem of
the determination of a line, either latitude or longitude. But
what does the sailor want ? A point, not merely a line. Now it is
obvious that the problems relating to the determination of a
point and of a line are quite different. Nautical Astronomy
could not develop itself in all its excellence, so long as its most
efficient and useful mathematical problem had not been defined
and investigated.’

In investigating the problem, consideration was first given to
the results of a single observation. In this case the zenith distance
of the observed object in minutes of arc gives the radius of the
circle of equal altitude in miles, the centre of the small circle being
located at the geographical position of the object at the time of
observation. The geographical position of the body is determined
if the G.M.'T. of the observation is known: and this, of course,
depends upon knowledge of the chronometer error or, in other
words, on the proper management of the chronometers on board.

The azimuth of the body at the time of the observation deter-
mines the direction of a great circle which passes through the geo-
graphical position of the object and the observer’s position at the
time of the observation. Consequently the ship’s position lies at
the intersection of a small circle of equal altitude and a great circle
of azimuth.

If latitude is not known, azimuth cannot be found to the re-
quired degree of accuracy for fixing the ship to the nearest minute
or so of longitude. The observation of a single body, therefore, is
insufficient for determining a ship’s position. Recourse, therefore,
must be made to simultaneous observations of two bodies to give
azimuthal distance between the two bodies as well as their
altitudes.

Simultaneous altitudes and corresponding geographical posi-
tions of two celestial bodies furnish two circles of equal altitude
which cross at two points on the Earth—one of which is the ob-
server’s position. The D.R. position of the ship or the bearing of
either object may be used to determine which of the two inter-
sections marks the ship’s position.

The simplest method of determining a ship’s position, using
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this method, is to plot the geographical positions of the observed
bodies on a model globe, and then to draw the two circles of equal
altitude to intersect at the ship’s position. This method is unsuit-
able because of the difficulty of obtaining a position to the neces-
sary degree of accuracy.

Because the Mercator chart virtually replaces the model globe,
it was natural to inquire into the nature of the circles of equal alti-
tude when projected on a Mercator chart. This the French in-
vestigators did. They found that a circle of equal altitude, when
projected on a Mercator chart, is a curve which takes one of three
forms. Two of these are open and the third is closed. The closed
curve resembles an ellipse; and, in this case, the curve may be
considered to blend with a circle when the latitude of the observer,
and the zenith distance of the observed object are both small. In
this circumstance, it is an easy matter, as the French showed in
1874, and Captain Angus in 1884, to plot a circle of equal altitude
on a Mercator chart.

This method of tracing the circle of equal altitude, as pointed
out by de Boisy, is the only practical result afforded by the study
of curves of equal altitude; but, he goes on to say:

‘It is a precious one, for it permits of the very simple and rapid
utilization of great altitudes in which the old methods of naviga-
tion were most generally deficient. This was so much the more
to be regretted since a star very often appears near the zenith,
while it is impossible to perceive others in a better and less
elevated position.’

The only practical application of the projection of equal-altitude
curves on a Mercator chart having been considered, it appeared
to the French astronomers and navigators that computation is
necessary in order to fix a ship by simultaneous observations.

Fig. 4 represents the Earth with the North Pole denoted by P.
G, and G, represent the geographical positions of two stars whose
altitudes are observed simultaneously. XY and X,Y, are the re-
sulting circles of equal altitude which intersect at F, the place of
the ship.

Let the altitudes of the stars whose geographical positions are
at G, and G, be k; and bk, respectively, and let their respective
declinations be d, and d,. Let the latitude of F be ¢.
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FIGURE 4

By applying the fundamental cosine formula to the spherical
triangles PFG, and PFG,, we have:

cos G, F = cos PG, cos PF +sin PG, sin PF cos G;PF
cos G,F = cos PG, cos PF +sin PG, sin PF cos G,PF

From which we have:

sin k; = sin ¢ sin d; + cos ¢ cos 4, cos G;PF . (1)
sin k; = sin ¢ sin dy + cos ¢ cos dy cos G,PF . (2

These formulae are complex and quite impracticable for use at
sea. Investigation into the formulae, however, demonstrated that
the most favourable mathematical conditions for finding position
by astronomical observations are:

1. The difference between the azimuths of the two observed
objects must be 90°.
3. The altitudes must not be too great.

The first condition follows from a consideration of the errors of
altitude and their effects on the resulting fix. The second condi-
tion arises from the fact that if the altitudes are great, the circles of
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equal altitude are small, in which case the points of the inter-
section (F and F, in Fig. 4) are close to one another, and the
mathematical solution may be indeterminate.

Du Boisy informs us that failure to employ the direct method
of finding the ship’s position from simultaneous altitudes using
equations (1) and (2) led to the inquiry into the indirect method
which he calls the ‘Method of Equations of Condition.” This
method gives the required result with fewer calculations than the
direct method; and, moreover, it led to the so-called méthode du
point rapproché.

The following description of the application of the method of
equations of condition, and the principle of the méthode du point
rapproché, to which the name of Marcq St Hilaire is closely
associated, is that given by du Boisy in 1881.

‘The method of equations of condition can only be employed
when approximate values of the required quantities are known:
then, instead of directly computing these quantities, the correc-
tions to be made to those approximate values are calculated in
order to obtain sufficiently accurate values of the required
quantities. A ship at sea always possesses its estimated position
by D.R. This position is always more or less approximate. Con-
sequently the method of equations of condition can be applied
to the determination of the place of a ship at sea; and, in this
case, may be presented thus:

‘Let hand A, be simultaneous altitudes at two celestial bodies
observed at 2 known G.M.T. Let the latitude and longitude by
D.R. be ¢ and Arespectively. Let the true latitude and longitude
be ¢, and A, respectively.

‘First consider ¢ and A to be the true latitude and longitude
of the ship. With these compute the respective altitudes and
azimuths. Let these be H and H, and Z and Z,.

‘Let ¢ and A be the algebraic corrections to be applied to ¢
and A to get ¢, and A,. That is, let us state the condition (hence
the name of the method—equations of condition)

¢ =¢+3p and A, = A+82
‘It is demonstrated that:

h—H = cos Z8¢+sin Z cos ¢p3X + a(54)?
+b5(8A)% +c(84)% + - - -
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hy~H, = cos Z,5¢+sin Z; cos $p3A+ a,(8¢)?
+51(8A2 + (32 + - - -
in which a, aj, b, b,, etc. represent certain algebraic combina-
tions of trigonometrical functions of the known quantities.

‘Neglecting terms of the second and higher degrees the above
equations reduce to:

h—H = cos Z3¢+sin Z cos $3A
h,—H, = cos Z,3¢+sin Z; cos ¢3A

‘If we put p=(h— H) and p, = (h, — H,) we have

_psinZ,—p,sinZ

% =—(Zi-2) - - O
_pcos Z,—p,cos Z

8 = sin (Z, — Z) cos ¢ SRR

‘ Applying these corrections, 3¢ to the latitude by D.R., and
8) to the longitude by D.R., we obtain approximate values of
the true latitude and longitudes which, except in rare cases,
will be sufficiently correct.’

After the above discussion, du Boisy considered how equations
(3) and (4) are represented geometrically on a Mercator chart.
Fig. 5 serves to illustrate his discussion.

In Fig. 5 let E be the position by D.R. (lat. ¢ long. A). Set off p
in miles in the direction of (or opposite to as required) Z to obtain
the point X, which is named point rapproché. At X draw a line
P,L, perpendicular to EX. This represents the position line ob-
tained from the observation of the star whose altitude was &.

In a similar manner draw a line of length p, miles in the direc-
tion of (or opposite to as required) Z;, to obtain the point Y which
is the second point rapproché. Through Y draw P,L, at right angles
to EY to obtain the position line obtained from the observation
of the star whose altitude was k;. The two position lines are tan-
gential to curves of equal altitude shown on the figure as dotted
lines intersecting at C, which is the true place of the ship.

The method of equations of condition enables us to substitute
for the curves of equal altitude two straight lines tangential to
these curves at the points rapprochés. This substitution produces
an error corresponding to the distance between C and F in Fig. 5.
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The distance CF depends upon:

1. The distance EC.

2. 'The radii curvature of the curves of equal altitude.

3. The difference between the azimuths of the observed

objects.

4. The latitude of the observer.

It increases with distance EC, the altitudes and the latitude:
and also when the angle between the bearings of the observed
bodies approaches 0° or 180°.

FIGURE 5

Determination of the limits of error CF shows that CF is nearly
always inappreciable.

Du Boisy concludes his discussion on the New Navigation by
pointing out that the calculation of the point rapproché is alone
sufficient in any and every case. Thus, the method took the place
of all the older methods of navigation apart from the lunar method.

‘In short,” du Boisy states, ‘the calculation of point rapproché is
par excellence the Nautical Problem, and a Master who under-
stands and uses it derives advantage from it which other astro-
nomical observations do not give. According to opinions of
eminent French officers who have practised the calculation of
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point rapproché, this problem and that of Latitude by Meridian
Altitude or Pole Star will, before long, be the only ones em-
ployed at sea, and the last two will continue in use for the single
reason that they are short, but they do not give better results.

“The results of New Astronomical Navigation have given
rise to a remarkable coincidence . . . circle and line are com-
pletely equivalent. ,

“Thus, results obtained from observations of heavenly
bodies are the same as those afforded by lighthouses. Therefore
we say that the New Astronomical Navigation proves that for
the determination of the place of the ship, the heavenly bodies
are, for the navigator’s purpose, like so many lighthouses in the
sky.’

Judging by its cool reception to the notth of the English
Channel, the brilliant work of the French in bringing nautical
astronomy to a state of excellence was not fully appreciated by
British seamen. And even today a century after its introduction,
the intercept method for finding point rapproché does not receive
due attention from seamen.

The first mention in print in England of the creditable French
investigation into Nautical Astronomy appears to have been a
review of the book by Villarceau and de Magnac, which was made
for the Nautical Magazine as late as 1879. The reviewer (as is often
the case with reviewers) clearly had not studied the contents of
this remarkable book, and appears to have thought that it was
nothing more than a restatement of the work of Dunn, Lynn and
Sumner. The closing paragraph of the review is interesting:

“This is not the place to discuss merits and demerits of the
problem in all its bearings . . . suffice it to say that the problem
has begun to take a considerable hold on nautical men, not only
in England but abroad—Germans and Italians have written on
the subject.’

It appears that the Editor of the Nautical Magaxzine invited
Mt W. H. Bolt of Norie’s Nautical Academy to write on the sub-
ject of the ‘ New Navigation and Sumner’s Method’. We have had
occasion to refer to the series of articles written by Bolt on
Sumner’s method. In describing the New Navigation, Bolt refers
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to the work of Villarceau and de Magnac, and also that of Fasci,
Marcq St Hilaire, Hilleret, Boilard, Caspari, Mouchez and others.

‘The partisans of the old methods,” wrote Bolt, ‘are positively
furious on the subject: while the propounders and promoters
of the New Methods have determined upon nothing less than a
radical change in the theory and practice of navigation.’

A

Ay
FIGURE 6

Had the promoters had their way, and the partisans of the old
methods been more rational in their ideas, nautical astronomy,
since 1875, would have been rationalized, and all methods would
have been swept aside, having been replaced by the never-failing
intercept method.

Bolt’s treatment of the New Navigation is not without interest.

Referring to Fig. 6:

Let E represent the ship’s position by D.R. Let the circle of
radius 7 be a circle of error within which it is assumed that the
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ship’s actual position must lie. AA, is part of a circle of equal alti-
tude which cuts the circle of error at Y and Y,. The ship’s actual
position is certainly on arc YXY, of the circle of equal altitude,
provided that the altitude of the body has been observed correctly.
The exact position of the ship on arc YXY, is unknown; but the
point X, which lies midway between Y and Y, and in a direction
from E equivalent to that of the azimuth (or 180° therefrom) of
the observed body, is the most likely position of the ship. Hence
the name point rapproché given to X.

FIGURE 7

‘Point X,’ said Bolt, ‘is a very important one in the New Navi-
gation. It will be coincident with E when the D.R. position
happens to be the true position, and in other circumstances it
must always be nearer the true position than is the D.R.; for
the arc EX is perpendicular to the arc YXY. It is also evident
that the distance of E from any point on arc YXY, other than
X is greater than EA. Consequently, in solving the problem, if
we take the point X as the approximate position of the ship in
preference to the position by D.R., we are making use of a point
approximately nearer to the true one.’

Bolt then described the problem in relation to Fig. 7.
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In Fig. 7, S is the geographical position of a heavenly body*.
The problem is to find the position of the point X which lies on
the great-circle arc SE.

For the data of the problem we have: an altitude « of a celestial
body whose azimuth is Z, observed at a given G.M.T.

Let the latitude of E (the D.R. lat.) = ¢

Let the west longitude of E (the D.R. long.) = A

Let the declination of the body = d

Then: ,
arc PE (90 —¢)
arc PS = (90+4d)

angle EPS = (G.H.A*-X) = 4

Using these two arcs and their included angle we may calculate
ES and PES.
We have, moreover,

EX = ES-XS

Because E is never more than a few miles from X, the arc EX
may be considered to be a rhumb line.

The computations involved are those of an altitude and a time-
azimuth. The former comes through the latter, and this through
an auxiliary arc 6, by the aid of three fundamental equations of
spherical trigonometry.

tan § = cotdcos h N ¢))
sin 6 tan £

tan Z = m ... (2)

tan ¢ = cos Z tan (¢ % 6) I ©))

These formulae are absolutely general and may be used in all
cases.

Following the above description of the New Navigation and the
formulae required for finding the azimuth and the altitude of the
observed body at the ship’s estimated position, Bolt added:

‘Our continental neighbours are great in projection and nice
calculations. They have what may be called “squared paper”,
that is, paper so ruled as to be covered with an immense number
of very small squares. On a sheet of this paper, having projected
the point X, they rectify it for every conceivable error, including
also the chronometric curve for error and rate.’
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The articles on New Navigation by Bolt in 1880 and du Boisy
in 1881 evidently interested many readers of the Nautical Maga-
zine. In the 1882 Nautical Magazine we find the Editor writing as
follows: '

¢ At the request of many readers we now translate the formulae
[given by Bolt] into a verbal rule, observing however that
though rules and directions derived from formulae are generally
long and often tedious, we have endeavoured to simplify the
subject by the aid of a blank form.’

The rules given are no less complex than those given for
numerous other navigational problems, but the blank form illus-
trates the relative ease with which the problem could be solved,
and provides evidence of how the intercept problem was solved by
perhaps a few British navigators of the last century.

BLANK FORM

o s »
H.A. cos ....tan .
dec cot ..

arc 1 (0) tan sin ...

est. lat

arc 2 (0t¢) tan ....sec ..

Cos ....tan ....

arc 4 computed alt ..<T777T.. tan arc3Az = ....

true altitude . .........

Difference (+ or —)

The problem admits of the position being finally determined
(that is position of point rapproché) by aid of Traverse Table,
but this method is not preferable to that by projection on
chart of large scale. *

W. R. Martin, in his book on Navigation and Nautical Astro-
nomy of 1888, devotes no more than half a page or so to the Marcq
St Hilaire method of dealing with curves of equal altitude. In the
second edition of his book, which appeared in 1891, the account
of Marcq St Hilaire’s method is identical with that given in the



306 A HISTORY OF NAUTICAL ASTRONOMY

first edition, although in both editions Martin refers to the work
of Brent, Walter and Williams, first published in 1886, and en-
titled A Short and Accurate Method of Obtaining the Latitude at
Sea from an Ex-meridian Altitude of a Heavenly Body, to which
is added brief explanation, with examples, of the ‘ New Navigation.’

This account of the Nouvelle Navigation appears to have been
the first to have been given in a British navigation book. It seems
that about eleven years after Marcq St Hilaire’s method had been
published in France, one of the three authors of the ex-meridian
tables, was attracted to the method of the point rapproché, and it
was included, as a sort of makeweight, to the ex~-meridian tables.
Itis interesting to note that in the later editions of these tables, the
‘additional’ explanation of the New Navigation was omitted—a
retrograde step to be sure.

In the ninth edition of his famous Wrinkles in Practical Naviga-
tion published in 1894, Captain Lecky, in describing the ex-
meridian tables of Brent, Walter and Williams, mentions the fact
that the book of tables includes: ‘ An explanation of that phase of
the Sumner, or Double-Altitude problem, now known as the New
Navigation.’

Itis clear from Lecky’s subsequent remarks that he, in company
with numerous other British navigators, paid little attention to the
New Navigation, and failed to appreciate its far-reaching con-
sequences. ‘

‘This [description of New Navigation],” Lecky wrote, ‘the
reader can take or leave as he pleases. Whilst admitting its neat-
ness, the writer is averse to the diagram part of the method,
which somehow seems to him out of place in a ship ... Like
lunars, the New Navigation is of the fancy type—all very well
with gentle zephyrs, but not suited to oilskin weather.’

The power of Lecky’s pen, especially in making such statements
as the last sentence abdve, may have turned (and probably did
turn) many men’s minds away from the marvellous method, the
credit for the invention of which we owe to the French.

Soon after the turn of the century, it was ordained that the
intercept method of Marcq St Hilaire should be the standard
method to be taught to the junior navigating officers of the Royal
Navy. Coinciding with this epoch a book by J. R. Walker entitled
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An Explanation of the Method of Obtaining the Position at Sea
known as the New Navigation was published in Portsmouth in
1901. '

In 1907, E. B. Simpson-Baikie produced a work entitled New
Navigation Tables. These tables were designed to substitute the
simple method of plotting position lines by a tedious process of
computation. Simpson-Baikie’s method, with its long list of rules
for naming corrections in latitude and longitude, is almost unin-
telligible. Its publication, however, indicates the strong tendency
of many navigators to avoid graphical methods of solution.

FIGURE 8

H. B. Goodwin proposed a tabular solution for finding the
ship’s position from two position lines obtained using the inter-
cept method. His proposed method is very interesting but not
nearly so practical as the solution by plotting.

Goodwin’s method is described in relation to Fig. 8.

In Fig. 8 let E be the position used in calculating intercepts EX
and EY. Let the lines P, L, and P, L, be the position lines resulting
from simultaneous observations, and which intersect at the ship’s
position denoted by F.

Goodwin demonstrated that because EXF and EYF are each
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90°, therefore, the points E, Y, F and X are concyclic; and that
EF is a diameter of the circle through E, Y, X and F.

The angle EYX may be found using Traverse Tables, given
intercepts EX and EY and the angle XEY which is the difference
between the azimuths of the observed objects.

Now, EFX=EYX, because these angles both stand on the
chord EX. Let each of these angles be 6.

By applying @ to the direction of P, L,, the direction of EF may
be found.

The distance EF may be found from the Traverse Tables using
0 and the intercept EX in the right-angled triangle EXF.

Knowing the direction and distance of EF and the position of
E, the position of F may thus be found.

Goodwin proposed constructing a table from which, using as
arguments angle between intercepts and a pair of intercepts, the
distance EF and 6 could be lifted.

The distinct advantage of the Marcq St Hilaire method over
the older methods of position-line navigation rests in the fact that
the method is applicable regardless of the bearing of the observed
object. In the Sumner method the navigator has to discriminate:
if the observed body is near the prime vertical circle, he may work
his sight using the so-called ‘longitude method’; but if the body
is near the meridian, this method falls down, and the latitude by
ex-meridian method may be used instead.

Now the least important of the uses of the Marcq St Hilaire
method is its application to the construction of short-method navi-
gation tables—a subject which we shall discuss in Chapter VIII.



CHAPTER VIII

Navigation tables

I. EARLY ASTRONOMICAL AND MATHEMATICAL TABLES

The ocean navigator, when practising the science of nautical
astronomy, is dependent upon astronomical and mathematical
tables designed to facilitate his computations. It is with these
tables that this chapter is primarily concerned.

The astronomical tables designed specifically for navigational
purposes provide astronomical data relating to the celestial posi-
tions and motions of the heavenly bodies used by navigators. The
earliest astronomical tables used by the seaman were to be found
in his navigation manuals which provided him with instructions
for finding the position of his ship when out of sight of land, and
for setting her course.

The earliest astronomical navigation was geared to finding lati-
tude from an observation of the Pole Star—the Seaman’s star—
during hours of darkness; or from an observation of the Sun at
noon when this luminary attains his greatest altitude for the day.
The first astronomical tables designed for the use of the seaman
were, therefore, Pole-Star tables and tables of Sun’s declinations.

The earliest navigation manual appears to be the Portuguese
work printed in 1509, entitled Regimento do Astrolabio e do Quad-
rante. Included in this work are a Regiment for the Pole Star and
a Rule for the Sun. The Regiment for the Pole Star comprised a
series of rules for finding latitude from an observation of the Pole
Star, to the altitude of which a correction had to be applied, the
correction depending upon the relative positions of the Pole Star
and the two stars of the Lesser Bear known as the Guards. The
determination of latitude from an observation of the Sun’s meri-
dian altitude was possible by means of the table of Sun’s declina-
tion; which, in the work referred to, contained values of the Sun’s
declination in degrees and minutes of arc for noon each day of the
year calculated for Lisbon.

To find the latitude from a meridian altitude observation of the
Sun, the seaman was instructed to use one of nine rules: which

one depended upon the relative names of the latitude and
21
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declination, and whether the shadow cast by the noon-day Sun
was to the north or to the south.

The Regimento do Astrolabio e do Quadrante was designed for
Prince Henry’s navigators; and the table of Sun’s declinations in-
cluded in this work was based on tables published by Abraham
ben Samuel Zacuto, the famous astronomer of Salamanca, in 1496.

That the science of ocean navigation had been enormously
stimulated by the geographical discoveries of the 15th century is a
factor of great importance. And when the need arose, the astro-
nomical tables of the period were adapted for the seaman’s use.
These included the revised version of the 1272 Alphonsine tables
which were published by Regiomontanus in 1474, and the 4lma-
nach Perpetuum of Zacuto which dates from 1496. George Sarton,
in his Six Wings, reminds us that up until this time astronomical
tables were used primarily by astrologers, and that this explains
their relative abundance.

The first Spanish navigation manual appears to be the Suma de
Geographia, by Fernandez de Enisco. This work was published in
1519, and was based on the earlier Portuguese manual. It was
Fernandez’s book that was translated into English, in about 1540,
by Roger Barlow as his Brief Sum of Geography. Barlow’s trans-
lation was not printed until recently. The manuscript, which is
preserved in the British Museum, and which is referred to by
Professor E. G. R. Taylor in her Tudor Geography as being the
first English work if its kind, contains the first nautical tables of
Sun’s declinations with rules for their use in the English language.

In later manuals of navigation, a significant improvement con-
sisted of the provision of a table of the Sun’s declinations for noon
each day in a four-year cycle. Such a table is included in Barlow’s
Brief Sum of Geography, although the original Spanish work con-
tained a single table of the Sun’s declinations for one year only.
The improved tables of Sun’s declinations meant four tables: one
for use in leap years; a second for use in ‘first years after leap
years’; and a third and fourth for ‘second’ and ‘third years after
leap years.’

The famous Flemish astronomer Gemma the Frisian published
his De Principiis Astronomiae in 1530. In this work a considerable
amount of scientific information, including astronomical data as
well as descriptions of instruments of importance to navigation,
were included.
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In 1545 the Arte de Navegar by the Spaniard Pedro de Medina
appeared. This was followed by Brevo de la Spera y de la Arte de
Navegar by Martin Cortes. Both these Spanish works on naviga-
tion were translated into several European languages. The favour-
ite with the English navigators of the period was Cortes, whose
work was translated by the Cambridge scholar Richard Eden, who
had close contacts with many of the English explorers of the day,
including Sebastian Cabot and Richard Chancellor.

John Tapp published nautical books as early as the beginning
of the 17th century and had, as early as 1596, edited Eden’s trans-
lation of Cortes’s Arte de Navegar. Tapp’s most significant publi-
cation was the Seaman’s Kalendar containing astronomical tables,
or ephemerides, of the Sun and Moon, and of the bright fixed
stars. This work was first published in 1600, and it represents the
first attempt to produce an almanac specifically for the use of the
seaman. The Seaman’s Kalendar and a rival Mariner’s New Calen-
dar, which first appeared in 1676, were published annually until
well into the 18th century.

When lunar theory had been developed to a sufficiently accu-
rate state, and it had become possible to find longitudes at sea
from observations of lunar distances, the required astronomical
data were given in an official nautical almanac. The first British
Nautical Almanac was published in 1765 for the year 1767 under
the hand of Nevil Maskelyne. This was exactly a century after the
Royal Observatory at Greenwich had been established, with John
Flamsteed as the first Astronomer Royal, for the purpose of im-
proving knowledge of the motions of the Moon and planets and
the pos1t10ns of the stars, for the better prosecution of astronoxmcal
navigation.
© At the same time as that of the publication of the first Brmsh
Nautical Almanac, Maskelyne’s famous work entitled Tables
Reguisite to be used with the Nautical Ephemeris for finding Lati-
tude and Longitude at Sea was published. The second and third
editions of this valuable work, also under Maskelyne’s hand,
appeared in 1781 and 1802 respectively.

For practising astronomical navigation the seaman needs, in
addition to a nautical ephemeris, astronomical tables of refraction,
dip, parallax and semi-diameter of the Sun and Moon, as well as
mathematical tables of logarithms of numbers, and natural and
artificial, or logarithmic, trigonometrical functions. These tables
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formed part of the equipment of navigators of the late 17th and
early 18th centuries. A discussion on the application of early
mathematical tables to practical navigation appears in Chapter I1I:
a discussion on tables of dip, refraction, parallax and semi-dia-
meter appears in Chapter IV, to which the reader is referred.

Maskelyne’s Tables Requisite . . . contained all the tables neces-
sary for navigational purposes, as well as instructions on how to
use them for position finding at sea.

During the 18th and 19th centuries, in addition to the basic
astronomical and mathematical tables mentioned above, naviga-
tors were provided with additional tables of great diversity, de-
signed to assist them in their use of the many new methods of
position finding introduced for their attention. These included
tables for finding latitude by double altitudes, and latitude by
ex-meridian observations, as well as tables for use with improved
methods for finding longitude by lunar distance and by chrono-
meter. Other tables of interest included those designed for finding
the azimuth of a heavenly body given latitude, declination and
hour angle, or altitude.

It is interesting to note that the original azimuth tables of
Burdwood’s and Davis’s were designed primarily for finding the
true azimuth of the Sun or other heavenly body to facilitate
checking compasses—a need that grew with the development of
the iron and steel ships of the period.

Tables designed to simplify the problem of finding latitude by
double altitudes, and by ex-meridian observations, have been
discussed in Chapter V; and those designed to simplify the lunar
problem have been dealt with in Chapter VI, In the pages that
follow immediately we shall discuss the seaman’s nautical almanac
and the major changes that have been made in the arrangement of
the data used by seamen for navigational purposes. This will be
followed by a discussion on some of the numerous short-method
and inspection tables that have been devised to simplify the solu-
tion of the astronomical- or PZX-triangle.

The term short method is often used at the present time to denote
a navigational method in which the PZX triangle is divided into
two right-angled triangles each of which is solved by Napier’s
rules, the results being tabulated in a short-method table. Short-
method tables are, at the present time, being superseded by in-
spection tables. Short-method tables are to be regarded as having
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provided an intermediate step between rigorous mathematical
solutions, in which tables of trigonometrical functions and logar-
ithms are used, and modern inspection tables, by means of which
the solution of the PZX triangle may be obtained without recourse
to the tables of trigonometrical functions and logarithms, and
without computation or interpolation.

A significant feature of short-method tables is the inducement
they offered to the navigator to work to a practical degree of
accuracy. The old custom of using log trig. functions to six, or
even more, places of decimals to solve sights in which the accuracy
of the given information is relatively coarse, was quite unjusti-
fiable; and the practice tended to create a false sense of security
in those navigators who persisted in using the old so-called long
methods of sight reduction.

2. THE NAUTICAL ALMANAC

The Nautical Almanac, founded by Nevil Maskelyne in 1765, was
published annually, two or three years in advance, by Maskelyne
until his death in 1811. During this long period of forty-six years,
the British Nautical Almanac enjoyed a high reputation for its
accuracy and presentation. Typical of Maskelyne’s almanacs is
the ephemeris for 1797. In this almanac twelve pages of data are
provided for each month. Page I of the month contains a calendar
of the month with Sundays, holidays and terms; the phases of the
Moon; and times of astronomical phenomena such as eclipses of
the Sun and Moon; position of the Sun in the ecliptic; and posi-
tion of the Moon relative to the fixed stars. Page II of the month
contains longitude, Right Ascension and declination of the Sun,
and the equation of time for noon at Greenwich on each day of
the month. Page III gives the Sun’s semi-diameter; the hourly
motion of the Sun; and times of eclipses of Jupiter’s satellites.
Page IV gives the longitudes and latitudes of the planets, together
with their declinations and times of meridian passage. Page V'
gives the Moon’s place using ecliptic coordinates (latitude and
longitude), for noon and midnight at Greenwich each day of the
month. Page VI gives the Moon’s place using equinoctial coordi-
nates (declination and Right Ascension) for noon and midnight at
Greenwich each day of month; and also the times of the Moon’s
meridian passage at Greenwich. Page VII gives the Moon’s semi-
diameter and horizontal parallax for noon and midnight at
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Greenwich for each day of the month. Pages VIII to XI contain
lunar distances between the Moon and Sun and selected stars.
Page XII gives the configurations of the satellites of Jupiter at
6 o’clock in the evening at Greenwich for each day of the month.

Following Maskelyne’s death, the Nautical Almanac began to
lose its character for accuracy; and, according to Francis Baily
who, in 1822, published a pamphlet entitled Remarks on the Pre-
sent Defective State of the Nautical Almanac, the official almanac

‘eventually was reduced so low in the estimation of the world,
that in the language of one of our senators who was fully com-
petent to judge (Mr Croker in his speech in the House of
Commons March 6th 1818, on introducing the Bill for new
modelling the Board of Longitude), it was become a bye-word
amongst the literati of Europe.’

Baily, who had published a small volume of Astronomical
Tables and Remarks for the Year 1822, with the object of supple-
menting and improving upon the Nautical Almanac, had urged,
in his pamphlet, that:

‘... the honour of the country, and the interests of science
demand that Great Britain should not be eclipsed by any of the
minor states of Europe. And if the Nautical Almanac be de-
signed also for an astronomical ephemeris as well as for the
quarter deck, it ought to contain more than it does now.’

In 1818, Dr Thomas Young was appointed Secretary to the
Board of Longitude and Superintendent of the Almanac. Young
did much to improve the Almanac but was adamant in his view
that it was intended as an instrument essentially for seamen. Ten
years after Young’s appointment, the Board of Longitude was
swept away and the Almanac was placed under the superinten-
dence of the Admiralty, Dr Young being appointed scientific
officer.

In 1829 a memorial to the House of Commons stated that the
Nautical Almanac was designed for astronomers as well as for
seamen, and that this was declared in the first Nautical Almanac.
The memorial contained a list of errors and deficiencies in the
Almanac and stated that it had not kept pace with navigation or
astronomy. The memorial was supported by the celebrated astro-
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nomer John F. W. Herschel. These allegations were disputed by
Young but pressure from many practical astronomers resulted in
the Nautical Almanac being reformed.

The Nautical Almanac of 1834 contains the improvements
suggested by a committee set up by the Royal Astronomical
Society in 1831. From 1834 until 1931 the form of the Nautical
Almanac was, by and large, retained.

It was recognized, towards the end of the last century, that
many data contained in the Nautical Almanac were valueless to
seamen. The first part, therefore, containing the ephemeris and
lunar distances—data of importance for navigational purposes—
was published separately.

From 1906, tables of lunar distances, comprising some seventy
pages, were no longer given in the Nautical Almanac.

In 1914, on the recommendation of the Royal Astronomical
Society, the Nautical Almanac, Abridged for the use of Seamen
made its first appearance. This slender volume, the style of which
remained standard until 1929, is in sharp contrast to the full
Nautical Almanac for use in the observatory.

In 1925 a small slip pasted on the cover of the abridged
Nautical Almanac contains the following remark:

‘In both the abridged and complete Nautical Almanacs the
times styled G.M.T. are NOW reckoned from midnight, as in
civil use; but up to and including the year 1924, these times
were reckoned from noon, in accordance with the then custom
of astronomers.’

The abridged Almanacs of the period 1914-1929 gave the Right
Ascension of the Mean Sun (R.A.M.S.), declination of the Sun
and the equation of time for every second hour of G.M.T. starting
at midnight at Greenwich for each day of the year. The Right
Ascension and declination of the Moon, were, likewise, given. The
Right Ascension and declination of the navigational planets were
given for Greenwich mean noon for each day of the year, and a
monthly table of R.A’s and declinations of fixed stars was provided.
In addition to these tables, sunrise and sunset and Pole Star tables
were provided. So also was a table of proportional parts to facili-
tate finding the elements of the heavenly bodies at times different
from those for which they were tabulated.
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In 1929 a major change in the Abridged Nautical Almanac took
place. Instead of tabulating R.A.M.S. and equation of time, as
had hitherto been the custom, artificial quantities known as R and
E were tabulated instead.

R = R.AM.S. + 12 hours
E = 12 hours — ( + equation of time)

The advantage of the artificial quantity R was that in reducing
star (or Moon or planet) sights, the Ship’s Mean Time (S.M.T.)
was obtained directly from the Right Ascension of the Meridian
(R.A.M.), because:

R.AM.-R.AM.S. +12 hours = S.M.T.
S. RAM.—-R = S.M.T.

The advantage of the artificial quantity E was that not only was
the trouble in dealing with the sign of the equation of time over-
come, but S.M.T. could be obtained directly from the Local
Hour Angle of the True Sun (L.H.A.T.S.), because:

S.M.T. = L.H.A.T.S.—12 hours +equation of time
. SM.T. = LHATS.-E

The equation of time is defined as the excess of Mean time over
Apparent (or true) time at any instant; so that when Mean time
exceeds Apparent time, the equation of time is positive and E,
therefore, is less than twelve hours. Similarly, when Mean time is
less than Apparent time at any instant, the equation of time is
negative and E is more than twelve hours.

In 1948, a year after its formation, the Institute of Navigation
was asked by the Admiralty to advise on the re-design of the
Nautical Almanac for surface navigation. Proposals had been put
forward by Mr D. H. Sadler, the Superintendent of H.M. Nauti-
cal Almanac Office, for the revision of the Abridged Nautical
Almanac. The Institute was invited by the Hydrographer of the
Navy to comment upon these proposals. Mr Sadler described his
proposals to a special meeting of the Institute on May 7th 1948
under the chairmanship of its President, Sir Harold Spencer
Jones. The outcome of Mr Sadler’s proposals was the introduc-
tion, in 1952, of a remodelled Nautical Almanac.

The 1952 and subsequent Nautical Almanacs are designed
along the lines of the Air Almanac of 1937, in which Greenwich
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Hour Angles of the Sun, Moon, navigational planets and the First
Point of Aries are tabulated against G.M.T.

In the present-day Nautical Almanac, G.H.A’s, of the Sun,
Moon, planets and the First Point of Aries, are tabulated for every
integral hour of G.M.T. for the whole year. Interpolation tables
are provided to facilitate finding the G.H.A. of a celestial body at
any time. To provide for stellar navigation the quantity (360°—
R.A. in degrees, etc.) known as Sidereal Hour Angle (S.H.A.) is
tabulated for a large number of fixed stars. The G.H.A. of a star
may be found from the relationship:

G.HA.* = GHA.o» +S.HA.*

The great advantage of the tabulation of G.H.A’s is that
longitude is found direct from L.H.A., because:

Long. = G.H.A.*~L.HA.*

where * is any celestial body.

3. SHORT-METHOD AND INSPECTION TABLES

The term sight reduction is used to describe the process by which
a navigator solves a PZX triangle in order to find his latitude or
longitude or, more generally, to determine a position line, some-
where on which his ship’s position lies.

In the astronomical- or PZX-triangle, the angles P and Z may
be computed if the three sides are known. From the angle P the
L.H.A. of the observed body at the time of the observation is
known. This, compared with the G.H.A. of the object obtained
from the Nautical Almanac, gives a longitude. This longitude, to-
gether with the latitude from which the side PZ is deduced,
defines a point on a position line, the direction of the position line
being found from the angle Z of the PZX triangle. This is the
basis of Sumner’s solution, and it is usually known as the longitude
by chronometer method.

An alternative method of determining a position line is the
intercept method of Marcq St Hilaire. In the intercept method,
the zenith distance of the observed object at a chosen position is
calculated. This calculated zenith distance is compared with the
observed zenith distance corrected for dip, refraction, etc. The
difference between these, in minutes of arc, is known as the inter-
cept. The position line is drawn at the end of the intercept (which
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is drawn from the chosen position), in a direction at right angles
to the azimuth of the object at the time of the observation.

To find the longitude of the ship at the time of the sight from a
single observation using the longitude method, the observer re-
quires knowledge of the latitude of his ship. If the latitude is not
known, the side PZ—which is the complement of a latitude—is
also not known. In this case the angle P (from which the L.H.A.
of the observed object is obtained) cannot be found, unless the
azimuth of the object at the time of the observation is exactly 090°
or 270°.

The common practice in early times was to make the observa-
tion for longitude when the observed object (invariably the Sun
during the morning) bore due east or west: that is to say, when it
was on the prime vertical circle. In this event, any error in the
latitude used to compute angle P in the PZX triangle did not
produce error in the calculated hour angle.

In cases when the morning Sun was observed off the prime
vertical circle, it was not uncommon for the observer to find the
latitude from an observation of the Sun at meridian passage, and
then, by working back to the time of the morning sight, to find the
latitude at sights. By so doing, the computed longitude at sights
was reliable. With the introduction of the 4 and B Tables (see
Chapter VII) this process became redundant, the morning sight
being worked out witha D.R. latitude, the longitude at sights being
then worked up to noon, and corrected if necessary by using the
combined A and B corrections, after the latitude by meridian
altitude observation of the Sun had been found.

As long ago as 1770, Cassini calculated and published tables of
solutions of PZX triangles against arguments: latitude, declina-
tion and zenith distance. The object of these tables was to elimi-
nate the necessity of the labour of computation, In 1793, Lalande
published similar tables, extended to cover all latitudes up to 60°
N. and 8. Cassini’s tables must stand as the first of the inspection
tables of nautical astronomy. :

Credit for being the first Englishman to publish a set of inspec-
tion tables for sight reduction belongs to Commander Thomas
Lynn. Lynn, a merchant seaman, published his Horary Tables in
1827, dedicating them to the Honourable East India Company.
Lynn’s horary tables were designed to give the solutions of hour
angle against latitude, declination, and altitude for each whole
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degree, as arguments, requiring triple and, therefore, troublesome
interpolation.

In 1863, Monsieur Louis Hommey published a set of horary
tables (Table d’angles Horaires) based on the same principle as
those of Cassini’s and Lalande’s. Solutions of angle P of the PZX
triangle were given for all latitudes.

In 1871, Sir William Thomson (later Lord Kelvin) read a paper
before the Royal Society of London entitled ‘On the Determi-
nation of a Ship’s Place from Observations of Latitude.” The
author described Sumner’s method of plotting a position line, and
added:

‘Were it not for the additional trouble of calculating a second
triangle, this method ought to be universally used instead of the
ordinary practice of calculating a single position with the most
probable latitude taken as if it were the true latitude.’

It may well be wondered what were the circumstances which
led Sir William Thomson to interest himself in navigational
affairs. He was a keen yachtsman; he was a brilliant mathemati-
cian and natural philosopher; and he was gifted in having a great
natural ability not only to discover scientific principles, but also
to put principles into practical use. His work in connection with
the sounding machine and the magnetic compass is proof enough
of this.

Thomson, in his role as scientific adviser to the Atlantic Tele-
graph Company, gained first-hand experience at discovering and
learning about some of the problems which faced navigators of
the time. He relates, in the paper mentioned above, how he first
learnt Sumner’s method of navigation in 1858 from Captain
Moriarty on board H.M.S. Agamemnon. He informs us that
Moriarty used the method regularly in the Atlantic Telegraph
expeditions of 1858 and 1865-1866.

Thomson pointed out that very little experience at sea suggested
the desirability of abolishing calculations as far as possible in the
ordinary day’s work. His own words are interesting:

‘... When we consider the thousands of triangles daily calcu-
lated among all the ships at sea, we might be led for a moment
to imagine that every one had been already solved, and that
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every new calculation is merely a repetition of one already
made. But this would be a prodigious error; for nothing short
of accuracy to the nearest minute in the use of the data would
thoroughly suffice for practical purposes. Now there are 5,400’
in 90° and therefore there are 5,400 or 157,464,000,000 tri-
angles to be solved for a single angle. This at 1,000 a day would
take 400,000 years. Even with an artifice such as that to be
described below, for utilizing solutions of triangles with their
sides integral numbers of degrees, the number to be solved
(being 90° or 729,000) would be too great, and the tabulations
of the solutions would be too complicated (on account of the
trouble of entering for the three sides) to be convenient for
practice; and tables of this kind which have been actually cal-
culated and published (as for example Lynn’s Horary Tables of
1827) have not come into general use.’

It occurred to Thomson that, by dividing the problem into the
solution of two right-angled triangles, the ship’s position could be
found without recourse to calculation. Thomson’s method,
whereby the PZX triangle is split into two right-angled triangles,
is the first of numerous methods in which the same technique is
employed.

John Thomas Towson, a figure famous in the last century in
British mercantile marine circles, is credited with being the first
to divide the spherical triangle used in great-circle sailing into
two right-angled triangles, and to produce a tabular method for
solving great-circle sailing problems. Towson’s Tables to Facili-
tate the Practice of Great-Circle Sailing were first published in
1847.

Course angles in great-circle sailing correspond to hour angles
and azimuths in nautical astronomy, so that Towson’s tables could
be (and were in later years) adapted for astronomical problems.

Thomson’s method is described with reference to Fig. 1.

In Fig. 1let O be a point on PZ (or PZ produced) where XO is
an arc of a great circle perpendicular to PZ (or PZ produced).

Using PX and angle P in the right-angled triangle XPO,
PO and XO may be found. Arc ZO may be found by taking the
difference between PZ and PO.

With ZO and OX, in the right-angled triangle XOZ, ZX, the
zenith distance, and XZO, the azimuth, may be found.
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Suppose now that the solution of the right-angled triangle XPO
for PO and XO, to the nearest integral number of degrees, would
suffice. Further, suppose PZ to be the integral number of degrees
nearest to the estimated co-latitude; then ZO will also be an
integral number of degrees. Thus, the two right-angled spherical
triangles XPO and XZO each have arcs of integral numbers of
degrees for legs.

Thomson found that the two steps indicated above can be so
managed as to give, with all attainable accuracy, the whole infor-
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FIGURE 1

mation deducible from them regarding the ship’s position. It
followed, therefore, that the necessity for calculating the solu-
tions of spherical triangles in the ordinary day’s work at sea is
altogether obviated provided that a convenient table of the solu-
tions of no more than 903, i.e. 8,100 triangles is available.

Thomson, together with Mr E. Roberts of the Nautical Alma-
nac office, put the necessary calculations in hand with a view to
publishing a table in order to facilitate the solution to the problem
of finding a ship’s position from astronomical observations. These
tables, entitled, Tables for Facilitating Sumner’s Method at Sea,
appeared in 1876.

Thomson’s tables are arranged with all the values (to integral
degrees from 0° to 90°) for the side ZO denoted by b, in the right-
angled spherical triangle ZOX, in a vertical column at the head
of which is written the value of XO denoted by 4, the perpendi-
cular dropped from the observed body on to the observer’s celes-
tial meridian. On the same level as the value of 4, in the column
corresponding to , the table shows the value of the co-hypotenuse
and angle 4 opposite to side a.
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By clever design the tables are amongst the briefest of those
produced for the same purpose. The rules for using them are,
however, complex; and it is little wonder that the tables were not
popular amongst seamen. The remarks of a reviewer, made in the
Nautical Magazine of 1876, are interesting:

‘We cannot but admire the ingenuity and mathematical talent
in the method now proposed by Sir William Thomson, and also
in the construction of the tables. But truth compels us to state
that our admiration of the work must cease there. Indeed, we
are surprised that so much talent and ingenuity should have
been expended in a problem which admits generally of such an
easy solution, and by the means of any of the usual epitomes in
daily use by navigators.

‘It appears that the author has endeavoured by the method
now proposed to disguise the problem as much as possible;
and, instead of it appearing to the navigator as a plain straight-
forward question, easy of solution, it would appear to the plain
sailor as something very mysterious. ...’

The rules for using the tables are indeed complex; and this is
probably the reason why seamen, in general, found little or no use
for Thomson’s tables. The reviewer mentioned above regarded
the work, rather contemptuously, as ‘. . . a very pretty puzzle for
the amusement of the amateur nawgator

It was little realized at the time of the appearance of Thom-
son’s tables that the author had initiated a new epoch in the prac-
tice of astronomical navigation. In the paths that the brilliant
Thomson had trodden, others followed. Not many decades were
to pass before a veritable spate of short-method tables appeared
for the approval of the seaman.

A few years after the first publication of Thomson’s tables, a
Russian mathematician and astronomer named Kortazzi produced
a modified version of Thomson’s tables; but these, like those of
the originator, found no favour with seamen. Kortazzi’s work,
entitled Modification des Tables d’Azimuth de Thomson, was
published in Paris in 1880.

In aninteresting paper published in Vol. 4 (1951) of the Journal
of the Institute of Navigation, by Captain F. Radler de Aquino of
the Brazilian Navy, a pioneer in short-method tables, Sir William
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Thomson is described as being the first to use Greenwich Hour
Angle (G.H.A.) and assumed positions. Aquino points out that
Thomson’s table, although more naturally arranged for finding
altitude (or zenith distance) and azimuth, is based on Sumner’s
method, in which Local Hour Angle (L.H.A.) and azimuth are
required. In this connection it is not without interest to note that
Thomson’s tables, although not published until 1876, were de-
vised and described at least four years before Marcq St. Hilaire
described his remarkable and far-reaching intercept method in an
article in Revue Maritime et Coloniale.

An interesting navigational method was published in 1873 by
the Italian G. F. Martelli.

Martelli’s original work, entitled Tables of Logarithms, con-
tained no more than forty-nine small pages comprising five logar-
ithmic tables. It appears that Martelli never divulged the prin-
ciples upon which his tables are based, thus earning for them the
appellation ‘Martelli’s Mysteries’, by which the tables generally
became known by British seamen.

Martelli’s tables became very popular, and numerous editions
have been published. Their popularity remains, and many present-
day navigators employ them for solving their Sun- and star-
sights,

Martelli’s method was designed for finding the angle P of the
PZX triangle. The formula used was arranged to simplify tabu-
lation and arithmetic. Although accuracy is not high, the tables
are handy and nicely arranged, and the solution of the angle P is
speedy. The rules for using the tables are simple and the solution
is obtained from six inspections of the tables. The principal dis-
advantage of the early editions of Martelli’s tables was that no
means were provided for finding the azimuth of the observed
object. This deficiency was overcome on the later editions of the
tables.

Volume three of the Admiralty Manual of N avigation describes
the quantities tabulated in each of Martelli’s five tables. A mere
glance at these descriptions is sufficient to indicate the com-
plexity and apparent mystery of Martelli’s methods.

We have mentioned in Chapter II, Wakeley’s The Mariner’s
Compass Rectified, first published in 1665. The principal table in
this work, which ran into numerous editions, is to be regarded as
the first table of Sun’s true azimuth.
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Thomas Lynn, whose Horary Tables we have described, pub-
lished a comprehensive azimuth table, for use with the Sun, in the
year 1829,

‘The most famous of all azimuth tables, are those computed by
Staff Commander John Burdwood, R.N., first published in 1852.
Burdwood’s Tables of Sunm’s True Bearing or Azimuth were
enlarged in 1858, 1862, 1864 and 1866.

Captain J. E. Davis, R.N. (d. 1877) who distinguished himself
in various nautical subjects, is best known through the famous
azimuth tables that bear his name. For many years Captain Davis
served in the Hydrographic Office of the Admiralty. His valuable
azimuth tables, giving azimuths of the Sun for values of latitude
and declination in one-degree steps, and values of local hour angle
in four-minute intervals, were computed by Davis and his son
Percy L. H. Davis. Davis’s azimuth tables were first published in
1871.

In 1890, Captain Patrick Weir’s azimuth diagram was pub-
lished. This diagram appears to have been a favourite among
Royal Naval officers, and its principles and use are still described
in the current Admiralty Navigation Manual.

Perhaps the most popular azimuth tables, especially in the
British Merchant Navy, are the 4, B and C Tables which we
have described in Chapter VII. These tables, like other azimuth
tables, are used not only for finding azimuths for the purpose
of finding the error of the magnetic compass, but also for finding
the direction of a position line obtained from an altitude obser-
vation.

Percy L. H. Davis published his Altitude- Azimuth Tables in
1917 and 1921. In this work, azimuths and corresponding alti-
tudes are tabulated together. These tables are especially useful for
star identification.

Whilst Chief Assistant at the Nautical Almanac Office, Percy
L. H. Davis published his Chronometer Tables in 1897. These
tables were designed for use with the Sun for latitudes up to 50°
N. and S. Later, the tables were extended for use with all celestial
bodies regardless of their declination. The chronometer tables
are arranged so that each whole degree of latitude within the
limits of the tables appears on an opening, with all declinations
up to 24°, There are thirty selected altitudes suitable for a.m.
sights of the Sun. The table is arranged as follows:
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Lat. 37°
same Dec. ©19° name

Alt, hrs. mins. secs. A L D
400 3 34 52 ~51 | —06 +27
41° | 3 29 50 ~51 ~0-6 +2.7

The columns headed A, I, and D, are the variations in hour
angle for 1’ in altitude, latitude and declination respectively. These
values are used to facilitate interpolation. A ready reckoner is pro-
vided with the tables in order to save the trouble of multiplication
when interpolating.

The longitude of the point through which to draw the position
line is found by inspection right away. Separate azimuth tables
are required to find the direction of the position line. An alterna-
tive method, often recommended, of laying down a position line
using Davis’s Chronometer Tables, is to work out two longitudes
corresponding to two integral latitudes differing by 1°. This
method obviates the need for azimuth tables.

In 1905, Davis published his Requisite Tables. These tables
contained all the mathematical tables required for the practice of
astronomical navigation using the cosine-haversine method of
sight reduction. They included tables of logarithms of numbers,
and logarithms of sines, tangents, etc. The unique feature of
Davis’s tables is the table of logarithmic and natural haversines,
placed in juxtaposition in a combined table. This innovation,
which proved immensely valuable for solving sights by means of
the long methods, was introduced by Davis, who, in the preface of
his Regquisite Tables made the modest observation:

“The table of logarithmic and natural haversines will be found
to save entering the tables in cases where the log. and nat.
haversines of the same angle are needed.’

The comments on the number of decimal places in mathe-

matical tables for navigational purposes made by Davis in the
22
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Preface to his Requisite Tables, are of great interest. Davis informs
us that:

‘.. . in deciding this [the number of decimal places] the author
has been guided by the following considerations.

‘If all logarithmic work were done without interpolation,
it would be as easy to deal with six as with five places of
decimals. . ..

‘Signor Boccardi, writing exhaustively on the subject of com-
putation, quotes Gauss, the German mathematician, who says
that the time occupied in a calculation when using five, six, and
seven places of decimals is in proportion to one, two, and three,
adding as to speed that his own experience indicates one, two,
and four as possibly a more correct ratio. On the point of accu-
racy it must be remembered that the chronometer is the ulti-
mate datum of all nautical calculations, and that the seconds are
not trustworthy to a unit. Now, in the log haversines, the fifth
figure of the log decides the second of time up to 8 hours. . ..
There is nothing new in the suggestion now put forward that
five-figure logarithms are sufficient for seamen’s use; so long ago
as 1781 it was stated by Nevil Maskelyne that five-figure
logarithms were abundantly sufficient for the general purposes
of navigation, and that sines alone were needed to six places;
and it is probable that had it not been for the importance at that
time attached to the lunar problem, six-figure logarithms would
never have come into general use. . , .’

Davis’s Chronometer Tables, like those of Lynn’sand Hommey’s,
met with little success. The utility of the table was discounted by
the necessity of making separate adjustments for the odd minutes
of the latitude, declination and the altitude, so that a computer
using the tables was sometimes left in some doubt whether the
measure of the saving of time and trouble enjoyed was not a some-
what problematical quantity. In other words, Davis’s inspection
method is little, if at all, better than the normal method in which
logarithmic trigonometrical functions tables are used. Interpola-
tion in tables was, and still is, regarded as being an undesirable
process in the minds of most seamen.

It is in the general absence of interpolation that the advantage
of the intercept method of sight reduction consists from the point
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of view of a short-method table maker. The important feature of
the intercept method, in this connection, is that one may work
from any position in the vicinity of the D.R. position, without loss
of accuracy in the final result.

An inspection table constructed for each integral degree of lati-
tude and longitude (or every four minutes of hour angle) renders
it possible to eliminate the need for interpolation in latitude and
hour angle, leaving only interpolation for declination. In other
words, by choosing a position, the latitude and longitude of
which give integral numbers of degrees to work from, only a third
of the interpolation normally required is necessary.

The Rev. Frederick Ball, an instructor in the Royal Navy, is
credited with being the first to produce a set of inspection tables
based on the above principles. Ball perceived that since in the
Marcq method the observer may take any position near the D.R.
position of the ship, it is possible so to choose the position for
solving the sight as to have always an integral number of degrees
of latitude and hour angle. Ball’s work, entitled Altitude or Posi-
tion-Line Tables, first published in 1907, gave altitudes for each
integral degree of latitude and declination. Interpolation was
necessary only for odd minutes of declination, the correction for
these being effected by means of a small supplementary table.
The longitude used is chosen so that the angle P is a round four
minutes in time.

A second edition of Ball’s tables appeared in 1910. A reviewer
of the tables, writing in the Nautical Magazine of 1911, expressed
the opinion that:

‘Mr Ball is probably the first compiler of tables of this nature
who has succeeded in gaining for his work the distinction of
passing into a second edition.’

A third edition of the tables was published in 1915.

H. B. Goodwin’s comments on Ball’s tables are interesting.
The following remarks are contained in an article which appeared
in the Nautical Magazine of 1912:

‘But probably the simplest and most complete work of this
nature is that published by Mr F. Ball. Mr Ball boldly taking
the bull by the horns, has worked out the altitude for each
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degree of latitude and declination and for 4 minutes of HA,,
within the limits 0° to 60° both in latitude and declination.
Mr Ball’s work might perhaps be accepted as representing the
very latest word in table construction, so far as the majority of
people are concerned, but for one rather serious objection,
which arises from the very completeness with which the task
has been carried out. To place on record the result of the solu-
tion of so vast a number of triangles involves a very large
amount of space, and three bulky volumes with a total of nearly
800 pages in all are therefore required. Each volume being
priced at 15 shillings the cost of the whole work is upwards of
£2—a sum which must be considered prohibitive in the case of
a majority of those in whose interests the tables have been
calculated.’

Another opinion of Ball’s tables made by Céiptain H. S. Black-
burne, which appeared in the Nautical Magazine of 1911, is
interesting. Captain Blackburne wrote:

‘... In the navy where all the officers have been imbued with
what is termed the “new navigation,” Mr Ball’s book will, of
course, be much appreciated and very generally used, as I pre-
sume that his work will be supplied to each of H.M. ships; but
in the Merchant Service (except perhaps in the case of specially
liberal companies or ship-owners) it can hardly be expected that
ship-owners will supply the work to their ships, and not many
officers and masters even, will feel that they can afford to buy a
set at 45 shillings when they can get the same results by the aid
of other tables with equal rapidity and at less than quarter the
cost.’

Blackburne himself published in 1914, his Excelsior Azimuth
and Position-Finding Tables. These tables provided a solution to
the longitude by chronometer problem, the method employed
generally by seamen in the merchant service.

A French professor of hydrography named Souillagouet, is
credited with being the first to devise navigation tables based on
the division of the PZX triangle by dropping a perpendicular
from the zenith on to the hour circle of the observed body. Souil-
lagouet’s tables, entitled Tables du Point Auxtlaire, were published
in 1891.
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Bertin, another Frenchman, devised tables similar to those of
Souillagouet. Bertin’s tables entitled Tablette de Point Sphérique
were published in 1919. ’

Captain Guyou of the French Navy produced an original work
in 1914 entitled Nouvelles Tables de Navigation which was pub-
lished in Paris. The central notion in Guyou’s tables is ‘reduction
to the equator.’ Instead of calculating the altitude directly, Guyou
finds from Table 1 such values for a new declination and altitude
as at a place on the equator would give the actual values of hour
angle and azimuth at the time and place of the observation.
Table 2 is entered with arguments declination obtained from
Table 1 and same hour angle as before. At a single opening the
calculated altitude is obtained.

Guyou’s tables contained 700 pages in two bulky volumes.
~ Lieutenant (later Vice Admiral) Radler de Aquino of the Brazi-
lian Navy ranked as a great authority on short-method tables.
He first published his famous Altitude and Azimuth Tables,
which he described as the ‘ Simplest and Readiest in Solution,’ in
1907.

Aquino’s tables were designed for use with the intercept
method. In this process the zenith distance of the observed object
is found using the sides PZ and PX and the included angle of the
astronomical triangle. Aquino’s aim was to provide a means of
dispensing with logarithms and with a limited amount of inter-
polation to determine the zenith distance and the azimuth of the
observed object at an assumed position.

Aquino’s tables are based on the splitting of the PZX triangle
into two right-angled triangles by dropping a perpendicular great
circle from the observed object on to the side PZ or PZ produced.
It follows that while Ball’s tables involve the three arguments—
latitude, declination and hour angle—Aquino’s tables involve only
two; and the tables, therefore, are much less voluminous than
those of Ball’s,

Aquino’s original tables have much in common with Towson’s
tables for facilitating great-circle sailing; but Towson’s tables pro-
ceed for each whole degree of latitude (of the vertex) whereas
Aquino’s proceed by half degrees.

The Rev. William Hall, in an article entitled ‘The Newest
Navigation’ which appeared in the Nautical Magazine for 1910,
described Aquino’s tables in the following terms:
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‘De Aquino’s tables are beautiful in theory and excellent for a
skilled man. I have rarely been so pleased as when I got a copy.
But I dare not affirm that everyone will take the trouble to learn
them, and they need clear understanding. . . .

‘... The direct method in Davis’s [Chronometer Tables] as
well as Ball’s [Altitude and Position-Line Tables] is satisfac-
tory, because you know exactly what you have got. On the other
hand, solutions depending on splitting up the PZX triangle into
two right-angled triangles must always have a variety of cases,
and you cannot avoid this, because sines and cosines are what
they are.’

Aquino’s tables form, in effect, a spherical traverse table for the
right-angled triangles PMX and ZMX, M being the foot of the
perpendicular from X on to the observer’s celestial meridian. The
side MX, being common to both triangles, acts as a link.

The Rev. Hall informs us that it took him ‘a whole afternoon’
to understand the tables thoroughly, and it was not until he had
altered all the headings of the tables that he felt he could use them
properly. His advice to prospective users of Aquino’s tables was
to alter the headings as he had done.

Aquino brought out several editions of his tables (there were
three British editions published in 1910, 1912 and 1924) and they
have been popular amongst navigators who employ the intercept
method of sight reduction. They have never been popular in the
merchant service, the British merchant naval officer having a pre-
dilection for the longitude by chronometer method worked out
using logarithms.

A compatriot of Aquino, Lieutenant Raul Romeo Braga of the
Brazilian Naval College proposed, in 1912, a method for finding
zenith distance which impressed H. B. Goodwin. Goodwin was
granted permission by Braga, and proceeded to prepare the table.
Braga proposed to proceed by way of sines, but Goodwin adopted
the method to the haversine.

From the well-known formula:

Hav ZX = hav (PX~ PZ)+sin PX sin PZ hav P

Goodwin deduced the following formula:
hav ZX = hav (PX ~ PZ) cos? P2+ hav (PX + PZ) hav Ij

¢ 0
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The two expressions for ¢ and 6 are tabulated in the one case
for (PX ~PZ) and P, and in the other for (PX + PZ) and P, the
natural haversine of the zenith distance being given by the sum of
the quantities extracted from the table. To keep the tables within
reasonable limits in point of size, Goodwin proposed calculating
for even degrees, and employing artifices to render interpolation
unnecessary.

Braga himself had tables entitled Taboas de Alturas published
in Paris in 1924. Braga’s tables are based on the relationship:

havalt. = A+ B
where
A = hav P—f{hav (L + D) hav P}
and
B = hav (L~ D)~t{hav (L~ D) hav P}

Goodwin published The Alpha Beta Gamma Navigation Tables
in 1921. This work, comprising two tables in no more than thirty-
four pages, is adapted for finding the hour angle; but instructions
are given for finding the intercept as well. Goodwin included in
his Alpha Beta Gamma Tables, a Rust Azimuth Diagram.

Captain A. Rust of the United States Navy is the author of
Practical Tables for Navigation and Aviation published in Phila-
delphia in 1918. Rust’s tables for finding hour angle are based on
the formula:

log hav P = log sec L +log sec D +log % cos (L~ D)—sin P

He included in his tables an azimuth diagram, referred to above,
based on the formula:

sin Z = sin P cos dec sec alt

which had first been published in a set of ex-meridian tables in
1908.

An interesting navigational method based on the Marcq St
Hilaire principle of position-line navigation was published in
1920 by the Hydrographic Department of the Japanese Navy.
This publication, the title of which is New Altitude and Azimuth
Tables between Latitude 65° N. and 65° S. For the Determination of
the Position Line at Sea, was the work of S. Ogura of the Japanese
Navy.

In using the tables of Ball’s or Aquino’s the navigator makes use
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of a chosen position having an integral number of degrees of lati-
tude and a longitude which yields an hour angle of an integral
number of degrees. The same idea is used in the Ogura method
which is now to be described.

If H, ¢, d and h represent altitude, latitude, declination and
hour angle respectively, we have, from the fundamental formula
of spherical trigonometry:

sin H = sin ¢ sin d + cos ¢ cos d cos k

Assume that:
Asin K = sin ¢ N )

AcosK =cosdcosh . . . . (2
so that

) sin H = Asin Ksind+ 4 cos K cos d
- sin H = A cos (K +d) )
From (1) and (2) we may obtain by division:

tan K = tan ¢ sec k N )]
If K is thus found, 4 may be found from (1) thus:

A = sin ¢ cosec K
If 4 and K are known, H may be found from (3):

sin H = 4 cos (K +d)

For the purpose of his table, Ogura expressed equation (3) as:

cosec H = llqsec (K+d)

From which:

log cosec H = log %-&- log sec (K + d)

Ogura’s table gives for each whole degree of latitude and hour
angle corresponding values of log 1/4 and K, the values of log 1/4
being magnified by 100,000.

A fragment of Ogura’s original table is reproduced:
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H.A. 45° H.A. 46°
Lat 1 1 K 1 —1- K
: %8 ¢ 7
34° 9143 43° 39’ 9544 44° 09’
35° 8875 44° 43/ 9262 45° 14
36° 8607 45° 47’ 8970 46° 17’

Ogura’s method was a distinct advance in navigation tables. To
find the required altitude at a chosen position, all that was neces-
sary was to lift log 1/4 and K from the table: combine K with the
declination (sum when latitude and declination are of different
names, and difference when they have the same names) and add
to log 1/A4 the log sec (K + d) to give the log cosec of the altitude.

The principal feature of Ogura’s method is its conciseness, and
the table involves complete freedom from interpolation. The table
embraces all latitudes up to 65°, and is contained in small compass.

H. B. Goodwin, in describing Ogura’s table in the Nautical
Magazine of 1921, suggested that a table on the Ogura model
might well be included in Inman’s or Norie’s tables.

In 1924 a table entitled Short Method for Zenith Distance, was
first published in Norie’s Nautical Tables. This table, popularly
known as 4 and K Tables was based on Ogura’s method. The most
recent edition of Norie’s Nautical Tables (1963) includes an im-
proved table based on Ogura’s method, but incorporating an
azimuth table as well as an altitude (zenith distance) table.

Concurrently with the publication of Ogura’s tables, a new
method of sight reduction was introduced by A. Yonemura of the
Japanese Navy.

Yonemura’s tables, published to facilitate his method, contain
logarithms of haversines and secants, arranged for the easy solu-
tion of the PZX triangle for altitude and azimuth.

Yonemura’s method is similar to the cosine-haversine method
of P. L. H. Davis which, since it was introduced in 1905 in Davis’s
Regquisite Tables, has formed the standard method of sight reduc-
tion in the Royal Navy. Davis’s method is based on haversines and
cosines, in the formulae: ‘

hav z = hav (L+D)+hav §
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where
hav 6 = cos L cos D hav P

Yonemura’s formulae, in contrast, are:

1 1
m = sec L sec D (m)

hav 8 = cos L cos D hav P

where

Whereas in Davis’s method additional azimuth tables are neces-
sary to find the azimuth of the observed body, Yonemura included
in his tables a table for finding azimuth based on the formula:

sin Z = sin P cos D sec alt

Since 1920, numerous navigational tables have been designed
to facilitate the solution of the PZX triangle; and there seems to
be no limit to the ingenious mathematical and tabular artifices that
may be employed to produce navigation tables different from any
that have been produced before.

Notable tables are Hughes’ Tables for Sea and Air Navigation
first published in 1938, and produced by Dr L. J. Comrie while
Superintendent of the Nautical Almanac Office.

Comrie’s method is similar to that of Ogura’s. The tabulated
quantities were mechanically computed and the tables are skil-
fully designed. In a tribute to Comrie following his death in 1950,
D. H. Sadler considers these tables to be ‘ probably the finest book
of navigational tables of their type.’

4. GRAPHICAL SOLUTIONS OF THE PZX TRIANGLE

In addition to tabular methods, several graphical and mechanical
solutions of the PZX triangle have been devised.

The use of the stereographic and gnomonic projections of the
sphere have been suggested and used in many cases to facilitate
the solution of spherical triangles. The principal property of the
gnomonic projection is that all great circles are projected as
straight lines. That of the stereographic is that all circles—great
and small—are projected as circles or straight lines. The earliest
use to the mariner of these projections was for solving great-circle
sailing problems, but they were later suggested for solving PZX
triangles.

|
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Hugh Godfray is usually credited for inventing the method of
solving great-circle sailing problems by means of a gnomoruc
chart, although the method was described by Samuel Sturmy in
his Mariner’s Magazine as early as 1679. Sturmy wrote as follows:

‘You may set down (on slate) therein the two places you are to
sail between according to their latitudes and longitudes, and
then only by your ruler draw a straight line which will represent
the great circle which passeth between those two places, and will
cross those degrees of latitude and longitude which you must
sail by.’

Sturmy gave in his book a blank chart on the gnomonic pro-
jection in the quadrant form having a radius of 6} inches. For
illustration he laid down the great circle between Lundy Island in
the Bristol Channel to Barbados, and from it he tabulated the
latitudes for every 5° difference of longitude, and finally compared
the tabulated with the computed values to show their correctness.

Hugh Godfray of St. John’s College, Cambridge, designed a
“Time-Azimuth Diagram’ based on the gnomonic projection
which was published in 1858.

We have already mentioned the time azimuth diagram of
Captain Patrick Weir which was published by the British
Admiralty in 1890. Weir’s diagram, which is still obtainable and
still used at sea, is one on which hour angles and latitude parallels
are represented by confocal hyperbolae and ellipses respectively.

In 1896, F. A. L. Kitchin, a Naval Instructor of the Royal Navy,
designed an original altitude-azimuth diagram which the author
claimed to be simpler to use than Weir's diagram. Kitchin
described his diagram in the Nautical Magazine of 1896. In the
same year T. Wood Robinson, also a Royal Naval instructor, de-
vised a ‘New and Simple Chart for Time Azimuth’ which he
described in the Nautical Magazine.

Molfino and Alessio of Italy designed azimuth dlagrams in 1901
and 1908 respectively.

Lieutenant A. Rust of the United States Navy published in
1908 his Ex-meridian Altitude, Azimuth and Star-Finding Tables in
which two diagrams, one an altitude azimuth and the other a time-
azimuth diagram, were included. Many other azimuth diagrams
have been produced in addition to those mentioned above.
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As well as graphical solutions for azimuths, several interesting
graphical solutions for hour angle and zenith distance (or altitude)
have been devised.

An early graphical solution for hour angles and altitudes, as
well as for azimuths, was suggested by Margetts in his Horary
Tables of 1790 which were designed for:

‘shewing by inspection the Apparent Diurnal motion of the
Sun, Moon and Stars the Latitude of a ship and the Azimuth,
Time, or Altitude corresponding with any celestial Object.’

Graphical methods for solving the PZX triangle may be divided
into two classes:

1. Those in which geometrical constructions are made in order

to find the required quantities.

2. 'Those in which diagrams are used from which the required

quantities may be obtained by inspection.

The latter methods have one obvious advantage over the
former; and, during the latter part of the 19th century, several
suggestions were made for diagrams from which the solution of
the PZX triangle may be made by inspection. Notable in this
connection was M. Maurice d'Ocagne whose diagram, which was
published during the closing decade of the last century, was based
on the all-haversine formula.

The d’Ocagne diagram consists of a square the sides of which
are graduated in haversine 8 from 6 = 0°to § = 180°. The basis
of the principle whereby altitudes and azimuths may be found by
its use is expressing the all-haversine formula as an equation of a
straight line,

G. W. Littlehales of the United States Hydrographic Depart-
ment, whose name was well known in connection with original
work on nautical astronomy and navigation, employed similar
principles to those used by d’Ocagne in devising his Altitude-
Azimuth and Hour Angle Diagram which was published by the
U.S. Navy Hydrographic Office in 1917. Littlehales, like
d’Ocagne, adapted the all-haversine formula for the purpose.

The denominator in the ordinary haversine formula for calcu-
lating an angle given three sides, is a product of two sines. This
may be expressed in terms of a difference of two haversines, as
follows:
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sin 4 sin B = }(2 sin 4 sin B)

= }{cos (A —B) cos (4 + B)}

= 4[{1—cos (4 + B)} - {1 —cos (4 — B)}]

= hav (4 + B)—hav (4—B)

so that for the PZX triangle:

hav z—hav (p~¢)

hav P = v (o) —hav(p~5)

or
hav z—hav (p~c) = {hav(p+c)—hav(p~c)lhavP . (1)
in which:
2 = ZX = (90°—altitude)
¢ = PZ = (90° - latitude)
? = PX = (90° + declination)

Now, if p and ¢ are regarded as constants, formula (1) takes the
form:

y=mx+tc

which is the general form of the equation of a straight line.

It follows, therefore, that on the d’Ocagne diagram a straight
line may be drawn which, for given values of p and ¢, will form a
link connecting values of P and z for all values of P between 0°
and 180°.

The straight line may be determined by putting P = 0° and
P = 180° in formula (1), as follows:

If P = 0° hav P = 0. Putting this value for hav P in (1) we
have:

havz = hav(p~c) and =z = (p~c)

If P = 180° hav P = 1. Putting this value for hav P in (1), we
have:

havz = hav(p+c¢) and =z = (p+¢)

When P is 0° and 180°, the body is at upper and lower transit
respectively, so that by marking on the margins of the diagram,
and then joining, points corresponding to the meridian zenith
distances at upper and lower transits, a straight line is obtained
which connects hour angle and zenith distance for every instant
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between P = 0°and P = 180°. If, therefore, one of these is given
the other may be found by inspection.

In a similar manner, using the zenith distance and co-latitude,
a straight line may be drawn on the diagram which links p and 2
for all values of Z between 0° and 180°.

For finding zenith distances, the scale of the diagram would
have to be very large for the diagram to give results to the required
degree of accuracy; but, for azimuths, a relatively small scale
would be sufficient.

N

P

BP

Bf &—Xx
w 7 E
E

S
FIGURE 2

An ingeniously contrived graphical method for solving spheri-
cal triangles was produced in 1892 by Favé and Rollet de I’Lisle.
An account of their diagram appeared in the Annales Hydro-
graphiques, a translation of the account being made for the
. Nautical Magazine of 1892,

The Favé and Rollet de I’Lisle diagram is based on the splitting
of the PZX triangle by a perpendicular from the observed object
on to the observer’s celestial meridian.

Fig. 2 represents the celestial sphere drawn on the plane of the
celestial horizon of an observer whose latitude is equivalent to the
arc NP. Pis the projection of the celestial poleand N, E, Sand W
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are the projected positions of the cardinal points of the celestial
horizon of the observer whose zenith is projected at Z. WQE is the
projection of the equinoctial and X is that of an observed celestial
body. Arc XB is a great circle through X which crosses the
observer’s celestial meridian at right angles at B.
The formulae connecting P, PB (8), BX («) and PX (p) in the
triangle PBX are:
cos p = cos & cos B R ¢

cot P = cot a sin g A V4]

By giving p selected values (say every 10° from 0° to 90°) a
series of curves representing equation (1) may be plotted.

Similarly, by giving P selected values (say every 10° from 0° to
90°), a series of curves representing equation (2) may be plotted.

The two series of curves form a lattice of curvilinear quadri-
laterals, the curves, in effect, being projections of hour circles and
parallels of declination on the plane of the diagram.

In a similar manner, the right-angled triangle BZX is dealt
with. Solution for zenith distance and azimuth is made in two
steps. A Favé diagram covers an eighth of a sphere, so that, for
full coverage, four diagrams are required.

Another interesting graphical method, published by George
Littlehales of the United States, is based on the stereographic pro-
jection of a model globe of radius 6 feet. The projection is divided
into several sheets which are bound together; and, although the
work is bulky, accuracy to minute of arc is possible.

Commander Baker of the British Royal Navy invented a navi-
gation machine employing prepared altitude curves which are
traced on a transparent tape wound on two rollers. The tape,
which moves across a Mercator plotting chart, is marked with
altitude curves for a series of suitable stars. Several tapes are pro-
vided, each occupying a 4° range of declination from 0° to 24° N.
and S.

The fact that latitude and Local Sidereal Time are defined by
simultaneous altitudes of two celestial bodies of given declinations
and Sidereal Hour Angles led to the invention in 1924 by Beij of
the U.S.A., of the Two Star Diagram, on which latitude and
L.S.T. are abscissae and ordinates respectively. Curves on the
diagram correspond to altitudes of selected stars. Simultaneous
observations of the altitudes of the two stars enables the observer
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to find, by inspection, the latitude and L.S.T. The longitude is
found by taking the difference between the Local and the Green-
wich Sidereal Times.

Captain P. V. H. Weems of the United States Navy devised his
well-known Star Altitude Curves on similar lines to those of Biej.
Weems’s Star Altitude Curves, which first appeared in 1928, are
plotted on a chart on which the latitude scale conforms with that
on a Mercator projection, so that the azimuth of the body is at
every point at right angles to the tangent to the curve at the point.

Star altitude curves placed on a film and projected on to a
plotting sheet form the basis of the ‘ Astrograph’ designed for air
navigation in the early part of the Second World War by Pritchard
and Lamplough of the Royal Aircraft Establishment.

5. MECHANICAL AIDS TO CALCULATION

The slide rule has been put to good service for the purpose of
solving navigational problems. This marvellous device was in-
vented in England and, according to de Morgan:

‘for a few shillings most persons might put into their pockets
some hundred times as much power of calculation as they have
in their heads: and the use of the instrument is attainable with- -
out any knowledge of the properties of logarithms on which the
principle depends.’

Edmund Gunter is credited with the invention of the straight
logarithmic scale, by means of which calculations were made with
the aid of a pair of compasses.

The principle of the slide rule is that the logarithm of a product
of two numbers is equal to the sum of the logarithms of the num-
bers. Thus, if two successive segments are set off along a straight
line, of lengths equal to log 4 and log B on a given scale, their sum
is the log of the product of 4 and B on the same scale. Edmund
Gunter’s ‘line of numbers,” on the scale which bears his name, is
based on this principle. The ‘line of numbers’ is a scale from one
end of which are set off lengths proportional to the logarithms of
numbers between 1 and 10. The addition and subtraction of
lengths in the scale is equivalent to multiplication and division of
the corresponding numbers, and was effected by the aid of a pair
of compasses. Gunter’s scale has, in addition to the ‘line of num-
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bers,” other scales showing the logarithms of trigonometrical
functions used in navigation.

The straight logarithmic slide rule is the invention of William
Oughtred (1575-1660), and dates from about 1620. Oughtred’s
slide rule superseded Gunter’s compasses by making two loga-
rithmically-divided Gunter’s scales slide one along the other.
Oughtred is also said to have: ‘... cast Mr Gunter’s scale of
numbers into a ring with another moveable circle upon it.”

The famous Newton is said to have used three parallel logarith-
mic scales for the purpose of solving cubic equations. He also made
the suggestion that a ‘runner’ would facilitate the use of the
logarithmic scales.

In 1903 the Rev. William Hall, the well-known naval instructor,
devised a slide rule for nautical astronomical purposes which was
referred to somewhat irreverently as ‘Mr Hall’s devil stick.’

Professor Charles Poor of the U.S.A. devised a circular slide
rule, which he called the ‘Poor line of Position Indicator,’ in about
1920.

In 1922 a position-line slide rule was invented by Captain L. C.
Bygrave. This slide rule was designed at the Air Ministry Labora-
tory in London, and was placed on the market by Messrs. Henry
Hughes & Son, the well-known nautical instrument makers.

The Bygrave slide rule is 9 inches long, 24 inches in diameter,
and weighs about 2 Ibs. Two scales are engraved, one on each of
two cylinders which slide relative to one another. The inner cylin-
der, from which the results are read, is graduated with logarithmic
tangents, and the spiral scale which is engraved on it is 24 feet
long, being divided to minutes of arc. The outer scale is graduated
with logarithmic cosines. Two pointers are provided on a third
sliding cylinder, one pointer for each scale. After a little practice
the determination of altitude and azimuth may be performed to an
accuracy of a minute of arc, in about two minutes.

Numerous attempts have been made to provide an instrumental
solution to the nautical astronomical problem. The globe of the
. early navigators marked the first navigational instrument that
could be adapted for this purpose. The fault with early globes was
the coarse degree of accuracy of the solutions obtained by their
use. However, of the many methods of getting an instrumental
solution of the PZX triangle, the most obvious is that by means of
an accurately made globe on which the geographical positions of

23
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observed objects may be plotted and arcs of circles of equal alti-
tude drawn, to intersect at the ship’s position. It is interesting to
note that as late as 1943 an American engineer, D. McMillen,
designed a globe of radius 7 inches, for this purpose.

The ‘modern’ machines which come into this category consist
of several graduated arcs, each representing one of the principal
circles of the celestial sphere, such as the equinoctial, celestial
meridian and vertical circle. The precision navigation machine,
designed in 1932 by the American Edward J. Willis, consists of
five such arcs. By setting them for any given three of the arcs or
angles of the PZX triangle, the required unknown parts may be
read off the appropriate scales. Willis designed several navigation
machines, in the latest of which three arcs only are used.

In 1936, Hagner of the U.S.A. designed a machine called the
Hagner Position Finder. This was designed on a principle used in
1895 by Lieutenant Beehler of the United States Navy. Beehler
invented an instrument called the ‘Solarometer’ which, as its
name suggests, was used to find position from Sun observations.
The Solarometer consisted of a bowl set in gymbals in which a
sighting and measuring device, forming in effect a miniature celes-
tial sphere, floated in mercury. By sighting the Sun, the model
sphere is automatically oriented to the celestial concave and the
Earth, this providing the means of finding terrestrial position.

In an interesting paper entitled Diagrammatic Solutions for
Astronomical Navigation, which appeared in Vol. 4 of the Journal
of the Institute of Navigation, Dr H. C. Freiesleben, of the Ger-
man Hydrographic Institute, described an astronomical computing
instrument made by Messrs. Zeiss and known as ARG. The basis
of the ARG is a stereographic projection of a hemisphere on the
plane of a celestial meridian. The declination and hour angle of
an observed body are set on the instrument by means of a micro-
scope and a cross-shaped micrometer. The projection is then
rotated so that the point initially representing the elevated pole
now represents the observer’s zenith. The body’s altitude and
azimuth are then read off on lines which initially represented
parallels of declination and hour circles but which now represent
parallels of altitude and vertical circles.
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Spherical astronomy

For purposes of nautical astronomy, the Sun, Moon, planets and
stars are imagined to lie on the surface of a sphere of infinite
radius known as the celestial sphere. w

Because the Earth spins, the celestial sphere appears to revolve
around the Earth; so that, in general, the celestial objects con-
tinually change their directions relative to both the observer’s
meridian and his horizon. That is to say, all celestial objects
change their altitudes and azimuths because of the Earth’s rota-
tion. When the apparent diurnal motion of the celestial bodies is
considered, the Earth is regarded as occupying the centre of the
celestial sphere.

The Earth not only rotates about her polar axis; she also revolves
around the Sun in a nearly-circular orbit taking a year to complete
one revolution. Because of the Earth’s revolution around the Sun,
the Sun appears to revolve around the celestial sphere, describing,
in the course of a year, a great circle which lies in the plane of the
Earth’s orbit around the Sun. This great circle is called the ecliptic.
When the Sun’s apparent annual motion across the background
of fixed stars is considered, the Sun is regarded as occupying the
central position of the celestial sphere.

The great circle on the celestial sphere which is co-planar with
the Earth’s equator, which is the great circle lying in the plane of
the Earth’s spin, is called the equinoctial. This great circle divides
the celestial sphere into the northern and southern celestial
hemispheres.

The equinoctial and ecliptic intersect at two diametrically op-
posed points on the celestial sphere which are known as the First
Points of Aries and Libra respectively. When the Sun occupies
either of these positions he moves from one celestial hemisphere
into the other. The days on which these events take place are
called the equinoxes.

For about three months following the spring equinox, at which
time the Sun crosses from the southern into the northern celestial
hemisphere, the Sun increases his angular distance north of the
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equinoctial. The day on which he changes his motion relative to
the equinoctial is called the summer solstice. After the day of the
summer solstice, the Sun moves towards the equinoctial, arriving
at the First Point of Libra about six months after leaving the
First Point of Aries on the day of the spring equinox. For about
three months after the day of the autumnal equinox, the Sun
moves southwards until the day of the winter solstice, after which
he moves towards the equinoctial, arriving at the First Point of
Aries about three months later.

The twelve constellations through which the Sun passes during
his annual apparent orbit are called the signs of the zodiac. These
constellations lie in the zodiacal belt; and the Sun occupies each
sign for a twelfth of a year.

The ancient astronomers of Babylon described the Sun’s posi-
tion in the celestial sphere relative to the First Point of Aries, the
arc of the ecliptic contained between the First Point of Aries and
the Sun being a measure of the Sun’s celestial longitude. The
positions of celestial bodies other than the Sun were denoted by
giving their celestial latitudes and celestial positions. The celestial
latitude of a celestial position is the arc of a secondary to the
ecliptic contained between the position and the ecliptic.

A more useful method of defining celestial positions is based on
the equinoctial instead of the ecliptic. The coordinates of a celes-
tial position using the equinoctial system are related to those used
to describe terrestrial positions. These coordinates are called
Right Ascension (R.A.) and declination. The Right Ascension of a
celestial position is a measure of the arc of the equinoctial con-
tained between the First Point of Aries and the celestial meridian
through the position. Celestial meridians are perpendicular to the
equinoctial just as terrestrial meridians are perpendicular to the
equator. Celestial meridians extend from the north to the south
celestial poles. The great circle on the celestial sphere which lies
in the same plane as the observer’s terrestrial meridian is called
the observer’s celestial meridian. 'That part of the observer’s celes-
tial meridian which extends from the elevated celestial pole
through the observer’s zenith is called the observer’s upper celes-
tial meridian. The other half, which extends from the elevated
celestial pole and passes through the point antipodal to the obser-
ver’s zenith, is called the observer’s lower celestial meridian.

The declination of a heavenly body is a measure of the arc of a
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celestial meridian between the body and the equinoctial. If the
body lies in the northern (southern) celestial hemisphere it is said
to have north (south) declination. '

The Sun’s declination is 0° on the days of the equinoxes. He
reaches his maximum north declination of 234° on the day of the
summer solstice, and his maximum south declination on the day
of the winter solstice.

Because the Moon revolves around the Earth and the planets
revolve around the Sun, the declinations and R.A’s of these
bodies continually change. The process of predicting the posi-
tions of the Sun, Moon, and planets involves accurate knowledge
of the orbital movements of the Moon and planets (including the
Earth). This knowledge, since the days of the famous Newton,
has been based on dynamical principles which enable astronomers
to compute ephemerides of the celestial bodies of the solar system.

Fixed points on the celestial sphere maintain their declinations
and R.A’s. Although stars are tremendously far from the solar
system, they have real movements. Moreover, the stars have
apparent motions due to the precession and nutation of the Earth’s
polar axis, to abberration, and to annual parallax.* The real mo-
tion, and the apparent motions of stars due to precession and
nutation, abberration and annual parallax, result in the celestial
positions of the stars changing, albeit very slowly. For practical
purposes, stars are regarded as having constant declinations and
R.A’s, over relatively short periods of time.

Because the Earth rotates she has gyroscopic inertia which re-
sults in her tending to maintain her plane of spin. Because of this,
the celestial bodies appear to sweep out diurnal circles in the
opposite direction to that of the Earth’s spin.

Every point on the Earth, except the extremities of her spin
axis, continually moves in a direction called east. The opposite
direction to east is west; and the directions which are 90° to the
left and right of east are called north and south respectively. The
directions E., W., N. and S. are called the cardinal points of the
compass. :

The natural compass of an observer is his celestial horizon. This
is a great circle which divides the celestial sphere into the visible
and invisible hemispheres. The pole of the visible hemisphere is
called the observer’s zenith. Semi-great circles which extend from

# For precession, see p. 123. For these other terms see pp. 105-6.
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the zenith, and which cut the celestial horizon at right angles are
called vertical circles.

The vertical circles through the N. and S. points of an obser-
ver’s celestial horizon lie in the plane of the observer’s celestial
meridian. All celestial objects that lie east of the observer’s celes-
tial meridian are rising objects, that is to say, their altitudes are
increasing. All celestial objects that lie west of the observer’s
celestial meridian are setting objects, that is to say, their altitudes
are decreasing.

The altitude of a celestial body is a measure of the arc of a
vertical circle contained between the object and the celestial hori-
zon vertically beneath the body. The azimuth of a celestial body
is a measure of the arc of the observer’s celestial horizon contained
between the vertical circle through the elevated pole, and the
vertical circle through the body. In other words, the azimuth of a
body is the angle at the observer’s zenith contained between his
upper celestial meridian and the vertical circle through the body.

The altitude and azimuth of a celestial body are coordinates of
asystem used for defining celestial positions. This system is called
the horizon system.

When a celestial body crosses an observer’s upper celestial
meridian, the object ceases to rise and commences to set. In other
words, the body reaches its greatest daily altitude. This altitude
is referred to as the body’s meridian altitude.

When an object attains its meridian altitude it is said to culmi-
nate. At the instant of culmination, the object has a Local Hour
Angle (L.H.A.) of 0° or 0 hrs.

The Local Hour Angle of a celestial body is a measure of the
angle at the celestial pole, or the arc of the equinoctial, contained
between the observer’s upper celestial meridian and the celestial
meridian of the object. When considering an object’s diurnal
motion, its celestial meridian is usually known as an kour circle.

The hour circle of the Sun may be imagined to sweep out an
angle of 360°, or 24 hours, in a day. This forms the basis of the
clock dial. When the Sun culminates, the time by a clock keeping
correct solar time is 12 o’clock. Twelve hours before the time at
which the Sun culminates he is at lower meridian passage, and the
solar day commences. Twelve hours after the Sun culminates the
solar day ends and the succeeding day commences.

Both R.A. and hour angle of a celestial body are measured as



SPHERICAL ASTRONOMY 347

arcs of the equinoctial, so that, when defining the celestial position
of a celestial body using the equinoctial system, hour angle may
be used instead of R.A.

The hour angle of a celestial body measured from the Green-
wich celestial meridian is called the Greenwich Hour Angle
(G.H.A)) of the celestial body.

The difference between the G.H.A. and the L.H.A. of a celes-
tial body at any instant is a measure of the longitude of the local, or
observer’s, meridian.

FIGURE I

The basis of finding terrestrial position by astronomical means
is the relating of the position of a celestial body for a particular
instant of time, using the equinoctial system of coordinates, and
its position for the same instant using the horizon system of
coordinates. This may readily be seen from Fig. 1.

Fig. 1 illustrates the celestial sphere with the Earth lying at its
centre; p is the Earth’s North Pole and qq, is the equator; P and
QQ, are the North Celestial Pole and the equinoctial respectively;
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o represents an observer whose zenith is at Z,; Z, represents the
zenith at Greenwich.

PG represents the Greenwich celestial meridian
PO represents the observer’s celestial meridian
PB represents the celestial meridian of body X

arc BX = declination of X

arc AX = altitude of X

arc co = arc QZ, = latitude of observer

angle Z,PX = L.H.A. of X

angle Z,PX = G.H.A. of X

angle gpo = angle Z_,PZ, = longitude of observer.

In the spherical triangle PZ X:

arc PX = co-declination of X
arc PZ = co-latitude of observer
arc ZX = co-altitude of X

angle Z,PX = LH.A.of X

angle PZ,X = azimuth of X

Given latitude of observer, and altitude and declination of X,
the angle Z,PX may be computed. This gives the L.H.A. of X.
When this is compared with the G.H.A. of X (obtained from an
ephemeris), the longitude of the observer is found.
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| Spherical trigonometry

Spherical trigonometry is concerned with the several methods of
solving spherical triangles.

A spherical triangle is formed on a sphere by the intersection of
three great circles: a great circle is a circle on the sphere’s surface
on the plane of which the centre of the sphere lies.

Two great-circle arcs intersect to form a spherical angle, the
magnitude of which is equivalent to the plane angle between the
tangents to the great-circle arcs at the point of intersection.

The measure of a spherical arc or side of a spherical triangle is
equivalent to the angle at the centre of the sphere contained
between the radii which terminate at the ends of the arc.

Every spherical triangle has six parts, three of which are angles,
and the other three sides. It is conventional to denote an angle of
a spherical triangle by a capital letter, and a side by a small letter
corresponding to the letter used for the opposite angle. Thus, if
an angle is denoted by X, the side opposite is denoted by x.

If three parts of any spherical triangle are known it is possible
to compute any of the other parts directly by means of one of
three fundamental formulae. These are the spherical sine, cosine
and four-parts formulae.

I. THE SPHERICAL SINE FORMULA
In any spherical triangle XYZ:

sinx siny sinz
sinX sinY sinZ

Proof: Referring to Fig. 1, in which the spherical triangle XYZ
is depicted on a sphere whose centre is at O.

Drop a perpendicular from X on to plane OYZ at P.

Drop perpendiculars from P on to radii OY and OZ at A and
B respectively.

Because XA and XB lie in the planes of the arcs XY and XZ
respectively, it follows that:
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plane angle XAP = spherical angle XYZ
plane angle XBP = spherical angle XZY

now
sinz _ AX/OX AX BX
sinZ  XP/BX =~ OX XP
and
siny BX/OX BX AX
sinY  XP/AX = OX XP
therefore:
sinz siny
sinZ _ sin Y
X

FIGURE 1

By dropping a perpendicular from Y on to the opposite plane
OXZ, and proceeding as above, it may be proved that:

sin z sin x

sinZ = sin X

Therefore:
sinx siny sinz
sin X'~ sinY sinZ

The spherical sine formula may be used to find an angle given
the opposite side and another angle and its opposite side; or to
find a side given the opposite angle and another side with its
opposite angle.
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Because sin O=sin (180— 0), the spherical sine formula is
ambiguous.

2. THE SPHERICAL COSINE FORMULA
In any spherical triangle XYZ:

COS X —CO8 Y COS Z
sin y sin z

cos X =

or
cos X = cos X sin y sin z+cos y cos z

X

: B
FIGURE 2

Proof: Referring to Fig. 2: Let XYZ be a spherical triangle on
the sphere whose centre is at O. Tangents at X drawn in the planes
of the sides XY and XZ meet the plane OYZ at A and B respec-
tively. :

Because XA and XB are tangents in the planes of the arcs XY
and XZ, the plane angle BXA is equal to the spherical angle X.
Also OXB and OXA are right angles.

By the plane cosine formula applied to triangles OAB and AXB:

AB2 = OA2+0B2-2.0A.0B.cosx . . (1)
AB? = AX?2+BX?-2.AX.BX.cos X . . (2)
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Subtract (2) from (1):

O = OA?+0B?-2.0A.0B.cos x~(AX?+ BX?2
—2.AX.BX.cos X)

= OA24+0B2—-2.0A.0B.cos x—AX2~BX2
+2.AX.BX.cos X

= (OA?- AX?)+(0B2-BX?)~2.0A.0B.cos x
+2.AX.BX cos X

=2.0X2-2.0A.0B.cosx+2.AX.BX.cos X

X
FIGURE 3
From which:
OA.OB.cos x—0X?2
cos X = AX BX N )]

Divide (3) by OA.OB:
€08 X~ COS ¥.COS$ Z
siny.sinz

cos X =

The spherical cosine formula suffers the disadvantage in that it
is not suitable for logarithmic computation.

3. THE FOUR-PARTS FORMULA
In any spherical triangle XYZ, if three of any four adjacent parts
are known, the fourth may be found directly by means of the four-
parts formula.

In the triangle XYZ depicted in Fig. 3, the four-parts formula
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connecting angles X and Y and the sides y and z, is:

cos z cos X = sinz cot y—sin X cot Y

Proof: By the spherical cosine formula:
cosy = cos Y sin z sin X+ €08 z cos X
cos X = cos X sin y sin z+cos y cos z

By the spherical sine formula:
sin X siny

sinx = -
sinY

VA

FIGURE 4

353

(1)
@)

3)

Substitute (2) for cos x in (1), and (3) for sin x in (1): Thus:

sin X siny

cosy = cos Ysinz Y

+cos z (cos X sin y sin z+ cos y cos z)

cot Ysin X sinysinz

+cos z cos X sin y sin z+cos y cos? z

cosy — cosy cos?z = sin y sin z(cot Y sin X + cos z cos X)
cosy (1 — cos?z) = sin y sin z (cot Y sin X + cos z cos X)

cos y sin? 2z .
—-.—y—.—— = cot Y sin X+cos z cos X
sin y sin z

or cos z cos X = sinz cot y—sin X cot Y
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4. NAPIER’S RULE OF CIRCULAR PARTS

If one of the angles in a spherical triangle XYZ is 90°, the funda-

mental formulae reduce to simple expressions, each involving

three terms only. This is so because sin 90° = 1, and cos 90° = 0.
In the spherical triangle XYZ depicted in Fig. 4:

Because Y = 90°:
sin Z = sin z cosec y
COSX = COS Y COS Z
cot X = cotxsinz

It is possible to derive ten such formulae which, collectively,
provide the means of solving every case of right-angled triangles.

OR:

FIGURE §

Instead of deducing from these formulae ten distinct rules for the
solution of the various cases, the whole, by means of the assistance
of an ingenious contrivance invented by the illustrious Baron
Napier, may be comprehended in two simple rules known as
Napier's Rules.

The parts of the right-angled triangle illustrated in Fig. 4 (not
including the 90° angle) are written in order in the five sectors of
the cartwheel illustrated in Fig. 5:

The two angles X and Z and the side opposite to the right angle
Y are prefixed with ‘co’ meaning complement.

Of any three of the five parts in the cartwheel, one is a ‘middle’
part, and the other two are either ‘opposite’ or ‘adjacent’ parts.

Napier’s mnemonic rules are:

sine middle part = product cosines opposites
sine middle part = produce tangents adjacents
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Any oblique spherical triangle may be divided into two right-
angled triangles by dropping a perpendicular great circle from
any apex on to the opposite side or side produced. It follows, there-
fore, that Napier’s simple formulae may be used to solve any
oblique triangle indirectly and without resort to the fundamental
formulae of spherical trigonometry. They are, therefore, powerful
artifices in the practice of navigation; and they are particularly
important in the construction of short-method navigation tables.

In astronomical navigation the more important spherical trigo-
nometrical problems are those in which it is required to find an
angle given three sides; or those in which it is required to find a
side given the other two sides and the included angle. The
spherical cosine formula is, therefore, the basis of the solutions
of most nautical astronomical problems.

Because the spherical cosine formula is not suitable for logarith-
mic computation, other formulae derived from the cosine
formula, and which are suitable for use with logarithms, are
invariably used by navigators.

The trigonometrical functions versine and haversine are func-
tions used almost exclusively by navigators.

vers § = 1—cos 0
hav 6 = 3(1—cos 0)

The great advantage of the versine is that its sign is positive for
all angles, so that the various forms of the versine and haversine
formulae help to eliminate or reduce the seaman’s traditional
difficulty of dealing with trigonometrical functions of angles over
90°.
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Magnitude of star, 38

Mannevillette, d’A. de, 201

Maps

ancient, 17, 18, 127, 180
projections, 127, 334-5, 339

Margetts, 236, 336

Mariner’s New Calendar, 311

Mars, 25, 26

Martelli, G. F., 323

Martin; A. B., 237

Comdr. W. R., 136, 148, 160,
170, 263, 267, 305-6

Martin Behaim (of Bohemia), 22, 62

Maskelyne, Dr. N., 28-9, 80, 88,
110, 114, 115, 148, 150, 188,
203-5, 208, 226, 239, 248-9,
311, 313, 326

Maurice, J., 191

Mayer, J. T, 28, 83, 108, 201-3

Mazaroth, 7

McMillen, D., 342

Mean

Sun, 34, 49

solar day, 49, 264
time, 316

time hours, 37

Medina, P. de, 24, 311

Mercator chart, 296, 299

Meridian

altitude, 129, 13740, 1625, 346
distance, 244
lines
Eratosthenes’s, 12, 127
prime, 180, 182-2
passage, 97, 129, 346
of moon, 40~1

Merrifield, Dr. J., 93, 174, 227-8

Meéthode du point rapproché, 290,
293-308 :
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Metonic cycle, 10, 40

Molfino, 335

Molyneux, S., 106

Moon
apparent motion, 4, 190
declination, 142, 163, 164
eclipses, 14, 181-3
epact, 40
horizontal parallax, 120, 121
maximum altitude, 164
meridian passage, 40-1
nodes, orbit, 15
occultations, 189-91
parallax-in-altitude, 120
phases, 5, 6, 35, 40
retardation, 191
right ascension, 142, 191
semi-diameter, 118-19, 121
tables, 24, 28, 29, 142
theory of motion, 199, 201
transits, 191-2
See also Lunar distances

Moore, J. H., 110, 116, 172-3, 251

Moriarty, Capt., 319

Morin, J. B., 198

Mouchez, 302

Miiller, see Regiomontanus

Napier, Baron, 27, 46, 354
mnemonic rules, 47, 354-5

Nautical Almanac, 28-9, 48-9, 120,
134-5, 156, 157, 169, 188-91,
195, 203-5, 225-6, 232, 237-
242, 270, 311, 313-17

New Navigation, 30, 290, 292,
293-308

Newton, Sir I., 27-8, 75-6, 103,
142, 199, 341

Nicetas, 10

Nicol prism, 90

Nocturnal, 39-40

Norie, J. W., 110, 116, 118, 136,
173, 231, 236-7, 242, 289, 333
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Nufiez, P., 65, 82-3, 135, 143
Nuremberg eggs, 43
Nutation of Earth’s axis, 106, 345

Observer’s
" celestial horizon, 345
celestial meridian, 344
zenith, 345
Ocagne, M. &’, 336, 337
Occultation, 189-91
Octant
Newton’s, 76—7
Hadley’s, 78-82
Ogura, S., 331-3
Oughtred, W., 341
Owen, Comdr., 272

Pagel, L., 274
Paget, 95-6
Parallactic
angle, 51
rotula, 236
Parallax
annual, 25, 106, 345 .
equatorial, 120
horizontal, 119
-in-altitude, 119-20
ocular, 66, 68, 121
Parker, Capt. P., 274
Parmenides, 8
Pemberton, Dr. H., 148’
Perthelion, 34
Personal error, 122
Philip III of Spain, 27, 28, 185
Philolaus, 10
Phoenician (and Babylonian)
astronomy, 4~7, 34-6
navigation, 2-4, 11-12
Picard, J., 103, 203, 260
‘Plain’ scale, 46
Planetary motmn, Laws of, 26-7,
28

INDEX

Planispheric astrolabe, 17, 60-1
Plato, 8-9
Pliny, 13
Polar distance, 126-7
Pole Star (Polaris), 37-8, 39, 59—60
69-70, 130-6, 140, 168-9
Pol Fernohr, 136
Polynesian navigators, 130
Poor, Prof. C., 341
Portuguese navigators, 4, 21-2, 62,
130, 131, 136, 139, 140
Position-line navigation, 30, 164,
268-308
Goodwin’s method, 307-8
méthode du point rapproché, 290,
293-308
New Navigation, 30, 290, 292,
293-308
St. Hilaire’s (intercept) method,
30, 253, 293-308, 317, 323
sight reduction, 31740
Simpson-Baikie’s method, 307
Sumner’s (chord) method, 30,
160, 270, 275-84, 290-3,
308, 319, 321, 323
tangent method, 282, 284
Precession of the equinoxes, 15, 28,
123, 345
Precision navigation machme, 342
Primum mobile, 9
Pritchard, 340
Proportional logarithms, 239
Ptolemy, 16-18, 19, 60, 98, 182
theorem, 16
Purbach, 21, 44
Pythagoras, 8, 111
Pytheas, 10-12, 128
PZX triangle, see Astronomical
triangle

Quadrant, 57-60, 66, 131, 139, 140
183
Davis, 724, 83, 117
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Quadrant (contd.)

Hadley’s, 74, 75, 77-82, 88, 91,

118 A
reflecting, 74-83, 89-90
Quill, Col. H., 195

Radio
time-signals, 30, 55
direction-finding, 30
Ramsden, J., 89
dividing engine, 89, 90

Raper, Lt. H., 94, 110, 116, 145,
155, 160, 173, 177, 242, 247,

254-6, 275, 278-9
Reduction to the meridian, 170-2
Reflecting circle

simple, 834

prismatic, 84

repeating, 84-7
Refraction

atmospheric, 17, 20, 25, 98-104,

107-11, 197, 207
Bradley’s formula, 107, 110
Cassini’s formula, 103
dip of horizon, 91, 113-14

horizontal, 234
Snell’s law, 100-1
Regiment, see Rules
Regiomontanus, 21,
310
Rhumb lines, 290

Riddle, E., 110, 135, 155, 156, 247,

280
J., 110, 155, 156, 161-2, 279-80

Right Ascension, 14, 46, 48, 123,

268, 344

of Moon, 142, 111

of Pole Star, 134-5

of Sun, 48, 49
Ring dial, 42
Rios, M. del, 120, 149, 208, 217
Rising (2 sin%A/2), 173, 175

See also Versine

22, 44, 65,

383
Risings, achronychal, cosmical and
heliacal, 5
Roberts, E., 321

Robertson, J., 91, 92, 94, 116, 136,
145, 147, 148, 169, 177
Roemer, 103, 186
Rosser, W. H., 173, 289 -
Roy, General, 114
Rules
of the North Star, 131-6, 309
of the Sun, 138-9
Running down the latitude, 131
Rust, Capt. A., 331, 335

Sadler, D. H., 316
St. Hilaire, Marcq, 30, 164, 253,
293-308, 317, 323
Saros cycle, 6, 200
Seaman’s Kalendar, 311
Seller, J., 1, 42, 134, 139, 141
Semi-diameter
of Moon, 118-19, 121
of Sun, 117-18
Serson’s horizontal top, 94
Settings, achronychal, cosmical and
heliacal, 5
Severus, 61
Sexagesimal system, 7, 36
Sextant, 76, 81, 87-92
Shadwell, Capt. C. F. A., 534,
158, 256
Short double-altitude method, 177
Sidereal
day, 32, 33, 36, 264
hour angle, 317
year, 15
Sight reduction, 31743
cosine-haversine method, 325,
333
intercept method, 317, 329
graphical methods, 334-40
longitude by chronometer, 317,
318, 328
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Sight reduction (contd.)
mechanical methods, 340-2
Ogura’s method, 331-3
Yonemura's method, 3334
See also Position-line navigation
Simpson-Baikie, E. B., 307
Slide-rule, 340-1
Smeaton, J., 94
Smith, C., 79-80
Snell, W., 100
Solar
day, 32, 334, 36, 43, 49, 264
year, 34, 35-6
Solarometer, 342
Solstices, 33, 344
Solstitial points, 33
Souillagouet, 328
Southern Cross, 140-1
Spherical trigonometry, 16, 155,
304, 349-55
cosine formula, 155, 351-2
four-parts formula, 352-3
Napier’s rules, 47, 354-5
sine formula, 349-51
Stars
altitude curves, 340
catalogues of
Brahe, 25
Flamsteed, 186
Hipparchus, 13, 14, 18
culminations, 129
declination, 140, 141-2
double-altitude problem, 144-5,
156-9, 161, 292
hour angles, 244, 268,
347
meridian altitudes, 129, 13940
observation for chronometer
error, 258, 263
parallax, 25, 106, 345
parallax-in-altitude, 120
real motion, 345
right ascension, 14, 48
timekeeping by, 35, 36, 38

317,

INDEX

Stella Maris, 37-8
See also Pole Star
Stereographic projection, 334, 339
Stevens, J., 136
Strabo, 129
Sturmy, S., 335
Sub-solar point, 268
Sub-stellar point, 268
Sullivan, Capt., 275
Sumner, Capt. T'. H., 30, 160, 164,
270, 275-84, 290-3, 308, 319,
321, 323
Sun :
altitude-measuring instruments,
60-73, 89, 139
apparent motion, 5, 15, 36, 343
chronometer error observations,
25763 _
chronometer rating observations,
264-5
culmination, 32, 165
declination, 14, 33, 46, 128, 137,
138, 141-3, 309-10, 345
eclipses, 183-4, 256
horizontal parallax, 120
hour circle, 346
irradiation, 121-2
latitude observations
change in altitude, 179
double-altitude, 143-56
equal altitudes, 174
ex-meridian altitude, 172-3,
175-6, 177 '
meridian altitude, 137-9, 162~
163
longitude observations
chronometer method, 245,
275-6
sun-lunar distance, 196-7,
205-8
" position-line navigation, 275-84,
290, 293
rotation, spots, 27
timekeeping, 41-2
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Sun-dials, 37
Sunrise and sunset, observation

for longitude, 226~7

Tables

A, B and C, 262, 284-90, 318,
324
Aand K, 333
Alphonsine, 21, 310
Andrews, 152
angular distances between stars,
158, 161
Aquino, 329-30
atmospheric refraction, 100-10
azimuth, 284-90, 312, 323-41,
328
Bairnson, 176
Ball, 327-8, 329, 330
Bertin, 329
Blackburne, 198-9, 288-9, 328
Braga, 331
Brent, Walter and Williams, 306
Burdwood, 162, 284, 312
Burton, 284
Cambridge, 226
Cassini, 186, 187, 318
chronometer, 324—6
Clairaut, 201
Coleman, 237
corrections for second difference,
242
Damoiseau, 189
Davis, 253, 284, 312, 330, 324-6
declinations
of Moon, 142
of stars, 140-2
of Sun, 46, 60, 137, 141-3,
309-10
Delambre, 189
dip, 114-17
Douwes, 148, 150
Duhamel, 285
Espinasse, 288

Tables (contd.)

ex-meridian, 165, 173, 174-9,
283, 306, 312
Flamsteed, 186-7
Galileo, 185
Goodwin, 331
Guyon, 329
Hall, 234
Halley, 200
Hansen, 218
Hariot, 115
haversines, 152, 168, 2524,
325
Heath, 284-90
Hommey, 319
horizontal refraction, 234
Hughes, 334
Inman, 110, 168, 242, 252
inspection, 318, 326-7
Ivory, 110
Johnson, 176, 274
Jupiter’s satellites, 185-9
Lalande, 318
Laverty, 283, 289
Lecky, 289-90
Lemonnier, 200
logarithm, 46, 323, 325
logarithmic
differences, 231
haversines, 2523, 325, 333
risings, 173, 175, 247-8
trigonometric, 46
longitude factor, 2834
lunar distance, 312, 315
Lynn, 156-7, 318-19, 320, 324
Mackay, 110, 116
Margetts, 336
maritime positions, 254
Martelli, 323
Maskelyne, 110, 115, 148, 150,
188, 226, 23940, 248, 311-
312
Mayer, 201-5
meridional parts, 46
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Tables (contd.)
Moon, 28, 29
declination, 142
horizontal parallax, 120-1
lunar distances, 29, 199-205
Right Ascension, 142, 191
Moore, 110, 116
Norie, 110, 116, 118, 237, 242,
284, 333
Ogura, 331-2
Pagel, 274
Pole Star, 134-6, 168-9, 309
proportional logarithms, 237
Raper, 110, 116-17, 242, 247, 254
Riddle, E., 110, 116, 175
Riddle, J., 110
Right Ascensions
of Moon, 142, 191
of stars, 46, 48, 142
of Sun, 46, 49
Rios, 120, 217-18
Robertson, 116, 118
Rosser, 173, 289
Rudolphine, 26, 198
Rust, 331, 335
Shadwell, 158
short-method, 155, 312-13, 317~
334
sight-reduction, 318-34
Souillagouet, 328
Stars
angular distances, 156-9, 161
declinations, 142
hour angles, 317
Right Ascensions, 46, 48, 142

southing, 48
total correction, 117
Sun :
declination, 46, 49, 142-3,
309-11

double-altitude, 148, 150
Right Ascension, 48, 49
total correction,.118

true bearing, 162, 3234

INDEX

Tables (contd.)
tan lat, 265, 266
Thomson, 321~2
tides, 46
Towson, 1756, 320, 329
versines, 168, 252-3
reduced, 176
Wakeley, 323
Wargentin, 189
Weston, 266
Wright, 115
Yonemura, 3334
Zacuto, 310
Tapp, J., 311
Tate, W. G., 154
Taylor, Mrs. J.,
250, 261-2
Telegraphic chains, 2567
Thales, 7-8, 12
Thomson, Sir W. (Lord Kelvin),
319, 323
Tides, 28, 35, 40
Timocharus, 11
Towson, Capt. J. T., 175, 320
Trigonometrical functions, 44
Triquet um, 58
Trivett, Capt. J. F., 161, 285-7
Troughton, 84, 89, 90 ‘
True
place, 119
Sun, 34
Two-star diagram, 339

110, 116, 155,

Venus, 27

Vernier scale, 82, 84

Versine, 175, 248, 252-3, 355
reduced, 176

Vertical circles, 346

Villarceau, Y., 293, 294, 301 302

Vitello, 99

Wakeley, A., 47, 323
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Walter, 176, 306

Waltherus of Nuremberg, 21
Wargentin, P., 189
Watches, 43, 143, 194
Weems, Capt. P. V. H,, 340
Werner, J., 23, 196, 197
Weston, Comdr., 266
Whiston, W., 192-3

White, J., 178

Wier, Capt. P., 324, 335
Williams, 176, 306

Willis, E. J., 342

Wilson, Dr. J., 93-4
Witchell, G., 208, 226
Wollaston prism, 90
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Wood Robinson, T., 335
Wright, E., 42, 44, 46, 109, 111,
115, 1334, 138, 139, 140-2

Year, 15

Yonemura, A., 333

Young, Prof. J. R., 213, 214-15
Dr. T., 314-15

Zacuto, A. ben S., 310
Zeiss, C., 136
Zenith distance, 330
Zodiac, 7, 344
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